TURBO
DEBUGGER 30

FOR WINDOWS

USER'S GUIDE

BORLAND

Turbo Debugger for
Windows®

Version 3.0

User’s Guide

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

R1

Copyright © 1988, 1991 by Borland International. All rights
reserved. All Borland products are tfrademarks or registered
trademarks of Borland International, Inc. Other brand and
product names are tfrademarks or registered trademarks of their
respective holders. Windows, as used in this manual, shall refer to
Microsoft’s implementation of a windows system.

PRINTED IN THE USA.
10987654321

introduction i
New features and changes for version 3.0 .1
Hardware and software requirements ... 2
A note on terminology 3
Whatsin themanual 3
How to contact Borland 5

Resources in your package 5

Borland resources 5
Recommended reading 6

Chapter 1 Getting started 9
The distribution disks 9
Onlinetextfiles 9
The READMEfile 10
The MANUAL. TDWfile 10
The HELPME!TDW file 10
The ASMDEBUG.TDW file 10
The UTILS.TDWfile 11
InstalingTDW, 12
Installing TDDEBUG.386 12
Hardware debugging 13
Wheretonow? 13
Programmers learning Turbo C++ 13
Turbo C++ pros, but Turbo Debugger
NOVICES ... iiiiiiiiinnnn, 13
Programmers experienced with Turbo
Debuggercoiiiiinin 14
Chapter 2 TDW basics 15
Isthereabug? 15
Whereisit? 16
Whatisit? 16
Fixingitl 16
What TDW cando foryou 16
What TDW won'tdo 18
How TDW doesit 18

The TDW advantage 18

Mecnus and dialog boxes ... 19
Using themenus 19
Dialog boxes 20

Knowing whereyouare 21
Localmenus 22

History lessons 24
Automatic name completion 25

Incremental matching 25

Making macros 26

Window shopping 26
Windows from the View menu 26

Breakpoints window 26
Stack window 27
Logwindow 27
Watches window 27
Variables window 27
Module window 28
Filewindow 28
CPUwindow 28
Dump window 28
Registers window 29
Numeric Processor window 29
Execution History window 29
Hierarchy window 29
Windows Messages window 30
Clipboard window 30
Duplicate windows 30
Userscreen 30
Inspector windows 31
The active window 31
What'sinawindow 32
Working with windows 33
Window hopping 33
Moving and resizing windows ... 35
Closing and recovering windows . 36
Saving your window layout 36

Copying and pasting 36
The Pick dialogbox 37
The Clipboard window 38
Clipboard item types 38
The Clipboard window local

MENU ..o 39
Dynamic updating 39
Tips for using the Clipboard 40
Gettinghelp :............... e 40
Onlinehelp 41
The statusline 42
Inawindow 42
In a menu or dialogbox 42
Chapter 3 A quick example 43
Thedemo program 43
UsingTDW ...t 45
Themenus 45
Thestatusline 46
Thewindows 46
Using the C demo program 48
Setting breakpoints 49
Using watches 50
Examining simple C data objects 51
Examining compound C data objects . 53
Changing Cdatavalues 53
Chapter 4 Starting TDW 57
Preparing programs for debugging 57
StartingTDW 58
Entering command-line options 59

Directly entering command-line
options o i 59

Entering command-line options from

TCW . 59
Things to remember 60
RunningTDWot 60
Command-lineoptions 60
Loading the configuration file (-c) 61
Display updating (-d) 61
Getting help -hand-?) 61
Assembler-mode startup (-1) 62
Mouse support (-p)l 62
Source code handling (-s) 62

Starting directory (-t)
Configuration files
The Options menu

The Language command

TheMacrosmenu

Create
Stop Recording
Removecooiiiin,
Delete All
Display Options command
Display Swapping
Integer Format
ScreenLines
Tab Size

Path for Source command

Save Options command

Restore Options command
Returning to Windows

............

..................

..................

..........

Chapter 5 Controlling program
execution
Examining the current program state ...
The Variables window
The Global pane local menu
Inspect

.......................

The Static pane local menu
Inspect

ShOW ..o
The Stack window
The Stack window local menu
Inspect
Locals
The Origin local menu command
The Get Info command
Global memory information
Status line messages
TheRunmenu.......................
Run
Go to Cursor
Trace Into

.......................

StepOveroooviiiiiii... 79
ExecuteToooiiit, 79
UntilReturn 79
Animate ...l 80
BackTracecooiuan. 80
Instruction Trace 80
Arguments 81
Program Reset 81
The Execution History window 81
Thelocalmenu 82
Imspectl 82
Reverse Execute 82
FullHistory 83
Interrupting program execution 83
Program termination 84
Restarting a debugging session 85
Opening a new program to debug 85
Changing the program arguments 86
Chapter 6 Examining and modifying
data 87
TheDatamenu 88
Inspect il 88
Evaluate/Modify 88
AddWatch................... 91
FunctionReturn 91
Pointing at data objects in source files ... 91
The Watches window 92
The Watches window local menu . 93
Watchoo Ll 93
Editoo L 93
Remove 93
Delete Al 93
Inspectl 93
Changeol 94
Inspector windows 94
C data Inspector windows 95
Scalars...................oolll 95
Pointers 95
Structures and unions 96
ArTays ..., 97
Functions 97

Assembler data Inspector windows . . .

Scalarscoiiiiii i

Pointers 98
Arrays ... 99
Structures and unions 100
The Inspector window local menu 100
Rangecoiiivis 101
Changecoooiiinnt 101
Inspect ol 101
Descendc..oo.. 101
New Expression 102
TypeCast 102
Chapter 7 Breakpoints 103
The Breakpoints menu............... 104
Toggle . ..ooovvviiiiiiiiiann. 105
At Lo 105
‘Changed memory global 105
Expression true global 105
‘Hardware breakpoint............ 105
Deleteall 105
The Breakpoints window 105
The Breakpoints window local menu . 106
SetOptions 106
Add ... 106
Remove, 107
Deleteallcouut. 107
Inspectl 107
Groupoiiiiiii e 107
Groupsoiiiiii, 108
Add ... 108
Deleteccooiiiinn, 109
Enable 109
Disable 109
The Breakpoint Options dialog box .. 109
Addressl 110
GroupIDooil 110
Globaloooiiiiiit, 110
Disabled 110
Conditions and Actions 111
Changeooiiiun 111
Add ...l 111
Deleteoooiiiiiii 111
The Conditions and Actions dialog
box ... 111
The condition radio buttons 112

Alwaysall 112
Changed memory 112
Expressiontrue 112
Hardware 112
The action radio buttons 113
Break 113
Execute 113
Log ..o 113
Enablegroup 113
Disable group 113
Setting conditions and actions 114
Condition Expression 114
Action Expression 115
Passcount 115
Customizing breakpoints 116
Simple breakpoints 116
Global breakpoints 116
Changed memory breakpoints 117
Conditional expressions 118
Scope of breakpoint expressions .. 118
Hardware breakpoints 118
Logging variable values 119
Breakpoints and templates 119
Breakpoints on class templates 119
Breakpoints on function templates . 120
Breakpoints on template class
instances and objects 120
TheLogwindow 120
The Log window local menu 121
OpenlogFile 121
CloseLogFile 122
Logginge. 122
Add Comment 122
EraseLog 122
Display Windows Info 122
Chapter 8 Examining files 123
Examining program source files 123
The Module window 124
The Module window local menu 125
Inspectoiiiiiiii, 125
Watch ... 125
Modulel 126
Fileooil 126

Previous 126
Line..........oooooiiiiiit 126
Searchol 126
Nextoooooiiiiiiiiiii, 127
Originooooiiiii, 127
Goto ... 127
Examining other disk files 127
TheFilewindow 127
The File window local menu 128
Goto ...t 129
Searchooiiiiiian, 129
Nextoovviiiiiiiiiiiiin.. 130
Display As 130
File ...l 130
Chapter 9 Expressions 131
Choosing the language for expression
evaluation 132
Code addresses, data addresses, and line
numbers ool 132
Accessing symbols outside the current
SCOPE ot viiiiiieee e 133
Scope override syntax 134
Overriding scope in C, C++, and
assembler programs 134
Scope override tips 136
Overriding scope in Pascal
programs 137
Scope override tips 138
Scopeand DLLs 138
Implied scope for expression
evaluation 139
BytelistsooiiiiL 139
Cexpressions 140
Csymbolscovvunnnn 140
C register pseudovariables 140
C constants and number formats 142
Escape sequences 142
C operator precedence 143
Executing C functions in your pro-
GraMl ...ttt 144
C expressions with side effects 144
C reserved words and type
CONVErSiONccovvununnnn.. 145

Assembler expressions
Assembler symbols................
Assembler constants
Assembler operators

Formatcontrol

Chapter 10 Object-oriented
debugging
The Hierarchy window
TheClass Listpane
The Class List pane local menu ...
Inspect ol
Tree ...,
The Hierarchy Tree pane
The Hierarchy Tree pane local
menu(s)
The Parent Treepane
The Parent Tree pane local menu ..
Class Inspector windows
The class Inspector window local
INENUS « . eovteineet e,
The Data Member (top) pane ..
Inspect
Hierarchy
Show Inherited
The Member Function (bottom)
pane
Inspectol
Hierarchy
Show Inherited
Object Inspector windows
The object Inspector window local
MENUS ...ttt iinee it

..........................

Inspecto.l
Descendoiil
New Expression
TypeCastccoiininn.
Hierarchy
The middle and bottom panes

Chapter 11 Using Windows debugging

features 157

Windows features 157

Logging window messages 158
Selecting a window for a standard

Windows application 158

Adding a window selection for a
standard Windows application . 159
Selecting a window for an

ObjectWindows application 159
Obtaining a window handle 159
Specifying a window with
ObjectWindows support
enabled 160
Adding a window with
ObjectWindows support
enabled 161

Deleting a window selection 162

Specifying a message class and

actionl 162
Adding a messageclass 162
Deleting a messageclass 164
Window message tips 165

Viewing messages 165

Obtaining memory and module lists . 166
Listing the contents of the global

heapol 166
Listing the contents of the local

heapol 168
Obtaining a list of modules 168

Debugging dynamic link libraries

(DLLS) ..o 169
Using the Load Modules or DLLs
dialogbox 170

Changing source modules 170

Working with DLLs and

Programs 171
Adding a DLL to the DLLs &
Programslist 172

Setting debug optionsina DLL ... 173
Controlling TDW's loading of DLL

symboltables................... 173
Debugging DLL startup code 173

Converting memory handles to
addresses

Chapter 12 Assembler-level
debugging 177
When source debugging isn’t enough .. 177

The CPUwindow 178
TheCodepane 180
The disassembler 180
The Register and Flags panes 181
The Selector pane 181
The Selector pane localmenu 182
Selectoroooiiiilt 182
Examine 182
TheDatapane 183
The Stack pane 183
The Dump window 184
The Registers window 184
Chapter 13 Command reference 185
Hotkeysccoooiviiinnt 185
Commands from the menubar 187
The =(System) menu 187
TheFilemenu 187
TheEditmenu 188
TheViewmenu 188
TheRunmenu.................... 189
The Breakpointsmenu 189
TheDatamenu 189
TheOptionsmenu 189
The Windowmenu 190
TheHelpMenu 190
The local menu commands 190
Breakpoints window 191
The CPU window menus 191
Codepane 191
Selectorpane 192
Datapane 192
Flagspane 193
Registerpane 193
Stackpane 193
Dumpwindow 194
The Execution History window
MENUS ..\ttt it 194

vi

Instructions pane 194
Filewindow 194
Log windowmenu 194
Module window 195
Windows Messages window 195

Window Selection pane 195

Message Class pane 196

Messagespane 196
Clipboard window 196
Numeric Processor window 197

Registerpane 197

Statuspane 197

Controlpane 197
Hierarchy window 197

Classpane 197

Hierarchy Treepane 198

Parent Treepane 198
Registers window menu 198
Stack window 198
Variables window 198

Global Symbol pane 198

Local Symbol pane 199
Watches window 199
Inspector window 200
Class Inspector window 200
Object Inspector window 200

Textpanesooiiilt 201
Listpanes 202
Commands in input and history list
boXescoooiiiiii i 202
Window movement commands 203
Wildcard search templates 204
Complete menutree................. 204
Chapter 14 Debugging a standard C
application 207
When things dontwork 207
Debugging style 208
Run the whole thing 209
Incremental testing 209
Typesofbugs 209
Generalbugs 210
Hiddeneffects 210
Assuming initialized data 210

Not cleaning up
Fencepost errors
C-specific bugs
Using uninitialized automatic
variables
Confusing = and ==
Confusing operator precedence . ..
Bad pointer arithmetic
Unexpected sign extension
Unexpected truncation
Misplaced semicolons
Macros with side effects
Repeated autovariable names
Misuse of autovariables
Undefined function return value ..
Misuse of break keyword
Codehasnoeffect...............
Accuracy testing
Testing boundary conditions
Invalid data input
Empty data input
Debugging as part of program design . .
The sample debugging session
Looking forerrors..................
Deciding your plan of attack
Starting Turbo Debugger
Inspecting
Breakpoints
The Watches window
The Evaluate/Modify dialog box
Eureka!

Chapter 15 Debugging an
ObjectWindows
application

About the program

The Color Scribble window type

definition
ScribbleWindow
GetWindowClass
WMLButtonDown
WMLButtonUp

vii

WMRButtonDown 226
WMMouseMove 226
The pen-color routines 226
Creating the application 226
Debugging the program 227
Finding the firstbug 227
Finding the function that called
Windows 227
Debugging WMLButtonDown 228
Debugging MoveTo 228
Fixing thebug 229
Testing thefix 229
Finding the pen colorbug 230
Setting a window message
breakpoint 230
Setting a window message
breakpoint with a handle 231
Setting a window message
breakpoint with a window
object............. ...l 232
Inspecting wParam 233
Testing thefix 234
Finding the off-screen drawing bug . 234
Logging the window messages ... 234
Discovering thebug 234
Fixing thebug 235
Testing thefix 236
Finding the erase-screenbug 236
Analyzing the cause of thebug ... 237
Fixing thebug 238
Testing thefix 238
Appendix A Summary of command-line
options 239
Appendix B Error and information
messages 241
Dialog box messages 241
Error messages 248
Fatalerrors....................... 248
Other error messages 249
Index 263

2.1: What goes in a dialog box 21
2.2: Clipboard item types 38
2.3: Clipboard local menu commands39
11.1: Windows message classes 163
11.2: Format of a global heap list 167
11.3: Format of a local heap list 168

11.4: Format of a Windows module list . .169
11.5: DLLs & Programs list dialog box
controls

viii

13.1: The function key and hot key

commandsoiiiina.. 186
13.2: Text pane key commands 201
13.3: List pane key commands 202
13.4: Dialog box key commands 203
13.5: Window movement key

commands0..... 203
Al: TDW command-line options 239

21: Glckal and local menus23
2.2: A history list in an inputbox 24
2.3: The active window has a double

outline oL 32
2.4: A typical window 32
2.5: The Pick dialogbox 37
2.6: The Clipboard window 38
2.7: The normal status line.............. 42
2.8: The status line with Alt pressed 42
2.9: The status line with Ciripressed 42
3.1: The startup screen showing

TDDEMOccooiine. 44
32:Themenubar 45
3.3: Thestatusline 46
3.4: The Module and Watches windows,

tiled ...l 47
3.5: Program stops on return from

function showargs 49
3.6: A breakpoint atline44 50

3.7: A C variable in the Watches window .51

3.8: An Inspector window 52
3.9: Inspecting a structure 53
3.10: The Change dialog box 54
3.11: The Evaluate/Modify dialog box .. .55
4.1: The Display Options dialog box 65
4.2: The Save Options dialog box 67
5.1: The Variables window 70
5.2: The Local Display dialog box 73
5.3: The Stack window 74
5.4: The Get Info textbox 75
5.5: The Execution History window 82
5.6: The Enter Program Name to Load
dialogboxooiiiiiit 85
6.1: The Evaluate/Modify dialog box89
6.2: The Watches window 92
6.3: A C scalar Inspector window 95

6.4: A C pointer Inspector window 96
6.5: A C structure or union Inspector

window ...l 97
6.6: A C array Inspector window 97
6.7: A C function Inspector window 98
6.8: An assembler scalar Inspector

window, 98
6.9: An assembler pointer Inspector

window ...l 99
6.10: An assembler array Inspector

windowol 100
6.11: An assembler structure Inspector
windowol 100

71: The Breakpoints window 106
7.2: The Edit Breakpoint Groups dialog

boX ..o 108
7.3: The Add Group dialog box 108
7.4: The Breakpoint Options dialog box .110
7.5: The Conditions and Actions dialog

bOX .o 111
7.6: The Log window 120
8.1: The Module window 124
8.2:TheFilewindow 128
8.3: The File window showing hex data .128
10.1: The Hierarchy window 149
10.2: A class Inspector window 152
10.3: An object Inspector window 155

11.1: The Windows Messages window for
a standard Windows application . . .158
11.2: The Add Window dialog box for a
standard Windows application159
11.3: The Windows Messages window with
ObjectWindows support enabled ..161
11.4: The Add Window dialog box with
ObjectWindows support enabled ..162
11.5: The Set Message Filter dialog box . .163

11.6: The Windows Information dialog

box

11.7: The Load Modules or DLLs dialog

box

121: The CPU window 178
12.2: The Dump window 184
12.3: The Registers window 184

13.1: The Turbo Debugger menu tree ...205

Turbo Debugger for Windows (TDW) is a state-of-the-art, source-
level debugger designed to work with Turbo C++ for Windows.

Multiple, overlapping windows, a combination of pull-down and
pop-up menus, and mouse support provide a fast, interactive
environment. An online context-sensitive help system provides
you with help during all phases of operation.

Here are just some of TDW's features:

m debugging of Microsoft Windows applications

m full C, C++, and assembler expression evaluation
m reconfigurable screen layout

m assembler/CPU access when needed

m powerful breakpoint and logging facility

m back tracing

m full support for object-oriented programming in Turbo C++ for
Windows

m operates in character mode

New features and changes for version 3.0

Introduction

For version 3.0, TDW has the following enhancement:

m The Clipboard lets you copy from windows and paste either
into text entry boxes on dialog boxes or into other windows.
This feature is described on page 36.

m There are new breakpoint features (see Chapter 7) that let you

o set multiple conditions and actions on a breakpoint
o set and remove breakpoints in groups

o set and remove breakpoints on all functions or procedures in
a module

o set and remove breakpoints on all methods in an object type
or all member functions in a class

m C++ templates and nested classes are supported (see page 119).

m International sort orders are supported through the Windows
Language setting. You turn this feature on by using the configu-
ration program TDWINST.EXE (see the file TDWINST.DOC).

m The CPU window has a new pane that shows protected mode
selectors and lets you look at the contents of memory locations
referenced by these selectors (see page 181).

m The device driver TDDEBUG.386 provides support for Ctr-Alt-
SysRq program. In addition, this device driver supports the
hardware debug registers of the Intel 83086 processor (and
higher). See page 12 for TDDEBUG.386 installation information.
See page 118 and the online file HDWDEBUG.TDW for
information on hardware debugging.

m Debugging of DLLs is faster now that TDW simultaneously
loads both the application’s symbol table and the symbol table
of any DLL you explicitly load or whose code you step into (see
page 138).

Hardware and software requirements

See page § fo find out how
to contact Borland.

>

TDW has the same hardware and system software requirements
as Turbo C++ for Windows.

TDW supports Super VGA video through the use of a DLL named
TDVIDEO.DLL. A number of DLLs are distributed with TDW
that support different Super VGA cards (described in the
README file on your distribution diskettes). To use one of these
DLLs with TDW, copy it to the same directory that TDW.EXE is in
and name it TDVIDEO.DLL.

If you can’t find a DLL that matches your Super VGA video
adapter, contact Borland Technical Support.

To use TDW, you must have Turbo C++ for Windows. You must
already have compiled your source code into an executable (EXE
file) with full debugging information turned on.

Turbo Debugger for Windows User's Guide

When you run TDW, you'll need both the .EXE file and the
original source files. TDW searches for source files first in the
directory where the compiler found them when it compiled,
second in the directory specified in the Options | Path for Source
command, third in the current directory, and fourth in the
directory the .EXE file is in.

A note on terminoiogy

Module

Argument

For convenience and brevity, we use two terms in this manual in
slightly more generic ways than usual. These terms are module
and argument.

Refers to what is usually called a module in C++ and assembler,
but also to what is called a unit in Pascal.

Is used interchangeably with parameter in this manual. This
applies to references to command-line arguments (or parameters),
as well as to arguments (or parameters) passed to functions.

What's in the manual

Introduction

Here is a brief synopsis of the chapters and appendixes in this
manual:

Chapter 1: Getting started describes the contents of the distri-
bution disk and tells you how to load TDW files into your system.
It also gives you advice on which chapter to go to next, depending
on your level of expertise.

Chapter 2: TDW basics explains the TDW environment, menus,
and windows, and shows you how to respond to prompts and
error messages.

Chapter 3: A quick example leads you through a sample session—

using a C program—that demonstrates many of the powerful
capabilities of TDW.

Chapter 4: Starting TDW shows how to run the debugger from the
command line, when to use command-line options, and how to
record commonly used settings in configuration files.

Chapter 5: Controlling program execution demonstrates the
various ways of starting and stopping your program, as well as
how to restart a session or replay the last session.

Chapter 6: Examining and modifying data explains the unique
capabilities TDW has for examining and changing data inside
your program.

Chapter 7: Breakpoints introduces the concept of actions, and
how they encompass the behavior of what are sometimes referred
to as breakpoints, watchpoints, and tracepoints. Both conditional
and unconditional actions are explained, as well as the various
things that can happen when an action is triggered.

Chapter 8: Examining files describes how to examine program
source files, as well as how to examine arbitrary disk files, either
as text or binary data.

Chapter 9: Expressions describes the syntax of C and assembler
expressions accepted by the debugger, as well as the format
control characters used to modify how an expression’s value is
displayed.

Chapter 10 Object-oriented debugging explains the debugger’s
special features that let you examine objects in Turbo C++ for
Windows.

Chapter 11: Using Windows debugging features describes how to
use the TDW features that support debugging of Windows
applications.

Chapter 12: Assembler-level debugging describes the CPU
window. Additional information about this window and about
assembler-level debugging is in the file ASMDEBUG.TDW.

Chapter 13: Command reference is a complete listing of all main
menu commands and all local menu commands for each window

type.
Chapter 14: Debugging a standard C application is an intro-
duction to strategies for effective debugging of your programs.

Chapter 15: Debugging an ObjectWindows application leads you
through a debugging session on a sample Windows program
written using the ObjectWindows class library.

Appendix A: Summary of command-line options summarizes all
the command-line options described in Chapter 4.

Turbo Debugger for Windows User’s Guide

Appendix B: Error and information messages lists all the TDW
prompts and error messages that can occur, with suggestions on
how to respond to them.

How to contact Borland

Borland offers a variety of services to aniswer your Guestions
about this product. Be sure to send in the registration card;
registered owners are entitled to technical support and may
receive information on upgrades and supplementary products.

Resources in your
package This product contains many resources to help you:
m The manuals provide information on every aspect of the
program. Use them as your main information source.
m While using the program, you can press F1 for help.

m Some common questions are answered in the file
HELPME!.TDW), located in the DOC subdirectory of your
language compiler directory, and the README file, located in
the main language compiler directory.

Borland resources

Borland Technical Support publishes technical information sheets
on a variety of topics and is available to answer your questions.

800-822-4269 (voice) TechFax is a 24-hour automated service that sends free technical
TechFax jnformation to your fax machine. You can use your touch-tone
phone to request up to three documents per call.

408-439-9096 (modem) The Borland File Download BBS has sample files, applications,
File Dowzryggg GBUBS and technical information you can download with your modem.
No special setup is required.

Subscribers to the CompuServe, GEnie, or BIX information
services can receive technical support by modem. Use the
commands in the following table to contact Borland while
accessing an information service.

Introduction

Online information services

Service Command
CompuServe GO BORLAND
BIX JOIN BORLAND
GEnie BORLAND

Address electronic messages to Sysop or All. Don’t include your
serial number; messages are in public view unless sent by a
service's private mail system. Include as much information on the
question as possible; the support staff will reply to the message
within one working day.

408-438-5300 (voice) Borland Technical Support is available weekdays from 6:00 a.m.
6?%”:52’:‘#"’;5 to 5:00 p.m. Pacific time to answer any technical questions you
o o have about Borland products. Please call from a telephone near
your computer, and have the program running. Keep the
following information handy to help process your call:

m product name, serial number, and version number

m the brand and model of any hardware in your system

m operating system and version number (use the DOS command
VER to find the version number)

m contents of your AUTOEXEC.BAT and CONFIG.SYS files
(located in the root directory (\) of your computer’s boot disk)

m the contents of your WIN.INI and SYSTEM.INI files (located in
your Windows directory) for TDW questions

m a daytime phone number where you can be contacted

mif the call concerns a problem, the steps to reproduce the
problem

408-438-5300 (voice) Borland Customer Service is available weekdays from 7:00 a.m. to
5 gﬁ?‘;;ng; Sre;)'v ooy 5:00 p.m. Pacific Time to answer any nontechnical questions you
have about Borland products, including pricing information,
upgrades, and order status.

Recommended reading

The manuals accompanying your language compiler contain
excellent information on programming Windows applications.
The Help system also has a complete Windows API reference.

6 Turbo Debugger for Windows User’s Guide

Intfroduction

In addition, the following books on programming for Windows
might be helpful to you, although they don’t take into account the
ObjectWindows library or Resource Workshop, both of which
make Windows programming much easier than these books
indicate:

Microsoft staff. Microsoft Windows Software Development Kit, Guide
to Programming, Microsoft Corporation. (Redmond, WA: 1990).

Microscft staff. Micreseft Windows Software Development Kit
Reference, Vols. 1 and 2, Microsoft Corporation. (Redmond, WA:
1990).

Microsoft staff. Microsoft Windows Software Development Kit, Tools,
Microsoft Corporation. (Redmond, WA: 1990).

Petzold, Charles. Programming Windows, Microsoft Press.
(Redmond, WA: 1990).

Turbo Debugger for Windows User’s Guide

See the FILELIST.DOC file for
information about the online
files that document subjects
not covered in this manual.

Gefting starfed

Turbo Debugger for Windows is part of the Turbo C++ for
Windows package, which consists of a set of distribution disks,
the Turbo Debugger for Windows User’s Guide (this manual), and the
Turbo C++ for Windows manuals. The distribution disks contain
all the programs, files, and utilities needed to debug programs
written in Turbo C++ for Windows.

The Turbo Debugger for Windows User’s Guide provides a subject-
by-subject introduction of TDW's capabilities and a complete
command reference.

The distribution disks

Online text files

When you install Turbo C++ for Windows on your system, files
from the distribution disks, including the TDW files, are copied to
your hard disk. Just run INSTALL.EXE, the easy-to-use installa-
tion program on your distribution disks.

For a list of the files on the distribution disks, see the
FILELIST.DOC file on the installation disk.

Chapter 1, Getting started

There are a number of online files the installation program puts
on your hard disk. The three you should definitely look at are

README, FILELIST.DOC, and MANUAL.TDW. The first two are
accessible on the disk labeled “Installation Disk,” and are also
copied to your main language directory. The other is in the DOC
subdirectory of the main language directory, along with files
describing TDW features.

Additional files that provide information not found in the manual
are UTILS.TDW (descriptions of utilities), HDWDEBUG.TDW
(hardware debugging), ASMDEBUG.TDW (debugging of
Assembler programs), and TDWINST.TDW (configuring TDW

using TDOWINST.TDW).
The README file
You can use the Turbo C++ [t's very important that you take the time to look at the README
Wi for Windows edifor or the g6 pefore you do anything else with TDW. This file contains last-
indows Notepad program

to access the README file. Minute information that might not be in the manual.

The MANUAL.TDW

file After installation, the \TCW\DOC directory on your hard disk
also contains a file called MANUAL.TDW that indicates
corrections and additions to the TDW manual. Be sure to consult
this file before making extensive use of the manual.

The HELPME!L.TDW

file Your installation disk also contains a file called HELPME!.TDW,
which contains answers to problems that users commonly run

into. Consult it if you find yourself having difficulties. The
HELPME!.TDW file discusses:

m the syntactic and parsing differences between TDW and Turbo
C++ for Windows

m debugging multi-language programs with TDW

m common questions about using TDW with Windows

The

ASMDEBUG.TDW This file contains information on debugging Turbo Assembler
&81ng
file programs. You might also find the information in this file helpful
for debugging your inline assembler code.

10 Turbo Debugger for Windows User’s Guide

The UTILS.TDW file

This file describes the command-line utilities included with TDW.
These utility programs are TDWINST, TDSTRIP, and TDUMP.

Here’s a brief description of each of the TDW utilities:

m TDWINST.EXE lets you customize TDW. Using this utility, you
can permanently set such things as the display options and
screen colors

m TDSTRIP.EXE lets you strip the debugging information (the
symbol table) from your programs without relinking. You can
perform this operation with a .COM file and save the stripped
symbol table information in a .TDS file to use in debugging the
.COM file.

Use TDSTRIP to prepare A typical use of this utility is to create a .TDS file to use in

.COM fles for debugging. gebugging a .COM file. Because a .COM file you produce with
a compiler has no symbol table information in it, you can debug
it only by doing the following:
Compile the source code, with debugging information turned
on, into a single-segment .EXE file, then run TDSTRIP on the
.EXE. If the .EXE can be converted to a .COM file, TDSTRIP
produces a .TDS file and a .COM file. You can now debug the
.COM file by using the .TDS file with it.

a TDUMP.EXE displays the contents of object modules and .EXE
files in a readable format.

;> Foralist of all the command-line options available for the TDW
utility programs TDSTRIP.EXE and TDUMP.EXE, just type the
program name and press Enter. For example, to see the command-
line options for TDUMP.EXE, you’d type

TDUMP

To see the command-line options for TDWINST.EXE, type the
program name and use the —? or -h option, then press Enter. For
example, you would type

TDWINST -?

Chapter 1, Gefting started 11

Installing TDW

The INSTALL.EXE program for Turbo C++ for Windows also
installs TDW. It creates a program group in the Windows
program manager and creates icons for Turbo C++ for Windows
and TDW. See the README file for general installation
information.

Installing

TDDEBUG.386 There’s a file on your installation disks, TDDEBUG.386, that
provides the same functionality as the Windows SDK file
WINDEBUG.386. In addition, it provides support for the
hardware debugging registers of Intel 80386 (and higher)
processors.

The installation program should copy this file to your hard disk
and alter your Windows SYSTEM.INI file so that Windows loads
TDDEBUG.386 instead of WINDEBUG.386. If the installation
program can’t complete this task for you, it tells you. You then
have to do it by hand, as follows:

1. The installation program will have copied TDDEBUG.386
from the installation disks to your hard disk. The standard
directory for this file is C:\TCW\BIN. If you move the file to
another directory, substitute that directory in the instructions.

2. With an editor, open the Windows SYSTEM.INI file, search for
[386enh], and add the following line to the 386enh section:

device=c:\tcw\bin\tddebug.386
3. If there’s a line in the 386enh section that loads
WINDEBUG.386, either comment the line out with a
semicolon or delete it altogether. (You can’t have both

TDDEBUG.386 and WINDEBUG.386 loaded at the same
time.)

For example, if you load WINDEBUG.386 from the C:\
WINDOWS directory, the commented-out line would be

;device=c:\windows\windebug. 386

12 Turbo Debugger for Windows User’s Guide

Hardware debugging

Where to now?

You can use the debugging registers of the Intel 80386 (and
higher) processor to debug a Windows program. To use these
registers, you must load TDDEBUG.386 when you start Windows
(see the previous section).

See the online doc file HDWDEBUG.TDW for more information
on debugging Windows programs using hardware debugging
registers.

Programmers
learning Turbo
C++

Turbo C++ pros,
but Turbo
Debugger
novices

Chapter 1, Getting started

Now you can start learning about TDW. Since this User’s Guide is
written for three types of users, different chapters of the manual
might appeal to you. The following road map will guide you.

If you're just starting to learn C or C++, you want to be able to
create small programs using it before you learn about the de-
bugger. After you have gained a working knowledge of the
language, work your way through Chapter 3, “A quick example,”
for a speedy tour of the major functions of TDW. There you’ll
learn enough about the features you need to debug your first pro-
gram; you'll find out about the debugger’s more sophisticated
capabilities in later chapters.

If you're an experienced Turbo C++ programmer but you're
unfamiliar with Turbo Debugger, you can learn about the features
of the TDW environment by reading Chapter 2, “TDW basics.” If
it suits your style, you can then work through the tutorial in
Chapter 3, or, if you prefer, move straight on to Chapter 4,
“Starting TDW.” For a complete rundown of all commands, turn
to Chapter 13, “Command reference.”

13

Programmers
experienced with
Turbo Debugger

14

If you've used Turbo Debugger in the past, you're probably
already familiar with TDW's standard features. In that case, you
can go directly to Chapter 11, “Using Windows debugging
features,” which discusses the features of TDW that support
Windows debugging. Another chapter you'll find helpful is
Chapter 15, “Debugging an ObjectWindows application,” which
takes you through a debugging session on a Windows application
written using the ObjectWindows library.

Turbo Debugger for Windows User’s Guide

Is there a bug?

Chapter 2, TDW basics

IDW basics

Debugging is the process of finding and correcting errors (“bugs”)
in your programs. It'’s not unusual to spend more time on finding
and fixing bugs in your program than on writing the program in
the first place. Debugging is not an exact science; the best debug-
ging tool you have is your own “feel” for where a program has
gone wrong. Nonetheless, you can always profit from a system-
atic method of debugging.

The debugging process can be broadly divided into four steps:

1. realizing you have an error
2. finding where the error is

3. finding the cause of the error
4. fixing the error

The first step can be really obvious. The computer freezes up (or
hangs) whenever you run it. Or perhaps it crashes in a shower of
meaningless characters. Sometimes, however, the presence of a
bug is not so obvious. The program might work fine until you
enter a certain number (like 0 or a negative number) or until you
examine the output closely. Only then do you notice that the
result is off by a factor of .2 or that the middle initials in a list of
names are wrong.

15

Where is it?

What is it?

Fixing it

See Chapter 14 for a more
detailed discussion of the
debugging process.

The second step is sometimes the hardest: isolating where the
error occurs. Let’s face it, you simply can’t keep the entire pro-
gram in your head at one time (unless it’s a very small program
indeed). Your best approach is to divide and conquer—break up
the program into parts and debug them separately. Structured
programming is perfect for this type of debugging.

The third step, finding the cause of the error, is probably the
second-hardest part of debugging. Once you've discovered where
the bug is, it’s usually somewhat easier to find out why the pro-
gram is misbehaving. For example, if you've determined the error
is in a procedure called PrintNames, you have only to examine the
lines of that procedure instead of the entire program. Even so, the
error can be elusive and you might need to experiment a bit
before you succeed in tracking it down.

The final step is fixing the error. Armed with your knowledge of
the program language and knowing where the error is, you can
squash the bug. Now you run the program again, wait for the
next error to show up, and start the debugging process again.

Many times this four-step process is accomplished when you are
writing the program itself. Syntax errors, for example, prevent
your programs from compiling until they’re corrected. Turbo C++
for Windows has a built-in syntax checker that informs you of
these errors and lets you fix them on the spot.

But other errors are more insidious and subtle. They lie in wait
until you enter a negative number, or they’re so elusive you're
stymied. That’s where TDW comes in.

What TDW can do for you

16

With TDW, you have access to a much more powerful debugger
than could exist in your language compiler.

You can use TDW with any program written in Turbo C++ for
Windows. TDW runs in character mode and allows you to switch
to your application running under Windows.

Turbo Debugger for Windows User’s Guide

Chapter 2, TDW basics

TDW helps with the two hardest parts of the debugging process:
finding where the error is and finding the cause of the error. It
does this by slowing down program execution so you can
examine the state of the program at any given spot. You can even
test new values in variables to see how they affect your program.
With TDW, you can perform tracing, back tracing, stepping, viewing,
inspecting, changing, and watching.

Tracing Executing your program one line at a time.

Back tracing Stepping backward through your executed code,
reversing the execution as you go.

Stepping Executing your program one line at a time, but
stepping over any routines or function calls. If
you're sure your routines and functions are
error-free, stepping over them speeds up
debugging.

Viewing Opening a special TDW window to see the state
of your program from various perspectives:
variables, their values, breakpoints, the contents
of the stack, a log, a data file, a source file, CPU
code, memory, registers, numeric coprocessor
information, object or class hierarchies, execution
history, or program output.

Inspecting Delving deeper into the workings of your pro-
gram by examining the contents of complicated
data structures like arrays.

Changing Replacing the current value of a variable, either
globally or locally, with a value you specify.

Watching Isolating program variables and keeping track of
their changing values as the program runs.

You can use these powerful tools to dissect your program into
discrete chunks, confirming that one chunk works before moving
to the next. In this way, you can burrow through the program, no
matter how large or complicated, until you find where that bug is
hiding. Maybe you’ll find there’s a function that inadvertently
reassigns a value to a variable, or maybe the program gets stuck
in an endless loop, or maybe it gets pulled into an unfortunate
recursion. Whatever the problem, TDW helps you find where it is
and what's at fault.

17

What TDW won’t
do

How TDW does it

TDW lets you debug object-oriented C++ programs. It is smart
about objects, and it correctly handles late binding of virtual
methods so that it always executes and displays the correct code.

With all the features built into TDW, you might be thinking that

it'’s got it all. In truth, there are at least three things TDW won’t do
for you.

u TDW cannot recompile your program for you. You need Turbo
C++ for Windows to do that.

m TDW doesn’t run in graphics mode under Windows, but rather
runs in character mode.

m TDW does not take the place of thinking. When you're
debugging a program, your greatest asset is using your head.

TDW is a powerful tool, but if you use it mindlessly, it's
unlikely to save you time or effort.

Here’s the really good news: TDW gives you all this power and
sophistication, and at the same time it's easy—even intuitive—to
use.

TDW accomplishes this blend of power and ease by offering an
integrated debugging environment. The next section examines the
advantages of this environment.

The TDW advantage

18

Once you start using TDW, we think you’ll be unable to get along
without it. TDW has been especially designed to be as easy and
convenient as possible. To this end, TDW offers you these
features:

m Convenient and logical global menus.

m Context-sensitive local menus throughout the product, which
practically do away with memorizing and typing commands.

m Dialog boxes in which you can choose, set, and toggle options
and type in information.

Turbo Debugger for Windows User's Guide

Menus and
dialog boxes

Using the menus
Getting in

Chapter 2, IDW basics

m When you need to type, TDW keeps a history list of the text
you've typed in similar situations. You can choose text from the
history list, edit the text, or type in new text.

m Full macro control to speed up series of commands and
keystrokes.

m Copying and pasting between windows and dialog boxes.
m Convenient, complete window management.

m Mouse support.

m Access to several types of online help.

m Reverse execution.

m Single and dual monitor support.

The rest of this chapter discusses these features of the TDW
environment.

As with many Borland products, TDW has a convenient global
menu system accessible from a menu bar running along the top of
the screen. This menu system is always available except when a
dialog box is active.

A pull-down menu is available for each item on the menu bar.
Through the pull-down menus, you can
m execute a command.

m open a pop-up menu. Pop-up menus appear when you choose a
menu item that is followed by a menu icon (»).

m open a dialog box. Dialog boxes appear when you choose a
menu item that is followed by a dialog box icon (...).

There are four ways you can open the menus on the menu bar:
m Press F10, use — or « to go to the desired menu, and press
Enter.

m Press F10, then press the first letter of the menu name (Spacebar,
F,E V,R B D, OW,H.

m Press Alt plus the first letter of any menu bar command
(Spacebar, F, E, V, R, B, D, O, W, H). For example, wherever you are
in the system, Al-F takes you to the File menu. The = (System)
menu opens with Alt-Spacebar.

m Click the menu bar command with the mouse.

19

20

Getting around

(58

Getting out

Dialog boxes

Once you are in the global menu system, here is how you move
around in it:

m Use — and « to move from one pull-down menu to another.
(For example, when you are in the File menu, pressing — takes
you to the Edit menu.)

mUse T and { to scroll through the commands in a specific menu.

m Use Home and End to go to the first and last menu items,
respectively.

m Highlight a menu command and press Enter to move to a
lower-level (pop-up) menu or dialog box.

m Click the mouse on a command to move to a lower-level (pop-
up) menu or dialog box.

This is how you get out of a menu or the menu system:

m Press Esc to exit a lower-level menu and return to the previous
menu.

m Press Escin a pull-down menu to leave the menu system and
return to the active window.

m Press F10in any menu (but not in a dialog box) to exit the menu.
m Click a window with the mouse to leave the menu system and
go to that window.

Some menu commands have a shortcut hot key that you press to
execute them. The hot key appears in the menu to the right of
these commands.

Figure 13.1 in Chapter 13 shows the complete pull-down menu
tree for TDW. Table 13.1 on page 186 lists all the hot keys. For a
summary of all the commands available in TDW, see Chapter 13.

Many of TDW’s command options are available to you in dialog
boxes. A dialog box contains one or more of the following items:

Turbo Debugger for Windows User's Guide

Table 2.1
What goes in a dialog box

=

The hot key for the OK button
is Alt-K.

[x1

o~~~
0
N e

L]

THISFILE.EXE
TOTHERFL. EXE

>

Knowing where
you are

Chapter 2, TDW basics

Item

What it looks like, what it does

Buttons

Check boxes

Radio buttons

Input boxes

List boxes

Buttons are “shadowed” text (on monochrome systems
they appear in reverse video). If you choose a button,
TDW carries out the related action immediately. Get
out of a dialog box by pressing the button marked OK
to confirm your choices, or Cancel to cancel them.
Dialog boxes also contain a Help button that brings up
online help.

A check box is an on/off toggle. Choose it to turn the
option on or off. When a check box option is turned on,
an X appears in brackets: [X].

Radio buttons offer a set of toggles, but the choices are
mutually exclusive: you can choose only one radio
button in a set at a time. When you do, a bullet appears
between the parentheses, as follows: (e).

An input box prompts you to type in a string (the name
of a file, for example). An input box often has a history
list associated with it (see the section “History lessons”
for more on these).

A list box contains a list of items from which you can
choose (for example, a list of possible files to open).

You navigate around dialog boxes by pressing Tab and Shift-Tab.
Within sets of radio buttons, use the arrow keys to change the
settings. To choose a button, tab to it and press Enter.

If you have a mouse, it is even easier to get around in a dialog
box. Just click the item you want to choose. To cancel the dialog
box, click the close box in the upper left corner.

You can also choose items in a dialog box by pressing their hot
key, the highlighted letter in each command.

In addition to the convenient system of Borland pull-down
menus, the TDW advantage consists of a powerful feature that
lessens confusion by actually reducing the number of menus.

To understand this feature, you must realize that first and fore-
most, TDW is context-sensitive. That means it keeps tabs on

21

22

Local menus

exactly which window you have open, what text is selected, and
which subdivision, or pane, of the window your cursor is in. In
other words, it knows precisely what you're looking at and where
the cursor is when you choose a command. And it uses this
information when it responds. Let’s take an example to illustrate.

Suppose your program has a line like this:
MyCounter [TheGrade] += MyCounter[TheGrade];

As you'll discover when you work with TDW, getting information
on data structures is easy; all you do is press Cirl-l, the hot key that
opens an Inspector window, to inspect it. When the cursor is at
MyCounter, TDW shows you information on the contents of the
entire array variable. But if you were to select (that is, highlight)
the whole array name and the index and then press Ctri-l, TDW
knows that you want to inspect one member and shows you only
that member.

You can tunnel down to finer and finer program detail in this
way. Pressing Ctrl-/ on a highlighted member while you're already
inspecting an array gives you a look at that member.

This sort of context-sensitivity makes TDW extremely easy to use.
It saves you the trouble of memorizing and typing complicated
strings of menu commands or arcane command-line switches.
You simply move to the item you want to examine (or select it
using the Ins key or drag over it with the mouse), and then invoke
the command (Ctri-l for Inspect, for example).

This context-sensitivity, which makes life easy for the user, also
makes the task of documenting commands difficult. This is
because Cirl-l, for example, in TDW does not have a single result;
instead, the outcome of a command depends on where your cursor is or
what text is selected.

Another aspect of TDW’s context-sensitivity is in its use of local
menus specific to different windows or panes within windows.

Local menus in TDW are tailored to the particular window or
pane you are in. It’s important not to confuse them with global
menus. Here is a composite screen shot of both kinds of menus
(when you’re actually working in TDW, however, you could
never have both types of menus showing at the same time):

Turbo Debugger for Windows User’s Guide

Figure 2.1
Global and local menus

Global menus

Local menus

Chapter 2, TDW basics

tack

/*/program enf] E g Global menu

> int PASCAL WijBVEUREUGIEE | DLE hPrevInstance,
LPSTR odule... 3
ﬁlle... -
unsigned in FPU Int; nspect

unsigned 1oJDTLIY 1 aatch

Eeq1sters | — Local menu

umeric processor
JEARATAN (W4 | (Ixecution history
nlines = 0;|MHIIEIRdNY
nwords = 0; Windows messages
totalcharad]
showargs (_a
while (read

Compare the following two lists:

m Global menus are those that you access by pressing F10 and
using the arrow keys or typing the first letter of the menu name.

m The global menus are always available from the menu bar,
visible at the top of the screen.

u Their contents never change.

m Some of the menu commands have hot key shortcuts that are
available from any part of TDW.

m You call up a local menu by pressing Alt-F10 or by clicking the
right button on your mouse.

m The placement and contents of the menu depends on which
window or pane you are in and where your cursor is.

m Contents can vary from one local menu to another. (Even so,
many of the local commands appear in almost all of the local
menus, so that there’s a predictable core of commands from one
to another.) The results of like-named commands can be
different, however, depending on the context.

m Every command on a local menu has a hot key shortcut
consisting of Ctrl plus the highlighted letter in the command.

m Because of this arrangement, a hot key, say Ctr-S, might mean
one thing in one context but quite another in a different context.

(A core of commands, however, is still consistent across the
local menus. For example, the Goto command and the Search

23

24

History lessons

Figure 2.2
A history list in an input box

command always do the same thing, even when they are
invoked from different panes.)

From a user’s standpoint, local menus are a great convenience. All
possible command choices relevant to the moment are laid out at
a glance. This prevents you from trying to choose inappropriate
commands and keeps the menus small and uncluttered.

Menus and context-sensitivity comprise just two aspects of the
convenient environment of TDW. Another habit-forming feature
is the history list.

Conforming to the philosophy that the user shouldn’t have to
type more than absolutely necessary, TDW remembers whatever
you enter into input boxes and displays that text whenever you
call up the box again.

For example, to search for the function called MyPercentage, you
have to type in all or part of that word. Then suppose you want to
search for a variable called ReturnOnlnvestment. When you see the
dialog box this time, you'll notice that MyPercentage appears in
the input box. When you search for another text string, both pre-
viously entered strings appear in the input box. The list keeps
growing as you continue to use the Search command.

The search input box might look like this:

/* program entry point
*

» int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR 1pszCmdLine, int nCmdShow)

unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

_InitWinCrt(); Enter search string
nlines = 0;
nwords = 0;
totalcharacters = 0; printstatistics
showargs (_argc, _argv); nwords

while %readalineT) 1= 0) { analyzewords
wordcount = makeintowords(| nlines
nwords += wordcount;

Turbo Debugger for Windows User’s Guide

The first item in a search list is
always the word the cursor is
on in the Module window.

Automatic name
completion

Warning!

EI0

Incremental
matching

Chapter 2, TDW basics

You can use this history list as a shortcut to typing by using the
arrow keys to select any previous entry then pressing Enter to start
the search. If you have a mouse, you can also use the scroll bar to
scroll to the entry you want. If you use an unaltered entry from
the history list, that entry is copied to the top of the list.

You can also edit entries (use the arrow keys to insert the cursor
in the highlighted text, then edit as usual, using Del or Backspace).
For example, you can select MyPercentage and change it to
HisPercentage, instead of typing in the entire text. If you start to
type a new item when an entry is highlighted, you will overwrite

the highlighted item.

A history list lists the last ten responses unless you've used
TDWINST to configure TDW otherwise. (The TDWINST program
is described in the file TDWINST.TDW.)

TDW keeps a separate history list for most input boxes. That way,
the text you enter to do a search does not clutter up the box for,
say, going to a particular label or line number.

Whenever you are prompted for text entry in an input box, you
can type in just part of a symbol name in your program, then
press Ctrl-N.

When the word READY. .. appears in the upper right corner of the
screen with three dots after it, it means the symbol table is being
sorted. Ctrl-N won’t work until the three dots go away, indicating
that the symbol table is available for name completion.

m If you have typed enough of a name to uniquely identify it,
TDW simply fills in the rest of it.

m If the name you have typed so far is not the beginning of any
known symbol name, nothing happens.

u If what you have typed matches the beginning of more than
one symbol name, a list of matching names is presented for you
to pick the one you want.

TDW also lets you use incremental matching to find entries in a
dialog box list of file and directory names. Start typing the name
of the file or directory; if the file is available from the names at or
below the current position in the list box, the highlight bar moves

25

Making macros

Whenever you find yourself
repeating a series of steps,
say to yourself, “Shouldn’t |
be using a macro for this?”

Window shopping

Windows from the View

menu
Breakpoints
Stack
Log
Watches
Variables
Module... F3
File...
CPU
Dump
Registers
Numeric processor
Execution history
Hierarchy
Windows messages
Clipboard
Another >
See Chapter 7 for a
complete description of this
type of window and how
breakpoints work.

26

to the name as soon as you have typed enough characters to
identify it uniquely. Then all you have to do is choose the OK
button.

Macros are simply hot keys you define to perform a series of
commands and other keystrokes.

You can assign any series of TDW commands and keystrokes to a
single key, for playback whenever you want.

See page 64 in Chapter 4 for an explanation of how to define
macros.

TDW displays all information and data in menus (local and
global), dialog boxes (which you use to set options and enter
information), and windows. There are many types of windows; a
window’s type depends on what sort of information it holds. You
open and close all windows using menu commands (or hot key
shortcuts for those commands). Most of TDW’s windows come
from the View menu, which lists fifteen types of windows.
Another class of window, called the Inspector window, is opened
by choosing either Data | Inspect or Inspect from a local menu.

To the left is a list of the fifteen types of windows you can open
from the View menu.

Once you have opened one or more of these windows, you can
move, resize, close, and otherwise manage them with commands
from the Window and = (System) menus, which are discussed
later in this chapter in the section “Working with windows.”

Breakpoints window

Displays the breakpoints you have set. A breakpoint defines a
location in your program where execution stops so you can
examine the program’s status. The left pane lists the position of
every breakpoint (or indicates that it is global), and the right pane
indicates the conditions under which the currently highlighted
breakpoint executes.

Use this window to modify, delete, or add breakpoints.

Turbo Debugger for Windows User’s Guide

Chapter 5 provides more
information on the Stack
window.

Chapter 7 tells you more
about the Log window.

See Chapter 6 for more
about the Watches window.

Chapter 5 describes the
Variables window in more
detail.

Chapter 2, IDW basics

Stack window

Displays the current state of the stack, with the function called
first on the bottom and all subsequently called functions on top,
in the order in which they were called.

You can bring up and examine the source code of any function in
the stack by highlighting it and pressing Ctrl-/.

By highlighting a function name in the stack and pressing Ct-L,
you open a Variables window displaying variables global to the

program, variables local to the function, and the arguments with
which the function was called.

Log window

Displays the contents of the message log. The log contains a
scrolling list of messages and information generated as you work
in TDW. It tells you such things as why your program stopped,
the results of breakpoints, the contents of windows you saved in
the log, and Windows information.

You can also use the log window to obtain information about
memory usage and modules for a Windows application.

This window lets you look back into the past and see what led up
to the current state of affairs.

Watches window

Displays variables and expressions and their changing values.
You can add a variable to the window by pressing Ctr-W when the
cursor is on the variable in the Module window.

Variables window

Displays all the variables accessible from a given spot in your pro-
gram. The upper pane has global variables; the lower pane shows
variables local to the current function or module, if any.

This window is helpful when you want to find a function or
variable that you know begins with, say, “abc,” and you can’t
remember its exact name. You can look in the global Symbol pane
and quickly find what you want.

27

Chapter 8 details the Module
window and its commands.

You can learn more about

the File window in Chapter 8.

Chapter 12 discusses the

CPU window and assembler-

level debugging.

See Chapter 12, which
discusses assembler

debugging, for more on this

28

window.

Module window

Displays the program code that you're debugging. You can move
around inside the module and examine data and code by posi-
tioning the cursor on program variable names and issuing the
appropriate local menu command.

You will probably spend more time in Module windows than in
any other type, so take the time to learn about all the various local
menu commands for this type of window.

You can also press F3 to open a Module window.

File window

Displays the contents of a disk file. You can view the file either as
raw hex bytes or as ASCII text, and you can search for specific text
or byte sequences.

CPU window

Displays the current state of the central processing unit (CPU).
This window has six panes: one that contains disassembled
machine instructions, one that shows the contents of a selector,
one that shows hex data bytes, one that displays a raw stack of
hex words, one that lists the contents of the CPU registers, and
one that indicates the state of the CPU flags.

The CPU window is useful when you want to watch the exact
sequence of instructions that make up a line of source code or the
bytes that comprise a data structure. If you know assembler code,
this can help locate subtle bugs. You do not need to use this
window to debug the majority of programs.

TDW sometimes opens a CPU window automatically if your
program stops in Windows code or on an instruction in the
middle of a line of source code.

Dump window

Displays a raw display of an area of memory. (This window is the
same as the Data pane of a CPU window.) You can view the data
as characters, hex bytes, words, doublewords, or any floating-
point format. You can use this window to look at some raw data
when you don’t need to see the rest of the CPU state or to gain
direct access to I/O ports. The local menu has commands to let

Turbo Debugger for Windows User’s Guide

Chapter 12, which discusses
assembler debugging, has
more information on this
window.

See the file ASMDEBUG.TDW
for more information about
using the Numeric Processor
window.

See Chapter 5 for more
information on the Execution
History window.

See Chapter 10 for more
information about using the
Hierarchy window.

Chapter 2, TDW basics

you modify the displayed data, change the format in which you
view the data, and manipulate blocks of data.

Registers window

Displays the contents of the CPU registers and flags. This window
has two panes, which are the same as the registers pane and flags
pane, respectively, of a CPU window. Use this window when you
want to look at the contents of the registers but don't need to see
the rest of the CPU state. You can change the value of any of the
registers or flags through commands in the local menu.

Numeric Processor window

Displays the current state of the numeric coprocessor. This
window has three panes: one pane that shows the contents of the
floating-point registers, one that shows the status flag values, and
one that shows the control flag values.

This window can help you diagnose problems in programs that

use floating-point numbers. You need to have a fair understand-
ing of the inner workings of the numeric coprocessor in order to
really reap the benefits of this window.

Execution History window
Displays source lines for your program, up to the last line
executed. The window indicates

1. whether you are tracing or stepping
2. the line of source code for the instruction about to be executed
3. the line number of the source code

You can examine it or use it to rerun your program to a particular
spot.

Hierarchy window

Lists and displays a hierarchy tree of all classes used by the
current module. The window has two panes: one for the class list,
the other for the class hierarchy tree. This window shows you the
relationship of the classes used by the current module. By using

29

Chapter 11 explains how to
use the Windows Messages

30

See page 36 for an
explanation of how to use

feature.

the Clipboard.

Modu
Dump
File

le...

User screen

Alt-F5 is the hot key that

toggles between the

environment and the User

screen.

this window’s local menu commands, you can examine any class’s
data members and member functions.

Windows Messages window

Displays a list of messages passed between the windows in your
Windows application. This window has three panes:

m The left pane shows which procedures or handles you're
tracking messages for.

m The right pane shows the type of messages you're tracking.
m The bottom pane displays the messages being tracked.

Clipboard window

Displays the items that have been clipped into the Clipboard,
showing you their types and allowing you to inspect or delete an
item and to freeze the value of any item in the Clipboard.

Duplicate windows

You can also open duplicates of three types of windows—Dump,
File, and Module—by choosing View | Another. This lets you keep
track of several separate areas of assembly code, different files the
program uses or generates, or several distinct program modules
at once.

Don’t be alarmed if TDW opens one of these windows all by itself.
It will do this in some cases in response to a command.

The User screen shows your program’s full output screen. The
screen you see is exactly the same as the one you would see if
your program was running directly under Windows and not
under TDW.

You can use this screen to check that your program is at the place
in your code that you expect it to be, as well as to verify that it is
displaying what you want on the screen. To switch to the User
screen, choose Window | User Screen. After viewing the User
screen, press any key to go back to the debugger screen.

Turbo Debugger for Windows User’s Guide

Inspector windows

LS

>

The active window

Chapter 2, TDW basics

An Inspector window displays the current value of a selected
variable. Open it by choosing Data | Inspect or Inspect from a local
menu. Usually, you close this window by pressing Esc or clicking
the close box with the mouse. If you’ve opened more than one
Inspector window in succession, as often happens when you
examine a complex data structure, you can remove all the Inspec-
tor windows by pressing Alt-F3 or using the Window | Close
command.

You can open an Inspector window to look at an array of items or
at the contents of a variable or expression. The number of panes in
the window depends on the nature of the data you are inspecting.
An Inspector window adapts to the type of data being displayed.
It can display not only simple scalars (int, float, and so on), but
also pointers, arrays, structures, and unions. Each type of data
item is displayed in a way that closely mimics the way you're
used to seeing it in your program’s source code.

You create additional Inspector windows simply by choosing the
Inspect command, whereas you can create additional Module,
File, or CPU windows only by choosing View | Another.

Even though you can have many windows open in TDW at the
same time, only one window can be active. You can spot the active
window by the following criteria:

m The active window has a double outline around it, not a single
line.

m The active window contains the cursor or highlight bar.

m If your windows are overlapping, the active window is the
topmost one.

When you issue commands, enter text, or scroll, you affect only
the active window, not any other windows that are open.

31

Figure 2.3 ‘ :
The active window has a un_great s _gat i JERMIREADY
double outline

ump:

ds:0000 00 00 00 00 00 00 50 1E
_InitWinCrt(|| ds:0008 00 00 C2 OA 2C 1E 2C 1E
nlines = 0; ds:0010 00 00 08 00 00 00 4D OA
nwords = 0; ds:0018 66 OA 36 OA 80 00 01 00
totalcharact
showargs(_argc, argv ;

while %readal1neT) I=
wordcount = makeintowords(buffer);
nwords += wordcount;

What's in a window A window always has most or all of the following features, which
give you information about it or let you do things to it:

Figure 2.4 Window 5231 ::d
A typical window CIoie box Iitle numbe: l:oxes
—[a]=Module: TDDEMO File: TDDEMO.C 37 1=[1[4]

static void showargs(int argc, char *argv[]);
/* program entry point
%*

> int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
(LPSTR 1pszCmdLine, int nCmdShow)

unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

_InitWinCrt();
nlines = 0;
nwords = 03
totalcharacters =0;
showargs(argc, argv);
while ?readal1neT) 1= 0) {
wordcount = makeintowords(buffer);

+
Scroll bar Resize box

® An outline (double if the window is active, single otherwise).

m A title, located at the left top.

@2 ¥ Ascroll bar or bars on the right or bottom if the window opens
on more information than it can hold at one time. You operate
the scroll bars with the mouse:

o Click the direction arrows at the ends of the bar to move one
line or one character in the indicated direction.

32 Turbo Debugger for Windows User's Guide

=

Working with windows

Press Alt-Spacebar to open the
= menu, or Alt-W to open the
Window menu.

Chapter 2, TDW basics

o Click the gray area in the middle of the bar to move one
window size in the indicated direction.

e Drag the scroll box to move as much as you want in the
direction you want.

m A resize box in the lower right corner. Drag it with your mouse
to make the window larger or smaller. If no scroll bar is present
on the bottom or right side of a window, that side of the
window border also activates window resizing.

m A window number in the upper right, reflecting the order in
which the window was opened.

® A zoom box and iconize box in the upper right corner. The one
on the left contains the zoom icon, the one on the right the
iconize icon. Click these with your mouse to expand the
window to full screen size, restore it to its original size, or
iconize it. (When a window is zoomed to full size, only the
unzoom box is available, and when it is iconized, only the zoom
box is available.)

m A close box in the upper left corner. Click it with your mouse to
close the window.

With all these different windows to work with, you will probably
have several open onscreen at a time. TDW makes it easy for you
to move from one window to another, move them around, pile
them on top of one another, shrink them to get them out of your
way, expand them to work in them more easily, and close them
when you are through.

Most of the window-management commands are in the Window
menu. You'll find a few more commands in the = (System) menu,
the menu marked with the = icon at the far left of the menu bar.

Window hopping

Each window that you open is numbered in the upper right
corner. Usually, the Module window is window 1 and the
Watches window is window 2. Whatever window you open after
that will be window 3, and so on.

This numbering system gives you a quick, easy means of moving
from one window to another. You can make any of the first nine

open windows the active window by pressing Alf in combination
with the window number. If you press Alt-2, for example, to make

33

Fé is the hot key for the
Window | Next Window.

&2

Tab and Shift-Tab are the hot
keys for Window | Next Pane.

=

Refer to Chapter 13 fora
table of keystroke
commands in panes.

the Watches window active, any commands you choose will affect
that window and the items in it.

You can also cycle through the windows onscreen by choosing
Window | Next or pressing F6. This is handy if an open window’s
number is covered up so you don’t know which number to press
to make it active.

If you have a mouse, you can also activate a window by clicking
it.

To see a list of all open windows, choose Window from the menu
bar. The bottom half of the Window menu lists up to nine open
windows from which you can make a selection. Just press the
number of a window to make it the active one.

If you have more than nine windows open, the window list will
include a Window Pick command; choose it to open a pop-up
menu of all the windows open onscreen.

If a window has panes—areas of the window reserved for a
specific type of data—you can move from one pane to another by
choosing Window | Next Pane or pressing Tab or Shift-Tab.

You can also click the pane with the mouse.

The most pane-full window in TDW is the CPU window, which
has six panes.

As you hop from pane to pane, you'll notice that a blinking cursor
appears in some panes, and a highlight bar appears in others. If a
cursor appears, you move around the text using standard keypad
commands. (PgUp, Ctrl-Home, and Ctrl-PgUp, for example, move the
cursor up one screen, to the top of pane, or to the top of the list,
respectively.) If you've disabled shortcut keys, you can also use
WordStar-like hot keys for moving around in the pane.

If there’s a highlight bar in a pane instead of a cursor, you can still
use standard cursor-movement keys to get around, but a couple
of special keystrokes also apply. In alphabetical lists, for example,
you can select by typing. As you type each letter, the highlight bar
moves to the first item starting with the letters you've just typed.
The position of the cursor in the highlighted item indicates how
much of the name you have already typed. Once the highlight bar
is on the desired item, your search is complete. This incremental
matching or select by typing minimizes the number of characters
you must type in order to choose an item from a list.

Turbo Debugger for Windows User’s Guide

Ctrl-F5 is the hot key for the
Window | Size/Move
command.

F5 is the hot key for the
Window | Zoom command.

Chapter 2, TDW basics

Once an item is selected (highlighted) from a list, you can press
Alt-F10 to choose a command relevant to it from its local menu. In
many lists, you can also just press Enter once you have selected an
item. This acts as a hot key to one of the commonly used local
menu commands. The exact function of the Enter key in these cases
is described in the reference section starting on page 190.

Finally, a number of panes let you start typing a new value or
search string without choosing a command first. This usually
applies to the most frequently used local menu command in a
pane or window—Ilike Goto in a Module window, Search in a File
window, or Change in a Registers window.

Moving and resizing windows

When you open a new window in TDW, it appears near the
current cursor location and has a default size suitable for the kind
of window it is. If you find either the size or the location of the
window inconvenient, you can use the Window | Size/Move
command to adjust the size or location of the window.

When you move or resize a window, your active window border
changes to a single-line border. You can then use the arrow keys
to move the window around or Shift with the arrow keys to
change the size of the window onscreen. Press Enter when you're
satisfied.

If you have a mouse, moving and resizing a window is even
easier:

m Drag the resize box in the lower right corner to change the size
of the window.

m Drag the title bar or any edge (but not the scroll bars) to move
the window around.

If you want to enlarge or reduce a window quickly, choose
Window | Zoom, or click the mouse on the zoom box or the iconize
box in the upper right corner.

Finally, if you want to get a window out of the way temporarily
but don’t want to close it, make the window active, then choose
Window | Iconize/Restore. The window will shrink to a tiny box
(icon) with only its name, close box, and zoom box visible. To
restore the window to its original form, make it active and choose
Window | Iconize /Restore again, or click your mouse on the zoom
box.

35

36

Al-F3 is the hot key for
Window | Close.

[~ %

Alt-F6 is the hot key for
Window | Undo Close.

Copying and
pasting

You can use the Ins key to
mark multiple items in a list.

Closing and recovering windows

When you are through working in a window, you can close it by
choosing Window | Close.

If you have a mouse, you can also click the Close box in the upper
left corner of the window.

If you close a window by mistake, you can recover it by choosing
Window | Undo Close or by pressing Alt-F6. This works only for the
last window you closed.

You can also restore your TDW screen to the layout it had when
you first entered the program. Just choose = (System) | Restore
Standard.

Finally, if your program has overwritten your environment screen
with output (because you turned off screen swapping), you can
clean it up again with = (System) | Repaint Desktop.

Saving your window layout

Use the Options | Save Options command to save a specific
window configuration once you have the screen arranged the way
you like. In the Save Configuration dialog box, tab to Layout and
press Spacebar to toggle it on. The screen will then appear with
your chosen layout each time you start TDW, if the configuration
has been saved to a file called TDCONFIG.TDW. This configu-
ration file is the only one loaded automatically when TDW is
loaded. Other configurations can be loaded by using the Options |
Restore Options command if they have been saved to configu-
ration files with a different name.

TDW has an extensive copy and paste feature called the
Clipboard. With the Clipboard you can copy and paste between
TDW windows and dialog boxes.

The items you copy into the Clipboard are dynamigc; if an item has
an associated value, the Clipboard keeps that value current as it
changes in your program.

To copy an item into the Clipboard, position the cursor on the
item or highlight it with the Ins key, then press Shift-F3. To paste
something into a window or dialog box from the Clipboard, press

Turbo Debugger for Windows User’s Guide

Shift-F4 or use the Clip button in the dialog box to bring up the
Pick dialog box.

> You can paste into any dialog box prompt (any place in a dialog
box where you can type text) by pressing Shift-F4, even if the
dialog box doesn’t have a Clip button. You can also paste into
dialog box prompts with multiple fields.

The Pick dialog box Pressing Shift-F4 or the Clip button brings up a dialog box listing
Clipboard contents and showing the categories you can use for
pasting an item into the dialog box.

Figure 2.5 (=] Pick (C)
The Pick dialog box ‘

DI 4 e) String
DEMO#47 totalcharacters () Location
totalcharacters 6 (0x6) () Contents

| Paste ol Cancel g Help o

This dialog box shows a scrolling list of items in the Clipboard
and allows you to interpret the item to be pasted in up to three
ways: as a string, as an address, or as contents of an address. The
categories you can use in pasting the item depend on its type and
its destination (discussed later).

For example, if you clip text from the Log window, it can be
pasted only as a string. If you clip text from the Module window,
it can be pasted elsewhere as a string or as an address, but not as
contents. If you clip a variable from an Inspector window, it can
be pasted as a string, a location, or as contents (unless it's a C
register variable, in which case you can paste it only as a string or
as contents, not as an address).

To paste an item into a dialog box, highlight the item, select the
appropriate category, then either press Enter or the Paste button,
depending on what effect you want to have on the dialog box.

m Pressing Enter simply pastes the item in and returns you to the
dialog box.

m Pressing the Paste button both pastes the item in and passes an
Enter to the dialog box, causing it to perform its function.

Chapter 2, TDW basics 37

Thé Clipboard window

Figure 2.6
The Clipboard window

Table 2.2
Clipboard item types

38

There’s a View window that lets you see the contents of the
Clipboard. Choosing View | Clipboard displays the Clipboard
window, which lists all clipped items.

[w]=C1ipboard 5=[*]1[]
Module : @#TDDEMO#45 nlines

Inspector : nlines 0 (0x0

Module . Q#TDDEMO#47 totalcharacters

Inspector : totalcharacters OL (0x0)

The leftmost field of this window describes the type of the entry,
followed by a colon and the clipped item. If the clipped item is an
expression from the Watches window, a variable from the
Inspector window, or data, a register, or a flag from the CPU
window, the item is followed by its value or values.

Clipboard item types

When you clip an item from a Window, Turbo Debugger assigns
it a type to help you identify the source of the item. The following
table shows the Clipboard types:

Type Description

String A text string, like a marked block from the File window

Module A module context, including a source code position,
like a variable from the Module window

File A position in a file (in the File window) that isn’t a
module in the program

CPU code An address and byte list of executable instructions
from the Code pane of the CPU window

CPU data An address and byte list of data in memory from the
Data pane of the CPU window or the Dump window

CPU stack A source position and stack frame from the Stack pane
of the CPU window

CPU register A register name and value from the Register pane of
the CPU window or the Registers window

CPU flag A CPU flag value from the Flags pane of the CPU
window

Inspector One of the following:

A variable name from an Inspector window

A constant value from an Inspector or Watches
window

Turbo Debugger for Windows User’s Guide

Inspect
Remove
Delete all
Freeze

Table 2.3
Clipboard local menu
commands

See Chapter 6 for more
information on watching
expressions.

Chapter 2, TDW basics

Table 2.2: Clipboard item types (continued)

A register-based variable from an Inspector
window

A bit field from an Inspector window

Address An address without data or code attached
Expression An expression from the Watches window
Coprocessor An 80x87 numeric coprocessor register
Control flag An 80x87 control flag value

Status flag An 80x87 status flag value

The Clipboard window local menu

If you're in the Clipboard window and you press Alt-F10 or click
the right mouse button, you see the menu at the left. Alterna-
tively, you can press Ctrl and the highlighted key of the local menu
command to execute a command.

Command Description

Inspect Positions the cursor in the window from which the
item was clipped.

Remove Removes the highlighted item or items. Pressing Del has
the same effect on a highlighted item.

Delete All Deletes everything in the Clipboard.

Freeze Stops the Clipboard item from being dynamically
updated.

Dynamic updating

The Clipboard dynamically updates any item with an associated
value, such as an expression from the Watches window, a variable
from the Inspector window, or a register from the CPU window.
You can use the Clipboard as a large Watches window if you
wish, and you can freeze the value of any item you like.

For example, you might want to put a Watches window
expression in the Clipboard. To do so, first put it in the Watches
window, then press Shift-F3 to copy it into the Clipboard. The
value of the item then changes just as it would in a Watches
window, unless you use the local menu Freeze command to
disable the watchpoint.

39

40

Tips for using the
Clipboard

Getting help

One advantage of watching an expression in the Clipboard is that
you can freeze the expression at a certain value, then continue
running the program and compare the frozen value to the
changing values in the Watches window.

The possible uses of the Clipboard are too numerous to list here.
Some of the things you can do with it are

m clipping from lines in Module windows as a way of marking
locations that you can later return to using the local menu Goto
command (by pasting a location into the dialog box displayed
by the Goto command)

m watching an expression (see the previous section)

m pasting new values into variables using the Data | Evaluate
dialog box or the dialog box for the Change command of the
Inspector window or the Watches window

® pasting strings into the Log window to help you keep track of
what you did during a debugging session

m pasting an address (the location category of an item) into any of
the places where an address is requested (such as the
Breakpoints | Options dialog box Address field, or the Run |
Execute To dialog box)

m pasting expressions into conditions and actions of breakpoints
m pasting parameters into the Run | Arguments dialog box

m pasting a Window proc name or an OWL object name into the
Windows Messages window

m pasting a string into the dialog box for the Module window
Search command

m copying data from and pasting it to the CPU data pane

m copying code from one part of the CPU window to another and
then running the program with the copied code

As you've seen, TDW goes out of its way to make debugging easy
for you. It doesn’t require you to remember obscure commands; it
keeps lists of what you type, in case you want to repeat it; it lets
you define macros; and it offers sophisticated control of your
windows. To avoid potential confusion, TDW offers the following
help features:

Turbo Debugger for Windows User's Guide

EReAY|

—

Online help

Index Shift-F1
Previous topic Alt-Fl
Help on help

Chapter 2, IDW basics

m An activity indicator in the upper right corner always displays
the current activity. For example, if your cursor is in a window,
the activity indicator reads READY; if there’s a menu visible, it
reads MENU; if you're in a dialog box, it reads PROMPT. If you ever
get confused about what’s happening in TDW, look at the
activity indicator for help. (Other activity indicator modes are
SIZE/MOVE, MOVE, ERROR, RECORDING, WAIT, RUNNING, HELP, STATUS, and
PLAYBACK.)

m The active window is aiways topmost and has a doubie line
around it.

® You can access an extensive context-sensitive help system by
pressing F1. Press F1 again to bring up an index of help topics
from which you can select what you need.

m The status line at the bottom of the screen always offers a quick
reference summary of keystroke commands. The line changes
as the context changes and as you press Alt or Ctrl. Whenever
you are in the menu system, the status line offers a one-line
synopsis of the current menu command.

For more information on the last two avenues for help, read the
following two sections.

TDW, like other Borland products, gives context-sensitive
onscreen help at the touch of a single key. Help is available
anytime you're within a menu or window, as well as when an
error message or prompt is displayed.

Press F1 to bring up a Help screen showing information pertinent
to the current context (window or menu). If you have a mouse,
you can also bring up help by clicking F1 on the status line. Some
Help screens contain highlighted keywords that let you get addi-
tional help on that topic. Use the arrow keys to move to any key-
word and then press Enter to get to its screen. Use the Home and
End keys to go to the first and last keywords on the screen,
respectively.

You can also access the onscreen help feature by choosing Help
from the menu bar (Alt-H).

If you want to return to a previous Help screen, press Alt-F1 or
choose Previous Topic from the Help menu. From within the
Help system, use PgUp to scroll back through up to 20 linked help
screens. (PgDn only works when you’re in a group of related
screens.) To access the Help Index, press Shift-F1 (or F1 from within

41

The status line

Figure 2.7
The normail status line

Figure 2.8

The status line with Alt pressed

42

Figure 2.9
The status line with Ctrl
pressed

the Help system), or choose Index from the Help menu. To get
help on Help, choose Help | Help on Help. To exit from Help, press
Esc.

Whenever you're in TDW, a quick-reference help line appears at
the bottom of the screen. This status line provides at-a-glance
keystroke or menu command help for your current context.

In a window

The normal status line shows the commands performed by the
function keys and looks like this:

F 1SRN 2B TN ST ST o 7T S L OB

If you hold down the Alt key for a second or two, the commands
performed by the Altkeys are displayed.

Alt: F2RETF S

Lback o User Unao @ Intr R 10 @l Local]

If you hold down the Ctrf key for a second or two, the commands
performed by the Ctrl letter keys are displayed. This status line
changes depending on the current window and current pane, and
it shows the single-keystroke equivalents for the current local
menu. If there are more local menu commands than can be
described on the status line, only the first keys are shown. You
can view all the available commands on a local menu by pressing
Alt-F10 to pop up the entire menu.

[RAJEMI-Tnspect [-Watch

In a menu or dialog box

Whenever you are in a menu or a dialog box, the status line
displays a one-line explanation of what the current item does. For
example, if you have highlighted View | Registers, the status line
says Open a CPU registers window.

The status line gives you menu help whether you are in a global
menu or a local menu.

Turbo Debugger for Windows User’s Guide

A quick example

If you're eager to use TDW and aren’t the sort of person to work
through the whole manual first, this chapter gives you enough
knowledge to debug your first program. Once you've learned the
basic concepts described here, the integrated environment and
context-sensitive Help system make it easy to learn as you go
along.

This chapter leads you through all TDW'’s basic features. After
describing the demo program TDDEMO provided on the
distribution disks, it shows you how to

m run and stop program execution

m examine the contents of program variables

m look at complex data objects, like arrays and structures

m change the value of variables

The demo program

The demo program (TDDEMO) introduces you to the two main
things you need to know to debug a program: how to stop and
start your program and how to examine your program'’s variables
and data structures. The program itself is not meant to be
particularly useful: Some of its code and data structures exist
solely to show you TDW's capabilities.

Chapter 3, A quick example 43

£

Getting in

Figure 3.1
The startup screen showing
TDDEMO

The program uses the EasyWin module to display its output in a
window under Windows. It’s not a full-featured Windows
application, but it does illustrate some useful TDW concepts.

The demo program lets you type in some lines of text, then counts
the number of words and letters that you entered. At the end of
the program, it displays some statistics about the text, including
the average number of words per line and the frequency of each
letter.

Make sure your working directory contains the two files needed
for the tutorial: TDDEMO.C and TDDEMO.EXE.

To start the demo program,

1. Make sure Windows is running in standard or 386 enhanced
mode. (TDW doesn’t run in real mode.)

2. In the Windows Program Manager, open the program group
that contains TDW and choose the TDW icon.

3. When TDW starts up, choose File | Open and enter the full
path to TDDEMO (you might need to compile TDDEMO.C
first with debugging information), then press Enter.

TDW loads the demo program, displays the startup screen, and
positions the cursor at the start of the program.

=[8 ule: TDD ile: tddemo

ddemo.c 32
static void showargs(int argc, char *argv[]);

/*/program entry point
*

> int main(int argc, char *xargy) {
unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

nlines = 0;
nwords = 0; .
totalcharacters = 0;
showargs (argc, argv);
while (readaline() != 0) {

wordcount = makeintowords(buffer);

nwords += wordcount;

totalcharacters += analyzewords(buffer);

nlines++;

v

The startup screen consists of the menu bar, the Module and
Watches windows, and the status line.

Turbo Debugger for Windows User's Guide

Getting out

Getting Help

Using TDW

To exit from TDW at any time, press Alt-X. If you get hopelessly
lost following the tutorial, press Ctrl-F2 to reload the program and
start at the beginning. However, Ctrl-F2 doesn’t clear breakpoints
or watches; you'll have to use Alf-B D to do that.

Press F1 whenever you need Help with the current window,
menu command, dialog box, or error message. You can learn a lot
by working your way through the menu system and pressing F1

> ~f vt it 3 <
at each command to get a summary of what it does.

The menus

Figure 3.2
The menu bar

r

Esc

Chapter 3, A quick example

The top line of the screen shows the menu bar. To pull down a
menu from it, press F10. Then, to choose a menu command, you
can either use < or — to highlight your selection and press Enter,
or press Altin combination with the highlighted letter of one of the
menu names.

Press F10 now. Notice that the cursor disappears from the Module
window, and the = command on the menu bar becomes high-
lighted. The bottom line of the screen also changes to indicate
what sort of functions the = menu performs.

Use the arrow keys to move around the menu system. Press { to
pull down the menu for the highlighted item on the menu bar.

You can also open a menu by clicking an item in the menu bar
with your mouse.

Press Esc to move back through the levels of the menu system.
When just one menu item on the menu bar is highlighted, pres-
sing Esc returns you to the Module window, with the menu bar
no longer active.

The status line

Figure 3.3
The status line

=

The windows

The status line at the bottom of the screen shows relevant function
keys and what they do.

F 1SN 2ESESEN S 4N SR S e SESSETNF SR L O

This line changes depending on what you are entering (menu
commands, data in a dialog box, and so on). Hold Altdown for a
second or two, for example. Notice that the status line changes to
show you the function keys you can use with At

Now press Ctrl for a second. The commands shown on the status
line are the hot keys to the local menu commands for the current
pane (area of the window). They change depending on which sort
of window and which pane you are in. (More about these later.)

As soon as you enter the menu system, the status line changes
again to show you what the currently highlighted menu option
does. Press F10to go to the menu bar, and press — to highlight the
File option. The status line now reads, File oriented functions.
Use { to scroll through the options on the File menu, and watch
the message change. Press Esc or click the Module window with
your mouse to leave the menu system.

The window area takes up most of the screen. This area is where
you examine various parts of your program through the different
windows.

The display starts up with two windows: a Module window and
the Watches window. Until you open more windows or adjust
these two, they remain tiled, filling the entire screen without
overlapping. New windows automatically overlap existing
windows until you move them.

Turbo Debugger for Windows User's Guide

Figure 3.4 — . T T
[iew Qun treakpoints ¥a ptions)
The Module and Watfches ™2 Ha«% em: DONUTRIN File: DONUTHIN.C 3 =
windows, filed /* program DoNuthin */

» main()
{}

This is the Module window

Notice that the Module window has a double-line border and a
highlighted title, which indicate that it’s the active window. You
use the cursor keys (the arrow keys, Home, End, PgUp, and so on) to

move around inside the active window. Now press F6 to switch to
another window. The Watches window becomes active, with a
double-line border and a highlighted title.

You use commands from the View menu to create new windows.
For example, choose View | Stack to open a Stack window. The
Stack window pops up on top of the Module window.

Alt Now press Alt-F3 to remove the active window. The Stack window
disappears.

TDW stores the last-closed window, making it possible for you to
recover it if you need to. If you accidentally close a window,
choose Window | Undo Close. If you do so now, you see the Stack

window reappear. You can also press Alt-F6 to recover the last-
closed window.

The Window menu contains the commands that let you adjust the
appearance of the windows you already have onscreen. You can
both move the window around the screen and change its size.
(You can use Ctrl-F5 to do the same thing.)

Choose Window | Size/Move and use the arrow keys to reposition
the active window (the Stack window) on the screen. Next, hold
Shift down and use the arrow keys to adjust the size of the

Chapter 3, A quick example 47

window. Press Enter when you have defined a new size and
position that you like.

Now, to prepare for the next section, remove the Stack window by
pressing Alt-F3. Then continue with the next section.

Using the C demo program

To position the cursor on a

line in the Module window,

48

press Ctrl-G, type the line
number, and press Enter.

Alt

The filled arrow (») in the left column of the Module window
shows where TDW stopped your program. Since you haven’t run
your program yet, the arrow is on the first line of the program.
Press F7to trace a single source line. The arrow and cursor are
now on the next executable line.

Look at the right margin of the Module window title. It shows the
line that the cursor is on. Move the cursor up and down with the
arrow keys and notice how the line number in the title changes.

As you can see from the Run menu, there are a number of ways to
control the execution of your program. Let’s say you want to
execute the program until it reaches line 48.

First, position the cursor on line 39, then press F4 to run the
program up to (but not including) line 39. Now press F7, which
executes one line of source code at a time; in this case, it executes
line 39, a call to the function showargs. The cursor immediately
jumps to line 151, where the definition of showargs is found.

Continuing to press F7 would step you through the function
showargs and then return you to the line following the call—line
40. Instead, press Alt-F8, which causes showargs to execute and
then return, at which point the program stops. This command too,
returns you to line 40, and is very useful when you want to jump
past the end of a function.

If you had pressed F8instead of F7 on line 39, the cursor would
have gone directly to line 40 instead of into the function. F8is
similar to F7in that it executes a procedure or source line, but it
skips any function calls.

Turbo Debugger for Windows User's Guide

Figure 3.5
Program stops on return from
function showargs

Setting
breakpoints

=2

Chapter 3, A quick example

ll!l!FﬂﬂEl!:twt lAdit {iew [kpoi
—[u]=Module: TDDEMO File: tddemo ¢ 40:

nwords = 0;

totalcharacters = 0;

showargs (argc, argv);

> while (readaline(? {

wordcount = makeintowords(buffer);
nwords += wordcount;
totalcharacters += analyzewords (buffer);
nlines++;

printstatistics(nlines, nwords, totalcharacters);
return(0);

}

/* make the buffer into a list of null-terminated words that end in
* in two nulls, squish out white space

*
static int makeintowords(char *bufp) {
unsigned int nwords;

To execute the program until a specific place is reached, you can
directly name the function or line number, without moving the
cursor to that line in a source file and then running to that point.
Press Alt-F9 to specify a label to run to. A dialog box appears. Type
readaline and press Enter. The program runs, then stops at the
beginning of function readaline (line 142).

Another way to control where your program stops running is to
set breakpoints. The simplest way to set a breakpoint is with the
F2 key. Move the cursor to line 44 and press F2. TDW highlights
the line, indicating there is a breakpoint set on it.

You can also use the mouse to toggle breakpoints by clicking the
first two columns of the Module window.

49

50

Figure 3.6
A breakpoint at line 44

Using watches

Alt

nwords = 0; »
totalcharacters = 0; a

showargs (argc, argv);

while %readaline(1= 0) {

wordcount = makeintowords(buffer);]
nwords += wordcount;

totalcharacters += analyzewords(buffer);
> nlines++;

}
printstatistics(nlines, nwords, totalcharacters);
return(0);

}

/* make the buffer into a 1ist of null-terminated words that end in
* in two nulls, squish out white space

*
static int makeintowords(char *bufp) {
unsigned int nwords; v

_Here [d3-Zoom [fi-Next [@]-Trace [

Now press F9 to execute your program without interruption. The
screen switches to the program’s display. The demo program is
now running and waiting for you to enter a line of text. Type abc,
a space, def, and then press Enter. The display returns to the TDW
screen with the arrow on line 44, where you set a breakpoint that
has stopped the program. Now press F2 again to toggle it off.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

The Watches window at the bottom of the screen shows the value
of variables you specify. For example, to watch the value of the
variable nwords, move the cursor to the variable name on line 42
and choose Watch from the Module window local menu (bring it
up with Alt-F10 or the right-hand mouse button, or use the shortcut
Ctrl-w).

Turbo Debugger for Windows User’s Guide

Figure 3.7
A C variable in the Watches
window

Examining simple
C data objects

Chapter 3, A quick example

.sq READY
—[u]=Module: TDDEMO n e: tddemo c 44 =
nwords = 0; A
totalcharacters = 0;
showargs (argc, argv);
while (readaline(g 1= 0) {

wordcount = makeintowords(buffer); [

nwords += wordcount;

totalcharacters += analyzewords (buffer);
> nlines++;

printstatistics(nlines, nwords, totalcharacters);
. return(0);
!
/* make the buffer into a 1ist of null-terminated words that end in
* in two nulls, squish out white space
*

static int makeintowords(char *bufp) {
uns1-ned int nwords;

L.

— atches—— e
Fvords unsigned int 2. (0x2) |

F -Here [@3-Zoom [§3-Next [@j-Trace [§-Step FI- @ -Menu

nwords now appears in the Watches window at the bottom of the

screen, along with its type (unsigned int) and value. As you
execute the program, TDW updates this value to reflect the
variable’s current value.

Once you have stopped your program, there are a number of

ways of looking at data using the Inspect command. This facility

lets you examine data structures in the same way that you
visualize them when you write a program.

The Inspect commands (in various local menus and in the Data

menu) let you examine any variable you specify. Suppose you

want to look at the value of the variable nlines. Move the cursor so
it is under one of the letters in nlines and choose Inspect from the

Module window local menu (press Ctrl-)). An Inspector window

pops up.

51

52

Figure 3.8
An Inspector window

READY

nwords = 0;
totalcharacters = 0;
showargs (argc, argv);
while (readaline() != 0)

wordcount = makeintowords (buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlines++;
[#]=Inspecting nlines=3=[%][¢]

}
printstati|{@793E:FFCO ers);
return(0) ; [{f3 i 0)

/* make the buffer into a Tist of null-terminated words that end in
*/in two nulls, squish out white space

*
static int makeintowords(char *bufp) {
unsigned int nwords;

The title tells you the variable name; the next line shows you its
address in memory. The third line shows you what type of data is
stored in nlines (it’s a C unsigned int). To the right is the current
value of the variable.

Now, having examined the variable, press Esc to close the
Inspector window. You can also use Alt-F3 to remove the Inspector
window, just like any other window, or you can click the close
box with your mouse.

Let’s review what you actually did here. By pressing Ctr], you took
a shortcut to the local menu commands in the Module window.
Pressing I specified the Inspect command.

To examine a data item that is not conveniently displayed in the
Module window, choose Data | Inspect. A dialog box appears,
asking you to enter the variable to inspect. Type letterinfo and
press Enter. An Inspector window appears, showing the values of
the letterinfo array elements. The title of the Inspector window
shows the name of the data you are inspecting. The first line
under the title is the address in main memory of the first element
of the array letterinfo. Use the arrow keys to scroll through the 26
elements that make up the letterinfo array. The next section shows
you how to examine this compound data object.

Turbo Debugger for Windows User’s Guide

Examining
compound C
data objects

Figure 3.9
Inspecting a structure

Alt

Changing C data
values

Chapter 3, A quick example

A compound data object, such as an array or structure, contains
multiple components. Move to the fourth element of the letterinfo
array (the one indicated by [3]). Press Alt-F10 to bring up the local
menu for the Inspector window, then press / to choose Inspect. A
new Inspector window appears, showing the contents of that
element in the array. This Inspector window shows the contents

of a structure of type linfo.

E-va un ¥ E indow Jlelp READY
—™Module: TDDEMO File: tddemo.c 44 1

nwords = 0;
totalcharacters = 0; T Inspecting letterinfo-3————-
showargs (argc, argv); g :0852

while (readaline() !=
wordcount = makej|
nwords += wordcoflil
totalcharacters
> nlines++;

printstatistics(nlines, |=
return(0);

*
static int makeintowords(char *buf|
unsigned int nwords;

——Watches————-—

flnvords un d_int) |
L R N — - !

When you place the cursor over one of the member names, the
data type of that member appears in the bottom pane of the
Inspector window. If one of these members were in turn a com-
pound data object, you could issue an Inspect command and dig
down further into the data structure.

Press Alt-F3 to remove both Inspector windows and return to the
Module window. (Alt-F3is a convenient way of removing several
Inspector windows at once. If you had pressed Esc, only the latest
Inspector window would have been deleted.)

So far, you've learned how to look at data in the program. Now,
let’s change the value of data items.

Use the arrow keys to go to line 38 in the source file. Place the
cursor at the variable totalcharacters and press Ctrl-l to inspect its

53

value. With the Inspector window open, press Alt-F10 to bring up
the Inspector’s local menu, and choose the Change option. (You
could also have done this directly by pressing Ctrl-C.) A dialog box
appears, asking for the new value.

Figure 3.10

. | = [file [3d = n ireakpoints
The Change dialog box ™= Module: TODEMO File: tddemo.c 38
static void showargs(int argc, char *argv[]);

indow

/*/program entry point

*

int main(int argc,
unsigned i@
unsigned 1(|[

nwords
totalch{ill totalcharacters + 4
showar

[w]=Inspecting totalcharacters=3=[*][+]
78BE: FFC .

otalcharacters:

while

totalcharacters += analyzewords(buffer);
> nlines++;

At this point, you can enter any C expression that evaluates to a
number. Type totalcharacters + 4 and press Enter. The value in the
Inspector window now shows the new value, 10L (0x3).

To change a data item that isn’t displayed in the Module window,
choose Data | Evaluate/Modify. A dialog box appears. Enter the
name of the variable to change in the first input box: Type nlines
and press Enter. Then press Tab twice to move to the input box
labeled New Value. Type 123 and press Enter. The result (second
box) changes to int 123 (0x7B).

Turbo Debugger for Windows User's Guide

Figure 3.11
The Evaluate/Modify dialog
box

Chapter 3, A quick example

int main(int
unsi
unsi

nlin
nwor
tota
show
whil

: 0.C 33
static vo1d showargs(1nt argc, char *argv[]);

/*/program er=[n]

Exjgression
nlines

Evaluate/modif

——--Watches ———

That’s a quick introduction to using TDW with a program written

using Turbo C++ for Windows. Chapter 14 offers a more
extensive debugging sample.

55

Turbo Debugger for Windows User’s Guide

Starting TDW

This chapter tells you how to prepare programs for debugging.
We show you how to start TDW from Windows and how to tailor
its many command-line options to suit the program you are
debugging. We explain how to make these options permanent in a
configuration file and, finally, how to return to Windows when
you are done.

Preparing programs for debugging

Chapter 4, Starting TDW

When you compile and link with Turbo C++ for Windows, you
can tell the compiler to generate full debugging information. If
you have compiled your program’s object modules without any
debugging information, be sure to recompile them with debug-
ging information before invoking TDW.

If you need to recompile your modules with debugging informa-
tion, it's possible to generate debug information only for specific
modules (you might have to do this if you're debugging a large
program), but you will find it annoying later to enter a module
that doesn’t have any debug information available. We suggest
recompiling all modules.

If you're using the integrated environment of Turbo C++ for
Windows, the generation of debug information is turned on by
default. If these options have been turned off, you need to do the
following before compiling to produce debug information:

57

Starting TDW

1. Use the Options | Linker | Settings command to bring up the

Linker Settings window, then check the Include Debug
Information check box.

. Use the Options | Compiler | Advanced Code Generation

command to bring up the Advanced Code Generation
window, then check the Debug Info in OBJs check box.

Alternatively, you can use the options —v pragma directive to
add debug information to each of your modules by inserting
the following line at the beginning of each module:

#pragma option -v

Warning!

There are four ways to run TDW:

u If you are in Turbo C++ for Windows, you can debug the

program in the active window by choosing Run | Debugger.

You can also choose Run | Debugger Arguments if you want to
set TDW command-line arguments.

mIf you are in Windows, the easiest method is to open the

appropriate program group in the Windows Program Manager
and choose the TDW icon. Then choose File | Open to load the
program you're debugging.

For this and the next option, unless TDW is in your path and
your program is in your Windows directory, you must be
careful to type in the correct path for both TDW and your
application.

m If you are in Windows and you want to enter command-line

options, you can start TDW by using the Windows Program
Manager File | Run command to open the Run dialog box. Then,
in the Command Line input box, just type 10¥, followed by any
command-line options and, optionally, the name of the
program you're debugging, as if you were at the DOS prompt.

m If you are at the DOS prompt, you can start TDW by entering

the following and pressing Enter:
WIN TDW [options] [progname [progargs]]

Turbo Debugger for Windows User's Guide

Entering
command-line
options

Directly entering
command-line options

Entering command-line
options from TCW

Chapter 4, Starting TDW

If you start TDW from the DOS prompt or by using the Program
Manager File | Run command, you can add command-line options
after typing TDW.

If you start TDW from Turbo C++ for Windows, you can enter
command-line options by choosing Run | Debugger Arguments.

The generic command-line format is
TDW [options] [progname [progargs]])

The items enclosed in brackets are optional; if you include any,
type them without the brackets. Progname is the name of the pro-
gram to debug.

You can follow a program name with arguments. Here are some
sample command lines:

Command Action

tdw -tc:\progl progl a b Starts the debugger in the C:\PROG1
directory and loads program prog1

with two command-line arguments, a
and b.

tdw prog2 -x Starts the debugger with default
options and loads program prog2
with one argument, —x.

If you simply type 0w Enter, TDW loads and uses its default
options.

If you start TDW from Turbo C++ for Windows and you want to
indicate command-line options, chose Run | Debugger Arguments
to enter any TDW command-line options except the program
name and program arguments.

The program to be run in TDW is the one in the current Edit
window. If you want to enter arguments for the program before
running TDW on it, choose Run | Arguments and type the
arguments in the Program Arguments window.

59

Things to remember

Running TDW

When you run a program in TDW, you need to have both its EXE
file and the original source files available. TDW searches for
source files first in the directory the compiler found them in when
it compiled, second in the directory specified in the Options | Path
for Source command, third in the current directory, and fourth in
the directory the .EXE file is in.

You must already have compiled your source code into an
executable (.EXE) file with full debugging information turned on
before debugging with TDW.

TDW works only with Windows programs compiled with a
Borland compiler.

If you're running your program from Windows and notice a bug,
you have to exit your program and load it under TDW before you
can begin debugging.

When you run TDW, it comes up in full-screen character mode,
not in a window. Despite this appearance, TDW is a Windows
application and will run only under Windows.

Unlike other applications that run under Windows, you can’t use
the Windows shortcut keys (like Alt-Esc or Cirl-Esc) to switch out of
the TDW display and run another program. However, if the appli-
cation you are debugging is active (the cursor is active in one of
its windows), you can use Alt-Esc, Ctrl-Esc, or the mouse to switch
to other programs.

If you do use Ctrl-Esc to switch out of an application running
under TDW, you see the application name on the list of tasks. You
will never see TDW on the task list because TDW is not a normal
Windows task that you can switch into or out of.

Command-line options

Appendix A has an easy-to-
use list of IDW’s command-
line options.

All TDW command-line options start with a hyphen (-) and are
separated from the TDW command and each other by at least one
space. You can explicitly turn a command-line option off by
following the option with another hyphen. For example, —p-

Turbo Debugger for Windows User’s Guide

Loading the
configuration file
C®)

Display updating
(-d)

Getting help (-h
and -?)

Chapter 4, Starting TDW

disables the mouse. Turning a command-line option off works
even if an option has been permanently enabled in the configu-
ration file. You can modify the configuration file by using the
TDWINST configuration program described in the file
TDWINST.DOC.

The following sections describe all available TDW command-line
options.

This option loads the specified configuration file. There must not
be a space between —¢ and the file name.

If the —¢ option isn’t included, TDCONFIG.TDW is loaded if it
exists. Here’s an example:

TDW -cMYCFG.TDW TDDEMO

This command loads the configuration file MYCONF.TDW and
the source code for TDDEMO.

The —d options affect the way in which display updating is
performed.

—do Runs TDW on your secondary display. View your pro-
gram’s screen on the primary display, and run the
debugger on the secondary one.

—ds The default option for all displays, it’s also called screen
swapping. Required for a monochrome display. Maintains
a separate screen image for the debugger and the
program being debugged by loading the entire screen
from memory each time your program is run or the de-
bugger is restarted. This technique is the most time-
consuming method of displaying the two screen images,
but works on any display hardware and with programs
that do unusual things to the display.

These options display a window that describes TDW’s command-
line syntax and options.

61

Assembler-mode
startup (1)

Mouse support
-p)

>

Source code
handling (-s)

This option doesn’t change
the starting directory.

62

This option forces startup in assembler mode, showing the CPU
window. TDW does not execute your program’s startup code,
which usually executes automatically when you load your
program into the debugger. This means that you can step through
your startup code.

If you are debugging a DLL, this option also allows you to debug
the assembly-language code that starts up the DLL. See Chapter
11, page 173, for more information on debugging DLLs.

This option enables mouse support. However, since the default
for mouse support in TDW is On, you won’t have much use for
the —p option unless you use TDWINST to change the default to
Off. If you want to disable the mouse, use —p—.

If the mouse driver is disabled for Windows, it will be disabled
for TDW as well, and the —p command-line option will have no
effect.

-s¢ Ignores case when you enter symbol names, even if your
program has been linked with case sensitivity enabled.

Without the —s¢ option, Turbo Debugger ignores case
only if you've linked your program with the case ignore
option enabled.

-sd Sets one or more source directories to scan for source files;
the syntax is

-sddirname(; dirname...]

To set multiple directories, use multiple dirnames sepa-
rated with semicolons (;) with the —sd option or use the
—sd option repeatedly or both. TDW searches for
directories in the order specified. dirname can be a relative
or absolute path and can include a disk letter. If the
configuration file specifies any directories, the ones
specified by the —sd option are added to the end of that
list.

Turbo Debugger for Windows User's Guide

Starting directory
-H

This option changes TDW'’s starting directory, which is where
TDW looks for the configuration file and for .EXE files not
specified with a full path. There must not be a space between the
option and the directory path name.

—t<dir> Set the starting directory to <dir>. The syntax is

-tdirname
You can set only one starting directory with this option. If you
enter multiple directories for one -t option, TDW ignores all the
directories. If you enter the option more than once on the same
command line, TDW uses only the last entry.

For example, the following entry would start TDW in the
D:\WORKING directory:

tdw -tc:\utils\screensv -td:\working

Configuration files

See the file TDWINST.TDW for
a description of how fo use
TIDWINST to create
configuration files.

Chapter 4, Starting TDW

TDW uses a configuration file to override built-in default values
for command-line options. You can use TDWINST to set the
options that TDW will default to if there is no configuration file.
You can also use it to build configuration files.

TDW looks for the configuration file TDCONFIG.TDW first in the
current directory, next in the TDW directory set up with the
Turbo C++ for Windows installation program, and then in the
directory that contains TDW.EXE.

If TDW finds a configuration file, the settings in that file override
its built-in defaults. Any command-line options that you supply
when you start TDW from DOS override both the corresponding
default options and any corresponding values in
TDCONFIG.TDW.

63

The Options menu

Macros

Display options...
Path for source...
Save options...
Restore options...

Language. .. Source

>

The Language
command

The Macros menu

Remove. ..
Delete all

Create Alt=
Stop recording Alt-

Create

Stop Recording

=

The Options menu lets you set or adjust a number of parameters
that control the overall appearance and operation of TDW. The
following sections describe each menu command and refer you to
other sections of the manual where you can find more details.

Chapter 9 describes how to set the current expression language
and how it affects the way you enter expressions.

The Macros command displays another menu that lets you define
new keystroke macros or delete ones that you have already
assigned to a key. It has the following commands: Create, Stop
Recording, Remove, and Delete All.

When issued, the Create command starts recording keystrokes
into an assigned macro key. As an alternative, press the Alt= (Alt-
Equal) hot key for Create.

When you choose Create to start recording, a prompt asks for a
key to assign the macro to. Respond by typing in a keystroke or
combination of keys (for example, Shift-F9). The message RECORDING
will be displayed in the upper right corner of the screen while you
record the macro.

The Stop Recording command terminates the macro recording
session. Use the Alt- (Alt-Hyphen) hot key to issue this command
or press the macro keystroke that you are defining to stop
recording.

Do not use the Options | Macro | Stop Recording menu selection to
stop recording your macro, as these keystrokes will then be added
to your macro! (The menu item is added to remind you of the Alf-
hot key.)

Turbo Debugger for Windows User’s Guide

Remove

Delete All

Display Options
command

Figure 4.1
The Display Options dialog
box

Display Swapping

Chapter 4, Starting TDW

Displays a dialog box listing all current macros. To delete a
macro, select one from the list and press Enter

Removes all keystroke macro definitions and restores all keys to
the meaning that they originally had.

This command opens a diaiog box in which you can set severai
options that control the appearance of the TDW display.

EE% W%W PROMPT
_ilI%e m]e TD V=
static void showargs(int argc, char *argv[]); A

{

/* program entry point
*

> int PASCAL WinMain(HAND
LPST

[l].——.—_—_Dis]ay opti
Display swapping Integer format
*) Smart Hex
() Always () Decimal
(e) Both

Jab size
8

unsigned int n
unsigned long t
Screen lines

_InitWinCrt();
nlines = 0;
nwords = 0;
totalcharacters
showargs(_argc, argv);
while %readal1nef))

The Display Swapping radio buttons let you choose from two
ways of controlling how the User screen gets swapped back and
forth with TDW'’s screen:

Smart

Always

Swap to the User screen only when display output may
occur. TDW swaps the screens any time that you step
over a routine.

Swap to the User screen every time the user program
runs. Use this option if the Smart option is not catching
all the occurrences of your program writing to screen.
If you choose this option, the screen flickers every time
you step through your program because TDW'’s screen
is replaced for a short time with the User screen.

65

Integer Format

Screen Lines

Tab Size

Path for Source
command

Save Options
command

These radio buttons let you choose from three display formats for
displaying integers:

Hex Shows integers as hexadecimal numbers, displayed in
a format appropriate to the current language.

Decimal Shows integers as ordinary decimal numbers.

Both Shows integers as both decimal numbers and as hex
numbers in parentheses after the decimal value.

These radio buttons are used to determine whether TDW's screen
uses the normal 25-line display or the 43- or 50-line display
available on EGA and VGA display adapters.

This input box lets you set how many columns each tab stop
occupies. You can reduce the tab column width to see more text in
source files that have a lot of code indented with tabs. You can set
the tab column width from 1 to 32.

Sets the directories that TDW searches for your source files. See
the discussion of the Module window in Chapter 8 for more
information.

This command opens a dialog box from which you can save your
current options to a configuration file on disk. The options you
can save are

W your macros

m the current window layout and pane formats

m all settings made in the Options menu

Turbo Debugger for Windows User’s Guide

Figure 4.2
The Save Options dialog box

Restore Options
command

. I
static void showargs(int argc, char *argv[]);

/* program entry point
*

» int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
(LPSTR 1pszCmdLine, =[w]===Save Configuration

unsigned int nlines, nwords, X] Options

unsigned long totalcharacters; Layout
] Macros

_InitwinCrt(); Nave To

nlines = 0;

nwords = 0;
totalcharacters = 0;
showargs (_argc, _argv);
while (readaline() != 0) {
wordcount = makeintowords (buffer)

TDW lets you save your options in any or all of these ways,
depending on which of the Save Configuration check boxes you
turn on:

Options Saves all settings made in the Options menu.
Layout Saves only the windowing layout.
Macros Saves only the currently defined macros.

You can also use the Save To input box to change the name of the
configuration file to which you are saving the options.

Restores your options from a disk file. You can have multiple
configuration files, containing different macros, window layouts,
and so forth. You must choose a configuration file that was
created with the Save Options command or with TDWINST.

Returning to Windows

Chapter 4, Starting TDW

You can end your debugging session and return to the Windows
Program Manager at any time by pressing Al-X, except when a
dialog box is active (in that case, first close the dialog box by
pressing Esc). You can also choose File | Quit.

67

Turbo Debugger for Windows User's Guide

Conftrolling program execution

When you debug a program, you usually execute portions of it
and check at a stopping point to see that it is behaving correctly.
TDW gives you many ways to control your program’s execution.
You can

m execute single machine instructions or single source lines

m skip over calls to functions or procedures

m “animate” the debugger (perform continuous tracing)

m run until the current function or procedure returns to its caller
mrun to a specified location

m continue until a breakpoint is reached

W reverse program execution

A debugging session consists of alternating periods when either
your program or the debugger is running. When the debugger is
running, you can cause your program to run by choosing one of
the Run menu’s command options or pressing its hot key equiva-
lent. When your program is running, the debugger starts up again
when either the specified section of your program has been exe-

cuted, or you interrupt execution with a special key sequence, or
TDW encounters a breakpoint.

This chapter shows you how to examine the state of your pro-
gram whenever TDW is in control. You'll see various ways to
execute portions of your program, and also how to interrupt your
program while it’s running. Finally, you'll learn the ways you can

Chapter 5, Controlling program execution 69

restart a debugging session, either with the same program or with
a different program.

Examining the current program state

The “state” of your program consists of the following elements:

m its command-line arguments

m the stack of active functions or procedures

m the current location in the source code or machine code

m register values

m the contents of memory

m the reason the debugger stopped your program

m the value of your program data variables

The following sections explain how to use the Variables window,
the Stack window, the local menus of the Global and Static panes,
and the Origin and Get Info commands. See Chapter 6 for more

information on how to examine and change the values of your
program data variables.

The Variables

WIiNdOW You open the Variables window by choosing View | Variables.
This window shows you all the variables (names and values) that
are accessible from the current location in your program. Use it to
find variables whose names you can’t remember. You can then
use the local menu commands to further examine or change their
values. You can also use this window to examine the variables
local to any function that has been called.

Figure 5.1
The Variables window

The Variables window has two panes:

70 Turbo Debugger for Windows User’s Guide

The Global pane local
menu

Inspect
Change...
Watch

See Chapter 6 for more
information on how Inspector
windows behave.

m The Global pane (top) shows all the global symbols in your
program.

m The Static pane (bottom) shows all the static symbols in the
current module (the module containing the current program
location, CS:IP) and all the symbols local to the current
function.

Both panes show the name of the variable at the left margin and
its value at the right margin. If TDW can’t find any data type

information for the symbol, it displays four question marks (222?2).

Press Alt-F10 (as with all local menus) to pop up the Global pane’s
local menu. If control-key shortcuts are enabled, you can also
press Cirl with the first letter of the desired command to access it.

If your program contains routines that perform recursive calls, or
if you want to view the variables local to a function that has been
called, you can examine the value of a specific instance of a func-
tion’s local data. First create a Stack window with View | Stack,
then move the highlight to the desired instance of the function
call. Next, press Alt-F10 and choose Locals. The Static pane of the
Variables window then shows the values for that specific instance
of the function.

This local menu consists of three commands: Inspect, Change, and
Watch.

Inspect

Opens an Inspector window that shows you the contents of the
currently highlighted global symbol.

If the variable you want to inspect is the name of a function, you
are shown the source code for that function, or if there is no
source file, a CPU window shows you the disassembled code.

If the variable you inspect has a name that is superseded by a
local variable with the same name, you'll see the actual value of
the global variable, not the local one. This characteristic is slightly
different than the usual behavior of Inspector windows, which
normally show you the value of a variable from the point of view
of your current program location (CS:IP). This difference gives
you a convenient way of looking at the value of global variables
whose names are also used as local variables.

Chapter 5, Controlling program execution 71

See Chapter 9 for more
information on assignment
and data type conversion.

See Chapter 6 for more
information on the Watches
window.

The Static pane local
menu

Inspect
Change...
Watch
Show. ..

See Chapter 6 for more
information on how Inspector
windows behave.

See Chapter 9 for more
information on assignment
and data type conversion.

72

Change

Changes the value of the currently selected (highlighted) global
symbol to the value you enter in the Change dialog box. TDW
performs any necessary data type conversion exactly as if the
assignment operator for your current language had been used to
change the variable.

You can also change the value of the currently highlighted symbol
by opening the Inspector window and typing a new value. When
you do this, the same dialog box appears as if you had first
specified the Change command.

Watch

Opens a Watches window and puts the currently selected
(highlighted) global symbol in the window. This command
simply puts a character string in the Watches window.

The Watches window doesn’t keep track of whether the variable
is local or global. If you insert a global variable using the Watch
command and later encounter a local variable by the same name,
the local variable takes precedence as long as you are in the local
variable’s block. In other words, the Watches window always
shows you the value of a variable from the point of view of your
current program location (CS:IP).

Press the Alt-F10 key combination to pop up the Static pane’s local
menu; if control-key shortcuts are enabled, use the Ctrlkey with
the first letter of the desired command to access it.

The Static pane has four local menu commands: Inspect, Change,
Watch, and Show.

Inspect

Opens an Inspector window that displays the contents of the
currently highlighted module’s local symbol.

Change

Changes the value of the currently selected (highlighted) local
symbol to the value you enter in the Change dialog box. TDW
performs any data type conversion necessary, exactly as if the
assignment operator had been used to change the variable.

Turbo Debugger for Windows User’s Guide

See Chapter 6 for more

information on how Watches
HH OO HIOARO SN O17 401 L0 HOIR SN

windows behave.

Figure 5.2
The Local Display dialog box

The Stack window

You can also change the value of the currently highlighted symbol
by opening the Inspector window (see previous command) and
starting to type a new value. When you do this, the same dialog
box appears as if you had first specified the Change command.

Watch

The Watch command opens a Watches window and puts the
currently seiected (highiighted) static or local symbol in the
window.

Show

Choosing Show brings up the Local Display dialog box, which
enables you to change both the scope of the variables being
shown (static, auto, or both) and the module from which these
variables are selected.

The following radio buttons appear in this dialog box:

Static Show only static variables.

Auto Show only variables local to the current block.
Both Show both types of variables (the default).

Module Change the current module. Brings up a dialog box

showing the list of modules for the program, from
which you can select a new module.

.
[elp g

You create a Stack window by choosing View | Stack. The Stack
window lists all active functions or procedures. The most recently
called routine is displayed first, followed by its caller and the
previous caller, all the way back to the WinMain function. For each
function, you see the value of each parameter it was called with.

Chapter 5, Controlling program execution 73

Figure 5.3
The Stack window

The Stack window local

74

menu

Inspect
Locals

[w]=Stacke=——-=3=[1][{]
WINMAIN(2606,0,0A0D:0080,1)

The Stack window likewise displays the names of member
functions, each of which is prefixed with the name of the class
that defines the member function:

SHAPES: :ACIRCLE (174, 360, 75.0) /* C++ */

Press Alt-F10 to pop up the Stack window local menu, or press Ctrl
with the first letter of the desired command to access it.

The Stack window local menu has two commands: Inspect and
Locals.

Inspect

Opens a Module window positioned at the active line in the
currently highlighted function. If the highlighted function is the
top (most recently called) function, the Module window shows
the current program location (CS:IP). If the highlighted function is
one of the functions that called the most recent function, the
cursor is positioned on the line in the function that will be
executed after the called function returns.

You can also invoke this command by positioning the highlight
bar over a function, then pressing Enter.

Locals

Opens a Variables window that shows the symbols local to the
current module, as well as the symbols local to the currently high-
lighted function. If a function calls itself recursively, there are
multiple instances of the function in the Stack window. By posi-
tioning the highlight bar on one instance of the function, you can
use this command to look at the local variables in that instance.

Turbo Debugger for Windows User’s Guide

The Origin local
menu command Both the Module window and the Code pane of a CPU window

have an Origin command on their local menus. Origin positions
the cursor at the current code segment (CS:IP). This is very useful
when you have been looking at your code and want to get back to
where your program stopped.

ine Get info
command You can choose File | Get Info to look at memory use and to
determine why the debugger gained control. This command
produces a text box that disappears when you press Enter,
Spacebar, or Esc.

stem information:

N r) .]
Flgu ©54 Program: C:\TDW\TDODEMO.EXE
The Get Info text box Status : Wi w message breakpoint at wndproc

- Global Memory
Mode : Non-EMS
Banked H 0Kb
Not banked : 12006Kb
Largest : 177Kb
Breakpoints : Hardware

DOS version : 5.00

11-19-1991 5:04pm
L0k o Help o

The following information appears in the System Information
box:

u The name of the program you're debugging.

m A description of why your program stopped.

m Information about the global memory on your system.

m The DOS version you're running.

m The current date and time.

Global memory TDW provides you with the following information about global
information memory:

Mode Memory modes can be large-frame EMS, small-
frame EMS, and non-EMS (extended memory).

Chapter 5, Controlling program execution 75

76

Status line messages

Banked The amount in kilobytes of memory above the EMS
bank line (eligible to be swapped to expanded
memory if the system is using it).

Not banked The amount in kilobytes of memory below the EMS
~ bank line (not eligible to be swapped to expanded
memory).

Largest The largest contiguous free block of memory, in
kilobytes.

Here are the messages you'll see on the second (status) line,
describing why your program stopped:

Stopped at ___
Your program stopped as the result of a completed Run |
Execute To, Run | Go to Cursor, or Run | Until Return
command. This status line message also appears when your
program is first loaded, and the compiler startup code in your
program has been executed to put you at the start of your
source code.

No program loaded
You started TDW without loading a program. You cannot
execute any code until you either load a program or assemble
some instructions using the Assemble local menu command in
the Code pane of a CPU window.

Trace

You executed a single source line or machine instruction with
F7 (Run | Trace).

Step
You executed a single source line or machine instruction,
skipping function calls, with F8 (Run | Step Over).

Breakpoint at __
Your program encountered a breakpoint that was set to stop
your program. The text after “at” is the address in your pro-
gram where the breakpoint occurs.

Window message breakpoint at __
Your program encountered a Windows message breakpoint
that was set to stop your program. The text after “at” is the
window procedure the message was destined for.

Turbo Debugger for Windows User’s Guide

Terminated, exit code
Your program has finished executing. The text after “code” is
the numeric exit code returned to Windows by your program.
If your program does not explicitly return a value, a garbage
value might be displayed. You cannot run your program until
you reload it with Run | Program Reset.

Loaded
You either reset your program or loaded TDW and specified
both a program and the option that prevents the compiler
startup code from executing. Because no instructions have
been executed at this point, including those that set up your
stack and segment registers, if you try to examine certain data
in your program, you might see incorrect values.

Interrupt
You pressed the interrupt key (Ctri-Alt-SysRq) to regain control.
Your program was interrupted and control passed back to the
debugger.

Exception __
A processor exception has occurred, which usually happens
when your program attempts to execute an illegal instruction
opcode. The Intel processor documentation describes each
exception code in complete detail.

The most common exception to occur with a Windows
program is Exception 13. This exception indicates that your
program has attempted to perform an invalid memory access.
(Either the selector value in a segment register is invalid or the
offset portion of an address points beyond the end of the
segment.) You must correct the invalid pointer causing the
problem.

Divide by zero
Your program has executed a divide instruction where the
divisor is zero.

Global breakpoint __at
A global breakpoint has been triggered. You are told the
breakpoint number and the location in your program where
the breakpoint occurred.

Chapter 5, Controlling program execution 77

The Run menu

Run

Go to Cursor

Trace Into

78

The Run menu has a number of options for executing different
parts of your program. Since you use these options frequently,
most are available on function keys.

Run F9
Go to cursor F4
Trace into F7
Step over F8
Execute to... Alt-F9
Until return Alt-F8
Animate...

Back trace Alt-F4

Instruction trace Alt-F7

Arguments...
Program reset Ctri-F2

Runs your program at full speed. Control returns to TDW when
one of the following events occurs:

m Your program terminates.

m A breakpoint with a break action is encountered.

m You interrupt execution with Ctr-Alt-SysAq.

Executes your program up to the line that the cursor is on in the
current Module window or CPU Code pane. If the current
window is a Module window, the cursor must be on a line of
source code.

Executes a single source line or assembly level instruction. If the
current window is a Module window, a single line of source code
is executed; if it'’s a CPU window, a single machine instruction. If
the current line contains any function calls, TDW traces into the
routine. If the current window is a CPU window, pressing F7 on a
CALL instruction steps to the routine being called

Turbo Debugger treats a class member function just like any other
function. F7 traces into the source code if it’s available.

Turbo Debugger for Windows User’s Guide

Step Over

Executes a single source line or machine instruction, skipping
over any function calls. If the current window is a Module

window, this command usually executes a single source line. If
the current window is a CPU window, pressing F8 on a CALL
instruction steps over the routine being called.

If you step over a single source line, TDW treats any function calls
in that line as part of the line. You don’t end up at the start of one
of the functions. Instead, you end up at the next line in the current
routine or at the previous routine that called the current one.

If you are in a CPU window, TDW treats certain instructions as a
single instruction, even when they cause multiple assembly
instructions to be executed. Here is a complete list of the
instructions TDW treats as single instructions:

CALL Subroutine call, near, and far
INT Interrupt call

LOOP Loop control with CX counter
LOOPZ Loop control with CX counter
LOOPNZ Loop control with CX counter

Also stepped over are REP, REPNZ, or REPZ followed by CMPS,
CMPS, CMPSW, LODSB, LODSW, MOVS, MOVSB, MOVSW,
SCAS, SCASB, SCASW, STOS, STOSB, or STOSW.

The Run | Step Over command treats a call to a class member
function like a single statement, and steps over it like any other
function call.

Execute To

Executes your program until the address you specify in the dialog
box is reached. The address you specify might never be reached if

At a breakpoint action is encountered first or you interrupt
execution.

Until Return

Executes until the current function returns to its caller. This is
useful in two circumstances: When you have accidentally exe-

Alt cuted into a function you aren’t interested in with Run | Trace
instead of Run | Step, or when you've determined that the current

Chapter 5, Controlling program execution 79

80

Animate

Back Trace

Alt

Some restrictions apply to
using the Execution History
window. See page 82 for
more information.

P

=

Instruction Trace

procedure works to your satisfaction, and you don’t want to
slowly step through the rest of it.

Performs a continuous series of Trace Into commands, updating
the screen after each one. (The effect is to run your program in
slow motion.) You can watch the current location in your source
code and see the values of variables changing. Press any key to
interrupt this command.

After you choose Run | Animate, TDW prompts you for a time
delay between successive traces. The time delay is measured in
tenths of a second; the default is 3.

If you are tracing (F7 or Alt-F7) through your program, Back Trace
reverses the order of execution. Reverse execution is handy if you
trace beyond the point where you think there may be a bug, and
want to reverse program execution back to that point. This feature
lets you “undo” the execution of your program by stepping
backward through the code, either a single step at a time or to a
specified point highlighted in the Execution History window.

Reverse execution is always available in the CPU window.
However, you can only execute source code in reverse if full
history is On. (Use the View | Execution History command to
bring up the Execution History window, then in the local menu
set Full History On.)

TDW will not execute in reverse any Windows code called by
your program unless you are in the CPU window and the code is
in a DLL you have selected for debugging.

Executes a single machine instruction. Use this command when
you want to trace into an interrupt, or when you're in a Module
window and you want to trace into a procedure or function that’s
in a module with no debug information (for example, a library
routine).

Since you will no longer be at the start of a source line, this
command usually places you in a CPU window.

Turbo Debugger for Windows User’s Guide

Arguments

This command lets you set new command-line arguments for
your program. For a discussion of this command, see “Changing
the program arguments” on page 86.

Program Reset
Reloads from disk the program you're debugging. You might use

thic ~nrmasan ~
wiS Comimana

m When you've executed past the place where you think there is a
bug.

m When your program has terminated and you want to run it
again.

m If you're in a Module or CPU window, you've suspended your
Windows application program with Ctr-Alt-SysAq, and you want
to terminate it and start over.

m If you've already loaded your application, you've just set
startup debugging for one or more dynamic link libraries
(DLLs), and you now want to debug those DLLs.

If you're in a Module or CPU window, the debugger sets the
current-line marker at the start of the program, but the display
stays exactly where you were when you chose Program Reset.
This behavior makes it easier for you to set the cursor near where
you were and run the program to that line.

If you chose Program Reset because you just executed one source
statement more than you intended, you can position the cursor up
a few lines in your source file and press F4 to run to that location.
Alternatively, if Full History had been on (see the local menu of
the View | Execution History window), you could have chosen
Run | Back Trace to step back through previously executed code
instead of choosing Program Reset.

The Execution History window

TDW has a special feature called the execution history that keeps
track of each instruction as it’s executed (provided that you're
tracing into the code). You can examine these instructions and, if
you wish, undo them to return to a point in the program where

Chapter 5, Confrolling program execution 81

Figure 5.5

The Execution History window

82

The local

menu

Inspect
Reverse execute

Full history

No

you think there might be a bug. TDW can record about 400
instructions.

You can examine the execution history in the Execution History
window, which you open by choosing View | Execution History.

The Execution History window shows instructions already
executed that you can examine or undo. Use the highlight bar to
make your selection.

The execution history only keeps track of instructions that have
been executed with the Trace Into command (F7) or the Instruction
Trace command (Al-F7). It also tracks for Step Over, as long as you
don’t encounter one of the commands listed on page 79 or 83. As
soon as you use the Run command or execute an interrupt, the
execution history is deleted. (It starts being recorded again as
soon as you go back to tracing.)

You cannot backtrace into an interrupt call.

If you step over a function call, you will not be able to trace back
beyond the instruction following the return.

Backtracing through a port-related instruction has no effect, since
you can’t undo reads and writes.

The local menu for the Instructions pane contains three options,
Inspect, Reverse Execute, and Full History.

Inspect

This command takes you to the command highlighted in the
Instructions pane. If it is a line of source code, you are shown that
line in the Module window; if there is no source code, the CPU
window opens, with the instruction highlighted in the Code pane.

Reverse Execute

This command reverses program execution to the location
highlighted in the Instructions pane. If you selected a line of

Turbo Debugger for Windows User’s Guide

source code, you are returned to the Module window; otherwise,
the CPU window appears with the highlight bar of the Code pane
on the instruction.

Waming! You can never reverse back over a section of your program that
you didn’t trace through. For example, if you set a breakpoint and
then pressed F9 to run until the breakpoint was reached, all your
reverse execution history will be thrown away.

Warningi The INT instruction causes any previous execution history to be
thrown out. You can’t reverse back over this instruction, unless
you press Alt-F7 to trace into the interrupt.

The following instructions do not cause the history to be thrown
out, but they cannot have their effects undone. You should be on
the lookout for unexpected side effects if you back up over these

instructions:
IN INSW
ouT ouTSB
INSB ouTsSw
Full History

This command is a toggle. If it is set to On, backtracing is enabled.
If it is Off, backtracing is disabled.

Interrupting program execution

Because Windows applications are interactive programs, the best
way to debug one is to run the application and then interrupt it or
cause it to encounter a breakpoint.

As a primary debugging technique, stepping or tracing through a
Windows application can be of marginal utility because even-
tually you reach code that sits in a loop, waiting for a message for
a window. Instead, you should set code and message breakpoints
if possible, run your program until it encounters one of these
breakpoints, and then step or trace if necessary.

If you do step into the message loop, you can press the Alt-F5 key
combination to see the application screen, but you won’t be able
to interact with the program. Instead, you can press F9to run the
program so you can use the application’s windows. But what
happens if you need to get back to TDW to track down a bug that
shows up while you're using one of your application’s windows?

Chapter 5, Confrolling program execution 83

What you can do is interrupt your program by pressing the Ctr/-
Alt-SysRq key combination. Once you're back in TDW, you can set
code or message breakpoints, set up views, look at any messages
you might have been logging, or whatever else you need to do to
track the bug. When you're ready to return to the application
again, press F9to run it.

When you return to TDW, if you see a CPU window without any
lines corresponding to lines in your code, you're probably in
Windows code. You can display the Module window and set
breakpoints or whatever else you need to do, but there are some
things you should not do:

m Single-step through your program. Attempting to single-step
after interrupting your application can have unpredictable
effects if your application was executing Windows code. A
typical result is that Windows terminates both your application
and TDW), generating the message, “Unrecoverable application
error.”

m Terminate or reload either your application or TDW. If you do,
Windows gets confused and hangs, forcing you to reboot. If
you do try to exit or reload in this situation, TDW displays the
following prompt in a dialog box:

Ctrl-Alt-SysRq interrupt, system crash possible, Continue?

At this point, the best course of action is to select No,

return to TDW and set a breakpoint you know your code will
hit, then run your application again and cause it to hit the
breakpoint and exit to TDW.

Program termination

84

When your program terminates and exits back to Windows, TDW
regains control. It displays a message showing the exit code that
your program returned to Windows. Once your program
terminates, using any of the Run menu options causes TDW to
reload your program.

The segment registers and stack are usually not correct when your
program has terminated, so do not examine or modify any pro-
gram variables after termination.

Turbo Debugger for Windows User’s Guide

Restarting a debugging session

TDW has a feature that makes restarting a debugging session as
painless as possible. When you're debugging a program, it’s easy
to go just a little too far and overshoot the real cause of the
problem. In that case, TDW lets you restart debugging but
suspends execution before the last few commands that caused
you to miss the problem thai you wanted to observe. How? it lets
you reload your last program from disk, and preserves any
previous command-line arguments.

To reload the program you were debugging, choose Run | Pro-
gram Reset (Ctrl-F2). TDW reloads the program from disk, with
any data you have added since you last saved to disk. Reloading
is the safest way to restart a program. Restarting by executing at
the start of the program can be risky, since many programs expect
certain data to be initialized from the disk image of the program.

C,> Program Reset leaves breakpoints and watchpoints intact.

Opening a new program to debug

You load a new program to debug by choosing File | Open to open
the Enter Program Name to Load dialog box.

Figure 5.6 [a] Enter program name to load
The Enter Program Name to File namel
Load dialog box

Virectories
bildsp.exe
donuthin.exe
dototal.exe myprogs
drwhappy .exe
echo.exe
hello.exe
little.exe
mytest.exe
pwrs.exe
reverse.exe
small.exe
tcdemo.exe

G:\NETFILES\DEBUG\PROGRAM* . EXE
BILDSP.EXE Nov 19, 1991 2:23pm 4592 bytes

You can enter a file name (extension .EXE) in the File Name input
box, or press Enter to activate a list box of all the .EXE files in the
current directory. Move the highlight bar to the file you want to
load and press Enter.

Chapter 5, Controlling program execution 85

Another way of specifying a file in the list box is to type in the
name of the file you want to load. The highlight bar in the Files
list box moves to the file that begins with the first letter(s) you
typed. When the bar is positioned on the file you want, press
Enter.

You can supply arguments to the program to debug by placing
them after the program name, as follows:

myprog a b ¢

This command loads program MyProg with three command-line
arguments, 4, b, and c.

Changing the program arguments

If you forgot to supply some necessary arguments to your pro-
gram when you loaded it, you can use the Run | Arguments
command to set or change the arguments. Enter new arguments
exactly as you would following the name of your program on the
command line.

Once you have entered new arguments, TDW asks you if you
want to reload your program from disk. You should answer Yes,
because for most programs, the new arguments will only take
effect if you reload the program first.

86 Turbo Debugger for Windows User’s Guide

Examining and modifying data

TDW provides a unique and intuitive way to examine and even
change your program’s data.

m Inspector windows let you look at your data as it appears in
your source file. You can “follow” pointers, scroll through
arrays, and see structures, records, and unions exactly as you
wrote them.

m You can also put variables and expressions into the Watches
window, where you can watch their values as your program
executes.

m The Evaluate/Modify dialog box shows you the contents of any
variable and lets you assign a new value to it.

This chapter assumes that you understand the various data types
that can be used in Turbo C++ for Windows. If you are fairly new
to the language and have not yet explored all its data types (char,
int, short, long, unsigned, float, double, and so on), this chapter
can give you valuable information about them. When you have
delved into the more complex data types (arrays, pointers,
structures, files, classes, and so on), return to this chapter to learn
more about looking at them with TDW.

Forhow fo examine or This chapter shows you how to examine and modify variables in
modify arbitrary blocks of your program. First, we explain the Data menu and its options.
memory as hex data bytes, . . .
see Chapter 12, We then discuss how you can modify program data by evaluating
expressions that have side effects, and show you how to point

directly at data items in your source modules. Finally, we

Chapter 6, Examining and modifying data 87

The Data menu

introduce the Watches window and describe the way that the data
types of each language appear in Inspector windows.

Inspect...
Evaluate/modify... Ctr1-F4
Add watch... Ctr1-F7

Function return

Inspect

>

Evaluate/Modify

See Chapter 9 fora
complete discussion of
expressions.

88

The Data menu lets you choose how to examine and change pro-
gram data. You can evaluate an expression, change the value of a
variable, and open Inspector windows to display the contents of

your variables.

Prompts you for the variable that references the data you want to
inspect, then opens an Inspector window that shows the contents
of the program variable or expression. You can enter a simple
variable name or a complex expression.

If the cursor is on a variable in a text pane when you issue this
command, the dialog box automatically contains the variable at
the cursor, if any. If you select an expression in a text pane (using
Ins), the dialog box contains the selected expression.

Inspector windows really come into their own when you want to
examine a complicated data structure, such as an array of
structures or a linked list of items. Since you can inspect items
within an Inspector window, you can “walk” through your pro-
gram’s data objects as easily as you scroll through your source
code in the Module window.

See the “Inspector windows” section later in this chapter for a
complete description of how Inspector windows behave.

Opens the Evaluate/Modify dialog box (Figure 6.1), which
prompts you for an expression to evaluate, then evaluates it
exactly as the compiler would during compilation when you
choose the Eval button.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable at the cursor, if
any. If you select an expression (using Ins), the dialog box contains
the marked expression.

Turbo Debugger for Windows User’s Guide

Figure 6.1
The Evaluate/Modify dialog
box

See Chapter 9 for a
discussion of format control.

Evaluate/modif
Exigression

1t

RENY

Not available> m
I

Tew value
ot available> [Modify o
A

Remember that you can add a format control string after the
expression you want to watch. TDW displays the result in a
format suitable for the data type of the result. To display the
result in a different format, put a comma (,) separator, then a
format control string after the expression. Displaying in a
different format is useful when you want to watch something, but
your program displays it in a format other than TDW’s default
display format for the data type.

The dialog box has three fields.

u In the top field, you type the expression you want to evaluate.
This field is the Evaluate input box, and it has a history list just
like any other input box.

m The middle field displays the result of evaluating your
expression.

® The bottom field is an input box where you can enter a new
value for the expression. If the expression can’t be modified,
this box reads <Not available>, and you can’t move your cursor
into it.

Your entry in the New Value input box takes effect when you
choose the Modify button. Use Tab and Shift-Tab to move from one
box to another, just as you do in other dialog boxes. Press Esc from
inside any input box to remove the dialog box, or click the Cancel
button with your mouse.

Data strings too long to display in the Result input box are termi-
nated by an arrow (»). You can see more of the string by scrolling
to the right.

If you're debugging a C++ program, the Evaluate/Modify dialog
box also lets you display the members of a class instance. You can
use any format specifier with an instance that can be used in
evaluating a record.

Chapter 6, Examining and modifying data 89

You can’t execute
constructors or destructors in
the Evaluate window.

Expressions with side effects

90

When you're tracing inside a member function, TDW knows
about the scope and presence of the this parameter. You can
evaluate this and follow it with format specifiers and qualifiers.

Turbo Debugger also lets you call a member function from inside
the Evaluate/Modify dialog box. Just type the instance name
followed by a dot, followed by the member function name,
followed by the actual parameters (or empty parentheses if there
are no parameters). With these declarations,

class point {
public:
int x, y, visible;

point ();

~point ();

int Show();

int Hide();

void MoveTo (int NewX, int NewY);

}i
point APoint;

you could enter any of these expressions in Turbo Debugger’s
Evaluate window:

Expression Result

APoint.x int 2 (0x2)

APoint class point {1,2,27489}
APoint.MoveTo void () @6B61:0299
APoint.Show int () @6B61:0285
APoint.Show() int 1 (0x1)

The C language has a feature called expressions with side effects that
can be powerful and convenient, as well as a source of surprises
and confusion.

An expression with side effects alters the value of one or more
variables or memory areas when it is evaluated. For example, the
increment (++) and decrement (- -) operators and the assignment
operators (=, +=, and so on) have this effect. If you execute
functions in your program within a C expression (for example,
myfunc(2)), note that your function can have unexpected side
effects.

If you don’t intend to modify the value of any variable but merely
want to evaluate an expression containing some of your program

variables, don’t use any of the operators that have side effects. On
the other hand, side effects can be a quick and easy way to change

Turbo Debugger for Windows User’s Guide

Add Watch

Function Return

the value of a variable or memory area. For example, to add 1 to
the value of your variable named count, evaluate the C expression
count++.

You can also use the Evaluate/Modify dialog box as a simple
calculator by typing in numbers as operands instead of program
variables.

Prompts you for an expression to watch, then places the expres-
sion or program variable on the list of variables displayed in the
Watches window when you press Enter or choose the OK button.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable at the cursor, if
any. If you select an expression (using Ins), the dialog box contains
the selected expression.

Shows you the value the current function is about to return. Use
this command only when the function is about to return to its
caller.

The return value is displayed in an Inspector window, so you can
easily examine return values that are pointers to compound data
objects.

Function Return saves you from having to switch to a CPU
window to examine the return value placed in the CPU registers.
And since TDW also knows the data type being returned and
formats it appropriately, this command is much easier to use than
a hex dump.

Pointing at data objects in source files

See Chapter 8 for a full
discussion of using Module
windows.

TDW has a powerful mechanism to relieve you from always
typing in the names of program variables that you want to
inspect. From within any Module window, you can place the
cursor anywhere within a variable name and use the local menu
Inspect command to create an Inspector window showing the
contents of that variable. You can also select an expression or

Chapter 6, Examining and modifying data 91

variable to inspect by pressing Ins and using the cursor keys to
highlight it before choosing Inspect.

The Watches window

Figure 6.2
The Watches window

See Chapter 9 for a
complete discussion of

scopes and when a variable

92

or parameter is valid.

Warning!

The Watches window lets you list variables and expressions in
your program whose values you want to track. You can watch the
value of both simple variables (such as integers) and complex
data objects (such as arrays). In addition, you can watch the value
of a calculated expression that does not refer directly to a memory
location. For example, x * y + 4.

letterinfo struct linfo [26] {{2,2},{2,0},{2,0},
int 2 (0x2)

Choose View | Watches to access the Watches window. It holds a
list of variables or expressions whose values you want to watch.
For each item, the variable name or expression appears on the left
and its data type and value on the right. Compound values like
arrays and structures appear with their values between braces

({ }). If there isn’t room to display the entire name or expression, it
is truncated.

When you enter an expression to watch, you can use variable
names that are not valid yet because they are in a function that
hasn’t been called. TDW lets you set up a watch expression before
its scope becomes active. This situation is the only time you can
enter an expression that can’t be immediately evaluated.

If you mistype the name of a variable, the mistake won’t be
detected because TDW assumes it is the name of a variable that
will become available as your program executes.

Unless you use the scope-overriding mechanism discussed in
Chapter 9, TDW evaluates expressions in the Watches window in
the scope of the current location where your program is stopped.
Hence an expression in the Watches window is evaluated as if it
appeared in your program at the place where the program is
stopped. If a watch expression contains a variable name that is not
accessible from the current scope—for example, if it’s private to

Turbo Debugger for Windows User's Guide

The Watches
window local
menu

Watch

Edit

Remove

Delete Ali

Inspect

Chapter 6, Examining and modifying data

another module—the value of the expression is undefined and is
displayed as four question marks (2222).

When you're tracing inside a member function, you can add the
this parameter to the Watches window.

As with all local menus, press Alt-F10 to pop up the Watches
window local menu. If you have control-key shortcuts enabled,
press Ctrl with the first letter of the desired command to access it.

Watch...
Edit...
Remove
Delete all

Inspect
Change...

Prompts you for the variable name or expression to add to the
Watches window. It is added at the current cursor location.

Opens a dialog box in which you can edit an expression in the
Watches window. You can change any watch expression that’s
there, or enter a new one.

You can also invoke this command by pressing Enter once you've
positioned the highlight bar over the watch expression you want
to change. Press Enter or choose the OK button to put the edited
expression into the Watches window.

Removes the currently selected item from the Watches window.

Removes all the items from the Watches window. This command
is useful if you move from one area of your program to another,
and the variables you were watching are no longer relevant.
(Then use the Watch command to enter more variables.)

Opens an Inspector window to show you the contents of the
currently highlighted item in the Watches window. If the item is a
compound object (array, class, or struct), you can view all its
elements, not just the ones that fit in the Watches window. (The
next section, “Inspector Windows,” explains all about Inspector
windows.)

93

Change

See Chapter 9 for more
information on the
assignment operator and
type conversion (casting).

Changes the value of the currently highlighted item in the
Watches window to the value you enter in the dialog box. If the
current language you're using permits it, TDW performs any
necessary type conversion exactly as if the assignment operator
had been used to change the variable.

Inspector windows

94

An Inspector window displays your program data appropriately,
depending on the data type you're inspecting. Inspector windows
behave differently for scalars (for example, char or int), pointers
(char *), arrays (long x[4]), functions, and structures.

The Inspector window lists the items that make up the data object
being inspected. The title of the window shows the expression or
the name of the variable being inspected.

The first item in an Inspector window is always the memory
address of the data item being inspected, expressed as a segment:
offset pair, unless it has been optimized to a register or is a
constant (for example, 3).

To examine the contents of a variable in an Inspector window as
raw data bytes, choose View | Dump while you're in the Inspector
window. The Dump window comes up, with the cursor posi-
tioned to the data displayed in the Inspector window. You can
return to the Inspector window by closing the window with the
Window | Close command (Alt-F3), or clicking the close box with
your mouse.

The following sections describe the different Inspector windows
that can appear for two of the languages supported by TDW: C++
and assembler. The programming language used dictates the
format of the information displayed in Inspector windows. Data
items and their values always appear in a format similar to the
one they were declared with in the source file.

Remember that you don’t have to do anything special to cause the
different Inspector windows to appear. The right one appears
automatically, depending on the data you're inspecting.

Turbo Debugger for Windows User’s Guide

C data Inspector
windows

Scalars Scalar Inspector windows show you the value of simple data
items, such as

char x = 4;
unsigned long y = 123456L;

Following the top line, these Inspector windows have only a
single line of information that gives the address of the variable. To
the left on the following line appears the type of the scalar
variable (char, unsigned long, and so forth), and to the right
appears its present value. The value can be displayed as decimal,
hex, or both. It’s usually displayed first in decimal, with the hex
values in parentheses (using the standard C hex prefix of 0x). Use
TDWINST to change how the value is displayed.

If the variable being displayed is of type char, the equivalent
character is also displayed. If the present value does not have a
printing character equivalent, TDW uses the backslash (\)
followed by a hex value to display the character value. This
character value appears before the decimal or hex values.

i =1 ti d t=3=[*][¢
Figure 6.3 Eg;&:gggg ng wordcoun [l[l]

A C scalar Inspector window

Pointers Pointer Inspector windows show you the value of data items that
point to other data items, such as

char *p = "abc";

int *ip = 0;

int **ipp = &ip;
Pointer Inspector windows usually have a top line that contains
the address of the variable, followed by a single line of informa-
tion about the data pointed to. To the left appears [0], indicating
the first member of an array. To the right appears the value of the
item being pointed to. If the value is a complex data item, such as
a structure or an array, however, only as much of it as possible is
displayed with the values enclosed in braces ({and }).

If the pointer is of type char and appears to be pointing to a null-
terminated character string, more information appears, showing
the value of each item in the character array. To the left in each

Chapter 6, Examining and modifying dafa 95

line appears the array index ([1], [2], and so on), and the value
appears to the right as it would in a scalar Inspector window. In
this case, the entire string is also displayed on the top line, along
with the address of the pointer variable and the address of the
string that it points to.

You also get multiple lines if you open the Inspector window and
then use the Range local menu command. This is an important
technique for C programmers who use pointers to point to arrays
of items as well as single items. For example, if you had the code

int array(10];
int *arrayp = array;

and you wanted to look at what arrayp pointed to, use the Range
local command on arrayp, specifying a start index of 0 and a range
of 10. If you had not done this, you would only have seen the first
item in the array.

; [s]=Inspecting bufp=3=[*][{]=
Figure 6.4 s FFBE - du:07D2 [FTCDEMOIA

A C pointer Inspector
window

Pointer Inspector windows also have a lower pane indicating the
data type to which the pointer points.

Structures and unions Structure and union Inspector windows show you the value of
the members in your structure and union data items. For
example,

struct linfo {
unsigned int count;
unsigned int firstletter;
} letterinfo [26];

union {
int small;
long large;
} holder;

These Inspector windows have another pane below the one that
shows the values of the members. This additional pane shows the
data type of the member highlighted in the top pane.

96 Turbo Debugger for Windows User’s Guide

Figure 6.5
A C structure or union
Inspector window

Arrays

Figure 6.6
A C array Inspector window

Functions

count

firs

Structures and unions appear the same in Inspector windows. The
lower pane of the Inspector window tells you whether you are
looking at a structure or a union. These Inspector windows have
as many items after the address as there are members in the struc-
ture or union. Each item shows the name of the member on the
left and its value on the right, displayed in a format appropriate
to its C data type.

Array Inspector windows show you the value of arrays of data
items, such as

long thread([3][4] [5];
char message[] = "eat these words";

There is a line for each member of the array. To the left on each
line appears the array index of the item. To the right appears the
value of the item. If the value is a complex data item such as a
structure or array, as much of it as possible is displayed.

You can use the Range local menu command to examine any
portion of an array. This is useful if the array has a lot of elements,
and you want to look at something in the middle of the array.

[w]=Inspecting letterinfo=3=[*][V]x
@76B2:0852 , A

{22 } n

Function Inspector windows show each parameter with which a
function is called. The parameters are displayed below the
memory address at the top of the window.

Chapter 6, Examining and modifying data 97

Figure 6.7
A C function Inspector
window

Assembler data
Inspector
windows

Scalars

Figure 6.8
An assembler scalar
Inspector window

Pointers

98

[w]=Inspecting analyzewords=3=[*][+]
’F7IE9'OZDD

They also give you information about the calling parameters,
return data type, and calling conventions for a function. The
lower pane indicates the data type returned by the function.

Scalar Inspector windows in assembly language programs show
you the value of simple data items, such as

VAR1 DW 99
MAGIC DT 4.608
BIGNUM DD 123456

These Inspector windows have only a single line of information
following the top line that gives the address of the variable. To the
left appears the type of the scalar variable (BYTE, WORD,
DWORD, QWORD, and so forth), and to the right appears its
present value. The value can be displayed as decimal, hex, or
both. It’s usually displayed first in decimal, with the hex values in
parentheses (using the standard assembler hex postfix H). You
can use TDWINST to change how the value is displayed.

[@]=Inspecting Count=3=[*][+]
EHED :0019
dword

Pointer Inspector windows in assembler programs show you the
value of data items that point to other data items, such as

X DW 0
XPTR DW X
FARPTR DD X

Pointer Inspector windows usually have only a single line of
information following the top line that gives the address of the
variable. To the left appears [0], indicating the first member of an
array. To the right appears the value of the item being pointed to.
If the value is a complex data item such as an array, however, only

Turbo Debugger for Windows User’s Guide

as much of it as possible is displayed, with the values enclosed in
braces ({}).

If the pointer is of type BYTE and appears to be pointing to a
null-terminated character string, more information appears,
showing the value of each item in the character array. To the left
in each line appears the array index ([1], [2], and so on), and the
value appears to the right as it would in a scalar Inspector win-
dow. In this case, the entire string is also displayed on the top
line, along with the address of the variable and the address of the
string that it points to.

You also get multiple lines if you open the Inspector window with
a Range local menu command and specify a count greater than 1.

Figure 6.9 [w]=Inspecting TextPtr=3=[*][{]=x
X 72ED: : ds:000A [#test#text
An assembler poinfer (AR ls S [RLEshtex)

' 108 (6Ch)
‘1" 108
‘o' 111

Inspector window re’ 101 (65h) -
1

Arrays Array Inspector windows in assembler programs show you the
value of arrays of data items, such as

WARRAY DW 10 DUP (0)
MSG DB "Greetings",0

There is a line for each member of the array. To the left on each
line appears the array index of the item and to the right is its
present value. If the value is a complex data item such as a
STRUC, however, only as much of it as possible is displayed.

You can use the Range local command to examine a portion of an
array. This is useful if the array has a lot of elements, and you
want to look at something in the middle of the array. When you
choose Range, you are prompted to enter a starting index
followed by a comma and the number of members to inspect.

Chapter 6, Examining and modifying data 99

Figure 6.10

An assembler array Inspector

window

Structures and unions

Figure 6.11
An assembler structure
Inspector window

[=]=Inspecting Text=3=[1][¢]
@72ED:000A

=
A

"HY 72 (48h) 1
e' 101 (65h) !
1' 108 (6Ch) |
1' 108 (6C

'
'

'

o' 111 (6Fh

Structure Inspector windows in assembler programs show you
the value of the fields in your STRUC and UNION data objects. For
example,

X STRUC

MEM1 DB 2

MEM2 Db ?

X ENDS

ANX X <1,ANX>

Y UNION

ASBYTES DB 10 DUP (?)
ASFLT DT ?

Y ENDS

AY Y <?,1.0>

These Inspector windows have another pane below the one that
shows the values of the fields. This additional pane shows the
data type of the field highlighted in the top pane.

[w]=Inspecting Names=3=[%][¢]
©72ED:001D
firstname. "Carleton
lastname "Whitehal
age t#

]

The Inspector window local menu

100

Range...
Change...

Inspect

Descend

New expression...
Type cast...

The commands in this menu give the Inspector window its real
power. By choosing the Inspect local menu command, for
example, you create another Inspector window that lets you go
into your data objects. Other commands in the menu let you
inspect a range of values or a new variable.

Turbo Debugger for Windows User’s Guide

Press Alt-F10 to pop up the Inspector window local menu. If you
have control-key shortcuts enabled, press Ctr/ with the first letter
of the desired command to access it.

Range

Sets the starting element and number of elements that you want
to display. Use this command when you are inspecting an array,
and you only want to look at a certain subrange of all the
members of the array.

If you have a long array and want to look at a few members near

the middle, use this command to open the Inspector window at
the array index that you want to examine.

Change

Changes the value of the currently highlighted item to the value
you enter in the dialog box. If the current language permits it,
TDW performs any necessary casting exactly as if the appropriate
assignment operator had been used to change the variable. See
Chapter 9 for more information on the assignment operator and
casting.

Inspect

Opens a new Inspector window that shows you the contents of
the currently highlighted item. This is useful if an item in the
Inspector window contains more items itself (like a structure or
array), and you want to see each of those items.

You can also invoke this command by pressing Enter after high-
lighting the item you want to inspect.

You return to the previous Inspector window by pressing Esc to
close the new Inspector window. If you are through inspecting a
data structure and want to remove all the Inspector windows, use
the Window | Close command or its shortcut, Alt-F3.

Descend

This command works like the Inspect local menu command
except that instead of opening a new Inspector window to show
the contents of the highlighted item, it puts the new item in the

Chapter 6, Examining and modifying data 101

New Expression

Type Cast

Chapter 11 explains on page
175 how to use the gh2fp
and Ih2fp types.

102

current Inspector window. This is like a hybrid of the New
Expression and Inspect commands.

Once you have descended into a data structure like this, you can’t
go back to the previous unexpanded data structure. Use this
command when you want to work your way through a compli-
cated data structure or long linked list, but you don’t care about
returning to a previous level of data. This helps reduce the
number of Inspector windows onscreen.

Prompts you for a variable name or expression to inspect, without
creating another Inspector window. This lets you examine other
data without having to put more Inspector windows on the
screen. Use this command if you are no longer interested in the
data in the current Inspector window.

Inspector windows for C++ classes are somewhat different from
regular Inspector windows. See Chapter 10 for a description of
class Inspector windows.

Lets you specify a different data type (int, char *, gh2fp, Ih2fp) for
the item being inspected. Typecasting is useful if the Inspector
window contains a symbol for which there is no type information,
as well as for explicitly setting the type for untyped pointers.

Turbo Debugger for Windows User’s Guide

Chapter 7, Breakpoints

Breakpoints

TDW uses the single term “breakpoint” to refer to the group of
functions that other debuggers usually call breakpoints,
watchpoints, and tracepoints.

Traditionally, breakpoints, watchpoints, and tracepoints are
defined like this: A breakpoint is a place in your program where
you want execution to stop so that you can examine program
variables and data structures. A watchpoint causes your program
to be executed one instruction or source line at a time, watching
for the value of an expression to become true. A tracepoint causes
your program to be executed one instruction or source line at a
time, watching for the value of certain program variables or
memory-referencing expressions to change.

TDW unifies these three concepts by defining a breakpoint in
three parts:

m the location in the program where the breakpoint occurs
a the condition under which the breakpoint is triggered
m the action that takes place when the breakpoint triggers

The location can be either a single source line in your program or it
can be global in context; a global breakpoint checks the
breakpoint condition after the execution of each source line or
instruction in your program.

The condition can be

malways
® when an expression is true

103

See Chapter 11, page 164
for a description of message

breakpoints.

m when a data object changes value
m when a Windows message comes in

A pass count can also be specified, requiring that a condition be
true a designated number of times before the breakpoint is
triggered.

The action taken when a breakpoint triggers can be one of the
following:

m stop program execution (a breakpoint)
m log the value of an expression

m execute an expression (code splice)

m enable a group of breakpoints

m disable a group of breakpoints

In this chapter, you'll learn about the Breakpoint and Log
windows; how to set simple breakpoints, conditional breakpoints,
and breakpoints that log the value of your program variables; and
how to set breakpoints that watch for the exact moment when a
program variable, expression, or data object changes value.

When debugging, you'll often want to set a few simple break-
points to make your program pause execution when it reaches
certain locations. You can set or clear a breakpoint at any location
in your program by simply placing the cursor on the source code
line and pressing F2. You can also set a breakpoint on any line of
machine code by pressing F2 when you are pointing at an
instruction in the Code pane of a CPU window.

If you have a mouse, just click either of the leftmost two columns
of the line where you want to set or remove a breakpoint. (If
you're in the correct column, an asterisk (*) appears in the
position indicator.)

There are two ways to access the dialog boxes for setting and
customizing breakpoints. The Breakpoints menu offers a quick
approach for setting breakpoints, and the Breakpoints window
provides a view of the breakpoints already set, and gives access to
the dialog boxes that control breakpoint settings.

The Breakpoints menu

104

Access the Breakpoints menu at any time by pressing the Aft-B hot
key.

Turbo Debugger for Windows User’s Guide

Toggle

At

See page 109 for a
description of the Breakpoint
Options dialog box.

Changed memory
global

For more information, see the
"Changed Memory” section
onpage 117.

Expression true global

For more information, see
“Conditional Breakpoints” on
page 118.

Hardware breakpoint

For more information on
hardware debugging. see
page 118.

Delete all

Toggle F2
At... Alt-F2
Changed memory global...
Expression true global...
Hardware breakpoint...
Delete all

The Toggle command sets or clears a breakpoint at the currently
highlighted address in the Module or CPU window. The hot key
is F2.

At lets you set a breakpoint at a specific location in your program.
When selected, At opens the Breakpoint Options dialog box, from
which you can set all breakpoint options. Alt-F2 is the hot key for
At.

Changed Memory Global sets a global breakpoint that’s triggered
when an area of memory changes value. You are prompted for
the area of memory to watch with the Enter Memory Address,
Count input box. The variable expression entered is checked for
change each time a line of source code is executed.

Expression True Global sets a global breakpoint that is triggered
when the value of a supplied expression is true (nonzero). You are
prompted for the expression to evaluate with the Enter
Expression for Condition Breakpoint input box. The expression
entered is evaluated each time a line of source code is executed.

Use this command to access the Hardware Breakpoints Options
dialog box. You must have the proper system setup in order to
use hardware debugging.

The Delete All command erases all the breakpoints you've set. Use
this command when you want to start over from scratch.

The Breakpoints window

Chapter 7, Breakpoints

The Breakpoints window is accessed by choosing the View |
Breakpoints command. This gives you a way of looking at and
adjusting the conditions that trigger a breakpoint.

105

For a detailed explanation of

Figure 7.1
The Breakpoints window

The Breakpoints

window local

menu

Set Options

the Breakpoint Options

dialog box, see page 109.

106

Add

Breakpoint
Always
Enabled

[-]=Breakgoint

The Breakpoints window has two panes; the Breakpoint List (left
pane) shows a list of all the addresses at which breakpoints are set
and the Breakpoint Detail (right pane) shows the details of the
breakpoint highlighted in the left pane. Although a breakpoint
can have several sets of actions and conditions associated with it,
only the first set of details is displayed in the Breakpoint Detail
pane.

The Breakpoints window has a local menu, which you access by
pressing Alt-F10 when inside the left pane. If you have control-key
shortcuts enabled, press Ctrl with the first letter of the command
to access that command directly.

The commands in this menu let you add new breakpoints, delete
existing breakpoints, and change how a breakpoint behaves.

Set options...
Add...

Remove

Delete all

Inspect
Group...

Once a breakpoint is set, the Set Options command opens the
Breakpoint Options dialog box, allowing you to modify the
breakpoint. Using this box, you can

m declare a global breakpoint

m disable/enable the breakpoint

m attach the breakpoint to a specific group

m access the Conditions and Actions dialog box

The Add command on the Breakpoints local menu opens the
Breakpoint Options dialog box, much like the Set Options
command does. The difference is that the cursor is positioned on
an empty Address text box. Enter into the Address text box the
address for which you’d like the breakpoint to be set. For

Turbo Debugger for Windows User’s Guide

Remove

Delete all

Inspect

Group

Chapter 7, Breakpoints

example, if you'd like to set a breakpoint at line number 3201 in
your C source code, enter #3201 into the text box. If the line of
code is in a module not displayed in the Module window, type a
pound sign (#), followed by the module name, followed by
another pound sign, and then the line number. For example:
#OTHERMOD#3201.

The Add command can also be accessed by simply typing an
address into the Breakpoint Window. After typing the first
character of the address, the Breakpoint Options dialog box
opens, placing you in the Address text box.

Once you've entered the breakpoint address, use the other
commands in the Breakpoint Options dialog box to complete the
breakpoint entry.

The Remove command erases the currently highlighted break-
point. Delis the hotkey for this command.

Delete All removes all breakpoints, both global and those set at
specific addresses. You will have to set more breakpoints if you
want your program to stop on a breakpoint. Use this command
with caution!

The Inspect command displays the source code line or assembler
instruction that corresponds to the currently highlighted break-
point item. If the breakpoint is set at an address that corresponds
to a source line in your program, a Module window is opened
and set to that line. Otherwise, a CPU window is opened, with the
Code pane set to show the instruction at which the breakpoint is
set.

You can also invoke this command by pressing Enter once you
have the highlight bar positioned over a breakpoint.

The Group command allows you to gather breakpoints into
groups. A breakpoint group is identified by a positive integer,
generated automatically by TDW or assigned by you. The
debugger automatically assigns a new group number to each
breakpoint as it’s created. The group number generated is the
lowest number not already in use. Thus, if the numbers 1, 2, and 5
are already used by groups, the next breakpoint created is
automatically given the group number 3.

107

Figure 7.2
The Edit Breakpoint Groups
dialog box

Figure 7.3
The Add Group dialog box

108

Once a breakpoint is created, you may modify the breakpoint
group number from the Breakpoint Options dialog box, placing
the breakpoint into a group associated with other breakpoints.
Grouping breakpoints together allows you to enable, disable, or
remove a collection of breakpoints with a single action.

When the Group command is chosen from the Breakpoint
window’s local menu, the Edit Breakpoint Groups dialog box is
displayed. This dialog box shows a listing of the current
breakpoint groups and allows you to easily collect all functions
within a module into a single group.

Edit breakpoint grou

Groups

The Groups list box displays the currently assigned breakpoint
groups.

Add
The Add button activates the Add Group dialog box.

The Add Group dialog box has a single list box and a single set of
radio buttons that allow you to add all functions in a single
module, or all member functions in a class, to a breakpoint group.

m The Module/Class list box displays a list of the modules or
classes contained in the program loaded into the Module
window. Highlight the desired module or class, then press OK

Turbo Debugger for Windows User's Guide

to set breakpoints on all functions in the module or class. All
breakpoints set are collected into a single breakpoint group.

m Two radio buttons allow you to select the type of functions that
are displayed in the Module/Class list box:

o The Modules radio button selects all modules contained in the
current program, displaying them in the Module/Class list
box.

o The Classes radio button selects all the C++ classes contained
in the current program for display in the Module/Class list
box.

Delete

The Delete button in the Edit Breakpoint Groups dialog box
removes the group currently highlighted in the Groups list box.
All breakpoints in this group, along with their settings, will be
erased.

Enable

The Enable button activates a breakpoint group that has been
previously disabled.

Disable

The Disable command temporarily masks the breakpoint group
that is currently highlighted in the Groups list box. Breakpoints
that have been disabled are not erased; they are merely set aside
for the current debugging session. Enabling the group reactivates
all the settings for all the breakpoints in the group.

The Breakpoint

Op’rions diOlog The Breakpoint Options dialog box is reached from the
box Breakpoints | At command, and from the Set Options and Add
commands on the Breakpoints window local menu.

Chapter 7, Breakpoints 109

110

Figure 7.4
The Breakpoint Options
dialog box

Address

Group ID

See page 107 for a
description of breakpoint
groups.

Global

For more information on
global breakpoints, see
page 116.

Disabled

Conditions and a

b) ed
ctions
Breakpoint, Always) |_Help |

The Address text box contains the address tag associated with the
currently highlighted breakpoint. Normally, you will not edit this
field. However, if you want to change the name of the tag
associated with the breakpoint, type the new name into the
Address text box.

The Group ID text box allows you to assign the current
breakpoint to a new or existing group. A breakpoint group is
identified by a unique positive integer.

Global, when checked, enables global checking. This means that
every time a source line is executed, the breakpoint conditions
will be checked for validity. Because global breakpoints are tested
after every line of code is executed, the Address field is set to <not
available> since it is no longer pertinent.

When you set a global breakpoint, you must set a condition that
will trigger the global breakpoint. Otherwise, you'll end up with a
breakpoint that activates on every line of source code (if this is the
effect you want to achieve, use the Run | Trace Into command on
the Main menu).

The Disabled check box turns off the current breakpoint. While
this command is similar to the Toggle command on the
Breakpoints menu (see page 105), Disable does not clear the
breakpoint of its settings (as does the Toggle command). Disable
simply masks the breakpoint until you want to reenable it by
unchecking this box. When the breakpoint is reenabled, all
settings previously made to the breakpoint will become effective.

This check box is useful if you have defined a complex breakpoint
that you don’t want to use just now, but will want to use again

Turbo Debugger for Windows User's Guide

Conditions and Actions

Change

Add

Delete

The Conditions
and Actions
dialog box

Figure 7.5
The Conditions and Actions
dialog box

See "Customizing
breakpoints” on page 116 for
details on modifying
breakpoints.

Chapter 7, Breakpoints

later. It saves you from having to delete the breakpoint, and then
reenter it along with its complex conditions and actions.

The Conditions and Actions list box displays the set of conditions
and actions associated with the current breakpoint.

The Change button, when selected, opens up the Conditions and
Actions dialog box (see the niext section). With this command, you
can edit the item currently highlighted in the Conditions and
Actions list box.

To add a new set of conditions and actions to the current
breakpoint, select Add. Like the Change command above, Add
opens the Conditions and Actions dialog box.

The Delete command removes the currently highlighted item in
the Condition and Actions list box from the breakpoint definition.

When you choose either the Change or the Add button from the
Breakpoint Options dialog box, you're presented with the
Conditions and Actions dialog box.

[#]==—===————=Conditions and acti
Condition Action
Always
() Changed memory () Execute
(e) Expression true () Log
() Hardware () Enable group
) Disable group

Condition expression Action expression
Brea

|_Add [Delete [N Add [Delete |

Pass count
1

When a breakpoint is set on a line of source code, its default
characteristics are Always Break execution when the line of code
is encountered. With the Conditions and Actions dialog box, you
can customize the conditions under which the breakpoint will be
activated and specify different actions that take place once the
breakpoint does trigger.

1M

The condition radio
buttons

See page 117 for more
information on Changed
Memory breakpoints.

See page 118 for details on

expressions.

See page 118 for more

information about hardware

breakpoints.

The Hardware | Breakpoint

112

command offers an easy
way fo set hardware
breakpoints.

You'll customize breakpoints through two sets of radio buttons
and three text entry boxes. In addition, a Hardware button leads
to the Hardware Breakpoints Options dialog box, allowing you to
specify hardware breakpoint conditions.

The Condition radio buttons have four settings:

Always

When Always is chosen, it indicates that no additional conditions
need be true for the breakpoint to trigger; it will be triggered each
time program execution encounters the breakpoint.

Changed memory

A Changed Memory breakpoint watches a memory variable or
object; the breakpoint is triggered if the object changes value. Use
the Condition Expression input box to enter an expression
representing the data object you want to watch.

Expression true

The Expression True button allows the breakpoint to be triggered
when an expression becomes true (nonzero). Use the Condition
Expression input box to enter an expression that’s evaluated each
time the breakpoint is encountered.

Hardware

Causes the breakpoint to be triggered by the hardware-assisted
device driver. Because you can use hardware assistance only with
a global breakpoint, you must check the Global check box in the
Breakpoint Options dialog box before you can access this option.

You must select the Hardware radio button before the Hardware
button at the bottom of the dialog box can become active. Pushing
that button displays the Hardware Breakpoint Options dialog
box. The choices you can make in this box are described in the
online text file HDWDEBUG.TD.

Turbo Debugger for Windows User’s Guide

The action radio
buttons

See Chapter 9 fora
description of expressions
and side effects.

Chapter 7, Breakpoints

The Action radio buttons have five settings:

Break

Break causes your program to stop when the breakpoint is
triggered. The TDW screen reappears, and you can once again
enter commands to look around at your program’s data
structures.

Execute

Execute causes an expression to be executed. Enter the expression
in the Action Expression input box. The expression should have
some side effect, such as setting a variable to a value. By executing
an expression that has side effects each time a breakpoint is
triggered, you can effectively “splice in” new pieces of code
before a given source line. This is useful when you want to alter
the behavior of a routine to test a diagnosis or bug fix. This saves
you from going through the compile-and-link cycle just to test a
minor change to a routine.

Of course, this technique is limited to the insertion of an expres-
sion before an already existing line of code is executed; you can’t
use this technique to modify existing source lines directly.

Log

The Log button causes the value of an expression to be recorded
in the Log window. You are prompted for the expression whose
value you want to log. Be careful that the expression doesn’t have
any unexpected side effects.

Enable group

The Enable Group action button allows for a breakpoint to
reactivate a group of breakpoints that have been previously
disabled.

Disable group

The Disable Group radio button lets you disable a group of
breakpoints. When a group of breakpoints is disabled, the

113

Setting conditions and

actions

Condition Expression

114

For more information on
specifying breakpoint
actions, see the “"Action
Expression” section that
follows.

breakpoints are not erased, they are simply masked for the
debugging session.

The most important step when setting up breakpoints is
specifying the conditions under which the breakpoint triggers and
specifying the actions to be taken once the breakpoint takes effect.
Two text boxes control these settings, the Condition Expression
text box and the Action Expression text box.

When you choose either a Changed Memory, Expression True, or
Hardware Condition radio button, you must provide a set of
conditions so TDW knows when to trigger the breakpoint. A
condition set consists of one or more expressions; each condition
has to evaluate true in order for the whole set to evaluate true.

A condition set is associated with a set of actions. When the
condition set evaluates true, the corresponding action set is
performed.

To add a condition set to a breakpoint,

1. Select either the Changed memory, Expression True, or
Hardware radio button.

2. Select the Add button located under the Condition Expression
text box.

3. Enter the condition or variable expression into the Condition
Expression text box.

4. If you want more than one variable or condition to be tested
for a particular action set, repeat steps 2 and 3 until all
expressions have been added to the Condition Expression text
box.

5. Once you've specified a condition set, use the Action
Expression text box to list the action(s) you'd like to take when
the breakpoint triggers.

A single breakpoint may have several condition and action sets
associated with it. If you want more than one set of conditions
and actions assigned to a single breakpoint, choose OK after you
have entered the first series of conditions and actions. This will
close the Conditions and Actions dialog box and return you to the
Breakpoint Options dialog box. From here, choose Add to enter a
new set of conditions and actions. When a breakpoint has
multiple condition and action sets, each one will be evaluated in

Turbo Debugger for Windows User’s Guide

Action Expression

Pass count

Chapter 7, Breakpoints

the order that they were entered. If more than one action set
evaluates to true, then more than one set of actions will be
performed.

The Delete button located below the Condition Expression text
box lets you remove the currently highlighted expression from the
Condition Expression text box. Select this button if you want to
delete a condition from the condition set.

When either an Execute, Log, Enable Group, or Disable Group
Action radio button is chosen, an action set must be provided so
TDW knows what to do when the breakpoint triggers. An action
set is composed of one or more actions.

To add an action set to a breakpoint,

1. Select either the Execute, Log, Enable Group, or Disable Group
radio button.

2. Select the Add button located under the Action Expression text
box.

3. Enter the action into the Action Expression text box.

To perform more than one action when the breakpoint
triggers, repeat steps 2 and 3 until all actions have been added
to the Action Expression text box.

4. When you have finished entering actions, choose OK from the
Conditions and Actions dialog box.

If the Enable Group or Disable Group radio button is chosen,
simply type the breakpoint group number into the Action
Expression text box to reference the group that you want to
enable or disable.

The Delete button located below the Action Expression text box
lets you remove the currently highlighted action from the action
set.

The Pass Count input box lets you set the number of times the
breakpoint condition set must be met before the breakpoint is
triggered. The default number is 1. The pass count is decremented
only when the entire condition set attached to the breakpoint is
true. This means that if you set a pass count to 7, the breakpoint is
triggered the nth time that the condition set is true.

116

Customizing breakpoints

You must check Global if you

116

Simple
breakpoints

Global
breakpoints

>

want to set hardware
breakpoints.

In addition to simply stopping your program at a particular point,
greater control can be given to debugging by stipulating when a
breakpoint should take action, and what it should do when it
triggers.

When a breakpoint is initially set, it is given the default setting of
Always Break. Once a simple breakpoint is set, the actions and
conditions of the breakpoint may be customized. There are a
number of ways to set a simple breakpoint, each one being
convenient in different circumstances:

m Move to the desired source line in a Module window (or Code
pane of a CPU window) and issue the Breakpoints | Toggle
command (or press F2, or click the line with your mouse).
Doing this on a line that already has a breakpoint set causes
that breakpoint to be deleted.

m Issue the Add local menu command from the Breakpoint List
pane of the Breakpoints window and enter a code address at
which to set a breakpoint. (A code address has the same format
as a pointer in the language you're using. See Chapter 9 about
expressions.)

m Issue the Breakpoints | At command to set a breakpoint at the
current line in the Module window.

When a breakpoint is made global, TDW will check the
breakpoint on the execution of every line of code. If the set of
conditions evaluates true, then the corresponding set of actions
will be executed.

If you want a global check to occur on every machine code
instruction, set a global breakpoint, and press F9 from within the
CPU window. This type of code monitoring should only be done
once you have isolated a small area of your program known to
contain a problem. The CPU window can then be used to locate
the exact position of the difficulty.

Since a debugger action will occur on every line of source code or
machine instruction, global breakpoints greatly slow the

Turbo Debugger for Windows User's Guide

execution of your program. Be careful with your use of global
breakpoints; they should be used only if you want to find out
exactly when a variable changes value, when some condition

becomes true, or when your program is “bashing” data.

The Breakpoints menu offers Often, global breakpoints are used to watch for when a data item
short cg:se; (Z %‘ngg’n,% ?;ﬁ gﬁ;’ changes value. In this situation, TDW checks the area of memory
information o?w the Changed for change after the execution of every line of code. As an
Memory Global and alternative to a global breakpoint, you may want to specify a
Expression True Global preakpoint that only watches for a change when a specific source
commands, see page 105. giatement is reached. This is a lot more efficient, since it reduces

the amount of processing TDW does in order to detect the change
(in this case, TDW isn’t concerned with when the item has
changed, only that it has changed).

Changed

MemMmOory When you want to find out where in your program a certain data

breakpoints object is being changed, first set a breakpoint using one of the
techniques outlined in the preceding section. Then, using the
Changed Memory radio button in the Conditions and Actions
dialog box, enter an expression that refers to the memory area you
want to watch along with an optional count of the number of
objects to track. The total number of bytes in the watched area is
the size of the object that the expression references times the
number of objects. For example, suppose you have declared the
following C array:

int string[81];

If you want to watch for a change in the first ten elements of this
array, enter the following item into the Condition Expression
input box:

&string[0], 10

The area watched is 20 bytes long, since an intis 2 bytes and you
said to watch ten of them.

If the Changed Memory breakpoint is global, your program
executes much more slowly because the memory area is checked
for change after every source line has been executed. If you've
installed a hardware device driver, TDW will try to set a
hardware breakpoint to watch for a change in the data area.
Different hardware debuggers support different numbers and
types of hardware breakpoints. You can see if a breakpoint is
using the hardware by opening a Breakpoint window with the

Chapter 7, Breakpoints 117

Conditional
expressions

Scope of breakpoint
expressions

See Chapter 9 for a
complete discussion of

scopes and scope overrides.

Hardware
breakpoints

See page 12 for information
on setting up device drivers

118

for hardware debugging.

View | Breakpoints command. Any breakpoint that is hardware
assisted will have an asterisk (*) beside it. These breakpoints are
much faster than global breakpoints that are not hardware
assisted.

There are many occasions when you won’t want a breakpoint to
be triggered every time a certain source statement is executed,
particularly if that line of code is executed many times before the
occurrence you are interested in. TDW gives you two ways to
qualify when a breakpoint is actually triggered: pass counts and
conditions.

Both the action that a breakpoint performs and the condition
under which it is triggered can be controlled by an expression you
supply. That expression is evaluated using the scope of the
address at which the breakpoint is set, not the scope of the current
location where the program is stopped. This means that your
breakpoint expression can use only variable names that are valid
at the address in your program where you set the breakpoint,
unless you use scope overrides.

If you want to set a breakpoint for an expression in a module that
isn’t currently loaded and TDW cannot find that expression, you
can use either a scope override to specify the file that contains the
expression or the View | Module command to change modules.

If you use variables that are local to a routine as part of an expres-
sion, that breakpoint will execute much more slowly than a break-
point that uses only global or module local variables.

A hardware breakpoint uses hardware debugging support, either
through a hardware debugging board or through the debugging
registers of the Intel 80386 (or higher) processor. If your system is
set up for hardware debugging (File | Get Info shows Breakpoints
set to Hardware), you can set a hardware breakpoint using one of
the following methods:

m Choose Breakpoints | Changed Memory Global, the most
common use of hardware breakpoints.

m Choose Breakpoints | Hardware.

Turbo Debugger for Windows User’s Guide

Logging variable
values

For more information on the
Log window, see page 120.

Be careful of side effects
when logging expressions.

Breakpoints and
templates

Breakpoints on class
templates

Chapter 7, Breakpoints

m Display the Breakpoint Options menu (choose Breakpoints | At
or the Set Options command of the View | Breakpoints window
local menu), then do the following;:

1. Check the Global check box.

2. Push the Change button.

3. In the Conditions and Actions dialog box, choose the
Hardware radio button to turn on the Hardware pushbutton
at the bottom of the dialog box.

4. Push the Hardware push button to display the Hardware
Breakpoint Options dialog box.

5. Choose the options you want from this dialog box. The
options are described in the online text file
HDWDEBUG.TD.

Sometimes, you may find it useful to log the value of certain
variables each time you reach a certain place in your program.
You can log the value of any expression, including, for example,
the values of the parameters a function is called with. By looking
at the log each time the function is called, you can determine
when it was called with erroneous parameters.

Choose the Log radio button from the Breakpoint Options dialog
box. You are prompted for the expression whose value is to be
logged each time the breakpoint is triggered.

TDW supports breakpoints on C++ templates. Breakpoints get set
differently depending on if you use F2in the Module window, F2
in the CPU window, or the Breakpoint Options dialog box to set
them.

There are several methods for setting breakpoints in templates:

m If you set a breakpoint in the template itself by pressing F2
while the cursor is on a line of template source code in the
Module window, breakpoints are set in all class instances of
that template. This feature allows you to debug overall
behavior of the template.

119

m If you set a breakpoint in the template by pressing Alt-F2 to
display the Breakpoint Options dialog box, entering the Module
window address of a template expression brings up a dialog
box that lets you choose the class instance for which you want
to set the breakpoint.

m If you open the CPU window, you can see where template code
appears in each class instance of a template. If you position the
cursor on a line of template code in one of the class instances,
pressing F2 will set a breakpoint on that class instance only.

You can remove a template breakpoint just as you remove any
breakpoint, by positioning in the Module window on the
highlighted line in the template and pressing F2 or by using the
delete command of the Breakpoints window. When you do so,
any associated class instance breakpoints are removed as well.

If you position in the CPU window on a breakpoint in a class
instance and press F2, only the breakpoint for that class instance is
removed.

Breakpoints on function You set and remove breakpoints for function templates just as you
templates do for class templates. The two methods for setting breakpoints,
pressing F2 or using the Breakpoint Options dialog box, have the
same effects on function instances as they do on class instances.

Breakpoints on You set breakpoints for template class instances and objects of
template class template class instances just like you do for ordinary classes and
instances and objects objects.

The Log window

You create a Log window by choosing the View | Log command.
This window lets you review a list of significant events that have
taken place in your debugging session.

Figure 7.6

g
oint

The Log window L: oint

oint

Log windows show a scrolling list of the lines output to the
window. If more than 50 lines have been written to the log, the

120 Turbo Debugger for Windows User’s Guide

The Log window
local menu

Open log file...

Close log file

Logging Yes

Add comment...

Erase log

Display Windows info...

Open Log File

Chapter 7, Breakpoints

oldest lines are lost from the top of the scrolled list. If you want to
change the number of lines in the list, use the TDWINST
customization program (described in the file TDWINST.DOC).
You can also preserve the entire log, continuously writing it to a
disk file, by using the Open Log File local menu command.

Here’s a list of what can cause lines to be written to the log:

m Your program stops at a location you specified. The location it
stops at 1s recorded 1n the log.

m You issue the Add Comment local menu command. You are
prompted for a comment to write to the log.

m A breakpoint is triggered that logs the value of an expression.
This value is put in the log.

m You use the Edit | Dump Pane to Log command (from the menu
bar) to record the current contents of a pane in a window.

m You are debugging a Windows application and use the Display
Windows Info command on the Log window local menu to
write global heap information, local heap information, or the
module list to the log.

m You are debugging a Windows application, have used the
View | Windows Messages command to display the Windows
Messages window, and are now in the local menu of the
Messages pane of that window. You toggle Send to Log
Window to Yes so all messages coming to this window will also
go to the Log window.

The commands in this menu let you control writing the log to a
disk file, stopping and starting logging, adding a comment to the
log, clearing the log, and writing information about a Windows
program to the log.

Alt-F10 pops up the Log window local menu. If you have control-
key shortcuts enabled, pressing Ctrl and the first letter of the
command accesses the command directly.

Causes all lines written to the log to be written to a disk file as
well. A dialog box appears that prompts you for the name of the
file to write the log to (or you can select a directory and file from
the list boxes).

121

Display Windows I

122

Close Log File

Logging

Add Comment

Erase Log

When you open a log file, all the lines already displayed in the log
window’s scrolling list are written to the disk file. This lets you
open a disk log file after you see something interesting in the log
that you want to record to disk.

If you want to start a disk log that does not start with the lines
already in the Log window, first choose Erase Log before
choosing Open Log File. /

Stops writing lines to the log file specified in the Open Log File
local menu command, and closes the file.

Enables or disables the log, controlling whether anything is
actually written to the Log window.

Lets you insert a comment in the log. You are prompted for a line
of text that can contain any characters you want.

Clears the log list. The Log window will now be blank. Only the
log in memory is affected, not the parts of the log that have been
written to a disk file.

Displays the Windows Information dialog box, which lets you list
global heap information, local heap information, or the list of
modules making up your application. See page 166 in Chapter 11
for an explanation of how to use this feature.

Turbo Debugger for Windows User’s Guide

Examining files

TDW treats disk files as a natural extension of the program you're
debugging. You can examine any file on the disk, viewing it either
as ASCII text or as hex data.

This chapter shows you how to examine disk files that contain
your program source code and other files on disk.

Examining program source files

Loading and debugging
Windows DLL modules is
described in Chapter 11 on
page 169.

Chapter 8, Examining files

Program source files are your source files that are compiled to
generate an object module (an .EXE file). You usually examine
them when you want to look at the behavior or design of a
portion of your code. During debugging, you often need to look
at the source code for a routine to verify either that its arguments
are valid or that it is returning a correct value.

As you step through your program, TDW automatically displays
the source code for the current location in your program.

Files that are included in a source file by a compiler directive and
generate line numbers are also considered to be program source
files, even though they don’t appear in the Pick a Module list
pane when you choose View | Module. To select one of these files,
you must use the local menu File command.

You should always use a Module window to look at your
program source files because doing so informs TDW that the file

123

The Module
window

Figure 8.1
The Module window

See page 169 fora

description of this Dialog box.

When you run TDW, you need

124

both the .EXE file and the
original source file.

is a source module. TDW then lets you do things like setting
breakpoints or examining program variables simply by moving to
the appropriate place in your file. These techniques and others are
described in the following sections.

Before you can open a module window, you must have a program
loaded. You create a Module window by choosing the View |
Module command from the menu bar (or pressing the hot key, F3).

~[w]=Module: TDDEMO File: TDDEMO.C 37 1=[t1[{]
static void showargs(int argc, char *argv[]);

/* program entry point
*
> }nt main(int argc, char **argv)

unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

nlines = 0;

nwords = 03
totalcharacters = 0;
showargs(_argc, _argv);
while %

readaline() 1= 0) {

wordcount = makeintowords (buffer);
nwords += wordcount;

totalcharacters += analyzewords(buffer);

A dialog box appears in which you can enter the name of the
module or DLL you want to view.

TDW then loads the source file for the module you select. If you
select a source module (and not a DLL), TDW searches for the
source file in the following places:

1. in the directory where the compiler found the source file

2. in the directories specified by the Options | Path for Source
command or the —sd command-line option

3. in the current directory
4. in the directory that contains the program you’re debugging

Module windows show the contents of the source file for the
module you've selected. The title of the Module window shows
the name of the module you’re viewing, along with the source file
name and the line number the cursor is on. An arrow (») in the
first column of the window shows the current program location
(CS:IP).

Turbo Debugger for Windows User's Guide

The Module
window local
menu

Inspect
Watch

Module...
File...

Previous
Line...
Search...
Next
Origin
Goto...

Inspect

Watch
If the cursor isn’t currently on

a variable, you're prompted
to enter one.

Chapter 8, Examining files

If the abbreviation opt appears after the file name in the title, the
program has been optimized by the compiler. You might have
trouble finding some variables that have been optimized away. In
addition, variables that have become register variables won’t have
an address.

If the word modified appears after the file name in the title, the file
has been changed since it was last compiled or linked to make the
program you are debugging. In this case, the routines in the
updated source file may no longer have the same line numbers as
those in the version used to build the program you are debug-
ging. If the line numbers are different, the arrow that shows the
current program location (CS:IP) will be displayed on the wrong
line.

The Module window local menu provides a number of com-
mands that let you move around in the displayed module, point
at data items and examine them, and set the window to display a
new file or module.

You will probably use this menu more than any other menu in
TDW, so you should become quite familiar with its various
options.

Use the Alt-F10 key combination to pop up the Module window
local menu. If you have control-key shortcuts enabled, you can
access local menu commands without popping up the menu: Use
the Cir/'key with the highlighted letter of a command to access that
command (for example, Ctrl-S for Search).

Opens an Inspector window to show you the contents of the
program variable at the current cursor position. If the cursor isn’t
currently on a variable, you're prompted to enter one.

Because this command saves you from having to type in each
name you are interested in, you'll end up using it a lot to examine
the contents of your program variables.

Adds the variable at the current cursor position to the Watches
window. Putting a variable in the Watches window lets you
monitor the value of that variable as your program executes.

125

126

Module

File

Previous

Line

Search

Lets you view a different module by picking the one you want
from the list of modules displayed. This command is useful when
you are no longer interested in the current module, and you don’t
want to end up with more Module windows onscreen.

Lets you switch to view one of the other source files that makes
up the module you are viewing. Pick the file that you want to
view from the list of files presented. Most modules only have a
single source file that contains code. Other files included in a
module usually only define constants and data structures. Use
this command if your module has source code in more than one
file.

Use View | Module to look at the first file. If you want to see more
than one, use View | Another | Module to open subsequent Module
windows.

Returns you to the last source module location you were viewing.
You can also use this command to return to your previous
location after you've issued a command that changed your
position in the current module.

Positions you at a new line number in the file. Enter the new line
number to go to. If you enter a line number after the last line in
the file, you will be positioned at the last line in the file.

Searches for a character string, starting at the current cursor
position. Enter the string to search for. If the cursor is positioned
over something that looks like a variable name, the Search dialog
box will come up initialized to that name. Also, if you have
marked a block in the file using the Ins key, that block will be used
to initialize the Search dialog box. This saves you from typing if
what you want to search for is a string that is already in the file
you are viewing.

You can search using simple wildcards, with ? indicating a match
on any single character, and * matching zero or more characters.
The search does not wrap around from the end of the file to the
beginning. To search the entire file, go to the first line by pressing
Ctrl-PgUp.

Turbo Debugger for Windows User’s Guide

Next

Origin

Goto

If the address doesn’t have a
corresponding source line, a
CPU window is opened.

Searches for the next instance of the character string you specified
with the Search command; you can only use this command after
initially choosing Search.

Sometimes, Search matches an unexpected string before reaching
the one you really wanted to find. Next lets you repeat the search
without having to reenter what you want to search for.

Positions you at the module and line number that is the current
program location (CS:IP). If the module you are currently viewing
is not the module that contains the current program location, the
Module window will be switched to show that module. This com-
mand is useful after you have looked around in your code and
want to return to where your program is currently stopped.

Positions you at any location within your program. Enter the
address you want to examine; you can enter a procedure name or
a hex address. See Chapter 9 for a complete description of the
ways to enter an address.

You can also invoke this command by simply starting to type the
label to go to. This brings up a dialog box exactly as if you had
chosen the Goto command. Entering the label name is a handy
way to invoke this frequently used command.

Examining other disk files

The File window

Chapter 8, Examining files

You can examine any file on your system by using a File window.
You can view the file either as ASCII text or as hex data bytes,
using the Display As command described in a later section of this
chapter.

You create a File window by choosing View | File from the menu
bar. You can use DOS-style wildcards to get a list of file choices, or
you can type a specific file name to load.

127

Figure 8.2
The File window

Figure 8.3

The File window showing hex

128

data

The File window
local menu

[s]=File . S\DEBUG\DEMOS\TDDEMO C 1==3=[1] [”"I
* file <tddemo.c>

* l
* Demonstration program to show of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>