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Introduction 

Turbo C: The Art of Advanced Program Design, Optimization, and Debugging 
is designed not only for the C programmer interested in investigating this new 
and exciting dialect of the language, but also for the Turbo Pascal programmer 
who has decided to investigate Turbo Pascal's more powerful cousin. Turbo C is 
also directed specifically to the IBM PC, XT, and AT computers and their clones, 
on which Turbo C is at home. While the principles of programming are 
applicable to all computers, the example programs in this book, as well as Turbo 
C itself, are specifically adapted to this host. 

The History of Turbo 

It all began with Phillippe Kahn and Borland International. This large man and 
his small company profoundly changed the personal computing world with a 
compiler for Pascal that he called Turbo Pascal. Turbo Pascal Version 1.0 for the 
IBM PC and CPM80 gathered a following around it in record time, partly because 
it was a quality compiler at a time when other compilers were either horribly 
expensive or mediocre in performance--or both. The real key, however, to Turbo 
Pascal's success was that it was more than just a compiler-it was a complete 
working environment. 

Turbo Pascal included an integrated editor. After developing programs with the 
editor, the user was already in position to compile them from the same interface. 
If the compiler found an error, it would hop back to the editor, placing the cursor 
at the point of the infraction, in position to make the necessary correction. Since 
Turbo Pascal was a single pass compiler which could, optionally, compile 
directly to RAM (Random Access Memory), compiles occurred with lightning 
speed. Turbo Pascal could even successfully execute compiled programs without 
leaving the environment. The only facility that Turbo Pascal lacked was an 
integrated debugger, a short fall that third-party developers have since made up. 
The net result was that more working Pascal code could be generated in less time 
with Turbo Pascal than with any other compiler in existence, bar none. 

At the time of its introduction, Pascal was not the number one language for 
personal computers. BASIC was still king of the micros, with C and a subset 
known as Small-C just beginning to challenge. But Borland only offered one 
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10 TURBO C 

compiler, and to enjoy the advantages of the Turbo interface you simply had to 
learn to speak Pascal. The rush was on to learn this picky little Swiss language. 
In very short order, Turbo Pascal was king of the PC languages. 

Not everyone was happy with this situation, of course. My case was not that 
uncommon. I was just beginning to appreciate the power of C, having come 
from more of an assembler background, when Turbo Pascal arrived. At first I 
resisted, but in the end I just couldn't ignore all the enjoyment my fellow 
programmers were having with their instantaneous turnaround times. My 3 and 4 
pass C compilers with their five-minute plus compile times drove me into the 
arms of another language. 

I kept my old C compilers around, of course, and would often bring them out for 
a spin from time to time, even though I had adopted Turbo Pascal. Others like 
me did the same. Some programmers could not forgo the power of C, and so 
they stayed with these lumbering monstrosities. As C compilers got better and 
better, together we longingly wondered when a souped up, Turboed version of our 
favorite language would arrive. 

Finally, in late 1986 Turbo versions of other languages began to appear. First 
came Turbo Prolog, then Turbo Basic and then, at last, Turbo C in the summer 
of 1987. Those of us who had reluctantly adopted Turbo Pascal were ready to 
rejoin the C holdouts in adopting Turbo C as our native tongue, and we were 
bringing more than a few Pascal diehards with us. This book is primarily 
directed to these two groups: the Turbo Pascalers, who are curious to learn this C 
language of which they have heard so much, and experienced Cers, finally able to 
make the transition to the Turbo version of their favorite language. 

This Book 

The C language was first invented by Dennis M. Ritchie at AT &T's Bell Labs in 
1972. C was an evolution of the older BCPL language. It is interesting to note 
that the first descendant of BCPL was also developed at Bell Labs by Ken 
Thompson and called B. B was named after the first letter in BCPL and C after 
the second. The next language to evolve from C should logically be named P, if 
the pattern holds. 

The definition of C was originally contained in a book, The C Programming 
Language, written by Brian W. Kernighan and Dennis M. Ritchie. Today, 
standard C implementations are referred to as simply K&R C compilers, 
implying that they adhere to the specifications laid out in that book. Over the 
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years, K&R has begun to show a little wear, and, as a result, the superset ANSI 
standard and slightly deviant C++ languages were formulated. Turbo C 
implements most of the ANSI standard for C. 

In addition to the power of the language itself, the initial success of C can be 
traced back to the success of the UNIX operating system. So closely tied in 
people's minds were the fortunes of C and UNIX that some felt that they were 
interdependent. While it is true that the majority of the UNIX operating system 
is written in C, it is not true that C is somehow dependent on UNIX. C is such 
a simple language that it finds use on applications that have no operating system 
at all, or at least a very simple one. In any case, C has no problem existing 
under the roof of the IBM PC's PC-DOS operating system. 

C uses a terse syntax, for example preferring a simple { over Pascal's BEGIN and 
a } over END. This is probably due to the fact that C was developed on 
machines equipped only with teletypes as terminals. The natural tendency with 
such loud and slow devices is to keep output as short as possible. Many feel that 
this terseness makes C cryptic. It is true that, to the uninitiated, C code looks 
like just so much gibberish. Once you master the language, however, C is no 
more or less cryptic than any other language. Is Pascal any more understandable 
just because it uses primitives with more letters? If this was so, then why are we 
not all programming in a really verbose language like COBOL? 

There are many C books on the market, some of which I take exception to. 
Some attempt to make C look as much like other languages as possible. Some 
restrict themselves to a subset of the language, preferring to only use constructs 
that look more like Pascal or BASIC, the so-called safe constructs. Some even 
go so far as to redefine C primitives, using BEGIN to mean {, etc. It's like the 
old joke, "Real programmers can program FORTRAN in any language." 

Bunk! This is akin to climbing into an expensive sports car and deciding not to 
shift it out of third gear so that it performs more like the family station wagon. 
C is a powerful, low-level language capable of "hanging" its programmers in 
many ways. Forgoing the power and elegance of C will not make it any safer. If 
you are going to be forced to accept the treacheries of C, you should at least 
enjoy the heady power of it also. 

In their zeal for high-level language structuredness and portability, some texts 
completely ignore the underlying machine. This is especially true of authors of 
Pascal, but is not completely unknown in C books. A high-level language is a 
metaphor for the machine code below it. No matter what you do, it is the 
machine code generated from your program that will be executed and not the C 
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program itself. Ignoring that fact is not going to change it. As long as 
performance is any consideration at all, you cannot completely ignore the 
underlying hardware. 

Programmers are encouraged, for example, to avoid x > > 3 (shift x right by three 
bits) as being too cryptic, preferring instead the equivalent x I 8, even though the 
divide instruction is hundreds of clock cycles slower than the shift instruction on 
the 8088 microprocessor, the heart of the IBM PC. To them, I might suggest 
instead the equivalent antilog (log x - log 8) as being even more preferrable 
because of its generality, never mind the fact that it might be time for breakfast 
before it finishes executing. 

Like it or not, programmers must consider the machine code that their programs 
generate, since that is what the eventual user is going to see. As the saying 
goes, "If your software ignores the hardware, your hardware will ignore the 
software." I have never once heard a user, when confronted with a slow 
application, remark, "Sure its slow, but I use it because its source code follows 
all the modern coding styles!". While this book attempts to present a structured 
programming style, you will be considering how small changes to your source 
code may affect the speed and size of the resulting executable program. 

There have long been several fine general books on the C language. Even when 
these books could be directed specifically to the IBM PC and its clones, there 
was, until now, no dominant C dialect. In anticipation of the rush to market the 
introduction of Turbo C, many publishers have repackaged existing books to be 
Turbo C books, rather than simply C books. Unlike these retreads, this book 
has been designed from the ground up to specifically address Turbo C on the IBM 
PC and its clones. While this may lock out some potential readers, it will allow 
me to delve into topics of special interest to Turbo C and the PC in greater detail. 

Organization 

Turbo C: The Art of Advanced Program Design, Optimization, and Debugging 
is organized into several distinct sections. In my conversation of Turbo C I do 
not differentiate between the compiler when invoked from the command line or 
from the Interactive Development Environment (IDE), since they are the same 
language. (There is one exception to this in Chapter 8.) 

The first two chapters are intended to give you an overview of Turbo C. 
Chapter 1 runs quickly through the primitives of the language, while Chapter 2 
centers on differences between Turbo C and the K&R standard. Readers already 
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familiar with C will probably want to start with Chapter 2. The discussion of 
pointers in Chapters 3 and 4 attempts to give you a fundamental understanding of 
this most basic of all concepts to the C language. Chapters 5 through 7 look at 
some of the system tools available to the DOS programmer. Chapter 8 delves 
into methods to optimize existing applications, while Chapter 9 concludes with 
the subject of terminate and stay resident applications and interrupt handlers. 

Often, I will examine the same problem several times, each program representing 
a refinement of its predecessor. This may seem unusual, but remember that it is 
not my intent to anticipate every problem you may have and provide C solutions. 
Rather, the goal is to help you create your own better solutions to problems. By 
developing and comparing different solutions to the same problem, you can better 
understand the relative advantages of each. 

The commenting of example programs in a book is always a touchy subject. 
Since the programs are described within the text of the book, I debated not 
commenting them at all to leave the structure more visible. I dropped this idea, 
however, as I did not want to encourage the practice among readers of not 
commenting programs. Still, comments have been kept slightly sparce with the 
knowledge that small points can be addressed within explanatory chapters. 

When addressing the less easily offended programs within the text I have adopted 
the standard of referring to variables in all upper case. This allows sentences such 
as the value of VALUE to have meaning. Function names are always followed 
by (). Experienced C programmers will instantly recognize this as the symbol 
for functions. Using this convention, even sentences such as the value of the 
VALUE passed to value() have meaning (don't worry, this example is purely 
hypothetical). 

Finally, note that portability is not our goal. There are already many good books 
on the C language that include machine-independent programs. I have not 
specifically chosen the example programs to be machine specific, but neither 
have I avoided it. By allowing ourselves to concentrate on one dialect of 
C-Turbo C-and on one machine-the IBM PC and its clones-we will be able 
to do more with our programs than we would be able to do with other works, and 
cover what I think are more interesting topics. Although Turbo C moves 
quickly in places, perseverance will be repaid. We have a long way to go in 
mastering this language, and the sooner we get started the better! 





1 
Overview of C 

As an advanced text on the Turbo C language, Turbo C: The Art of Advanced 
Program Design, Optimization, and Debugging is designed to start where your 
manual leaves off, continuing into some of the more technical applications of 
Turbo C on the IBM PC and its clones. In the interest of completeness, 
however, it is difficult not to start with a quick overview of the C language. 
This is not intended as an introduction for the beginner previously unfamiliar 
with the concepts of programming on a personal computer. Rather, it is designed 
to serve as both a jog to the memory of the reader already familiar with C and as 
a quick introduction to the Turbo Pascal or other programmer making the 
transition. It may seem odd that in this chapter I might delve into every nuance 
of a particular language construct, such as the declaration of variables, before ever 
mentioning how to use it. This will be appreciated later on, however, when you 
are able to use this chapter as a reference for the rest of the book. 

There is a changing of the guard in the C world. The language currently in vogue 
is that described in Kernighan and Ritchie's The C Programming Language. So 
far, no standard for C has existed other than that represented by this book. To 
formalize the definition of C a bit, the American National Standards Institute 
formed the X3Jl l committee in the mid-1980s to formulate an ANSI standard for 
the language. Realizing that the K&R standard contained several weaknesses, 
X3Jl 1 adopted a few enhancements. At the time of this writing (summer 1987) 
the ANSI standard is only a proposal, X3.159. Its adoption, however, is all but 
assured. In any case, the X3 enhancements have already been included in the 
Turbo C language and are presented in this book. In general, ANSI extensions 
beyond K&R are noted as such for those only familiar with the older "standard." 

Program Structure 

A C program consists of optional global variable declarations followed by any 
number of functions, at least one of which must have the name main(). The 
simplest C program in the world appears on the next page. The principle parts of 
a C function are clearly marked in the listing. 

15 



16 TURBO C 

/*This is a simple program*/ 
main() 
{ 
} 

<--comment 
<--function name 
<--beginning 
<--end 

Comments in C are any text contained within an opening /* and a closing */. 
Comments may contain any text desired and may extend over multiple lines. 
Following the ANSI standard, Turbo C allows comments to optionally be nested; 
that is, the same number of */s as /*s must appear to close a comment. This 
allows large sections of code to be commented out with one set of open and close 
comments, even if that code segment contains comments itself. (K&R does not 
allow nested comments.) C treats a comment the same as spaces and tabs, 
referring to them all as white space. 

Simple functions begin with a name followed by (). Arguments to the function 
can, optionally, be contained within the parentheses as you will see later. The 
body of a function starts with a { and ends with a}. It is the function main() 
which is first given control when the program is executed. Unlike Pascal, 
nesting of functions is not allowed, but on the other hand functions can be called 
before they are defined. 

The body of a function consists of any local variable declarations followed by 
executable statements, each ending with a ; . It should be stressed that C uses the 
semicolon as a statement terminator and not as a separator as in Pascal, saving 
the programmer the confusion over semicolons that is so common in the Pascal 
world. Spaces, tabs, and comments can be included anywhere within a program 
(except within variable names and keywords) to improve readability. They are 
ignored by the compiler. 

C functions are called by including the function name followed by a parenthesis 
containing any arguments. The second simplest C program appears in the figure 
below. Since every C expression has a value, all C functions correspond to 
Pascal functions. C has no construct that corresponds to Pascal procedures. 

/*the second simplest C program*/ 
main() 
{ 

proc (); 
} 
proc() 
{ 
} 

<--invoke function 

<--define function 
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Declaring Variables 

C requires all variables to be declared. Some example variable declarations appear 
below. 

int a; 
int b,c; 
char d; 
float e; 
double f; 

unsigned int g; 
unsigned h; 

/*declaring a signed integer variable 'a'*/ 
/*declaring two more, 'b' and 'c'*/ 
/*here we declare a character ... */ 
/* ... a floating point ... */ 
/* ... and a double precision, floating point*/ 

/*the unsigned subtype of integer*/ 
/*the 'integer' can be ommitted*/ 

The type INT has three subtypes, short integer, long integer and unsigned integer. 
The INT is assumed if missing from any of these subtype declarations. The 
variable types, their sizes and legal range of values appear in Table 1.1. 

Table 1.1 
Variable Types in Turbo C 

Name Type Size [bytes J Range 

char character 1 

signed -128 .. 127 
unsigned 0 .. 255 

int integer 
signed 
short 
unsigned 
long 

float single prec real 
double double prec real 

2 

1 

2 

4 

4 

8 

-32768 .. 32767 
0 .. 255 
0 .. 65535 

-2.13*10**9 .. 2.1*10**9 
3.4*10**-38 .. 3.4*10**38 

1.7*10**-308 .. 1.7*10**308 

Actually, C considers unsigned to be a modifier and allows it to be applied along 
with long and short, so that one could have an unsigned short int, for example. 
In like fashion, C defines the opposite modifier signed. Both modifiers can also 
be applied to type character as well as integer. 

Two additional modifiers that Turbo C defines are const and volatile. Declaring 
a variable to be const implies that it cannot be changed; that is, it cannot be the 
object of an assignment operator. Volatile is exactly the opposite. To improve 
the performance of the machine code that it generates, Turbo C assumes that 
variables are not changing in memory unless it is changing them. Volatile 
overrides that assumption, telling Turbo C to reload a variable every time it 
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appears in a statement as its value may be changed by other programs working in 
the background. 

Arrays are declared by adding a size enclosed in brackets ( []) to a simple variable 
declaration. The number appearing within the brackets is the number of elements 
to allocate. Since all arrays in C are assumed to start with subscript 0, the 
largest legal subscript of an array is one less than the number appearing in the 
declaration. For example, int af 5] declares an integer array with five elements 
ranging from a[O] through a[4]. 

Just like Pascal, C views a matrix as an array of arrays. Unlike Pascal, C does 
not allow a special, FORTRAN-like declaration with both indices within the 
same brackets and separated by a comma. The code sample below shows some 
example array and matrix declarations. Additional dimensions can be added, ad 
infinitum, by viewing an Nth order matrix as an array of N-lth order matrices. 

int array[S]; 
int matrix[S] [3]; 

/*declare a 5 element array*/ 
/*and a 5 x 3 matrix*/ 

In addition to defining simple variables, as in the examples above, it is also 
possible to declare pointer variables. Rather than containing integers,floats, or 
chars, these variables contain the addresses of these simple types (or these 
variables "point to" these simple types). The following pointer declaration: 

int *ptr; 

declares a pointer, PTR, to an integer. That is, the variable PTR points to, or 
contains the address of, an integer. I will study pointers in detail in Chapters 3 
and 4. Suffice to say at this point that pointer to an integer is every bit as valid 
a variable type as integer itself. 

C allows the user to assign names to particular data types by using the 
TYPEDEF command. Consider the following program excerpt: 

TYPEDEF int array[lO]; 

array simple, matrix[S]; 

The TYPEDEF statement appears identical to a normal declaration of a variable, 
except what is actually being declared is not a variable but a user-defined type. In 
this case, the user has defined a type ARRAY that is actually a ten-element array 
of integers. A sample variable declaration appears on the next line. The variables 
SIMPLE and MATRIX are declared as a simple ARRAY and a five-element array 
of ARRAYs, respectively. The equivalent declaration is arrived at by inserting the 
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complete SIMPLE and MATRIX declarations into the TYPEDEF in place of 
ARRAY as such: 

int (simple) [10], (matrix [5]) [10]; 

TYPEDEFs do not add any new capability. These are not user-defined data types 
in the sense that the term is used in Pascal. TYPEDEF defines a new type to the 
human reader only. C still reduces the TYPEDEF to a type that it is already 
familiar with. They can be used, however, to make code more readable by 
assigning meaningful names to intermediate data types. 

In addition to data type, variables have a property called storage class. There are 
four storage classes: auto(matic), extern(al), static and register. Any one of 
these storage class designators may be placed in front of the data type in a 
declaration with the exception that register variables can only be char, int, or 
two-byte pointers. 

Auto variables are stored on the stack. Auto variables can only be declared within 
a function, being created when the function is invoked, lost when the function is 
exited, and generally known only to the function. Auto variables do not retain 
their value from one invocation of a function to another. However, auto 
variables are reentrant. That is, a function that uses only auto variables can call 
itself recursively. Variables declared within a function default to the auto storage 
class. 

Extern variables are stored in their own separate data area. Extern variables must 
be declared outside of any functions and are known to all functions. Extern 
variables are even known outside of the module in which they are declared. They 
are initialized when the program is first executed and retain their value as 
functions are entered and exited. Functions that access extern variables must be 
careful not to call themselves and must be especially careful with other functions 
that might access and modify the same variables. Extern is the default storage 
class for variables declared outside of functions and for functions themselves. 

Static variables are much like extern except for their scope. The word static does 
not imply that a static variable cannot be modified. A static variable declared 
outside of any function is known to all functions within the module. It is not 
known outside of the module. Static variables declared within a function are only 
known within that function. ASCII strings default to type static. 

Register variables are assigned to individual registers within the microprocessor. 
In microprocessors that have a large number of registers, most notably the 
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Motorola 68000 family, it is advantageous to reserve several of these registers for 
variables that are heavily used. Since access to a register is so much quicker than 
to memory, performance can be greatly enhanced by carefully selecting certain 
variables to be of type register. When it is not possible for C to grant a register 
request, either because the base machine does not have a sufficient number of 
registers to allow any register variables or because too many register variables 
have been defined already, register variables revert to storage class auto. Turbo C 
recognizes up to two register variables per function. 

Register variables have some restrictions-most notably they have no address in 
memory (since they aren't stored in memory!). Applying the address of 
operator, &, on register variables is illegal. Furthermore, register variables must 
be of simple types, such as char, int, or near pointer, since that's all that will 
fit in a single 8086 register. Despite these restrictions, judicious use of the 
register storage class can significantly decrease execution time, as you will see in 
Chapter 8. 

One final property that can be imparted on pointer variables is that of nearness 
and farness. I will discuss this property of pointer variables in the 8086 family 
of microprocessors in Chapter 3, but suffice it to say that the reserved words far 
or near (as well as the segment names _cs, _ds, _es, and _ss) may appear before 
a pointer variable name, as in: 

char far *charl; 
int near *int2; 

/*declare a 4 byte pointer ... */ 
/* ... and a 2 byte pointer*/ 

Extern and static variables are guaranteed to initially have the value 0. The value 
of auto and register variables is initially undefined. However, extern and static 
variables may be initialized to some other value at declaration by including an = 
sign followed by the appropriate number of values. Lists of values, such as 
required for array declarations, must be enclosed in braces. (In fact, simple auto 
variables can also be initialized at declaration, but doing so does not save any 
time or code and merely serves to obscure the resulting program.) An example 
declaration might be: 

int a = 5; 
int arrayl [5] = { 1, 2, 3, 4, 5}; 
int array2[] = {1, 2, 3, 4, 5}; 
int matrixl [2] [3] {1, 2, 3, 4, 5, 6}; 
int matrix2 [2] [3] = { {1, 2, 3}, 

main() 
{ 

{ 4, 5, 6}}; 
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The first declaration declares a variable A, initially with the value 5. The second 
declaration assigns ARRAYJ[O] to the initial value of 1, ARRAYJ[l] to 2, etc. 
Notice the third declaration, however. ARRAY2 has been declared identically with 
ARRAY I-when a list of entries is provided, it is not necessary to include the 
index as it is calculated by merely counting the number of entries in the 
initialization list. 

MATRIX] declares a matrix and initializes it to the integers 1 through 6. 
MATRIX2 represents the same declaration, made in a more readable fashion. 
Notice how a matrix can be considered to be an array of arrays, even in the 
initialization lists. Incomplete initializing lists can also be provided. Consider 
the following examples taken directly from the ANSI draft standard: 

float yl [ 4] [3] { {1, 3, 5}' 
{2, 4, 6}' 
{3, 5, 7}}; 

float y2 

float y3 

struct 

[4] [3] 

[ 4] [3] 

int a [3]; 
int b; 

{1, 3, 

{ { 1}' 
{2}' 
{3}' 
{ 4}}; 

} w = { {1, 2, 3}' 
4}; 

5, 2, 4, 6, 3, 5, 7}; 

The initializing list for Y 1 above is incomplete. The first .three rows of three 
entries are set to the values given in the list. The last row receives no initial 
value and is left to 0. Y2 has the exact same effect, but in a much less clear 
fashion. Initialization lists may also be column-wise incomplete. Y3 contains 
values for all four rows; however, only the first location in each row receives any 
value. The remaining two columns in each row is left 0. There is no equivalent 
form without multiple braces. Lastly, notice that structures other than simple 
arrays and matrices can be initialized at declaration time. The structure W is 
initialized in a perfectly readable fashion. 

Finally, pointers may also be initialized at declaration time. Ignore for a moment 
the cast appearing in front of the following declaration: 

int *ptr = {(int *)100}; 
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This declares the pointer variable PTR and sets it to the value 100. The cast 
converts the integer 100 into a pointer to an integer, the type of PTR, as you 
will see later in this chapter. 

Initializing an extern variable or array in the declaration can conserve both time 
and machine code. Such a declaration does not generate object code to perform 
the initialization. Space for extern and static variables is included in the .EXE 

executable files along with the space for machine code. Normally this space is 
filled with Os. Including an initialization statement merely causes values to be 
stored into these locations. Since these initialization values are evaluated at 
compile time, they must be constants and cannot contain function calls. 

Variables used as arguments to functions must also be declared. For example, 
consider the following function: 

extern double log (n, base) 
double n; 
int base; 

double temporary; 

Declarations of arguments are identical in appearance to the declaration of 
variables within the procedure itself except that they appear before the opening 
brace. An argument variable must be assigned a type but may not be assigned a 
storage class. Alternatively, arguments may be declared in place. For example, 
an equivalent declaration to that above is: 

extern double log (double n, int base) 
{ 

double temporary; 

Declaring Functions 

Functions should also be declared. (ANSI C leaves this optional since the 
original K&R C did not require such declarations. In this book, I will consider it 
a requirement.) A function is declared much as a variable, by listing its name 
with the type of value returned and followed by parentheses. It is the parentheses 
that tell C that this is a function name. 
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Declaring a function tells C the type of the value returned from that function. 
Functions left undeclared are assumed to return a value of type integer. 
Normally, functions are declared both when defined and within other functions 
which call them or at the beginning of the module. For example, consider the 
following code segment: 

int main() 
{ 

double a, addl(); 

a= addl(); 

double addl () 
{ 

OR 

double addl (); 
int main() 
{ 

double a; 

Some functions do not return any meaningful value. Leaving such a function 
undeclared will cause C to assign it type INT. To indicate to other programmers 
and to the compiler that this function really does not return any useful 
information, the ANSI standard defines a type VOID, meaning returns or contains 
nothing. Declaring a function of type VOID indicates that it returns no 
meaningful data. 

Arguments to functions should also be declared at the same time as the returned 
type. Not doing so deprives C of the information it needs to check for argument 
errors. The so-called prototype declarations appear much as they do in Pascal or 
other typed languages, except that variable names are optional. Consider the 
following declarations: 

/*prototype declarations*/ 
void funcl (int, char); 
char func2 (double); OR 

void funcl (inti, char c); 
char func2 (double x); 

/*funcl - performs some useful function*/ 
void funcl (i, c) 

int i; 
char c; 

==body of program== 

/*func2 - performs an even more useful function*/ 



24 TURBO C 

char func2 (x) 
double x; 

==body of program== 

Wherever funcl() andfunc2() might be used within the module, C can check the 
arguments supplied against the prototype declaration for proper type. The 
prototype declarations are separate from the "normal" declarations for two reasons. 
First, the actual routines might be defined in a separate module to be linked in 
during the link step. Second, in the interest of speed, Turbo C is but a single 
pass compiler. To be of use, C must know the type of function before it is used. 
Therefore, it is convenient to place all of the prototype declarations at the top of 
the module, either explicitly or in an include file. 

Notice that I showed the prototype declarations above in two formats: one with 
variable names and one without. Both forms are allowed. If variable names are 
present in the prototype declaration, they are ignored. 

What if a third function,func3(), has no arguments? Leaving the field blank 
within the prototype declaration would confuse Turbo C into thinking that this is 
an older program which follows the less restrictive K&R standard and does not 
declare its arguments. In these cases, C allows use of the VOID type as follows: 

char func3 (void); 

Here func3() takes no arguments (although it returns a character). Attempting to 

pass it an argument will be flagged as an error by C. 

One other problem occasionally arises: What if the number or type of arguments 
in a function call after a certain point is indeterminate, such as the case with 
printf( )? C allows this to be specified by concluding the prototyping declaration 
with ellipsis: 

char func4 (int, char, ... ); 

C insures that the first two arguments passed to func4() are of type integer and 

character, respectively. Subsequent arguments are not checked for size or number. 

The in place form of declaration more resembles that of the prototype 
declaration. Yourfuncl() andfunc2() above could have been declared as follows: 

/*initial prototype declarations*/ 
void funcl (inti, char c); 
char func2 (double x); 



/*funcl - performs some useful function*/ 
void funcl (int i, char c) 
{ 

==body of program== 
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/*func2 - performs an even more useful function*/ 
char func2 (double x) 

==body of program== 

The distinguishing characteristic between the program and prototype declaration is 
the presence or absence of the semicolon at the end. If it appears, then the 
declaration is merely a prototype declaration and no code actually follows. If not, 
then a program body must follow. Notice that this form of procedure declaration 
does not add any capability that you did not already have with the older K&R 
format-it is merely more consistent in appearance with prototype declarations. 

Remember, of course, that prototype declarations are optional since they were not 
part of the original K&R definition of C. In this text, I will consider them a 
requirement. I will continue to use the standard K&R procedure definition 
format, however, since the newer format provides no new capability. In addition, 
I will not provide dummy argument names in prototype declarations. 

Functions may also be declared either extern or static. Remember, variables that 
were declared outside of any functions defaulted to type EXTERN. By analogy, 
all functions default to EXTERN since functions cannot be declared inside other 
functions. Here, as with variables, the EXTERN implies that the function is 
known outside of the module. 

Turbo Pascal programmers may not understand what is meant by the phrase 
"known outside of the module." A module is a separately compilable source code 
file. In Turbo Pascal programmers may define as many functions. as desired to 
properly structure their programs, but, no matter how many are needed, every 
function invoked within a Turbo Pascal module must also be defined within that 
module. Thus, Turbo Pascal is a one module language. This is a severe 
limitation made bearable only by Turbo's allowance of INCLUDE files and by its 
incredibly high compile speed. 

C compilers, including Turbo C, allow programs to call functions that are 
actually defined in other modules. In this way a program can be physically 
broken up into several parts, each one devoted to a particular aspect of the 
problem at hand. Rather than generating an executable file directly, the output of 
the C compiler is called an object file and carries the extension .OBJ. After all 
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the modules of a program have been separately compiled, the resulting .OBJ files 
are combined into an executable .EXE program in what is known as the link step. 
It is the link process that matches calls in one module with external procedures 
defined in other modules. If one of the modules makes a call to a procedure that 
is not defined anywhere, the linker will generate an error message complaining of 
an "unresolved external," and the resulting .EXE file will not run. 

Declaring a function STATIC causes it to be known only to functions within the 
current module. Therefore, STATIC functions cannot be called from other 
modules. Functions might be declared STATIC if it desirable to hide the internal 
structure of a series of routines from the outside world. For example, in defining 
two routines, sin() and cos(), it might be desirable for both to call a separate 
routine taylor() to perform the Taylor series expansion. Since the potential for 
abuse of taylor() is high, it might be declared STATIC while the other two 
routines are left EXTERN. 

Declaring User-Defined Types 

There are two user-defined types in C: structures and enumerated data types. 
Structures are used when it is desirable to combine related data of different types 
in such a way that they might be dealt with as a single entity. For example, a 
street address consists of several parts: the street number, name of the street, city, 
state, and zip code. While it is sometimes necessary to handle the individual 
fields separately, it is often desirable to consider the address as an entity. This 
could be achieved via a structure definition such as: 

struct address { 
int streetnum; 
char streetname (20]; 
char city (20], state[2]; 
long int zip; 

} myadd, youradd; 
struct address hisadd, theiradd[lO]; 
struct address heradd = {1234, 

{"Mystreet"}, 
{"Anytown"}, 
{"Tx"}, 
78400}; 

This defines a structure named ADDRESS consisting of the five fields that 
commonly make up an address. Four simple variables and an array of type 
ADDRESS are declared. Notice how variables may be declared at the same time 
as the structure is defined (as in MY ADD and YOURADD) or in a separate 
statement (as in HISADD). A structure definition need not carry a name. 
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In general, variables of any type can be defined within a structure, even another 
structure. Such declarations appear identical to normal declarations, except that 
they may not have storage class and they may not have an initialization value. 
Structures may be initialized at declaration by attaching a list of values to the 
structure name, much as with an array initialization, as in the example above. 
To access a particular element of a structure variable, the variable name is 
followed by a '.' and the element name. For example: 

youradd.zip = 20231; 
theiradd[4] .streetnum = 1001; 

Besides the normal types, variables within structures may be defined as bit fields. 
These are variables that are not a multiple of eight bits in size. Such declarations 
appear followed with a":" and a number. This number indicates the number of 
bits assigned to this variable. For example, consider the following definition 
field for the keyboard status: 

struct word 
unsigned capslock 1; 
unsigned control 1; 
unsigned alternate 1; 
unsigned left_shift 1; 
unsigned right_shift: 1; 

} kbrdstatus; 

The main reason for using bit field declarations is the savings in data space they 
can provide. For example, even though the above structure contains five flags, it 
occupies only one byte. It should be kept in mind that bit field variables cannot 
extend over word boundaries. This can adversely affect the amount of space 
saved. For example, the following declaration does not actually save any space: 

struct mistake 
unsigned fieldl 10; 
unsigned field2 10; 
unsigned field3 12; 

}; 

Adding up the sizes of all three fields, you might think that all three variables 
could be stored within two single sixteen-bit words. However, after FIELD] is 
defined, FJELD2 can no longer fit completely within the same word, so it must 
be placed in its own word. Similarly, FIELD3 must also be stored in its own 
word. The end result is that the above declaration consumes three bytes, exactly 
the amount as three INT variables. 

Despite the bit fields potential space savings, Turbo C programmers should show 
extreme discretion in their use, as they can add considerably to the execution time 
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and size of the resulting program. This is especially true since the 8086 family 
of microprocessors does not have bit instructions for efficiently setting clearing 
and testing individual bits out of a field. Often, programmers are better off using 
their own bit access routines and performing the packing and unpacking 
themselves. 

Unions are similar to structures except that all of the individual fields occupy the 
same memory space. This is useful when it is necessary to treat the same 
variable as two (or more) different data types (such as signed and unsigned integer) 
at different times. 

Turbo Pascal programmers should note that C structures are not as powerful as 
Pascal structures. None of the C operators are defined for an entire structure 
except for the address of operator, &. I will discuss structures and their uses in 
greater detail in Chapter 4. 

Finally, Callows programmers to define their own enumerated data types, much 
like in Pascal. In C the effect is less dramatic than in Pascal. Consider the 
following declarations: 

enum birds {canary, finch, cardinal, dove, duck, goose}; 
enum birds fowl; 

enum hunters {duck= 1, goose= 1, deer, bear= 4}; 

The first defines an enumerated type, BIRDS, and declares one variable of that 
type, FOWL. Unlike Pascal, however, C treats FOWL as if it was of type 
UNSIGNED INT, and treats each of the bird types as respective values (for 
example, canary is equivalent to 0, finch to 1, cardinal to 2, etc.). The 
programmer can influence the order of assignment as in the declaration of type 
HUNTERS above. The value 0 has been skipped, assigning DUCK to value 1. 
Notice also that values can overlap (since GOOSE has also been given the value 
1) or skipped (there is no equivalence for 3 above). 

There is no type, other than integer, assigned to enumerated types. Therefore, no 
special operators are required. No ord() function is defined and, since the order of 
enumerated types is not fixed, no succ() or pred() functional equivalents exist (is 
DUCK or GOOSE the predecessor to DEER?). C does not provide strong type 
checking of enumerated types. C's enumerated type is little more than a 
convenient way to define meaningful integer constants to increase program 
readability. 
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Expressions 

An expression is a constant, a variable, a function call, or a combination of 
constants, variables, and function calls connected with operators. Every 
expression has a value. Assignments store the value of an expression into a 
variable by placing the variable name to the left of an equals sign. Assignments 
do not change the value of the expression. For example, a = b + 5; takes the 
contents of variable B, adds 5 and stores the result into A. 

There are six types of operators: math, relational, logical, bit-wise logical, the 
ternary operator, and assignment. The operators and their meanings are defined in 
Table 1.2. There is one other operator, the&, which returns the address of 
whatever variable to which it is applied. It is not a true operator, however, since 
it can only be applied to data variables. & will be discussed in detail, along with 
other addressing concepts, in Chapter 3. 

All of the mathematical operators are analogous to similar operators in other 
languages. C does not have two different types of division as Pascal does. 

C does not have a separate Boolean variable type. Instead C treats integer 0 as 
FALSE and nonzero as TRUE. The logical operators are used to perform Boolean 
type operations on zero and nonzero values, returning either a 0 or a 1. For 
example: 

5 && 2 <-- returns a 1 
5 && 0 <-- II 0 
0 && 0 <-- II 0 

5 11 2 <-- II 1 
5 11 0 <-- II 1 
0 11 0 <-- II 0 

!5 <-- II 0 
!O <-- II 1 

Remember that these are integer expressions, and their results are of type integer. 
It would be perfectly legal to multiply any of the above logical expressions by an 
integer constant. 

Turbo C performs a certain amount of optimization here. If the left side of a 
logical expression determines the result, the other side will not be evaluated. 
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Assignment 

Mathematical 
+ 

* 
I 
% 

Relational 

Logical 

!= 
< 
<= 
> 
>= 

&& 
11 

Bit-Wise 
& 
I 

Ternary 

<< 
>> 

? : 

Table 1.2 
Operators 

assignment 

add 
subtract 
multiply 
divide 
modulus 
change sign (unary) 

equality 
inequality 
less than 
less than or equal to 
greater than 
greater than or equal to 

and 
or 
logical complement (unary) 

bitwise and 
or 
exclusive or 

left shift 
right shift 
one's complement (unary) 

ternary o_Eerator 
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For example, if the left-hand expression in a logical AND results in a 0, then the 
right hand expression is not evaluated since the result is 0 no matter what the 
value of the right side. 

The relational operators are similar to relational operators in other languages 
except that the results of these operators are integer also. Each returns a 0 if the 
relationship is FALSE and a 1 if TRUE. 

5 > 2 <-- returns a 1 
5 < 2 <-- " 0 

5 != 2 <-- " 1 
5 -- 2 <-- " 0 

The bit-wise operators perform the normal bit operations. For example: 

5 & 2 <--returns a 0 (5 = OlOlb, 2 = 0010b) 
5 I 2 <-- " 7 
5 << 2 <-- II 20 
5 >> 2 <-- " 1 

The last operator, the ternary operator, is unique to C. It is the only C operator 
that accepts three arguments. They have the following significance: 

exprl ? expr2 : expr3; <--returns expr2 if exprl != 0 and 
expr3 if exprl -- 0 

1 ? 5 2 <-- returns a 5; 
0 ? 5 2 <-- " 2; 

Despite appearances, the ternary qualifies as a true operator. Ternary can be used 
any place that any other expression is allowed. As with other operators, mixed 
mode expressions are allowed. For example, if EXPR2 is an integer and EXPR3 
is a double the result of the expression will be a double, irrespective of which is 
"selected." 

As in other common languages, C allows a variable to appear on both sides of 
the equal sign, as in: 

value = value + 1; 

This takes the contents of VALUE, adds to it a one and stores the result back into 
VALUE. Since this is such a common operation, C allows a shortened form: 

value += 1 

In this shorthand, the operator is placed in front of the equals sign. This can be 
read add the value 1 to VALUE. The expression to the right of the equals can be 
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as complicated as desired. All of the math and bit-wise logical operators can be 
combined with the equals sign in this form of construct. The value of this 
expression is the same as that stored into the operand on the left of the equal 
sign. 

If you were to determine which operator was used most often in this type of 
construct, you would find that addition and subtraction would lead the list by a 
large margin. Furthermore, if you were to determine what constant was added or 
subtracted most often, 1 would lead the list. Therefore, C defines an even shorter 
hand for add 1 to a variable or subtract 1 from a variable called the 
autoincrement and autodecrement: 

value++; 
value--; 
++value; 
--value; 

<--postincrement: returns value 
<--postdecrement: value 
<--preincrement: value+l 
<--predecrement: value-1 

In the autoincrement the operator ++ is simply attached to the variable name. 
The effect is to add 1 to the variable. Notice that there are two forms. When the 
+ + follows the variable name, the value of the expression is the value of the 
variable BEFORE incrementing. When it precedes the variable name, the value is 
that of the variable AFTER incrementing. Decrement (--) works in an exactly 
analogous fashion. 

C allows mixed mode expressions. That is, the !WO operands on both sides of an 
operator do not have to agree in type. For example, an integer may be added to a 
float, a char may be added to an integer, etc. Conversion proceeds pretty much as 
you would expect: the "lower" type is promoted to the "higher" type, the 
operation proceeds, and the result is converted to the type of the target variable. 

There are two aspects of implicit conversion that are completely unexpected, 
however. CHAR is always promoted to INT and FLOAT to DOUBLE before 
beginning an operation. This is somewhat surprising since it implies in the 
following equation: 

float a, b, c; 

a = b + c; 

no fewer than three type conversions take place! First B and C are converted to 
type DOUBLE, then the addition is performed resulting in an answer of type 
DOUBLE, which is rounded down to type FLOAT before being stored into 
variable A. Similarly, since the arguments to functions are considered 
expressions, they, too, are converted to the proper type. These automatic 
conversions can be very time-consuming tasks, especially converting FLOAT to 
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DOUBLE on a machine not equipped with a numerical processor, so these 
conversion rules should be kept in mind. The following table shows how 
different type variables are handled in expressions: 

char --> int I mixed modes 
short --> int I promote 
int --> int I in this 
long --> long I direction 
float --> double \ I 
double --> double v 

Flow Control 

There are 10 flow-control statements in C. The first is simply the open and 
closed brace pair {}. Just as with Pascal's BEGIN and END statements, any 
number of C statements, when surrounded by open and closed braces, are viewed 
as one statement. Even though {} is considered a statement, a semicolon is not 
necessary after the close brace 

C's IF statement looks much like that of other languages: 

if (exprl) 
STATEMENTl; 

else 
STATEMENT2; 

EXPRJ is evaluated. If its value is nonzero, STATEMENT I is executed, 
otherwise, STATEMENT2 is executed. Once STATEMENTJ or 
STATEMENT2 are complete, execution continues with the next statement after 
the IF statement. As always, either STATEMENTJ or STATEMENT2 may be 
either a simple statement or any number of C statements surrounded by braces. 
The ELSE clause in a C IF statement is optional. 

The simplest looping structure in C is the WHILE loop: 

while (expr) 
STATEMENTl; 

First EXPR is evaluated. If the result is nonzero, STATEMENT] is executed. 
Once complete, control returns to the WHILE. In the absence of any other 
control statements, program execution will not pass to the statement after the 
WHILE loop until EXPR evaluates to 0. 

Sometimes it is convenient to execute the body of the loop before testing the 
conditional. For these cases, C has the D 0 ... WHILE loop. In this case, 
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STATEMENT is executed and then EXPRJ. If EXPRJ evaluates to nonzero 
control returns to the beginning of the loop. As with the WHILE loop, control 
will not pass to the next statement until EXPRJ evaluates to 0. 

do 
STATEMENTl; 

while (expr); 

A third form of loop is the FOR loop. The syntax of the FOR loop corresponds 
roughly to that of the FOR loop in Pascal or BASIC but is much more flexible. 
In fact, the C FOR loop is flexible almost to the point of being arbitrary: 

for (exprl; expr2; expr3) 
STATEMENTl; 

is equivalent to 

exprl; 
while (expr2) { 

STATEMENTl 
expr3; 

EXPRJ is evaluated first. This normally initializes any loop counters. If EXPR2 
evaluates to 0 control is passed to the statement after the FOR loop, otherwise 
STATEMENTJ is evaluated. Finally, EXPR3, which normally increments any 
FOR loop index, is executed and control returns to the conditional. Any of the 
four statements and expressions may be left out. If EXPR2 is ommitted, it is 
assumed to be nonzero so that "FOR (;;)" represents an infinite loop. An 
example FOR loop is shown below: 

for (i = O; i < 10; i++) 
sum+= value [i]; 

/*loop from i = 0 thru 9*/ 

It is sometimes desirable to be able to change the flow of a program from within 
the body of a loop. For this, C defines two control structures, BREAK and 
CONTINUE. When C executes a BREAK, control is immediately passed to the 
statement following the inner most loop or SWITCH. CONTINUE passes 
control to the last statement of the loop, which has the effect of starting the loop 
over. 

The SWITCH statement is a multi-way version of the IF statement. It has the 
following format: 

switch (exprl) 
case constl: STATEMENTl; 
case const2: STATEMENT2; 
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default: STATEMENTN; 

Here EXPRJ is evaluated. It is then compared to each of the constants following 
the CASE statements. If it is found to be equal to any of the CASEs, control is 
passed to the corresponding statement. If not, control is passed to the DEFAULT 
case. Notice that this is NOT like a Pascal CASE statement in that, if EXPR is 
equal to CONST2, STATEMENT2 alone is not evaluated, but rather control is 
passed to ST AT EM ENT2. Unless some other control statement intervenes, 
STATEMENT3, STATEMENT4 and so on will then be executed in tum down to 
and includng STATEMENTN. This may seem extremely odd, but in fact it gives 
the programmer more control. If STATEMENT2 is to be executed alone, it need 
only be followed by a BREAK statement. Encountering a BREAK causes 
execution to continue at the statement following the closing brace of the 
SWITCH statement. 

The comma operator almost only arises in the context of flow control: 

exprl, expr2; 

With the comma operator, EXP RI is evaluated first and then EXPR2. The value 
and type of this expression is that of EXP R2. This peculiar operator can be used 
almost anywhere, but in fact is primarily intended for the initialization and 
incrementing clauses of the FOR loop. Consider, for example, the following 
segment of code intended to reverse the order of an array. 

for (indxl = 0, indx2 = SIZE; indxl <= SIZE/2; indxl++, indx2--) { 
temp= array[indxl]; 
array[indxl] = array[indx2]; 
array[indx2] = temp; 

By using the comma operator, you have effectively "squeezed" two expressions in 
place of one in the FOR loop. Other than such cases, the comma operator should 
be avoided as unnecessary obfuscation. 

Finally, as with all languages, C defines both a GOTO command and statement 
labels. The GOTO is written as one word, followed by a label. Label names use 
the same syntax as variable names except that they are followed by a colon. A 
GOTO can reference any label, either forward or backward, within the same 
function. 
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Invoking Functions 

A somewhat implicit flow control is achieved by invoking and returning from 
functions. Just as in Pascal, a function is invoked by simply naming it, 
followed by any arguments enclosed in parentheses and separated by commas. 
Unlike Pascal, the parentheses are not optional. If there are no arguments, the 
parentheses appear alone. The type of a function is declared or, if not declared, 
defaults to INT. The value of a function is whatever it happens to return. 

The RETURN statement may appear anywhere within a function and effects an 
immediate return to the caller. It may optionally be followed by an expression, 
in which case the expression is evaluated and the result is returned to the caller as 
the value of the function. If no RETURN statement is present, an implicit return 
is assumed at the closing brace of the function. Consider the following 
simplistic example. (In the following chapters I will have many examples of 
invoking and returning from functions.) 

int add2 (arg) 
int arg; 

return arg+2; 

main () 

int a, add2 () ; 

a = add2 (a); 

In the above example, the routine add2() returns the integer 2 plus whatever 
integer value it receives. 

It should be pointed out that unlike Fortran and some other languages, C always 
passes by value (as opposed to "by reference"). In the above example, when 
ADD2 is called, it is the value of A which gets passed and not the address of A. 
Therefore, changing the value of an argument within a function does not change 
its value within the caller. As you will see in Chapter 3 with the introduction of 
pointer variables this becomes no restriction at all. 

Casts 

Even though Turbo C is not a strongly typed language, it is not totally oblivious 
to them either. In the interest of attempting to catch programming errors, Turbo 
C will flag assignments that do not look correct. In any case, it is simply bad 
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form to rely on the compiler to make type conversions. If you make the 
conversions yourself, then future readers will have no doubt of your intentions. 
Type conversions are made using what is called a cast. A cast consists of a type 
declaration enclosed in parentheses in front of an expression or constant. For 
example, in the following expression: 

int a; 
double b; 

b += (double) a; 

the variable A would be converted to a DOUBLE before being added to Bin any 
case. By casting A into a DOUBLE, you are telling Turbo C that you know 
what you are doing and that this type mismatch was not the result of some 
programming error. Casts can appear in front of any expression. We will use 
them a great deal in our later discussion of pointer types. 

C Preprocessor 

The definition of C includes a C preprocessor which runs in advance of the 
compiler. While not strictly part of the C language itself, the preprocessor is 
nonetheless an important tool to the C programmer. The preprocessor is a 
prepass of the C compiler-preprocessor commands are found and converted to C 
statements which are subsequently compiled. Preprocessor statements always 
begin with a #. They are not terminated with a semicolon. Preprocessor 
statements may be continued over multiple lines by ending each line with a \ 
The syntax of preprocessor commands is different because they are a language of 
their own, independent of C. 

The most important preprocessor command is #INCLUDE. #INCLUDE followed 
by a file name inserts the contents of that file at the point of the include 
statement. The #INCLUDE statement has two forms: 

#include <stdio.h> 
#include "myfile.h" 

Files enclosed in quotes are first searched for in the directory of the search file 
(usually the current default directory) and then the compiler directory. Those in 
<>are only searched for in the compiler directory. The compiler directory is the 
directory that contains the Turbo C's TC.EXE or those specified in the option 
menu under include file directory. Include files can have any name, but it is 
something of a C standard that they end in .H. Every C program should include 
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STDIO.H. This include file allows the C environment to make whatever 
definitions it desires. 

Constants can be defined via the #DEFINE. This follows the format: 

#define identifier token-string 

For the remainder of the program, any appearance of ID ENT/ FI ER will be 
replaced with TOKEN-STRING. This is usually used to define certain constant 
values which have particular meaning, such as defining FALSE to be 0 and 
TRUE to be 1. 

Notice that #DEFINE is not like a Pascal constant. The token-string is compiled 
AFTER it has been inserted. Because of this, it need not be a constant. In fact, 
#DEFINEs can even be used to rename C key words. For example, defining 
BEGIN to be {and END to be} would allow the programmer to code BEGIN and 
END instead of braces making the resulting C program more similar to Pascal. 
In general, this renaming of keywords is a very bad idea-I only mention it 
because you will see it done from time to time. 

In addition to simple definitions, it is also possible to define preprocessor 
macros. A macro has the appearance of a function call. For example, consider 
the following common definition of min: 

#define min(a,b) (a>b)?b:a 

in use: 

min(varl,2*var2); -- expands to--> (var1>2*var2)?2*var2:varl; 

Everywhere in the program that min is used it is expanded as in the example 
given above. Although similar in appearance, min is not a function. It does not 
have a type, nor do its arguments. DEFINEs are a means of making a C 
program, especially a very large one, more readable. 

Programmers should be very careful about comments placed after preprocessor 
definitions as they get expanded also. For example, consider the following: 

#define min(a,b) (a>b) ?b:a /*definition of min*/ 

in use: 

min(varl,var2) + 1; -- expands to --> 
(varl>var2)?varl,var2 /*definition of min*/+ 1; 
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In this particular example, the comment causes Turbo C no confusion in 
evaluating the expression and everything works out fine-if I were doing the 
evaluating, I might not have been so understanding. Not so fortunate are the 
following common macro mistakes: 

#define min(a,b) (a>b)?b:a 

#define max(a,b) (a>b)?a:b; 

/*this is an incorrect 
macro definition*/ 

In the first case, the comment becomes part of the macro definition as before. In 
this case, however, the comment is not complete. Only part of the opening/* 
gets copied. Fortunately the dangling second line of the comment appears by 
itself after the preprocessor removes the #define line to be caught by the 
compiler and flagged as an error. 

The problem represented by the definition of max() is much more subtle. Max() 
has incorrectly been terminated with a semicolon. In use, this semicolon will 
get expanded along with the reset of the macro definition. Often the presence of 
this extra ; causes no problem. In cases such as the following, however, the error 
message generated is very unclear. 

if (a) 

b = max (a,b); 
else 

b = 0; 

gets expanded to 

if (a) 

b = (a>b) ?a:b;; 
else 

b = 0; 

Notice the presence of the double semicolons after the ternary. The macro 
definition contributed one, and the line into which the macro was insert contained 
the other. Null statements are acceptable in C, but the extra statement after the 
IF statement effectively closes off the possibility of an ELSE clause. 
Subsequently, the ELSE statement generates a very cryptic message about no IF 
corresponding statement. In general, users should be very careful in their macro 
definitions. If, despite great care, a problem is suspected with a macro, use the 
Turbo CPP utility to expand the .C source file preprocessor definitions into a 
separate listing file. This allows the user to see exactly what the compiler sees 
after the preprocessor has done its work. 

A third group of preprocessor commands are the conditional compile commands. 
The conditional preprocessor commands are listed in Table 1.3. These allow the 
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preprocessor to cause certain sections of code to be compiled or not, depending 
upon the environment. This is often used with programs designed to be compiled 
on different machines. Certain variable definitions which are machine dependent 
can be conditionally compiled. As you are only addressing the PC, you will 
probably not be using this aspect. One other area where conditional compilations 
are very useful is that of debug. You will use this trick in some of the later 
programs. 

#IF 
#IFDEF 
#IFNDEF 
#ELSE 
#ENDIF 

Table 1.3 
--> compile clause if value following is non-zero 
--> 11 

" " variable defined 
--> " variable not defined 
--> same as with C if statement 
--> terminates #IF or #ELSE clause 

For example, suppose while debugging your program, you would like a test 
message to be printed on the screen whenever a certain function is called. Wheh 
the program is to be delivered, however, that test message is undesirable. You 
might do something like the following: 

#define DEBUG 1 

int proc () 
{ 

#IF DEBUG 

/*define to 0 to turn off msg.s*/ 

printf ("we just entered proc\n"); 
#ENDIF 

As long as the statement at the beginning of your program defines DEBUG to be 
non-zero, the #IF statement below will cause the call to printf() to be compiled. 
By changing the value of DEBUG to 0, the various #IF clauses will not be 
compiled and the test messages will no longer appear. DEBUG did not have to 
be defined with a #DEF°INE; it could just as easily been defined using the 
Options/Compiler/Defines menu of the Interactive Development Environment 
(IDE). It is important to remember that these precompiler decisions are made at 
compile time and not at run time-once the program has been compiled, the 
print!() calls are either there or not. There is nothing you can do to the 
executable .EXE file to change that. 

Turbo C defines, but barely uses, a preprocessor directive made popular by the 
Ada programming language, #PRAGMA. A pragma is a directive from the 
source code to the compiler itself. #PRAGMA serves two purposes in Turbo C, 
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one is to control which warnings get displayed by the compiler. The other is 
used to indicate that inline code is being generated using the ASM directive in 
this source file. Both of the these functions can be handled by command-line 
arguments and/or IDE switches. 

One last command which acts like a preprocessor macro automatically defined by 
the system is SIZEOF(). SIZEOF() accepts one argument and returns the size of 
that argument in bytes. This can best be demonstrated with the following 
examples: 

char a, b[lO]; 
int c; 
double d; 

sizeof (a) 
sizeof(b) 
sizeof(b[OJ) 
sizeof (c) 
sizeof (d) 
sizeof(int) 
sizeof(int *) 

--> 
--> 
--> 
--> 
--> 
--> 
--> 

returns 
returns 
returns 
returns 
returns 
returns 
returns 

1 
10 
1 
2 
8 
2 
either 2 or 4 

Any data element can be an argument to SIZE 0 F, including user defined 
structures. Unlike ANSI C, Turbo C allows SIZEOF to be used in other 
#DEFINE statements. This macro is primarily used to remove machine 
dependency from a C program. Even though you are mostly interested in the PC, 
you will use it in later programs in connection with structures, since they can be 
of any size. SIZEOF should always be used in connection with pointer 
variables-the size of a pointer variable or a structure or union containing a 
pointer variable is determined by the memory model selected at c9mpile time. 
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C Philosophy 

You, should appreciate, if you don't already, that there is a fundamental difference 
in philosophy between C and other languages, particularly Pascal. Pascal is a 
very high-level language. Its strong typing and strict syntax try very hard to 
protect programmers from themselves. C, by contrast, is more of a low-level 
language. Some have even called C a machine-independent macroassembly 
language. C tries to view each keyword as an operator separate from those around 
it. This allows C commands to be strung up in myriad of different ways. 

In addition, every expression in C has a value. You may have noticed that some 
of the phraseology used above to describe = seemed a bit strained. What, for 
example, is all this talk of equals sign not changing the value of the expression 
to the right? In fact, this is the case. Consider this very simple series of 
expressions: 

1) a = 1; 
2) b = (a = 1); 

3) a= fn(); 
4) fn(); 
5) 2 * a; 

In the first equation C begins by finding the rightmost expression, in this case 1. 
The equal sign then takes the current value ( 1) and stores it into the variable A. 
The value after making the assignment is still 1. This may not seem important 
until you look at equation 2). Given what I just said above, you see that the 
value 1 also gets saved into B. Since the parentheses are not really necessary in 
this case, you see that C handles naturally what other languages must make a 
special case for, that of simultaneously assigning multiple variables. 

Now consider statement 3). Here, functionfn() is invoked and the value returned 
is stored into A. But what about equation 4)? Here the function Jn() is invoked 
and the value returned is simply thrown away. You might protest,fn() didn't 
return a value. But remember that all C functions return a value, and it's left up 
to the programmer to decide whether that value has any meaning~ Then it may 
not be too surprising that most C compilers accept statements like 5) without 
protest. Here you have instructed C to generate the machine code to take the 
contents of A and multiply them by 2, doing nothing with the result! 

Now consider the following C statements: 

1) if ((a = b I c) == 1) 
2) a = (b > c); 

if (a) printf ("Hi \n"); 
3) a= 5 * (b > c); 
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To understand the first statement you begin with the innermost parenthesis. 
First, take the value of B and divide it by the value of C and store that value into 
A. Then compare that same value, unchanged by the assignment, with 1. If 
equal, you return a 1 and if not a 0. The IF statement branches accordingly. 
What about equation 2)? Here you compare the value of B with the value of C. 
If B is greater than C you return a 1, otherwise a 0. This value is then stored 
into the variable A. You subsequently retrieve the value of A and if nonzero, you 
perform the printf( ); if zero, you don't. This is not too far fetched for those 
familiar with Boolean variables, but what about equation 3)? Here, you take the 
result of the comparison and use it in a calculation, leaving A with the value 5 if 
B is greater than C and 0 if not. 

As you can see, this philosophy represents somewhat of a departure from that of 
other languages. It is this perspective that both attracts and repels programmers. 
This freedom allows programmers to build some very powerful constructs. On 
the other hand, programmers are given all the rope they could possibly need to 
hang themselves. 

Some languages, most notably FORTRAN, have compilers with very strong 
optimizers. This allows the compiler to take whatever source statements and 
rearrange and compact them to generate the minimum amount of code. C puts 
the onous on programmers to optimize for themselves. For example, IF ((A = 
B/C) == 1) probably generates less code than first calculating A and then testing 
A against 1 in a separate IF statement, as would be required in other languages. 
Furthermore, it was not only for your convenience that C provides the shorthands 
A+=l and A++ for A=A+l. On most machines, A+=l generates less object 
code and A++ even less than its wordier sibling, even though the final effect is 
the same in each case. 

Chas very few primitives. Just compare the overview above with a list of the 
BASIC keywords. C is heavily dependent on its library of functions for much of 
its interface to the base machine and, therefore, much of its power. You are not 
left completely at the whim of Borland and the library they supply with Turbo C. 
You can build your own libraries, adding functions of your design to those 
already present. For example, there are no primitives for setting, testing and 
clearing a bit in C. After you have gained more experience with C, you might 
write functions to perform these functions like those in listing Prgl_la. 

l[ OJ: /*Prgl_la - Simple bit manipulation functions 
2[ OJ: by Stephen R. Davis, '87 
3 [ OJ: 
4[ OJ: Simple Clacks "bit picking" primitives. The following routines 
5[ OJ: provide some simple bit manipulation capabilities. 
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6 [ OJ: */ 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ lJ: 
21 [ lJ: 
22 [ lJ: 
23 [ lJ: 
24 [ lJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ lJ: 
33 [ lJ: 
34 [ lJ: 
35 [ lJ: 
36 [ lJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ OJ: 
42 [ OJ: 
43 [ OJ: 
44 [ OJ: 
45 [ lJ: 
46 [ lJ: 
47 [ lJ: 
48 [ lJ: 
49 [ lJ: 
50 [ lJ: 
51 [ lJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ OJ: 
56 [ OJ: 
57 [ OJ: 
58 [ OJ: 
59 [ OJ: 
60 [ lJ: 
61 [ lJ: 
62 [ lJ: 
63 [ 2J: 
64 [ 3J: 
65 [ 3J: 
66 [ 3J: 
67 [ 3J: 
68 [ 2J: 
69 [ 2J: 

#include <stdio.h> 
#include "mylib.h" 

/*define an array of bits which we use for the following routines*/ 

static char bitarray[J = {Ox80,0x40,0x20,0xl0,0x08,0x04,0x02,0x01}; 

/*SetBit - set the 'bitnum'th bit offset from 'ptr'*/ 
void setbit (ptr, bitnum) 

char *ptr; 
unsigned bitnum; 

unsigned bitpos, bytepos; 

bytepos = bitnum >> 3; 
bitpos = bitnum & Ox07; 
*(ptr+bytepos) I= bitarray[bitposJ; 

/*ClrBit - clear the 'bitnum'th bit offset from 'ptr'*/ 
void clrbit (ptr, bitnum) 

char *ptr; 
unsigned bitnum; 

unsigned bitpos, bytepos; 

bytepos = bitnum >> 3; 
bitpos = bitnum & Ox07; 
*(ptr+bytepos) &= -(bitarray[bitposJ); 

/*TestBit - test the 'bitnum'th bit offset from 'ptr'. 
Return a 0 if the bit is cleared, and a 1 if set.*/ 

char testbit (ptr, bitnum) 
char *ptr; 
unsigned bitnum; 

unsigned bitpos, bytepos; 

bytepos = bitnum >> 3; 
bitpos = bitnum & Ox07; 
if (*(ptr+bytepos) & bitarray[bitposJ) 

return (1); 

return(O); 

/*HexDump - display in l's and O's 
starting from 'ptr'*/ 

void hexdump (ptr, nobytes) 
char *ptr; 
unsigned nobytes; 

int nobits; 

for (; nobytes; ) 

from 'nobytes' number of bytes 

for (nobits O; nobits < 8; nobits++) 
if (testbit (ptr,nobits)) 

printf ("l"); 
else 

printf ("0"); 

printf (" "); 



70 [ 2J: 
71 [ 2J: 
72 [ 2J: 
73 [ lJ: 
74 [ OJ: 
75 [ OJ: 
76 [ OJ: 
77 [ OJ: 
78 [ OJ: 
79 [ lJ: 
80 [ lJ: 
81 [ lJ: 
82 [ 1): 
83 [ 1): 
84 [ 1): 
85 [ 2J: 
86 [ 2): 
87 [ 2): 
88 [ 2): 
89 [ 2): 
90 [ 2): 
91 [ 2): 
92 [ lJ: 
93 [ 1): 
94 [ 1): 
95 [ 1): 
96( 1): 
97 [ 1): 
98 [ 1): 
99( 2J: 

100 [ 2): 
101 [ 2): 
102 [ 2): 
103 [ 2): 
104 [ 2): 
105 [ 2): 
106 [ 1): 
107 [ 1): 
108 [ OJ: 

if (! (--nobytes % 8)) 
printf ("\n"); 

ptr++; 
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/*Main - test the above routines*/ 
main () 
{ 

char buffer[16); 
int i,bit; 

for (i = O; i < 16; i++) 
buffer[i) = 0; 

for (; ;) { 
hexdump (buffer,16); 

/*test SetBit*/ 

printf ("\nenter the number of bit to set (>=128 quits):"); 
scanf ("%d",&bit); 
printf ("\n"); 
if (bit >= 128) 

break; 
setbit (buffer,bit); 

printf ("\n\n"); 

for (i = 0; i < 16; i++) 
buffer[i) = -1; 

for (; ;) { 
hexdump (buffer,16); 

/*now test ClrBit*/ 

printf ("\nenter the number of bit to clear (>=128 quits):"); 
scanf ("%d",&bit); 
printf ("\n"); 
if (bit >= 128) 

break; 
clrbit (buffer, bit); 

printf ("\n\nThat's all folks!"); 

Without going into too much detail of pointer manipulation, the functions 
setbit(), clrbit() and testbit() perform the desired function. The main() and 
hexdump() routines that appear below are used to test these functions. Compile 
this program and convince yourself that these functions perform as advertised. 
Once convinced, main() and, perhaps, hexdump() (lines 54-108) would be 
removed and the bit routines compiled by themselves. The resulting object file 
could then be converted into a new library or added to an existing library. For all 
subsequent programs you will be able to use these functions. Your personalized 
Turbo C environment now has bit primitives! 

This example demonstrates the bottom-up approach to programming incorporated 
into the C language. After outlining the problem, the programmer decides which 
simple utilities will be needed and implements these first (including testing them 
completely!). Working with already tested simple routines, he or she then builds 



46 TURBO C 

higher level routines. Because of this design philosophy, most C functions are 
purposefully kept pretty short. 

Routines with only specific application can be kept with the particular program. 
Generally useful, low level routines can be added to the programmers library for 
future use. Reinventing the wheel is frowned upon by C programmers. For this 
to work, of course, the programmer must keep a good log book describing each 
routine. Not only should it state what the routine does but what the number, 
type and meaning of arguments for each routine are, and the type and meaning of 
the value returned. The page from my log book which describes the bit routines 
just defined appears below. 

Additionally, users should build their own include files containing the 
prototyping declarations for their routines. This is included in programs that use 
any of these library routines, or just included routinely for the chance that one of 
the routines gets used. The prototyping include file containing only the bit 
routines appears below. 

Setbit -

Clrbit -

Testbit -

Bit Routines 

given an address and a bit offset, sets the 
corresponding bit. Bit 0 is assumed to be 
the most significant bit. Offsets must be 
in the range [0,7]. 

prototype: void setbit (char *address, 
unsigned offset) 

usage: setbit (address, offset); 

include file: MYLIB.H 

contained in: MYLIB.LIB 

given an address and a bit offset, clears the 
corresponding bit. See Setbit(). 

given an address and a bit offset, return a 
0 if that bit is cleared and a 1 if that bit 
is set. See Setbit(). 

prototype: char testbit (char *address, 
unsigned offset) 

usage: if (testbit (address, offset)) 
printf ("Bit set!"); 

include file: MYLIB.H 

contained in: MYLIB.LIB 
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HexDump -

given an address and a number of bytes, dump 
memory in hexadecimal fashion to STDOUT. 

prototype: void hexdump (char *address, 
unsigned numbytes) ; 

usage: hexdump (array, sizeof(array)); 

include file: MYLIB.H 

contained in: MYLIB.LIB 

-- MYLIB. H INCLUDE FILE 
/*Prototype definitions for my personal libarary routines -- *I 

void setbit (char*, unsigned); 
/*set a the nth bit from a pointer*/ 

void clrbit (char*, unsigned); 
/*clear the nth bit from a pointer*/ 

char testbit (char*, unsigned); 
/*return a 0 if the nth bit from a pointer is not set; 

else return a l*/ 
void hexdump (char*, unsigned); 

/*display a hex dump of memory starting at first arg for 
second arg number of bytes*/ 

Programmer's libraries can be added to, both from commercial packages you 
might purchase as well as computer magazines. Don't be afraid to adopt other's 
work if it saves your own. 

Good C programmers spend at least half of their programming time just thinking 
about the problem. Of course, this is true in any language, but with so much 
riding on the programmer and his decisions, this becomes even more important in 
C. For example, let us say that as part of a larger program you required a 
function that converts a binary number into its ASCII equivalent and places the 
result into a buffer for printing. The non-C programmer might code the solution 
as it appears in Prg1_2a. convnum() fulfills the requirements. 
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l[ OJ: /* Prgl_2a -- Convert a number into a numeric ASCII string 
2[ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: */ 
9 [ OJ: 

This is the 'first shot' crude attempt which the non-thinking 
programmer is likely to settle for. It's problems are that it 
is limited to base 10 and that it must have special logic to 
take care of leading zeroes, etc. 

10[ OJ: #include <stdio.h> 
11 [ OJ: 
12[ OJ: /*prototype definitions--*/ 
13[ OJ: int main (void); 
14[ OJ: void convnum (int, char*); 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ lJ: 
23 [ lJ: 
24 [ l]: 
25 [ 2]: 
26 [ 2J: 
27 [ l]: 
28 [ lJ: 
29 [ l]: 
30 [ lJ: 
31 [ l]: 
32 [ lJ: 
33 [ 2]: 
34 [ 2J: 
35 [ 2]: 
36 [ l]: 
37 [ lJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 

/*ConvNum - given a number and a buffer, place the ASCII 
presentation of the number into the buffer*/ 

void convnum (number, buffer) 
int number; 
char *buffer; 

int basenum,nextpower,digit; 

if (number < 0) { 
number = -number; 
*buffer++ ' - ' ; 

/*if neg, attach leading '-'*/ 

basenum = l; /*find power of 10 to start*/ 
while ((nextpower = basenum * 10) <=number) 

basenum = nextpower; 

for (;basenum; basenum /= 10) { 
digit = number I basenum; 

/*divide repeatedly by 10 ... */ 

number-= digit* basenum; /* ... saving the residue*/ 
*buffer++ = (char) (digit + 'O'); 

*buffer= '\0'; 

41[ OJ: /*Main - test the above conversion routine*/ 
42[ OJ: int test[] = (1, 10, 100, 1000, -1, -15, -25, -35, 0}; 
43[ OJ: main () 
44 [ OJ: { 
45 [ lJ: 
46 [ lJ: 
47 [ lJ: 
48 [ l]: 
49 [ lJ: 
50 [ 2]: 
51 [ 2]: 
52 [ lJ: 
53 [ lJ: 
54 [ OJ: 

int i; 
char buffer [25]; 

i = 0; 
do { 

convnum (test [i], buffer); 
printf ("%s\n", buffer); 

} while (test[i++J); 
printf ("\nfinished\n"); 

The "real" C programmer would be more inclined to come up with a more general 
solution. This one would make a more valuable addition to his library, and be 
more like Prog1_2b. Although slightly less obvious in its execution, this 
convnum() is not limited to base 10 numbers, which is obvious from the test 
output shown. In fact, it is not even limited to Arabic numerals. This 
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convnum(), once included in the programmers' library, might find applications 
completely unforeseen in future programs. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 

/* Prg 1 2b -- Convert a number into a numeric ASCII string 
by Stephen R. Davis, 1987 

This second attempt is much more flexible and more of a 'C' 
approach. The differences may not seem all that significant, 
but notice that this routine can handle octal and hexidecimal 
as well as decimal output, it has no leading zero problem, and 
it can even output a limited form of Roman numerals! 

9 [ OJ: */ 
10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ : 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ l]: 
28 [ l]: 
29 [ l]: 
30 [ l]: 
31 [ 2]: 
32 [ 2]: 
33 [ l]: 
34 [ l]: 
35 [ l]: 
36 [ l]: 
37 [ l]: 
38 [ l]: 
39 [ 2]: 
40 [ 2]: 
41 [ 2]: 
42 [ 2]: 
43 [ l]: 
44 [ l]: 
45 [ OJ: 
46 [ OJ: 
47 [ OJ: 
48 [ OJ: 
49 [ OJ: 
50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ OJ: 
56 [ O]: 

57 [ OJ: 
58 [ OJ: 
59 [ OJ: 

#include <stdio.h> 

/*prototype definitions --*/ 
int main (void) ; 
void convnum (int, char*, int, char**); 

/*ConvNum - given a number, a buffer, a base and the names of the 
digits, convert the signed number using the base into 
the buffer (for unsigned conversion, use 'unsigned' 
declaration*/ 

void convnum (number, buffer, base, names) 
int number; /*either signed or... */ 
/*unsigned number;*/ /* ... unsigned conversions*/ 
int base; 
char *buffer, *names[]; 

int basenum,nextpower,digit; 
char *c; 

if (number < 0) { 

number = -number; 
*buffer++ ' - ' · 

basenum = l; 
while ( (nextpower = basenum * base) <= number) 

basenum = nextpower; 

for (;basenum; basenum /= base) 
digit = number I basenum; 
number -= digit * basenum; 
for (c =names [digit]; *c; 

*buffer++ = *c; 

*buffer I \0 I; 

c++) 

/*Main - use a slightly more elaborate test*/ 
int test[] = (1, 10, 100, 1000, 15, 25, -1, 0}; 

char *decsys [] { "0", "l", "2", "3"' "4", 
"5"' "6", "7", "8", "9"}, 

*octsys [ l {"0", "l" I "2", "3", 
"4", "5", "6" I "7"}, 

*binsys [] { "0", "l"}, 
*hexsys [] { "0", "l", "2"' "3", "4", "5", "6"' 

"8", 11911 I "A", "B", "C", "D", "E", 
main () 

"7", 
"F"}; 
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60 [ 1) 
61 [ 1) 
62 [ 1) 
63 [ 1): 
64 [ 1): 
65 [ 1): 
66 [ 2): 
67 [ 2): 
68 [ 1): 
69 [ 1): 
70 [ 1): 
71 [ 1): 
72 [ 1): 
73 [ 2): 
74 [ 2): 
75 [ 1): 
76 [ 1): 
77 [ 1): 
78 [ 1): 
79 [ 1): 
80 [ 2): 
81 [ 2): 
82 [ 1): 
83 [ 1): 
84 [ 1): 
85 [ 1): 
86[ 1]: 
87 [ 1): 
88 [ 2): 
89 [ 2): 
90 [ 1): 
91 [ 1): 
92 [ 1): 
93 [ OJ: 

TURBO C 

int i; 
char buffer[25]; 

printf ("\ndecimal:\n"); 
i = 0; 
do { 

convnum (test[i), buffer, 10, decsys); 
printf ("%s ", buffer); 
while (test[i++]); 

printf ("\noctal:\n"); 
i = 0; 
do { 

convnum (test[i), buffer, 8, octsys); 
printf ("%s ", buffer); 
while (test[i++)); 

printf ("\nbinary:\n"); 
i = 0; 
do { 

convnum (test[i), buffer, 2, binsys); 
printf ("%s ", buffer); 
while (test[i++)); 

printf ("\nhexidecimal:\n"); 

i = 0; 
do { 

convnum (test[i), buffer, 16, hexsys); 
printf ("%s ", buffer); 
while (test[i++)); 

printf ("\nfinished\n"); 

If you do not understand the finer points of these example programs, don't worry. 
Consider the point being made, that good C programmers write their programs as 
general as possible, and write them to last. Later, after I have discussed some of 
the details of pointer manipulation in Chapter 3, you can return to these 
programs and you will have a much easier time reading them. By the way, feel 
free to add these routines to your own C library. 



2 
TurboC 

vs. 
K&RC 

As with any compiler, there is more to using Turbo C than just the language. 
To be effective, the programmer must also understand and appreciate the entire 
Turbo C package. This is especially true of Borland languages, as these present 
the user with an environment, within which the programmer must work. It is 
just this powerful environment, however, which accounts for their high 
popularity in the user community. 

This chapter attempts to highlight some of the differences between Turbo C and 
other C compilers, including those found under operating systems other than PC­
DOS. Readers already familiar with other such C implementations can use this 
chapter to help them get up to speed more rapidly. This chapter also touches, at 
least briefly, on those facets of Turbo C important to generating working code in 
a short time. It can also be of use to prospective customers attempting to 
evaluate Turbo C for their application. 

Chapter 2 is not a complete description of every aspect of the Turbo C 
environment. Little purpose is served in generating page after page of such long­
winded explanations. Not only are most of the options fairly self-explanatory in 
use, but the User's Guide, which Borland includes with the Turbo C compiler, 
already does a quite competent job of explaining them. In this chapter I will 
touch briefly on features of Turbo C that are of special interest to the C 
programmer. I will leave a detailed analysis of many of these features to later 
chapters. 
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The Integrated Development Environment 

No other C compiler uses the Borland Integrated Development Environment 
(IDE) user interface. Its look and feel is not even similar to that of older versions 
of Turbo Pascal (Versions 3.X and earlier), although it is common with the 
newer Borland languages, such as Turbo Prolog and Turbo Basic. Users who are 
new to the IDE should have little trouble familiarizing themselves with its pull­
down menus and appreciating its lightning quick compilations. 

The first menu option, both physically and in order of use, is the File menu. It 
is from this menu that the programmer selects the source file to be edited and 
compiled. Additionally, this menu provides simple DOS functions, such as 
listing directory contents, etc. It is also from this menu that the user quits back 
to PC-DOS when finished. One other menu selection, Shell to DOS, is 
particularly advantageous, since it allows the user to drop down to DOS without 
disturbing the program being worked on. This is extremely useful when more 
access to DOS is necessary than the simple File menu can provide. It can also 
be used to execute a separate debugger on a Turbo C generated executable file. 

Having selected a source file, the editor is automatically entered. The Turbo C 
editor is very similar to the Turbo Pascal editor, in that it uses the WordStar 
command set unless otherwise installed via the TCINST utility. Fortunately, the 
tab key in Turbo C really generates a tab rather than the Turbo Pascal 
interpretation. Returning to the menu is via the "K"D (Control-K, Control-D) 
or F 10 command. 

Once edited, a C program is compiled by selecting the Compile menu. 
(Selecting the Run menu option will also compile and link the C program, but 
let's take one step at a time.) Turbo C offers two possibilities: Compile to 
Object and Compile to .EXE. The ability to generate an object file and go 
through a subsequent link step was a capability sorely missing with Turbo 
Pascal. Its presence here opens up the possibility of combining Turbo C 
modules with those written in assembler and other programming languages. 

Compiling a simple program to an .EXE file results in an automatic link step 
being performed. The necessary Turbo C routines are automatically included 
from the proper .LIB files. If the current file being edited is a .H file included 
within some other C source program, Turbo C can be informed as to which 
program to compile by filling in the Primary C File option. If the program 
consists of more than one C source file, then a project file must be created and 
selected in the Project menu. This will be demonstrated later with an example. 
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The Options menu is perhaps the most exciting aspect of the IDE. Other 
compilers allow some user control of the way they go about compiling, but 
usually through such complicated switch options that few venture to use them. 
The Options menu allows the operator to select which memory model Turbo C 
should generate code for, what types of optimizations Turbo C should make, 
which instruction set to use, etc. I will discuss those concepts most pertinent to 
the advanced Turbo C programmer in the appropriate chapter. 

A few of the options available from this menu do not affect the actual code 
generation of the Turbo C compiler. The first are the warning selections. These 
messages advise the user of such potential problems as type mismatches in 
assignments or an "=" in an if statement where an "==" was probably meant. As 
ANSI C is more restrictive in its type checking than K&R, older C programs 
from other sources can generate a large number of warnings when compiled under 
Turbo C. It may be desirable to suppress these warning messages by deselecting 
them in this menu (or, indeed, just deselecting warnings from appearing at all). 

In general, a heavy handed approach to warning messages is not a good idea. The 
absence of type checking under K&R C was felt so acutely that a separate syntax 
checker for C, called lint, was written. Programmers could run lint against their 
source code to warn them of potential problems, even when the program appeared 
to be working correctly. The type checking rules of ANSI C, coupled with 
Turbo C's warning messages, go a long way toward making lint unnecessary. To 
simply ignore this capability is a big mistake. 

The second noncode generating option area is the directory selections. Especially 
as hard disk sizes grow, getting efficient use out of them means organizing 
directories carefully along functional divisions. Mixing C source files, object 
files, and include files all in one directory, not to mention the Turbo C package 
itself, is not only a very bad idea, but it also limits the number of files you can 
have on your disk. Smart C programmers will organize their directories-for 
example, devoting one to source files, another to objects, and a third to include 
files, with perhaps all under the umbrella of a master directory. 

Although this has always been a good idea, C compilers were not always too 
helpful. Fortunately, Turbo C allows the user to place each of these program 
elements in a different directory by specifying their names in the Options menu. 
All of the preferences selected from the Options menu can then be saved to disk 
for automatic recall by the IDE at the beginning of the next Turbo C work 
session. 
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Linker and Library Support 

In my earlier programming example, I built several routines for setting, clearing, 
and testing bits, capabilities otherwise lacking in the Turbo C library. At that 
time I said that it was characteristic of C programmers to write such routines and 
keep them for inclusion in future programs, but I was pretty vague as to the 
mechanism involved. Exactly how does the Turbo C programmer go about that? 

Experienced Turbo Pascal types might pipe up at this point and suggest creating 
include files for inclusion in future C source programs much like Turbo Pascal. 
Certainly Turbo Chas an #include facility and its compilation speed is probably 
up to the task, but this approach has some serious draw backs. First of all, you 
must compile include files every time you compile the file that includes them. 
This is probably not much of a problem with simple bit routines, but, at least 
theoretically, you are going to grow as programmers and collect many more such 
useful routines over your C career to be included in your personal library. 

Second, you might not want your C source routines held up to the world for 
ridicule. You might be happier letting others enjoy the fruits of your labor, 
without having the entertainment of laughing at your foibles. Worse yet, when 
compiling such a program, the entire include file gets included in the object code, 
even if only one of the routines contained in it is called. Again, this problem 
grows as your library grows. For these and other reasons, C projects are almost 
never organized this way. 

The first alternative is to break off the include file as a separate C source file, 
called a module, but specify to Turbo C that these modules somehow "belong 
together." You do this by building what is known as a project. First, you 
create a .P RJ file that contains the names of both source modules. You must 
then specify in the project menu the name of the project upon which you are 
working. 

Turbo C is very helpful in this respect. When you instruct it to build an .EXE 
file for your project by selecting that option from the compile menu, Turbo C 
checks the creation date of each of the source modules, comparing them against 
the date of the corresponding .OBJ file. (The creation date of a file reflects the 
last time it was edited.) Whenever a source module is found with a later creation 
date than the .OBJ file, Turbo C concludes that it must have been edited recently 
and recompiles it before generating the executable! This insures that all changes 
in the C source programs are accurately reflected in the executable file. 
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You can verify this even with one file by selecting any C source module and 
compiling it to an object file. Without editing it, recompile it. Notice that 
Turbo C refuses. This is because Turbo C concludes that the object file is 
"fresh" and there is no need to recompile it. Now enter the editor and change 
something, no matter how trivial. You can even change something and then put 
it back the way it was; Turbo C doesn't know the difference. This updates the 
source file's "last changed" time. Select compile to object and it compiles as 
expected. 

What if a source module includes another file, such as a .H file? If the include 

file changes, even though it has a different name, it will be necessary to 
recompile the source module to a fresh object file. Such, so called, dependencies 
must be specified in the project file explicitly by including their names enclosed 
in parentheses after the source file name. 

This has been done with the example bit routines in the listing below. Notice 
first the two source files, Prg 1_1 b and Prg 1 _Jc, look identical to how they 
previously appeared. The module Prgl _1 c, which contains main(), includes the 
.H file, which you defined earlier with the prototype definitions describing the bit 
routines. This allows Turbo C to check for calling sequence errors in the calling 
module. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ lJ: 
21 [ lJ: 
22 [ lJ: 
23 [ lJ: 
24 [ lJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 

/*Prgl_lb - Simple bit manipulation functions 
by Stephen R. Davis, '87 

This is the same source code as is Prgl_la, only now broken 
up into separate source modules similar to real projects. 

*/ 

#include <stdio.h> 
#include "mylib.h" 

/*define an array of bits which we use for the following routines*/ 

static char bitarray[J = {0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01); 

/*SetBit - set the 'bitnum'th bit offset from 'ptr'*/ 
void setbit (ptr, bitnum) 

char *ptr; 
unsigned bitnum; 

unsigned bitpos, bytepos; 

bytepos = bitnum >> 3; 
bitpos = bitnum & Ox07; 
*(ptr+bytepos) I= bitarray[bitposJ; 

/*ClrBit - clear the 'bitnum'th bit offset from 'ptr'*/ 
void clrbit (ptr, bitnum) 

char *ptr; 
unsigned bitnum; 
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32 [ lJ: 
33 [ lJ: 
34 [ lJ: 
35 [ lJ: 
36 [ lJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ OJ: 
42 [ OJ: 
43 [ OJ: 
44 [ OJ: 
45 [ lJ: 
46 [ lJ: 
47 [ lJ: 
48 [ lJ: 
49 [ lJ: 
50 [ lJ: 
51 [ lJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ OJ: 
56 [ OJ: 
57 [ OJ: 
58 [ OJ: 
59 [ OJ: 
60 [ lJ: 
61 [ lJ: 
62 [ lJ: 
63 [ 2J: 
64 [ 3J: 
65 [ 3J: 
66 [ 3J: 
67 [ 3J: 
68 [ 2J: 
69 [ 2J: 
70 [ 2J: 
71 [ 2J: 
72[ 2J: 
73 [ lJ: 
74 [ OJ: 
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unsigned bitpos, bytepos; 

bytepos = bitnum >> 3; 
bitpos = bitnum & Ox07; 
*(ptr+bytepos) &= -(bitarray[bitposJ); 

/*TestBit - test the 'bitnum'th bit offset from 'ptr'. 
Return a 0 if the bit is cleared, and a 1 if set.*/ 

char testbit (ptr, bitnum) 
char *ptr; 
unsigned bitnum; 

unsigned bitpos, bytepos; 

bytepos = bitnum >> 3; 
bitpos = bitnum & Ox07; 
if (*(ptr+bytepos) & bitarray[bitposJ) 

return(l); 
return(O); 

/*HexDump - display in l's and O's form 'nobytes' number of bytes 
starting from 'ptr'*/ 

void hexdump (ptr, nobytes) 
char *ptr; 
unsigned nobytes; 

int nobits; 

for (; nobytes;) 
for (nobits 0; nobits < 8; nobits++) 

if (testbit (ptr,nobits)) 
printf ("l"); 

else 
printf ("0"); 

printf (" "); 
if (! (--nobytes % 8)) 

printf ("\n"); 
ptr++; 

l[ OJ: /*Prgl_lc - Simple bit manipulation functions 
2[ OJ: by Stephen R. Davis, '87 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 

This is simply the test code for the bit routines 
defined in Program l_lb. This is identical to main() 
defined in Program l_la. 

*/ 

9[ OJ: #include <stdio.h> 
10[ OJ: #include "mylib.h" 
11 [ OJ: 
12[ OJ: /*Main - test the above routines*/ 
13[ OJ: main () 
14 [ OJ: { 
15 [ lJ: 
16 [ lJ: 
17 [ lJ: 
18 [ lJ: 

char buffer(l6J; 
int i,bit; 

for (i = 0; < 16; i++) /*test SetBit*/ 



19 [ 1]: 
20 [ 1]: 
21 [ 2]: 
22 [ 2]: 
23 [ 2]: 
24 [ 2]: 
25 [ 2]: 
26 [ 2]: 
27 [ 2]: 
28 [ 1]: 
29 [ 1]: 
30 [ 1): 
31 [ 1]: 
32 [ 1): 
33 [ 1): 
34 [ 1]: 
35 [ 2]: 
36 [ 2): 
37 [ 2]: 
38 [ 2): 
39 [ 2): 
40 [ 2]: 
41 [ 2]: 
42 [ 1]: 
43 [ 1]: 
44 [ OJ: 
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buffer[i) = 0; 
for (; ;) { 

hexdump (buffer,16); 
printf ("\nenter the number of bit to set (>=128 quits):"); 
scanf ("%d",&bit); 
printf ("\n"); 
if (bit >= 128) 

break; 
setbit (buffer,bit); 

printf ("\n\n"); 

for (i = 0; i < 16; i++) 
buffer[i] = -1; 

for (; ;) { 
hexdump (buffer,16); 

/*now test ClrBit*/ 

printf ("\nenter the number of bit to clear (>=128 quits):"); 
scanf ("%d",&bit); 
printf ("\n"); 
if (bit >= 128) 

break; 
clrbit (buffer,bit); 

printf ("\n\nThat's all folks!"); 

This solution is somewhat better than the first attempt. Needless recompilations 
are avoided: the bit routines can be compiled once and more or less forgotten 
after that. This technique has the further advantage of allowing problems to be 
logically divided up into separate parts. A large program may consist of many 
modules, each containing routines that are in some way similar to each other and 
different from other routines in the system. Not only is such a program easier to 
understand, but it is more easily divided among different programmers. 

This technique still does not address the other two concerns of privacy and the 
inclusion of routines that are really not necessary. Nevertheless, this is the way 
modules that are being debugged (therefore, in a state of flux) are organized. This 
is particularly true if the routines being written are specific to the particular 
problem and not of general interest. 

In the discussion above, I skirted the issue of exactly how Turbo C combined the 
various source modules into a single, complete executable .EXE file? All 
modern compilers support this process known as linking. The source module is 
compiled into a special binary file, called an object file and carrying the extension 
.OBJ. These object files contain not only the machine instructions for that 
source code, but also the name and location of all the external functions and 
variables declared within the module. They can also carry similar information on 
other variables and even the address of each line of C code. 
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Before they can be executed as a complete program, the object files for the 
various modules that make up a program must be combined in what is known as 
the link step. It is the LINK utility provided with PC-DOS and MS-DOS or the 
TLINK facility with Turbo C that performs this step. Linking can also be 
performed from the IDE by selecting the Make option under the Compile menu 
or by simply selecting the Run menu. Not only does the linker physically 
concatenate the object files, but it also resolves cross references. For example, if 
a routine defined in Module A is called from Module B, it is the linker that 
supplies the proper routine address. 

If you have invoked a function in one of your routines without defining it, 
usually by misspelling it or by mixing upper and lower case letters in the name, 
it is the linker that flags the error with the message <proc name> is unresolved in 
module <module name>. We have been using the linker in every program you 
have executed so far, but since Turbo C handles routine matters for us, it may not 
have been obvious. The two-module problem above was the first time that you 
were forced to explicitly build a project file, and the first time the linking 
function became obvious was when it recombined into one executable the two C 
modules that you had manually split apart. 

In addition to the source files specified in the project description, you can include 
object files by including their names with the extension .OBJ. (It is not legal in 
Turbo C to have a C source file with the extensions .OBJ or .EXE.) Similar to 
its handling of C source files, the link facility in the IDE compares the creation 
date of the .EXE file with those of any .OBJ files specified. If the .EXE file is not 
newer than all of the others, the IDE relinks to generate a new .EXE. 

Object files still require accompanying .H include files containing prototype 
declarations for inclusion in those modules which intend to use them. It is also a 
good idea to maintain a log book containing a description of the functions 
contained within the various .OBJ files, although these descriptions may be kept 
as comments in the .H files, if desired. Such descriptions, while always a good 
idea, become critical when there is no :ource code to reference. 

Your bit-test project description, rewritten to provide for a directly specified .OBJ 
file containing the actual bit functions appears below: 

prgl_lb.obj 
prgl_lc (rnylib.h) 

This solution is slightly better than the one proposed previously. Not only does 
it address both the problem of unnecessary compilations and that of source code 
privacy, but it even allows you to combine your Turbo C source code with 
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objects generated by other computer languages. You will use this to optimize 
your programs by linking them with assembly routines in Chapter 8. This 
approach does nothing to address the final concern, however. Again the entire 
object file gets included in the final executable, regardless of whether or not any 
of its routines are invoked. 

All three of the above solutions share a common management headache. In order 
to keep the executable files reasonable size, you are compelled to break up your 
collection of routines into small files. Whenever you desire to use one of these 
routines, you must be concerned with including the correct file, either in the 
compile or link step. If you include too many, your executable file swells 
needlessly. If you leave some out, you are confronted with unresolved linker 
errors. 

How much nicer it would be if you could just present the linker with a menu of 
routines. Let it compare this against the requirements of the program being 
linked and select what is needed. This you can do with a utility known as an 
object code librarian. (Unfortunately, not part of the Turbo C 1.0 package, a 
librarian was added to the first update.) 

A librarian combines object files into a library file with the extension .LIB. 

Library files are included in a project description by entering their name, and 
including the .LIB extension, just as with object files. Library files are in such a 
format that the linker can extract only those routines that it needs. As you create 
more and more routines of general interest, these new routines can be added to the 
existing library using the librarian utility. Careful programmers will also want 
to keep an include file containing prototype definitions for all of the routines in 
the library. 

The project file for a corresponding solution using my personal library, 
MYLIB.LIB, appears below: 

prgl lb (mylib.h) 
mylib.lib 

Notice that it is necessary that the .LIB name appear last in a project description. 
Otherwise, not all of the files which must be extracted for linkage will be known 
when the library is searched. 

This final solution answers all of the objections. It avoids needless 
recompilations, the source code is protected, and only those routines necessary get 
included in the final executable. All this occurs while avoiding the headaches of 
managing multiple source or object files. 
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The linker has one other beneficial side effect. The Turbo C linker is capable of 
generating a Microsoft compatible load map (a complete load map is gotten by 
selecting the detailed map file from the linker option under the Options menu). 
A load map is a detailed description of every external function and variable 
location within your program. 

While the load map may be simply interesting just to see where things are 
getting placed in memory, it serves a vital function when it comes to debugging. 
Turbo C's one failing is a lack of debug support (at least, in Version 1.0). This 
being the case, it will often be necessary for Turbo C programmers to Shell into 
DOS (from the File menu), where they can run their programs under a debugger 
such as DEBUG. (Tum line numbers on in the compile options of the Options 
menu to include the address of each line of C source code for easier debugging.) 
Once the error has been found, the programmer exits the debugger and uses the 
DOS EXIT command to pop right back into Turbo C, where the program is 
waiting to be corrected and recompiled. To do this successfully, requires the 
information contained within the load map. 

Even better, many source-code debuggers for C gain their location information 
from the load map. In particular, Periscope and PF ix can read Microsoft format 
load maps (there are many others also). A source-code debugger allows the 
programmer to set break points on and single step C source code statements 
rather than individual machine instructions. (Line numbers must be on for this 
to work.) Such source code debuggers are very powerful tools, and one that 
serious programmers should not do without. 

Turbo C from the Command Line 

Turbo C comes in two forms: the Integrated Development Environment and a 
more traditional command line set of utilities. Throughout this book, I will be 
using the IDE, since it provides the same capabilities with greater ease of use. 
For those who feel more comfortable with the other environment, however, it is 
available. 

The compiler is essentially the same, carrying the name TCC rather than TC. 
All of the example programs in this book will compile properly under TCC. 
Like other command line compilers, user preferences are selected by including a 
series of switches along with the source file names (a list of these switches with 
descriptions appears in Table 2.1). Since the number of switches can become 
quite large, almost no one types them all in more than once. Generally, a 
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programmer will create a DOS batch file which invokes TCC with the proper 
switches set. 

A sample batch file appears as: 

tee -G -f87 -ml -n%2 %1 

If this batch file was given a mnemonic name, such as COMP.BAT, then 
entering COMP SIEVED:\ would expand to: 

tee -G -f87 -ml -nD:\ SIEVE 

therefore compiling SIEVE.C under the large memory model while optimizing it 
for speed and while using the 8087 floating-point library, consequently sending 
the output file to D :\. 

There is one capability that TCC has but TC is lacking: that of generating 
assembly language output via the -S and -B switches. This assembly file can 
subsequently be assembled to create the same object that TCC would have 
generated normally (Borland recommends Microsoft MASM assembler Version 
3.0 or later). 

The -B allows assembly statements to be included within the C source code 
program, a practice known as INLINE assembly. Version 1.0 of Turbo C does 
not automatically assemble these instructions, but instead copies them into the 
assembly language output generated from compiling the C statements. Even 
without INLINE instructions, TCC generates an assembly output file when the 
-S switch is present. This file can be very useful to programmers familiar with 
8086 machine language, especially when debugging a Turbo C program without 
a symbolic debugger. It is also interesting to those wishing to take a closer look 
at the kinds of assembly code different C instructions generate. You will make 
use of these features in your study of performance in Chapter 8. 

Command-line linking can either be performed directly by invoking TLINK, or 
indirectly by using the powerful MAKE utility. MAKE functions are similar to 
the IDE in its handling of source and object file updates, except that MAKE has a 
more powerful command set. The TLINK and MAKE command-line switches 
are listed in Tables 2.2 and 2.3, respectively. Both are described in the Turbo C 
Reference Guide. 
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-A 
-a 
-8 
-C 
-c 
-Dname 
-Dname=value 
-d 
-efilename 
-f 
-{878087 
-f-
-G 
-g# 
-/dirname 
-i# 
-j# 
-K 
-Ldirname 
-M 
-m<c,h,l,m,s,t> 

-N 
-ndirname 
-0 
-ofilename 
-p 
-r-
-S 
-Uname 
-w-
-wxxx 
-w-xxx 
-Y 
-y 
-Z 
-zAname 
-zBname 
-zCname 
-zDname 
-zGname 
-zPname 
-zRname 
-zSname 
-zTname 
-1 

Table 2.1 
Switches for Command-Line Turbo C 

ANSI keywords only 
word alignment (default= byte) 
#asm inline assembler in source file 
nested comments on 
compile to object 
defines the symbol <name> 
(alternative form) 
merge duplicate strings (default) 
define filename as project file 
floating point emulation library (default) 
library 
no floating point 
optimize for speed 
stop after # warnings 
include files contained in directory dirname 
set identifier length to # 
stop after # errors 
default chars to unsigned (default= signed) 
library files contained in directory dirname 
generate map file 
set memory model to compact, huge, large, medium, 
small or tiny (default= small) 
include test stack overflow code 
set output directory to dirname 
optimize for size 
output object to filename.obj 
default to Pascal calling conventions 
disable register variables (default= on) 
generate MASM compatible .ASM output 
undefine symbol name 
display warnings off (default= on) 
enable specific warnings 
disable specific warnings 
use standard stack frame 
enable line numbers 
enable register optimization 
name code class 
name data class 
name code segment 
name BSS segment 
name data group 
name code group 
name data segment 
name BSS group 
name BSS class 

_g_enerate 186/286 code _{_default= 80861 



Table 2.2 
TLINK Switches 
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Im generate a complete map file with all publics 
Ix generate no map file at all 
Ii output segments to executable even if they are empty 
II include line numbers in load map 
Is generate detailed segment map 
In no default libraries 
Id warn of duplicate symbols in libraries 
le perform cas sensitive link 

-Dname 
-Dname=string 
-/directory 
-Uname 
-s 
-n 
-ffilename 
-h 
-? 

Table2.3 
MAKE Switches 

define label name 
(alternate form) 
specify directory for include files 
undefine any previously defined label 
do not print commands before execution 
print commands but do not execute them 
use filename as the make file 
print make help 
(alternate form) 
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The Turbo C Language 

As I have stated several times, the Turbo C compiler implements the proposed 
American National Standards Institute (ANSI) standard for the C language. At 
the current time, most C compilers in common use implement the lesser K&R 
standard. Below is a short list of some of the more important features which the 
ANSI standard adds to K&R: 

• ANSI C is case sensitive (most Cs ignore the case of letters used in 
identifiers). This allows such conveniences as giving a structure definition 
and its invocation the same name. For example: 

struct DATA { 
int a, b, c; 

} data; 

Case sensitivity can be removed during the link step by forcing all labels to 
upper case. This is usually necessary when linking with object code of other 
languages, since most languages generate only upper case labels. Case 
sensitivity is always removed when using Pascal rule functions. 

• Typing rules are more strongly enforced in ANSI C. Through the prototype 
declaration, the compiler knows the number and type of each argument. 
Function calls which violate these definitions are immediately flagged. As 
part of this type expansion, ANSI C fully implements the VOID type. This, 
by and large, ooviates the need for a separate lint facility. 

• ANSI C defines enumerated data types. Although not nearly as powerful as 
the user defined data types of Pascal, enumerated data types can enhance the 
readability of the resulting program. 

Turbo C also adds a few enhancements of its own. These should be avoided if 
portability is a concern: 

• "x""y" is treated the same as "xy". This is primarily used for continuation 
lines on character strings which run off the right margin. K&R C proposes a 
\ before the carriage return in such cases. 

• Turbo C provides a Pascal-like call interface in addition to the normal C 
function interface. To support this, Turbo C defines the function declaration 
descriptors, PASCAL and CDECL. In addition, the default type can be 
selected from the Options menu. These two models differ primarily in the 
order that arguments are pushed onto the stack. This can be useful when 
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linking object modules from other languages together with Turbo C. A third 
INTERRUPT type is useful in the generation of interrupt routines such as 
those discussed in Chapter 9. 

• The #asm directive for the inclusion of inline assembler code in C source 
modules. Although this can be a very powerful tool, it is not nearly as 
necessary as it is in Turbo Pascal due to Turbo C's improved low-level 
support. I will cover the entire topic more thoroughly in Chapter 8. 

• Finally, the Turbo C library differs from the standard UNIX library. Many of 
these stem from the differences between UNIX and the DOS operating 
systems. I will concentrate on these routines in Chapters 5 and 6. Other 
differences are related to Turbo C's excellent low-level support of the 
underlying PC hardware, which I cover in Chapter 7. 

Intel Processors and the IBM PC 

The 8086 family of microprocessors and the IBM PC and AT hardware impose 
their own features on Turbo C. Far from avoiding these topics, we will be 
investigating them fully in later chapters. Let us quickly review them here. 

The 8086 microprocessor uses a segmented memory model. In this model an 
address consists of two parts: a segment and an offset. These two 16-bit values 
are combined to generate a single 20-bit address, corresponding to the 8086's 1 
Megabyte address space (the 80286 has a 24-bit, 16-Megabyte address space, but 
can only access the first 1 Megabyte in Real Mode, the only mode which DOS 
and Turbo C currently support). 

There are two types of pointer variables in Turbo C. NEAR pointers contain just 
an offset into a default segment, whereas FAR pointers contain both segment and 
offset. Turbo C includes the descriptors NEAR and FAR that can be applied to 
pointers and functions. In addition, the default pointer type is chosen by 
selecting the memory model from the Options menu. A detailed discussion of 
NEAR vs. FAR pointers follows at the end of Chapter 3, after you have had 
more time to familiarize yourself with C pointers in general. 

The 8086 microprocessor can only perform simple arithmetic and then only on 
simple integers. To aid it in more complex operations and in the support of 
floating point numbers, the 8086 architecture includes a separate Numerical 
Processor (NP). The NP designed to work with the 8086, 8088 and 80186 
processors is the 8087. The 80287 is essentially the identical NP redesigned to 
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work with the 80286 and 80386. The 80387 is an improved NP compatible with 
the 80386. 

Turbo C generates programs designed to utilize the NP, if present. The first time 
a floating point instruction is attempted, the library will look for the presence of 
a numerical processor. If one is found, it will be used for all subsequent floating 
point work. If an NP is not found, its function will be simulated by the Turbo C 
library using software routines. This represents an ideal, "smoke if you have 
'em" solution. 

Even though subsequent operations will use the NP, the initial test takes some 
small amount of time. If you know that the target machine has an NP, you may 
select the strictly 8087 library in the Options menu to generate slightly faster and 
smaller programs; however, a program generated in this manner will crash when 
executed on a machine without an NP. 

In addition, the standard floating point library can be affected by making 
environment entry 87 equal to Y or N before execution, using the command: 

SET 87=Y 

or 

SET 87=N 

If set to Y, the library will use the NP without checking for its presence; if set to 
N, it will not be used, even if present. 

The Turbo C compiler provides a high level of machine support, including such 
features as pseudo-variables, which refer directly to microprocessor registers, and 
to library routines devoted to special features of the 8086 architecture. The 
pseudo-variable _AX refers directly to the AX register, _BX to the BX register, 
etc. These features reduce the number of times that /NL/NE code must be 
resorted to. 

Unlike the majority of C compilers for the IBM PC, Turbo C supports up to two 
register variables, which it houses in the SI and DI registers. Declaring register 
variables can result in significant improvement in execution performance. 
Register variables will be discussed as part of our optimization efforts in Chapter 
8. 



TURBO C VS. K&R C 67 

Conclusion 

Turbo C is a very capable compiler. The Integrated Developement Environment 
offers a highly polished combination of power and ease of use. While 
implementing the ANSI standard for C, Turbo C also adds several features 
designed specifically to support the 8086 microprocessor and the IBM Personal 
Computer. I will investigate the most important of these features in the 
remainder of this book. 





3 
Pointer 

Variables 

It is imp01tant for programmers in any language to have some feel for the way a 
computer accesses its random access memory (RAM), but nowhere is it more 
important than in C. No computer language, short of assembly code itself, 
makes more use of variable addresses. This, as much as anything, contributes to 
the power of C and to its large following in the programming community. To 
use Turbo C effectively, programmers must have a thorough understanding of 
microcomputer addressing. 

A bit is the smallest piece of computer memory. A bit is capable of being in 
either of two states that we variously label as 1 and 0, YES and NO, or UP and 
DOWN. Groups of eight bits are called bytes. A byte is the smallest piece of 
memory that most microprocessors can access at one time; it is the only size that 
the 8088 microprocessor in the IBM PC can access. Each byte of memory in the 
PC has a unique address. Much like houses along a crowded street, the address of 
each byte is one greater than its neighbor on one side and one less than its 
neighbor on the other. 

Unlike any neighborhood in my home town, however, the decimal (base 10) 
numbers are inconvenient for numbering RAM locations. Although some use 
the octal (base 8) system, most programmers prefer hexidecimal (base 16) 
numbers. The hexidecimal numbering system uses the digits 0 through 9 and 
then continues with the digits A through F before restarting at 10. Either way, 
remember that the choice of numbering scheme is not a property of the computer 
itself, as all modem computers use simple binary (base 2) numbering. 

Variables declared by the programmer within his program must all be assigned 
addresses in memory. Machine language programming requires the programmer 
to make these assignments himself. For example, the index to a FOR loop 
might be at location 0100, the variable used to hold user input might be called 
location 0101, etc. As you might imagine, such machine level programming 
puts a heavy burden on the programmer. Not only is it not at all obvious upon 
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rereading the program that location 0100 is to be used as the index to the F 0 R 
loop and not location 0101, but it becomes quite a chore to remember which 
locations have already been allocated and which have not. 

Fortunately, assemblers and compilers relieve the programmer of the task of 
assigning locations in memory. Modern programmers might define a byte 
variable, INDEX, which is to be used as the index to a FOR loop and another 
variable, USER_INPUT, to hold user input. It is now easy to keep memory 
locations separated. (It would be silly indeed to use a variable with the name 
USER _INPUT as the index to a FOR loop.) Of course nothing is fundamentally 
different. The index is still being stored at location 0100 and user input at 0101. 
It's only that the programmer no longer has to worry with such details. 

Programmers who code only in BASIC or Pascal sometimes forget the 
correspondence between variables and the memory they occupy. Somehow they 
get the idea that INDEX is where the FOR loop index is stored, as if the variable 
INDEX had a significance in and of itself and not merely as a temporary 
pseudonym for a memory location. The good Turbo C programmer cannot 
ignore the fundamental addressing of the underlying machine. In this chapter we 
will examine all the ways that C allows the user access to the addressing of the 
underlying machine. 

Simple Pointers 

C allows the declaration of pointer type variables. A pointer variable is intended 
to hold the location of other variables. (I touched upon simple pointer declaration 
in Chapter 1, but I did not discuss it in any depth.) Pointers are declared much 
like any other variable. For example, in the listing below I have declared two 
character variables INDEX and USER_INPUT. Similarly, I have declared a 
pointer to a character, POINTER. It is the* in front of the variable name that 
indicates that the variable contains the address of a character rather than the 
character itself. Instead of repeatedly saying that POINTER is a pointer to a 
character, as a form of short hand, we often say that POINTER is of type CHAR 
*(which is read, character pointer). 

char index, user_input; 
char *pointer; 

Let us go back to our example and take a closer look at what this means. If free 
data memory starts at location 0100, C would assign INDEX to address 0100 and 
USER_INPUT to address 0101. Pointer variables in Turbo C normally require 
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two bytes, so POINTER is assigned locations 0102 and 0103. The next variable 
to be declared would be assigned memory starting at location 0104. 

Figure 3.1 

} INDEX 
0100 

} USER.INPUT 
0101 

0102 

} POINTER 

0103 

0104 

Remember, two things have happened so far: 1) Turbo C has set aside locations 
0100 through 0103 for your three variables and agreed not to use that memory for 
something else, and 2) Turbo C has agreed that whenever you use the word 
INDEX, you are referring to the byte at location 0100, USER_JNPUT, the byte 
at location 0102, etc. Assigning values to the simple variables presents no 
problem. You execute the C statements: 

index = 'A'; 
user_input = 'B'; 

and everything is fine. But you cannot assign simple values to POINTER since 
such values are not of type CHAR *. The only thing you can assign it is the 
address of a character. This we can get with the & , the take the address of, 
operator. So we make the following assignments: 

pointer = &user_input; 
*pointer= 'Z'; 

The first expression sets POINTER equal to the address of the variable 
USER_JNPUT, that is the value 0101. The second expression uses the* in a 
slightly different meaning than we used it in the declaration of POINTER. There 
we read * as is a pointer to, but in an assignment we read * as at the location 
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contained in. Thus the second assignment stores the character Z at the location 
contained in POINTER, 0101. The net effect of these two instructions is the 
same as storing a Z into USER_INPUT directly. 

Figure 3.2 

0100 } INDEX 

0101 ·z· } USER.INP'] 

0102 01 

} POINTER 

0103 01 

0104 

For the second assignment to be legal the types must match. Do they? Look 
back at the declaration of POINTER. Forgetting what we know about * and that 
it means pointer to and all, let's assume for a second that it were just part of the 
name. What type, then, would *POINTER be? Type CHAR, which is exactly 
the type of 'Z'. In fact, *POINTER can be used in any expression where a 
variable of type CHAR is allowed, because that's exactly what *POINTER is. 

We should not confuse pointers with integers. In general, they have nothing to 
do with each other. Simple integers are always two bytes in length. Pointers in 
Turbo C may be either two bytes or four bytes, depending on memory model, and 
have a format all of their own. Integers cannot be assigned directly to pointers 
and neither is the reverse allowed. This confusion is more common on machines 
in which pointers and integers have the same format, but even there they should 
not be interchanged. 

Few of the operators which are defined for integers and characters are defined for 
pointers. There is one arithmetic operator, however, which is defined for pointer 
variables. What could possibly be the result of: 

pointer + 1; 
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Logically, if we took the contents of POINTER (location 101) and add 1 we 
should get location 102. This is just exactly what happens here. If we wanted to 
access what was stored there, we would use the * to find the character pointed at: 

*(pointer+ 1); 

This returns the character pointed at by the contents of (POINTER plus 1). In 
the equation, the parentheses are necessary since + is of lower precedence than 
*-leaving the parentheses off would cause Turbo C to return the result of 1 
added to the character pointed at by POINTER. Adding the parentheses forces the 
* to operate on the results of the addition. If addition is defined then subtraction 
must also be defined, as should such short hand versions of addition as+= and++ 
and so they are. In our example, incrementing or decrementing POINTER has no 
particular significance but what if we had made the following declarations instead: 

char index, user_input[5]; 
char *pointer; 

pointer= &user_input[O]; 
*(pointer+ 1); 
pointer++; 

Memory would then have the appearance: 

Figure 3.3 

0102 

0103 

0104 

0105 

0106 01 

0107 01 

0108 

USER.INPUT 

Points back to 
USER.INPUT[O] 

} POINTER 
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Now adding 1 to POINTER does have some meaning. The first assignment 
caused POINTER to point at the first member of the array USER_INPUT. 
Adding 1 results in the address of the next entry in USER _INPUT. Incrementing 
POINTER has the same significance, causing POINTER to "move over" from 
USER_JNPUT[O] to USER_JNPUT[l]. By repeatedly incrementing POINTER, 
we can cause it to scan the entire array. 

Of course, there are two increment operators, the preincrement and postincrement, 
both of which are allowed on pointer variables. Since the result of incrementing 
a pointer variable is also of type pointer, the * operator may be applied to the 
result as in the following: 

*++POINTER 'A'; 
*POINTER++= 'B'; 

Since++ is defined for both pointers and the characters pointed at by pointers, the 
order of precedence above is not obvious. To maximize its usefulness, however, 
we say that the increment operator applies to the pointer in such as structure. 
The above equations are not equivalent, however. The first assignment 
increments POINTER over one entry and then stores the character A at that 
location. The second assignment first stores a B into the location pointed at by 
POINTER and then increments POINTER over to the next entry. The decrement 
operators are defined in a similar way. 

This is a very powerful combination, allowing C programs to scan arrays, either 
assigning or examining the individual entries as they go. Not only is this 
construct conservative of source statements, but tends to generate very compact 
machine code. 

We were very lucky in that *POINTER and USER_INPUT were both of type 
CHAR, which happens to be one byte in length. What if they had been declared 
INT instead, allocating two bytes to each element of USER_INPUT. Simply 
adding a 1 to POINTER would not cause it to move properly from one element 
to the next. We would have to add two each time since integers occupy two 
bytes. This would require the programmer to keep track of the size of each 
variable type. 

To avoid this, C wisely defines addition to pointers in terms of the size of the 
type of datum pointed at. That is, if POINTER were of type INT *, then 
POINTER++ would actually increment the contents of POINTER by 2. If it 
were of type DOUBLE *, then by 8. We were not lucky at all-our analogy 
above would have worked no matter how *POINTER and USER INPUT were 
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declared. Incrementing POINTER moves it correctly from one entry in the array 
to the next, no matter how large an entry in the array happens to be, as long as 
the type of the array and of *POINTER match. This greatly increases the 
usefulness of the + and - operators on pointer types by relieving the programmer 
of the burden of worrying about word sizes. 

Assuming that INDEX is an index into USER _INPUT, it may seem odd that the 
following two statements point to the same location and are of the same type 
(given that POINTER still contains the address of USER_INPUT[O]): 

*(pointer + index) is equivalent to user_ input [index] 

If you consider for a minute what the effect of indexing into an array is, you can 
convince yourself easily that this is, in fact, the case. The correspondence is so 
strong that it is actually an equivalence! C makes the following substitution 
during compilation: 

user_input [index] is replaced with * (user_input + index) 

This is interesting. In my example, I had previously declared POINTER to be of 
type CHAR *and set it to the address of USER_INPUT[O]. The substitution on 
the right implies that USER_INPUT without the[] is of type CHAR * also. In 
fact, this is true. If you declare an array CHAR USER_!NPUT[J you 
automatically declare a constant of type CHAR * with the name USER _INPUT 
(without brackets). 

This is a very strong statement about C's perspective on life and represents a 
significant divergence from the outlook of other languages. Think for a minute 
at how Pascal and C both treat a common problem, that of passing arrays to 
functions. I said earlier that both Pascal and C pass by value, that is by passing 
the contents of the variable, and not by reference, passing the address of the 
variable (let's ignore VAR variables in Pascal for now). But Pascal runs into a 
problem when passing an array: should it pass each value of the array separately? 
What if the array is of considerable length? 

C does not have this problem. If we make the following call: 

char user_input[5], function (); 

function (user_input); 

C passes the value of USER_INPUT, which just happens to be the address of the 
array. C handles naturally what Pascal must make an exception for. 
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So, what then is the difference between an array of type CHAR and a pointer of 
type CHAR *? First, the array name is a constant and cannot be changed, whereas 
the pointer is a variable. But even more important, the array declaration allocates 
space for all of the elements of the array. The pointer declaration only allocates 
enough space to hold an address. 

For example, consider the following two declarations and the equate: 

char *a, b[lO]; 

a = b; 

The two variables A and B must be of the same type or Turbo C would complain 
about the equate. In fact, since both A and B are of type CHAR *, both can be 
indexed, that is, A[l] and B[l] are both legal statements. However, not only is B 
a constant and not subject to change (it would be illegal to place B on the left 
hand of the equals sign), but the declaration of B allocates some 10 bytes, space 
for 10 characters. The declaration of A only allocates space for the pointer. 

To see an example use of pointers, let us examine our first pointer program. 
Prg3_1 is a useful programming aide. It inputs C source programs, adds line 
numbers and a "nesting level," truncates the result to fit on one line and outputs 
the result. The level of nesting is calculated by starting with 0, adding a 1 
whenever a { is encountered and subtracting a one whenever } is seen. This can 
be used as a simple indicator of what blocks go where, logically, to aid in the 
interpretation of the program. 

l[ OJ: /* Prg 3_1 -- Pretty print for the remaining listings 
2[ OJ: by Stephen R. Davis, '87 
3 [ OJ: 
4[ OJ: Prints standard input to standard output after adding line numbers, 
5[ OJ: truncating to 80 chars, etc. Used to generate listings in this 
6[ OJ: book. 
7 [ OJ: *I 
8 [ OJ: 
9[ OJ: #include <stdio.h> 

10[ OJ: #definemin(x,y) (x<y)? x:y 
11 [ OJ: 
12[ OJ: /*prototype definitions*/ 
13[ OJ: int main (); 
14[ OJ: void nesting (unsigned*, char*); 
15 [ OJ: 
16[ OJ: /*Main - read from STDIN one line at a time. Reprint each 
17[ 0]: line to STDOUT after adding line numbers and nesting 
18[ OJ: levels*/ 
19 [ 0 J : main () 
20 [ OJ: { 
21[ lJ: char string[256J; 



22 [ lJ: 
23 [ lJ: 
24 [ lJ: 
25 [ lJ: 
26 [ lJ: 
27 [ 2J: 
28 [ 2J: 
29 [ 2J: 
30 [ 2J: 
31 [ 2J: 
32 [ lJ: 
33 [ lJ: 
34 [ lJ: 
35 [ lJ: 
36 [ 1 J: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ OJ: 
42 [ OJ: 
43 [ OJ: 
44 [ OJ: 
45 [ lJ: 
46 [ 2 J: 
47 [ 3J: 
48 [ 2 J: 
49 [ 2J: 
50 [ 1 J: 
51 [ OJ: 

unsigned linenum,level,newlevel; 

linenum = O; 
newlevel = O; 
while (gets(string)) 

level = newlevel; 
nesting(&newlevel,string); 
string[70J = '\0'; 
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printf ("%3u[%2uJ: ",++linenum,min(level,newlevel)); 
puts (string); 

); 

while (linenum++ % 66) /*<-- if printer has no form feed*/ 
printf ("\n"); 

/*printf ("\f\n");*/ /*<--if printer does have ff*/ 

/*Nesting - search the given string for "{" and ")". Increment 
nesting level on "{" and decrement on")".*/ 

void nesting (levelptr,stringptr) 
unsigned *levelptr; 
char *stringptr; 

do { 
if (*stringptr == '{') 

*levelptr += 1; 
if (*stringptr == ')') 

*levelptr -= l; 
while (*stringptr++); 

Prg3_1 uses a common trick in Turbo C to simplify disk I/0. The Turbo C 
library routines require that files be opened before they can be accessed and closed 
when finished. At the same time, one of the fundamental concepts of UNIX is to 
treat hardware devices like files. Like UNIX, DOS considers the keyboard as a 
read-only file for input and the screen as a write-only file for output. It would be 
a terrible nuisance to have to "open" the keyboard and screen at the beginning of 
every program. Besides, if an error was reported upon opening the screen, how 
would the program tell the operator? 

To avoid both problems, there are three files that are automatically opened at the 
beginning of every program. These are STDIN, the standard input device, 
STDOUT, the standard output device, and STDERR, the standard error device. 
STDIN defaults to the keyboard while STDOUT and STDERR default to the 
screen. While it is legal to use Turbo C's normal file routines to access these 
three files, it is not usually necessary. Most of the file access routines have a 
corresponding simpler sibling which automatically accesses STDIN or STDOUT. 
For example, while the routine /print/() performs formatted output to any file. 
print/() automatically performs the identical function on STDOUT. 

Rather than worrying with opening and closing files, Prg3_1 takes its input from 
STDIN using the function gets() and sends it to STDOUT via printf(). At first 
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glance, this seems to make the program just slightly useless: nobody wants to 
retype an entire Turbo C program. Remember, however, that the default input 
and output can be redirected to any desired file at execution time using the < and 
> redirection operators. For example, to run this program on its own source and 
direct the result to the printer you would enter the DOS command: 

prg3 1 <prg3 1.c Jmore 

To direct the result to the terminal, simply leave off the >lptl and STDOUT 
remains the monitor screen (you could also use the argument >con, which 
redirects screen output to itself). 

These common tricks will allow us to avoid the complexities of DOS file 
handling until Chapter 5, where we specifically discuss DOS file access. Even 
after reading about DOS file handling, you may want to continue to use the < and 
> to get simple programs up and running in shorter time and with less bother. 

Prg3_1 is not too complicated. Input is via the function gets() (line 26), which 
takes a line from STDIN and places it at the address in the single argument 
(STRING). If you examine the documentation for gets(), you will notice that it 
returns a 0 when it reaches the end of file, thus terminating the loop. You might 
also notice, however, that the input to gets() is described as a pointer to a 
character and yet we are passing it the name of a character array. This is an 
example of what we said above: an array name without the subscript represents 
the address of the array. 

Notice also the call to nesting() (line 28). Rather than passing NEWLEVEL 
directly, main() passes the address of NEW LEVEL. Nesting() declares the 
corresponding argument as <! pointer to an integer. This is necessary so that 
nesting() can change the value of NEWLEVEL in the parent routine. Since C 
passes by value, were we to pass just NEWLEVEL itself, its value in the calling 
program would not be changed no matter how it was modified in the function. 
By passing the address, nesting() can refer back to the copy of NEWVALUE 
stored in main() and change that one. 

The other point to notice is how nesting() examines each character of the input 
array by assigning STRINGPTR to the beginning (in the call) and incrementing 
it through each character (line 50). As you shall see, this is a very common 
operation in C and is the normal way to scan an array or a string. Be sure that 
you completely understand this, and subsequent, programs. You will use these 
concepts again as each program builds upon its predecessors. 
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Prg3_1 is intended primarily for output to printers. Printers are page oriented 
devices, so it is desirable for programs which access them to leave the page at top 
of form when complete. This allows several files to be queued up for output 
without the need for the user to manually depress the "top of form" button in 
between listings. For those printers which support it, outputting a "form feed" at 
the end of the listing is all that is required. For those which don't, the alternative 
WHILE loop (lines 34-35) continues outputing line feeds until a multiple of 66 
lines in all has been sent. You will need to change this number if your printer 
prints a different number of lines on one sheet of paper. 

NOTE: In actuality, I had an ulterior motive in presenting Prg3_1. This program 
was used to generate all of the program listings in this book, including the 
listing of Prg3_1.c itself. 

Strings in C 

As we saw in Chapter 1, a character string in C is a sequence of ASCII characters 
enclosed in double-quotes. Every string is implicitly terminated with a 0. C 
handles a string just like the declaraction of arrays of characters. For example: 

char *c; 

c = "This is a string"; 

The appearance of the string causes C to allocate space for and store the 17 
characters: the characters T through g and the terminating 0. The value of the 
string is the location where C stored it. What about the type of the string? If a 
string is like an array of characters, then a string must be of type char {], which, 
as we have seen, is equivalent to saying that a string is a pointer constant to a 
char, or is of type CHAR *. 

Assigning the string to the variable C has the effect of storing the address of the 
string into the variable. It is interesting to compare this with Turbo Pascal. 
Assigning one string to another causes Turbo Pascal to copy the entire string. C 
only copies the address of the string. This gives C the advantage of speed. It is 
obviously much faster to transfer one address than it is to move an entire string 
of characters. On the other hand, C does not define the powerful string operations 
of Pascal, such as + for concatenate, since C is not doing anything with the 
string at all. 

There is one other comparison worth making. Both Turbo Pascal and C allow 
strings to be of (almost) any length, so both languages have the problem of 
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knowing exactly how long a given string is. Turbo Pascal wants to make this as 
invisible as possible to the user, so it keeps the string length in the first byte of 
the string. The user is not allowed access to this character count. C does not 
keep any counts, but 'instead makes the rule that the character 0 (also called 
NULL) terminates all strings. It is the responsibility of the programmer to check 
for this null character in his programs to determine when the end of string has 
been reached. 

If the value of "This is a string" is an address, then how do I get a single character 
when I want one? The single quote is reserved for this purpose, so that A returns 
the value of the ASCII character capital-A. This is referred to as a character 
constant and can be used anywhere that a CHAR is allowed. Never confuse A 
with "A" as they are not alike. ("A" is a pointer to a character string of 2 bytes; 
A is the value of a single character of 1 byte length.) C also defines some special 
characters to ease in the generation of strings. These are defined in Table 3.1. 

There is one single exception to this rule and that concerns initializing static 
variables at declaration time. A character array should logically be initialized 
according to the following declaration: 

char string [] = { 'T', 'h', 'i', 's', I I 

I I 

' 
In I I 

In 
It 
lb 
If 
II 

'a', ' ', 's', 't', 'r', 'i', 
'g', '\0'}; 

Table 3.1 
Special ASCII Characters 

newline (carriage return - line feed) 
tab 
backspace 
form feed 
back slash (\) 
single quote (') 

Ii If IS If 

\' 
kCR> 
\nnn 
\Oxnnn 

ignored (used to extend strings over multiple lines) 
the ASCII char represented by the octal value nnn 
" " II " " II hex II " 

These special characters are all treated by C as one ASCII character. 
A backslash followed by any other character is ignored. 

As you can see, for long strings this could get quite laborious so C makes one 
exeception and allows the following construct: 

char string [] = {"This is a string"}; 
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Some might argue that this is no exception at all since a string is, in fact, an 
array of characters. This point is not critical as you seldom see the first construct 
anyway. 

Since strings are of type CHAR *, just like arrays, you might argue that strings 
can be indexed just like arrays, for example: 

int i; 
char c; 

c = "0123456789" [i]; 

Oddly enough, you would be correct. Perhaps this is not so confusing if you 
keep in mind the substitution C makes whenever it encounters []. This 
statement takes the address of the the string, moves over I characters from the 
beginning of the string and fetches the character at that address, storing it into the 
variable C. 

Pointer Constants 

Indexing the above string and, in fact, any array, points up the fact that pointers 
can be constants as well as variables. The address of a string such as 
"0123456789" is viewed by C as a constant just like the integer 10 or the float 
15.5. This, however, is a constant whose value has been assigned by the Turbo 
C compiler. C also allows the programmer to define pointer constants. For 
example, the following statements are more or less legal C: 

char c, *ptr; 

ptr = 100; 
c = *ptr; 

c = *100 

/*almost legal*/ 

/*ditto*/ 

I said "more or less" because the above statements have a problem. The constant 
100 defaults to type INT and cannot, therefore, point to anything. We must tell 
the compiler to convert 100 from its default type to the pointer type we desire. 
This is done via casts. 

char c, *ptr; 

ptr = (char *)100; 
c = *ptr; 

c = * ( (char *) 10 0) ; 

/*now legal*/ 

/*ditto*/ 
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Although the nomenclature might seem a bit tortured, let us work it out for the 
second example. The cast (CHAR *) casts the constant at its right into type 
pointer to character. This leaves us with a pointer to a character whose value is 
100. The outer * then resolves to the character pointed at by that pointer, i.e., 
the character pointed to by the character pointer 100 or, more simply stated, the 
character at location 100. The outer parenthesis insure that the order of 
evaluation is what we expect. 

Seemingly we are going backward here. We started in the old days by assigning 
the addresses of variables ourselves. As technology improved, we allowed 
compilers to make these assignments for us. Now here we are accessing memory 
locations directly again! Pointer constants should only be used to access 
locations fixed in memory either by the PC's BIOS (Basic Input/Output System) 
ROM or by the hardware. The most notable example of the latter is the screen 
memory located at physical addresses OxAOOOO, OxBOOOO, or OxBBOOO, depending 
on adapter type and mode. 

Array Indexing 

You may have noticed that in C arrays are indexed starting with 0 rather than 1 as 
in most languages. Rather than a design criteria, this is the natural result of the 
equivalence that C makes between array indexes and pointer addition. You may 
have been dissappointed that the initial array index was not selectable by the 
programmer, as with Pascal. In fact, it is! 

Consider the following code segment: 

int space [11), *array; 

array= &space [5]; 

array [-5) 0; 
array [ 5) = 0; 

/*<--refers to space[ OJ*/ 
/* [10)*/ 

First, you allocate space for an eleven-element array by allocating SPACE { 11]. 
Rather than index off of the name SP ACE as you might otherwise do, you 
declare a pointer ARRAY and set it equal to the address of the 5th element in 
SPACE. If you subsequently index off of ARRAY, then clearly the 0th element 
of ARRAY corresponds to the 5th element in SPACE. This implies, however, 
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that the 0th element of SPACE corresponds to the -5th element of ARRAY. 
The diagram below describes the situation pictorially: 

space: I o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 101 

array: I -5 I -4 I -3 I -2 I -11 O I 1 I 2 I 3 I 4 I 5 I 

By carefully selecting which element to assign to the pointer ARRAY, we can 
design it so that we can index over any range desired. Notice that although this is 
not quite as clean as with Pascal, the resulting code might actually be just a tad 
more efficient since the index is not subtracted to acheive the index offset. 

Complex Pointers 

In the discussion so far we should have come away with the feeling that a pointer 
to a character is just as valid a variable type as any other. Just as surely, we can 
use the & to get the address of a pointer variable. Then you must be able to 
declare a pointer to a pointer to a character, type CHAR **. Additionally, we 
should be able to define pointers to user defined structures, unions, and 
enumerated types. In fact, the C programmer can declare a pointer to almost 
anything in C. I say "almost" not because I know of a case, but only because I 
feel sure there must be something you can't point to. Let's look at some of the 
more involved pointer structures. 

It is not always easy, to make sense out of complex variable declarations. For 
example, consider the following: 

int *ptr[lO]; 

Does this declare a pointer to an array of integers or is this, instead, an array of 
pointers to integers? Contemplating these two possibilities for a second should 
convince you that the difference is considerable. (In fact, building such mental 
images of these types of hypothetical declarations is an excellent way to 
accustom yourself to the concept of complex pointers.) You use what is called 
the right-left rule for determining which it is to be. 

The right-left rule can best be illustrated with an example. Consider the 
following declaration: 
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int (*var [5]) [2]; 

To understand this declaration, you first find the variable name, VAR. You then 
look immediately to the right of the variable to find brackets, which indicate this 
is an "array of ... ". You next look immediately to the left of the variable name 
to find *, " ... pointers to ... " At this point you look back to the right of the 
parenthesis to see " ... array of" and then finally to the INT, indicating 
" .. .integers". Therefore, in this example VAR is an "array of pointers to an 
array of integers". 

Figure 3.4 

(5) i + I (2) 

int ( * var [ 51) [2] 

(3)1 LJ t (4) (1) 

VAR (1) is an array (2) of pointers to 
(3) arrays (4) of integers (5) 

Admittedly the above declaration is somewhat arbitrary, but complex pointer 
definitions can arise as elegant solutions to some fairly common problems. For 
example, suppose we desire to write a program that accepts a number between 1 
and 12 and prints out the name of the corresponding month. A more or less 
classic solution appears as Prg3_2a. 

1[ 0]: /*Prg 3_2a - Print the names of the month 
2[ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4[ OJ: The following program inputs a number between 1 and 12 and outputs 
5[ OJ: the name of the corresponding month. This program uses the 
6[ OJ: "straightforward" approach. 
7 [ OJ: *I 
8 [ 0]: 
9[ OJ: #include <stdio.h> 

10 [ OJ: 
11[ OJ: /*prototyping definitions--*/ 
12[ OJ: int main (void); 
13( OJ: unsigned putmonths (unsigned); 
14 [ OJ: 
15( OJ: /*Main - input a number and output the corresponding name of the 
16( OJ: month*/ 
1 7 [ 0 J : main() 
18 [ OJ: { 
19[ lJ: unsigned innum; 
20 [ lJ: 
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21 [ l J : do { 

22( 2 J: printf ("Enter another month: "); 

23( 2J: scanf ("%d",&innum); 
24 [ lJ: while (putmonths(innum)); 
25( OJ: 
26( OJ: 
27( OJ: /*Putmonths - given a number, print the name of the corresponding 
28 [ 0 J: month. Return that number, unless it is out of range, 
29( OJ: in which case, return a O.*/ 
30( OJ: unsigned putmonths(month) 
31( OJ: unsigned month; 
32 [ OJ: 
33( lJ: switch (month) { 

34 [ 2 J: case 1: printf ("January\n\n"); 
35( 2J: break; 
36( 2J: case 2: printf ("February\n\n"); 
37( 2J: break; 
38 [ 2J: case 3: printf ("March\n\n"); 
39( 2J: break; 
40( 2J: case 4: printf ("April \n\n"); 
41 [ 2 J: break; 
42( 2J: case 5: printf ("May\n\n"); 
43 [ 2J: break; 
44 [ 2J: case 6: printf ("June\n\n"); 
45 [ 2J: break; 
46 [ 2J: case 7: printf ("July\n\n"); 
47 [ 2J: break; 
48 [ 2 J: case 8: printf ("August\n\n"); 
49 [ 2J: break; 
50[ 2 J: case 9: printf ("September\n\n"); 
51( 2J: break; 
52 [ 2J: case 10: printf ("October\n\n"); 
53( 2J: break; 
54 [ 2J: case 11: printf ( "November\n \n") ; 
55( 2J: break; 
56( 2 J: case 12: printf ("December\n\n"); 
57( 2J: break; 
58( 2J: default: printf ("Bye bye\n\n"); 
59( 2J: month = 0; 
60( lJ: 
61 [ l J : return (month); 
62 [ OJ: 

In this program, we output a prompt and accept input via the scan/() function call 
(lines 22-23). The function putmonths() is called to print the name of the 
corresponding month, which it does using a SWITCH statement. Putmonths() 
returns the number it receives unless the number is greater than 12, in which case 
it returns a 0. This 0 terminates the loop, causing the program to terminate. 

This is deemed a classic solution since this program could be directly translated 
into almost any programming language. A less obvious, but much more elegant 
solution appears as listing Prg3_2b. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ 0 J: 
5 [ OJ: 

/*Prg 3_2b - Print the names of the month 
by Stephen R. Davis, 1987 

The following program demonstrates in a simplistic fashion 
the concept of arrays of pointers. Almost unknown in other 
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6[ OJ: languages, this concept can save much code both in terms of size 
7[ OJ: and speed. Compare this program to the "Pascal-like" Program 3_2a 
8[ OJ: which does the same thing. */ 
9 [ OJ: 

10[ OJ: #include <stdio.h> 
11 [ OJ: 
12( OJ: /*prototype definitions --*/ 
13( OJ: int main (void); 
14( OJ: unsigned putmonths (unsigned); 
15 [ OJ: 
16[ OJ: /*an array of pointers to the names of the months*/ 
17[ OJ: char *months[) = {"Bye bye\n\n", 
18[ 1): "January\n\n", 
19 [ 1 J: "February\n\n", 
20[ 1): "March\n\n", 
21( lJ: "April\n\n", 
22 [ 1): "May\n\n", 
23 [ 1): "June\n\n", 
24( 1): "July\n\n", 
25[ lJ: "August\n\n", 
26 [ 1): "September\n\n", 
27[ lJ: "October\n\n", 
28 [ 1): "November\n\n", 
29[ OJ: "December\n\n"}; 
30 [ OJ: 
31[ OJ: /*Main - input a number and output the corresponding name of 
32[ OJ: the month*/ 
33 [ 0 J : main() 
34 [ OJ: { 
35[ lJ: unsigned putmonths(); 
36[ lJ: unsigned innum; 
37 [ 1): 
38 [ 1 J : do { 
39[ 2): printf ("Enter another month: "); 
40[ 2J: scanf ("%d",&innum); 
41[ lJ: while (putmonths(innum)); 
42 [ OJ: 
43 [ OJ: 
44[ OJ: /*Putmonths - given a number, print the corresponding month. Return 
45( OJ: the number, unless it is out of range, in which case, 
46 [ OJ: return a 0*/ 
47( OJ: unsigned putmonths(month) 
48 [ OJ: unsigned month; 
49 [ OJ: 
50 [ 1): if (month > 12) 
51[1): month=O; 
52[ 1): printf(months[monthJ); 
53 [ 1 J : return (month); 
54 [ OJ: 

The beginning of this program (lines 17-29) is devoted to defining an array of 
pointers to characters called MONTHS. The zeroth location is occupied by a sign 
off message, but could just as easily have been a null string. The remaining 
positions are occupied by strings containing the names of the months. The main 
program is identical to the solution above, but the function putmonths() is 
reduced to some 4 lines. First the function makes sure that the value entered is 
within the range 0 to 12. Then putmonths() simply references the proper name 
of the month from the array and returns the value of the month. 
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This program brings up a couple of points. First, if MONTHS is an array of 
pointers to characters, then what is the type of MONTHS[]? This can best be 
answered by reexamining the declaration while pretending that the variable name 
is MONTHS[]. You see that MONTHS[] is a pointer to characters, which is 
what the function print/() wants to see. 

The second point is that this solution to the problem is more elegant than the 
first. Admittedly, elegance is a subjective term, but for our purposes we shall 
agree that an elegant solution is one that executes faster and/or generates less 
code. The second solution generates less code and executes faster. 

The observant reader might note at this point that there was no need to resort to 
such shennanigans; we could have declared MONTHS to be a character matrix 
with the number of the month in one direction and the letters of the months in 
the other. Any language would have allowed such a construct. Such a matrix 
solution would have worked reasonably well for the example of the names of the 
months since they are all of approximately the same length, but such matrix 
solutions are horribly wasteful when the lengths of the various entries differ 
greatly. Let's compare how computer memory appears under the two solutions 
(Figure 3.5). 

Such matrix solutions are not even possible when the maximum length of the 
strings is not known in advance, since you don't know how large to make the 
second index. 

Pointers to Structures 

Much as we declared pointers to simple variable types above, we can just as 
easily declare pointers to more complex types such as structures. Consider the 
following structure definition: 

struct address 
int number; 
char narne[15]; 

} my, *ptrl; 

struct address *ptr2; 

Here we have defined a structure, ADDRESS. Simultaneously, we have declared 
one and called it MY (presumably, "my address"). Next to it we have declared a 
pointer to such a structure ADDRESS and called it PTRJ. Notice that PTR2 is 
an equivalent definition. 
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Array of Pointers Solution 
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Given that PTRJ contains the address of a valid structure of type ADDRESS, 
how do we gain access to its elements, NUMBER and NAME? When we want 
to access the elements of the structure MY, we use the same syntax as in Turbo 
Pascal, namely MY.NUMBER and MY.NAME. Likewise, you may be able to 
replace MY with anything of the same type. MY is of type STR UCT 
ADDRESS and so is *PTRJ. Therefore, the elements of the structure pointed at 
by PTRJ are (*PTRJ ).NUMBER and (*PTRJ ).NAME. The parentheses are 
necessary to force C to evaluate the asterisk before evaluating the period. 

Although this is true and some programmers code things this way, this is a 
somewhat clumsy syntax. Just as with the indexing of arrays above, C makes an 
equivalence here to allow programmers to adopt a more readable syntax: 

PTRl -> name; is equivalent to ( *PTRl) . name; 

Wherever C finds the syntax on the left, it replaces it with that on the right. 
Programmers are free to use whichever form they prefer. This book uses the 
syntax on the left. 

So what about PTR 1 + +? Just as we claimed above, addition to pointers is 
always defined in terms of the size of the thing pointed at. Adding 1 to PTRJ 
has the effect of moving it down in memory some 17 bytes (the size of STRUCT 
ADDRESS). Since we can declare arrays of STRUCT ADDRESS, everything I 
said about arrays and pointers to CHARs and INTs applies equally well to 
structures. 

Pointers to Functions 

Not only can the programmer manipulate the address of data, but also the address 
of functions. The following declarations declare a function that returns an integer 
and a pointer to a function which returns an integer: 

int func(); 
int (*funcptr) (); 

All of the parenthesis are required. The parenthesis following FUNC indicate that 
FUNC is a function. The remainder of the declaration indicates that function 
FUNC returns an integer result. Remember that in declarations we read() as a 
function which returns a. 

Now use the right-left rule to evaluate the second term. The parenthesis around 
FUNCPTR force the * to be evaluated before the (), so FUNCPTR is a pointer to 
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a function which returns an integer. (Without the inner parenthesis to influence 
the order of evaluation, FUNCPTR would be afunction which returns a pointer 
to an integer.) We have actually declared a pointer variable which is to hold the 
address of a function. 

I noted above that when an array appeared without the brackets it referred to the 
address of the array. By analogy you could argue that a function name appearing 
without the paretheses refers to the address of the function. In fact, this is the 
case so that the following assignment is perfectly valid: 

int func(), (*funcptr) (); 

funcptr = func; 

This assigns to FUNCPTR the address of the function func(). Of course, this 
declaration says nothing about type and number of arguments that FUNC() takes. 
As you already know, ANSI C allows this to be specified also: 

int func (int), (*funcptr) (int); 

Since we now know that FUNC() requires one integer argument, we could call it 
with the statement: 

(*funcptr) (10); 

So why have such a thing? Not everything that can be done is worth doing. One 
of the most common uses for pointers to functions is to pass one function to 
another one. In saying this, I do not mean passing the results of one function to 
another, but actually passing one function to another. To see how this might be 
useful, let us consider several examples. 

First, Prg3_3a is a function that calculates the numerical (also called definite) 
integral of a function. One of the earliest concepts taught in calculus is that of 
integration. At least initially, integration is explained in terms of the area under 
the curve. That is, assume you have a function F(x) and you plot it. That plot 
might look something like Figure 3.6. The integral of F(x) from a to b is given 
by the area bounded by a, b, F(x) and the x-axis, which appears shaded in the 
figure. 
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Figure 3.6 

x1 x2 x3 x4 x5 x6 x7 xs x9 x10 

a x b 

Of course, from that point students go on to learn techniques of integration that 
do not rely on pictorial models. Later on, when asked to build a program to take 
the numerical integral of a function, they think in terms of these mathematical 
manipulations and tend to conclude that it cannot be done. They forget about 
those simple pictures presented to them when the concept of integration was first 
being learned. In fact, writing a program to approximate the numerical integral 
by directly measuring the area under the curve is quite straightforward. 

Let's go back to our picture and decide how we might approximate an integral by 
hand. We would probably divide the range [a,b] into N equal intervals. You 
could then draw rectangles with sides at these intervals whose heights are the 
value of the function at the midpoint. The area of a rectangle is simply the 
product of the width and the height. By calculating the areas of all these little 
rectangles separately and adding them up, we arrive at the area under the curve 
(Figure 3.7). 

To tum this into a computer program, let us call the left boundary x0, the first 
interval x 1, the second x2 and so on until we have xN at the right boundary. 
Rather than calculate the value of the function at the middle of each rectangle, we 
approximate it by averaging the value of F(x) at the left and right sides. The area 
of any given rectangle is then given by the equation: 

AREAi = (xi+l - xi) * [F(xi) + F(xi+l) ]/2 
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Figure 3.7 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 

a x b 

Of course, the first term is merely the width of each subinterval. Since we have 
divided the interval [a ,b] equally, this value is the same for all subintervals. 
Also, notice that each interior F(xi) appears twice: once paired with F(xi+l) and 
once with F(xi-1). Only F(a) and F(b) are not paired with any other entry. 
Therefore, if you add up the equations for all the rectangles and reduce the 
resulting equation you get: 

AREA= spacing* [F(b)/2 + F(a)/2 + Sigma F(xi)] 
i=l to N-1 

where spacing = (b - a) I N 

Assuming that F(x) can be evaluated at each of the subintervals, it should be easy 
to write a program to implement the above equation. Prg3 _3a is such a program 
as it might be written by a programmer new to C. The function main() in this 
case requests the range of x and the value of N to use to calculate the integral. If 
the range is 0, execution stops (lines 66-67). The function integrate() is called to 
actually perform the calculation and the results are printed (line 68). For 
comparison, the actual value of the integral is printed on the next line (line 70). 

Integrate() is a more or less direct implementation of the equation given above. 
First the spacing and the value of F(x) at the left and right end points (lines 28-
29) is calculated, then the value of F(x) at each xi is accumulated (lines 30-32). 
Finally, the two are multiplied together to get the final result (line 34). To test 
the program, a sample F(x) and its integral, answer(), are provided (lines 41-50). 
The reader is free to provide his own sample F(x). 



1 [ 0 J : 
2 [ OJ: 
3 [ OJ: 
4 [ 0 J : 
5 [ 0 J: 
6 [ 0 J: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ 0 J : 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ 0 J : 
17 [ 0 J : 
18 [ 0 J : 
19 [ 0 J : 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ 1 J: 
25 [ lJ: 
26 [ lJ: 
27 [ lJ: 
28 [ 1 J: 
29 [ lJ: 
30 [ lJ: 
31 [ 2J: 
32 [ 2 J: 
33 [ lJ: 
34 [ 1 J: 
35 [ OJ: 
36 [ OJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ OJ: 
42 [ OJ: 
43 [ OJ: 
44 [ 1 J : 
45 [ OJ: 
46 [ OJ: 
47 [ OJ: 
48 [ OJ: 
49 [ lJ: 
50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ OJ: 
56 [ OJ: 
57 [ lJ: 
58 [ lJ: 
59 [ lJ: 
60 [ lJ: 
61 [ lJ: 
62 [ lJ: 

POINTER VARIABLES 

/*Prg3_3a -- Integration of a user function 'func' 
by Stephen R. Davis, 1987 

93 

This function integrates a user function 'func' using the trapezoid 
rule to evaluate a definite integral over the range 'a' to 'b' by 
dividing it into 'steps' number of discrete intervals. 

*/ 

#include <stdio.h> 

/*prototype definitions --*/ 
double integrate (double, double, unsigned); 
double func (double); 
double answer (double); 
int main (void) ; 

/*Integrate - evaluate the definite integral of a user function 
'func' over the interval 'a' to 'b' by using the 
trapazoid rule on 'steps' number of subintervals*/ 

double integrate (a, b, steps) 
double a,b; 
unsigned steps; 

double func (); 
unsigned i; 
double integral, spacing, x; 

spacing = (b - a) I steps; /*divide the interval evenly*/ 
integral = (func (b) + func (a)) 2.; 
for (i = l,x =a; i <steps; i++) { /*accumulate value over ... */ 

x +=spacing; /* ... the interval*/ 
integral+= func(x); 

return (integral * spacing); 

/*Fune - a test function to integrate and its value. 
(the integral of x**2 is equal to (x**3)/3). Replace 
func() and answer() with any desired function/integral 
pair and recompile.*/ 

double func (x) 
double x; 

return (x*x); 

double answer (x) 
double x; 

return x*x*x/3.; 

/*Main 

main () 

test routine integrate() w/ 'func'at various starting 
value, stoping value and step size. Compare with 'value' 
for accuracy.*/ 

float a,b; 
unsigned steps; 

printf ("Enter starting x, ending x and number of steps\n"); 
printf (" (exit by entering starting x equal ending x)\n"); 
for (;;) { 
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63 [ 2 J: 
64 [ 2 J: 
65 [ 2J: 
66 [ 2J: 
67 [ 2J: 
68 [ 2J: 
69 [ 2J: 
70 [ 2J: 
71 [ l J : 
72 [ OJ: 

printf (">"); 
scanf ( "%f %f %d", &a, &b, &steps); 
printf ("a = %f, b = %f, steps = %d\n", a, b, steps); 
if (a == b) 

break; 
printf ("Integral is %f\n", integrate((double)a, 

(double)b, steps)); 
printf ("(actual value is %f)\n", answer(b) - answer(a)); 

The problem with this implementation is that in order for integrate() to invoke 
the function F(x), it must call it something, in this case June(). If you later 
wanted to include this integrate() into some larger program, you would have to 
remember to call the function to be integrated June(). What if more than one 
function is to be integrated? Would you need several versions of integrate(), each 
calling a different name? And why should we be restricted in what we call our 
function? Why can't integrate() be more adaptable? Prg3_3b represents a more 
elegant, C-ish solution, which does not have these problems. 
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8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ 0 J : 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ lJ: 
28 [ lJ: 
29 [ lJ: 
30 [ lJ: 
31 [ lJ: 
32 [ lJ: 
33 [ 2 J: 
34 [ 2 J: 
35 [ l J: 
36 [ l J: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 

/*Prg 3 3b -- Integration of a user function using Trapezoid Rule 
by Stephen R. Davis 

*/ 

This program demostrates how by allowing a function to be passed 
to another function, C allows some very general purpose routines 
to be designed. This is a more general routine than that of 3_3a 
since it makes no restrictions on the name of the user function. 
This is the type of function which could be included in a C library 
for later use. 

#include <stdio.h> 

/*prototype definitions --*/ 
double integrate (double (*)(double), double, double, unsigned); 
double func (double), answer (double); 
int main (void); 

/*Integrate - evaluate the definite integral of the function pointed a 
by 'fn' by applying the trapezoid rule to the function 
over the range 'a' to 'b' by dividing it into 'steps' 
number of intervals.*/ 

double integrate (fn, a, b, steps) 
double (*fn) () ,a,b; 
unsigned steps; 

unsigned i; 
double integral,spacing,x; 

spacing = (b - a) I steps; 
integral = ( (*fn) (b) + (*fn) (a)) I 2; 
for (i = 1, x = a; i < steps; i++) { 

x += spacing; 
integral += (*fn) (x); 

return (integral* spacing); 

/*Experiment - a sample user program to integrate. (It has renamed 



40 [ OJ: 
41 [ 0 J : 
42 [ OJ: 
43 [ OJ: 
44 [ 0 J : 

45 [ lJ: 
4 6 [ OJ : 
4 7 [ OJ: 
48 [ 0 J : 
49 [ OJ: 
50 [ lJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ OJ: 
56 [ lJ: 
57 [ lJ: 
58 [ lJ: 
59 [ lJ: 
60 [ lJ: 
61 [ lJ: 
62 [ 2 J: 
63 [ 2J: 
64 [ 2J: 
65 [ 2J: 
66 [ 2J: 
67 [ 2J: 
68 [ 2J: 
69 [ 2J: 
70 [ lJ: 
71 [ OJ: 
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from 'func' to avoid any confusion with the pointer 
to a function 'fn' in 'Integrate')*/ 

double experiment (x) 
double x; 

return (x*x); 

double answer (x) 
double x; 

return x*x*x/3.; 

/*Main - same as before*/ 
main () 
{ 

float a,b; 
unsigned steps; 

printf ("Enter starting x, ending x and number of steps\n"); 
printf (" (exit by entering starting x equal ending x)\n"); 
for (;;) { 

printf (">"); 

scanf ( "%f %f %d", &a, &b, &steps); 
printf ("a= %f, b = %f, steps= %d\n", a, b, steps); 
if (a == bl 

break; 
printf ("Integral is %f\n", integrate(experiment, 

(double) a, (double) b, steps)); 
printf ("(actual value is %f)\n", answer (b) - answer (a)); 

The program seems identical except for one important point. This integrate() 
accepts the function to be integrated as one of its arguments. When invoked, 
main() passes the address of the test function experiment() to integrate(). 
Integrate() calls this pointer to a function by the name FN and declares it on line 
24. Notice that *FN must be surrounded by parentheses when called to force the 
order of evaluation just as with the declaration (lines 31 and 34 ). 

This version of integrate() is much more suitable. Not only does integrate() put 
no restrictions on the name of the function to be integrated, but multiple 
functions can be integrated using the same routine. Once this program has been 
tested with various different F(x) functions, it can be included in our own 
personal library for future use with any user supplied function. 

By the way, try Prg3_3b on several different functions for several different values 
of N. As N grows larger the answer becomes more and more accurate, but the 
compute time grows. If N becomes too large, an overflow occurs calculating the 
sigma (line 34 ). Repeat the test with functions that fluctuate more wildly than x­

squared. Notice that a larger N is necessary to achieve accurate results. 
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A second, more classic, example of the use of pointers to functions is that of the 
perfectly general bubble sort. A version of this routine first appeared in 
Kernighan and Ritchie's The C Programming Language. K&R relied on the fact 
that the bubble sort accesses the data being sorted in only two ways: once to 
compare two entries, and again, when necessary, to exchange two neighboring 
locations. However, K&R assumed that neighboring entries were actually 
physically adjacent in memory. Our even more general version allows the user 
the further flexibility of defining what "next" means. If the user can provide 
routines to perform these functions, then the generalized bubble sort can sort any 
data type. This is a powerful statement and one not easily appreciated, but none 
the less true. 

l[ OJ: /* Prg 3_4 - the classic Bubble Sort using user-supplied routines 
2[ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4[ OJ: The bubble sort routine first appeared in Kernighan and Ritchie as 
5( OJ: an example of the passing of one routine to another. This is a 
6[ OJ: further generalization of that routine. This version is as 
7[ OJ: completely g~neral as is possible. 
8 [ OJ: 
9[ OJ: SORT () can sort ANY data type, including any user defined 

10[ OJ: structure, if provided with three routines: one to compare two 
11[ OJ: entries, another to swap two entries and a third to sequence from 
12[ OJ: one entry to the next. The details of these routines are given 
13[ OJ: below. Sort returns a 0 if the sort is successful and a -1 

14[ OJ: otherwise. 
15 [ OJ: 
16[ OJ: COMPARE(ptrl, ptr2) 
17( OJ: receives two pointers to the structures to be compared. 
18[ OJ: Returns a -1 if *ptrl < *ptr2, a 0 if *ptrl == *ptr2, and 1 if 
19[ OJ: *ptrl > *ptr2 for ascending order and the opposite for 
2 0 [ 0 J : descending. 
21 [ OJ: 
22[ OJ: SWAP (ptrl, ptr2) 
23[ OJ: receives two pointers to structures. Upon returning *ptr2 is 
24( OJ: in the location of *ptrl and visca versa. If ptrl == ptr2 then 
25[ OJ: swap() has no effect. Swap() returns a 0 if the exchange is 
26[ OJ: successful and a non-zero otherwise. 
27 [ OJ: 
28( OJ: SEQUENCE (ptrl) 
29[ OJ: receives a pointer to an entry. Returns a pointer to the 
30( OJ: next entry. Notice that the definition of "next" is left to 
31( OJ: the user. If ptrl == 0, sequence() returns the first entry. 
32( OJ: If sequence () == 0 then the end of sequence has been reached. 
33[0J:*/ 
34 [ OJ: 
35[ OJ: #include <stdio.h> 
36 [ OJ: 
37( OJ: /*prototype definitions --*/ 
38( OJ: int sort (int (*)(void*, void*), int(*) (void*, void*), 
39 [ OJ: void * (*) (void *)); 
40 [ OJ: 
41( OJ: /*Sort - implement bubble sort*/ 
42( OJ: int sort (compare, swap, sequence) 
43[ OJ: int (*compare) (void*, void*), (*swap) (void*, void*); 
44 [ OJ: void *(*sequence) (void *); 
45 [ OJ: 
46 [ l_l: int flag; 



4 7 [ lJ: 
48 [ l J : 

49 [ lJ: 
50 [ 2J: 
51 [ 2J: 
52 [ 2J: 
53 [ 2J: 
54 [ 3J: 
55 [ 4 J: 
56 [ 4 J: 
57 [ 3J: 
58 [ 2J: 
59 [ lJ: 
60 [ lJ: 
61 [ OJ: 
62 [ OJ: 
63 [ OJ: 
64 [ 0 J : 
65 [ OJ: 
66 [ OJ: 
67 [ OJ: 
68 [ OJ: 
69 [ OJ: 
70 [ OJ: 
71 [ 0 J : 
72 [ OJ: 
73 [ OJ: 
74 [ OJ: 
75 [ OJ: 
76 [ 0 J: 
77 [ OJ: 
78 [ lJ: 
79 [ lJ: 
80 [ OJ: 
81 [ OJ: 
82 [ OJ: 
83 [ 0 J: 
84 [ OJ: 
85 [ lJ: 
86 [ lJ: 
87 [ l J: 
88 [ lJ: 
89 [ lJ: 
90 [ lJ: 
91 [ OJ: 
92 [ OJ: 
93 [ 0 J: 
94 [ OJ: 
95 [ OJ: 
96 [ lJ: 
97 [ l J: 
98 [ l J : 
99 [ lJ: 

100 [ l J: 
101 [ l J : 
102 [ l J: 
103 [ OJ: 
104 [ 0 J : 
105 [ OJ: 
106 [ 0 J : 
107 [ l J : 
108 [ lJ: 
109 [ l J: 
110 [ l J : 
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void *pl, *p2; 

do { 
flag = 0; 
p2 = (*sequence) (0); /*starting w/ first entry ... */ 
while (pl= p2, p2 = (*sequence) (p2)) /* ... sequence thru*/ 
{ 

if ((*compare) (pl, p2) > 0) /*if pl> p2 ... */ 
if ((*swap)(pl, p2)) return -1;/* ... swappl & p2*/ 
flag = l; 

while (flag); 
return 0; 

/*simple example of using SORT() --

/*stop when all are in order*/ 

let's simply sort an array of integers called "data" declared 
globally with N entries. Convince yourself that the 3 routines 
below actually operate according to the description above. Then 
prove that it works at all by executing the p~ogram. 

*/ 

#define N 10 
int data [NJ; 

int compare (il, i2) 
int *il, *i2; 

if (*il != *i2) return (*il > *i2) 
return 0; 

int swap (il, i2) 
int *il, *i2; 

int temp; 

temp = *il; 
*il = *i2; 
*i2 = temp; 
return O; 

void *sequence (i) 
int *i; 

if (i) 

else 

main () 

if (i == &data[N - lJ) 
return 0; 

else 
return ++i; 

return data; 

int i; 

1: -1; 

/*if last entry ... */ 
/* ... return a 0; else ... */ 

/* ... return the next entry*/ 

/*return first entry*/ 

printf ("Enter a sequence of %d integers\n", N); 
for (i = O; i < N; i++) 
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111 [ l]: 
112 [ l]: 
113 [ l]: 
114 [ l] : 
115 [ l]: 
116 [ l]: 
117 [ OJ: ) 

scanf ("%d", &data[i]); 
if (sort (compare, swap, sequence)) 

printf ("Error during sort!\n"); 
printf ("\n\nHere is the sorted sequence\n"); 
for (i = O; i < N; i++) 

printf ("%d ", data[i]); 

The bubble sort algorithm (lines 49-60) makes multiple passes through the data. 
On each pass it compares each entry with its neighbor. If the next entry is 
smaller than the current, it swaps the two and continues. Once it reaches the end 
of the list it starts over again. If the program ever makes it all the way through 
the list without having swapped any entries, then the list is sorted and it 
terminates. 

Sort() accepts three arguments, all of which are pointers to functions, two of 
which return integers and one of which (*SEQUENCE()) returns a pointer to a 
void. *COMPARE() decides if the first entry is less than, greater than or equal to 
the second entry. If the answer is greater than, *SWAP() replaces the first entry 
with the second and visa versa. Sort() traverses the list by using the routine 
*SEQUENCE(), which when passed a pointer to the current entry, returns a 
pointer to the next. *SEQUENCE() returns a pointer to the first entry when 
given a 0 and returns a 0 when passed the last entry in the list. The variable 
FLAG is used to indicate when the list is completely sorted. The program 
terminates when sort() can traverse the entire list with FLAG remaining 0. 

A particularly simple example of compare(), swap(), and sequence() are provided, 
which sorts a string of integers. Although this may seem much ado about 
nothing (why so much fuss over sorting integers?), consider how general this 
actually is. Imagine some user defined type and build these three routines for it. 
For example, sort() could sort user defined enumerated types, structures, street 
addresses, full names, etc. It could even sort cities by geographical location, if 
you can define a suitable compare() function to decide when one city is less than 
another and a sequence() function to move you from one city to the next. In fact, 
we will use this routine to sort IRS data in Chapter 4. 

Notice how sort() defines *COMPARE(), *SWAP(), and *SEQUENCE() to be 
pointers to VOID. Remember in our earlier discussion that we may declare a 
function of type VOID to indicate that it returned nothing or its arguments to be 
of type VOID to indicate that it had none, but what is a pointer to type VOID? 
A pointer to nothing? Not quite. 

It is more like declaring a pointer to an unknown type. Any pointer value can be 
assigned to a VOID * variable type and visa versa. Since the type of the target is 
unknown, however, VOID pointers cannot be resolved with the * operator nor 
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can they be operated on by the ++, --, or any other form of addition normally 
defined for pointers. This is particularly useful in defining general library 
routines, which will be receiving and returning pointers to unspecified data types. 
Although not necessary, it is good practice to cast these pointers into the proper 
type in the calling routine. We will follow this practice. 

One last area where pointers to functions find particular use is in arrays of 
functions. Let's apply the right-left rule to the following declaration: 

int progO(int), progl(int), prog2(int), prog3(int),prog4(int); 
int (*fun cs [ 5] ) (int) = { progO, progl, prog2, prog3, prog4}; 
int argument, index, answer; 

answer= (*funcs[index]) (argument); 

If we follow the declaration we see that FUNCS is an array of pointers to 
functions. The five elements of FUNCS have been set equal to the address of 
progO(), progl (), etc. In the example call, the INDEXth function is being called 
with the integer ARGUMENT. In order for this technique to work, all of the 
functions pointed to must accept the same type and number of arguments and 
return the same type of result; however, when this is the case, such program 
structures can result in both smaller and faster code. 

One common application of this technique is that of user shells. Such shells 
present a menu of possible actions to the user and await his selection. Depending 
on the number entered, the shell performs one of several, usually dissimilar, 
functions. The example program below demonstrates such an application, that of 
calling a sequence of functions rapidly. User input, either from the keyboard or 
from a file via the < pipe operator is printed out in 5 different formats by 
invoking the five different functions indirectly from an array. Although we could 
just as easily have invoked each function explicitly, the point here is to 
demonstrate the technique. 

1 L OJ: 
2 [ 0 J: 
3 [ OJ: 
4 [ OJ: 
5 [ 0 J: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

/* Prg 3_5 -- Reformat the input stream in one of 5 ways 
by Stephen R. Davis, 1987 

*/ 

The input stream is output to stdout using one of 5 programs 
to perform the task. This is primarily meant as an example 
of using arrays of functions. Notice that this is really a 
form of self modifying code. 
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10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
lS [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ 1]: 
24 [ 1]: 
2S [ 1]: 
26 [ OJ: 
27 [ OJ: 
28 [ 1]: 
29 [ 1]: 
30 [ 1]: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
3S [ OJ: 
36 [ 1]: 
37 [ 1]: 
38 [ 1]: 
39 [ 1]: 
40 [ 1]: 
41 [ 1] : 
42 [ 2]: 
43 [ 2]: 
44 [ 3]: 
4S [ 3]: 
46 [ 3]: 
47 [ 2]: 
48 [ 1]: 
49 [ OJ: 
SO [ OJ: 
Sl [ OJ: 
S2 [ OJ: 
S3 [ OJ: 
S4 [ OJ: 
SS [ 1]: 
S6 [ 1]: 
S7 [ OJ: 
S8 [ OJ: 
S9 [ OJ: 
60 [ OJ: 
61 [ 1 J : 
62 [ 1]: 

63 [ OJ: 
64 [ OJ: 
6S [ OJ: 
66 [ OJ: 
67 [ 1]: 
68 [ 1 J: 
69 [ OJ: 
70 [ OJ: 
71 [ OJ: 
72 [ OJ: 
73 [ 1]: 

TURBOC 

#include <stdio.h> 

/*prototype definitions --*/ 
int main (void) ; 
void putlower (char*); 
void putupper (char*); 
void puthex (char*); 
void putoctal (char*); 
void putdecimal (char*); 

/*an array of pointers to functions returning nothing (void)*/ 
char *fnames[S] = {"lower case , 

"upper case 
"hex output 
"octal output 

void (*func[S]) () 
"decimal output"}; 
{put lower, 
put upper, 
put hex, 
putoctal, 
putdecimal}; 

/*Main - input a string a output it in S different ways*/ 
main () 
{ 

char string[2S6]; 
int choice; 

printf ("Input a character string (up to lS characters)" 
"followed by return\n\n"); 

while (gets (string)) { 
string [lSJ = '\0'; 
for (choice = 0; choice < S; choice++) 

printf ("%s: ", fnames[choice]); 
(*func [choice]) (string); 
printf ("\n"); 

/*example output routines*/ 
void putlower (ptr) 

char *ptr; 

for (; *ptr; ptr++) 
printf (" %c, ", tolower (*ptr)); 

void putupper (ptr) 
char *ptr; 

for (; *ptr; ptr++) 
printf (" %c,", toupper(*ptr)); 

void puthex (ptr) 
char *ptr; 

for (; *ptr; ptr++) 
printf ("%3x, ", (unsigned) *ptr); 

void putoctal (ptr) 
char *ptr; 

for (; *ptr; ptr++) 
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74 [ 1 J : printf ("%30, n I (unsigned) *ptr); 
75[ OJ: 
76( OJ: void putdecirnal (ptr) 
77[ OJ: char *ptr; 
78[ OJ: 
79 [ lJ: for (; *ptr; ptr++) 
80 [ lJ: printf ( "%3u, ", (unsigned) *ptr); 
81[ OJ: 

The five different display functions are defined at the bottom of the listing (lines 
51-80). The array is initialized at declaration (lines 27-31). Input is made from 
STDIN until end-of-file (line 41) and passed to the output functions indirectly 
(line 45). 

One pitfall with invoking functions indirectly from arrays: the program must 
make absolutely sure that the index being used is within the legal range of the 
array. If the index is allowed to exceed this range, the program will surely crash. 

Argv and Argc 

In our programs so far we have always written main() with no arguments. In 
fact, main() is allowed two optional arguments: ARGC and ARGV[]. The 
standard declaration is: 

int main (argc, argv) 
int argc; 
char *argv[]; 

When a program is invoked, these two arguments are set up before main() is 
given control. ARGC is the count of the number of arguments in the command 
line (not counting redirection specifiers) and ARGV is an array of pointers to 
these arguments. This mechanism provides the user program access to any 
arguments entered on the command line with the program name. (There is, in 
fact, a third argument, CHAR *ENVPTR[], which is an array of pointers to the 
strings defined in the environment. I will describe this argument further in 
chapter 8, after discussing the environment.) 

There are a few points of secondary interest here. The above declaration is 
sometimes written: 

int main (argc, argv) 
int argc; 
char **argv; 
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As pointed out above, the principle difference between an array declaration and a 
pointer is that the array declaration allocates space for the array and the pointer 
declaration does not. However, when an array is being passed to a routine, the 
space has already been allocated by the caller. This is why nothing appears 
between the brackets in the first example. Whatever value you might have put 
there, C will ignore it. In an argument definition, therefore, there is no difference 
at all between declaring a variable to be a pointer and an array. In general, it is 
best to declare the variable the same way as it is to be used within the program. 

The ARGC/ARGV convention was first invented on UNIX versions of C. Under 
UNIX and DOS 3.x the name of the program itself is known and, therefore, is 
included in both ARGC and ARGV. ARGV[O] points to a string containing the 
full path of the calling program. Unfortunately, this information is not 
immediately accessible from DOS 2.x. In the interests of portability, Turbo C 
goes ahead and counts the program itself but places a pointer to a null string in 
ARGV[O] when under DOS 2.x. While this is not a completely satisfactory 
solution, it maximizes compatibility with UNIX C and later versions of DOS. 

Like UNIX, DOS interprets redirection specifiers itself. When a program is 
called with a <file], the default input device is automatically redirected to file I 
before the program ever receives control. The <file] does not appear as any of 
the ARGV's and is not counted in ARGC. The applications program does not 
see the redirection specifier and cannot tell that input has been redirected. This is 
exactly as with UNIX C. 

When executing programs from the Interactive Development Environment (IDE), 
the arguments to a program are specified by opening the Options window and 
selecting Args. For reasons not completely clear to me, pipes are not interrupted 
properly when entered from within the IDE, however. 

Let us simply take a look at the input arguments using the following example 
program: 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ 0 J : 
11 [ OJ : 
12 [ OJ: 
13 [ OJ: 
14 [ 0 J : 

/*Prg 3_6 - Print out the Arguments to the Program 
by Stephen R. Davis, 1987 

*/ 

More or less trivial example of accessing the arguments to 
a C program; however, this does allow the user a simple means 
of testing what various things look like to the program. Note 
that argv[OJ, normally the program name, is empty under DOS 2.x. 

#include <stdio.h> 

main (argc, argv) 
int argc; 
char *argv[J; 



15 [ OJ: 
16 [ l J : 
17 [ lJ: 
18 [ lJ: 
19 [ l J : 
20 [ 2J: 
21 [ 2J: 
22 [ lJ: 
23 [ OJ: 
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unsigned i; 

i = 0; 
for (; argc; argc--) { 

printf ("argument #%u: %s\n", i, argv[iJ); 
i++; 

This program is quite simple, merely accepting any number of arguments (lines 
12-14) and spitting them on the display, numbered for easy identification (line 
20). Notice how cavalierly the program manipulates ARGC, decrementing it in 
line 19. Since C always passes by value, a function is always free to do 
whatever it desires with its copy of arguments. Look carefully at the call to 
printf( ). Notice that if ARGV is of type char * [], then ARGV[J is of type char *. 
This matches the string inclusion %s within the call to print/(). 

As simple as this program is, it is not totally without its uses. It is interesting 
to enter various arguments to see exactly what Turbo C programs receive from 
DOS. This is readily done from the IDE by repeatedly changing the arguments 
via the Options window. Notice in particular that entering a space automatically 
ends one argument and starts another. To create a single argument with embedded 
spaces, enclose the argument in double-quotes. Try this with Prg3_6. In fact, it 
is useful to keep this program around as a surt of programmers' utility. 

Less trivial is the next example. This program accepts one arguement which is 
assumed to be an ASCII string. It then searches STDIN for the appearance of 
that string. The program prints whatever is input onto STDOUT with line 
numbers added. In addition, those lines which contain the string are marked at the 
beginning with an asterisk. In the interest of simplicity, the program does not 
worry about key words which might be wrapped across two lines. 

1 [ 0 J : 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ 0 J : 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ 0 J : 
19 [ OJ: 

/* Prg3_7a - Search STDIN for a given string 
by Stephen R. Davis, 1987 

*/ 

Search the input stream (STDIN) for a given character string. 
Ouput on the output stream (STDOUT) everything input with those 
lines containing the string marked. Print totals at the bottom 
of number of lines with string and number of lines total. 

#include <stdio.h> 

/*prototype definitions - */ 
int main (int, char**); 
int find (char*, char*); 

/*Main - after making sure one argument is present, search for 
that argument in the input stream STDIN. Mark and count 
the occurrences*/ 

main (argc, argv) 
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20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ lJ: 
24 [ lJ: 
25 [ lJ: 
26 [ lJ: 
27 [ 2J: 
28 [ 2J: 
29 [ 2J: 
30 [ 2J: 
31 [ 2J: 
32 [ 2J: 
33 [ 3J: 
34 [ 3J: 
35 [ 4 J: 
36 [ 4J: 
37 [ 3J: 
38 [ 3J: 
39 [ 2J: 
40 [ 2J: 
41 [ 2J: 
42 [ lJ: 
43 [ OJ: 
44 [ OJ: 
45 [ OJ: 
46 [ OJ: 
47 [ OJ: 
48 [ OJ: 
49 [ lJ: 
50 [ lJ: 
51 [ lJ: 
52 [ 2J: 
53 [ 2J: 
54 [ 2J: 
55 [ 2J: 
56 [ 2J: 
57 [ lJ: 
58 [ lJ: 
59 [ OJ: 

int argc; 
char *argv(J; 

unsigned linenum, flagged; 
char flagc, string [256J; 

if (argc != 2) { 
printf ("Illegal input\n" 

try: prog12a <file string\n"); 
exit (-1); 

else { 
linenum = flagged = O; 
while (gets (string)) { 

flagc = ' '; 

if (find (argv[lJ, string)) { 
flagc = '*'; 
flagged++; 

printf ("%c %3u: %s\n", flagc, ++linenum, string); 

printf ("\nTotals:\n all lines %3u\n matched %3u\n", 
linenum, flagged); 

/*find - find string! in string2; if found return 1, else 0 */ 
int find (ptrl, ptr2) 

char *ptrl, *ptr2; 

char *tptrl, *tptr2; 

for (; *ptr2; ptr2++) 
tptrl = ptrl; 
tptr2 = ptr2; 
while (*tptrl++ 

return 0; 

if ( l *tptrl) 
return 1; 

*tptr2++) 

Before starting, the program checks the number of arguments. If more than 1 
argument is provided, the program assumes the user has made a mistake and halts 
with an error (lines 26-29). It is a common practice to make at least some test 
of whether the user has made proper input. Often, if the count does not check, 
the program outputs some help to prompt the user as to what the program 
expects in the way of input. 

If ARGC checks out, the program continues to read in lines from STDIN until an 
end-of-file is encounted (lines 32-39). Each string is passed to find() which 
returns a 1 if the argument is found and a 0 if not. The flag character is set to 
either a' ' or a'*', depending upon whatfind() returns. Main() then prints the 
string, with the line number and flag character attached. Once STDIN has been 
exhausted, totals are printed (line 40). 
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The function find() is interesting. It starts by scanning through the input string 
(line 51). For every character, it compares each character of the input string, 
starting from that point, with the argument until a discrepancy is found (lines 
54-56). If no discrepancy is found before exhausting the argument, it returns a 1 
indicating success (line 56). If the input string is exhausted without success, a 0 
is returned indicating failure (line 58). While this may not be the fastest possible 
algorithmn, it is certainly simple enough. (Notice that we could have used the 
routine index() provided in the Turbo C library to perform the same function, but 
without the instructional effect.) 

Once again, this program does not expect the user to type in input from the 
keyboard. Instead, a file is expected to be redirected to using the <filename 
operator on the DOS command line. This shows how a program can mix 
arguments from the command line with redirected input. 

Often, however, we like to add so-called "switches". These are usually one letter 
arguments preceded immediately with a I that somehow modify the way a 
program works (UNIX uses the - character instead of /). In the interest of 
flexibility, most programs allow switches to appear separated (la lb) or 
concatenated (lab or /alb), but they generally must precede any other arguments 
(la argl is legal, but argl la is not). Programs differ on whether the case of 
switches is important or not. Unlike pipes, DOS does not interpret these 
switches for us, leaving the job instead to the applications program. 

As an example of interpreting switches, let us add three possible switches to the 
program above. Let's say that if the user adds a Ii, he desires the program to 
ignore case in performing its search (i.e., a= A). We will use a II to indicate that 
the program should not print those lines which do not have a match in them. 
Finally, a /t will instruct the program to not print the input string at all, but 
only the totals. This version of the program appears below: 

1( OJ: /* Prg3_7b - Search STDIN for a given string 
2( OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4( OJ: search the input stream (STDIN) for a given character string. 
5( OJ: Output whatever is input with lines containing the string 
6( OJ: marked. Accept optional arguments controlling details of the 
7 [ OJ: search: 
8[ OJ: /i - ignore case (this has the side effect of outputting 
9 [ OJ: everything in lower case also) 

10[ OJ: /t - only print totals 
11[ OJ: /1 - print the matching lines only 
12[ OJ:*/ 
13[ OJ: #include <stdio.h> 
14[ OJ: #include <ctype.h> 
15[ OJ: #include <process.h> 
16[ OJ: #define FALSE 0 
17[ OJ: #define TRUE 1 
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18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ 1]: 
31 [ lJ: 
32 [ l J: 
33 [ lJ: 
34 [ l J : 
35 [ lJ: 
36 [ lJ: 
37 [ lJ: 
38 [ lJ: 
39 [ 2]: 
40 [ 2]: 
41 [ 3]: 
42 [ 3]: 
43 [ 3]: 
44 [ 3]: 
45 [ 3]: 
46 [ 3]: 
47 [ 3J: 
48 [ 3]: 
49 [ 3J: 
50 [ 3]: 
51 [ 2J: 
52 [ 2]: 
53 [ 2]: 
54 [ l] : 

55 [ lJ: 
56 [ lJ: 
57 [ 2]: 
58 [ 2J: 
59 [ 2]: 
60 [ 2]: 
61 [ 2]: 
62 [ 2]: 
63 [ 2]: 
64 [ 2J: 
65 [ 2]: 
66 [ 3]: 
67 [ 3]: 
68 [ 3J: 
69 [ 3]: 
70 [ 3J: 
71 [ 4] : 
72 [ 4 J: 
73 [ 3J: 
74 [ 3]: 
75 [ 3]: 
76 [ 3]: 
77 [ 3J: 
78 [ 2]: 
79 [ 2]: 
80 [ 2J: 
81 [ lJ: 

TURBOC 

/*prototype definitions -*/ 
int main (int, char**); 
int find (char*, char*); 
void forcelow (char*); 

/*Main - scan the input stream for the appearance of the first 
argument considering the switches noted above*/ 

main (argc, argv) 
int argc; 
char *argv[]; 

unsigned linenum, flagged; 
char flagc, string [256J, *ptr; 
int ignore, alllines, body; 

ignore = FALSE; 
alllines = TRUE; 
body = TRUE; 

/*assume no switches*/ 

while (*argv[l] == '/') { /*now, look for switches*/ 
for (ptr = argv(lJ; *ptr; ptr++) 

switch (tolower (*ptr)) 
case '/': break; 
case Ii I: ignore 

break; 

/*ignore irnbedded l's*/ 
TRUE; 

case 'c': 

case 't I: 

body = FALSE; 
break; 
alllines = FALSE; 
break; 

default : printf ("Illegal switch: /%c\n", 
*ptr); 

exit (-2); 

argc--; /*remove switch from args*/ 
argv++; 

if (argc != 2) { 
printf ("Illegal input\n" 

try: prg3_7b <file [/iltJ string\n"); 
exit (-1); 

else { 
linenum = flagged = 0; 
if (ignore) 

forcelow (argv(l]); 

while (gets (string)) { 
if (ignore) 

forcelow (string); 
linenum++; 
flagc = ' '; 

if (find (argv[l], string)) { 
flagc = '*'; 
flagged++; 

if (body) 
if (flagc == '*' I I alllines) 

printf ("%c %3u: %s\n", flagc, 
linenum, string); 

printf ("\nTotals:\n all lines %3u\n matched 
linenum, flagged); 

%3u\n", 



82 [ OJ: 
83 [ OJ: 
84 [ OJ: 
85 [ OJ: 
86 [ OJ: 
87 [ OJ: 
88 [ lJ: 
89 [ lJ: 
90 [ 1): 
91 [ 2 J: 
92 [ 2 J: 
93 [ 2 J: 
94 [ 2 J: 
95 [ 2J: 
96 [ 1 J : 
97 [ lJ: 
98 [ OJ: 
99 [ OJ: 

100 [ OJ: 
101 [ OJ: 
102 [ OJ: 
103 [ OJ: 
104 [ lJ: 
105 [ lJ: 
106 [ 1 J: 
107 [ OJ: 
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/*Find - find stringl in string2; if found return 1, else 0 */ 
int find (ptrl, ptr2) 

char *ptrl, *ptr2; 

char *tptrl, *tptr2; 

for (; *ptr2; ptr2++) { 
tptrl = ptrl; 
tptr2 = ptr2; 
while (*tptrl++ *tptr2++) 

if ( ! *tptrl) 
return 1; 

return 0; 

/*Forcelow - force all characters to lower case*/ 
void forcelow (ptr) 

char *ptr; 

for (; *ptr; ptr++) 
if (isalpha (*ptr)) 

*ptr = tolower (*ptr); 

Compare the two programs as they are not that dissimilar. The first thing you 
notice is that version b has defined three flags, IGNORE, ALLLINES, and 
BODY, which indicate to the main program whether the corresponding switch 
was present or not. Initially these switches are set to their "switch not present" 
state (lines 34-36). The program then examines the input arguments to 
determine if, in fact, any of the switches are present (lines 38-54). 

The first argument (after the program name) is examined to determine if the first 
character is a I . If it is, then each character after it is examined for the presence 
of an i, c, or t. If a character which is not one of these is found or another/, an 
error message is printed and the program stops. The call to tolower() makes the 
examination of switches case insensitive. Once a non-switch is found, the 
program continues on as before. 

In the program body, case is ignored by forcing the argument and input string to 
lower case if the flag IGNORE is true. Output of the text is suppressed by 
making the call to printf() conditional on the flag BODY (line 74). The flag 
ALLLINES forces all lines to be output; otherwise only those lines which have a 
flag character of'*' are output (line 75). If BODY is false, the flag ALLLINES 
has no effect, since the conditional is never reached. The totals are always 
output. Compare this behavior with the stated goals of our switches. Other than 
including IF statements for the various flags, the rest of version b of the program 
is identical to version 1. 
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It may have seemed odd that after a switch is found, the program increments 
ARGV and decrements ARGC (lines 52-53)! This bizarre behavior has the effect 
of removing the switch from the command line for the remainder of the program. 
Think about this carefully for a second and convince yourself that incrementing a 
variable of type char * [] left shifts each argument one position, dropping the 
leftmost argument into the "bit bucket". 

This technique has the extreme advantage of removing the switches from the 
command line at the beginning of the program. (The line ARGV[l] = ARGV[O] 
before incrementing retains the pointer to the program in ARGV[O] for the 
remainder of the program. Since this pointer is not used, this line has been 
dropped.) The remainder of the program can ignore the presence of these 
switches, since the first part of the program has "parsed them away" and set flags 
accordingly. This is the normal C way of handling input switches to programs. 
Invoke the program a few times and try entering various combinations of legal, 
illegal and no switches to convince yourself that this is, in fact, a resilient 
approach to handling input switches and arguments. 

Pointers and the 8086 

The 8086 family of microprocessors puts some interesting demands on Turbo C 
and, occasionally, on the Turbo C programmer. The 8086 uses a segmented 
model of computer memory. In this model, a physical address is arrived at by 
combining a 16 bit offset with another 16-bit value, called the segment address, 
according to the formula: 

physical address = segment address * 16 + offset 

This equation results in a 20-bit address capable of accessing 1 Megabyte of 
memory, the maximum address space of the 8086. Notice that since the offset is 
16 bits, any given segment, specified by the segment address, is limited to 64 
kbytes in length. 

In the 80286 and 80386 microprocessors it's a bit more complicated than this 
(actually, its a lot more complicated than this), but both chips can emulate the 
operation of the simpler 8086 and 8088 microprocessors in what is known as 
Real Mode. Since DOS can only operate in this Real Mode, we do not need to 
worry too much with the alternative Protected Mode of these chips. (OS/2, the 
next-generation replacement for DOS, operates in this Protected Mode. Borland 
has already announced its intent that Turbo C eventually support Protected Mode. 
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Addresses for Turbo C variables come in two types: NEAR and FAR. A NEAR 
address consists only of the offset part into a default segment. A FAR address 
contains both the offset and its segment. 

Turbo C allows the programmer to default function and data addresses in a 
program to either NEAR or FAR by selecting one of the memory models in the 
Options menu of the IDE or by a switch on the command line to TCC, the 
command line version of Turbo C. Turbo C supports four "normal" memory 
models and the special Tiny and Huge models outlined in the Table 3.2. 
Selecting a NEAR default for either function or data addresses limits that area to a 
maximum of 64k bytes in length. 

Table 3.2 

model program data program data max 
addresses addresses size size array 

tiny near near 64k 64k 64k 
small near near 64k 64k 64k 
medium far near 1M 64k 64k 
compact near far 64k 1M 64k 
large far far 1M 1M 64k 
huge far far 1M 1M 1M 

Selecting a model also defaults pointer variables to either 16 bit (offset only) or 
32 bit (segment and offset) in length to accommodate the corresponding address 
size. No matter what the default pointer size is, however, we can always 
specifically declare any given pointer to whichever size we desire by using the 
NEAR or FAR attribute as shown below: 

int far *farptr; 
int near *nearptr; 

As a small exercise it is interesting to compile and execute Prg3_8 under each of 
the six memory models. The output from each model is shown below. 

1 [ OJ: 
2 [ OJ: 
3( 0}: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 

/*Prg3_8 - Output addresses and Size of a few variables 
by Stephen R. Davis 

*/ 

Just as a demonstration of the different memory models, output 
a few addresses and pointer sizes. 

#include <stdio.h> 

/*Main - output some sample variable sizes*/ 
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11( OJ main () 

12 [ OJ 
13( l] printf ("The sizes are as follows:\n" 
14 [ lJ " character - %u bytes\n" 
15 [ lJ: " integer - %u bytes\n" 
16( lJ: " float - %u bytes\n" 
17 [ lJ: " double - %u bytes\n" 
18( lJ: "\n" 
19( lJ: " pointer - %u bytes\n" 
20( lJ: " far pointer - %u bytes\n" 
21( lJ: " near pointer- %u bytes\n" 
22 [ lJ: " proc - %u bytes\n", 
23( lJ: sizeof (char), 
24( lJ: sizeof (int) I 
25( lJ: sizeof (float), 
26( l J: sizeof (double), 
27( lJ: sizeof (int *)I 
28[ lJ: sizeof (int far *)I 
29( lJ: sizeof (int near *)I 

30( lJ: sizeof (main)); 
31( OJ: 

Notice that the size of the simple variables does not change with the different 
memory models, nor does the size of the explicitly declared NEAR and FAR 
pointers. However, the size of the "default" pointer and the function address 
change to either NEAR or the FAR size with changing model. 

How do we use FAR pointers? Suppose we wanted to declare a pointer to screen 
memory on the Color/Graphics Adapter (CGA), which is located at address 
OxB8000. If we plug this physical address into physical address = segment 
address * 16 + offset, you will notice that we are presented with a single equation 
in two variables: segment and offset. It doesn't take a mathematics whiz to figure 
out that such an equation can not be solved uniquely for both variables. In fact, 
there are some 4096 combinations of segment and offset which together point to 
any given physical address. It is convention to use the segment: offset 
combination of OxB800:0000 when accessing CGA memory. The following 
declaration makes this assignment: 

int far *screen; 

screen= (int far *)OxBBOOOOOO; 

Forget for a moment the int portion of the above declaration. We will discuss 
the reasons for that when we discuss display memory later. The far in the 
declaration insures that SCREEN is a far pointer, irrespective of the memory 
model under which we might be compiling. 

As for the assignment, the first sixteen bits (four hexidecimal digits) of the long 
integer (OxB800) are assigned to the segment and the remaining sixteen bits to 
the offset portion of the address. The cast converts what would otherwise be a 
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LONG INT into a INT FAR * to agree with the type of SCREEN. This is the 
same nomenclature which Microsoft first used in its C compilers. 

To aide in dealing with FAR pointers, Turbo C defines 3 macros: F P _ SEG(), 
FP _OFF() and MK_FP(). The first two return the segment and offset parts, 
respectively, of an address while the third builds an address from two integer 
values. For example 

int far *screen; 

screen= MK FP (0xB800, OxOOOO); 

has the same effect as the previous assignment. Having constructed such a 
pointer, we can then "pull it apart": 

segment FP_SEG (screen); 
offset= FP_OFF (screen); 

/* 
/* 

OxB800*/ 
OxOOOO*/ 

The same routines can be used on the address of a variable (as opposed to the 
contents of a pointer), via the following: 

unsigned variable; 

printf ("our variable is at segment %x, offset %x\n", 
FP SEG (&variable), FP_OFF (&variable)); 

We said above that a pointer of type NEAR represents an offset into a default 
segment. Since there are four different segment registers in the 8086, Turbo C 
defines four different sub-types of NEAR named after the segment registers: 

char _cs ptrl, _ds ptr2, _es ptr3, ss ptr4; 

The default segment register for globally defined data, such as external variables 
and string constants, is DS, the default for functions is CS, and.the one for stack 
variables is SS. With these special NEAR declarations, it becomes possible to 
declare a near data pointer off of the CS, for example. Such a pointer would have 
direct access to the program's machine code (the mind boggles at what a C 
program might do with such access). These special forms of NEAR declaration 
are most useful when mixing NEAR and FAR pointers in the same program. It 
is not normally necessary to worry with these special types, however. 
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Turbo C maintains a different support library for each memory model. These 
libraries are identical except for the size of the addresses they accept as arguments. 
Selecting the compilation memory model also selects the proper library included 
during the link step. Generally it is best to compile and link under the smallest 
memory model practical and declare any FAR pointers, specifically, to avoid the 
overhead of manipulating the larger 32-bit addresses unnecessarily. 

From time to time we will want to pass FAR pointers to library routines, such 
as write() or read(). We select the size of addresses passed to Turbo C library 
routines by selecting compilation memory models. This might mean that a 
particular program only works properly if compiled under a specific memory 
model. Fortunately, we can enforce such a requirement specifically by examining 
the size of default pointers via the sizeof() preprocessor command. This 
technique, as well as the entire topic of NEAR and FAR pointers, will become 
clear as we actually use them in real programs. 

Review 

In this chapter we have examined the properties of pointers in Turbo C. We have 
discovered that not only does C allow the programmer to declare pointers to 
integers and characters, but also to arrays, structures and even functions. This 
capability allows the C programmer to solve some common problems in very 
efficient ways. 

Turbo C's strings are heavily tied with its concepts of pointers. Pascal allows a 
string to be assigned to a string variable (for example, 'data:= "string";') because 
Pascal is a high level language with built-in support for string manipulation. 
Besides just assignments, Pascal defines other string handling primitives, such as 
concatenation. C also allows a string to be assigned to a pointer variable, but 
only because the value of a string is nothing more than the address of the string 
of characters in memory. C has no primitives for manipulating ASCII strings. 

We saw that an array name appearing without brackets refers to the address of the 
array. In like fashion, unresolved function and structure names also refer to their 
addresses. Since C defines addition to pointers, indexing an array becomes 
equivalent to adding an index to a pointer: 

array[i] <=> *(array+ i) 
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The syntax ARRAY[/] is merely a shorthand for the other, more imposing 
looking, syntax. Similarly, a short hand was developed for using pointers to 
structures: 

then: 

given: 
struct 

int a,b; 
*ptr; 

(*ptr) .a; 

(*ptr) .b; 

is equivalent to 
and 

is equivalent to 

ptr -> a; 

ptr -> b; 

Both of these equivalencies are meant to enhance the readibility of C. Even 
though the shorthand is preferrable, the reader should not forget the "crude" way 
as this is what C actually "sees" (no pun intended). 

By using the right-left rule you can manufacture some truly tortured variable 
declarations. Arrays of pointers to arrays of functions, ad nauseum, are possible. 
No matter how complicated the declaration, you always begin at the immediate 
right of the variable name, proceed to the immediate left, and continue on the 
right. Any variable that you can declare you can resolve, since the resolution 
always looks the same as the declaration. 

Finally, we looked at using and defining pointers to functions. Even 
programmers accustomed to thinking in terms of the addresses of data structures 
may be uncomfortable dealing with the addresses of code, but they shouldn't be. 
The idea of treating programs like data is fundamental to the von Neumann 
concept of computer architecture upon which our PCs are based. It is interesting 
to note that Pascal allows the definition of pointers to functions-Turbo Pascal 
simply did not implement this feature! 

This business of viewing array function and structure names as nothing more 
than typed addresses is consistent with our view of C as an "intermediate" level 
language. Remember how we claimed that you can think of = as an operator 
which takes the current value of the expression and assigns it to the variable on 
the left? Similary, you can think of {] and () as operators. Brackets index off of 
the address that appears to their left, and parentheses call the value to their 
immediate left. In fact, Small-C will call any expression which appears to the 
left of parentheses--even the result of a numerical calculation. 

Having examined the topic of C pointers closely, we are now in position to look 
at some practical applications. You might want to start by going back and 
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reexamining your Bit and convnum() routines of Chapter 1. You now have the 
fundamentals necessary to allow you to research the power of Turbo C. 



4 
Linked 

Lists 

Now that we have a firm handle on the topic of pointers in C, let's apply that 
knowledge to one of their most important applications, that of linked lists. 
Actually, linked lists are not unique to C at all. Turbo Pascal supports linked 
lists every bit as well as Turbo C. That does not mean, however, that every 
Turbo Pascal programmer has yet mastered the topic. Those that have can view 
this chapter as a quick review-a good understanding of the topic is too important 
to leave to chance. 

The Problem 

Before we begin explaining what a linked list is, let us examine why one is 
needed. Linked lists solve a problem that used to plague me as a young 
programmer out of college struggling with FORTRAN IV (a language that, by 
the way, does not support linked lists). Suppose we are charged with writing a 
program to manipulate some type of data that consists of several parts. Say, for 
example, sorting IRS personnel data. 

The IRS keeps lots of data on different people (more on some than others), but 
just to keep things simple, let's limit ourselves to the typical name, rank, and 
serial number. Suppose in our problem, we are to take the name, sex, address, 
social security number, and tax bracket of various people and sort them. 

Of course, such data should be grouped together. Mr. Jones' address and his 
social security number should stay together with his name, just as should Mrs. 
Smith's. (We certainly wouldn't want to sort all of the names separately from the 
social security numbers, for example!) When confronted with data fields that 
logically belong together, our immediate reaction should be to create a structure 
to handle them. A structure allows us to group dissimilar but related data into a 
single entity; one to which we can give a name and type, if needed. 

115 
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In our example problem, the various fields we need for each entry are pretty much 
defined for us. A corresponding structure definition appears as: 

struct IRSdata { 
char lastname [11]; 
char firstname [11]; 

char sex; 
struct { 

char street [ 16]; 
char city [11]; 
char state [3]; 

} address; 
char ssnum [10]; 
int taxrate; 

} ; 

This definition does not allocate any space but merely defines a structure IRSdata 
that has entries for each of the kinds of data needed. We will actually declare 
entries of type STRUCT IRSDATA later, thereby allocating them memory. 

Let's examine the individual fields more closely. For simplicity, name has been 
broken into two fields: LASTNAME and FIRSTNAME. If we were going to 
include middle name or initial we would have added a third field for it. In general, 
we should always divide such data into the smallest groupings possible. 
Dividing aggregate entries into their constituent parts simplifies the resulting 
software. 

Notice that a decision was made as to how large a name we can handle. There is 
a trade off here that must be considered. Allocating a tremendously large array 
might handle every name we can think of but will surely waste space on all of 
the Smiths and Jones of the world. On the other hand, making the array too 
small saves space but might cut names so short that they are no longer unique, 
throwing all the Thomases in with the Thompsons, lumping the Davises 
together with the Davidsons. For the above structure I selected a last name and 
first name size of 10 characters. I declared each field to be 11 CHARs long to 
allow a NULL to be appended to each name. This allows these character arrays to 
conform to the rules of normal strings. 

The very observant reader might have noticed that, in fact, I did not need to pick a 
size for each name at compile time. Instead, I could have declared LASTNAME 
and FIRSTNAME to be of type CHAR * as so: 



struct IRSdata { 
char *lastname; 
char *firstname; 
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Such a structure definition could handle names of any size easily. Harkening 
back to our discussion of pointers vs. arrays however, we will remember that the 
above declaration does not actually allocate any space for the names, relying 
instead on the space to be allocated by some other mechanism. We will see as 
we continue in our discussion that this is unacceptable. For what follows, we 
will want not only the names of the various data entries kept together, but also 
the space these entries occupy. This requires the space to be allocated within the 
structure itself. 

If a name is shorter than 10 characters we do not want to be forced to print the 
entire 10 character field including a terminating string of blanks to pad the length 
out. By appending a NULL to the end of our name, wherever that might be 
within the allocated space, we can use the normal string handling routines to only 
print the actual name; however, we must still assume (and enforce) some 
maximum size. (It is, in general, a very good idea to allocate one more character 
than necessary to arrays of characters for a terminating NULL. All of the C 
library routines assume the existence of such NULLs at the end of ASCII 
strings.) 

Notice how the address field within the structure definition is also a structure with 
the street name, city name and state all split apart. As we mentioned above, data 
that has substructure should always be split into the smallest reasonable 
subdivisions in the structure definition. Perhaps making the address a structure 
was unnecessary but, logically speaking, it makes good sense to bundle up such 
fields into like groups. Doing so makes the resulting program more 
understandable. (I would not disagree with those that might argue that NAME 
itself should have been a structure with two entries: FIRST and LAST.) 

Bringing up the rear are SSNUM and TAXRATE. Since social security number 
consists only of digits, SSNUM could also have been declared as a long integer (a 
short integer cannot hold a 9 digit field). Even though printing a long integer in 
the common social security format of XXX-XX-XXXX is not terribly easy. 
T AXRAT E is assumed to be a number between 0 and 99 indicating the 
percentage tax bracket. 
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How do we allocate the space we will need to sort our structure? The obvious 
way is to just declare an array. This has several fundamental problems, however. 
First of all, how many should we declare? Typically, at compile time we do not 
know how many entries we will need to deal with. We could just calculate the 
amount of available memory and allocate that many elements to our array, but 
that only works if we plan to run the program on only one machine and even 
then only if that machine's memory does not change. What if we decide that 
there is space for 1,000 entries only to have our program be executed on a 
machine with less memory where there is not room for quite that many? That 
would really be a shame if it turned out we only needed to sort ten entries! We 
would much rather make such memory decisions at run time, when the program 
is actually executed. 

A second, more subtle, problem arises from the architecture of the 8086 
microprocessor in the PC. In actual fact we cannot allocate all available memory 
to our array of structures. A single memory segment in the 8086 and 80286 
cannot exceed 64k bytes in length. This means that an array can also not exceed 
64k in length, no matter how big each array entry is. Most of the memory in a 
640k machine could not be used by such an array solution. (Individual arrays 
may exceed 64k bytes in length under the huge memory model, but at 
considerable penalty in speed.) 

Finally, as we get to be more adept at handling structures we will find that it is 
often convenient to mix structures of different types. In our simple example, 
only the one type was necessary, but what if we had made the problem a little 
more complicated? Suppose we also wanted to include names of dependents, 
maiden name, years retired, etc. Not all of such data makes sense for all types of 
people. Of course, we could just define one very large structure containing every 
possible field, most of which are blank for any given individual, but each of 
which is filled in for at least one person. This is a very inefficient use of 
memory, however. It would be much better to define different types of structures 
for the single and married, home owners and renters, short form and long form 
taxpayers, etc. Each structure would only contain the data relevant to its 
particular type of taxpayer. It is not possible to mix different structures in a 
single array declaration. 

There must be a better way. There must be some method that can address the 
difficulties inherent in arrays of structures. The answer is the linked list. 
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The Linked List 

An analogous problem exists with files stored on the PC's disk drive. What 
method should be used to tell the operating system which sectors belong to a 
certain file and in what order? At first glance you might answer, "Simple, just 
place the address of each sector of the file in the directory entry for that file." In 
fact, this system is sometimes used. Such files are called random access files 
because each sector can be accessed at any time in any order. 

This is not, however, the method that DOS uses since it suffers from problems 
very similar to those of our array above. (For example, how much directory 
space do we allocate when the file is created?) Instead, the directory entry for each 
file points to one sector, the first sector of the file. That sector contains the 
address of the second sector of the file, and so on until the end of the file. All of 
the sectors of the file are linked together in what is called a linked list. Such files 
are called sequential access files, since each sector must be accessed in order. 
(Actually, DOS increases access speed by maintaining a File Allocation Table 
that links the sectors together sequentially, but the principle is unchanged.) 

Similarly, we could use the sequential access approach to solve our IRS problem 
and link our structures together into a sequential list. Somewhere we would store 
the address of the first structure. Each structure would then contain a pointer to 
the next in line. 

Consider the following declaration: 

struct main 
int data; 
struct main *link; 

} *ptr; 

It may seem that we have created an infinite loop by declaring a pointer to 
STRUCT MAIN within the definition of STRUCT MAIN itself, but this is not 
so. Although it is important to distinguish pointers by what they point to, the 
size of a pointer variable is fixed and independent of the thing pointed at. 
Therefore, the above declaration is perfectly legal. 

If the variable PTR contained the address of a structure element of type MAIN 
then (*PTR).DATA would contain the integer data of that element. We will 
avail ourselves of the equivalent shorthand introduced in Chapter 3: 

PTR -> DATA <=is equivalent to=> ( *PTR) • DATA 



120 TURBO C 

PTR -> LINK is also of type STRUCT MAIN *,thus, if LINK pointed to the 
"next" element in the list, the assignment: 

PTR = PTR -> LINK; 

would cause PTR to point to that next element. Repeating the function moves 
PTR down the list of structure elements. Figure 4.1 shows pictorially what is 
happening here. 

Figure 4.1 

Traversing a singly linked list 

By traversing the list of linked structure elements we can eventually gain access 
to all of the DATA's they contain. Of course, we have neglected two problems 
represented by the two ends of the chain: how do we get started and how do we 
know when to stop? Getting started is easy. Somewhere we reserve a variable 
containing the address of the first element of our linked list, analogous to the 
directory entry of our DOS sequential file. 

C comes to our aid in solving the latter problem by reserving the pointer value 0. 
C will not assign any variable or structure the address 0. Therefore, we can set 
the value of LINK in the last element of the linked list to 0. As we move 
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through the list we must be ever watchful for this value, for when we encounter 
it, we know that the list has been exhausted. C aids us further in this by 
interpreting the value 0 as FALSE if it appears in an IF statement or in a FOR, 
DO WHILE or WHILE loop. 

The Heap 

This is all very nice given that such a linked list of structures exists, but how did 
it come to be in the first place? Where did the elements come from? In both C 
and Pascal there exists a block of memory collectively known as the heap. The 
heap consists of all the memory available to the program that has not already 
been used for some other purpose. That is, the heap is simply the rest of 
memory. 

This may seem a bit strange to the uninitiated, but consider for a moment what 
the PC's memory must look like when you execute a program you have just 
written. At the bottom is PC-DOS and assorted fixed addresses. Above this are 
stacked DOS buffers plus any device drivers you included in your CONFIG.SYS 
file. Sitting atop that are SideKick or any other Terminate and Stay Resident 
(TSR) programs you may have loaded before executing your program. Next 
comes your program. 

The first section of your program to be loaded is the machine code. Its size and 
organization are strictly a function of your source code. The second section, 
which is the data, consists of all the static and extern declared variables. Third, 
and last, is the stack space. Turbo C examines the number of functions you 
have, how they are called, and how many auto variables each has to arrive at a 
reasonable amount of stack space for your program. The space above your 
program and its stack up to 640k does not belong to anyone (one gets into video 
RAM above 640k). This space is the heap, as shown in Figure 4.2. 

Variables contained in either the data or stack areas are statically allocated 
variables. Their space is either marked out and reserved ahead of time, as with 
extems, or is at least reserved, as with auto variables. That is because decisions 
affecting these variables must be made at compile time and are, therefore, not 
subject to change without recompiling. Any data that we might place in the heap 
must be dynamically allocated. Their space is not reserved at compile time but, 
instead, at run time when the program is actually executed. 
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Memory on the PC 

C provides two principle routines for accessing the heap: malloc() andfree(). 
(The library routine calloc() can be used in place of malloc() if desired.) These 
functions have the following prototype declarations: 

void *rnalloc (unsigned numofbytes); 

void free (void *ptr); 
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To allocate space the user program calls malloc(), passing to it the number of 
bytes to allocate off of the heap. Malloc() returns either a 0, indicating that the 
requested amount of space is not available, or a pointer to the requested space. 
Eventually, when the program has finished with that block of memory, it can 
return it to the heap (to be used again by some other routine) by passing its 
address to the functionfree(). Any memory allocated to a program when it exits 
is automatically returned to the heap. 

With power comes responsibility. Dynamic memory allows the user program 
access to all of the free memory in the host machine, but the user program must 
be careful in using it. Once a block of memory has been passed to the user 
program by malloc() it is the responsibility of the program to keep track of it. If 
it looses a pointer, the data in that space is also lost. Once returned to the heap 
via free() that space belongs to the system again and the user program must not 
attempt to access it further. 

Singly Linked Lists 

The mechanism that we described above for sequential files is called a singly 
linked list since there is one pointer or link attaching each structure to the next 
succeeding structure. Singly linked lists are ideal for maintaining queues, both of 
the Last-In-First-Out (LIFO) and First-In-First-Out (FIFO) variety. 

A FIFO queue can be used to store off incoming data that might arrive faster than 
it can be worked. The FIFO expands and contracts, with entries being attached to 
one end as they arrive, and pulled off the other end for processing. Averaged over 
a long period of time entries must be processed as fast as they arrive, but a FIFO 
can store off data bursts for later processing. This gives the resulting system a 
certain springiness. 

As an example of a singly link list implementation, let us use the slightly 
simpler LIFO. Expanding the code to implement a LIFO queue into that of a 
FIFO queue is straightforward. Prg4_1 implements a very simple Reverse Polish 
Notation (RPN-Hewlett Packard style) calculator. An RPN calculator 
maintains a data stack of entries. Values are pushed onto the top of the stack­
operators take their arguments from the top of the stack. For example, to add 1 
and 3 on an RPN calcualtor one first enters 1 [ENTER] then 3 [ENTER] followed 
by +. The result appears on the display and is also placed on the top of the stack. 
Our simplistic calculator uses the RETURN as its ENTER key and implements 
the simple arithmetic functions. 
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1[ OJ: /*Prg 4_1 -- Simple Integer RPN Calculator using Singly Linked LIFO 
2[ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4[ OJ: Singly linked lists are most commonly used to implement FIFO 
5[ OJ: (first in, first out) queues and LIFO (last in, first out) queues. 
6[ OJ: In this case, we will use a LIFO to simulate a reverse Polish notati 
7[ OJ: (HP-style) calculator. This calculator is quite simplistic, but 
8[ OJ: the principle could be expanded to encompass much larger projects. 
9 [ OJ: */ 

10 [ OJ: 
11[ OJ: #include <stdio.h> 
12 [ OJ: 
13[ OJ: /*prototype definitions --*/ 
14[ OJ: int pop (void); 
15[ OJ: void push (int); 
16[ OJ: void clear (void); 
17[ OJ: void view (void); 
18[ OJ: int main (void); 
19 [ OJ: 
20[ OJ: /*stack structure definition*/ 
21[ OJ: struct stack { 
22[ lJ: int number; 
23[ lJ: struct stack *link; 
24 [ OJ: } ; 
25[ OJ: struct stack *HEAD= NULL; 
26 [ OJ: 
27[ OJ: /*Pop - pop an integer value off of the stack*/ 
28 [ 0 J : int pop () 
29 [ OJ: 
30[ lJ: struct stack *old; 
31[ lJ: int value; 
32 [ lJ: 
33 [ lJ: if (HEAD) { 
34[ 2J: value= HEAD-> number; 
35[ 2J: old= HEAD; 
36[ 2J: HEAD= HEAD-> link; 
37 [ 2J: free (old); 
38 [ lJ: else 
39[ lJ: value= 0; /*queue empty*/ 
40[ lJ: return value; 
41 [ OJ: 
42 [ OJ: 
43[ OJ: /*Push - push an integer value onto the stack*/ 
44[ OJ: void push (value) 
45[ OJ: int value; 
46 [ OJ: 
47[ lJ: struct stack *new; 
48 [ lJ: 
49[ lJ: if (new= (struct stack *)malloc (sizeof (struct stack))) { 
50[ 2J: new-> number= value; 
51[ 2J: new-> link= HEAD; 
52[ 2J: HEAD= new; 
53 [ lJ: 
54 [ OJ: 
55 [ OJ: 
56[ OJ: /*Clear - clear the LIFO of all entries*/ 
57 [ OJ: void clear () 
58 [ OJ: { 
59[ lJ: while (HEAD) 
6 0 [ 1 J : pop ( ) ; 
61 [ OJ: 
62 [ OJ: 
63[ OJ: /*View - view the elements on the stack*/ 
64[ OJ: void view () 



65 [ OJ: 
66 [ l J : 
67 [ lJ: 
68 [ l J : 
69 [ l J : 
70 [ lJ: 
71 [ 2 J: 
72 [ 2J: 
73 [ l]: 
74 [ l J : 
75 [ OJ: 
7 6 [ OJ : 
77 [ OJ: 
78 [ OJ: 
79 [ OJ: 
80 [ 0 J : 
81 [ l J : 
82 [ lJ: 
83 [ lJ: 
84 [ lJ: 
85 [ l J: 
86 [ l J : 
87 [ l J : 
88 [ 2 J: 
89 [ 2J: 
90 [ 3J: 
91 [ 3J: 
92 [ 3J: 
93 [ 3J: 
94 [ 3J: 
95 [ 3J: 
96 [ 3J: 
97 [ 3J: 
98 [ 3J: 
99 [ 3J: 

100 [ 3J: 
101 [ 3J: 
102 [ 3J: 
103 [ 3J: 
104 [ 3J: 
105 [ 3J: 
106 [ 3J: 
107 [ 2J: 
108 [ 2J: 
109 [ 2 J: 
llO [ lJ: 
lll [ OJ: 

struct stack *ptr; 

ptr = HEAD; 
printf (" stack = "); 
while (ptr) { 

printf (" %i", ptr -> number); 
ptr = ptr -> link; 

printf ("\n"); 
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/*Main - accept input commands and execute them using the 
stack commands*/ 

main() 
{ 

char string[80J; 
int value; 

printf ("Enter any integer plus the symbols:\n"); 
printf ("+ add\n- subtract\n* multiply\n/ divide\n"); 
printf ("C clear stack\n= pop value\n? view stack\n\n"); 
for (;;) { 

while (!gets (string)); 
switch (string[OJ) { 

case I* I: value = pop() 
break; 

case '+ 1: value = pop() 
break; 

case I I I: value = pop() 
break; 

case I - I: value = pop() 
break; 

case ,_,. pop(); 
value = pop(); 
break; 

case 'C' : clear () ; 
value = O; 
break; 

case '?':view(); 
value= pop(); 

* pop(); 

+ pop(); 

pop(); 

- pop(); 

default sscanf (string, "%i", &value); 
} 

push(value); 
printf (" %i\n", value); 

The heart of an RPN calculator is its push-down stack, which is by its very 
nature a LIFO. To implement this push-down stack we have defined a structure 
STACK that contains a single value and a pointer to the next entry in the stack 
called LINK. In addition, we define HEAD, a pointer to the first entry in the 
linked list. Notice that HEAD is initialized to 0, indicating that at the beginning 
of the program the list is empty. 

Two key functions manipulate the stack, pop() (lines 28-41) and push() (lines 
44-54). Pop() removes the newest entry from the top of the stack and returns its 
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value. Push() accepts an integer value, builds a structure and links it onto the top 
of the stack. These routines provide an example of the use of malloc() andft·ee( ). 

Pop() begins by first checking if there are any entries on the stack to pop. If the 
contents of HEAD are 0 then the list must be empty and pop() returns a 0. 
Notice lines 35 through 37 especially, where pop() unlinks an entry. Line 36 
causes HEAD to point to the next entry in the list, but why is the variable 0 LD 
necessary? Why not instead use the simpler code section below? 

free (HEAD); /*this will not work*/ 
HEAD = HEAD -> link; 

You should be on your guard for this trap as it is a very common mistake with 
linked list novices. We cannot free the first entry in the list and then attempt to 
fetch its link entry. Once we have returned a structure to the heap we no longer 
have permission to access it-no ifs, ands, or buts! 

Push() requests a block of memory of the proper size from the heap in line 49. It 
is good programming practice to use SIZEOF as the argument to malloc() rather 
than merely entering 4. For one thing, we may decide to add more fields to our 
structure at some future date. SIZEOF automatically inserts the proper size of 
our structure, removing one more source of error. Besides, how do we know the 
size of our structure is 4 bytes? In fact, depending on memory model, it might 
be 6 bytes in length. SIZEOF sidesteps the problem by automatically 
calculating the proper size. 

Remember that the pointer returned from malloc() is of type VOID * and should 
ideally be recast into the type of the pointer variable into which the value is 
being stored. Secondly, we should always be watchful of running out of heap. If 
no more memory is left on the heap, a 0 is returned, the IF statement is not 
satisfied and push() has no effect. Once push() receives a structure, it stores the 
data value passed into it and then links it onto the top of the list. 

The main body of this program is contained in main() (lines 84-111). After 
printing an initial explanatory banner, main() enters an infinite loop. Keyboard 
input is requested on line 88 using gets(). Notice the WHILE loop is here to 
discard inadvertent null lines. The subsequent SWITCH statement (lines 89-107) 
compares the first character entered against each of the legal commands. If the 
first character entered cannot be matched with any of the possible commands, it is 
assumed to be a number (line 106). The C routine sscanf() is used to convert the 
input number into the variable VALUE. Sscanf() is similar to scanf(), the 
normal input routine, except that it accepts input from memory rather than from 
the input stream. 
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Actually, implementing a particular calculator function is very simple. For 
example, addition is interpreted on line 92. Here we simply pop the top two 
values off of the stack and add them, placing the result in VALUE. Those 
functions such as ? (examine) that do not perform an arithmetic function, go 
ahead and pop the topmost value into VALUE so that it might be printed as in a 
normal command. 

No matter where VALUE gets set, it subsequently gets pushed back onto the top 
of the stack and displayed in lines 108 and 109. The routine clear() clears the 



128 TURBO C 

stack by popping values until HEAD equals 0, indicating the stack is empty. 
View() displays the stack contents. This is an example of a routine that traverses 
the stack without modifying it. 

The Doubly Linked List 

Let us return to our IRS problem. The singly linked list was ideal for our RPN 
calculator since we were always adding and removing entries to/from the top of 
the queue. Singly link lists work just as well when we are always adding to the 
beginning and removing from the end of the queue. In our IRS problem, it is 
clear that in order to sort the entries we will be manipulating entries in the middle 
of the queue as well as at both ends. 

In order to remove an entry from the middle of a linked list one merely links the 
entry's predecessor to its successor, "routing around" the current entry. The link 
pointer in the entry points to the successor, so that's easy, but finding the 
predecessor is a problem. If we could somehow link the list in the other 
direction, we might know the predecessor but then we lose the address of the 
successor (let's forget about the semantic details of predecessor and successor 
given that the links point in the opposite direction). So what if we link the list 
in both directions at the same time? This is the doubly linked list. 

head of 
forward 
chain 

4 

·1 

forward 

: 
1· ·~~· 

Figure 4.5 

forward 

·1 
: 1· ,., .. ~ 

A doubly linked list 

·1 
: 

1· 
• head of 

reverse 
chain 

Each entry of a doubly linked list has not one but two link pointers. One of the 
link pointers links all of the entries in the list from the beginning to the end. 
This is called the forward pointer. The other link pointer links the same entries 
in the opposite direction, starting with the last entry and ending with the first. 
This is the backward pointer. Often times there is no obvious ordering in a 
doubly linked list, in which case, it is somewhat arbitrary which entry is called 
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the forward and which entry is called the reverse pointer. A simple doubly linked 
structure declaration appears as: 

struct main 
int data; 
struct main *previous, *next; 

} *HEAD, *TAIL; 

Notice that besides the two link words, PREVIOUS and NEXT, we must define 
two head pointers, one for each end of the list. 

Doubly linked lists carry more overhead. Not only must they carry the extra 
pointer variable that must be allocated for each structure, but also the code to 
manipulate these pointers. In return, doubly linked lists are more easily 
manipulated. Now, each entry contains the address of both its neighbors. We are 
no longer limited to pulling entries off of one end or the other. We can 
manipulate interior entries just as easily. 

How does a doubly linked list compare with our array of structures? Not only do 
they address all of the problems mentioned in that connection, but they have one 
other advantage: doubly linked lists can be sorted very rapidly. Unlike arrays, 
the order of a doubly linked list is not derived from the location of its entries but 
instead from its order in the list. To order an array one must move the actual 
array entries to their proper place in the list. Ordering a linked list merely 
involves changing the values of pointer variables. This can be an extreme 
advantage when each of the list entries is very large as can happen with IRS data. 

The IRS Problem 

OK, so the doubly linked list is the apparent data structure for our IRS data 
sorting problem. Since this is not a trivial problem, however, we will need to 
break it up and solve it in pieces. Not only is this worthwhile from an 
instructional point of view, but this is actually the way a large C program gets 
built. 

We already devised a perfectly good data structure to be used when we first 
introduced the problem. The first thing we will need then are routines to both 
create and output these entries. Normally, we would also need a destroy function 
that does nothing more than return a structure to the heap by callingfree(). This 
problem does not require it. A program to define and test create() and output() 
appears as Prg4_2a. 
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l[ OJ: /*Prg4_2a - Sort IRS data 
2[ 0]: by Stephen R. Davis, 1987 
3 [ OJ: 
4[ OJ: Accept several different types of data on individuals in random 
5[ OJ: order and sort it. This initial version defines the structure 
6[ OJ: we will use to store the data and provides a 'create()' to generate 
7[ OJ: the entries and an 'output()' function to output them again. 
8 [ OJ: */ 
9 [ OJ: 

10( OJ: #include <stdio.h> 
11[ OJ: #include <ctype.h> 
12[ OJ: #include <alloc.h> 
13 [ OJ: 
14[ OJ: /*prototype declarations--*/ 
15[ OJ: struct IRSdata *create (void); 
16[ OJ: void getfield (char*, char*, unsigned); 
17( OJ: void output (struct IRSdata *); 
18[ OJ: int main (void); 
19 [ OJ: 
20[ OJ: /*structure declaration for IRS data*/ 
21[ OJ: struct IRSdata( 
22[ lJ: char lastname [llJ; 
23[ lJ: char firstname [llJ; 
24[ lJ: char sex; 
25[ lJ: struct 
26[ 2J: char street [16J; 
27[ 2J: char city [llJ; 
28[ 2J: char state [3J; 
29[ lJ: } address; 
30[ l]: char ssnum [10]; 
31[ lJ: int taxrate; 
32 [ 0]: } ; 
33[ O]: char buffer [256J; 
34 [ OJ: 
35[ OJ: /*Create - allocate an IRSdata entry and fill in the data from 'stdin' 
36[ OJ: struct IRSdata * create () 
37 [ OJ: ( 
38[ lJ: char answer [2J; 
39[ lJ: struct IRSdata *ptr; 
40 [ lJ: 
41[ lJ: getfield ("Another entry?", answer, 1); 
42[ lJ: if (tolower (answer [OJ) == 'n') 
43[ lJ: return NULL; 

if (ptr = (struct IRS data *)malloc (sizeof (struct IRSdata))) ( 

get field ("Enter last name: " , ptr -> lastname, 10); 
get field (" first name: , ptr -> firstname, 10); 
getf ield (" street addr: , ptr -> address.street, 15); 

44 [ lJ: 
45 [ lJ: 
46 [ 2J: 
47 [ 2J: 
48 [ 2J: 
49 [ 2J: 
so [ 2J: 
51 [ 2J: 
52 [ 2J: 
53 [ 2J: 

getf ield (" city address: " , ptr -> address.city, 10); 
getf ield (" state (2 ltr): ", ptr -> address.state, 2); 
get field (" soc sec #: " , ptr -> ssnum, 9); 
printf (" tax bracket: ") ; 

54 [ 2J: gets (buffer); 
55[ 2J: sscanf (buffer, "%d", &(ptr -> taxrate)); 
56 [ 2J: printf ("\n"); 
57[2J: else( 
58[ 2J: printf ("Sorry. No more room for data.\n"); 
59 [ lJ: 
60 [ lJ: 
61[ lJ: return (ptr); 
62 [ OJ: 
63 [ OJ: 
64[ OJ: /*GetField - pose a question, then get an answer. Save up to 



65 [ 0 J: 
66 [ OJ: 
67 [ 0 J : 
68 [ OJ: 
69 [ OJ: 
70 [ l J: 
71 [ l J : 
72 [ l]: 
7 3 [ l J : 
74 [ l J : 
75 [ l]: 
76 [ l J : 
77 [ OJ: 
78 [ OJ: 
79 [ OJ: 
80 [ 0 J : 
81 [ 0 J : 
82 [ OJ: 
83 [ l]: 
84 [ l J : 
85 [ l J : 
86 [ OJ: 
87 [ OJ : 
88 [ 0 l : 
89 [ OJ: 
90 [ OJ: 
91 [ l J : 
92 [ OJ: 

'size' characters*/ 
void getfield (question, answer, size) 

char *question,*answer; 
unsigned size; 

unsigned i; 

printf (question); 
while (!gets (buffer)); 
for (i = O; size; size--) 

*answer++= buffer [i++J; 
*answer= '\0'; 
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/*Output - output a subset of IRSdata structure to 'stdout'*/ 
void output (ptr) 

struct IRSdata *ptr; 

if (ptr) 
printf ("%s %s, %s\n", ptr -> firstname, 

ptr -> lastname, ptr -> ssnum); 

/*Main - invoke create() and output() to test them.*/ 
main () 
{ 

output (create ()); 

The function output() does nothing more than receive the pointer to a structure 
and print out certain key fields. Create() is equally straightforward, asking the 
user whether he desires to create another entry, requesting a structure from the 
heap, using getfield() to fill in the various entries from the keyboard and then 
returning the address of the structure. It is assumed that create() will be called 
repeatedly until it returns a 0, either because the user entered N or because the 
heap emptied. Either way, that is all the entries we will process. 

Create() uses the routine getfield() to handle the tedious job of actually stuffing 
data into the structure entries. Getfield() prompts the user for input and then 
accepts the ASCII response using the library routine gets(). Since gets() has no 
checks for size, input cannot be read directly into the user defined field. Instead 
gets() reads into an appropriately large buffer that is subsequently transferred to 
the user defined space. Gets() will add a 0 to the end of the entered string, that 
will get copied into the user field. A NULL is tacked onto the end of the string 
in case more than the specified number of characters were entered without a 
NULL encountered. 

The above program could just as easily have been written without defining a 
routine getfield( ). It should be so ingrained in the C programmer's mind that it 
should almost be a reflex, however, to recognize repetitive functions and define 
routines to handle them. Under normal circumstances, this is through the 
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mechanism of functions, but if speed is of the absolute maximum importance, 
macro definitions can be used. 

The next functions we need are an insert() routine to add an entry to a doubly 
linked list and remove() to remove an entry. Of course, the structure we declared 
at the beginning of the chapter did not yet have any link pointers. In order to 
insert and remove entries we will have to add a PREVIOUS and NEXT pointer to 
our structure definition. A simplistic insert() and remove() appear as listing 
Prg4_2b. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ 0 J : 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ 1 J : 
16 [ lJ: 
1 7 [ 1 J : 
18 [ 1 J : 
19 [ lJ: 
20 [ 2J: 
21 [ 2J: 
22 [ 2J: 
23 [ lJ: 
24 [ 1 J: 
25 [ lJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ lJ: 
35 [ lJ: 
36 [ lJ: 
37 [ lJ: 
38 [ lJ: 
39 [ lJ: 
40 [ lJ: 
41 [ 1 J : 
42 [ lJ: 
43 [ OJ: 
44 [ OJ : 
45 [ OJ: 
46 [ OJ: 
47 [ OJ: 
48 [ OJ: 
49 [ 1 J : 

/*Prg4_2b - Sort IRS data 
by Stephen R. Davis, 1987 

Define the first stab at the insert() and remove() functions. 
*/ 

#include <stdio.h> 

/*prototype declarations --*/ 
int insert (struct IRSdata *, struct IRSdata *, struct IRSdata *); 
int remove (struct IRSdata *); 

/*structure to contain IRS data w/ pointers added*/ 
struct IRSdata { 

struct IRSdata *previous,*next; 
char lastname [llJ; 
char firstname [llJ; 
char sex; 
struct 

char street [16J; 
char city [llJ; 
char state [3J; 

} address; 
char ssnum [lOJ; 
int taxrate; 

}; 

/*Insert - insert a structure in between two doubly linked entries. 
Return a 0 if successful, and a nonzero if not*/ 

int insert (before, after, current) 
struct IRSdata *before, *after, *current; 

if (before -> next != after) return -1; 
if (before != after -> previous) return -1; 

before -> next = current; 
current -> previous = before; 

after -> previous current; 
current -> next = after; 
return O; 

/*Remove - remove an entry from a doubly linked list*/ 
int remove (entry) 

struct IRSdata *entry; 

struct IRSdata *before, *after; 
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50 [ l]: 
51[ l]: before= entry-> previous; 
52 [ l] : after = entry -> next; 
53 [ l]: 
54[ l]: before-> next= after; 
55 [ l] : after -> previous = before; 
56 [ l]: 
57 [ l]: entry -> previous = entry -> next (struct IRSdata *)NULL; 
58 [ OJ: } 

Both insert() and remove() can potentially return values. Zero implies success 
and nonzero implies something went wrong. (This convention is often used even 
though it might seem backwards, since the nonzero value can be used to indicate 
the problem.) Insert() accepts 3 arguments: the element to be inserted, 
CURRENT, and the two elements around the point of insertion, BEFORE and 
AFTER (Figure 4.6). Insert begins by making sure that BEFORE and AFTER 
actually point to each other. If the forward pointer of BEFORE does not point to 
AFTER and the reverse pointer of AFTER does not point to BEFORE, then the 
two entries are not neighbors. Continuing with insert() would corrupt the linked 
list. 

a) before 

·I BEFORE 
"4 

b) first step 

BEFORE 

c) final step 

-.---· .. I BEFORE 

14 

Figure 4.6 

·I AFTER 14 • 
I CURRENT I 

CURRENT 

AFTER .-14---•~ 

Inserting an element in a doubly linked list 
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Given that the two entries are neighbors, the problem then becomes to insert the 
current entry CURRENT between them. Lines 37 and 38 connect BEFORE and 
CURRENT together. Lines 40 and 41 connect CURRENT and AFTER (Figure 
4.6). Having completed the interconnection, insert() returns a success indicator. 

Remove() reverses the process, removing an entry from inbetween its two 
neighbors. Notice that it is not necessary to specify more than just the one 
argument to remove(); the ability to infer an entry's neighbors in both directions 
is the advantage of the doubly linked list. The pointers BEFORE and AFTER are 
assigned on lines 51 and 52. BEFORE and AFTER are linked together, thus 
excluding ENTRY, on lines 54 and 55. Although not absolutely necessary, the 
link pointers of ENTRY are zeroed (line 57), indicating that it is not connected to 
anything (Figure 4. 7). 

Figure 4.7 

a) before 

-"4----•ll'tl BEFORE ~ CURRENT ~ AFTER .-1"4--•• 

b) first Step I n ~ I 

• •I BEFORE ~ ~ ~ AFTER 11--4---• 

C) final Step I n ~ I 

-"4---· .. I BEFORE ~ ~ ~..--AFTE--R ~,...,.;::==---· ... _ 
null null 

Removing an entry from a doubly linked list 
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While this demonstrates the principle of linking and unlinking entries nicely, this 
version of insert() and remove() has problems. Linked lists are not infinitely 
long and, therefore, have a beginning and an end. Most books handle this with 
beginning and end pointers, which we have already called HEAD and TAIL. So, 
what if an entry is being added to or removed from either end of the list? In such 
a case the variables BEFORE or AFTER would be 0, which is not the address of 
a structure. Not only must insert() and remove() realize that BEFORE or AFTER 
are not structures in this case, but they must also update HEAD and TAIL 
appropriately. These boundary problems are normally taken care of explicitly. 
Listing Prg4_2c shows insert() and remove() with these this added. 

1 [ 0 J : 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ 0 J: 

10 [ OJ: 
11 [ 0 J : 
12 [ lJ: 
13 [ lJ: 
14 [ lJ: 
15 [ lJ: 
16 [ lJ: 
17 [ 2J: 
18 [ 2J: 
19 [ 2J: 
20 [ lJ: 
21 [ l J: 
22 [ lJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ l J: 
33 [ lJ: 
34 [ lJ: 
35 [ l J: 
36 [ 2J: 
37 [ 2 J: 
38 [ 2J: 
39 [ 2J: 
40 [ 2J: 
41 [ l J : 
42 [ lJ: 
43 [ l J : 
44 [ 2 J: 
45 [ 2J: 
46 [ 2J: 
47 [ 2J: 

/*Prg4_2c - Sort IRS data 

*/ 

by Stephen R. Davis, 1987 

Define an insert() and remove() functions which account for the 
boundary conditions inherent in a HEAD/TAIL implementation. 

#include <stdio.h> 
#define NULL (struct IRSdata *)0 

struct IRSdata{ 
struct IRSdata *previous,*next; 
char lastname [llJ; 
char firstname [llJ; 
char sex; 
struct { 

char street [16J; 
char city [llJ; 
char state [3J; 

) address; 
char ssnum [lOJ; 
int taxrate; 

); 

struct IRSdata *HEAD, *TAIL; 

/*Insert - insert a structure in between two doubly linked entries. 
Return a 0 if successful, and a nonzero if not*/ 

insert (before, after, current) 
struct IRSdata *before, *after, *current; 

if (before -> next != after) return -1; 
if (before != after -> previous) return -1; 

if (before != NULL) 
before -> next current; 
current -> previous = before; 

else { 
HEAD = current; 
current -> previous NULL; 

if (after ! = NULL) { 
after -> previous = current; 
current -> next after; 

else { 
TAIL = current; 
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48 [ 2J: 
49 [ lJ: 
50 [ lJ: 
51 [ lJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ OJ: 
56 [ OJ: 
57 [ OJ: 
58 [ 1 J: 
59 [ lJ: 
60 [ lJ: 
61 [ lJ: 
62 [ lJ: 
63 [ lJ: 
64 [ 1]: 
65 [ 2J: 
66 [ 2J: 
67 [ 2J: 
68 [ 2 J: 
69 [ 2J: 
70 [ lJ: 
71 [ 1]: 
72 [ lJ: 
73 [ 2]: 
74 [ 2]: 
75 [ lJ: 
76 [ lJ: 
77 [ lJ: 
78 [ 1]: 
79 [ OJ: 

current -> next = NULL; 

return 0; 

/*Remove - remove an entry from a doubly linked list*/ 
remove (entry) 

struct IRSdata *entry; 

struct IRSdata *before, *after; 

before = entry -> previous; 
after = entry -> next; 

if (before != NULL) 

else 

if (after != NULL) 
before -> next = after; 
after -> previous = before; 

else { 
before -> next = NULL; 
TAIL = before; 

if (after ! = NULL) { 
HEAD = after; 
after -> previous = NULL; 

} else 
HEAD = TAIL = NULL; 

entry -> previous = entry -> next = NULL; 

In each case, an explicit check is made of BEFORE and AFTER for a 0. If so, 
HEAD and/or TAIL are updated instead of a structure. Remember that both 
HEAD and TAIL could be 0 (implying the linked list was empty). For example, 
Line 76 of remove() represents the case where the last element of a list is being 
removed. 

Such an implementation, although the normal method, is somewhat clumsy and 
spoils much of the elegance of linked lists. Elegance is a very desirable trait in 
software. The simpler and more straightforward a function is, the more assured 
the programmer can be of its correctness. Could we perhaps regain some of the 
simplicity of our "boundariless" solution? 

HEAD and TAIL are pointers to structures. Above we treated them differently, 
but they are of exactly the same type as PREVIOUS and NEXT within any 
structure. In fact, rather than having two independent pointer variables, we could 
just allocate a dummy structure that we will call MARKER. MARKER's data 
have no meaning, but we can let its NEXT pointer correspond to HEAD by 
making it point to the beginning of the list and its PREVIOUS pointer to TAIL 
by pointing to the end of the list. We do this to make HEAD and TAIL less 
unlike "normal" link pointers. 
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A doubly linked list with MARKER pointing at the beginning and end of the list 
resembles somewhat a circle. MARKER plays a keystone role, holding the circle 
together. To complete the illusion, we make the PREVIOUS pointer of the first 
entry point back to MARKER as well as the NEXT pointer of the last entry in 
the list (Figure 4.8, page 140). This may seem to be making the problem 
unnecessarily complicated. In fact, this solution is considerably simpler. By 
replacing HEAD and TAIL with the forward and backward pointers of a special 
structure, the boundary problem has been completely removed. 

Examined from a slightly different angle, we could argue that we have removed 
the boundary conditions represented by the end points of the list by removing the 
end points. Apart from the data, the structure MARKER is not different from 
any other structure in the list. A circle has no beginning or end and, therefore, no 
end points for which to check. 

If we adopt the common convention of assigning MARKER.PREVIOUS and 
MARKER.NEXT to 0 when the list is empty, however, the circle analogy is 
lost. We would have to include special conditionals to check for an empty list 
whenever an entry is removed or added. To avoid this, we start by initializing 
both MARKER.PREVIOUS and MARKER.NEXT to the value MARKER. 
That is, we make the MARKER structure point to itself! In both directions!!! 
By doing so we have removed another singularity for which we must ordinarily 
check, that of an empty list. At least one structure always exists, MARKER 
itself, and the linked list is always circular even if it contains MARKER alone. 

While this may all seem a bit strange, examine the new, circular doubly linked 
list functions. Compare them to both our boundaried and boundariless routines 
before. The circular implementation restores the elegance of our original 
solution. Look again at Figure 4.8 and consider for a moment the concept of a 
circular implementation. (If you are still unsure, remember that the binary 
number system as implemented on digital computers is circular for exactly the 
same reason, to remove the boundary considerations of negative and positive 
numbers.) 

1 [ 0 J : 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ 0 J: 

10 [ 0 J : 
11 [ 0 J : 

/*Prg4_2d - Sort IRS data 

*/ 

by Stephen R. Davis, 1987 

Define an insert() and remove() functions using a circular 
implementation to minimize the boundary conditions 

#include <stdio.h> 
#include <alloc.h> 

#define NULL (struct IRSdata *)0 
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12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ lJ: 
23 [ lJ: 
24 [ lJ: 
25 [ lJ: 
26 [ lJ: 
27 [ 2J: 
28 [ 2J: 
29 [ 2J: 
30 [ 1 J: 
31 [ lJ: 
32 [ lJ: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ OJ : 
42 [ lJ: 
43 [ lJ: 
44 [ lJ : 
45 [ lJ: 
4 6 [ 1 J : 
4 7 [ 1 J : 
48 [ lJ: 
49 [ lJ: 
so [ lJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ OJ: 
56 [ OJ: 
57 [ lJ: 
58 [ lJ: 
59 [ lJ: 
60 [ lJ: 
61 [ lJ: 
62 [ lJ: 
63 [ lJ: 
64 [ lJ: 
65 [ lJ: 
66 [ lJ: 
67 [ OJ: 
68 [ OJ: 
69 [ OJ: 
70 [ OJ: 
71 [ OJ: 
72 [ lJ: 
73 [ lJ: 
74 [ OJ: 
75 [ OJ: 

TURBOC 

/*prototype definitions*/ 
int insert (struct IRSdata *, struct IRSdata *, struct IRSdata *); 
int remove (struct IRSdata *); 
void init (void); 
void printit (void); 
struct IRSdata *findit (unsigned); 

/*structure definition of IRS data*/ 
struct IRSdata{ 

struct IRSdata *previous,*next; 
char lastname [llJ; 
char firstname [llJ; 
char sex; 
struct 

char street [16J; 
char city [llJ; 
char state [3J; 

} address; 
char ssnum [lOJ; 
int taxrate; 

}; 

struct IRSdata *MARKER; 

/*Insert - insert a structure in between two doubly linked entries. 
Return a 0 if successful, and a nonzero if not*/ 

int insert (before, after, current) 
struct IRSdata *before, *after, *current; 

if (before -> next != after) return -1; 
if (before != after -> previous) return -1; 

before -> next = current; 
current -> previous = before; 

after -> previous current; 
current -> next = after; 
return 0; 

/*Remove - remove an entry from a doubly linked list*/ 
int remove (entry) 

struct IRSdata *entry; 

struct IRSdata *before, *after; 

before = entry -> previous; 
after = entry -> next; 

before -> next = after; 
after -> previous before; 

entry -> previous 
return 0; 

entry -> next NULL; 

/*Init - initialize the linked list to empty*/ 
void init (void) 
{ 

MARKER= (struct IRSdata *)malloc (sizeof (struct IRSdata) ); 
MARKER -> previous = MARKER -> next = MARKER; 



76 [ OJ: 
77 [ OJ: 
78 [ OJ: 
79 [ OJ: 
80 [ lJ: 
81 [ lJ: 
82 [ lJ: 
83 [ lJ: 
84 [ lJ: 
85 [ lJ: 
86 [ OJ: 
87 [ OJ: 
88 [ OJ: 
89 [ OJ: 
90 [ OJ: 
91 [ lJ: 
92 [ lJ: 
93 [ lJ: 
94 [ lJ: 
95 [ lJ: 
96 [ OJ: 
97 [ OJ: 
98 [ OJ: 
99 [ OJ: 

100 [ lJ: 
101 [ 1 J : 
102 [ lJ: 
103 [ lJ: 
104 [ lJ: 
105 [ lJ: 
106 [ 2J: 
107 [ 2 J: 
108 [ 2J: 
109 [ lJ: 
110 [ lJ: 
111 [ lJ: 
112 [ lJ: 
113 [ lJ: 
114 [ 1 J : 
115 [ 2J: 
116 [ 2J: 
117 [ 2J: 
118 [ 2J: 
119 [ 2J: 
120 [ 2J: 
121 [ 2J: 
122 [ 2J: 
123 [ 2J: 
124 [ 2J: 
125 [ 2J: 
126 [ lJ: 
127 [ OJ: 

/*test the above routines*/ 

void printit (void) 
{ 

struct IRSdata *ptr; 

printf ("\n\n"); 
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for (ptr = MARKER -> next; ptr != MARKER; ptr ptr -> next) 
printf ("%u ", ptr -> taxrate); 

printf ("\n"); 

struct IRSdata *findit (count) 
unsigned count; 

struct IRSdata *ptr; 

for (ptr = MARKER -> next; count; count--) 
ptr = ptr -> next; 

return ptr; 

main() 
{ 

unsigned i; 
struct IRSdata *to, *from; 

init () ; 

for (i = 0; i < 10; i++) { 
to= (struct IRSdata *)malloc (sizeof (struct IRSdata)); 
to -> taxrate = i; 
insert (MARKER-> previous, MARKER, to); 

printf ("Enter entry to remove followed by" 
"where to insert it\n" 
"(Control-C to terminate"); 

for (;;) { 
printit (); 
printf ("Input entry to remove:"); 
scanf ( "%u", &i); 
from = findit (i); 
remove (from) ; 

printit (); 
printf ("Now where should I put it:"); 
scanf ("%u", &i); 
to= findit (i); 
insert (to, to-> next, from); 

Insert() and remove() are identical to the boundariless versions; however, the 
routine init() has been added, that must be invoked before either of the other two 
routines. !nit() allocates a dummy structure, stores the address into the extern 
variable MARKER and initializes its forward and backward pointers to itself. 
Also added are a few lines of test code at the bottom to allow thorough testing of 
these routines (the previous versions of insert() and remove() did not have test 
code since we did not intend to use them). 
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Figure 4.8 

Doubly linked list formed into a circle 

MARKER 

Empty circular list consists of the marker 
element pointing to itself 

The Home Stretch 

So we now have the routines we need to create, output, insert, remove and 
initialize our doubly linked list to handle IRSdata. We are very close to the 
complete solution, but before we mount the final assault, there is one further 
consideration when dealing with linked lists: pointer integrity. Corrupted 
pointers are very difficult to trace and always fatal. 

In discussing pointer integrity, we are not concerned with pointers of questionable 
morals, but rather pointer variables that do not point to anything. Of course, in a 
perfectly working program, this cannot happen. In the real world, it is all too 
easy to forget some critical path ·through which a pointer variable is not 
initialized or set to some wrong value and then used as if it pointed to a structure. 
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In our IRS problem it may not be worth worrying about. We have been careful 
to keep our functions short and to thoroughly test each before integrating them 
together. Real world programs can reach up into the many thousands of lines of 
source code. Even though we might still keep each routine short, pointer 
problems are definitely going to arise. 

We all realize that variables can get illegal values in them. Why are such errors 
so much worse with linked list pointers? As we vector through linked lists we 
are like a train. Everything is great as long as we stay on the tracks. As soon as 
a pointer variable gets corrupted, its akin to a derailment. Once our train leaves 
its program track it is only through the most incredible luck that the train would 
ever accidentally make it back onto the track. Much more likely is that the train 
will run along until it falls into an infinite loop (a chain of "structures" in 
random memory that point to each other in a loop) or until it crashes into some 
critical piece of code, the overwriting of which brings the whole thing to an 
ignominious end. Either way the result is a crash necessitating a complete reset. 
Its bad enough that such errors are fatal. Worse is that the crash generally occurs 
many miles from the derailment itself, making it very difficult to track back to 
its source. Besides, if the system is in an infinite loop, there is generally no way 
to get it back to even find out what happened. In this case, a pound of prevention 
is worth many truck loads of cure. 

Other than following careful programming practices there is nothing we can do to 
keep pointer variables from occassionally getting corrupted. What we can do, 
however, is arrange things so that a derailment is detected almost immediately and 
very close to the source of the problem. We can then stop the program with the 
problem detected before we crash the host PC. We do this by adding an 
identification field to our structure. The new structure definition appears as: 

struct IRSdata { 
struct IRSdata *previous, *next; 
unsigned fingerprint; 
char lastname [11]; 
char firstname [11); 
cha~ sex; 
struct { 

char street [ 16] ; 
char city [11); 
char state [3]; 

} address; 
char ssnum [10); 
int taxrate; 
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By setting FINGERPRINT to a particular, hopefully unusual, value at creation 
time, each routine that manipulates pointers to IRSdata can easily check that 
what is being pointed at is indeed a structure. As soon as a routine gets passed an 
errant pointer, the fact will be noted and the program halted in place. Prg4_2e 
shows the new routine check() whose job it is to perform this test. A new 
constant, IRSsignature, has been defined to the value Oxl234. The routines 
insert() and remove() have been updated to call check() before using any pointer 
data. Create() initializes this value. 

l[ OJ: /*Pro4_2e - Sort IRS data 
2[ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4[ OJ: Define insert() and remove() functions. Include an integrity 
5[ OJ: check to catch errant pointers without allowing the system 
6[ OJ: to crash. If we had more than one type of structure, each would 
7[ OJ: have its own signature. This is a very worthwhile but all too 
8[ OJ: uncommon a practice on large systems under development. Get into 
9[ OJ: the habit early. 

10[ OJ:*/ 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 

#include 
#include 
#include 

#define 
#define 

<stdio.h> 
<alloc.h> 
<process.h> 

NULL (struct IRSdata 
IRSsionature Oxl234 

19[ OJ: /*prototype declarations*/ 

*)0 

20[ OJ: int insert (struct IRSdata *, struct IRSdata *, struct IRSdata *); 
21[ OJ: int remove (struct IRSdata *); 
22[ OJ: int check (struct IRSdata *, char*); 
23[ OJ: void init (void); 
24[ OJ: struct IRSdata *alloc (void); 
25 [ OJ: 
26[ OJ: /*structure declaration for IRS data*/ 
27[ OJ: struct IRSdata{ 
28[ lJ: struct IRSdata *previous,*next; 
29[ lJ: unsigned fingerprint; 
30[ lJ: char lastname [llJ; 
31[ lJ: char firstname [llJ; 
32 [ 1 J : char sex; 
33 [ 1 J : struct 
34 [ 2 J: char street [16]; 
35[ 2J: char city [11]; 

36[ 2J: char state [3]; 
37[ l]: } address;. 
38[ l]: char ssnum [lOJ; 
39[ lJ: int taxrate; 
40 [ OJ: } ; 
41[ OJ: struct IRSdata *MARKER; 
42 [ OJ: 
43 [ OJ: 



44 [ OJ: 
45( OJ: 
46( OJ: 
47( OJ: 
48( OJ: 
49( lJ: 
50( lJ: 
51( lJ: 
52( lJ: 
53 [ lJ: 
54( lJ: 
55( lJ: 
56( 1 J: 
57( lJ: 
58( lJ: 
59[ lJ: 
60( lJ: 
61 [ lJ: 
62 [ OJ: 
63 [ OJ: 
64[ OJ: 
65[ OJ: 
66( OJ: 
67 [ OJ: 
68[ lJ: 
69[ lJ: 
70( lJ: 
71( lJ: 
72( lJ: 
73( lJ: 
74[ lJ: 
75( lJ: 
76[ 1): 
77[ lJ: 
78( lJ: 
79( 1 J: 
80 [ OJ: 
81 [ OJ: 
82( OJ: 
83( OJ: 
84 [ OJ: 
85( lJ: 
86[ lJ: 
87( lJ: 
88( 1 J: 
89[ OJ: 
90 [ OJ: 
91 [ OJ: 
92 [ OJ: 
93 [ OJ: 
94( OJ: 
95[ OJ: 
96( OJ: 
97( lJ: 
98( lJ: 
99[ lJ: 

100( lJ: 
101( OJ: 
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/*Insert - insert a structure in between two doubly linked entries. 
Return a 0 if successful, and a nonzero if not*/ 

int insert (before, after, current) 
struct IRSdata *before, *after, *current; 

if (before -> next != after) return -1; 
if (before != after -> previous) return -1; 

if (check (before, "arq 'before' to insert()")) return -1; 
if (check (after, "arq •after' to insert()")) return -1; 
if (check (current, "arq 'current' 

before -> next = current; 
current -> previous = before; 

after -> previous = current; 
current -> next = after; 
return O; 

to insert()")) 

/*Remove - remove an entry from a doubly linked list*/ 
int remove (entry) 

struct IRSdata *entry; 

struct IRSdata *before, *after; 

return -1; 

if (check (entry, "arq 'entry' to remove()")) return -1; 

before = entry -> previous; 
after = entry -> next; 

before -> next = after; 
after -> previous = before; 

entry -> previous = entry -> next = NULL; 
return O; 

/*Init - initialize the linked list to empty*/ 
void init (void) 
{ 

struct IRSdata *alloc (); 

MARKER= alloc (); 
MARKER -> previous • MARKER -> next = MARKER; 

/*Check - check the inteqrity of an IRS pointer. If OK, return a 
0, else print messaqe and return a -1.*/ 

int check (ptr, msq) 
struct IRSdata *ptr; 
char *msq; 

if (ptr -> finqerprint =• IRSsiqnature) 
return O; 

printf ("Error:\n Pointer failure on %s\n", msq); 
return -1; 
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102[ OJ: 
103 [ OJ: 
104 [ OJ: 
105 [ OJ: 
106[ OJ: 
107 [ lJ: 
108 [ lJ: 
109[ lJ: 
110[ lJ: 

111 [ lJ = 
; 112[ OJ: 

/*Alloc - allocate a structure and "sign it" with the IRS 
signature*/ 

struct IRSdata *alloc() 
{ 

struct IRSdata *ptr; 

ptr = (struct IRSdata *)malloc (sizeof (struct IRSdata)); 
ptr -> fingerprint = IRSsignature; 
return ptr; 

Once again, this may seem like overkill, but believe me, it's not. When your 
program has reached a few thousand lines and you have multitudes of different 
linked lists, some of them singly linked, some doubly, it is all too easy to get 
them mixed up and all too difficult to straighten them back out. Get into the 
habit of including such signature fields early. 

The Finish Line 

So we have discussed doubly linked lists and how making them circular solves 
lots of boundary problems and how adding markers to our structures saves 
debugging headaches. We still haven't said anything directly about solving our 
IRS sort problem! Actually, we had the heart of the solution from the 
beginning. Sorting IRS data is, after all, at its core a sort problem, a 
complicated sort problem perhaps, but a sort problem nonetheless. Back in 
Chapter 3 we defined a sort() function that we said could sort "anything." Surely, 
then, it can sort our IRS data structures, and, in fact, it can. (Had it not been able 
to, you can be assured I would have tempered my claims back in Chapter 3 !) 

To use sort() we must define three routines: compare(), swap() and sequence(). 
Compare() is no problem. We simply compare the sorting field (whichever field 
that might be) from two different entries and return a 1, 0 or -1 indicating their 
relationship. What about swap()? Implementing swap() directly might be 
difficult, but there is no need. It is more straightforward to remove() an entry 
from the list and re-insert() it in its new home. We already have both routines. 
Finally, sequence() is simple now that we understand linked lists, being merely a 
matter of chaining through the doubly linked list starting with MARKER and 
ending with the same. All three routines are shown in listing Prg4_2f. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 

/*Prg4 2f - Sort IRS data 
by Stephen R. Davis, 1987 

Define the 'swap()', 'compare()' and 'sequence()' routines 
required by our previously defined "perfectly general 
bubble sort". These routines will allow us to use our bubble 



7 [ 0 J: 
8 [ OJ: 
9 [ 0 J: 

10 [ 0 J : 
11 [ OJ: 
12 [ OJ: 
13 [ 0 J : 

14 [ 0 J : 
15 [ OJ: 
16 [ 0 J : 
1 7 [ 0 J : 
18 [ 0 J : 
19 [ 0 J : 

20 [ 0 J: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ l J : 
25 [ lJ: 
26 [ l J: 
27 [ lJ: 
28 [ lJ: 
29 [ lJ: 
30 [ 2 J: 
31 [ 2 J: 
32 [ 2 J: 
33 [ lJ: 
34 [ l J : 
35 [ l J: 
36 [ OJ: 
37 [ 0 J: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ 0 J: 
42 [ OJ: 
43 [ OJ: 
44 [ 0 J : 
45 [ lJ: 
4 6 [ l J : 
4 7 [ l J : 
48 [ l J : 
4 9 [ 0 J : 
50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ 0 J: 
55 [ 0 J: 
56 [ OJ: 
57 [ OJ: 
58 [ l J : 
59 [ l J : 
60 [ l J: 
61 [ l J : 
62 [ l J : 
63 [ OJ: 
64 [ 0 J : 
65 [ 0 J: 
66 [ OJ: 
67 [ 0 J: 
68 [ 0 J : 
69 [ OJ: 
70 [ l J : 

*/ 

LINKED LISTS 

sort to sort the IRS data by social security number. 
Use the previously defined 'insert()' and 'remove()' to 
implement the new 'swap()'. 

#include <stdio.h> 

#define NULL (struct IRSdata *)0 
#define signature Oxl234 

/*prototype definitions*/ 
int swap (struct IRSdata *, struct IRSdata *); 
int compare (struct IRSdata *, struct IRSdata *); 
struct IRSdata *sequence (struct IRSdata *); 

/*structure declaration for IRS data*/ 
struct IRSdata{ 

struct IRSdata *previous,*next; 
unsigned fingerprint; 
char lastname [llJ; 
char firstname [llJ; 
char sex; 
struct 

char street [16J; 
char city [llJ; 
char state [ 3 J; 

} address; 
char ssnum [lOJ; 
int taxrate; 

}; 

struct IRSdata *MARKER; 

/*Swap - swap the position of the two entries passed. Return 
a 0 if successful and a -1 if not.*/ 

int swap (first, second) 
struct IRSdata *first, *second; 

if (remove (second)) 
return -1; 

return (insert (first-> previous, first, second)); 

/*Compare - compare two IRS data structures. Return as follows: 
1 -> a.taxrate > b.taxrate 
0 -> a.taxrate b.taxrate 

-1 -> a.taxrate < b.taxrate*/ 
int compare (a, b) 

struct IRSdata *a, *b; 

if (a -> taxrate > b -> taxrate) 
return l; 

if (a -> taxrate < b -> taxrate) 
return -1; 

return 0; 

/*Sequence - given an entry, return the address of the next 
entry*/ 

struct IRSdata *sequence (entry) 
struct IRSdata *entry; 

struct IRSdata *value; 

145 
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71 [ lJ: 
72 [ lJ: 
73 [ 1 J: 
74 [ lJ: 
75 [ 1 J: 
76 [ lJ: 
77 [ lJ: 
78 [ lJ: 
79 [ lJ: 
80 [ 1 J : 
81 [ 1 J : 
82 [ OJ: 

if (entry == 0) 
entry = MARKER; 

/*given a o ... */ 
/* ... start at beginning*/ 

if (check (entry, "arg 'entry' to sequence()")) 
return NULL; 

if ((value= entry-> next) ==MARKER) /*if end of chain ... */ 
return NULL; /* ... return a NULL*/ 

else 
return value; 

When we sort a list of structures, we are taking for granted that one is greater 
than another. With all of the varying data types within a structure, it may not be 
clear that any such a relationship exists. Compare() implicitly defines what the 
term greater than means when applied to our structure. In our case, we decided to 
sort our taxpayer data by taxrate. If we later decide instead to sort it by the 
taxpayer's last name, it would only be necessary to modify compare() to effect the 
change. 

Even if sort() did not require a routine compare(), we probably would have written 
one anyway. It is always preferable to have such concepts embodied in a single 
routine rather than strewn throughout the program. Not only does this fit w"n 
with our modular approach to programming, but it results in programs that~ 
easier to maintain and modify. 

(It is even possible to doubly link the same entries in different lists in differ 
orders, by having more than one pair of forward and backward point1 
Databases do this to sort the same entries by different criteria. The principles 
exactly the same.) 

The final solution appears as Prg4_2g below. Test code has been added in me 
to allow test data to be entered. A test run with sample data and output apr 
as Figure 4.9, page 151. 

1 [ 0 J : 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 

/*Prg4_2g -- The Final Solution to the IRS Sort 
by Stephen R. Davis, 1987 

*/ 

This is merely a combination of the various parts of the solution 
already developed. This pr~gram would normally be linked together 
the General Sort function -- we have included directly into the 
same source here for clarity. 

#include <stdio.h> 
#include <ctype.h> 
#include <alloc.h> 
#include <process.h> 

#define NULL (struct IRSdata *)0 
#define IRSsignature Ox1234 



17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ 0 J: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ 0 J: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ OJ: 
38 [ lJ: 
39 [ l J: 
40 [ l J : 

41 [ lJ: 
42 [ l J : 

43 [ l J : 
44 [ 2J: 
45 [ 2 J: 
46 [ 2 J: 
4 7 [ lJ: 
48 [ l J : 
4 9 [ l J : 

50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ OJ: 
56 [ OJ: 
57 [ lJ: 
58 [ lJ: 
59 [ lJ: 
60 [ l J : 
61 [ l J : 
62 [ lJ: 
63 [ lJ: 
64 [ l J : 
65 [ 2J: 
66 [ 2J: 
67 [ 2J: 
68 [ 2J: 
69 [ 2 J: 
70 [ 2J: 
71 [ 2J: 
72 [ 2J: 
73 [ 2J: 
74 [ 2 J: 
75 [ 2 J: 
76 [ 2J: 
77 [ l J : 
78 [ lJ: 
79 [ lJ: 
80 [ OJ: 

LINKED LISTS 

/*prototype declarations --*/ 
/*structure creation*/ 

struct IRSdata *create (void); 
void getfield (char*, char* unsigned); 
void output (struct IRSdata *); 

/*linked list routines*/ 
int insert (struct IRSdata *, struct IRSdata *, struct IRSdata *); 
int remove (struct IRSdata *); 
int check (struct IRSdata *, char*); 
struct IRSdata *alloc (void); 
void init (void); 

/*swap routines*/ 
int swap (struct IRSdata *, struct IRSdata *); 
int compare (struct IRSdata *, struct IRSdata *); 
struct IRSdata *sequence (struct IRSdata *); 
int sort (int (*)(void *, void *), int (*)(void *, void *), 

void * (*) (void *)); 

/*structure declaration for IRS data*/ 
struct IRSdata{ 

struct IRSdata *previous,*next; 
unsigned fingerprint; 
char lastname [llJ; 
char firstname [llJ; 
char sex; 
struct 

char street [16J; 
char city [llJ; 
char state [3J; 

} address; 
char ssnum [lOJ; 
int taxrate; 

}; 

struct IRSdata *MARKER; 
char buffer [256J; 
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/*Create - allocate an IRSdata entry and fill in the data from 'stdin' 
struct IRSdata * create () 

char answer [2J; 
struct IRSdata *ptr; 

getfield ("Another entry?", answer, l); 
if (tolower (answer [OJ) == 'n') 

return NULL; 

if (ptr = alloc () ) 

get field ("Enter last name: 
' 

ptr 
get field (" first name: ' 

ptr 
get field (" street addr: ptr 
get field (" city address: " ptr 
get field (" state (2 ltr): ", ptr 
get field (" soc sec #: ptr 
printf (" tax bracket: "); 

gets (buffer); 

-> 
-> 
-> 
-> 
-> 
-> 

sscanf (buffer, "%d", &(ptr -> taxrate)); 
else { 

lastname, 10); 
firstname, 10) ; 
address.street, 15) ; 
address.city, 10) ; 
address.state, 2); 
ssnum, 9); 

printf ("Sorry. No more room for data.\n"); 

return (ptr); 
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81 [ OJ: 
82 [ OJ: 
83 [ OJ: 
84 [ OJ: 
85 [ OJ: 
86 [ OJ: 
87 [ OJ: 
88 [ lJ: 
89 [ lJ: 
90 [ lJ: 
91 [ lJ: 
92 [ lJ: 
93 [ lJ: 
94 [ l J: 
95 [ OJ: 
96 [ OJ: 
97 [ OJ: 
98 [ OJ: 
99 [ OJ: 

100 [ OJ: 
101 [ lJ: 
102 [ l J: 
103 [ lJ: 
104 [ OJ: 
105 [ OJ: 
106 [ OJ: 
107 [ OJ: 
108 [ OJ: 
109 [ OJ: 
llO [ OJ: 
lll [ lJ: 
ll2 [ lJ: 
ll3 [ lJ: 
ll4 [ lJ: 
ll5 [ lJ: 
116 [ lJ: 
117 [ lJ: 
ll8 [ lJ: 
ll9 [ lJ: 
120 [ lJ: 
121 [ lJ: 
122 [ lJ: 
123 [ lJ: 
124 [ OJ: 
125 [ OJ: 
126 [ OJ: 
127 [ OJ: 
128 [ OJ: 
129 [ OJ: 
130 [ lJ: 
131 [ l J : 
132 [ lJ: 
133 [ lJ: 
134 [ lJ: 
135 [ lJ: 
136 [ lJ: 
137 [ lJ: 
138 [ lJ: 
139 [ lJ: 
140 [ lJ: 
141 [ lJ: 
142 [ OJ: 
143 [ OJ: 
144 [ OJ: 

TURBOC 

/*GetField - pose a question, then get an answer. Save up to 
'size' characters*/ 

void getfield (question, answer, size) 
char *question,*answer; 
unsigned size; 

unsigned i; 

printf (question); 
while (!gets (buffer)); 
for (i = 0; size; size--) 

*answer++= buffer [i++J; 
*answer= '\0'; 

/*Output - output a subset of IRSdata structure to 'stdout'*/ 
void output (ptr) 

struct IRSdata *ptr; 

if (ptr) 
printf ("%s %s, %s, taxrate = %u\n", ptr -> firstname, 

ptr -> lastname, ptr -> ssnum, ptr -> taxrate); 

/*Insert - insert a structure in between two doubly linked entries. 
Return a 0 if successful, and a nonzero if not*/ 

int insert (before, after, current) 
struct IRSdata *before, *after, *current; 

if (before -> next != after) return -1; 
if (before != after -> previous) return -1; 

if (check (before, "arg 'before' to insert () ") ) return -1; 
if (check (after, "arg 'after' to insert () ") ) return -1; 
if (check (current, "arg 'current' 

before -> next = current; 
current -> previous = before; 

after -> previous current; 
current -> next = after; 
return 0; 

to insert () ") ) 

/*Remove - remove an entry from a doubly linked list*/ 
int remove (entry) 

struct IRSdata *entry; 

struct IRSdata *before, *after; 

return 

if (check (entry, "arg 'entry' to remove()")) return -1; 

before = entry -> previous; 
after = entry -> next; 

before -> next = after; 
after -> previous before; 

entry -> previous 
return 0; 

entry -> next NULL; 

/*Init - initialize the linked list to empty*/ 

-1; 



145 [ OJ: 
146 [ OJ: 
14 7 [ l J : 
148 [ l J : 
14 9 [ l J : 
150 [ lJ: 
151 [ OJ: 
152 [ OJ: 
153 [ 0 J: 
154 [ OJ: 
155 [ OJ: 
156 [ OJ: 
157 [ OJ: 
158 [ OJ: 
159 [ lJ: 
160 [ lJ: 
161 [ l J : 
162 [ l J : 
163 [ OJ: 
164 [ OJ : 
165 [ OJ: 
166 [ OJ: 
167 [ 0 J: 
168 [ OJ: 
169 [ lJ: 
170 [ lJ: 
171 [ lJ: 
172 [ lJ: 
173 [ lJ: 
174 [ OJ: 
175 [ OJ: 
176 [ OJ: 
177 [ OJ: 
178 [ OJ: 
179 [ OJ: 
180 [ OJ: 
181 [ lJ: 
182 [ lJ: 
183 [ lJ: 
184 [ lJ: 
185 [ 2J: 
186 [ 2 J: 
187 [ 2 J: 
188 [ 2J: 
189 [ 3J: 
190 [ 4 J: 
191 [ 4 J: 
192 [ 3J: 
193 [ 2J: 
194 [ lJ: 
195 [ lJ: 
196 [ OJ: 
197 [ OJ: 
198 [ OJ: 
199 [ OJ: 
200 [ OJ: 
201 [ OJ: 
202 [ OJ: 
203 [ lJ: 
204 [ lJ: 
205 [ lJ: 
206 [ lJ: 

LINKED LISTS 

void init (void) 
I 

struct IRSdata *alloc (); 

MARKER= alloc (); 
MARKER -> previous MARKER -> next MARKER; 

/*Check - check the integrity of an IRS pointer. If OK, return a 
0, else print message and return a -1.*/ 

int check (ptr, msg) 
struct IRSdata *ptr; 
char *msg; 

if (ptr -> fingerprint == IRSsignature) 
return 0; 

printf ("Error:\n Pointer failure on %s\n", msg); 
return -1; 

/*Alloc - allocate a structure and "sign it" with the IRS 
signature*/ 

struct IRSdata *alloc(void) 
{ 

struct IRSdata *ptr; 

if (ptr = (struct IRSdata *)malloc (sizeof (struct IRSdata))) 
ptr -> fingerprint = IRSsignature; 

return ptr; 

/*Sort - implement bubble sort*/ 
int sort (compare, swap, sequence) 

int (*compare)(void *,void*), (*swap)(void *,void*); 
void *(*sequence) (void *); 

int flag; 
void *pl, *p2; 

do { 
flag = 0; 
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p2 = (*sequence) (0); /*starting w/ first entry ... */ 
while (pl= p2, p2 =(*sequence) (p2)) /* ... sequence thru*/ 
{ 

if ((*compare) (pl, p2) > 0) /*if pl > p2 ... */ 
if ((*swap)(pl, p2)) return -1;/* ... swappl & p2*/ 
flag = l; 

while (flag); 
return O; 

/*stop when all are in order*/ 

/*Swap - swap the position of the two entries passed. Return 
a 0 if successful and a -1 if not.*/ 

int swap (first, second) 
struct IRSdata *first, *second; 

if (remove (second)) 
return -1; 

return (insert (first-> previous, first, second)); 
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207 [ OJ: 
208 [ OJ: 
209 [ OJ: 
210 [ OJ: 
211 [ OJ: 
212 [ OJ: 
213 [ OJ: 
214 [ OJ: 
215 [ OJ: 
216 [ lJ: 
217 [ lJ: 
218 [ lJ: 
219 [ lJ: 
220 [ lJ: 
221 [ OJ: 
222 [ OJ: 
223 [ OJ: 
224 [ OJ: 
225 [ OJ: 
226 [ OJ: 
227 [ OJ: 
228 [ lJ: 
229 [ lJ: 
230 [ lJ: 
231 [ lJ: 
232 [ lJ: 
233 [ lJ: 
234 [ lJ: 
235 [ lJ: 
236 [ lJ: 
237 [ lJ: 
238 [ lJ: 
239 [ lJ: 
240 [ OJ: 
241 [ OJ: 
242 [ OJ: 
243 [ OJ: 
244 [ OJ: 
245 [ lJ: 
246 [ lJ: 
247 [ lJ: 
248 [ lJ: 
249 [ lJ: 
250 [ lJ: 
251 [ lJ: 
252 [ lJ: 
253 [ 2J: 
254 [ 2J: 
255 [ 2J: 
256 [ lJ: 
257 [ lJ: 
258 [ lJ: 
259 [ lJ: 
260 [ lJ: 
261 [ lJ: 
262 [ lJ: 
263 [ lJ: 
264 [ lJ: 
265 [ lJ: 
266 [ lJ: 

TURBO C 

/*Compare - compare two IRS data structures. Return as follows: 
1 -> a.taxrate > b.taxrate 
0 -> a.taxrate b.taxrate 

-1 -> a.taxrate < b.taxrate*/ 
int compare (a, b) 

struct IRSdata *a, *b; 

if (a -> taxrate > b -> taxrate) 
return l; 

if (a -> taxrate < b -> taxrate) 
return -1; 

return 0; 

/*Sequence - given an entry, return the address of the next 
entry. Return a 0 on end of list.*/ 

struct IRSdata *sequence (entry) 
struct IRSdata *entry; 

struct IRSdata *value; 

if (entry == 0) 
entry = MARKER; 

/*given o ... */ 
/* ... start with beginning*/ 

if (check (entry, "arg 'entry' to sequence()")) 
return NULL; 

if ((value= entry-> next) 
return NULL; 

else 
return value; 

MARKER) /*if end of chain ... */ 
/* ... return a NULL*/ 

/*Main - now invoke the above routines*/ 
main () 
{ 

struct IRSdata *ptr, *ptrold; 

/*initialize linked list to empty*/ 
init (); 

/*now read in entries and add them to the chain*/ 
ptrold = MARKER; 
while (ptr =create ()) { 

if (insert (ptrold, MARKER, ptr)) 
abort (); 

ptrold = ptr; 

/*display the entries in input order*/ 
printf ("\n\n\nHere are the entries as entered:\n\n"); 
ptr = MARKER; 
while (ptr =sequence (ptr)) 

output (ptr); 

/*now sort the list*/ 
if (sort (compare, swap, sequence)) 

printf ("failure during sort! \n"); 



267 [ 1): 
2 68 [ l J : 
269 [ 1): 
270 [ 1): 
271 [ l) : 
272 [ l]: 
273 [ l]: 
274 [ l]: 
275 [ OJ: 
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/*and reoutput the list*/ 
printf ("\n\n\nHere are the entries sorted by taxrate:\n\n"); 
ptr = MARKER; 
while (ptr =sequence (ptr)) 

output (ptr); 

printf ("\nCompleted successfully\n"); 

Figure 4.9 

Output of Prg4 2g with sample data 

Here are the entries as entered: 

Stephen Davis, 123456789, taxrate 30 

Mary Smith, 234567890, taxrate = 20 

Tom Jones, 987654321, taxrate = 25 

Heimmi Smeckawitz, 876543210, taxrate 15 

Here are the entries sorted by taxrate: 

Heimmi Smeckawitz, 876543210, taxrate 15 

Mary Smith, 234567890, taxrate = 20 

Tom Jones, 987654321, taxrate = 25 

Stephen Davis, 123456789, taxrate = 30 

Completed successfully 

Review of the Solution 

Let's step back from the IRS problem and review our solution before we 
continue. We began by defining a structure that was well adapted to our problem. 
After deciding that a doubly linked list was the proper method for organizing our 
structures, we built two basic utilities for manipulating such lists: insert() and 
remove(). Any subsequent routine we might invent to affect the order of the 
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structure entries will use these two primitives rather than manipulating the 
pointers themselves. 

Such a modular approach to programming results in routines that are easier to 
test and have more general appeal. Although create() and output() are specific to 
this particular problem, the remaining routines could be added to our own 
personal program libraries. These routines do not depend on the details of the 
data defined in the structure. In particular, insert(), remove(), and sequence() will 
make valuable additions. These three routines will work for any future doubly 
linked structures we might create, so long as we are careful to define the NEXT, 
PREVIOUS and SIGNATURE fields in the same place within the structure (at 
the beginning). 

Finally, we avoided needless work by selecting the already written and tested 
sort() routine from our program library to perform the actual sort. To aid in the 
debug process, we added a special error checking signature to each structure to 
detect errant pointers and we tested each function by itself before integrating it 
into the final program. 

Notice that our program could just as easily have handled structures of different 
sizes. Different structures for married and single, employed and retired people 
would cause our routines no trouble at all. Only the routines create() and output() 
would have to be modified to make them smart enough to generate and print the 
data in the different structure types. As was mentioned earlier, this ability to 
handle differing sized data is a strength of the linked list. 

Note that I was heavy handed above with the rejection of defining LASTNAME 
and F/RSTNAME as character pointers. If it is important to allow names of any 
length, our routines would be perfectly happy with such declarations. Only 
create() must be modified. Create() would allocate space for the people's names 
out of the heap in separate calls to malloc( ), passing it the length of the names 
input. The resulting addresses would then be stored into the LASTNAME and 
F/RSTNAME pointers. Although slightly more complicated, this technique has 
the advantage that it places no limitations at all on the lengths of the name fields, 
that tend to be indeterminate in size. 
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Thoughts on Optimizing Linked Lists 

Although we will leave a complete discussion of optimization techniques to 
Chapter 8, let's take a look at a few of those techniques most relevant to linked 
lists while the subject is fresh on our minds. 

Manipulating linked lists is a very fast proposition. Though it might take us 
humans a few minutes to make the jump from one linked list entry to the next, a 
microprocessor can do it in just a few instructions. Linked lists can generally be 
traversed even faster than arrays. If we cannot increase program speed, what about 
decreasing its size? 

It may seem obvious to say, but the size of a program consists of two parts: the 
code space, where the program itself resides, and the data space, where the 
structure elements are stored. There is an insidious relationship between these 
two parts. While we can often reduce our data requirement by shrinking the size 
of a structure element through careful packing of the constituent fields, for 
example, using only a single bit to indicate sex, we must usually increase the 
size of the program that handles these elements, since it must pack and unpack 
these various fields for use. This is true whether the programmer generates the 
code, by explicitly coding bit test and set routines, or if Turbo C generates the 
code, as is the case with bit field variables in structure definition. However, if 
the number of elements is very large, then the savings in the data area can more 
than offset the increases in the code area. 

Since the structure definition for different problems varies so greatly, it is 
difficult to advise any particular method for packing data economically. There are 
a few tricks we can use to pack the fields common to all doubly linked lists. 

As we make our way along from one entry to another of a doubly linked list, no 
matter in which direction, we generally only use one or the other of the pointers. 
The other pointer provides redundant information since it points back in the 
direction from which we are coming. For example, if we are moving from the 
front of the list to the back, we only need to know the next entry since we already 
know the previous. Therefore, we really only need one pointer's worth of 
information, rather than the two we have allocated. Is there some way we can 
pack the two pointers into one word, using the value of the pointer we know to 
get the value we don't know during execution? 

Mathematicians spend a large part of their careers studying operations on 
numbers. All operators that map a range of input into an output range, uniquely, 
have an inverse function over that range. For example, if there is a function F( ), 
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that for every X renders a unique Y = F(X), then there must be a function G() that 
given Y returns X. A few of these operators are of special interest because they 
form their own inverse. The exclusive or, commonly written XOR, is one of 
those functions. 

If we XOR a value X with another value Y, we get some result Z. If we then 
XOR Z with X, the result is Y, and if we XOR Z with Y, we are rewarded with 
X for our efforts. Realizing that it doesn't prove anything mathematically, it 
might give us a better feeling if we just try it once to make sure: 

now 

Ox1234 

Ox6AAE 
Ox6AAE 

XOR 

XOR 
XOR 

Ox789A 

Ox1234 
Ox789A 

-> 

-> 
-> 

Ox6AAE 

Ox789A 
Ox1234 

Therefore, rather than storing the address of both the previous and next entry we 
can simply XOR their addresses together and save that in the structure. Once we 
get to where we need either address, we will always have the other. We can use 
this to extract the desired address. This is the way the small model version looks 
in practice: 

struct X 
unsigned cp; /*combined pointer*/ 
unsigned otherdata; /*some data*/ 
}; 

/*Traverse - given an entry and the address of the previous (next) 
entry, returns the address of the next (previous) 
entry.*/ 

struct X *traverse (prev, curr) 
struct X *prev, *curr; 

return (struct X *) (curr -> cp " (unsigned) prev); 

Pictorially it looks like Figure 4.10. 

So traversing such a list is pretty simple, but what about insertion and removal? 
After all, it was this problem that drove us out of the arms of the singly linked 
list and into those of the doubly linked list in the first place. This, as it turns 
out, is no more difficult from a programming standpoint, although it might be a 
little more challenging from a conceptual perspective. 
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Figure 4.10 

Traversing a merged doubly linked list 

Given a doubly linked list with combined pointer CP consisting of 
the XOR of its previous and next neighbors 

A B c D 

? A&C B&D 

If we are currently at element C, having come from element B, 
how do we get to element D? 

D=? 
=DA( BAB) 
=(BAD)AB 
=C.CPAB 

therefore 
PTR = PTR -> CPA B 

? 

Let's consider a pictorial representation on the next page. Here we have four 
entries, labeled conveniently A through D, and we want to insert a new structure, 
E, between B and C. Creating the combined pointer C P for element E is no 
problem, being just the XOR of address Band C. Before we can insert E between 
Band C, however, we must remove each from the other. This we do by XORing 
C into B.CP, thus removing C, and XO Ring B into C.CP. The insertion is 
completed by XORing both B.CP and C.CP with E. Removing an entry from 
the list is very similar, as is depicted. 

While this technique saves one pointer from the structure definition, it has some 
pitfalls that should be considered. We were able to combine the two pointers into 
one, because, under normal circumstances, the two pointers represented redundant 
information. If this information is, in fact, not redundant, then we must retain 
both pointers. Further, this redundant information allows opportunities for error 
checking-removing this redundancy, removes those opportunities. This makes 
the inclusion of signature fields in the structure definition even more critical to 
the overall implementation. 
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Figure 4.11 

Inserting and removing elements in merged doubly linked lists 

Inserting E 

D 
A B 

A4C 

Rrst we must remove B and C from each other: 

B.CP AC-> A store this back into B.CP 
C.CP AB-> D store this back into C.CP 

Now we insert E by XORing back into Band C: 

B.CP A E-> A A E store this back into B.CP 
C.CP A E -> EA D store this back into C.CP 

BA C store this back into E.CP 

E 

B4C 

A B 

A4E 

c D 

840 

c D 

E40 



Removing 

A 

A 
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Figure 4.11 (cont.) 

B c 0 

A4C 840 

To remove C from the list, we first remove its effects 
from its neighbors B and D: 

B.CP AC-> A store this into B.CP 
D.CP AC-> E store this into D.CP 

Now we link the two elements together: 

B.CP AD-> A AD store this into B.CP 
D.CP AB-> BAE store this into D.CP 

0 store this into C.CP 

B c 

A&O D B&E 

E 

7 

E 

The signature field is another place for space savings. Since the signature field is 
intended as a debug tool, it may seem that once debugging is complete this space 
can be removed from the final application, saving the space entirely. In a smaller 
program, this is probably acceptable, but in a large project it is not at all obvious 
when debug is complete. Errors are routinely found in such large systems years 
after they have been deployed into the field. 

Another complication arises from the fact that people are loathe to change things 
in a system that is working. Technically, removing debug code from a working 
system should have no adverse effect on the functioning of the system, but 
programmers are a superstitious lot. (After experiencing some of the mysterious 
things that computers can do, there is little wonder.) The very idea of changing 
the basic structure definition in a working system, even if it is just to remove the 
signature field, is a total anethema. 
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If totally removing this field is not an option, shrinking its size is certainly 
feasible. Allocating a full 16 bits to such a field is probably overkill. A 
program with even a one bit signature field has a 90 percent chance of finding an 
errant pointer within 4 chainings, statistically speaking. This may be a bit 
extreme, but a signature field as small as 4 bits is probably sufficient. 

A variation of this is possible if the data structure can be forced to a size that is a 
power of two. In such cases, the least significant bits of the structure address are 
all the same for all structures allocated. For example, assume a structure 
definition that is 16 bytes in length and that the first structure is allocated at an 
address of Ox1234. As shown in the diagram below, subsequent structures will 
always be allocated at addresses who's least significant digit is a 4. We can test 
for this fact within our program, in effect, turning part of the address into our 
signature field. 

This is probably not a very good technique, even though you will see it used in 
practice frequently. First, if you must add bytes to the structure definition to 
force it's size to a power of two, then it defeats the whole purpose. Why not just 
add a byte of signature and forget the hocus pocus? Secondly, it is very 
nonportable. Nothing in the definition of malloc() guarantees that Turbo C does 
not add some overhead, say a word or two, to the structures itself to provide for 
the orderly disposal of memory back to the heap. Besides the size of a structure 
that contains pointer variables is a function of the memory model used­
changing memory models completely corrupts the plan. 

Other Types of Linked Lists 

Beyond simple singly and doubly linked lists, more complicated linked structures 
find their way into almost every aspect of programming. The difficulty in 
describing these myriad forms lies exactly in their flexibility. There is just no 
limit to the number of variations they can assume. The techniques employed 
with each, however, are identical to those we have already studied. If the reader 
understands the approach above, he can apply it to his own problem. 

One form of particular note, however, is the state table. A state table describes 
the state of a system, much as our IRS structure described the state of individuals. 
State tables are most often used in applications such as communications, 
hardware control and game playing. Structurally, these tables resemble our linked 
lists of structures except that where our linked lists were always dynamic in 
nature, state tables can just as often be static. 
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Figure 4.12 

~ 
\ 

) 

) 

~ 

Structure is 16 bytes (Ox10) 
n length I 

another structure 

) . 

vpV-
Structures of 16 (Ox10) bytes 
in length in memory 

Static state tables are defined by the programmer as part of writing the program 
and do not change as the program executes. Static tables are most often used to 
define a set of rules to the system. That is, in any given condition, the state 
table defines how the system will respond to different stimuli. As with most 
things, this is best explained with an example. 

Suppose we are tasked with writing a punctuation checker. Our program should 
take free text and analyze the spacing with respect to commas, periods, etc. 
Errors should be marked for correction. To keep the problem manageable, let's 
limit ourselves to capitals at the beginning of sentences and names, commas, 
periods, question marks and spaces. Specifically we are ignoring semicolons, 
colons, quotations, and contractions as well as spacing of paragraphs. The state 
table solution to this problem appears as Prg4_3. 
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1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ lJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ : 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ lJ: 
26 [ lJ: 
27 [ lJ: 
28 [ 2J: 
29 [ 2J: 
30 [ l]: 
31 [ lJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ 2J: 
36 [ 2J: 
37 [ 2J: 
38 [ lJ: 
39 [ OJ: 
40 [ OJ: 
41 [ 2J: 
42 [ 2J: 
43 [ 2J: 
44 [ l] : 
45 [ OJ: 
46 [ OJ: 
47 [ 2J: 
48 [ 2]: 
49 [ 2J: 
50 [ l]: 
51 [ OJ: 
52 [ OJ: 
53 [ 2]: 
54 [ 2]: 
55 [ 2J: 
56 [ lJ: 
57 [ OJ: 
58 [ OJ: 
59 [ 2J: 
60 [ 2 J: 
61 [ 2 J: 
62 [ l J: 
63 [ OJ: 
64 [ OJ: 
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/*Prg4 3 - Simple gramatical parser using state tables 
by Stephen Davis, 1987 

Implement a simple sentence parser using a state table approach. 
Program recognizes uppercase, lowercase, comma, space, period 
and newline. 

*/ 

#include <stdio.h> 
#include <ctype.h> 
#define maxcases 5 
enum chartype {invalid= 1, period, 

space, comma, newline, 
lowercase, uppercase}; 

#define marker Ox5678 

/*prototype definitions --*/ 
enum chartype evaluate (char); 
int parse (struct state**, char); 
void fixup (void); 
int main (void) ; 

/*grammatical state table*/ 
struct state { 

unsigned signature; 
char currvalue; 
struct { 

enum chartype value; 
struct state *next; 

} choice [maxcasesJ; 
struct state *error; 

} *current; 

struct state start = {marker, 0, {{uppercase, 
{ 0, 
{ 0, 
{ 0, 
{ 0, 

NULL /*&normal*/ 
NULL} I 

NULL} I 

NULL} I 

NULL}} I 

NULL /*&normal*/}, 
normal= {marker, lowercase, {{lowercase, &normal}, 

{space, NULL /*&breakl*/ 
{comma, NULL /*&break2*/ 
{period, NULL /*&endl*/}, 
{newline, NULL /*&begline* 
&normal}, 

breakl= {marker, space, {{lowercase, &normal}, 
{uppercase, &normal}, 
{ 0, NULL}, 
{ 0, NULL} I 

{ 0, NULL}} I 

&normal}, 
break2= {marker, comma, {{space, &breakl}, 

{newline, NULL /*&begline* 
{ 0, NULL} I 

{ 0, NULL}, 
{ 0, NULL}}, 

&normal}, 
endl {marker, period, {{space, NULL /*&end2*/}, 

{newline, &start}, 
{ 0, NULL} I 

{ 0, NULL}, 
{ 0, NULL}}, 

&start}, 
end2 {marker, space, { {space, &start}, 



65 [ 2 J: 
66 [ 2 J: 
67 [ 2 J: 
68 [ 1 J : 
69 [ OJ: 
70 [ OJ: 
71 [ 2J: 
72 [ 2J: 
73 [ 2 J: 
74 [ lJ: 
75 [ 0 J: 
76 [ OJ: 
77 [ OJ: 
78 [ OJ: 
79 [ OJ: 
80 [ OJ: 
81 [ OJ: 
82 [ OJ: 
83 [ lJ: 
84 [ 2 J : 
85 [ 2 J: 
86 [ 2 J: 
87 [ 2 J: 
88 [ 2 J : 

89 [ 2 J : 

90 [ 2 J: 
91 [ 2 J: 
92 [ 2 J: 
93 [ 2 J: 
94 [ 2J: 
95 [ 2J: 
96 [ 2J: 
97 [ lJ: 
98 [ OJ: 
99 [ OJ: 

100 [ OJ: 
101 [ OJ: 
102 [ OJ: 
103 [ OJ: 
104 [ OJ: 
105 [ OJ: 
106 [ OJ: 
107 [ 1 J : 
108 [ 1 J : 
109 [ 1 J: 
110 [ lJ: 
111 [ 1 J : 
112 [ lJ: 
113 [ 2J: 
114 [ 2J: 
115 [ 2J: 
116 [ 2J: 
117 [ 2J: 
118 [ 2J: 
119 [ 3J: 
120 [ 3J: 
121 [ 2 J: 
122 [ 1 J : 
123 [ lJ: 
124 [ 1 J : 
125 [ OJ: 
126 [ OJ: 
127 [ OJ: 
128 [ OJ: 
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{ 0, 
{ 0, 
{ 0, 
{ 0, 
&start}, 

NULL}, 
NULL}, 
NULL}, 
NULL}}, 

begline={marker, newline, {{uppercase, &normal}, 
{lowercase, 
{ 0, 
{ 0, 
{ 0, 
&normal}; 

&normal}, 
NULL}, 

NULL}, 
NULL}}, 

/*Evaluate - evaluate the current character. Return corresponding 
chartype*/ 

enum chartype evaluate (c) 
char c; 

switch (c) 
case 
case 
case 
case 

I• 

'?' : 

' : 
I I : 

return period; 
return comma; 
return space; 

case '\n':return newline; 
default: 

if (islower (c)) 
return lowercase; 

else 
if (isupper (c)) 

return uppercase; 
else 

return invalid; 

/*Parse - given the current state, compare the current character 
against the legal choices to select the next state. 
Return a 1 on no error and a 0 on error.*/ 

int parse (stateptr, c) 
struct state **stateptr; 
char c; 

unsigned i; 
enum chartype val; 
struct state *localptr; 

localptr = *stateptr; 
if (localptr -> signature != marker) 

printf ("pointer error!\n"); 
*stateptr = &start; 

else { 
val= evaluate (c); 
for (i = 0; i < maxcases; i++) 

*stateptr 
return 0; 

if (localptr -> choice [iJ .value val) { 
*stateptr = localptr -> choice [iJ .next; 
return 1; 

localptr -> error; 

161 

/*Fixup - forward references are not allowed in data initializations. 
Fixup initializes those values which would generate error 
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129 [ OJ: 
130 [ OJ: 
131 [ OJ: 
132 [ lJ: 
133 [ lJ: 
134 [ lJ : 
135 [ lJ: 
136 [ lJ: 
137 [ lJ: 
138 [ l]: 
139 [ lJ: 
140 [ lJ: 
141 [ l J : 
142 [ lJ: 
143 [ OJ: 
144 [ OJ: 
145 [ 0]: 
14 6 [ 0 J : 
147 [ OJ: 
148 [ 0]: 
149 [ lJ: 
150 [ lJ: 
151 [ lJ: 
152 [ l]: 
153 [ lJ: 
154 [ l J : 
155 [ 2J: 
156 [ 2J: 
157 [ 3J: 
158 [ 3J: 
159 [ 3]: 
160 [ 3J: 
161 [ 3J: 
162 [ 2J: 
163 [ 2J: 
164 [ 2J: 
165 [ lJ: 
166 [ 0]: 

messages in a data initialization.*/ 
void fixup () 
{ 

start.choice[OJ .next &normal; 
start.error = &normal; 

normal.choice[lJ .next &breakl; 
normal.choice[2] .next &break2; 
normal.choice[3J .next &endl; 
normal.choice[4] .next &begline; 

break2.choice[l] .next &begline; 

endl.choice(OJ .next = &end2; 

/*Main - read in strings from STDIN. Parse them against our state 
table grammar rules. Point out any errors detected.*/ 

main () 
{ 

char buffer [256J, *ptr, mark; 

fixup (); /*complete pointer init*/ 

current = &start; 
while (gets (buffer)) 

printf ("%s\n", buffer); 
for (ptr = buffer; *ptr; ptr++) { 

if (parse (&current, *ptr)) 
mark ' '· 

else 
mark= '"'; 

printf ("%c", mark); 

parse (&current, '\n'); 
printf ("\n"); 

/*tack on a carriage return*/ 

To understand the approach this program takes, we should examine a typical 
sentence. Suppose we had just read the 'l' in the 'typical' of the last sentence. 
From that point, we could reasonably expect another lower-case letter, a space, a 
comma or a period. We could not accept an upper-case letter, since uppercase 
letters do not appear immediately after lowercase letters in English. This is our 
state. Once we proceed to the space following 'typical' our options are limited to 
either a lower or upper-case letter. The comma and period are no longer legal 
after a space, but the upper-case now is. We have now moved to a new state. 

In such a problem we should always begin by defining the different types of 
characters we will accept. This we do in our enumerated type CHARTYPE in 
line 12. (We equate the question and exclamation mark with the period, 
considering them the same for grammatical purposes.) INVALID is reserved for 
characters that do not fall into any the other categories, such as numbers. 
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Now examine the state table structure we have defined for this solution. After the 
standard SIGNATURE to be used for pointer integrity checking, is the 
CURRVALUE field. This field defines, more or less, the character that got us 
into this state. Not only is this field not necessarily unique, it isn't even 
required-it does not appear anywhere in the program itself. This field is included 
to help the programmer in creating the field definitions and in the debug process. 
Appearing next are the different types of input we understand in that state coupled 
with the state we assume when receiving that stimulus. Up to MAX = 5 
different state/stimulus pairs can be differentiated. Finally, we add the state to go 
to next if we receive some input that we just don't understand--we can never 
anticipate all possibilities. 

To follow these tables, start with an easily identifiable state, such as the 
beginning of a sentence, START. Sentences must begin with capital letters, so 
UPPERCASE is the only type stimulus we accept. Anything else generates an 
error. If an UPPERCASE is encountered we move into the "normal" interior 
state. From here we will accept anything EXCEPT UPPERCASE. As long as 
only lower-case letters are found, notice how we stay in the same state. (This 
corresponds to the interior of words.) A state may point to itseJf. Other 
characters cause us to vector into different states. A pictorial representation of 
our state tables appears in Figure 4.13. 

Earlier I noted that CU RRV ALU E is not unique. This is not intuitive, but 
consider just as an example, that not all spaces are created equal. A space 
following a letter must be followed by either a lowercase or uppercase letter. By 
contrast, a space following a period must be followed by another space which in 
turn must be followed by an uppercase letter (we assume here that periods are 
always followed by two spaces). This trichotomy of spaces is expressed in three 
different space states appearing in our state tables. Once you understand the state 
tables, writing the actual code is simple. Keeping with our modular approach, 
we start by defining a function evaluate() that categorizes input characters into 
their proper type. Parse() takes the output of this routine and compares it against 
the legal types for the current state. If a match is found, the state pointer is 
moved to the new state and a 1 (success) is returned; otherwise, the error state is 
assumed and a 0 (failure) is returned. 

After starting with state START, main() accepts ASCII input from STDIN using 
our old standby gets(). Errors are marked by first printing the string and then 
following along below, printing a space every time parse() returns a 1 and a caret 
whenever it returns a 0. This causes grammatical errors to be clearly marked 
from underneath. Since gets() filters out newlines, we must print and parse the \n 
explicitly. 
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Figure 4.13 

Pictorially representative grammar parser state tables 

The above diagram does not include Newline for simplicity's sake. From each state, 
the arrows leading outward represent valid input from that state. For example, 
a period is legal when in state NORMAL. This transitions the parser to state END 1, 
from which only a space followed by another space is considered legal. This is a 
state table representation of the rulethat a period must be followed by two spaces. 

Even though the grammatical rules used here have been purposely kept simple, 
the results are fairly impressive. A sample run is shown in Listing 4.13. 
Although the program gets confused fairly easily (especially by numbers and by 
tabs and spaces at paragraphs breaks), real grammatical errors were detected. Even 
when confused, the error case gets us back in sync fairly quickly. Try the 
program out on some sample text of your own. Considering the output, the 
actual program is surprisingly small. Interestingly, if we were to make our 
grammatical rules more complex by considering more different cases, our source 
code would not change (except, perhaps, for adding the new types to evaluate()). 
Instead we would add new grammatical rules merely by adding different states to 
our state tables. It is characteristic of state table solutions to problems that, once 
written, the code tends not to grow with increasing complexity of the problem, as 
is normal with most programs. Instead the state tables grow. This valuable 
property adds considerably to the maintainability of state table programs. 
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(If you don't believe this, try the following problem. Add numbers using the 
following grammatical rules: numbers may appear at the beginning of any word; 
numbers may only be followed by numbers or a space, comma or period. 
Numbers and letters may not follow each other immediately. Try this new 
program out on some text that contains imbedded numbers. Even these rules get 
confused with numbers containing embedded commas.) 

Further, state table implementations of programs are somewhat unintuitive to set 
up and a little hard to read initially. To those familiar with the technique, 
however, state table implementations are very easy to follow. (Again, try 
rewriting the above program using standard IF .. THEN .. ELSE logic.) 

Dynamic state tables are most often used in areas where decisions must be made. 
These so-called decision trees are built to investigate the possibilities open to a 
program. The classic example here are programs that play chess. A chess 
program starts from the current board position and calculates all of the legal 
moves open to it. A state table entry is built to describe the state of the board 
after each move. To each of the board states, all of the legal responses are 
considered and an entry built for each. These second level tables are attached to 
the first level state table from which it came. This process is repeated for deeper 
and deeper levels to some arbitrary depth. This results in what is known as a 
decision tree. Once all of the board states have been constructed, they are 
evaluated for position. A number is calculated reflecting how advantageous that 
board position is to the program. The most advantageous board is selected and 
the tree limbs traced back up through the nodes to the first move that led to that 
position. The program then makes its move. 

Of course, real chess programs are not quite this simple. Sophisticated tree 
pruning algorithms are used to minimize the search time by prematurely 
terminating search paths that cannot be advantageous. Unfortunately, an example 
chess program is beyond the scope of this book. 
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Conclusion 

In this chapter we have briefly covered the topic of linked structure solutions to 
common problems. In doing so we have stressed some of the good programming 
techniques that should come natural to experienced C programmers, the most 
important of which is modularity both in code, through proper function 
definition, and in data, through proper structure definition. Finally, we have seen 
some time saving coding techniques, such as pointer integrity checking, that can 
drastically reduce debug and test time. 

Although linked list solutions to problems are not always the most obvious, one 
should seek them out. Not only are they more flexible and much more easily 
maintained, they are easily read by programmers familiar with the technique. 
Linked structures represent a powerful tool that every programmer should have in 
his or her repertoire. 



5 
Accessing 

DOS and the 
Turbo Library 

The topic of the Disk Operating System (DOS), by which term I'm referring to 
either PC-DOS or the equivalent MS-DOS, is a very large one. There are a 
million stories in the big city and we can't possibly tell them all. In fact, some 
of them we don't even want to tell. Once again, not everything that can be done 
is worth doing. 

Although not advisable, it is certainly possible to back up on a crowded freeway. 
(It may not be possible to do it more than once.) Similarly, it might be possible 
to edit the File Allocation Table (FAT) with a debugger. It would be crazy for 
me to present a chapter on doing so, however. One wrong move and you start 
wiping out files from here to the New Jersey turnpike. Crashed disk, angry 
reader, book in the trash can. It's not a pretty sight. 

Other, more mundane, topics are probably not worth dwelling on either. 
Everyone gets the hang of print/( Jing to the screen pretty quickly. Once you get 
tired of the straight ASCII characters, you can start printing the special characters 
above Ox7f. These are the characters normally used in foreign languages or in 
blocking out windows on non-graphics screens. Finding these characters for 
yourself is part of the joy of hacking, however. Delving into every nuance of the 
print/() in this book probably serves little purpose. 

There are, however, plenty of topics of interest to the new DOS programmer or 
even the old DOS programmer who has never examined the DOS operating 
system from the vantage point of a low level programmer. In this chapter I will 
try to give a broad overview of the DOS system calls, while at the same time 
examining in a little more detail some of the more difficult or interesting of these 
functions. I will not describe each of the arguments to the different calls-these 
are explained adequately in the Turbo C Reference Guide. Instead I will present 
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sample programs using these functions while, at the same time, discussing some 
of the concepts behind them. As DOS is so varied, this may at times give the 
chapter the appearance of a collection of disconnected concepts. 

It should be pointed out that the programs in this chapter require PC-DOS 2.1 
(MS-DOS 2.11) or later. This should be no problem as Turbo C itself requires at 
least DOS 2.0. PC users who are still using DOS 1.1 will want to run, not 
walk, to the phone to order one of the newer versions of DOS. In fact, users of 
DOS 2.x will probably want to update to one of the 3.x series. A few of the 
programs presented here require its enhancements. 

What is DOS? 

DOS is the operating system which is most often purchased for or supplied with 
IBM PCs, ATs and compatibles. Like all operating systems, DOS provides a 
shell over the underlying hardware, for example, relieving the programmer from 
worrying about the details of UART control when executing that print[() 
mentioned in the introduction. Were it not for this software support, explaining 
even the simple string output provided by printf() may have taken up this entire 
chapter. 

DOS began as a copy of CPM80 (tm Digital Research), a popular operating 
system for 8080 and Z80 based microcomputers. In its first version, its 
commands were similar to CPM80 and its capabilities similarly limited. Fairly 
quickly, DOS left its precursor behind. As DOS aged, its system calls became 
simpler and its user interface began adopting some of the popular aspects of 
UNIX: the same subdirectory structure, piping, redirection, etc. Support was 
added for larger and differently formatted floppy drives and hard disks. 

Bound by its humble beginnings, however, it has not been able to truly shake off 
the shackles of it ancestry. DOS has always remained a non-multitasking, non­
virtual memory, single threaded executive. It is simply not possible to retrofit 
these concepts into an existing system. It is for this reason that users have been 
searching for a replacement for DOS in such systems as UNIX, Xenix and OS/2. 

When we think of DOS, the first thing to come to mind is the ubiquitous A> 
prompt. (In actuality, with the prompt customization provided in the later 
versions of DOS, most of us have not seen a simple A> prompt in years, but 
the idea is the same.) In fact, the A> prompt has little to do with the DOS your 
application program sees. User commands are handled by a program called 
COMMAND.COM. While this program has some special previledges, it runs 
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under DOS much like programs written in Turbo C. COMMAND.COM makes 
the same DOS calls that other programs do. 

The DOS actually consists of two files that the user seldom if ever sees. These 
files are variously described as IBMBIO.SYS and IBMDOS.SYS or IO.SYS and 
MSDOS.SYS depending on version. The names of these files are not important 
as you cannot (or, at least, should not) access them directly anyway. These two 
files are loaded into low memory by the boot loader at power-on and not accessed 
again. It is these two files and not COMMAND.COM which contain the code 
defining the DOS calls which we will see in this chapter. 

There is actually a level of software between the user's Turbo C program and the 
operating system. Much as DOS forms a shell around the hardware, the Turbo C 
library forms a shell around DOS, protecting the programmer from some of its 
harshities. For every DOS function of any importance there is a Turbo C library 
function to access it. The Turbo C library equivalent is more user friendly, either 
providing capabilities not available in the simple DOS call or simply defining 
easier, more mnemonic arguments. 

Figure 5.1 

~ 
~ 

The Turbo C programmer is protected from the 
harshities of the PC's hardware by layers of software, 
each of which relies upon the layers below it. 
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In general, it is good programming practice to use the highest level routine which 
does the job (in the required amount of time). In the interest of legibility, it is 
probably preferable if a program calls the Turbo C function findfirst( ), for 
example, and avoids invoking the equivalent system call Ox4e, even if that's all 
thatfindfirst() does. Not only are the arguments easier to set up, but the casual 
reader is much more likely to understand find.first(). 

Even among Turbo C functions, some are more portable than others. The 
Reference Guide is careful to point out those functions which are unique to DOS 
and those which are shared with UNIX. A certain amount of effort has been 
expended maintaining as much portability as possible. For example, arguments 
are defined to the open() call which have little or no meaning under DOS, merely 
to enhance its similarity with the open() under UNIX systems. A far greater 
number of Turbo C library calls are common to other C environments for the 
PC, most notably the Microsoft C compilers. 

DOS is far from optimum in many respects. From Chapter 6 almost until the 
end of this book we will study ways and reasons to avoid using the DOS system 
calls. I do not want to give the impression that I am somehow down on the 
DOS operating system, however. DOS represents a large body of largely bug 
free code. While some versions of DOS are known to have bugs, these bugs are 
rare and well documented. This large body of working code should not be 
overlooked easily. 

In addition, future protected mode operating systems, such as OS/2, may make 
many of the direct access techniques which we will examine impossible. Turbo C 
programs which begin reading and writing memory all over the machine will not 
be tolerated and will require extensive revision. Programs which, by and large, 
limit themselves strictly to DOS calls will be easier to port over to these new 
executives than applications which do not. 

Accessing DOS 

As we mentioned earlier, when confronted with a problem the programmer should 
first examine the Turbo C library for his solution. If the programmer needs to 
open a file, for example, he should first look towards Turbo C's open() or 

open(). Each is well documented and their arguments are adapted to the C 
language. Not only is this the safest, but by staying with the UNIX calls, can 
provide a certain amount of portability beyond the DOS operating system. Only 
when that does not work, either because the library function does not exist, is too 
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slow, or does not provide exactly the correct arguments, should the programmer 
tum to direct access to the DOS system calls. 

The DOS functions are intended to be called effeciently from all languages, but 
they are primarily laid out for the assembly language programmer. Arguments to 
these functions are assigned to the registers of the 8086 microprocessor rather 
than on the stack as are arguments to C functions. To mate the two interfacing 
techniques properly, Turbo C provides a library routine intdos( ). Intdos() accepts 
two arguments: a structure containing the registers to be loaded before entering 
the DOS call and a structure into which to store the registers upon returning. 

Before we can call intdos() we should include the .H file, DOSH. Within this 
file are the following definitions: 

struct WORDREGS 
{ 

unsigned int ax, bx, ex, dx, si, di, cflag, flags; 
} ; 

struct BYTEREGS 
{ 

unsigned char al, ah, bl, bh, cl, ch, dl, dh; 
} ; 

union REGS 
struct WORDREGS x; 
struct BYTEREGS h; 
} ; 

As we can see, REGS is declared to be the union of two structures, one of 
characters and the other of integers. A union is the C way to gain access to the 
same location in memory in different formats. For example, in the simpler 
declaration below, the integer WORD and the two characters BYTEJ and BYTE2 
both refer to the same word in memory. 

union 
unsigned word; 
char bytel, byte2; 

} double_up; 

Storing a Ox12 into DOUBLE_UP.BYTEJ and a Ox34 into 
DOUBLE_UP.BYTE2 results in DOUBLE_UP.WORD containing the value 
Ox3412. While you might have expected Ox 1234, Intel microprocessors store the 
byte of lower significance at the lower address. Therefore, BYTEJ corresponds to 
the lower byte of WORD and BYTE2 to the upper. It is only at times such as 
these, when addressing the same location as both a byte and a word, that 
programmers need concern themselves with the storage order. 
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Figure 5.2 

2 3 4 

BYTE 1 BYTE2 

WORD 

Of course, the names of the elements in these two structures are not accidental. 
The names AX, BX, etc. in structure WORDREGS are the same as the names of 
the 16-bit registers in the 8086 and 80286 class of microprocessors. The 
elements AH, AL, BH, and so on in the structure BYTEREGS are the same as 
the 8 bit registers in these microprocessors. 

The union of the character declarations BYTEREGS and the integer declarations 
WORDREGS allows the first four words of each to be accessed as either words 
(integer) or pairs of bytes (character). This corresponds to the fact that the first 
four 16 bit registers in the 8086 can also be accessed as pairs of 8-bit registers. 
Thus, the two bytes in AX may be independently referred to as AH and AL, BX 
as BH and BL, etc. The union REGS represents in C the register architecture of 
the 8086. 

The programmer declares one or more variables of type REGS. Rather than load 
values into a register, which the C programmer cannot do, he loads them into the 
element of REGS with the same name. Once all of the values are set up, he calls 
intdos() passing to it the address of REGS. Intdos() loads the registers from this 
union and performs the system call. Upon returning from the call, intdos() 
stores the registers back into the same (or another) union where they can be easily 
accessed from C again. 

Each DOS call is assigned a unique number to differentiate it. The caller 
indicates to the system the DOS call he is trying to make by placing its number 
in the AH register. All of the other registers are defined uniquely to the 
individual DOS calls. While many DOS functions assign similar meanings to 
the individual registers, there is no rule of thumb that can be made other than the 
AH rule. The different DOS functions are best documented in Microsoft's MS-
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DOS Programmer's Reference. They are also described in several popular books 
on the subject. I have included a short description of them in Appendix 1. 

For example, one of the simplest of the DOS calls is system call Ox2e, Set/Reset 
Verify Flag. (If the Verify Flag is set, DOS automatically verifies all disk writes 
by performing a subsequent read and comparing the results.) Passing the 
Set/Reset Verify Flag function a 0 in register AL resets the flag, while a 1 sets 
it. Assuming that the union REGS has already been defined, the following code 
segment sets the Verify flag ON. 

regs.h.ah = Ox2e; /*Set Verify Flag*/ 
regs.h.al = 1; /*set the flag on*/ 
intdos (&regs, &regs); 

While access to the 8 common registers is sufficient for the majority of DOS 
calls, a few also require that the segment registers be initialized to particular 
values. For this purpose, a separate library routine intdosx() is provided. This 
function is identical to intdos() except that it accepts one extra argument, a 
structure of type SREGS. This structure has the following definition in the 
include file DOS.H. 

struct SREGS 
unsigned int es; 
unsigned int cs; 
unsigned int ss; 
unsigned int ds; 
} ; 

Just as the members of BYTEREGS and WORDREGS corresponded to the 
normal registers of the 8086, the elements of this structure correspond to the 
segment registers of the processor. Say that a particular DOS function required 
that DS:DX points to the variable to be written, for example. This would be 
accomplished with the following C example: 

#include <dos.h> 
union REGS reg; 
struct SREGS sreg; 
char *string; 

reg.x.dx = FP OFF ((char far *)string); 
sreg.ds FP SEG ((char far *)string); 
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The DOS calls fall into two groups: the DOS l .x calls and the DOS 2.x (and 
later) calls. As we mentioned earlier, the original DOS mimicked very much its 
predecessor, CPM. At the time of the PC's introduction, the CPM machines 
were king. Since all of the existing software was designed to run on CPM 
machines, DOS made every effort to make the job of porting programs from 
CPM to DOS 1.x as simple as possible. The table on the next page gives a 
cursory comparison of the CPM-like DOS calls to their CPM equivalents. 

Many of these system calls, like their CPM equivalents before them, are clumsy 
and difficult to use. This is especially true of the file related system calls which 
required the user program to build a File Control Block before handing it over to 
the system. (File Control Blocks are explained in the Programmer's Reference 
Manual also.) Besides, these file access routines do not provide support for the 
UNIX-like directory structure which was adopted with DOS 2.x. Those system 
calls marked with an asterisk above have been retained in DOS only for 
compatibility purposes. Microsoft no longer recommends their use. In fact, 
most of them could probably be removed from DOS today without the majority 
of programs even being aware. 

The second set of system calls are the so-called UNIX-like DOS calls. While not 
resembling the system calls found in the UNIX operating system, these services 
were given this name primarily because they introduce support for DOS' UNIX­
like features such as hierarchical directories, redirection, and the like. These DOS 
2.x enhancements are listed in Table 5.2. 

These system calls tend to be the ones we access when making Turbo C library 
calls. They are also the ones we should attempt to use when making our own 
intdos() calls. They are both easier to use and more powerful. 

Some DOS Concepts 

Let us examine some DOS concepts. Many of these will already be familiar to 
UNIX programmers, but many will not. A firm understanding of these concepts 
will be necessary to write effective C programs in the DOS environment. 
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Table 5.1 
CPM-like DOS System Calls 

System Function Corresponding Function 
Call CPM Call 

O* Terminate 0 System Reset 
1 Keyboard Input w/ Echo 1 Console Input 
2 Display Output 2 Console Output 
3 Serial Input 3 Reader Input 
4 Serial Output 4 Punch Output 
5 Printer Output 5 List Output 
6 Direct Console 1/0 6 Direct Con 1/0 
7 Direct Keyboard Input w/o Echo 
8 Keyboard Input w/o Echo 
9 Display String 9 Print String 
A Buffered Keyboard Input A Read Con Buffer 
B Check Keyboard Buffer Status B Get Con Status 
c Clear Keyboard and DO Function 
D Reset Disk D Reset Disk 
E Select Drive E Select Disk 
F* Open File F Open File 
10* Close File 10 Close File 
11* Find First 11 Find First 
12* Find Next 12 Find Next 
13* Delete File 13 Delete File 
14* Read Sequential 14 Read Sequential 
15* Write Sequential 15 Write Sequential 
16* Create File 16 Make File 
17* Rename File 17 Rename File 
19 Report Current Drive 19 Retn Current Disk 
1A Set Disk Transferr Address 1A Set DMAAddr 
1B Get Default Disk Data 
1C Get Disk Data 
21* Read Random 21 Read Random 
22* Write Random 22 Write Random 
23* Get File Size 23 File Size 
24* Set Relative Record 24 Set Random Record 
25 Set Interrupt Vector 
26* Create New PSP 
27* Read Random Block 
28* Write Random Block 28 Write Random w/Fill 
29 Parse Filename 
2A Get Date 
2B Set Date 
2C Get Time 
2D Set Time 
2E Set/Reset Verify Flag 

Those system calls marked with an asterisk have been replaced by DOS 2.x calls and are 
included on!Y_ for com_Q.atibili!Y_. 
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System Call 
2F 
30 
31 
33 
35 
36 
38 
39 
3A 
3B 
3C 
30 
3E 
3F 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
4A 
4B 
4C 
40 
4E 
4F 
54 
56 
57 
58 
59 
5A 
5B 
5C 
5E 
5F 
62 
65 
66 
67 
68 

Table 5.2 
DOS 2.x System Calls 

Function 
Get Disk Transfer Address 
Get DOS Version Number 
Terminate and Stay Resident 
Get/Set Control Break Check 
Get Interrupt Vector 
Get Disk Free Space 
Get Country Data 
Create Directory (MKDIR) 
Remove Directory (RMDIR) 
Change Current Directory (CHOIR) 
Create Handle (Create File) 
Open Handle (Open File or Device) 
Close Handle (Close File or Device) 
Read Handle (Read File or Device) 
Write Handle (Write File or Device) 
Delete Directory Entry (Delete File) 
Move File Pointer 
Get/Set File Attributes 
1/0 Control 
Duplicate File Handle 
Force Duplicate File Handle 
Get Current Directory 
Allocate Memory 
Free Memory 
Set Block 
Load and Execute Program 
End Process 
Get Return Code of Child Process 
Find First File 
Find Next File 
Get Verify State 
Change Directory Entry (Rename File) 
Get/Set Date/Time of File 
Get/Set Allocation Strategy 
Get Extended Error 
Create Temporary File 
Create New File 
Lock/Unlock 
Get Machine Name 
Nextword Assign List Entry Access 
GetPSP 
Get Extended Country Information 
Get/Set Global Code Page 
Set Handle Count 
Committ File 

Replaces 

Interrupt 27 

16 
F 

10 
14,21,27 
15,22,28 

13 
24 

26 
0 

11 
12 

17 

16 
16 

Note that system calls beginning with 59 were first introduced with DOS 3.0. System calls 
65 throu_g_h 68 are on!Y_ defined under DOS 3.3. 
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The first and easiest of these concepts is that of version number. While DOS 2.x 
will be sufficient for most of the programs in this book, some of these programs 
rely on the enhanced capabilities of DOS 3.x. If 3.5 inch floppy disk or LAN 
support or any of the other features unique to the newer versions of DOS are 
important to your program, it should check the DOS version number before 
proceeding. (Technically, a program should check the version number even 
before using the 2.x enchancements, but today we can safely assume DOS 2.0 as 
a minimum.) 

Notice that our concern goes only one way. So far, Microsoft has not removed 
support for any feature of DOS. For example, all of the CPM-like system calls 
that have been replaced are still supported today. Therefore, if a program relies 
on a capability introduced in a particular version of DOS, it need only worry that 
the current DOS being executed is not too old. It does not have to worry, that 
the version of DOS is too new and that the critical feature has been removed. 

Prg5_1 shown in the listing below checks the version number as reported from 
Turbo C against that reported from DOS itself. Of course, they agree, but this is 
a simple example of accessing the same capability from Turbo C and via the 
intdos() call. Turbo C maintains a global variable _VERSION which contains the 
major and minor version numbers. The major version is the number in front of 
the decimal point and the minor version the number after. For example, in DOS 
3.1, the major version is 3 and the minor is 1. To pull apart the two halves of 
the version number we have used the union WORD2BYTE. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ lJ: 
25 [ lJ: 

/*Prg5_1 - Check DOS Version Number 
by Stephen R. Davis 

*/ 

This is the most rudimentary form of access to DOS and, yet, it 
is sometimes necessary to make sure that the DOS supports alls 
the facilities we intend to use. 

#include <stdio.h> 
#include <dos.h> 

/*some prototype definitions*/ 
unsigned dos from TC (void); 
unsigned dos=from=intdos (void); 
void main (void); 

/*declare some global variables*/ 
union REGS regs; 

/*Main - fetch the current version from Turbo C and from DOS and 
make sure they agree*/ 

void main (void) 
{ 

int dosversionl, dosversion2; 
union { 
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26[ 
27[ 
28( 
29[ 
30[ 
31[ 
32 [ 
33 [ 
34 [ 
35[ 
36( 
37 [ 
38( 
39[ 
40[ 
41[ 
42[ 
43[ 
44 [ 
45[ 
46[ 
47[ 
48[ 
49[ 
50( 
51 [ 
52 [ 
53[ 
54 [ 
55( 
56( 
57 [ 
58 [ 
59( 
60( 
61 [ 
62 [ 
63 [ 
64 [ 
65 [ 
66( 
67 [ 
68 [ 
69[ 
70[ 
71( 

2J 
2J 
1) 
1): 
lJ: 
lJ: 
1): 
1): 
1): 
lJ: 
lJ: 
1): 
lJ: 
lJ: 
lJ: 
1): 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ:. 
lJ: 
lJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
lJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
lJ: 
lJ: 
lJ: 
OJ: 
OJ: 

unsigned int word; 
unsigned char byte [2J; 

} WORD2BYTE; 

/*first get the version from Turbo C*/ 
dosversionl = dos_from_TC (); 

/*and display it as two bytes*/ 
WORD2BYTE.word = dosversionl; 
printf ("According to Turbo C Library," 

"you are using DOS %d.%d\n", 
WORD2BYTE.byte [OJ, 
WORD2BYTE.byte [lJ); 

/*now get the version direct from DOS*/ 
dosversion2 = dos_from_intdos (); 

/*and display it as two bytes also*/ 
WORD2BYTE.word = dosversion2; 
printf ("while according to DOS itself," 

"you are using DOS %d.%d\n", 
WORD2BYTE.byte [OJ, 
WORD2BYTE.byte [lJ); 

/*now compare the two*/ 
if (dosversionl == dosversion2) 

printf ("The two sources agree\n\n"); 
else 

printf ("DOS and Turbo C don't agree!\n\n"); 

/*Dos_from TC - return the DOS version number from the Turbo C Library 
global value*/ 

unsigned dos from TC (void) 
{ - -

return _version; 

/*Dos from intdos - fetch the version number using the DOS function*/ 
unsig;ed dos_from_intdos (void) 
{ 

regs.h.ah = Ox30; 
intdos (&regs, &regs); 
return regs.x.ax; 

The function dosJrom_intdos() loads the Get Version Number system call into 
register AH before making a call to intdos( ). The major version number is 
returned from the call in AL and the minor in AH. Again, we make use of the 
union WORD2BYTE to separate the two. Get Version Number returns a 0 for 
versions of DOS prior to 2.0. 

Another DOS concept all too often ignored is that of Return Status. Whenever a 
program executes and then completes, it returns a single integer Return Status 
back to the operating system. The operating system does not do anything with 
this status except store it in case anyone wants to know what it is. The intent is 
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that a program use the Return Status to indicate whether it was successful or not 
in doing whatever is was supposed to do. 

A Turbo C program sets the Return Status by exiting the program with a call to 
the Turbo library routine exit(). Exit() accepts a single integer argument, which 
it passes back to DOS as the Return Status. Since there are no rules, the user 
can assign whatever meaning he desires to the return value. It is, however, 
convention that a successful program returns a 0. A nonzero return status 
indicates a failure of some sort, with the actual value perhaps indicating the 
nature of the failure. 

When a program is executed from the IDE or from the DOS prompt, the Return 
Status is not obvious. Since presumably the program also generates error 
messages in the event of a problem, it does not need to be. If the program failed, 
the user should be aware of that fact already by reading the messages on his 
screen. He does not need a cryptic single digit number to tell him the problem. 
The operator can decide what to do next on the basis of the messages generated 
by the application. 

Batch files are another matter. It is not possible for a .BAT batch file to read the 
messages appearing on the screen to decide if a particular step executed as desired. 
Most batch files are written blind, assuming that each step worked to perfection 
and blundering on to the next command. Alternatively, the batch file can access 
the Return Status via the label ERRORLEVEL. For example, the following 
batch file executes a two pass process. If PASSI is unsuccessful, PASS2 should 
not be executed. This batch file fits the bill. 

:exit 

passl %1 
if errorlevel 1 goto :exit 
pass2 %1 

This batch file executes the program PASSI on its first argument. Upon 
completion, PASSI sets the Return Status to 0 for success and 1 or greater for 
failure. The test IF ERRORLEVEL 1 is true if the Return Status is 1 0 R 
GREATER. Since there is no test for equality, if more than one type of failure 
is to be differentiated, they must be tested for in descending order of value. If the 
Return Status is 1 or greater, the command GOTO :EXIT is executed to jump 
around executing P ASS2 on the same first argument. 

We can put Return Status to other uses, however. Since it has no meaning to 
the operating system at all, we can assign meanings other than success and 
failure. For example, examine Prg5 _2 below. 
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1 [ OJ: 
2 [ 0 J: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ 1): 
18 [ lJ: 
19 [ 1 J: 
20 [ lJ: 
21 [ 1): 
22 [ 1 J: 
23 [ 1): 
24 [ lJ: 
25 [ 1 J: 
26 [ 1 J: 
27 [ lJ: 
28 [ 1): 
29 [ OJ: 

/*Prg5_2 - Return Status upon Exit 
by Stephen R. Davis, 1987 

*/ 

Use the return of status to indicate to a .BAT file what character 
was depressed. 

#include <stdio.h> 
#include <ctype.h> 
#include <process.h> 

/*Main - pose the question and await the response*/ 
void main (argc, argv) 

unsigned argc; 
char *argv [J; 

/*provide the question*/ 
if (argc <= 1) 

printf ("Yes or No?"); 
else 

while (**++argv) 
printf ("%s ", *argv); 

/*now get the response*/ 
if (tolower (getchar ()) == 'y') 

exit (0); 
else 

exit (1); 

This program is quite simple. First, it checks to see if it has any arguments or 
not. If it does, it prints these arguments in their entirety on the display. If not, 
it simply prints Yes or No?. Either way, it waits for a single letter response 
from the keyboard. If that response is a Y or y, it exits with a Return Value of 
O; otherwise, with a value of 1. 

A batch file such as the following puts this to good use. 

echo off 
prg5_2 Do you want RAM resident software installed? 
if errorlevel 1 goto :dont 
echo Installing Ram residents 
goto :exit 
:dont 
echo Not installing Ram resident programs 
:exit 

Prg5 _2 views each of the words appearing after it as a separate argument, all of 
which it copies to the display. It then awaits a response to the question. If the 
user enters Y, Return Status returns as a 0 and the IF ERRORLEVEL 1 fails 
causing the batch file to fall through to the Installing RAM residents section. 
Presumably, in a real batch file, ram resident programs would actually be 
installed here. If some other response is entered to the question, the IF 
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ERRORLEVEL 1 clause passes, causing the batch file to branch to the :DONT 
section. 

C: \USER\C 
C>example 
Do you want RAM resident software installed? y 
Installing Ram residents 

Although Prg5_2 only differentiates between 2 different responses, it is 
conceivable that a similar program might be written which differentiated between 
several different inputs. For example, Yes, No and the first 10 letters of the 
alphabet. Such programs allow menuing systems to be built around DOS batch 
files. 

These niceties aside, what usually pops to mind when thinking of an operating 
system is its handling of the file system. How does a program get at the disk? 
Before we examine how to use Turbo C's file support routines, let's take just a 
minute to see how to avoid them. Up until now, we have written numerous 
programs without resorting to any of the normal file access facilities. This is 
particularly remarkable when you consider that, like UNIX, DOS considers both 
the screen and the keyboard to be special types of files! 

For most of the screen and keyboard routines we have used so far, an analogous 
file version exists. For example, print/() is the same as /print/() with the file 
specifier removed. It has been removed, because print/() assumes that output is 
to be directed at the stdout file. In fact, in most systems, print/() does nothing 
more than invoke fprintf() with the console output specifier. 

Treating the hardware devices like files leads to some pleasing simplifications in 
the way the operating system is built and in the command structure. It does lead 
to a problem, however. A file must be opened before it can be read from or 
written to. If an error occurs on the open, the program should print an error 
message to the screen and give up. But if an error occured on the open of the 
screen itself, where could the program go to alert the operator? 

Besides which fact, it would be an awful bother to be forced to open the keyboard 
and screen at the beginning of every program. Not only would programmers be 
forced to include the same silly open calls in almost every one of their programs, 
but the rest of us would be forced to read them. To save us the bother, C opens 
three files by default: stdin (standard input), stdout (standard output) and stderr 
(standard error). Stdin defaults to the keyboard, while stdout and stderr default to 
the display. 
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DOS allows the standard output and standard input to be redirected to other files, 
however. Including the statement <FILEJ on the command line redirects standard 
input away from the keyboard and to FILEJ. Similarly, the command >FILE2 
redirects standard output to FILE2. The single redirection arrow deletes FILE2, if 
present, and creates a new one. The similar double redirection arrow appends 
output onto the end of FI LE2, if it already exists. The standard error device 
cannot be redirected for reasons we will see shortly. 

It is sometimes desirable to tie the output of one program with the input of 
another. This is done via the pipe I. The command DIR/MORE sends the output 
of DIR to the program MORE rather than to the default display. MORE in its 
turn, accepts the input from directory and outputs 25 lines at a time on the 
display. (Try it.) 

We first used this trick back in Chapter 3, in Prg3_1, to put off the discussion of 
DOS files until now. Prg3_1 takes C programs as input and generates the listing 
files which we have been using in this book. Instead of doing so directly, 
however, Prg3_1 took its input from the standard input device and sent its output 
to the standard output. I pointed out back then that all you had to do was to enter 
a command such as 

prg3_1 <prg3 1.c >lptl 

to generate perfectly suitable output to the printer. It is interesting to note that 
we could have used pipes back then also with commands such as 

prg3_1 <prg3_1.c I more 

or 

type prg3_1.c I prg3_1 I more 

to display one screenworth of program listing at a time. (Notice that the two 
DOS statements above have the same effect. Why?) 

We used redirection and pipes back then to avoid discussing file handling until 
now. It is, however, a worthwhile tool to keep in our arsenal all of the time. If 
our program has simple input/output needs, using redirected input and output 
gives the programmer one less thing with which to worry. This gets simple 
programs up and working in less time. 
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Programs without such simple input/output requirements will need to access the 
DOS file system. Before doing so, the programmer should have a basic 
understanding of DOS files. There are four parts to every DOS file name: the 
disk, the path, the name and the extension. The disk is a single letter followed 
by a colon, such as A:. This specifies which disk drive contains the file. The 
second part is the subdirectory path. This is string of directory names beginning, 
ending and separated with a backslash (\). The file name is a string of up to 8 
letters or numbers. A zero length file name is not legal. Finally, the extension 
is a string of up to 3 letters or numbers. A zero length extension is legal. The 
filename and extension are separated by a period(.). 

Most of the parts of a DOS file name are pretty straightforward, probably not 
requiring much discussion. UNIX users will have to get used to the fact that 
DOS considers the period to be a special file name divider instead of just another 
character. Users of simpler file systems, however, may not be familiar with the 
second part of the file name, the file path. 

There are several types of files which DOS recognizes. One of the special types 
is the subdirectory. The subdirectory contains pointers to other files contained 
within it. One might view this as an octopus with the subdirectory file at the 
head and the individual files at the ends of the legs. Pictorially this might look 
like the following: 

Figure 5.3 

Turbo C 
DIR.H 

TC.EXE 

STDIO.H 

DIR.H 

STAT.H STDIO.H 

STAT.H 

A directory is a file containing pointers to other files 
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Since subdirectories are nothing more than a special type of file, a subdirectory 
itself may be contained within other subdirectories leading to a multilevel file 
system. Pictorially, this more resembles a tree as in the following: 

Figure 5.4 

usbR coMllLER APJuc 

I I 
I 

!~ 1~UP BASIC ASM 

TUR OC BA IC 

srlr.H 

I 
TC~EXE STDl,0.H Dll.H 

A portion of the hierarchical structure of the author's hard disk 

A file's path name specifies all of the subdirectories the operating system must 
traverse to get from the disk's base level (the so-called root) to the file. For 
example, in the file A:\DOG\CAT\CHICKEN.BRD, the file CHICKEN.BRD is 
found in the directory CAT which is in tum found in the directory DOG which is 
found in the root of disk A:. 

It is not usually necessary to specify the entire path. A default disk drive and 
directory path, often called the current disk and current directory, are known to the 
system. If the current default path were A:\DOG\CAT, it would only be 
necessary to specify the simple file name, CHICKEN.BRD. DOS would 
automatically append the default path onto the front. If the default were A:\DOG, 
it would only be necessary to specify CAT\CHICKEN.BRD. Any path which 
does not begin with a \ is assumed to be relative to the default directory path. 
Those which do begin with \ however, specify the entire path. That is, 
CAT\CHICKEN.BRD is assumed to be relative to the default A:\DOG, whereas 
\CAT\CHICKEN.BRD is assumed to be the full path name. 

When specifying a path name in C, the programmer must remember that 
the character backslash already has a meaning. Thus, specifying a \ will 
confuse C into thinking that the next character has special meaning, as in 
\n or \OxOd. Two backslashes are required within a C character string. 
Therefore, for the above pathname, a C program must specify 
A:\\DOG\\CAT\\CHICKEN.BRD. 
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As you will see in the example programs, the Turbo C library is very helpful in 
handling pathnames in programs. In particular, the routines fnsplit() and 
fnmerge() parse DOS filenames into their constituent parts. 

Now that we understand DOS file naming conventions, let's examine our pretty 
print program, Prg3_1, rewritten now to accept a file name as input and a 
different file name as output in Prg5_3. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ 0 J: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ lJ: 
35 [ l J: 
36 [ l J: 
37 [ lJ: 
38 [ lJ: 
39 [ lJ: 
40 [ lJ: 
41 [ l J: 
42 [ l J: 
43 [ lJ: 
44 [ l J : 
45 [ lJ: 
4 6 [ l J : 
4 7 [ 2 J: 
48 [ 2 J: 
4 9 [ 2J: 
50 [ 2J: 

/* Prg5_3 -- Pretty print (2nd vers) 
by Stephen R. Davis, 1987 

*/ 

Accepts up to two arguments which are assumed to be file names. 
Prints first argument to second argument after adding line 
numbers and noting the "nesting level". If the second file name 
is missing, assumes 'stdout'. If first argument is missing, this 
is assumed to be an error and an error message is given. 

#include <stdio.h> 
#include <process.h> 
#include <errno.h> 

/*the system error list is known at link time*/ 
extern char *sys_errlist [J; 

/*define a few macros we can use*/ 
#define min (x, y) ( (x) < (y)) ? (x) : (y) 
#define lpp 66 

/*prototype definitions --*/ 
void main (int, char**); 
void nesting (unsigned*, char*); 
char *fgetstr (char*, int, FILE*); 
void errexit (unsigned); 

/*Main - open the first and second arguments and proceed 
as in Progl*/ 

void main (argc, argv) 
int argc; 
char *argv[J; 

FILE *input,*output; 
char string[256J; 
unsigned linenum,level,newlevel; 

if (argc > 3 I I argc < 2) /*wrong number args?*/ 
errexit (l); 

if ((input= fopen (argv[lJ, "r")) 0) /*get input file*/ 
errexit (2); 

if (argc == 2) /*if no output file ... */ 
output= stdout; /* ... use stdout, else ... */ 

else { /* ... open output file*/ 
if ((output = fopen (argv[2J, "r")) != 0) 

errexit (3); /*file exists already!*/ 
fclose (output); 
if ((output= fopen (argv[2J, "w")) == 0) 
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51 [ 2]: 
52 [ 1]: 
53 [ 1]: 
54 [ 1]: 
55 [ 1]: 
56 [ 1]: 
57 [ 2]: 
58 [ 2]: 
59 [ 2J: 
60 [ 2]: 
61 [ 2]: 
62 [ 2]: 
63 [ 1]: 
64 [ 1]: 
65 [ 1]: 
66 [ 1 J: 
67 [ 1]: 
68 [ 1]: 
69 [ 1]: 
70 [ 1]: 
71 [ 1]: 
72 [ 1]: 
73 [ lJ: 
74 [ 1]: 
75 [ 1]: 
76 [ OJ: 
77 [ OJ: 
78 [ OJ: 
79 [ OJ: 
80 [ OJ: 
81 [ OJ: 
82 [ OJ: 
83 [ OJ: 
84 [ 1]: 
85 [ 2 J: 
86 [ 3]: 
87 [ 2J: 
88 [ 2]: 
89 [ 1]: 
90 [ OJ: 
91 [ OJ: 
92 [ OJ: 
93 [ OJ: 
94 [ OJ: 
95 [ OJ: 
96 [ OJ: 
97 [ OJ: 
98 [ OJ: 
99 [ 1]: 

100 [ 1]: 
101 [ 1]: 
102 [ 1]: 
103 [ 2 J: 
104 [ 2 J: 
105 [ 1]: 
106 [ lJ: 
107 [ OJ: 
108 [ OJ: 
109 [ OJ: 
110 [ OJ: 
111 [ OJ: 
112 [ 1]: 
113 [ 1]: 
114 [ 1]: 

TURBOC 

errexit (4); 

linenum = 0; 
newlevel = 0; 
while (fgetstr(string, 255, input)) 

level = newlevel; 
nesting(&newlevel, string); 
string[70] = '\0'; 
if (fprintf (output, "%3u[%2u]: %s\n", ++linenum, 

min(level, newlevel), string) < 0) 
errexit (5); /*note: '\n' removed for fgets*/ 

}; 

while (linenum++ % lpp) 
fprintf (output, "\n"); 

/*fprintf (output, "\f\n");*/ 

if (fclose (input)) 
errexit (6); 

if (fclose (output)) 
errexit (7); 

/*exit normally*/ 
exit (0); 

/*<--use this ... */ 

/*<-- ... or this*/ 

/*put our toys away*/ 

/*Nesting - examine the given string for "{" and "}". Increment 
level for every "{" and decrement for "}"s.*/ 

void nesting (levelptr,stringptr) 
unsigned *levelptr; 
char *stringptr; 

do { 
if (*stringptr '{') 

*levelptr += 1; 
if (*stringptr 

*levelptr 
(*stringptr++); while 

'} ') 

1; 

/*fgetstr - 'gets' does not return '\n' -- 'fgets' does. 
this routine makes 'fgets' like 'gets'*/ 

char *fgetstr (string, n, filptr) 
char string(]; 
int n; 
FILE *filptr; 

char *retval, *ptr; 
if (retval = fgets (string, n, filptr)) 

for (ptr = string; *ptr; ptr++) 
if (*ptr == '\n') { 

*ptr = '\0'; 
break; 

return retval; 

/*Errexit - handle errors as they arise*/ 
char *errlist[J = 

{"invalid error", 

"wrong number of arguments." 
"Try: prg5_3 input_file [output_file]", 
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115 [ lJ: 
116 [ lJ: "input file does not exist", 
117 [ lJ: "output file already exists", 
118 [ 1 J: "output file cannot be created", 
119 [ 1 J: "error on output file write", 
120 [ lJ: "error on closing input file", 
121 [ lJ: "error on closing output file", 
122 [ OJ: "debug error"}; 
123 [ OJ: 
124 [ OJ: void errexit (errnum) 
125 [ OJ: unsigned errnum; 
126 [ OJ: 
127 [ lJ: if (errnum > 7) 
128 [ lJ: errnum = 7; 
129[ lJ: fprintf (stderr, "pretty printer error: %s\n" 
130 [ lJ: "system error: %s\n", 
131[ lJ: errlist [errnumJ, 
132 [ 1 J : sys_ err list [errnoJ); 
133[ 1 J : exit (errnum); 
134 [ OJ: 

This program accepts either one or two arguments. The first argument is 
assumed to be the input file. The second argument, if present, is the output file. 
If the output file already exists, it is not rewritten and the program aborts. If the 
output file name is not given then output is directed to stdout as before. As 
mentioned previously, stdout is a perfectly good file handle that has already been 
opened. 

For example, the command PRG5 _3 PRG5 _3.C OUTPUT will cause Prg5_3 to 
generate a listing of itself and place it in a file called OUTPUT. Prg5_3 will not 
overwrite an existing output file to avoid inadvertantly overwriting something of 
importance. Therefore, to list directly to the printer, it is still necessary to use 
redirection, as in PRG5 _3 PRG5 _3.C >LPTJ. 

The program is very similar to its smaller sibling. At a functional level, it is 
identical. Notice the calls to fprintf() and /gets(), replacing printf() and gets() in 
the simpler example. The primary difference is the complexity introduced by 
opening the input and output files and the associated error checking which must 
be done. The open() and /open() Turbo C routines either return handles with 
which to subsequently access the files or an error code. These error returns must 
be checked. As tempting as it might be, a C programmer cannot just assume the 
file routine executed properly. 

The routine errexit() has been written here to handle reporting of the different error 
conditions. Prg5_3 has invented an error code and associated a message with each 
one. If an error does arise, you do not want the error message appearing on stdout 
as that may have been redirected to a file. The user wants to see error messages, 
whether stdout has been redirected or not. Therefore, Prg5_3 directs its error 
output to stderr, which cannot be redirected away from the screen. 
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Notice also that after displaying its own error message, Prg5_3 references the 
array SYS_ERRLIST with the index ERRNO. SYS-ERRLIST is a list of all 
the different system errors with which Turbo C is familiar. In our above 
example, f open() did not tell us what the problem was, only that an error had 
occured which kept the request from being fulfilled. In such a case, the Turbo C 
library sets the externally defined variable ERRNO to the index of the error 
within SYS_ERRLIST. We can use this to output a more complete explanation 
of the problem. (We must do this immediately or save ERRNO away, as the 
next system call which has a failure will overwrite ERRNO with its own error 
message.) 

In our example, we accessed SYS_ ERRLIST ourselves. The Turbo C library 
provides two routines to simplify error reporting. Strerror() accepts the address of 
a user message and returns a pointer to that message with the proper error 
message from SYS_ ERRLIST tacked to the end. Perror() accepts a user string 
and prints it with the proper error message to stderr. (Perror() is equivalent to 
fprintf (stderr, strerror()).) Which to use is largely a matter of taste. I have used 
each of the three approaches in different programs as examples. 

When opening files, remember that in versions of DOS prior to 3.3, it is not 
allowed for programs to have more than twenty files open at the same time. 
While this may seem like a lot, database applications can easily attempt to exceed 
this number. Users are often confused into thinking that the FILES= specifier in 
the CONFIG.SYS file allows this limit to be raised at boot up, but this is not 
the case. The FILES statement specifies the number of files that can be opened 
in the entire system. The per program limit is still 20. (DOS 3.3 does allow the 
per program limit to be raised up to that of the FILES specifier via the Set 
Handle Count system call. In addition, there is a programming trick to lift the 
20 file limit in other versions of DOS, the details of which are beyond this text. 
For more information, see Dr. Dobb's Journal of Software Tools, #130, page 
114.) 

As an aside here, the Turbo C programmer should be very careful about the 
naming of his functions. Do not give one of your own procedues the same 
name as a function documented in the Turbo C library reference. By its presence 
the user program will keep the linker from loading the proper routine out of the 
Turbo C library. As we know, routines such as printf() make calls to the more 
fundamental routines like fprintf( ). The entire structure of Turbo C library 
routines is interconnected in less than obvious ways. Replacing any of the Turbo 
C library routines may be disastrous even if it is not obvious that your program 
calls that routine. 
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For example, on one of the later programs I inadvertantly named a function read(). 
Of course, I new that there was a Turbo C routine read(), but as I did not call it 
anywhere, I thought that all would be safe. Unfortunately, my program did 
contain a call to getchar(). What I did not realize is that getchar() simply 
performs a read() call to stdin. Since my function did not perform at all like the 
Turbo C read(), my program did not run. Worse, the error generated was very 
peculiar and did not relate at all to reality. This problem took the better part of a 
day to track down, so be careful. 

Bit 

ReadOnly 

Hidden 

System 

Volume 

Subdirectory 

Archive 

Table 5.3 
DOS File Attributes 

Meaning 

File may not be written or deleted 

File will not be listed in a directory 
listing (or in a FindFirst/FindNext system call 
unless specifically requested) 

File is considered part of the DOS operating 
system (gets transferred with SYS command) 

specifies volume identifier entry in root 
directory 
file is a subdirectory 

file has been backed up since the last time it 
was written (maintained for backup purposes) 

One final topic when discussing simple files is that of attributes. While UNIX 
maintains a complete set of access bits, DOS maintains six attribute bits. These 
bits and their explanations appear in Table 5.3. 

The desired bits are set whenever a file is created. To enhance portability (and 
confuse the programmer) the Turbo C library maintains two different concepts for 
doing this: permission and attributes. Permission is implemented to be as 
compatible with UNIX as possible. 
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For example, open() uses permission bits while _open() uses attributes. If the 
0 _ CREAT access flag is set, the open() library call will create the file if it does 
not already exist. There are two permission flags: S_IWRITE and S_IREAD. 
These may be ORed together into one field, if desired. In actual fact, S _[READ 
is not implemented, as a file is always readable in DOS. If the S _ IWRITE bit is 
set then the file is created with the RD_ ONLY attribute cleared. Otherwise, the 
RD_ ONLY attribute is set. _Open() allows the user program to pass the 
attributes to be used with the new file directly. Equates exist in DOS.H for the 
both sets of bits. 

Be sure to specify either permission or attributes on system calls which might 
create a file. Inadvertantly creating RD_ ONLY files is one of the more common 
sources of file problems. Problems relating to RD_ ONLY files are difficult to 
track down as the program tends to run correctly the first time and incorrectly on 
subsequent attempts for no apparent reason. To be safe, you may want to specify 
a permission of S _IWRITE/S _[READ or attribute of OxOO (normal) on all such 
calls-if they are not needed, they are simply ignored. 

Unfortunately, DOS does not display a file's attributes. In fact, it will not even 
display hidden files at all. Fortunately, once a file has been created, its attributes 
can still be modified using the system call. (Otherwise, Read-Only files would 
be permanently stuck onto a disk until reformatted.) Prg5_ 4 below uses this 
system call to access and, potentially, change the attributes of DOS files. This 
program can be used not only as an example of accessing these flags, but also as 
a utility for accessing file attributes. (One use for Prg5_ 4 is to clear the Read­
Only bit, so that a file accidentally created as Read-Only can be deleted.) 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ 0]: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ 0]: 
12 [ OJ: 
13 [ OJ: 
14 [ 0 l : 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ 0]: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ 1]: 
23 [ 1]: 

/*Prg5_4 - Access File Attributes 
by Stephen R. Davis, 1987 

*/ 

Use the _chmod() Turbo C library routine to access 
and write) the attribute bits of a file 

#include <stdio.h> 
#include <io.h> 
#include <process.h> 
#include <ctype.h> 

/*prototype definitions*/ 
void display (unsigned); 
void main (unsigned, char**); 
unsigned gethval (char*); 
unsigned getyval (char*); 
void error (unsigned); 

/*define global data*/ 
char *labels[] = {"read_only", 

"hidden", 
"system", 

(both read 



24 [ l]: 
25 [ l]: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ l]: 
30 [ l]: 
31 [ l]: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ l]: 
41 [ l]: 
42 [ l]: 
43 [ l]: 
44 [ l]: 
45 [ l]: 
46 [ l]: 
47 [ l]: 
48 [ l]: 
49 [ l]: 
50 [ l]: 
51 [ l]: 
52 [ l J: 
53 [ l J: 
54 [ l]: 
55 [ l]: 
56 [ l]: 
57 [ 2]: 
58 [ 2]: 
59 [ 2]: 
60 [ l]: 
61 [ l]: 
62 [ l]: 
63 [ l]: 
64 [ l]: 
65 [ l]: 
66 [ l]: 
67 [ l]: 
68 [ l]: 
69 [ l]: 
70 [ OJ: 
71 [ OJ: 
72 [ OJ: 
73 [ OJ: 
74 [ OJ: 
75 [ OJ: 
76 [ l]: 
77 [ l]: 
78 [ l]: 
79 [ l]: 
80 [ l]: 
81 [ l]: 
82 [ l]: 
83 [ l]: 
84 [ l J: 
85 [ 2]: 
86 [ 2]: 
87 [ l]: 

char *errors[] 
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"volume", 
"subdirectory", 
"archive"}; 

{"illegal", 
"Wrong number of arguments\n" 

191 

"Try 'prog5_3 <filename>' to access attribute bits", 
"Failure accessing file attributes", 
"File attributes not changed"}; 

/*Main - read the attribute bits and try to change them*/ 
void main (argc, argv) 

unsigned argc; 
char *argv []; 

unsigned attrib; 

/*first check for proper number of arguments*/ 
if ( argc ! = 2) 

error (l); 

/*now attempt to read the attributes of given file*/ 
attrib = _chmod (argv [l], 0); 
if (attrib == -1) 

error (2); 

/*interpret them for the user*/ 
printf ("Current attributes of %s are:\n", argv [l]); 
display (attrib); 

/*now let him change them*/ 
do { 

attrib = gethval ("Enter new attribute"); 
printf ("This would be:\n"); 
display (attrib); 
while (!getyval ("Is this ok? (Y/N)")); 

/*change the file's attributes*/ 
if (attrib != _chmod (argv [l], 1, attrib)) 

error (3); 
printf ("File's attributes are now:\n"); 
display (_chmod (argv [l], 0)); 

/*exit normally*/ 
exit (0); 

/*Display - interpret the attributes of a file*/ 
void display (attrib) 

unsigned attrib; 

unsigned count, bit, empty; 

/*first display numerically*/ 
printf ("%x -> ", attrib); 

/*and then interpret*/ 
empty = l; 
for (bit = 1, count = 0; count < 5; bit <<= 1, count++) 

if (attrib & bit) 
empty = O; 
printf ("%s ", labels [count]); 
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88 [ l]: 
89 [ l]: 
90 [ l]: 
91 [ OJ: 
92 [ OJ: 
93 [ OJ: 
94 [ OJ: 
95 [ OJ: 
96 [ OJ: 
97 [ l]: 
98 [ l]: 
99 [ l]: 

100 [ l]: 
101 [ l]: 
102 [ l]: 
103 [ OJ: 
104 [ OJ: 
105 [ OJ: 
106 [ OJ: 
107 [ OJ: 
108 [ OJ: 
109 [ l]: 
llO [ l]: 
lll [ OJ: 
112 [ 0]: 
ll3 [ OJ: 
ll4 [ OJ: 
ll5 [ OJ: 
ll6 [ OJ: 
ll 7 [ l]: 
ll8 [ l]: 
ll9 [ OJ: 

if (empty) 
printf ("<none>"); 

printf ("\n"); 

/*Gethval - prompt the user and get a hex value*/ 
unsigned gethval (prompt) 

char *prompt; 

unsigned answer; 

printf ("%s: ", prompt); 
scanf ("%x", &answer); 
getchar (); 
return answer; 

/*Getyval - prompt user and return a 1 for Yes response, else 0*/ 
unsigned getyval (prompt) 

char *prompt; 

printf ("%s: ", prompt); 
return tolower (getchar ()) == 'y'; 

/*Error - print error number and quit*/ 
void error (number) 

unsigned number; 

printf ("error #%d: %s\n", number, errors [number]); 
exit (number); 

An example run of Prg5 _ 4 shows: 

prg5_4 prg5_4.c 
Current attributes of prg5_4.c are: 
20 -> <none> 
Enter new attribute: 22 
This would be: 
22 -> hidden 
Is this ok? (Y/N): y 
File's attributes are now: 
22 -> hidden 

The program first reads the existing file attributes using the call to _ chmod() on 
line 4 7. If an error occurs, the attributes are returned as -1 and the program 
stops. The program then interprets them using the function display(). The user 
may then enter whatever hex attribute desired, which the program also interprets 
using display(). Once the proper attributes have been selected, the program 
assigns these to the file using the _ chmod() call on line 66. The attributes 
actually assigned are reinterpreted at that time. 

Notice that it is not desirable nor possible to change the attributes arbitrarily. 
Files which have the subdirectory flag set may not have any of the other 
attributes set, nor may they have that attribute cleared. A subdirectory should 
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stay a subdirectory and not be modified into some other type of file. Try 
changing the access bits of existing files and directories. (Better try it on a 
scratch floppy, lest you somehow succeed.) 

DOS Directories 

As we saw in the previous section, DOS directories like their UNIX cousins, are 
really nothing more than special files containing pointers to other files. Along 
with these pointers, certain other information is also stored such as date last 
written and attributes. Since one of the files within a directory may itself be 
another directory type file, directories may chain to each other in a tree like 
fashion. Not only is this hierarchical approach to directories possible, it is 
desirable. Such directory structures are the only practical method for managing 
the large amounts of on-line storage offered by rigid disk devices. 

The names of all the directories the operating system must traverse to get to a file 
is called its path. As we have seen, a path name consists of a series of directory 
names, each separated by a\ character. The entire address of a file is completed 
by adding to the front of this the letter of the disk drive 
on which this path is found followed by a colon. For example, 
C:\COMPILER\TURBOC\TC.EXE is the full name of my Turbo C compiler­
it is the TC.EXE file pointed at by the directory TURBOC which is in tum 
pointed at by the directory COMPILER that is found in the root of disk C. 

Typically a user tends to put files which somehow belong together into the same 
directory (all the data files, at least). It would be tiring indeed to be forced to type 
C:\COMPILER\TURBOC\ in front of every file in the Turbo C library. 
Therefore, DOS allows the operator to specify a default disk and a default path. 
Any file name which is specified without a disk or path in front gets the default 
values tacked onto it. 

To aid in traversing the directory tree, two special directories are defined in every 
directory except the root. These are the subdirectory'.' (called dot) and' . .' (known 
as dot-dot). The directory dot is the current directory, while directory dot-dot is 
the parent of the current directory. 

The user level CHDIR (CD) command sets or changes this default. When using 
this command, the user usually has a mental image of moving from one directory 
to another, but, of course, there is no movement at all, only a change in the 
default. Programs may also change the default using the chdir() Turbo C library 
routine which in tum invokes the Change Current Directory (Ox3b) system call. 
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The user may change the default disk drive by entering the disk letter followed by 
a colon and nothing else. 

Interestingly the user cannot change the default disk and directory in the same 
command. This action must always be taken in two separate commands. The 
example program Prg5_5 below not only demonstrates how a program can 
change the default directory, but it serves a useful purpose. Prg5_5 allows the 
user to change default disk and directory in the same command. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ 1): 
34 [ lJ: 
35 [ 2J: 
36 [ 2J: 
37 [ 2J: 
38 [ 2): 
39 [ lJ: 
40 [ 1): 
41 [ lJ: 
42 [ lJ: 
43 [ 1): 
44 [ lJ: 
45 [ 1): 
46 [ lJ: 
47 [ lJ: 
48 [ 2): 
49 [ 2J: 
50 [ 2J: 

/*Prg5_5 - Change Disk and Directory 
by Stephen R. Davis, 1987 

*/ 

Change disk and directory at the same time. Both disk and directory 
are optional. If either is missing, the current disk or directory 
is assumed. If both are missing, the value of the environment 
label DEFAULT is used. 

#include <stdio.h> 
#include <stdlib.h> 
#include <dir.h> 
#include <process.h> 
#include <ctype.h> 

#define MAXDISK 5 

/*prototype definitions*/ 
void main (unsigned, char**); 
unsigned parse (char*); 

/*global variables*/ 
unsigned disk; 
char *directory; 
char defaultdir (132); 

/*Main - load up default fcb, then parse the input argument and 
finally set the disk and directory*/ 

void main (argc, argv) 
unsigned argc; 
char *argv[J; 

/*check the number of arguments*/ 
if (argc > 2) { 

printf ("Wrong number of arguments\n" 
try '%s [pathname) '\n", 

argv [0]); 
exit (1); 

/*if no argument provided, get the argument from the environment* 
if (argc == 1) 

if (argv (1) = getenv ("DEFAULT")) 
printf ("Using default directory\n"); 

/*if no argument present, just display the defaults*/ 
if (!argv (1)) { 

disk= getdisk (); 
getcurdir (disk+ 1, defaultdir); 
printf ("%c:%s", (char) (disk+ 'A'), defaultdir); 



51 [ 2J: 
52 [ 2J: 
53 [ 2J: 
54 [ 2]: 
55 [ 3J: 
56 [ 3J: 
57 [ 2J: 
58 [ 2J: 
59 [ 2J: 
60 [ 2J: 
61 [ 2J: 
62 [ 3J: 
63 [ 3J: 
64 [ 2 J: 
65 [ lJ: 
66 [ lJ: 
67 [ lJ: 
68 [ lJ: 
69 [ OJ: 
70 [ OJ: 
71 [ OJ: 
72 [ OJ: 
73 [ OJ: 
74 [ OJ: 
75 [ lJ: 
76 [ l]: 
77 [ 2 J: 
78 [ 2J: 
79 [ 2J: 
80 [ 2J: 
81 [ l]: 
82 [ lJ: 
83 [ 2 J: 
84 [ 2J: 
85 [ lJ: 
86 [ lJ: 
87 [ lJ: 
88 [ lJ: 
89 [ 2J: 
90 [ lJ: 
91 [ lJ: 
92 [ lJ: 
93 [ l]: 
94 [ OJ: 
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else { 

/*if present, parse the input argument into drive and direc 
if (parse (argv (lJ)) 

printf ("Illegal input: %s\n", argv [lJ); 
exit (1); 

/*now set the disk and directory*/ 
setdisk (disk); 
if (chdir (directory)) { 

printf ("Directory %s does not exist\n", directory); 
exit (1); 

/*exit normally*/ 
exit (0); 

/*Parse - parse out the disk from the file name*/ 
unsigned parse (ptr) 

char *ptr; 

/*first check for the presence of a disk*/ 
if (ptr [ l J == ' : ') { 

else 

disk= (unsigned) (toupper (ptr [OJ) - 'A'); 
if (disk > MAXDISK) 

return -1; 
directory = ptr + 2; 

disk= getdisk (); 
directory = ptr; 

/*if no directory present, change to '.'*/ 
if (*directory== '\0') { 

directory= "."; 

/*return success*/ 
return 0; 

Prg5 _5 first checks the number of arguments, like usual. If the number of 
arguments is incorrect, a message is displayed prompting the user as to what type 
of input is expected. Notice that in printing out the user prompt on line 36, the 
name of the program is not hard coded. Instead, ARGV[O] is used. Under DOS 
3.0 and later, ARGV[O] points to the full pathname of the executing program. 
This technique has the advantage that the proper name of the program is used in 
the error message, even if the program is renamed after compiling. It has the 
disadvantage that it only works under Version 3.x of DOS. Under Version 2.x, 
the name of the program must be hardcoded. 

Let's skip the special code involving the DEFAULT and concentrate on the 
normal cases. If no argument is present, then Prg5_5 simply asks for the current 
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disk and the current directory and displays these just as CHDIR or CD do when 
presented no arguments. If one argument is present, the function parse() is used 
to pull the path name apart. Parse() takes a somewhat simplistic approach. If 
the second character is a colon, it assumes that the first letter is the disk letter. 
It converts this disk letter into a number, using a 0 for A, a 1 for B, etc. If no 
disk is present it uses the getdisk() routine to fetch the current disk number. 
Anything after the disk letter is assumed to be the target path. If there is nothing 
left after the disk, then parse() supplies the default path of '.', the current 
directory. 

Upon returning from parse(), Prg5_5 uses the setdisk() and chdir() library routines 
to change the defaults to the target value. Prg5_5, renamed to something more 
reasonable such as CDD (Change Disk and Directory), is now in position to 
replace the DOS CHDIR and CD command, relieving their limitation. 

D:\ 
D>prg5_5 c:\user\c 

C:\USER\C 
C> 

<--old disk and directory 

<--note the new disk and directory 

In Prg5_3 and Prg5_ 4 we were provided with a single file for which the complete 
pathname was given, either explicitly or implicitly using the directory and disk 
defaults. One of the more powerful features of DOS filenames are the so-called 
wildcards, the * and ? , which allow more than one file at a time to be specified. 
The question mark in a file name stands for any single legal file name character. 
For example, C?T. stands for CAT, CBT, etc through CZT and then CIT and so 
on. The asterisk stands for any number of question marks from that point 
onwards in the name. 

Consider the following examples: 

F? -> matches any two letter file name beginning with an F 
and w/ null extensions 

F?.* ->matches any two letter file name beginning with an F 
F*.* ->matches any file name beginning with an F 
*.* ->matches any file name 

Be careful, however: 

*F.* -> also matches any file name (the letter after the 
asterisk is ignored) 

Therefore, while the command COPY CAT. B: might copy the file CAT in the 
current directory to the default directory on drive B, COPY C*.* B: would copy 
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all files in the current directory beginning with a C to the default directory on 
drive B. Just as with simple file names, a path name can be used with the 
wildcards so that COPY \DOG\C*.* B: would copy all of the files in the 
directory \DOG which begin with a C. Programs gain access to the list of files 
which match wild cards by using the DOS Find First and Find Next system calls 
or the equivalent Turbo C library routines,findfirst() andfindnext(). 

Findfirst() accepts three arguments: the pathname plus wild cards, a buffer of type 
FFBLK, and the attribute flags. Findfirst() finds the first filename which matches 
the given path and has attributes matching those in the third argument. It stores 
the name of the file into FFBLK.FF _NAME as an ASCII string. It also stores 
away extra information into FFBLK which it uses to find the next filename 
passing the same criteria when the user program calls findnext( ). The user 
program continues to call findnext() until it returns a -1, indicating there were 
no more found. If there are no files at all matching the criteria,findfirst() returns 
the -1 itself. 

As an example of its use, let's look at another program designed to expand upon 
the capabilities of DOS, Prg5_6. In DOS, the ERASE command erases a file 
from disk. ERASE allows the use of wild cards, so that one might erase all C 
source files in the current directory by simply entering the command ERASE 
* .C. This, however, is a dangerous thing to do. If the user happens to be in the 
wrong directory or if he enters the command incorrectly (for example, ERASE 
*. C) the results can be disasterous. Most systems either require or allow a 
verify option on the erase command to keep users from inadvertently deleting 
useful files. 

Prg5_6 represents just such an erase with verify command. Prg5_6 expects a 
single argument consisting of an optional drive and pathname attached to a 
filename possibly containing wildcards. The program begins by parsing out the 
drive and pathname of the argument for later use. Rather than make our own 
parsing function as we did in Prg5_5, this time we use the much more able 
fnsplit() library routine. Notice thatfnsplit() splits a full pathname into its four 
consituent parts (disk, path, filename and extension) and writes these into 
different buffers. The labels MAXDRIVE, MAXDIR, MAXFILE and 
MAXEXT can be used to define buffers which are guaranteed to be large enough 
to accept the four output strings. Providing fnsplit() a 0 address for any of the 
four buffer addresses indicates the program is not interested in that particular 
string. 
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The program then presents the input filename to findfirst( ). If no match is found, 
the message error in path along with the system error is printed on the display on 
line 49. (This time we used thefprintf(stderr, strerror ())call.) 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ lJ: 
38 [ lJ: 
39 [ 2J: 
40 [ 2J: 
41 [ 2J: 
42 [ lJ: 
43 [ lJ: 
44 [ lJ: 
45 [ lJ: 
46 [ lJ: 
47 [ lJ: 
48 [ lJ: 
49 [ 2J: 
50 [ 2J: 
51 [ lJ: 
52 [ lJ: 
53 [ lJ: 
54 [ lJ: 
55 [ 2J: 
56 [ 2J: 
57 [ 2J: 
58 [ 2J: 

/*Prg5_6 - Erase w/ Question 
by Stephen R. Davis, 1987 

*/ 

One of the more glaring deficiencies in MS-DOS is the absence 
of a verify option on the delete command. Several public 
domain utilities have been created to rectify this problem. 
This program recreates that solution. It also serves as a 
simple example of the FindFirst/FindNext system calls. 

This program searches for any file which matches the first 
argument, which may contain disk drive, path and or wild-cards. 
The names of any files which match are presented to the user. If 
he enters a 'Y' or 'y', the file'is deleted. Anything else, skips 
to the next file. Read_only files are not deleted and hidden files 
are not found. 

#include <stdio.h> 
#include <dos.h> 
#include <dir.h> 
#include <ctype.h> 
#include <errno.h> 
#include <process.h> 
#include <conio.h> 

/*define our global data*/ 
struct ffblk control block; 
char path [MAXPATHJ,-drive [MAXDRIVEJ, dir [MAXDIRJ, file [MAXFILEJ; 
char ext [MAXEXTJ; 

/*Main - search the given path; for all those found ask the user 
whether to delete them or not*/ 

void main (argc, argv) 
unsigned argc; 
char *argv [J; 

/*check argument count (better be just one)*/ 
if (argc != 2) { 

printf ("Wrong number of arguments\n" 
try 'prg5_6 pattern' to erase w/ question\n"); 

exit (1); 

/*split the argument into file and directory*/ 
fnsplit (argv [lJ, drive, dir, O, 0); 

/*look for files which match the path provided*/ 
if (findfirst (argv [lJ, &control block, 0)) { 

fprintf (stderr, strerror ("error in path")); 
exit (1); 

/*use this (and subsequent) files combined with our path*/ 
do { 

/*build up the current file's name*/ 
fnsplit (control_block.ff_name, 0, 0, file, ext); 
fnmerge (path, drive, dir, file, ext); 



59 [ 2]: 
60 [ 2]: 
61 [ 2]: 
62 [ 2]: 
63 [ 2]: 
64 [ 2]: 
65 [ l]: 
66 [ l]: 
67 [ l]: 
68 [ l]: 
69 [ OJ: 
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/*prompt user*/ 
printf ("\nErase %s? ", path); 
if (tolower (getche ()) == 'y') 

if (unlink (path)) 
fprintf (stderr, 

strerror (" error erasing file")); 
) while (!findnext (&control_block)); 

/*exit normally*/ 
exit (0); 

If a match is found, only the filename is given in FF _NAME and not the entire 
path. We must first split the filename into name and extension using the 
fnsplit() function and then recombine the two parts along with the disk and 
pathname saved back on line 45 using the fnmerge() call. Fnmerge() takes the 
four character strings and combines them into the single full pathname. The 
label MAXPATH is provided to define a buffer large enough to accommodate any 
path generated by fnmerge(). Pictorially it looks like this: 

original argument: 
----------------------! 
I I 
I ---------------------- Complete file name 
! 

v v 
prg5_6 c:\dos\cat\*.c c:\dos\cat\prglO_l.c 

" 

findfirst() finds: 
prglO_l.c-------------------

Having constructed the entire filename, including directory and path, Prg5_6 then 
presents this to the user along with the prompt Erase?. If the user enters a Y or a 
y to this prompt, the program erases the file by presenting its complete pathname 
to the library routine unlink(). (We could have used the equivalent library routine 
remove(), but this Turbo C library function is not documented in the original 
Turbo C Reference Guide except for an oblique reference on page 11.) 

C>prgS_ 6 * .c 

Erase PRGS 3.C? y -
Erase PRGS - 2.C? y 
Erase PRGS 11.C? n <--this file not deleted -
Erase PRGS 1. C? y -
Erase PRGS - 4.C? y 
Erase PRGS 5.C? y -
Erase PRGS 6.C? y -
Erase PRGS - 7.C? y 
Erase PRGS 12.C? y 
Erase PRGS - 8.C? y 
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Erase PRG5_10A.C? y 
Erase PRG5_10B.C? y 
Erase PRG5_9.C? y 

If the user enters anything other than a Y or y, the file is not erased and the 
program skips over to the next. Prg5_6 quits when the last file which matches 
is found. If the file is marked as Read-Only, the unlink() will return an error and 
the program will spit out a message to the right of the file explaining the 
problem. (Use Prg5_ 4 above to clear the Read-Only flag if you still want to 
delete it.) 

When given a more mnemonic name, such as ERQ (ERase w/ Question), this 
program can make a valuable addition to any set of DOS utilities. Perhaps I am 
being over cautious, but I have not used anything but ERQ to erase files off of 
my disks in well over a year. 

In the example above, we specified an attribute of 0 for our findfirst( )lfindnext() 
requests. This indicates we are interested in files with none of the special 
attribute flags set. Had we wanted to include Read-Only, Hidden or System files, 
we need only have set the Read-Only, Hidden or System bits in the attribute 
argument of findfirst() (the labels FA_RDONLY, FA_HIDDEN and 
FA_SYSTEM are defined in the include file DOS.H). 

By the way, notice that setting the FA_RDONLY flag in the attribute field does 
not keep normal files from being listed, it merely includes Read-Only files in 
with the others. If we wanted to list ONLY the Read-Only files, for example, we 
would skip over files found without the FA-RDONLY bit set in the attribute 
field in the FFBLK returned fromfindfirst()lfindnext(), FFBLK.FF _ATTRIB as 
shown below. Depending on the conditional, we could devise a program to 
only list any given subset of files matching the wild-card pattern. 

/*only consider Read-Only files*/ 
if (ffblk.ff attrib & FA RDONLY) 

/*continue process*/ 

In similar fashion, setting the FA_ DI REC bit in the attributes field results in any 
subdirectories being displayed along with other files in the directory. Being able 
to list subdirectories leads to several interesting possibilities, none of which are 
explored by the DOS commands. The power of subdirectories is the ability to 
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subdivide storage space into manageable parts. Their weakness lies in finding 
individual files within that multidivided storage space. Often the user knows that 
somewhere on his hard disk is a file he wants, but without knowing which 
subdirectory to look into, the DIR command does him no good. As attractive as 
hierarchical storage is, it is sometimes desirable to act on the entire disk with one 
command as if the various subdivisions did not exist. 

Prg5_7 uses the subdirectory find feature to provide just such a capability. This 
program is a global find and copy command. It is ideal both for finding that 
errant file which just doesn't seem to be in the proper subdirectory and for putting 
it there. Prg5_7 starts at the specified directory and searches all subdirectories for 
the pattern supplied. If a second directory name is supplied, then all files found 
are copied to that directory. If no second directory name is present, then the full 
path of the file found is printed without copying anything. This forms a sort of 
global DIR command. 

For example, suppose that I cannot find a particular data file which I feel sure is 
somewhere on my hard disk. Being a reasonable sort, I am pretty sure that I 
named it with the extension .DAT for data. The command PRG5 7 C:\*.DAT 
will perform a search of every subdirectory of drive C for files with the extension 
.DAT. If I was quite certain that it must be in one of the subdirectories off of 
directory LABDATA, then I might have saved some search time by entering 
PRG5 _7 C:\LABDATA\* .DAT instead. This would cause Prg5_7 to search 
LABDAT A and all of its subdirectories, but not the remainder of the disk. 

If I really just wanted to copy all of the .DAT files found in directory LABDATA 
and all of its subdirectories to a floppy disk, perhaps for backup purposes, 
entering a separate COPY command in each of the subdirectories which Prg5_7 
presented me can still be quite laborious. Entering the single command PRG5_7 
C:\LABDATA\*.DAT B: saves me the trouble by automatically copying each 
file found to the target directory. If two files with the same name are found, only 
the first one gets copied over-the second file generates an error message. 

It is not necessary to specify the disk drive and full path every time, but be 
careful on one point. Entering PRG5 _7 *.DAT searches the current directory and 
any of its subdirectories for .DAT files-it does not search the entire disk as you 
might think. The \ is necessary in front to start the search at the disk root if the 
entire disk is to be searched (PRG5 _7 \* .DAn, 

The operator must specify the target path, even if it is the current directory. 
Leaving it off would cause Prg_ 7 to simply perform a search. However, we can 
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use the dot directory here. The command Prg5 _7 D:\*.BAS .\would copy all of 
the BASIC files on drive D to the current directory. 

The operator must specify the target path, even if it is the current directory. 
Leaving it off would cause Prg5_7 to simply perform a search. However, we can 
use the dot directory here. The command PRG5 _7 D:\*.BAS .\would copy all of 
the BASIC files on drive D to the current directory. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ 0]: 
34 [ 0]: 
35 [ OJ: 
36 [ 1]: 
37 [ lJ: 
38 [ lJ: 
39 [ 1]: 
40 [ lJ: 
41 [ lJ: 
42 [ 2J: 
43 [ 2]: 
44 [ 2]: 
45 [ 2J: 
46 [ 2]: 
47 [ 2]: 
48 [ 2]: 
49 [ 2]: 
50 [ 1]: 
51 [ 1]: 
52 [ lJ: 

/*Prg5_7 - Copy/Find all files matching a pattern 
by Stephen R. Davis, 1987 

Search all subdirectories for a particular file pattern. All files 
found matching that pattern are copied to the target path, if presen 

If a file is found on the target disk with the same name, it is not 
overwritten. Thus, if more than one file exists in the subdirectory 
tree with the same name, only the first one will get copied. 

It is possible to specify a starting point. For example, 
prg5 7 c:\user\*.* b: 

copies all of-the files found in \USER and all of its subdirectories 
*/ 

#include <stdio.h> 
#include <dir.h> 
#include <io.h> 
#include <dos.h> 
#include <process.h> 
#include <fcntl.h> 
#include <conio.h> 
#include <ctype.h> 

/*prototyping definitions*/ 
void main (unsigned, char**); 
void copyall (char*, char*, char*); 
void copy (char*, char*); 
void append (char*, char*, char*); 

/*Main - parse user input and start the ball rolling*/ 
void main (argc, argv) 

unsigned argc; 
char *argv (]; 

char sourcedisk [MAXDRIVE], sourcedir [MAXDIRJ; 
char sourcefile [MAXFILE], sourceext [MAXEXTJ; 
char fromdir [MAXPATHJ, pattern [MAXFILE+MAXEXT]; 

/*check the argument count*/ 
if (argc == 1 I I argc > 3) { 

printf ("Wrong number of arguments\n" 

exit (1); 

try 'prg5_7 <source> [<dest>J' to copy all" 
files from source and all of it's \n" 
subdirectories to destination.\n" 
e.g., prg5 7 c:\*.* d: to copy the entire\n" 
contents of C disk to D.\n" 
(Simply find if no destination present)\n"); 

/*parse argument 1 into its two halves*/ 



53 [ lJ: 
54 [ lJ: 
55 [ lJ: 
56 [ lJ: 
57 [ lJ: 
58 [ lJ: 
59 [ lJ: 
60 [ lJ: 
61 [ lJ: 
62 [ lJ: 
63 [ lJ: 
64 [ OJ: 
65 [ OJ: 
66 [ OJ: 
67 [ OJ: 
68 [ OJ: 
69 [ OJ: 
70 [ OJ: 
71 [ lJ: 
72 [ lJ: 
73 [ lJ: 
74 [ lJ: 
75 [ lJ: 
76 [ lJ: 
77 [ lJ: 
78 [ 2J: 
79 [ 2J: 
80 [ 2J: 
81 [ 2J: 
82 [ 2J: 
83 [ 3J: 
84 [ 3J: 
85 [ 3J: 
86 [ 3J: 
87 [ 3J: 
88 [ 2J: 
89 [ 2J: 
90 [ 2J: 
91 [ lJ: 
92 [ lJ: 
93 [ lJ: 
94 [ lJ: 
95 [ lJ: 
96 [ lJ: 
97 [ 2J: 
98 [ 2J: 
99 [ 2J: 

100 [ 2J: 
101 [ 2J: 
102 [ 2J: 
103 [ 3J: 
104 [ 3J: 
105 [ 3J: 
106 [ 3J: 
107 [ 3J: 
108 [ 3J: 
109 [ 3J: 
110 [ 2J: 
111 [ lJ: 
112 [ OJ: 
113 [ OJ: 
114 [ OJ: 
115 [ OJ: 
116 [ OJ: 
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fnsplit (argv [lJ, sourcedisk, sourcedir, sourcefile, sourceext); 

/*now reconstruct the two halves*/ 
fnmerge (fromdir, sourcedisk, sourcedir, 0, 0); 
fnmerge (pattern, 0, 0, sourcefile, sourceext); 

/*now just copy them all over*/ 
copyall (fromdir, pattern, argv [2J); 

/*exit normally*/ 
exit (0); 

/*Copyall - copy all files matching a given pattern from the 
current directory and all subdirectories*/ 

void copyall (fromdir, pattern, todir) 
char *fromdir, *pattern, *todir; 

char spath [MAXPATHJ, tpath [MAXPATHJ; 
struct ffblk block; 

/*first copy all files patching the pattern*/ 
append (spath, fromdir, pattern); 
if (!findfirst (spath, &block, 0)) 

do { 
append (spath, fromdir, block.ff_name); 
append (tpath, todir, block.ff_name); 

/*if destination present, copy; else just find*/ 
if (todir) { 

printf ("\nCopying %s -> %s", spath, tpath); 
copy (spath, tpath); 

else { 
printf ("\nFound %s -- continue?", spath); 
if (tolower (getche ()) == 'n') exit (l); 

) while (!findnext (&block)); 

/*now check all subdirectories*/ 
append (spath, fromdir, "*"); 
if (!findfirst (spath, &block, FA_DIREC)) 

do { 

/*only pay attention to directories*/ 
if (block.ff_attrib & FA_DIREC) 

/*ignore directories '.' and ' .. '*/ 
if (block.ff_name [OJ != '. ') 

) 

/*now tack on name of directory+ '\'*/ 
append (spath, fromdir, block.ff_name); 
append (spath, spath, "\\"); 

/*and copy its contents too*/ 
copyall (spath, pattern, todir); 

} while (!findnext (&block)); 

/*Copy - given two patterns, copy the source to the destination file*/ 
#define NSECT 17 
void copy (from, to) 
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117 [ OJ: 
118 [ OJ: 
119 [ lJ: 
120 [ lJ: 
121 [ lJ: 
122 [ l]: 
123 [ lJ: 
124 [ lJ: 
125 [ 2J: 
126 [ 2J: 
127 [ lJ: 
128 [ lJ: 
129 [ lJ: 
130 [ lJ: 
131 [ 2J: 
132 [ 2J: 
133 [ 2J: 
134 [ lJ: 
135 [ lJ: 
136 [ lJ: 
137 [ lJ: 
138 [ lJ: 
139 [ 2J: 
140 [ 2J: 
141 [ lJ: 
142 [ lJ: 
143 [ lJ: 
144 [ OJ: 
145 [ OJ: 
146 [ OJ: 
147 [ OJ: 
148 [ OJ: 
149 [ OJ: 
150 [ lJ: 
151 [ lJ: 
152 [ lJ: 
153 [ lJ: 
154 [ lJ: 
155 [ lJ: 
156 [ lJ: 
157 [ lJ: 
158 [ lJ: 
159 [ lJ: 
160 [ OJ: 

char *from, *to; 

int fhandle, thandle, number; 
char buffer [NSECT*512J; 

/*open the source for reading binary*/ 
fmode = 0 BINARY; 

if ((fhandle =open (from, O_RDONLY)) == -1) 
perror ("\nError opening source file"); 
return; 

/*now open the destination*/ 
if ((thandle = creatnew (to, 0)) == -1) { 

perror ("\nError opening target file"); 
close (fhandle); 
return; 

/*now perform the copy*/ 
while (number= read (fhandle, buffer, NSECT*512)) 

if (number != write (thandle, buffer, number)) 
fprintf (;tderr, "\nError on writing target file"); 
break; 

close (fhandle); 
close (thandle); 

/*Append - concatenate two strings together*/ 
void append (to, froml, from2) 

char *to, *froml, *from2; 

/*copy the first string*/ 
while (*froml) 

*to++ = *froml++; 

/*now the second*/ 
while (*from2) 

*to++ = *from2++; 

/*and then tack on a terminator*/ 
*to= '\0'; 

For example, to copy all .DAT files from the author's hard disk to drive D: enter: 

C>prg5 7 \*.dat d:\ 
Copying \BENCH\BENCH07.DAT -> d:\BENCH07.DAT 
Copying \DOS\DBUGUTIL\DIRN-DBU.DAT -> d:\DIRN-DBU.DAT 
Copying \USER\BOOK\PROGRAMS\PRG4_2G.DAT -> d:\PRG4_2G.DAT 

Now we will take a quick look at how Prg5_7 works. After first checking the 
number of arguments in routine fashion, Prg5_7 divides the first argument into 
two halves: the disk/path and the filename. This it does quite simply by calling 
fnsplit() to parse the argument into its four constituent parts and then combining 
the two pairs back together again with fnmerge( ). It then calls the function 
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copyall() to copy all of the files from the given directory which match the given 
pattern to the second argument, if present. 

Copyall() recombines the directory and pattern to come up with a search pattern 
which it passes to findfirst( ). All files found are either copied over if the pointer 
to the second argument is not NULL, or simply listed to stdout if it is. Having 
found all of the files, it then makes a search of all subdirectories from this 
directory. This it does by calling findfirst() again using the wild card *, which 
matches all directory names, and the attribute FA_DIREC. The test on line 99 
filters out all non-directories found during this second search. The test on line 
102 filters out the special directories dot and dot-dot. The names of any 
directories which copyall() finds are added to the end of the search directory (with 
an extra\) and the result is passed to copyall() for searching. 

In this way, copyall() looks through all of the subdirectories of all the hard disk 
in a depth before breadth exhaustive search. Calling copyall() from within 
copyall() itself may seem like a strange thing to do. After all, isn't this going to 
lead eventually to an infinite loop? As it turns out, this is a perfectly acceptable 
thing to do as long as the function is written properly. The technique is called 
recursive programming and is ideal for these types of repetitive applications. We 
will study recursion in more detail in Chapter 8 when we discuss speed and space 
optimization techniques. 

The actual copy is performed in the function copy(). Copy() accepts two 
arguments, the full pathname of the source file and the pathname of the target 
file. It opens the source for reading and creates the target. An error on either 
aborts the copy. Errors are reported to stderr using the perror() routine. The copy 
is performed by performing sector reads followed by writes until the number of 
bytes read from the source file is 0, indicating an end of file. The handles 
returned from the opens must be subsequently used on the reads and writes to 
access the file. Finally, both file handles are closed and the function returns. 

There are two points of interest here. First, remember to close the first file if an 
error is encountered on the second open. Otherwise, the file will stay open until 
the program has completed. Although not harmful, this file will count against 
the 20 file per program limit. Second, reading and writing a single sector at a 
time is not particularly fast. We make the copy faster by increasing the block 
size and the number of bytes read at a time. The number of bytes read and written 
should always be a multiple of 512, as this is the size of a single sector. The 
#define NSECT specifies the number of sectors tranferred at a time. 
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Copy() takes the conservative approach by creating the target file. If this file 
exists, the call to create new() generates an error. Copy() could just as easily have 
overwritten the target file by using open() with the truncate option selected. 

Remember that output from prg5 _ 7 can be redirected to another file. Although 
probably not useful in the copy mode, this can be very useful in the find mode to 
provide an image of the entire contents of a disk. 

A similar Erase All command could have be written just as easily by combining 
Prg5_7 with Prg5_6. (Although doing so should be trivially easy, given the 
example programs provided, I will not present such a program lest a reader 
carelessly delete his entire hard disk.) If you do decide to create your own Erase 
All, please make it an Erase All wl Question. The ability to erase the entire 
contents of a disk with a single command is not one that I would want lying 
about unguarded. 

(In fact, Prg5_7 can be made into quite a useful utility. Often the details of such 
a real world utility obscure the principles of operation. However, it is interesting 
to see this done at leat once. Appendix 5 shows the development of such a DOS 
utility, KOPY, from Prg5_7.) 

Dividing a hard disk up into many small directories brings with it another 
problem. Many programs require auxiliary files to run properly. These files may 
contain data, overlays, or configuration information. The classic example here 
was the earlier versions of the word processor and editor WordStar, which required 
two extra files to run properly. The problem was that we might reasonably want 
to execute WordStar from any directory which contains text files, which is most 
of them. Of course, we could do this by entering the entire path for WordStar. 
Unfortunately, if we were not actually in the WordStar directory, it would not 
execute properly since it could not find its helper files. 

The solution in those days was to put copies of the helper files for WordStar in 
just about every directory on the hard disk. Not only was this wasteful of disk 
space, but it spoiled much of the elegance of hierarchical directories. As authors 
of software, if our program requires support files, we do not want our users to be 
compelled to make dozens of copies of them all over their hard disk. Under DOS 
3.x, there is a solution. 

As we have noted before, a Turbo C program executed under DOS 3.x has access 
to its own name in argument 0. In the past we have used this as the name of the 
program, preferring this over hardcoding its name in case the user renames the 
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program without recompiling. However, not only is the name of the program 
itself present their, but its complete pathname. 

Prg5_8 is a simple example of how a program can use this to find its helper 
files. Prg5_8 accepts one argument, which is taken to be the name of a file. The 
program first attempts to open a file of that name. If that attempt is 
unsuccessful, Prg5_8 looks for the file in the directory from which Prg5_8 itself 
was executed, the so-called home directory. 

This is best explained by example. Suppose the current default directory is 
C:\USER\C and suppose that PRG5_8 is in directory D:\UTILS. If the user 
enters PRG5 _8 EXAMPLE, the program will first attempt to open EXAMPLE 
in directory C:\USER\C. If it is found, it is printed on the display. But if it is 
not found, the program does not give up. Instead it uses the fnsplit() library 
routine to split the disk and path, D :\UT/LS\, off of the program name in 
ARGV[O] on line 41. It then peels the simple filename off of any path which 
may have been attached to it on line 42. Finally, it constructs a new pathname 
from the two parts, resulting in this case with D:\UTILS\EXAMPLE. If the 
program can open this file, it uses it instead. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ lJ: 
29 [ lJ: 
30 [ lJ: 
31 [ lJ: 
32 [ lJ: 
33 [ 2J: 
34 [ 2J: 

/*Prg5_8 - Opening a file in the "Home Directory" 
by Stephen R. Davis, 1987 

*/ 

When a file is not found to be present in the current directory, 
it is usually advisable to look in the directory in which the 
program resides before giving up. Note that this program requires 
DOS 3.x to function. 

#include <stdio.h> 
#include <dir.h> 
#include <fcntl.h> 
#include <io.h> 
#include <dos.h> 
#include <process.h> 

/*globally defined data*/ 

char path [MAXPATHJ, drive [MAXDRIVEJ, dir [MAXDIRJ, file [MAXFILEJ; 
char ext [MAXEXTJ; 

/*Main - try and open the file specified as the first argument. 
If an error is returned, look in the home directory.*/ 

void main (argc, argv) 
unsigned argc; 
char *argv [J; 

unsigned handle, number; 
char buffer [512J; 

/*if error on opening in current directory ... */ 
if ((handle= open (argv [l], O_RDONLY)) == -1) 

/* ... and if this is running under DOS 3.x ... */ 



208 TURBO C 

35 [ 2J: 
36 [ 3]: 
37 [ 3]: 
38 [ 2]: 
39 [ 2J: 
40 [ 2]: 
41 [ 2J: 
42 [ 2J: 
43 [ 2J: 
44 [ 2J: 
45 [ 3]: 
46 [ 3J: 
47 [ 2J: 
48 [ lJ: 
49 [ lJ: 
50 [ lJ: 
51 [ lJ: 
52 [ lJ: 
53 [ lJ: 
54 [ 1]: 
55 [ lJ: 
56 [ OJ: 

if (_osmajor < 3) { 
printf ("Can't find file (try using DOS 3.x)\n"); 
exit (1); 

/* ... look in home directory*/ 
fnsplit (argv [OJ, drive, dir, 0, 0); 
fnsplit (argv [lJ, 0, 0, file, ext); 
fnmerge ( path, drive, dir, file, ext); 
if ((handle= open (path, O_RDONLY)) == -1) 

perror ("Can't find file"); 
exit (1); 

/*now copy the file to the screen*/ 
while (number= read (handle, buffer, 512)) 

fwrite (buffer, number, 1, stdout); 

/*and exit normally*/ 
exit (0); 

In our case, Prg5_8 did not need the file it was printing to the screen, per se. 
However, the entire program could be rewritten as a g/obalopen() function which 
future programs use to provide the same service. Under DOS 3.x, your programs 
need never trouble their users with the necessity of keeping multiple copies of 
helper files again. 

Finally, as part of the housekeeping chores of maintaining a tree of disk 
directories, it often becomes necessary to move a file from one directory to 
another. This is either because the file was not placed in the proper directory in 
the first place or because the host directory is being done away with and its 
contents divided among the remaining directories. Normally, moving a file is 
accomplished by copying it from the source to the target directory and then 
deleting the file from the source directory. 

We can use the DOS Rename system call to perform the move operation in one 
step. Rename accepts two pathnames, the old name and the new name. During 
a rename operation, only the simple filename is different between the old and new 
names. The pathname stays the same. However, this need not be the case. If 
the pathname is different between the old and new names, the Rename system 
call will relink the file from the old directory path into the new one, in effect, 
moving the file. 

Of course, the file has not moved at all. It is only that it is now accessible 
through a different path. This is actually desirable. Not only is this quicker, but 
it avoids some of the disk storage space fragmenting, which accompanies copying 
and deleting files back and forth. (Notice how the time required to move a file is 
not a function of its size, while it is when copying.) 
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Prg5_9 below demonstrates the principle. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ lJ: 
28 [ lJ: 
29 [ lJ: 
30 [ lJ: 
31 [ 2J: 
32 [ 2J: 
33 [ 2]: 
34 [ 2J: 
35 [ lJ: 
36 [ 1]: 
37 [ 1]: 

38 [ lJ: 
39 [ lJ: 
40 [ lJ: 
41 [ lJ: 
42 [ lJ: 
43 [ lJ: 
44 [ 2]: 
45 [ 2J: 
46 [ lJ: 
47 [ 1]: 
48 [ 1]: 
4 9 [ 1 J : 
50 [ lJ: 
51 [ 1]: 
52 [ 1]: 
53 [ lJ: 
54 [ 1]: 
55 [ 1]: 
56 [ 1]: 
57 [ 1]: 
58 [ 1]: 
59 [ 1]: 

/*Prg5_9 - Move a File from a Directory to Another 
by Stephen R. Davis, 1987 

*/ 

Normally, moving a file from one directory to another involves 
copying it and then deleting the original. Not only is this 
clumsy, but it adds to disk fracturing. This program uses the 
rename function to actually move a file. 

#include <stdio.h> 
#include <dir.h> 
#include <process.h> 
#include <string.h> 

/*define global data*/ 
char path [MAXPATHJ; 
char drivel [MAXDRIVEJ, dirl [MAXDIRJ, filel [MAXFILE], extl [MAXEXT]; 
char drive2 [MAXDRIVE], dir2 [MAXDIRJ, file2 [MAXFILE], ext2 [MAXEXT]; 

/*Main - parse the first argument, assumed to be the source, and the 
second, assumed to be the target. Check for validity and the 
attempt the rename*/ 

void main (argc, argv) 
unsigned argc; 
char *argv [J; 

char *dptr, *fptr, *eptr; 

/*check the number of arguments first*/ 
if (argc != 3) { 

printf ("Wrong number of arguments\n" 

exit (1); 

try 'prg5 9 source dest' to move file 'source'\n" 
to file 'dest'\n"); 

/*parse out the two file names*/ 
fnsplit (argv [1], drivel, dirl, file!, ext!); 
fnsplit (argv [2], drive2, dir2, file2, ext2); 

/*if present, the disks must match*/ 
if ( *dri ve2) 

if (strcmp (drivel, drive2)) { 
printf ("Drives must match\n"); 
exit (1); 

/*if second directory not present, assume the first*/ 
dptr = dir2; 
if ( ! *dptr) 

dptr = dirl; 

/*if second file not present, assume the first*/ 
fptr = file2; 
if (!*fptr) 

fptr = file!; 

/*if the second extension not present, assume the first*/ 
eptr = ext2; 
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60 [ 1]: 
61 [ 1]: 
62 [ 1]: 
63 [ 1]: 
64 [ 1]: 
65 [ 1]: 
66 [ 1]: 
67 [ 2]: 
68 [ 2]: 
69 [ 1]: 
70 [ 1]: 
71 [ 1]: 
72 [ 1]: 
73 [ OJ: 

if ( ! *eptr) 
eptr = extl; 

/*now execute the rename*/ 
fnmerge (path, drivel, dptr, fptr, eptr); 
printf ("\nRenaming %s -> %s\n", argv [1], path); 
if (rename (argv [1], path)) { 

perror ("Rename error"); 
exit (1); 

/*exit normally*/ 
exit (0); 

Prg5_9 is written as a general move utility. The program accepts two 
arguments, the source filename and the target filename. The source filename 
must completely specify the file. The target filename may be incomplete, 
however. If the target pathname is missing, the source pathname is used instead. 
If the filename is missing, the source filename is used and if the extension is not 
present, the source extension is pressed into service. 

Therefore, all of the commands below are equal. 

1) prg5_9 \user\c\filel.c \programs\filel.c 

2) prgS_ 9 \user\c\filel.c \programs\filel 

3) prgS_ 9 \user\c\filel.c \programs\ 

4) chdir \user\c 
prg5_9 filel.c \programs\ 

Renamed, Prg5_9 can be used as a general rename utility, capable of renaming a 
program or moving it from one directory to another or both. 

The Environment 

Simply put, the environment is a series of 0 terminated ASCII strings terminated 
by a 0 length string to which the user program can gain access. Each of these 
strings is of the format LABEL=STRING. These strings are saved in the 
operating system and provide another communication path between DOS and the 
user program. At least three labels are defined in any environment: COMSPEC, 
PATH and PROMPT. Let us start by reviewing the functions of these. 

As I mentioned at the beginning of the chapter, COMMAND.COM is the 
program which puts up the A> prompt and which accepts and interprets the usual 
DIR, TYPE and ERASE type commands. Occasionally during normal operation 
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parts of COMMAND.COM get overwritten. Upon completion of a program 
which has overwritten some part of COMMAND.COM, DOS reloads it from 
disk. In a hierarchical file system, this can be a problem. In which subdirectory 
is COMMAND.COM anyway? 

We could simply make up a rule and say, for instance, COMMAND.COM must 
always be located in the root directory. But then the question becomes, of which 
disk? In any case, such rules are too inflexible and are not accepted well by such 
liberal thinkers as programmers. The label COMSPEC in the environment 
specifies the full pathname of COMMAND.COM. If COMSPEC says that DOS 
should reload C:\DOS\COMMAND.COM, then we have no misunderstanding, 
even if the default directory happens to be D :\UTIL. 

The PATH specifier solves a slightly different problem. Easy access to common 
utilities and commands is a problem with hierarchical files systems. The user 
probably has a set of favorite utilities, some of which came from the original 
DOS disk, but many of which are of his own making, such as the Erase 
w!Question and Copy All utilities presented above. These commands are of such 
general use that the user would like to have access to them at all times, 
irrespective of what the default directory might be. 

No problem, you might say, the user can always enter the full pathname instead 
of relying on the default path. That is, even while in directory \USER\C, the 
user can still enter \DOS\DOSUTILS\COPYALL to gain access to his 
COPYALL utility. While this is true, being compelled to type in the entire 
pathname removes much of the luster of hierarchical file systems. Besides, this 
solution presupposes that the user even remembers exactly what directory the 
utility is in. Many users, myself included, keep their utilities divided into several 
small directories on the basis of function. Remembering exactly which directory 
houses a particular utility can be a real chore. 

The solution to this problem in DOS is the very same solution used in UNIX, 
that of PATH. The PATH consists of a string of directories, separated by 
semicolons. If a particular command is not found in the current default directory, 
then each of the directories specified in the PATH is searched until either the 
command is found or the path is exhausted. 

Just as an aside, notice that the directories in the PATH are interpreted when they 
are needed and not when entered. This causes casual users some confusion in the 
following case. Suppose we keep most of our utilities in directory \UTIL and 
our DOS files in directory \DOS on drive C. Having read up on the PATH, we 
dutifully set our PATH to \UTIL;\DOS. All works as planned as long as we 
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default to drive C. Every time we invoke one of our utilities, DOS correctly 
looks for and finds it in either directory C:\DOS or C:\UTIL. As soon as we 
move to drive D, however, nothing works. Since we did not specify a drive for 
our PATH directories, DOS will now look for D:\UTIL and D:\DOS when we 
attempt to invoke one of our utilities. Since these directories do not exist, they 
certainly do not contain them. To avoid this problem, we should have set our 
PATH to C:\UTIL;C:\DOS. 

The final string, PROMPT, allows users to customize their prompts. My 
personal preference is to display the default directory as well as drive before the>. 
Interested readers should refer to the DOS Users' Manual for details. 

Each program is provided with its own copy of the environment when it is 
executed. There are several ways for a program to access its copy. First of all, 
the segment address of the environment is contained at offset Ox2c of the first 
Oxl 00 bytes of a program. (This section of a program is called the Program 
Segment Prefix [PSP].) Prg5_10a shows a general purpose function getenv(), 
which uses the Turbo C library routine getpsp() to fetch a pointer to this area 
from which it returns the far address of the environment. The remainder of the 
program simply prints out the contents of the environment on the display. 
(Note: It is necessary to copy the environment to a local buffer so that its address 
matches the type expected by print().) 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ lJ: 
22 [ lJ: 
23 [ lJ: 
24 [ lJ: 
25 [ lJ: 
26 [ lJ: 
27 [ lJ: 
28 [ lJ: 
29 [ 2J: 

/*Prg5_10a - Display the Environment 
by Stephen R. Davis, 1987 

*/ 

Display the entire current environment. This program 
gets the environment address directly from off set Ox2C in 
the Program Segment Prefix. The environment consists of a 
series of ASCII strings, each terminated with a 0, with the 
entire thing terminated by a 0. 

#include <stdio.h> 
#include <dos.h> 

/*prototyping definitions*/ 
char far *getenv (void); 
void main (void) ; 

/*Main - dump the environment on the screen*/ 
void main (void) 

char far *envptr; 
char localbuf [128J; 
char *localptr; 
unsigned count; 

count = O; 
envptr = getenv (); 
while (*envptr) { 



30 [ 2 J: 
31 [ 2J: 
32 [ 2J: 
33 [ 2 J: 
34 [ 2J: 
35 [ 2J: 
36 [ lJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ OJ : 
42 [ lJ: 
43 [ lJ: 
44 [ lJ: 
45 [ lJ: 
46 [ lJ: 
47 [ lJ: 
48 [ lJ: 
49 [ lJ: 
so [ lJ: 
51 [ OJ: 
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localptr = localbuf; /*xfer this to a local buffer*/ 
while (*envptr) 

*localptr++ = *envptr++; 
*localptr = '\0'; 
printf ("entry %d: %s\n", count++, localbuf); 
envptr++; 

/*Getenv - return a pointer to the environment strings*/ 
char far *getenv (void) 

unsigned far *envseg; 
unsigned pspseg; 

pspseg = getpsp (); /*get the psp segment*/ 

/*at offset 2C in the PSP is the segment address of 
the environment*/ 

envseg (unsigned far *)MK_FP pspseg, Ox2C); 
return (char far*) MK FP (*envseg, OxOO); 

Accessing the envitonment using ENVPTR[] is much like acessing the 
arguments via ARGV[]. Both are declared similarly. Both point to standard C 
strings. 

Although this routine has the advantage of being accessible from anywhere 
within a program, it is actually a bit of overkill. I have been ignoring it up until 
now, but main() actually is provided with a third parameter. After the array of 
pointers to the program arguments is another array of pointers. This array points 
to the individual strings which make up the program's environment. Prg5_10b 
below uses this array of pointers to gain access to the environment and display it 
on the screen. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ lJ: 
17 [ lJ: 
18 [ l): 
19 [ l) : 
20 [ 2): 
21 [ 2J: 
22 [ 1): 

/*Prg5_10b - Display the Environment 
by Stephen R. Davis, 1987 

*/ 

Display the entire current environment. Use the environment 
pointer passed to us in main(). 

#include <stdio.h> 

/*Main - dump the environment on the screen*/ 
void main (argc, argv, envptr) 

unsigned argc; 
char *argv[); 
char *envptr[J; 

unsigned count; 

count = 0; 
while (*envptr[O)) 

printf ("entry %d: %s\n", count++, envptr[O]); 
envptr++; 
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23 [ OJ: } 

Accessing the environment using ENVPTR[] is much like accessing the 
arguments via ARGV[J. Both are declared similarly. Both point to standard C 
strings. In actual fact, you need neither program to display the contents of the 
environment. Simply entering the DOS command SET will cause DOS to dump 
the current environment to the display. 

C>SET 
COMSPEC=C:\COMMAND.COM 
PROMPT=$p$ $n$g 
PATH=C:\DOS\DOSUTIL;C:\DOS;C:\DOS\RAMUTIL; 
DEFAULT=C:\USER\BOOK 

Reading the environment is only half the battle. How can we write to the 
environment? From the DOS command prompt, we simply enter SET 
<label>=<string> where label is any label of 8 characters or less and string is any 
ASCII string. The SET command will add our label to the current environment. 
Entering SET <label>= will remove a label which already exists in the 
environment. 

From within a program, labels can be added and removing using putenv( ). The 
syntax here is similar to the SET command. Unfortunately, putenv() only affects 
the program's copy of the environment. When the program completes, the 
environment returns to its previous value. The communication path established 
by the environment is, by and large, one way. 

The getenv() library routine is useful for searching the environment for the value 
of a particular label. For example, the call getenv(P ATH)would return a pointer 
to the value of the label PATH. If the label is not found, getenv() returns a 
NULL pointer. 

A professional package can use the environment in many different ways. Prg5_8 
used the path specified argument 0 to solve the problem of auxiliary files, but, as 
we noted, this technique only works for DOS 3.0 and later. You might just as 
well have equated a label to the home directory. The program could then have 
used this label to find its auxiliary files. Although this technique has the 
disadvantage that it requires the user or a batch file to enter another command 
(the SET command) to define the label, it has the advantage that it works even 
under DOS 2.x. Besides, with this trick we have the added flexibility that the 
auxiliary files could even be in some third directory apart from the executable file 
itself. 
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Turbo C itself uses the environment to affect how it handles floating point 
numbers. Turbo C programs that are linked with the emulation library contain 
the code either to use an 8087 Numerical Processor or to emulate its presence in 
software. If you set the label 87 to N before running such a program, it will not 
use the 8087 coprocessor even if one is present. On the other hand, setting the 
label 87 to Y forces such a program to attempt to use the 8087 coprocessor, even 
if one is not present (which hangs the system, by the way). 

You have already seen an example program which uses the environment. If no 
argument was presented it, Prg5_5, the change drive and directory utility, looked 
in the environment for a label called DEFAULT. If present, Prg5_5 used the 
value of that label as its argument. That was the meaning of the call to 
getenv(DEFAULT) on line 43. I found this particularly useful in preparing this 
book. My AUTOEXEC file defined the label DEFAULT to C:\USER\BOOK, 
the directory containing the chapters of this book. No matter where I might be, 
entering CDD, the name I gave to Prg5_5 in use, returned me to that directory to 
continue work. (Notice the definition of DEFAULT in my previous environment 
dump.) 

Batch files can also access individual entries out of the environment by the way. 
Although not documented until recently, a label between percent signs within a 
batch file is replaced by that label's value out of the environment. For example, 
%PATH% within a batch file is replaced by the list of directories which make up 
the path. Since a batch file can also add labels to the environment using the SET 
command, the environment forms something of a random storage area for batch 
files. This provides further communication paths between batch files and your 
programs. 

With all this use, the environment might quickly run out of room. Individual 
environment strings are limited to 128 bytes in length, but fortunately, you can 
specify the overall size of the environment at boot up under DOS 3.0 and later. 
You do this with the SHELL command in the CONFIG.SYS file. Originally 
intended to allow companies to write their own COMMAND.COM type 
shells with different names, the SHELL command is most often 
used for other purposes. For example, entering the command 
SHELL=C:\DOS\COMMAND.COM IP causes DOS to load 
COMMAND.COM from that subdirectory rather than from the root. 

At the same time that the directory is being specified, the size of the environment 
can also be adjusted by adding the switch IE:xx. Under DOS 3.0, this feature was 
undocumented and the value xx was in units of paragraphs (one paragraph= 16 
bytes). In DOS 3.1 and later, this feature is documented but the units were 
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changed to bytes and not paragraphs. Specifying a larger environment size might 
use up a small amount of additional memory, but it provides a great deal more 
space for label definitions. 

With a large and flexible environment space, it is a shame that the 
communications path it represents is only one way. DOS presents copies of the 
environment to user programs and not the real thing as a means of self 
protection. If a program defines a label using the putenv() library call, that label 
will not be defined when the program exits. Usually this is a good thing, since if 
the user program inadvertently destroys its own copy, the original is still safely 
tucked away back in the bank. Sometimes you would like your program to be 
able to define labels that DOS or a batch file could read after the program 
completed, however. With such a mechanism, the program could tell you exactly 
what it did or what it expects us to do. In addition, one invocation of the 
program could communicate with future invocations by leaving such labels 
behind. 

There are two ways to do this, neither of them completely satisfactory. One 
approach is to not exit at all, but instead to execute a new version of 
COMMAND.COM (you will see how you might do this at the end of this 
chapter). Since a daughter process always inherits the environment of its parent, 
this new version of COMMAND.COM will inherit any labels which your 
program defined. If that version of COMMAND.COM then executes your 
program again, it can read the labels from it previous invocation. The problem 
here is that loading new versions of COMMAND.COM on top of older versions 
can use up a lot of memory quickly. In any case, you have not solved the 
problem, only diverted it. 

Another approach which shows promise was presented by Charles Petzold in PC 
Magazine's PC Tutor Volume 6, Number 8. It seems that there is an 
undocumented DOS system interrupt Ox2e that can be used to execute user-type 
commands under the current version of COMMAND.COM. This system call is 
quite skittish. First of all, COMMAND.COM is no more reentrant than DOS 
is. If your program were executed from a batch file, executing system interrupt 
Ox2e would probably prove fatal. Second, since this system call does not restore 
the SS and SP registers upon returning, it cannot be invoked using the normal 
intdos() mechanism. 

If you do not mind writing your own inline assembly language function to do so, 
you can pass a SET <label>= command to the current version of 
COMMAND.COM using this system interrupt (we will study inline assembly 
language in Chapter 8). This command should be formatted exactly as it would 
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appear in the PSP; that is, the first byte should indicate the number of characters 
in the string. Since this is the same COMMAND.COM from which your 
program was invoked, the label will continue to be defined even after the 
program terminates. (In fact, the label will only be defined in the original-the 
currently executing program's copy will not get updated.) Of course, 
undocumented system calls may disappear from future versions of DOS without 
warning, so including such a command within your program may not enhance its 
future portability. 

Executing other Programs 

It is possible for a Turbo C program to execute other programs, including 
COMMAND.COM. This technique is variously known as shelling or spawning 
and comes in three forms in Turbo C. Before we examine these forms, however, 
we must concern ourselves with a small problem. Internal RAM memory is not 
the problem it used to be, but no matter how much is available, programs will be 
written which can exceed what is available. In a simple program, the situation is 
generally handled by DOS. If the program even started, then we are assured that 
sufficient memory is available for its use. (The only exception to this that you 
have seen so far lies in the program's dynamic use of the heap.) 

When executing subprograms, however, it is not clear just because the first 
program loaded that there will be sufficient room to load the second program. If 
the programs are small, we can just continue on and hope for the best. We are 
not likely to run out of memory, and DOS will tell us if we do, anyway. If the 
programs are large, however, this is not entirely satisfactory. Our program might 
get several levels deep before deciding that it cannot continue. This will not only 
waste time, but is likely to leave the program and any files it has open in a state 
from which it will be difficult to recover. It would be much better if the program 
could decide at the very beginning whether sufficient memory exists to continue 
or not. 

DOS maintains a few system calls for communicating this information to user 
programs. Prg5_1 l shows how a program can examine the amount of internal 
RAM and disk space, both available and total. Prg5_11 does nothing more with 
this information than display it, but a user program with extensive RAM or disk 
requirements could check the amount available before beginning. 

1[ OJ: /*PrgS_ll - Get disk and memory information 
2[ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4[ OJ: Get the current disk and memory information and display in 
5[ OJ: a comfortable format 
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6 [ OJ: */ 
7 [ OJ: 
8[ OJ: #include <stdio.h> 
9[ OJ: #include <dos.h> 

10[ OJ: #include <alloc.h> 
11 [ OJ: 
12[ OJ: #define mernbios Ox12 
13 [ OJ: 
14[ OJ: /*allocate some local structures*/ 
15 [ OJ: 
16[ OJ: struct dfree dfres; /*for the getdfree() call*/ 
17[ OJ: union REGS regs; /*for the int86() call*/ 
18 [ OJ: 
19[ OJ: /*Main - perform the necessary system calls and format the 
20[ OJ: results for output*/ 
21 [ OJ: int main () 
22 [ OJ: 
23[ lJ: long totdisk, availdisk, totmem, availmem; 
24[ lJ: unsigned currseg; 
25[ lJ: double percentdisk, percentmem; 
26 [ lJ: 
27[ lJ: /*first accumulate the information*/ 
28[ lJ: getdfree (0, &dfres); /*uses system call Ox36*/ 
29[ lJ: availdisk (long)dfres.df_avail * (long)dfres.df_sclus * 
30[ lJ: (long)dfres.df_bsec; 
31[ lJ: totdisk = (long)dfres.df_total * (long)dfres.df_sclus * 
32[ lJ: (long)dfres.df bsec; 
33[ lJ: percentdisk = ((double)availdisk (double)totdisk) * (double)lOO 
34 [ lJ: 
35[ lJ: int86 (mernbios, &regs, &regs); /*use BIOS call Ox12*/ 
36[ lJ: totmem (long)regs.x.ax * (long)1024; 
37[ lJ: availmem = (long)farcoreleft (); 
38[ lJ: percentmem = ((double)availmem I (double)totmem) * (double)lOO.; 
39 [ lJ: 
40 [ lJ: currseg = FP_SEG ((int (far *)())main); 
41 [ lJ: 
42[ lJ: /*now print these values out in a reasonable form*/ 
43[ lJ: printf ("Display available disk and memory\n" 
44[ lJ: "\n" 
45[ lJ: "Disk:\n" 
46[ lJ: %9ld bytes available (%6ldk)\n" 
47[ lJ: %9ld bytes total (%6ldk)\n" 
48[ lJ: (%2.0f%% free)\n" 
49[ 1]: "\n" 
50[ lJ: "Memory:\n" 
51[ lJ: %7ld bytes available (%4ldk)\n" 
52[ lJ: %7ld bytes total (%4ldk)\n" 
53[ lJ: (%2.0f%% free)\n" 
54[ lJ: "\n" 
55[ lJ: "Current segment is %X\n", 
56[ lJ: availdisk, availdisk I (long)1024, 
57 [ lJ: totdisk, totdisk I (long) 1024, 
58[ lJ: percentdisk, 
59[ lJ: availmem, availmem (long)1024, 
60[ lJ: totmem, totmem (long)1024, 
61[ lJ: percentmem, 
62[ 1]: currseg); 
63 [ OJ: 

An example run of Prg5_11 on the author's system: 
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C>d:prg5_11 

Display available disk and memory 

Disk: 
5718016 bytes available 5584k) 

21213184 bytes total 20716k) 
(27% free) 

Memory: 
360976 bytes available 352k) 
655360 bytes total 640k) 

(55% free) 

Current segment is 3371 

Notice that both the RAM and disk sizes are too large for conventional integer 
variables. Instead all of these values have been stored into variables declared to be 
of type long int. Also notice that while the amount of available memory is 
found easily using the library routine farcoreleft( ), the call to examine the total 
memory in the system is not a DOS call at all. Rather this is a BIOS call. You 
may want to return to this program once you have finished Chapter 6's coverage 
of BIOS calls. 

There are three different ways to execute another program from within a Turbo C 
program. If all that you really want to do is to execute a common DOS 
command, such as DIR * .C, then the library routine system() is straightforward. 
In this case, system(DIR *.C); is just the ticket. Why, you may ask, is this 
considered executing another program? Because, to perform this function, you 
must actually load and execute another copy of COMMAND.COM in memory. 
This new version of COMMAND.COM executes the command and then exits 
back to your program upon completion. The value returned by system() is the 
same as the return status from the last command executed. 

When executing other programs from within one of your own programs, there are 
two things that you might want to do. You might want the other program to 
replace your program. This is usually called chaining. In chaining, there are 
usually a series of programs which are to be executed. Program A chains to 
Program B, which chains to Program C, and so on. 

For example, suppose we are executing a process such as the linked list sorting 
back in Chapter 4. At any given time, we are either entering data, sorting data or 
outputting data. We are never performing two of these functions at any one time. 
While sorting data, for example, the code to input and output the data is just 
sitting about taking up memory. Instead we could have written the input, sort 
and output functions as three separate programs. Program A would input the data 
and save it away in the necessary structures, usually on disk. When all the data 
was in, it would invoke Program B to sort it which then invoked Program C to 
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print it out. No code sitting around in memory doing nothing means no wasted 
space. 

Even when there is looping envolved, this can still be accommodated with 
chaining. For example, once ProgramC has completed output, it could just as 
easily execute ProgramA again to restart the whole process. It may be necessary 
to communicate to ProgramA that this is the second time around, lest it put up 
the opening banner which the user saw the first time he executed the program. 
This technique also works for menu systems. After a particular menu item has 
been executed, the program chains back to the central menu program to restore 
the the menu to the screen and wait for the user's next selection. 

The other alternative is that a program might execute another program using 
whatever memory is left over. In this technique, known as either shelling or 
spawning, the program makes a call to what is actually a program, rather than a 
function. The operating system leaves the calling program intact and loads the 
called program above it in memory. Once the called program completes, the 
operating system returns control back to the calling program. 

This technique is easier to work, since each program returns to the caller which 
can then decide what action to take, much more like a normal program. Not 
only can the subprogram return a return status to indicate success or failure, but 
the calling programs variables and data space are still intact. 

The space saving with spawning can be almost as great, however. For example, 
we might have written our menu program with each of the menu options housed 
in a separate program and with a small nucleus program to call them. Even 
though the nucleus is always in memory, we can keep its size small by limiting 
its function. In our menu example, the only job of the nucleus is to put up the 
menu, accept user input and spawn the appropriate subprogram. 

In Turbo C, chaining is performed using the exec() function call, while spawning 
is performed with the spawn() call. Both routines actually come in a variety of 
versions. All of the versions are quite similar, however, differing only in the 
way arguments and environment are passed to the subprogram and whether the 
PATH is automatically searched in the event the subprogram is not in the 
current directory. 

Besides saving memory, spawning can also be used to add functionality to 
existing programs. For example, our move program, Prg5_9, was used to move 
programs from one subdirectory to another. Unfortunately, Prg5_9 was only 
written to move one file. If we needed to move an entire directory using Prg5_9, 
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we would have to execute Prg5_9 once for each file. This would quickly run 
into more work than Prg5_9 was trying to save us in the first place. 

To save effort, we could easily rewrite Prg5_9 so that it accepted wild cards and 
moved large blocks of files with a single command. But let's assume that 
Prg5_9 was given to you and that you do not have access to the code or for 
whatever other reason we do not want to change the program. You could 
construct another program that accepts wild-card specifications for files and then 
spawns Prg5_9 to move each file it finds. Prg5_12 below is just such a 
program. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ 0 J : 
20 [ OJ: 
21 [ 0 J : 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ lJ: 
36 [ lJ: 
37 [ 2J: 
38 [ 2J: 
39 [ 2J: 
40 [ 2 J: 
41 [ 2 J: 
42 [ lJ: 
43 [ lJ: 
44 [ 1 J : 
45 [ lJ: 
46 [ 2J: 
47 [ 2J: 

/*Prg5_12 - Execute another Program 
by Stephen R. Davis, 1987 

*/ 

In addition to invoking simple functions, a C program may also 
invoke other programs. While this may be costly in terms of 
time, the technique is useful for programs which otherwise 
will not fit into memory in their entirety. User shells which 
surrond DOS to provide a more user friendly interface also use 
this approach. 

This program provides a "move all" capability to PrgS 9, which 
can only move one file at a time. 

#include <stdio.h> 
#include <dir.h> 
#include <process.h> 

/*define global data areas*/ 
char path [MAXPATHJ, drive [MAXDRIVEJ, dir [MAXDIRJ; 
char file [MAXFILEJ, ext [MAXEXTJ; 
struct ffblk block; 

/*we also need the name of the program to execute*/ 
char *pname = {"prg5 9.exe"}; 
char *pathname; 

/*Main - Find all of the files matching argument 1 and pass 
each one to Prg5_9 in turn*/ 

void main (argc, argv, env) 
int argc; 
char *argv [J; 
char *env [J; 

/*as always, check the argument count*/ 
if (argc != 3) { 

printf ("Wrong number of arguments\n" 

exit (1); 

try prg5_12 <source dir><pattern> <dest dir>\n" 
to move all files matching pattern from dir\n" 
source to dir destination\n"); 

/*search for prg5_9 either in current directory or path*/ 
if (!(pathname= searchpath (pname))) { 

printf ("Prg5_9 must be current directory or path\n"); 
exit (1); 
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48 [ l] : 
49 [ l]: 
50 [ l]: 
51 [ l]: 
52 [ l]: 
53 [ l]: 
54 [ l]: 
55 [ 2]: 
56 [ 2]: 
57 [ l]: 
58 [ l]: 
59 [ 2]: 
60 [ 2]: 
61 [ 2]: 
62 [ 2]: 
63 [ 2]: 
64 [ 2]: 
65 [ 2]: 
66 [ 3]: 
67 [ 3]: 
68 [ 2]: 
69 [ l]: 
70 [ l]: 
71 [ l]: 
72 [ l]: 
73 [ OJ: 

/*pull argument 1 apart to separate directory and filename*/ 
fnsplit (argv [l], drive, dir, 0, 0); 

/*now search for all files matching pattern*/ 
if (findfirst (argv [l], &block, 0)) ( 

do 

printf ("No files found\n"); 
exit (0); 

/*assemble the first file name*/ 
fnsplit (block.ff_name, 0, 0, file, ext); 
fnmerge (path, drive, dir, file, ext); 

/*and pass this file off to prg5 9*/ 
if (spawnle (P_WAIT, pathname, pname, path, argv [2], 

NULL, env) ) { 
printf ("\nError detected in subprocess\n"); 
exit (1); 

while (!findnext (&block)); 

/*exit normally*/ 
exit (0); 

An example run of Prg5_12 shows: 

prg5_12 \sources\*.c \user\c\ 
Renaming \sources\PRG5 11.C -> \user\c\PRG5 11.C 
Renaming \sources\PRG5-l.C -> \user\c\PRG5 l.C 
Renaming \sources\PRG5-5.C -> \user\c\PRG5-5.C 
Renaming \sources\PRG5-6.C -> \user\c\PRG5-6.C 
Renaming \sources\PRGS-7.C -> \user\c\PRG5-7.C 
Renaming \sources\PRG5-12.C -> \user\c\PRGS 12.C 
Renaming \sources\PRG5-8.C -> \user\c\PRG5 B.C 
Renaming \sources\PRG5-10A.C -> \user\c\PRG5 lOA.C 
Renaming \sources\PRG5=10B.C -> \user\c\PRG5=10B.C 

After the obligatory check of the number of arguments, Prg5_12 searches for the 
file PRG5 _9.EXE, which it will need. The library function searchpath() first 
looks in the current directory. If not found there, it then looks in every 
subdirectory specified in the PATH. (Therefore, we can execute Prg5_12 from 
any directory as long as both it and Prg5 _9 are in the PATH or the default 
directory.) Having found it, searchpath() returns the full pathname of Prg5_9. 

Prg5_12 first saves off the disk and directory of the first argument. It then 
performs a search for files matching the specified filename containing wild cards. 
For every filename found, Prg5_12 tacks the disk and directory name to the front 
and passes this, along with the target directory, to Prg5_9 for execution using the 
Turbo C library routine spawnle( ). 
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Examine carefully the arguments to spawnle(). The first argument must always 
be P _WAIT, indicating that the caller intends to wait for the subprogram to 
complete before resuming execution. The alternative, P _NO WAIT, is not legal 
under a single tasking executive like DOS. The second argument is the pathname 
of Prg5_9, found on line 45. This is preferrable to using the spawnp() form of 
the call in this case. Spawnp() would have to search the PATH for Prg5_9 for 
each file moved, adding considerably to the execution time. Following that, we 
send over ARGV[O], ARGV[l], etc. As always you set ARGV[O] to the path of 
Prg5_9 itself. You must be sure to add an extra NULL argument after the last 
real argument. The target program might be expecting it (many of the programs 
we have written so far do). Finally you pass the environment. In this case, you 
could have dispensed with the environment and removed the e from spawnle() as 
it is not being used. 

Notice when executing Prg5_12, that this is much slower than it might have 
been had you written it completely internally. The spawn process adds a 
considerable amount of overhead to the process and increases execution time 
accordingly. On the other hand, Prg5_12 is much faster than entering the 
individual calls to Prg5_9 yourself, so the overall effect is a great improvement. 

Conclusion 

As maligned as the IBM's PC-DOS and MS-DOS operating systems might be, 
they still harbor quite a considerable array of capabilities. Almost all of these 
capabilities are reflected in a function in the Turbo C support library. Careful 
perusal of the documentation for the library will reveal many tidbits with which 
the programmer might interest himself. Hopefully this chapter has touched on a 
sufficient number of these capabilities to get the beginning DOS programmer 
started in his search. 

Many readers will be completely satisfied with the functions found in the Turbo 
C library. Some, however, will want for either additional capabilities or speed. 
This is particularly a problem when it comes to screen output, perhaps the most 
speed critical part of any program. Such readers will not be happy until they 
have peeled the DOS operating system back to have a look at the BIOS 
underneath. For these readers, there is Chapter 6. 





6 
Accessing 

the PC's 
BIOS 

From a programming point of view, the Turbo C library and DOS support 
routines form a user friendly interface to the PC, a shell over the harsh realities of 
computer hardware. (Proponents of other operating systems might wish to debate 
me on theuser friendly aspects of DOS, but remember that I am referring to DOS 
and not COMMAND.COM, the user interface.) It is precisely this user 
friendliness that sometimes forces the programmer down to the next level in the 
PC's software hierarchy: the Basic Input/Output Service, the BIOS. 

User friendliness almost always brings with it a certain amount of overhead. It 
takes time for the system to do all those things for you. This slows down the 
user application. Sometimes the reduction in speed is imperceptible, but it can 
be frustratingly noticeable. This is especially true on a machine with marginal 
performance in the first place, such as a 4. 77 MHz PC. 

In addition, operating systems try to remove the applications software from the 
details of the hardware as much as possible. Normally this is good. Writing 
your program so that it runs equally well under PC-DOS and UNIX, which is 
possible using the Turbo C library routines, opens it up to a larger audience of 
users. Even when programs do not port from one operating system to another 
entirely without change, the job is much easier when the programmer has stuck 
with high level operating system calls. 

But there is a down side to this also. Removing the user program from the 
underlying hardware dulls its perception of what the machine is doing. For 
example, commercially successful applications, such as those which pop up 
windows of different colors on the PC's display, could not do so if they only 
utilized DOS calls; there is no window system call in the current versions of 
DOS. 

225 
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What is the BIOS? 

The BIOS is the next level of software support beneath the DOS operating 
system. It is actually a collection of independent hardware support routines-a 
separate one for each different piece of hardware. The interface to each of these 
routines is standardized and documented. Each of the arguments to each of the 
interface routines is strictly spelled out. The BIOS collectively makes up a 
rational interface (this has nothing to do with whether it is logical or not). 

Theoretically, any 8086-based machine which supports the same BIOS interface 
as the PC can run all of the same applications, including DOS itself, irrespective 
of exactly how the hardware is configured. Many of the early PC clone 
manufacturers, such as Columbia, Seequa and Eagle, shattered on problems with 
this for reasons that we will see in Chapter 7. Nevertheless, there is still a large 
amount of truth to the statement. Today, different models of PC compatibles 
use different keyboards, different programmable interval timers and different 
communications adapters. This is true even among IBM machines (actually, this 
is true among IBM machines). Because the BIOS interface rationalizes these 
different hardware fixtures, software can run without even knowing that there is a 
potential problem. 

With DOS it was straightforward: we put in a disk marked DOS or something 
similar, turned the power on, the red disk light flickered on, we heard the 
crunching sound of a floppy disk's stepper motor and DOS was loaded. When we 
thought about the DOS operating system, at least, we knew more or less where it 
came from, even if its files were hidden from our view. But there is no disk 
marked BIOS. No crunching sound or red lights to mark its arrival. Where does 
it come from? 

The BIOS is contained in a Read-Only Memory (ROM) located on the PC's 
system board itself. When the PC is first switched on, the CPU begins 
executing code out of this ROM. The ROM. starts by performing power-on 
diagnostics. It is this diagnostic routine which puts that annoying memory 
counter on your screen as it checks system memory (and which takes so long 
doing it). Once the hardware has been checked out, the power-up program installs 
the address of the support routine for each of the different pieces of hardware into 
its assigned interrupt. 

Exactly what an interrupt is and how it gets handled by the PC's microprocessor 
will have to wait for our low-level discussions in Chapter 9. For now, let's 
suffice to say that there are 256 interrupts numbered OxOO through Oxff. Each has 
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associated with it the address of a function. When we invoke the interrupt by 
number, control gets passed to that function, much as if we had called it. 

We associate some of these interrupts with different pieces of the PC's hardware. 
For example, during power-up the address of the screen handler function gets 
placed into interrupt OxlO. Therefore, we say that interrupt OxlO is the screen 
BIOS interrupt. When we want to .access the screen BIOS function, we execute 
an interrupt OxlO. A complete list of the BIOS interrupts is found in Appendix 
2. 

This all seems somewhat round about. We call other functions directly-we 
don't load their addresses into interrupts and then interrupt to them. Why not just 
assign each BIOS function to some fixed address? We might then have called 
some far location, say OxfeOOOJOO, when we wanted to perform screen output. 
Of course, we would have been very clever about it, perhaps defining some 
constant of the proper type; e.g. 

#define screenBIOS ((void (far *)(union REGS *)) Oxfe000100) 

That is, declaring a constant screenBIOS to be a far pointer to a function which 
accepts a pointer to a union of type REGS as its argument and returns nothing 
(VOID) (isn't it wonderful!). When it came time to invoke screenBIOS we would 
simply have called it like any other function. After all, isn't this exactly what we 
are doing when we access DOS via the intdos() call? 

This would have been a very bad idea. Let's take the very example of the screen 
BIOS function to see why. The original PC supported two different types of 
display. The Monochrome Display Adapter (MDA) was a green-screen display 
intended solely for text processing. Although it was completely incapable of 
graphics, its high persistence phosphor and high resolution character box made it 
pleasing, if slightly smallish, for the eye. This was intended to be the primary 
display for PC applications. The Color Graphics Adapter (CGA) was a lower 
resolution, color monitor intended as a supplement to supply the user with the 
graphics capability lacking in the MDA. The two cards were designed so that 
both could be present in the same system at the same time. The original BIOS, 
the one still supplied with PC's and A T's shipped today, supports both of these 
two displays. 

As electronics improved, two things became apparent. First, buyer's did not want 
to forgo color graphics ability. Although a superior display, few PC's were 
being purchased with the MDA. The CGA was always a better seller. Even at 
that, an early third party supplier in the PC market built a display adapter which 
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provided the monochrome screen with graphics capability. Sales of this plug-in 
card, the Herculese card, and its clones eventually outstripped sales of the IBM 
card. Second, the resolution and color capability of the CGA (320x200 w/four 
colors or 640x200 w/one color) needed improving. Never intended as a primary 
display, it was giving the entire PC line a bad name. To address these concerns, 
IBM introduced a new display adapter, the Enhanced Graphics Adapter (EGA). 

The EGA had resolution almost as good as that of the MDA for comfortable text 
processing as well as graphics and color capabilities beyond that of the CGA. 
While not up to CAD/CAM standards, its 640x350 resolution with 16 colors 
was acceptable for most applications. The only problem was that it was not 
completely compatible with the other two displays. How could it be and offer 
any improvement? The existing screen BIOS routines in the PC would not 
support this new display with its extended modes of operation. 

Our screenBIOS() function would have been in serious trouble about now. By 
calling the old screen BIOS function directly, we have insured that our program is 
not compatible with the new displays. Okay, so we busily design and implement 
our own BIOS routines. Ones that are capable of handling the newer display 
adapters. We issue a software upgrade and all is well. Unfortunately, we are 
doomed to repeat ourselves every time a new display adapter appears on the 
market that is the least bit different, and in the PC clone world that's just about 
every day. 

To address this problem, the EGA (and other new cards) come with its own 
ROM. This ROM contains the code for a new screen handler capable of handling 
not only the older CGA and MDA, but also the new EGA displays. During 
power-up, the PC first installs all of its BIOS normally. It then makes a search 
of certain fixed locations for the presence of ROMs, such as the one on the EGA 
card. When it finds these, it calls them to allow them to initialize their 
particular hardware. The EGA ROM installs the address of its display routine 
into interrupt Oxl 0, replacing that of the older routine. The same old programs 
which previously called the old screen handler via interrupt Oxl 0 to display text 
and graphics on the older CGA and MDA displays, now use interrupt OxJO to 
access the new screen handler to write to the new EGA display. It's the perfect 
con-they are not even aware of the switch. 

This trick is not limited to replacing existing interface functions with those of 
higher capability. It can also be used to add capabilities that did not previously 
even exist. The original PC did not offer a hard disk, even as an option. The 
cost of such disks was prohibitive when the PC was introduced. Installing a hard 
disk into these older machines, however, is no more difficult than plugging in the 
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hard disk controller card and connecting the cables. The hard disk contains its 
own support ROM. Just like the EGA, this ROM installs itself into one of the 
PC's interrupts during power-on to add the hard disk support previously missing. 

Even when the implementation of the BIOS support functions leaves something 
to be desired, as we will see, there is nothing wrong with the idea itself. The 
PC's BIOS represents one of the most important cases off orward looking 
embodied in the PC. 

Using the BIOS 

Although not as easy as the Turbo C library, the PC's BIOS routines are 
certainly nothing to be scared of. The main difficulty is that the BIOS functions 
are less user friendly than DOS or Turbo C. Each BIOS call requires more 
arguments and usually gets less work done than an equivalent Turbo C might. 
Being forced to set more different hardware parameters for each and every call also 
means that the user program has more different ways to influence the hardware, 
however. You will find that the simpler BIOS routines execute faster than the 
equivalent higher level routines. 

Invoking a BIOS call from Turbo C is quite simple. As BIOS calls were 
primarily intended to be accessed from assembly language programs, they accept 
arguments in the registers rather than on the stacks. Therefore, the first thing 
you must do is include the .H file DOS.H. You then load the intended registers 
into the union REGS defined there. The actual interrupt is performed by calling 
the Turbo C library routine int86( ). 

Let's take a very simple example. Prg6_1 shows the source code for a very 
simple program. This program invokes the BIOS function reboot (interrupt 
Oxl9). This BIOS function takes and returns no arguments. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 

/*Prg6_1 - Perform a simple BIOS request 
by Stephen R. Davis, 1987 

*/ 

This program merely serves as an example of a program which 
performs a simple BIOS request: the bootstrap interrupt Oxl9. 
Since this interrupt does not go through a complete reset, 
it may or may not be effective. It merely serves as a simple 
but immediately apparent system call. 

#include <stdio.h> 
#include <dos.h> 

union REGS reg; 

main () 
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17 [ OJ: { 
18[ lJ: printf ("\nreboot!\n"); 
19 [ lJ: int86 (0x19, &reg, &reg); 
20 [ OJ: ) 

Notice how we declare the variable REG to be of type REGS. Since this BIOS 
call takes no arguments, we do not bother to initialize any of the registers. The 
call to int86() follows the standard pattern. The first argument specifies the 
number of the BIOS interrupt, Ox19. The second is the address of the REGS 
union from which to load the registers before making the call. The third is the 
address of the union in which to store the registers upon returning. It is not 
uncommon to specify the same union address for both of these arguments as we 
have done. 

This should have seemed like deja vu. Haven't we been through this all before? 
In fact, we did almost exactly the same thing to execute DOS calls directly back 
in Chapter 5. The only difference is that back then we did not specify an 
interrupt number. This was only a bit of Turbo C slight of hand. Calling 
intdos() is exactly the same as calling int86(), passing it an interrupt number of 
Ox21. 

intdos (&reg, &reg) <==is equivalent to==> int86 (0x21, &reg, &reg) 

Just as there was an intdosx() earlier to handle cases where you needed to load the 
segment registers before making a call, so there is also an analogous int86x () 
with the same correspondence. 

Interrupt Ox21 is known as the DOS system call interrupt and provides access to 
the DOS calls which you examined earlier. So you see, your argument was 
complete. You have never defined some typed constant to call, even when it 
seemed like it earlier. In a way, the DOS operating system is just another set of 
BIOS calls, which happen to be loaded from disk instead of being resident in 
ROM. 

As we noted already, the different BIOS interrupts are centered around the different 
pieces of hardware. For example, interrupt Oxl 0 is our access to the display 
support routines. Of course, there are several things that can be done with a 
device such as the display. There must be some indicator as to exactly what 
service is being requested on the particular device. Just as with DOS calls, it is 
convention to indicate the specific subfunction by the value of the AH register 
upon entry. While invoking interrupt Oxl 0 with AH set to 6 might cause the 
screen to scroll up, doing so with AH set to OxOe will cause characters to be 
written to the display. 
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Because the various pieces of hardware are so unalike, there are no generalities for 
the meanings of the subfunctions for different BIOS calls. Subfunction 2 for the 
screen BIOS function has nothing in common with subfunction 2 for the 
keyboard BIOS routine. Likewise, there are no generalities concerning the 
remainder of the registers. Each subfunction for each BIOS interrupt in Appendix 
2 assigns its own meaning to the registers. 

Simple BIOS Functions 

The program above was too small to be useful. In fact, rebooting the system via 
interrupt Ox19 may not even be successful depending upon what pop-up programs 
have been installed. The important thing is that the call is simple and the effects 
are immediate and unmistakable. I'll now examine some of the more useful 
BIOS functions. 

One of the simpler of these is the Equipment Status. Like the Boot call above, 
Equipment Status has no subfunctions and requires no arguments. Unlike reboot, 
Equipment Status does return to the caller, however, returning a single integer. 
This integer describes the hardware as determined during power-on initialization, 
both by examining the system board switches and by direct determination. It has 
the following significance: 

Binary representation of Equipment Status flag: 

where 

PPxGCCCxDDVVRR8I 

PP - number of printers attached 
G - 1 -> game port attached 
CCC- number of RS232 COM: ports 
DD - number of disk drives - 1 (if I 1) 
VV - video mode 

00 -> none or EGA 
01 -> 40x25 CGA 
10 -> 80x25 CGA 
11 -> monochrome 

RR - system board RAM 
on original 64k PC: 

00 -> 16k 
01 -> 32k 
10 -> 48k 
11 -> 64k 

8 - 0 -> 8087 present 
I - 1 -> system booted 
x - don't care 

from floppy 
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This systein call is actually useful for programs which have specific hardware 
requirements. You should notice, however, that many of the fields in the 
Equipment Status word have been replaced by newer system calls. For example, 
memory size should be determined by BIOS interrupt Oxl 2 and display adapter 
type by direct inspection or by checking the display mode (both of which we will 
do later), but the other fields are pretty trustworthy. If your program needs to 
know if a particular piece of hardware is present, using the Equipment Status is 
better than asking the operator. Don't ask the operator what you can determine 
for yourself. Doing so reflects poorly on the resulting program. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 ( OJ: 
27 ( OJ: 
28 ( OJ: 
29 [ OJ: 
30 ( OJ: 
31 ( OJ: 
32 ( OJ: 
33 ( OJ: 
34 ( OJ: 
35 ( OJ: 
36 [ OJ: 
37 ( OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ lJ: 
41 ( lJ: 
42 ( OJ: 
43 [ OJ: 
44 ( OJ: 
45 ( OJ: 
46 ( OJ: 
47 ( lJ: 
48 ( lJ: 
49 [ OJ: 

/*Prg6_2 - Read the Hardware Status 
by Stephen R. Davis, 1987 

Get the equivalent hardware status via BIOS request Oxll 
and interpret it according to the format: 

PPxGCCCxDDVVRR8I 

where 
PP - number of printers 
G - 1 -> game port present 
CCC- number of RS232 COM ports 
DD - number of disk drives - 1 (if I 1) 
VV - video mode: 

00 -> none or EGA 
01 -> 40x25 CGA 
10 -> 80x25 CGA 
11 -> monochrome 

RR - system board RAM 
8 - 0 -> 8087 present 

- 1 -> booted from floppy 

This is a simple example of performing BIOS calls. 
*/ 

#include <stdio.h> 
#include <dos.h> 

/*prototype definitions*/ 
int main (void); 
unsigned getstatus (void); 
void interpret (unsigned); 

/*define global data structures*/ 
union REGS reg; 

/*Main - make the BIOS call to get status and then interpret it*/ 
main () 

printf ("\nEquipment as reported by BIOS:\n"); 
interpret (getstatus ()); 

/*Getstatus - get the equipment status via BIOS call Oxll*/ 
unsigned getstatus (void) 
{ 

int86 (Oxll, &reg, &reg); 
return (unsigned)reg.x.ax; 



50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ lJ: 
56 [ OJ: 
57 [ OJ: 
58 [ OJ: 
59 [ OJ: 
60 [ OJ: 
61 [ lJ: 
62 [ OJ: 
63 [ OJ: 
64 [ OJ: 
65 [ lJ: 
66 [ lJ: 
67 [ OJ: 
68 [ OJ: 
69 [ OJ: 
70 [ OJ: 
71 [ lJ: 
72 [ OJ: 
73 [ OJ: 
74 [ OJ: 
75 [ OJ: 
76 [ OJ: 
77 [ OJ: 
78 [ lJ: 
79 [ OJ: 
80 [ OJ: 
81 [ OJ: 
82 [ OJ: 
83 [ OJ: 
84 [ OJ: 
85 [ lJ: 
86 [ OJ: 
87 [ OJ: 
88 [ OJ: 
89 [ OJ: 
90 [ lJ: 
91 [ OJ: 
92 [ OJ: 
93 [ OJ: 
94 [ OJ: 
95 [ lJ: 
96 [ lJ: 
97 [ lJ: 
98 [ lJ: 
99 [ l]: 

100 [ lJ: 
101 [ l]: 
102 [ lJ: 
103 [ lJ: 
104 [ lJ: 
105 [ lJ: 
106 [ lJ: 
107 [ OJ: 
108 [ OJ: 
109 [ OJ: 
110 [ OJ: 
111 [ l]: 
112 [ lJ: 
113 [ lJ: 
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/*Display routines which we need for Interpret()*/ 
void dispnum (i) 

unsigned i; 

print£ ("%d", i); 

void dispdsk (i) 
unsigned i; 

print£ ("%d", i + l); 

char *modes [J {"No monitor or EGA attached", 
"Color/Graphics in 40 x 25 mode", 
"Color/Graphics in 80 x 25 mode", 
"Monochrome monitor"}; 

void dispmode (i) 
unsigned i; 

print£ (modes [iJ); 

char *mems [J = {"16k", "32k", "48k", "64k"}; 
void dispmem (i) 

unsigned i; 

print£ (mems [iJ); 

char *yn [ J = {"Yes", "No" l; 
void dispyn (i) 

unsigned i; 

print£ (yn [iJ); 

void dispny (i) 
unsigned i; 

print£ (yn [1 - iJ); 

/*Interpret - interpret the IBM status word*/ 
struct DICT 

unsigned mask; 
unsigned shiftvalue; 
char *string; 
void ( *disp) (unsigned); 

14, 
12, 

"Printers = 
"Game I/O ports 

9, "Serial ports = 
6, "Disk drives = 

233 

", dispnum}, 
dispnum}, 

", dispnum}, 
dispdsk}, 

} dictionary [J = {{OxcOOO, 
{OxlOOO, 
{OxOeOO, 
{OxOOcO, 
{0x0030, 
{OxOOOc, 
{0x0002, 
{OxOOOl, 
{OxOOOO, 

4, "Video mode = ", dispmode} 

void interpret (value) 
unsigned value; 

unsigned maskvalue; 
struct DICT *ptr; 

2, "System board RAM ", dispmem}, 
1, "8087/287 NOP= ", dispny}, 
0, "IPL from diskette = ", dispyn}, 
0, "Terminator", dispnum}}; 
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114 [ 1]: 
115 [ 1]: 
116 [ 2]: 
117 [ 2]: 
118 [ 2]: 
119 [ 2]: 
120 [ 2]: 
121 [ 2]: 
122 [ 1]: 
123 [ OJ: 

ptr = dictionary; 
while (ptr -> mask) { 

maskvalue = value & ptr -> mask; 
maskvalue >>= ptr -> shiftvalue; 
printf (ptr ->string); 
(* (ptr -> disp)) (maskvalue); 
printf ("\n"); 
ptr++; 

The important part of this program is the 2 line function getstatus(). This 
invokes the Equipment Status BIOS call and then returns the equipment status 
returned in AX. Notice that the Turbo C library routine biosequip() does the 
same thing. In fact, there is a BIOS-()routine for many of the major BIOS 
functions; however, looking up and calling a different routine for each different 
BIOS call strikes me as an unnecessary complication. I prefer to use int86() and 
provide the proper number from the list in Appendix 2. Not only is this clearer 
to me, but it is actually more portable. Almost all C compilers for the PC 
provide an int86() library function and most of them are invoked in this very 
same way. The function biosequip() is unique to the Turbo C library. Invoking 
int86 (Ox19, &reg, &reg) is likely to work with any C compiler for the PC; 
calling biosequip() is not. 

The remainder of Prg6_2 merely serves to interpret the flags returned by 
getstatus( ). I chose to do this by building a table of masks and right shift values, 
but in this particular case it might have been just as easy to handle each different 
field explicitly. 

Another simple, but useful, BIOS interrupt is Oxla, the Time of Day request. 
The PC family of personal computers is equipped with an 8253 or 8254A 
Programmable Interval Timer (PIT). The PIT acts as a clock, ticking at reqular, 
processor controlled intervals. The power-on ROM initializes the PIT in the PC 
to tick at 1092 times per minute or 18.2 times per second. Once the PC has read 
the current time, either via operator input or from a battery backed up clock chip, 
it maintains the proper time throughout the remainder of the day using this 
regular beat. The date and time are maintained by DOS for such functions as the 
time stamping of files. 

Unlike Equipment Status, Time of Day has two subfunctions. Entering with 
AH = 1 sets the Time of Day clock. , This subfunction is used by 
COMMAND.COM to set the clock anytime the DOS TIME command is used to 
change the current time. Units are clock ticks since midnight. A quick 
calculation shows that the number of clock ticks in 24 hours is larger than the 
maximum 16-bit integer (65535): 
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clock ticks/day 24 * 60 * 60 * 18.2 = 1,572,480 

I 
I I- ticks/second 

I 1------- seconds/minute 
1------------ minutes/hour 

1----------------- hours/day 

It is therefore necessary to pass the time in two 16-bit registers, in this case, ex 
and DX. 

Calling the Time of Day function with AH = 0 reads the current time of day, also 
in units of number of clock ticks since midnight. Just as with set subfunction, 
the upper 16 bits of the time are returned in the ex register and the lower 16 
bits in the DX register. In addition, the AL register is set to 0 if the date has not 
changed since the last time the time of day function was called (the date changes 
if the user program is running as the time goes beyond midnight). 

Measuring time takes on two forms in user programs. Either you are interested 
in the absolute time, i.e., displaying the time of day, or in elapsed time. 
Programs often use elapsed time to allow the operator to read data displayed on 
the screen which might otherwise slip by too rapidly for human eyes. They 
might also allow users a limited amount of time to provide critical input (such as 
passwords). The most straightforward method of killing time is for the program 
to enter a do-nothing FOR loop. Indexing a count and performing a 
multiplication a few thousand times will generally be enough to let the user see 
what is on the screen. 

The problem with such do-nothing loops is that the amount of time they use up 
is a function of the speed of the host computer. A FOR loop which waits a 
comfortable amount of time on a stock PC will flash by in an instant on an 
80386 based machine. Set the loop counter properly for an AT and the program 
drags on the PC. Prg6_3 demonstrates a much better way to delay. This 
program watches the PC's clock tick off using repeated invocations of the Get 
Time of Day subfunction. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 

/*Prg6_3 - Delay Specified Number of Seconds 
by Stephen R. Davis, 1987 

*/ 

Many programs must delay for short periods of time. Often this 
is done by executing an "empty" FOR loop. The Time-of-Day BIOS 
routine provides a more accurate means of delaying. 

#include <stdio.h> 
#include <dos.h> 
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12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ 1): 
22 [ 1): 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ 1): 
29 [ 1): 
30 [ 1): 
31 [ 1): 
32 [ 1): 
33 [ 1): 
34 [ 1): 
35 [ 1): 
36 [ 1): 
37 [ 2): 
38 [ 2): 
39 [ 2): 
40 [ 2): 
41 [ 2): 
42 [ 2): 
43 [ 2): 
44 [ 2): 
45 [ 2): 
46 [ 1): 
47 [ OJ: 
48 [ OJ: 
49 [ OJ: 
50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ 1): 
54 [ 1): 
55 [ 1): 
56 [ 1): 
57 [ 1): 
58 [ OJ: 
59 [ OJ: 
60 [ OJ: 
61 [ OJ: 
62 [ OJ: 
63 [ OJ: 
64 [ OJ: 
65 [ OJ: 
66 [ 1): 
67 [ 1): 
68 [ 1): 
69 [ 11: 
70 [ 1): 
71 [ 1): 
72 [ 2): 
73 [ 3): 
74 [ 3): 
75 [ 3): 
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/*prototype definitions*/ 
void main (void); 
unsigned getval (char*); 
void wait (unsigned); 
unsigned getime (void); 

/*global data definitions*/ 
union REGS reg; 
union { 

int stime [2]; 
long int dtime; 

} both; 

/*Main - ask the user for length of time to delay (0 terminates)*/ 
void main (void) 
{ 

unsigned delay; 

printf ("This program simply delays the user specified number\n" 
"of seconds. Entering a zero terminates the program.\n" 
"\n" 
"Seconds are counted down to provide output so that\n" 
"the user can break out prematurely, if desired\n" 
"\n"); 

for (;;) { 

/*get the specified delay and wait () that long*/ 
if ((delay= getval ("Enter delay time [seconds)")) 0) 

break; 

/*now call our wait function to perform the delay*/ 
printf ("Start delay:\n"); 
wait (delay); 
printf ("Finished\n"); 

/*Getval - output a prompt and get an integer response*/ 
unsigned getval (prompt) 

char *prompt; 

unsigned retval; 

printf ("%s - ", prompt); 
scanf ("%d", &retval); 
return retval; 

/*Wait - wait the specified length of time*/ 
void wait (delay) 

unsigned delay; 

unsigned previous, current; 

/*every time the time changes - decrement count*/ 
previous= getime (); 
for (;;) { 

if (previous != (current 
previous = current; 
if (!--delay) 

return; 

getime () ) ) { 



76 [ 3J: 
77 [ 3J: 
78 [ 3J: 
79 [ 2J: 
80 [ lJ: 
81 [ OJ: 
82 [ OJ: 
83 [ OJ: 
84 [ OJ: 
85 [ OJ: 
86 [ lJ: 
87 [ lJ: 
88 [ lJ: 
89 [ lJ: 
90 [ lJ: 
91 [ lJ: 
92 [ lJ: 
93 [ lJ: 
94 [ lJ: 
95 [ lJ: 
96 [ OJ: 
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/*remove this print statement in actual use*/ 
printf ("count - %d\n", delay); 

/*Getime - return the current time in seconds since midnight*/ 
unsigned getime (void) 
{ 

/*use the BIOS Time-of-Day to read the current time*/ 
reg.h.ah = 0; 
int86 (Oxla, &reg, &reg); 
both.stime [OJ = reg.x.dx; 
both.stime [l] = reg.x.cx; 

/*now convert the clock ticks into seconds (fudge factor 
is the difference between 18.2 and 18*/ 

return (unsigned) (both.dtime I 18) -
(unsigned) (both.dtime I 1638); 

In this program main() prompts the user for the number of seconds to delay. 
Once entered, the program delays that length of time before prompting the 
operator again. The program is terminated by entering a 0. The important parts 
of the program are the functions wait() and getime( ). 

Ge time() uses the Time of Day interrupt, Oxl a, to get the number of clock ticks 
since midnight. The Get subfunction is indicated by setting the REG .H.AH to 0. 
The returned time is loaded from REG.X.CX and REG.X.DX. Getime() uses the 
union both to convert the two 16-bit integers into a 32-bit long integer. Be very 
careful here: transfer the lower 16-bits into the first word of the long integer and 
the upper 16-bits into the second, not the other way around. 

While Turbo C supports 32-bit long integers, the 8086 microprocessor being a 
16-bit machine does not support them well. Much more efficient machine code 
is generated by staying with normal, 16-bit integers whenever possible. To this 
end, getime() converts the long BOTH.DTIME into the number of seconds since 
midnight, which can be accommodated in a single unsigned integer variable. The 
conversion itself involves another small trick. Converting a number to floating 
point and back just to execute a floating point division is quite a bit slower than 
an integer division. A little algebra shows that: 

x x x 

18 1638 18.2 

Although perhaps not important here, in general, avoiding floating point 
operations can make a sizable difference in the speed and size of a program, 
especially if an 8087 or 80287 numerical co-processor is not present. Such 
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algebraic relationships can convert division by a floating point value into the 
sum or difference of two integer relationships. (The alternative of multiplying 
and dividing runs the risk of overflow on simple integers.) 

The function wait() uses getime() to read the current time in a loop. Every time 
the current time changes it decrements the count of seconds to delay. Once the 
count has decremented to 0, it returns to the caller. The printf() to display the 
number of seconds left to delay serves as a count down. It may be removed as 
required. 

Ge time() can also be used to measure time critical sections of code to the nearest 
second. Given that the user wished to time the execution of a subroutine, 
critical(), he might use the following C code: 

before= getime (); /*note the time*/ 
critical (); /*call the function*/ 
printf ("Time elapsed= %d\n", getime () - before); 

Moving up one step in complexity we come to the keyboard BIOS handler. It 
has three subfunctions: read the next character, check for the presence of a 
character, and read the current shift status. The Read subfunction reads a single 
character from the keyboard buffer. The Presence subfunction checks the 
keyboard buffer to see if there is a character to be read. This subfunction is 
necessary since the Read subfunction is a blocking read; i.e., if a character is not 
present, the call waits until a key is pressed. The Status subfunction returns a 
byte with indicator bits for each of the shift and lock keys. 

Not all keys have an ASCII equivalent associated with them. Programs must 
have some way of identifying them. In addition, some ASCII characters, such as 
the* and+, are generated by more than one key. It would be advantageous if a 
program could distinguish which key generated the character. To this end, every 
key on the PC's keyboard is assigned a so-called scan code. This is a number that 
corresponds to its location on the keyboard and is unique to the key. Unlike the 
ASCII character, the scan code of a key does not change when the Shift or 
Control key is depressed. 

Prg6_ 4 below is an example program that reads the keyboard status in a loop. 
Whenever the status changes, the new status is displayed on the monitor. If one 
of the other keys is pressed, the ASCII character associated with that key is 
printed along with the scan code. 

l[ OJ: /*Prg6_4 - Read the Keyboard Status 
2 [ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 



4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ lJ: 
34 [ lJ: 
35 [ lJ: 
36 [ lJ: 
37 [ lJ: 
38 [ lJ: 
39 [ lJ: 
40 [ lJ: 
41 [ lJ: 
42 [ lJ: 
43 [ lJ: 
44 [ lJ: 
45 [ 2J: 
46 [ 3J: 
47 [ 3J: 
48 [ 3J: 
49 [ 3J: 
50 [ 3J: 
51 [ 3J: 
52 [ 2J: 
53 [ 2J: 
54 [ 2J: 
55 [ 2J: 
56 [ lJ: 
57 [ OJ: 
58 [ OJ: 
59 [ OJ: 
60 [ OJ: 
61 [ OJ: 
62 [ OJ: 
63 [ OJ: 
64 [ lJ: 
65 [ lJ: 
66 [ lJ: 
67 [ lJ: 
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Read the status of the keyboard in a continual loop. If the 
status changes or a character appears, display this on the screen. 
(Print both the character and its scan code.) 

*/ 

#include <stdio.h> 
#include <dos.h> 
#include <process.h> 
#define TRUE 1 
#define FALSE 0 

/*define the keyboard BIOS subfunctions*/ 
#define readchar OxOO 
#define typeahead OxOl 
#define readstatus Ox02 

/*prototype definitions*/ 
void decode (unsigned); 
unsigned charpresent (void); 
unsigned getstatus (void); 
int main (void); 

/*data definition*/ 
union REGS reg; 
char lineclear; 

/*Main - constantly display keyboard status*/ 
main () 
{ 

unsigned oldstatus, newstatus, charandscan; 
char currchar, scancode; 

printf ("\nDepress shift, control, etc. keys in any\n" 
"and all combinations. Program prints when\n" 
"keyboard status changes or character appears.\n" 
"Program prints both ASCII and scan code. To\n" 
"terminate enter capital X\n"); 

oldstatus = 0; 
lineclear = FALSE; 
for (;;) { 

if (charandscan = charpresent ()) { 
lineclear = FALSE; 
currchar = (char) 
scancode = (char) 

(charandscan & OxOOff); 
((charandscan & OxffOO) >> 8); 

printf ("%c %d,", currchar, scancode); 
if (currchar == 'X') 

exit (0); 

if ( (newstatus = getstatus ()) != oldstatus) 
decode (newstatus); 

oldstatus = newstatus; 

/*Charpresent - check for the presence of a character. If none presen 
return a 0, otherwise return the character and scan co 
entered.*/ 

unsigned charpresent (void) 
{ 

/*first check for the presence of a character*/ 
reg.h.ah = typeahead; 
int86 (0xl6, &reg, &reg); 
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68 [ lJ: 
69 [ lJ: 
70 [ lJ: 
71 [ lJ: 
72 [ lJ: 
73 [ l]: 
74 [ l]: 
75 [ lJ: 
76 [ OJ: 
77 [ OJ: 
78 [ 0 l: 
79 [ OJ: 
80 [ OJ: 
81 [ l]: 
82 [ lJ: 
83 [ lJ: 
84 [ OJ: 
85 [ OJ: 
86 [ OJ: 
87 [ OJ: 
88 [ OJ: 
89 [ OJ: 
90 [ l]: 
91 [ l]: 
92 [ l]: 
93 [ l]: 
94 [ l]: 
95 [ l]: 
96 [ OJ: 
97 [ OJ: 
98 [ OJ: 
99 [ OJ: 

100 [ l]: 
101 [ l]: 
102 [ l]: 
103 [ l]: 
104 [ l]: 
105 [ l]: 
106 [ l]: 
107 [ l]: 
108 [ l]: 
109 [ OJ: 

/*if the zero flag returned is clear ... */ 
if (reg.x.flags & Ox0040) 

return 0; 

/* ... then read the character and scan code*/ 
reg.h.ah = readchar; 
int86 (0xl6, &reg, &reg); 
return reg.x.ax; 

/*Getstatus - read the keyboard status*/ 
unsigned getstatus (void) 
{ 

reg.h.ah = readstatus; 
int86 (0xl6, &reg, &reg); 
return (unsigned)reg.h.al; 

/*Decode - decode the keyboard status bits*/ 
unsigned bits [] = {0x80, Ox40, Ox20, OxlO, 

Ox08, Ox04, Ox02, OxOl}; 
char *meaning(] = {"Insert on 

void 

"Caps lock 
"Num lock 
"Scroll lock 
"Alt , 
"Control , 
"Left-shift 
"Right-shift 

decode (bitpattern) 
unsigned bitpattern; 

unsigned index; 

if ( ! lineclear) 
printf ("\n"); 

, 
"}; 

for (index = 0; index < 8; index++) 
if (bitpattern & bits [index]) 

printf (meaning [index]); 
printf ("\n"); 
lineclear = TRUE; 

Like the delay program before, the critical parts of Prg6_ 4 are embodied in its 
functions (as they should be). Main() calls charpresent() which performs a 
nonblocking read of the keyboard buffer. This it does by first checking for the 
presence of a character using the Presence subfunction. If a character is not 
present, it returns to the caller a character and scan code of 0 (line 69 and 70) a 
scan code of 0 is not legal. If a character is present, it and its scan code are read 
using the Read subfunction and returned to the caller. If a character is returned 
from charpresent(), it and its scan code are separated and printed. 

From this point, main() then calls getstatus() to read the keyboard shift bits using 
the Status subfunction. If the status returned matches the status the last time 
getstatus() was called then main() takes no action but returns back up and starts 



ACCESSING THE PC'S BIOS 241 

the process over. If it is different, main() calls decode() to display the meaning of 
the new shift status. 

Decode() has two arrays, one a series of bytes with one bit set and the other a 
series of character strings. Decode() ANDs the bit fields in with the shift status. 
If a bit is set then the corresponding string is printed. The variable LINECLEAR 
is used to clean up the display a bit and is not critical to the program. 

Try the program by depressing the shift keys and control key. Notice how the 
status gets printed both when the key is pressed and when it is released (both 
events represent a change of status). Notice how the program differentiates 
between left and right shift key. Try holding down more than one shift key plus 
the control and alternate at the same time. To see how the scan codes are location 
dependent try entering a few keys that are next to each other from side to side, 
such as the A, S, D, and F. 

All of the remaining BIOS functions follow the same pattern. Use Appendix 2 
to describe the individual subfunctions and their arguments. Use a variable of 
type UNION REGS to load the registers with the proper values. Having made 
the call, fetch the returned register values from the same union. If at all possible, 
make the call to each BIOS routine into a separate function by itself. This not 
only makes documenting the call easier, but makes the program easier to modify 
if, for some reason, the BIOS call does not work out and requires replacement. 
Two of the BIOS functions are particularly important and require special 
discussion. These make up the balance of this chapter. 

The BIOS Screen Handler 

The most popular and yet most complicated of the BIOS interrupts is the screen 
handler. The BIOS screen handler provides uniform, rapid access to all of the 
different display adapters available for the PC. As we noted above, this is true 
because each display adapter can either conform to the MDA or CGA standards or 
bring its own BIOS code, in ROM or on floppy, to support it. 

The screen BIOS interrupt is OxJO. A list of its subfunctions is provided in 
Appendix 2. A condensed list appears in Table 6.1. A few of the video concepts 
behind these subfunctions may not be familiar. Mode, for example, refers to 
whether the display adapter is programmed to send B& W text, color text, graphics 
or monochrome text. Table 6.2 represents the different video modes supported by 
the PC. Notice that not all of them (in fact none of them) are supported by any 
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Su bf unction 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
c 
D 
E 
F 

*10 
*11 
*12 
*13 

Table 6.1 
Screen BIOS Handler 

Meaning 

Set CRT Mode 
Set Cursor Type 
Set Cursor Position 
Read Cursor Position 
Read Light Pen Position 
Select Active Page 
Scroll Active Page Up 
Scroll Active Page Down 
Read Attribute/Character at cursor 
Write Attribute/Character at cursor 
Write Character at cursor 
Set Color Palette 
Write Dot 
Read Dot 
Write Teletype to Active Page 
Get Current Video State 
Set Palette Registers 
Character Generator Routine 
Alternate Select 
Write String 

Those subfunctions marked with a* are present on EGA only. 

Table 6.2 
Video Modes of the IBM PC 

Mode Meaning Adapters that support it 
0 40x25 BW text CGA,EGA,PCjr,VGA 
1 40x25 color text CGA,EGA,PCjr,VGA 
2 80x25 BW text CGA,EGA,PCjr,VGA 
3 80x25 color text CGA,EGA,PCjrVGA 
4 320x200 4 color graphics CGA,EGA,PCjr,VGA 
5 320x200 BW graphics CGA,EGA,PCjr,VGA 
6 640x200 BW graphics CGA,EGA,PCjr,VGA 
7 monochrome text MDA,EGA,VGA 
8 160x200 16 color graphics PCjr 
9 320x200 16 color graphics PCjr 

A 640x200 4 color graphics PCjr 
B internal use 
C internal use 
D 320X200 16 color graphics EGA, VGA 
E 620x200 16 color graphics EGA,VGA 
F 640x350 monochrome graphics EGA,VGA 

10 640x350 16 color graphics EGA, VGA 
11 640X480 2 color graphics VGA 
12 640x480 16 color graphics VGA 
13 320x200 256 color graphics VGA 

Note: modes B and C are used for loading of custom fonts and are not display modes. Mode 
10 is onh'_ su_QQ_orted ~EGA cards with 128k or more memory. 
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one display adapter. If we ignore the special modes of the now defunct PCjr, 
however, the EGA and the PS/2's VGA support the majority of them. 

This raft of different video modes stems from the fact that, from the beginning, 
the PC was designed to work with television sets equipped with RF modulators 
as well as the two different monitors already described. A television set does not 
have sufficient bandwidth (resolution) to comfortably display 25 lines of 80 
column text, hence the special 40x25 modes. In addition, the black-and-white 
modes of operation are designed to support the less expensive black-and-white 
monitors. 

In practice, a CGA connected to a color monitor displaying text will be set to 
mode 3. Its text resolution (the size of the pixel matrix assigned to each 
character) is 5x7 pixels with a one pixel descender within a box of 8x8 pixels. 
While serviceable, this resolution gives characters a tightly packed and blocky 
appearance. To enhance compatibility with the CGA, the EGA also uses mode 3 
to display text, but at a considerably higher 7x9 pixel resolution within an 8xl 4 
pixel box. The text-only MDA is always in mode 7 and uses a 7x9 character 
matrix within a 9xl 4 box. The effective overall screen resolution of the MDA is 
720x348. 

Although the EGA can emulate the CGA's graphics modes, the popular EGA 
mode is the 640x350 pixel mode OxJO with its 16 colors. This resolution cannot 
be supported by the older color graphics monitors and requires either IBM's 
Enhanced Display or equivalent or one of the very popular, high bandwidth 
multisynch monitors. 

Outputting text to any of the displays is merely a matter of invoking the BIOS 
screen handler with subfunction Ox9, Oxa or Oxe. Subfunctions Ox9 and Oxa 
output character/attribute or character at the current cursor location, while 
subfunction Oxe outputs a character and then updates the cursor's location. The 
character to be output is one of the standard ASCII characters. The attribute is a 
one byte field that is used to control that character's color, intensity, whether is 
blinks, etc. The following attributes are defined for the different monitors: 

Text Mode Character Attributes for CGA, EGA,VGA -
attribute uses the following bit mask -

BIT 7 6 5 4 3 2 1 0 

BL R G B I R G B 

background foreground 
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where 
BL - blinking 

I - 0 -> half bright, l -> full bright 

R - red 

G - green 

B - blue 

for example, an attribute of Ox07, the default attribute, specifies half-bright white 
on a black background 

forMDA 
the attribute mask is roughly the same, except that since monochrome has 
no color capability, setting any one of the color bits results in white. The 
one exception is specifying a blue foreground results in underlined. 

Thus: 

Setting 
Value 

OxOO 
OxOl 
Ox07 
Ox Of 
Ox70 
Ox87 
Ox8f 
OxfO 

Meaning 
black on black (no display) 
underlined 
normal 
high intensity 
inverse 
blinking normal 
blinking high intensity 
blinking inverse 

Prg6_5 uses the BIOS subfunction Oxe to define a new console output routine, 
qprintf(), which is slightly faster then C printf() function. Qprintf() accepts one 
argument, the pointer to a null-terminated ASCII string. Qprintf() invokes the 
BIOS screen handler for each successive character until the null is encountered, at 
which point it returns to the caller. The only character which qprintf() checks for 
is \n. Qprintf() does not print this to the screen, but, instead, scrolls the screen 
up one line. 

1[ OJ: /*Prg6_5 - Screen Output via BIOS calls 
2[ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4[ OJ: Perform screen output using BIOS calls. This may not 
5[ OJ: be all that much faster than 'printf' output, since 'printf' 
6[ OJ: uses BIOS calls itself. 
7 [ OJ: */ 



8 [ OJ: 
9 [ OJ: 

10( OJ: 
11 [ OJ: 
12 [ OJ: 
13( OJ: 
14( OJ: 
15 [ OJ: 
16( OJ: 
17 [ OJ: 
18( OJ: 
19 [ OJ: 
20( OJ: 
21( OJ: 
22[ OJ: 
23[ OJ: 
24[ OJ: 
25[ OJ: 
26( OJ: 
27[ OJ: 
28[ OJ: 
29[ OJ: 
30[ OJ: 
31 [ OJ: 
32 [ OJ: 
33( OJ: 
34 [ lJ: 
35 [ lJ: 
36( lJ: 
37 [ 1 J : 
38[ 2 J: 
39[ 3J: 
40( 3J: 
41[ 3J: 
42[ 2J: 
43( 2J: 
44 [ 2J: 
45[ lJ: 
46( OJ: 
47[ OJ: 
48[ OJ: 
49 [ OJ: 
50( OJ: 
51[ lJ: 
52 [ lJ: 
53[ 1 J : 
54 [ lJ: 
55[ lJ: 
56[ lJ: 
57 [ OJ: 
58( OJ: 
59[ OJ: 
60 [ OJ: 
61 [ OJ: 
62 [ OJ: 
63[ 1]: 

#include <stdio.h> 
#include <dos.h> 

#define white Ox07 
#define screenheight 25 

ACCESSING THE PC'S BIOS 

/*add the screen BIOS subfunctions*/ 
#define scrollup Ox06 
#define setcursor Ox02 
#define writetele OxOe 
#define getmode OxOf 

/*define global variables*/ 
unsigned v_pos, h pos, screenwidth; 
union REGS regs; 

/*prototype declarations*/ 
void init (void); 
void scroll (unsigned); 
void qprintf (char*); 
void pcursor (unsigned, unsigned); 

/*Main - test the output routines*/ 
int main () 

int i, j; 

init (); 
for (i = O; i < 20; i++) { 

for (j = 0; j < screenheight; j++) { 
qprintf ("this is BIOS output"); 
pcursor(v_pos, 30+j); 
qprintf ("and this\n"); 

for (j = O; j < screenheight; j++) 
printf ("this is normal printf output\n"); 

/*!nit - clear the screen*/ 
void init () 

regs.h.ah = getmode; 
int86 (OxlO, &regs, &regs); 
screenwidth = (unsigned)regs.h.ah; 

scroll (screenheight); 
pcursor (0, 0); 

/*Scroll - scroll up N lines using function 6*/ 
void scroll (nlines) 

unsigned nlines; 

if (nlines >= screenheight) 

245 



246 

64 [ lJ: 
65[ lJ: 
66[ lJ: 
67 [ 1 J : 
68[ 2J: 
69[ 2J: 
70 [ 2J: 
71 [ 2 J: 
72 [ 2J: 
73[ 2J: 
74 [ 2 J: 
75[ 2J: 
76[ 2J: 
77 [ lJ: 
78[ OJ: 
79[ OJ: 
80[ OJ: 
81[ OJ: 
82 [ OJ: 
83[ OJ: 
84 [ OJ: 
85 [ lJ: 
86 [ lJ: 
87 [ lJ: 
88[ lJ: 
89[ 2J: 
90 [ 3J: 
91[ 3J: 
92 [ 3J: 
93[ 2J: 
94 [ lJ: 
95 [ lJ: 
96 [ OJ: 
97 [ OJ: 
98 [ OJ: 
99[ OJ: 

100 [ OJ: 
101[ OJ: 
102[ OJ: 
103[ OJ: 
104 [ OJ: 
105[ 1 J: 
106[ lJ: 
107[ 1): 
108 [ 1): 
109[ 1) : 

110 [ lJ: 
111 [ 1 J: 
112 [ 1): 
113 [ OJ: 

TURBOC 

nlines screenheight; 

h_pos = 0; 
if ((v_pos += nlines) >= screenheight) 

nlines = (v_pos - screenheight) + 1; 

regs.h.ah = scrollup; 
regs.h.al 
regs.h.bh 
regs.x.cx 

regs.h.dh 

nlines; 
white; 
0; 
screenheight; 

regs.h.dl screenwidth; 
int86 (OxlO, &regs, &regs); 
v_pos = screenheight - 1; 

/*Qprintf - output a string using the BIOS screen handler. If 
an attribute is not provided, use the default.*/ 

void qprintf (c) 
char *c; 

for (; *c; c++) 

if ( * c == ' \ n' ) 
scroll (1) ; 

else { 

if (h_pos++ < screenwidth) { 
regs.h.ah = writetele; 
regs.h.al = *c; 
int86 (OxlO, &regs, &regs); 

pcursor (v_pos, h_pos); 

/*PCursor - place the cursor at the current x and y location. 
To place the cursor, and subsequent output, to any 
arbitrary location, set 'v_pos' and 'h_pos' before 
calling pcursor.*/ 

void pcursor (y, x) 
unsigned x, y; 

v_pos y; 
h_pos x; 

regs.h.ah 
regs.h.bh 

setcursor; 
0; 

regs.h.dh v_pos; 

regs.h.dl h_pos; 
int86 (OxlO, &regs, &regs); 

The accompanying pcursor() and scroll() functions call other subfunctions to 
place the cursor and scroll the screen. Scrolling the screen by 0 lines, clears it. 
/nit() must be invoked before any of the others so that it can check the display for 
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screen width. Main() merely calls qprintf() and print/() in a loop to demonstrate 
their use and compare output speed. 

Notice that accepting only a single string may seem like a severe limitation 
compared to printf(). Look closely at the documentation for printf(). This 
routine is capable of a considerable array of reformatting options for displaying 
characters, integers, floating points as well as simple character strings. 

However, qprintf() is not really at such a disadvantage. Programmers can always 
use the related sprint/() to first translate the output into a string, which they can 
then output using qprintf() as shown below. (This is equivalent to the 
conventional use of printf(), as shown in the next output.) Sprint/() has all of 
the reformatting capabilities of print[(). Output from qprintf() cannot be 
redirected, however. By accessing the BIOS directly, we are avoiding DOS and its 
redirection. Output is supported in all video modes. 

char buffer [80); 
int a, b, c; 

/*first generate a simple character string*/ 
sprintf (buffer, "results are: a = %d\n" 

a, b, c); 

/*now output it using qprintf*/ 
qprintf (buffer); 

b %d\n" 
c = %d\n", 

printf ("results are: a = %d\n" 

b %d\n" 

c = %d\n", 

a, b, c); 

Outputting to the screen in graphics mode is similar. The write dot (OxOc) and 
read dot (OxOd) subfunctions view the entire screen as a matrix of pixels. The 
legal range of column and row values are dependent on the screen mode and are 
given in the mode table earlier. The color value to the write dot subfunction is 
also mode dependent. 

In modes 4 and 5, the color value is a number between 0 and 3. This selects a 
color out of the current palette, which is specified with subfunction OxOb. Only 
one palette may be active at a time. In mode 4 there are two standard palettes 
with the following colors listed in Table 6.3. 
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Table 6.3 
Mode 4 Palettes 

value color (Palette 0) color (Palette 1) 

0 black black 

1 green cyan 

2 red magenta 

3 brown white 

In the EGA and VGA modes OxOd, OxOe and OxJO, color is a value between 0 and 
15, inclusive. This value specifies that the dot should have the color of the 
corresponding palette register. The palette registers are set to one of 64 colors 
using the set palette register subfunction (Oxl 0). That is, the programmer can 
select between 64 different colors, but only 16 of them can be on the display at 
any one time. In the VGA's mode Oxl 3, the color is a value between 0 and 255. 
Each value selects a color from a palette of 256,000. The Herculese-style 
monochrome graphics cards support two colors (black and white) on a 720x348 
pixel screen. 

There is a problem represented by the different modes with their different pixel 
resolutions. If you draw a line 200 pixels long, it might reach from one end of 
the screen to another or it might reach barely a third of the way across, depending 
on the video mode and orientation. The most versatile solution to this problem 
is to define a virtual screen which is square and some 1,000 pixels on a side. All 
graphing functions can then be performed on this virtual screen. A different 
driver is constructed for each different graphics video mode which translates pixel 
coordinates from this virtual screen into the real pixel address for this display. 
Although slightly less efficient, the algorithms are simpler and need not vary 
with video mode, both present and future. 

Besides just greater resolution and 16 independently adjustable palette registers, 
the EGA offers further capabilities. These include alternate character fonts and 
hardware smooth scroll, both vertically and horizontally. Unfortunately, most of 
these extended capabilities are not accessible via the BIOS screen handler. It is 
useful to be able to detect the presence of an EGA using the standard BIOS calls 
before attempting to directly access these extended functions. Further, an EGA 
can be equipped with between 64k and 256k of RAM. A 64k EGA does not have 
all the capabilities of its bigger sibling (for example, mode OxJO graphics). It is 
sometimes necessary to check the amount of on-board memory before selecting 
some of the fancier modes of operation. 
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When the screen BIOS handler is presented with a subfunction to which it has not 
assigned any meaning, the handler returns with all registers intact without taking 
any action at all. Scanning the list of screen BIOS subfunctions, you should 
notice that four of those listed are not defined in the older CGAIMDA BIOS. If a 
program attempts to execute one of them in a machine not equipped with an EGA 
card and its superset BIOS, it will have no effect on either the screen or the 
registers. 

Prg6_6 uses this fact to detect the presence of an EGA display. Subfunction 
Ox 12 allows the user to read, among other things, the amount of memory on the 
card as a number between 0 and 3. Prg6_6 sets the REG.X.BX to OxlO, 
indicating it wishes to make such a read, and then executes the subfunction. If 
the register comes back unchanged, then the program knows that an EGA BIOS 
is not installed. If, on the other hand, it comes back with one of the four legal 
values, the program can assume that the extended BIOS is present. The program 
goes on to interpret the amount of memory as well as the switch values, 
although this may not always be necessary. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ lJ: 
23 [ lJ: 
24 [ lJ: 
25 [ lJ: 
26 [ lJ: 
27 [ lJ: 
28 [ lJ: 
29 [ lJ: 
30 [ lJ: 
31 [ lJ: 
32 [ lJ: 
33 [ lJ: 
34 [ lJ: 
35 [ lJ: 
36 [ lJ: 
37 [ OJ: 

/*Prg6_6 - Detect presence of Enhanced Graphics Adapter 
by Stephen R. Davis, 1987 

Check for the presence of the EGA by invoking one of the EGA 
BIOS subfunctions. The normal CGA BIOS will treat this as a 
No-Operation, returning to us the registers we supplied. 

*/ 

#include <stdio.h> 
#include <dos.h> 
#include <process.h> 

/*prototyping definitions*/ 
void main (void); 

/*define global data*/ 
union REGS reg; 

char *colorvals (J = {"color", "monochrome"); 
char *memvals [J = {"64k", "128k", "192k", "256k"); 
char *switchvals [J = { 

/*0*/ "monochrome w/ 40x25 EGA secondary", 
/*l*/ 
/*2*/ 
/*3*/ 
/*4*/ 
/*5*/ 
/*6*/ 
/*7*/ 
/*8*/ 
/*9*/ 
/*a*/ 
/*b*/ 
/*c*/ 
/*d*/ 
/*e*/ 
/*f*/ 

"EGA emulation mode w/ monochrome secondary", 
"40x25 CGA w/ monochrome EGA secondary", 
"illegal value", 
"monochrome w/ EGA emulation mode secondary", 
"monochrome EGA w/ 40x25 CGA secondary", 
"40x25 EGA w/ monochrome secondary", 
"illegal value", 
"monochrome w/ 80x25 EGA secondary", 
"hi res EGA w/ monochrome secondary", 
"80x25 CGA w/ monochrome EGA secondary", 
"illegal value", 
"monochrome w/ hi res EGA secondary", 
"monochrome EGA w/ 80x25 CGA secondary", 
"80x25 EGA w/ monochrome secondary", 
"illegal value"); 
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38 [ OJ 
39[ OJ 
40 [ OJ 
41[ OJ 
42 [ OJ 
43[ lJ 
44 [ lJ: 
45 [ l J: 
46 [ lJ: 
47 [ 2J: 
48 [ 2J: 
49 [ lJ: 
50 [ lJ: 
51 [ lJ: 
52 [ lJ: 
53 [ lJ: 
54 [ lJ: 
55 [ OJ: 

/*Main - Test for EGA. If present, display memory and switch 
settings.*/ 

void main (void) 
{ 

reg.h.ah = Oxl2; 
reg.h.bl = OxlO; 
int86 (OxlO, &reg, &reg); 
if (reg.h.bl > 3) { /*illegal value implies no EGA present*/ 

printf ("No EGA present!\n"); 
exit (1); 

/*dump out all of the other info*/ 
printf ("EGA attached in %s mode with %s memory installed\n", 

colorvals [reg.h.bhJ, 
memvals [reg.h.blJ); 

printf ("Switch settings indicate: %s\n", switchvals [reg.h.clJ); 

One facet of display adapters that is often overlooked is that of display pages. A 
color/graphics adapter contains 16k bytes of memory to handle the graphics 
modes of display (640 x 200 = 128,000 bits = 16,000 bytes). However, only 
some 4,000 bytes are required to store a screen's worth of video data (80 x 25 = 
2,000 characters, with 1 byte for the character and 1 byte for the attribute = 4,000 
bytes). Therefore, there is sufficient memory on the CGA to hold some four 
screens worth of text. 

Table 6.4 
Number of Pages Available in Display Modes 

Mode 
0 
1 
2 
3 
4 
5 
6 
7 
D 
E 
F 

10 

MDA 

1 

CGA 
8 
8 
4 
4 
1 
1 
1 

EGA 
8 
8 
8 
8 
1 
1 
1 
8 
8 
4 
2 
2 

These different screens are called pages. In mode 3, the CGA supports four pages 
while the EGA supports 8 (though it has enough memory, it does not bother to 
support more than 8). Table 6.4 shows the number of pages supported in the 
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different display modes. Most applications stay in the default page, page 0, but 
the currently displayed page can be changed via the subfunction Ox05. 

The write subfunctions of the BIOS screen handler either require the page to be 
specified or they write to the currently active page. Writing to one page does not 
affect the contents or cursor position of other pages. This is often used as a type 
of poor man's windows. Manipulating windows requires the CPU to read and 
write large blocks of data to and from the display. In addition, window operations 
cannot be perfomed with simple block moves. Instead the CPU must calculate 
the constrains of the windows, perform clipping, etc. Changing pages by 
comparison requires little overhead. 

A menu program might, for instance, place its opening menu on page 0 of the 
display. When an option is selected, the program would change windows 
displaying the second menu on page 1. When the operator then wants to return 
to the main menu, it is not necessary to rewrite it as it is still intact back on 
page 0. Once all of the menus are loaded into pages, the operator can move 
among them virtually instantaneously, thus giving the program very rapid 
response time. 

It is possible to write to pages which are not currently selected. Of course, the 
text written there will not be displayed until the page has been selected in a 
subsequent subfunction Ox05 call. A program can use this fact to improve user 
response time. While waiting for user input, the program can fill the other pages 
of display memory with the menus for all the possible selections the operator 
might make. As operators are usually quite slow in making choices, there is 
usually sufficient time. Once the choice is made, the program changes to the 
proper page without delay. 

Prg6_ 7 below demonstrates how rapidly a page may be selected in comparison 
with the time it takes to write to it. The program first loops through the 
existing pages, filling each very densly with text. The displayed page is indicated 
by the text as well as its color. The program then waits for the operator to enter 
a single digit. The program switches to that page. The response is immediate. 

Notice that Prg6_7 does not use printf() to fill the different pages, instead relying 
on direct calls to the screen BIOS. This is because, print/() does not appear to 
support pages other than 0. (Qprintf() supports the current page, no matter which 
that might be.) As mentioned above, the program could have filled the various 
pages without displaying them. 

1[ OJ: /*Prg6_7 - Demonstrate Video Adapter Display Pages 
2[ OJ: by Stephen R. Davis, 1987 
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3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ lJ: 
33 [ lJ: 
34 [ lJ: 
35 [ 2J: 
36 [ 2J: 
37 [ lJ: 
38 [ lJ: 
39 [ lJ: 
40 [ lJ: 
41 [ lJ: 
42 [ lJ: 
43 [ lJ: 
44 [ lJ: 
45 [ 2J: 
46 [ 2J: 
47 [ lJ: 
48 [ lJ: 
49 [ lJ: 
50 [ lJ: 
51 [ lJ: 
52 [ lJ: 
53 [ 2J: 
54 [ 2J: 
55 [ 3J: 
56 [ 3J: 
57 [ 2J: 
58 [ 2J: 
59 [ lJ: 
60 [ OJ: 
61 [ OJ: 
62 [ OJ: 
63 [ OJ: 
64 [ OJ: 
65 [ lJ: 
66 [ lJ: 

*/ 

TURBOC 

Many programmers forget that their display adapter has more 
than it is showing them. This program allows the programmer 
to select through the display pages of their adapter. It will 
only work in color or BW 80 column mode - when running from DOS 
it may require a CLS to reset the video controller completely. 

#include <stdio.h> 
#include <dos.h> 
#include <process.h> 
#include <conio.h> 

/*prototype definitions*/ 
void main (void); 
u~signed egapresent (void); 
void selectpage (unsigned); 
void fillpage (unsigned); 
unsigned getmode (void); 
void outstring (char*); 
void scroll (unsigned, unsigned); 

/*global data definitions*/ 
union REGS reg; 

/*Main - Put data on each of the screens, then await user input 
to select the "current" screen*/ 

void main (void) 
{ 

unsigned i, no_pages; 

if ( (getmode () & Oxfe) != 2) { 
printf ("Must be in Color or BW 80 mode\n"); 
exit (l); 

/*CGA has 4 pages, EGA has 8*/ 
no_pages = 4; 
if (egapresent ()) no_pages = 8; 

/*put something on each of the pages*/ 
for (i = 0; i < no_pages; i++) { 

selectpage (i); 
fillpage (i); 

/*no prompt the operator for input*/ 
selectpage (0); 
printf ("Enter page number (>%d terminates):", no_pages); 
for (;;) { 

i = (unsigned) (getche () - '0'); 
if (i > no_pages) { 

selectpage (0); 
exit (0); 

selectpage (i); 

/*Egapresent - check for the presence of an EGA card*/ 
unsigned egapresent (void) 
{ 

reg.h.ah 
reg.h.bl 

Oxl2; 
OxlO; 



67 [ l]: 
68 [ l]: 
69 [ l]: 
70 [ l]: 
71 [ OJ: 
72 [ OJ: 
73 [ OJ: 
74 [ OJ: 
75 [ OJ: 
76 [ l J: 
77 [ l J: 
78 [ l]: 
79 [ OJ: 
80 [ OJ: 
81 [ 0 l : 
82 [ OJ: 
83 [ OJ: 
84 [ OJ: 
85 [ lJ: 
86 [ l]: 
87 [ l]: 
88 [ OJ: 
89 [ OJ: 
90 [ OJ: 
91 [ OJ : 
92 [ l J: 
93 [ l J: 
94 [ l]: 
95 [ l]: 
96 [ lJ: 
97 [ l J: 
98 [ l J: 
99 [ OJ: 

100 [ OJ: 
101 [ OJ: 
102 [ OJ: 
103 [ OJ: 
104 [ l J: 
105 [ l]: 
106 [ lJ: 
107 [ l]: 
108 [ 2 J: 
109 [ 2 J: 
110 [ lJ: 
111 [ OJ: 
112 [ OJ: 
113 [ OJ: 
114 [ OJ: 
115 [ OJ: 
116 [ OJ: 
117 [ l J: 
118 [ 2J: 
119 [ 2]: 
120 [ 2]: 
121 [ l]: 
122 [ OJ: 
123 [ OJ: 
124 [ 0]: 
125 [ OJ: 
126 [ OJ: 
127 [ OJ: 
128 [ lJ: 
129 [ lJ: 
130 [ l]: 

ACCESSING THE PC'S BIOS 

int86 (OxlO, &reg, &reg); 
if (reg.h.bl > 3) 

return 0; 
return l; 

/*Getmode - return the current video mode*/ 
unsigned getmode (void) 
{ 

reg.h.ah = OxOf; 
int86 (OxlO, &reg, &reg); 
return (unsigned)reg.h.al; 

/*Selectpage - select the video page*/ 
void selectpage (page) 

unsigned page; 

reg.h.ah = 5; 
reg.h.al = page; 
int86 (OxlO, &reg', &reg); 

/*Fillpage - fill the current page with text*/ 
char 
"Page 
"Page 
"Page 
"Page 
"Page 
"Page 
"Page 
"Page 

void 

*strings [J = { 

0 Page 0 Page 
1 Page 1 Page 
2 Page 2 Page 2 
3 Page 3 Page 3 
4 Page 4 Page 4 
5 Page 5 Page 5 
6 Page 6 Page 6 

Page 7 Page 7 

fill page (page) 
unsigned page; 

unsigned row; 

scroll (0, page); 
for (row = 0; row < 25; row++) { 

outstring (strings [page]); 
scroll (1, page); 

Page 
Page 
Page 
Page 
Page 
Page 
Page 
Page 

/*Outstring - put a string on the current page*/ 
void outstring (string) 

char *string; 

while (*string) 
reg.h.ah = OxOe; 
reg.h.al = *string++; 
int86 (OxlO, &reg, &reg); 

/*Scroll - scroll the current screen up N lines*/ 
void scroll (n, page) 

unsigned n, page; 

0 

2 
3 
4 
5 
6 
7 

Page 
Page 
Page 
Page 
Page 
Page 
Page 
Page 

reg.h.ah 
reg.h.al 
reg.h.ch 

Ox06; /*scroll the current page N lines*/ 
n; 
0; 
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0"' 
l"' 
2"' 
3"' 
4 ti I 

5"' 
6"' 
7"} i 
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reg.h.cl = O; 
reg.h.dh = 25; 
reg.h.dl = 80; 

131 [ 1 J: 
132 [ 1 J: 
133 [ lJ: 
134 [ lJ: 
135 [ 1 J: 
136 [ lJ: 
137 [ lJ: 
138 [ lJ: 
139 [ lJ: 
140 [ lJ: 
141 [ lJ: 
142 [ OJ: 
143 [ OJ: 

reg.h.bh = page + 1; /*make each page a different color*/ 
int86 (OxlO, &reg, &reg); 

reg.h.ah = Ox02; /*put cursor at bottom left hand corner*/ 
reg.h.dh = 25; 
reg.h.dl = 0; 
reg.h.bh = page; 
int86 (OxlO, &reg, &reg); 

Absolute Disk Access 

There are actually two different sets of disk service interrupts: interrupt Oxl 3 and 
interrupts Ox25 and Ox26. In fact, the latter two are not truly BIOS interrupts, 
not being defined in any ROM. These are part of the DOS operating system and 
are not initialized until DOS has been booted. I treat them as BIOS routines, 
however, as their interface and the approximate level of user friendliness is the 
same. The distinction between what belongs to DOS and what to the BIOS is 
not important for our purposes. 

Interrupt Oxl 3 references sectors on the disk by physical address. Before a sector 
may be read or written, the user must specify the sector, cylinder, and surface 
(Figure 6.1). These concepts smack too much of hardware for any dedicated 
software person to be comfortable with them. Storing and recovering these 
values is also somewhat inconvenient. 

Figure 6.1 

Sector 

Hub 

Structure of disk 
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Interrupts Ox25 and Ox26 use a logical sector numbering scheme. Sectors are 
numbered starting at 0 and continuing on the disk until the last sector. This is 
much more convenient for C programs to manipulate. The sector number very 
much resembles a one word pointer onto the disk. A second word offset within 
the sector completes the address of every byte on the disk. There is a pleasant 
symmetry between this and addresses in memory. Physical sector address may be 
converted to logical sector address using the following formula: 

logical= sector+ sectors/track* (side+ (cylinder* side/cylinder)) - 1 

where 
logical = logical sector address 
sector = sector number on the track (1 relative) 
sectors/track = number of sectors per surface per cylinder 

(9 for floppies, 17 for most hard disks) 
side = disk head number 
cylinder = cylinder number measured from hub 
side/cylinder = same as number of recording heads 

As an aside, the fact that the logical sector number is limited to 16 bits is the 
source of the 32 Megabyte disk limit for current versions of DOS. A sector in 
DOS is 512 bytes in length. This multiplied by the largest unsigned number 
(65535) gives you your 32-Megabyte limit (actually, 33,553,920 bytes). While 
the practice is discouraged in general, accessing sectors via interrupt Ox25 and 
Ox26 is no more difficult than any other BIOS interrupt. Normal file accesses 
should always go through the more refined DOS file functions discussed back in 
Chapter 5. When getting down to the disk is necessary, these interrupt services 
are the best. · 

Writing directly to the disk is too dangerous to include in a book intended for the 
general market; however, Prg6_8 below reads sectors directly from the disk and 
displays them on the screen. Simple utilities such as this are very useful when 
attempting to learn the mysteries of DOS directories and the FAT (File 
Allocation Table). 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 

/*Prg6_8 - Sector Read 

*/ 

by Stephen R. Davis, 1987 

Read sectors by logical sector number using interrupt Ox25. 
This can be used to inspect a hard disk or floppy. 

#include <stdio.h> 
#include <ctype.h> 
#include <dos.h> 
#include <conio.h> 
#include <string.h> 

#define sector_size 512 
#define chars_per_line 16 
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16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ lJ: 
36 [ lJ: 
37 [ lJ: 
38 [ lJ: 
39 [ lJ: 
40 [ lJ: 
41 [ lJ: 
42 [ lJ: 
43 [ lJ: 
44 [ lJ: 
45 [ lJ: 
46 [ lJ: 
4 7 [ 1 J : 
48 [ 2J: 
49 [ 2J: 
50 [ 2J: 
51 [ 2J: 
52 [ 2J: 
53 [ 2J: 
54 [ 2J: 
55 [ 3J: 
56 [ 3J: 
57 [ 3J: 
58 [ 3J: 
59 [ 3J: 
60 [ 3J: 
61 [ 3J: 
62 [ 3J: 
63 [ 3J: 
64 [ 3J: 
65 [ 3J: 
66 [ 3J: 
67 [ 3J: 
68 [ 3J: 
69 [ 3J: 
70 [ 2J: 
71 [ lJ: 
72 [ OJ: 
73 [ OJ: 
74 [ OJ: 
75 [ OJ: 
76 [ OJ: 
77 [ OJ: 
78 [ lJ: 
79 [ lJ: 

TURBOC 

#define max_disk 5 

/*prototype definitions*/ 
void main (void); 
unsigned readsector (unsigned, unsigned, char*); 
void disperr (unsigned); 
void display (char*, unsigned, unsigned); 
void disphex (char*, unsigned); 
void dispascii (char*, unsigned); 
unsigned getval (char*); 

/*global data*/ 
char buffer [sector_sizeJ; 
union REGS reg; 
char *drives [] = {"A", "B", "C", "D", "E", "F"}; 

/*Main - prompt the user for input and read the indicated sector*/ 
void main (void) 
{ 

unsigned diskno, sector; 
char character; 

/*program preamble*/ 
printf ("Disk examiner -\n" 

Enter disk and sector number to start (both hex);\n" 
thereafter, just enter + and - to move one sector.\n" 
Anything else returns to disk/sector question.\n" 
Exit by entering a drive number greater\n" 
than %d\n", max_disk); 

/*read the disk number to examine*/ 
for (;;) { 

diskno = getval ("Enter disk number (0 
if (diskno > max_disk) 

A, 1 B, etc)"); 

break; 
sector= getval ("Enter new sector number (0 relative)"); 

/*keep spitting out sectors as long as enters '+' or '-'*/ 
for (;;) { 

if (readsector (diskno, sector, buffer)) 
break; 

printf ("\nDrive = %s, Sector= %4.4x\n", 
drives [disknoJ, sector); 

display (buffer, sector_size, chars_per_line); 

character= getche (); 
if (character== '-') 

sector--; 
else 

if (character '+') 
sector++; 

else 
break; 

/*Getval - display a prompt and input the response*/ 
unsigned getval (prompt) 

char *prompt; 

unsigned value; 



80 [ lJ: 
81 [ lJ: 
82 [ lJ: 
83 [ OJ: 
84 [ OJ: 
85 [ OJ: 
86 [ OJ: 
87 [ OJ: 
88 [ OJ: 
89 [ OJ: 
90 [ OJ: 
91 [ lJ: 
92 [ lJ: 
93 [ lJ: 
94 [ lJ: 
95 [ lJ: 
96 [ lJ: 
97 [ lJ: 
98 [ lJ: 
99 [ lJ: 

100 [ OJ: 
101 [ OJ: 
102 [ OJ: 
103 [ OJ: 
104 [ lJ: 
105 [ lJ: 
106 [ lJ: 
107 [ lJ: 
108 [ lJ: 
109 [ l J: 
110 [ lJ: 
111 [ lJ : 
112 [ lJ: 
113 [ lJ: 
114 [ lJ: 
115 [ OJ: 
116 [ OJ: 
117 [ OJ: 
118 [ OJ: 
119 [ OJ: 
120 [ lJ: 
121 [ OJ : 
122 [ OJ: 
123 [ OJ: 
124 [ OJ: 
125 [ OJ: 
126 [ OJ: 
127 [ OJ: 
128 [ OJ: 
129 [ OJ: 
130 [ lJ: 
131 [ l J : 
132 [ lJ: 
133 [ lJ: 
134 [ lJ: 
135 [ lJ: 
136 [ 2J: 
137 [ 3J: 
138 [ 3J: 
139 [ 3J: 
140 [ 3J: 
141 [ 3J: 
142 [ 2J: 
143 [ 2J: 

printf ("%s - ", prompt); 
scanf ("%x", &value); 
return value; 

ACCESSING THE PC'S BIOS 

/*Read - read a sector from the specified disk. Return a 0 
if successful, else display the error*/ 

unsigned readsector (diskno, sector, bufptr) 
unsigned diskno, sector; 
char *bufptr; 

reg.h.al diskno; 
reg.x.bx (unsigned)bufptr; 
reg.x.cx l; 
reg.x.dx sector; 
int86 (0x25, &reg, &reg); 

if (reg. x. cflag) 
disperr (reg.h.al); 

return reg.x.cflag; 

/*Disperror - display the error from DOS disk read*/ 
char *errlist [J = {"Attempt to write on write-protected disk", 

"Unknown unit", 
"Drive not ready", 
"Unknown cominand", 
"CRC error", 
"Bad drive request structure length", 
"Seek error", 
"Unknown media type", 
"Sector not found", 
"Printer out of paper", 
"Write fault", 
"Read fault", 
"General failure"); 

void disperr (errnum) 
unsigned errnum; 

printf ("\n%s\n", errlist [errnumJ); 

/*Display - display a buffer on the user's screen in both hex 
and ASCII format. Suppress displaying a line if it 
is the same as its predecessor.*/ 

void display (bufptr, number, per_line) 
char *bufptr; 
unsigned number, per_line; 

unsigned count; 
char *oldptr; 

count = O; 
oldptr = "something very unlikely"; 
while (count < number) { 

if (strncmp (oldptr, bufptr, per_line)) 
printf ("%4x: ", count); 
disphex (bufptr, per_line); 
printf (" - "); 
dispascii (bufptr, per_line); 
printf ("\n"); 

oldptr = bufptr; 

257 
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144[ 2J: bufptr += per_line; 
145( 2J: count+= per_line; 
14 6 [ 1 J : 
147 [ OJ: } 
148 [ OJ: 
149[ OJ: /*Disphex - display data in hex format*/ 
150( OJ: void disphex (bufptr, count) 
151[ OJ: char *bufptr; 
152( OJ: unsigned count; 
153 [ OJ: { 
154( lJ: for(; count; count--) 
155[ lJ: printf ("%2.2x ", Oxff & *bufptr++); 
156 [ OJ: } 
157 [ OJ: 
158( OJ: /*Dispascii - display data in ASCII format*/ 
159[ OJ: void dispascii (bufptr, count) 
160 [ OJ: 
161 [ OJ: 
162 [ OJ: 
163 [ lJ: 
164 [ 1 J: 
165 [ lJ: 
166 [ lJ: 
167 [ lJ: 
168 [ OJ: 

char *bufptr; 
unsi5Jned count; 

for (; count; bufptr++, count--) 
if (isprint (*bufptr)) 

printf ("%c", *bufptr); 
else 

printf ("%c", 1
•

1
); 

Figure 6.2 

Drive : B, Sector: 0005 
0: 42 45 4e 43 48 20 20 20 45 58 45 20 00 00 00 00 - BENCH EXE II I I 

10: 00 00 00 00 00 00 01 20 410d02 00 34 88 00 00 - I II I I I I A1I141 I I 
20: 42 45 4e 43 48 30 37 20 45 58 45 20 00 00 00 00 - BENCH07 EXE I I I I 
30: 00 00 00 00 00 00 02 20 41 0d 25 00 09 20 00 00 - I I I I I I I A1!.1 I II 
40: 42 45 4e 43 48 30 37 20 44 41 54 20 00 00 00 00 - BENCH07 DAT II I I 
50: 00 00 00 00 00 00 02 20 41 0d 2e 00 25 0e 00 00 - I I I I I I I A1 I 1!.1 I I 
60: 42 45 4e 43 48 30 38 20 45 58 45 20 00 00 00 00 - BENCH08 EXE II I I 
70: 00 00 00 00 00 00 03 20 41 0d 32 00 89 1b 00 00 - I I I I I I I A1211 I II 
80: 42 45 4e 43 48 30 39 20 45 58 45 20 00 00 00 00 - BENCH09 EXE I I 11 
90: 00 00 00 00 00 00 03 20 41 0d 39 00 49 19 00 00 - I I I I I I I A191l1 I I 
a0: 42 45 4e 43 48 31 30 20 45 58 45 20 00 00 00 00 - BENCH10 EXE II I I 
b0: 00 00 00 00 00 00 04 20 410d40 00 e9 14 00 00 - I I I I I I I A1@11 I I I 
c0: 42 45 4e 43 48 31 32 20 42 41 53 20 00 00 00 00 - BENCH12 BAS II II 
d0: 00 00 00 00 00 00 04 20 410d46 00 00 15 00 00 - I I I I I I I A1F1 II I I 
e0: 42 45 4e 43 48 31 37 20 45 58 45 20 00 00 00 00 - BENCH17 EXE II I I 
f0: 00 00 00 00 00 00 05 20 410d4c 00 d9 48 00 00 - I I II I I I A1L11H1 I 

100: 42 45 4e 43 48 31 38 20 45 58 45 20 00 00 00 00 - BENCH18 EXE II I I 
110: 00 00 00 00 00 00 05 20 410d5f 00 d6 20 00 00 - I I I I I I I A1 II II 
120: 42 45 4e 43 48 32 30 20 45 58 45 20 00 00 00 00 - BENCH20 EXE' I I I I 
130: 00 00 00 00 00 00 06 20 41 0d 68 00 6a 2b 00 00 - I II I I I I A1h1j+1 I 
140: 42 45 4e 43 48 32 31 20 45 58 45 20 00 00 00 00 - BENCH21 EXE II I I 
150: 00 00 00 00 00 00 07 20 41 0d 73 00 9e 29 00 00 - I II I I I I A1S11l1 I 
160: 42 45 4e 43 48 32 31 41 45 58 45 20 00 00 00 00 - BENCH21AEXE I I II 

A hexadecimal dump of the directory for a benchmark floppy disk 
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In this program, main() displays an explanatory preamble to the operator and then 
awaits a disk and logical sector number. Disks are numbered starting with 0 (A 
= 0, B = 1, ... ). Main() uses the functions readsector() to actually read the sector 
and display() to put it on the screen. Once displayed, the operator may continue 
by entering a+ for the next sector, a - for the previous sector or anything else for 
a new disk/sector number prompt. 

Readsector() performs the actual read using interrupt Ox25. An error is indicated 
upon return from the interrupt if the carry flag is set. If set, the error number is 
contained in REG.H.AL. The routine disperr() is used to display an error 
message. ERRLIST represents the list of possible errors returned from the direct 
disk interrupts. Readsector() returns a 0 if no error occurred, otherwise it returns a 
1. 

Display() is a general usage display routine which prints a buffer first in hex and 
then in ASCII across a line. Display() uses the strncmp() function to suppress 
the display of lines that are identical to their predecessors. This is to keep from 
displaying line after line of O's or blanks. Display() continues printing 
PER_ LINE characters per line until NUMB ER of characters total has been 
printed. (NUMBER should be a multiple of PER_LINE.) 

Notice in the display ASCII function, dispascii(), the use of the IS function 
isprint(). /sprint() returns a 1 if the character provided it is printable, i.e. other 
than line feeds, carriage returns, tabs and the like, and a 0 if not. If the current 
character is not printable, a dot is printed in its place. This keeps a control 
character from cluttering up the display. The IS functions are intended for just 
these sorts of chores and should be kept in mind. 

A truly useful hacker's utility can be built easily from this start. Adding a 
simple editing capability to allow the user to change the hex data in the sectors 
just read and a sector write capability results in a hacker's bit-picking utility. 
While the program presented might satisfy the programmer's curiosity, such a 
utility can be used to put a crashed disk back together. 

Conclusion 

Really nothing to be afraid of, the BIOS interrupt routines are easily accessible 
from Turbo C and can provide intimate access to the PC's hardware. This can 
result in faster execution and more exciting effects than is possible strictly 
through DOS function calls. Of course, this capability comes at the price of 
more details with which to worry. 
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If this is still not enough power (or not enough details to worry about) then 
continue on into Chapter 7, where you bypass even the BIOS to access the 
machine hardware yourself. 



7 
Accessing 

the PC's 
Hardware 

Users of microprocessors suffer many disadvantages in comparison with their 
mainframe-based cousins. Slow processors, small memories, and slow hard disks 
(or, worse yet, floppies!) all conspire to drag down the user's application. For 
this, the micro user does gain a few advantages: no time sharing or file access 
protection to worry with, no fighting for terminals and complete control of the 
computer. 

One of the biggest advantages the micro programmer has is the ability to access 
the hardware directly. When programs are time-sharing back and forth, swapping 
in and out of memory, if one of them decided to simply take over the printer, for 
instance, things would quickly become quite a mess. Lines from different 
programs would become interspersed in a hieroglyphic jumble. No self­
respecting multiuser system can allow this sort of thing to happen. 

To protect against such things, the user program cannot be allowed to access 
things it shouldn't. The system designer can make a rule: "No accessing the 
hardware directly!" and paste it right up on the very first page of the programmer's 
manual, but without some mechanism to preclude it from happening, someone is 
going to try it. The system must protect itself. 

It is not possible in software to watch every instruction that a user program is 
executing to be sure it isn't doing something unallowed. The underlying 
computer must provide hardware protection mechanisms. In a protected system, 
user programs cannot access the printer directly, not because it's against the rules, 
but because the computer instructions necessary to do so, are not accessible. In 
addition, programs which try to access memory beyond the bounds assigned to 
them, are kicked off of the machine in short order. 

261 
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Single tasking microcomputers do not have such problems. There is only one 
user running a single program. If it wants to go out and start talking directly to 
the printer, who cares? Even if it does bring the computer into silent, 
unresponsive confusion, no one else is injured by the crash. Typically, 
microprocessors and their operating systems do not implement protection 
mechanisms to keep user programs away from the hardware. There's still that 
rule on the first page of the programmer's manual, of course, but programs are 
free to ignore it (and so, of course, they do). 

When programs decide to bypass even the BIOS, nothing is done for them. They 
must concern themselves with all the trivial details that their DOS-calling 
siblings can ignore. Besides, such programs must be updated every time a new 
display or disk controller is introduced if they are going to keep up with the 
Microsofts. With all this difficulty, there must be some overriding reason why 
programmers are so eager to make all this work for themselves. The answer is 
obvious: speed and power. 

The software within the BIOS is not particularly fast. BIOS calls are much faster 
than DOS calls because they don't do nearly as much. Print something out to the 
screen using a DOS call and it must check for potential console redirection, 
interpret special characters, and constantly be on the lookout for Control-Breaks. 
The BIOS routine does none of these things (besides, the DOS call uses the BIOS 
routine to perform the actual output). However, the BIOS routines are written 
very conservatively. For example, most of the them push the entire register set 
onto the stack upon entering and pop them all back off before exiting. This is 
the safe thing to do, but if none of these registers are being used for anything in 
the user program, it is a complete waste of time. 

A program which handles the hardware itself need not be so conservative. It 
knows which registers contain data worth saving and those which do not. A 
particularly efficient routine that has side effects that would make it unsuitable for 
general application, can be accommodated in a custom application. 

Further, the BIOS routines in the PC are quite weak compared to more modem 
machines. The screen output handler does not include any of the drawing 
primitives you would expect of a more graphically oriented machine. Not even a 
fill subfunction is included. Filling a large area by setting each and every dot 
using the Write Dot subfunction gives an all new meaning to the term response 
time. Programs which access the hardware themselves can define and implement 
whatever primitives they choose. Nothing is beyond their reach. 
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Still, I do not want to give the impression that every program you write should 
callously skip over the DOS and BIOS and begin grappling with the machine on 
its own. As I have noted, these two services represent a large body of debugged 
code which I would not want to repeat. Besides, there are other ways to get 
increased BIOS speed and power. 

Almost as soon as it became clear that applications were avoiding the BIOS 
routines because they were too slow, third party vendors began writing 
replacements. Today, there are dozens of such packages, many of which are in 
the public domain. (Public-domain programs are either free or Shareware 
packages available through public bulletin board systems and through services 
such as CompuServe, BIX, and the Source.) 

The user installs one of these programs in the CONFIG.SYS file using the 
DEVICE= directive. At boot up, these packages replace the existing BIOS 
routines just as our EGA screen handler replaced the old CGA/MDA handler. The 
new BIOS routines are usually simply faster, but some are both faster and more 
capable. One such package, marketed by a company called Metaware, actually 
defines a full set of graphics primitives, much like those on the Apple Macintosh 
computer. If you find that you routinely need more than the BIOS has to offer, 
purchasing or downloading one of these programs is undoubtedly quicker and less 
expensive than writing one yourself. 

Having read this, very few readers will decide they are no longer interested in 
direct machine access and skip over to Chapter 8. There are always times and 
places when direct machine access is required. What areas benefit the most and 
which the least? 

File systems are complicated affairs. While DOS's is no worse than any other, it 
is certainly not the type of thing that a programmer should capriciously diddle 
with. Make a mistake during debug and write an incorrect block out to the disk 
randomly and you risk a disk crash that only a complete reformat can recover 
from. Further, there are ths problems of different types of disk formats, not to 
mention the various d~sk controllers out there, which would have to be supported. 
While it is done, this is definitely not an area for amateurs. 

On the other hand, direct display output is one area which can benefit a program 
greatly. No matter what gyrations your program might be undergoing internally, 
the user perceives its performance in only two ways: the screen and the keyboard. 
Of course, if the data is not ready to be printed, a faster display program will not 
help, but simply doubling the output speed of a program with lots of screen 
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output will make a big difference in user acceptance. Fortunately, the display is 
both simple and forgiving and, therefore, very amenable to experimentation. 

0/S2 and the Future 

When I said earlier that microcomputers were not equipped with the types of 
hardware protection features normally found on minicomputers and mainframes, 
that was not quite true. In fact, the 80286 and 80386 microprocessors have an 
involved and powerful protection mechanism. The problem lies not with the 
chip, but with the operating system. 

DOS was designed at the close of an earlier era of microcomputers. A 64k 
machine was standard fair. I remember distinctly having a RAM disk on a 
machine equipped with only 192k bytes of RAM. Operating systems in those 
days were both simpler and smaller. Besides, the 8088 and 8086 
microprocessors, for which DOS was designed, have none of the protection 
mechanisms of their younger brothers. There was no point in trying to design 
protection into DOS. 

Time is catching up with DOS. The 640k byte of RAM limit imposed by DOS 
which once seemed like a basketball court now feels like a broom closet. The 
IBM AT years ago introduced microcomputers equipped with the 80286 processor 
and today the 80386 is not uncommon. While improvements are added to DOS in 
a continuing evolutionary process, nothing can be done to address the underlying 
design deficiencies. The newer chips are forced to execute DOS in their 8086-
emulating real mode, in which the protection mechanisms are disabled. DOS is 
not a protected mode operating system and it cannot be made into one. 

As of this writing, not all the details of OS/2 are known. A few things are 
certain, however. OS/2 is a multitasking, virtual memory executive which uses 
(and requires) the full protection capabilities of the 80286 and 80386 
microprocessors. As such, OS/2 will not look kindly upon an application which 
begins playing with OS/2's precious hardware. Any application attempting to 
pull the tricks described in this chapter, will find itself relegated to the garbage­
can icon under OS/2. 

Lower Memory 

It is well known that the BIOS maintains all of its variables in lower memory in 
segment Ox40. (The main reason this is so well known is that IBM published 



ACCESSING THE PC'S HARDWARE 265 

source code listings for all of the BIOS routines-one need only read the listings 
to determine what is stored where.) Table 7 .1 is a summary of key low memory 
locations and their meanings: 

Table 7.1 
Key Low Memory Locations 

Location Size Meaning 
Ox10 2 equipment status flag 
Ox13 2 size of memory in kbytes 
Ox17 keyboard shift status 
Ox49 1 current video mode 
Ox4a 1 number of columns on current screen 
Ox50 16 cursor position for each of 8 pages 
Ox62 1 active page 
Ox63 1 1/0 address of active 6845 
Ox66 current pallette setting 
Ox6c 4 timer (clock ticks since midnight] 
Ox70 1 1 -> roll over since timer last read 
Ox71 1 -> break key has been depressed 

All of the above addresses are offsets into segment Ox40. 

The easiest method of accessing these locations is to define a far pointer of the 
proper type and initialize it to the proper value taken from the table above. For 
example, suppose that we wanted to read the equipment status by direct 
examination instead of using the proper BIOS call back in Chapter 6. Prg7 _1 
represents just such a program. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ 
16[ OJ 
17 [ OJ 
18[ OJ 

/*Prg7_1 - Read the Hardware Status (Direct Access) 
by Stephen R. Davis, 1987 

*/ 

Get the equivalent hardware status by directly addressing 
the keyboard status word in lower memory. See Prg6_2 for 
interpretation of status word. 

#include <stdio.h> 
#include <dos.h> 

/*prototype definitions*/ 
int main (void); 
void interpret (unsigned); 

/*define global variables*/ 

unsigned far *equip_flag = {(unsigned far *)Ox00400010}; 
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19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ lJ: 
24 [ lJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ lJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ lJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ lJ: 
42 [ lJ: 
43 [ OJ: 
44 [ OJ: 
45 [ OJ: 
46 [ OJ: 
47 [ lJ: 
48 [ OJ: 
49 [ OJ: 
50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ lJ: 
55 [ OJ: 
56 [ OJ: 
57 [ OJ: 
58 [ OJ: 
59 [ OJ: 
60 [ OJ: 
61 [ lJ: 
62 [ OJ: 
63 [ OJ: 
64 [ OJ: 
65 [ OJ: 
66 [ lJ: 
67 [ OJ: 
68 [ OJ: 
69 [ OJ: 
70 [ OJ: 
71 [ lJ: 
72 [ lJ: 
73 [ lJ: 
74 [ lJ: 
75 [ lJ: 
76 [ lJ: 
77 [ lJ: 
78 [ lJ: 
79 [ lJ: 
80 [ lJ: 
81 [ l J: 
82 [ lJ: 

TURBOC 

/*Main - make the BIOS call to get status and then interpret it*/ 
main () 

printf ("\nEquipment as reported by 'equip_flag' variable:\n"); 
interpret (*equip_flag); 

/*Display routines which we need for Interpret()*/ 
void dispnum (i) 

unsigned i; 

printf ("%d", i); 

void dispdsk (i) 
unsigned i; 

printf ("%d", i + l); 

char *modes [J {"No monitor or EGA attached", 
"Color/Graphics in 40 x 25 mode", 
"Color/Graphics in 80 x 25 mode", 
"Monochrome monitor"); 

void dispmode (i) 
unsigned i; 

printf (modes [iJ); 

char *mems [J = {"16k", "32k", "48k", "64k"); 
void dispmern (i) 

unsigned i; 

printf (mems [iJ); 

char *yn [J = {"Yes", "No"); 
void dispyn (i) 

unsigned i; 

printf (yn [iJ); 

void dispny (i) 
unsigned i; 

printf (yn [l - iJ); 

/*Interpret - interpret the IBM status word*/ 
struct DICT 

unsigned mask; 
unsigned shiftvalue; 
char *string; 
void (*disp) (unsigned); 

"Printers = ) dictionary [J = {{OxcOOO, 14, 
{OxlOOO, 12, 
{OxOeOO, 9, 
{OxOOcO, 6, 
{0x0030, 4, 
{OxOOOc, 2, 
{0x0002, 1, 
{OxOOOl, 0, 

"Game I/0 ports 
"Serial ports = 

"Disk drives = 

"Video mode = 

"System board RAM 
"8087/287 NOP = 

"IPL from diskette 

II 
I dispnum), 

II 
I dispnum), 

II 
I dispnum), 

II 
I dispdsk), 

II 
I dispmode) 

II 
I dispmem), 

II , dispny), 
= II , dispyn), 



83 [ OJ: 
84 [ OJ: 
85 [ OJ: 
86 [ OJ: 
87 [ lJ: 
88 [ lJ: 
89 [ lJ: 
90 [ lJ: 
91 [ lJ: 
92 [ 2J: 
93 [ 2J: 
94 [ 2J: 
95 [ 2J: 
96 [ 2J: 
97 [ 2J: 
98 [ lJ: 
99 [ OJ: 

void interpret (value) 
unsigned value; 

unsigned maskvalue; 
struct DICT *ptr; 

ptr = dictionary; 
while (ptr -> mask) 
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{OxOOOO, 0, "Terminator", dispnum)); 

maskvalue = value & ptr -> mask; 
maskvalue >>= ptr -> shiftvalue; 
printf (ptr ->string); 
(* (ptr -> disp)) (maskvalue); 
printf ("\n"); 
ptr++; 

The most remarkable feature of this program is how similar it is to its BIOS 
calling brother. The only real difference is that the call to getstatus() has been 
replaced by a reference to the variable EQUIP _FLAG. EQUIP _FLAG is declared 
to be of type UNSIGNED FAR * and set to the value Ox00400010 in accordance 
with the table above. 

Notice once again how a far pointer is initialized. The first 4 hex digits are 
assigned to the segment portion of the pointer and the lower 4 hex digits to the 
offset portion. If this feels uncomfortable, you can also use the MK _F P() call in 
the Turbo C library to build the far pointer from the two unsigned values Ox40 
and OxlO. 

Values in lower memory need not be static. We can just as well read data which 
is changing. For example, Prg7 _2 below is a direct access translation of our 
time delay program also from Chapter 6. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ 0 J: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 

/*Prg7_2 - Delay Specified Number of Seconds (Direct Access) 
by Stephen R. Davis, 1987 

*/ 

Many programs must delay for short periods of time. Often this 
is done by executing an "empty" FOR loop. Use the clock counter 
in lower memory as a more accurate clock. 

#include <stdio.h> 

/*define a clock tick -> seconds macro*/ 
#define GETIME (unsigned) (*timer I 18 - *timer I 1638) 

/*prototype definitions*/ 
void main (void); 
unsigned getval (char*); 
void wait (unsigned); 

/*global data definitions*/ 
volatile long far *timer= {(long far *)Ox0040006c); 
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22 [ 0]: 
23 [ O]: 
24 [ OJ: 
25 [ 1]: 
26 [ 1]: 
27 [ 1]: 
28 [ 1]: 
29 [ 1]: 
30 [ lJ: 
31 [ 1]: 
32 [ lJ: 
33 [ 1]: 
34 [ 2]: 
35 [ 2]: 
36 [ 2]: 
37 [ 2J: 
38 [ 2]: 
39 [ 2]: 
40 [ 2]: 
41 [ 2]: 
42 [ 2]: 
43 [ 1]: 
44 [ O]: 
45 [ OJ: 
46 [ OJ: 
47 [ OJ: 
48 [ OJ: 
49 [ 0 l: 
50 [ 1]: 
51 [ lJ: 
52 [ lJ: 
53 [ 1]: 
54 [ 1]: 
55 [ OJ: 
56 [ OJ: 
57 [ OJ: 
58 [ OJ: 
59 [ OJ: 
60 [ OJ: 
61 [ 1 J: 
62 [ lJ: 
63 [ lJ: 
64 [ lJ: 
65 [ 1]: 
66 [ 2]: 
67 [ 3J: 
68 [ 3J: 
69 [ 3]: 
70 [ 3J: 
71 [ 3J: 
72 [ 3J: 
73 [ 2J: 
74 [ 1]: 
75 [ OJ: 

TURBOC 

/*Main - ask the user for length of time to delay (0 terminates)*/ 
void main (void) 
{ 

unsigned delay; 

printf ("This program simply delays the user specified number\n" 
"of seconds. Entering a zero terminates the program.\n" 
"\n" 
"Seconds are counted down to provide output so that\n" 
"the user can break out prematurely, if desired\n" 
"\n"); 

for (;;) { 

/*get the specified delay and wait () that long*/ 
if ((delay= getval ("Enter delay time [seconds]")) 0) 

break; 

/*now call our wait function to perform the delay*/ 
printf ("Start delay:\n"); 
wait (delay); 
printf ("Finished\n"); 

/*Getval - output a prompt and get an integer response*/ 
unsigned getval (prompt) 

char *prompt; 

unsigned retval; 

printf ("%s - ", prompt); 
scanf ("%d", &retval); 
return retval; 

/*Wait - wait the specified length of time*/ 
void wait (delay) 

unsigned delay; 

unsigned previous, current; 

/*every time the time changes - decrement count*/ 
previous = GETIME; 
for (;;) { 

if (previous != (current 
previous = current; 
if ( ! --delay) 

return; 

GETIME)) { 

/*remove this print statement in actual use*/ 
printf ("count - %d\n", delay); 

Here I have defined the macro GET/ME, which appears much as the call to 
getime() did in Prg6_3; however, GET/ME translates to a direct access to the data 
pointed at by TIMER. The definition of TIMER is slightly different than 
EQUIP _FLAG above. Why the descriptor VOLATILE? 
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First, you should analyze a little more closely what is meant by changing data. 
In this particular program, the CPU is in a very tight loop examining the 
variable *TIMER. How can anything be changing? In fact, there are many 
things going on inside the PC even when programs are sitting in tight loops. 
For one thing, every tick of the Programmable Interval Timer, the CPU is being 
interrupted from its tight loop and is running off into the timer interrupt service 
handler. One of the functions of this handler is to increment the time of day 
variable in low memory. 

The timer interrupt is transparent to the user program; i.e., it comes and goes 
without the user program ever being aware. Programmers try to visualize things 
using the simplest model possible, so we act as if the CPU is always in the 
program loop and someone or something else is incrementing the clock for us. 
By repeatedly reading the timer location in memory, the program can watch time 
pass by. 

There is only one problem. We have to be sure that our program is, in fact, 
watching the memory location. Turbo C attempts to perform certain 
optimizations in translating our C programs into assembly language to generate 
faster programs. One of these is to not load memory locations that it knows are 
already stored in a register of the microprocessor. Turbo C assumes that all 
variables retain their value unless it changes them. It does not know about 
variables that click along in the background. 

If we are not careful, Turbo C is likely to load *TIMER one time. On the next 
pass, Turbo C might note that the value of *TIMER is already stored in a register 
some place and not reload it from memory. This would be disasterous for our 
program. The location *TIMER might in fact be ticking along, but the value of 
*TIMER which Turbo C has stashed away in a register somewhere will not. To 
avoid this we add the descriptor VOLATILE to *TIMER. This alerts Turbo C to 
reload the value of *TIMER even if Turbo C thinks it knows what it is already. 

I want to point out here that you do not know that Turbo C is going to make 
some optimization on *TIMER which will mess up your program. You only 
know that it might. Adding the descriptor VOLATILE removes any possibility. 

The second program above has a much better justification for existing than the 
first. Reading the equipment status is not typically a time critical operation. 
The BIOS call does not take long to execute and provides much better assurance 
of functioning properly on all machines. One could argue that the Get Time of 
Day BIOS call does take a certain amount of time. When measuring the 
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execution time of programs very accurately, one does not want the execution time 
of the stop watch to appreciably add to the over all time. 

The resolution of a clock ticking 18.2 times per second is not going to lead to 
timings which could be appreciably thrown off by two Get Time of Day BIOS 
calls. It is possible to increase the accuracy of such measurements by speeding 
up the clock to, say, 100 times per second by writing to the PIT. In such cases, 
the minimum time resolution becomes short enough that it may be necessary to 
access the location directly as we have done in Prg7 _2. 

In other words, unless there is some overriding reason, don't access the lower 
memory words directly. The arguments to the BIOS routines are documented. 
This means that they are not likely to change. New ones are sure to come along, 
but the old BIOS calls will certainly continue to be supported in new machines. 
The address locations in low memory are not documented. There is no assurance 
that these variables will stay put. In fact, although the above two programs have 
been tested on an IBM PC and AT, we have no assurance that they will function 
properly on PC's from other companies. 

Direct Screen 1/0 

Of all the forms of direct access to the PC's hardware, direct screen I/0 is by far 
the most common. Whether this is a testament to how important good display 
performance is or how inadequate the BIOS routines are, I do not know. Or, 
perhaps, it is merely an indication of how easy it is to access the screen yourself. 

It is this fact which doomed some of the clone manufacturers of the early days. 
The BIOS was supposed to rationalize the interface to the display hardware. In 
principle, it did not make any difference how the details of the video adapter were 
arranged as long as all the BIOS calls were adequately supported. Believing that 
and noticing several gaping inadequacies the the color/graphics adapter, several 
companies decided to go off and make their own. These new cards were equipped 
with more resolution or more colors or both. Sure they were different, but the 
BIOS was supposed to handle these little problems. 

Unfortunately, when programs began routinely skipping over the BIOS, these 
small hardware differences began to seem quite important indeed. One of the 
most hardware sensitive of these programs was a game known as Flight 
Simulator. Ninety-nine percent of programs for the PC did not care about the 
minutiae of graphics design that Flight Simulator did, but that didn't matter. 
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Flight Simulator was the acid test for graphics compatibility. If a computer's 
video adapter could not run Flight Simulator, then it did not sell. 

Let's start by reviewing a few basics. A computer display consists of two parts: 
the monitor and the video controller graphics card. The front surface of the 
display tube of the monitor is coated with a thin film of a phosphor containing 
substance. This material normally appears dark when viewed from the front of 
the tube, but glows when it is excited by high velocity electrons impacting it. 
Fortuitously enough, right in the back of the display tube is an electron gun 
which can spew out a controlled supply of such electrons. This gun is capable of 
turning on and off the supply of electrons very rapidly (from on to off in rougly 
0.1 microsecond in a CGA display). Large coils located on all four sides of the 
tube immediately in front of the electron gun generate magnetic fields which 
cause the beam of energized electrons to both focus and deflect to a spot on the 
screen, a pixel. 

As the electron gun sweeps from left to right for each of the CGA's 200 vertical 
lines, it paints the image by turning the electron supply on and off. Wherever it 
is on, the pixel glows; wherever it remains off, it remains dark. In a color 
monitor, there are 3 sets of pixels, each of which glows with one of the primary 
colors. Each set has its own electron gun. The 3 beams are swept together but 
each is aligned with its own color. If a particular spot is to be red, only the red 
gun is turned on. If white, all three are energized. 

If the beam sweeps the screen fast enough, the retention in both the phosphor and 
in the user's eye will cause the entire screen to appear equally bright. The user 
experiences no perception of the sweeping going on. How fast is fast enough? 
The CGA monitor scans the screen vertically 60 times per second. Since there 
are 200 vertical lines on the CGA's display and each must be swept 60 times per 
second, then the electron beam must sweep from left to right at least 12,000 
times per second (60 * 200). In fact, the horizontal sweep rate, as it is called, is 
almost 16,000 Hertz (Hertz sounds better than times per second). This extra is to 
allow for details such as overscan and sync pulses. The figures for the MDA and 
EGA are accordingly higher because of their higher resolution. 

All that activity going on within the monitor means that there is a constant 
stream of information being sent to the monitor screen. This is true, even if 
nothing on the screen is changing. Since monitors have no memory, this 
information must be continuously supplied from the video card. (This is the 
fundamental difference between a monitor and a terminal. A terminal, which has 
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Figure 7.1 

phosphor surface 

Inside of computer monitor 

electron 
gun 

its own memory, will continue to display information on the screen even when 
unplugged from the computer.) 

In a raster scan monitor such as we have been describing, all the video card has to 
send are the gun instructions. The monitor is going to sweep back and forth and 
up and down without instructions from the computer. The card merely sends a 
chain of bits, one for each pixel, telling the monitor whether to make that pixel 
glow or not. Just to keep the monitor and card talking about the same pixel, the 
card sends a sync pulse at the end of each horizontal and vertical sweep. 

Just as the monitor has a large matrix of pixels on its front surface to scan, the 
graphics card scans a large block of internal memory for the information to 
display. In graphics mode 6, it's quite simple. The card views its memory as a 
large matrix of bits, each one corresponding to one of the pixels on the monitor's 
display. If the bit is set, the pixel glows. In graphics mode 4 and 5, the card 
associates each pixel with 2 bits in memory. These two bits indicate the 4 colors 
of a pallette. 

When displaying characters in one of these graphics modes, each character must 
be painted in memory, setting each of the appropriate bits to form the character 
image on the screen. Even though this is very flexible, it is not easy, involving 
lots of overhead. Fortunately, in the character modes of operation, the card makes 
the translation from character to pixel pattern for us. In these modes, the card 
views memory as a matrix of character/attributes. The first 80 words of display 
memory correspond to the first row (assuming 80 characters across), the next 80 
to the next row and so on. 
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Figure 7.2 
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Mapping video memory to monitor display 

Except for maybe being very fast to allow the video card rapid access, video 
memory is identical to other memory within the system. So where is this 
memory? Physically, it's located on the video card itself. (In the PCjr, the video 
card borrows some of the system memory.) Logically, each of the different 
monitors is assigned its own address. Table 7 .2 shows the segment addresses for 
each of the major video displays. To enhance compatibility with the CGA and 
MDA, the EGA and VGA cards use the their addresses in some modes. 

Why all these different addresses? Because, as we mentioned above, the CGA and 
MDA were designed to both work within the same computer. By assigning them 
different addresses, the PC can address them independently. The EGA and VGA 
require more memory in their higher resolution modes, but attempt to emulate 
the older cards as much as possible in modes 0 through 7. Notice that because of 
memory overlap, it is not possible to have an MDA, a CGA and an EGA, all in 
the same machine, but any two are allowed. 
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Table 7.2 
Segment Address for Video Memory 

Monocrome Display Adapter 

Color Graphics Adapter 

Enhanced Graphics Adapter 
and 

Video Graphics Array 

OxBOOO 

Ox8800 

OxB800 (modes O thru 6) 
OxBOOO (mode 7) 
OxAOOO (other modes) 

Now prove to yourself that this isn't just so much clap trap. If the display 
adapters have memory, then you must be able to write to it. The most direct way 
to write to memory is via the DEBUG debugger supplied with your DOS disks 
(any debugger will do, if you don't like DEBUG). Be sure your video adapter is 
in one of the character modes. Enter DEBUG and attempt to edit memory, 
entering for example the following command: 

- E BSOO:OOOO 

xx 41 xx 42 xx 43 xx 44 etc. 

where - is the debugger prompt and xx is some numerical value. The B8000 will 
be a BOOO for a monochrome display. 

The hex codes for the letters of the alphabet are 41, 42, 43, etc. Before you go 
too far, look up in the upper left-hand comer of the display. What's this? Every 
other character of the alphabet is appearing, but with strange colors (or 
characteristics on a monochrome). The E command writes bytes to the screen. 
The first byte we write is the character, but the second becomes its attribute, the 
third the next character, the fourth its attribute, and so on. (The printed page 
cannot do the effect justice-try it yourself.) 

As soon as you enter return, everything you've written scrolls off the screen. 
Maybe we should have written on one of the other rows. If the first row is 80 
characters across, then the second row should start at address B800:00AO. This 
we get by remembering that each character is 2 bytes and that 160 decimal = 
OOAO hexadecimal. This should work exactly the same, except that it takes two 
line feeds to remove it from the screen. You may want to go back and use the 
attribute table in Chapter 6 to play with the different attribute values to see their 
effect on the screen. 
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Figure 7.3 

A EGIKM Q UWV[ll 
C>DEBUG 
-E B800:0000 
B800:0000 20.41 07.42 20.43 07.44 20.45 07.46 20.47 07.48 
B800:0008 20.49 07.4A 20.4B 07.4C 20.4D 07.4E 20.4F 07.50 
B800:0010 20.51 07.52 20.53 07.54 20.55 07.56 20.57 07.58 
B800:0018 20.59 07,5A 20.5B 07.5C 20.5D 07.5E 20.5F 07.60 

Editing screen memory from DEBUG 

Accessing screen memory from a program is just about as simple as accessing it 
from DEBUG. Of course, there will be; details to worry about, such as scrolling 
and the like. Let's start with a simple example that avoids all that. If the screen 
consists of simple memory, then it must be possible to save it to disk, just like 
any other buffer. Having done that, it should then be possible to read the file 
back from disk to the display. 

Prg7 _3 in the listing below shows a program which does exactly that. You 
should examine it carefully. First, two constants have been defined and one 
pointer SCREEN. Both have been declared as UNSIGNED FAR *. The 
UNSIGNED is because each character on the screen has both the character byte 
and the attribute byte. The FAR because segments OxbOOO and OxbBOO must be 
specified explicitly. 

1( OJ: /*Prg7_3 - Save the screen area to disk and recall it 
2( OJ: by Stephen R. Davis, 1987 
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3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ 0 J: 
16 [ OJ: 
17 [ 0]: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ 0]: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ OJ: 
42 [ OJ: 
43 [ OJ: 
44 [ OJ: 
45 [ OJ: 
46 [ OJ: 
47 [ OJ: 
48 [ lJ: 
49 [ lJ: 
so [ lJ: 
51 [ lJ: 
52 [ lJ: 
53 [ 2J: 
54 [ 2J: 
55 [ lJ: 
56 [ lJ: 
57 [ lJ: 
58 [ lJ: 
59 [ J:J: 
60 [ 2J: 
61 [ 2J: 
62 [ lJ: 
63 [ lJ: 
64 [ lJ: 
65 [ lJ: 
66 [ lJ: 

TURBOC 

The user screen can be saved off to disk to be recalled 
at a later time. The effect is almost instantaneous as the 
example program demonstrates. This program must be compiled 
under the compact or large memory models. 

*/ 

#include <stdio.h> 
#include <io.h> 
#include <process.h> 
#include <dos.h> 
#include <fcntl.h> 
#include <stat.h> 
extern char *sys_errlist [J; 
extern int errno; 

/*define screen related constants*/ 
#define cga (unsigned far *)Oxb8000000 
#define mono (unsigned far *)OxbOOOOOOO 
#define screenheight 25 

/*prototyping definitions*/ 
void main (void); 
void init (void); 
void errexit (void); 
void pattern (char, unsigned); 
char gtcr (char*); 

/*define global variables*/ 
unsigned far *screen, size, screenwidth; 
union REGS regs; 
char *fname = {"screen.sav"); 
unsigned waccess = {O RDWR I 0 CREAT I 0 TRUNC 
unsigned raccess = {0-RDONLY 1-0_BINARY); 
unsigned normfile = S=IWRITE I S_IREAD; 

O_BINARY); 

/*make sure that we are in the compact or large memory model*/ 
#if (sizeof (int far*) - sizeof (int*)) 

#error Compile with compact or large memory model! 
#endif 

/*Main - save the screen directly to disk and recall it*/ 
void main () 
{ 

int handle; 

init (); 
pattern ('0', 10); 
if ((handle= open (fname, waccess, normfile)) 

printf ("error opening 'screen'\n"); 
errexit (); 

-1) { 

gtcr ("Press any key to save number screen to disk\n" 
"and copy over with a character screen\n"); 

if (size != write (handle, (void *)screen, size)) 
printf ("error writing 'screen'\n"); 
errexit (); 

close (handle); 
pattern ('a', 26); 

gtcr ("Press any key to read character number " 



67 [ 1): 
68 [ 1): 
69 [ 2 J: 
70 [ 2J: 
71 [ lJ: 
72 [ 1): 
73 [ lJ: 
74 [ OJ: 
75 [ OJ: 
76 [ OJ: 
77 [ OJ: 
78 [ OJ: 
79 [ lJ: 
80 [ lJ: 
81 [ 1): 
82 [ 1]: 
83 [ lJ: 
84 [ lJ: 
85 [ lJ: 
86 [ lJ: 
87 [ 1): 
88 [ OJ: 
89 [ OJ: 
90 [ OJ: 
91 [ OJ: 
92 [ OJ: 
93 [ OJ: 
94 [ lJ: 
95 [ 1): 
96 [ OJ: 
97 [ OJ: 
98 [ OJ: 
99 [ OJ: 

100 [ OJ: 
101 [ lJ: 
102 [ lJ: 
103 [ OJ: 
104 [ OJ: 
105 [ OJ: 
106 [ OJ: 
107 [ OJ: 
108 [ OJ: 
109 [ OJ: 
110 [ lJ: 
111 [ lJ: 
112 [ lJ: 
113 [ lJ: 
114 [ 2J: 
115 [ 2J: 
116 [ 3J: 
117 [ 3J: 
118 [ 3J: 
119 [ 2J: 
120 [ 2): 
121 [ lJ: 
122 [ OJ: 
123 [ OJ: 
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"screen back from disk"); 
if ((handle= open (fname, raccess)) == -1) 

printf ("error reopening 'screen'\n"); 
errexit (); 

read (handle, (void *)screen, size); 
exit (0); 

/*!nit - initialize screen pointer and width*/ 
void init () 

regs.h.ah = OxOf; /*get mode*/ 
int86 (OxlO, &regs, &regs); 
screenwidth = regs.h.ah; 
size= screenwidth * screenheight * sizeof (*screen); 

if (regs.h.al == 7) 
screen mono; 

else 
screen cga; 

/*Gtcr - display a prompt and fetch character response*/ 
char gtcr (prompt) 

char *prompt; 

printf (prompt); 
return (char)getchar (); 

/*Errexit - display disk error*/ 
void errexit () 
{ 

printf ("DOS error: %s\n", sys_errlist [errnoJ); 
exit (1); 

/*Pattern - fill screen with an incrementing pattern*/ 
void pattern (c, modulo) 

char c; 
unsigned modulo; 

unsigned i, j; 
char tchar; 

for (j = 0; j < (screenheight - 1); j++) 
tchar = c + (char) (j % modulo); 
for (i = 1; i < screenwidth; i++) 

printf ("%c", tchar); 
if ((++tchar - c) >=modulo) 

tchar = c; 

printf ("\n"); 

277 

Main() in this program first calls init() which checks the video mode using the 
BIOS call. First, the number of bytes in the current screen display is calculated. 
This calculation assumes that the display is in one of the text modes. A check is 
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then made of the mode. If the mode is 7, then the address of the monochrome 
display is stored in SCREEN; otherwise, the address of the CGA/ EGA is used. 
No check is made for the graphics modes above 7. 

From this point main() puts a pattern up on the screen and saves it to disk. Once 
saved, main() closes the file and puts another pattern up on the screen. Main() 
waits for a key to be depressed. When released, main() reopens the saved file and 
reads into to screen memory, restoring the screen to it previous state. Notice 
how rapidly the screen is restored to its original pattern (much less time than the 
pattern required to place there in the first place). 

There is one trick, however, which must be observed. As pointed out, SCREEN 
must be a far pointer since the segment of the screen is explicitly indicated. In 
order to pass SCREEN to the Turbo C library routines read() and write(), you 
must make sure that they are prepared to accept far pointers to data. This you do 
by selecting either the COMPACT or LARGE memory models from the Options 
menu of the IDE. The check on line 40 insures this by comparing the default 
address size with that of a far address. If they are different, then the compilation 
model is wrong and the compilation is aborted with the #error directive. If the 
default size for a pointer is far, then the model is correct. You also could have 
explicitly checked for the labels _TINY_, _SMALL_, etc. These labels are 
defined by Turbo C to indicate the compilation mode. If either_ COMPACT_ 
or_ LARGE_ is true then all is okay, otherwise abort the compilation. 

Now you are ready to try your hand at writing text to the screen yourself. 
Prg7 _ 4a represents our BIOS screen output program from Chapter 6, rewritten as 
a direct access routine. The similarities are great, the main differences being in 
the routines scroll() and qprintf(). 

Just as before, the actual write operation is performed by the function qprintf( ), 
which accepts as an argument a single character string. Qprintf first calculates 
the memory address of the current cursor position, which is stored in the variables 
V POS and H POS. It then uses the lines - -

for (; *c; c++) 
*sp++ = (attrib << 8) + *c; 

to copy the character string into screen memory after adding the proper attribute. 
Extra code is added to the above to properly update the cursor position and to 
check for an embedded \n. Newline is the only special character the program 
checks for. 
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Scroll() handles the scrolling operation. Scrolling the screen up involves 
copying each character on the screen to the location of the character on the row 
above it and then writing blanks to the last line of the display. Basically this is 
handled as follows: 

/*scroll the screen up 1 row*/ 
dest = address of first row of screen 
source address of second row of screen 
number = the number of characters on the screen minus one row 

for (temp = number; temp; temp--) 
*dest++ = *source++; 

/*now blank the last line*/ 
dest = address of last row of screen 
number = number of characters across screen 

for (temp = number; temp; temp--) 
*dest++ = blank; 

Your scroll() routine is complicated slightly by the fact that it can scroll any 
number of lines at one time. This can result in substantial time savings as it 
takes slightly less than half as long to scroll 2 lines than it does to scroll 1 line 
twice. 

The complete program appears in listing Prg7 _ 4a below. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 

/*Prg7_4a - High Speed Screen Output 
by Stephen R Davis, 1987 

Perform direct screen output by accessing screen memory directly 
via the screen pointer 'screen'. Scroll using standard C 
statements. 

*/ 

#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 

#define cga (unsigned far *)Oxb8000000 
#define mono (unsigned far *)OxbOOOOOOO 
#define space Ox20 
#define attrib Ox07 
#define screenheight 25 

/*add the screen BIOS functions*/ 
#define setcursor Ox02 
#define getmode OxOf 

/*define global variables*/ 
unsigned v_pos, h pos, screenwidth; 
union REGS regs; 
unsigned far *screen; 

/*prototype declarations*/ 

/*same for ega*/ 

/*screen pointer*/ 
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29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ lJ: 
38 [ lJ: 
39 [ lJ: 
40 [ lJ: 
41 [ 2J: 
42 [ 3J: 
43 [ 3J: 
44 [ 3J: 
45 [ 2J: 
46 [ 2J: 
47 [ 2J: 
48 [ 1 J: 
49 [ OJ: 
50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ lJ: 
55 [ lJ: 
56 [ lJ: 
57 [ lJ: 
58 [ lJ: 
59 [ lJ: 
60 [ lJ: 
61 [ lJ: 
62 [ lJ: 
63 [ lJ: 
64 [ lJ: 
65 [ 1): 
66 [ 1): 
67 [ lJ: 
68 [ lJ: 
69 [ lJ: 
70 [ lJ: 
71 [ OJ: 
72 [ OJ: 
73 [ OJ: 
74 [ OJ: 
75 [ OJ: 
76 [ OJ: 
77 [ lJ: 
78 [ lJ: 
79 [ lJ: 
80 [ lJ: 
81 [ lJ: 
82 [ lJ: 
83 [ lJ: 
84 [ 2J: 
85 [ 2J: 
86 [ 2J: 
87 [ 2J: 
88 [ 2J: 
89 [ 2J: 
90 [ 2J: 
91 [ 2J: 
92 [ 2J: 
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void init (void); 
void scroll (unsigned); 
void qprintf (char*); 
void pcursor (unsigned, unsigned); 

/*Main - test the output routines*/ 
int main () 
( 

int i, j; 

init (); 
for (i = O; i < 20; i++) ( 

for (j = 0; j < screenheight; j++) ( 
qprintf ("this is BIOS output") ; 
pcursor(v_pos, 30+j); 
qprintf ("and this\n"); 

for (j = 0; j < screenheight; j++) 
printf ("this is normal printf output\n"); 

/*!nit - set the screen address and clear the screen*/ 
void init () 
( 

short mode; 

regs.h.ah = getmode; 
int86 (OxlO, &regs, &regs); 
mode = regs.h.al; 
screenwidth = regs.h.ah; 

if (mode == 7) 
screen mono; 

else 
if (mode 3 11 mode 

screen cga; 
else 

abort (); 

scroll (screenheight); 
pcursor (0, 0); 

2) 

/*Scroll - scroll up N lines using function 6*/ 
void scroll (nlines) 

unsigned nlines; 

unsigned far *source, far *dest, number, temp; 

if (nlines >= screenheight) 
nlines screenheight; 

h_pos = 0; 
if ((v_pos += nlines) >= screenheight) ( 

nlines = (v_pos - screenheight) + 1; 

/*scroll the screen up 'nlines' amount*/ 
source screen+ (nlines * screenwidth); 
dest = screen; 
number = (screenheight - nlines) * screenwidth; 
for (temp = number; temp; temp--) 

*dest++ = *source++; 



93 [ 2J: 
94 [ 2J: 
95 [ 2J: 
96 [ 2J: 
97 [ 2J: 
98 [ 2]: 
99 [ 2J: 

100 [ 1]: 
101 [ OJ: 
102 [ OJ: 
103 [ OJ: 
104 [ OJ: 
105 [ OJ: 
106 [ OJ: 
107 [ OJ: 
108 [ OJ: 
109 [ OJ: 
110 [ OJ: 
111 [ lJ: 
112 [ lJ: 
113 [ lJ: 
114 [ lJ: 
115 [ lJ: 
116 [ 2J: 
117 [ lJ: 
118 [ lJ: 
119 [ lJ: 
120 [ 2J: 
121 [ 2J: 
122 [ 1): 
123 [ lJ: 
124 [ OJ: 
125 [ OJ: 
126 [ OJ: 
127 [ OJ: 
128 [ OJ: 
129 [ OJ: 
130 [ OJ: 
131 [ OJ: 
132 [ OJ: 
133 [ lJ: 
134 [ lJ: 
135 [ lJ: 
136 [ lJ: 
137 [ lJ: 
138 [ lJ: 
139 [ lJ: 
140 [ lJ: 
141 [ OJ: 

ACCESSING THE PC'S HARDWARE 281 

/*now blank the lines abandoned*/ 
dest = screen + number; 
number = nlines * screenwidth; 
for (; number; number--) 

*dest++ = (attrib << 8) + space; 

v_pos = screenheight - 1; 

/*Qprintf - output a string using the BIOS screen handler. If 
an attribute is not provided, uie the default.*/ 

#define SCREENLOC screen+ ((screenwidth * v_pos) + h_pos) 

void qprintf (c) 
char *c; 

unsigned far *sp; 

sp = SCREENLOC; 
for (; *c; c++) 

if (*c == '\n') 
scro11 (1); 

else 
sp = S~REENLOC;} 

if (h_pos < screenwidth) 
h_pos++; 
*sp++ = (attrib << 8) + *c; 

pcursor (v_pos, h_pos); 

/*PCursor - place the cursor at the current x and y location. 
To place the cursor, and subsequent output, to any 
arbitrary location, set 'v_pos' and 'h_pos' before 
calling pcursor.*/ 

void pcursor (y, x) 
unsigned x, y; 

v_pos = y; 
h_pos = x; 

regs.h.ah = setcursor; 
regs.h.bh 0; 
regs.h.dh = v_pos; 
regs.h.dl = h_pos; 
int86 (OxlO, &regs, &regs); 

Just as with prg6_5 before, main() calls qprintf() and printf() in a loop to compare 
their performance and their speed. 

Routines that directly write graphics to the screen follow the same pattern. In 
this case, it is simply a matter of calculating the address of the dot we wish to 
access and ORing it set or ANDing it clear. To result in reasonable writing 
speeds, the programmer must often resort to enmasse block settings and clearings 
of large areas of the screen. 
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Besides screen memory, it is also possible to directly access the 6845 CRT 
controller chip in the CGA and MDA graphics adapters themselves. This is the 
heart of the video adapter and performs most of the work of transforming video 
memory into the bit stream the monitor sees. Although crude by modern 
graphics chip standards, it contains a series of registers which user programs may 
access. Table 7.3 is a partial listing of these: 

Port 
3x4 
3x5 
3x8 

3x9 

3xa 

Table 7.3 
Ports on the 6845 CRT Controller of the CGA and MDA 

Access 
W/O 
PJW 
W/O 

W/O 

Meaning 
Address register 
Data register 
Mode select 

Bit O - 80 col mode 
Bit 1 - graphics mode 
Bit 2 - B& W select 
Bit 3 - Video enable 
Bit 4 - 640x200 mode select 
Bit 5 - blink enable 

Color select 
Bit O - blue border 
Bit 1 - green border 
Bit 2 - read border 
Bit 3 - Intense border 
Bit 4 - Alt. background color 

(alph modes only) 
Bit 5 - mode 4 color pallette select 

Status register 
Bit O - 1 -> ok to access display 
Bit 1 - light pen trigger set 
Bit 2 - light pen switch 

where x = B for monochrome displays and D for CGA displays 

The address register is actually a selector to one of 18 data registers within the 
chip. The data registers are specified in Table 7.4. For example, writing a OxOJ 
to port Ox3d4 gives the program access to the Horizontal displayed register at port 
Ox3d5. 
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Table 7.4 
Data Registers in the 6845 CRT Controller 

Number Access Name Meaning 
*O W!O Hor. Total Total number of chars. across 
*1 W/O Hor. Dsplyd No. of cols. on screen 
2 W/O H Sync Pas Col. number of hor. sync pulse 

3 W/O H Sync Wdth Width of sync pulse in col.s 
4 W/O Ver. Total Total number of lines vertically 

5 W/O Ver. Adjust No. of scan lines adjust to above 
6 W/O Ver Dsplyd No. of rows on screen 
7 W/O V Sync Pas Row number of ver. sync pulse 

8 W/O Interlace Display interlace 

9 W/O Max Sen Ln Maximum scan line address 

*A W/O Cursor start Vert. scan line to start cursor 
*B W/O Cursor end Vert. scan line to end cursor 

*C W/O Start addr-H Offset in video memory of display 

*O W/O Start addr-L (Lower byte of same) 
*E R/W Cursor addr-H Cursor address 

*F R/W Cursor addr-L (Lower byte of same) 
*10 R/O Light pen-H Light pen position 
* 11 R/O Light pen-L (Lower byte of same) 

Each of the above registers is selected by outing the proper value to the adress 
register and then reading or writing the data register. Those marked with * are 

common to EGA dis.Q!a_y_s. 

Programs may access these registers using the Turbo C library routines outport() 
and inport(), which write and read word values to the 8086 ports. The related 
outportb() and inportb() are.macros which invoke the corresponding word routines 
to return byte sized values. Alternatively outportb() and inportb() may be 
UNDEFed, in which case different byte routines with the same function will be 
loaded at link time. 

Playing with the different registers can lead to some very interesting effects. For 
example, decreasing the total number of columns across the display or increasing 
the number of rows (there is enough memory in both MDA and CGA displays to 
accommodate one more albeit incomplete row). The most useful of the above 
registers is the Start Address. This register is used by the BIOS to select the 
active page. Its value can be changed to that of any of the active pages from Table 
7.5. 
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Table 7.5 
Offsets for Different Video Pages 

Page Number Offset 
40 x 25 mode 

0 OxOOOO 
Ox0800 

2 Ox1000 
3 Ox1800 
4 Ox2000 
5 Ox2800 
6 Ox3000 
7 Ox3800 

80 x 25 mode 
0 OxOOOO 

Ox1000 
2 Ox2000 
3 Ox3000 
4 Ox4000 
5 Ox5000 
6 Ox6000 
7 Ox7000 

It can also be changed to intermediate values, displaying the last half of page 0 
and the first half of page one (with half a line not otherwise displayed in the 
middle). As we will learn in the next few chapters, scrolling the display up is a 
time consuming job. Rather than move the entire display memory up one line, I 
have written scroll routines which performed the scroll operation by moving the 
start of display pointer down by one line. Qprintf() wrote all the way through 
memory eventually wrapping around at the bottom, with scroll() always keeping 
the start of display address 25 lines behind it. 

Unfortunately, I can not present those routines in this book. Although incredibly 
fast at output, they leave the screen in a state from which only they know how to 
access it. Only a CLS restores sanity to the display. Worse yet, it is possible, 
although unlikely, to bum up a monitor when changing some of these values. 
The Starting Offset register can be modified with impunity, but I would not want 
a reader to incorrectly key in a program from this book and destroy his or her 
monitor. 
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The status register is especially useful to owners of older CGA displays. They 
may have noticed that every time these programs accessed the display memory, a 
great deal of static, generally known as snow, appeared on their screens. This 
snow is caused by the fact that the memory in the CGA can only be accessed by 
one piece of hardware at a time. If the CPU is busy accessing the screen, it can 
get in the way of the CRT controller's ability to read display memory. If the 
controller cannot read display memory, it does not know what to send to the 
monitor, so it stutters. The monitor displays this stammering as small brightly 
colored or white streaks. 

We cannot actually avoid this interference, but we can arrange it so that the 
streaks only appear during the horizontal retrace period. During this time the 
electron beam is returning to the left side of the display and no video is going to 
the monitor. Streaks here will not be seen. The listing below shows the same 
Prg7 _ 4 with extra checks added to make sure that screen memory is only accessed 
during a full retrace cycle. Even though virtually identical, the entire listing is 
presented so that the additions can be noted. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ 0 J : 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ OJ: 

/*Prg7_4b - High Speed Screen Output w/ CGA Retrace check 
by Stephen R Davis, 1987 

*/ 

Perform direct screen output by accessing screen memory directly 
via the screen pointer 'screen'. Scroll using standard C 
statements. Check for CGA retrace before accessing screen to 
prevent "snow" from appearing. 

#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 

#define cga (unsigned far *)0xb8000000 
#define space Ox20 
#define attrib Ox07 
#define screenheight 25 

/*define the "check for retrace" function*/ 
#define trace while ( inportb (0x3da) & OxOl) 
#define retrace while (! (inportb (0x3da) & OxOl)) 

/*add the screen BIOS functions*/ 
#define setcursor Ox02 
#define getmode OxOf 

/*define global variables*/ 
unsigned v_pos, h_pos, screenwidth; 
union REGS regs; 
unsigned far *screen; /*screen pointer*/ 

/*prototype declarations*/ 
void init (void); 
void scroll (unsigned); 
void qprintf (char*); 
void pcursor (unsigned, unsigned); 
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38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ lJ: 
42 [ lJ: 
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/*Main - test the output routines*/ 
int main () 

int i, j; 

init (); 
for (i = 0; i < 20; i++) { 

for (j = 0; j < screenheight; j++) { 
qprintf ("this is BIOS output"); 
pcursor(v pos, 30+j); 
qprintf (-;;-and this\n"); 

for (j = 0; j < screenheight; j++) 
printf ("this is normal printf output\n"); 

/*!nit - set the screen address and clear the screen*/ 
void init () 
{ 

int mode; 

regs.h.ah = getmode; 
int86 (OxlO, &regs, &regs); 
mode= regs.h.al; 
screenwidth = regs.h.ah; 

if (mode == 7) 

abort (); 
else 

if (mode == 3 I I mode 2) 
screen cga; 

else 
abort (); 

scroll (screenheight); 
pcursor (0, 0); 

/*Scroll - scroll up N lines using function 6*/ 
void scroll (nlines) 

unsigned nlines; 

unsigned far *source, far *dest, number, temp; 

if (nlines >= screenheight) 
nlines screenheight; 

h_pos = 0; 
if ((v_pos += nlines) >= screenheight) 

nlines = (v_pos - screenheight) + l; 

/*scroll the screen up 'nlines' amount*/ 
source screen+ (nlines * screenwidth); 
dest = screen; 
number = (screenheight - nlines) * screenwidth; 
for (temp = number; temp; temp--) { 

trace; retrace; 
*dest++ = *source++; 

/*now blank the lines abandoned*/ 
dest = screen + number; 
number = nlines * screenwidth; 
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for (; number; number--) { 
trace; retrace; 
*dest++ = (attrib << 8) + space; 

v_pos screenheight - 1; 

/*Qprintf - output a string using the BIOS screen handler. If 
an attribute is not provided, use the default.*/ 

#define SCREENLOC screen+ ((screenwidth * v_pos) + h_pos) 

void qprintf (c) 
char *c; 

unsigned far *sp; 

sp = SCREENLOC; 
for (; *c; c++) 

if ( *c == '\n') 
scroll (1); 
sp = SCREENLOC; 

else 
if (h_pos < screenwidth) 

h_pos++; 
trace; retrace; 
*sp++ = (attrib << 8) + *c; 

pcursor (v_pos, h_pos); 

/*PCursor - place the cursor at the current x and y location. 
To place the cursor, and subsequent output, to any 
arbitrary location, set 'v_pos' and 'h_pos' before 
calling pcursor.*/ 

void pcursor (y, x) 
unsigned x, y; 

v_pos y; 
h_pos x; 

regs.h.ah = setcursor; 
regs.h.bh 0; 
regs.h.dh = v_pos; 
regs.h.dl = h_pos; 
int86 (OxlO, &regs, &regs); 

The macro definition TRACE examines the retrace flag of the CGA status 
register to make sure that the video adapter is not initially in the retrace mode. If 
the adapter is performing retrace, TRACE waits in a loop until it is through. 
The similar macro RETRACE performs the opposite test, hanging in a tight 
loop until the adapter is retracing. 

By invoking TRACE followed immediately by RETRACE, the program is 
assured that it has found the leading edge of the retrace pulse, the beginning of the 
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retrace cycle. This ensures that the entire retrace period is available for outputting 
a character. The program must perform this text immediately prior to any access 
of display memory (lines 95, 103, and 130). (It is not sufficient to only check 
for horizontal retrace by invoking RETRACE alone. The display adapter may be 
just completing a retrace cycle the first time the program checks. This would not 
leave sufficcient time for the processor to get a character onto the screen.) 

This version of Prg7 _ 4 is only designed to work with CGA cards. Monochrome 
adapters have arbitrating hardware and do not display snow. Besides, 
monochrome adapters do not have a status register at port Ox3 da. The 
TRACE/RETRACE combination would wait forever for the leading edge of a 
signal that is not even present, hanging the machine. To avoid this, init() aborts 
prematurely of the video mode is 7 (lines 65-66). 

Notice that the vertical retrace period is very short, only a few microseconds long. 
This is not very much time for a 4. 77 MHz PC. Even though correct in 
principle, the C program presented here will not actually have the desired effect 
on these machines. The 8088 microprocessor takes too long making the two 
calls to inportb() to react within the retrace interval. The program works 
correctly on a 6 MHz AT or faster machine. Inline assembly code to perform the 
same test is necessary for this to work properly on a PC. We will study inline 
assembly in Chapter 8. 

Notice further that being compelled to wait for horizontal retrace puts quite a 
cramp in Prg7 _ 4b's perfomance. So much so, that it might actually be slower 
than some other display routines, particularly those which do not wait for retrace, 
but instead turn the video off when writing to avoid screen snow. These latter 
programs suffer from a -screen flicker which are almost as bad as the snow they 
avoid. As many video controls as the 6845 CRT controller in the CGA and 
MDA displays have, the EGA has more. The EGA does not use the 6845 
controller and so is not completely compatible with the CGA and MDA at the 
register level. In fact, the EGA consists of several intelligent chips to which the 
program may talk. A brief overview of the EGA's registers and their meanings 
appears in Table 7 .6. 

As you can see, the EGA is quite a complicated device. From feature connectors 
to bit planes, the details of accessing the EGA hardware are beyond the scope of 
this chapter. Programmers interested in the details of the EGA display should 
purchase the technical reference manual titled IBM Enhanced Graphics Adapter 
(part number 6280131) from IBM's document service (1-800-IBM-PCTB, see 
Bibliography). 



ACCESSING THE PC'S HARDWARE 289 

Table 7.6 
EGA Registers 

Port Access Name Meaning 
3CO W/O Attrib Cntrl output a selector followed by 

one of following: 
0-F Color value of Pallette register 

Bit 0-blue 
Bit 1 - green 
Bit 2- red 
Bit 3 - scndry blue/mono 
Bit 4 - scndry green/intensity 
Bit 5 - scndry red 

10 Mode control 
Bit O - 1 -> graphics 

O -> alphanumeric 
Bit 1 - 1 -> color display 

0 ->monochrome 
Bit 2 - 1 -> enable line graphics 
Bit 3 - 1 -> enable blink 

11 Border color select 
12 Color plane enable 
13 Hor pixel panning control 

number of bits to pan to left 
3C2 W/O Misc reg following bit pattern: 

Bit 0 - 1->CGA emulation, else 
mono 

Bit 1 - enable RAM to processor 
Bit 2,3 - clock select 

Bit 4 - disable video drivers 
Bit 5 - odd/even 64k select 
Bit 6 - hor retrace polarity 
Bit 7 - ver retrace polarity 

3C2 RIO lnp Status 0 following bit pattern: 
Bit 7 - 0 -> ver retrace active 

3C4 W/O Sequencer Addr selects meaning of 3C5 
3C5 W/O Sequencer Cntrl sequencer command 
3CA W/O Graphics 2 Pos graphics 2 position 
3CC W/O Graphics 1 Pos graphics 1 position 
3CE W/O Gr.1 &2 selects meaning of 3CF 
3CF Graphics Cntrl following registers: 

0 W/O SeVReset register 
1 W/O Enable SeVReset 
2 W/O Color compare 
3 W/O Data rotate count 
4 W/O Read map select 
5 W/O Mode register 
6 W/O Misc. register 
7 W/O Color don't care 
8 W/O Bit mask register 

3x4 W/O Control Addr selects meaning of 3x5 
3x5 PJW CRT control largely the same as listed 

for CGA/MDA above 
3xA WIO Feature control used to comm. w/ feature 

connector 
3xA RIO lnp Status 1 same as Status Reg of 

CGA plus Bit 3 - 1 -> ver retrace active 
x may be either B or D depending on the type of display emulated 
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Windows 

When you write to the display adapter, we are free to define whatever functions 
we like, whether they were originally supported by the BIOS or not. One of the 
most common functions to introduce is that of windows. In a windowed 
interface, the user application is capable of writing to subsets of the screen which 
are arranged to appear as small mini-screens within the screen itself. 

There is nothing particularly difficult about managing windows. The 
programmer must merely keep the mental image of screen memory fixed firmly 
in his mind. Before going any further, I should point out that there are 
commercial packages which add windowing functions either to the Turbo C 
library in the form of C toolboxes or to the BIOS. While the coding of 
windowing functions is not tricky, it is tedious to get all of the parameters just 
right. Purchasing a ready made package may be the better bet. 

Having said that let's examine Prg7 _5. This program is a simple example of text 
windows. Normally windows are surrounded by a framing of special characters so 
that the user can differentiate the window from the background clearly. This 
program does not include that as it adds lots of needless complexity. 

Notice the structure definition WINDOW and the three declarations FULL, WINI, 
and WIN2. FULL represents the entire screen whereas the other two represent 
some window within the screen. All of our favorite functions are there in their 
windowed form: wscrol/(), wprintf() and wpcursor(). Two new routines have been 
introduced: openwindow() and closewindow( ). 

Openwindow() uses a WINDOW definition to determine the bounds of the new 
window. It must also be provided a buffer, into which it stores the current cursor 
position, window dimensions and the background color. Added to that, it stores 
all of the text on the screen which is about to be overwritten by the window. In 
place of the data saved, openwindow() writes the new window's color plus any fill 
pattern desired. Finally, it places the cursor properly within the window and 
calculates the new window dimensions. 

Closewindow() reverses the steps, restoring the cursor pos1t1on, window 
dimensions and color before restoring the text covered up by the window to the 
screen. 
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Figure 7.4 

Saving window from screen to internal buffer 

Restoring buffer to screen 

The older routines, wscroll() and wprintf() are basically the same, except that the 
variables V POS and H POS have now been redefined to be the vertical and 
horizontal positions within the window and not within the entire screen. In 
addition, no assumptions can be made about the window height or width. The 
macro SCREENLOC, defined immediately before function wscroll(), performs 
the majority of the brain work, calculating the screen memory location of a 
row/column position within the current window. 
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/*Prg7_5 - Open/Close Screen Windows 
by Stephen R. Davis, 1987 

Example of using our screen writing skills to open and close 
windows on the screen 

*/ 

#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 
#include <process.h> 

/*define screen parameters*/ 
#define height 25 
#define width 80 
#define cga (unsigned far *)Oxb8000000 
#define mono (unsigned far *)OxbOOOOOOO 

/*same for ega*/ 
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/*define screen BIOS functions*/ 
#define setcursor Ox02 
#define getmode OxOf 

/*define the colors - 'b'ackground and 'f'oreground*/ 
#define bred Ox4000 
#define bgreen Ox2000 
#define bblue OxlOOO 
#define bwhite bred+bgreen+bblue 
#define fred Ox0400 
#define fgreen Ox0200 
#define fblue Ox0100 
#define fwhite fblue+fgreen+fred 

/*type definitions*/ 
struct WINDOW { 

unsigned xO, yO; 
unsigned xl, yl; 

); 

/*upper, left hand corner*/ 
/*lower, right hand corner*/ 

/*our prototype definitions*/ 
void main (void); 
char gtcr (struct WINDOW*, char*); 
void openwindow (struct WINDOW*, unsigned*, unsigned); 
void closewindow (struct WINDOW*, unsigned*); 
void wscroll (struct WINDOW *, unsigned); 
void wprintf (struct WINDOW*, char*); 
void wpcursor (struct WINDOW*, unsigned, unsigned); 
void init (void); 

/*data definitions*/ 
union REGS regs; 
unsigned far *screen; 
typedef unsigned SCREEN [height* width+ 5J; 
unsigned windowwidth, windowheight, color; 
unsigned v_pos, h_pos; 

/*Main - exercise the window routines*/ 

struct WINDOW full 
struct WINDOW winl 
struct WINDOW win2 
SCREEN buffl, buff2; 

void main (void) 
{ 

unsigned i; 

{ O, 0, 79, 24); 
{10, 5, 60, 20); 
{20, O, 40, 24); 

/*initialize the works*/ 
init (); 

/*put pattern up before opening first window*/ 
for (i = 1; i < height; i++) 

wprintf ( & full, "**** ** ** * * * *** ****** * ******** * ***** ** **" 
"***************************************\n") 

wpcursor (&full, 0, 0); 

/*open first window with pattern and then scroll it*/ 
gtcr (&full, "This is the main screen\n" 

"Press Enter key to open first window"); 
openwindow (&winl, buffl, bred+fwhite); 
for (i = 1; i < 50; i++) 

wprintf (&winl, "Window #1 scrolling\n\n"); 
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/*now open window #2 and scroll it also*/ 
gtcr (&winl, "Press Enter key for #2"); 
openwindow (&win2, buff2, bblue+fgreen); 
for (i = l; i < 50; i++) 

wprintf (&win2, "Window #2 --\n" 
scrolling\n\n"); 

/*now, prepare to close*/ 
gtcr (&win2, "Press Enter key"); 
closewindow (&win2, buff2); 
gtcr (&winl, "Press Enter key"); 
closewindow (&winl, buffl); 

/*Gtcr - output a prompt and then await a character response*/ 
char gtcr (window, prompt) 

struct WINDOW *window; 
char *prompt; 

char buffer [BOJ; 

/*build the message string and write it into current window*/ 
sprintf (buffer, "%s :\n", prompt); 
wprintf (window, buffer); 

/*now await a response*/ 
return (char)getchar (); 

/*Openwindow - save off a specified box from the screen and set 
to a box of the given box*/ 

void openwindow (window, buffer, fill) 
struct WINDOW *window; 
unsigned *buffer, fill; 

unsigned line, column, far *screenptr; 

/*first save the cursor and window info*/ 
*buffer++ h_pos; 
*buffer++ v_pos; 
*buffer++ windowwidth; 
*buffer++ 
*buffer++ 

windowheight; 
color; 

/*now save off the window and cover it with 'fill'*/ 
for (line = window -> yO; line < window -> yl; line++) 

screenptr =screen+ ((line *width) +window-> xO); 
for (column = window -> xO; column < window ->xl; 

column++, screenptr++, buffer++) ( 
*buffer = *screenptr; 
*screenptr = fill; 

/*calculate new width and height*/ 
h_pos = 0; 
v_pos = 0; 
windowwidth window -> xl - window -> xO; 
windowheight window -> yl - window -> yO; 
color = fill & OxffOO; 

293 

/*Closewindow - restore the previously saved window to the screen*/ 
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void closewindow (window, buffer) 
struct WINDOW *window; 
unsigned *buffer; 

unsigned line, column, far *screenptr; 

/*first restore the cursor position and screen dimensions*/ 
h_pos = *buffer++; 
v_pos = *buffer++; 
windowwidth = *buffer++; 
windowheight = *buffer++; 
color = *buffer++; 

/*now restore the window area of the screen*/ 
for (line = window -> yO; line < window -> yl; line++) { 

screenptr =screen+ ((line* width) +window-> xO); 
for (column = window -> xO; column < window ->xl; column++) 

*screenptr++ = *buffer++; 

/*WScroll - scroll current window up N lines*/ 

#define SCREENLOC(y,x) screen+ ((width* (y +window-> yO)) \ 
+ (window-> xO + x)) 

void wscroll (window, nlines) 
struct WINDOW *window; 
unsigned nlines; 

unsigned far *source, far *dest, number, i, j; 

if (nlines >= windowheight) 
nlines windowheight; 

h_pos = O; 
if ((v_pos += nlines) >= windowheight) 

nlines = (v_pos - windowheight) + l; 

/*scroll the screen up 'nlines' amount*/ 
number = windowheight - nlines; 
for (i = O; i < number; i++) { 

source SCREENLOC (i + nlines, 0); 
dest SCREENLOC (i, 0); 
for (j O; j < windowwidth; j++) 

*dest++ = *source++; 

/*now blank the lines abandoned*/ 
for (i = number; i < windowheight; i++) 

dest = SCREENLOC (i, 0); 

v_pos 

for (j = 0; j < windowwidth; j++) 
*dest++ = color + Ox20; 

windowheight - l; 

/*Wprintf - output a string using the BIOS screen handler. If 
an attribute is not provided, use the default.*/ 

void wprintf (window, c) 
struct WINDOW *window; 
char *c; 
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unsigned far *sp; 

sp = SCREENLOC (v_pos, h_pos); 
for (; *c; c++) 

if ( *c == '\n') { 
wscroll (window, l); 
sp = SCREENLOC (v_pos, 0); 

else 
if (h_pos < windowwidth) 

h_pos++; 
*sp++ = color + *c; 

wpcursor (window, v_pos, h_pos); 

/*WPCursor - place the cursor at the current x and y location.*/ 
void wpcursor (window, y, x) 

struct WINDOW *window; 
unsigned x, y; 

v_pos y; 
h_pos x; 

regs.h.ah setcursor; 
regs.h.bh 0; 
regs.h.dh v_pos + window -> yO; 
regs.h.dl h pos + window -> xO; 
int86 (OxlO, &regs, &regs); 

/*Init - set the screen address and clear the screen*/ 
void init () 

short mode; 

regs.h.ah = getmode; 
int86 (OxlO, &regs, &regs); 
mode = regs.h.al; 

/*we are only set up for 80 column widths ... */ 
if (regs.h.ah != width) 

abort (); 

/* ... and one of the character modes*/ 
if (mode == 7) 

screen = mono; 
else 

if (mode 3 I I mode 2) 
screen cga; 

else 
abort (); 

/*now initialize the cursor and screen dimensions*/ 
windowheight = height; 
windowwidth = width; 
color fwhite; 
h_pos = v_pos = 0; 

/*and clear the screen*/ 
wscroll (&full, height); 
wpcursor (&full, 0, 0); 
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Figure 7.5 
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******************** ************************************** ********** Window #2 -- ****************** 
**********Window #1 SCPOlling ****************** 
********** . ****************** 
**********Window #1 Window #2 -- ****************** 
********** SCPOlling ****************** 
**********Window #1 ****************** 
********** Window #2 -- ****************** 
**********Window #1 SCPOlling ****************** 
********** ****************** **********Window #1 Window #2 -- ****************** 
********** SCPOlling ****************** 
**********Window #1 ****************** 
********** Window #2 -- ****************** 
**********PPess Ente scPolling ****************** 
********** ****************** 
********************Window #2 -- ************************************** 
******************** SCPOlling ************************************** 
******************** ************************************** 
********************- ************************************** 

Two windows opened up by Prg7 _5 

Execute the program. Notice how the windows seem to appear almost 
instantaneously and how each window scrolls without disturbing the screen 
behind it. (The effect is much more striking on a color monitor.) What 
improvements could be made? Prg7 _5 could easily be made to allow the 
windows to be panned about the screen. Not so easy is the task of allowing text 
to scroll behind a foreground window. 

You can combine this concept of windows with that of pages already mentioned. 
As was pointed out before, you can write to pages other than page 0 using the 
offsets provided in Table 7 .5. (This is most easily accomplished by adding the 
instructions +PAGEOFFS[PAGE] to the definition of SCREENLOC. In this 
definition, PAGEOFFS is a table of the offsets from Table 7.5, and PAGE is the 
current page.) The techniques are the same as those presented in Chapter 6 when 
discussing writing to pages using the screen interrupt. While one screen presents 
the operator with a menu, write the screens associated with each of the choices to 
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the other pages. When the operator makes his decision, simply select the page 
containing the proper submenu. 

In fact, now that you are expert in direct screen access, you can combine 
windowing with paging and direct screen to disk transfer to create a veritable 
managerie of colors and effects. 

Conclusion 

Programmers should not write programs which access the PC's hardware directly 
for no reason. Not only can it lead to programs that are difficult to port to other 
machines, but it can lead to programs which don't even port among other 
members of the PC family. Direct access to the underlying hardware can 
sometimes be justified by the increased performance it brings, both in terms of 
effects and throughput. 

In Chapter 8, we take a slightly different tack and begin to examine techniques we 
can use to speed up programs in other ways. 





8 
Maximum 

Performance 

One of the sexiest topics in advanced programming texts is that of program 
performance. Something of a software ·machismo surrounds the entire field. 
People add accelerator cards to their personal computers to increase performance. 
Magazines rate software performance, in some cases to two significant digits. 
Suites of benchmarks are devised to measure the speed of machines and 
compilers-winners of such comparisons invariably feature that fact 
predominantly in their advertising. Just as with cars, it's not a question of fast 
enough to do the job; faster is better, period. 

Although overblown, not all such concern over performance is frivolous. 
Specifications for large, professional software systems stipulate not only what 
the program is supposed to do, but how fast it is able to do it. There is no sense 
in providing the answer if the user has forgotten the question out of boredom. 

To a real extent, this entire book has been devoted to producing efficient, compact 
software. Many writers chastise readers not to worry about program performance. 
To them, legibility and machine independence are the only concerns. I have taken 
the approach that the underlying machine should be considered, at least 
peripherally, at every step. Following good programming practices usually 
results in programs that are both legible and reasonably swift. But what if you· 
follow good programming techniques and your program still doesn't run fast 
enough or is too large to fit into existing memory? What can be done? 

One answer is to make use of assembly language programming. Even though 
Turbo C is very good at generating assembly language from C source statements, 
all compilers suffer from a problem: they are generalists. When a particular C 
construct appears, compilers must convert it into machine instructions that work 
in every case where that construct might legally appear. Compilers understand 
the individual C statements, but not their underlying meaning. 

'JOO 
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Human programmers understand the context (hopefully!) of their assembly 
language. As a result, they can generate more intelligent code that uses fewer 
instructions. The particular instruction sequence may not work in every case, but 
it works in this case and that's what is important. An experienced assembly 
language programmer can out perform a compiler in generating code for a small 
function, on the average about two to one in terms of both size and speed. 

People who build microprocessors are engineers. As engineers, they enjoy 
packing in as much capability as possible. In addition to the mundane types of 
instructions, most microprocessors include a few special purpose instructions. It 
is very difficult for compilers to use these trick instructions, since thaey require 
some understanding of the context of the problem. Additionally, the number of 
applications for some of these instructions is quite small, so that it doesn't pay to 
spend a lot of effort in the compiler design to generate them. When human 
programmers can use such special purpose instructions to solve their problems, 
the savings can be dramatic. We will examine such a case later in this chapter. 

So how do you know whether it will be worthwhile to write some functions in 
assembly language and how do you know which ones? This question can't 
usually be answered at the beginning of a program. A programmer can't easily 
examine a program design and point out the memory or time hogs at a glance. 
Even careful analysis may not make the answer obvious. 

The best approach is to forget the question in the beginning. Formulate the best 
design possible and code the entire program in C. Turbo C might surprise you 
with what it can do. The program might be fast enough and small enough the 
first time. If it isn't, those places that need performance improvement will 
usually be obvious. A few minutes behind the keyboard of a working prototype 
can give a programmer a better feel for performance problems than weeks of 
analysis on paper. 

If a module must be rewritten later in assembly language, the programmer has a 
block diagram in the form of a working C routine of what the function is 
supposed to do. The inputs and outputs are already defined as well. When it 
comes time to debug this function-always a difficult task with assembly 
language-the programmer has a working program surrounding the routine. 
Problems which arise can reasonably be attributed to the new assembly function. 
This simplifies the debug job immensely. 

In larger jobs, it is almost as important that the other members of the project 
already have a working program with which to continue their efforts. This all-C 
version may not be as fast as required, but at least it works. This helps to give 
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the assembly programmer the extra time needed to get more time critical routines 
functioning properly. 

Sometimes it isn't even necessary to write assembler routines from scratch. 
Taking the assembly output of the Turbo C compiler and optimizing it 
manually, a practice known as hand optimizing, can result in appreciably faster 
code. 

The programmer should not be too quick to reach for assembly language. There 
are plenty of tools in the Turbo C arsenal for optimizing programs. Rewriting a 
well written C module into a slightly less clear but quicker routine may be all 
that is required. Assembly language should be a last resort, to be used when all 
other approaches have failed. 

(Note: The number of C statements is not the only determining factor in either 
the overall performance or the overall size of the resulting program. I have seen 
programmers combine multiple source statements into one very large statement, 
thinking that this will execute faster since it results in few statements. What 
counts is not the number of source statements, but the number of machine 
instructions they generate.) 

Execution Speed 

There are several techniques that can be used to speed up routines in Turbo C. 
Some of these will work in all languages, some are specific to the C language, 
and some are specific to Turbo C. Let's consider a few. 

One older but more effective trick is that of saving common expressions. The 
idea here is to not perform the same work over and over. For example, suppose 
we are transforming a point specified by the coordinates XI, Y 1 into another 
frame of reference rotated by some angle W and we wish to calculate the new 
coordinates X2, Y2. The equation for such a transformation is: 

X2 Xl cos W + Yl sin W 

Y2 -Xl sin W + Yl cos W 

This can be implemented using the following C routine: 

void xform (omega, xl, yl, x2, y2) 

float omega, *xl, *yl, *x2, *y2; 
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*x2 *xl * cos (omega) + *yl * sin (omega); 

*y2 -*xl * sin (omega) + *yl * cos (omega); 

Although straightforward, this is not the best that we can do. In the above 
program, the sine and cosine of omega are calculated twice. The following 
routine will perform faster with identical results: 

void xform (omega, xl, yl, x2, y2) 
float omega, *xl, *yl, *x2, *y2; 

float tcos, tsin; 

*x2 *xl * (tcos =cos (omega)) + 
*yl * (tsin = sin (omega)); 

*y2 -*xl * tsin + *yl * tcos; 

Further gains can be made by making use the power of C. Although they might 
have the same effect, the following three constructs do not necessarily generate 
the same number of machine instructions. 

i = i + 1; 

i += 1; 

i++; 

/*the normal form*/ 

/*the assignment operator form*/ 

/*the autoincrement*/ 

Use the simplest construct available to you. Assignment operators almost 
always generate less code than the normal form of the same instruction and 
autoincrement even less. 

C also allows the operator to define a variable to be stored permanently in a 
machine register via a register declaration. Since microprocessors can access their 
registers much faster than memory, declaring an often used variable to be register 
can save a lot of machine cycles with no effort on the part of the programmer. 
Turbo C allows a function to define up to two register variables. Subsequent 
register declarations are treated the same as automatic declarations. Register 
variables can only be of type integer. 

Using register variables in Turbo C might not have as great an effect as you 
might think, however. Since Turbo C is an optimizing compiler, it attempts to 
keep often used values loaded into the cache registers SI and DI (unless register 
optimization has been turned off in the Options menu). Declaring a register 
variable deprives Turbo C of a register in which to keep active values. Making 
an unwise choice of register variable can result in a slower executing program. 
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To demonstrate this, let us examine Prg8_1, the famous Sieve of Eratosthenes 
computer benchmark. This benchmark is ideal because it is highly 
computational and does not use many variables. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ 0 J: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ lJ: 
25 [ lJ: 
26 [ lJ: 
27 [ lJ: 
28 [ lJ: 
29 [ l]: 
30 [ lJ: 
31 [ lJ: 
32 [ lJ: 
33 [ 2J: 
34 [ 2J: 
35 [ 2J: 
36 [ 2J: 
37 [ 2J: 
38 [ 2J: 
39 [ 3J: 
40 [ 3J: 
41 [ 3J: 
42 [ 2J: 
43 [ lJ: 
44 [ lJ: 
45 [ lJ: 
46 [ OJ: 

/*Prg8_1 - The Sieve of Eratosthenes Prime Number Program 
adapted from Byte Magazine, January 1983. 

*/ 

This is the classic, non-floating point benchmark. Although 
no benchmark can do it all, the Sieve measures how well a 
machine can access and manipulate integer data. In our case, 
we will use it to measure the effect of register variables and 
register optimization in Turbo C. 

#include <stdio.h> 
#include <stdlib.h> 

#define TRUE 1 
#define FALSE 0 
#define ITER 10 
#define SIZE 8190 

/*define our Boolean sieve*/ 
char flags [SIZE+lJ; 

/*Main - the sieve program*/ 
main () { 

/*register*/ int i,k; 
/*register*/ int iter, count; 

printf ("%d iterations. 
"Hit enter and start stop watch\n", ITER); 

getchar (); 
printf ("Start ... "); 

for (iter = l; iter <= ITER; iter++) 
count = 0; 
for (i = 0; i <= SIZE; i++) 

flags[iJ =TRUE; 

for (i = 2; i <= SIZE; i++) 

/*init flags true*/ 

if (flags [iJ) { /*found a prime*/ 
for ( k = i + i; k <= SIZE; k += i ) 

flags[kJ =FALSE; /*cancel multiples*/ 
count++; 

printf ("stopl\n\n%d primes\n", count); 

I have benchmarked this program in various modes and compiled the results in 
Table 8.1 for comparison. Several cases were considered: 1) no register variables 
declared, but Turbo C allowed any register optimizations it could make; 2) 
cleverly declared register variables (/and K); 3) unfavorably declared register 
variables (ITER and COUNT); 4) no register variables declared and no register 
optimization allowed. 
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Table 8.1 

Register optimization On -
1) - no register variables declared 
2) - register i, k 
3) - register iter, count 
4) Register optimization Off -

6.1 sec 
6.1 II 

11.8 II 

11.8 II 

Notice the similarity in times between cases 1 and 2. Since I and K are being 
used so often and in such a tight loop, Turbo C tends to cache these variables 
into registers, so that the register declaration does not help as much as you might 
think it would. 

On the other hand, declaring infrequently accessed variables to be of register type 
can adversely affect performance. This case shows identical times with that of no 
register optimization at all! By declaring ITER and COUNT to be register 
variables, Turbo C is deprived of the two cache registers for its own use. It 
cannot cache I and K by itself, as in case 1, because these registers were already in 
use. From a performance standpoint, case 3 and case 4 are identical. 

Even without declaring variables to be register, some improvement can be gained 
by declaring them to be external by defining them outside of any function. 
Locally declared automatic variables are stored on the stack, whereas globally 
defined variables are assigned a fixed location in memory. The address of stack 
variables must be calculated by the microprocessor each time the variable is 
accessed. This calculation is very quick in the 80186, 80286 and 80386 
processors with their address calculation hardware; it is not so quick on the 8086 
with its microcoded subroutines. If reentrancy is not a problem, declaring a 
variable globally can speed up execution on 8086 and 8088 based machines. 

This is also true for arguments to functions, especially if they are complex. The 
same improvements can be gained by transferring arguments to globally declared 
variables. Saving off array and structure elements can avoid even more time 
consuming address calculations being performed more than once. These are 
probably minor savings, unless the code section is within a loop of some kind. 

Turbo C has some of its own offerings in the Options menu. One of the biggest 
improvements is in the selection of memory model. Always select the smallest 
memory model capable of performing the task. Far pointers are 32 bits in 
length, whereas near pointers are only 16-bits. Using a smaller memory model 
avoids the overhead of loading double word addresses if the smaller address will 
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do. This goes for both program and data addresses. Remember that it is not 
necessary to use the large memory model just because one pointer variable must 
be of type FAR. Declare the specific variable to be FAR and let the rest default 
to NEAR. 

Allow Turbo C to generate 186 instructions if possible. The 8086 and 8088 
microprocessors are the oldest members of the 86 processor family. Later 
members, such as the 80186, 80286 and 80386, include instructions which the 
older members do not have. Some of these new instructions can replace several 
of the older instructions at a considerable savings in time. Although Turbo C 
Version 1.0 will generate neither 80286 nor 80386 specific instructions, it will 
use the 80186 specific instructions, which both of the other chips understand. 

Of course, including 80186 specific instructions means that the resulting program 
won't run on a PC equipped with the earlier 8086 and 8088 microprocessors. 
However, if you know that a particular program is only going to be executed on a 
186 based machine or on a PC AT type machine with its 80286, then selecting 
the 186 option can result in a faster executing program. (The new NEC V20 and 
V30 processors can execute most of the 186 instructions, so they can probably 
handle programs compiled with the 186 option.) 

All members of the 8086 family, except the 8088 and little used 80188, access 
memory in 16 bit chunks. The processor hardware can only access words on even 
addresses. Whenever a word of memory happens to fall on an odd address, the 
processor must actually make two memory fetches. It loads one word to get one 
byte and then loads the next word to get the other byte. To avoid this double 
load, Turbo C can be instructed to automatically insure that variables declared to 
be one word or larger are allocated on even byte boundaries. This is done by 
selecting Word Alignment in the Compiler Options menu. This results in 
slightly better perfomance on 16 bit bussed machines. The 8088 based machines, 
such as the IBM PC, must always perform two memory fetches per word so this 
option has no effect on their performance. 

To increase the numerical performance of its line of microprocessors, Intel built 
the 8087 and functionally equivalent 80287 Numerical Data Processors (NDP). 
These NDPs internally perform various floating point functions, such as tangent 
and logarithms. Turbo C can properly instruct the NDP to carry out floating 
point (float and double) calculations. For use in computers not equipped with an 
NDP, Turbo C includes an emulation library which emulates the function of the 
numerical processor using normal 8086 instructions. This emulation library 
executes slower than the NDP instructions. Consider the standard matrix 
multiply benchmark below: 



306 TURBO C 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ lJ: 
26 [ lJ: 
27 [ lJ; 
28 [ lJ: 
29 [ 2J: 
30 [ 2J: 
31 [ lJ: 
32 [ lJ: 
33 [ lJ: 
34 [ lJ: 
35 [ lJ: 
36 [ lJ: 
37 [ lJ: 
38 [ lJ: 
39 [ lJ: 
40 [ 2J: 
41 [ 2 J: 
42 [ 2J; 
43 [ 2J: 
44 [ lJ: 
45 [ lJ; 
46 [ lJ: 
47 [ OJ: 

/*Prg8_2 - Floating point benchmark 
by Stephen R. Davis 

*/ 

The matrix multiply is something of a floating point 
performance standard. The size may be varied at will, but 
the default is 50 x 50. To execute this program without 
using the 8087 in a machine equipped with one, issue the 
DOS command SET 87=N before starting. SET 87=Y will reenable 
the 8087. 

#include <stdio.h> 
#include <stdlib.h> 

#define msize 50 

/*define our data requirements*/ 
unsigned i, j, k; 
float x [msizeJ [msizeJ, y [msizeJ [msizeJ, z [msizeJ [msizeJ; 
double accum; 

/*Main - perform the benchmark*/ 
main () 
{ 

/*begin by initializing the matrices*/ 
printf ("Initializing matrices\n"); 
for (i = 0; i < msize; i++) 

for ( j = 0; j < msize; j++) { 
x [iJ[jJ rand() I 10000.; 
y [iJ [jJ =rand () I 10000.; 

/*now begin the benchmark*/ 
printf ("Enter return and start stop watch at same time\n"); 
getchar (); 
printf ("Start ... "); 

for (i = 0; i < msize; i++) 
for (j = 0; j < msize; j++) { 

accum = O; 
for (k = O; k < msize; k++) 

accum += x [iJ [kJ * y [kJ [jJ; 
z [ i J [ j J = accum; 

printf ("stop!\n"); 

Without an 8087 present, a 4.77 MHz IBM PC required a whopping 436 seconds 
to multiply a 50 x 50 floating point matrix. With an 8087 NDP, the same 
machine required 26.3 seconds, some 16 times as quick. (Prg8_2 was convinced 
to use or ignore the 8087 present in my machine by using the DOS commands 
SET 87=Y and SET 87=N, respectively.) Adding an 8087 or 80287 NDP to the 
target machine will improve floating point performance many fold. 

An executable program generated by Turbo C does not normally know whether an 
NDP is present or not when it is first executed. The first time a floating point 
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operation is performed, the library tests for the NDP's presence. If present, the 
library uses it. If not, it emulates it. This test requires some time. If it is 
known that the target machine has an NDP installed, the test can be avoided by 
selecting the 8087 library in the options menu. This library will not perform 
any tests, resulting in only slightly improved floating point performance. This 
measure is more worthwhile as a space savings measure, as the straight NDP 
library does not include the emulation software. This option is selected from the 
options menu. 

The same effect can be achieved in programs already linked with the normal 
emulation library by executing the DOS command SET 87=Y before executing 
the program. The presences of the 87 variable in the environment suppresses the 
test for an NDP. The programmer should be careful, however. Executing a 
program intended for an NDP in a machine not equipped with a numerical 
processor will result in a system crash requiring a complete reboot. 

While on the subject of floating point operations, I should mention that C has a 
peculiarity which can cost the unsuspecting programmer a lot of performance. 
Float is not a resolution type-double is. This means that calculations between 
single precision floating point values are actually performed in double precision. 
The following C statement actually performs 3 conversions: 

float a, b, c; 

a = b * c; 

First B and C are converted to double and the multiplication is carried out. The 
resulting double precision values are then converted back to single precision and 
stored in the variable A. These automatic type conversions can result in a 
significant performance degradation in floating point operation, especially if an 
NDP is not present. Whenever possible, declare floating point variables to be 
double to avoid these conversions. 

Some optimization techniques, especially those contained in older texts, are not 
helpful, however. These suggestions were intended for the non-optimizing 
compilers of earlier years. For example, Turbo C automatically resolves constant 
expressions at compile time so that multiplying out constants in expressions 
yourself does not increase performance at all. Similarly, rearranging arithmetic 
expressions to reduce the number of multiplies is also not effective, again 
because, Turbo C performs these optimizations itself. 
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Assembly Language Optimizations 

When these techniques still don't sufficiently increase performance, it may be 
necessary to resort to the use of assembly language. Fortunately, statistics show 
that in the typical program, 10 percent of all code is executed 90 percent of the 
time. Restated, this means that most of the C code in any given program is only 
occasionally executed. Therefore, it is not necessary to recode the entire program 
in assembly language. Significant improvement can only be gained by recoding 
those routines which are executed a significant percentage of the time. Consider 
the following case: 

Module A 100 msec 10 times 1,000 msec 
Module B - 100 msec 1 time 100 msec 
Module c 10 msec 10 times 100 msec 

-------------
Total 1,200 msec 

This program consists of three modules. Modules A and C are executed 10 
times, each iteration requiring the length of time specified. Module B is executed 
once. From this we see that the total execution time for the program is 1.2 
seconds. It is also clear from these figures that it would be a waste of time to 
attempt to optimize either Module B or C to affect overall performance. 

Suppose that through clever use of assembly language, we were able to make 
Module B twice as fast, reducing its execution time from 100 msec to 50 msec. 
This would only reduce the execution time by the same 50 msec from 1.2 
seconds to 1.15 seconds, less than a 5 percent improvement! The same is true for 
Module C. Only efforts at reducing Module A's execution time will show any 
significant results. Doubling its speed would drop the program's execution time 
by 500 msec from 1.2 to 0. 7 seconds, an improvement of 42 percent. 

How does the programmer decide which modules are taking up most of the time? 
Sometimes examination of the C source code will reveal the culprits. This 
examination can be augmented by examining the executing program (another 
reason for completing the program first). Those areas which are executing 
quickly enough need no further inspection; concentrate on those areas which 
appear to have problems. 

When simple inspection does not solve the problem, it may be necessary to 
examine the machine code generated by the C source code. The command line 
version of Turbo C, TCC, is very helpful. By including the -B switch during 
compilation, TCC can be coaxed into providing an optional assembly language 
output. It is often not easy to decide which assembly statements go with which 
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C source statements. In this case, however, TCC includes the source code line 
number as a comment in front of the assembly it generated. These line numbers 
match the line numbers generated by the C pretty print format program used 
throughout this book, Prg3_1. 

Not all microprocessor instructions execute in the same amount of time. An 
8086 processor can move a value from one register to another more than 100 
times faster than it can execute an integer division. Appendix 4 includes a list of 
the 8086 instructions followed by their execution times. Instruction times are 
measured in units called clock cycles. To convert clock time, divide the number 
of clock cycles by the clock rate of your machine ( 4. 77 million in the case of the 
IBM PC). Comparisons of execution time are often left in units of clock cycles. 

Be sure that the numbers you have are those for your machine. Different 
members of the 8086 processor family execute the same instructions in different 
numbers of clock cycles. Appendix 4 includes the times for different members of 
the processor family. 

As an example, I have broken down our direct screen write program generated in 
Chapter 7 (Prg7 _ 4a) into numbers of machine cycles on an 8088 equipped 
machine. In performing these analyses, one must take a typical example. In my 
case, I assumed a 40 character string being output to the bottom of a 25 line by 
80 column display, requiring the display to be scrolled up one line. My base 
microprocessor is the 8088. The results appear below. 

routine/line numbers # cycles # loops total cycles 
scroll 

75 - 89 578 1 578 ( 0%) 
90 - 91 216 1,920 414, 720 (96%) 
92 - 95 240 1 240 ( 0%) 

96 - 97 98 80 7,840 ( 2%) 

99 -101 70 1 70 ( 0%) 

qprintf 
102 -113 300 1 300 0%) 

114 -122 120 40 10,000 2%) 

121 -123 144 1 144 0%) 

Total 433,892 

numbers of clock cycles to output a single 40 character string 
using qprintf () and scroll an 80 x 25 screen 1 row using scroll(). 
Does not include time to reposition cursor using BIOS routine. 
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To save space, I have not broken out the numbers for each separate instruction. 
Instead, I have added up the clock cycles for each stretch of code. Code contained 
within loops has been broken out separately and the average number of times 
through the loop has been used as a multiplier. 

We see that it does not pay to worry too much about routines that are called only 
once, no matter how complicated they might be, when other routines are being 
executed many hundreds or thousands of times. Too many times programmers 
expend heroic effort to shrink the execution time of some particularly slow 
module, only to find that it has little or no effect on overall performance. 

In this case, scroll() is consuming the lion's share of the execution time, and, 
more specifically, just the scroll operation itself (lines 92-93). Although this 
loop is quite short--only some 7 machine instructions-it must be executed for 
each column of each line, some 1,920 times(= 80 x 24). 

(In reality, the situation is even worse than pictured. Access to the display 
memory invariably involves contention with the CRT controller chip, resulting 
in a large number of memory wait states. There is, unfortunately, nothing that 
can be done to rectify this problem.) 

Occasionally, this type of analysis cannot be performed. Usually this is because 
not all of the source code is available to the programmer. Even in the rather 
simple analysis above, it was not possible to include the code executed to place 
the cursor at the end of the string because the BIOS listings were not available. 
Even if they had been, it would have been different for other display adapters. 
Since the cursor positioning code is only executed once per line, it was relatively 
safe to ignore its contribution to the overall throughput. Had there been any 
doubt, however, the routine pcursor() could have been completely commented out 
during the analysis. 

The BIOS version of this same program would be impossible to analyze in this 
way without detailed listings of the screen output BIOS routines. Occasionally 
we can analyze programs which make a large number of BIOS or DOS calls by a 
process known as selective removal. We begin by measuring the performance of 
the program. We then remove or stub out each major module of the program in 
turn, measuring the performance of the resulting system. Removing the most 
time-consuming module will result in the greatest overall improvement. This 
technique is only possible when the individual modules are loosely coupled so 
that removing one does not so adversely affect the others that statistics become 
meaningless. 
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When these techniques fail, it is necessary to resort to commerically available 
software profilers. Profilers work in several different ways, but all help to give 
the programmer an accurate view of where the software is spending the majority 
of its time and, thus, where improvements should be made. However, unlike the 
pen and paper analysis above, profilers give no clue as to what improvements 
should be made. 

A profiler might indicate that a program is spending all of its time in the 
operating system. This might indicate that the operating system is the weak link 
in the performance chain or, more likely, that some section of code is invoking 
the operating system too often. Perhaps some program is going to the disk more 
than it needs to. In this case, the profiler will not show the actual offender, since 
the amount of time it takes to make a disk call is very short. Only a hand 
analysis of the user program can show the reasons, but a profiler can put you on 
the right track. 

lnline Assembly Code 

Once you have decided which sections of code need optimizing with assembly 
language, the question becomes a matter of how. There are two options open to 
the Turbo C programmer, each with its own advantages. The first is inline 
assembly. In this technique, assembly code is inserted directly into the object 
output of the Turbo C compiler by use of the ASM directive. 

Normally, the Turbo C compiler inspects each succeeding C source statement and 
converts it into the equivalent assembly language instructions, which it places in 
the .OBJ file output. The ASM directive allows users to write their own 
assembly statements to be inserted among those generated by Turbo C. Time 

"" critical sections of C functions can be handwritten for efficiency using inline 
assembly without the need to resort to writing separate assembly language 
modules. 

Inline assembly is only indicated when there is a particularly good reason, such as 
a particular routine using up a large amount of time. The other justification for 
inline assembly is when a particular instruction or set of instructions is well 
adapted to your problem. Analysis of the assembly generated by Turbo C from 
Prg7 _ 4a showed that the scroll operation was by far the largest user of time. It 
also showed, however, that with only seven instructions generated, there may not 
be too much that can be done to optimize this code section. This might be the 
case were it not for the existence of the 8086 string instructions. 
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The string instructions are designed to manipulate large blocks of memory. They 
can scan a large block for a particular value, compare two blocks, initialize a 
block or move a block of memory. It is these last two capabilities which are 
ideal for our needs. The block move instruction can perform the scroll move in 
fewer clock cycles than Prg7 _ 4a's FOR loop. 

Of course, the good people at Borland have not been asleep. It did not go 
unnoticed that such a useful instruction was hiding in the 8086 instruction set. 
Even though it would have been ideal, it would have been very difficult to make 
the compiler so smart that it generated the block move instruction automatically 
when it saw the first FOR loop or the set block instruction for the second. 
Instead, Turbo C includes the library routines movmem() and setmem() which 
specifically provides access to these instructions to the Turbo C programmer. 

This is a specific example of the "don't be too quick to use assembly" principle. 
By making use of these documented and debugged library routines, we can get the 
benefits of the assembly language instructions without the difficulties. An 
example of Prg7 _ 4a rewritten to use the library routine appears below as 
Prg8_3a. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ 0 J: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ 0 J: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ 0 J: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 

/*Prg8_3a - High Speed Screen Output 
by Stephen R Davis, 1987 

Perform direct screen output by accessing screen memory directly 
via the screen pointer 'screen'. Scroll using the movmem() 
library function which uses the 8086 block move instruction (this 
must be compiled under the compact or large memory models) . 

*/ 

#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 
#include <mem.h> 

#define cga (unsigned far *)Oxb8000000 /*same for ega*/ 
#define mono (unsigned far *)OxbOOOOOOO 
#define space Ox20 
#define attrib Ox07 
#define screenheight 25 

/*add the screen BIOS functions*/ 
#define scrollup Ox06 
#define setcursor Ox02 
#define writetele OxOe 
#define getmode OxOf 

/*define global variables*/ 
unsigned v_pos, h_pos, screenwidth; 
union REGS regs; 
unsigned far *screen; /*screen pointer*/ 

/*test to make sure that we are under Compact or Large 
memory models*/ 



35 [ OJ: 
36 [ OJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ 0 J: 
41 [ OJ: 
42 [ OJ: 
43 [ OJ: 
44 [ OJ: 
45 [ OJ: 
46 [ OJ: 
47 [ OJ: 
48 [ lJ: 
49 [ lJ: 
50 [ lJ: 
51 [ lJ: 
52 [ 2 J: 
53 [ 3J: 
54 [ 3J: 
55 [ 3J: 
56 [ 2 J: 
57 [ 2J: 
58 [ 2J: 
59 [ lJ: 
60 [ OJ: 
61 [ OJ: 
62 [ OJ: 
63 [ OJ: 
64 [ OJ: 
65 [ lJ: 
66 [ lJ: 
67 [ lJ: 
68 [ lJ: 
69 [ lJ: 
70 [ lJ: 
71 [ lJ: 
72 [ lJ: 
73 [ lJ: 
74 [ l]: 
75 [ lJ: 
76 [ l J: 
77 [ lJ: 
78 [ lJ: 
79 [ lJ: 
80 [ lJ: 
81 [ lJ: 
82 [ OJ: 
83 [ OJ: 
84 [ OJ: 
85 [ OJ: 
86 [ OJ: 
87 [ OJ: 
88 [ lJ: 
89 [ lJ: 
90 [ lJ: 
91 [ lJ: 
92 [ lJ: 
93 [ l J: 
94 [ lJ: 
95 [ 2J: 
96 [ 2]: 
97 [ 2J: 
98 [ 2J: 
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#if sizeof (screen) - sizeof (int *) 
#error Must compile under Compact or Large memory models 
#endif 

/*prototype declarations*/ 
void init (void); 
void scroll (unsigned); 
void qprintf (char*); 
void pcursor (unsigned, unsigned); 

/*Main - test the output routines*/ 
int main () 

int i, j; 

init (); 
for (i = 0; i < 20; i++) { 

for (j = 0; j < screenheight; j++) { 
qprintf ("this is BIOS output"); 
pcursor(v_pos, 30+j); 
qprintf ("and this\n"); 

for (j = 0; j < screenheight; j++) 
printf ("this is normal printf output\n"); 

/*!nit - set the screen address and clear the screen*/ 
void init () 

short mode; 

regs.h.ah = getmode; 
int86 (OxlO, &regs, &regs); 
mode= regs.h.al; 
screenwidth = regs.h.ah; 

if (mode == 7) 
screen mono; 

else 
if (mode 3 I I mode 2) 

screen cga; 
else 

abort (); 

scroll (screenheight); 
pcursor (0, 0); 

/*Scroll - scroll up N lines using function 6*/ 
void scroll (nlines) 

unsigned nlines; 

unsigned far *source, far *dest, number, i; 

if (nlines >= screenheight) 
nlines screenheight; 

h_pos = O; 
if ((v_pos += nlines) >= screenheight) 

nlines = (v_pos - screenheight) + l; 

/*scroll the screen up 'nlines' amount*/ 
source= screen+ (nlines * screenwidth); 

313 
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99 [ 2J: 
100 [ 2J: 
101 [ 2J: 
102 [ 2J: 
103 [ 2J: 
104 [ 2J: 
105 [ 2J: 
106 [ 2J: 
107 [ 2 J: 
108 [ 2J: 
109 [ 2J: 
110 [ 2J: 
111 [ 2J: 
112 [ lJ: 
113 [ OJ: 
114 [ OJ: 
115 [ OJ: 
116 [ OJ: 
117 [ OJ: 
118 [ OJ: 
119 [ OJ: 
120 [ OJ: 
121 [ lJ: 
122 [ lJ: 
123 [ lJ: 
124 [ lJ: 
125 [ lJ: 
126 [ 2 J: 
127 [ 2J: 
128 [ lJ: 
129 [ lJ: 
130 [ 2J: 
131 [ 2J: 
132 [ lJ: 
133 [ lJ: 
134 [ OJ: 
135 [ OJ: 
136 [ OJ: 
137 [ OJ: 
138 [ OJ: 
139 [ OJ: 
140 [ OJ: 
141 [ OJ: 
142 [ OJ: 
143 [ lJ: 
144 [ lJ: 
145 [ lJ: 
146 [ lJ: 
147 [ lJ: 
148 [ lJ: 
149 [ lJ: 
150 [ lJ: 
151 [ OJ: 

TURBOC 

dest = screen; 
number = (screenheight - nlines) * screenwidth; 
movmem (source, dest, number<< 2); 

/*now blank the lines abandoned*/ 
dest = screen + number; 
number = nlines * screenwidth; 

/*setmem (dest, number<< 2, 0); /*messes up 'normal' scroll*/ 
for (i = 0; i < number; i++) 

*dest++ = attrib << 8; 

v_pos = screenheight - 1; 

/*Qprintf - output a string using the BIOS screen handler. If 
an attribute is not provided, use the default.*/ 

#define SCREENLOC screen+ ((screenwidth * v_pos) + h_pos) 
void qprintf (c) 

char *c; 

unsigned far *sp; 

sp = SCREENLOC; 
for (; *c; c++) 

if (*c == '\n') 
scroll (1); 
sp = SCREENLOC; 

else 
if (h_pos++ < screenwidth) 

*sp++ = (attrib << 8) + *c; 

pcursor (v_pos, h_pos); 

/*PCursor - place the cursor at the current x and y location. 
To place the cursor, and subsequent output, to any 
arbitrary location, set 'v pos' and 'h pos' before 
calling pcursor.*/ - -

void pcursor (y, x) 
unsigned x, y; 

v_pos y; 
h_pos x; 

regs.h.ah setcursor; 
regs.h.bh 0; 
regs.h.dh v_pos; 
regs.h.dl h_pos; 
int86 (OxlO, &regs, &regs); 

This program is very similar to its parent, both in principle and structure. Only 
the specific FOR loops have been replaced by the appropriate library routines. 

The FOR loops were copying integers which are 2 bytes in length. Since 
movemem() and setmem() accept the number of bytes to move instead of the 
number of integers, the variable NUMBER has been shifted left by 1 bit. 
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The address being passed to these routines is SCREEN, which is a FAR pointer. 
To insure that movmem() and setmem() accept FAR pointers as their arguments, 
Prg8_3a must be compiled under either the compact or the large memory model. 
Because they default all data pointers to large, the libraries for these models accept 
FAR data pointers. To enforce this, we have used the same trick as in Prg7 _3, 
comparing the SIZEOF a default pointer to a known value. 

Try executing Prg7 _ 4a and Prg8_3a back to back. Despite their similarities, 
Prg8_3a is quicker than its predecessor. Our analysis was correct. We improved 
performance by use of the block move routines. 

Okay, so maybe this isn't fair. We were lucky that the Turbo C library had just 
the routine we needed, but it wasn't all luck. The routines exist because the 
block instructions are so useful. Had they not existed, the library routines would 
not have existed, but then the benefits of assembly language for this application 
would not have been nearly so great. This fits with our assertion that assembly 
language is usually not necessary. But what if these library routines did not 
exist? How might we have generated our own inline code to make use of the 
block instructions? 

The actual mechanism for inserting inline assembly is pretty clumsy by Turbo C 
standards. The normal interactive Turbo C, TC, cannot handle inline assembly 
(at least not in Version 1.0). So we must resort to the clumsier command line 
version of the compiler, TCC. Since we will already have gotten the first pass of 
our program up and running without inline assembly, we will only have the 
relatively small section of inline assembly to get working with TCC. 

Inline assembly is indicated by the Turbo C directive ASM, followed by a single 
assembly language statement. It is conventional to place each ASM directive on 
a separate line and to not follow them by a semicolon. Assembly statements 
may be followed by comments. 

Turbo C understands the normal Intel mnemonics for the 8086 instructions. 
Fortunately, it is not necessary to worry how to reference Turbo C variables, as 
they are automatically referenced. (This was a major problem in using the 
INLINE directive in Turbo Pascal.) The following demonstrates the problem: 

unsigned count; 
void proc (); 
{ 

unsigned index; 
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asm mov count,10 
asm mov ax,index 

/*init count*/ 
/*and load up index*/ 

By virtue of one variable having been declared globally and the other locally, 
COUNT and INDEX are not accessed from assembly language in the same way. 
One is stored on the stack and the other in direct memory. Fortunately, the user 
of inline assembly doesn't have to worry with this problem. Turbo C makes the 
necessary additions to properly access the two different variables. 

Unfortunately, Version 1.0 of Turbo C has no built-in assembler. The output 
from TCC is not a normal object file, but rather an assembly language source 
code. TCC will automatically generate this source file when it first encounters 
an ASM directive, but it must restart compiling from the beginning to generate 
the assembly source code for C statements already encountered. To avoid this 
waste of time, the user should include the -B switch in the command line. This 
tells TCC that ASM statements appear in the C source file being compiled and 
that it should compile assembly source statement from the very beginning. 

(Hackers might be curious at the output generated by the -B option. Even 
programs containing no ASM directives may be compiled with this switch (or 
the -S) to generate an assembly source file. It is interesting to see how various 
C constructs are decoded into 8086 instructions.) 

One problem with this method, however, is that the resulting assembly source 
file must then be assembled to get the .OBJ file, which we must have to link. 
Borland specifies Microsoft's Macro Assembler (MASM) Version 3.0 or later. 
Since MASM is the default standard assember in the IBM PC world, there are 
several assemblers which are MASM compatible. Even some assemblers in the 
public domain are reasonably MASM compatible. Many of these will assemble 
the output of TCC -B, but to be effective an assembler must at least support the 
GROUP and SEGMENT directives. Extensive macro capability does not seem to 
be a consideration. 

Once the compilation is complete, TCC will automatically attempt to execute 
MASM. If it cannot find MASM, it will generate an error message. This is not 
a problem, however, as the user can manually execute MASM on the assembly 
source file generated. In fact, this manual method might be preferable since it 
allows the user to pass any desired switches to the assembler, such as directing 
the creation of a listing file or inclusion of line numbers in the .OBJ file. The 



MAXIMUM PERFORMANCE 317 

.OBJ file created in this manner is normally linked using either the Microsoft 
LINK or Borland TLINK linkers. 

Debugging inline assembly presents its own unique problems. Assembly 
language is more finicky than C and always more difficult to debug. The hybrid 
of C and inline assembly language together is even worse. The debug process is 
complicated by the multiple step compilation process, which greatly slows 
turnaround time. This makes it even more important that a 100 percent C 
version of the program be completely debugged before attempting the inline 
sections. Inline code is hard enough to get working, even when the remaining C 
program works. If the C program has problems of its own, it is virtually 
impossible. 

To debug inline assembly, you will need an assembly language debugger, such as 
DEBUG, which is supplied with DOS. A debugger with symbolic capability is 
helpful, but not required. You should first print out a copy of the assembly 
source generated by TCC or the listing file of the same which MASM created. 
Follow this with the C source listing generated from our pretty print program. 
Cross reference the C source line numbers with those contained in the assembly 
program comments. 

In order to find your way around the .EXE file, you should be certain that you 
generate a load map during the link step. Instructions for using TLINK are 
contained in the Turbo C User's Guide. LINK generates a load map if a name 
other than NULL is provided to the load map question. It may be helpful to 
include line numbers in the load map by using the I LI switch. If you have any 
experience debugging assembly programs, you should have little problem finding 
your way equipped with these listings. 

Prg8_3b is our same old screen writing program, rewritten to use inline assembly 
to perform the critical block move and block clear operations. Once again, notice 
how similar Prg8_3b is to its predecessors. Only the two critical operations have 
been converted to assembly code. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 

/*Prg8_3b - High Speed Screen Output 
by Stephen R Davis, 1987 

*/ 

Perform direct screen output by accessing screen memory directly 
via the screen pointer 'screen'. Scroll using the 8086 block 
move instruction using the #asm directive. 

#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 
#include <mem.h> 
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14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ lJ: 
41 [ lJ: 
42 [ lJ: 
43 [ lJ: 
44 [ 2J: 
45 [ 3J: 
46 [ 3J: 
47 [ 3J: 
48 [ 2J: 
49 [ 2 J: 
50 [ 2J: 
51 [ 1 J: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ OJ: 
56 [ OJ: 
57 [ lJ: 
58 [ lJ: 
59 [ lJ: 
60 [ lJ: 
61 [ lJ: 
62 [ lJ: 
63 [ lJ: 
64 [ 1 J : 
65 [ lJ: 
66 [ lJ: 
67 [ lJ: 
68 [ lJ: 
69 [ lJ: 
70 [ lJ: 
71 [ lJ: 
72 [ lJ: 
73 [ lJ: 
74 [ OJ: 
75 [ OJ: 
76 [ OJ: 
77 [ OJ: 

TURBOC 

#define cga (unsigned far *)Oxb8000000 /*same for ega*/ 
#define mono (unsigned far *)OxbOOOOOOO 
#define space Ox20 
#define attrib Ox07 
#define screenheight 25 

/*add the screen BIOS functions*/ 
#define scrollup Ox06 
#define setcursor Ox02 
#define writetele OxOe 
#define getmode OxOf 

/*define global variables*/ 
unsigned v_pos, h pos, screenwidth; 
union REGS regs; 
unsigned far *screen; 

/*prototype declarations*/ 
void init (void); 
void scroll (unsigned); 
void qprintf (char*); 
void pcursor (unsigned, unsigned); 

/*Main - test the output routines*/ 
int main () 

int i, j; 

init () ; 
for (i = 0; i < 20; i++) { 

/*screen pointer*/ 

for ( j = 0; j < screenheight; j++) { 
qprintf ("this is BIOS output"); 
pcursor(v_pos, 30+j); 
qprintf ("and this\n"); 

for (j = 0; j < screenheight; j++) 
printf ("this is normal printf output\n"); 

/*!nit - set the screen address and clear the screen*/ 
void init () 

short mode; 

regs.h.ah = getmode; 
int86 (OxlO, &regs, &regs); 
mode= regs.h.al; 
screenwidth = regs.h.ah; 

if (mode == 7) 
screen mono; 

else 
if (mode 3 I I mode 

screen cga; 
else 

abort (); 

scroll (screenheight); 
pcursor (0, 0); 

2) 

/*Scroll - scroll up N lines using function 6*/ 
void scroll (nlines) 
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unsigned nlines; 

unsigned far *source, far *dest, number; 

if (nlines >= screenheight) 
nlines screenheight; 

h_pos = 0; 
if ((v_pos += nlines) >= screenheight) 

nlines = (v_pos - screenheight) + l; 

/*scroll the screen up 'nlines' amount*/ 
source screen+ (nlines * screenwidth); 
dest = screen; 
number (screenheight - nlines) * screenwidth; 

asm push ds 

319 

asm mov dx,si /*not necessary to store ... * I 
asm mov bx, di /* ... si and di with -z 
asm les di,dest 
asm lds si,source 
asm mov cx,number 
asm cld 
asm rep movsw 
asm pop ds 
asm mov si,dx 
asm mov di,bx 

/*now blank the lines abandoned*/ 
dest = screen + number; 
number = nlines * screenwidth; 

asm mov ax,0700H 
asm mov bx, di 
asm les di,dest 
asm mov cx,number 
asm rep stosw 
asm mov di,bx 

v_pos screenheight - l; 

/*Qprintf - output a string using the BIOS screen handler. 
an attribute is not provided, use the default.*/ 

#define SCREENLOC screen+ ((screenwidth * v_pos) + h_pos) 
void qprintf (c) 

char *c; 

unsigned far *sp; 

sp = SCREENLOC; 
for (; *c; c++) 

if ( *c == '\n') 
scroll (l); 
sp = SCREENLOC; 

else 
if (h_pos++ < screenwidth) 

*sp++ = (attrib << 8) + *c; 

pcursor (v_pos, h_pos); 

If 

switch* I 
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142 [ OJ: 
143 [ OJ: 
144 [ OJ: 
145 [ OJ: 
146 [ OJ: 
147 [ OJ: 
148 [ 0 J : 
14 9 [ l J : 
150 [ l J: 
151 [ lJ: 
152 [ lJ: 
153 [ l J: 
154 [ lJ: 
155 [ lJ: 
156 [ lJ: 
157 [ OJ: 

/*PCursor - place the cursor at the current x and y location. 
To place the cursor, and subsequent output, to any 
arbitrary location, set 'v_pos' and 'h_pos' before 
calling pcursor.*/ 

void pcursor (y, x) 
unsigned x, y; 

v_pos = y; 
h_pos = x; 

regs.h.ah = setcursor; 
regs.h.bh = 0; 
regs.h.dh = v_pos; 
regs.h.dl = h_pos; 
int86 (OxlO, &regs, &regs); 

This program demonstrates the advantage of inline assembly over other forms of 
assembly language. First, as we mentioned earlier, the inline assembly 
programmer does not have to worry about the storage class of the variables being 
accessed. Stack variables and global variables are accessed the same way. Turbo 
C makes the necessary conversions to the assembly output. 

Second, we were able to keep the amount of written assembly code to an absolute 
minimum. Analysis had shown that the contributions of lines 75-89, 95, and 
99-101 to the execution time of Prg7 _ 4a are completely insignificant. 
Therefore, we left these in C. When writing routines using sections of inline 
assembly, try to keep the more complicated code sections, such as complex 
calculations, in C. This is especially important when manipulating floating 
point numbers. It is even possible to use the Turbo C pseudo variables to 
initialize the registers in C before some inline assembly section uses them. 

One warning: be sure that any section of inline assembly code that you might 
write retains the value of the SI and DI registers if you intend to leave register 
optimization turned on. Consider the following do nothing code segment: 

a = b * 10; 
asm mov si,1 
c = b * 5; 

In the first line, some variable B is loaded from memory into a register, 
multiplied by 10, and stored in the variable A. Since accessing of registers is so 
much faster than memory accessing, Turbo C tries to retain the value of B in the 
SI register for later use in line 3. In line 3, the value of B is not reloaded from 
memory, but is assumed already to be present in SI. Turbo C does not know that 
the inline assembly in line 2 wiped out the value of B stored there. Inline 
assembly sections which need to use the SI and DI registers should push them 
onto the stack at the beginning and then pop them off at the end, or, better yet, 
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save them into other, unused registers, as we have done. (The alternative, 
disabling register optimization or declaring B to be of type VOLATILE in order 
to force B to be reloaded from memory on each line, may actually slow execution 
more than the inline assembly improved it.) 

You might think that the Turbo C pseudo variables provide us with another 
solution to the problem. If Turbo C knew that the value of register B was no 
longer contained in SI, it would be forced to reload its value from memory in line 
3. We could easily do this by inserting the line_ SI = 1 between lines 2 and 3, 
where the actual constant is not important. It is only important that Turbo C 
know that SI has been modified. Curiously, this does not work. Turbo C does 
not make the association between the assignment to the pseudo variable and the 
value of B which it has stashed there. Apparently, this is a bug in the Turbo C 
compiler which the reader should be aware of when using the pseudo variables 
SI and DI. - -

Errors involving register optimization, such as the one presented above, are to be 
watched out for, since they are so difficult to find. The C source code looks 
okay, but the answer is wrong. Anytime you suspect such a problem, try 
recompiling and running the program with register optimization deselected in the 
Options menu. If the results are different, then you have a register problem. 

Separate Assembly Modules 

The inline assembly technique is ideal when the amount of time critical code is 
fairly small, as was the case with Prg7 _ 4a. In such cases, the programmer can 
perform the necessary calculations and initialize the proper variables in C and 
then drop into assembly language for the critical sections. When this is not the 
case, however, inline assembly becomes unwieldy. It is then better to separate 
the time critical functions into separate modules written entirely in assembly 
language. 

Assembly language modules must be assembled into .OBJ files by a separate 
assembler. We will use Microsoft's MASM assembler, but any assembler 
capable of generating .OBJ files and supporting the SEGMENT and GROUP 
directive can be used. Since none of the assembly source module is written by 
the Turbo C compiler, this technique is not nearly so tied to any particular 
assembler as was inline assembly. 

The .OBJ file created from the assembly language module is combined with that 
generated by Turbo C during the linking process. Fortunately, almost all 
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compilers and assemblers for the IBM PC generate the same object file format, so 
the linker is not even aware that the two .OBJ files were generated from different 
compilers. 

Functions written in assembly language modules and linked together with Turbo 
C modules can be called from those modules as if they were written in C. As 
long as the assembly language functions follow the rules of program interfacing, 
the calling program does not need to make any special concessions. By the same 
token, assembly language routines can also call Turbo C functions. This is an 
ideal way to include larger sections of assembly language in a Turbo C program. 
Since the assembly language is more or less the same (depending on what 
assembler you are using), how does one write assembly language functions to be 
interfaced with Turbo C? 

The first thing to remember is also the easiest. Turbo C attaches a _ onto the 
beginning of all externally defined variable and function names, so that if a C 
routine is to call an assembly function print(), the assembly module which 
defines it should call it _yrint. Although rules differ, the Microsoft assembler 
does not automatically make a function name global, as does C. Somewhere in 
the module a PUBLIC declaration must also be made so that the function is 
known outside of the module. Otherwise, the C modules will not be able to find 
it. The only other rules of interfacing C with assembly languages are those 
which deal with the stack. 

I have been a little free up to now with the term stack, never having really defined 
it. The stack is an area of memory which is pointed to by the stack pointer. 
Some instructions automatically place things on the stack. For example, when 
a microprocessor calls a function, it must have some way of knowing how to 
return to the point after the call. The CALL instruction automatically stores the 
address of the next instruction (the so-called return address) at the location pointed 
at by the stack pointer. To keep that value safe, this instruction then decrements 
the stack pointer. When the called function is ready to return to the caller, it 
executes a RET instruction which increments the stack pointer and then jumps to 
the address it points to. This puts the program back at the instruction following 
the original CALL. 

The details differ from one microprocessor to the next, but the principle is the 
same. In the 8086 family of microprocessors, the stack pointer is a special 
register abbreviated SP. In this architecture, the decrement is actually performed 
before the return address is saved on the stack, and the return address is loaded 
before the stack pointer is incremented. Figure 8.1 shows pictorially how the 
CALL and RET instructions work in the 8086. 
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Figure 8.1 

0100 MOV AX, 80 

0103 PUSH AX 

0104 CALL 0200 

0107 POP AX 

___.. 0200 PUSH BP 

0201 MOV BP, SP 

0280 RET 

Assemby code 

~1,...----l 

( - 107 

SP ~ 1-----.l 

Stack 

Immediately after executing CALL at 0104 

0100 MOV AX, 80 

0103 PUSH AX 

Next 0104 CALL 0200 

Instruction ___.. 0107 POP AX 

0200 PUSH BP 

0201 MOV BP, SP 

0280 RET 

Assemby code 

SP 

Stack 

Immediately after executing RET at 0280 
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Besides return addresses, other things can be saved on the stack. The 8086 
instructions PUSH and POP save and restore register values in the same way that 
CALL and RET save and restore the return address. For example, PUSH AX 
decrements the stack pointer and then saves the contents of the AX register on the 
stack. The inverse instruction, POP AX, loads the value pointed at by the stack 
pointer into the AX register and then increments the stack pointer. 

Return addresses and local variables are stored on the stack to provide a capability 
known as reentrancy. If the return address for a call to a function were stored in 
some fixed location, as was the case in some older computers, then that function 
must make sure that a) it is never called twice at the same time, and b) it does not 
call itself. If it did, the second return address would overwrite the first and the 
information would be lost. It may not sound like reentrancy is that big of a deal, 
but, as we shall see, it often can be. 

Turbo C also uses the stack to pass arguments from one function to another. To 
make a call, the value of the last argument to the called function is pushed onto 
the stack, then the next to last, and so on, until the first argument has been 
pushed before the actual call is made. The calling routine restores the stack 
pointer after the called function returns either by executing the proper number of 
pops or by direct addition to the stack pointer. For example, examine the stack 
which the C function called() sees after it has been called. 

Pushing and popping variables on and off the stack is fine for passing arguments 
to functions, but is not really adequate for variables used within functions. 
Variables and arguments must be accessible in any order, unlike the serial order of 
pushes and pops. To place such variables on the stack and still retain random 
access to them, Turbo C (and most other compilers) uses a concept called the 
stack frame. The stack frame uses the base pointer register (BP) in combination 
with the stack pointer to allocate stack space at the beginning of Turbo C 
functions using the following assembler sequence: 

PUSH 
MOV 
SUB 

BP 
BP,SP 
SP,<frarne size> 

;SAVE CALLER'S BP 
;POINT BP TO TOP OF FRAME 
;ALLOCATE THE STACK FRAME 

and the following code sequence to pull down the stack frame: 

MOV 
POP 
RET 

SP,BP 
BP 

;RESTORE SP TO TOP OF FRAME 
;RESTORE CALLER'S BP 
;RETURN TO CALLER 
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Figure 8.2 

called (I, j, k) => PUSH _K 

PUSH _J 

PUSH _I => 
CALL CALLED 

SP+6_. K 
SP+4_. 

ADD SP, 6 SP+2_. 
C Source 

Code SP --+ 
Return 

Address 

Resulting Assembly 
Language 

Stack upon 
entering "CALLED ( )" 

PUSHing arguments on stack in C 

The entire stack, including stack frame, has the following appearance within a 
Turbo C function: 

Figure 8.3 

BP+B _. } BP+6_. Arguments called (i, j, k) 

BP+4_. int l,J, k; 

BP+2_. 

BP--+ 
aller's 
BP 

BP-2 _. 

} 
{ lntx, y, z, q 

BP-4 _. 
Stack frame 

BP-6 _. 
BP-8 _. 

C Program 

STACK 

Stack frames in C procedures with both 
arguments and automatic variables 
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This stack frame technique is almost built into the 8086 instruction set. In fact, 
later members of the 8086 family can erect and tear down stack frames in a single 
instruction. In addition, the 8086 can reference indirectly off of the base pointer 
register (something it cannot do off of the stack pointer). Thus, a function which 
has erected a stack frame can reference arguments as positive offsets off of the 
base pointer, and locally declared automatic variables as negative offsets off of the 
base pointer. 

The value returned from a function is not pushed on the stack, but simply 
returned in the AX register. For example, examine the following assembly 
language function written for the Microsoft MASM assembler and designed to be 
called from Turbo C. Notice how it performs the calls to other Turbo C routines 
and compare it against the diagram of the complete stack above: 

int poly (x, a, b) 
returns the value of the equation f(a,x) + g(b,x) 
where f() is a C function 

define the variables we will need 

x equ 4 

a equ 6 

b equ 8 

temp equ -2 

public _poly 
extern f, g - -

_poly proc near 
push bp 
mov bp,sp 
sub sp,2 

push x[bp] 
push a[bp] 
call f -
pop dx 
pop dx 

mov temp[bp],ax 

push x[bp] 
push b[bp] 
call _g 

;first the arguments 

;now the temporary variable 

;declare the C functions 
;remember to include 

;set up the stack frame 

;first call f(a,x) 
;pass x ... 
; ... and a 

;fix the stack from ... 
; ... the above pushes 

;save the results locally 

;now call g(b,x) 
;pass x ... 
; ... then b 
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pop dx 
pop dx 

add ax,temp[bp] ;generate the results in ax 

mov sp,bp ;tear down stack frame 
pop bp 
ret ;and return the results in ax 

_poly endp 

This is a particularly good style for writing such routines. The arguments are 
declared at the very front of the routine as positive equates and the local variables 
as negative equates. This allows argument X to be referred to in the body of the 
program as X [BP], which is much clearer to the reader than the equivalent 
04[BP]. (The above argument offsets assume that the calls are all near calls-add 
2 to each offset for far functions.) 

The last argument to f( a,x) is pushed onto the stack first followed by the first 
argument and then the function is called with the _ preceding the name. We 
assume that f() and g() are both near functions. After f() returns, the result is 
saved into a local variable while g() is called. Once g() returns, the two values 
are added together and the result is left in the AX register to be returned to. the 
calling C function. The SI and DI registers were not saved since they were not 
modified. (Remember that Turbo C functions always restore SI and DI before 
returning.) If this routine had intended to use these registers, and if the calling 
routine was to be compiled with register optimization or register variables 
enabled, they would have needed to be saved. 

As you can see, writing an assembly function to be called from C is not a trivial 
exercise. The above code section does not even include the proper SEGMENT 
and GR 0 UP declarations, which differ for each of the memory models. 
Fortunately there is a trick which can be helpful in writing these routines. Write 
a C module containing a single function which has the same name, same local 
variables you will need, and the same number of arguments. The body of the 
function should access each of the arguments and variables in tum in some trivial 
way. Now compile this module using TCC with the -B or-S switch to generate 
an assembly source code output. Be sure to compile it under the proper model. 

If you now take the .ASM output from TCC, you will find an assembly source 
file containing all the proper segment and function declarations. Since you 
accessed each of the variables and arguments in the C program, this source should 
contain assembly statements to access them also. By comparing the line 
numbers on the assembly output with the source code line numbers, you 
determine by example the proper offset for each argument and local variable. 
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You can now use this assembly source generated by Turbo C as the starting point 
for your program. First edit it and add equates for each of the variable and 
argument ·offsets. Then delete any assembly language generated by the trivial C 
assignments. Finally, add your own program body using the stack equates you 
have just defined. You do not need to remember all of the details of C stack 
structure, since you can just trick Turbo C into telling you what you need to 
know. Although not a job for someone unfamiliar with 8086 assembly 
language, this is much simpler than trying to recreate such a routine from 
scratch. 

If reentrancy is not a consideration, then the assembly language program can be 
made even simpler by declaring all local variables in the data or BSS segments 
and by not passing any arguments. When neither arguments nor stack variables 
are present, the assembly language subroutine does not even need to set up a 
stack frame. The entire stack issue can be ignored. 

The restriction of no arguments may seem like a severe one, but remember that 
data can be passed to the assembly language subroutine through globally declared 
variables into which the caller can store data which the subroutine can retrieve. 
Turbo C declares the variables outside of any functions, leaving them of storage 
class extern. The assembly module uses the same variable name, but with a _ 
attached to the beginning, declaring it externally defined with the EXTERN 
directive. 

/*Noarg - a C function which uses globally defined 
variables to pass arguments*/ 

int argl, arg2, *arrayl; 
void noargs (void) 

inti, j, k[lO]; 

/*set up arg.s in globals and make the call*/ 
argl = i; 
arg2 = j; 
arrayl = k; 



assem () ; 

i argl; 
j = arg2; 
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I hesitate to mention this technique, since it breaks the rules of good 
programming. If you are going to play the game, you should play by Turbo C's 
rules. Problems arising from globally declared variables being set unexpectedly 
in some function, especially an assembly function, are very difficult to trace. On 
the other hand, this technique can simplify the demands on a programmer ill-at­
ease with 8086 assembly language in the first place. 

Once the assembly language module has been written and assembled, its object 
file must be included in the link with the Turbo C generated object modules. If 
you are using the Microsoft linker, you must name the assembly object in the 
list of the other object files being linked (refer to the PC-DOS or MS-DOS 
manual). However, you can still enjoy the benefits of the Interactive 
Development Environment, if you desire. The assembly module is simply added 
to the project file. Since it did not originate from a C source file, its name 
should include the .OBJ extension. Turbo C will not attempt to compile the 
assembly language file during the compile phase of the make process, but it will 
include the object file during the link. The project file is specified in the Project 
menu. 

Program Prg8_3c is our old favorite screen write program rewritten as a separate 
assembly language module called from Turbo C. Notice how similar the actual 
assembly code appears to its inline assembly equivalent above. The proper 
segment and group declarations were discovered by assembling a dummy Turbo C 
module with TCC -Band examining the output. Notice that both functions save 
and restore the SI and DI registers in case register optimization is enabled in the 
calling function. Register optimization errors can be very difficult to track down. 

The associated project file necessary to build the executable screen write program 
from the IDE is also shown below. 

1[ OJ: /*Prg8_3c - High Speed Screen Output 
2[ OJ: by Stephen R Davis, 1987 
3 [ OJ: 
4[ OJ: Perform direct screen output by accessing screen memory directly 
5[ OJ: via the screen pointer 'screen'. Scroll using the 8086 block 
6[ 0]: move instruction this encased in separate assembler subroutines 
7[ OJ: linked in as .OBJ files. The assembler name is Prog9dl.asrn and 
8[ OJ: the project file name is Prog9d.prj. This must be compiled under 
9[ OJ: the Small or Tiny memory models (otherwise, the stack offsets in 

10[ OJ: the assembler routine must be changed). 
11[ OJ:*/ 
12 [ OJ: 
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13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ 0 J: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 
26 [ OJ: 
27 [ OJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ OJ: 
34 [ OJ: 
35 [ OJ: 
36 [ OJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ OJ: 
42 [ 0 J: 
43 [ OJ: 
44 [ OJ: 
45 [ OJ: 
46 [ OJ: 
47 [ OJ: 
48 [ OJ: 
49 [ OJ: 
50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ OJ: 
55 [ lJ: 
56 [ l]: 
57 [ lJ: 
58 [ l]: 
59 [ 2J: 
60 [ 3]: 
61 [ 3J: 
62 [ 3J: 
63 [ 2]: 
64 [ 2]: 
65 [ 2 J: 
66 [ lJ: 
67 [ OJ: 
68 [ OJ: 
69 [ OJ: 
70 [ OJ: 
71 [ OJ: 
72 [ lJ: 
73 [ lJ: 
74 [ lJ: 
75 [ lJ: 
76 [ lJ: 

TURBOC 

#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 

#define cga (unsigned far *)Oxb8000000 /*same for ega*/ 
#define mono (unsigned far *)OxbOOOOOOO 
#define space Ox20 
#define attrib Ox07 
#define screenheight 25 

/*add the screen BIOS functions*/ 
#define scrollup Ox06 
#define setcursor Ox02 
#define writetele OxOe 
#define getmode OxOf 

/*define global variables*/ 
unsigned v_pos, h_pos, screenwidth; 
union REGS regs; 
unsigned far *screen; 

/*prototype declarations*/ 
void init (void); 
void scroll (unsigned) ; 
void qprintf (char*); 
void pcursor (unsigned, unsigned); 

/*screen pointer*/ 

/*prototype declarations for external assembler routines*/ 
/*(remember that MASM generates uppercase symbols)*/ 
void MOVS (unsigned far*, unsigned far*, unsigned); 

/*move from first pointer to second, third arg words*/ 
void STOS (unsigned far*, unsigned); 

/*clear at pointer, unsigned words*/ 

/*be sure compile model is correct*/ 
#if sizeof(MOVS)-2 
#error Must compile under Small or Tiny models 
#endif 

/*Main - test the output routines*/ 
int main () 

int i, j; 

init (); 
for (i = 0; i < 20; i++) { 

for (j = O; j < screenheight; j++) { 
qprintf ("this is BIOS output") ; 
pcursor(v pos, 30+j); 
qprintf (-;;-and this\n"); 

for (j = O; j < screenheight; j++) 
printf ("this is normal printf output\n"); 

/*!nit - set the screen address and clear the screen*/ 
void init () 

short mode; 

regs.h.ah = getmode; 
int86 (OxlO, &regs, &regs); 
mode = regs.h.al; 



77 [ l J: 
78 [ lJ: 
79 [ lJ: 
80 [ l J: 
81 [ l J : 
82 [ l J: 
83 [ l J: 
84 [ lJ: 
85 [ lJ: 
86 [ lJ: 
87 [ lJ: 
88 [ l J: 
89 [ OJ: 
90 [ OJ: 
91 [ OJ: 
92 [ OJ: 
93 [ OJ: 
94 [ OJ: 
95 [ lJ: 
96 [ lJ: 
97 [ l J: 
98 [ l J: 
99 [ lJ: 

100 [ l J: 
101 [ l J : 
102 [ 2 J: 
103 [ 2J: 
104 [ 2J: 
105 [ 2 J: 
106 [ 2J: 
107 [ 2J: 
108 [ 2J: 
109 [ 2J: 
110 [ 2J: 
111 [ 2J: 
112 [ 2J: 
113 [ 2J: 
114 [ 2J: 
115 [ 2J: 
116 [ lJ: 
117 [ OJ: 
118 [ OJ: 
119 [ OJ: 
120 [ 0 J: 
121 [ OJ: 
122 [ OJ: 
123 [ OJ: 
124 [ OJ: 
125 [ lJ: 
126 [ lJ: 
127 [ lJ: 
128 [ lJ: 
129 [ lJ: 
130 [ 2 J: 
131 [ 2J: 
132 [ lJ: 
133 [ lJ: 
134 [ 2J: 
135 [ 2J: 
136 [ lJ: 
137 [ lJ: 
138 [ OJ: 
139 [ OJ: 
140 [ OJ: 

screenwidth = regs.h.ah; 

if (mode == 7) 
screen mono; 

else 
if (mode 3 I I mode 

screen cga; 
else 

abort (); 

scroll (screenheight); 
pcursor (0, 0); 
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2) 

/*Scroll - scroll up N lines using function 6*/ 
void scroll (nlines) 

unsigned nlines; 

unsigned far *source, far *dest, number; 

if (nlines >= screenheight) 
nlines screenheight; 

h_pos = O; 
if ((v_pos += nlines) >= screenheight) 

nlines = (v_pos - screenheight) + l; 

/*scroll the screen up 'nlines' amount*/ 
source screen+ (nlines * screenwidth); 
dest = screen; 
number = (screenheight - nlines) * screenwidth; 
MOVS (source, dest, number); 

/*now blank the lines abandoned*/ 
dest = screen + number; 
number = nlines * screenwidth; 
STOS (dest, number); 

v_pos = screenheight - l; 

/*Qprintf - output a string using the BIOS screen handler. If 
an attribute is not provided, use the default.*/ 

#define SCREENLOC screen+ ((screenwidth * v_pos) + h_pos) 
void qprintf (c) 

char *c; 

unsigned far *sp; 

sp = SCREENLOC; 
for (; *c; c++) 

if (*c == '\n') 
scroll (l); 
sp = SCREENLOC; 

else 
if (h_pos++ < screenwidth) 

*sp++ = (attrib << 8) + *c; 

pcursor (v_pos, h_pos); 

/*PCursor - place the cursor at the current x and y location. 

331 
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141 ( 
142 ( 
143[ 
144 [ 
145 ( 
146[ 
147 [ 
148 [ 
149( 
150( 
151[ 
152 ( 
153[ 
154( 
155[ 

OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
1 J : 
lJ: 
lJ: 
1 J : 
1 J : 
lJ: 
1 J : 
1 J : 
OJ: 

TURBOC 

To place the cursor, and subsequent 
arbitrary location, set 'v_pos' and 
calling pcursor.*/ 

void pcursor (y, x) 
unsigned x, y; 

v_pos y; 
h_pos x; 

regs.h.ah setcursor; 
regs.h.bh O; 
regs.h.dh v_pos; 
regs.h.dl h pos; 
int86 (OxlO, &regs, &regs); 

output, to any 
'h_pos' before 

Prg8_3d - Fast Screen Output Using Assembler Subroutines 
by Stephen R. Davis, 1987 

Here we have taken a dummy .C program consisting only 
of the statement 'main{)' and compiled it to assembler 
source using 'TCC -B' command. We then go in and remove 
the main program found there and insert our own routines 
being careful to attach a "_" to the front of our 
routine names. 
(I have only commented out the original code so that you 
can see what was there.) 

name Prog9dl 
text segment byte public 'code' 

dgroup group data, bss 
assume cs:_te~t,ds:dgroup,ss:dgroup 

text ends 
data segment word public 'data' 

_d@ label byte 
data ends -

_bss segment word public 'bss' 
_b@ label byte 

bss ends 
_text segment byte public 'code' 

;Here is the original code generated by empty main() 
; Line 2 
; _main proc near 
; Line 3 
;@1: 

ret 
; _main endp 

;Now we insert our own routines 
;Movs - scroll the screen via the movs instruction 

msource 
mdest 
mnumber 

msaveds 
msavesi 
msavedi 

_movs 

equ 4 
equ 8 

equ 12 

equ -2 
equ -4 
equ -6 

proc near 
push bp 

;first argument is int *source 
;second argument is int *dest 
;third argument is int number 

;declare local storage 

;set up stack frame 
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mov bp,sp 
sub sp,6 

mov msaveds[bp],ds ;save reg.s on frame 
mov msavesi[bp),si 
mov msavedi[bp],di 

les di,mdest[bp) ;fetch arg.s from stack 
lds si,msource[bp] 
mov cx,mnumber[bp) 
cld 
rep movsw 

mov ds,msaveds[bp) ;restore regs 
mov si,msavesi[bp] 
mov di,msavedi[bp) 

mov sp,bp ;pull down frame 
pop bp 
ret 

mo vs endp 

;Stos - clear the bottom lines via the stos instruction 

sdest equ 4 ;first arg is int *de st 
snumber equ 8 ;second arg is int 

ssavedi equ -2 

- stos proc near 
push bp 
mov bp,sp 
sub sp,2 

mov ssavedi[bp],di 

mov ax,0700H 
les di,sdest[bp) 
mov cx,snumber[bp) 
rep stosw 

mov di,ssavedi[bp) 

mov sp,bp 
pop bp 
ret 

stos - endp 

text ends -
data - segment word public 'data' 
s@ label byte 
data ends 
text - segment byte public 'code' 

public main ;from TC 
public movs ;our own inserted 
public stos 

_text ends 
end 
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Project File for Above:. 

prg8_3c 
prg8 3d.obj 

Interfacing Turbo C with Other Languages 

In general, interfacing Turbo C with other languages is discouraged. In the case 
of assembly language, it was argued that the benefits of increased performance 
outweighed the disadvantages, but few high level languages are as efficient as 
Turbo C. Writing a package in multiple languages merely serves to increase 
obfuscation. 

If you have some overriding reason for combining Turbo C with another 
programming language, there are several hurdles to overcome; First is the 
function interface embodied in the treatment of the stack by different languages. 
If the other language uses the same calling sequence, then there is no problem. 
Minor stack problems can be worked around. 

It is very unlikely that other languages push SI and DI onto the stack at the 
beginnings of functions as does Turbo C, so it will almost certainly be necessary 
to disable register optimization during compilation to suppress these pushes. 
Some languages push arguments in the opposite order from Turbo C. This can 
be overcome by calling the foreign language function with the arguments in the 
reverse order from the way they are specified in the other language. The C 
program must also be sensitive to whether the foreign language passes arguments 
by reference (that is, by address) or by value. 

For example, assume that we want to interface Turbo C with a FORTRAN 
compiler which pushes function arguments from front to back. We might have 
the following situation: 

in Turbo C: 

fortfunc (&i, &j, &k); /*FORTRAN always passes by 
reference so we must pass 
address, not value*/ 
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in FORTRAN: 

Subroutine _fortfunc (k, j, i) 
c 
C Remember to include " " in front of name and to name 
C arguments in opposite order 
c 

If the arguments don't line up correctly because the other language and Turbo C 
don't set their stack frames up in quite the same manner, it will be necessary to 
pad either the calling sequence or the called function with dummy arguments. It 
may be necessary to run a few experiments to decide whether this is the case or 
not. For example, we might have started our Turbo C/FORTRAN interface 
exercise by compiling, linking, and executing something similar to the following 
program: 

in Turbo C: 

main () 

fortest (&l, &2, &3, &4, &5); 

ctest (i, j, k, 1, m) 
int *i, *j, *k, *l, *m; 

printf ("%u %u %u %u %u", *i, *j, *k, *l, *m); 

in FORTRAN: 

Subroutine _fortest (i, j, k, 1, m) 

write (6, 100) i, j, k, 1, m 
100 format (6I6) 

call _ctest (1, 2, 3, 4, 5) 

We might discover that when Jortest() printed out the values it received, the 
values 1 through 4 appeared, preceeded by garbage, indicating a minor stack 
misalignment. This could be overcome by adding a dummy argument to every 
call of a FORTRAN function from Turbo C. 

Much more serious is the question of how the foreign computer language restores 
the stack after returning from a function from the pushes of the arguments. As 
noted in the assembly language examples above, C restores the stack in the 
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calling function either by executing a series of POP instructions or by direct 
addition to the stack pointer register. Some languages correct the stack pointer in 
the called function, either immediatly before returning or as part of the return 
itself. If a routine from such a language is called from Turbo C, the resulting 
program will crash, since the stack will get corrected twice and lose important 
data in the process. 

To address this problem, Turbo C defines the descriptor PASCAL, since Pascal is 
the most common language which restores the stack in the called function. This 
descriptor may be added to the prototype definition of any function, whether it is 
actually written in Pascal or not. When Turbo C calls such a Pascal-type 
function, it will not correct the stack after returning. It will also push the 
arguments to the function in the reverse order, since this is another property of 
the Pascal language. (Merely declaring a FUNCTION to be of type PASCAL 
does nothing to address PASCAL's other peculiarities. For example, remember 
that PASCAL strings place the length in the first byte instead of ending with a 
NULL.) 

If the stack interconnection still can not be made to work, it will be necessary to 
write an interface routine in assembly language to weld the two languages 
together. Two such routines will be necessary: one to make the C to other 
language bridge and another for other language to C connection. Such a routine 
might accept as its first argument the address of the function to be called, 
followed by any arguments to pass. This routine would then set the stack up the 
way the other language likes to see it and make the call. When the other 
language returns, the assembly routine could restore the stack to match C 
customs before returning. Although difficult to write, these routines would only 
have to be written once, since they would serve for all C to other language 
connections. 

Once again, although I hesitate to mention it, the problem of function 
interconnections can be greatly reduced by not passing any arguments at all. Data 
can be passed by storing them in globally declared variables which are then 
accessed by the other language routine. Again, this simplifies the stack interface 
problem, but makes the eventual job of debugging more difficult by inviting 
difficult to trace errors. 

Libraries represent another problem. It is usually desirable to only make library 
calls from one language, avoiding them in the other. Using our FORTRAN 
example above, use either Turbo C's printf() or FORTRAN's WRITE to perform 
output, but not both. If this is not possible, it will be necessary to name both 
libraries in the link step. 
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Again, the link step is again a tricky problem. Turbo C expects object files with 
which it links to have the proper code and data segment names. It will be 
necessary to name the code segments of C and the other language to some 
common group. This problem can also be solved by an assembly language 
interface program which can make the jump from the C code segment to the 
foreign language and back. 

There are a few tricks to avoid the problems of direct interfacing. If only a small 
number of functions from the other language are necessary, it may be more 
economical to complete the foreign language functions as a stand alone program. 
When those functions are needed, the Turbo C program can then chain to the 
foreign language program using the DOS exec() or spawn() studied in Chapter 5. 

Yet another approach is for the independently compiled foreign language program 
to install itself into one or more of the 8086 interrupt vectors. The Turbo C 
program can then easily access the foreign language functions by executing the 
library routine int86( ). Keep this in mind when we discuss installing code into 
interrupts in Chapter 9. 

Program Size 

Increasing a program's performance is difficult, but reducing its size is even more 
so. I should first define what I mean by size. I do not mean the number of C 
source code statements or even the size of the resulting .EXE executable file. 
Size refers to the number of bytes of random access memory a program requires 
to execute. 

There is a strong correlation between the program's source code size and the 
amount of memory it consumes, but it is not 100 percent. Novice programmers 
have been known to go to great pains to reduce the number of source code 
statements in their programs, not realizing that the resulting object code was 
actually increasing in size due to the increased code complication. 

The most obvious solution is to buy more memory. Saving a few bytes of code 
is not nearly as important as it once was given today's sinking memory prices. 
Even with DOS' limit of 640k, a lot can be done before memory starts to become 
tight. It is not uncommon for commercial packages today to specify a minimum 
memory requirement of 320k, an unheard of amount just a few years ago. 
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A program's memory requirements can be greatly reduced if its functionality can 
be divided up among several different programs. Suppose, for example, that we 
have been tasked with writing a database program. There are several functions 
which our package must offer the user, including the ability to add entries, 
remove entries, sort entries, etc. We could write our package as one very large 
program containing all of the required capabilities; however, it is never the case 
that more than one of these is ever exercised at any given time. Therefore, it is 
not necessary that more than one be resident in memory at a time. 

With this fact, we might build our package out of several different executable 
programs. One of the programs is resident at all times, acting as the band 
director for the others. This shell program provides the user with a menu of 
choices, and accepts the response, deciding which of the others to call to handle 
the request. Having decided, this master program invokes the subordinate 
program as a subprocess. This causes DOS to load the program from disk into 
memory immediately above the master program. 

Once the command has been carried out, the subprocess terminates, releasing the 
memory it occupies back to the operating system to be used for other 
subprocesses. The subprogram can return a termination value which the master 
program can use to decide whether the subprocess was successful, and, if not, 
what problem was encountered. The subject of program chaining was discussed 
in greater detail in Chapter 5. 

Sometimes it is desirable for the master program to provide information or 
capabilities to the subordinate programs which would not normally be present. It 
can do this by installing data or function addresses into some of the interrupt 
vectors much as the BIOS routines are installed into certain interrupts at power 
on to handle the hardware. In our database example, extracting individual fields 
out of a database entry is so common that a function to perform this function 
might be installed into one of the user interrupts by the master program. This 
function can be invoked from either the master or any of the subordinate 
programs. While this may not have any effect on memory requirements, it can 
reduce the amount of redundant code that would otherwise be repeated in each of 
the subordinate programs. 
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For programs which cannot be so easily subdivided, there are a few tricks to 
achieve relatively modest decreases in code size. First, we can minimize the 
number of different library functions that are called. Remember how the linker 
handles .LIB files: functions which are not called are not loaded from the .LIB 
file; those that are called are loaded even if they are only called once. If we can 
substitute library routines which have already been called for a new one, we can 
keep the new library routine from being loaded. 

Compiling under the smallest possible memory model helps. NEAR pointers are 
only 16 bits, as opposed to a FAR pointer's 32 bits. Not only do we save the 16 
bits per address, but also the extra instructions necessary to load and store these 
larger addresses. Be careful , however, as NEAR pointers can be counter­
productive. NEAR pointers can only address 64k, even if more memory than that 
is available in the machine. It makes no sense to convert FAR pointers to 
NEAR pointers to save lOk of data requirement if it is going to cost you 512k of 
memory which you can no longer address. 

Declaring and accessing data structures globally can also save a small amount of 
memory. Object code must be generated to pass variables to functions and to 
access them there. Accessing variables globally saves that space. It is 
questionable whether this is a good idea, however, as the resulting code is often 
much more difficult to debug. Besides, globally declaring a variable that is used 
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only once ties up that variable's space. Variables declared on the stack only use 
memory when they are active. 

If possible avoid the use of floating point numbers for the same reason that calls 
to extra functions were avoided above. The floating point libraries are not loaded 
if there are no floating point numbers in the application. When floating point 
numbers are used, if the target machine is known to have an 8087 or 80287 
numerical data processor, select the 8087 /287 library from the Options menu. It 
is much smaller than the default emulation library. 

Aside from these simplistic approaches, we can reexamine the original problem 
to find different approaches which require less space. One such approach is the 
technique of state tables presented in Chapter 4. State table solutions to 
problems tend to be very small in comparison to what they can achieve. 

Judicious use of reiterative functions can also result in a considerable decrease in 
object code size. Like the state table solutions to problems, reiterative solutions 
tend to be difficult to find, since they are generally not obvious. Even worse than 
state table solutions, they are sometimes difficult to read, even when the reader is 
familiar with the technique. 

The classic example of reiterative solutions is the factorial. The factorial of an 
integer N, written NJ, is equal to that number multiplied by all of the smaller 
integers greater than zero. For example, 5 ! = 5 * 4 * 3 * 2 * 1. In many texts 
this is implemented by a subroutine which calls itself in a reiterative fashion. 
The C equivalent is shown below. 

int factorial (number) 
int number; 

if (number = 1) 
return 1; 

else 
return number* factorial (number - 1); 

Had we invoked factorial() with the constant 5, the second branch of the IF 
statement is taken since 5 is not equal to 1. This calls factorial() with the value 
4. This continues until eventually we work our way down to 1. 1 ! is 1 so 
factorial() returns the value 1. This gets multiplied by the 2 waiting from the 
previous invocation, which gets multiplied by the 3 from the one before that, and 
so on until we work our way back up to 5. 
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In fact, this is a terrible example. The factorial function is so much more easily 
and clearly solved through the use of a FOR loop. For example: 

int factorial (number) 
int number; 

int accum; 

accum = l; 
for (; number > l; number --) 

accum *= number; 
return accum; 

Better examples of the use of reiterative solutions can be found in the areas of 
look ahead searches, such as those accompanying game playing and decision 
making. 

Take, for example, a simple maze problem. Assume we have a maze with walls 
and passage ways. Somewhere within the maze is a piece of cheese. Our 
program is to search the maze until it can find a path to the cheese. To make the 
problem simpler, let's assume that for any given legal location in the maze, there 
is only one legal path. In other words, there are no circles in the maze in which 
we might get permanently lost. (These multipaths can be handled, but at the cost 
of extra complexity which only obscures the principle being demonstrated here.) 
Dead ends are allowed. 

This problem is much simpler if we start by placing ourselves at some random 
location in one of the hallways. From that position there are four different 
directions open to us which might lead to the cheese. In fact, one of those 
directions can't possibly have the cheese, since we just came from there in the 
previous step. Of the other three directions, all are equally likely so we must try 
each one in tum. 

Those selections which end up in the wall are immediately precluded, just as 
those which end up in the cheese are immediately successful. But for the 
remaining selections, those down one of the hallways, we don't know if they end 
up at the cheese or not. The only way that we can know is to continue searching 
along those paths. 

However, as soon as we have made a jump in any legal direction, we are 
presented with exactly the same problem as before: that of searching for cheese. 
Alarms should go off in your head. Such problems invite reiterative solutions. 
Such a solution to the maze problem appears as Prg8_ 4. 
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1[ OJ: /*Prg8_4 - The Maze Problem 
2[ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4[ OJ: Notice how small this reiterative solution to the maze problem 
5[ OJ: is. The routine evaluate() checks the current location for 
6[ OJ: cheese (success) or wall (failure). If the answer is neither, 
7[ OJ: it then calls itself in each of the 3 directions open to it 
8[ OJ: (we forbid it from looking in the direction from which it came) 
9[ OJ: until success or failure is attained. The successful path is 

10[ OJ: marked with '.'s. 
11 [ OJ: 
12[ OJ: Create mazes with any ASCII file editor. Rules for mazes are: 
13[ OJ: - no loops 
14[ OJ: - halls marked with spaces 
15[ OJ: - cheese marked with '&' (need not be present) 
16[ OJ: - halls must be single space wide 
17[ OJ: - must have a single opening at the top; search starts here 
18[ OJ:*/ 
19 [ OJ: 
20[ OJ: #include <stdio.h> 
21[ OJ: #include <dos.h> 
22[ OJ: /*use OxbOOOOOOO for monochrome and Hercules screens*/ 
23[ OJ: #define screenaddr ((unsigned far *)Oxb8000000L) 
24[ OJ: #define screen(y,x) screenaddr [(y * 80) + xJ 
25 [ OJ: 
26[ OJ: #define space ' ' 
27[ OJ: #define cheese '&' 
28[ OJ: #define path '.' 
29[ OJ: #define VISIBLE 1 
30 [ OJ: 
31[ OJ: /*define prototypes for routines used*/ 
32 [ OJ: 
33[ OJ: int main (int, char**); 
34[ OJ: void readmaze (FILE*); 
35[ OJ: int evaluate (unsigned, unsigned, unsigned); 
36[ OJ: int value (unsigned, unsigned); 
37[ OJ: void clrscrn (void); 
38 [ OJ: 
39[ OJ: /*Main - if one argument provided, read it up onto the screen and 
40[ OJ: evaluate it for a maze solution*/ 
41[ OJ: main (argc, argv) 
42[ OJ: int argc; 
43[ OJ: char *argv[J; 
44 [ OJ: 
45 [ lJ: FILE *fp; 
46[ lJ: unsigned x; 
47 [ lJ: 
48[ lJ: /*clear the screen - first line of maze must be at top of screen*/ 
49 [ lJ: clrscrn (); 
50 [ lJ: 
51 [ lJ: if (argc == 2) { 
52[ 2J: if (fp = fopen(argv[lJ, "r")) { 
53 [ 3J: readmaze (fp); 
54 [ 3J: 
55[ 3J: /*solve maze by finding a space in the top and 
56[ 3J: searching from there*/ 
57 [ 3J: for (x = 0; (char) screen (0, x) != space; x++); 
58 [ 3J: if (evaluate (0, x, 2)) 
59[ 3J: printf ("solution!\n"); 
60 [ 3J: else 
61[ 3J: printf ("no solution found\n"); 
62 [ 2 J : else 
63[ 2J: printf ("File not found\n"); 
64 [ 1 J : else 



65 [ lJ: 
66 [ lJ: 
67 [ OJ: 
68 [ OJ: 
69 [ OJ: 
70 [ OJ: 
71 [ OJ: 
72 [ OJ: 
73 [ OJ: 
74 [ lJ: 
75 [ lJ: 
76 [ lJ: 
77 [ l J : 
78 [ OJ: 
79 [ OJ: 
80 [ OJ: 
81 [ OJ: 
82 [ OJ: 
83 [ OJ: 
84 [ OJ: 
85 [ OJ: 
86 [ OJ: 
87 [ OJ: 
88 [ OJ: 
89 [ lJ: 
90 [ lJ: 
91 [ lJ: 
92 [ lJ: 
93 [ lJ: 
94 [ lJ: 
95 [ lJ: 
96 [ lJ: 
97 [ lJ: 
98 [ lJ: 
99 [ lJ: 

100 [ 2J: 
101 [ 2J: 
102 [ lJ: 
103 [ lJ: 
104 [ OJ: 
105 [ OJ: 
106 [ OJ: 
107 [ OJ: 
108 [ OJ: 
109 [ OJ: 
llO [ lJ: 
lll [ lJ: 
ll2 [ lJ: 
ll3 [ lJ: 
ll4 [ lJ: 
ll5 [ lJ: 
ll6 [ lJ: 
ll 7 [ lJ: 
ll8 [ lJ: 
ll9 [ lJ: 
120 [ 2J: 
121 [ 2J: 
122 [ 2J: 
123 [ l]: 
124 [ OJ: 
125 [ OJ: 
126 [ OJ: 
127 [ OJ: 
128 [ OJ: 
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printf ("Enter 'Prg8 4 <filename>'\n" 
where fil~name contains the maze to be solved\n"); 

/*Readmaze - read a maze from a file onto the screen. Transfer 
only the character part to the screen.*/ 

void readmaze (fptr) 
FILE *fptr; 

char buffer [81J; 

while (fgets (buffer, 80, fptr)) 
printf (buffer); 

/*Evaluate - solve the maze*/ 

int deltax [J = {0, 1, 0, -1); 
int deltay [] = {-1, 0, 1, 0}; 
int noallow [J = {2, 3, 0, l}; 

int evaluate(yloc, xloc, prevmove) 
unsigned yloc, xloc, prevmove; 

int i, val; 
int value(); 

if ((val= value(xloc, yloc)) 
return 0; 

if (val == 1) 
return l; 

/*define the directions*/ 

-1) /*wall*/ 

/*cheese!*/ 

for (i = 0; i < 4; i++) /*4 possible moves*/ 
if (i != noallow[prevmoveJ) /*don't go backwards*/ 

if (evaluate(yloc+deltay[iJ, xloc+deltax[iJ, i)) { 
(char)screen (yloc, xloc) =path; /*found it!*/ 
return l; 

return O; /*nothing down this path*/ 

/*Value - evaluate the current location*/ 
int value (xloc, yloc) 

unsigned xloc, yloc; 

char curr; 
int i; 

curr = (char)screen (yloc, xloc); 
#if VISIBLE 

(char)screen (yloc, xloc) = '#'; 
for (i = O; i < 10000; i++) 
(char)screen (yloc, xloc) = curr; 

#endif 
switch (curr) { 

case cheese: return 1; 
case space return 0; 
default return -1; 

/*Clrscrn - clear the screen*/ 
struct REGS regs; 
void clrscrn (void) 

/*make the search visible*/ 

/*cheese -> success*/ 
/*space -> keep looking*/ 
/*else -> can't go that way*/ 
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129 [ OJ: 
130 [ 1]: 
131 [ 1]: 
132 [ lJ: 
133 [ lJ: 
134 [ lJ: 
135 [ 1]: 
136 [ lJ: 
137 [ 1]: 
138 [ lJ: 
139 [ 1]: 
140 [ 1]: 
141 [ OJ: 

regs.h.ah = 6; 
regs.h.al = 0; 
regs.h.bh = 7; 
regs.x.cx = 0; 
regs.x.dx = Ox1950; 
int86 (OxlO, &regs, &regs); 

regs.h.ah = 2; 
regs.h.bh = 0; 
regs.x.dx = 0; 
int86 (OxlO, &regs, &regs); 

Figure 8.5 

*******·****************************************** 
*""'" * *·****************** ********* ******************* 
*""""*""""'** ** * ****** *·*·*******·* * ***** * * ***************** * *·*·*&,I I I I I* * * * * * * * 
* ******·*·********* * * * * * *** *************** 
* *·I·* * * *************** 
************************************************** 
solution! 

Press any key to return to Turbo C , , .• 

Successful search of maze for cheese 

Notice that once main() has read the maze onto the screen, the remaining solution 
consists of only two functions. Value() accepts an x and y location. It then 
looks at that location on the screen and returns an indication of what it finds 
there. A 1 indicates that the location contains cheese (the character &). A 0 
indicates that we are in a hallway (a space). Anything else is assumed to be the 
wall and illicits a -1 response. 

The function evaluate() is the heart of the solution and the reiterative part of the 
program. Given a location, evaluate() first calls value() to determine whether or 
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not this location is on the correct path. If this location is in the wall, then it is 
not part of the correct path and evaluate() returns a FALSE. If this location 
contains the cheese then it obviously is the correct path, and evaluate() returns a 
TRUE. 

If this location is in a hallway, however, then the answer is not clear. Evaluate() 
calls itself to evaluate each of its 3 neighbors (it does not evaluate the position 
from which it just came). This reiterative loop continues until either success or 
failure can be found. If each of the 3 paths returns a failure, then evaluate() 
returns a failure to its caller. If any one of the three returns a success, then 
evaluate() returns a success also. 

In practice, it is helpful to make evaluate()'s quest for cheese visible. To this 
end, I added a few extra lines to value() to place a # at the location being 
evaluated, leave it there long enough to be visible and then replace whatever 
character that was originally there. This should be left in the program, since it is 
very educational to watch the #scrawl around the maze as the program searches 
the halls for a scrap of cheese. 

You should examine the program's source code and watch it execute until you 
fully understand why it searches where and when. You truly understand the 
program when you can examine a given maze and predict how Prg8_ 4 will search 
it. Currently, Prg8_ 4 first looks up, then right, then down and finally left. Even 
without examining the program you can know this by watching the # move 
through the maze. As an exercise, try changing the order that directions are 
searched and watch the result. 

You can design your own mazes as you like and let the program solve them. 
They do not even have to contain any cheese-the program will figure this out. 
Use any editor you like which can generate a straight ASCII file (if you use 
WordStar, be sure to use it in the nondocument mode). Build the maze with one 
hole anywhere along the top. Prg8_ 4 will start from that point. Be sure that 
there are not two legal paths to any given spot in the hall, or the program will 
get permanently stuck. This means that halls can't be more than one space in 
width (walls can be as wide as you like). 

Unfortunately, neither reiterative nor state table solutions are a panacea for the 
storage problem. Most problems can't be easily adapted to either technique 
(especially reiterative programming). The rewards are so great, however, when 
the opportunity does arise that all C programmers should keep these tools in their 
toolkits. 
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Programs 

Programs are usually written in a continuous flow, from top to bottom, 
beginning to end. Each statement leads inexorably to the following statement. 
Although the flow may be convoluted by a call to a function or by an IF 
statement, the path is nonetheless predictable. There is a class of programs that 
is not so predictable because these programs react to outside events that occur at 
unpredictable intervals. This class is known as interrupt handlers. 

Because programmers are so accustomed to thinking of their programs as having 
a specific beginning and end, interrupt handlers often seem ominous. 
Programmers skilled in the art of such software are raised to the status of guru. 

It is not true that interrupt handlers must be written in assembly language. 
Although it is often the case that the entry into, and exit out of such programs 
must involve a few assembler instructions, these can be written in almost any 
compiled language. In fact, the first article I ever published described the writing 
of such routines in Turbo Pascal (see Micro/Systems Journal, Sept. 1985). 
Turbo C accommodates interrupt handlers so well that no assembly language is 
required at all. 

A special subset of this group are the Terminate-and-Stay Resident (TSR) 
programs. These are the "PopUp" utilities such as SideKick and Homebase that 
have become popular in the DOS world. Although you might not think of TSRs 
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as being interrupt handlers, they are, both in structure and in execution. I will 
approach the writing of such utilities from this standpoint. 

TSR programs are very popular. The ability to add some capability to the DOS 
environment is a powerful one. Every programmer thinks about writing one at 
least once. The fact that such utilities can be constructed out of Turbo C opens 
up this class of program to a much larger audience. 

Do not think, however, that these programs are easy to write. Writing and 
debugging a TSR program is about the most painful project one can undertake. 
Every bit of programming intuition gets called into play before it works 
properly. Each of the examples in this chapter took many hours to debug. By 
modeling your own TSRs after the examples presented here, perhaps you can be 
spared much of the difficulty such programs normally present. 

Control Break 

The first and easiest of the interrupt handlers is the break handler. A break is 
ellicited when the operator depresses the break key in the upper right hand corner 
of the keyboard while simultaneously holding down the control key. (While 
more accurately described as control-break, I will call it break for brevity's sake.) 
A break is intended as a "wake up call" for a program that has otherwise gone off 
on an errant path. For example, if the user has begun listing a large file to the 
screen, he may want to stop the listing prematurely, which he or she can do by 
entering break. To enhance compatibility with CPM, entering control C also 
generates a break. 

The DOS operating system has no idea what might be going on when the break 
is entered. It must be designed to terminate the current application, whatever it is 
doing. The DOS break handler starts by closing all open files. It then terminates 
the executing program and reloads COMMAND.COM, which restores the 
expected A> prompt. If the broken program was executed from a batch file, DOS 
puts up the Terminate Batch File (YIN)? message to decide whether it should 
continue or drop back to the COMMAND.COM level immediately or continue 
with the next command in the batch file. 

Depending on the type of program, it may not be too desirable for the broken 
program to return immediately to the DOS level. Since DOS automatically 
closes all open files, the file structure is preserved from a DOS standpoint, but 
not necessarily from an application standpoint. Files may be in the middle of 
being updated with some entries containing new data and others left with older 
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data. Returning to DOS is almost never acceptable from a user standpoint either. 
If the user enters break to stop some operation, he usually wants to return to the 
current program's prompt or menu, not that of DOS. 

It is almost always preferable if the user program can handle the break itself, 
perhaps stopping the current operation and placing the user back at the last 
command prompt. This gives the program a more orderly interface and a 
professional appearance. Turbo C makes writing a break handler a fairly simple 
thing to do. 

There is no wire to the processor known as the break line. Break is a condition 
that must be searched for. DOS must examine the keyboard input to determine if 
a control break (or control C) has been entered. It does this on every I/0 
operation. Programs that do not perform I/0 operations cannot be broken. 

When DOS detects a break, it executes an INTERRUPT Ox23, much as you 
executed an INTERRUPT OxJO BIOS call back in Chapter 6 to perform screen 
I/0. Unlike a BIOS call, however, INTERRUPT Ox23 is not defined until 
shortly before the program is given control. DOS initializes this location as one 
of the chores it performs when executing a .COM or .EXE program. DOS uses 
the address of its own built-in break handler. It is this handler which, if left in 
place, returns the user to the DOS prompt when a break is detected. Fortunately, 
you are free to redefine this INTERRUPT Ox23 address to any break handler you 
define. 

To do this, Turbo C defines the library function ctrlbrk( ). Ctrlbrk() has the 
following prototype definition: 

void ctrlbrk (int ( * fptr) (void) ) ; 

That is, ctrlbrk() returns no value and accepts the address of a function that takes 
no arguments and returns an integer. (*Fptr)() is not invoked directly off of the 
interrupt; that is, it is not the contents of F PT R that get stored into 
INTERRUPT Ox23. Rather, the function (*fptr)() gets called as part of Turbo 
C's INTERRUPT Ox23 handling. The point is that, unlike the true interrupt 
handlers I will be examining later in this chapter, (*fptr )() should not be an 
interrupt type function. 

Once installed, the break handler can perform any housekeeping chores necessary. 
Database applications may define break handlers to put various file entries away, 
paint programs may wish to UnDo the current command, editors might simply 
stop and await further input. Once finished with application specific tasks, the 
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break handler has three choices: 1) it may exit the current program and return to 
DOS; 2) it may continue the user program; or 3) it may start execution at some 
other point in the user program. 

(* Fptr )() returns to DOS by returning a 0 to the caller. Returning any other 
value will cause the Turbo C break handler to return the program to the point of 
interruption. But if you want to return the user to some earlier menu you will 
want to make use of the third option, to pass control to some other portion of the 
user program. To do this, you will need to use a C facility that I have yet to 
discuss, the setjmp() and longjmp() routines. 

So far I have spoken little of the GOTO instruction in C, although I did note it 
back in Chapter 1. Although GOTO represents the best solution to some 
problems, I couldn't sleep at night thinking that had I encouraged its wholesale 
use. The longjump() is a somewhat different animal, however. 

Simply said, setjmp() saves into a buffer the state of the computer at the point 
that it is called. Setjmp() then returns a 0 to the caller. Longjmp() is called to 
return to the state of the computer previously saved off in such a buffer. 
Longjmp() does not return to the caller at all. Instead, the program reappears 
from the previously called setjmp() routine. Longjmp() passes a value that is 
returned from setjmp() when it reappears. The program can use this value to 
determine from which longjmp() it has just come. This value cannot be 0, lest 
the program gets it confused with the 0 returned when setjmp() is first called. In 
practice it looks like Prg9 _1. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ: 
5 [ OJ: 
6 [ OJ: 
7 [ OJ: 
8 [ OJ: 
9 [ OJ: 

10 [ OJ: 
11 [ OJ: 
12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
15 [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
25 [ OJ: 

/*Prg9_1 - control break Handler 
by Stephen R. Davis, 1987 

*/ 

Use the Turbo C provided ctrlbrk() routine to establish 
our own control break handler. We will put ourselves into 
an infinite loop. Entering control break will enter us into 
infinite loop. One more time and we exit. This is an 
example of the longjmp as well as the installation of multiple 
control-break handlers. 

#include <stdio.h> 
#include <dos.h> 
#include <setjmp.h> 

/*prototype definitions*/ 
int breakl (void); 
int break2 (void); 

/*global data definitions*/ 
jmp_buf save; 

/*breakl - intercept the first control break*/ 
int breakl (void) 



26 [ lJ: 
27 [ lJ: 
28 [ OJ: 
29 [ OJ: 
30 [ OJ: 
31 [ OJ: 
32 [ OJ: 
33 [ lJ: 
34 [ lJ: 
35 [ OJ: 
36 [ OJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ lJ: 
41 [ lJ: 
42 [ lJ: 
43 [ lJ: 
44 [ 2J: 
45 [ 2J: 
46 [ 2J: 
47 [ 2J: 
48 [ 2 J: 
49 [ 

0

2J: 
50 [ 2J: 
51 [ 2J: 
52 [ 2J: 
53 [ 2J: 
54 [ 2J: 
55 [ 2]: 
56 [ lJ: 
57 [ OJ: 
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printf ("First break entered!\n"); 
longjmp (save, 1); 

/*break2 - intercept the second control break*/ 
int break2 (void) 
{ 

printf ("Second break entered!\n"); 
longjmp (save, 2); 

/*Main - main program to exercise the break handler*/ 
main () 
{ 

int value; 

value= setjmp (save); 
switch (value) { 

case 0: 

case 1: 

default: 

ctrlbrk (breakl); 
printf ("Entering first loop\n"); 
for (;;) 

printf (" Infinite loop #1\n"); 

ctrlbrk (break2); 
printf ("Entering second loop\n"); 
for (;;) 

printf (" Infinite loop #2\n"); 

printf ("That's all folks\n"); 

I have purposely kept this program very simple. Prg9 _1 performs no useful 
function. Instead, it outputs the string Infinite loop # 1 in an infinite loop until 
the operator enters a control break (or control C). As soon as this happens, the 
program springs to its first control break handler break] ( ), where it outs the 
message First break entered and then jumps back to outputting the string Infinite 
loop #2 in a likewise unceasing fashion. Entering control break again prints the 
message Second break entered and halts the program. 

Let's examine each step of the program carefully. The state of the computer is 
saved by the call to setjmp() on line 42. The buffer used is named SA VE and is 
defined on line 21. The type JMP _BUF is defined in a TYPEDEF in the include 
file SETJMP.H. The value returned from setjmp() is immediately tested by the 
switch statement. When setjmp() is called it returns a 0. 

CASE 0 installs the break handler break] () on line 45 and then dives into the first 
infinite loop on lines 47 and 48. When the operator enters a control break, Turbo 
C's break handler passes control to break] ( ). Break] () outs a message to assure 
the operator that the break was detected, and then performs a /ongjmp() to the 
state saved in the buffer SA VE passing it a 1. This returns you back to line 42, 
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to the return from setjmp( ), only this time with the value 1 and not 0, so that the 
program knows how it got there. 

From this point you drop into CASE 1, where it first installs a new break 
handler and then begins outputting the second infinite series of strings. Entering 
a control break again sends you to this new break handler, which repeats the 
process with the value 2. CASE 2 back in main() outs a terminating message 
and quits. 

The first thing you are likely to notice is this hopping about. Although all of 
this is really under strict program control, it does not have the neat appearance of 
a normal C program. This is typical of interrupt handlers. Look beyond this and 
notice that this is really a very cleanly structured program. 

Also notice that a single program can have more than one break handler, although 
only one may be active at any given time. This is very important. As a 
program moves from one menu to another, the types of housekeeping that the 
program may want to perform change. Of course, the break handler can examine 
the variables to determine where the user was when the break was entered. It is 
usually more convenient to devise separate break handlers for the different major 
subdivisions of the program. 

Finally, notice that more than one state can be saved by calls to setjmp(). In this 
case, we defined only the one buffer SAVE. We could have defined several 
buffers, SAVEJ, SAVE2, etc. Calling longjmp() and passing it any one of these 
buffers would return the program to the call to setjmp() that initialized that 
buffer. Although I can think of applications for this, I can also imagine a certain 
unwieldiness. With power comes responsibility. 

Proper use of user defined break handlers requires that they be included in the 
initial design process. It is not generally possible to retrofit user defined break 
handlers onto an otherwise well designed program and end up with anything 
presentable. This is especially true for programs containing multiple break 
handlers. 

Hardware Interrupts 

Peripheral devices, such as modems, printers and disks, require periodic attention 
from the host computer to which they are tied. For example, a printer usually 
has a small buffer, typically enough to hold one line of text, but sometimes large 
enough for an entire page. A personal computer can ship over enough text to fill 
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that buffer in just a few seconds, but then it must go do something else while the 
relatively slow printer catches up. 

How does a computer know when a piece of hardware wants its attention? One 
answer is that the computer can ask. In the printer example, the computer first 
asks permission before sending each character. If the printer's buffer is full, it 
denies permission to the PC to ship any more data. The host PC might continue 
to ask in a loop until the printer's buffer is no longer full, at which point 
permission is granted to the PC to send characters until the buff er is again filled. 

This technique is called polling and was exactly how DOS handled breaks, as you 
saw above. The problems are immediately obvious. First, most peripheral 
devices are excruciatingly slow compared to personal computers. Even a slow 
microprocessor is fast enough to service several external devices. My PC has had 
a modem, two printers, a floppy drive, and a hard disk all going simultaneously 
with plenty of processing to spare. 

Unless the host computer is willing to stay riveted watching each line appear on 
the printer, it places the responsibility back on the user program to periodically 
return control to the operating system. Without going into the details of non­
preemptive multitasking operating systems, this is too much responsibility to 
place on the user program. Besides, it seems an awful waste of computing power 
to spend 99 percent of the processor's time asking a slow device the same 
question over and over. A far better solution is to let the hardware ask for 
attention when it needs it. Modem microprocessors have a mechanism for this 
form of yanking their sleeve called the interrupt. 

Peripheral devices have inputs to the host computer that they can use to signal an 
interrupt. When an interrupt arises, perhaps because your printer is trying to 
signal that its buffer is no longer full, the hardware in the computer 
communicates this fact to its microprocessor. The microprocessor interrupts its 
normal processing (hence the name interrupt). It first saves the location of the 
next machine instruction to be executed, much as if a CALL instruction had been 
performed. It then jumps to the address of the handler for that interrupt, which in 
this case might ship some more data over to the printer before returning back to 
the saved address to continue normal processing. 

Interrupts in the Intel family of microprocessors are numbered from 0 to 255 
(Oxff). In the PC the following interrupts and their meanings are defined: 



354 TURBOC 

** 

Hardware Interrupts in the IBM PC and AT 

Interrupt 
0 

2 
3 
4 

5 

6 
7 
8 
9 
A 
8 
c 
D 
E 
F 

Function 
Divide by O 
Single step 
Nonmaskable interrupt 
break point 
Overflow** 
Bounds exceeded trap ** 
Print screen 
Illegal instruction trap ** 
Device (such as 80287) not available** 
Hardware clock 
Keyboard 
EGA vertical retrace 
Serial port (COM2) 
" " (COM1) 
Disk service 
Diskette service 
Parrallel port (LPT) 

not in 8088 and 8086 micro_Q!ocessors 

Some of the hardware interrupts are defined by the processor itself. Executing a 
divide instruction with a denominator of 0 (an illegal operation) always generates 
an interrupt 0. This function stem from the way Intel microprocessors are built. 
Other interrupts are generated external to the microprocessor and are assigned 
values by the way the PC's hardware is put together. 

Hardware interrupts are handled much like the soft interrupts you used in Chapter 
6 to invoke BIOS routines. Just as those soft interrupts, invoked through the 
int86() Turbo C library function, each hardware interrupt is assigned a 4 byte 
FAR address in low memory. These addresses point to the handler for that 
interrupt. The address of the handler for interrupt 0 is stored in locations 0 
through 3, that for interrupt 1 in locations 4 through 7, etc. These addresses are 
known as interrupt vectors. 

When an interrupt arises, the microprocessor waits until the completion of the 
current instruction. It then pushes the flag register onto the stack along with the 
FAR address of the next instruction. The effect is exactly as if the processor just 
decided to execute an int86() to the BIOS routine associated with that interrupt. 
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Once this handler has taken care of the problem, it returns back to the following 
machine instruction. 

Interrupts can be disabled with the Turbo C disable() library routine. When 
disabled, the microprocessor will ignore external interrupt requests. Interrupts 
that arise during this time must wait until interrupts are subsequently enabled by 
calling the enable() library routine. Interrupts are always disabled within an 
interrupt routine itself unless specifically reenabled. This includes BIOS routines 
that have been explicitly invoked. There is one interrupt that cannot be disabled. 
This is called the NonMaskable Interrupt (NMI). The NMI in the PC is 
connected to the random access memory parity circuit. 

Writing interrupt handlers is a tricky business. Interrupts should be transparent 
to the normally executing code. That is, the interrupt comes, gets serviced, and 
returns to the exact point where started without that program ever knowing that it 
got interrupted. During an interrupt, however, the microprocessor saves only the 
processor flags and the return address. It is up to the interrupt handler to save off 
any registers that it intends to use and restore them to their original, pristine 
condition before returning. 

For example, suppose your PC was attempting to execute the following lines of 
Ccode: 

2; 
i j * 5; 

/*line l*/ 
/*line 2*/ 

Let's assume that to execute line 2 the program loads up the value of J into the 
AX register in preperation for the multiply, but before it can carry out the 
multiply instruction an interrupt comes. If the interrupt handler restores AX to 2 
before returning, then all is well, but suppose that it is faulty and leaves the 
value of AX set to some other value. The multiplication will be flawed; the 
result will not be 10, but rather some other, undesired and unpredicted value. 
Interrupt handlers that do not properly restore the status of the machine lead to 
very unpredictable behavior. Such a handler will invariably lead the machine to 
collapse in total confusion, requiring a total reset to restore sanity. 

This is why most programmers consider interrupt handlers to be well within the 
realm of assembly language programming. Normally, only assembly language 
provides control to the programmer to make sure that the contents of each register 
get safely saved off upon entry, and properly restored on exit. Turbo C does 
much of this work for you, however. 
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Turbo C defines a function type called INTERRUPT. It is used like other 
function classifications: 

void interrupt proc (void); /*declaring an interrupt 
function ... *I 

void interrupt *procptr (void); /* ... and a pointer to one*/ 

Turbo C adds instructions to the front of a function declared to be of type 
INTERRUPT, to store the microprocessor's registers onto the stack. When such 
a function is exited, Turbo C includes the instructions necessary to pop all of the 
registers back off of the stack, restoring them to their former glory. Upon exit, 
such functions pop all of the registers back off the stack and return with an IRET 
instruction. This is exactly what you need to write your own interrupt handlers! 

Even though INTERRUPT type functions have a completely different interface, 
they can be called from normal Turbo C programs just like any function. They 
cannot be passed arguments (you will see to what purpose INTERRUPT type 
functions put arguments later in this chapter). There is not much purpose in 
making such a· call, however, except as a debug aid. An INTERRUPT function 
whose address has been stored into an interrupt vector can also be invoked via the 
int86() call like a BIOS routine, as you will see. 

Let's consider an example interrupt handler. I noted back in Chapter 7 that the 
PC has a hardware clock. This clock generates a hardware interrupt 18.2 times 
per second (interrupt Ox08). Once the PC has updated the time of day, it 
performs an interrupt Oxl c to allow the user whatever processing desired. This 
interrupt is not normally used for anything so it will be ideal for 
experimentation. 

Prg9 _2a defines a handler for interrupt Oxl c. This handler reads the current time, 
converts it into an ASCII string, and places this value in the upper right hand 
comer of the display. It also maintains a delta time (the time since the program 
began running) which it displays in the very next line. Of course, nothing 
"keeps" the clock in that position. As soon as the screen scrolls up, it scrolls 
right off of the top. But since the interrupt occurs 18 times per second, it won't 
stay gone for long. You may have already seen similar clock programs in the 
public domain. 

Carefully examine this program, but before you do, start by just compiling and 
executing the program from the IDE. Try this both with and without DEBUG 
defined (DEBUG may be defined from the Environment selection off of the 
Options menu). It will be helpful when reading the program to see exactly what 
it does first. 
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1( OJ: /*Prg9 2a -- Display a clock on the screen 
2[ OJ: by-Stephen R. Davis, 1987 
3 [ OJ: 
4( OJ: As an example of an interrupt routine, inserted onto the timer 
5( OJ: tick interrupt. On each clock tick, display an ASCII clock 
6( OJ: in the upper right hand corner of the clock. Display the 
7( OJ: current time and the delta time since installed, both in 
8( OJ: 24 hour format. 
9 [ OJ: 

10( OJ: If DEBUG is set, install routine in a harmless vector and 
11( OJ: invoke it from main{). This is to allow breakpoints to be 
12( OJ: set in the interrupt routine easily. If DEBUG is 
13( OJ: either 0 or not defined, install normally (define via Options 
14 [ OJ: menu). 
15 [ OJ: 
16 [ OJ: (As always, this program may not be compatible with other 
17( OJ: TSR type programs.) 
18( OJ:*/ 
19 [ OJ: 
20( OJ: #include <stdio.h> 
21( OJ: #include <dos.h> 
22( OJ: #include <stdlib.h> 
23( OJ: #include <process.h> 
24 [ OJ: 
25( OJ: /*first the prototyping definitions*/ 
26 [ OJ: 
27( OJ: void interrupt clock (void); 
28( OJ: void display (int, int, int); 
29( OJ: void out (char*, int, int); 
30( OJ: void init (void); 
31( OJ: int restore (void); 
32 [ OJ: 
33( OJ: /*define our data structures*/ 
34 [ OJ: 
35 [ OJ: union 
36( lJ: long ltime; 
37( lJ: int stime [2J; 
38 [ OJ: } p; 
39[ OJ: struct REGS regs; 
40( OJ: int far *screen; 
41( OJ: int prevtime, time, minute, hour; 
42 [ OJ: char buffer [lOJ; 
43 [ OJ: void interrupt (*fn) {); 
44 [ OJ: 
45( OJ: /*define' the DEBUG relative information*/ 
46 [ OJ: 
47( OJ: #if DEBUG 
48( OJ: #define vect Ox48 
49( OJ: struct REGS reg2; 
SO [ OJ: #else 
51( OJ: #define vect Oxlc 
52 [ OJ: #endif 
53 [ OJ: 
54( OJ: /*Clock - grab the interrupt and provide the function*/ 
55[ OJ: void interrupt clock (void) 
56 [ OJ: { 
57( lJ: /*get the time and convert it to minutes since midnite*/ 
58( lJ: regs.h.ah = 0; 
59 [ lJ: int86 (Oxla, &regs, &regs); 
60[ lJ: p.stime (OJ = regs.x.dx; 
61( lJ: p.stime (lJ = regs.x.cx; 
62 [ lJ: time = (int) (p.ltime I (long) 1092); 
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63 [ lJ: 
64 [ lJ: 
65 [ lJ: 
66 [ lJ: 
67 [ lJ: 
68 [ lJ: 
69 [ lJ: 
70 [ lJ: 
71 [ lJ: 
72 [ 1 J: 
73 [ OJ: 
74 [ OJ: 
75 [ OJ: 
76 [ OJ: 
77 [ OJ: 
78 [ OJ: 
79 [ OJ: 
80 [ lJ: 
81 [ lJ: 
82 [ lJ: 
83 [ lJ: 
84 [ lJ: 
85 [ OJ: 
86 [ OJ: 
87 [ OJ: 
88 [ OJ: 
89 [ OJ: 
90 [ OJ: 
91 [ OJ: 
92 [ lJ: 
93 [ lJ: 
94 [ lJ: 
95 [ 1 J: 
96 [ lJ: 
97 [ lJ: 
98 [ lJ: 
99 [ lJ: 

100 [ lJ: 
101 [ OJ: 
102 [ OJ: 
103 [ OJ: 
104 [ OJ: 
105 [ OJ: 
106 [ OJ: 
107 [ OJ: 
108 [ OJ: 
109 [ OJ: 
110 [ OJ: 
111 [ lJ: 
112 [ lJ: 
113 [ lJ: 
114 [ lJ: 
115 [ lJ: 
116 [ lJ: 
117 [ lJ: 
118 [ lJ: 
119 [ lJ: 
120 [ lJ: 
121 [ lJ: 
122 [ lJ: 
123 [ 2J: 
124 [ 2J: 
125 [ 2J: 
126 [ 2J: 
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/*now display the current time in 24 hour format*/ 
display (time, 0, 75); 

/*then display the delta*/ 
if (prevtime == -1) 

prevtime = time; 
if ((time-= prevtime) < 0) 

time+= (24 * 60); 
display (time, 1, 75); 

/*Display - put a time on the screen in the position indicated. 
Remember we can't do any DOS calls here.*/ 

void display (number, y, x) 
int number, x, y; 

hour = number I 60; 
minute = _DX; 
sprintf (buffer, "%2.2u:%2.2u", hour, minute); 
buffer [SJ = '\0'; 
out (buffer, y, x); 

/*Out - out a string onto the screen w/o using system call*/ 
void out (buffer, y, x) 

char *buffer; 
int y, x; 

int far *scrptr; 

#if DEBUG 
/*print out the data to make sure it is correct*/ 
printf ("%s", buffer); 

#endif 
scrptr =screen+ (y * 80 + x); 
while (*buffer) 

*scrptr++ = Ox1700 + *buffer++; 

/*Main - exercise the above routine. When DEBUG is set to 1, 
'vect' is directed to an otherwise unused vector (48). 
This allows us to easily debug the interrupt routine 
using our favorite debugger. Once debugged, DEBUG is 
set to 0 and the vector is redirected to the TimerTick 
interrupt (lC) .*/ 

main () 

int i, j, k; 

init () ; 

fn = getvect (vect); 
setvect (vect, clock); 
ctrlbrk (restore); 

/*loop around for at least 2 minutes so that you can see 
the clock increment to prove to yourself that it is 
working*/ 

for (i = O; i 
for (j 

k 
printf (" 

< 150; i++) { 
0; j < 30000; j++) 
j * 5; 

this is just dummy output 
watch the clock\n"); 



127 [ 2J: 
128 [ 2J: 
129 [ 2 J: 
130 [ 2J: 
131 [ lJ: 
132 [ lJ: 
133 [ lJ: 
134 [ lJ: 
135 [ OJ: 
136 [ OJ: 
137 [ OJ: 
138 [ OJ: 
139 [ OJ: 
140 [ l J: 
141 [ lJ: 
142 [ lJ: 
143 [ lJ: 
144 [ l J : 
145 [ lJ: 
146 [ lJ: 
14 7 [ l J : 
148 [ l J : 
149 [ l J : 
150 [ lJ: 
151 [ lJ: 
152 [ lJ: 
153 [ lJ: 
154 [ lJ: 
155 [ lJ: 
156 [ l J: 
157 [ lJ: 
158 [ lJ: 
159 [ OJ: 
160 [ OJ: 
161 [ OJ: 
162 [ OJ: 
163 [ OJ: 
164 [ OJ: 
165 [ lJ: 
166 [ lJ: 
167 [ lJ: 
168 [ lJ: 
169 [ lJ: 
170 [ l]: 
171 [ lJ: 
172 [ lJ: 
173 [ OJ: 
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#if DEBUG 
/*invoke the interrupt so we can debug it*/ 
int86 (vect, &reg2, &reg2); 

#endif 
}; 

/*restore the interrupt to its former value*/ 
setvect (vect, fn); 

/*Init - set the screen address and clear the screen*/ 
void init () 
{ 

#define mono (int far *)OxbOOOOOOO /*for mono displays ... */ 
#define cga (int far *)Oxb8000000 /* ... for ega and cga*/ 
int mode; 

prevtime = -1; 

regs.h.ah = OxOf; 
int86 (OxlO, &regs, &regs); 
mode = regs.h.al; 
if (regs.h.ah != 80) 

abort (); 

if (mode == 7) 
screen mono; 

else 
if (mode 3 I I mode 

screen cga; 
else 

abort (); 

/*fixed to 80 columns*/ 

2) 

/*Restore - restore the old interrupt address in the event of a 
control break*/ 

int restore (void) 

/*restore the interrupt to its former value*/ 
setvect (vect, fn); 

/*tell the operator what he has done*/ 
printf ("\nbreak!\n"); 

/*now exit the program back to DOS*/ 
return O; 

As with all other C programs, execution begins with main(). The routine init() 
only gets called so the clock program can decide whether the display is of the 
monochrome or CGA variety. The call to init() can be removed if it is known 
that Prg9_2a will only be executed on a single type of display. The pointer 
SCREEN is initialized to MDA memory (mode 7) or CGA memory (mode 3). 
Line 116 installs the function, clock(), into interrupt VECT, which is either 
Oxl c, if it is not in DEBUG mode, or a harmless Ox48 if it is. However, 
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this is Just dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is JUSt dummy output 
this is Just dummy output 

Figure 9.1 

watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 
watch the clock 

Screen clock displayed in corner of display 

21: 55 
00: 01 

before it can install itself in that slot it must first record what is already there. 
The contents of that vector are read on line 115 and stored into the variable FN, 
which is defined as a pointer to an interrupt function on line 43. Upon 
completion, main restores the contents of the interrupt (line 134 ). (The Turbo C 
library routines getvect() and setvect() are used to retrieve and store the contents of 
an interrupt vector.) 

The actual program is another of those do nothing types. What the main 
program actually does is not terribly important. In this case, it periodically 
prints a line on the screen that directs your attention to the clock it is placing in 
the upper right-hand comer. This do nothing main() could be replaced by 
anything that you desire-it might be a word processor or a database application, 
or whatever else that might reasonably have a clock attached. 

Notice, that already you must make use of a break handler. If the user gets 
impatient watching the same output appear over and over on the screen, he might 
be tempted to enter a control break to bring it to an early end. You must not 
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allow the program to terminate without replacing the old interrupt address. If you 
do, the interrupt will point to a routine that is no longer loaded in memory. 

Figure 9.2 

C:\USER\C 
C>d: f1'99 2a 

th1 s is Just dumm~ output -- watch the clock 
21: 5800: 00 this is Just dummy output watch the clock 
21: 5800: 00 this is JUSt dummy output watch the clock 
21: 5800: 00 this is JUSt dummy output watch the clock 
21: 5800: 00 this is JUSt dummy output watch the clock 
21: 5800: 00 this is JUSt dummy output watch the clock 
21: 5800: 00 this is Just dummy output watch the clock 
21: 5800: 00 this is JUSt dummy output watch the clock 
21: 5800: 00 this is JUSt dummy output watch the clock 
21: 5800: 00 this is JUSt dummy output watch the clock 
21: 5900: 01 this is JUSt dummy output watch the clock 
21: 5900: 01 this is JUSt dummy output watch the cl eek 
21: 5900: 01 this is JUSt dummy output watch the clock 
21: 5900: 01 this is JUSt dummy output watch the clock 
21: 5900: 01 this is JUSt dummy output watch. the clock 
21: 5900: 01 this is JUSt dummy output watch the clock 
21: 5900: 01 this is JUSt dummy output watch the clock 
21: 5900: 01 this is JUSt dummy output watch the clock 
21: 5900: 01 this is JUSt dummy output watch the clock 
21:5900:01 this is Just dummy output watch the clock 
21: 5900: 01 this is JUSt dummy output watch the clock 
21: 5900: 01 this is Just dummy output watch the clock 
21 : 5900: 01. 

Prg9_2 in DEBUG mode 

21: 59 
00: 01 

You could, of course, disable breaks by setting BREAK=OFF. This is not really 
a satisfactory answer. Users do not like being forced to wait for some long 
winded output in which they have long since lost interest. The break routine 
restore(), which you install at the beginning of main(), restores the interrupt to 
its former value even if the user breaks prematurely. (If you don't mind rebooting 
your machine, try commenting out the break handler and control break out of 
Prg9 _2a. Your computer will crash as soon as another program overwrites the 
memory previously occupied by the program destroying the interrupt routine.) 

Having installed clock() into the proper interrupt vector, each clock interrupt now 
automatically calls the routine. The actual program is reasonably straightforward, 
using many of the techniques you have already studied in this book. BIOS call 
Oxl a reads the time in terms of number of clock ticks since midnight. This gets 
converted to minutes and seconds in 24-hour format and displayed on the screen at 
the x (column)-y(row) position indicated. The expression on line 98 converts 
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this x-y location to screen address. This address is subsequently used for direct 
memory transfer .. The constant on line 100 sets the color of the background and 
foreground: Oxl 700 provides for a blue background (Oxl 000) and a white 
foreground (Ox0700). This can be changed to whatever is most pleasing. (Line 
81 is nothing more than a bit of programming slight of hand. After performing 
the division of line 80, the 8086 processor leaves the residue in the DX register. 
Line 81 transfers this residue onto MINUTE. This has the same effect as the% 
operator without performing another division.) 

For older CGA displays it may be necessary to add a check for retrace, just as we 
did with the direct screen output routines in Chapter 7. Failure to do so results in 
minor tick marks appearing randomly accross the screen with these older display 
cards. 

Notice how this program uses the parameter DEBUG. If debug is defined from 
the IDE, the program includes extra statements that aid in the debugging process. 
This scaffolding was inserted in the program early on with the idea that it would 
be removed before publication. Debugging interrupt handlers is such a difficult 
task that I decided to leave it in to provide the reader a little more insight into the 
process. 

Before attempting to make a function like clock() an interrupt routine, it should 
be completely tested. This can be done by just calling the function like any 
other. As mentioned earlier, INTERRUPT routines may be called from Turbo C. 
Calling the function in a conventional fashion allows the use of a normal 
debugger. New functions that can be easily perfected as simple routines may be 
quite difficult as interrupt routines. Since successful direct screen output is 
sometimes tricky, it is often convenient to add write statements such as the one 
in routine out() on line 96. 

Once it is felt that the interrupt routine is working properly, the code may be 
added to main() to install it into an interrupt. Ideally, it should first be installed 
into an interrupt not otherwise in use. Main() can then use int86() to invoke the 
interrupt routine. While not as straightforward as calling directly, invoking an 
interrupt routine via INT86() is still much simpler than via a real interrupt. 
Make sure all registers are being restored properly by printing out the register 
structure before and after the call to int86( ). Normal debuggers will usually still 
work with this type of arrangement. 

When there is little doubt that the interrupt routine is working properly, install it 
into the intended interrupt. If possible, do so in a small, do nothing pro gram 
such as I have done. This reduces the number of variables that must be contended 
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with. Most debuggers can't properly handle routines servicing interrupts that 
might be going off all around it. If a problem arises at this point it is usually 
necessary to back up one step to the harmless interrupt and investigate the 
problem. To simplify this transition VECT and the extra source code are 
conditionally defined depending on the value of DEBUG. It may be necessary to 
move back and forth several times before the routine functions properly. 

Once this works, you are finally free to add this to the real application with all its 
complexity. This step is generally without peril-all of the problems should 
have been ironed out in previous steps. You may be tempted to short circuit this 
function and dump your interrupt routine into your application even before it has 
been properly checked out as a subroutine. This will not save you time, 
however, I assure you. 

Terminate and Stay Resident Programs 

Using the above techniques you can define interrupt handlers to add all sorts of 
capabilities to your programs. In the above example, adding a little clock on the 
screen can do a lot to liven up an existing application. Similarly, you could have 
built interrupt handlers for any sort of plug-in card that you might be building. 
This can be a powerful capability. 

The clock was transient, however. As soon as the program terminated, it had to 
be careful to restore the timer interrupt vector to its old value. What if you 
wanted to create an interrupt handler that continued to function even after the 
main program had terminated and DOS had regained control? 

Just as with C's handling of the heap via malloc() and free(), DOS maintains 
control of memory. When a program is executed, it is given control of all of the 
memory. It may restore some of this memory to the operating system via 
system calls. Whatever memory it still occupies is returned to DOS when it 
terminates via any of the normal mechanisms. 

There is, however, a special system call known variously as Keep Process or 
Terminate and Stay Resident (system call Ox31). (Use of the older interrupt Ox27 
should be avoided.) When this system call is invoked, the caller is terminated, 
just like normal, but some of the memory occupied is not returned to the system. 
The amount that is reserved must be indicated by the caller. 
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You are no longer compelled to reinstall the old interrupt vector when you exit. 
You can simply tell DOS not to overwrite the memory being used by the 
interrupt handler. The clock stays up forever! 

Figure 9.3 
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Performing this magic in Turbo C does involve a few concessions to reality, of 
course. You do not invoke system call Ox3 J directly because Turbo C provides 
access via the library routine keep(). In addition to the return status, you must 
tell keep() how much memory the program needs to reserve for its own use. This 
is a difficult question to answer, one with which I struggled for a long time. 
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In assembly language, it's quite easy. The programmer has control of where 
everything is located so he knows exactly how much memory his program needs. 
Turbo C is not nearly so straightforward as the programmer does not have control 
of where everything is located. Still, you know that a program compiled under 
the TINY memory model cannot use more than 64k of memory. Therefore, the 
safest rule for TSR programs written under Turbo C is to compile the program 
under the TINY memory model and then instruct keep() to reserve 64k of memory 
for your program's use. 

(In actual practice once you are absolutely sure that your program functions 
properly you can reduce the amount of memory reserved. Clever programmers 
will be tempted to examine the load map carefully for signs of the proper value. 
An almost as effective method is to simply determine empirically: keep reducing 
the amount of memory reserved for the program until it no longer executes 
properly. A third approach is to carefully zero out memory in the 64k window 
before loading the program. Load the program and then execute it for awhile. 
Now use a debugger to examine memory to determine how much memory 
appears to be used. In these example programs I have left the value at 64k. If 
you intend to get very serious about TSRs, you will probably want to invest in 
the source code to the Turbo C libraries so that you can control, or at least know, 
where data are being stored.) 

An even more serious limitation involves DOS itself. DOS is non-reentrant. 
(Microsoft obviously did not use the good programming practices advocated in 
this book!) Actually, the primary reason this is so is that DOS uses its own 
stack, not relying on their being sufficient room on the caller's stack. But this 
means that DOS can easily get confused if your interrupt program attempts to 
make a system call. 

Suppose that DOS is active when the interrupt arrives. Your program is 
immediately dispatched to service the request, leaving DOS stopped. Now if your 
program makes its own DOS call, the first thing DOS will do is grab its stack. 
Normally that's okay, but this time the stack is already in use by the DOS call 
that got interrupted. Your DOS request finishes without problem and then you 
return. But now the DOS program that got interrupted is completely confused. 
Somebody has come in and changed all of the values which it has been 
husbanding on the DOS stack. It's time to reboot. 

This means you must be very careful about which Turbo C routines you decide to 
call. Not only can't you make a system call directly, you cannot call a Turbo C 
library routine that might make a system call. Besides, your program is no 
longer executing from the Turbo C environment. Values which Turbo C might 
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initialize when your program first comes up, are going unmonitored. For the 
most part this all means that, except for some pretty simple functions, you are 
on your own when writing Terminate and Stay Resident programs. 

Prg9 _2b is the same clock program only converted now to continue supplying a 
clock on the screen after it terminates. In operation, Prg9 _2b is virtually 
identical to its predecessor. The clock gets read, reformatted and placed in the 
upper right hand corner of the screen. For the most part the program is the same. 
Main() no longer waits around to put the old vector back. You do not need a 
break handler now since you will not actually be running, rather you'll just be 
servicing interrupts. The references to DEBUG have been removed. Finally, the 
call to sprint/() has been removed. Since you had better learn to depend on 
yourself from now on, a series of equations has taken its place. Notice that you 
are not forced to modify the call to BIOS routine Oxl a. The BIOS is reentrant. 
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OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 

/*Prg9_2b -- Display a clock on the screen (Interrupt stealer) 
by Stephen R. Davis, 1987 

This program should be compiled under the TINY memory 
model, and may then be converted into .COM file using the command: 

EXE2BIN PRG9_2B.EXE PRG9_2B.COM 

It can also be executed as an .EXE file. Do not execute from IDE! 

This version makes no effort to get along with other interrupt 
routines. 
(It may be necessary to run this program with the help of 
SSTACK.COM. See text for details.) 

OJ: *I 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
lJ: 
lJ: 
OJ: 
OJ: 
OJ: 

#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 
#include <process.h> 

#ifndef ~TINY~ 
#error Should use TINY compilation model 

#end if 
#define vect Oxlc 

/*first the prototyping definitions*/ 

void interrupt clock (void); 
void display (int, int, int); 
void out (char*, int, int); 
void init (void); 

/*define our data structures*/ 

union 
long ltime; 
int stime [2J; 

} p; 
struct REGS regs; 
int prevtime, time, minute, hour; 
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char buffer [6J; 
int far *screen; 

char digits [J {"0123456789"}; 

/*Clock - grab the interrupt and provide the function*/ 
void interrupt clock (void) 

/*get the current time using the BIOS call*/ 
regs.h.ah = 0; 
int86 (Oxla, &regs, &regs); 
p.stime [OJ = regs.x.dx; 
p.stime [lJ = regs.x.cx; 
time = (int) (p. ltime I (long) 1092); 

/*now display the current time in 24 hour format*/ 
display (time, 0, 75); 

/*then display the delta*/ 
if (prevtime == -1) 

prevtime = time; 
if ((time-= prevtime) < 0) 

time+= (24 * 60); 
display (time, 1, 75); 

/*Display - put a time on the screen in the position indicated. 
Remember we can't do any DOS calls here.*/ 

void display (number, y, x) 
int number, x, y; 

hour = number I 60; 
minute _DX; 

/*stuff this into an ascii buffer 
buffer [OJ digits [hour I 10 J; 
buff er (lJ digits [hour % lOJ; 
buffer [2J I•'• 

buff er (3J digits [minute lOJ; 
buff er [4J digits [minute % lOJ; 
buff er [SJ I \0 I j 

out (buffer, y, x); 

for output*/ 

/*Out - out a string onto the screen w/o using system call*/ 
void out (buffer, y, x) 

char *buffer; 
int y, x; 

int far *scrptr; 

scrptr =screen+ (y * 80 + x); 
while (*buffer) 

*scrptr++ = Oxl700 + *buffer++; 

/*Main - install the above routine.*/ 
main () 

init (); 
setvect (vect, clock); 
printf ("Clock installed in interrupt %2x\n", vect); 
keep (0, OxlOOO); 

367 
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/*Init - set the screen address and clear the screen*/ 
void init () 
( 

#define mono (int far *)OxbOOOOOOO /*for mono displays ... */ 
#define cga (int far *)Oxb8000000 /* ... for ega and cga*/ 
int mode; 

prevtime = -1; 

regs.h.ah = OxOf; 
int86 (OxlO, &regs, &regs); 
mode = regs.h.al; 
if (regs.h.ah != 80) 

abort (); 

if (mode == 7) 
screen = mono; 

else 
if (mode == 3 I I mode 2) 

screen = cga; 
else 

abort (); 

/*fixed to 80 columns*/ 

To insure that it does not exceed the 64k limit reserved for it, Prg9 _2b should 
only be compiled and linked under the TINY memory model; the check on line 22 
insures adherence to this rule. Unlike Prg9 _2a, Prg9 _2b must not be executed 
under the IDE. Since the IDE is located in memory between DOS and the 
executing program, memory cannot be properly reserved. Instead the user should 
leave the IDE. He may also convert the PRG9_2.EXE into a .COM file before 
executing by using the DOS utility EXE2BIN via the command: 

exe2bin prg9_2b.exe prg9_2b.com 

(Note: both this program and the next have a problem with overrunning the 
available stack space. Both seem to work fine with DOS 3.0 and earlier but fail 
with later versions of DOS. Although this problem will eventually be addressed 
in Prg9 _2d, I do not want to introduce too much complexity at one time. The 
following assembler program should be executed before executing Prg9 _2b or 
Prg9 _2c to solve the stack problem until I can address it in C later in this 
chapter.) 

PAGE 66,132 

Program SSTACK - Set up larger stack for Interrupt Routine 
by Stephen R. Davis, 1987 

Because of the extreme stack demands of Turbo C, it is necessary 
to set up a larger stack before entering interrupt routines written 
in Turbo C with some versions of DOS. In particular, Programs 9_2b 
and c work fine with DOS 3.0 but require SSTACK with 3.1. SSTACK 
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should only be executed as a .COM program. 

VECT EQU 68H ;SET TO UNUSED INTERRUPT 

CSEG SEGMENT 
ASSUME CS:CSEG,DS:CSEG,SS:CSEG 
ORG lOOH ;MAKE THIS INTO A .COM FILE 

START: 
JMP INSTALL 

ORG 200H 
SAVESP ow 0 ;ALLOCATE PLACE TO STORE OLD SS:SP 
SAVESS ow 0 
SF LAG ow 0 

INTRUPT: 
CMP CS:SFLAG,0 ;IS FLAG CLEAR? 
JZ NEWS TACK 
INT 68H 
IRET 

NEWSTACK: 
MOV CS:SFLAG,l 
MOV CS:SAVESP,SP ;SAVE CALLER'S STACK 
MOV CS:SAVESS,SS 
MOV SP,CS ; PUT IN OUR OWN 
MOV SS,SP 
MOV SP,200H 

INT VECT ;NOW INVOKE CLOCK INTERRUPT 

MOV SS,CS:SAVESS ;NOW RESTORE CALLER'S STACK 
MOV SP,CS:SAVESP 
MOV CS:SFLAG,0 
IRET 

ENDINT: 

MESSG DB "Clock interrupt stack helper installed",ODH,OAH,"$" 
NOTUSMSG DB "Interrupt already in use -- try another",ODH,OAH, 11 $ 11 

USMSG DB "Do not install SSTACK more than once",ODH,OAH, 11 $ 11 

ASSUME CS:CSEG,DS:CSEG,SS:CSEG 
INSTALL: 

MOV AX,3500H+VECT 
INT 21H 
OR BX,BX 
JNZ ERR 

MOV AX,3508H 
INT 21H 
MOV DX,BX 
MOV AX,ES 
PUSH OS 
MOV DS,AX 
MOV AX,2500H+VECT 
INT 21H 
POP OS 

MOV DX, OFFSET INTRUPT 
MOV AX,2508H 
INT 21H 

MOV DX, OFFSET MESSG 

;CHECK THE TARGET VECTOR 

;IN USE? 

;NO - GO AHEAD THEN 
;GET TIMER VECTOR 

;INSTALL TIMER INTO 'VECT' 

;INSTALL OURSELVES IN CLOCK INT 

;SEND.ALL'S WELL MESSAGE 

369 
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MOV AH,09H 
INT 21H 

MOV AX,3100H 
MOV DX,OFFSET ENDINT 
MOV CL14 
SHR DX,CL 
INC DX 
INT 21H 

ERR: 
MOV AX,3508H 
INT 21H 

CMP BX, OFFSET INTRUPT 
MOV DX,OFFSET NOTUSMSG 
JNZ NOTUS 
MOV DX,OFFSET USMSG 

NOTUS: 
MOV AH,09H 
INT 21H 

MOV AX,4CFFH 
INT 21H 

CSEG ENDS 
END START 

Interrupt Borrowing 

;KEEP PROCESS WITH 0 ERROR CODE 

;CONVERT BYTES TO PARAGRAPHS 

;ACCOUNT FOR ROUND OFF 

;GET THE TIMER INTERRUPT 

;IT IS US? 
;ASSUME IT ISN'T 

;IT IS US 

;TERMINATE WITH FF ERROR CODE 

So you can use the keep() library call to create interrupt handlers for devices 
outside of your own programs as long as you are willing to forgo the support of 
DOS and the Turbo C library. This is all very nice for interrupt handlers, but in 
reality the timer tick interrupt Oxl c is not an interrupt handler. Instead, the 
hardware interrupt timer comes in on interrupt Ox08. Once DOS has done all the 
processing it needs to, it executes an interrupt Oxl c, much as you do with your 
own int86() calls. 

Normally interrupt vector Oxl c just points to an interrupt return-a sort of null 
program. This vector allows user programs to mark the passage of time just as 
DOS does. The way I have written this interrupt function, however, only one 
program can enjoy this capability at a time. In both Prg9 _2a and Prg9 _2b the 
program cavalierly removed whatever was there and placed itself into the vector to 
the exclusion of all others. If it continues this unfriendly behavior, the next 
installable is likely to do the same to it! 

A program should make more effort to get along with its neighbors. How much 
better it would be if it could use the interrupt in an invisible way so that other 
routines that have already grafted themselves onto interrupt Oxl c are not even 
aware of its presence. Is such a thing possible? 
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With only a very few changes, the antisocial Prg9 _2b has been converted into the 
hospitable Prg9 _2c. 
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/*Prg9_2c -- Display a clock on the screen (Interrupt borrower) 
by Stephen R. Davis, 1987 

This program should be compiled under the TINY memory 
model and may then converted into .COM file using the command: 

EXE2BIN PRG9_2C.EXE PRG9 2C.COM 

It can be executed as an .EXE file. Do not execute from IDE! 

This version of the clock routine tries a little harder to 
get along with other timer interrupt routines by passing control 
along to them ... it borrows the interrupt. 
(It may be necessary to use SSTACK.COM to execute this program. 
See text for details.) 

o J : *I 
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#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 
#include <process.h> 

#ifndef TINY - -
#error Should use TINY compilation model 

#endif 
#define vect Oxlc 

/*first the prototyping definitions*/ 

void interrupt clock (void); 
void display (int, int, int); 
void out (char*, int, int); 
void init (void); 

/*define our data structures*/ 

union 
long ltime; 
int stime [2J; 

} p; 
struct REGS regs; 
void interrupt (*old) (void); 
int prevtime, time, minute, hour; 
char buffer [6J; 
int far *screen; 

char digits [ J {"0123456789"}; 

/*Clock - grab the interrupt and provide the function*/ 
void interrupt clock (void) 

/*get the current time using the BIOS call*/ 
regs.h.ah = 0; 
int86 (Oxla, &regs, &regs); 
p.stime [OJ = regs.x.dx; 
p.stime (lJ = regs.x.cx; 
time = (int) (p. ltime I (long) 1092); 
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/*now display the current time in 24 hour format*/ 
display (time, 0, 75); 

/*then display the delta*/ 
if (prevtime == -1) 

prevtime = time; 
if ((time-= prevtime) < 0) 

time+= (24 * 60); 
display (time, 1, 75); 

/*pass control on to the next interrupt routine*/ 
(*old) (); 

/*Display - put a time on the screen in the position indicated. 
Remember we can't do any DOS calls here.*/ 

void display (number, y, x) 
int number, x, y; 

hour = number I 60; 
minute _DX; 

/*stuff this into an ascii buffer 
buffer [OJ digits [hour I lOJ; 
buff er [ 1 J digits [hour % lOJ; 
buff er [2J '·' · 
buffer [3J digits [minute lOJ; 
buff er [ 4 J digits [minute % lOJ; 
buff er [5J '\0'; 

out (buffer, y, x); 

for output*/ 

/*Out - out a string onto the screen w/o using system call*/ 
void out (buffer, y, x) 

char *buffer; 
int y, x; 

int far *scrptr; 

scrptr =screen+ (y * 80 + x); 
while (*buffer) 

*scrptr++ = Ox1700 + *buffer++; 

/*Main - install the above routine.*/ 
main () 

init (); 
old= getvect (vect); 
setvect (vect, clock); 
printf ("Clock intalled into vector %2x\n", vect); 
keep (0, OxlOOO); 

/*Init - set the screen address and clear the screen*/ 
void init () 
{ 

#define mono (int far *)OxbOOOOOOO /*for mono displays ... */ 
#define cga (int far *)Oxb8000000 /* ... for ega and cga*/ 
int mode; 

prevtime = -1; 
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regs.h.ah = OxOf; 
int86 (OxlO, &regs, &regs); 
mode = regs.h.al; 
if (regs.h.ah != 80) /*fixed to 80 columns*/ 

abort (); 

if (mode == 7) 
screen = mono; 

else 
if (mode == 3 I I mode == 2) 

screen = cga; 
else 

abort (); 

Much as it did back in the first attempt, main() saves the address of interrupt Oxl c 
into a local variable, in this case called OLD. It then continues to install its own 
function like normal. At the end of the interrupt function routine, however, it 
does not return directly. Instead it calls the routine whose address was previously 
stored in the vector it usurped (line 70). Effectively, it inserts itself between the 
old interrupt caller and interrupt routine in such a way that neither is aware of its 
existence. Note, OLD must be globally declared. Automatic variables, which are 
saved on the stack, do not retain their values from one interrupt to the next. 
OLD must also be declared void interrupt (*OLD)(). Otherwise Turbo C will not 
call it properly. 

If another program were to come along and install itself in the chain, your 
program would be just as unaware as its victim was. In this way, chains of 
TSRs can be built on a single interrupt. This technique is known as Interrupt 
Borrowing and the programs are known as Interrupt Borrowers (as opposed to 
Interrupt Stealers like the first two interrupt handlers). This may not seem all 
that significant, but in fact it is very important. 

As I have pointed out before, BIOS calls and even calls to DOS are also 
interrupts. If you can borrow a hardware interrupt then you can just as easily 
borrow a BIOS interrupt. For example, you could insert the address of your own 
routine in, interrupt Oxl 0, the screen output BIOS routine. Every time a request 
for screen output came through interrupt OxlO, it would come to you. Since you 
don't really want to go to all the trouble of emulating all of the different screen 
BIOS functions, you simply pass the request along to the real BIOS routine, 
who's address you have carefully saved off in your program somewhere else. 
Since the real BIOS routine is unchanged, the request gets serviced more or less 
the way it always did. 
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So if an interrupt borrower is invisible to both the caller and the called, then how 
is this any more than just an intellectual curiosity? 

In the case of the hardware interrupt, the contents of the registers upon entry into 
the handler had little or no significance as they were completely unpredictable-a 
hardware interrupt can occur at any time. The contents of the registers during a 
BIOS interrupt do have significance, however, as this is how the calling program 
communicates with the BIOS routine. For example, suppose that the user 
program were trying to output a character to the screen using interrupt Oxl 0 . It 
would store the value OxOe into the AH register, the character into AL, and then 
make the call. An interrupt borrower can examine the contents of the registers 
and know what request is being made. 

Still nothing to write home about, except that the borrower can just as easily 
change the values. Taking a simplistic example, suppose you decided that you 
didn't like lower case letters. Somehow they offend you (with all of the religious 
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sects about, this may not be all that abstract an example). You could create an 
interrupt borrower that inserts itself between user programs and the interrupt Ox 10 
BIOS routine. Everytime a request comes through to output a character, your 
routine checks to make sure it is upper case. Lower case letters either get 
screened out (not a very good idea) or converted to the more acceptable upper case 
equivalent before output. 

If you were to write and install such an interrupt borrower, you would end up 
with a computer that only knew how to output upper case letters. Programs 
using interrupt Oxl 0 still attempt to output lowercase letters. It's just that your 
interrupt borrower diligently converts them before passing them on to the real 
interrupt Oxl 0 for output. Of course, this does nothing to input. Letters are 
both upper and lower case internally-conversion is only on output. This is not 
such a wonderful program to write as the user can get quite confused when A no 
longer matches A, because one of them is actually lower case and the other upper. 
But, as they say, it's the thought that counts. 

I noted earlier that a function of type INTERRUPT automatically saves the 
registers on the stack, but as they had no meaning then, I made no attempt to 
access them. In fact, Turbo C also allows such functions access to these 
variables. An INTERRUPT function may be declared as follows: 

void interrupt normal (bp, di, si, ds, es, dx, ex, bx, ax) 
unsigned ax, bx, ex, dx, es, ds, si, di, bp; 

void interrupt unusual (bp, di, si, ds, es, dx, ex, bx, ax, 
ip, cs, flags) 

unsigned ax, bx, ex, dx, es, ds, si, di, bp, cs, ip, flags; 

Accessing the argument AX within the interrupt routine accesses the value of the 
AX register when the interrupt occured. Changing its value, changes the value of 
the register upon return from the interrupt. This is the only case in Turbo C 
where changing the value of an argument in a function changes its value in the 
caller. It may seem that the declaration order of these arguments is backward, but 
really this is just a by-product of the order in which the registers are pushed 
before entering the function. 

In the above example, normal() has been declared in the normal fashion. Access 
is granted to all of the registers except for SS and SP. It is also possible, should 
this prove necessary, to access the return address pushed on the stack via a 
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declaration such as unusual() above. CS."/P represent the code segment and offset 
of the next instruction upon return from the interrupt, the return address. 
Normally, you would not want to change the return address, but you might be 
curious to examine it. You might, for example, want to know if you are 
interrupting DOS or not. You can tell where you came from by examining 
CS:IP off of the stack. 

Figure 9.5 

Far return 

IP address 
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BX 
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NewBP __. BP 

Interrupt 
routine's 
stack frame 

New SP__. 

Stack structure of 
interrupt function 

This provides the tool needed to implement the small letter filter discussed above. 
By examining the upper half of AX, you know what type of BIOS request is 
being made. If it is OxOe, then you can look at the lower half to know what the 
character is. 

Let's use this principle to gain control of the clock program. Suppose we wanted 
to make the second line (the one with the delta) optional. In addition, let's add a 
reset for the delta time. The user might want to reset the delta counter at the 
beginning of each new task. At the end of the task, he or she can write down the 
amount of time spent, perhaps for IRS purposes, and then reset it for the next 
task. 
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Back in Prg9 _2a, this would have been easy (everything was easier back then). 
Since the clock was a part of the executing program, this program had access to 
all of its variables. We would merely have invented some flags to control the 
clock's output and then defined a command for setting these flags. Of course, this 
would ·only have worked as long as the user remained within Prg9 _2a. 

Prg9 _2c is not a part of the currently executing program. There is no direct 
connection between them, and it is not desirable for one to directly access the 
memory of the other. However, it is possible. The currently executing program 
could fetch the address of Prg9 _2c from the vector to gain access to its memory. 
The program might know that a particular variable is some fixed offset from the 
beginning of the interrupt function. I mention this only to point out what a bad 
idea this is. Besides being very prone to error, this precludes another interrupt 
borrower getting in the chain after Prg9 _2c. 

A better approach would be to store the address of the flags into an otherwise 
unused interrupt. A control program could then come along later, fetch the 
address of the flags, and set them appropriately. This approach, while still not 
very structured, is much better than the one above. There are plenty of interrupts 
up in the higher areas that go, otherwise, completely unused. Many programs, 
including DOS itself, use this approach. If you do happen to be unlucky enough 
to encounter some other TSR trying to use the same interrupt, however, your 
program crashes. This is one reason why some TSRs cannot coexist in the same 
machine. 

There is a better approach. Certain characters are very unusual during output. 
You could borrow interrupt Oxl 0 and watch for one or two of these very unusual 
characters. For example, you might toggle the second line whenever you saw the 
character - and reset it upon encountering '. (While not a wise choice with 
Spanish or French, it works fine with English. In any case, with only slightly 
increased complication, you could use a whole string of unlikely characters to 
completely remove the possibility of accidentally resetting the clock.) Prg9_2d 
appears below, rewritten exactly along these lines. 

1( OJ: /*Prg9_2d -- Display a clock on the screen w/ Keyboard Control 
2( OJ: by Stephen R. Davis, 1987 
3 [ OJ: 
4( OJ: This program should be compiled under the TINY memory 
5( OJ: mode and may then be converted into .COM file using the command: 
6 [ OJ: 
7( OJ: EXE2BIN PRG9_2D.EXE PRG9_2D.COM 
8 [ OJ: 
9( OJ: It can also be executed as an .EXE file. Do not execute from IDE! 

10 [ OJ: 
11( OJ: This version adds the capability that the delta time can be 
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12 [ 
13 [ 
14 [ 
15[ 
16 [ 
17 [ 
18 [ 
19( 
20( 
21 [ 
22 [ 
23( 
24( 
25( 
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28[ 
29[ 
30 [ 
31[ 
32 [ 
33( 
34 [ 
35 [ 
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38 [ 
39( 
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41( 
42 [ 
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45( 
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47( 
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49 [ 
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53 [ 
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56[ 
57 [ 
58[ 
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61( 
62 [ 
63 [ 
64 [ 
65[ 
66( 
67 [ 
68 [ 
69( 
70( 
71 [ 
72 [ 
73[ 
74[ 
75[ 

OJ: 
OJ: 
OJ: 
OJ: 
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hidden by entering '-' and cleared by entering '' '. This is 
only intended as an example of a full TSR type program. 
(This version makes allowances for its own stack so that 
SSTACK should not be necessary.) 

OJ: */ 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
0]: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
lJ: 
lJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
OJ: 
lJ: 
lJ: 
2J: 
2J: 
2J: 
2J: 
2J: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 
lJ: 

#include <stdio.h> 
#include <dos.h> 
#include <stdlib.h> 
#include <process.h> 

#ifndef TINY - -
#error Should use TINY compilation model 

#endif 

/*first the prototyping definitions*/ 

void interrupt clock (void); 
void display (int, int, int); 
void out (char*, int, int); 
void interrupt screenout(unsigned, unsigned, unsigned, unsigned, 

unsigned, unsigned, unsigned, unsigned, 
unsigned); 

void init (void); 

/*define our data structures*/ 

union 
long !time; 
int stime [2J; 

} p; 
struct REGS regs; 
void interrupt (*oldclock) (void); 
void interrupt (*oldscreen) (void); 
int prevtime, time, minute, hour, dflag, 
char buffer (6J; 

int far *screen; 
char digits [J = {"0123456789"}; 

/*allocate space for our own stack area*/ 

int savess, savesp, sflag; 
char stack [OxlOOOJ; 

temp; 

/*Clock - grab the interrupt and provide the function*/ 
void interrupt clock (void) 
{ 

/*put in our own stack*/ 
if ( ! sflag) { 

savesp = _SP; 
savess = _SS; 
_ex (int)&stack[sizeof(stack)J; 
_SS _OS; 

SP _CX; 

sflag++; 

/*get the current time (long format) using the BIOS call 
la. Divide this down into number of minutes (short 
format).* I 

regs.h.ah = O; 
int86 (Oxla, &regs, &regs); 
p.stime [OJ = regs.x.dx; 



76 [ lJ: 
77 [ lJ: 
78 [ lJ: 
79 [ l J : 
80 [ lJ: 
81 [ lJ: 
82 [ lJ: 
83 [ lJ: 
84 [ lJ: 
85 [ lJ: 
86 [ lJ: 
87 [ lJ: 
SS [ l J: 
89 [ lJ: 
90 [ l J: 
91 [ lJ: 
92 [ lJ: 
93 [ lJ: 
94 [ lJ: 
95 [ 2J: 
96 [ 2J: 
97 [ lJ: 
98 [ OJ: 
99 [ OJ: 

100 [ OJ: 
101 [ OJ: 
102 [ OJ: 
103 [ OJ: 
104 [ OJ: 
105 [ lJ: 
106 [ l J : 
107 [ lJ: 
108 [ lJ: 
109 [ lJ: 
llO [ lJ: 
lll [ lJ: 
ll2 [ lJ: 
113 [ lJ: 
114 [ lJ: 
ll5 [ lJ: 
ll6 [ lJ: 
ll 7 [ OJ: 
ll8 [ OJ: 
ll9 [ OJ: 
120 [ OJ: 
121 [ OJ: 
122 [ OJ: 
123 [ OJ: 
124 [ l J : 
125 [ lJ: 
126 [ lJ: 
127 [ l J : 
128 [ lJ: 
129 [ OJ: 
130 [ OJ: 
131 [ OJ: 
132 [ OJ: 
133 [ OJ: 
134 [ 0 J : 
135 [ OJ: 
136 [ OJ: 
137 [ OJ: 
138 [ OJ: 
139 [ l J: 
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p.stime [lJ = regs.x.cx; 
time = (int) (p.ltime I (long) 1092); 

/*now display the current time in 24 hour format*/ 
display (time, 0, 75); 

/*then display the delta*/ 
if (prevtime == -1) 

prevtime = time; 
if ((time-= prevtime) < 0) 

time+= (24 * 60); 
if (dflag) 

display (time, 1, 75); 

/*pass control on to the next interrupt routine*/ 
( * oldclock) () ; 

/*now restore caller's stack*/ 
if ( !--sflag) { 

SS savess; 
SP = savesp; 

/*Display - put a time on the screen in the position indicated. 
Remember we can't do any DOS calls here.*/ 

void display (number, y, x) 
int number, x, y; 

hour = number I 60; 
minute _DX; 

/*stuff this into an ascii buffer 
buffer [OJ digits [hour I lOJ; 
buffer [ lJ digits [hour % lOJ; 
buffer [2J '.'. 
buffer [3J digits [minute lOJ; 
buff er [ 4 J digits [minute lOJ; 
buffer [5J '\0'; 

out (buffer, y, x); 

for output*/ 

/*Out - out a string onto the screen w/o using system call*/ 
void out (buffer, y, x) 

char *buffer; 
int y, x; 

int far *scrptr; 

scrptr =screen+ (y * 80 + x); 
while (*buffer) 

*scrptr++ = Oxl700 + *buffer++; 

/*Screenout - examine characters being 
int OxlO. When a ''' is 
the duration clock; if a 
the delta display on and 

void interrupt screenout (bp, di, si, 
dx, ex, bx, 

unsigned ax, bx, ex, dx, si, di, 

/*check for our characters:*/ 

output using 
encountered, 

I - I is seen, 
off.*/ 

ds, es, 
ax) 
bp, ds, es; 

BIOS 
clear 
toggle 

379 
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if ((temp= (ax & OxffOO)) == Ox0900 
I I temp == OxOeOO) 

if ((temp= (ax & OxOOff)) == '' ') 
prevtime = -1; 

if (temp == ' - ') 
dflag = ! dflag; 

/*pass control onto BIOS routine to get character*/ 
AX ax; 
BX bx; 
ex ex; 

_DX dx; 
(*oldscreen) (); 
ax _AX; 
bx _BX; 
ex _CX; 
dx _DX; 

/*Main - install the above routine.*/ 
main () 

init (); 
oldclock = getvect (Oxlc); 
oldscreen = getvect (OxlO); 
setvect (Oxlc, clock); 
setvect (OxlO, screenout); 

keep (0, OxlOOO); 

/*set screen pointer*/ 

/*Init - set the screen address and clear the screen*/ 
void init () 
{ 

#define mono (int far *)OxbOOOOOOO /*for mono displays ... */ 
#define cga (int far *)Oxb8000000 /* ... for ega and cga*/ 
int mode; 

prevtime = -1; dflag l; 

regs.h.ah = OxOf; 
int86 (OxlO, &regs, &regs); 
mode = regs.h.al; 
if (regs.h.ah != 80) 

abort (); 

if (mode == 7) 
screen mono; 

else 
if (mode 3 I I mode 

screen cga; 
else 

abort (); 

/*fixed to 80 columns*/ 

2) 

Prg9 _2d is very similar to its forebears except for the addition of the interrupt 
function screenout( ). If you examine main() you see that this routine gets 
installed into interrupt OxlO at the same time that clock() gets stuffed into Oxl c. 
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Screenout() watches interrupt OxlO BIOS calls. Those that have nothing to do 
with outputting a character (all but Ox09 and OxOe) are passed on without change. 
When a character is being output, the value of the character is checked for one of 
the special characters. When one is encountered, the corresponding action is 
taken. Notice that screenout() can manipulate the critical variables since it is in 
the same program as clock() (even though it borrows a different interrupt) and, 
therefore, has access to all of its data. (The critical variables are the previous 
time and DFLAG, which is used to control the display of the delta time.) 

Notice how screenout() calls the interrupt routine on line 153. Arguments cannot 
be passed to a function declared to be of type I NT ERR U PT in the normal 
fashion. Even if they could, the BIOS routine was not written in Turbo C. It 
expects its arguments in the registers. Therefore, use the pseudovariables to load 
the registers on lines 149 through 152 and then store the returned values back 
into the registers on line 154 through 157. (A safer but lengthier approach would 
be to place the address stored in OLDSCREEN into an unused interrupt vector 
and then apply our trusty int86( ).) 

You should be very careful about using pseudovariables in this fashion. When 
you load a value into a register such as _AX, there is nothing to keep Turbo C 
from using the register itself and destroying its contents. To avoid this, such 
transfers should be kept very simple. Specifically, you should not transfer 
elements of arrays or structures into registers directly or values returned from 
functions. Instead, all such values should first be held in simple variables that 
can then be transferred to the pseudovariables as the very last step before making 
the call. The same applies in reverse for storing the registers after the call. 

AX argl [i]; 

BX regs.arg2; 

instead 

templ = argl [i]; 
temp2 = regs.arg2; 

AX = templ; 
_BX = temp2; 

/*won't work*/ 

/*much better*/ 

One other problem that Prg9 _2d addresses is that of stack space. Prg9 _2b and 
Prg9 _2c had a problem with using too much stack under certain conditions. 
Under DOS 3.0 and earlier this did not seem to be a problem but this lead to a 
crash with DOS 3.1 and later. The program SSTACK was introduced to solve 
the problem, but that really wasn't satisfactory. 
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The problem is that Turbo C, like most high level languages, makes a lot of 
demands on stack space. This is particularly true if there are lots of subroutine 
calls with lots of arguments being passed about. Generally, the calling function 
has only allocated enough stack for its needs with a little extra thrown in. 
Hopefully, you will have enough room to save off the registers upon entry, but 
one of the first things you should do is set up your own, king-sized stack. 

Prg9 _2d demonstrates how this is done. Lines 62 and 63 first save off the old 
stack pointer. Lines 64 through 66 then direct the stack pointer at a large block 
of unused memory declared within the program. Since stacks grow downward in 
memory, we must start with the stack at the last word in this block instead of 
offset 0. The pseudovariable _CX is used to insure that _SS and _SP get set in 
succeeding machine instructions with _SS being stored first. The 8086 
microprocessor requires this convention lest an interrupt come in the middle of 
initializing these values. (Interrupts are disabled for one instruction after the SS 
is loaded to allow SP to set up also.) The flag SFLAG insures that the program 
does not set the stack twice in a row in the unlikely event that it interrupts itself. 
Lines 95 and 96 restore the caller's stack before returning. (Prg9 _3d does not 
require SSTACK.) 

How does this program work? Try executing the following command program: 

#include <stdio.h> 
#include <dos.h> 

struct REGS regs; 

main () 

regs.h.ah OxOe; 
regs.h.al '-'; /*for delta toggle*/ 

/*regs.h.al '' ';*/ /*for reset delta time*/ 
regs.h.bl Ox07; 
int86 (OxlO, &regs, &regs); 

Of course, you would add some printf() text to tell the user what is happening and 
you might even get fancy by allowing switches or a menu to indicate the user's 
preference, but the principle is the same. Notice that the - and 'do appear on the 
screen. Had it been desirable, you could just as easily have suppressed them from 
appearing by not making the call to (*oldclock)() for these characters. 

But it isn't really necessary to go to all this trouble. DOS uses the BIOS 
routines to output to the screen. Once installed, Prg9 _2 is, in fact, examining 
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every character DOS outputs, waiting for either of its special chaacters. Simply 
entering - or ' at the keyboard will cause DOS to echo the character via interrupt 
OxlO and influence our program. 

Commercial TSRs use the very same principles of operation I have presented 
here. If a program borrows both the input and output BIOS routines, it has 
control in both directions. It's pretty much like the Twilight Zone: it has 
control of the vertical and the horizontal. Such a program can modify the 
operation of the PC in almost every way conceivable. 

Much as we defined special output characters to control the program, we also 
could have defined special input characters by borrowing interrupt Oxl 6. When 
one of these characters appeared on our input doorstep, we might have opened a 
window on the screen, as done back in Chapter 7, and put any type of menu 
desired. These special input characters are known as hot keys and form the entry 
key into many TSR wonders. (In our example, - and' were hot characters.) The 
only thing to remember here is that you are pretty much on your own. Without 
being in the Turbo C environment, you should not make too much use of the 
Turbo C library. 

DOS Calls from TSRs 

Early .on I made the flat statement that Terminate and Stay Resident programs 
should not make calls to the DOS operating system. This stemmed from the fact 
that DOS is built nonreentrantly. Under certain conditions you can make DOS 
calls without any problems, however. 

In some cases you can logically deduce that DOS can not possibly be active. The 
most obvious case is if you have just defined a new interrupt that you intend to 
execute from user programs. Being of your own invention, it is not possible that 
DOS can execute such an interrupt, and you can make system calls with 
impunity. This does not apply to old BIOS interrupts that have simply been 
rerouted through new interrupt numbers. This only applies to truly new routines. 

In addition, it turns out that DOS actually maintains two stacks: one for calls 0 
through OxOc and another for calls OxOd and up. This means that these two 
sections of DOS are actually reentrant with respect to each other. Why this 
should be, I have no idea, but you can use this fact to your advantage. For 
example, the screen BIOS call can only be made from one of two places: either 
from user code or from the DOS calls below OxOc. Therefore, screen BIOS 
borrowers are free to make DOS calls above OxOa, which includes the disk 
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handling calls. By the same token, handlers that borrow the disk handling 
interrupts are free to use the screen output DOS calls below OxOc. 

Random interrupts, including the timer, can interrupt DOS at almost any time. 
If it becomes imperative to make DOS calls from routines that borrow these 
interrupts, t~en the programmer must install what is known as a sentry. In its 
simplest form, the programmer writes a second interrupt borrower, much as you 
did with Prg9_2d to watch interrupt OxJO. This handler is quite simple. Inserted 
into the path of interrupt Ox21, the DOS system call interrupt, it increments a 
flag whenever a DOS call is made and decrements the flag whenever it returns. 
All other interrupt routines can examine the flag. If it is greater than 0 then DOS 
is active and the program cannot safely make a DOS call; if it is 0, then there is 
no danger. 

If an interrupt occurs and the handler cannot make a DOS call because the sentry 
indicates that DOS is active, it usually returns, waits for the next timer interrupt 
and tries again. If you have ever noticed that occasionally SideKick beeps at you 
when you try to enter, this is exactly what has happened. SideKick has 
determined that DOS is active, so it beeps the speaker and goes to sleep for a few 
clock ticks until it can return and try again. After three retries it gives up. 

DOS sentries are generally fairly simple to write. There are only two problems. 
One is system call 0, the Terminate call. This DOS call requires the code 
segment of the calling program. By revectoring interrupt Ox21, you will change 
the caller's code segment and confuse DOS and the call will not work. This is 
easily solved by substituting within the sentry the Terminate Process call, Ox4c, 
for DOS call 0. This call has all of the capabilities and does not require the code 
segment of the caller. 

The second problem is a little tougher. If you were to watch your sentry you 
would notice that you are almost constantly in DOS as long as you are sitting at 
a C 0 MM AND. C 0 M prompt. This means that while you are entering 
commands such as CD, DIR, etc. your interrupt handler will have little chance to 
sneak in. There are several ways out of this problem. Some involve holding the 
first key, or, sometimes, the entire command until the return is entered before 
returning control back to DOS. 

Many programs rely instead on the undocumented DOS interrupt Ox28. As long 
as COMMAND.COM is waiting for a command, it seems to continuously 
execute this interrupt. Its function is unclear, but this fact can be used to 
determine whether DOS is merely waiting for more input. If so, the interrupt 
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program is free to execute system calls above OxOc. This trap may be used by 
itself or in conjunction with a sentry. 

Interfacing Turbo C with Other Languages through 
Interrupts 

You have already seen how you can write your own interrupt handlers. So far 
you have been writing handlers for interrupts that were already defined. By 
extension, you can just as easily define new interrupts and write programs for 
them. You might extend the BIOS routines by defining newer, more powerful 
routines. Having written and installed such handlers, you can invoke them from 
your user programs. 

This is not all that exciting of a development. Programs written relying on these 
interrupts will require the interrupt handlers to be installed before they can 
properly execute. This being the case, you could just as easily have included the 
interrupt code within the user program itself. There is one case, however, where 
there is a decided advantage to having a separate interrupt handler. 

The interface to the BIOS routines is very simple. Since it is common to want 
to call these routines from time to time, every langauge written for the PC 
includes a mechanism for loading up registers and executing an interrupt. This 
being the case, your Turbo C interrupt handler can be invoked from any other 
language, once installed in an unused interrupt using the same mechanism used to 
access the BIOS. While this technique is a bit clumsy, it does avoid all of the 
stack and library hassles inherent in attempting to link the objects from two 
different languages into the same executable file. 

For example, consider Prg9 _3 below. This program is written to define a new 
interrupt Ox48, which beeps the speaker. It has two subfunctions. Passing it a 0 
in _AX sets the frequency of the beep, but does not actually beep the speaker. 
Passing it a 1, beeps the speaker at the current frequency and for the duration 
indicated in register _DX. Time is measured in units of clock ticks. 

1 [ OJ: 
2 [ OJ: 
3 [ OJ: 
4 [ OJ 
5 [ OJ 
6( OJ 
7 [ OJ 
8 [ OJ 
9 [ OJ 

10( OJ 
11 [ OJ 

/*Prg9_3 -- Define a new "BIOS" function for Turbo Pascal 
by Stephen R. Davis, 1987 

Using more or less the same approach as we took with the other 
interrupt programs, we can assign any function we desire to 
a new interrupt. This function defines a new BIOS routine for 
beeping the speaker -- included are 2 subfunctions, which we 
invoke exactly like the BIOS subfunctions. 

This function can be invoked from any computer language which 
can perform software interrupts. This is one way of "linking" 
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12 [ OJ: 
13 [ OJ: 
14 [ OJ: 
lS [ OJ: 
16 [ OJ: 
17 [ OJ: 
18 [ OJ: 
19 [ OJ: 
20 [ OJ: 
21 [ OJ: 
22 [ OJ: 
23 [ OJ: 
24 [ OJ: 
2S [ OJ: 
26 [ OJ: 
27 ( OJ: 
28 [ OJ: 
29 [ OJ: 
30 ( OJ: 
31 [ OJ: 
32 [ OJ: 
33 ( OJ: 
34 [ OJ: 
3S [ OJ: 
36 ( OJ: 
37 ( OJ: 
38 [ OJ: 
39 ( OJ: 
40 [ OJ: 
41 [ 1 J: 
42 [ lJ: 
43 [ 2J: 
44 ( 2J: 
4S ( 2J: 
46 [ 2J: 
47 ( 3J: 
48 ( 3]: 
49 [ 3]: 
so [ 4J: 
Sl ( 4J: 
S2 [ SJ: 
S3 [ SJ: 
S4 ( SJ: 
SS [ SJ: 
S6 [ SJ: 
S7 ( 4J: 
S8 [ 3J: 
S9 [ 3J: 
60 ( 2J: 
61 [ lJ: 
62 [ OJ: 
63 [ OJ: 
64 [ OJ: 
6S [ OJ: 
66 [ OJ: 
67 [ OJ: 
68 ( lJ: 
69 [ lJ: 
70 [ OJ: 

TURBOC 

Turbo C with other computer languages. 
*/ 

#include <stdio.h> 
#include <dos.h> 

#ifndef ~TINY~ 
#error Should use TINY compilation model 

#endif 

/*first the prototyping definitions*/ 

void interrupt beep (unsigned, unsigned, unsigned, unsigned, 
unsigned, unsigned, unsigned, unsigned, 
unsigned); 

/*define our data structures*/ 

unsigned freq, duration, prev, pclock, i; 
#define clock ((volatile unsigned far *)Ox0040006c) 

/*Beep - beep the speaker. We define 2 subfunctions according 
to the value in AX: 
0 - set the frequency, DX - contains the loop count 
1 - beep. Duration in clock ticks is in DX*/ 

void interrupt beep (bp, di, si, ds, es, 
dx, ex, bx, ax) 

unsigned ax, bx, ex, dx, si, di, bp, ds, es; 

enable (); 
switch (ax) 

case 0: 

/*re-enable interrupts*/ 

/*set the frequency (in arbitrary units)*/ 
freq = dx; 
break; 

case 1: {/*beep the speaker for 'dx' clock ticks*/ 
prev = inportb (0x61); 
duration = dx; 
while (duration--) { 

pclock = *clock; 
while (pclock == *clock) { 

/*go ahead and beep a cycle*/ 
outportb (0x61, prev & Oxfc); 
for (i = 0; i <freq; i++); 
outportb (0x61, prev I Ox02); 
for (i = 0; i <freq; i++); 

outportb (0x61, prev); 

/*Main - install the above routine.*/ 
main () 

setvect (0x48, beep); 
keep (0, OxlOOO); 

This program isn't too remarkable, given what you already know from the 
Prg9 _2 series of interrupt handlers. The actual code to beep the speaker (lines 
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51-57) was taken more or less directly from the Turbo C Reference. The 
duration is determined by examining the lower word of the time of day stored in 
lower memory (see Chapter 7). Of course, Prg9_3 could have been made as 
complicated as desired. I could have invented a subfunction to play Beethoven's 
"Fifth Symphony". I could also have defined as many different subfunctions as 
necessary. Either way the principle is the same. 

This interrupt routine must be invoked from a second program. In this case (to 
make a point) I have written the invoking function in Turbo Pascal. It is not 
without reason that I have chosen this language. Since Turbo Pascal does not 
generate a .OBJ file, nor go through a link step, it is not possible to combine 
Turbo Pascal with other languages in any other way. I could just as well have 
written the invoking program in Microsoft Fortran, Ryan- McFarland Cobol, 
Mark-Willian's C, or whatever. I can even invoke this routine from most 
interpretive languages. 

{Prg9_3 - Invoke the Turbo C Interrupt Beep Routine 
by Stephen R. Davis, 1987 

Install the Turbo C beep routine first. Then execute this 
program. This shows that any language capable of executing 
interrupt routines can be interfaced with Turbo C. This is 
similar to the interface to BIOS routines} 

program Prg9_3; 

type 

var 

begin 

registers = record 
case Integer of 

(ax, bx, ex, dx, bp, si, 
di, ds, es, flags : Integer); 

2 : (al, ah, bl, bh, cl, ch, 
dl, dh : Byte); 

end; 

freq, duration : Integer; 
regs : registers; 

WriteLn ('This is a simple test of invoking a Turbo C'); 
WriteLn ('interrupt routine from another language.'); 
WriteLn; 
WriteLn ('Enter any frequency and duration desired.'); 
WriteLn ('Turbo Pascal will beep using the Turbo C routine.'); 
WriteLn ('For example: 20 10'); 
WriteLn ('(units of freq are loop counts units of duration'); 
WriteLn (' are clock ticks -- a duration of zero terminates)'); 
WriteLn; 

repeat 
Write ('Enter freq and duration:'); 
ReadLn (freq, duration); 
WriteLn; 
If duration>= 18*10 then {reduce durations of ... } 

duration := 18; { ... > 10 secs to 1 sec} 
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end. 

end. 

regs.ax := 0; {set the frequency} 
regs.dx := freq; 
intr ($48, regs); 

regs.ax := 1; {now beep duration} 
regs.dx := duration; 
intr ($48, regs) 

until (duration= 0); 
WriteLn; 
WriteLn ('Thats all') 

Whether you are familiar with Turbo Pascal or not, you will recognize the 
essential elements. A structure is defined to contain the registers. Values are 
stored into this structure, and the structure is passed to the interrupt, in this case 
using the statement INTR ($48,REGS). The program first sets AX to 0 and 
performs the call to set the frequency. It then calls INTR ($48) again with 
AX = 1 to perform the actual beep for the indicated duration. 

Conclusion 

Interrupt handlers, both of the borrowing and stealing variety, are painfully 
difficult to write. Invariably, debugging such routines involves a certain amount 
of assembly language. In addition, a very thorough understanding of the 8086 
family of microprocessors is required to get these programs working. In general, 
it is not a good idea to attempt such a project without some background in 8086 
assembly language. 

Even worse than writing them, these routines are notoriously difficult to debug. 
A good assembly level debugger is an absolute necessity. The assembly 
language output from TCC -B can be very helpful in this regard also. The 
biggest hinderance to debugging interrupt routines is that you can't just stop the 
computer. Once you have installed a routine into an interrupt, it is going to get 
executed every time that interrupt occurs, whether it works or not. 

There are some debuggers especially designed for interrupt work. These debuggers 
uninstall interrupt handlers on every breakpoint. Even without one of these 
debuggers, it is still possible to write such handlers if you can demonstrate good 
self discipline. 

First, you must always get all of your functions working properly as regularly 
called routines. All forms of input should be attempted. Print statements can be 
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added to the routines to display intermediate values to make sure that all is going 
as expected. Normal source code debuggers can also be employed at this point. 

Second, install the program into a harmless, unused interrupt. Write a small 
program which invokes this interrupt and execute it under the debugger. Using 
the debugger, you can inject test data and watch your program process it. Single 
step through the entire program at least once. Make sure that the registers and 
stack are properly restored upon return to the calling program. It is this step that 
most programmers skip and this is probably the most important of them all. 

Finally, only now attempt to install your program into its intended interrupt. 
When problems arise, characterize them and then drop· back to step two before 
fixing them. If your program intercepts more than one interrupt, move one 
interrupt at a time over to its intended location. If you move them all at once and 
your program dies, you have no idea which interrupt was the culprit. 

Although difficult to write, interrupt handlers are very impressive in what they 
can do. In their day, Borland's SideKick and Rosesoft's Prokey were very popular 
items. These products would not have raised a single eyebrow had they been 
written as normal, stand-alone utilities. It was only the instant, pop-up action 
that made them so popular. 

It is much to the credit of the inventors of Turbo C that so much support for 
such handlers is built into Turbo C. Hopefully, with these example programs as 
a shell from which to start, the reader will enjoy Turbo C all the more in this 
new arena of programming. 





Conclusion 

I have covered several topics germane to Turbo C on the IBM PC 
microcomputer. I have gone from basic pointers through linked lists and direct 
screen access, and from DOS calls all the way through to writing one's own 
terminate and stay resident popup utility in Turbo C. Although it is impossible 
to cover every concievable topic, I have tried to present a sufficient cross section 
to give any programmer a head start into the world of Turbo C on the PC. I 
would now like to leave you with a few parting thoughts. 

Do not attempt to remember individual programs presented in this text, no matter 
how cute (or ugly) they might have been. I hope the reader comes away not with 
a few programs designed to solve particular problems, but with the beginnings of 
a toolkit of programming techniques that can be applied to all different types of 
problems. As they used to tell me as a young physics student, it is sufficient 
only that you remember the thought processes behind the programs-you can 
always recreate the programs. 

If you intend to program in Turbo C, you must live Turbo C. Don't adopt the 
timid attitude of limiting yourself to some subset of the language, such as that 
which most resembles BASIC or some other language with which you are already 
familiar. By the same token, don't limit yourself to one set of programming 
techniques for solving problems. For better or worse you have decided to 
program in Turbo C. Immerse yourself in the language. 

Adopt the C approach to programming. Analyze the problem carefully before 
starting. Build the scaffolding for the solution in your mind before you ever 
place the first brick at the keyboard. Build your program from the ground up. If 
you decide to define a new data structure, for example, write a single routine to 
create it, another to delete it and a third to access data out of it, if at all possible. 
Bundle together all the routines that directly access this data type into one module 
apart from routines designed to serve unrefated functions. Test these routines 
well before integrating them together with the rest of the system. 
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Make your routines as general as is reasonable-at the beginning of a project 
only one thing is certain: the requirements will change before you are finished. 
Making procedures restrictive invites the need to modify them long after they 
have been integrated with the rest of the system, and are difficult to retest. 

When you have written and tested a nice, general purpose procedure, do not be 
afraid to document it and add it to your library. A mechanic doesn't start 
removing a screw by building a screw driver. Even if he did, he certainly 
wouldn't throw it away after the job was complete, only to build another one 
when he encounters a screw on the next job. Don't be afraid to add procedures to 
your library from other sources, such as books and magazines. Don't re-program 
solutions you already have just to prove you can. Keep a careful log book so 
you can remember what is in your library. Collect programming tools into an 
even more powerful programmer's workbench from which you can draw. The 
result is not only a better programmer, but one who has the freedom to enjoy 
solving new problems without constantly resolving the same old ones. 

Borland's languages have gained quite a following in the programmer community, 
as has the C programming language. The combination should stay with us for 
quite some time. 



Appendix 1 

DOS Function Calls 

The following represents a truncated list of the MS- and PC-DOS operating 
system calls. All of these are accessed by loading the AH register with the 
indicated value and performing an interrupt Ox21. This list does not explain in 
detail some of the more unusual function calls. Programmers intending to make 
direct use of these system calls should purchase a text describing the DOS calls in 
more detail, such as the MS-DOS Programmer's Reference from Microsoft 
Corporation. (Note that function calls after Ox58 are only available on DOS 3.0 
and later.) 

System 

Cal.l. 

Description 

Input 

Output 
00 Program Terminate 
01 Keyboard Input 

AL = Character (WAITS AND ECHOS) 
02 Display Output 

DL = Character 
03 AUXiliary Input (ASYNCHRONOUS COMMUNICATIONS 

ADAPTER) 
AL returns Character (WAITS) 
- unbuffered and non interupt driven 
- DOS bootup is 2,400 baud 

no parity 
one stop bit 
8-bit word 

04 AUXiliary Output (ASYNCHRONOUS COMMUNICATION 
ADAPTER) 

DL = Character 
05 Printer Output 

DL = Character 
06 Console I/O DIRECT (does not wait) 

If DL = FF 

If DL < FF 

AL returns Character Read from Std. Input Device 
Zero Flag returns 0 if SUCCESSFUL 

1 if character not ready 

Character In DL Output to Std. Output Device 
No checks for Ctrl-Break or Ctrl-PrtSc 

07 Console Input DIRECT (WAITS AND NO ECHO) 
AL returns Character 

*** No checks for Ctrl-Break or Ctrl-PrtSc 
08 Console Input ( WAITS AND NO ECHO ) 

AL returns Character 
09 Output String (Output to Std. Output Device (display)) 

DS:DX Pointer To Start of String (string should end 
with Ox24 ($) 
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OA 

OB 

TURBO C 

Buffered Keyboard Input 
DS:DX = Pointer To Input Buffer 

(First byte specifies the buffer capacity) 
(Second byte is set to the number of Characters in buffer) 
(Characters are read UNTIL a carriage return is read) 

Check Standard Input Status 
AL Returns FF if character available 
AL Returns 00 otherwise 

OC Clear Keyboard Buffer and Invoke a Keyboard Function 
AL= Function to be Executed (Only 1,6,7,8,A allowed 

OD Disk Reset 
Flushes all file buffers 

OE Select Disk Default 
DL = Drive number (O=A, l=B) 

AL Returns total number of drives 
OF Open File 

DS:DX Point to an unopened FCB 
AL Returns 00 IF File found, else Oxff 

10 Close File 
DS:DX Point to an unopened FCB 

AL Returns 00 IF File found, else Oxff 
11 Search for the First Entry 

DS:DX Point to an unopened FCB 
AL Returns 00 IF File found, else Oxff 

12 Search for the Next Entry 
DS:DX Point to an unopened FCB 

AL Returns 00 IF File found, else Oxff 
13 Delete File 

DS:DX Point to an unopened FCB 
AL Returns 00 IF File found, else Oxff 

14 Sequential Read 
DS:DX Point to an unopened FCB 

AL Returns 00 if successful 
01 if end-of-file 
02 if OTA too small 
03 if end-of-file, partial read 

15 Sequential Write 

16 

17 

19 

DS:DX Point to an unopened FCB 

Create File 
DS:DX Point 

Rename File 
DS:DX Point 

Current Disk 

AL Returns 00 if successful 

to 
AL 

to 
AL 

01 if end-of-file 
02 if OTA too small 

an unopened FCB 
Returns 00 IF empty slot found, else Oxff 

an unopened FCB 
Returns 00 IF File found, else Oxff 

AL Returns default drive code (O=A,l=B,etc.) 
lA Set Disk Transfer Address 

DS:DX = new address to be installed 
18 Get Default Drive Data (DEFAULT DRIVE) 

AL - sectors per cluster 
ex - bytes per sector 
DX - clusters per drive 
DS:BX - pointer to FAT ID 

lC Get Drive Data 
DL = drive (0 -> default, 1 -> A, etc) 

AL - sectors per cluster 
ex - bytes per sector 

21 Random Read 

DX - clusters per drive 
DS:BX - pointer to FAT ID 

DS:DX Point to an unopened FCB 
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AL Returns 00 if successful 
01 if end-of-file 
02 if DTA too small 
03 if end-of-file, 

22 Random Write 
DS:DX Point to an unopened FCB 

23 File Size 

AL Returns 00 if successful 
01 if end-of-file 
02 if OTA too small 

DS:DX Point to an unopened FCB 

partial read 

AL Returns 00 IF empty slot found, else Oxff 
24 Set Relative Record Field 

DS:DX Point to an unopened FCB 
25 Set Interrupt VECTOR 

AL Interupt Type (number) 
DS:DX = Address of New Routine 

26 Create a New Program Segment (Use Function 48) 
27 Random BLOCK Read 

ex = number of blocks to read 
DS:DX Point to an unopened FCB 

AL Returns 00 if successful 
01 if end-of-file 
02 if DTA too small 
03 if end-of-file, partial read 

ex = number of blocks read 
28 Random BLOCK Write 

CX = number of blocks to write 
DS:DX Point to an unopened FCB 

AL Returns 00 if successful 
01 if end-of-file 
02 if DTA too small 

ex = number of blocks written 
29 Parse Filename 

AL controls parsing 
bit 0 0 -> stop parsing if file seperator present 
bit 1 0 -> set drive number to O if no drive present 
bit 2 0 -> set filename to blanks if not present 
bit 3 0 -> set file extension to blanks if not present 

DS:SI point to string to parse 
ES:DI point to buffer for FCB 

AL 00 if no wildcards 
01 wildcards found 
FF error 

DS:SI point to first char after 
2A Get DATE 

AL Returns DAY OF WEEK 
ex Returns YEAR 
DH Returns MONTH 
DL Returns DAY 

28 Set DATE 
CX:DX = DATE 

AL Returns FF if Unsuccessful 
2C Get TIME 

CH Returns HOURS 
CL Returns MINUTES 
DH Returns SECONDS 
DL Returns 1/100 SECONDS 

20 Set TIME 
CX:DX = TIME 

AL Returns FF if Unsuccessful 
2E Set/Reset VERIFY switch 

AL = 1 -> enable verify, 0 -> disable verify 
2F Get OTA 

field 
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ES:BX point to OTA area 
Get DOS Version Number 

AL major version 
AH = minor version 
BH = OEM serial number 
BL:CX = serial number 

31 Terminate Process and Remain Resident 
AL = return code 
DX = memory size [paragraphs) 

33 CTRL-BREAK Check 
AL 0 -> get check, 1 -> set check 
DL = 0 -> off, 1 -> on (if AL 1) 

DL = 0 -> off, 1 -> on (if AL 0) 
35 Get Vector 

AL = Interrupt Number 
ES:BX Return Interrupt Vector (CS:IP of routine) 

36 Get Free Disk Space 
DL = drive (0 -> default, 1 -> A, etc) 

AX sectors per cluster (-1 on error) 
BX available clusters 
ex bytes per cluster 
DX clusters per drive 

38 Return Country Dependent Information 
39 MKDIR 

DS:DX point to pathname 
CY = 1 -> error, AX contains error code 

3A RMDIR 
DS:DX point to pathname 

CY = 1 -> error, AX contains error code 
3B CHOIR 

DS:DX point to pathname 
CY = 1 -> error, AX contains error code 

3C CREATE a File Handle 
DS:DX point to pathname 

AX contains file handle 
CY = 1 -> error, AX contains error code 

3D OPEN a File 
AL contains access code 
DS:DX point to pathname 

AX contains file handle 
CY = 1 -> error, AX contains error code 

3E CLOSE a File Handle 
BX contains handle 
DS:DX point to pathname 

CY = 1 -> error, AX contains error code 
3F Read From File or Device 

BX = file handle 
ex = bytes to read 
DS:DX points to buffer 

AX = bytes read 
CY = 1 -> error, AX contains error code 

40 Write To a File or Device 
BX = file handle 
ex = bytes to write 
DS:DX points to buffer 

AX = bytes written 
CY = 1 -> error, AX contains error code 

41 Delete a File From a Specified Directory 
DS:DX points to filename 

CY = 1 -> error, AX contains error code 
42 Move File Read/Write Pointer 

AL = method of moving 
BX = handle 
CX:DX = distance in bytes 
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DX:AX new read/write pointer location 
CY ='l ->error, AX contains error code 

43 Change File Mode 
AL = 0 -> get attributes, 1 -> set attributes 
CX = attribues (if AL = 1) 
DS:DX point to filename 

CX = attribute (if AL = 0) 
CY = 1 -> error, AX contains error code 

44 I/0 Control for Devices 
45 Duplicate a File Handle 

BX = file handle 
AX = new handle 
CY = 1 -> error, AX contains error code 

46 Force a Duplicate of a Handle 
BX handle 
ex second handle 

CY = 1 -> error, AX contains error code 
47 Get Current Directory 

DL = Drive Number 
DS:SI Point To a 64 BYTE area of user memory 

CY = 1 -> error, AX contains error code 
48 Allocate Memory 

BX = number of paragraphs requested 
AX:O returns pointing to allocated memory block 
CY = 1 -> error, AX contains error code 

49 Free Allocated Memory 
ES segment of memory to be freed 

CY = 1 -> error, AX contains error code 
4A Set Block 

BX paragraphs of memory 
ES:O = address of memory area 

CY = 1 -> error, AX contains error code 
4B LOAD or EXECUTE a Program 

AL 0 Load/Execute Program 
3 Load Overlay 

DS:DX point to ASCIIZ string containing drive,path,filename 
ES:BX point to parameter block 

CY = 1 -> error, AX contains error code 
4C Terminate a Process (EXIT) 

AL contains a binary return code 
4D Retrieve the Return Code of a SUB-PROCESS 

AX = return code 
4E Find First Matching File 

ex = attributes to match 
DS:DX point to pathname 

CY = 1 -> error, AX contains error code 
4F Find Next Matching File 

CY = 1 -> error, AX contains error code 
54 Get VERIFY State 

56 Rename a File 

AL Returns 00 if verify OFF 
01 if verify ON 

DS:DX point to old pathname 
ES:DI point to new pathname 

CY = 1 -> error, AX contains error code 
57 Get/Set a File's DATE AND TIME 

AL 0 -> get, 1 -> set 
BX handle 
ex time to set 
DX date to set 

ex time file last written 
DX = date file last written 
CY = 1 -> error, AX contains error code 

58 Get/Set Allocation Strategy 
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AL 0 -> get, 1 -> set 
BX 0 -> first fit, 1 -> best fit, 2 -> last fit 

AX = (same as BX above) 
CY = 1 -> error, AX contains error code 

59 Get Extended Error 
BX = 0 

AX extended error code 
BH error class 
BL suggested action 
CH locus 

5A Create Temporary File 
ex = attribute 
DS:DX = pointer to pathname followed by 0 and 13 bytes 

of available memory 
AX = handle 
CY = 1 -> error, AX contains error code 

5B Create New File 
ex = attribute 
DX:DX = pointer to pathname 

AX = handle 
CY = 1 -> error, AX contains error code 

5C Lock/Unlock file subsection 
AL = 0 -> lock, 1 -> unlock 
BX = handle 
CX:DX offset of region to be locked/unlocked 
SI:DI =length of region to be locked/unlocked 

CY = 1 -> error, AX contains error code 
5E Get Machine Name 
5F Get Assign List Entry 
62 Get PSP 

BX:O points to PSP of current program 



Appendix 2 
The IBM PC's 

Interrupt 
Structure 

The following list represents both the hardware and software interrupts of the PC, 
AT, and compatible machines. The software interrupts below Ox21 form the 
Basic Input/Output Support (BIOS) package. Those above Ox21 are actually part 
of the DOS operating system. This material is taken from the IBM PC 
Technical Reference, Microsoft's MS-DOS Programmer's Reference, and IBM's 
EGA manuals. These manuals are very helpful when undertaking detailed work 
with the BIOS interrupts. This is particularly true of the Enhanced Graphics 
Adapter-the EGA manual is a necessity to unravel its mysteries. (This and all 
other IBM technical manuals may be ordered from IBM's Technical Directory, 
Post Office Box 2009, Racine, WI 53404 [800/426-7282], part number 6280131; 
approximately $9.95, plus shipping.) 

8088 Hardware Interrupts 

NM! ---- Parity 

====================== 8259 Controlled Interrupts =========================== 

0 ----- Timer 
1 ----- Keyboard 
2 ----- EGA Vertical Retrace 
3 ----- Asysnchronous Communications (Alternate) 

SDLC Communications 
BSC Communications 
Cluster (primary) 

4 ----- Asysnchronous Communicat ons (Primary) 
SDLC Communicat ons 
BSC Communicat ons 

5 ----- Fixed Disk 
6 ----- Diskette 
7 ----- Printer 

Cluster (Alternate) 
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Int 8 ] 
Int 9 ] 
Int A ] 
Int B ] 

Int C 

Int D 
Int E 
Int F 
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8088 Software Interrupts 

--------------- Video I/0 ------------------------------------------ INT 10 
AH 

-10- 00 Set CRT Mode 
AL 0=40 x 25 Black & white 

1= 40 x 25 Color 
2=80 x 25 Black & white 
3= 80 x 25 Color 
4=320 x 200 Medium resolution color 
5=320 x 200 Medium resolution black & white 
6=640 x 200 High resolution black & white 
7 = Monochrome 
** B/W modes operate the same as color modes, 

but color burst is not enabled 
-10- 01 Set Cursor Type 

CH Start scan line (0-7 C/G, 0-14 Monochrome) 
End scan line (set start to 20H for no curs.) 
** Hardware will always cause blink 

CL 

** setting bit 5 or 6 will cause erratic 
results 

0 
1 1 

1/16 rate 
1/32 rate 

-10- 02 Set Cursor Position 
DH,DL 
BH 

Row, 
Video 

column (0, 0 
page (Must 

Upper Left) 
be zero for Graphics modes) 

-10- 03 Read Cursor Position 
BH Video page (Must be zero for Graphics modes) 

DH,DL Row, column (0, 0 = Home) 
CH,CL Cursor mode currently set 

-10- 04 Read Light Pen Position 

-10- 05 

-10- 06 

-10- 07 

-10- 08 

-10- 09 

-10- OA 

-10- OB 

AH O=Light pen not trig, l=valid info in regs: 
BX Pixel column (0-319 med-res,0-619 hi-res) 
CH Raster line 

Select 
AL 

Scroll 
AL 

BH 
CH,CL 
DH,DL 

DH,DL 
Active Page 

Active Page 

Scroll Active Page 
AL 

BH 
CH,CL 
DH,DL 

Up 

Row, column of character LP position 
(valid only for alpha-text modes) 
New page (0-7 for 40x25,0-3 for 80x25) 

Number of lines to scroll (0 if entire 
screen) 

{ # of blank lines at bottom 
Attribute to use in blanked lines 
Row, column of upper left scroll corner 
Row, column of lower right scroll corner 

Down 
Number of lines to scroll (0 if entire 
screen) 

Attribute to use in blanked lines 
Row, column of upper left corner 
Row, column of lower right corner 

Read Attribute 
BH 

Character at current cursor position 

AL 
AH 

Write Attribute I 
AL 
BH 
ex 
BL 

Video page (valid only for alpha modes) 
Character read 
Attribute of char (alpha modes only) 

Character at current cursor position 
Character to write 
Video page (valid only for alpha modes) 
Count of characters to write (repeat count) 
Attribute of character (alpha)/color 

( graphics ) 
** see int lF if bit 7 of BL = 1 

Write Character only 
AL 

at current cursor position 
Character to write 

BH 
ex 

Set Color Palette 

Video page (valid only for 
Count of characters to write 

320 X 200 Graphics mode only 

alpha modes) 
(repeat count) 



-10- oc 

-10- OD 

-10- OE 

-10- OF 

-10-10 

-10-11 

-10-12 

BH 
BL 

Write Dot 

APPENDIX 2 

Palette color ID being set ( 0-127 ) 
Color value to be used with that color ID 
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AL 
DX,CX 

Color value (If bit 7=1, value is XOR'ed in) 
Row, column number 

Read Dot 
DX,CX 

AL 
Row, column number 
Returns Dot read 

Write Teletype 
AL 

to Active Page ( 1.3 mS per Char ) 
Character to write 

BL 
BH 

Foreground color in graphics mode 
Display page in Alpha mode 

Get Current Video State 
AH 
AL 
BH 

Set Palette Registers 
AL = 0 
BL 
BH 

AL 
BH 

AL = 2 
ES:DX 

AL = 3 
BL 

Character Generator 
AL= (1)0 
ES:BP 
ex 
DX 
BL 
BH 

AL 
BL 

AL 
BL 

AL 
BL 

(1) 1 

(1) 2 

(1) 3 

AL = 20 
ES:BP 

AL = 21 
ES:BP 
ex 
BL 

AL 22 
BL 

AL 23 
BL 

AL = 30 
Alternate Select 

BL = 10 
BH 

Returns Columns on screen 
Returns Mode currently set (see func. 0) 
Returns Current active display page 

(EGA only) 
Set individual register 
Palette register to be set 
Value to set 

Set overscan register 
Value 

Set all palette registers and overscan 
Points to 17 byte table 

Toggle intensity/blinking bit 
0 -> enable intensity, else blinking 

User alpha mode 
Points to user table 
Count 
Character offset in table 
Block to load 
Number of bytes per character 

ROM Monochrome mode 
Block to load 

ROM 8x8 Double Dot mode 
Block to load 

Set Block Specifier 
Character gen specifier 

User graphics characters 
Points to user table 

User graphics characters 
Points to user table 
Bytes per character 
Row specifier 

ROM 8xl4 mode 
Row specifier 

ROM 8x8 Double Dot mode 
Row specifier 

Information 

Return EGA information 
0 -> color mode, 1 - monochrome mode 
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BL = 20 
-10-13 Write String 

ES:BP 
ex 
DX 
BH 

AL 0 
BL 

AL 
BL 

AL 2 

AL 3 

BL 

CH 
CL 

Memory available (0 - 64k, 1 -128k 
2 -192k, 2 -256k) 

Feature bits 
Switch setting 

Select alternate print screen routine 

Points to string to be written 
Character count 
Cursor position to begin string 
Page number 

Attribute (string= char,char ... ) 
cursor not updated 

Attribute (string 
cursor updated 

char, char ... ) 

String= char,att,char,att ... 
cursor not updated 

String= char,att,char,att ... 
cursor updated 

INT 11 Equipment 
No input 

INT 12 

** 

AX Returns Equipment attached : Bits set as follows 
A H A L 

0 0 x 0 0 0 0 x 0 0 0 0 0 0 x 0 

2 3 
1 Number of printers 
2 Game I/O 
3 Number of RS232 cards 

5 6 

4 Number of Drives if AL bit 0=1 
5 Initial video mode 

00 - unused 
01 - 40 x 25 
10 - 80 x 25 
11 - 80 

6 System board RAM 
00 - 16K 
00 - 32K 
00 - 48K 
00 - 64K 

x 25 

BW (color 
BW (color 
BW (mono) 

7 

card) 
card) 

7 IPL from diskette (disk drives avail.) 

Memory Size 

AX Returns Number of contiguous lK blocks 
** read from switches on IBM's at POR 

INT 13 
AH 

----------- Diskette I/O ----------------------------

-13- 00 

-13- 01 

Reset Diskette System 
No input No output Hard resets all diskette drives, recal req'd 

Read Diskette Status 



AL Status 
80 
40 
20 
10 

APPENDIX 2 

byte : Bits set as follows 
Attachment failed to respond 
Seek operation failed 
NEC controller failure 
Bad CRC on diskette read 
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09 
08 

Attempt to OMA across a 64k bound 
DMA overrun on operation 

-13-
-13-
-13-
-13-

02 
03 
04 
05 

04 
03 
02 
01 

DMA overrun on operation 
Write attempted on wrt prot disk 
Address mark not found 
Bad command passed to diskette I/0 

Read the desired sectors into memory 
Write the desired sectors from memory 
Verify the desired sectors 
Format the desired track 

DL Drive number (0-3) 
DH Head number (0-1) 
CH Track number (0-39) not checked 
CL Sector number (1-8) not checked 
AL 
ES:BX 

AH 
CY 

Number of sectors (not used for format) 
Address of buffer (not required for verify) 
Status of operation (see above) 
1 if failed, 0 if ok 

INT 14 
AH 

--------- RS-232 I/O --------------------------------

-14- 00 Initialize Communications Port 
DX Interface card (O=COMl:, l=COM2:) 
AL Parameters to set up : Bits are as follows 

A L 
0 0 0 0 0 0 0 

3 1 
Word length (10=7 bit, 11=8 bit) 

2 Stopbits (0=1, 1=2) 
3 Parity (OO=none, Ol=odd ll=even) 

Baud (000=110, 001=150, 010=300, 011=600, 
100=1200, 101=2400, 110=4800, 111=9600) 

AH Set as in status (call 3) 
-14- 01 Send Character to Communications Line 

DX Interface card (O=COMl:, l=COM2:) 
AL Character to send 

AH Set as in status (call 3) 
-14- 02 Receive Character from Communications Line 

DX Interface card (0=COM1:, l=COM2:) 
AL Character 
AH 0 if no error, set as status if nonzero 

-14- 03 Get Communications Status 
DX Interface card (O=COMl:, l=COM2:) 

AH Line status : Bits set as follows 
F Time out 
E Transmit shift reg empty 
D Transmit holding reg empty 
C Break detect 
B Framing error 
A Parity error 
9 Overrun error 
8 Data ready 

AL Modem status : Bits set as follows 
7 Recieved line signal detect 
6 Ring indicator 
5 Data set ready 
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4 
3 
2 
1 
0 

Clear to send 
Delta recieved line signal detect 
Trailing edge ring detector 
Delta data set ready 
Delta clear to send 

INT 15 ----------- Cassette I/O ----------------------------

-15-
-15-
-15-
-15-

AH 
00 
01 
02 
03 

Turn Cassette Motor On 
Turn Cassette Motor Off 
Read 1 or more blocks 
Write 1 or more blocks 

----------- Keyboard I/O ----------------------------INT 16 
AH 

-16- 00 Read ASCII Next Character 

-16- 01 

-16- 02 

AL Character struck 
AH Scan code of key 

Check Typeahead Status 
ZF 1 if no key available, 0 if key available 
AL,AH Character/Scan code if available. Keystroke 

Get Current Shift 
AL 

remains in buffer. 
Status 

Shift 
80 
40 
20 
10 
08 
04 
02 
01 

flag status : Bits set as follows 
Insert state 
Caps lock state 
Num lock state 
Scroll lock state 
Alt shift is depressed 
Ctl shift is depressed 
Left shift is depressed 
Right shift is depressed 

----------- Printer I/O -----------------------------INT 17 
AH 

-17- 00 Print Character 
DX 

-17- 01 

-17- 02 

AL 
Printer to be used (0,1,2) 
Character to print 

AH Status set as in call 2 
Initialize Printer Port 

DX Printer to be used (0,1,2) 
AH Status set as in call 2 

Get Printer Status 
DX 

AH 
Printer 
Printer 
80 
40 
20 
10 
08 
01 

to be used (0,1,2) 
status : Bits set as 

Not busy (ready?) 
Acknowledge 
Out of paper 
Selected 
I/0 error 
Time out 

follows 

INT lA ---------- Time of Day --------------------------------

-lA-
AH 
00 Read the current clock setting 

CX Returns High Portion of Count 
DX Returns Low Portion of Count 
AL 0 if timer has not passed 24 hours since last read 



-lA-

-lA-

01 

02 

Set the Current Clock 
CX High Count 
DX Low Count 

APPENDIX 2 

counts occur at 1193180/65536 counts/sec 
approx 18.2 per second ) issues Int lC every count 

Read AT cmos clock 
carry set if not operating 

ch returns hours 
cl returns minutes 
dh returns sec 
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INT 25 ---------- Absolute Disk Read ------------------------­
AL - Drive Number ( O=A , l=B ) 
CX - Number of Sectors to Read 
DX - Beginning Logical Sector Number 

DS:BX - Transfer Address 
CARRY FLAG = 0 if Successful 

INT 26 ---------- Absolute Disk Write -----------------------­
AL - Drive Number ( O=A , l=B ) 
CX - Number of Sectors to Read 
DX - Beginning Logical Sector Number 

DS:BX - Transfer Address 
CARRY FLAG = 0 if Successful 

INT 27 Program Terminate but Stay Resident -------------
DX - last address in program 
(**bug** use last address + lOOH to account for .com load ) 





Appendix 3 
Turbo C 
Library 

Routines 
The following is a short listing of the functions of the Turbo C Library as listed 
in Borland's Turbo C Reference Guide. This list is intended only to minimize the 
number of references to the Reference Guide during the reading of this book and 
its programs. 

Routine 

void abort (void) 

int abs (int i) 

int absread (int drive, int nsects, 
int sectno, void *buffer) 

int abswrite (int drive, int nsects, 
int sectno, void *buffer) 

int access (char *filename, int amode) 

double acos (double x) 

int allocmem (unsigned size, 
unsigned *seg) 

char *asctime (struct tm *tm) 

double asin (double x) 

void assert (int test) 

double atan (double x) 

double atan2 (double y, double x) 

int atexit (atexit_t func) 

double atof (char *numberptr) 

int atoi (char *numberptr) 
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Meaning 

abort 

absolute value 

read sector 

write sector 

return access 

arccosine 

allocate DOS seg 

time to ASCII 

arcsine 

abort if 0 

arctangent 

arctan (y/x) 

register exit fn 

string -> float 

string -> integer 

Include File (s) 

stdlib.h 
process.h 

stdlib.h 
math.h 

dos.h 

dos.h 

io.h 

math.h 

dos.h 

time.h 

math.h 

assert.h 

math.h 

math.h 

stdlib.h 

math.h 
stdlib.h 

stdlib.h 



408 TURBOC 

int atol (char *numberptr) 

int bdos (int fnnum, unsigned dosdx, 
unsigned dosal); 

int bdosptr (int fnnum, void *arg, 
unsigned dosal); 

int bioscom (int cmd, char byte, 
int port) 

int biosdisk (int cmd, int drive, 
int head, int track, int sector, 
int numsectors, void *buffer) 

int biosequip (void) 

int bioskey (int cmd) 

int biosmemory (void) 

int biosprint (int cmd, int byte, 

long biostime (int cmd, long newtime) 
int port) 

int brk (void *endds) 

void *bsearch (void *key, void *base, 
int *nelem, int width, 
int (*fcmp) ()) 

double cabs (struct complex num) 

void *calloc (unsigned numelements, 
unsigned elementsize) 

double ceil (double x) 

char *cgets (char *string) 

int chdir (char *path) 

int _chmod (char *filename, int func, 
int attrib) 

int chmod (char *filename, int func, 
int attrib) 

unsigned _clear87 (void) 

void clearerr (FILE *stream) 

int _close (int handle) 

int close (int handle) 

unsigned [long] coreleft (void) 

double cos (double x) 

double cosh (double x) 

string -> long 

perform DOS call 

perform DOS call 

comm BIOS call 

disk BIOS call 

equip BIOS call 

keyboard BIOS call 

memory BIOS call 

printer BIOS call 

time of day 
BIOS call 

change data space 

binary search 

absolute val 

alloc heap mem 

round up 

read string from mem 

change dir 

change file mode 

change file mode 

clear 8087 status 

clear file error 

close file 

close file 

enquire mem left 

cosine 

hyper cosine 

stdlib.h 

dos.h 

dos.h 

bios.h 

bios.h 

bios.h 

bios.h 

bios.h 

bios.h 

bios.h 

alloc. h 

stdlib.h 

math.h 

stdlib.h or 
alloc.h 

math.h 

conio.h 

dir.h 

io.h 
dos.h 

io.h 
stat.h 

float.h 

stdio.h 

io.h 

io.h 

alloc.h 

math.h 

math.h 



struct count *country (int countrycode, 
struct country *countrytype) 

int cprintf (char *format ... ) 

void cputs (char *string) 

int creat (char *filename, 
int attribute) 

int creat (char *filename, 
int permission) 

int creatnew (char *filename, 
int attribute) 

int creattemp (char *filename, 
int attribute) 

int cscanf (char *format ... ) 

char *ctime (long *clock) 

void ctrlbrk (int (*fbrk) (void)) 

double difftime (time_t time2, 
time_t timel) 

void disable (void) 

int dosexterr (struct DOSERR *eblkp) 

APPENDIX 3 

return country 
dependent info 

print to mem 

put string to mem 

create file 

create file 

create new file dos.h 

create temp file dos.h 

scan memory 

date/time -> string 

def Break handler 

calc delta time 

disable interrupts 

set DOS error 

log dostounix (struct date *dateptr, DOS time -> Unix 
struct time *timeptr) 

int dup (int handle) duplicate file handle 

int dup2 (int oldhandle, duplicate file handle 
int newhandle) 

char *ecvt (double value, int numdigits, float -> string 
int *decpt, int *sign) 

void enable (void) 

int eof (int *handle) 

int execl (char *fname, char *argO, 
... char *argn, NULL) 

int execle (char *fname, char *argO, 
... char *argn, NULL, char *env []) 

int execlp (char *fname, char *argO, 
... char *argn, NULL) 

int execlpe (char *fname, char *argO, 
... char *argn, NULL, char *env []) 

int execv (char *fname, char *argv []) 

int execve (char *fname, char *argv [], 
char *env []) 

enable interrupts 

return EOF 

execute file 

execute file 

execute file 
(search path) 

execute file 
(search path) 

execute file 

execute file 
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dos.h 

conio.h 

conio.h 

dos.h 
io.h. 

stat.h 
io.h 

io.h 

io.h 

conio.h 

time.h 

dos.h 

time.h 

dos.h 

dos.h 

dos.h 

io.h 

io.h 

stdlib.h 

dos.h 

io.h 

process.h 

process.h 

process.h 

process.h 

process.h 

process.h 
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int execvp (char *fname, char *argv []) 

int execvpe (char *fname, char *argv[], 
char *env [] ) 

void _exit (int status) 

void exit (int status) 

double exp (double x) 

double fabs (double x) 

void far *faralloc (long nelems, 
long elemsize) 

void far *farrealloc (void far *block, 
unsigned long newsize) 

execute file 
(search path) 

execute file 
(search path) 

exit 

exit 

exponential 

absolute value 

alloc heap far 

realloc block 

int fclose (FILE *stream) close file 

int fcloseall (void) close all files 

char *fcvt (double value, int ndigit, float -> string 
int *decpt, int *sign) 

FILE *fdopen (int handle, char *type) associate stream 
with handle 

int feof (FILE *stream) return EOF 

int ferror (FILE *stream) detect error 

int fflush (FILE *stream) flush stream 

int fgetc (FILE *stream) 

int fgetchar (FILE *stream) 

char *fgets (FILE *stream) 

long filelength (int handle) 

int fileno (FILE *stream) 

int findfirst (char *fname, 
struct ffblk *ffblk, int attribute) 

int findnext (struct ffblk *ffblk) 

double floor (double x) 

int flushall (void) 

double fmod (double x, double y) 

void fnmerge (char *path, char *disk, 
char *dir, char *filename, char *ext) 

void fnsplit (char *path, char *disk, 
char *dir, char *filename, char *ext) 

FILE *fopen (char *filename, 

get character 

get character 

get string 

get file size 

get file handle 

find first 

find next 

round down 

flush all streams 

x modulo y 

create filename 

parse filename 

open stream 

process.h 

process.h 

process.h 

process.h 

math.h 

math.h 

alloc.h 

alloc.h 

stdio.h 

stdio.h 

stdlib.h 

stdio.h 

stdio.h 

stdio.h 

stdio.h 

stdio.h 

stdio.h 

stdio.h 

io.h 

stdio.h 

dir.h 

dir.h 

math.h 

stdio.h 

math.h 

dir.h 

dir.h 

stdio.h 



char *type) 

unsigned FP OFF (void far *ptr) 

unsigned FP SEG (void far *ptr) 

void fpreset (void) 

int fprintf (FILE *stream, 
char *string ... ) 

int fputc (char char, FILE *stream) 

int fputs (char *string, FILE *stream) 

int fread (void *buffer, int size, 
int numelems, FILE *stream) 

void free (void *ptr) 

int freemem (unsigned seg) 

FILE *freopen (char *filename, 
char *type, FILE *stream) 

double frexp (double value, 
int *exponentptr) 

int fscanf (FILE *steam, 
char *string ... ) 

int fseek (FILE *stream, long offset, 
int fromwhere) 

int fstat (char *handle, 
struct stat *buffer) 

long ftell (FILE *stream) 

int fwrite (void *buffer, int size, 
int numelems, FILE *stream) 

char *gcvt (double value, 
int numdigits, char *buffer) 

void geninterrupt (int number) 

int getc (FILE *stream) 

int getcbrk (void) 

int get ch (void) 

int get char (void) 

int getche (void) 

int getcurrdir (int drive, char *di rec) 

char *getcwd (char *direc, int n) 

void getdate (struct date *block) 

APPENDIX 3 

return offset 

return segment 

reinit math package 

print to stream 

put char 

put string 

read stream 

free alloc block 

free DOS block 

open a stream 

split float 

scan file 

pos file pointer 

get open file info 

ret file pointer 

write stream 

float -> string 

generate interrupt 

get character 

get Break setting 

get character 

get character 

get character 

get directory 

get directory 

get DOS date 
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dos.h 

dos.h 

float .h 

stdio.h 

stdio.h 

stdio.h 

stdio.h 

stdlib. h 
alloc.h 

dos.h 

stdio.h 

math.h 

stdio. h 

stdio. h 

stat. h 

stdio .h 

stdio. h 

stdlib.h 

dos.h 

stdio .h 

dos.h 

conio.h 

stdio.h 

conio.h 

dir.h 

dir.h 

dos.h 



412 TURBOC 

void getdfree (int drive, 
struct dfree *block) 

int getdisk (void) 

char far *getdta (void) 

char *getenv (char *envptr) 

void getfat (int disk, 
struct fatinfo *block) 

void getfatd (struct fatinfo *block) 

int getftime (int handle, 
struct ftime *block) 

char *getpass (char *prompt) 

unsigned getpsp (void) 

char *gets (char *string) 

void gettime (struct time *block) 

void interrupt (*getvect (int number)) 

int getverify (void) 
int getw (FILE *stream) 

struct tm *gmtime (long *clock) 

int gsignal (int signal) 

void harderr (int (*fptr) (void)) 

void hardresume (int code) 

void hardretn (int errorcode) 

double hypot (double x, double y) 

int inport (int port) 

int inportb (int port) 

int int86 (int number, 
union REGS *regs, union REGS *regs) 

int int86x (int number, 
union REGS *regs, union REGS *regs, 
struct SREGS *segregs) 

int intdos (union REGS *regs, 
union REGS *regs) 

int intdosx (union REGS *regs, 
union REGS *regs, 
struct SREGS *segregs) 

void intr (int number, 

get free space 

get curr disk 

get curr OTA 

get from environment 

get disk FAT 

get default FAT 

get file date/time 

get password 

get current PSP 

get string 

get time 

get interrupt 

get verify state 
get integer 

time -> GMT 

get signal 

set hardware 
error handler 

abort from 
error handler 

return from 
error handler 

calc hypotenuse 

input from port 

input from port 

8086 interrupt 

8086 interrupt 

DOS call 

DOS call 

8086 interrupt 

dos.h 

dir.h 

dos.h 

stdlib.h 

dos.h 

dos.h 

dos.h 

conio.h 

dos.h 

stdio.h 

dos.h 

dos.h 

dos.h 
stdio.h 

time.h 

signal.h 

dos.h 

dos.h 

dos.h 

math. 

dos.h 

dos.h 

dos.h 

dos.h 

dos.h 

dos.h 

dos.h 



struct REGPACK *regs) 

int ioctl (int handle, int cmd) 

int isalpha (int chr) 

int isalnum (int chr) 

int isascii (int chr) 

int isatty (int handle) 

int iscntrl (int chr) 

int isdigit (int chr) 

int isgraph (int chr) 

int is lower (int chr) 

int isprint (int chr) 

int ispunct (int chr) 

int is space (int chr) 

int is upper (int chr) 

int isxdigit (int chr) 

char *itoa (int value, char *string, 
int radix) 

int kb hit (void) 

void keep (int status, int size) 

long labs (long n) 

double ldexp (double value, int exp) 

void *lfind (void *key, void *base, 
int *number, int width, 
int (*fcmp) ())) 

struct tm *localtime (long *clock) 

int lock (int handle, long offset, 
long length) 

double log (double x) 

double loglO (double x) 

void longjmp (jmp_buf *ptr, int val) 

void *lsearch (void *key, void *base, 
int number, int width, 
int (*fcmp) ()) 

long lseek (int handle, long offset, 
int key) 
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control I/0 device io.h 

check for alpha ctype h,io.h 

check for alnum ctype h,io.h 

check for ASCII ctype h,io.h 

check for device type io.h 

check for control ctype h,io.h 

check for number ctype h,io.h 

check for printing ctype. h,io.h 

check for lowercase ctype h,io.h 

check for printing ctype. h,io.h 

check for punctuation ctype h,io.h 

check for space ctype. h,io.h 

check for uppercase ctype h,io.h 

check for hex number ctype h,io.h 

int -> string stdlib.h 

check for key conio.h 

exit and stay dos.h 
resident 

long absolute val stdlib.h 

value * 2** exp math.h 

linear search stdlib.h 

local time time.h 

set file lock io.h 

logarithm math.h 

base 10 logarithm math.h 

long jump setjmp.h 

search and update stdlib.h 

pos file pointer io.h 
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char *ltoa (long value, char *buffer, 
int radix) 

void *malloc (unsigned size) 

int matherr (struct exception *e) 

void *memccpy (void *dst, void *src, 
unsigned char ch, unsigned n) 

void *memchr (void *s, char ch, 
unsigned n) 

int memcmp (void *sl, void *s2, 
unsigned n) 

int memicmp (void *sl, void *s2, 
unsigned n) 

void *memmove (void *dst, void *src, 
unsigned n) 

void *memcpy (void *dst, void *src, 
unsigned n) 

void *memset (void *ptr, char ch, 
unsigned n) 

void far *MK_FP (unsigned seg, 
unsigned offset) 

int mkdir (char *pathname) 

char *mktemp (char *template) 

double modf (double value, 
double *expptr) 

void movedata (int srcseg, int srcoff, 
int dstseg, int dstoff, 
unsigned number) 

void movmem (void *src, void *dst, 
unsigned number) 

int _open (char *fname, int access) 

int open (char *fname, int access, 
int permission) 

void outport (int port, int word) 

void outportb (int port, char byte) 

char *parsfnm (char *cmdline, 
struct fcb *ptr, int option) 

int peek (unsigned segment, 
unsigned off set) 

int peekb (unsigned segment, 
unsigned offset) 

long -> string 

alloc block 
from heap 

invoke math err 

copy block until 
'ch' copied 

search for 'ch' 

compare strings 

compare strings 
(case insensitive) 

copy block 

copy block 

store block 

build far pointer 

make a directory 

make a file name 

split float 

copies bytes 
string.h 

copies bytes 

open a file 

open a file 

output to port 

output to port 

parse file name 

examine word 

examine byte 

stdlib.h 

stdlib.h 
alloc.h 

math.h 

string.h,mem.h 

string.h,mem.h 

string.h,mem.h 

string.h,mem.h 

string.h,mem.h 

string.h,mem.h 

string.h,mem.h 

dos.h 

dir.h 

dir.h 

math.h 

mem.h 

mem.h 

fcntl.h,io.h 

io.h 

dos.h 

dos.h 

dos.h 

dos.h 

dos.h 



void perror (char *message) 

void poke (unsigned segment, 
unsigned offset, int value) 

void pokeb (unsigned segment, 
unsigned offset, char value) 

double poly (double x, int n, 
double c()) 

double pow (double x, double y) 

double powlO (int p) 

printf (char *string ... ) 

int putc (int chr, FILE *stream) 

int putch (int chr) 

int putchar (int chr) 

int putenv (char *string) 

int puts (char *string) 
int putw (int w, FILE *stream) 

void qsort (void *base, int number, 
int width, int (*fcmp) ()) 

int rand (void) 

int randbrd (struct fcb *ptr, 
int recent) 

int randbwr (struct fcb *ptr, 
int recent) 

int read (int handle, void *buffer, 
int number) 

void *realloc (void *ptr, 
unsigned newsize) 

int remove (char *filename) 

int rename (char *oldname, 
char *newname) 

int rewind (FILE *stream) 

int rmdir (char *dirname) 

int scanf (char *format ... ) 

char *searchpath (char *filename) 

void segread (struct REGS *table) 

int setblock (int seg, int newsize) 
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quit w/ error 

put word 

put byte 

evaluate polynomial 

x ** y 

10 ** p 

print string 

put character 

put character 

put character 

write to environment 

put string 
put word 

quick sort 

random number 

random block read 

random block write 

read 

reallocate memory 

remove fle 

rename file 

repos read pointer 

remove dir 

change space alloc 

scan input 

locate file in PATH 

get segment registers 

modify DOS alloc 
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stdio.h 

dos.h 

dos.h 

math.h 

math.h 

math.h 

stdio.h 

stdio.h 

conio.h 

stdio.h 

stdlib.h 

stdio.h 
stdio.h 

stdlib.h 

stdlib.h 

dos.h 

dos.h 

io.h 

stdlib .. h 
alloc.h 

stdio.h 

stdio.h 

stdio.h 

dir.h 

alloc.h 

stdio.h 

dir.h 

dos.h 

dos.h 
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void setbuf (FILE *stream, 
char *buffer) 

int setcbrk (int value) 

void setdate (struct date *block) 

int setdisk (int drive) 

void setdta (char far *dta) 

int setftime (int handle, 
struct ftime *ptr) 

int setjmp (jmp_buf ptr) 

void setmem (void *ptr 1 int len, 
char value) 

int setmode (int handle, 
unsigned mode) 

void settime (struct time *ptr) 

int setvbuf (FILE *stream, 
char *buffer, int type, 
unsigned size) 

void setvect (unsigned intnum, 
void interrupt (*fptr) ()) 

void setverify (iht value) 

double sin (double x) 

double sinh (double x) 

unsigned sleep (unsigned seconds) 

int spawnl (int mode, char *fname, 
char *argO ... *argn, NULL) 

int spawnle (int mode, char *fname, 
char *argO ..• *argn, NULL, 
char *env [)) 

int spawnlp (int mode, char *fname, 
char *argO ... *argn, NULL) 

int spawnlpe (int mode, char *fname, 
char *argO •.. *argn, NULL, 
char *env [)) 

int spawnv (int mode, char *fname, 
char *argv [)) 

int spawnve (int mode, char *fname, 
char *argv [], char *env [)) 

int spawnvp (int mode, char *fname, 
char *argv [)) 

int spawnvpe (int mode, char *fname, 
char *argv [], char *env [)) 

enable buffering 

set Break setting 

set date 

set default disk 

set OTA 

touch file 

set longjmp addr 

put value in memory 

set mode of file 

set time 

enable buffering 

set int vector 

set verify mode 

sine 

hyper sine 

delay 

spawn subprocess 

spawn subprocess 

spawn subprocess 
(Search PATH) 

spawn subprocess 
(search PATH) 

spawn subprocess 

spawn subprocess 

spawn subprocess 
(search PATH) 

spawn subprocess 
(search PATH) 

stdio.h 

dos.h 

dos.h 

dir.h 

dos.h 

io.h 

setjmp.h 

mem.h 

io.h 

dos.h 

stdio.h 

dos.h 

dos.h 

math.h 

math.h 

dos.h 

process.h 

process.h 

process.h 

process.h 

process.h 

process.h 

process.h 

process.h 



int sprintf (char *buffer, 
char *string ... ) 

double sqrt (double x) 

void srand (unsigned number) 

int sscanf (char *buffer, 
char *string ... ) 

int (*ssignal (int sig, 
int (*action) ()) () 

int stat (char *fname, 
struct stat *ptr) 

unsigned _status87 (void) 

int stime (long *time) 

char *stpcpy (char *dst, char *source) 

char *stpcat (char *dst, char *src) 

char *strchr (char *str, char c) 

char *strcmp (char *sl, char *s2) 

char *strcpy (char *dst, char *src) 

char *strcspn (char *sl, char *s2) 

char *strdup (char *str) 

char *strerror (char *msg) 

int stricmp (char *sl, char *s2) 

unsigned strlen (char *str) 

char *strlwr (char *str) 

char *strncat (char *dst, char *src, 
int maxlen) 

char *strnicmp (char *sl, char 1 s2 
int maxlen) 

char *strnset (char *str, char ch, 
unsigned maxlen) 

char *strpbrk (char *sl, char *s2) 

char *strrchr (char *str, char c) 

char *strrev (char *str) 

char *strset (char *str, char c) 
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write to memory 

square root 

seed random 
number generator 

scan memory 

implement software 
signals 

get file status 

get 8087 status 

set time 

copy one string 
to another 
concatenate string 

look for a char 

compare strings 

copy one string 
to another 

search for absence 

make copy of string 

build error message 

compare strings 
(ignore case) 

string length 

upper to lowercase 

concatenate 

compare strings 
(ignore case) 

set string 

search for char 
from s2 in sl 

search for char 

reverse string 

set string 
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stdio.h 

math.h 

stdlib.h 

stdio.h 

signal.h 

stat.h 

float.h 

string .h 

string.h 

string.h 

string.h 

string.h 

string.h 

string.h 

string.h 

string.h 

string.h 

string.h 

stri'ng.h 

string.h 

string.h 

string.h 

string.h 

string.h 
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int strspn (char *sl, char *s2) 

char *strstr (char *sl, char *s2) 

double strtod (char *str, char **eptr) 

long strtol (char *str, char **eptr) 

char *strtok. (char *sl, char *s2) 

char *strupr (char *str) 

void swab (char *src, char *dst, 
int number) 

int system (char *command) 

double tan (double x) 

double tanh (double x) 

long tell (int handle) 

long time (long *tloc) 

int toascii (int cl 

int to lower (int c) 

int toupper (int c) 

int tolower (int c) -
int _toupper (int c) 

void tzset (void) 

char *ultoa (unsigned long value, 
char *string, int radix) 

int ungetc (char c, FILE *stream) 

int ungetch (int c) 

void unixtodos (long utime, 
struct date *ptr, 
struct time *ptr) 

int unlink (char *filename) 

int unlock (int handle, long offset, 
long length) 

void va_start (va_list param, lastfix) 

type va_arg (va_list param, type) 

void va_end (va_list param) 

int vfprintf (FILE *stream, 
char *string, va_list param) 

look for chars 
frm s2 in sl 

find sl in s2 

string -> double 

string -> long 

search sl for 
tokens 

lower to uppercase 

swap bytes 

execute DOS command 

tangent 

hyper tangent 

get location of 
file pointer 

get time of day 

convert to ascii 

convert to lowercase 

convert to uppercase 

convert to lowercase 

convert to uppercase 

Unix time compat 

u long -> string 

return char 

return char 

date/time to 
DOS format 

remove file 

unlock file 

start var args 

get next arg 

finish var args 

print to stream 

string.h 

string.h 

string.h 

string.h 

string.h 

string.h 

stdlib.h 

stdlib.h 

math.h 

math.h 

io.h 

time.h 

ctype.h 

ctype.h 

ctype.h 

ctype.h 

ctype.h 

time.h 

stdlib.h 

stdio.h 

conio.h 

dos.h 

dos.h 

dos.h 

stdarg.h 

stdarg.h 

stdarg.h 

stdio.h 
stdarg.h 
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int vfscanf (FILE *stream, read frm stread stdio.h 
char *string, va - list par am) stdarg.h 

int vprintf (char *string, print stdio.h 
va - list par am) 

int vscanf (char *string, scan input stdio.h 
va - list par am) 

int vsprintf (char *buffer, print to memory stdio.h 
char *string, va - list par am) 

int vsscanf (char *buffer, scan from memory stdio.h 
char *string, va - list par am) 

int write (int handle, void *buffer, write io.h 
int number) 

int write (int handle, void *buffer, write io.h 
int number) 





Appendix 4 
Instruction 

Timings on 
the 8086 Family 
Microprocessors 

Listed below are instruction timings for the 8088, 8086, and Real Mode 80286 
using the Intel mnemonics. Use the numbers for the processor in your machine 
(8088 in the PC and it clones, 80286 the AT and its clones). All of the timings 
presented are rough timings for word accesses-use the 8086 timings for byte 
accesses on the 8088. Timings for the 80186 and 80188 are similar to the 8086 
and 8088, resp., minus 8 clock ticks for memory accesses. 

All measurements are in units of clock cycles. To convert this to actual time, 
divide by the computer's clock speed (4.77 MHz for the PC, 8.00 MHz for most 
turbocharged PC's, 6.00 or 8.00 MHz for the AT). Machines with wait state 
memory, such as the IBM AT, should derate their clocks by roughly 20 percent 
for each wait state. 

These numbers can be used in conjunction with the assembly language listing 
output of the Turbo C compiler to calculate execution timings for Turbo C 
functions (see Chapter 8 for a discussion of the topic). 

Instruction 8088 8086 80286 

AAA 8 8 3 
AAD 60 60 14 
AAM 83 83 16 
AAS 8 8 3 
ADC 

REG, REG ,3 3 2 
REG,MEM 22 18 
MEM,REG 32 24 7 
REG, IMM 4 3 
MEM,IMM 33 25 7 

ADD 

421 
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SEE ADC 
AND 

SEE ADC 
CALL 

NEAR 23 19 9 
FAR 37 29 15 

CBW 2 2 2 
CLC 2 2 2 
CLD 2 2 2 
CLI 2 2 3 
CMC 2 2 2 
CMP 

REG,REG 3 3 2 
REG,MEM 22 18 6 
REG, IMM 4 4 3 
MEM, IMM 22 18 6 

CMPS 9+30/R 9+22/R 5+9/R 
CWD 5 5 2 
DAA 4 3 
DAS 4 3 
DEC 

REG 3 3 2 
MEM 31 23 7 

DIV 
REG 150 150 22 
MEM 170 170 25 

IDIV 
REG 175 175 25 
MEM 190 190 28 

IMUL 
REG 140 140 21 
MEM 160 160 24 

IN 13 9 5 
INC 

SEE DEC 
INT 91 51 25 
IRET 56 32 19 
J<CONDITIONAL> 

TAKE JMP 16 16 9 
DON'T TAKE JMP 4 3 

JMP 
LABEL 15 15 9 
MEM - NEAR 26 26 13 
MEM - FAR 32 32 13 
REG 11 11 9 

LAHF 4 4 2 
LDS 32 24 7 
LEA 10 10 3 
LES 32 24 7 
LODS 9+17/R 9+13/R 5+4/R 
LOOP<CND> 

TAKE JMP 18 18 10 
DON'T TAKE JMP 6 6 

MOV 
REG, REG 2 2 2 
REG,ACC 2 2 2 
REG,MEM 20 16 5 
ACC,MEM 14 10 5 
REG, IMM 4 4 2 
MEM, IMM 22 18 3 

MOVS 9+25/R 9+17/R 5+4/R 
.MUL 

REG 115 115 21 
MEM 145 140 24 



NEG 
REG 
MEM 

NOP 
NOT 

SEE NEG 
OR 

SEE ADC 
OUT 
POP 

REG 
MEM 

POPF 
PUSH 

REG 
MEM 

PUS HF 
RCL 

REG,1 
MEM, 1 
REG, CL 
MEM,CL 

RCR 
SEE RCL 

RET 
NEAR 
FAR 

ROL 
SEE RCL 

ROR 
SEE RCL 

SAHF 
SAL 

SEE RCL 
SAR 

SEE RCL 
SBB 

SEE ADC 
SCAS 
SHL 

SHR 

STC 
STD 
ST! 

SEE RCL 

SEE RCL 

STOS 
SUB 

SEE ADC 
TEST 

SEE CMP 
XCHG 

REG, REG 
REG,MEM 

XLAT 
XOR 

SEE ADC 

3 
32 

3 

13 

12 
33 
12 

15 
32 
14 

2 
31 

8+4/R 
36+4/R 

20 
34 

3 
24 

3 

9 

8 
25 

8 

11 
24 
10 

2 
23 

8+4/R 
28+4/R 

16 
26 

2 
2 
2 

5 

5 
5 
5 

5 
3 
3 

2 
7 

5+1/R 
8+1/R 

13 
17 

2 

9+19/R 9+15/R 5+8/R 

2 
2 
2 

2 
2 
2 

9+14/R 9+10/R 

4 
33 
15 

4 
25 
11 

2 
2 
2 

4+3/R 

3 
5 
5 
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In the above table, /R means per repetition. Thus, a REP MOVS requires 9 
clock cycles to start and 17 clock cycles per transfer for an 8086. Times for the 
single instruction is similar to the per repetition times, so that a simple MOVS 
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takes roughly 17 clock cycles on the 8086. We also assume an average address 
calculation time of 8 clock cycles on the 8086 and 8088. 

The 8088 and 8086 timings were taken from iAPX 86188, 1861188 User's 
Manual-Programmer's Reference. The 80286 timings were taken from 
Microprocessor and Peripheral Handbook-Vol I. Both are from Intel Literature 
Sales, Post Office Box 58130, Santa Clara, CA 95052 (800-548-4725). 



Appendix 5 
The KOPY 

Program 

The programs in this book are not presented as workable, everyday utilities with 
which to stock your DOS utilities directory, but as instructional examples. 
Some have been designed to demonstrate a programming technique, while others 
provide examples of particular calls to the Turbo C library, the BIOS, or DOS. 
Fully developing these programs into finished utilities would only obscure their 
purpose by adding a lot of unnecessary secondary code. 

The principles necessary for this task have already been presented within the 
covers of this text; however, it may be educational to see just one of these 
developed into a complete utility. The most promising is Prg5_7, the global 
search and copy program. The principle it demonstrates is a particularly powerful 
one: that of searching for directories using a wild-card pattern, just as we might 
search for any other file. Polish~ng a program consists of two parts: 1) making 
sure the existing capabilities are free of bugs and 2) adding as many additional 
capabilities as is required to make the program user friendly and that can be 
tolerated by the existing program structure. (Starting with a sound structure, you 
might be surprised at how many features can be accommodated.) 

As it sits, Prg5_7 has a few problems. First and foremost, it requires the user to 
end the target path with a \ . This is an understandable but unusual 
nomenclature. Second, if the target file exists, Prg5 _ 7 generates an error message 
and continues on with the next file. The idea was to adopt the safest route, but 
this limits the program's usefulness considerably. The operator may reasonably 
want to overwrite the target. Third, the target directory is likely to be on a 
floppy disk. Floppy disks with their limited storage are prone to filling up. In 
the event that the target disk fills, Prg5 _ 7 must be aborted to allow a new disk to 
be inserted. With the new disk in, however, we cannot restart Prg5_7 from where 
it left off. Finally, the keyboard input routine used does not listen for Control­
Break. This makes aborting the program tricky at best. 
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If we are going to convert Prg5 _ 7 into a complete utility, each of these problems 
will have to be addressed. As it turns out, this can be done with a minimum of 
fuss. The program KOPY presented below addresses all of these issues and more. 
Let's examine it closely. If the target path does not already end in a\ , then it is 
quite easy for the program to add one itself. From that point it can carry on like 
normal. Since this is a secondary function, apart from its main purpose, I decided 
to put this in a separate function, adds/ash(), which can be called immediately 
before the call to copyall( ). 

The second problem, that of existing files, must be handled in the copy() function 
itself. If the call to creatnew() to create the target file is unsuccessful, the most 
likely reason is that the file already exists. If so, we can attempt to overwrite it 
by using the call open() with the O _TRUNC option to truncate the target to zero. 
We do not want to try this without the operator's approval. The call to getyval() 
on line 206 assures us that we have the okay. (Getyval() returns a 1 if the user 
enters a y or a Y and a 0 otherwise.) 

As is often the case, this feature introduces a new problem. What if the target 
directory is one of subdirectories in the search path. This would result in the 
possibility of the source and target files being the same file. Attempting such a 
copy will destroy the file. Prg5_7 handled the problem easily (if a little sloppily) 
by noting that the target file already existed. With overwrite we must explicitly 
check for the case. The call to stricmp() at the beginning of copy() does the trick. 
Be very careful to use stricmp(), the case insensitive compare, and not strcmp(). 
DOS does not care about case and we should not either. We would not want to 
allow \UTIL\file.c vs. \UTIL\FILE.C to slip through, for example. 

The problem of a full floppy disk must also be solved in copy(). Copy() 
continues to write the target file until either the source file is exhausted, 
indicating a successful read, or the number of bytes written is less than the 
number of bytes we requested. This latter condition is most like generated by a 
full disk. I added lines 221 through 227 to handle this case. 

KOPY first closes both files. In fact, it could have left the source file open, but 
it does not just in case of operator error. What if the source file were also located 
on the floppy disk? If the operator blindly followed our instruction and replaced 
the floppy disk with a new one, we would continue to read from a file that is no 
longer there. Chaos might ensue. No data would be lost, since the original file 
is still safe back on the disk the user removed, but we should avoid scaring him 
like that, if we can. By reopening the source file, we are checking to make sure 
that the source file is still where we think it is. 
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After closing both source and target files, the program deletes the portion of 
target file already written using unlink(). Finally, we prompt him to remove the 
full floppy and insert a new one. Once he has installed the new one, we loop 
back to the beginning of copy() and, more or less, start all over with the fresh 
disk. No attempt is made to pack the files optimally on the floppies. 

Addressing the Control-Break issue is very simple. When Control-Break or 
Control-Care entered, getch() returns the value Ox03. We need simply check for 
this. If we see this character, we can abort the program by calling exit(). This is 
exactly what the routine getyval() does on line 306. Since all input is via 
getyva/(), this one check solves the problem universally. 

This is what KOPY looked like when I took the next step in its development. 
At this point, I took a copy of KOPY and distributed it to a select few friends. 
Be careful not to introduce a program to the world too early. By allowing just a 
small group to see it, you can get others' opinions and, yet, still be able to recall 
the program when the inevitable bugs surface. 

The first problem was obvious. Despite my instructions, the first user entered 
KOPY C:*.DAT B: thinking that this was going to copy all .DAT files on his 
hard disk to disk B (C:\*.DAT is the proper path to search the entire hard disk). 
The program thought for awhile and then returned without generating any 
messages. Being unfamiliar with the program, he did not realize for some time 
that it had not copied anything. Problems like this are easily handled by defining 
a global variable such as FOUND _ONE on line 81. This flag is initially set to 
FALSE. If any files are found, indicating the user probably knows what he is 
doing, the program sets the flag to TRUE. If the program completes and 
FOUND _ONE is still FALSE, the program generates an error message. Since 
leaving off the initial\, as in the above example, is the most common error, this 
instruction is included in the error message. 

The universal comment I got from all users was one that had not even occurred to 
me: how similar KOPY is with the DOS COPY command. (Remember, at this 
point it was still called Prg5_7.) It was universally agreed to make KOPY a 
more powerful replacement for the DOS version (and, hence, the new name). But 
this was going to require a bit of rethinking. First, if no target is provided, 
COPY assumes the current directory. KOPY must do the same. This is quite 
easy as it turns out. If argv [2] is null, just use the path .\instead (line 125-
126). No matter where you are,"." is always the current directory. 

This meant we needed another way of invoking the Find capability. The switch 
IF seemed simple enough. Therefore, KOPY \*.DAT should mean copy all the 
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.DAT files to the current directory, while KOPY IF *.DAT meant simply find 
them all. All agreed, this was simple enough. Since we have already discussed 
the parsing of switches, I will only mention that the code to do so appears in 
lines 96 through 111 plus the global variable defined on line 81. (If you do not 
understand this section, review the technique presented in Chapter 3 as it is very 
flexible, understanding IA /B, IA/B, and /AB equally well.) 

If KOPY was really going to replace COPY, then the subdirectory search 
capability had be optional. If the user knew what directory his file was in, 
searching subdirectories was a waste of time. This was going to require another 
switch. There was some discussion as to whether the default should be search 
subdirectories or not. There are arguments both ways, but I left search directories 
as the default, perhaps because of how the program came to be in the first place. 
The IS (S for single) switched KOPY into the search single subdirectory mode. 
If you preferr to reverse this decision, simply change the value of 
INCLUDE SUBDIRS on line 82 and line 103. 

One final capability arose from the way the program was used. Searching the 
entire disk for a particular type of file is most often useful when the hard disk is 
being backed up to floppy to gain more space. For example, entering K 0 PY 
\*.BAS B: to get all of the old and unused BASIC programs onto floppy and off 
the harddisk. Having the option of deleting the source file after it has been copied 
gives KOPY the ability to do this very simply and in one command. ID turns 
this option on. Of course, we only want to delete the file if the copy succeeds. 
The delete code (lines 236-238) was added to the function copy() so that it can 
only be executed if copy() did not return prematurely because of some error. 
Since we should never delete anything without permission, we again ask 
permission before each delete. 

In order that delete might also work in find mode, the same three lines was also 
added to find() (lines 247-249). Therefore, KOPY /D/F \*.DAT would remove 
all of the .DAT files from the current disk, one at a time, asking the operator's 
permission (the only way to implement such a powerful command). Allowing 
switches to be used in combination allows KOPY to be several commands in 
one. 

All of my local beta test sites found this set of capabilities satisfactory. Once 
implemented, I passed out updated and corrected versions of KOPY to each. This 
is the version which appears below. Hopefully you will find it as useful as we 
did. 
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Let's review how KOPY came to be. We started with a simple program which 
was structurally well laid out. Adding capabilities to a haphazardly constructed 
program is asking for trouble. Copies were passed out to a small group with the 
understanding that this is a new and potentially buggy program. I solicited 
opinions for how the program could be improved. 

Suggestions from beta testers should be seriously considered. In fact, more 
seriously considered that your own. Remember, you have been working with the 
program for quite a while. You know what its weak points are and how to avoid 
them. Others will approach it more honestly. Obvious weaknesses will strike 
them much more clearly then yourself. Do direct their suggestions along the 
lines of what can easily be done, given the existing program structure, however. 
Don't attempt too much. There are many features which I could have added to 
KOPY but didn't. Not only must the program support the capability easily, but 
the command structure must also. In my opinion, three switches is a lot for an 
operator to remember. For maximum effectiveness, all switches should be 
allowed in any combination. When either the program or the command format 
start appearing cluttered, its time to stop. 

Try your hand at it. If you have read and followed the techniques presented here, 
you should be in position to join the ever growing army of Turbo C 
programmers successfully exploring their PCs. 

l[ OJ: /*Kopy - Copy or Find and optionally Delete files Everywhere 
2[ OJ: by Stephen R. Davis, 1987 
3 [ OJ: 214-454-2426 
4 [ OJ: 
5[ OJ:· Search all subdirectories for a particular file pattern. All files 
6[ OJ: found matching that pattern are copied to the target path. Adding 
7[ OJ: a "Id" deletes the source file after successfully copying. A "/f" 
8[ OJ: causes KOPY to search only, without copying. The "/s" keeps KOPY 
9[ OJ: in the current directory (like DOS COPY). 

10[ OJ: E.g. KOPY C:\*.PAS B: -> copy all Pascal files found on disk C: 
11[ OJ: (search all subdirectories) to B: 
12[ OJ: KOPY /D \USER\*.PAS ->copy and delete all Pascal files found i 
13[ OJ: directory \USER and all of its subdirs 
14[ OJ: to the current directory 
15[ OJ: KOPY /D/F \*.BAK -> search for and delete all .BAK files on 
16[ OJ: current disk 
17 [ OJ: 
18 [ 0 J: (Note: compiling with the label SWITCH defined in the 
19[ OJ: Options/Compiler/Defines menu reverses the sense of 
20[ OJ: the "/S" flag for those that prefer it the other way) 
21[ OJ:*/ 
22( OJ char *banner= { 
23( lJ "This program was developed for Borland's Turbo C (Ver 1.0) by \n" 
24[ lJ "Stephen R. Davis for the book:\n\n" 
25( lJ Turbo C:\n" 
26( lJ The Art of Advanced Program Design, Optimization and Debugging\ 
27( lJ M&T Books\n" 
28( lJ 501 Galveston Drive\n" 
29[ lJ Redwood City, CA 94063\n\n" 



430 

30 [ lJ: 
31 [ lJ: 
32 [ lJ: 
33 [ lJ: 
34 [ lJ: 
35 [ lJ: 
36 [ lJ: 
37 [ OJ: 
38 [ OJ: 
39 [ OJ: 
40 [ OJ: 
41 [ OJ: 
42 [ OJ: 
43 [ OJ: 
44 [ OJ: 
45 [ OJ: 
46 [ OJ: 
47 [ OJ: 
48 [ OJ: 
49 [ OJ: 
50 [ OJ: 
51 [ OJ: 
52 [ OJ: 
53 [ OJ: 
54 [ lJ: 
55 [ lJ: 
56 [ lJ: 
57 [ lJ: 
58 [ lJ: 
59 [ lJ: 
60 [ lJ: 
61 [ lJ: 
62 [ lJ: 
63 [ lJ: 
64 [ lJ: 
65 [ lJ: 
66 [ lJ: 
67 [ lJ: 
68 [ lJ: 
69 [ lJ: 
70 [ lJ: 
71 [ OJ: 
72 [ OJ: 
73 [ OJ: 
74 [ OJ: 
'75 [ OJ: 
76 [ OJ: 
77 [ OJ: 
78 [ OJ: 
79 [ OJ: 
80 [ OJ: 
81 [ OJ: 
82 [ OJ: 
83 [ OJ: 
84 [ OJ: 
85 [ OJ: 
86 [ OJ: 
87 [ OJ: 
88 [ OJ: 
89 [ OJ: 
90 [ OJ: 
91 [ OJ: 
92 [ OJ: 
93 [ OJ: 
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"This program is released into the public domain without charge for\ 
"the use and enjoyment of the public with the single provision that 
"banner remain intact. Anyone wishing to learn more about getting t 
"most out of the IBM PC and its clones using Turbo C, can order a co 
"this book by calling:\n\n" 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define 
#define 

<stdio.h> 
<dir.h> 
<io.h> 
<dos.h> 
<process.h> 
<fcntl. h> 
<conio.h> 
<ctype.h> 
<string.h> 

TRUE 1 
FALSE 0 

1-800-533-4372\n" 
(in CA, 1-800-356-2002)\n" 

8 am to 5 pm PST\n\n"}; 

/*define error message*/ 
char *errmsg = { 

"This program copies all files from the source path and all\n" 
"of its subdirectories which match the source pattern to the\n" 
"target path. If no target path is given, the current directory\n" 
"is assumed. Adding a /D switch in front of the first argument\n" 
"deletes the source file after successfully copying and after\n" 
"prompting operator. Adding a /F simply finds without copying.\n" 
"The switch /S keeps KOPY in the specified directory and \n" 
"suppresses subdirectory search (like DOS COPY) .\n\n" 
"For example:\n\n" 
"KOPY ID C:\\*.DAT copy and delete all .DAT files frorn\n 

all of the directories on disk C to\n" 
the current directory.\n\n" 

~KOPY /S \\USER\\*.DAT B:\\COPY copy all the .DAT files from \\USER 
to directory COPY on drive B.\n\n" 

"KOPY /F/D \\*.BAK find and delete all *.BAK files on\n" 
current disk\n\n" 

"If the target disk fills you will be prompted to insert a new one.\ 
}; 

/*prototyping definitions*/ 
void main (unsigned, char**); 
void copyall (char*, char*, char*); 
void copy (char*, char*); 
void find (char*); 
void append (char*, char*, char*); 
void addslash (char*); 
void arg_error (void); 
int getyval (char*); 

/*define global flags*/ 

char found_one = FALSE, delete FALSE, find_only 

char include subdirs = 

#ifdef SWITCH 
FALSE; 

#else 
/*default subdirectory search to off*/ 

TRUE; 
#endif 

/* " on*/ 

FALSE; 



94 [ OJ: 
95( OJ: 
96( OJ: 
97 [ OJ: 
98 [ OJ: 
99( lJ: 

100( lJ: 
101( lJ: 
102 [ lJ: 
103( lJ: 
104 [ lJ: 
105[ lJ: 
106( lJ: 
107( 2J: 
108 [ 3J: 
109( 4 J : 
110 [ 4 J: 
111 [ 4J: 
112 [ 4J: 
113( 4] . 
114 [ 3J: 
115 [ 2J: 
11(;[ 2J: 
117 [ 2]: 
118 [ 2]: 
119 [ 2J: 
120 [ 21: 
121( l]: 
122( lJ: 
123( l]: 
124 [ l] : 
125( l]: 
126[ lJ: 
127 [ l]: 
128( l]: 
129( l]: 
130[ lJ: 
131[ l]: 
132 [ lJ: 
133[ lJ: 
134 [ l]: 
135 [ lJ: 
136[ lJ: 
137 [ lJ: 
138( l]: 
139[ lJ: 
140 [ l]: 
141[ lJ: 
142 [ l]: 
143[ l]: 
144( 1]: 
145 [ 2]: 
146 [ 2]: 
147[ 2]: 
148 [ 2J: 
149[ 2J: 
150( l]: 
151[ lJ: 
152 [ l]: 
153[ lJ: 
154[ OJ: 
155[ OJ: 
156[ OJ: 
157 [ OJ: 
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/*Main - parse user input and start the ball rolling*/ 
void main (argc, argv) 

unsigned argc; 
char *argv [J; 

char sourcedisk [MAXDRIVE], sourcedir [MAXDIRJ; 
char sourcefile [MAXFILEJ, sourceext [MAXEXTJ; 
char fromdir [MAXPATHJ, pattern [MAXFILE+MAXEXTJ; 
char *secondarg, *switchptr, *srcfile; 

/*first check for switches -- ignore case and extra '/'s*/ 

while (*(switchptr = argv [l]) == '/') { 
while (*++switchptr) { 

switch (tolower (*switchptr)) 
case 'd': delete= TRUE; 

break; 
case 'f': find_only =TRUE; 

break; 
case 's': include_subdirs !include_subdirs; 

/*now skip over this argument*/ 
argc--; 
argv [lJ 
argv++; 

argv [OJ; 

/*check the argument count*/ 
if (argc == 1 I I argc > 3) 

arg_error (); 

/*parse argument 1 into its two halves 
(if no source path given, assume "*.*") */ 
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fnsplit (argv [lJ, sourcedisk, sourcedir, sourcefile, sourceext); 
if (!*(srcfile = sourcefile)) 

srcfile = "*.*"; 

/*now reconstruct the two halves*/ 
fnmerge (fromdir, sourcedisk, sourcedir, 
fnmerge (pattern, 0, 0, 

0, 0); 
srcfile, sourceext); 

/*if no second argument, assume the current directory*/ 
if (! (secondarg = argv [2J)) 

secondarg = ".\\"; 
addslash (secondarg); 

/*now just copy/find them everywhere*/ 
copyall (fromdir, pattern, secondarg); 
if (!found_one) { 

printf ("No files found"); 
if (include subdirs && (sourcedir [OJ != '\\')) 

printf-(" (use %s\\%s%s to search entire disk)\n", 
sourcedisk, sourcef ile, sourceext) ; 

printf ("\n"); 

/*exit normally*/ 
exit (0); 

/*Copyall copy/find all files matching a given pattern from the 
current directory and all subdirectories*/ 
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158 [ OJ: 
159 [ OJ: 
160 [ OJ: 
161 [ lJ: 
162 [ lJ: 
163 [ lJ: 
164 [ lJ: 
165 [ lJ: 
166 [ lJ: 
167 [ lJ: 
168 [ 2J: 
169 [ 2J: 
170 [ 2J: 
171 [ 2J: 
172 [ 2J: 
173 [ 2J: 
174 [ 1]: 
175 [ lJ: 
176 [ lJ: 
177 [ lJ: 
178 [ 2J: 
179 [ 2J: 
180 [ 2]: 
181 [ 3J: 
182 [ 3J: 
183 [ 3J: 
184 [ 3]; 
185 [ 3J: 
186 [ 3J: 
187 [ 4J: 
188 [ 4J: 
189 [ 4J: 
190 [ 4J: 
191 [ 4J: 
192 [ 4J: 
193 [ 4 J: 
194 [ 3J: 
195 [ 2J: 
196 [ lJ: 
197 [ OJ: 
198 [ OJ: 
199 [ OJ: 
200 [ OJ: 
201 [ OJ: 
202 [ OJ: 
203 [ OJ: 
204 [ lJ: 
205 [ 1]: 
206 [ lJ: 
207 [ lJ: 
208 [ 1]: 
209 [ lJ: 
210 [ lJ: 
211 [ lJ: 
212 [ lJ: 
213 [ 2J: 
214 [ 2J: 
215 [ 2J: 
216 [ 3J: 
217 [ 3J: 
218 [ 2J: 
219 [ 2J: 
220 [ 2J: 
221 [ 2J: 
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void copyall (fromdir, pattern, todir) 
char *fromdir, *pattern, *todir; 

char spath [MAXPATHJ, tpath [MAXPATHJ; 
struct ffblk block; 

/*first copy/find all files patching the pattern*/ 
append (spath, fromdir, pattern); 
if (!findfirst (spath, &block, 0)) 

do { 
append (spath, fromdir, block.ff name); 
append (tpath, todir, block.ff=name); 
if ( ! find_only) 

copy (spath, tpath); 
else 

find (spath) ; 
while (!findnext (&block)); 

/*now check all subdirectories, if desired*/ 
if (include_subdirs) { 

append (spath, fromdir, "*"); 
if (!findfirst (spath, &block, FA_DIREC)) 

do { 

/*only pay attention to directories*/ 
if (block.ff_attrib & FA_DIREC) 

/*ignore directories '.' and' .. '*/ 
if (block.ff_name [OJ != '.') { 

} 

/*now tack on name of directory+ '\'*/ 
append (spath, fromdir, block.ff_name); 
addslash (spath); 

/*~nd copy its contents too*/ 
copyall (spath, pattern, todir); 

} while (!findnext (&block)); 

/*Copy - given two patterns, copy the source to the destination file*/ 
ltdefine NSECT 64 
void copy (from, to} 

char *from, *to; 

int fhandle, thandle, number; 
char buffer [NSECT*512J, failure; 

/*don't copy a file to itself*/ 
if '(!stricmp (to, from)) 

return; 
found_one = TRUE; 

do { 
/*open the source for reading binary*/ 

fmode = 0 BINARY; 
if ((fhandle =open (from, O RDONLY)) == -1) 

perror ("\nError opening source file"); 
return; 

/*now open the destination*/ 
printf ("\nCopying %s -> %s", from, to); 



222 [ 2]: 
223 [ 3]: 
224 [ 4]: 
225 [ 4]: 
226 [ 3]: 
227 [ 3]: 
228 [ 4]: 
229 [ 4]: 
230 [ 3]: 
231 [ 2]: 
232 [ 2]: 
233 [ 2]: 
234 [ 2]: 
235 [ 2]: 
236 [ 2]: 
237 [ 3]: 
238 [ 3]: 
239 [ 3]: 
240 [ 3]: 
241 [ 3]: 
242 [ 3]: 
243 [ 3]: 
244 [ 3]: 
245 [ 2]: 
246 [ 1]: 
247 [ 1]: 
248 [ 1]: 
249 [ 1]: 
250 [ 1]: 
251 [ 1]: 
252 [ 1]: 
253 [ 1]: 
254 [ 1]: 
255 [ 1]: 
256 [ 0]: 
257 [ 0]: 
258 [ 0]: 
259 [ 0]: 
260 [ 0]: 
261 [ 0]: 
262 [ 0]: 
263 [ 0]: 
264 [ 1]: 
265 [ 1]: 
266 [ 1]: 
267 [ 2]: 
268 [ 2]: 
269 [ 1]: 
270 [ 1]: 
271 [ 1]: 
272 [ 1]: 
273 [ 0]: 
274 [ 0]: 
275 [ 0]; 
276 [ 0]: 
277 [ 0]: 
278 [ 0]: 
279 [ 1]: 
280 [ 1]: 
281 [ 1]: 
282 [ 1]: 
283 [ 1]: 
284 [ 1]: 
285 [ 1]: 
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if ((thandle = creatnew (to, 0)) == -1) { 
if (!getyval (" overwrite target?")) 

close (fhandle); 
return; 

if ((thandle =open (to, 0 RDWR, 0 TRUNC)) == -1) { 
perror ("\nError opening targ~t file"); 
return; 

/*now perform the copy*/ 
failure = FALSE; 
while (number= read (fhandle, buffer, NSECT*512)) 

if (number ~= write (thandle, buffer, number)) 
/*disk full, close source and delete target*/ 
close (fhandle); 
close (thandle); 
unlink (to); 
getyval ("\nDisk full - " 

"insert new disk and hit any key"); 
failure = TRUE; 
break; 

} while (failure); 
printf ("copied"); 

close (fhandle); 
close (thandle); 

/*delete source, if requested*/ 
if (delete) 

if (getyval ("delete source?")) 
unlink (from); 
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/*Find - in case of find, ask user permission to delete file if 
"Id" switch and whether we should continue if subdirectory 
search enabled*/ 

void find (fname) 
char *fname; 

found one = TRUE; 
printi ("\nFound %s", fname); 
if (delete) { 

if (getyval (" -- delete?")) 
unlink (fname); 

else 
if (include subdirs) 

if (!getyval (" -- continue?")) 
exit (0); 

/*Append - concatenate two strings together*/ 
void append (to, froml, from2) 

char *to, *froml, *from2; 

/*copy the first string*/ 
while (*froml) 

*to++ = *froml++; 

/*now the second*/ 
while (*from2) 

*to++ = *from2++; 
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286 [ lJ: 
287 [ lJ: 
288 [ lJ: 
289 [ OJ: 
290 [ OJ: 
291 [ OJ: 
292 [ OJ: 
293 [ O]: 
294 [ OJ: 
295 [ OJ: 
296 [ lJ: 
297 [ lJ: 
298 [ lJ: 
299 [ lJ: 
300 [ lJ: 
301 [ lJ: 
302 [ lJ: 
303 [ 2J: 
304 [ 2J: 
305 [ lJ: 
306 [ OJ: 
307 [ OJ: 
308 [ 0]: 
309 [ OJ: 
310 [ OJ: 
311 [ lJ: 
312 [ 1 J: 
313 [ l]: 
314 [ lJ: 
315[ 1): 
316 [ 1): 
317 [ lJ: 
318 [ OJ: 
319 [ OJ: 
320 [ OJ: 
321 [ OJ: 
322 [ OJ: 
323 [ OJ: 
324 [ OJ: 
325 [ OJ: 
326 [ lJ: 
327 [ ll: 
328 [ lJ: 
329[ 1]: 

330 [ ll; 
331 [ OJ: 
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/*and then tack on a terminator*/ 
*tO ;: I \0 I; 

/*Addslash - add a slash onto a directory name which doesn't 
already end in '\'or ':'*/ 

void addslash (di~ptr) 
char *dirptr; 

/*skip to next to last character in path*/ 
while (*dirptr) 

dirptr++; 
dirptr--; 

/*now check last character*/ 
if (*dirptr !-= '\\' && *dirptr != ':') { 

*++dirptr '\\'; 
*++dirptr-= '\0'; 

/*Arg error - print error message and then abort*/ 
void arg_error (void) 

printf (errmsg); 
if (!include subdirs) 

printf 1"(Note: This version has the meaning of the" 
"IS switch inverted.)\n"); 

getyval ("\nEnter any key to continue"); 
printf ("\n\n\n\n\n\n\n%s", banner); 
exit (1); 

/*Getyval - out a string and then await a response. 
Exit program if Break (Control-Cl . Return a 1 
if entered 'y', else 0*/ 

int getyval (msg) 
char *msg; 

char entered; 

printf (msg); 
if ((entered-= getch ()) == Ox03) exit (l); 
return (tolower (entered) "'"' 'y'); 
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More Software Tools 
from M&T Books 

C Chest and Other C Treasures 
Item #40-2 $24.95 (book) 
Item #49-6 $39.95 (book/disk) 
This comprehensive anthology contains the popular "C Chest" columns from Dr. 
Dobb's Journal of Software Tools, along with the lively philosophical and 
practical discussions they inspired, in addition to other information-packed articles 
by C experts. The software in the book is also available on disk with full source 
code. MS-DOS format. 

Turbo C: The Art of Advanced Program Design, 
Optimization, and Debugging 
Item #38-0 $24.95 (book) 
Item #45-3 $39.95 (book/disk) 
Overflowing with example programs, this book fully describes the techniques 
necessary to skillfully program, optimize, and debug in Turbo C. All programs 
are also available on disk with full source code. MS-DOS format. 

Dr. Dobb's Toolbook of C 
Item #89303-615-3 $29.95 
From Dr. Dobb' s and Brady Communications, this book contains a 
comprehensive library of valuable C code. Dr. Dobb' s most popular articles on 
C are updated and reprinted here, along with new C programming tools. Also 
included is a complete C compiler, an assembler, text processing programs, and 
more! 



The Small-C Handbook 
Item #81-X $17.95 
The Small-C Handbook with MS/PC-DOS Addendum 
Item #76-3 $22.95 
Also from DDJ and Brady Communications, the handbook is a valuable 
companion to the Small-C compiler, described below. The book explains the 
language and the compiler, and contains entire source listings of the compiler 
and its library of arithmetic and logical routines. 

Small-C Compiler 
Item #01-1 $19.95 
Like a home study course in compiler design, the Sma/1-C Compiler and The 
Small-C Handbook provide all you need to learn how compilers are contructed, 
as well as teaching the C language at its most fundamental level. Full source 
code is included on disk in both CP/M and MS/PC-DOS versions. 

Small Tools: Programs for Text Processing 
Item #78-X $29.95 
This package of text-processing programs written in Small-C is designed to 
perform specific, modular functions on text files. Source code only is included. 
Small Tools is available in both CP/M and MS/PC-DOS versions and includes 
complete documentation. 

Small-Mac: An Assembler for Small-C 
Item #77-1 $29.95 
Small-Mac is a macro assembler designed to stress simplicity, portability, 
adaptability, and educational value. Small-Mac is available for CP/M systems 
only and includes source code on disk with complete documentation. 

Small-Windows: A Library of Windowing Functions 
for the C Language 
Item #35-X $29.95 
Small-Windows is a complete windowing library for C. The package includes 
video functions, menu functions, window functions, and more. The package is 
available for MS-DOS systems for the following compilers: Microsoft C 
Version 4.0, Small-C, and Lattice C. Documentation and full C source code is 
included. 



UNIX-Like Tools for MS-DOS 

On Command: Writing a Unix-Like Shell for MS-DOS 
Item #29-1 $39.95 
Learn how to write shells applicable to MS-DOS, as well as to most other 
programming environments. This book and disk include a full description of a 
Unix-like shell, complete C source code, a thorough discussion of low-level DOS 
interfacing, and significant examples of C programming at the system level. All 
source code is included on disk. 

/util: A Unix-Like Utility package for MS-DOS 
Item #12-7 $29.95 
This collection of utilities is intended to be accessed through SH but can be used 
separately. It contains programs and subroutines that, when coupled with SH, 
create a fully functional Unix-like environment. The package includes a disk with 
full C source code and documentation in a Unix-style manual. 

NR: An Implementation of the Unix NROFF Word Processor 
Item #33-X $29.95 
NR is a text formatter that is written in C and compatible with Unix's NROFF. 
NR comes configured for any Diablo-compatible printer, as well as Hewlett 
Packard's ThinkJet and LaserJet. Both the ready-to-use program and full source 
code are included. For PC compatibles. 

MS-DOS Tools 

Program Interfacing to MS-DOS 
Item #34-8 $29.95 
Program Intelfacing to MS-DOS will orient any experienced programmer to the 
MS-DOS environment. The package includes a ten-part manual with sample 
program files and a detailed description of how to build device drivers, along with 
the device driver for a memory disk and a character device driver on disk with 
macro assembly source code. 



Taming MS-DOS 
Item #24-0 $19.95 (book) 
Item #59-3 $34.95 (book/disk) 
Taming MS-DOS takes you beyond the basics, picking up where your DOS 
manual leaves off. You'll learn how to create a memory-resident clock, how to 
rename subdirectories and change file attributes, how to create configurable 
AUTOEXEC.BAT files, and how to customize CONFIG.SYS and use 
ANSI.SYS to change the appearance of DOS. You'll also find extensive batch 
file coverage with example routines that use redirection operators, filters, and 
pipes and ready-to-use assembly-language programs that enhance DOS. Full 
source code is included on disk. 

Tele Operating System 

Tele Operating System Toolkit 
This task-scheduling algorithm drives the Tele Operating System and is 
composed of several components. When integrated, they form an independent 
operating system for any 8086-based machine. Tele has also been designed for 
compatibility with MS-DOS, UNIX, and the MOSI standard. 

SK: THE SYSTEM KERNEL 
Item #30-5 $49.95 
The System Kernel contains an initialization module, general-purpose utility 
functions, and a real-time task management system. The kernel provides MS­
DOS applications with multitasking capabilities. The System Kernel is 
required by all other components. All source code is included on disk in MS­
DOS format. 

DS: WINDOW DISPLAY 
Item #32-1 $39.95 
This component contains BIOS level drivers for a memory-mapped display, 
window management support and communication coordination between the 
operator and tasks in a multitasking environment. All source code is included 
on disk in MS-DOS format. 

FS: THE FILE SYSTEM 
Item #65-8 $39.95 
The File System supports MS-DOS disk file structures and serial 
communication channels. All source code is included on disk in MS-DOS 
format. 



XS: THE INDEX SYSTEM 
Item #66-6 $39.95 
The Index System implements a tree-structured free-form database. All source 
code is included on disk in MS-DOS format. 

Z80 Assembly Language 

Dr. Dobb's ZSO Toolbook 
Item #07-0 $25.00 (book) 
Item #55-0 $40.00 (book/disk) 
This book contains everything users need to write their own Z80 assembly­
language programs, including a method of designing programs and coding them 
in assembly language and a complete, integrated toolkit of subroutines. All the 
software in the book is available on disk in the following formats: 8" SS/SD, 
Apple, Osborne, or Kaypro. 

Forth 

Dr. Dobb's Toolbook of Forth 
Item #10-0 $22.95 (book) 
Item #57-7 $39.95 (book/disk) 
This comprehensive collection of useful Forth programs and tutorials contains 
expanded versions of DDJ' s best Forth articles and other material, including 
practical code and in-depth discussions of advanced Forth topics. The screens in 
the book are also available on disk as ASCII files in the following formats: 
MS/PC-DOS, Apple II, Macintosh, or CP/M: Osborne, 8" SS/SD. 

Dr. Dobb's Toolbook of Forth, Volume II 
Item #41-0 $29.95 (book) 
Item #51-8 $45.95 (book/disk) 
This complete anthology of Forth programming techniques and developments 
picks up where the Toolbook of Forth, First Edition left off. Included are the 
best articles on Forth from Dr. Dobb's Journal of Software Tools, along with the 
latest material from other Forth experts. The screens in the book are available on 
disk as ASCII files in the following formats: MS-DOS, Apple II, Macintosh, and 
CP/M: Osborne, or 8" SS/SD. 



68000 Programming 

Dr. Dobb's Toolbook of 68000 Programming 
Item #13-216649-6 $29.95 (book) 
Item #75-5 $49.95 (book/disk) 
From DDJ and Brady Communications, this collection of practical programming 
tips and tools for the 68000 family contains the best 68000 articles reprinted 
from DDJ along with much new material. The book contains many useful 
applications and examples. The software in the book is also available on disk in 
the following formats: MS/PC-DOS, Macintosh, CP/M 8", Osborne, Amiga, 
and Atari 520ST. 

68000 Cross Assembler 
Item #71-2 $25.00 
This manual and disk contain an executable version of the 68000 Cross 
Assembler discussed in Dr. Dobb's Too/book of 68000 Programming, complete 
with source code and documentation. The Cross-Assembler requires CP/M 2.2 
with 64K or MS-DOS with 128K. The disk is available in the following 
formats: MS-DOS, 8" SS/SD, and Osborne. 

Turbo Pascal Tools 

The Turbo Pascal Toolbook 
Item #25-9 $25.95 (book) 
Item #61-5 $45.95 (book/disk) 
This book contains routines and sample programs to make your programming 
easier and more powerful. You'll find an extensive library of low-level routines; 
external sorting and searching tools; window management; artificial intelligence 
techniques; mathematical expression parsers, including two routines that convert 
mathematical expressions into RPN tokens; and a smart statistical regression 
model finder. More than SOOK of source code is available on disk for MS-DOS 
systems. 



Statistical Toolbox for Turbo Pascal 
Item #22-4 $69.95 
Two statistical packages in one! A library disk and reference manual that includes 
statistical distribution functions, random number generation, basic descriptive 
statistics, parametric and nonparametric statistical testing, bivariate linear 
regression, and multiple and polynomial regression. The demonstration disk and 
manual incorporate these library routines into a fully functioning statistical 
program. For IBM PCs and compatibles. 

Turbo Advantage 
Item #26-7 $49.95 
A library of more than 200 routines, with source code sample programs and 
documentation. Routines are organized and documented under the following 
categories: bit manipulation, file management, MS-DOS support, string 
operations, arithmetic calculations, data compression, differential equations, 
Fourier analysis and synthesis, and much more! For MS/PC-DOS systems. 

Turbo Advantage: Complex 
Item #27-5 $89.95 
This library provides the Turbo Pascal code for digital filters, boundary-value 
solutions, vector and matrix calculations with complex integers and variables, 
Fourier transforms, and calculations of convolution and correlation functions. 
Some of the Turbo Advantage: Complex routines are most effectively used with 
Turbo Advantage. Source code and documentation included. 

Turbo Advantage: Display 
Item #28-3 $69.95 
Turbo Advantage: Display includes an easy-to-use form processor and thirty 
Turbo Pascal procedures and functions to facilitate linking created forms to your 
program. Full source code and documentation are included. Some of the Turbo 
Advantage routines are necessary to compile Turbo Advantage: Display. 



80286, 80386 Programming 

Dr. Dobb's Toolbook of 80286, 80386 Programming 
Item #42-9 $24.95 (book) 
Item #53-4 $39.95 (book/disk) 
This toolbook is a comprehensive discussion on the powerful 80X86 family of 
microprocessors. The editors of Dr. Dobb's Journal of Software Tools have 
gathered their best articles, updated and expanded them, and added new material to 
create this valuable resource for all 80X86 programmers. All programs are 
available on disk with full soruce code. 

The New BASICS 

The New BASICs: Programming Techniques 
and Library Development 

Item #37-2 $24.95 (book) 
Item #43-7 $39.95 (book/disk) 
This book will orient the advanced programmer to the syntax and programming 
features of The New BASICs, including Turbo BASIC 1.0, QuickBASIC 3.0, 
and True BASIC 2.0. You'll learn the details of implementing subroutines, 
functions, and libraries to permit more structured coding. Programs and 
subroutines are available on disk with full source code. MS-DOS format. 

Public-Domain Software 

Public-Domain Software: Untapped Resources 
for the Business User 

Item #39-9 $19.95 (book) 
Item #47-X $34.95 (book/disk) 
Organized into a comprehensive reference, this book introduces the novice and 
guides the experienced user to a source of often overlooked software-public 
domain and Shareware. This book will tell you where it is, how to get it, what 
to look for, and why it's for you. The sample programs and some of the software 
reviewed is available on disk in MS-DOS format. Includes $15 worth of free 
access time on CompuServe! 



Dr. Dobb's Journal Bound Volume Series 

Each volume in this series contains a full year's worth of useful code and 
fascinating history from Dr. Dobb's Journal of Software Tools. Each volume 
contains every issue of DDJ for a given year, reprinted and combined into one 

, comprehensive reference. 

Volume 1: 1976 Item #13-5 $30.75 
Volume 2: 1977 Item #16-X $30.75 
Volume 3: 1978 Item #17-8 $30.75 
Volume 4: 1979 Item #14-3 $30.75 
Volume 5: 1980 Item #18-6 $30.75 
Volume 6: 1981 Item #19-4 $30.75 
Volume 7: 1982 Item #20-8 $35.75 
Volume 8: 1983 Item #00-3 $35.75 
Volume 9: 1984 Item #08-9 $35.75 
Volume 10: 1985 Item #21-6 $35.75 
Volume 11: 1986 Item #72-0 $35.75 

To order any of these products send your payment, along with $2.25 per item for 
shipping, to M&T Books, 501 Galveston Drive, Redwood City, Calzfornia 
94063. Calzfornia residents, please include the appropriate sales tax. Or, call 
toll-free 800-533-4372 (in California 800-356-2002) Monday through Friday 
between 8 A.M. and 5 P.M. PST. When ordering disks, please indicate format. 


