
TURBO
DEBUGGER® 3.0
FOR WINDOWS

USER'S GUIDE

BORLAND

...

Turbo Debugger for
Window~

Version 3.0

User's Guide

. BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Rl

Copyright© 1988, 1991 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland International. Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders. Windows, as used in this manual, shall refer to
Microsoft's implementation of a windows system.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2 1

c 0 N T

Introduction ,
l

New features and changes for version 3.0 . 1
Hardware and software requirements ... 2
A note on terminology 3
What's in the manual 3
How to contact Borland 5

Resources in your package 5
Borland resources 5

Recommended reading 6

Chapter 1 Getting started 9
The distribution disks 9
Online text files . 9

The README file 10
The MANUAL.TOW file 10
The HELPME!.TDW file 10
The ASMDEBUG.TDW file 10
The UTILS. TOW file 11

Installing TOW . 12
Installing TDDEBUG.386 12

Hardware debugging 13
Where to now? . 13

Programmers learning Turbo C++ 13
Turbo C++ pros, but Turbo Debugger
novices 13
Programmers experienced with Turbo
Debugger . 14

Chapter 2 TOW basics 15
Is there a bug? 15
Where is it? 16
What is it? . 16
Fixing it . 16

What TOW can do for you 16
What TOW won't do 18
How TOW does it 18

The TOW advantage 18

E N T s

!\.1cr..us and dialog bcxe~ _ _ _ _ 1 q

Using the menus 19
Dialog boxes . 20

Knowing where you are 21
Local menus . 22

History lessons . 24
Automatic name completion 25

Incremental matching 25
Making macros . 26
Window shopping 26

Windows from the View menu 26
Breakpoints window 26
Stack window 27
Log window 27
Watches window 27
Variables window 27
Module window 28
File window 28
CPU window 28
Dump window 28
Registers window 29
Numeric Processor window 29
Execution History window 29
Hierarchy window 29
Windows Messages window 30
Clipboard window 30
Duplicate windows 30

User screen . 30
Inspector windows 31
The active window 31
What's in a window 32
Working with windows 33

Window hopping 33
Moving and resizing windows . . . 35
Closing and recovering windows . 36
Saving your window layout 36

Copying and pasting 36
The Pick dialog box 37
The Clipboard window 38

Clipboard item types 38
The Clipboard window local
menu 39
Dynamic updating 39

Tips for using the Clipboard 40
Getting help . 40

Online help . 41
The status line . , 42

In a window 42
In a menu or dialog box 42

Chapter 3 A quick example 43
The demo program 43
Using TOW . 45

The menus . 45
The status line . 46
The windows . 46

Using the C demo program 48
Setting breakpoints 49
Using watches . 50
Examining simple C data objects 51
Examining compound C data objects . 53
Changing C data values 53

Chapter 4 Starting TOW 57
Preparing programs for debugging 57
Starting TDW . 58

Entering command-line options 59
Directly entering command-line
options , 59
Entering command-line options from
TCW 59
Things to remember 60

Running TOW . 60
Command-line options 60

Loading the configuration file (-c) 61
Display updating (-d) 61
Getting help (-hand-?) 61
Assembler-mode startup (-1) 62
Mouse support (-p) 62
Source code handling (-s) 62

Starting directory (-t) 63
Configuration files 63
The Options menu 64

The Language command 64
The Macros menu.. 64

Create 64
Stop Recording 64
Remove 65
Delete All . 65

Display Options command 65
Display Swapping 65
Integer Format 66
Screen Lines . 66
Tab Size 66

Path for Source command 66
Save Options command 66
Restore Options command 67

Returning to Windows 67

Chapter 5 Controlling program
execution 69

Examining the current program state 70
The Variables window 70

The Global pane local menu 71
Inspect 71
Change 72
Watch 72

The Static pane local menu
Inspect
Change
Watch
Show

The Stack window
The Stack window local menu

Inspect
Locals

The Origin local menu command
The Get Info command

Global memory information
Status line messages

The Run menu
Run
Go to Cursor
Trace Into

72
72
72
73
73
73
74
74
74
75
75
75
76
78
78
78
78

Step Over . 79
Execute To . 79
Until Return 79
Animate 80
Back Trace 80
Instruction Trace 80
Arguments , 81
Program Reset 81

The Execution History window 81
The local menu . 82

Inspect 82
Reverse Execute 82
Full History 83

Interrupting program execution 83
Program termination 84
Restarting a debugging session 85
Opening a new program to debug 85
Changing the program arguments 86

Chapter 6 Examining and modifying
data 87

The Data menu . 88
Inspect
Evaluate/Modify
Add Watch
Function Return

Pointing at data objects in source files .. .
The Watches window

The Watches window local menu
Watch
Edit
Remove
Delete All
Inspect ,
Change

Inspector windows
C data Inspector windows

Scalars
Pointers
Structures and unions
Arrays
Functions

Assembler data Inspector windows .. .
Scalars

88
88
91
91
91
92
93
93
93
93
93
93
94
94
95
95
95
96
97
97
98
98

iii

Pointers . 98
Arrays 99
Structures and unions 100

The Inspector window local menu 100
Range 101
Change 101
Inspect . 101
Descend ; 101
New Expression 102
Type Cast . 102

Chapter 7 Breakpoints 103
The Breakpoints menu 104

Toggle 105
At 105
Changed memory global 105
Expression true global 105
Hardware breakpoint 105
Delete all . 105

The Breakpoints window 105
The Breakpoints window local menu . 106

Set Options . 106
Add 106
Remove 107
Delete all . 107
Inspect . 107
Group 107

Groups 108
Add 108
Delete 109
Enable 109
Disable 109

The Breakpoint Options dialog box . . 109
Address . 110
Group ID 110
Global 110
Disabled 110
Conditions and Actions 111
Change 111
Add 111
Delete 111

The Conditions and Actions dialog
box 111

The condition radio buttons 112

Always 112
Changed memory 112
Expression true 112
Hardware . 112

The action radio buttons 113
Break 113
Execute . 113
Log 113
Enable group 113
Disable group 113

Setting conditions and actions 114
Condition Expression 114
Action Expression 115
Pass count . 115

Customizing breakpoints 116
Simple breakpoints 116
Global breakpoints 116
Changed memory breakpoints 117
Conditional expressions 118

Scope of breakpoint expressions . . 118
Hardware breakpoints 118
Logging variable values 119
Breakpoints and templates 119

Breakpoints on class templates 119
Breakpoints on function templates . 120
Breakpoints on template class
instances and objects 120

The Log window . 120
The Log window local menu 121

Open Log File 121
Close Log File 122
Logging 122
Add Comment 122
Erase Log . 122
Display Windows Info 122

Chapter 8 Examining files 123
Examining program source files 123

The Module window 124
The Module window local menu 125

Inspect . 125
Watch 125
Module 126
File 126

iv

Previous . 126
Line 126
Search 126
Next 127
Origin 127
Goto 127

Examining other disk files 127
The File window 127
The File window local menu 128

Goto 129
Search 129
Next 130
Display As . 130
File 130

Chapter 9 Expressions 131
Choosing the language for expression
evaluation . 132
Code addresses, data addresses, and line
numbers . 132
Accessing symbols outside the current
scope 133

Scope override syntax 134
Overriding scope in C, C++, and
assembler programs 134

Scope override tips 136
Overriding scope in Pascal
programs . 137

Scope override tips 138
Scope and DLLs 138

Implied scope for expression
evaluation . 139

Byte lists . 139
C expressions . 140

C symbols . 140
C register pseudovariables 140
C constants and number formats 142
Escape sequences 142
C operator precedence 143
Executing C functions in your pro-
gram 144
C expressions with side effects 144
C reserved words and type
conversion . 145

Assembler expressions
Assembler symbols
Assembler constants
Assembler operators . : : : : : : : : : : : : : :

Format control

Chapter 1 O Object-oriented

146
146
146
147
147

debugging 149
The Hierarchy window i 49

The Class List pane 150
The Class List pane local menu . . . 150

Inspect 150
Tree 151

The Hierarchy Tree pane 151
The Hierarchy Tree pane local
menu(s) . 151

The Parent Tree pane 151
The Parent Tree pane local menu . . 152

Class Inspector windows 152
The class Inspector window local
menus 153

The Data Member (top) pane 153
Inspect 153
Hierarchy 153
Show Inherited 153

The Member Function (bottom)
pane 154

Inspect 154
Hierarchy . 154
Show Inherited 154

Object Inspector windows 154
The object Inspector window local
menus 155

Range 155
Change 155
Methods . 155
Show Inherited 156
Inspect . 156
Descend . 156
New Expression 156
Type Cast . 156
Hierarchy . 156

The middle and bottom panes 156

v

Chapter 11 Using Windows debugging
features 157

Windows features 157
Logging window messages 158

Selecting a window for a standard
Windows application 158

Adding a window selection for a
standard Windows aoolication 159

Selecting a window for ·a~ .
ObjectWindows application 159

Obtaining a window handle 159
Specifying a window with
ObjectWindows support
enabled . 160
Adding a window with
ObjectWindows support
enabled 161

Deleting a window selection 162
Specifying a message class and
action 162

Adding a message class 162
Deleting a message class 164
Window message tips 165

Viewing messages 165
Obtaining memory and module lists. 166

Listing the contents of the global
heap 166
Listing the contents of the local
heap 168
Obtaining a list of modules 168

Debugging dynamic link libraries
(DLLs) 169

Using the Load Modules or DLLs
dialog box 170

Changing source modules 170
Working with DLLs and
programs 171

Adding a DLL to the DLLs &
Programs list 172
Setting debug options in a DLL ... 173
Controlling TDW's loading of DLL
symbol tables 173
Debugging DLL startup code 173

Converting memory handles to
addresses . 175

Chapter 12 Assembler-level
debugging 177

When source debugging isn't enough . . 177
The CPU window 178
The Code pane . 180

The disassembler 180
The Register and Flags panes 181
The Selector pane 181

The Selector pane local menu 182
Selector . 182
Examine . 182

The Data pane . 183
The Stack pane . 183
The Dump window 184
The Registers window 184

Chapter 13 Command reference 185
Hot keys . 185
Commands from the menu bar 187

The = (System) menu 187
The File menu . 187
The Edit menu . 188
The View menu 188
The Run menu . 189
The Breakpoints menu 189
The Data menu 189
The Options menu 189
The Window menu 190
The Help Menu 190

The local menu commands 190
Breakpoints window 191
The CPU window menus 191

Code pane . 191
Selector pane 192
Data pane . 192
Flags pane . 193
Register pane 193
Stack pane 193

Dump window 194
The Execution History window
menus 194

vi

Instructions pane 194
File window 194
Log window menu 194
Module window 195
Windows Messages window 195

Window Selection pane 195
Message Class pane 196
Messages pane 196

Clipboard window 196
Numeric Processor window 197

Register pane 197
Status pane 197
Control pane 197

Hierarchy window 197
Class pane . 197
Hierarchy Tree pane 198
Parent Tree pane 198

Registers window menu 198
Stack window 198
Variables window 198

Global Symbol pane 198
Local Symbol pane . ; 199

Watches window 199
Inspector window 200
Class Inspector window 200
Object Inspector window 200

Text panes 201
List panes . 202
Commands in input and history list
boxes 202
Window movement commands 203
Wildcard search templates 204
Complete menu tree 204

Chapter 14 Debugging a standard C
application 207

When things don't work ... ~ 207
Debugging style 208

Run the whole thing 209
Incremental testing 209

Types of bugs . 209
General bugs . 210

Hidden effects 210
Assuming initialized data 210

Not cleaning up 210
Fencepost errors 211

C-specific bugs 211
Using uninitialized automatic
variables . 211
Confusing= and== 212
Confusing operator precedence ... 212
Bad pointer arithmetic 212
Unexpected sign extension 213
Unexpected truncation 213
Misplaced semicolons 213
Macros with side effects 214
Repeated autovariable names 214
Misuse ofautovariables 214
Undefined function return value .. 214
Misuse of break keyword 215
Code has no effect 215

Accuracy testing 215
Testing boundary conditions 216
Invalid data input 216
Empty data input 216

Debugging as part of program design . . 216
The sample debugging session 217

Looking for errors 217
Deciding your plan of attack 218
Starting Turbo Debugger 218
Inspecting . 219
Breakpoints . 219
The Watches window 220
The Evaluate/Modify dialog box 220
Eureka! . 221

Chapter 15 Debugging an
ObjectWindows
application 223

About the program 223
The Color Scribble window type
definition . 224

ScribbleWindow 225
GetWindowClass 225
WMLButtonDown 226
WMLButtonUp 226

vii

WMRButtonDown 226
WMMouseMove 226
The pen-color routines 226

Creating the application 226
Debugging the program 227

Finding the first bug 227
Finding the function that called
Windows . 227
Debugging wMLButtonDown 228
Debugging MoveTo 228
Fixing the bug 229
Testing the fix 229

Finding the pen color bug 230
Setting a window message
breakpoint . 230

Setting a window message
breakpoint with a handle 231
Setting a window message
breakpoint with a window
object 232

Inspecting wParam 233
Testing the fix 234

Finding the off-screen drawing bug 234
Logging the window messages . . . 234
Discovering the bug 234
Fixing the bug 235
Testing the fix 236

Finding the erase-screen bug 236
Analyzing the cause of the bug . . . 237
Fixing the bug 238
Testing the fix 238

Appendix A Summary of command-line
options 239

Appendix B Error and information
messages 241

Dialog box messages 241
Error messages . 248

Fatal errors . 248
Other error messages 249

Index 263

T A B

2.1: What goes in a dialog box 21
2.2: Clipboard item types 38
2.3: Clipboard local menu commands 39
11.l: Windows message classes 163
11.2: Fonnat of a global heap list 167
11.3: Format of a local heap list 168
11.4: Format of a Windows module list .. 169
11.5: DLLs & Programs list dialog box

controls 171

viii

L E s

13.1: The function key and hot key
commands 186

13.2: Text pane key commands 201
13.3: List pane key commands 202
13.4: Dialog box key commands 203
13.5: Window movement key

commands 203
A.1: TOW command-line options 239

F G u

2.1: Glabal and local menus _ _ - .. 23
2.2: A history list in an input box 24
2.3: The active window has a double

outline 32
2.4: A typical window 32
2.5: The Pick dialog box 37
2.6: The Clipboard window 38
2.7: The normal status line 42
2.8: The status line with Alt pressed 42
2.9: The status line with Ctr/ pressed42
3.1: The startup screen showing

TDDEMO 44
3.2: The menu bar 45
3.3: The status line46
3.4: The Module and Watches windows,

tiled 47
3.5: Program stops on return from

function showargs 49
3.6: A breakpoint at line 44 50
3.7: AC variable in the Watches window .51
3.8: An Inspector window 52
3.9: Inspecting a structure 53
3.10: The Change dialog box 54
3.11: The Evaluate/Modify dialog box ... 55
4.1: The Display Options dialog box 65
4.2: The Save Options dialog box 67
5.1: The Variables window 70
5.2: The Local Display dialog box 73
5.3: The Stack window 74
5.4: The Get Info text box 75
5.5: The Execution History window 82
5.6: The Enter Program Name to Load

dialog box 85
6.1: The Evaluate/Modify dialog box 89
6.2: The Watches window 92
6.3: A C scalar Inspector window 95

ix

R E s

6.4: A C pointer Inspector window 96
6.5: A C structure or union Inspector

window 97
6.6: A C array Inspector window 97
6.7: A C function Inspector window 98
6.8: An assembler scalar Inspector

window 98
6.9: An assembler pointer Inspector

window 99
6.10: An assembler array Inspector

window 100
6.11: An assembler structure Inspector

window 100
7.1: The Breakpoints window 106
7.2: The Edit Breakpoint Groups dialog

box 108
7.3: The Add Group dialog box 108
7.4: The Breakpoint Options dialog box . 110
7.5: The Conditions and Actions dialog

box 111
7.6: The Log window 120
8.1: The Module window 124
8.2: The File window 128
8.3: The File window showing hex data . 128
10.1: The Hierarchy window 149
10.2: A class Inspector window 152
10.3: An object Inspector window 155
11.1: The Windows Messages window for

a standard Windows application ... 158
11.2: The Add Window dialog box for a

standard Windows application 159
11.3: The Windows Messages window with

ObjectWindows support enabled .. 161
11.4: The Add Window dialog box with

ObjectWindows support enabled .. 162
11.5: The Set Message Filter dialog box .. 163

11.6: The Windows Information dialog 12.1: The CPU window 178
box 166 12.2: The Dump window 184

11.7: The Load Modules or DLLs dialog 12.3: The Registers window 184
box 170 13.1: The Turbo Debugger menu tree ... 205

x

N T R 0 D u c T 0 N

Turbo Debugger for Windows (TOW) is a state-of-the-art, source­
level debugger designed to work with Turbo C++ for Windows.

Multiple, overlapping windows, a combination of pull-down and
pop-up menus, and mouse support provide a fast, interactive
environment. An online context-sensitive help system provides
you with help during all phases of operation.

Here are just some of TDW's features:

• debugging of Microsoft Windows applications

•full C, C++, and assembler expression evaluation

•reconfigurable screen layout

•assembler /CPU access when needed

• powerful breakpoint and logging facility

•back tracing

•full support for object-oriented programming in Turbo C++ for
Windows

•operates in character mode

New features and changes for version 3.0

Introduction

For version 3.0, TOW has the following enhancement:

• The Clipboard lets you copy from windows and paste either
into text entry boxes on dialog boxes or into other windows.
This feature is described on page 36.

•There are new breakpoint features (see Chapter 7) that let you

• set multiple conditions and actions on a breakpoint

•set and remove breakpoints in groups

•set and remove breakpoints on all functions or procedures in
a module

• set and remove breakpoints on all methods in an object type
or all member functions in a class

• C++ templates and nested classes are supported (see page 119).

•International sort orders are supported through the Windows
Language setting. You turn this feature on by using the configu­
ration program TDWINST.EXE (see the file TDWINST.DOC).

• The CPU window has a new pane that shows protected mode
selectors and lets you look at the contents of memory locations
referenced by these selectors (see page 181).

•The device driver TDDEBUG.386 provides support for Ctrl-Alt­
SysRq program. In addition, this device driver supports the
hardware debug registers of the Intel 83086 processor (and
higher). See page 12 for TDDEBUG.386 installation information.
See page 118 and the online file HDWDEBUG.TDW for
information on hardware debugging.

• Debugging of DLLs is faster now that TOW simultaneously
loads both the application's symbol table and the symbol table
of any DLL you explicitly load or whose code you step into (see
page 138).

Hardware and software requirements

2

See page 5 to find out how
to contact Borland.

TOW has the same hardware and system software requirements
as Turbo C++ for Windows.

TOW supports Super VGA video through the use of a DLL named
TDVIDEO.DLL. A number of DLLs are distributed with TOW
that support different Super VGA cards (described in the
README file on your distribution diskettes). To use one of these
DLLs with TOW, copy it to the same directory that TOW.EXE is in
and name it TDVIDEO.DLL.

If you can't find a DLL that matches your Super VGA video
adapter, contact Borland Technical Support.

To use TOW, you must have Turbo C++ for Windows. You must
already have compiled your source code into an executable (.EXE
file) with full debugging information turned on.

Turbo Debugger for Windows User's Guide

¢ When you run TOW, you'll need both the .EXE file and the
original source files. TOW searches for source files first in the
directory where the compiler found them when it compiled,
second in the directory specified in the Options I Path for Source
command, third in the current directory, and fourth in the
directory the .EXE file is in.

A note on terminology

For convenience and brevity, we use two terms in this manual in
slightly more generic ways than usual. These terms are module
and argument.

Module Refers to what is usually called a module in C++ and assembler,
but also to what is called a unit in Pascal.

Argument Is used interchangeably with parameter in this manual. This
applies to references to command-line arguments (or parameters),
as well as to arguments (or parameters) passed to functions.

What's in the manual

Introduction

Here is a brief synopsis of the chapters and appendixes in this
manual:

Chapter 1: Getting started describes the contents of the distri­
bution disk and tells you how to load TOW files into your system.
It also gives you advice on which chapter to go to next, depending
on your level of expertise.

Chapter 2: TOW basics explains the TOW environment, menus,
and windows, and shows you how to respond to prompts and
error messages.

Chapter 3: A quick example leads you through a sample session­
using a C program-that demonstrates many of the powerful
capabilities of TOW.

Chapter 4: Starting TOW shows how to run the debugger from the
command line, when to use command-line options, and how to
record commonly used settings in configuration files.

3

4

Chapter 5: Controlling program execution demonstrates the
various ways of starting and stopping your program, as well as
how to restart a session or replay the last session.

Chapter 6: Examining and modifying data explains the unique
capabilities TOW has for examining and changing data inside
your program.

Chapter 7: Breakpoints introduces the concept of actions, and
how they encompass the behavior of what are sometimes referred
to as breakpoints, watchpoints, and tracepoints. Both conditional
and unconditional actions are explained, as well as the various
things that can happen when an action is triggered.

Chapter 8: Examining files describes how to examine program
source files, as well as how to examine arbitrary disk files, either
as text or binary data.

Chapter 9: Expressions describes the syntax of C and assembler
expressions accepted by the debugger, as well as the format
control characters used to modify how an expression's value is
displayed.

Chapter 10 Object-oriented debugging explains the debugger's
special features that let you examine objects in Turbo C++ for
Windows.

Chapter 11: Using Windows debugging features describes how to
use the TOW features that support debugging of Windows
applications.

Chapter 12: Assembler-level debugging describes the CPU
window. Additional information about this window and about
assembler-level debugging is in the file ASMOEBUG.TOW.

Chapter 13: Command reference is a complete listing of all main
menu commands and all local menu commands for each window
type.

Chapter 14: Debugging a standard C application is an intro­
duction to strategies for effective debugging of your programs.

Chapter 15: Debugging an ObjectWindows application leads you
through a debugging session on a sample Windows program
written using the ObjectWindows class library.

Appendix A: Summary of command-line options summarizes all
the command-line options described in Chapter 4.

Turbo Debugger for Windows User's Guide

Appendix B: Error and information messages lists all the TOW
prompts and error messages that can occur, with suggestions on
how to respond to them.

How to contact Borland

Resources in your

Boriand offers a variety of services to answer your qucstior.s
about this product. Be sure to send in the registration card;
registered owners are entitled to technical support and may
receive information on upgrades and supplementary products.

package This product contains many resources to help you:

Borland resources

800-822-4269 (voice)
TechFax

408-439-9096 (modem)
File Download BBS

2400Baud

Introduction

• The manuals provide information on every aspect of the
program. Use them as your main information source.

•While using the program, you can press Ft for help.

• Some common questions are answered in the file
HELPME!.TDW, located in the DOC subdirectory of your
language compiler directory, and the README file, located in
the main language compiler directory.

Borland Technical Support publishes technical information sheets
on a variety of topics and is available to answer your questions.

TechFax is a 24-hour automated service that sends free technical
information to your fax machine. You can use your touch-tone
phone to request up to three documents per call.

The Borland File Download BBS has sample files, applications,
and technical information you can download with your modem.
No special setup is required.

Subscribers to the CompuServe, GEnie, or BIX information
services can receive technical support by modem. Use the
commands in the following table to contact Borland while
accessing an information service.

5

Online information services

408-438-5300 (voice)
Technical Support

6 a.m. to 5 p.m. PST

408-438-5300 (voice)
Customer Service

7 a.m. to 5 p.m. PST

Service Command

CompuServe GO BORLAND
BIX JOIN BORLAND
GEnie BORLAND

Address electronic messages to Sysop or All. Don't include your
serial number; messages are in public view unless sent by a
service's private mail system. Include as much information on the
question as possible; the support staff will reply to the message
within one working day.

Borland Technical Support is available weekdays from 6:00 a.m.
to 5:00 p.m. Pacific time to answer any technical questions you
have about Borland products. Please call from a telephone near
your computer, and have the program running. Keep the
following information handy to help process your call:

•product name, serial number, and version number

•the brand and model of any hardware in your system

•operating system and version number (use the DOS command
VER to find the version number)

•contents of your AUTOEXEC.BAT and CONFIG.SYS files
(located in the root directory (\) of your computer's boot disk)

•the contents of your WIN.INI and SYSTEM.IN! files (located in
your Windows directory) for TDW questions

•a daytime phone number where you can be contacted

•if the call concerns a problem, the steps to reproduce the
problem

Borland Customer Service is available weekdays from 7:00 a.m. to
5:00 p.m. Pacific Time to answer any nontechnical questions you
have about Borland products, including pricing information,
upgrades, and order status.

Recommended reading

6

The manuals accompanying your language compiler contain
excellent information on programming Windows applications.
The Help system also has a complete Windows API reference.

Turbo Debugger for Windows User's Guide

Introduction

In addition, the following books on programming for Windows
might be helpful to you, although they don't take into account the
ObjectWindows library or Resource Workshop, both of which
make Windows programming much easier than these books
indicate:

Microsoft staff. Microsoft Windows Software Development Kit, Guide
to Programming, Microsoft Corporation. (Redmond, WA: 1990).

~1icrosoft staff "Aicrosoft Wind07..t'S Softu1are De!1elapment Kit
Reference, Vols. 1and2, Microsoft Corporation. (Redmond, WA:
1990).

Microsoft staff. Microsoft Windows Software Development Kit, Tools,
Microsoft Corporation. (Redmond, WA: 1990).

Petzold, Charles. Programming Windows, Microsoft Press.
(Redmond, WA: 1990).

7

__ , _____ ----

8 Turbo Debugger for Windows User's Guide

c H

See the FILELIST.DOC file for
information about the online
files that document subjects
not covered in this manual.

A p T E R

l

Getting started

Turbo Debugger for Windows is part of the Turbo C++ for
Windows package, which consists of a set of distribution disks,
the Turbo Debugger for Windows User's Guide (this manual), and the
Turbo C++ for Windows manuals. The distribution disks contain
all the programs, files, and utilities needed to debug programs
written in Turbo C ++ for Windows.

The Turbo Debugger for Windows User's Guide provides a subject­
by-subject introduction of TDW's capabilities and a complete
command reference.

The distribution disks

Online text files

Chapter 7, Getting started

When you install Turbo C++ for Windows on your system, files
from the distribution disks, i)1cluding the TDW files, are copied to
your hard disk. Just run INST ALL.EXE, the easy-to-use installa­
tion program on your distribution disks.

For a list of the files on the distribution disks, see the
FILELIST.DOC file on the installation disk.

There are a number of online files the installation program puts
on your hard disk. The three you should definitely look at are

9

The README file
You can use the Turbo C++

for Windows editor or the
Windows Notepad program

to access the README file.

The MANUAL.TOW

README, FILELIST.DOC, and MANUAL.TDW. The first two are
accessible on the disk labeled "Installation Disk," and are also
copied to your main language directory. The other is in the DOC
subdirectory of the main language directory, along with files
describing TDW features.

Additional files that provide information not found in the manual
are UTILS.TDW (descriptions of utilities), HDWDEBUG.TDW
(hardware debugging), ASMDEBUG.TDW (debugging of
Assembler programs), and TDWINST.TDW (configuring TDW
using TDWINST.TDW).

It's very important that you take the time to look at the README
file before you do anything else with TDW. This file contains last­
minute information that might not be in the manual.

file After installation, the\ TCW\DOC directory on your hard disk
also contains a file called MANUAL.TDW that indicates
corrections and additions to the TDW manual. Be sure to consult
this file before making extensive use of the manual.

The HELPME!.TDW
file

10

The
ASMDEBUG.TDW

file

Your installation disk also contains a file called HELPME!.TDW,
which contains answers to problems that users commonly run
into. Consult it if you find yourself having difficulties. The
HELPME!.TDW file discusses:

• the syntactic and parsing differences between TDW and Turbo
C ++ for Windows

•debugging multi-language programs with TDW

• common questions about using TDW with Windows

This file contains information on debugging Turbo Assembler
programs. You might also find the information in this file helpful
for debugging your inline assembler code.

Turbo Debugger for Windows User's Guide

The UTILS.TDW file

Use TDSTRIP to prepare
.COM files for debugging.

This file describes the command-line utilities included with TDW.
These utility programs are TDWINST, TDSTRIP, and TDUMP.

Here's a brief description of each of the TDW utilities:

• TDWINST.EXE lets you customize TDW. Using this utility, you
can permanently set such things as the display options and
c:::creen colorc:::

• TDSTRIP.EXE lets you strip the debugging information (the
symbol table) from your programs without relinking. You can
perform this operation with a .COM file and save the stripped
symbol table information in a .TDS file to use in debugging the
.COM file.

A typical use of this utility is to create a .TDS file to use in
debugging a .COM file. Because a .COM file you produce with
a compiler has no symbol table information in it, you can debug
it only by doing the following:

Compile the source code, with debugging information turned
on, into a single-segment .EXE file, then run TDSTRIP on the
.EXE. If the .EXE can be converted to a .COM file, TDSTRIP
produces a .TDS file and a .COM file. You can now debug the
.COM file by using the .TDS file with it.

• TDUMP.EXE displays the contents of object modules and .EXE
files in a readable format.

¢ For a list of all the command-line options available for the TDW
utility programs TDSTRIP.EXE and TDUMP.EXE, just type the
program name and press Enter. For example, to see the command­
line options for TDUMP.EXE, you'd type

Chapter 7, Getting started

TD UMP

To see the command-line options for TDWINST.EXE, type the
program name and use the -? or -h option, then press Enter. For
example, you would type

TDWINST -?

11

Installing TDW

12

Installing
TDDEBUG.386

The INSTALL.EXE program for Turbo C++ for Windows also
installs TDW. It creates a program group in the Windows
program manager and creates icons for Turbo C++ for Windows
and TDW. See the README file for general installation
information.

There's a file on your installation disks, TDDEBUG.386, that
provides the same functionality as the Windows SDK file
WINDEBUG.386. In addition, it provides support for the
hardware debugging registers of Intel 80386 (and higher)
processors.

The installation program should copy this file to your hard disk
and alter your Windows SYSTEM.IN! file so that Windows loads
TDDEBUG.386 instead of WINDEBUG.386. If the installation
program can't complete this task for you, it tells you. You then
have to do it by hand, as follows:

1. The installation program will have copied TDDEBUG.386
from the installation disks to your hard disk. The standard
directory for this file is C: \ TCW\ BIN. If you move the file to
another directory, substitute that directory in the instructions.

2. With an editor, open the Windows SYSTEM.IN! file, search for
[386enh], and add the following line to the 386enh section:

device=c:\tcw\bin\tddebug.386

3. If there's a line in the 386enh section that loads
WINDEBUG.386, either comment the line out with a
semicolon or delete it altogether. (You can't have both
TDDEBUG.386 and WINDEBUG.386 loaded at the same
time.)

For example, if you load WINDEBUG.386 from the C: \
WINDOWS directory, the commented-out line would be

;device=c:\windows\windebug.386

Turbo Debugger for Windows User's Guide

Hardware debugging

Where to now?

Programmers
learning Turbo

C++

Turbo C++ pros,
but Turbo

Debugger
novices

Chapter 7, Getting started

You can use the debugging registers of the Intel 80386 (and
higher) processor to debug a Windows program. To use these
registers, you must load TDDEBUG.386 when you start Windows
(see the previous section).

Sc:'<:' the onlin<:' doc:- filP HOWDFBUC.TOW for more information
on debugging Windows programs using hardware debugging
registers.

Now you can start learning about TOW. Since this User's Guide is
written for three types of users, different chapters of the manual
might appeal to you. The following road map will guide you.

If you're just starting to learn C or C++, you want to be able to
create small programs using it before you learn about the de­
bugger. After you have gained a working knowledge of the
language, work your way through Chapter 3, "A quick example,"
for a speedy tour of the major functions of TOW. There you'll
learn enough about the features you need to debug your first pro­
gram; you'll find out about the debugger's more sophisticated
capabilities in later chapters.

If you're an experienced Turbo C++ programmer but you're
unfamiliar with Turbo Debugger, you can learn about the features
of the TOW environment by reading Chapter 2, "TOW basics." If
it suits your style, you can then work through the tutorial in
Chapter 3, or, if you prefer, move straight on to Chapter 4,
"Starting TOW." For a complete rundown of all commands, turn
to Chapter 13, "Command reference."

13

Programmers
experienced with
Turbo Debugger

14

If you've used Turbo Debugger in the past, you're probably
already familiar with TDW's standard features. In that case, you
can go directly to Chapter 11, "Using Windows debugging
features," which discusses the features of TDW that support
Windows debugging. Another chapter you'll find helpful is
Chapter 15, "Debugging an ObjectWindows application," which
takes you through a debugging session on a Windows application
written using the ObjectWindows library.

Turbo Debugger for Windows User's Guide

c H A p T E R

2

TOW basics

Debugging is the process of finding and correcting errors (''bugs")
in your programs. It's not unusual to spend more time on finding
and fixing bugs in your program than on writing the program in
the first place. Debugging is not an exact science; the best debug­
ging tool you have is your own "feel" for where a program has
gone wrong. Nonetheless, you can always profit from a system­
atic method of debugging.

The debugging process can be broadly divided into four steps:

1. realizing you have an error

2. finding where the error is

3. finding the cause of the error

4. fixing the error

Is there a bug? The first step can be really obvious. The computer freezes up (or
hangs) whenever you run it. Or perhaps it crashes in a shower of
meaningless characters. Sometimes, however, the presence of a
bug is not so obvious. The program might work fine until you
enter a certain number (like 0 or a negative number) or until you
examine the output closely. Only then do you notice that the
result is off by a factor of .2 or that the middle initials in a list of
names are wrong.

Chapter 2, TOW basics 15

Where is it?

What is it?

Fixing it

See Chapter 14 for a more
detailed discussion of the

debugging process.

The second step is sometimes the hardest: isolating where the
error occurs. Let's face it, you simply can't keep the entire pro­
gram in your head at one time (unless it's a very small program
indeed). Your best approach is to divide and conquer-break up
the program into parts and debug them separately. Structured
programming is perfect for this type of debugging.

The third step, finding the cause of the error, is probably the
second-hardest part of debugging. Once you've discovered where
the bug is, it's usually somewhat easier to find out why the pro­
gram is misbehaving. For example, if you've determined the error
is in a procedure called PrintNames, you have only to examine the
lines of that procedure instead of the entire program. Even so, the
error can be elusive and you might need to experiment a bit
before you succeed in tracking it down.

The final step is fixing the error. Armed with your knowledge of
the program language and knowing where the error is, you can
squash the bug. Now you run the program again, wait for the
next error to show up, and start the debugging process again.

Many times this four-step process is accomplished when you are
writing the program itself. Syntax errors, for example, prevent
your programs from compiling until they're corrected. Turbo C++
for Windows has a built-in syntax checker that informs you of
these errors and lets you fix them on the spot.

But other errors are more insidious and subtle. They lie in wait
until you enter a negative number, or they're so elusive you're
stymied. That's where TOW comes in.

What TDW can do for you

16

With TOW, you have access to a much more powerful debugger
than could exist in your language compiler.

You can use TOW with any program written in Turbo C++ for
Windows. TOW runs in character mode and allows you to switch
to your application running under Windows.

Turbo Debugger for Windows User's Guide

Chapter 2, TOW basics

TDW helps with the two hardest parts of the debugging process:
finding where the error is and finding the cause of the error. It
does this by slowing down program execution so you can
examine the state of the program at any given spot. You can even
test new values in variables to see how they affect your program.
With TDW, you can perform tracing, back tracing, stepping, viewing,
inspecting, changing, and watching.

Tracing

Back tracing

Stepping

Viewing

Inspecting

Changing

Watching

Executing your program one lme at a time.

Stepping backward through your executed code,
reversing the execution as you go.

Executing your program one line at a time, but
stepping over any routines or function calls. If
you're sure your routines and functions are
error-free, stepping over them speeds up
debugging.

Opening a special TDW window to see the state
of your program from various perspectives:
variables, their values, breakpoints, the contents
of the stack, a log, a data file, a source file, CPU
code, memory, registers, numeric coprocessor
information, object or class hierarchies, execution
history, or program output.

Delving deeper into the workings of your pro­
gram by examining the contents of complicated
data structures like arrays.

Replacing the current value of a variable, either
globally or locally, with a value you specify.

Isolating program variables and keeping track of
their changing values as the program runs.

You can use these powerful tools to dissect your program into
discrete chunks, confirming that one chunk works before moving
to the next. In this way, you can burrow through the program, no
matter how large or complicated, until you find where that bug is
hiding. Maybe you'll find there's a function that inadvertently
reassigns a value to a variable, or maybe the program gets stuck
in an endless loop, or maybe it gets pulled into an unfortunate
recursion. Whatever the problem, TOW helps you find where it is
and what's at fault.

17

What TDW won't
do

How TDW does it

TDW lets you debug object-oriented C++ programs. It is smart
about objects, and it correctly handles late binding of virtual
methods so that it always executes and displays the correct code.

With all the features built into TDW, you might be thinking that
it's got it all. In truth, there are at least three things TDW won't do
for you.

• TDW cannot recompile your program for you. You need Turbo
C++ for Windows to do that.

• TDW doesn't run in graphics mode under Windows, but rather
runs in character mode.

• TDW does not take the place of thinking. When you're
debugging a program, your greatest asset is using your head.
TDW is a powerful tool, but if you use it mindlessly, it's
unlikely to save you time or effort.

Here's the really good news: TDW gives you all this power and
sophistication, and at the same time it's easy-even intuitive-to
use.

TDW accomplishes this blend of power and ease by offering an
integrated debugging environment. The next section examines the
advantages of this environment.

The TOW advantage

18

Once you start using TDW, we think you'll be unable to get along
without it. TDW has been especially designed to be as easy and
convenient as possible. To this end, TDW offers you these
features:

• Convenient and logical global menus.

• Context-sensitive local menus throughout the product, which
practically do away with memorizing and typing commands.

• Dialog boxes in which you can choose, set, and toggle options
and type in information.

Turbo Debugger for Windows User's Guide

Menus and
dialog boxes

•When you need to type, TDW keeps a history list of the text
you've typed in similar situations. You can choose text from the
history list, edit the text, or type in new text.

•Full macro control to speed up series of commands and
keystrokes.

• Copying and pasting between windows and dialog boxes.

•Convenient, complete window management.

•Mouse support.

•Access to several types of online help.

• Reverse execution.

•Single and dual monitor support.

The rest of this chapter discusses these features of the TDW
environment.

As with many Borland products, TDW has a convenient global
menu system accessible from a menu bar running along the top of
the screen. This menu system is always available except when a
dialog box is active.

A pull-down menu is available for each item on the menu bar.
Through the pull-down menus, you can

•execute a command.

•open a pop-up menu. Pop-up menus appear when you choose a
menu item that is followed by a menu icon (Ii>).

•open a dialog box. Dialog boxes appear when you choose a
menu item that is followed by a dialog box icon (...).

Using the menus There are four ways you can open the menus on the menu bar:

Getting in •Press F10, use~ or (----to go to the desired menu, and press
Enter.

•Press F10, then press the first letter of the menu name (Spacebar,
F, E, V, R, B, 0, 0, W, H).

•Press Alt plus the first letter of any menu bar command
(Spacebar, F, E, V, R, B, D, 0, W, H). For example, wherever you are
in the system, Alt-F takes you to the File menu. The = (System)
menu opens with Alt-Spacebar.

iii.&, • Click the menu bar command with the mouse.

Chapter 2, TOW basics 19

Once you are in the global menu system, here is how you move
around in it:

Getting around •Use~ and f- to move from one pull-down menu to another.
(For example, when you are in the File menu, pressing ~ takes
you to the Edit menu.)

•Use i and .J, to scroll through the commands in a specific menu.

•Use Home and End to go to the first and last menu items,
respectively.

• Highlight a menu command and press Enter to move to a
lower-level (pop-up) menu or dialog box.

¥ •Click the mouse on a command to move to a lower-level (pop­
up) menu or dialog box.

This is how you get out of a menu or the menu system:

Getting out •Press Esc to exit a lower-level menu and return to the previous
menu.

•Press Esc in a pull-down menu to leave the menu system and
return to the active window.

•Press F10 in any menu (but not in a dialog box) to exit the menu.

¥ •Click a window with the mouse to leave the menu system and
go to that window.

Some menu commands have a shortcut hot key that you press to
execute them. The hot key appears in the menu to the right of
these commands.

Figure 13.1 in Chapter 13 shows the complete pull-down menu
tree for TDW. Table 13.1 on page 186 lists all the hot keys. For a
summary of all the commands available in TDW, see Chapter 13.

Dialog boxes Many of TDW's command options are available to you in dialog
boxes. A dialog box contains one or more of the following items:

20 Turbo Debugger for Windows User's Guide

Table 2.1
What goes in a dialog box

The hot key for the OK button
is Alt-K.

,_

[X]

()
(.)
()

THIS FI LE. EXE
lllfilllllW!:tW

TOTHERFL.EXE

Item

Buttons

Check boxes

Radio buttons

Input boxes

List boxes

What it looks like, what it does

Buttons are "shadowed" text (on monochrome systems
they appear in reverse video). If you choose a button,
TDW carries out the related action immediately. Get
out of a dialog box by pressing the button marked OK
to confirm your choices, or Cancel to cancel them.
Dialog boxes also contain a Help button that brings up
onlme help.

A check box is an on/off toggle. Choose it to turn the
option on or off. When a check box option is turned on,
an X appears in brackets: [X) .

Radio buttons offer a set of toggles, but the choices are
mutually exclusive: you can choose only one radio
button in a set at a time. When you do, a bullet appears
between the parentheses, as follows: (•) .

An input box prompts you to type in a string (the name
of a file, for example). An input box often has a history
list associated with it (see the section "History lessons"
for more on these).

A list box contains a list of items from which you can
choose (for example, a list of possible files to open).

You navigate around dialog boxes by pressing Tab and Shift-Tab.
Within sets of radio buttons, use the arrow keys to change the
settings. To choose a button, tab to it and press Enter.

M, If you have a mouse, it is even easier to get around in a dialog
box. Just click the item you want to choose. To cancel the dialog
box, click the close box in the upper left corner.

¢ You can also choose items in a dialog box by pressing their hot
key, the highlighted letter in each command.

Knowing where
you are In addition to the convenient system of Borland pull-down

menus, the TOW advantage consists of a powerful feature that
lessens confusion by actually reducing the number of menus.

Chapter 2, TOW basics

To understand this feature, you must realize that first and fore­
most, TOW is context-sensitive. That means it keeps tabs on

21

22

exactly which window you have open, what text is selected, and
which subdivision, or pane, of the window your cursor is in. In
other words, it knows precisely what you're looking at and where
the cursor is when you choose a command. And it uses this
information when it responds. Let's take an example to illustrate.

Suppose your program has a line like this:

MyCounter[TheGrade] += MyCounter[TheGrade];

As you'll discover when you work with TOW, getting information
on data structures is easy; all you do is press Ctr/-/, the hot key that
opens an Inspector window, to inspect it. When the cursor is at
MyCounter, TOW shows you information on the contents of the
entire array variable. But if you were to select (that is, highlight)
the whole array name and the index and then press Ctr/-/, TOW
knows that you want to inspect one member and shows you only
that member.

You can tunnel down to finer and finer program detail in this
way. Pressing Ctr/-/ on a highlighted member while you're already
inspecting an array gives you a look at that member.

This sort of context-sensitivity makes TOW extremely easy to use.
It saves you the trouble of memorizing and typing complicated
strings of menu commands or arcane command-line switches.
You simply move to the item you want to examine (or select it
using the Ins key or drag over it with the mouse), and then invoke
the command (Ctr/-/ for Inspect, for example).

This context-sensitivity, which makes life easy for the user, also
makes the task of documenting commands difficult. This is
because Ctr/-/, for example, in TOW does not have a single result;
instead, the outcome of a command depends on where your cursor is or
what text is selected.

Local menus Another aspect of TOW's context-sensitivity is in its use of local
menus specific to different windows or panes within windows.

Local menus in TOW are tailored to the particular window or
pane you are in. It's important not to confuse them with global
menus. Here is a composite screen shot of both kinds of menus
(when you're actually working in TOW, however, you could
never have both types of menus showing at the same time):

Turbo Debugger for Windows User's Guide

Figure 2.1
Global and local menus

Compare the following two lists:

Global menus •Global menus are those that you access by pressing F10 and
using the arrow keys or typing the first letter of the menu name.

•The global menus are always available from the menu bar,
visible at the top of the screen.

•Their contents never change.

•Some of the menu commands have hot key shortcuts that are
available from any part of TOW.

Local menus •You call up a local menu by pressing Alt-F10 or by clicking the
right button on your mouse.

Chapter 2, TDW basics

•The placement and contents of the menu depends on which
window or pane you are in and where your cursor is.

• Contents can vary from one local menu to another. (Even so,
many of the local commands appear in almost all of the local
menus, so that there's a predictable core of commands from one
to another.) The results of like-named commands can be
different, however, depending on the context.

• Every command on a local menu has a hot key shortcut
consisting of Ctr/ plus the highlighted letter in the command.

• Because of this arrangement, a hot key, say Ctrl-S, might mean
one thing in one context but quite another in a different context.
(A core of commands, however, is still consistent across the
local menus. For example, the Goto command and the Search

23

History lessons

command always do the same thing, even when they are
invoked from different panes.)

From a user's standpoint, local menus are a great convenience. All
possible command choices relevant to the moment are laid out at
a glance. This prevents you from trying to choose inappropriate
commands and keeps the menus small and uncluttered.

Menus and context-sensitivity comprise just two aspects of the
convenient environment of TDW. Another habit-forming feature
is the history list.

Conforming to the philosophy that the user shouldn't have to
type more than absolutely necessary, TDW remembers whatever
you enter into input boxes and displays that text whenever you
call up the box again.

For example, to search for the function called MyPercentage, you
have to type in all or part of that word. Then suppose you want to
search for a variable called ReturnOnlnvestment. When you see the
dialog box this time, you'll notice that MyPercentage appears in
the input box. When you search for another text string, both pre­
viously entered strings appear in the input box. The list keeps
growing as you continue to use the Search command.

The search input box might look like this:

Figure 2.2
Ahistorylistinanlnputbox ll[!=Mo.u e: TDDEM. File: TDD~ .c

if! PROMPT
l=[tJ [~]=;i

24

/* program entry point
*/

~ int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevlnstance,
LPSTR lpszCmdLine, int nCmdShow)

unsigned int n 1 i nes, nwords, wordcount;
unsigned long totalcharacters;

InitWinCrt();
iilines = O;
nwords = O;
totalcharacters = O;
showargs(argc, argv);
while (readaline\) != O) {

wordcount = makei ntowords
nwords += wordcount;

•

I
I

Turbo Debugger for Windows User's Guide

The first item in a search list is
always the word the cursor is

on in the Module window.

Automatic name
completion

Warning!

Incremental
matching

Chapter 2, TOW basics

You can use this history list as a shortcut to typing by using the
arrow keys to select any previous entry then pressing Enter to start
the search. If you have a mouse, you can also use the scroll bar to
scroll to the entry you want. If you use an unaltered entry from
the history list, that entry is copied to the top of the list.

You can also edit entries (use the arrow keys to insert the cursor
in the highlighted text, then edit as usual, using Del or Backspace).
For exarr1ple, y·ot1. can select lv1yPe;centage arld change it to
HisPercentage, instead of typing in the entire text. If you start to
type a new item when an entry is highlighted, you will overwrite
the highlighted item.

A history list lists the last ten responses unless you've used
TOWINST to configure TOW otherwise. (The TOWINST program
is described in the file TOWINST.TOW.)

TOW keeps a separate history list for most input boxes. That way,
the text you enter to do a search does not clutter up the box for,
say, going to a particular label or line number.

Whenever you are prompted for text entry in an input box, you
can type in just part of a symbol name in your program, then
press Ctrl-N.

When the word READY ••• appears in the upper right corner of the
screen with three dots after it, it means the symbol table is being
sorted. Ctrl-Nwon't work until the three dots go away, indicating
that the symbol table is available for name completion.

• If you have typed enough of a name to uniquely identify it,
TOW simply fills in the rest of it.

•If the name you have typed so far is not the beginning of any
known symbol name, nothing happens.

•If what you have typed matches the beginning of more than
one symbol name, a list of matching names is presented for you
to pick the one you want.

TOW also lets you use incremental matching to find entries in a
dialog box list of file and directory names. Start typing the name
of the file or directory; if the file is available from the names at or
below the current position in the list box, the highlight bar moves

25

Making macros
Whenever you find yourself
repeating a series of steps,
say to yourself, "Shouldn't I
be using a macro for this?°

Window shopping

Windows from the View
menu

Breakpoints
Stack
Log
Watches
Variables
Module... F3
File ••.
CPU
Dump
Registers
Numeric processor
Execution history
Hierarchy
Windows messages
Clipboard
Another ~

See Chapter 7 for a
complete description of this

type of window and how
breakpoints work.

26

to the name as soon as you have typed enough characters to
identify it uniquely. Then all you have to do is choose the OK
button.

Macros are simply hot keys you define to perform a series of
commands and other keystrokes.

You can assign any series of TDW commands and keystrokes to a
single key, for playback whenever you want.

See page 64 in Chapter 4 for an explanation of how to define
macros.

TDW displays all information and data in menus (local and
global), dialog boxes (which you use to set options and enter
information), and windows. There are many types of windows; a
window's type depends on what sort of information it holds. You
open and close all windows using menu commands (or hot key
shortcuts for those commands). Most of TDW's windows come
from the View menu, which lists fifteen types of windows.
Another class of window, called the Inspector window, is opened
by choosing either Data I Inspect or Inspect from a local menu.

To the left is a list of the fifteen types of windows you can open
from the View menu.

Once you have opened one or more of these windows, you can
move, resize, close, and otherwise manage them with commands
from the Window and = (System) menus, which are discussed
later in this chapter in the section "Working with windows."

Breakpoints window

Displays the breakpoints you have set. A breakpoint defines a
location in your program where execution stops so you can
examine the program's status. The left pane lists the position of
every breakpoint (or indicates that it is global), and the right pane
indicates the conditions under which the currently highlighted
breakpoint executes.

Use this window to modify, delete, or add breakpoints.

Turbo Debugger for Windows User's Guide

Chapter 5 provides more
information on the Stack

window.

Chapter 7 tells you more
about the Log window.

See Chapter 6 for more
about the Watches window.

Chapter 5 describes the
Variables window in more

detail.

Chapter 2, TOW basics

Stack window

Displays the current state of the stack, with the function called
first on the bottom and all subsequently called functions on top,
in the order in which they were called.

You can bring up and examine the source code of any function in
the stack by highlighting it and pressing Ctr/-/.

By highlighting a function name in the stack and pressing Ctr!-L,
you open a Variables window displaying variables global to the
program, variables local to the function, and the arguments with
which the function was called.

Log window

Displays the contents of the message log. The log contains a
scrolling list of messages and information generated as you work
in TDW. It tells you such things as why your program stopped,
the results of breakpoints, the contents of windows you saved in
the log, and Windows information.

You can also use the log window to obtain information about
memory usage and modules for a Windows application.

This window lets you look back into the past and see what led up
to the current state of affairs.

Watches window

Displays variables and expressions and their changing values.
You can add a variable to the window by pressing Ctrl-Wwhen the
cursor is on the variable in the Module window.

Variables window

Displays all the variables accessible from a given spot in your pro­
gram. The upper pane has global variables; the lower pane shows
variables local to the current function or module, if any.

This window is helpful when you want to find a function or
variable that you know begins with, say, "abc," and you can't
remember its exact name. You can look in the global Symbol pane
and quickly find what you want.

27

Chapter 8 details the Module
window and its commands.

You can learn more about
the File window in Chapter 8.

Chapter 12 discusses the
CPU window and assembler­

/eve/ debugging.

See Chapter 12, which
discusses assembler

debugging, for more on this
window.

28

Module window

Displays the program code that you're debugging. You can move
around inside the module and examine data and code by posi­
tioning the cursor on program variable names and issuing the
appropriate local menu command.

You will probably spend more time in Module windows than in
any other type, so take the time to learn about all the various local
menu commands for this type of window.

You can also press F3 to open a Module window.

File window

Displays the contents of a disk file. You can view the file either as
raw hex bytes or as ASCII text, and you can search for specific text
or byte sequences.

CPU window

Displays the current state of the central processing unit (CPU).
This window has six panes: one that contains disassembled
machine instructions, one that shows the contents of a selector,
one that shows hex data bytes, one that displays a raw stack of
hex words, one that lists the contents of the CPU registers, and
one that indicates the state of the CPU flags.

The CPU window is useful when you want to watch the exact
sequence of instructions that make up a line of source code or the
bytes that comprise a data structure. If you know assembler code,
this can help locate subtle bugs. You do not need to use this
window to debug the majority of programs.

TDW sometimes opens a CPU window automatically if your
program stops in Windows code or on an instruction in the
middle of a line of source code.

Dump window

Displays a raw display of an area of memory. (This window is the
same as the Data pane of a CPU window.) You can view the data
as characters, hex bytes, words, doublewords, or any floating­
point format. You can use this window to look at some raw data
when you don't need to see the rest of the CPU state or to gain
direct access to I/ 0 ports. The local menu has commands to let

Turbo Debugger for Windows User's Guide

Chapter 72, which discusses
assembler debugging, has

more information on this
window.

See the file ASMDEBUG. TOW
for more information about

using the Numeric Processor
window.

See Chapter 5 for more
information on the Execution

History window.

~
See Chapter 7 0 for more

information about using the
Hierarchy window.

Chapter 2, TOW basics

you modify the displayed data, change the format in which you
view the data, and manipulate blocks of data.

Registers window

Displays the contents of the CPU registers and flags. This window
has two panes, which are the same as the registers pane and flags
pane, respectively, of a CPU window. Use this window when you
want to iook at the contents of the registers but don't need to see
the rest of the CPU state. You can change the value of any of the
registers or flags through commands in the local menu.

Numeric Processor window

Displays the current state of the numeric coprocessor. This
window has three panes: one pane that shows the contents of the
floating-point registers, one that shows the status flag values, and
one that shows the control flag values.

This window can help you diagnose problems in programs that
use floating-point numbers. You need to have a fair understand­
ing of the inner workings of the numeric coprocessor in order to
really reap the benefits of this window.

Execution History window

Displays source lines for your program, up to the last line
executed. The window indicates

1. whether you are tracing or stepping

2. the line of source code for the instruction about to be executed

3. the line number of the source code

You can examine it or use it to rerun your program to a particular
spot.

Hierarchy window

Lists and displays a hierarchy tree of all classes used by the
current module. The window has two panes: one for the class list,
the other for the class hierarchy tree. This window shows you the
relationship of the classes used by the current module. By using

29

Chapter 11 explains how to
use the Windows Messages

feature.

30

See page 36 for an
explanation of how to use

the Clipboard.

Module •••
Dump
File ..•

User screen

Alt·F5 is the hot key that
toggles between the

environment and the User
screen.

this window's local menu commands, you can examine any class's
data members and member functions.

Windows Messages window

Displays a list of messages passed between the windows in your
Windows application. This window has three panes:

•The left pane shows which procedures or handles you're
tracking messages for.

•The right pane shows the type of messages you're tracking.

•The bottom pane displays the messages being tracked.

Clipboard window

Displays the items that have been clipped into the Clipboard,
showing you their types and allowing you to inspect or delete an
item and to freeze the value of any item in the Clipboard.

Duplicate windows

You can also open duplicates of three types of windows-Dump,
File, and Module-by choosing View I Another. This lets you keep
track of several separate areas of assembly code, different files the
program uses or generates, or several distinct program modules
at once.

Don't be alarmed if TDW opens one of these windows all by itself.
It will do this in some cases in response to a command.

The User screen shows your program's full output screen. The
screen you see is exactly the same as the one you would see if
your program was running directly under Windows and not
underTDW.

You can use this screen to check that your program is at the place
in your code that you expect it to be, as well as to verify that it is
displaying what you want on the screen. To switch to the User
screen, choose Window I User Screen. After viewing the User
screen, press any key to go back to the debugger screen.

Turbo Debugger for Windows User's Guide

Inspector windows An Inspector window displays the current value of a selected
variable. Open it by choosing Data I Inspect or Inspect from a local
menu. Usually, you close this window by pressing Esc or clicking

M,_ the close box with the mouse. If you've opened more than one
Inspector window in succession, as often happens when you
examine a complex data structure, you can remove all the Inspec­
tor windows by pressing Alt-F3 or using the Window I Close
command.

You can open an Inspector wmdow to iook at an array of items or
at the contents of a variable or expression. The number of panes in
the window depends on the nature of the data you are inspecting.
An Inspector window adapts to the type of data being displayed.
It can display not only simple scalars (int, float, and so on), but
also pointers, arrays, structures, and unions. Each type of data
item is displayed in a way that closely mimics the way you're
used to seeing it in your program's source code.

¢ You create additional Inspector windows simply by choosing the
Inspect command, whereas you can create additional Module,
File, or CPU windows only by choosing View I Another.

The active window Even though you can have many windows open in TDW at the
same time, only one window can be active. You can spot the active
window by the following criteria:

Chapter 2, TOW basics

• The active window has a double outline around it, not a single
line.

•The active window contains the cursor or highlight bar.

• If your windows are overlapping, the active window is the
topmost one.

When you issue commands, enter text, or scroll, you affect only
the active window, not any other windows that are open.

31

32

Figure 2.3
The active window has a

double outline
/• program ent
•I

~ int PASCAL Wi
LPSTR l

unsigned int
unsigned lon

[

•=um
ds :0000 00 00 00 00 00 00 50 lE

InitWinCrt([ds:0008 00 00 C2 OA 2C lE 2C lE
iilines = O; ds:OOlO 00 00 08 00 00 00 4D OA
nwords = O; ds:0018 66 OA 36 OA 80 00 01 00
total charact
showar~s (argc, argv ;
while (readalineTl != OJ {

wordcount = makeintowords(buffer);
nwords += wordcount;

What's in a window A window always has most or all of the following features, which
give you information about it or let you do things to it:

Figure 2.4
A typical window

ZoOll and
Window Iconlze

Close box Title number boxes
~ ~ ~ ~

[•]=Module: TDDEMO File: TDDEMO.C 37========l=[t] [~]
static void showargs(int argc, char •argv[]);

/• program entry point
•/

~ int PASCAL Wi nMai n (HANDLE hlnstance, HANDLE hPrevinstance,
LPSTR l pszCmdli ne, int nCmdShow)

unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

InitWinCrt();
iilines = 0;
nwords = O;
total characters = O;
showarQs(argc, argv);
while (readalineT) != OJ {

wordcount = makei ntowords (buffer); ,.
IL<QllllllJIMllllllllillilliRllliiliililllliiiiiililrilllBllllll~~

t t

+ Scroll bar

Scroll bar Resize box

•An outline (double if the window is active, single otherwise).

•A title, located at the left top.

Ii.&. • A scroll bar or bars on the right or bottom if the window opens
on more information than it can hold at one time. You operate
the scroll bars with the mouse:

• Click the direction arrows at the ends of the bar to move one
line or one character in the indicated direction.

Turbo Debugger for Windows User's Guide

Working with windows

Press Alt-Spacebar to open the
= menu, or Aff-W to open the

Window menu.

Chapter 2, TDW basics

• Click the gray area in the middle of the bar to move one
window size in the indicated direction.

• Drag the scroll box to move as much as you want in the
direction you want.

•A resize box in the lower right corner. Drag it with your mouse
to make the window larger or smaller. If no scroll bar is present
on the bottom or right side of a window, that side of the
window border also activates window resizing.

•A window number in the upper right, reflecting the order in
which the window was opened.

•A zoom box and iconize box in the upper right corner. The one
on the left contains the zoom icon, the one on the right the
iconize icon. Click these with your mouse to expand the
window to full screen size, restore it to its original size, or
iconize it. (When a window is zoomed to full size, only the
unzoom box is available, and when it is iconized, only the zoom
box is available.)

•A close box in the upper left corner. Click it with your mouse to
close the window.

With all these different windows to work with, you will probably
have several open onscreen at a time. TOW makes it easy for you
to move from one window to another, move them around, pile
them on top of one another, shrink them to get them out of your
way, expand them to work in them more easily, and close them
when you are through.

Most of the window-management commands are in the Window
menu. You'll find a few more commands in the = (System) menu,
the menu marked with the = icon at the far left of the menu bar.

Window hopping

Each window that you open is numbered in the upper right
corner. Usually, the Module window is window 1 and the
Watches window is window 2. Whatever window you open after
that will be window 3, and so on.

This numbering system gives you a quick, easy means of moving
from one window to another. You can make any of the first nine
open windows the active window by pressing Alt in combination
with the window number. If you press Alt-2, for example, to make

33

F6 is the hot key for the
Window I Next Window.

Tab and Shift-Tab are the hot
keys for Window I Next Pane.

34

Refer to Chapter 13 for a
table of keystroke

commands in panes.

the Watches window active, any commands you choose will affect
that window and the items in it.

You can also cycle through the windows onscreen by choosing
Window I Next or pressing F6. This is handy if an open window's
number is covered up so you don't know which number to press
to make it active.

If you have a mouse, you can also activate a window by clicking
it.

To see a list of all open windows, choose Window from the menu
bar. The bottom half of the Window menu lists up to nine open
windows from which you can make a selection. Just press the
number of a window to make it the active one.

If you have more than nine windows open, the window list will
include a Window Pick command; choose it to open a pop-up
menu of all the windows open onscreen.

If a window has panes-areas of the window reserved for a
specific type of data-you can move from one pane to another by
choosing Window I Next Pane or pressing Tab or Shift-Tab.

You can also click the pane with the mouse.

The most pane-full window in TDW is the CPU window, which
has six panes.

As you hop from pane to pane, you'll notice that a blinking cursor
appears in some panes, and a highlight bar appears in others. If a
cursor appears, you move around the text using standard keypad
commands. (PgUp, Ctrl-Home, and Ctrl-PgUp, for example, move the
cursor up one screen, to the top of pane, or to the top of the list,
respectively.) If you've disabled shortcut keys, you can also use
WordStar-like hot keys for moving around in the pane.

If there's a highlight bar in a pane instead of a cursor, you can still
use standard cursor-movement keys to get around, but a couple
of special keystrokes also apply. In alphabetical lists, for example,
you can select by typing. As you type each letter, the highlight bar
moves to the first item starting with the letters you've just typed.
The position of the cursor in the highlighted item indicates how
much of the name you have already typed. Once the highlight bar
is on the desired item, your search is complete. This incremental
matching or select by typing minimizes the number of characters
you must type in order to choose an item from a list.

Turbo Debugger for Windows User's Guide

Ctrl-F5 is the hot key for the
Window I Size/Move

command.

F5 is the hot key for the
Window I Zoom command.

Chapter 2, TOW basics

Once an item is selected (highlighted) from a list, you can press
Alt-F10 to choose a command relevant to it from its local menu. In
many lists, you can also just press Enter once you have selected an
item. This acts as a hot key to one of the commonly used local
menu commands. The exact function of the Enter key in these cases
is described in the reference section starting on page 190.

Finally, a number of panes let you start typing a new value or
search string without choosing a command first. This usually
applies to the most frequently used local menu command in a
pane or window-like Goto in a Module window, Search in a File
window, or Change in a Registers window.

Moving and resizing windows

When you open a new window in TDW, it appears near the
current cursor location and has a default size suitable for the kind
of window it is. If you find either the size or the location of the
window inconvenient, you can use the Window I Size/Move
command to adjust the size or location of the window.

When you move or resize a window, your active window border
changes to a single-line border. You can then use the arrow keys
to move the window around or Shift with the arrow keys to
change the size of the window onscreen. Press Enter when you're
satisfied.

If you have a mouse, moving and resizing a window is even
easier:

• Drag the resize box in the lower right corner to change the size
of the window.

•Drag the title bar or any edge (but not the scroll bars) to move
the window around.

If you want to enlarge or reduce a window quickly, choose
Window I Zoom, or click the mouse on the zoom box or the iconize
box in the upper right corner.

Finally, if you want to get a window out of the way temporarily
but don't want to close it, make the window active, then choose
Window I lconize/Restore. The window will shrink to a tiny box
(icon) with only its name, close box, and zoom box visible. To
restore the window to its original form, make it active and choose
Window I lconize/Restore again, or click your mouse on the zoom
box.

35

Closing and recovering windows

Alt-F3 is the hot key for When you are through working in a window, you can close it by
Window 1 Close. choosing Window I Close.

M, If you have a mouse, you can also click the Close box in the upper
left corner of the window.

Alt-F6 Is the hot key for If you close a window by mistake, you can recover it by choosing
Window I Undo Close. Window I Undo Close or by pressing Alt-F6. This works only for the

last window you closed.

Copying and
pasting

You can also restore your TDW screen to the layout it had when
you first entered the program. Just choose = (System) I Restore
Standard.

Finally, if your program has overwritten your environment screen
with output (because you turned off screen swapping), you can
clean it up again with = (System) I Repaint Desktop.

Saving your window layout

Use the Options I Save Options command to save a specific
window configuration once you have the screen arranged the way
you like. In the Save Configuration dialog box, tab to Layout and
press Spacebarto toggle it on. The screen will then appear with
your chosen layout each time you start TOW, if the configuration
has been saved to a file called TDCONFIG.TDW. This configu­
ration file is the only one loaded automatically when TOW is
loaded. Other configurations can be loaded by using the Options I
Restore Options command if they have been saved to configu­
ration files with a different name.

TOW has an extensive copy and paste feature called the
Clipboard. With the Clipboard you can copy and paste between
TOW windows and dialog boxes.

The items you copy into the Clipboard are dynamic; if an item has
an associated value, the Clipboard keeps that value current as it
changes in your program.

You can use the Ins key to To copy an item into the Clipboard, position the cursor on the
mark multiple items in a list. item or highlight it with the Ins key, then press Shift-F3. To paste

something into a window or dialog box from the Clipboard, press

36 Turbo Debugger for Windows User's Guide

Shift-F4 or use the Clip button in the dialog box to bring up the
Pick dialog box.

¢ You can paste into any dialog box prompt (any place in a dialog
box where you can type text) by pressing Shift-F4, even if the
dialog box doesn't have a Clip button. You can also paste into
dialog box prompts with multiple fields.

The Pick dialog box Pressing Shift-F4 er the Clip butter. brings up a dialcg box listing
Clipboard contents and showing the categories you can use for
pasting an item into the dialog box.

Figure 2.5
The Pick dialog box

Chapter 2, TOW basics

This dialog box shows a scrolling list of items in the Clipboard
and allows you to interpret the item to be pasted in up to three
ways: as a string, as an address, or as contents of an address. The
categories you can use in pasting the item depend on its type and
its destination (discussed later).

For example, if you clip text from the Log window, it can be
pasted only as a string. If you clip text from the Module window,
it can be pasted elsewhere as a string or as an address, but not as
contents. If you clip a variable from an Inspector window, it can
be pasted as a string, a location, or as contents (unless it's a C
register variable, in which case you can paste it only as a string or
as contents, not as an address).

To paste an item into a dialog box, highlight the item, select the
appropriate category, then either press Enter or the Paste button,
depending on what effect you want to have on the dialog box.

•Pressing Enter simply pastes the item in and returns you to the
dialog box.

• Pressing the Paste button both pastes the item in and passes an
Enter to the dialog box, causing it to perform its function.

37

The Clipboard window There's a View window that lets you see the contents of the
Clipboard. Choosing View I Clipboard displays the Clipboard
window, which lists all clipped items.

38

Figure 2.6
The Clipboard window

The leftmost field of this window describes the type of the entry,
followed by a colon and the clipped item. If the clipped item is an
expression from the Watches window, a variable from the
Inspector window, or data, a register, or a flag from the CPU
window, the item is followed by its value or values.

Clipboard item types

When you clip an item from a Window, Turbo Debugger assigns
it a type to help you identify the source of the item. The following
table shows the Clipboard types:

Table 2.2
Clipboard item types Type Description

~~~~~~~~~~~~~~~~~~~~~~~~~~-

String A text string, like a marked block from the File window 

Module A module context, including a source code position, 

File 

CPU code 

CPU data 

CPU stack 

CPU register 

CPU flag 

Inspector 

like a variable from the Module window 

A position in a file (in the File window) that isn't a 
module in the program 

An address and byte list of executable instructions 
from the Code pane of the CPU window 

An address and byte list of data in memory from the 
Data pane of the CPU window or the Dump window 

A source position and stack frame from the Stack pane 
of the CPU window 

A register name and value from the Register pane of 
the CPU window or the Registers window 

A CPU flag value from the Flags pane of the CPU 
window 

One of the following: 

A variable name from an Inspector window 

A constant value from an Inspector or Watches 
window 

Turbo Debugger for Windows User's Guide 



Inspect 
Remove 
Delete all 
Freeze 

Table 2.3 
Clipboard local menu 

commands 

See Chapter 6 for more 
information on watching 

expressions. 

Chapter 2, TOW basics 

Table 2.2: Clipboard item types (continued) 

Address 

Expression 

Coprocessor 

Control flag 

Status flag 

A register-based variable from an Inspector 
window 

A bit field from an Inspector window 

An address without data or code attached 

An expression from the Watches window 

An 80x87 numeric coprocessor register 

An 80x87 control flag value 

An 80x87 status flag value 

The Clipboard window local menu 

If you're in the Clipboard window and you press Alt-F10 or click 
the right mouse button, you see the menu at the left. Alterna­
tively, you can press Ctr/ and the highlighted key of the local menu 
command to execute a command. 

Command 

Inspect 

Description 

Positions the cursor in the window from which the 
item was clipped. 

Remove Removes the highlighted item or items. Pressing Del has 
the same effect on a highlighted item. 

Delete All 

Freeze 

Deletes everything in the Clipboard. 

Stops the Clipboard item from being dynamically 
updated. 

Dynamic updating 

The Clipboard dynamically updates any item with an associated 
value, such as an expression from the Watches window, a variable 
from the Inspector window, or a register from the CPU window. 
You can use the Clipboard as a large Watches window if you 
wish, and you can freeze the value of any item you like. 

For example, you might want to put a Watches window 
expression in the Clipboard. To do so, first put it in the Watches 
window, then press Shift-F3 to copy it into the Clipboard. The 
value of the item then changes just as it would in a Watches 
window, unless you use the local menu Freeze command to 
disable the watchpoint. 

39 



40 

Tips for using the 
Clipboard 

Getting help 

One advantage of watching an expression in the Clipboard is that 
you can freeze the expression at a certain value, then continue 
running the program and compare the frozen value to the 
changing values in the Watches window. 

The possible uses of the Clipboard are too numerous to list here. 
Some of the things you can do with it are 

•clipping from lines in Module windows as a way of marking 
locations that you can later return to using the local menu Goto 
command (by pasting a location into the dialog box displayed 
by the Goto command) 

• watching an expression (see the previous section) 

• pasting new values into variables using the Data I Evaluate 
dialog box or the dialog box for the Change command of the 
Inspector window or the Watches window 

• pasting strings into the Log window to help you keep track of 
what you did during a debugging session 

•pasting an address (the location category of an item) into any of 
the places where an address is requested (such as the 
Breakpoints I Options dialog box Address field, or the Run I 
Execute To dialog box) 

• pasting expressions into conditions and actions of breakpoints 

• pasting parameters into the Run I Arguments dialog box 

• pasting a Window proc name or an OWL object name into the 
Windows Messages window 

•pasting a string into the dialog box for the Module window 
Search command 

•copying data from and pasting it to the CPU data pane 

• copying code from one part of the CPU window to another and 
then running the program with the copied code 

As you've seen, TOW goes out of its way to make debugging easy 
for you. It doesn't require you to remember obscure commands; it 
keeps lists of what you type, in case you want to repeat it; it lets 
you define macros; and it offers sophisticated control of your 
windows. To avoid potential confusion, TOW offers the following 
help features: 

Turbo Debugger for Windows User's Guide 



-READY I •An activity indicator in the upper right corner always displays 
the current activity. For example, if your cursor is in a window, 
the activity indicator reads READY; if there's a menu visible, it 
reads MENU; if you're in a dialog box, it reads PROMPT. If you ever 
get confused about what's happening in TOW, look at the 
activity indicator for help. (Other activity indicator modes are 
SIZE/MOVE, MOVE, ERROR, RECORDING, WAIT, RUNNING, HELP, STATUS, and 
PLAYBACK.) 

•The active window i:s alway:::. iupmust anJ has a double line 
around it. 

•You can access an extensive context-sensitive help system by 
pressing F1. Press Ft again to bring up an index of help topics 
from which you can select what you need. 

•The status line at the bottom of the screen always offers a quick 
reference summary of keystroke commands. The line changes 
as the context changes and as you press Alt or Ctr/. Whenever 
you are in the menu system, the status line offers a one-line 
synopsis of the current menu command. 

For more information on the last two avenues for help, read the 
following two sections. 

Online help TOW, like other Borland products, gives context-sensitive 
onscreen help at the touch of a single key. Help is available 
anytime you're within a menu or window, as well as when an 
error message or prompt is displayed. 

Press F1 to bring up a Help screen showing information pertinent 
to the current context (window or menu). If you have a mouse, 

M, you can also bring up help by clicking Fl on the status line. Some 
Help screens contain highlighted keywords that let you get addi­
tional help on that topic. Use the arrow keys to move to any key­
word and then press Enterto get to its screen. Use the Home and 
End keys to go to the first and last keywords on the screen, 
respectively. 

Index Shi ft-Fl 
Previous topic Alt-Fl 
Help on help 

Chapter 2, TOW basics 

You can also access the onscreen help feature by choosing Help 
from the menu bar (Alt-H). 

If you want to return to a previous Help screen, press Alt-Ft or 
choose Previous Topic from the Help menu. From within the 
Help system, use PgUp to scroll back through up to 20 linked help 
screens. (PgDn only works when you're in a group of related 
screens.) To access the Help Index, press Shift-Ft (or Ft from within 

41 



the Help system), or choose Index from the Help menu. To get 
help on Help, choose Help I Help on Help. To exit from Help, press 
Esc. 

The status line Whenever you're in TOW, a quick-reference help line appears at 
the bottom of the screen. This status line provides at-a-glance 
keystroke or menu command help for your current context. 

In a window 

The normal status line shows the commands performed by the 
function keys and looks like this: 

If you hold down the Alt key for a second or two, the commands 
performed by the Alt keys are displayed. 

Figure 2.8 
The status line with Alt pressed A 1 t' F2a!IBEIF3lilill!IF4&11F!ill!lli'mF6mrilF7llililaFl!IDIF91BFlOIBI 

42 

If you hold down the Ctr/ key for a second or two, the commands 
performed by the Ctr/ letter keys are displayed. This status line 
changes depending on the current window and current pane, and 
it shows the single-keystroke equivalents for the current local 
menu. If there are more local menu commands than can be 
described on the status line, only the first keys are shown. You 
can view all the available commands on a local menu by pressing 
Alt-F10to pop up the entire menu. 

Figure 2.9 
The status line with Ctrl Ctrl' 1~FIDl!llPIH411FU•Lllasmt41M 

pressed 

In a menu or dialog box 

Whenever you are in a menu or a dialog box, the status line 
displays a one-line explanation of what the current item does. For 
example, if you have highlighted View I Registers, the status line 
says Open a CPU registers window. 

The status line gives you menu help whether you are in a global 
menu or a local menu. 

Turbo Debugger for Windows User's Guide 



c H A p T E R 

3 

A quick example 

If you're eager to use TDW and aren't the sort of person to work 
through the whole manual first, this chapter gives you enough 
knowledge to debug your first program. Once you've learned the 
basic concepts described here, the integrated environment and 
context-sensitive Help system make it easy to learn as you go 
along. 

This chapter leads you through all TDW's basic features. After 
describing the demo program TDDEMO provided on the 
distribution disks, it shows you how to 

• run and stop program execution 

• examine the contents of program variables 

•look at complex data objects, like arrays and structures 

• change the value of variables 

The demo program 

Chapter 3, A quick example 

The demo program (TDDEMO) introduces you to the two main 
things you need to know to debug a program: how to stop and 
start your program and how to examine your program's variables 
and data structures. The program itself is not meant to be 
particularly useful: Some of its code and data structures exist 
solely to show you TDW's capabilities. 

43 



The program uses the Easy Win module to display its output in a 
window under Windows. It's not a full-featured Windows 
application, but it does illustrate some useful TDW concepts. 

The demo program lets you type in some lines of text, then counts 
the number of words and letters that you entered. At the end of 
the program, it displays some statistics about the text, including 
the average number of words per line and the frequency of each 
letter. 

¢ Make sure your working directory contains the two files needed 
for the tutorial: TDDEMO.C and TDDEMO.EXE. 

Getting in To start the demo program, 

Figure 3.1 
The startup screen showing 

TD DEMO 

44 

1. Make sure Windows is running in standard or 386 enhanced 
mode. (TDW doesn't run in real mode.) 

2. In the Windows Program Manager, open the program group 
that contains TDW and choose the TDW icon. 

3. When TDW starts up, choose File I Open and enter the full 
path to TDDEMO (you might need to compile TDDEMO.C 
first with debugging information), then press Enter. 

TDW loads the demo program, displays the startup screen, and 
positions the cursor at the start of the program. 

/* program entry point 
*/ 

.. int main(int argc, char **argv) { 
unsigned int nlines, nwords, wordcount; 
unsigned 1 ong tota lcharacters; 

nlines = O; 
nwords = O; 
totalcharacters • O; 
showargs(argc, argv); 
while (readaline() != O) { 

wordcount = makei ntowords (buffer); 
nwords += wordcount; 
totalcharacters += analyzewords(buffer); 
nl ines++; 

The startup screen consists of the menu bar, the Module and 
Watches windows, and the status line. 

Turbo Debugger for Windows User's Guide 



Getting out 

Getting Help 

Using TDW 

The menus 

Figure 3.2 
The menu bar 

Chapter 3, A quick example 

To exit from TDW at any time, press Alt-X. If you get hopelessly 
lost following the tutorial, press Ctrl-F2 to reload the program and 
start at the beginning. However, Ctrl-F2 doesn't clear breakpoints 
or watches; you'll have to use Alt-8 D to do that. 

Press Ft whenever you need Help with the current window, 
menu command, dialog box, or error message. You can learn a lot 
by working your way through the menu system and pressing Ft 
at each command to get a summary of vvhat it does. 

The top line of the screen shows the menu bar. To pull down a 
menu from it, press FtO. Then, to choose a menu command, you 
can either use f- or ~ to highlight your selection and press Enter, 
or press Alt in combination with the highlighted letter of one of the 
menu names. 

Press FtO now. Notice that the cursor disappears from the Module 
window, and the = command on the menu bar becomes high­
lighted. The bottom line of the screen also changes to indicate 
what sort of functions the =menu performs. 

Use the arrow keys to move around the menu system. Press t to 
pull down the menu for the highlighted item on the menu bar. 

You can also open a menu by clicking an item in the menu bar 
with your mouse. 

Press Esc to move back through the levels of the menu system. 
When just one menu item on the menu bar is highlighted, pres­
sing Esc returns you to the Module window, with the menu bar 
no longer active. 

45 



46 

The status line 
The status line at the bottom of the screen shows relevant function 
keys and what they do. 

This line changes depending on what you are entering (menu 
commands, data in a dialog box, and so on). Hold Alt down for a 
second or two, for example. Notice that the status line changes to 
show you the function keys you can use with Alt. 

Now press Ctr/ for a second. The commands shown on the status 
line are the hot keys to the local menu commands for the current 
pane (area of the window). They change depending on which sort 
of window and which pane you are in. (More about these later.) 

As soon as you enter the menu system, the status line changes 
again to show you what the currently highlighted menu option 
does. Press F10 to go to the menu bar, and press~ to highlight the 
File option. The status line now reads, File oriented functions. 
Use .!. to scroll through the options on the File menu, and watch 

iii.&. the message change. Press Esc or click the Module window with 
your mouse to leave the menu system. 

The windows 
The window area takes up most of the screen. This area is where 
you examine various parts of your program through the different 
windows. 

The display starts up with two windows: a Module window and 
the Watches window. Until you open more windows or adjust 
these two, they remain tiled, filling the entire screen without 
overlapping. New windows automatically overlap existing 
windows until you move them. 

Turbo Debugger for Windows User's Guide 



Figure 3.4 
The Module and Watches 

windows, tiled 

Chapter 3, A quick example 

ll["Jo9!~hl~YH!t File: DON~~HIN.C 3 
/* program DoNuthin */ 

~ main() 
{} 

This is the Module window 

i!li• READY 

Notice that the Module window has a double-line border and a 
highlighted title, which indicate that it's the active window. You 
use the cursor keys (the arrow keys, Home, End, PgUp, and so on) to 
move around inside the active window. Now press F6 to switch to 
another window. The Watches window becomes active, with a 
double-line border and a highlighted title. 

You use commands from the View menu to create new windows. 
For example, choose View I Stack to open a Stack window. The 
Stack window pops up on top of the Module window. 

Now press Alt-F3 to remove the active window. The Stack window 
disappears. 

TOW stores the last-closed window, making it possible for you to 
recover it if you need to. If you accidentally close a window, 
choose Window I Undo Close. If you do so now, you see the Stack 
window reappear. You can also press Alt-F6 to recover the last­
closed window. 

The Window menu contains the commands that let you adjust the 
appearance of the windows you already have onscreen. You can 
both move the window around the screen and change its size. 
(You can use Ctrl-F5 to do the same thing.) 

Choose Window I Size/Move and use the arrow keys to reposition 
the active window (the Stack window) on the screen. Next, hold 
Shift down and use the arrow keys to adjust the size of the 

47 



window. Press Enter when you have defined a new size and 
position that you like. 

Now, to prepare for the next section, remove the Stack window by 
pressing Alt-F3. Then continue with the next section. 

Using the C demo program 

48 

To position the cursor on a 
line in the Module window, 

press Ctrl-G, type the line 
number, and press Enter. 

The filled arrow(.-) in the left column of the Module window 
shows where TDW stopped your program. Since you haven't run 
your program yet, the arrow is on the first line of the program. 
Press Fl to trace a single source line. The arrow and cursor are 
now on the next executable line. 

Look at the right margin of the Module window title. It shows the 
line that the cursor is on. Move the cursor up and down with the 
arrow keys and notice how the line number in the title changes. 

As you can see from the Run menu, there are a number of ways to 
control the execution of your program. Let's say you want to 
execute the program until it reaches line 48. 

First, position the cursor on line 39, then press F4 to run the 
program up to (but not including) line 39. Now press Fl, which 
executes one line of source code at a time; in this case, it executes 
line 39, a call to the function showargs. The cursor immediately 
jumps to line 151, where the definition of showargs is found. 

Continuing to press Fl would step you through the function 
showargs and then return you to the line following the call-line 
40. Instead, press Alt-FB, which causes showargs to execute and 
then return, at which point the program stops. This command too, 
returns you to line 40, and is very useful when you want to jump 
past the end of a function. 

If you had pressed FB instead of Fl on line 39, the cursor would 
have gone directly to line 40 instead of into the function. FB is 
similar to Fl in that it executes a procedure or source line, but it 
skips any function calls. 

Turbo Debugger for Windows User's Guide 



Figure 3.5 
Program stops on return from 

function showargs 

Setting 
breakpoints 

[ill 

Chapter 3, A quick example 

lm[~.!o~~umtUf1~il~e~:~td!ci!~m!o~'.c~4fca!!!!~!·!!·!!~!!!~L\ll!!!•!!!~["tJ1~~~~ 
nwords = O; • 
tota 1 characters = 0; 
showargs (argc, ar~v); 
while (readaline() != 0) { 

wordcount = makei ntowords (buffer); 
nwords += wordcount; 
total characters += ana lyzewords (buffer); 
nlines++; 

} 
printstatistics(nlines, nwords, totalcharacters); 
r-:it11rn{Q): 

/*make the buffer into a list of null-terminated words that end in 
* in two nulls, squish out white space 
*/ 

static int makeintowords(char *bufp) 
unsi ned int nwords; 

I • 

To execute the program until a specific place is reached, you can 
directly name the function or line number, without moving the 
cursor to that line in a source file and then running to that point. 
Press Alt-F9 to specify a label to run to. A dialog box appears. Type 
readaline and press Enter. The program runs, then stops at the 
beginning of function readaline (line 142). 

Another way to control where your program stops running is to 
set breakpoints. The simplest way to set a breakpoint is with the 
F2 key. Move the cursor to line 44 and press F2. TDW highlights 
the line, indicating there is a breakpoint set on it. 

You can also use the mouse to toggle breakpoints by clicking the 
first two columns of the Module window. 

49 



Figure 3.6 
A breakpoint at line 44 

Using watches 

•511FllmE!aVlmf<l!llmllliiii&ri•iiiiMW1i1W411'1!11'11-jf(l~EADY 
r,=[iJ=MOOiiTe: TDDEMO Fire;=tddemo.c 4 l=LfJ [+]=;i 

nwords = 0; • 
totalcharacters = O; I 
showargs(argc, ar9v); 
while (readal ine() != O) ( 

wordcount = makei ntowords (buffer); • 
nwords += wordcount; 
tota lcharacters += ana lyzewords (buffer); 

.. nlines++; 
I 
pri ntstati sti cs (nl i nes, nwords, totalcharacters); 
return (0); 

/*make the buffer into a list of null-tenninated words that end in 
* in two nulls, squish out white space 
*/ 

static int makeintowords(char *bufp) { 

===== 
G ~ 

• 
Now press F9 to execute your program without interruption. The 
screen switches to the program's display. The demo program is 
now running and waiting for you to enter a line of text. Type abc, 
a space, def, and then press Enter. The display returns to the TDW 
screen with the arrow on line 44, where you set a breakpoint that 
has stopped the program. Now press F2 again to toggle it off. 

See Chapter 7 for a complete description of breakpoints, including 
conditional and global breakpoints. 

The Watches window at the bottom of the screen shows the value 
[]D[]QJ of variables you specify. For example, to watch the value of the 

variable nwords, move the cursor to the variable name on line 42 
and choose Watch from the Module window local menu (bring it 
up with A/t-F10 or the right-hand mouse button, or use the shortcut 
Ctrl-W). 

50 Turbo Debugger for Windows User's Guide 



Figure 3.7 
A C variable in the Watches 

window 

Examining simple 
C data objects 

Chapter 3, A quick example 

[• ,.f.lodu e: TDDEMO Fi e: tddemo.c 4 l=lfJ [+]=;i 
nwords = O; '" 
total characters = 0; I 
showargs(argc, ar9v); 
while (readaline(J I= O) { 

wordcount = makeintowords(buffer); 
nwords += wordcount; 
total characters += anal yzewords (buffer); 

""' nlines++; 
} 
printstati sti cs(nl ines, nwords, totalcharacters); 
return(O); l ~* make the buffer into a list of null-terminated words that end in 

* in two nulls, squish out white space 
*/ 

static int makei ntowords (char *bufp) { 
unsi ned int nwords; 

• 

nwords now appears in the Watches window at the bottom of the 
screen, along with its type (unsigned int) and value. As you 
execute the program, TOW updates this value to reflect the 
variable's current value. 

Once you have stopped your program, there are a number of 
ways of looking at data using the Inspect command. This facility 
lets you examine data structures in the same way that you 
visualize them when you write a program. 

The Inspect commands (in various local menus and in the Data 
menu) let you examine any variable you specify. Suppose you 
want to look at the value of the variable nlines. Move the cursor so 
it is under one of the letters in nlines and choose Inspect from the 
Module window local menu (press Ctr/-/). An Inspector window 
pops up. 

51 



52 

Figure 3.8 
An Inspector window -a:.111 '!ltl•11·~--··· ... lEADY 

..----- o u e: T ~li Fi\lt l.c A 1-
nwords = O; 
tota lcharacters = 0; 
showa1s(argc, arr); 
while readaline( I• 0) { 

wordcount • makeintowords(buffer); 
nwords += wordcount; 
totalcharacters +• analyiewords(buffer); .. nlines++; 

}~ printstati fil793E:FFCO ers); 
return(O); 

} 

/*make the buffer into a list of null-tenninated words that end in 
* in two nulls, squish out white space 
•/ 

static int makeintowords(char *bufp) { 
unsigned int nwords; 

liSii uiii:Uilb\nt;;u ,,21 
F F3M1lf4l!l!!Pf ' ' F•"'!,'Jlmfl 

The title tells you the variable name; the next line shows you its 
address in memory. The third line shows you what type of data is 
stored in nlines (it's a C unsigned int). To the right is the current 
value of the variable. 

Now, having examined the variable, press Esc to close the 
Inspector window. You can also use Alt-F3to remove the Inspector 
window, just like any other window, or you can click the close 
box with your mouse. 

Let's review what you actually did here. By pressing Ctr/, you took 
a shortcut to the local menu commands in the Module window. 
Pressing I specified the Inspect command. 

To examine a data item that is not conveniently displayed in the 
Module window, choose Data I Inspect. A dialog box appears, 
asking you to enter the variable to inspect. Type :ietterinfo and 
press Enter. An Inspector window appears, showing the values of 
the letterinfo array elements. The title of the Inspector window 
shows the name of the data you are inspecting. The first line 
under the title is the address in main memory of the first element 
of the array letterinfo. Use the arrow keys to scroll through the 26 
elements that make up the letterinfo array. The next section shows 
you how to examine this compound data object. 

Turbo Debugger for Windows User's Guide 



Examining 
compound C 
data objects 

Figure 3.9 
Inspecting a structure 

Changing C data 
values 

Chapter 3, A quick example 

A compound data object, such as an array or structure, contains 
multiple components. Move to the fourth element of the letterinfo 
array (the one indicated by [3J). Press Alt-F10to bring up the local 
menu for the Inspector window, then press I to choose Inspect. A 
new Inspector window appears, showing the contents of that 
element in the array. This Inspector window shows the contents 
of a structure cf type !info. 

-=·m~e·'·''''I.·-·· o u e: TDDEM Fi e: t emo.c 4 
nwords = O; 
totalcharacters = 0; 
showargs(argc, ar9v); 
while (readaline() != 0) 

wordcount = mak 
nwords += wordc 
tota lcharacters 

• nlines++; 
) 
pri ntstati sti cs (n 1 i nes, 
return(O); 

/* make the buffer into a list of 
* in two nulls, squish out white 
*/ 

static int makeintowords(char *buf ~• 
unsigned int nwords; 

READY 

When you place the cursor over one of the member names, the 
data type of that member appears in the bottom pane of the 
Inspector window. If one of these members were in turn a com­
pound data object, you could issue an Inspect command and dig 
down further into the data structure. 

Press Alt-F3 to remove both Inspector windows and return to the 
Module window. (Alt-F3 is a convenient way of removing several 
Inspector windows at once. If you had pressed Esc, only the latest 
Inspector window would have been deleted.) 

So far, you've learned how to look at data in the program. Now, 
let's change the value of data items. 

Use the arrow keys to go to line 38 in the source file. Place the 
cursor at the variable totalcharacters and press Ctr/-/ to inspect its 

53 



54 

Figure 3.10 
The Change dialog box 

value. With the Inspector window open, press Alt-F10to bring up 
the Inspector's local menu, and choose the Change option. (You 
could also have done this directly by pressing Ctr/-C.) A dialog box 
appears, asking for the new value. - ........ .,_. 

odule: rnoEMOfi:tdd:o.c 3 
static void showargs(int argc, char *argv[]); 

total characters += analyzewords(buffer); 
nlines++; 

Enter item prompted for in dialog title 

At this point, you can enter any C expression that evaluates to a 
number. Type totalcharacters + 4 and press Enter. The value in the 
Inspector window now shows the new value, 101 (OxA). 

To change a data item that isn't displayed in the Module window, 
choose Data I Evaluate/Modify. A dialog box appears. Enter the 
name of the variable to change in the first input box: Type nlines 
and press Enter. Then press Tab twice to move to the input box 
labeled New Value. Type 123 and press Enter. The result (second 
box) changes to int 123 (Ox7B). 

Turbo Debugger for Windows User's Guide 



Figure 3.11 
The Evaluate/Modify dialog 

box 

Chapter 3, A quick example 

Eva 1 uate/modi f 

That's a quick introduction to using TOW with a program written 
using Turbo C++ for Windows. Chapter 14 offers a more 
extensive debugging sample. 

55 



56 Turbo Debugger for Windows User's Guide 



c H A p T E R 

4 

Starting TOW 

This chapter tells you how to prepare programs for debugging. 
We show you how to start TOW from Windows and how to tailor 
its many command-line options to suit the program you are 
debugging. We explain how to make these options permanent in a 
configuration file and, finally, how to return to Windows when 
you are done. 

Preparing programs for debugging 

Chapter 4, Starting TOW 

When you compile and link with Turbo C++ for Windows, you 
can tell the compiler to generate full debugging information. If 
you have compiled your program's object modules without any 
debugging information, be sure to recompile them with debug­
ging information before invoking TOW. 

If you need to recompile your modules with debugging informa­
tion, it's possible to generate debug information only for specific 
modules (you might have to do this if you're debugging a large 
program), but you will find it annoying later to enter a module 
that doesn't have any debug information available. We suggest 
recompiling all modules. 

If you're using the integrated environment of Turbo C++ for 
Windows, the generation of debug information is turned on by 
default. If these options have been turned off, you need to do the 
following before compiling to produce debug information: 

57 



Starting TDW 

warning! 

58 

1. Use the Options I Linker I Settings command to bring up the 
Linker Settings window, then check the Include Debug 
Information check box. 

2. Use the Options I Compiler I Advanced Code Generation 
command to bring up the Advanced Code Generation 
window, then check the Debug Info in OBJs check box. 

Alternatively, you can use the options -v pragma directive to 
add debug information to each of your modules by inserting 
the following line at the beginning of each module: 

#pragma option -v 

There are four ways to run TOW: 

•If you are in Turbo C++ for Windows, you can debug the 
program in the active window by choosing Run I Debugger. 

You can also choose Run I Debugger Arguments if you want to 
set TOW command-line arguments. 

• If you are in Windows, the easiest method is to open the 
appropriate program group in the Windows Program Manager 
and choose the TOW icon. Then choose File I Open to load the 
program you're debugging. 

For this and the next option, unless TOW is in your path and 
your program is in your Windows directory, you must be 
careful to type in the correct path for both TOW and your 
application. 

• If you are in Windows and you want to enter command-line 
options, you can start TOW by using the Windows Program 
Manager File I Run command to open the Run dialog box. Then, 
in the Command Line input box, just type TDW, followed by any 
command-line options and, optionally, the name of the 
program you're debugging, as if you were at the DOS prompt. 

• If you are at the DOS prompt, you can start TOW by entering 
the following and pressing Enter: 

WIN TOW [options] [progname [progargs]] 

Turbo Debugger for Windows User's Guide 



Entering 
command-line 

options 

Directly entering 
command-line options 

Entering command-line 
options from TCW 

Chapter 4, Starting TOW 

If you start TOW from the DOS prompt or by using the Program 
Manager File I Run command, you can add command-line options 
after typing TDW. 

If you start TOW from Turbo C ++ for Windows, you can enter 
command-line options by choosing Run I Debugger Arguments. 

The generic command-line format is 

TDW [options] [progname [progargs]] 

The items enclosed in brackets are optional; if you include any, 
type them without the brackets. Progname is the name of the pro­
gram to debug. 

You can follow a program name with arguments. Here are some 
sample command lines: 

Command Action 

tdw -tc:\progl progl ab Starts the debugger in the C:\PROGl 
directory and loads program progl 
with two command-line arguments, a 
andb. 

tdw prog2 -x Starts the debugger with default 
options and loads program prog2 
with one argument, -x. 

If you simply type TDW Enter, TDW loads and uses its default 
options. 

If you start TOW from Turbo C++ for Windows and you want to 
indicate command-line options, chose Run I Debugger Arguments 
to enter any TOW command-line options except the program 
name and program arguments. 

The program to be run in TOW is the one in the current Edit 
window. If you want to enter arguments for the program before 
running TOW on it, choose Run I Arguments and type the 
arguments in the Program Arguments window. 

59 



Things to remember When you run a program in TDW, you need to have both its .EXE 
file and the original source files available. TDW searches for 
source files first in the directory the compiler found them in when 
it compiled, second in the directory specified in the Options I Path 
for Source command, third in the current directory, and fourth in 
the directory the .EXE file is in. 

¢ You must already have compiled your source code into an 
executable (.EXE) file with full debugging information turned on 
before debugging with TDW. 

¢ TDW works only with Windows programs compiled with a 
Borland compiler. 

¢ If you're running your program from Windows and notice a bug, 
you have to exit your program and load it under TDW before you 
can begin debugging. 

Running TOW 

When you run TDW, it comes up in full-screen character mode, 
not in a window. Despite this appearance, TDW is a Windows 
application and will run only under Windows. 

Unlike other applications that run under Windows, you can't use 
the Windows shortcut keys (like Alt-Esc or Ctrl-Esc) to switch out of 
the TDW display and run another program. However, if the appli­
cation you are debugging is active (the cursor is active in one of 
its windows), you can use Alt-Esc, Ctrl-Esc, or the mouse to switch 
to other programs. 

¢ If you do use Ctrl-Esc to switch out of an application running 
under TDW, you see the application name on the list of tasks. You 
will never see TDW on the task list because TDW is not a normal 
Windows task that you can switch into or out of. 

Command-line options 

Appendix A has an easy-to­
use list of TDW:S command­

line options. 

60 

All TDW command-line options start with a hyphen(-) and are 
separated from the TDW command and each other by at least one 
space. You can explicitly turn a command-line option off by 
following the option with another hyphen. For example, -p-

Turbo Debugger for Windows User's Guide 



Loading the 
configuration file 

(-C) 

Display updating 
(-d) 

Getting help (-h 
and-?) 

Chapter 4, Starting TOW 

disables the mouse. Turning a command-line option off works 
even if an option has been permanently enabled in the configu­
ration file. You can modify the configuration file by using the 
TDWINST configuration program described in the file 
TDWINST.DOC. 

The following sections describe all available TDW command-line 
options. 

This option loads the specified configuration file. There must not 
be a space between -c and the file name. 

If the -c option isn't included, TDCONFIG.TDW is loaded if it 
exists. Here's an example: 

TDW -cMYCFG.TDW TDDEMO 

This command loads the configuration file MYCONF.TDW and 
the source code for TDDEMO. 

The -d options affect the way in which display updating is 
performed. 

-do Runs TDW on your secondary display. View your pro­
gram's screen on the primary display, and run the 
debugger on the secondary one. 

-ds The default option for all displays, it's also called screen 
swapping. Required for a monochrome display. Maintains 
a separate screen image for the debugger and the 
program being debugged by loading the entire screen 
from memory each time your program is run or the de­
bugger is restarted. This technique is the most time­
consuming method of displaying the two screen images, 
but works on any display hardware and with programs 
that do unusual things to the display. 

These options display a window that describes TDW's command­
line syntax and options. 

61 



Assembler-mode 
startup (-1) 

Mouse support 
(-p) 

Source code 
handling (-s) 

This option forces startup in assembler mode, showing the CPU 
window. TDW does not execute your program's startup code, 
which usually executes automatically when you load your 
program into the debugger. This means that you can step through 
your startup code. 

If you are debugging a DLL, this option also allows you to debug 
the assembly-language code that starts up the DLL. See Chapter 
11, page 173, for more information on debugging DLLs. 

This option enables mouse support. However, since the default 
for mouse support in TDW is On, you won't have much use for 
the -p option unless you use TDWINST to change the default to 
Off. If you want to disable the mouse, use -p-. 

If the mouse driver is disabled for Windows, it will be disabled 
for TDW as well, and the -p command-line option will have no 
effect. 

-SC Ignores case when you enter symbol names, even if your 
program has been linked with case sensitivity enabled. 

Without the -sc option, Turbo Debugger ignores case 
only if you've linked your program with the case ignore 
option enabled. 

This option doesn't change -sd 
the starting directory. 

Sets one or more source directories to scan for source files; 
the syntax is 

62 

-sddirname[;dirname ... ] 

To set multiple directories, use multiple dirnames sepa­
rated with semicolons (;) with the -sd option or use the 
-sd option repeatedly or both. TDW searches for 
directories in the order specified. dirname can be a relative 
or absolute path and can include a disk letter. If the 
configuration file specifies any directories, the ones 
specified by the -sd option are added to the end of that 
list. 

Turbo Debugger for Windows User's Guide 



Starting directory 
(-t) This option changes TOW's starting directory, which is where 

TOW looks for the configuration file and for .EXE files not 
specified with a full path. There must not be a space between the 
option and the directory path name. 

-t<dir> Set the starting directory to <dir>. The syntax is 

-tdirname 

You can set only one starting directory with this option. If you 
enter multiple directories for one -t option, TOW ignores all the 
directories. If you enter the option more than once on the same 
command line, TOW uses only the last entry. 

For example, the following entry would start TOW in the 
0: \WORKING directory: 

tdw -tc:\utils\screensv -td:\working 

Configuration files 

See the file TDWlNST. TDW for 
a description of how to use 

TDWlNST to create 
configuration files. 

Chapter 4, Starting TOW 

TOW uses a configuration file to override built-in default values 
for command-line options. You can use TOWlNST to set the 
options that TOW will default to if there is no configuration file. 
You can also use it to build configuration files. 

TOW looks for the configuration file TOCONFIG.TOW first in the 
current directory, next in the TOW directory set up with the 
Turbo C++ for Windows installation program, and then in the 
directory that contains TOW.EXE. 

If TOW finds a configuration file, the settings in that file override 
its built-in defaults. Any command-line options that you supply 
when you start TOW from DOS override both the corresponding 
default options and any corresponding values in 
TDCONFIG.TOW. 

63 



The Options menu 

Language... Source 
Macros " 
Display options ••• 
Path for source ••• 
Save options ••• 
Restore options ••• 

The Language 
command 

The Macros menu 
Create Alt= 
Stop recording Alt­
Remove ••• 
Delete all 

Create 

The Options menu lets you set or adjust a number of parameters 
that control the overall appearance and operation of TOW. The 
following sections describe each menu command and refer you to 
other sections of the manual where you can find more details. 

Chapter 9 describes how to set the current expression language 
and how it affects the way you enter expressions. 

The Macros command displays another menu that lets you define 
new keystroke macros or delete ones that you have already 
assigned to a key. It has the following commands: Create, Stop 
Recording, Remove, and Delete All. 

When issued, the Create command starts recording keystrokes 
into an assigned macro key. As an alternative, press the Alt= (Alt­
Equal) hot key for Create. 

When you choose Create to start recording, a prompt asks for a 
key to assign the macro to. Respond by typing in a keystroke or 
combination of keys (for example, Shift-F9). The message RECORDING 
will be displayed in the upper right comer of the screen while you 
record the macro. 

Stop Recording The Stop Recording command terminates the macro recording 
session. Use the Alt- (Alt-Hyphen) hot key to issue this command 
or press the macro keystroke that you are defining to stop 
recording. 

¢ Do not use the Options I Macro I Stop Recording menu selection to 
stop recording your macro, as these keystrokes will then be added 
to your macro! (The menu item is added to remind you of the Alt­
hot key.) 

64 Turbo Debugger for Windows User's Guide 



Remove 

Delete All 

Display Options 
command 

Figure 4.1 
The Display Options dialog 

box 

Displays a dialog box listing all current macros. To delete a 
macro, select one from the list and press Enter 

Removes all keystroke macro definitions and restores all keys to 
the meaning that they originally had. 

This command opens a diaiog box in which you can set several 
options that control the appearance of the TDW display. 

... FllmmllmVll!lm .. B!Wainii#Mllm!llC~Hllii•PROMPT 
[iJ=MoiliiTe7"11iiiEMOrfle: TOOEMIT.c 3r.;;;;;;,. 1 Lt] [•J=n 
static void showargs (int argc, char •argv []); 

/• program entry point 
•/ 

.. int PASCAL WinMain(HAND 
LPST 

Display Swapping The Display Swapping radio buttons let you choose from two 
ways of controlling how the User screen gets swapped back and 
forth with TDW's screen: 

Smart Swap to the User screen only when display output may 
occur. TDW swaps the screens any time that you step 
over a routine. 

Always Swap to the User screen every time the user program 
runs. Use this option if the Smart option is not catching 
all the occurrences of your program writing to screen. 
If you choose this option, the screen flickers every time 
you step through your program because TDW's screen 
is replaced for a short time with the User screen. 

Chapter 4, Starting TOW 65 



66 

Integer Format These radio buttons let you choose from three display formats for 
displaying integers: 

Hex Shows integers as hexadecimal numbers, displayed in 
a format appropriate to the current language. 

Decimal Shows integers as ordinary decimal numbers. 

Both Shows integers as both decimal numbers and as hex 
numbers in parentheses after the decimal value. 

Screen Lines These radio buttons are used to determine whether TDW's screen 
uses the normal 25-line display or the 43- or SO-line display 
available on EGA and VGA display adapters. 

Tab Size This input box lets you set how many columns each tab stop 
occupies. You can reduce the tab column width to see more text in 
source files that have a lot of code indented with tabs. You can set 
the tab column width from 1 to 32. 

Path for Source 
command 

Save Options 
command 

Sets the directories that TOW searches for your source files. See 
the discussion of the Module window in Chapter 8 for more 
information. 

This command opens a dialog box from which you can save your 
current options to a configuration file on disk. The options you 
can save are 

•your macros 

• the current window layout and pane formats 

• all settings made in the Options menu 

Turbo Debugger for Windows User's Guide 



Figure 4.2 
The Save Options dialog box 

Restore Options 
command 

I• program entry point 
•/ 

• int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevinstance, 
LPSTR lpszCmdLine, 1 • =Save Confi uratio 

unsigned int nl ines, nwords, pt ions 
unsigned long totalcharacters; Layout .. lliii .. 

Macros 

ln1tWinCrt(); 
iil ines = O; 
nwords = O; 
total characters = O; 
showarQs( argc, argv}; 
while (readalineTJ != O) { 

wordcount = makei ntowords buffer}; 

TDW lets you save your options in any or all of these ways, 
depending on which of the Save Configuration check boxes you 
turn on: 

Options Saves all settings made in the Options menu. 

Layout Saves only the windowing layout. 

Macros Saves only the currently defined macros. 

You can also use the Save To input box to change the name of the 
configuration file to which you are saving the options. 

Restores your options from a disk file. You can have multiple 
configuration files, containing different macros, window layouts, 
and so forth. You must choose a configuration file that was 
created with the Save Options command or with TDWINST. 

Returning to Windows 

Chapter 4, starting TOW 

You can end your debugging session and return to the Windows 
Program Manager at any time by pressing Alt-X, except when a 
dialog box is active (in that case, first close the dialog box by 
pressing Esc). You can also choose File I Quit. 

67 



68 Turbo Debugger for Windows User's Guide 



c H A p T E R 

5 

Controlling program execution 

When you debug a program, you usually execute portions of it 
and check at a stopping point to see that it is behaving correctly. 
TDW gives you many ways to control your program's execution. 
You can 

• execute single machine instructions or single source lines 

•skip over calls to functions or procedures 

•"animate" the debugger (perform continuous tracing) 

•run until the current function or procedure returns to its caller 

• run to a specified location 

•continue until a breakpoint is reached 

• reverse program execution 

A debugging session consists of alternating periods when either 
your program or the debugger is running. When the debugger is 
running, you can cause your program to run by choosing one of 
the Run menu's command options or pressing its hot key equiva­
lent. When your program is running, the debugger starts up again 
when either the specified section of your program has been exe­
cuted, or you interrupt execution with a special key sequence, or 
TDW encounters a breakpoint. 

This chapter shows you how to examine the state of your pro­
gram whenever TDW is in control. You'll see various ways to 
execute portions of your program, and also how to interrupt your 
program while it's running. Finally, you'll learn the ways you can 

Chapter 5, Controlling program execution 69 



restart a debugging session, either with the same program or with 
a different program. 

Examining the current program state 

70 

The Variables 
window 

Figure 5.1 
The Variables window 

The "state" of your program consists of the following elements: 

• its command-line arguments 

•the stack of active functions or procedures 

• the current location in the source code or machine code 

• register values 
• the contents of memory 

•the reason the debugger stopped your program 

• the value of your program data variables 

The following sections explain how to use the Variables window, 
the Stack window, the local menus of the Global and Static panes, 
and the Origin and Get Info commands. See Chapter 6 for more 
information on how to examine and change the values of your 
program data variables. 

You open the Variables window by choosing View I Variables. 
This window shows you all the variables (names and values) that 
are accessible from the current location irt your program. Use it to 
find variables whose names you can't remember. You can then 
use the local menu commands to further examine or change their 
values. You can also use this window to examine the variables 
local to any function that has been called. 

CRTWINPROC$QUIUIUIL "" 
CreateWinCrt$qv ???? 

Ex i tWinCrt$qv "?? 

In1 tWinCrt$qv "" 
EGINPAINT "" 
REATECAREI "" 
RfA TEW I NDOh " 77 11------1 

anal yzeviords @OA25: 0205 
printstat1st1cs @OA25.027D 
readaline @OA25:0378 
sh01,args @OA25. 03A8 
buffer "ABC\ODEF\ 0\0\0\0\ 0\ 0\0\ 0\ 01 0 10\0\ 0\0\ 
VJordcounts 10,0,2,0,0,0,0,0,0,0} 

The Variables window has two panes: 

Turbo Debugger for Windows User's Guide 



•The Global pane (top) shows all the global symbols in your 
program. 

•The Static pane (bottom) shows all the static symbols in the 
current module (the module containing the current program 
location, CS:IP) and all the symbols local to the current 
function. 

Both panes show the name of the variable at the left margin and 
its value at the right margin. If TD\V can't find any data type 
information for the symbol, it displays four question marks(????). 

Press Alt-F10 (as with all local menus) to pop up the Global pane's 
local menu. If control-key shortcuts are enabled, you can also 
press Ctr/ with the first letter of the desired command to access it. 

If your program contains routines that perform recursive calls, or 
if you want to view the variables local to a function that has been 
called, you can examine the value of a specific instance of a func­
tion's local data. First create a Stack window with View I Stack, 
then move the highlight to the desired instance of the function 
call. Next, press Alt-F10 and choose Locals. The Static pane of the 
Variables window then shows the values for that specific instance 
of the function. 

The Global pane local This local menu consists of three commands: Inspect, Change, and 
menu Watch. 

Inspect 
Change ..• 
Watch 

See Chapter 6 for more 
information on how Inspector 

windows behave. 

Inspect 

Opens an Inspector window that shows you the contents of the 
currently highlighted global symbol. 

If the variable you want to inspect is the name of a function, you 
are shown the source code for that function, or if there is no 
source file, a CPU window shows you the disassembled code. 

If the variable you inspect has a name that is superseded by a 
local variable with the same name, you'll see the actual value of 
the global variable, not the local one. This characteristic is slightly 
different than the usual behavior of Inspector windows, which 
normally show you the value of a variable from the point of view 
of your current program location (CS:IP). This difference gives 
you a convenient way of looking at the value of global variables 
whose names are also used as local variables. 

Chapter 5, Controlling program execution 71 



See Chapter 9 for more 
information on assignment 
and data type conversion. 

See Chapter 6 for more 
information on the Watches 

window. 

The Static pane local 
menu 

Inspect 
Change •.• 
Watch 
Show ••• 

See Chapter 6 for more 
information on how Inspector 

windows behave. 

72 

See Chapter 9 for more 
information on assignment 
and data type conversion. 

Change 

Changes the value of the currently selected (highlighted) global 
symbol to the value you enter in the Change dialog box. TDW 
performs any necessary data type conversion exactly as if the 
assignment operator for your current language had been used to 
change the variable. 

You can also change the value of the currently highlighted symbol 
by opening the Inspector window and typing a new value. When 
you do this, the same dialog box appears as if you had first 
specified the Change command. 

Watch 

Opens a Watches window and puts the currently selected 
(highlighted) global symbol in the window. This command 
simply puts a character string in the Watches window. 

The Watches window doesn't keep track of whether the variable 
is local or global. If you insert a global variable using the Watch 
command and later encounter a local variable by the same name, 
the local variable takes precedence as long as you are in the local 
variable's block. In other words, the Watches window always 
shows you the value of a variable from the point of view of your 
current program location (CS:IP). 

Press the Alt-F10 key combination to pop up the Static pane's local 
menu; if control-key shortcuts are enabled, use the Ctr/ key with 
the first letter of the desired command to access it. 

The Static pane has four local menu commands: Inspect, Change, 
Watch, and Show. 

Inspect 

Opens an Inspector window that displays the contents of the 
currently highlighted module's local symbol. 

Change 

Changes the value of the currently selected (highlighted) local 
symbol to the value you enter in the Change dialog box. TDW 
performs any data type conversion necessary, exactly as if the 
assignment operator had been used to change the variable. 

Turbo Debugger for Windows User's Guide 



See Chapter 6 for more 
!r:farmat!ar: or: how ~A/atches 

windows behave. 

Figure 5.2 
The Local Display dialog box 

The Stack window 

You can also change the value of the currently highlighted symbol 
by opening the Inspector window (see previous command) and 
starting to type a new value. When you do this, the same dialog 
box appears as if you had first specified the Change command. 

Watch 

The Watch command opens a Watches window and puts the 
currentiy seiected (h1ghhghted) static or iocal symbol in the 
window. 

Show 

Choosing Show brings up the Local Display dialog box, which 
enables you to change both the scope of the variables being 
shown (static, auto, or both) and the module from which these 
variables are selected. 

The following radio buttons appear in this dialog box: 

Static Show only static variables. 

Auto Show only variables local to the current block. 

Both Show both types of variables (the default). 

Module Change the current module. Brings up a dialog box 
showing the list of modules for the program, from 
which you can select a new module. 

You create a Stack window by choosing View I Stack. The Stack 
window lists all active functions or procedures. The most recently 
called routine is displayed first, followed by its caller and the 
previous caller, all the way back to the WinMain function. For each 
function, you see the value of each parameter it was called with. 

Chapter 5, Controlling program execution 73 



Figure 5.3 
The Stack window 

The Stack window likewise displays the names of member 
functions, each of which is prefixed with the name of the class 
that defines the member function: 

SHAPES::ACIRCLE(174, 360, 75.0) /* C++ */ 

Press Alt-F10 to pop up the Stack window local menu, or press Ctr/ 
with the first letter of the desired command to access it. 

The Stack window local The Stack window local menu has two commands: Inspect and 
menu Locals. 

74 

Inspect 
Locals 

Inspect 

Opens a Module window positioned at the active line in the 
currently highlighted function. If the highlighted function is the 
top (most recently called) function, the Module window shows 
the current program location (CS:IP). If the highlighted function is 
one of the functions that called the most recent function, the 
cursor is positioned on the line in the function that will be 
executed after the called function returns. 

You can also invoke this command by positioning the highlight 
bar over a function, then pressing Enter. 

Locals 

Opens a Variables window that shows the symbols local to the 
current module, as well as the symbols local to the currently high­
lighted function. If a function calls itself recursively, there are 
multiple instances of the function in the Stack window. By posi­
tioning the highlight bar on one instance of the function, you can 
use this command to look at the local variables in that instance. 

Turbo Debugger for Windows User's Guide 



The Origin local 
menu command 

The Get info 
command 

Figure 5.4 
The Get Info text box 

Both the Module window and the Code pane of a CPU window 
have an Origin command on their local menus. Origin positions 
the cursor at the current code segment (CS:IP). This is very useful 
when you have been looking at your code and want to get back to 
where your program stopped. 

You can choose File I Get Info to look at memory use and to 
determine why the debugger gained control. This command 
produces a text box that disappears when you press Enter, 
Spacebar, or Esc. 

The following information appears in the System Information 
box: 

•The name of the program you're debugging. 

•A description of why your program stopped. 

• Information about the global memory on your system. 

•The DOS version you're running. 

• The current date and time. 

Global memory TOW provides you with the following information about global 
information memory: 

Mode Memory modes can be large-frame EMS, small­
frame EMS, and non-EMS (extended memory). 

Chapter 5, Controlling program execution 75 



76 

Banked The amount in kilobytes of memory above the EMS 
bank line (eligible to be swapped to expanded 
memory if the system is using it). 

Not banked The amount in kilobytes of memory below the EMS 
· bank line (not eligible to be swapped to expanded 
memory). 

Largest The largest contiguous free block of memory, in 
kilobytes. 

Status line messages Here are the messages you'll see on the second (status) line, 
describing why your program stopped: 

Stopped at_ 
Your program stopped as the result of a completed Run I 
Execute To, Run I Go to Cursor, or Run I Until Return 
command. This status line message also appears when your 
program is first loaded, and the compiler startup code in your 
program has been executed to put you at the start of your 
source code. 

No program loaded 
You started TOW without loading a program. You cannot 
execute any code until you either load a program or assemble 
some instructions using the Assemble local menu command in 
the Code pane of a CPU window. 

Trace 
You executed a single source line or machine instruction with 
F7 (Run I Trace). 

Step 
You executed a single source line or machine instruction, 
skipping function calls, with FB (Run I Step Over). 

Breakpoint at _ 
Your program encountered a breakpoint that was set to stop 
your program. The text after "at" is the address in your pro­
gram where the breakpoint occurs. 

Window message breakpoint at_ 
Your program encountered a Windows message breakpoint 
that was set to stop your program. The text after "at" is the 
window procedure the message was destined for. 

Turbo Debugger for Windows User's Guide 



Terminated, exit code_ 
Your program has finished executing. The text after "code" is 
the numeric exit code returned to Windows by your program. 
If your program does not explicitly return a value, a garbage 
value might be displayed. You cannot run your program until 
you reload it with Run I Program Reset. 

Loaded 
You either reset )Tour program or loaded TD\A/ and specified 
both a program and the option that prevents the compiler 
startup code from executing. Because no instructions have 
been executed at this point, including those that set up your 
stack and segment registers, if you try to examine certain data 
in your program, you might see incorrect values. 

Interrupt 
You pressed the interrupt key (Ctrl-Alt-SysRq) to regain control. 
Your program was interrupted and control passed back to the 
debugger. 

Exception_ 
A processor exception has occurred, which usually happens 
when your program attempts to execute an illegal instruction 
opcode. The Intel processor documentation describes each 
exception code in complete detail. 

The most common exception to occur with a Windows 
program is Exception 13. This exception indicates that your 
program has attempted to perform an invalid memory access. 
(Either the selector value in a segment register is invalid or the 
offset portion of an address points beyond the end of the 
segment.) You must correct the invalid pointer causing the 
problem. 

Divide by zero 
Your program has executed a divide instruction where the 
divisor is zero. 

Global breakpoint_ at_ 
A global breakpoint has been triggered. You are told the 
breakpoint number and the location in your program where 
the breakpoint occurred. 

Chapter 5, Controlling program execution 77 



The Run menu 

Run 

The Run menu has a number of options for executing different 
parts of your program. Since you use these options frequently, 
most are available on function keys. 

Run 
Go to cursor 
Trace into 
Step over 
Execute to ... 
Until return 
Animate ••• 
Back trace 
Instruction trace 

Arguments ... 
Program reset 

F9 
F4 
F7 
F8 

Alt-F9 
Alt-F8 

Alt-F4 
Alt-F7 

Ctrl-F2 

Runs your program at full speed. Control returns to TDW when 
[ff] one of the following events occurs: 

Goto Cursor 

Trace Into 

78 

•Your program terminates. 

•A breakpoint with a break action is encountered. 
•You interrupt execution with Ctrl-Alt-SysRq. 

Executes your program up to the line that the cursor is on in the 
current Module window or CPU Code pane. If the current 
window is a Module window, the cursor must be on a line of 
source code. 

Executes a single source line or assembly level instruction. If the 
current window is a Module window, a single line of source code 
is executed; if it's a CPU window, a single machine instruction. If 
the current line contains any function calls, TDW traces into the 
routine. If the current window is a CPU window, pressing Fl on a 
CALL instruction steps to the routine being called 

Turbo Debugger treats a class member function just like any other 
function. Fl traces into the source code if it's available. 

Turbo Debugger for Windows User's Gulde 



Step Over 

Execute To 

Until Return 

Executes a single source line or machine instruction, skipping 
over any function calls. If the current window is a Module 
window, this command usually executes a single source line. If 
the current window is a CPU window, pressing FB on a CALL 
instruction steps over the routine being called. 

If you step over a single source line, TOW treats any function calls 
in that line as part of the line. You don't end up at the start of one 
of the functions. Instead, you end up at the next line in the current 
routine or at the previous routine that called the current one. 

If you are in a CPU window, TOW treats certain instructions as a 
single instruction, even when they cause multiple assembly 
instructions to be executed. Here is a complete list of the 
instructions TOW treats as single instructions: 

CALL Subroutine call, near, and far 
INT Interrupt call 
LOOP Loop control with CX counter 
LOOPZ Loop control with CX counter 
LOOPNZ Loop control with CX counter 

Also stepped over are REP, REPNZ, or REPZ followed by CMPS, 
CMPS, CMPSW, LODSB, LODSW, MOVS, MOVSB, MOVSW, 
SCAS, SCASB, SCASW, STOS, STOSB, or STOSW. 

The Run I Step Over command treats a call to a class member 
function like a single statement, and steps over it like any other 
function call. 

Executes your program until the address you specify in the dialog 
box is reached. The address you specify might never be reached if 
a breakpoint action is encountered first or you interrupt 
execution. 

Executes until the current function returns to its caller. This is 
useful in two circumstances: When you have accidentally exe­
cuted into a function you aren't interested in with Run I Trace 
instead of Run I Step, or when you've determined that the current 

Chapter 5, Controlling program execution 79 



80 

Animate 

Back Trace 

Some restrictions apply to 
using the Execution History 

window. See page 82 for 
more information. 

Instruction Trace 

procedure works to your satisfaction, and you don't want to 
slowly step through the rest of it. 

Performs a continuous series of Trace Into commands, updating 
the screen after each one. (The effect is to run your program in 
slow motion.) You can watch the current location in your source 
code and see the values of variables changing. Press any key to 
interrupt this command. 

After you choose Run I Animate, TOW prompts you for a time 
delay between successive traces. The time delay is measured in 
tenths of a second; the default is 3. 

If you are tracing (F7 or Alt-Fl) through your program, Back Trace 
reverses the order of execution. Reverse execution is handy if you 
trace beyond the point where you think there may be a bug, and 
want to reverse program execution back to that point. This feature 
lets you "undo" the execution of your program by stepping 
backward through the code, either a single step at a time or to a 
specified point highlighted in the Execution History window. 

Reverse execution is always available in the CPU window. 
However, you can only execute source code in reverse if full 
history is On. (Use the View I Execution History command to 
bring up the Execution History window, then in the local menu 
set Full History On.) 

TOW will not execute in reverse any Windows code called by 
your program unless you are in the CPU window and the code is 
in a DLL you have selected for debugging. 

Executes a single machine instruction. Use this command when 
you want to trace into an interrupt, or when you're in a Module 
window and you want to trace into a procedure or function that's 
in a module with no debug information (for example, a library 
routine). 

Since you will no longer be at the start of a source line, this 
command usually places you in a CPU window. 

Turbo Debugger for Windows User's Guide 



Arguments 

Program Reset 

This command lets you set new command-line arguments for 
your program. For a discussion of this command, see "Changing 
the program arguments" on page 86. 

Reloads from disk the program you're debugging. You might use 
.,_i..,.; ..... ,... ...... _...--~-....l 
Ui..li.'.) LU.l.ll11la.tlU 

•When you've executed past the place where you think there is a 
bug. 

•When your program has terminated and you want to run it 
again. 

•If you're in a Module or CPU window, you've suspended your 
Windows application program with Ctr/-A/t-SysRq, and you want 
to terminate it and start over. 

•If you've already loaded your application, you've just set 
startup debugging for one or more dynamic link libraries 
(DLLs), and you now want to debug those DLLs. 

If you're in a Module or CPU window, the debugger sets the 
current-line marker at the start of the program, but the display 
stays exactly where you were when you chose Program Reset. 
This behavior makes it easier for you to set the cursor near where 
you were and run the program to that line. 

If you chose Program Reset because you just executed one source 
statement more than you intended, you can position the cursor up 
a few lines in your source file and press F4 to run to that location. 
Alternatively, if Full History had been on (see the local menu of 
the View I Execution History window), you could have chosen 
Run I Back Trace to step back through previously executed code 
instead of choosing Program Reset. 

The Execution History window 

TOW has a special feature called the execution history that keeps 
track of each instruction as it's executed (provided that you're 
tracing into the code). You can examine these instructions and, if 
you wish, undo them to return to a point in the program where 

Chapter 5, Controlling program execution 81 



you think there might be a bug. TOW can record about 400 
instructions. 

Figure5.5 
The Execution History window 

You can examine the execution history in the Execution History 
window, which you open by choosing View I Execution History. 

The Execution History window shows instructions already 
executed that you can examine or undo. Use the highlight bar to 
make your selection. 

¢ The execution history only keeps track of instructions that have 
been executed with the Trace Into command (F7) or the Instruction 
Trace command (Alt-F7). It also tracks for Step Over, as long as you 
don't encounter one of the commands listed on page 79 or 83. As 
soon as you use the Run command or execute an interrupt, the 
execution history is deleted. (It starts being recorded again as 
soon as you go back to tracing.) 

¢ You cannot backtrace into an interrupt call. 

¢ If you step over a function call, you will not be able to trace back 
beyond the instruction following the return. 

¢ Backtracing through a port-related instruction has no effect, since 
you can't undo reads and writes. 

The local menu 

Inspect 
Reverse execute 

Full history No 

The local menu for the Instructions pane contains three options, 
Inspect, Reverse Execute, and Full History. 

Inspect 

This command takes you to the command highlighted in the 
Instructions pane. If it is a line of source code, you are shown that 
line in the Module window; if there is no source code, the CPU 
window opens, with the instruction highlighted in the Code pane. 

Reverse Execute 

This command reverses program execution to the location 
~[ill highlighted in the Instructions pane. If you selected a line of 

82 Turbo Debugger for Windows User's Gulde 



source code, you are returned to the Module window; otherwise, 
the CPU window appears with the highlight bar of the Code pane 
on the instruction. 

Wamingl You can never reverse back over a section of your program that 
you didn't trace through. For example, if you set a breakpoint and 
then pressed F9 to run until the breakpoint was reached, all your 
reverse execution history will be thrown away. 

Wamlngl The INT instruction causes any previous execution history to be 
thrown out. You can't reverse back over this instruction, unless 
you press Alt-Fl to trace into the interrupt. 

The following instructions do not cause the history to be thrown 
out, but they cannot have their effects undone. You should be on 
the lookout for unexpected side effects if you back up over these 
instructions: 

IN INSW 
OUT OUTSB 
INSB OUTSW 

Full History 

This command is a toggle. If it is set to On, backtracing is enabled. 
If it is Off, backtracing is disabled. 

Interrupting program execution 

Because Windows applications are interactive programs, the best 
way to debug one is to run the application and then interrupt it or 
cause it to encounter a breakpoint. 

As a primary debugging technique, stepping or tracing through a 
Windows application can be of marginal utility because even­
tually you reach code that sits in a loop, waiting for a message for 
a window. Instead, you should set code and message breakpoints 
if possible, run your program until it encounters one of these 
breakpoints, and then step or trace if necessary. 

If you do step into the message loop, you can press the Alt-F5 key 
combination to see the application screen, but you won't be able 
to interact with the program. Instead, you can press F9 to run the 
program so you can use the application's windows. But what 
happens if you need to get back to TDW to track down a bug that 
shows up while you're using one of your application's windows? 

Chapter 5, Controlling program execution 83 



What you can do is interrupt your program by pressing the Ctrl­
Alt-SysRq key combination. Once you're back in TDW, you can set 
code or message breakpoints, set up view's, look at any messages 
you might have been logging, or whatever else you need to do to 
track the bug. When you're ready to return to the application 
again, press F9 to run it. 

¢ When you return to TDW, if you see a CPU window without any 
lines corresponding to lines in your code, you're probably in 
Windows code. You can display the Module window and set 
breakpoints or whatever else you need to do, but there are some 
things you should not do: 

•Single-step through your program. Attempting to single-step 
after interrupting your application can have unpredictable 
effects if your application was executing Windows code. A 
typical result is that Windows terminates both your application 
and TDW, generating the message, "Unrecoverable application 
error." · 

•Terminate or reload either your application or TOW. If you do, 
Windows gets confused and hangs, forcing you to reboot. If 
you do try to exit or reload in this situation, TOW displays the 
following prompt in a dialog box: 

Ctrl-Alt-SysRq interrupt, system crash possible, Continue? 

At this point, the best course of action is to select No, 
return to TDW and set a breakpoint you know your code will 
hit, then run your application again and cause it to hit the 
breakpoint and exit to TOW. 

Program termination 

84 

When your program terminates and exits back to Windows, TDW 
regains control. It displays a message showing the exit code that 
your program returned to Windows. Once your program 
terminates, using any of the Run menu options causes TDW to 
reload your program. 

The segment registers and stack are usually not correct when your 
program has terminated, so do not examine or modify any pro­
gram variables after termination. 

Turbo Debugger for Windows User's Guide 



Restarting a debugging session 

TDW has a feature that makes restarting a debugging session as 
painless as possible. When you're debugging a program, it's easy 
to go just a little too far and overshoot the real cause of the 
problem. In that case, TDW lets you restart debugging but 
suspends execution before the last few commands that caused 
you to mlss the problem lhcti yuu wanted tu ubserve. How? Ii lets 
you reload your last program from disk, and preserves any 
previous command-line arguments. 

To reload the program you were debugging, choose Run I Pro­
gram Reset (Ctrl-F2). TDW reloads the program from disk, with 
any data you have added since you last saved to disk. Reloading 
is the safest way to restart a program. Restarting by executing at 
the start of the program can be risky, since many programs expect 
certain data to be initialized from the disk image of the program. 

¢ Program Reset leaves breakpoints and watchpoints intact. 

Opening a new program to debug 

Figure 5.6 
The Enter Program Name to 

Load dialog box 

You load a new program to debug by choosing File I Open to open 
the Enter Program Name to Load dialog box. 

bi dsp.exe 
donuthin.exe 
dotota l . exe 
drwhappy. exe 
echo.exe 
hell o.exe 
little.exe 
mytest.exe 
pwrs.exe 
reverse. exe 
small .exe 
tcdemo.exe 

myprogs 

You can enter a file name (extension .EXE) in the File Name input 
box, or press Enter to activate a list box of all the .EXE files in the 
current directory. Move the highlight bar to the file you want to 
load and press Enter. 

Chapter 5, Controlling program execution 85 



Another way of specifying a file in the list box is to type in the 
name of the file you want to load. The highlight bar in the Files 
list box moves to the file that begins with the first letter(s) you 
typed. When the bar is positioned on the file you want, press 
Enter. 

You can supply arguments to the program to debug by placing 
them after the program name, as follows: 

myprog a b c 

This command loads program MyProg with three command-line 
arguments, a, b, and c. 

Changing the program arguments 

86 

If you forgot to supply some necessary arguments to your pro­
gram when you loaded it, you can use the Run I Arguments 
command to set or change the arguments. Enter new arguments 
exactly as you would following the name of your program on the 
command line. 

Once you have entered new arguments, TDW asks you if you 
want to reload your program from disk. You should answer Yes, 
because for most programs, the new arguments will only take 
effect if you reload the program first. 

Turbo Debugger for Windows User's Guide 



c H A p T E R 

6 

Examining and modifying data 

For how to examine or 
modify arbitrary blocks of 

memory as hex data bytes, 
see Chapter 12. 

TOW provides a unique and intuitive way to examine and even 
change your program's data. 

•Inspector windows let you look at your data as it appears in 
your source file. You can "follow" pointers, scroll through 
arrays, and see structures, records, and unions exactly as you 
wrote them. 

• You can also put variables and expressions into the Watches 
window, where you can watch their values as your program 
executes. 

•The Evaluate/Modify dialog box shows you the contents of any 
variable and lets you assign a new value to it. 

This chapter assumes that you understand the various data types 
that can be used in Turbo C++ for Windows. If you are fairly new 
to the language and have not yet explored all its data types (char, 
int, short, long, unsigned, float, double, and so on), this chapter 
can give you valuable information about them. When you have 
delved into the more complex data types (arrays, pointers, 
structures, files, classes, and so on), return to this chapter to learn 
more about looking at them with TOW. 

This chapter shows you how to examine and modify variables in 
your program. First, we explain the Data menu and its options. 
We then discuss how you can modify program data by evaluating 
expressions that have side effects, and show you how to point 
directly at data items in your source modules. Finally, we 

Chapter 6, Examining and modifying data 87 



The Data menu 

Inspect .•• 
Evaluate/modify ..• Ctrl-F4 
Add watch... Ctrl-F7 
Function return 

Inspect 

introduce the Watches window and describe the way that the data 
types of each language appear in Inspector windows. 

The Data menu lets you choose how to examine and change pro­
gram data. You can evaluate an expression, change the value of a 
variable, and open Inspector windows to display the contents of 
your variables. 

Prompts you for the variable that references the data you want to 
inspect, then opens an Inspector window that shows the contents 
of the program variable or expression. You can enter a simple 
variable name or a complex expression. 

If the cursor is on a variable in a text pane when you issue this 
command, the dialog box automatically contains the variable at 
the cursor, if any. If you select an expression in a text pane (using 
Ins), the dialog box contains the selected expression. 

Inspector windows really come into their own when you want to 
examine a complicated data structure, such as an array of 
structures or a linked list of items. Since you can inspect items 
within an Inspector window, you can "walk" through your pro­
gram's data objects as easily as you scroll through your source 
code in the Module window. 

¢ See the "Inspector windows" section later in this chapter for a 
complete description of how Inspector windows behave. 

88 

Evaluate/Modify 

See Chapter 9 for a 
complete discussion of 

expressions. 

Opens the Evaluate/Modify dialog box (Figure 6.1), which 
prompts you for an expression to evaluate, then evaluates it 
exactly as the compiler would during compilation when you 
choose the Eval button. 

If the cursor is in a text pane when you issue this command, the 
dialog box automatically contains the variable at the cursor, if 
any. If you select an expression (using Ins), the dialog box contains 
the marked expression. 

Turbo Debugger for Windows User's Guide 



Figure 6.1 
The Evaluate/Modify dialog 

box 

See Chapter 9 for a 
discussion of format control. 

Evaluate/modif 

Remember that you can add a format control string after the 
expression you want to watch. TDW displays the result in a 
format suitable for the data type of the result. To display the 
result in a different format, put a comma (,) separator, then a 
format control string after the expression. Displaying in a 
different format is useful when you want to watch something, but 
your program displays it in a format other than TDW's default 
display format for the data type. 

The dialog box has three fields. 

•In the top field, you type the expression you want to evaluate. 
This field is the Evaluate input box, and it has a history list just 
like any other input box. 

•The middle field displays the result of evaluating your 
expression. 

•The bottom field is an input box where you can enter a new 
value for the expression. If the expression can't be modified, 
this box reads <Not available>, and you can't move your cursor 
into it. 

Your entry in the New Value input box takes effect when you 
choose the Modify button. Use Tab and Shift-Tab to move from one 
box to another, just as you do in other dialog boxes. Press Esc from 
inside any input box to remove the dialog box, or click the Cancel 
button with your mouse. 

Data strings too long to display in the Result input box are termi­
nated by an arrow(•). You can see more of the string by scrolling 
to the right. 

If you're debugging a C++ program, the Evaluate/Modify dialog 
box also lets you display the members of a class instance. You can 
use any format specifier with an instance that can be used in 
evaluating a record. 

Chapter 6, Examining and modifying data 89 



You can't execute 
constructors or destructors in 

the Evaluate window. 

When you're tracing inside a member function, TOW knows 
about the scope and presence of the this parameter. You can 
evaluate this and follow it with format specifiers and qualifiers. 

Turbo Debugger also lets you call a member function from inside 
the Evaluate/Modify dialog box. Just type the instance name 
followed by a dot, followed by the member function name, 
followed by the actual parameters (or empty parentheses if there 
are no parameters). With these declarations, 

class point { 
public: 

int x, y, visible; 

point (); 
Npoint (); 
int Show(); 
int Hide{); 
void MoveTo(int NewX, int NewY); 

} ; 

point APoint; 

you could enter any of these expressions in Turbo Debugger's 
Evaluate window: 

Expression 

APoint.x 
APoint 
APoint.MoveTo 
APoint.Show 
APoint.Show() 

Result 

int 2 (Ox2) 
class point (1,2,27489) 
void() @6B61:0299 
int() @6B61:0285 
int 1 (Oxl) 

Expressions with side effects The C language has a feature called expressions with side effects that 
can be powerful and convenient, as well as a source of surprises 
and confusion. 

90 

An expression with side effects alters the value of one or more 
variables or memory areas when it is evaluated. For example, the 
increment(++) and decrement(·-) operators and the assignment 
operators (=, +=, and so on) have this effect. If you execute 
functions in your program within a C expression (for example, 
myfunc(2)), note that your function can have unexpected side 
effects. 

If you don't intend to modify the value of any variable but merely 
want to evaluate an expression containing some of your program 
variables, don't use any of the operators that have side effects. On 
the other hand, side effects can be a quick and easy way to change 

Turbo Debugger for Windows User's Guide 



Add Watch 

Function Return 

the value of a variable or memory area. For example, to add 1 to 
the value of your variable named count, evaluate the C expression 
count++. 

You can also use the Evaluate/Modify dialog box as a simple 
calculator by typing in numbers as operands instead of program 
variables. 

Prompts you for an expression to watch, then places the expres­
sion or program variable on the list of variables displayed in the 
Watches window when you press Enter or choose the OK button. 

If the cursor is in a text pane when you issue this command, the 
dialog box automatically contains the variable at the cursor, if 
any. If you select an expression (using Ins), the dialog box contains 
the selected expression. 

Shows you the value the current function is about to return. Use 
this command only when the function is about to return to its 
caller. 

The return value is displayed in an Inspector window, so you can 
easily examine return values that are pointers to compound data 
objects. 

Function Return saves you from having to switch to a CPU 
window to examine the return value placed in the CPU registers. 
And since TOW also knows the data type being returned and 
formats it appropriately, this command is much easier to use than 
a hex dump. 

Pointing at data objects in source files 

See Chapter 8 for a full 
discussion of using Module 

windows. 

TOW has a powerful mechanism to relieve you from always 
typing in the names of program variables that you want to 
inspect. From within any Module window, you can place the 
cursor anywhere within a variable name and use the local menu 
Inspect command to create an Inspector window showing the 
contents of that variable. You can also select an expression or 

Chapter 6, Examining and modifying data 91 



variable to inspect by pressing Ins and using the cursor keys to 
highlight it before choosing Inspect. 

The Watches window 

Figure6.2 
The Watches window 

See Chapter 9 for a 
complete discussion of 

scopes and when a variable 
or parameter is valid. 

Wamingl 

92 

The Watches window lets you list variables and expressions in 
your program whose values you want to track. You can watch the 
value of both simple variables (such as integers) and complex 
data objects (such as arrays). In addition, you can watch the value 
of a calculated expression that does not refer directly to a memory 
location. For example, x * y + 4. 

Choose View I Watches to access the Watches window. It holds a 
list of variables or expressions whose values you want to watch. 
For each item, the variable name or expression appears on the left 
and its data type and value on the right. Compound values like 
arrays and structures appear with their values between braces 
({}).If there isn't room to display the entire name or expression, it 
is truncated. 

When you enter an expression to watch, you can use variable 
names that are not valid yet because they are in a function that 
hasn't been called. TOW lets you set up a watch expression before 
its scope becomes active. This situation is the only time you can 
enter an expression that can't be immediately evaluated. 

If you mistype the name of a variable, the mistake won't be 
detected because TOW assumes it is the name of a variable that 
will become available as your program executes. 

Unless you use the scope-overriding mechanism discussed in 
Chapter 9, TOW evaluates expressions in the Watches window in 
the scope of the current location where your program is stopped. 
Hence an expression in the Watches window is evaluated as if it 
appeared in your program at the place where the program is 
stopped. If a watch expression contains a variable name that is not 
accessible from the current scope-for example, if it's private to 

Turbo Debugger for Windows User's Guide 



The Watches 
window local 

menu 

another module-the value of the expression is undefined and is 
displayed as four question marks(????). 

When you' re tracing inside a member function, you can add the 
this parameter to the Watches window. 

As with all local menus, press Alt-F10to pop up the Watches 
window local menu. If you have control-key shortcuts enabled, 
press Ctr/ with the first letter of the desired command to access it. 

Watch ••• 
Edit ••• 
Remove 
Delete all 

Inspect 
Change ••• 

Watch Prompts you for the variable name or expression to add to the 
Watches window. It is added at the current cursor location. 

Edit Opens a dialog box in which you can edit an expression in the 
Watches window. You can change any watch expression that's 
there, or enter a new one. 

You can also invoke this command by pressing Enter once you've 
positioned the highlight bar over the watch expression you want 
to change. Press Enter or choose the OK button to put the edited 
expression into the Watches window. 

Remove Removes the currently selected item from the Watches window. 

Delete All Removes all the items from the Watches window. This command 
is useful if you move from one area of your program to another, 
and the variables you were watching are no longer relevant. 
(Then use the Watch command to enter more variables.) 

Inspect Opens an Inspector window to show you the contents of the 
currently highlighted item in the Watches window. If the item is a 
compound object (array, class, or struct), you can view all its 
elements, not just the ones that fit in the Watches window. (The 
next section, "Inspector Windows," explains all about Inspector 
windows.) 

Chapter 6, Examining and modifying data 93 



Change 

See Chapter 9 for more 
Information on the 

assignment operator and 
type conversion (casting). 

Changes the value of the currently highlighted item in the 
Watches window to the value you enter in the dialog box. If the 
current language you're using permits it, TOW performs any 
necessary type conversion exactly as if the assignment operator 
had been used to change the variable. 

Inspector windows 

94 

An Inspector window displays your program data appropriately, 
depending on the data type you're inspecting. Inspector windows 
behave differently for scalars (for example, char or int), pointers 
(char*), arrays (long x[4]), functions, and structures. 

The Inspector window lists the items that make up the data object 
being inspected. The title of the window shows the expression or 
the name of the variable being inspected. 

The first item in an Inspector window is always the memory 
address of the data item being inspected, expressed as a segment: 
offset pair, unless it has been optimized to a register or is a 
constant (for example, 3). 

To examine the contents of a variable in an Inspector window as 
raw data bytes, choose View I Dump while you're in the Inspector 
window. The Dump window comes up, with the cursor posi­
tioned to the data displayed in the Inspector window. You can 
return to the Inspector window by closing the window with the 
Window I Close command (Alt-F3), or clicking the close box with 
your mouse. 

The following sections describe the different Inspector windows 
that can appear for two of the languages supported by TOW: C++ 
and assembler. The programming language used dictates the 
format of the information displayed in Inspector windows. Data 
items and their values always appear in a format similar to the 
one they were declared with in the source file. 

Remember that you don't have to do anything special to cause the 
different Inspector windows to appear. The right one appears 
automatically, depending on the data you're inspecting. 

Turbo Debugger for Windows User's Guide 



C data Inspector 
windows 

Scalars Scalar Inspector windows show you the value of simple data 
items, such as 

Figure 6.3 
A C scalar Inspector window 

Pointers 

char x = 4; 
unsigned long y = 1234561; 

Following the top line, these Inspector windows have oniy a 
single line of information that gives the address of the variable. To 
the left on the following line appears the type of the scalar 
variable (char, unsigned long, and so forth), and to the right 
appears its present value. The value can be displayed as decimal, 
hex, or both. It's usually displayed first in decimal, with the hex 
values in parentheses (using the standard C hex prefix of Ox). Use 
TDWINST to change how the value is displayed. 

If the variable being displayed is of type char, the equivalent 
character is also displayed. If the present value does not have a 
printing character equivalent, TOW uses the backslash (\) 
followed by a hex value to display the character value. This 
character value appears before the decimal or hex values. 
l!i(•]=Inspecting wordcount=3=[t] (+]1 
llf 82: FFC4 ~ ns1gned int 2 (OxZ) 

Pointer Inspector windows show you the value of data items that 
point to other data items, such as 

char *p = "abc"; 
int *ip = 0; 
int **ipp = &ip; 

Pointer Inspector windows usually have a top line that contains 
the address of the variable, followed by a single line of informa­
tion about the data pointed to. To the left appears [O], indicating 
the first member of an array. To the right appears the value of the 
item being pointed to. If the value is a complex data item, such as 
a structure or an array, however, only as much of it as possible is 
displayed with the values enclosed in braces ({and}). 

If the pointer is of type char and appears to be pointing to a null­
terminated character string, more information appears, showing 
the value of each item in the character array. To the left in each 

Chapter 6, Examining and modifying data 95 



96 

Flgure6.4 
A C pointer Inspector 

window 

line appears the array index ([1], [2], and so on), and the value 
appears to the right as it would in a scalar Inspector window. In 
this case, the entire string is also displayed on the top line, along 
with the address of the pointer variable and the address of the 
string that it points to. 

You also get multiple lines if you open the Inspector window and 
then use the Range local menu command. This is an important 
technique for C programmers who use pointers to point to arrays 
of items as well as single items. For example, if you had the code 

int array [10]; 
int *arrayp = array; 

and you wanted to look at what arrayp pointed to, use the Range 
local command on arrayp, specifying a start index of 0 and a range 
of 10. If you had not done this, you would only have seen the first 
item in the array. 

Pointer Inspector windows also have a lower pane indicating the 
data type to which the pointer points. 

Structures and unions Structure and union Inspector windows show you the value of 
the members in your structure and union data items. For 
example, 

struct linfo { 
unsigned int count; 
unsigned int firstletter; 

letterinfo [26]; 

union { 
int small; 
long large; 

) holder; 

These Inspector windows have another pane below the one that 
shows the values of the members. This additional pane shows the 
data type of the member highlighted in the top pane. 

Turbo Debugger for Windows User's Guide 



Figure 6.5 
A C structure or union 

Inspector window 

(17937:0852 liiiii 
Structures and unions appear the same in Inspector windows. The 
lower pane of the Inspector window tells you whether you are 
looking at a structure or a union. These Inspector windows have 
as many items after the address as tht!re art! membt!r~ in tht! ~truc­
ture or union. Each item shows the name of the member on the 
left and its value on the right, displayed in a format appropriate 
to its C data type. 

Arrays Array Inspector windows show you the value of arrays of data 

Figure6.6 
A C array Inspector window 

Functions 

items, such as · 

long thread[3] [4] [5]; 
char message[] = "eat these words"; 

There is a line for each member of the array. To the left on each 
line appears the array index of the item. To the right appears the 
value of the item. If the value is a complex data item such as a 
structure or array, as much of it as possible is displayed. 

You can use the Range local menu command to examine any 
portion of an array. This is useful if the array has a lot of elements, 
and you want to look at something in the middle of the array. 

[•]=Inspecting letterinf0=3=[t] [~]9 
(17682:0852 .. 

I 

Function Inspector windows show each parameter with which a 
function is called. The parameters are displayed below the 
memory address at the top of the window. 

Chapter 6, Examining and modifying data 97 



98 

Figure 6.7 
A C function Inspector 

window 

Assembler data 
Inspector 
windows 

tl71E9:02DD lliiii 
They also give you information about the calling parameters, 
return data type, and calling conventions for a function. The 
lower pane indicates the data type returned by the function. 

Scalars Scalar Inspector windows in assembly language programs show 

Flgure6.8 
An assembler scalar 

Inspector window 

Pointers 

you the value of simple data items, such as 

VARl DW 99 
MAGIC DT 4.608 
BIGNUM DD 123456 

These Inspector windows have only a single line of information 
following the top line that gives the address of the variable. To the 
left appears the type of the scalar variable (BYTE, WORD, 
DWORD, QWORD, and so forth), and to the right appears its 
present value. The value can be displayed as decimal, hex, or 
both. It's usually displayed first in decimal, with the hex values in 
parentheses (using the standard assembler hex postfix H). You 
can use TDWINST to change how the value is displayed. 

~] 
~ 
Pointer Inspector windows in assembler programs show you the 
value of data items that point to other data items, such as 

X DW 0 
XPTR DW X 
FARPTR DD X 

Pointer Inspector windows usually have only a single line of 
information following the top line that gives the address of the 
variable. To the left appears [O], indicating the first member of an 
array. To the right appears the value of the item being pointed to. 
If the value is a complex data item such as an array, however, only 

Turbo Debugger for Windows User's Guide 



Figure6.9 
An assembler pointer 

Inspector window 

as much of it as possible is displayed, with the values enclosed in 
braces ( {} ). 

If the pointer is of type BYTE and appears to be pointing to a 
null-terminated character string, more information appears, 
showing the value of each item in the character array. To the left 
in each line appears the array index ([1], [2], and so on), and the 
value appears to the right as it would in a scalar Inspector win­
dow. In this case, the entire string is also displayed on the top 
line, along with the address of the variable and the address of the 
string that it points to. 

You also get multiple lines if you open the Inspector window with 
a Range local menu command and specify a count greater than 1. 

Arrays Array Inspector windows in assembler programs show you the 
value of arrays of data items, such as 

WARRAY DW 10 DUP (0) 
MSG DB "Greetings",0 

There is a line for each member of the array. To the left on each 
line appears the array index of the item and to the right is its 
present value. If the value is a complex data item such as a 
STRUC, however, only as much of it as possible is displayed. 

You can use the Range local command to examine a portion of an 
array. This is useful if the array has a lot of elements, and you 
want to look at something in the middle of the array. When you 
choose Range, you are prompted to enter a starting index 
followed by a comma and the number of members to inspect. 

Chapter 6, Examining and modifying data 99 



Flgure6.10 
An assembler array Inspector 

window 

Structures and unions Structure Inspector windows in assembler programs show you 
the value of the fields in your STRUC and UNION data objects. For 
example, 

Figure6.l l 
An assembler structure 

Inspector window 

x STRUC 
MEMl DB ? 
MEM2 DD ? 
x ENDS 
ANX x <l,ANX> 

y UNION 
ASBYTES DB 10 DUP (?) 

ASFLT DT ? 
y ENDS 
AY y <?I 1. 0> 

These Inspector windows have another pane below the one that 
shows the values of the fields. This additional pane shows the 
data type of the field highlighted in the top pane. 

The Inspector window local menu 

100 

Range ••• 
Change ••• 

Inspect 
Descend 
New expression ••• 
Type cast ••• 

The commands in this menu give the Inspector window its real 
power. By choosing the Inspect local menu command, for 
example, you create another Inspector window that lets you go 
into your data objects. Other commands in the menu let you 
inspect a range of values or a new variable. 

Turbo Debugger for Windows User's Guide 



Range 

Change 

Inspect 

Descend 

Press Alt-F10 to pop up the Inspector window local menu. If you 
have control-key shortcuts enabled, press Ctr/ with the first letter 
of the desired command to access it. 

Sets the starting element and number of elements that you want 
to display. Use this command when you are inspecting an array, 
an<l you only wanl lo look at a ('t:rtain subrange of all the 
members of the array. 

If you have a long array and want to look at a few members near 
the middle, use this command to open the Inspector window at 
the array index that you want to examine. 

Changes the value of the currently highlighted item to the value 
you enter in the dialog box. If the current language permits it, 
TOW performs any necessary casting exactly as if the appropriate 
assignment operator had been used to change the variable. See 
Chapter 9 for more information on the assignment operator and 
casting. 

Opens a new Inspector window that shows you the contents of 
the currently highlighted item. This is useful if an item in the 
Inspector window contains more items itself (like a structure or 
array), and you want to see each of those items. 

You can also invoke this command by pressing Enter after high­
lighting the item you want to inspect. 

You return to the previous Inspector window by pressing Esc to 
close the new Inspector window. If you are through inspecting a 
data structure and want to remove all the Inspector windows, use 
the Window I Close command or its shortcut, Alt-F3. 

This command works like the Inspect local menu command 
except that instead of opening a new Inspector window to show 
the contents of the highlighted item, it puts the new item in the 

Chapter 6, Examining and modifying data 101 



current Inspector window. This is like a hybrid of the New 
Expression and Inspect commands. 

¢ Once you have descended into a data structure like this, you can't 
go back to the previous unexpanded data structure. Use this 
command when you want to work your way through a compli­
cated data structure or long linked list, but you don't care about 
returning to a previous level of data. This helps reduce the 
number of Inspector windows onscreen. 

New Expression 

Type Cast 

Prompts you for a variable name or expression to inspect, without 
creating another Inspector window. This lets you examine other 
data without having to put more Inspector windows on the 
screen. Use this command if you are no longer interested in the 
data in the current Inspector window. 

Inspector windows for C++ classes are somewhat different from 
regular Inspector windows. See Chapter 10 for a description of 
class Inspector windows. 

Chapter 11 explains on page 
175 how to use the gh2fp 

and lh2fp types. 

Lets you specify a different data type (int, char *, gh2fp, lh2fp) for 
the item being inspected. Typecasting is useful if the Inspector 
window contains a symbol for which there is no type information, 
as well as for explicitly setting the type for untyped pointers. 

102 Turbo Debugger for Windows User's Guide 



c H 

Chapter 7, Breakpoints 

A p T E R 

7 

Breakpoints 

TOW uses the single term "breakpoint" to refer to the group of 
functions that other debuggers usually call breakpoints, 
watchpoints, and tracepoints. 

Traditionally, breakpoints, watchpoints, and tracepoints are 
defined like this: A breakpoint is a place in your program where 
you want execution to stop so that you can examine program 
variables and data structures. A watchpoint causes your program 
to be executed one instruction or source line at a time, watching 
for the value of an expression to become true. A tracepoint causes 
your program to be executed one instruction or source line at a 
time, watching for the value of certain program variables or 
memory-referencing expressions to change. 

TOW unifies these three concepts by defining a breakpoint in 
three parts: 

•the location in the program where the breakpoint occurs 
•the condition under which the breakpoint is triggered 
• the action that takes place when the breakpoint triggers 

The location can be either a single source line in your program or it 
can be global in context; a global breakpoint checks the 
breakpoint condition after the execution of each source line or 
instruction in your program. 

The condition can be 

•always 
•when an expression is true 

103 



See Chapter 17, page 764 
for a description of message 

breakpoints. 

•when a data object changes value 
•when a Windows message comes in 

A pass count can also be specified, requiring that a condition be 
true a designated number of times before the breakpoint is 
triggered. 

The action taken when a breakpoint triggers can be one of the 
following: 

• stop program execution (a breakpoint) 
• log the value of an expression 
•execute an expression (code splice) 
•enable a group of breakpoints 
•disable a group of breakpoints 

In this chapter, you'll learn about the Breakpoint and Log 
windows; how to set simple breakpoints, conditional breakpoints, 
and breakpoints that log the value of your program variables; and 
how to set breakpoints that watch for the exact moment when a 
program variable, expression, or data object changes value. 

When debugging, you'll often want to set a few simple break­
points to make your program pause execution when it reaches 
certain locations. You can set or clear a breakpoint at any location 
in your program by simply placing the cursor on the source code 
line and pressing F2. You can also set a breakpoint on any line of 
machine code by pressing F2 when you are pointing at an 
instruction in the Code pane of a CPU window. 

M. If you have a mouse, just click either of the leftmost two columns 
of the line where you want to set or remove a breakpoint. (If 
you're in the correct column, an asterisk(*) appears in the 
position indicator.) 

There are two ways to access the dialog boxes for setting and 
customizing breakpoints. The Breakpoints menu offers a quick 
approach for setting breakpoints, and the Breakpoints window 
provides a view of the breakpoints already set, and gives access to 
the dialog boxes that control breakpoint settings. 

The Breakpoints menu 

104 

Access the Breakpoints menu at any time by pressing the A/t-8 hot 
key. 

Turbo Debugger for Windows User's Guide 



Toggle 

At 
See page 109 for a 

description of the Breakpoint 
Options dialog box. 

Changed memory 
global 

For more information, see the 
"Changed Memory" section 

onpage 117. 

Expression true global 

For more information, see 
"Conditional Breakpoints" on 

page 778. 

Hardware breakpoint 

For more information on 
hardware debugging, see 

page 178. 

Delete all 

Toggle F2 
At... Alt-F2 
Changed memory g 1oba1. •• 
Expression true global ..• 
Hardware breakpoint ••. 
Delete all 

The Toggle command sets or clears a breakpoint at the currently 
highlighted address in the Module or CPU window. The hot key 
is F2. 

At lets you set a breakpoint at a specific location in your program. 
When selected, At opens the Breakpoint Options dialog box, from 
which you can set all breakpoint options. Alt-F2 is the hot key for 
At. 

Changed Memory Global sets a global breakpoint that's triggered 
when an area of memory changes value. You are prompted for 
the area of memory to watch with the Enter Memory Address, 
Count input box. The variable expression entered is checked for 
change each time a line of source code is executed. 

Expression True Global sets a global breakpoint that is triggered 
when the value of a supplied expression is true (nonzero). You are 
prompted for the expression to evaluate with the Enter 
Expression for Condition Breakpoint input box. The expression 
entered is evaluated each time a line of source code is executed. 

Use this command to access the Hardware Breakpoints Options 
dialog box. You must have the proper system setup in order to 
use hardware debugging. 

The Delete All command erases all the breakpoints you've set. Use 
this command when you want to start over from scratch. 

The Breakpoints window 

Chapter 7, Breakpoints 

The Breakpoints window is accessed by choosing the View I 
Breakpoints command. This gives you a way of looking at and 
adjusting the conditions that trigger a breakpoint. 

105 



Figure 7.1 
The Breakpoints window 

The Breakpoints 
window local 

menu 

Set Options 

For a detailed explanation of 
the Breakpoint Options 

dialog box, see page 709. 

Breakpo1 nt 
A I ways 
En ab I ed 

The Breakpoints window has two panes; the Breakpoint List (left 
pane) shows a list of all the addresses at which breakpoints are set 
and the Breakpoint Detail (right pane) shows the details of the 
breakpoint highlighted in the left pane. Although a breakpoint 
can have several sets of actions and conditions associated with it, 
only the first set of details is displayed in the Breakpoint Detail 
pane. 

The Breakpoints window has a local menu, which you access by 
pressing Alt-F10when inside the left pane. If you have control-key 
shortcuts enabled, press Ctr/ with the first letter of the command 
to access that command directly. 

The commands in this menu let you add new breakpoints, delete 
existing breakpoints, and change how a breakpoint behaves. 

Set options ••• 
Add ••• 
Remove 
Delete all 
Inspect 
Group ••. 

Once a breakpoint is set, the Set Options command opens the 
Breakpoint Options dialog box, allowing you to modify the 
breakpoint. Using this box, you can 

• declare a global breakpoint 

•disable/ enable the breakpoint 

•attach the breakpoint to a specific group 

• access the Conditions and Actions dialog box 

Add The Add command on the Breakpoints local menu opens the 
Breakpoint Options dialog box, much like the Set Options 
command does. The difference is that the cursor is positioned on 
an empty Address text box. Enter into the Address text box the 
address for which you'd like the breakpoint to be set. For 

106 Turbo Debugger for Windows User's Guide 



example, if you'd like to set a breakpoint at line number 3201 in 
your C source code, enter #32O1 into the text box. If the line of 
code is in a module not displayed in the Module window, type a 
pound sign(#), followed by the module name, followed by 
another pound sign, and then the line number. For example: 
#OTHERMOD#3201. 

The Add command can also be accessed by simply typing an 
address into the Breakpoint Window. After typing the first 
character of the address, the Breakpoint Options dialog box 
opens, placing you in the Address text box. 

Once you've entered the breakpoint address, use the other 
commands in the Breakpoint Options dialog box to complete the 
breakpoint entry. 

Remove The Remove command erases the currently highlighted break­
point. Del is the hotkey for this command. 

Delete all Delete All removes all breakpoints, both global and those set at 
specific addresses. You will have to set more breakpoints if you 
want your program to stop on a breakpoint. Use this command 
with caution! 

Inspect The Inspect command displays the source code line or assembler 
instruction that corresponds to the currently highlighted break­
point item. If the breakpoint is set at an address that corresponds 
to a source line in your program, a Module window is opened 
and set to that line. Otherwise, a CPU window is opened, with the 
Code pane set to show the instruction at which the breakpoint is 
set. 

You can also invoke this command by pressing Enter once you 
have the highlight bar positioned over a breakpoint. 

Group The Group command allows you to gather breakpoints into 
groups. A breakpoint group is identified by a positive integer, 
generated automatically by TOW or assigned by you. The 
debugger automatically assigns a new group number to each 
breakpoint as it's created. The group number generated is the 
lowest number not already in use. Thus, if the numbers l, 2, and 5 
are already used by groups, the next breakpoint created is 
automatically given the group number 3. 

Chapter 7, Breakpoints l 07 



Figure 7.2 
The Edit Breakpoint Groups 

dialog box 

Figure 7.3 
The Add Group dialog box 

108 

Once a breakpoint is created, you may modify the breakpoint 
group number from the Breakpoint Options dialog box, placing 
the breakpoint into a group associated with other breakpoints. 
Grouping breakpoints together allows you to enable, disable, or 
remove a collection of breakpoints with a single action. 

When the Group command is chosen from the Breakpoint 
window's local menu, the Edit Breakpoint Groups dialog box is 
displayed. This dialog box shows a listing of the current 
breakpoint groups and allows you to easily collect all functions 
within a module into a single group. 

Edit break oi nt rou 

Groups 

The Groups list box displays the currently assigned breakpoint 
groups. 

Add 

The Add button activates the Add Group dialog box. 

[•] dd rou 
odule/Clas 
TDD EMO 

The Add Group dialog box has a single list box and a single set of 
radio buttons that allow you to add all functions in a single 
module, or all member functions in a class, to a breakpoint group. 

•The Module/Class list box displays a list of the modules or 
classes contained in the program loaded into the Module 
window. Highlight the desired module or class, then press OK 

Turbo Debugger for Windows User's Guide 



The Breakpoint 
Options dialog 

box 

Chapter 7, Breakpoints 

to set breakpoints on all functions in the module or class. All 
breakpoints set are collected into a single breakpoint group. 

• Two radio buttons allow you to select the type of functions that 
are displayed in the Module/Class list box: 

• The Modules radio button selects all modules contained in the 
current program, displaying them in the Module/Class list 
box. 

• The Classes radio button selects all the C ++ classes contained 
in the current program for display in the Module/Class list 
box. 

Delete 

The Delete button in the Edit Breakpoint Groups dialog box 
removes the group currently highlighted in the Groups list box. 
All breakpoints in this group, along with their settings, will be 
erased. 

Enable 

The Enable button activates a breakpoint group that has been 
previously disabled. 

Disable 

The Disable command temporarily masks the breakpoint group 
that is currently highlighted in the Groups list box. Breakpoints 
that have been disabled are not erased; they are merely set aside 
for the current debugging session. Enabling the group reactivates 
all the settings for all the breakpoints in the group. 

The Breakpoint Options dialog box is reached from the 
Breakpoints I At command, and from the Set Options and Add 
commands on the Breakpoints window local menu. 

109 



110 

Figure 7.4 
The Breakpoint Options 

dialog box 

Address 

Group ID 
See page 107 for a 

description of breakpoint 
groups. 

Global 

For more Information on 
global breakpoints, see 

page 116. 

Disabled 

The Address text box contains the address tag associated with the 
currently highlighted breakpoint. Normally, you will not edit this 
field. However, if you want to change the name of the tag 
associated with the breakpoint, type the new name into the 
Address text box. 

The Group ID text box allows you to assign the current 
breakpoint to a new or existing group. A breakpoint group is 
identified by a unique positive integer. 

Global, when checked, enables global checking. This means that 
every time a source line is executed, the breakpoint conditions 
will be checked for validity. Because global breakpoints are tested 
after every line of code is executed, the Address field is set to <not 
available> since it is no longer pertinent. 

When you set a global breakpoint, you must set a condition that 
will trigger the global breakpoint. Otherwise, you'll end up with a 
breakpoint that activates on every line of source code (if this is the 
effect you want to achieve, use the Run I Trace Into command on 
the Main menu). 

The Disabled check box turns off the current breakpoint. While 
this command is similar to the Toggle command on the 
Breakpoints menu (see page 105), Disable does not clear the 
breakpoint of its settings (as does the Toggle command). Disable 
simply masks the breakpoint until you want to reenable it by 
unchecking this box. When the breakpoint is reenabled, all 
settings previously made to the breakpoint will become effective. 

This check box is useful if you have defined a complex breakpoint 
that you don't want to use just now, but will want to use again 

Turbo Debugger for Windows User's Guide 



later. It saves you from having to delete the breakpoint, and then 
reenter it along with its complex conditions and actions. 

Conditions and Actions The Conditions and Actions list box displays the set of conditions 
and actions associated with the current breakpoint. 

Change The Change button, when selected, opens up the Conditions and 
A-=tions dialog box (see the next section). 'vVilh this rnmmand, you 
can edit the item currently highlighted in the Conditions and 
Actions list box. 

Add To add a new set of conditions and actions to the current 
breakpoint, select Add. Like the Change command above, Add 
opens the Conditions and Actions dialog box. 

Delete The Delete command removes the currently highlighted item in 
the Condition and Actions list box from the breakpoint definition. 

The Conditions 
and Actions 

dialog box 

Figure 7.5 
The Conditions and Actions 

dialog box 

See "Customizing 
breakpoints• on page 116 for 

details on modifying 
breakpoints. 

Chapter 7, Breakpoints 

When you choose either the Change or the Add button from the 
Breakpoint Options dialog box, you're presented with the 
Conditions and Actions dialog box. 

When a breakpoint is set on a line of source code, its default 
characteristics are Always Break execution when the line of code 
is encountered. With the Conditions and Actions dialog box, you 
can customize the conditions under which the breakpoint will be 
activated and specify different actions that take place once the 
breakpoint does trigger. 

111 



You'll customize breakpoints through two sets of radio buttons 
and three text entry boxes. In addition, a Hardware button leads 
to the Hardware Breakpoints Options dialog box, allowing you to 
specify hardware breakpoint conditions. 

The condition radio The Condition radio buttons have four settings: 
buttons 

See page 7 7 7 for more 
information on Changed 

Memory breakpoints. 

See page 7 78 for details on 
expressions. 

See page 7 7 8 for more 
information about hardware 

breakpoints. 

The Hardware I Breakpoint 
command offers an easy 

way to set hardware 
breakpoints. 

112 

Always 

When Always is chosen, it indicates that no additional conditions 
need be true for the breakpoint to trigger; it will be triggered each 
time program execution encounters the breakpoint. 

Changed memory 

A Changed Memory breakpoint watches a memory variable or 
object; the breakpoint is triggered if the object changes value. Use 
the Condition Expression input box to enter an expression 
representing the data object you want to watch. 

Expression true 

The Expression True button allows the breakpoint to be triggered 
when an expression becomes true (nonzero). Use the Condition 
Expression input box to enter an expression that's evaluated each 
time the breakpoint is encountered. 

Hardware 

Causes the breakpoint to be triggered by the hardware-assisted 
device driver. Because you can use hardware assistance only with 
a global breakpoint, you must check the Global check box in the 
Breakpoint Options dialog box before you can access this option. 

You must select the Hardware radio button before the Hardware 
button at the bottom of the dialog box can become active. Pushing 
that button displays the Hardware Breakpoint Options dialog 
box. The choices you can make in this box are described in the 
online text file HDWDEBUG.TD. 

Turbo Debugger for Windows User's Guide 



The action radio The Action radio buttons have five settings: 
buttons 

See Chapter 9 for a 
description of expressions 

and side effects. 

Chapter 7, Breakpoints 

Break 

Break causes your program to stop when the breakpoint is 
triggered. The TOW screen reappears, and you can once again 
enter commands to look around at your program's data 
structures. 

Execute 

Execute causes an expression to be executed. Enter the expression 
in the Action Expression input box. The expression should have 
some side effect, such as setting a variable to a value. By executing 
an expression that has side effects each time a breakpoint is 
triggered, you can effectively "splice in" new pieces of code 
before a given source line. This is useful when you want to alter 
the behavior of a routine to test a diagnosis or bug fix. This saves 
you from going through the compile-and-link cycle just to test a 
minor change to a routine. 

Of course, this technique is limited to the insertion of an expres­
sion before an already existing line of code is executed; you can't 
use this technique to modify existing source lines directly. 

Log 

The Log button causes the value of an expression to be recorded 
in the Log window. You are prompted for the expression whose 
value you want to log. Be careful that the expression doesn't have 
any unexpected side effects. 

Enable group 

The Enable Group action button allows for a breakpoint to 
reactivate a group of breakpoints that have been previously 
disabled. 

Disable group 

The Disable Group radio button lets you disable a group of 
breakpoints. When a group of breakpoints is disabled, the 

113 



Setting conditions and 
actions 

Condition Expression 

For more information on 
specifying breakpoint 

actions, see the "Action 
Expression· section that 

follows. 

breakpoints are not erased, they are simply masked for the 
debugging session. 

The most important step when setting up breakpoints is 
specifying the conditions under which the breakpoint triggers and 
specifying the actions to be taken once the breakpoint takes effect. 
Two text boxes control these settings, the Condition Expression 
text box and the Action Expression text box. 

When you choose either a Changed Memory, Expression True, or 
Hardware Condition radio button, you must provide a set of 
conditions so TDW knows when to trigger the breakpoint. A 
condition set consists of one or more expressions; each condition 
has to evaluate true in order for the whole set to evaluate true. 

A condition set is associated with a set of actions. When the 
condition set evaluates true, the corresponding action set is 
performed. 

To add a condition set to a breakpoint, 

1. Select either the Changed memory, Expression True, or 
Hardware radio button. 

2. Select the Add button located under the Condition Expression 
text box. 

3. Enter the condition or variable expression into the Condition 
Expression text box. 

4. If you want more than one variable or condition to be tested 
for a particular action set, repeat steps 2 and 3 until all 
expressions have been added to the Condition Expression text 
box. 

5. Once you've specified a condition set, use the Action 
Expression text box to list the action(s) you'd like to take when 
the breakpoint triggers. 

¢ A single breakpoint may have several condition and action sets 
associated with it. If you want more than one set of conditions 
and actions assigned to a single breakpoint, choose OK after you 
have entered the first series of conditions and actions. This will 
close the Conditions and Actions dialog box and return you to the 
Breakpoint Options dialog box. From here, choose Add to enter a 
new set of conditions and actions. When a breakpoint has 
multiple condition and action sets, each one will be evaluated in 

114 Turbo Debugger for Windows User's Guide 



the order that they were entered. If more than one action set 
evaluates to true, then more than one set of actions will be 
performed. 

The Delete button located below the Condition Expression text 
box lets you remove the currently highlighted expression from the 
Condition Expression text box. Select this button if you want to 
delete a condition from the condition set. 

Action Expression When either an Execute, Log, Enable Group, or Disable Group 
Action radio button is chosen, an action set must be provided so 
TOW knows what to do when the breakpoint triggers. An action 
set is composed of one or more actions. 

To add an action set to a breakpoint, 

1. Select either the Execute, Log, Enable Group, or Disable Group 
radio button. 

2. Select the Add button located under the Action Expression text 
box. 

3. Enter the action into the Action Expression text box. 

To perform more than one action when the breakpoint 
triggers, repeat steps 2 and 3 until all actions have been added 
to the Action Expression text box. 

4. When you have finished entering actions, choose OK from the 
Conditions and Actions dialog box. 

¢ If the Enable Group or Disable Group radio button is chosen, 
simply type the breakpoint group number into the Action 
Expression text box to reference the group that you want to 
enable or disable. 

The Delete button located below the Action Expression text box 
lets you remove the currently highlighted action from the action 
set. 

Pass count The Pass Count input box lets you set the number of times the 
breakpoint condition set must be met before the breakpoint is 
triggered. The default number is 1. The pass count is decremented 
only when the entire condition set attached to the breakpoint is 
true. This means that if you set a pass count ton, the breakpoint is 
triggered the nth time that the condition set is true. 

Chapter 7, Breakpoints 115 



Customizing breakpoints 

Simple 
breakpoints 

Global 
breakpoints 

You must check Global if you 
want to set hardware 

breakpoints. 

116 

In addition to simply stopping your program at a particular point, 
greater control can be given to debugging by stipulating when a 
breakpoint should take action, and what it should do when it 
triggers. 

When a breakpoint is initially set, it is given the default setting of 
Always Break. Once a simple breakpoint is set, the actions and 
conditions of the breakpoint may be customized. There are a 
number of ways to set a simple breakpoint, each one being 
convenient in different circumstances: 

•Move to the desired source line in a Module window (or Code 
pane of a CPU window) and issue the Breakpoints I Toggle 
command (or press F2, or click the line with your mouse). 
Doing this on a line that already has a breakpoint set causes 
that breakpoint to be deleted. 

• Issue the Add local menu command from the Breakpoint List 
pane of the Breakpoints window and enter a code address at 
which to set a breakpoint. (A code address has the same format 
as a pointer in the language you're using. See Chapter 9 about 
expressions.) 

•Issue the Breakpoints I At command to set a breakpoint at the 
current line in the Module window. 

When a breakpoint is made global, TDW will check the 
breakpoint on the execution of every line of code. If the set of 
conditions evaluates true, then the corresponding set of actions 
will be executed. 

If you want a global check to occur on every machine code 
instruction, set a global breakpoint, and press F9 from within the 
CPU window. This type of code monitoring should only be done 
once you have isolated a small area of your program known to 
contain a problem. The CPU window can then be used to locate 
the exact position of the difficulty. 

Since a debugger action will occur on every line of source code or 
machine instruction, global breakpoints greatly slow the 

Turbo Debugger for Windows User's Guide 



The Breakpoints menu offers 
shortcuts for defining global 

breakpoints. For more 
information on the Changed 

Memory Global and 
Expression True Global 

commands, see page 705. 

Changed 
memory 

breakpoints 

Chapter 7, Breakpoints 

execution of your program. Be careful with your use of global 
breakpoints; they should be used only if you want to find out 
exactly when a variable changes value, when some condition 
becomes true, or when your program is ''bashing" data. 

Often, global breakpoints are used to watch for when a data item 
changes value. In this situation, TDW checks the area of memory 
for change after the execution of every line of code. As an 
alternative to a global breakpoint, you may want to specify a 
breakpoint that only watches for a change when a specific source 
statement is reached. This is a lot more efficient, since it reduces 
the amount of processing TDW does in order to detect the change 
(in this case, TDW isn't concerned with when the item has 
changed, only that it has changed). 

When you want to find out where in your program a certain data 
object is being changed, first set a breakpoint using one of the 
techniques outlined in the preceding section. Then, using the 
Changed Memory radio button in the Conditions and Actions 
dialog box, enter an expression that refers to the memory area you 
want to watch along with an optional count of the number of 
objects to track. The total number of bytes in the watched area is 
the size of the object that the expression references times the 
number of objects. For example, suppose you have declared the 
following C array: 

int string[81]; 

If you want to watch for a change in the first ten elements of this 
array, enter the following item into the Condition Expression 
input box: 

&string[O], 10 

The area watched is 20 bytes long, since an Int is 2 bytes and you 
said to watch ten of them. 

If the Changed Memory breakpoint is global, your program 
executes much more slowly because the memory area is checked 
for change after every source line has been executed. If you've 
installed a hardware device driver, TDW will try to set a 
hardware breakpoint to watch for a change in the data area. 
Different hardware debuggers support different numbers and 
types of hardware breakpoints. You can see if a breakpoint is 
using the hardware by opening a Breakpoint window with the 

117 



Conditional 
expressions 

Scope of breakpoint 
expressions 

See Chapter 9 for a 
complete discussion of 

scopes and scope overrides. 

Hardware 
breakpoints 

See page 7 2 for information 
on setting up device drivers 

for hardware debugging. 

118 

View I Breakpoints command. Any breakpoint that is hardware 
assisted will have an asterisk (*) beside it. These breakpoints are 
much faster than global breakpoints that are not hardware 
assisted. 

There are many occasions when you won't want a breakpoint to 
be triggered every time a certain source statement is executed, 
particularly if that line of code is executed many times before the 
occurrence you are interested in. TOW gives you two ways to 
qualify when a breakpoint is actually triggered: pass counts and 
conditions. 

Both the action that a breakpoint performs and the condition 
under which it is triggered can be controlled by an expression you 
supply. That expression is evaluated using the scope of the 
address at which the breakpoint is set, not the scope of the current 
location where the program is stopped. This means that your 
breakpoint expression can use only variable names that are valid 
at the address in your program where you set the breakpoint, 
unless you use scope overrides. 

If you want to set a breakpoint for an expression in a module that 
isn't currently loaded and TOW cannot find that expression, you 
can use either a scope override to specify the file that contains the 
expression or the View I Module command to change modules. 

If you use variables that are local to a routine as part of an expres­
sion, that breakpoint will execute much more slowly than a break­
point that uses only global or module local variables. 

A hardware breakpoint uses hardware debugging support, either 
through a hardware debugging board or through the debugging 
registers of the Intel 80386 (or higher) processor. If your system is 
set up for hardware debugging (File I Get Info shows Breakpoints 
set to Hardware), you can set a hardware breakpoint using one of 
the following methods: 

• Choose Breakpoints I Changed Memory Global, the most 
common use of hardware breakpoints. 

•Choose Breakpoints I Hardware. 

Turbo Debugger for Windows User's Guide 



Logging variable 
values 

For more information on the 
Log window, see page 120. 

Be careful of side effects 
when logging expressions. 

Breakpoints and 
templates 

Breakpoints on class 
templates 

Chapter 7, Breakpoints 

•Display the Breakpoint Options menu (choose Breakpoints I At 
or the Set Options command of the View I Breakpoints window 
local menu), then do the following: 

1. Check the Global check box. 

2. Push the Change button. 

3. In the Conditions and Actions dialog box, choose the 
Hardware radio button tc turn on the Hard•vare pushbutton 
at the bottom of the dialog box. 

4. Push the Hardware push button to display the Hardware 
Breakpoint Options dialog box. 

5. Choose the options you want from this dialog box. The 
options are described in the online text file 
HDWDEBUG.TD. 

Sometimes, you may find it useful to log the value of certain 
variables each time you reach a certain place in your program. 
You can log the value of any expression, including, for example, 
the values of the parameters a function is called with. By looking 
at the log each time the function is called, you can determine 
when it was called with erroneous parameters. 

Choose the Log radio button from the Breakpoint Options dialog 
box. You are prompted for the expression whose value is to be 
logged each time the breakpoint is triggered. 

TOW supports breakpoints on C++ templates. Breakpoints get set 
differently depending on if you use F2 in the Module window, F2 
in the CPU window, or the Breakpoint Options dialog box to set 
them. 

There are several methods for setting breakpoints in templates: 

• If you set a breakpoint in the template itself by pressing F2 
while the cursor is on a line of template source code in the 
Module window, breakpoints are set in all class instances of 
that template. This feature allows you to debug overall 
behavior of the template. 

119 



Breakpoints on function 
templates 

Breakpoints on 
template class 

instances and objects 

• If you set a breakpoint in the template by pressing Alt-F2 to 
display the Breakpoint Options dialog box, entering the Module 
window address of a template expression brings up a dialog 
box that lets you choose the class instance for which you want 
to set the breakpoint. 

•If you open the CPU window, you can see where template code 
appears in each class instance of a template. If you position the 
cursor on a line of template code in one of the class instances, 
pressing F2will set a breakpoint on that class instance only. 

You can remove a template breakpoint just as you remove any 
breakpoint, by positioning in the Module window on the 
highlighted line in the template and pressing F2 or by using the 
delete command of the Breakpoints window. When you do so, 
any associated class instance breakpoints are removed as well. 

If you position in the CPU window on a breakpoint in a class 
instance and press F2, only the breakpoint for that class instance is 
removed. 

You set and remove breakpoints for function templates just as you 
do for class templates. The two methods for setting breakpoints, 
pressing F2 or using the Breakpoint Options dialog box, have the 
same effects on function instances as they do on class instances. 

You set breakpoints for template class instances and objects of 
template class instances just like you do for ordinary classes and 
objects. 

The Log window 

120 

Figure 7.6 
The Log window 

You create a Log window by choosing the View I Log command. 
This window lets you review a list of significant events that have 
taken place in your debugging session. 

Log windows show a scrolling list of the lines output to the 
window. If more than 50 lines have been written to the log, the 

Turbo Debugger for Windows User's Guide 



The Log window 
local menu 

Open log file ••• 
Close log file 
Logging Yes 
Add COITlllent ... 
Erase log 
Display Windows info ••• 

Open Log File 

Chapter 7, Breakpoints 

oldest lines are lost from the top of the scrolled list. If you want to 
change the number of lines in the list, use the TDWINST 
customization program (described in the file TDWINST.DOC). 
You can also preserve the entire log, continuously writing it to a 
disk file, by using the Open Log File local menu command. 

Here's a list of what can cause lines to be written to the log: 

•Your program stops at a location you specified. The location it 
stops at is recorded in the log. 

•You issue the Add Comment local menu command. You are 
prompted for a comment to write to the log. 

•A breakpoint is triggered that logs the value of an expression. 
This value is put in the log. 

•You use the Edit I Dump Pane to Log command (from the menu 
bar) to record the current contents of a pane in a window. 

•You are debugging a Windows application and use the Display 
Windows Info command on the Log window local menu to 
write global heap information, local heap information, or the 
module list to the log. 

•You are debugging a Windows application, have used the 
View I Windows Messages command to display the Windows 
Messages window, and are now in the local menu of the 
Messages pane of that window. You toggle Send to Log 
Window to Yes so all messages coming to this window will also 
go to the Log window. 

The commands in this menu let you control writing the log to a 
disk file, stopping and starting logging, adding a comment to the 
log, clearing the log, and writing information about a Windows 
program to the log. 

Alt-Ft 0 pops up the Log window local menu. If you have control­
key shortcuts enabled, pressing Ctr/ and the first letter of the 
command accesses the command directly. 

Causes all lines written to the log to be written to a disk file as 
well. A dialog box appears that prompts you for the name of the 
file to write the log to (or you can select a directory and file from 
the list boxes). 

121 



When you open a log file, all the lines already displayed in the log 
window's scrolling list are written to the disk file. This lets you 
open a disk log file after you see something interesting in the log 
that you want to record to disk. 

If you want to start a disk log that does not start with the lines 
already in the Log window, first choose Erase Log before 
choosing Open Log File. , 

Close Log File Stops writing lines to the log file specified in the Open Log File 
local menu command, and closes the file. 

Logging Enables or disables the log, controlling whether anything is 
actually written to the Log window. 

Add Comment Lets you insert a comment in the log. You are prompted for a line 
of text that can contain any characters you want. 

Erase Log Clears the log list. The Log window will now be blank. Only the 
log in memory is affected, not the parts of the log that have been 
written to a disk file. 

Display Windows Info 
10 
lEll 

Displays the Windows Information dialog box, which lets you list 
global heap information, local heap information, or the list of 
modules making up your application. See page 166 in Chapter 11 
for an explanation of how to use this feature. 

122 Turbo Debugger for Windows User's Guide 



c H A p T E R 

8 

Examining files 

TDW treats disk files as a natural extension of the program you're 
debugging. You can examine any file on the disk, viewing it either 
as ASCII text or as hex data. 

This chapter shows you how to examine disk files that contain 
your program source code and other files on disk. 

Examining program source files 

Loading and debugging 
Windows DLL modules is 

described in Chapter 7 7 on 
page 769. 

Chapter 8, Examining files 

Program source files are your source files that are compiled to 
generate an object module (an .EXE file). You usually examine 
them when you want to look at the behavior or design of a 
portion of your code. During debugging, you often need to look 
at the source code for a routine to verify either that its arguments 
are valid or that it is returning a correct value. 

As you step through your program, TDW automatically displays 
the source code for the current location in your program. 

Files that are included in a source file by a compiler directive and 
generate line numbers are also considered to be program source 
files, even though they don't appear in the Pick a Module list 
pane when you choose View I Module. To select one of these files, 
you must use the local menu File command. 

You should always use a Module window to look at your 
program source files because doing so informs TDW that the file 

123 



The Module 

is a source module. TOW then lets you do things like setting 
breakpoints or examining program variables simply by moving to 
the appropriate place in your file. These techniques and others are 
described in the following sections. 

window Before you can open a module window, you must have a program 
loaded. You create a Module window by choosing the View I 
Module command from the menu bar (or pressing the hot key, F3). 

Figure 8.1 
The Module window 

See page 769 for a 
description of this Dialog box. 

When you run TOW, you need 
both the .EXE file and the 

original source file. 

124 

[•]=4>1odule: TDDEMO File: TDDEMO.C 37=======1=[t] [~] 
static void showargs (1 nt argc, char *argv []); 

f* program entry point 
*/ 

.. int main(int argc, char *•argv) 
{ 

unsigned int nl ines, nwords, wordcount; 
unsigned long totalcharacters; 

nlines = 0; 
nwords = O; 
totalcharacters = O; 
showargs( argc, argv); 
while (readalineTl != 0) { 

wordcount = makeintowords(buffer); " 
nwords += wordcount; " 
totalcharacters += analyzewords(buffer); " 

A dialog box appears in which you can enter the name of the 
module or OLL you want to view. 

TOW then loads the source file for the module you select. If you 
select a source module (and not a OLL), TOW searches for the 
source file in the following places: 

1. in the directory where the compiler found the source file 

2. in the directories specified by the Options I Path for Source 
command or the -sd command-line option 

3. in the current directory 

4. in the directory that contains the program you're debugging 

Module windows show the contents of the source file for the 
module you've selected. The title of the Module window shows 
the name of the module you're viewing, along with the source file 
name and the line number the cursor is on. An arrow <~) in the 
first column of the window shows the current program location 
(CS:IP). 

Turbo Debugger for Windows User's Guide 



The Module 
window local 

menu 
Inspect 
Watch 

Module ... 
File ... 

Previous 
Line ... 
Search .•. 
Next 
Origin 
Goto ..• 

If the abbreviation opt appears after the file name in the title, the 
program has been optimized by the compiler. You might have 
trouble finding some variables that have been optimized away. In 
addition, variables that have become register variables won't have 
an address. 

If the word modified appears after the file name in the title, the file 
has been changed since it was last compiled or linked to make the 
program you are debugging. In this case, the rcutines in the 
updated source file may no longer have the same line numbers as 
those in the version used to build the program you are debug­
ging. If the line numbers are different, the arrow that shows the 
current program location (CS:IP) will be displayed on the wrong 
line. 

The Module window local menu provides a number of com­
mands that let you move around in the displayed module, point 
at data items and examine them, and set the window to display a 
new file or module. 

You will probably use this menu more than any other menu in 
TDW, so you should become quite familiar with its various 
options. 

Use the Alt-F10 key combination to pop up the Module window 
local menu. If you have control-key shortcuts enabled, you can 
access local menu commands without popping up the menu: Use 
the Ctr/ key with the highlighted letter of a command to access that 
command (for example, Ctrl-S for Search). 

Inspect Opens an Inspector window to show you the contents of the 
program variable at the current cursor position. If the cursor isn't 
currently on a variable, you're prompted to enter one. 

Watch 

If the cursor isn't currently on 
a variable, you're prompted 

to enter one. 

Chapter 8, Examining files 

Because this command saves you from having to type in each 
name you are interested in, you'll end up using it a lot to examine 
the contents of your program variables. 

Adds the variable at the current cursor position to the Watches 
window. Putting a variable in the Watches window lets you 
monitor the value of that variable as your program executes. 

125 



126 

Module Lets you view a different module by picking the one you want 
from the list of modules displayed. This command is useful when 
you are no longer interested in the current module, and you don't 
want to end up with more Module windows onscreen. 

File Lets you switch to view one of the other source files that makes 
up the module you are viewing. Pick the file that you want to 
view from the list of files presented. Most modules only have a 
single source file that contains code. Other files included in a 
module usually only define constants and data structures. Use 
this command if your module has source code in more than one 
file. 

Use View I Module to look at the first file. If you want to see more 
than one, use View I Another I Module to open subsequent Module 
windows. 

Previous Returns you to the last source module location you were viewing. 
You can also use this command to return to your previous 
location after you've issued a command that changed your 
position in the current module. 

Line Positions you at a new line number in the file. Enter the new line 
number to go to. If you enter a line number after the last line in 
the file, you will be positioned at the last line in the file. 

Search Searches for a character string, starting at the current cursor 
position. Enter the string to search for. If the cursor is positioned 
over something that looks like a variable name, the Search dialog 
box will come up initialized to that name. Also, if you have 
marked a block in the file using the Ins key, that block will be used 
to initialize the Search dialog box. This saves you from typing if 
what you want to search for is a string that is already in the file 
you are viewing. 

You can search using simple wildcards, with ? indicating a match 
on any single character, and * matching zero or more characters. 
The search does not wrap around from the end of the file to the 
beginning. To search the entire file, go to the first line by pressing 
Ctrl-PgUp. 

Turbo Debugger for Windows User's Guide 



Next Searches for the next instance of the character string you specified 
with the Search command; you can only use this command after 
initially choosing Search. 

Sometimes, Search matches an unexpected string before reaching 
the one you really wanted to find. Next lets you repeat the search 
without having to reenter what you want to search for. 

Origin Positions you at the module and line number that is the current 
program location (CS:IP). If the module you are currently viewing 
is not the module that contains the current program location, the 
Module window will be switched to show that module. This com­
mand is useful after you have looked around in your code and 
want to return to where your program is currently stopped. 

Goto 

If the address doesn't have a 
corresponding source line, a 

CPU window is opened. 

Positions you at any location within your program. Enter the 
address you want to examine; you can enter a procedure name or 
a hex address. See Chapter 9 for a complete description of the 
ways to enter an address. 

You can also invoke this command by simply starting to type the 
label to go to. This brings up a dialog box exactly as if you had 
chosen the Goto command. Entering the label name is a handy 
way to invoke this frequently used command. 

Examining other disk files 

The File window 

Chapter 8, Examining files 

You can examine any file on your system by using a File window. 
You can view the file either as ASCII text or as hex data bytes, 
using the Display As command described in a later section of this 
chapter. 

You create a File window by choosing View I File from the menu 
bar. You can use DOS-style wildcards to get a list of file choices, or 
you can type a specific file name to load. 

127 



Figure 8.2 
The File window 

Figure 8.3 
The File window showing hex 

data 

The File window 

[

[•]=File ••• S\DEBUG\DEMOS\TDDEMO.C 1==3=[t][H91 
/* file <tddemo.c> • 
* I 
* Demonstration program to show off Turboll 
* Reads words from standard input, analyzl 
* Copyright (c) 1988, 1991 - Borland lnte., 
~ . 

I 

• 11 1 1 111 1 n 11 111 __) 

File windows show the contents of the file you've selected. The 
name of the file you are viewing is displayed at the top of the 
window, along with the line number the cursor is on if the file is 
displayed as ASCII text. 

When you first create a File window, the file appears either as 
ASCII text or as hexadecimal bytes, depending on whether the file 
contains what TOW thinks is ASCII text or binary data. You can 
switch between ASCII and hex display at any time using the 
Display As local menu command described later. 

~
[•]=File ••• S\DEBUG\DEMOS\TDDEMO.C 3=[t)[~]"'il 
0000: 2f 2a 09 66 69 6c 65 20 /*ofile • 
0008: 3c 74 64 64 65 6d 6f 2e <tddemo. • 
0010: 63 3e Od Oa 20 2a Od Oa c>Jll *JI I 
0018: 20 2a 09 44 65 6d 6f 6e *oDemon 
0020: 73 74 72 61 74 69 6f 6e stration 
0028: 20 70 72 6f 67 72 61 6d program 
0030: 20 74 6f 20 73 68 6f 77 to show ., 
•I Ill 11111111 I 111111 __) 

local menu The File window local menu has a number of commands for 
moving around in a disk file, changing the way the contents of the 
file are displayed, and making changes to the file. 

128 

Goto •.• 
Search ••• 
Next 

Display as Asci i 
File •.. 

Use the A/t-F10 key combination to pop up the File window local 
menu or, if you have control-key shortcuts enabled, use the Ctr/ 
key with the highlighted letter of the desired command to access 
the command without invoking the local menu. 

Turbo Debugger for Windows User's Guide 



Goto Positions you at a new line number or offset in the file. If you are 
viewing the file as ASCII text, enter the new line number to go to. 
If you are viewing the file as hexadecimal bytes, enter the offset 
from the start of the file at which to start displaying. You can use 
the full expression parser for entering the offset. If you enter a line 
number after the last line in the file or an offset beyond the end of 
the file, TOW positions you on the last line of the file. 

Search Searches for a character string, starting at the current cursor 
position. You are prompted to enter the string to search for. If the 
cursor is positioned on something that looks like a symbol name, 
the Search dialog box comes up initialized to that name. Also, if 
you have marked a block in the file using the Ins key, that block 
will be used to initialize the Search dialog box. This saves you 
from typing if what you want to search for is a string that is 
already in the file you are viewing. The format of the search string 
depends on whether the file is displayed in ASCII or hex. 

See page 7 39 for complete 
information about byte lists. 

Chapter 8, Examining files 

If the file is displayed in ASCII, you can use simple DOS 
wildcards, with ? indicating a match on any single character, and * 
matching 0 or more characters. 

If the file is displayed in hexadecimal bytes, enter a byte list 
consisting of a series of byte values or quoted character strings, 
using the syntax of whatever language you are using for 
expressions. 

For example, if the language is C++, a byte list consisting of the 
hex numbers 0408 would be entered as follows: 

Ox0804 

If the language is Pascal, the same byte list is entered as 
$0804 

The search does not wrap around from the end of the file to the 
beginning. To search the entire file, go to the first line of the file by 
pressing Ctrl-PgUp. 

You can also invoke this command by simply starting to type the 
string that you want to search for. This brings up a dialog box 
exactly as if you had specified the Search command. 

129 



Next Searches for the next instance of the character string you specified 
with the Search command; you can only use this command after 
initially choosing Search. 

Next is useful when your Search command didn't find the 
instance of the string you wanted; you can keep issuing this 
command until you find what you want. 

Display As Toggles between displaying the file as ASCII text or as 
hexadecimal bytes. 

• If you choose ASCII display, the file appears as you are used to 
seeing it on the screen in an editor or word processor. 

•If you choose Hex display, each line starts with the hex offset 
from the beginning of the file for the bytes on the line. Eight 
bytes of data are displayed on a line. To the right of the hex 
display of the bytes, the display character for each byte appears. 
The full display character set can be displayed, so byte values 
less than 32 or greater than 127 appear as the corresponding 
display symbol. 

File Lets you switch to a different file. You can use DOS wildcards to 
get a list of file choices, or you can type a specific file name to 
load. File lets you view a different file without putting a new File 
window onscreen. If you want to view two different files or two 
parts of the same file simultaneously, choose View I Another I File 
to make another File window. 

130 Turbo Debugger for Windows User's Guide 



c H 

Each language evaluates an 
expression differently. 

Chapter 9, Expressions 

A p T E R 

9 

Expressions 
Expressions can be a mixture of symbols from your program (that 
is, variables and names of routines), and constants and operators 
from one of the supported languages: C, Pascal, or assembler. 

TDW can evaluate expressions and tell you their values. You can 
also use expressions to indicate data items in memory whose 
value you want to know. You can supply an expression in any 
dialog box that asks for a value or an address in memory. 

Use Data I Evaluate/Modify to open the Evaluate/Modify dialog 
box, which tells you the value of an expression. (You can also use 
this dialog box or the Watches window as a simple calculator.) 

In this chapter, you'll learn how TDW chooses which language to 
use for evaluating an expression and how you can make it use a 
specific language. We describe the components of expressions that 
are common to all the languages, such as source-line numbers and 
access to the processor registers. We then describe the 
components that can make up an expression in each language, 
including constants, program variables, strings, and operators. 
For each language, we also list the operators that TDW supports 
and the syntax of expressions. 

For a complete discussion of C, C++, a.nd assembler expressions, 
refer to your Turbo C++ for Windows User's Guide. 

131 



Choosing the language for expression evaluation 

TOW normally determines which expression evaluator and 
language to use from the language of the current module. This is 
the module in which your program is stopped. You can override 
this by using the Options I Language command to open the 
Expression Language dialog box; in it you can set radio buttons to 
Source, Pascal, C, or Assembler. If you choose Source, expressions 
are evaluated in the manner of the module's language. (If TOW 
can't determine the module's language, it uses the expression 
rules for inline assembler.) 

Usually, you let TOW choose which language to use. Sometimes, 
however, you'll find it useful to set the language explicitly; for 
example, when you are debugging an assembler module that is 
called from one of the other languages. By explicitly setting 
expression evaluation to use a particular language, you can access 
your data in the way you refer to it with that language, even 
though your current module uses a different language. 

Sometimes it's convenient to treat expressions or variables as if 
they had been written in a different language; for example, if 
you're debugging a C++ program, assembly language conven­
tions might offer an easier way to change the value of a byte 
stored in a string. 

If your initial choice of language is correct when you enter TOW, 
you should have no difficulty using other language conventions. 
TOW still retains information about the original source language 
and handles the conversions and data storage appropriately. If the 
language seems ambiguous, TOW defaults to assembly language. 

Even if you deliberately choose the wrong language when you 
enter TOW, it will still be able to get some information about the 
original source language from the symbol table and the original 
source file. Under some circumstances, however, it may be 
possible to cause TOW to store data incorrectly. 

Code addresses, data addresses, and line numbers 

132 

Normally,·when you want to access a variable or the name of a 
routine in your program, you simply type its name. However, you 
can also type an expression that evaluates to a memory pointer, or 

Turbo Debugger for Windows User's Guide 



specify code addresses as source line numbers by preceding the 
line number with a number sign(#), like #123 (C, C++, and 
Assembler only). The next section describes how to access 
symbols outside the current scope. 

Of course, you can also specify a regular segment:offset address, 
using the hexadecimal syntax for the source code language of 
your program: 

Language 

c 
Assembler 

Format 

Oxnnnn 

nnnnh 

Example 

Ox1234:0x0010 

1234h:0010h 
1234h:OB234h 

In assembler, hex numbers starting with A to F must be 
prefixed with a zero. 

Accessing symbols outside the current scope 

Chapter 9, Expressions 

Where the debugger looks for a symbol is known as the scope of 
that symbol. Accessing symbols outside of the current scope is an 
advanced concept that you don't really need to understand in 
order to use TDW in most situations. 

Normally, TDW looks for a symbol in an expression the same way 
a compiler would. For example, Pascal first looks in the current 
procedure or function, then in an "outer" subprogram (if the 
active scope is nested inside another), then in the implementation 
section of the current unit (if the current scope resides in a unit), 
and then for a global symbol. 

If TDW doesn't find a symbol using these techniques, it searches 
through all the other modules to find a static symbol that 
matches. This lets you reference identifiers in other modules 
without having to explicitly mention the module name. 

If you want to force TDW to look elsewhere for a symbol, you can 
exert total control over where to look for a symbol name by 
specifying a module, a file within a module, or a routine to look 
inside. You can access any symbol in your program that has a 
defined value, even symbols that are private to a function and 
have names that conflict with other symbols. 

133 



Scope override 
syntax 

Overriding scope in C, 
C++, and assembler 

programs 

Scope operators don't work 
with register variables. 

134 

Depending on your current language setting, you use a different 
symbol to override the scope of a symbol name. Because you can 
change the language setting with Options I Language in order to 
use features of the different scope override syntaxes, we show 
you both sets of syntax. 

•With C, C++, and Turbo Assembler, use the cross hatch(#) 
symbol to override scope. 

• With Pascal, use the period (.) to override scope. 

You can enter qualified identifier expressions anywhere an 
expression is valid, including 

•the Evaluate/Modify dialog box 

•the Watches window 

• a Data I Inspector window 
• the dialog box displayed by the Goto local menu command of 

the Module window (when you want to go to an address in the 
source code) 

Use a pound sign (#) to separate the components of the scope. 

The following syntax describes scope overriding; brackets ([]) 
indicate optional items: 

[#module[#filename.ext]]#linenumber[#variablename] 

or 

[#module[#filename.ext]#] [functionname#]variablename 

If you don't specify a module, the current module is assumed. 

For example, in the Watches window, you could enter different 
line numbers for the TDDEMO variable nlines so you could see 
how its value changes in different routines in the current module. 
To watch the variable both on line 51 and on line 72, you would 
make the following entries in the Watches window: 

#Sl#nwords 
#72#nwords 

Here are some examples of valid symbol expressions with scope 
overrides. There is one example for each of the legal combinations 
of elements that you can use to override a scope. 

Turbo Debugger for Windows User's Guide 



Chapter 9, Expressions 

The first six examples show various ways of using line numbers 
to generate addresses and override scopes: 

#123 
Line 123 in the current module 

#123#myvarl 
Symbol myvar1 accessible from line 123 of the current 
module 

#mymodule#123 
Line 123 in module mymodule 

#mymodule#123#myvarl 
Symbol myvar1 accessible from line 123 in module mymodule 

#mymodule#filel.cpp#123 
Line 123 in source file filel.cpp, which is part of module 
mymodule 

#mymodule#filel.cpp#123#myvarl 
Symbol myvar1 accessible from line 123 in source file 
filel.cpp, which is part of mymodule 

The next six examples show various ways of overriding the scope 
of a variable by using a module, file, or function name: 

#myvar2 
Same as myvar2 without the # 

myfunc#myvar2 
Variable myvar2 accessible from routine myfunc 

#mymodule#myvar2 
Variable myvar2 accessible from module mymodule 

#mymodule#myfunc#myvar2 
Variable myvar2 accessible from routine myfunc in module 
mymodule 

#mymodule#file2.c#myvar2 
Variable myvar2 accessible from file2.c, which is included in 
mymodule 

#mymodule#file2.c#myfunc 
myfunc defined in file file2.c, which is included in mymodule 

The following four examples show how to use scope override 
syntax with C ++ classes, objects, member functions, and data 
members: 

135 



136 

AnObject#AMemberVar 
Data member AMemberVar accessible in object AnObject 
accessible in the current scope 

AnObject#AMemberF 
Member function AMemberF accessible in object AnObject 
accessible in the current scope 

#AModule#AnObject#AMemberVar 
Data member AMemberVar accessible in object AnObject 
accessible in module AModule 

#AModule#AnObject#AClass::AMemberVar 
Data member AMemberVar of class AClass accessible in 
object AnObject accessible in module AModule 

¢ If you're debugging a C++ program and want to examine a 
function with an overloaded name, just enter the name of the 
function in the appropriate input box. Turbo Debugger opens the 
Pick a Symbol Name dialog box, which shows a list box of all the 
functions of that name with their arguments, enabling you to 
choose the one you want. 

Scope override tips 

The following tips might help you when overriding scope in C, 
C++, and Turbo Assembler programs: 

1. If you use a file name in a scope override statement, it must be 
preceded by a module name. 

2. If a file name has an extension, such as .ASM, .C, or .CPP, you 
must specify the extension; Turbo Debugger doesn't try to 
determine the extension itself. 

3. If a function name is the first item in a scope override state­
ment, it must not have a# in front of it. If there's a#, Turbo 
Debugger interprets the function name as a module name. 

4. Any variable you access through scope override syntax must 
have been initialized already. An automatic variable doesn't 
have to be in scope, but its function must have run already. 

5. If you're trying to access an automatic variable that's no longer 
in scope, you must use its function name as part of the scope 
override statement. 

• The scope of a template depends on the current location in 
the program. Watches and Inspector windows on template 

Turbo Debugger for Windows User's Guide 



Overriding scope in 
Pascal programs 

Chapter 9, Expressions 

expressions are dependent on the current object the 
program is in. 

•A nested class is in the scope of the class it's nested in. The 
scope of a nested class isn't global to the program. 

Use a period(.) to separate the components of the scope. 

The following syntax describes scope overriding; brackets ([]) 
indicate optional items: 

[unit.] [procedurename.]variablename 

or 

[unit.] [objecttype.] [objectinstance.] [method.]fieldname 

If you don't specify a unit, the current unit is assumed. 

Here are some examples of valid symbol expressions with scope 
overrides. There is one example for each of the legal combinations 
of elements that you can use to override a scope. 

These examples show various ways of overriding the scope of a 
variable by using a module or procedure name: 

MyVar2 
Variable MyVar2 in the current scope 

MyProc.MyVar2 
Variable MyVar2 accessible from routine MyProc 

MyUnit.MyVar2 
Variable MyVar2 accessible from unit MyUnit 

MyUnit.MyProc.MyVar2 
Variable MyVar2 accessible from routine MyProc in unit 
My Unit 

The following examples show how to use scope override syntax 
with object types, object instances, fields, and methods: 

Aninstance 
Instance Anlnstance accessible in the current scope. 

Aninstance.AField 
Field Afield accessible in instance Anlnstance accessible in 
the current scope 

AnObjectType.AMethod 
Method AMethod accessible in object type AnObjectType 
accessible in the current scope 

137 



Aninstance.AMethod 
Method AMethod accessible in instance Anlnstance accessible 
in the current scope 

AUnit.Aninstance.AField 
Field Afield accessible in instance Anlnstance accessible in 
unitAUnit 

AUnit.AnObjectType.AMethod 
Method AMethod accessible in object type AnObjectType 
accessible in unit AUnit 

AUnit.Aninstance.AMethod.ANestedProc.AVar 
Local variable A Var accessible in nested procedure 
ANestedProc accessible in method AMethod accessible in 
instance Anlnstance accessible in unit AUnit 

Scope override tips 

The following tips might help you when overriding scope in 
Pascal programs: 

1. Any variable you access through scope override syntax must 
have been initialized already. The procedure or function 
containing a local variable doesn't have to be in scope, but it 
must have run already. 

2. If you are trying to access a local variable that's no longer in 
scope, you must use its procedure or function name as part of 
the scope override statement. 

3. You can't use a line number or a file name as part of a Pascal 
scope override statement. However, you can use Options I 
Language to change the language to C so you can use line 
number syntax. 

Scope and DLLs Because TDW simultaneously loads the symbol tables of the 
current module of your .EXE file and of any DLLs it accesses that 
have source code and symbol tables, you might not have 
immediate access to variables in your DLLs (or in your .EXE if 
you're currently in a DLL). 

TDW looks for a variable first in the symbol table of the current 
module or DLL, and then in any other symbol tables in order of 
loading. If a variable has the same name in multiple DLLs or in 
your .EXE and one or more DLLs, TDW sees only the first 
instance it finds. You can't use scope override syntax to access any 

138 Turbo Debugger for Windows User's Guide 



¢ such variables; instead, you must press F3 and use the Load 
Modules and DLLs dialog box to load the appropriate module or 
DLL. 

Implied scope for 
expression 
evaluation 

Byte lists 

Chapter 9, Expressions 

TOW loads symbol tables for the following: 

1. the current module of your .EXE file 

2. any DLL you explicitly load using the Symbol Load command 
in the Load Modules and DLLs dialog box (displayed with F3 
or View I Module) 

3. any DLL you step into from your program 

Whenever TOW evaluates an expression, it must decide where 
the current scope is for any symbol names without an explicit 
scope override. Determining scope is important because in many 
languages you can have symbols inside functions or procedures 
with the same name as global symbols, and TOW must know 
which instance of a symbol you mean. 

TOW usually uses the current cursor position as the context for 
determining the scope. Thus, you can set the scope where an 
expression will be evaluated by moving the cursor to a specific 
line in a Module window. 

One result is that if you've moved the cursor off the current line 
where your program is stopped, you might get unexpected results 
from evaluating expressions. If you want to be sure that expres­
sions are evaluated in your program's current scope, use the 
Origin local menu command in the Module window to return to 
the current location in the source code. You can also set the 
expression scope by moving around inside the Code pane of a 
CPU window, by moving the cursor to a routine in the Stack 
window, or by moving the cursor to a routine name in a Variables 
window. 

Several commands ask you to enter a list of bytes, including the 
Search and Change local menu commands in the Data pane of the 
CPU window, and the Search local menu command of the File 
window when it's displaying a file in hexadecimal format. 

139 



C expressions 

C symbols 

C register 
pseudovariables 

140 

A byte list can be any mixture of scalar (non-floating-point) num­
bers and strings in the syntax of the current language, determined 
by the Options I Language command. Both strings and scalars use 
the same syntax as expressions. Scalars are converted into a 
corresponding byte sequence. For example, a Longint value of 
123456 becomes a 4-byte hex quantity 40 E2 01 00. 

Language 

Pascal 
Assembler 
c 

Byte list 

'ab'$04'c' 
1234 "AB" 
"ab" Ox04 "c" 

Hex data 

6162 04 63 
3412 4142 
6162 0463 

TOW supports the complete C expression syntax. A C expression 
consists of a mixture of symbols, operators, strings, variables, and 
constants. Each of these components is described in one of the 
following sections. 

A symbol is the name of a data object or routine in your program. 
A symbol name must start with a letter (a-z, A-Z) or underscore 
(_). Subsequent characters can be any of these characters as well 
as the digits 0 through 9. You can omit the beginning underscore 
from symbol names; if you enter a symbol name without an 
underscore and TOW can't find that name, it searches for the 
name again with an underscore at the beginning. Because the 
compiler automatically puts an underscore at the start of your 
symbol names, you don't have to remember to add one. 

mw lets you access the processor registers using the same 
technique as one of Borland's C or C++ compilers, namely 
pseudovariables. A pseudovariable is a variable name that 
corresponds to a given processor register. 

Turbo Debugger for Windows User's Guide 



Chapter 9, Expressions 

Pseudovariable Type Register 

_AX unsigned int AX 
- AL unsigned char AL 
- AH unsigned char AH 

- BX unsigned int BX 
- BL unsigned char BL 
- BH unsigned char BH 
_ex unsigned int ex 
CL unsigned char CL 

_CH unsigned char CH 

- DX unsigned int DX 
- DL unsigned char DL 
- DH unsigned char DH 
_cs unsigned int cs 
- DS unsigned char DS 
- SS unsigned char SS 
- ES unsigned char ES 
_SP unsigned int SP 
- BP unsigned char BP 
- DI unsigned char DI 
_SI unsigned char SI 
_IP unsigned int IP 

The following pseudovariables let you access the 80386 processor 
registers: 

Pseudovariable Type Register 

- EAX unsigned long EAX 
- EBX unsigned long EBX 
- ECX unsigned long ECX 
- EDX unsigned long EDX 
_ESP unsigned long ESP 
- EBP unsigned long EBP 
_EDI unsigned long EDI 
- ESI unsigned long ESI 

- FS unsigned int FS 
_GS unsigned int GS 

141 



C constants and 
number formats Constants can be either floating point or integer. 

142 

Escape 

An integer constant is specified in decimal, unless one of the C 
conventions for overriding this is used: 

Format Radix 

digits decimal 
Odigits octal 

OXdigits hexadecimal 
Oxdigits hexadecimal 

Constants are normally of type int (16 bits). If you want to define 
a long (32-bit) constant, you must add an l or L at the end of the 
number. For example, 123456L. 

A floating-point constant contains a decimal point and can use 
decimal or scientific notation. For example, 

1. 23 4 4. Se+ 11 

sequences A string is a sequence of characters enclosed in double quotes(""). 

You can use the standard C backslash(\) as an escape character. 

Sequence Value Character 

\\ oxsc Backslash 
\a OX07 Bell 
\b OX08 Backspace 
\f oxoc Formfeed 
\n OXOA Newline 
\r OXOD Carriage return 
\t OX09 Horizontal tab 
\v OXOB Vertical tab 
\xnn nn Hex byte value 
\nnn nnn Octal byte value 

If you follow the backslash with any other character than those 
listed here, that character is inserted into the string unchanged. 

Turbo Debugger for Windows User's Guide 



C operator 
precedence TDW uses the same operators as C, with the same precedence. 

The debugger has one operator that is part of the C++ set of 
operators: the double colon (::). This operator has a higher priority 
than any of the regular C operators. It is used to make a constant 
far address out of the expression that precedes it and the expres­
sion that follows it; for example, 

OX1234: :OXlOOO 

ES:: BX 

The primary expression operators 

[] -> sizeof 

have the highest priority, from left to right. The unary operators 

* & ++ 

are of a lower priority than the primary operators but a greater 
priority than the binary operators, grouped from right to left. The 
priority of the binary operators, in descending order, is as follows 
(operators on the same line have the same priority): 

highest * I % 

+ 
>> << 
< > <= >= 
-- != 
& 
/\ 

I 
&& 

lowest I I 

The single ternary operator, ?:, has a priority below that of the 
binary operators. 

The assignment operators are below the ternary operator in 
priority. They are all of equal priority, and group from right to 
left: 

= += -= *= I= %= >>= <<= &= "= I= 

Chapter 9, Expressions 143 



Executing C 
functions in your 

program 

C expressions with 
side effects 

144 

You can call functions from a C expression exactly as you do in 
your source code. TOW actually executes your program code with 
the function arguments that you supply. This can be a very useful 
way of quickly testing the behavior of a function you've written. 
You can repeatedly call it with different arguments and then 
check that the returned value is correct each time. 

The following function raises one integer number to a power (xY): 

long power(int x, int y) 
{ 

long temp = 1; 
while (y--) 

temp *= x; 
return (temp); 

The following table shows the result of calls to this function with 
different function arguments: 

C expression 

power(3,2) * 2 
25 + power(5,8) 
power(2) 

Result 

18 
390650 
Error (missing argument) 

A side effect occurs when you evaluate a C expression that 
changes the value of a data item in the process of being evaluated. 
In some cases, you may want a side effect, using it to intentionally 
modify the value of a program variable. At other times, you want 
to be careful to avoid them, so it's important to understand when 
a side effect can occur. 

The assignment operators (=, +=, and so on) change the value of 
the data item on the left side of the operator. The increment and 
decrement(++ and - -) operators change the value of the data 
item that they precede or follow, depending on whether they are 
used as prefix or postfix operators. 

Turbo Debugger for Windows User's Guide 



C reserved words 
and type 

conversion 

Chapter 9, Expressions 

A more subtle type of side effect can occur if you execute a func­
tion that's part of your program. For example, if you evaluate the 
C expression 

myfunc(l,2,3) + 7 

your program may misbehave later if myfunc changed the value 
of other variables in your program. 

TDW lets you perform type conversions on (cast) pointers exactly 
as you would do in a C program. A type conversion consists of a C 
data-type declaration between parentheses. It must come before 
an expression that evaluates to a memory pointer. 

Type conversions are useful if you want to examine the contents 
of a memory location pointed to by a far address you generated 
using the double colon (::) operator. For example, 

(long far *)Ox3456::0 

(char far *)_ES: :_BX 

You can use a type conversion to access a program variable for 
which there is no type information, which happens when you 
compile a module without generating debugging-type informa­
tion. Rather than recompiling and relinking, if you know the data 
type of a variable, you can simply put that in a type conversion 
before the name of the variable. 

For example, if your variable iptr is a pointer to an integer, you 
can examine the integer that it points to by evaluating the C 
expression 

*(int *) iptr 

You can also use the Type Cast command in the Inspector 
window local menu for this purpose. 

TDW provides two reserved words, lh2fp and gh2fp, for 
dereferencing memory handles used in Windows applications. 
See page 175 for an explanation of these two type conversions. 

145 



Use the following C reserved words to perform type conversions 
forTDW: 

char float near 
double huge short 
enum int struct 
far long union 

unsigned 

Assembler expressions 

146 

Assembler 

TDW supports the complete assembler expression syntax. An 
assembler expression consists of a mixture of symbols, operators, 
strings, variables, and constants. Each of these components is 
described in this section. 

symbols Symbols are user-defined names for data items and routines in 
your program. An assembler symbol name starts with a letter (a-z, 
A-Z) or one of these symbols: @ ? _ $. Subsequent characters in 
the symbol can contain the digits 0 to 9, as well as these char­
acters. The period (.) can also be used as the first character of a 
symbol name, but not within the name. 

Assembler 

The special symbol $ refers to your current program location as 
indicated by the CS:IP register pair. 

constants Constants can be either floating point or integer. A floating-point 
constant contains a decimal point and may use decimal or scien­
tific notation. For example, 

1.234 4.Se+ll 

Integer constants are hexadecimal unless you use one of the 
assembler conventions for overriding the radix: 

Turbo Debugger for Windows User's Guide 



If you want to end a hex 
number with a D or 8, you 

must append an H to avoid 
ambiguity. 

Assembler 

Format Radix 

digitsH Hexadecimal 

digitsO Octal 

digitsQ Octal 

digitsD Decimal 

digitsB Binary 

You must always start a hexadecimal number with one of the 
digits 0 to 9. If you want to enter a number that starts with one of 
the letters A to F, you must first precede it with a 0 (zero). 

operators TOW supports most of the assembler operators. The first line in 
the list that follows shows the operators with the lowest priority, 
and the last line those operators with the highest priority. Within 
a line, all the operators have the same priority. 

Format control 

Chapter 9, Expressions 

xxx PTR (BYTE PTR .. . ) 
. (structure member selector) 
: (segment override) 
OR XOR 
AND 
NOT 
EQ NE LT LE GT GE 
+ -
* I MOD SHR SHL 
Unary+ Unary­
OFFSET SEG 
() [] 

Variables can be changed using the = assignment operator. For 
example, 

a = [BYTE PTR DS:4] 

When you supply an expression to be displayed, TOW displays it 
in a format based on the type of data it is. TOW ignores a format 
control that is wrong for a particular data type. 

147 



148 

If you want to change the default display format for an expres­
sion, place a comma at the end of the expression and supply an 
optional repeat count followed by an optional format letter. You 
can only supply a repeat count for pointers or arrays. 

Character 

c 

d 

f[#] 

m 

md 

p 

s 

xorh 

Format 

Displays a character or string expression as raw 
characters. Normally, nonprinting character values are 
displayed as some type of escape or numeric format. 
This option forces the characters to be displayed using 
the full IBM display character set. 

Displays an integer as a decimal number. 

Displays as floating-point format with the specified 
number of digits. If you don't supply a number of 
digits, as many as necessary are used. 

Displays a memory-referencing expression as hex 
bytes. 

Displays a memory-referencing expression as decimal 
bytes. 

Displays a raw pointer value, showing segment as a 
register name if applicable. Also shows the object 
pointed to. This is the default if no format control is 
specified. 

Displays an array or a pointer to an array of characters 
as a quoted character string. 

Displays an integer as a hexadecimal number. 

Turbo Debugger for Windows User's Guide 



c H A p T E R 

10 

Object-oriented debugging 

To meet the needs of the object-oriented programming revolution, 
TOW supports C++. Besides extensions that let you trace into 
member functions and examine objects in the Evaluate/Modify 
dialog box and the Watches window, TOW comes equipped with 
a special set of windows and local menus specifically designed for 
object types and classes. 

The Hierarchy window 

Figure 10.l 
The Hierarchy window 

TOW provides a special window for examining class hierarchies. 
You can bring up the Hierarchy window by choosing View I 
Hierarchy. 

evi ce 
,lowGauge 
,orzArrow 
rlorz Bar 
Li nearGauge 
Point 
Range 
Rectangle 
3creen 
Tex tWindow 
VertArrow 

1
vert8ar 

========3=[t] [+] 
--Point 

L ___ -Rectangle 
f----- --Devi Ce* 
I ____ - - TextWindow 

Range 
L___:_---Oev1 ce 

--Gl owGauge 

Parents of Device 
f----Range 
L-----Rectangl e 

c__---Po1nt 
Screen 

Chapter 70, Object-oriented debugging 149 



Use Tab to move between The Hierarchy window displays information on classes rather 
the two panes. than instances of classes. There are either two or three panes. If 

the program is a C++ program using multiple inheritance, three 
panes appear. Otherwise, only two panes appear. 

150 

The Class List 

•The left pane, the Class List pane, lists in alphabetical order the 
classes used by the module being debugged. 

• The top right pane, the Hierarchy Tree pane, shows all classes 
in their hierarchies by using a line graphic that places the 
original base class at the left margin of the pane and displays 
derived classes beneath and to the right of the base class, with 
lines indicating derived class relationships. Any class followed 
by an asterisk inherits from multiple base classes and shows up 
in the pane below. 

•The bottom right pane, the Parent Tree pane, if it exists, shows 
all base classes for classes with multiple inheritance. 

pane The left pane of the Hierarchy window provides an alphabetical 
list of all classes used by the current module. It supports an 
incremental matching feature to eliminate the need to scroll 
through large lists of classes: When the highlight bar is in the left 
pane, simply start typing the name of the class you're looking for. 
At each key press, TOW highlights the first class matching all 
keys pressed up to that point. 

The Class List pane 
local menu 

Inspect 
Tree 

Press Enter to open a class Inspector window for the highlighted 
class. Class Inspector windows are described on page 152. 

Press Alt-F10 to display the local menu for the pane. You can use 
the control-key shortcuts if you've enabled hot keys with 
TDWINST. This local menu contains two items: Inspect and Tree. 

Inspect 

Displays a class Inspector window for the highlighted type. 

Turbo Debugger for Windows User's Guide 



The Hierarchy 
Tree pane 

The Hierarchy Tree 
pane local menu(s) 

Inspect 

Inspect 
Parents Yes 

The Parent Tree 

Tree 

Moves to the right pane in which the hierarchy tree is displayed 
and places the highlight bar on the class that was highlighted in 
the left pane. 

The top right pane displays the hierarchy tree for al! dasses used 
by the current module. Base class and derived class relationships 
are indicated by lines, with derived classes to the right of and 
below their base classes. 

To locate a single class in a complex hierarchy tree, go back to the 
left pane and use the incremental search feature; then choose the 
Tree command from the local menu to move back into the 
hierarchy tree. The matched class appears under the highlight bar. 

When you press Enter, a class Inspector window appears for the 
highlighted class. 

The Hierarchy Tree pane local menu (press Alt-F10 in the pane) has 
only one item for C programs or for C ++ programs without 
multiple inheritance: Inspect. When you choose it, a Inspector 
window appears for the highlighted class. However, a faster and 
easier method is simply to press Enter when you want to inspect 
the highlighted class. 

If you have loaded a C++ program that uses classes with multiple 
inheritance, the Hierarchy Tree pane local menu contains a 
second command, Parents. Use this command to toggle between 
showing and not showing the base classes of a class with multiple 
inheritance in the Parent Tree pane. The default for Parents is Yes. 

pane If you have loaded a C++ program that uses classes with multiple 
inheritance, a third pane, the Parent Tree pane, appears below the 
Hierarchy Tree pane in the Hierarchy window. If the class you are 
examining has multiple ancestors and the Parent command in the 
Hierarchy Tree pane local menu is set to Yes, a reverse tree 
appears in the Parent Tree pane. This tree has the message Parents 
of Class at the left margin of the pane and displays the base 
classes beneath and to the right, with lines indicating base class 
and derived class relationships. 

Chapter 70, Object-oriented debugging 151 



The Parent Tree pane 
local menu 

J Inspect 

You can open a class Inspector window for any class that appears 
in the Parent Tree pane, just as you can in the Hierarchy Tree 
pane. 

The Parent Tree pane, if it exists, has a local menu of its own with 
a single command, Inspect. It works just the same as the Inspect 
command in the Hierarchy Tree pane local menu: It opens an 
Inspector window for the highlighted class. 

Class Inspector windows 

152 

Figure 10.2 
A class Inspector window 

TOW provides a special type of Inspector window to let you 
inspect the details of a class: the class Inspector window. The win­
dow summarizes class information, but does not reference any 
particular instance. You display this window by bringing up the 
Hierarchy window (choose View I Hierarchy), selecting a class, 
and pressing Ctr/-/. 

The window is divided horizontally into two panes, with the top 
pane listing the data members of the class and their types, and the 
bottom pane listing the member function names and the function 
return types. Use Tab to move between the two panes of the class 
Inspector window. 

If the highlighted data member is a pointer to a class, pressing 
Enter opens another class Inspector window for the highlighted 
class. (This action is identical to choosing Inspect in the local 
menu for this pane.) In this way, complex nested structures of 
classes can be inspected quickly with a minimum of keystrokes. 

For brevity's sake, member function parameters are not shown in 
the class Inspector window. To examine parameters, highlight the 
member function and press Enter. A member function Inspector 
window appears that displays the code address for the object's 
implementation of the selected member function and the names 
and types of all its arguments. 

Turbo Debugger for Windows User's Guide 



The ciass 
Inspector window 

local menus 

Pressing Enter from anywhere within the member function 
Inspector window brings the Module window or the CPU 
window to the foreground, with the cursor at the code that 
implements the member function being inspected. 

As with standard inspectors, Esc closes the current Inspector 
window and Alt-F3 closes them all. 

Pressing Alt-F10brings up the local menu for either pane. If 
control-key shortcuts are enabled (through TDWINST), you can 
get to a local menu item by pressing Ctr/ and the first letter of the 
item. 

Inspect 
Hierarchy 
Show inherited Yes 

The Data Member (top) The Data Member pane local menu contains these items: 
pane 

Inspect 

If the highlighted field is a a pointer to a class, a class Inspector 
window is opened for the highlighted field. 

Hierarchy 

Opens a Hierarchy window for the class being inspected. The 
Hierarchy window is described on page 149. 

Show Inherited 

Yes is the default value of this toggle. When Show Inherited is set 
to Yes, TOW shows all data members, whether they are defined 
within the class of the inspected object or inherited from a base 
class. 

When the toggle is set to No, TOW displays only those data 
members defined within the class being inspected. 

Chapter 70, Object-oriented debugging 153 



The Member Function 
(bottom) pane 

The local menu commands for the bottom Member Function pane 
are Inspect, Hierarchy, and Show Inherited. 

Inspect 

A member function Inspector window is opened for the 
highlighted item. If you press Ctr/-/ when the cursor is positioned 
over the address shown in the member function Inspector win­
dow, the Module window is brought to the foreground with the 
cursor at the code that implements what is being inspected. 

Hierarchy 

Opens a Hierarchy window for the class being inspected. The 
Hierarchy window is described on page 149. 

Show Inherited 

Yes is the default value of this toggle. When it is set to Yes, all 
member functions are shown, whether they are defined within the 
class being inspected or inherited from a base class. When it is set 
to No, only those member functions are displayed that are defined 
within the class being inspected. 

Object Inspector windows 

154 

Class Inspector windows provide information about classes, but 
say nothing about the data contained in a particular object at a 
particular time during program execution. TOW provides an ex­
tended form of the familiar record Inspector window specifically 
to inspect objects. 

Bring up this window by placing your cursor on an object in the 
Module window, then pressing Ctr/-/. 

Turbo Debugger for Windows User's Guide 



Figure 10.3 
An object Inspector window 

The object 
Inspector window 

local menus 

Range ... 
Change ..• 
Methods Yes 
Show inherited Yes 

Inspect 
Descend 
New expression .•. 
Type cast 
Hierarchy 

Range 

Change 

Methods 

[•]=Inspecting tW=3=[t] [+]=;i 
5C6:01E8 .. 

creen: :MaxX 500 OxlF4 
creen: :MaxY 512 (Ox200) 

ere en:· Convert @0000 · 0000 
creen: :VertVtoA @0000:0000 
creen: ·VertAtoV 00000:0000 

Most TDW structure Inspector windows have two panes: a top 
pane summarizing the structure's member names and their 
current values, and a bottom pane displaying the type of the 
member highlighted in the top pane. An object Inspector window 
provides both of those panes, and also a third pane between them. 
This third pane summarizes the object's member functions, with 
the code address of each. 

Each of the top two panes of the object Inspector window has its 
own local menu, displayed by pressing Alt-F10in that pane. Use 
the control-key shortcuts to get to individual menu items if you've 
enabled hot keys with TDWINST. 

Similar to structure Inspector windows, the bottom pane serves 
only to display the class of the highlighted data member and 
doesn't have a local menu. 

The local menu commands for the top pane, which summarizes 
the data members for the selected item, are described here. 

This command displays the range of array items. If the inspected 
item is not an array or a pointer, the item cannot be accessed. 

By choosing this command, you can load a new value into the 
highlighted data member. 

This command is a Yes/No toggle, with Yes as the default condi­
tion. When it's set to Yes, member functions are summarized in 
the middle pane. When it's set to No, the middle pane doesn't 
appear. This toggle is remembered by the next Inspector window 
to be opened. 

Chapter 7 0, Object-oriented debugging 155 



Show Inherited This command is also a Yes/No toggle. When it's set to Yes, all 
data members and all member functions are shown, whether they 
are defined within the class being inspected or inherited from a 
base class. When the command is set to No, only those data 
members and member functions defined within the class being 
inspected are displayed. 

Inspect Choosing this command opens an Inspector window on the 
highlighted data member. Pressing Enter over a highlighted data 
member does the same thing. 

Descend The highlighted item takes the place of the item in the current 
Inspector window. No new Inspector window is opened. 
However, you can't return to the previously inspected data 
member, as you could if you had used the Inspect option. 

¢ Use Descend to inspect a complex data structure when you don't 
want to open a separate Inspector window for each item. 

New Expression This command prompts you for a new data item or expression to 
inspect. The new item replaces the current one in the window; it 
doesn't open another window. 

Type Cast Lets you specify a different data type for the item being inspected. 
This command is useful if the Inspector window contains a 
symbol for which there is no type information, as well as for 
explicitly setting the type for pointers. 

Hierarchy When you choose this command, a Hierarchy window opens. For 
a full description of this window, see page 149. 

The middle and 
bottom panes The middle pane summarizes the member functions of an object. 

The only difference between the Object Member function pane's 
local menu and the local menu for the top pane is the absence of 
the Change command. Unlike data members, member functions 
cannot be changed during execution, so there is no need for this 
command. The bottom pane displays the type of the item high­
lighted in the upper two windows. 

156 Turbo Debugger for Windows User's Guide 



c H A p T E R 

l l 

Using Windows debugging features 

This chapter covers the features of TDW that give you access to 
Windows information and allow you to do the following: 

•Log messages received and sent by your application's windows 

•List the global heap 

• List the local heap 

•View the complete list of modules (including dynamic link 
libraries) loaded by Windows 

•Debug dynamic link libraries (DLLs) 

•See the contents of any protected-mode selector (in the CPU 
window) 

Windows features 

The features that support debugging of Windows programs are 

•A view window, the Windows Messages window, which shows 
messages passed to windows in your program 

•Three types of data you can display in the Log window: 

• The data segments in your program's local heap 

• The data segments in the global heap 

• A complete list of modules making up your program, 
including any dynamic link libraries (DLLs) 

Chapter 7 7, Using Windows debugging features 157 



• Expression typecasting from memory handles to far pointers 

• Support for debugging of DLLs in the Load Module Source or 
DLL Symbols window (choose View I Modules) 

•The Selector pane of the CPU window, which allows you to see 
the contents of any protected-mode selector. 

Logging window 
messages To track messages being passed to your program's windows, 

choose the View I Windows Messages command to open the 
Windows Messages window. This window shows you the 
messages that Windows is passing to one or more windows in 
your program. 

The Windows Messages window is composed of three panes, the 
Window Selection pane (top left), the Message Class pane (top 
right), and the Messages pane (bottom). The messages show up in 
the Messages pane. 

The appearance of this window and the way you add application 
windows to it differ depending on whether you're working with 
an ObjectWindows application or a standard Windows 
application. 

Selecting a window for 
a standard Windows 

application 

If you're debugging a standard Windows application and you 
select View I Windows Messages, you see the following window: 

158 

Figure 11.l 
The Windows Messages 
window for a standard 

Windows application 

Add ••• 
Remove 
Delete all 

Before you can log messages, you must first indicate which 
window you're logging messages for. You do this in the top left 
pane, the Window Selection pane. This pane's local menu 
(activated by pressing Alt-F1(J) lets you add a window selection, 
delete a window selection, or delete all window selections. 

Turbo Debugger for Windows User's Guide 



Figure 11.2 
The Add Window dialog box 

for a standard Windows 
application 

Adding the first window proc 
to this box also sets the 

message class to "Log all 
messages." 

Selecting a window for 
an ObjectWindows 

application 

Adding a window selection for a standard Windows 
application 

To add a window selection, you can either choose Add from the 
Window Selection pane local menu or begin typing in the pane. 
Either method brings up the Add Window dialog box. 

Cancel 

Hel 

You can enter either the name of the object that processes 
messages for the window (select the Window Proc button) or a 
handle value (select the Handle button). Enter as many routine 
names or handle values as necessary to track messages for your 
windows. 

It's easier to indicate the window by the name of the routine that 
processes its messages (for example, WndProc) because you can 
enter a routine name any time after loading your program. 

If you prefer to use a handle variable name, you must first step 
through the program past the line where the handle variable is 
assigned a handle. (Use the Fl or FB key to single-step through the 
program.) If you try to enter the variable name before stepping 
past its assignment statement, TOW will not let you. 

If you're debugging an ObjectWindows application and you select 
View I Windows Messages, by default you see the standard 
Windows Messages dialog box in Figure 11.1. This dialog box 
works the same for ObjectWindows programs as for standard 
Windows programs, except that you can't use a Windows proce­
dure name. Instead, you must use the handle to the window 
object for the window whose messages you want to log or break 
on. 

Obtaining a window handle 

Before you can use the handle of a window object, you must run 
your program past the point where the handle is initialized. You 
can use a number of techniques. 

Chapter 11, Using Windows debugging features 159 



See the file TDWINST. TOW for 
information on setting 

options in TDWINST. 

160 

• It's simplest just to run your application and exit back to TOW 
with Ctrl-Alt-SysRq. 

• Another possibility is to set a breakpoint in a message-handling 
routine in your program (such as a routine that handles 
WM_MOUSEMOVE messages), run the program, and then 
perform the action in the window that triggers the breakpoint 
(for example, moving the mouse). 

•If you're having major problems with the window itself (such 
as an unrecoverable application error-UAE-that comes up 
when the window is first displayed), you'll have to go to 
greater lengths to obtain the window handle. 

Because the handle is initialized by the ObjectWindows 
function CreateWindow and this function executes after you 
initialize the window, you have to redeclare this function in the 
window class and then set a breakpoint on it to get the handle. 

For example, the following code redeclares this function for the 
TDOOEMO window class ScribbleWindow: 

void ScribbleWindow::SetupWindow() 
{ 

TWindow::SetupWindow(); 

Next, position the cursor on the line after the initialization 
statement and press F4 to run the program to the point where 
the handle of the window, dialog box, or control is initialized. 
In this example, you'd position the cursor on the closing brace 
of the function SetupWindow. 

Once the handle is initialized and you've returned to TOW, you 
can obtain its value by choosing Data I Inspect and entering the 
name of the associated window object (in TOOOEMO, 
WinMain#MyApp.Main Window). Look for the data member 
HWindow and copy it into the Clipboard (press Shift-F3). You can 
then paste the contents of HWindow as a handle into the Add 
dialog box of the Window Messages window's top left pane (press 
Shift-F4 in the dialog box's text entry box). 

Specifying a window with ObjectWindows support enabled 

If you run the TOW configuration program TOWINST, you can 
turn on support in TOW for ObjectWindows window messages. 
With this option on, you can use the names of windows objects as 
they're declared in your application. Choosing View I Windows 
Messages with the OWL option on displays the following screen: 

Turbo Debugger for Windows User's Guide 



Figure 11.3 
The Windows Messages 

window with ObjectWindows 
support enabled 

I Add ••• 
Remove I Delete all 

Before you can log messages, you must first indicate which 
window. dialog box, or dialog control you're logging messages 
for. You do this in the top left pane, the Window Selection pane. 
This pane's local menu (activated by pressing Alt-F10) lets you add 
a window object, delete a window object, or delete all window 
objects. 

Adding a window with ObjectWindows support enabled 

Before adding a window object, you must run your program past 
the point where the window object is initialized. Typically, the 
object is initialized in a statement like the one in the following 
function definition from TDODEMO: 

void CScribbleApplication::InitMainWindow() 
{ 

MainWindow =new ScribbleWindow{NULL, Name); 

Position the cursor on the line after the initialization statement 
and press F4 to run the program to the point where the window, 
dialog box, or control is initialized. In this example, you'd 
position the cursor on the closing brace of the function. 

Once the window object is initialized, you can add it to the 
Window Selection pane. To add the object, either choose Add 
from the Window Selection pane local menu or begin typing the 
object's name in the pane. Either method brings up the Add 
Window dialog box. 

¢ If you're not in the routine where the object is declared, you have 
to override scope to access it. For example, in TDODEMO, 
Main Window is a member of My App (because My App is of type 
CScribbleApplicatlon, which is derived from TAppllcatlon, which 
has a data member called Main Window). However, since MyApp is 
declared in function WinMain, unless you're in that function, you 
can't access MyApp, either. Therefore, the scope override that's 
guaranteed to work in this module is WinMain#MyApp.MainWindow. 

Chapter 11, Using Windows debugging features 161 



Figure 11.4 
The Add Window dialog box 
with Objectwindows support 

enabled 

Adding the first object to this 
pane also sets the message 
class to "Log all messages.· 

Deleting a window 
selection 

Specifying a message 
class and action 

162 

Add ••• 
Remove 
Delete all 

You can enter either the name of the object that processes 
messages for the window, dialog box, or control (select the 
Window Object button) or a handle value (select the LJ:andle 
button). Enter as many object names or handle values as 
necessary to track messages for your windows. 

Deleting a window selection from the Window Selection pane 
works the same for both types of applications. To delete, move the 
cursor to the item, then either bring up the local menu and choose 
Remove or press the Delete, Ctrl-Y, or Ctrl-R key. 

To delete all selections, choose Delete All from the local menu. 

The top right pane is the Message Class pane. Its local menu, 
identical to that of the Window Selection pane, allows you to add 
a message class, remove a message class, or delete all classes you 
have added. 

You must specify a window procedure or handle in the Window 
Selection pane before you can add a message class in this pane. 

If you don't indicate a specific message or class of messages to 
watch, TOW watches all messages sent to the window procedure 
or handle. 

Adding a message class 

To add a message class, choose Add from the Message Class pane 
local menu. TOW displays the following dialog box: 

Turbo Debugger for Windows User's Guide 



Figure 11.5 
The Set Message Filter dialog 

box 

The Set Message Filter dialog box prompts you both for a message 
class to track and an action to be performed when a message in 
that class is received. 

TOW by default logs all messages starting with WM_. Because so 
many messages come in, you'll probably want to narrow the focus 
by selecting one of the classes in the Message Class list. You can 
add only one class at a time, so if you need to track messages from 
multiple classes, you have to use the Add option for each class 
you want to set. 

The following table describes the message classes: 

Table 11.1 
Windows message classes Message class 

~~~~~~~~~~~~~~~~~~~~~~~~~~-

Description

All Messages All window messages

Mouse Messages generated by a mouse event (for example,
WM_LBUTTONDOWN and WM_MOUSEMOVE)

Window Messages from the window manager (for example,
WM_PAINT and WM_ CREATE)

Input Messages generated by a keyboard event or by the
user's accessing a System menu, scroll bar, or size
box (for example, WM_KEYOOWN)

System Messages generated by a system-wide change, (for
example, WM_FONTCHANGE and
WM_SPOOLERSTATUS)

Initialization Messages generated when an application creates a
dialog box or a window (for example,
WM_INITDIALOG and WM_INITMENU)

Clipboard Messages generated when one application tries to
access the Clipboard of a window in another appli­
cation (for example, WM_DRA WCLIPBOARD and
WM_SIZECLIPBOARD)

Chapter 7 7, Using Windows debugging features 163

164

Table 11.1: Windows message classes (continued)

DDE

Non-client

Other

Single Message

Dynamic Data Exchange messages, generated by
applications' communicating with one another's
windows (for example, WM_DDE_INITIATE and
WM_DDE_ACK)

Messages generated by Windows to maintain the
non-client area of an application window (for
example, WM_NCHITTEST and WM_NCCREATE)

Any messages that don't fall into any of the other
categories, such as owner draw control messages
and multiple document interface messages

Any single message you want to log or break on

To track a single message, choose Single Message and enter the
message name or the message number as a decimal number. If
you enter a message name, be sure to use all capital letters.

The default action is to put the messages in the log. The other
action you can perform, having the program break when it
receives a message, is equivalent to setting a breakpoint for a
message.

For example, if you want to track the WM_PAINT message and
have the program stop every time this message is sent to a
window you chose in the Window Selection pane, do the
following:

l. Select the top right pane, the Message Class pane.

2. Bring up the local menu, then choose Add.

3. From the dialog box, select Break from the Action radio
buttons and Single Message from the Message Class radio
buttons.

4. Enter WM_P AINT in the Message Name input box, then press
Enter.

Figure 11.1 on page 158 shows how the Windows Messages
window looks after you have made these selections and a
message has come in.

Deleting a message class

To delete a message class, move the cursor to the item, then either
bring up the local menu and choose Remove or press one of the
following keys: Delete, Ctrl-R, or Ctr/-Y.

Turbo Debugger for Windows User's Guide

Viewing messages

Send to log window No
Erase log

To delete all classes, choose Delete All from the local menu or
press Ctrl-D.

The default class, Log all messages, appears after you have
deleted all classes. You cannot delete this class using Remove or
Delete All command.

Window message tips

If you're displaying messages for more than one window, do not
log all messages. Instead, log specific messages or a specific
message class for each window. If you log all messages, the large
number of messages being transferred between Windows and
TDW might cause your system to hang.

When setting a break on Mouse class messages, be aware that a
mouse down message must be followed by a mouse up message
before the keyboard becomes active again. This restriction means
that when you return to the application, you might have to press
the mouse button several times to get Windows to receive a mouse
up message. You'll know that Windows has received the message
when you see it in the lower pane of the Windows Messages
window.

If you enter a handle name but indicate that it's a procedure, TDW
accepts your input and doesn't complain. However, when you
run your program, TDW does not log any messages. If TDW isn't
logging messages after you've set a handle, reenter the handle and
be sure to select the Handle button.

Window messages show up in the lower pane of the Windows
Messages window. This pane can hold up to 200 messages.

If you want to save the messages to a file, you have to open a log
file for the Log window (use View I Log File, then choose Open
Log File from the local menu). Then switch back to the Messages
pane and change the Send To Log Window entry on the local
menu to Yes.

If you want to clear the pane of all messages, choose Erase Log
from the local menu. Any messages written to the Log window
will not be affected by this command.

Chapter 11, Using Windows debugging features 165

Obtaining
memory and

module lists

Figure 11.6
The Windows Information

dialog box

Listing the contents of
the global heap

To list the contents of the global or local heap or the modules for
your Windows program, first bring up the Log window with
View I Log, then access the local menu. The last command on the
Log window local menu is Display Windows Info. Choosing that
command displays the Windows Information dialog box, from
which you can pick the type of list you want to display and where
to start the list.

If you select the Global Heap option, you can choose to display
the list from top to bottom, from bottom to top, or from a location
indicated by a starting handle.

A starting handle is the name of a global memory handle set in
your application by a call to a Windows memory allocation
routine like GlobalAlloc. Picking a starting handle causes TDW to
display the object at that handle as well as the next four objects
that follow it in the heap.

The global heap is the global memory area Windows makes
available to all applications. If you allocate resources like icons,
bit maps, dialog boxes, and fonts, or if you allocate memory using
the GlobalAlloc function, your application is using the global heap.

To see a list of the data objects in the global heap, select the Global
Heap radio button in the Windows Information dialog box, then
choose OK. The data objects will be listed in the Log window.

¢ Because this list is likely to exceed the number of lines the Log
window can write (the default is 50 lines), you should either write
the contents to a log file (use the Log window local menu) or
increase the number of lines the Log window can use (use
TDWINST). The maximum number of lines you can set is 200.

166 Turbo Debugger for Windows User's Guide

The following table shows two lines of sample global heap output
followed by an explanation of each field in the sample output:

Table 11.2
Format of a global heap list Sample global heap output

~~~~~~~~~~~~~~~~~~~~~~~~~~-

0EC5 00000040b PDB (OFlD) 
053E (053D) 00002DC0b GDI DATA MOVEABLE LOCKED=OOOOl PGLOCKED=OOOl 

Field 

OECS 
053E 

(053D) 

00000040b 
000020COb 

PDB 
GDI 

(OFlD) 

DATA 

Description 

Either a handle to the memory object, expressed 
as a 4-digit hex value, or the word FREE, 
indicating a free memory block. 

A memory selector pointing to an entry in the 
global descriptor table. The selector isn't displayed 
if it's the same value as the memory handle. 

A hexadecimal number representing the length of 
the segment in bytes. 

The allocator of the segment, usually an 
application or library module. A PDB is a process 
descriptor block, also known as a program 
segment prefix (PSP). 

A handle indicating the owner of a PDB. 

The type of memory object. The types are 

DATA Data segment of an application or DLL 

CODE Code segment of an application or DLL 

PRIV Either a system object or global data for 
an application or DLL 

MOVEABLE A memory allocation attribute. An object can be 
FIXED, MOVEABLE, or MOVEABLE 
DISCARD ABLE. 

LOCKED=OOOOl For a moveable or moveable-discardable object, 
the number of locks on the object that have been 
set using either the GlobalLock or LockData function. 

PGLOCKED=OOOl For 386 Enhanced mode, the number of page locks 
on the object that have been set using the 
GlobalPageLock function. With a page lock set on a 
memory object, Windows can't swap to disk any of 
the object's 4-kilobyte pages. 

Chapter 7 7, Using Windows debugging features 167 



Listing the contents of 
the local heap 

Table 11.3 
Format of a local heap list 

168 

Obtaining a list of 
modules 

The local heap is a private memory area for the application. It is 
not accessible to other Windows applications, including other 
instances of the same application. 

A program doesn't necessarily have a local heap. Windows 
creates a local heap if the application uses the LocalAlloc function. 

To see a list of the data objects in the local heap, select the Local 
Heap radio button in the Windows Information dialog box, then 
choose OK. The data objects will be listed in the Log window. 

The list can easily exceed the default length of the log window. 
See the caution in the previous global heap section (page 166) 
about using a log file or increasing the number of lines that can be 
written in the Log window. 

The following table shows a typical line of local heap output 
followed by an explanation of its format: 

Local heap output 

OSCO: 0024 BUSY (lOAF) 

Field 

OSCO: 

0024 

BUSY 

(lOAF) 

Description 

The object's offset in the local data segment 

The length of the object in bytes 

The disposition of the memory object, as follows: 

FREE An unallocated block of memory 

BUSY An allocated object 

A local memory handle for the object 

To see a list of the task and DLL modules that have been loaded 
by Windows, select the Module List radio button in the Windows 
Information dialog box, then choose OK. The modules will be 
listed in the Log window. 

The list can easily exceed the default length of the log window. 
See the caution in the global heap section (page 166) about using a 
log file or increasing the number of lines that can be written in the 
Log window. 

Turbo Debugger for Windows User's Guide 



Table 11.4 
Format of a Windows module 

list 

Debugging 
dynamic link 

libraries (DLLs) 

TDW can load a DLL that 
doesn't have a symbol table, 
but only into a CPU window. 

The following table shows three sample lines of a module list 
followed by an explanation of the last line in the list: 

Sample module list output 

0985 TASK TOW C:\TD\TDW.EXE 
OE2D DLL WINDEBUG C:\WIN3\WINDEBUG.DLL 
OEFD TASK GENERIC C:\TD\GENERIC.EXE 

Field Description 

OEFD A handle for the memory segment, expressed 
as a 4-digit hex value. 

TASK The module type. A module can be either a 
task or a DLL. 

GENERIC The module name. 

C:\ TD\GENERIC.EXE The path to the module's executable file. 

A DLL is a library of routines and resources that is linked to your 
Windows application at runtime instead of at compile time. This 
runtime linking allows multiple applications to share a single 
copy of routines, data, or device drivers, thus saving on memory 
use. When an application that uses a DLL starts up, if the DLL is 
not already loaded into memory, Windows loads it in so the 
application can access the DLL's entry points. 

When you load an application into TDW that has DLLs linked 
into it, TDW determines which of these DLLs, if any, have symbol 
tables (were compiled with the debugging option turned on) and 
tracks these DLLs for you. If, during execution of your appli­
cation, TDW encounters a call to an entry point for one of these 
DLLs, TDW loads the symbol table and source for that DLL and 
positions the module line marker at the beginning of the DLL 
routine called by your application. The DLL is then available in 
the Module window just as your application source code was. 

When the DLL routine exits, if possible, TDW reloads your 
application's source code and positions the line marker on the 
next statement after the call to the DLL entry point. 

If you are tracing through the program using Fl or FB, it might not 
be possible for TDW to return you to the calling routine in your 
program because the DLL might return through a Windows 
function call. In this case, your program just runs as though you 
had pressed F9. This behavior is common in DLL startup code. To 

Chapter 7 7, Using Windows debugging features 169 



Figure 11.7 
The Load Modules or DLLs 

dialog box 

Using the Load 
Modules or DLLs dialog 

box 

170 

force a return to your application, before tracing in your 
application to the DLL call, set a breakpoint in your application 
on the line after the call to the DLL. When debugging DLL startup 
code, set the breakpoint on the first line of your application. 

Because so much of DLL debugging is automatic with TDW, you 
never have to specify which DLLs to load. However, you might 
want to perform other tasks, such as: 

•Adding a DLL to the list of DLLs 

•Setting breakpoints, watches, and so on, in a DLL 

•Specifying which DLLs TDW is not supposed to load symbols 
for 

•Debugging DLL startup code 

To perform any of these tasks, you have to access the Load 
Modules or DLLs dialog box by using the View I Modules 
command. (Pressing F3 will also bring up this dialog box.) 

This dialog box enables you to do two things: 

•Change to another source module of your application 

•Perform operations on DLLs and .EXE files (such as loading in a 
symbol file and source file) 

Changing source modules 

If you're debugging an application consisting of multiple source 
modules linked into one .EXE file and you need access to a 
module of the application other than the one currently in the 
Module window, you can bring up the Load Modules or DLLs 
dialog box and pick one of the modules in the list on the left, the 
Source Modules list. 

Turbo Debugger for Windows User's Guide 



M, To pick a module, highlight it, and then either press Enter, click 
twice with the mouse, or choose the Load button. TOW displays 
the Module window with the new source module in it. 

Table 11.5 
DLLs & Programs list dialog 

box controls 

Working with DLLs and programs 

When you're debugging an application that has one or more 
OLLs associated with it (as does any Windows application) and 
you bring up the Load Modules or OLLs dialog box, you see in 
the OLLs & Programs list (the list on the right) a list of OLLs and 
.EXE files (as well as all the .ORV and .FON files currently loaded 
into Windows). This list includes all OLL and .EXE files Windows 
currently has loaded, as well as all OLLs that get started when 
your application starts up. It does not include any OLLs your 
application starts by using a Loadlibrary call unless one of these 
OLLs is already loaded by your program or by Windows. 

The items at the top of this list, marked on the right with an oval, 
are your application's .EXE file and the OLLs your application 
calls. If you make no changes, TOW automatically attempts to 
load in the symbol table and source for each marked OLL 
whenever your application makes a call to that OLL. In addition, 
TOW automatically attempts to load the symbol table and source 
of any OLL your application starts with a Loadlibrary call, even 
though the OLL might not appear on the list at first. (It will 
appear there after TOW loads it.) 

The buttons to the right of this list perform operations on the OLL 
or application you have highlighted. The text entry box under­
neath the list lets you add a OLL to the list. You can use these 
features as follows: 

Button 

Symbol load 

Description 

Load in the symbol table and source files 
for the DLL or application, regardless of 
the Load Symbols setting. This command 
overrides the Load Symbols setting and 
changes the contents of the Module 
Window so you can set breakpoints, 
window messages, and so on for the DLL 
or application. 

Chapter 7 7, Using Windows debugging features 171 



172 

Adding a DLL to the 
DLLs & Programs list 

Table 11.5: DLLs & Programs list dialog box controls (continued) 

Load symbols (No/Yes) Choose whether to load the DLL symbol 
table and source when the application 
makes a call to the DLL. You might use this 
option to prevent TDW from loading the 
symbol table and source of a DLL that you 
don't need to debug. The default setting is 
Yes. 

Debug startup (No/Yes) 

DLLName 

AddDLL 

Choosing Yes puts an oval next to the DLL 
name. 

When you reload a program, Load 
Symbols is set to Yes for all DLLs and 
modules, even for DLLs or modules that 
were previously set to No. 

Choose whether to debug startup code for 
the DLL. The default setting is No. 

Choosing Yes puts double exclamation 
marks (!!) next to the module or DLL. 

These buttons are used for DLLs only. To 
debug application startup code, start TDW 
with the -1 command-line option. 

Enter the name of a DLL that isn't on the 
DLLs & Programs list so you can add it to 
the list. You can use any file extension you 
want. Adding a DLL to the list enables you 
to use one of the previous three commands 
on it. You can use a full path name if 
necessary. 

Add the DLL in the text entry box to the 
DLLs & Programs list. Any DLL you add 
manually has both Load Symbols and 
Debug Startup set to Yes. 

Before you can set debug options, debug OLL startup code, or 
prevent TOW from loading a OLL's symbol table and source, the 
OLL must first be in the OLLs & Programs list. A OLL accessed by 
your application might not be in this list because, just after your 
application loads, TOW only knows about OLLs that are linked 
into the startup code of your application. Your application can 
also start a OLL explicitly by using the Windows Loadlibrary 
function; TOW won't know about it until your application calls 
Load library. 

There are two different types of startup code mentioned in this 
section: your application's startup code and OLL startup code. 

Turbo Debugger for Windows User's Guide 



Setting debug options 
in a DLL 

Controlling TDW's 
loading of DLL symbol 

tables 

Debugging DLL startup 
code 

Some OLLs are started in your application's startup code. When 
your application starts a OLL, the OLL's startup code is then 
executed. There are also two types of OLL startup code, explained 
later on page 173. 

If you want to add a OLL to the OLLs & Programs list, bring up 
the Load Modules or OLLs dialog box (press F3 or choose View I 
Modules), move to the OLL Name text entry box, enter the name 
of the DLL (enter the fall path if necessary), then press the Add 
OLL button to add it to the list. 

If you want to set breakpoints or watches or some other debug 
option for a OLL, bring up the Load Modules or OLLs dialog box 
(press F3 or choose View I Modules), highlight the OLL on the 
OLLs & Programs list, then choose Symbol Load to bring up the 
OLL in a Module window. Once you're in the Module window, 
you can perform your operations on the OLL. 

By default, TOW loads in the symbol table and source of every 
OLLthat your application accesses, but only if the OLL has a 
TOW-compatible symbol table. A OLL has a symbol table 
compatible with TOW if it was compiled with debugging infor­
mation turned on and the compiler was a Borland language 
compiler. 

Because it takes time to load in a OLL's symbol table and then 
load in the original application's symbol table once the OLL 
routine has finished, you might want to disable TOW's default 
operation for OLLs you don't want to debug. To prevent TOW 
from loading a OLL's symbol table, bring up the Load Modules or 
OLLs dialog box (press F3 or choose View I Modules), find the OLL 
on the OLLs & Programs list, highlight it, and then push the Load 
Symbols No button. 

By default, TOW does not debug OLL startup code and only loads 
a OLL's symbol table when your application makes a call to a OLL 
entry point. TOW then brings up the Module or CPU window 
with the current line marker at the beginning of the OLL routine 
called by the application. 

TOW debugs OLL startup code if you tell it to. You can use TOW 
to debug either of two types of OLL startup code: 

What kind of startup code •The initialization code immediately following LibMain (the 
are you debugging? default) 

Chapter 7 7, Using Windows debugging features 173 



Is your application already 
loaded? 

174 

Doing startup code 
debugging 

•The assembly-language code linked into the DLL that does 
initial startup and contains emulated math packages for the size 
model the DLL is running in (selected by starting TDW with the 
-1 command-line option) 

After you specify startup debugging for one or more of the DLLs 
in your application, TDW loads in the symbol table for each DLL 
either when your application startup code starts the DLL or when 
your application makes a Loadlibrary call. 

If you try to load your application and then set startup 
debugging, TDW might not behave as you expect, since some or 
all of the DLLs might already have been loaded. Therefore, you 
should set startup debugging either 

•By setting the DLLs before you load your application 

• By loading your application, indicating the DLLs for startup 
debugging, and then restarting your application (Ctrl-F2 or Run I 
Program Reset) 

With all these preliminaries in mind, use the following steps to 
specify startup debugging for one or more DLLs and to debug 
those DLLs' startup code: 

1. Bring up the Load Modules or DLLs dialog box (press F3 or 
choose View I Modules). 

2. If no program is loaded, skip to step 5. Otherwise, find a DLL 
on the DLLs & Programs list and highlight it. 

3. Select the Debug Startup Yes button. 

4. Repeat steps 2 and 3 until you've set startup debugging for all 
DLLs you're interested in. 

5. If a DLL you want isn't on the list or there are no DLLs on the 
list (because you haven't loaded your application yet), use the 
DLL Name text entry box to enter each DLL name and add it 
to the list using the Add DLL button. 

6. When you've set all the DLLs for which you want to debug 
startup code, choose either File I Load to load in your 
application (if you haven't loaded it yet) or Run I Program 
Reset (Ctrl-F2) to reload your application (if you loaded it 
before setting startup debugging). 

7. Before you run the application, you should set breakpoints to 
guarantee that the DLLs will return to your application after 

Turbo Debugger for Windows User's Guide 



Converting 
memory handles 

to addresses 

the startup code executes. With your application's source code 
in the Module window, 

a. Set a breakpoint on the first line of your application. 

b. If you're debugging startup code for any DLLs loaded with 
Loadlibrary calls, set a breakpoint on the first line of code 
after each of these calls. 

8. As your apphcation starts each DLL, TOW puts you either in 
the Module window at the DLL's LibMain (the default) or in 
the CPU window at the start of the assembly code listing for 
the startup library (because you ran TDW using the -1 option). 

9. When you've finished debugging startup code for a DLL, press 
F9 to run through the end of the startup code and return to the 
application. If you've specified any more DLLs for startup 
code debugging, TDW displays startup code for those DLLs 
when your application starts them. 

Be sure to run to the end of a DLL's startup code before reloading the 
current application or loading a new one. If you don't, the partially 
executed DLL startup code might cause Windows to hang, forcing 
you to reboot. 

Windows uses memory handles instead of addresses for memory 
objects because it performs its own memory management and can 
change the physical location in memory of an object. If you need 
the actual address referred to by a memory handle, you can use 
the TDW built-in typecast symbols lh2fp (for a local handle) and 
gh2fp (for a global handle) to dereference the handle. 

You use these typecasting symbols in TDW just as you use the 
regular C++ typecasting symbols for pointers. For example, you 
could cast the local memory handle hLocalMemory using two 
methods: 

•You could use the Data I Inspect window to evaluate the 
expression (lh2fp) hLocalMemory. 

•You could use the Type Cast command in the Inspector local 
window and enter lh2fp as the type. 

In either case, the expression evaluates to the first character of the 
memory block pointed to by hLocalMemory. 

Chapter 11, Using Windows debugging features 175 



176 

You could also use either of these techniques to do a more compli­
cated cast-for example, a two-stage cast from a handle into a 
character pointer into a pointer to the data in memory, as follows: 

(Mystruct far *) (lh2fp)hLocalMemory 

Turbo Debugger for Windows User's Guide 



c H 

For more information on 
assembler-level debugging, 

see the file DOC\ 
ASMDEBUG. TOW in the 

language compiler directory 
on your hard disk. 

A p T E R 

12 

Assembler-level debugging 

This chapter is for programmers who need to take a lower-level 
look at their code. It gives a brief introduction to the CPU window 
and the six panes of that window. You can also get online Help 
information about any pane of this window and its local menu by 
positioning the cursor in the pane and pressing F1. 

When source debugging isn't enough 

When you're debugging a program, most of the time you refer to 
data and code at the source level; you refer to symbol names 
exactly as you typed them in your source code, and you proceed 
through your program by executing pieces of source code. 

Sometimes, however, you need information you can't get from the 
source code Module window, such as 

• looking at the contents of an area in memory referenced by a 
protected-mode selector 

• looking at the exact instructions that the compiler generated for 
a line of source code, as well as the contents of the stack and 
CPU registers 

• tracing through Windows code to find where your program 
stopped 

To perform any of these functions, you have to use the CPU 
window. In addition, it helps to be familiar with Windows' use of 

Chapter 7 2, Assembler-level debugging 177 



memory and to have knowledge of both the 80x86 family of pro­
cessors and the machine instructions the compiler generates for 
your source code. Because many excellent books are available 
about the internal workings of the CPU, we won't go into that in 
detail here. You can quickly learn how the compiler turns your 
source code into machine instructions by looking at the 
instructions generated for each line of source code. 

The CPU window 

178 

Figure 12.l 
The CPU window 

The CPU window shows you the entire state of the CPU. You can 

•examine and change the bits and bytes that make up your pro­
gram's code and data 

• access the contents of any area of memory referenced by a 
selector 

•use the built-in assembler in the Code pane to patch your pro­
gram temporarily by entering instructions exactly as you would 
type assembler source statements 

•access the underlying bytes of any data structure, display them 
in a number of formats, and change them 

F[•]=REMOTE CPU 8038 3=[t] [~]= 
WINMAIN: int PASCAL Wi nMai n (HANDLE hlnstance,& ax FF15 c=O 

cs: 0158•55 push bp • bx 08DE z=l 
cs:0159 88EC mov bp,sp I ex 0015 s=O 
cs:0158 83EC06 sub sp,0006 dx 08DE o=O 
cs:015E 56 push si si OSCO p=l 
cs:015F 57 push di di 08DE a=O 

#TDDEM0#44: InitWinCrt(); bp 1E2A i=l 
cs:0160 E88IlF call InitWinCrt sp lElE d=O 

#TDDEM0#45: nlines = O; - ds 1285 
cs:0163 33F6 xor si ,si ,. es 1285 

;;05 oat~ 1 Loa~ed 111!~ ~ms 11eM3rife, up ~~ ~m 
1280 Invalid ip 0158 

ds:OOOO 00 00 00 00 00 00 50 lE P& 
ds:0008 00 00 C2 OA 2C lE 2C lE :rl, .. , .. 
ds:OOlO 00 00 08 00 00 00 95 12 C-- Ot 
ds:0018 B6 12 00 00 80 00 01 00 11t o 

SS: 1E20 0001 
SS: 1ElE•OOA2 II 

Open a CPU window by choosing View I CPU from the menu bar. 
Depending on what you're viewing in the current window, the 
new CPU window comes up positioned at the appropriate code, 
data, or stack location, thus providing a convenient method for 
taking a low-level look at the code, data, or stack location your 
cursor is currently on. 

Turbo Debugger for Windows User's Guide 



The following table shows where your cursor is positioned when 
you choose the CPU command: 

Current window 

Stack window 
Module window 
Variable window 
Watches window 
Inspector window 
Breakpoint 
(if not global) 

CPU pane 

Stack 
Code 
Data/Code 
Data/Code 
Data/Code 
Code 

Position 

Current SS:SP 
Current CS:IP 
Address of item 
Address of item 
Address of item 
Breakpoint address 

TDW also automatically puts you in the CPU window if TDW 
regains control from your application and the current code being 
executed is Windows code or DLL code that has no debugging 
information. 

The CPU window has six panes. To go from one pane to the next, 
M. press Tab or Shift-Tab, or click the pane with your mouse. The line 

at the top of the CPU window shows what processor type you 
have (8086, 80286, 80386, or 80486). 

•The top left pane (Code pane) shows the disassembled program 
code intermixed with the source lines. 

• The second top pane (Register pane) shows the contents of the 
CPU registers. 

•The top right pane (Flags pane) shows the state of the eight 
CPU flags. 

• The middle left pane (Selector pane-below the Code pane) 
shows all Windows selectors and indicates the general contents 
of each. 

• The bottom left pane (Data pane-below the Selector pane) 
shows a raw hex dump of any area of memory you choose. 

• The bottom right pane (Stack pane) shows the contents of the 
stack. 

As with all windows and panes, pressing Alt-F10 pops up the 
pane's local menu. If control-key shortcuts are enabled, pressing 
the Ctr/ key with the highlighted letter of the desired local menu 
command executes the command. 

In the Code, Data, and Stack panes, you can press Ctr/ f- and 
Ctr/~ to shift the starting display address of the pane by 1 byte up 
or down. Pressing these keys is easier than using the Goto 
command if you just want to adjust the display slightly. 

Chapter 72, Assembler-level debugging 179 



The Code pane 

An arrow (11>) shows the 
current program location 

(CS:IP). 

The disassembler 

180 

This pane shows the disassembled instructions at an address that 
you choose. 

There are two ways of choosing an address: 

•Use the local menu Goto, Origin, Follow, Caller, or Previous 
command. 

• Position on a code selector in the Selector pane, then choose 
Examine to display the contents of the selector in the Code 
pane. 

The left part of each disassembled line shows the address of the 
instruction. The address is displayed either as a hex segment and 
offset, or with the segment value replaced with the CS register 
name if the segment value is the same as the current CS register. If 
the window is wide enough (zoomed or resized), the bytes that 
make up the instruction are displayed. The disassembled instruc­
tion appears to the right. 

If the highlighted instruction in the Code pane references a 
memory location, the memory address and its current contents 
are displayed on the top line of the CPU window. This feature lets 
you see both where an instruction operand points in memory and 
the value that is about to be read or written over. 

The Code pane automatically disassembles and displays your 
program instructions. If an address corresponds to either a global 
symbol, static symbol, or a line number, the line before the dis­
assembled instruction displays the symbol if the Mixed display 
mode is set to Yes. Also, if there is a line of source code that corre­
sponds to the symbol address, it is displayed after the symbol. 

Global symbols appear simply as the symbol name. Static symbols 
appear as the module name, followed by a cross hatch(#), 
followed by the static symbol name. Line numbers appear as the 
module name, followed by a cross hatch(#), followed by the 
decimal line number. 

When an immediate operand is displayed, you can infer its size 
from the number of digits: A byte immediate has 2 digits, and a 
word immediate has 4 digits. 

Turbo Debugger for Windows User's Guide 



The Register and Flags panes 

The Register pane, which is the top pane to the right of the Code 
pane, shows the contents of the CPU registers. 

The top right pane is the Flags pane, which shows the state of the 
eight CPU flags. The following table lists the different flags and 
how they are shown in the Flags pane: 

Letter in pane 

c 
z 
s 
0 

p 
a 
i 
d 

Flag name 

Carry 
Zero 
Sign 
Overflow 
Parity 
Auxiliary carry 
Interrupt enable 
Direction 

You can use the local menu of the Register pane to increment or 
decrement a register by l, to set the register to 0, to change the 
register, or to toggle between displaying the register as 16-bit or 
32-bit values (requires an 80386 processor or greater). 

The local menu of the Flags pane allow you to toggle the flag 
between 0 and 1. 

The Selector pane 

This pane shows a list of protected-mode selectors and indicates 
some information about each one. 

A selector can be either valid or invalid. If valid, the selector 
points to a location in the protected-mode descriptor table 
corresponding to a memory address. If invalid, the selector is 
unused. 

For a valid selector, the pane shows the following: 

• if the contents are data or code 

• if the memory area the selector references is loaded (present in 
memory) or unloaded (swapped out to disk) 

• the length of the referenced memory segment in bytes 

Chapter 72, Assembler-level debugging 181 



The Selector 

If the selector references a data segment, there's additional 
information on the access rights (Read/Write or Read only) and 
the direction the segment expands in memory (Up or Down). 

pane local menu At the Selector pane, press Alt-F10to pop up the local menu or, if 
control-key shortcuts are enabled, use the Ctr/ key with the 
highlighted letter of the desired command to access the 
command. 

You can use the local menu of the Selector pane to go to a new 
selector (the Selector command) or see the contents of the selector 
currently highlighted in the Selector pane (the Examine 
command). The contents display in either the Code pane or the 
Data pane, depending on their nature. 

Selector 
Examine ••• 

Selector Prompts you to type a selector to display in the pane. You can use 
full expression syntax to enter the selector. If you enter a numeric 
value, TDW assumes it is decimal unless you use the syntax of the 
current language to indicate that the value is hexadecimal. 

For example, if the current language were C, you could type the 
hexadecimal selector value 7F as Ox7F. For Pascal, you'd type it as 
$7F. You could also type the decimal value 127 in order to go to 
selector 7F. 

Another method of entering the selector value is to display the 
CPU window and check the segment register values. If a register 
holds the selector you're interested in, you can enter the name of 
the register preceded by an underscore (_). For example, you 
could type the data segment register as _DS. 

Examine Displays the contents of the memory area referenced by the 
current selector and switches focus to the pane where the contents 
are displayed. If the selector points to a code segment, the 
contents are displayed in the Code pane. If the contents are data, 
they're displayed in the Data pane. 

182 Turbo Debugger for Windows User's Guide 



The Data pane 

The Stack pane 

An arrow (1>) shows the 
current stack pointer (SS:IP). 

This pane shows a raw display of an area of memory you've 
selected. The leftmost part of each line shows the address of the 
data displayed in that line. The address is displayed either as a 
hex segment and offset, or with the segment value replaced with 
one of the register names if the segment value is the same as that 
register. The Data pane matches registers in the follc,ving order: 
DS, ES, SS, CS. 

Next, the raw display of one or more data items is displayed. The 
format of this area depends on the display format selected with 
the Display As local menu command. If you choose one of the 
floating-point display formats (Comp, Float, Real, Double, 
Extended), a single floating-point number is displayed on each 
line. Byte format displays 8 bytes per line, Word format displays 4 
words per line, and Long format displays 2 long words per line. 

When the data is displayed as bytes, the rightmost part of each 
line shows the display characters that correspond to the data 
bytes displayed. TDW displays all byte values as their display 
equivalents, so don't be surprised if you see funny symbols 
displayed to the right of the hex dump area-these are just the 
display equivalents of the hex byte values. 

There are two ways of choosing an address: 

•Use the local menu Goto, Follow, or Previous command. 

• Position on a data selector in the Selector pane, then choose 
Examine to display the contents of the selector in the Data pane. 

The Data pane local menu lets you go to a new address, search for 
a character string, change bytes at the current cursor location, 
follow near or far pointer chains, restore a previous address, 
change how data appears in the window, and move, change, read, 
and write blocks of memory. 

The Stack pane, in the lower right corner of the CPU window, 
shows the contents of the stack. 

The commands in the local menu let you change positions in the 
stack and change values of words on the stack. 

Chapter 72, Assembler-level debugging 183 



The Dump window 

Figure 12.2 
The Dump window 

The Dump window, opened by choosing View I Dump, shows you 
a raw data dump of any area of memory. The Dump window 
shows you a raw data dump of any area of memory. It works 
much like the Data pane in the CPU window (see page 183), 
except that, when zoomed to full size, the Dump Window show 
twice as much data on a single line. 

[

[•]..Oump 3-[t] ['}"ii 
ds:OOOO CD 20 00 AO 00 9A FO FE= 6 OH • 
ds:0008 18 02 82 01 22 31 7C 01 ...mo•110 • 
ds :0010 22 31 88 02 52 28 E2 10 'l'tieR+r• II 
ds:0018 01 01 01 00 03 FF FF FF - • " 

Typically, you use this window if you're in an Inspector window 
and you want to look at the raw bytes that make up the object you 
are inspecting. Use View I Dump to get a Dump window that's 
positioned to the data in the Inspector window. 

The Registers window 

184 

Figure 12.3 
The Registers window 

The Registers window shows you the contents of the CPU 
registers and flags. It works like a combination of the Registers 
and Flags panes in the CPU window (see page 181). 

[•]=RegS=3=[H 
ax 0000 c•O 
bx 0000 z=O 
ex 0000 s=O 
dx 0000 o=O 
si 0000 p=O 
di 0000 a=O 
bp 0000 i•l 
sp 3FFE d=O 
ds 61AF 
es 61AF 
SS 668F 
cs 618F 
ip 084E 

You can perform the same functions from the local menu of the 
Registers window as you can from the local menus of the 
Registers pane and the Flags pane. 

Turbo Debugger for Windows User's Guide 



c H 

Hot keys 

A p T E R 

13 

Command reference 

Now that you've read about all the commands, here's a quick 
summary. This chapter lists and describes 

•all the single-keystroke commands available on the function 
and other keys 

• all the menu bar commands and the commands for the local 
menu of each window type 

•keystrokes used in the two types of panes (those in which you 
enter text and those from which you select an item) 

• keystrokes for moving and resizing windows 

A hot key is a key that performs its action no matter where you 
are in the Turbo Debugger environment. The following table lists 
all the hot keys: 

Chapter 73, Command reference 185 



Table 13.1: The function key and hot key commands 

Key 

F1 
F2 
F3 
F4 
F5 
F6 
Fl 
FB 
F9 
F10 

Alt-F1 
Alt-F2 
Alt-F3 
Alt-F4 
Alt-F5 
Alt-F6 
Alt-Fl 
Alt-FB 
Alt-F9 
Alt-F10 
Alt-1-9 
Alt-Space 
Alt-B 
Alt-D 
Alt-E 
Alt-F 
Alt-H 
Alt-0 
Alt-R 
Alt-V 
Alt-W 
Alt-X 
Alt= 
Alt-

Ctrl-F2 
Ctr/-F4 
Ctr/-F5 
Ctrl-Fl 
Ctr/-+ 

Ctr/+-

186 

Menu command 

Breakpoints I Toggle 
View I Module 
Run I Go to Cursor 
Window I Zoom 
Window I Next Window 
Run I Trace Into 
Run I Step Over 
RunlRun 

Help I Previous Topic 
Breakpoints I At 
Window I Close 
Run I Back Trace 
Window I User Screen 
Window I Undo Close 
Run I Instruction Trace 
Run I Until Return 
Run I Execute To 

File I Quit 
Options I Macros I Create 
Options I Macros I Stop 

Recording 
Run I Program Reset 
Data I Evaluate 
Window I Size/Move 
Data I Add Watch 

Function 

Brings up context-sensitive help 
Sets breakpoint at cursor position 
Module pick list 
Runs to cursor position 
Zooms/unzooms current window 
Goes to next window 
Executes single source line or instruction 
Executes single source line or instruction, skipping calls 
Runs program 
Invokes the menu bar, takes you out of menus 

Brings up last help screen 
Sets breakpoint at an address 
Closes current window or all Inspector windows 
Reverses program execution 
Shows your program's screen 
Reopens the last-closed window 
Executes a single instruction 
Runs until return from function 
Runs to a specified address 
Invokes the window's local menu 
Switch to numbered window 1 through 9 
Goes to the = (System) menu 
Goes to the Breakpoints menu 
Goes to the Data menu 
Goes to the Edit menu. 
Goes to the File menu 
Goes to the Help menu 
Goes to the Options menu 
Goes to the Run menu 
Goes to the View menu 
Goes to the Window menu 
Quits Turbo Debugger and returns you to DOS 
Defines a keystroke macro 
Ends a macro recording 

Stops debug session and resets the program to start again 
Evaluates an expression 
Initiates window moving or resizing 
Adds a variable to the Watches window 
Shifts 1 byte up the starting address in a Code, Data, or Stack 
pane in a CPU window 
Shifts 1 byte down the starting address in a Code, Data, or Stack 
pane in a CPU window 

Turbo Debugger for Windows User's Guide 



Table 13.1: The function key and hot key commands (continued) 

Key Menu command Function 

Shift-F1 Help I Index Goes to the index for online help 
Shift-F3 Edit I Copy Copies item at cursor or highlighted item to Clipboard 
Shift-F4 Edit I Paste Pastes item from Clipboard to window or dialog box prompt 
Shift-Tab Moves cursor to previous window pane or dialog box item 

Shift-t 
Shift~ 
Shift i 
Shift J.. 

Esc 
Ins 

Moves cursor between the panes in a window (the pane in the 
direction of the arrow becomes the active pane) 

Closes an Inspector window, exits menus and dialog boxes 
Starts text block or list selection (highlight); use arrow keys to 
highlight 

Tab Window I Next Pane Moves cursor to next window pane or dialog box item 

Commands from the menu bar 

The = (System) 
menu 

The File menu 

You invoke the menu bar by pressing the Ft 0 key; you can then go 
directly to one of the individual menus by 

• moving the cursor to the menu title and pressing Enter 

•pressing the highlighted letter of the menu title 

You can also open a menu directly (without first moving to the 
menu bar) by pressing Alt in combination with the first letter of the 
menu name you want. 

Repaint Desktop 
Restore Standard 
About 

Open 
Change Dir 
Get Info 
Symbol Load 

Quit 

Redisplays entire screen 
Restores standard window layout 
Displays information about Turbo 
Debugger 

Loads a new program to debug 
Changes to new disk or directory 
Displays program information 
Loads symbol table independent of 
.EXE file 
Returns to DOS 

Chapter 73, Command reference 187 



The Edit menu 

The View menu 

188 

Copy 
Paste 

Copy to Log 

Breakpoints 
Stack 
Log 
Watches 
Variables 
Module 
File 
CPU 

Dump 
Registers 
Numeric Processor 
Execution History 

Hierarchy 

Windows messages 

Clipboard 

Another 
Module 
Dump 
File 

Copies an item into the Clipboard 
Pastes an item from the Clipboard 
into a window or dialog box prompt 
Copies the highlighted item or the 
item at the cursor to the Log 
window 

Displays breakpoints 
Displays procedure-calling stack 
Displays log of events and data 
Displays variables being watched 
Displays global and local variables 
Displays program source module 
Displays disk file as ASCII or hex 
Displays CPU instructions, data, 
stack 
Displays raw data dump 
Displays CPU registers and flags 
Displays coprocessor or emulator 
Displays assembler code saved for 
backtracking 
Displays class list and hierarchy tree 

Displays list of window messages 
for one or more windows in your 
application program 

Displays the Clipboard window so 
you can see the items you've copied 
into the Clipboard. 

Makes another Module window 
Makes another Dump window 
Makes another File window 

Turbo Debugger for Windows User's Guide 



The Run menu 

The Breakpoints 
menu 

The Data menu 

The Options 
menu 

Run 

Go To Cursor 
Trace Into 

Step Over 
Execute To 
Until Return 
Animate 
Back Trace 

Instruction Trace 
Arguments 

Program Reset 

Runs your program without 
stopping 
Runs to current cursor location 
Executes one source line or 
instruction 
Traces, skipping calls 
Runs to specified addrf>ss 
Runs until procedure returns 
Continuously steps your program 
Reverses program execution for one 
source line or instruction 
Executes a single instruction 
Sets program command-line 
arguments 
Reloads current program 

Toggle Toggles breakpoint at cursor 
At Sets breakpoint at specified address 
Changed Memory Global Sets global breakpoint on memory 

Expression True Global 

Hardware Breakpoint 
Delete All 

Inspect 
Evaluate/Modify 
Add Watch 
Function Return 

Language 
Macros 

Create 
Stop Recording 

area 
Sets global breakpoint on 
expression 
Sets a hardware breakpoint 
Removes all breakpoints 

Inspects a data object 
Evaluates an expression 
Adds variable to Watches window 
Inspects current routine's return 
value 

Sets expression language 

Defines a keystroke macro 
Ends the recording session 

Chapter 13, Command reference 189 



The Window 
menu 

The Help Menu 

Remove 
Delete All 

Display Options 

Path for Source 
Save Options 

Restore Options 

Zoom 

Next 

Next Pane 
Size/Move 
lconize /Restore 

Close 
Undo Close 
Dump Pane to Log 
User Screen 
Numbered window list 

Window Pick 

Index 
Previous Topic 
Help on Help 

Removes a keystroke macro 
Removes all keystroke macros 
Lets you set screen display options 
(screen swapping, size, tabs) 
Directory list for source files 
Saves options, screen layout, and 
macros to disk 
Restores options from disk 

Zooms window to full screen size 
and back 
Activates successive windows open 
onscreen 
Goes to the next pane in a window 
Moves window or changes its size 
Reduces window to a small symbol 
or restores it 
Closes window 
Reopens the last window closed 
Writes current pane to Log window 
Displays your program output 
A numbered list of up to 9 open 
windows to activate 
Displays a menu of open menus if 
more than 9 are open onscreen 

Goes to the index for online help 
Brings up last help screen 
Accesses online help on the help 
system 

The local menu commands 

Each type of window and 
each pane within a window 

has a different local menu. 

190 

You invoke the local menu for the current window by pressing 
Alt-F10. If control-key shortcuts are enabled, you can go directly to 
one of the individual menu items by pressing the Ctr/ key in 
combination with the highlighted letter of the item you desire. 

Turbo Debugger for Windows User's Guide 



(Use the installation program TDWINST to enable control-key 
shortcuts, if they've been disabled.) 

The menus in this section are . The following sections describe the local menu for each window 
arranged in alphabetical and pane. 

order to make lookups easier. 

Breakpoints 

Most panes have shortcuts to commonly used commands on their 
local menu. In the following sections, these special keys are 
highlighted in the menu commands. In many panes, the Enter key 
is a shortcut to examining or changing the currentiy highiighted 
item. The Del key often invokes the local menu command that 
deletes the highlighted item. Some panes let you start typing 
letters or numbers without first invoking a local menu command. 
In these cases, the dialog box for one of the local menu items pops 
up to accept your input. 

window The Breakpoints window has two panes: the List pane on the left 
and the Detail pane on the right. Only the List pane has a local 
menu. 

Set Options 

Add 
Remove 
Delete All 
Inspect 
Group 

Sets breakpoint actions, conditions, pass 
count, and enable/ disable 
Adds a new breakpoint 
Removes highlighted breakpoint 
Deletes all breakpoints 
Looks at code where breakpoint is set 
Work with groups of breakpoints 

Del is the shortcut for Remove in this window. 

The CPU window 
menus The CPU window has six panes, each with a local menu: the Code 

pane, the Data pane, the Selector pane, the Stack pane, the 
Register pane, and the Flags pane. 

Code pane 
Goto 
Origin 
Follow 
Caller 
Previous 
Search 

Chapter 13, Command reference 

Displays code at new address 
Displays code at CS:IP 
Displays code at JMP or CALL target 
Displays code at calling procedure 
Displays code at last address 
Searches for instruction or bytes 

191 



Selector pane 

Data pane 

192 

View Source 
Mixed 

NewCS:IP 
Assemble 
1/0 

In Byte 
Out Byte 
Read Word 
Write Word 

Switches to Module window 
Mixes source code with disassembly: 
No/Yes/Both 
Sets CS:IP to execute at new address 
Assembles instruction at cursor 
Brings up I/0 menu 
Reads a byte from an I/0 location 
Writes a byte to an I/O location 
Reads a word from an I/O location 
Writes a word to an I/O location 

Typing any character is a shortcut for the Assemble local menu 
command in this pane. 

Selector 
Examine 

Goto 
Search 
Next 
Change 
Follow 

Near Code 

Far Code 

Offset to Data 

Segment:Offset 
to Data 

Base Segment:O 
to Data 

Previous 
Display As 

Byte 
Word 
Long 
Comp 
Float 

Lets you enter a new selector to go to 
Displays contents of memory area 
referenced by selector in code pane or 
data pane, depending on type of contents 

Displays data at new address 
Searches for string or data bytes 
Searches again for next occurrence 
Changes data bytes at cursor address 

Sets Code pane to the near address under 
the cursor 
Sets Code pane to the far address under 
the cursor 
Sets Data pane to the near address under 
the cursor 
Sets Data pane to the far address under 
the cursor 
Sets Data pane to start of segment that 
contains the address under the cursor 
Displays data at last address 

Displays hex bytes 
Displays hex words 
Displays hex 32-bit long words 
Displays 8-byte Pascal comp integers 
Displays short (4-byte) floating-point 
numbers (float) 

Turbo Debugger for Windows User's Guide 



Flags pane 

Register pane 

Stack pane 

Real 

Double 

Extended 

Block 
Clear 
Move 
Set 
Read 
Write 

Displays 6-byte floating-point numbers 
(Pascal real) 
Displays 8-byte floating-point numbers 
(double) 
Displays 10-byte floating-point numbers 
(long double) 

Sets memory block to zero 
Moves memory block 
Sets memory block to value 
Reads from file to memory 
Writes from memory to file 

Typing any character is a shortcut for the Change local menu 
command in this pane. 

Toggle Sets or clears highlighted flag 

Pressing Enter or Spacebaris a shortcut for the Toggle local menu 
command in this pane. 

Increment 
Decrement 
Zero 
Change 
Registers 32-bit 

Adds one to highlighted register 
Subtracts one from highlighted register 
Clears highlighted register 
Sets highlighted register to new value 
Toggles 32-bit register display: No/Yes 

Typing any character is a shortcut for the Change local menu 
command in this pane. 

Goto 
Origin 
Follow 
Previous 
Change 

Displays stack at new address 
Displays data at SS:SP 
Displays code pointed to by current item 
Restores display to last address 
Lets you edit information 

Typing any character is a shortcut for the Change local menu 
command in this pane. 

Chapter 73, Command reference 193 



194 

Dump window 

The Execution 

The Dump window is identical to the Data pane of the CPU 
window. Its local menu is identical to the Data pane local menu. 

History window The Execution History window has two panes, each with a local 
menus menu: the Instructions pane and the Keystroke Reording pane. 

Instructions pane The Instructions pane shows instructions already executed that 
you can examine or undo. 

File window 

Log window 

Inspect 
Reverse Execute 

Full History 

Takes you to the highlighted command 
Reverses program execution to the 
instruction highlighted in the Instructions 
pane 
Enables (Yes) or disables (No) reverse 
execution 

The File window shows the contents of the disk file as hex bytes 
or as an ASCII file. 

Goto 
Search 
Next 
Display As 
File 

Displays line number or hex offset 
Searches for string or data bytes 
Searches again for next occurrence 
Sets file display mode: ASCII/Hex 
Switches to view new file 

Typing any character is a shortcut for the Search local menu 
command. 

menu The Log window shows messages sent to the log and allows you 
to list Windows memory and module information. 

Open Log File 
Close Log File 

Starts logging to a file 
Stops logging to a file 

Turbo Debugger for Windows User's Guide 



Module window 

Windows 

Logging 
Add Comment 
Erase Log 

Toggles logging: No/Yes 
Writes user comment to log 
Clears all log messages 

Display Windows Info Displays the Windows Information 
dialog box, from which you can 
pick the type of list (global heap, 
local heap, or module) you want to 
display 

Typing any character is a shortcut for the Add Comment local 
menu command. 

The Module window shows the source file for the program 
module. 

Inspect 
Watch 
Module 
File 
Previous 
Line 
Search 
Next 
Origin 
Goto 

Shows contents of variable under cursor 
Adds variable under cursor to watch list 
Changes to display different module 
Changes to display different file 
Displays last module and position 
Displays source at line in module 
Searches for text string 
Searches for next occurrence of string 
Displays current program location 
Shows source or instructions at address 

Typing any character is a shortcut for the Goto local menu 
command. 

Messages The Windows Messages window has three panes: the Window 
window Selection pane, the Message Class pane, and the Messages pane. 

Window Selection These are the local menu commands in this pane: 
pane 

Add 
Remove 
Delete all 

Adds a window name or handle value 
Removes the selected window 
Deletes all window selections 

Typing any character is a shortcut for the Add local menu 
command in this pane. 

Chapter 13, Command reference 195 



The De/key or the Ctrl-Ykey combination is a shortcut for the 
Remove local menu command. 

Message Class pane These are the local menu commands in this pane: 

196 

Add 
Remove 

Delete all 

Adds a message class or single message 
Removes the selected message class or single 
message 
Deletes all message class or single message 
selections 

Typing any character is a shortcut for the Add local menu 
command in this pane. 

The Del key or the Ctrl-Y key combination is a shortcut for the 
Remove local menu command. 

Messages pane These are the local menu commands in this pane: 

Clipboard 
window 

Send to log window 

Erase log 

Sends all messages received to the log 
window so they can be saved in a log file 
Erases all messages in the pane 

The Clipboard window shows you all the items you've copied 
into the Clipboard. It has a single pane with the following local 
menu commands: 

Inspect 

Remove 
Delete All 
Freeze 

Puts you in the window an item was 
copied from so you can inspect the item 
Removes the highlighted item 
Deletes all Clipboard items 
Freezes the highlighted item at its current 
value 

Turbo Debugger for Windows User's Guide 



Numeric 
Processor window The Numeric Processor window has three panes: the Register 

pane, the Status pane, and the Control pane. 

Register pane These are the local menu commands in this pane: 

Zero 
Empty 
Change 

Clears the highlighted register 
Sets the highlighted register to empty 
Sets the highlighted register to a value 

Typing any character is a shortcut for the Change local menu 
command in this pane. 

Status pane This is the local menu command in this pane: 

Toggle Cycles through valid flag values 

Pressing Enter or Spacebaris a shortcut for the Toggle local menu 
command in this pane. 

Control pane This is the local menu command in this pane: 

Hierarchy window 

Class pane 

Toggle Cycles through valid flag values 

Pressing Enter or Spacebaris a shortcut for the Toggle local menu 
command in this pane. 

The Hierarchy window has two panes, the Class pane and the 
Hierarchy Tree pane. 

Inspect 
Tree 

Shows contents of highlighted class 
Moves to the Hierarchy Tree pane 

Chapter 73, Command reference 197 



Hierarchy Tree pane 

Parent Tree pane 

Registers window 

Inspect 
Parents 

Inspect 

Shows contents of highlighted object or class 
Toggles whether Parent Tree pane is displayed 
if you are running a program with multiple 
inheritance 

Shows contents of highlighted object or type 

menu The Registers window is identical to the Register and Flags panes 
of the CPU window. Its local menus are identical to the Register 
pane local menu and the Flags pane local menu. 

Stack window 

Variables window 

Global Symbol pane 

198 

The Stack window shows the currently active procedures. 

Inspect 
Locals 

Shows source code for highlighted procedure 
Shows local variables for highlighted 
procedure 

Pressing Enter is a shortcut for the Inspect local menu command. 

The Variables window has two panes, each with a local menu: 
The Global Symbol pane and the Local Symbol pane. 

Inspect 

Change 

Watch 

Shows contents of highlighted symbol 

Changes value of highlighted symbol 

Opens Watches window and puts currently 
selected global symbol in window 

Pressing Enter is a shortcut for the Inspect local menu command in 
this pane. 

Turbo Debugger for Windows User's Guide 



Local Symbol pane 

Watches window 

Inspect 

Change 

Watch 

Show 

Static 
Auto 
Both 
Module 

Shows contents of highlighted symbol 

Changes value of highlighted symbol 

Opens Watches window and puts currently 
selected global symbol in window 

Displays Show dialog box with following 
choices: 
Show only static variabies 
Show only variables local to current block 
Show both types of variables (default) 
Change current module 

Pressing Enter is a shortcut for the Inspect local menu command in 
this pane. 

The Watches window has a single pane that shows the names and 
values of the variables you're watching. 

Watch 
Edit 
Remove 
Delete All 
Inspect 

Change 

Adds a variable or expression to watch 
Lets you edit a watch variable or expression 
Deletes highlighted variable or expression 
Deletes all watch variables and expressions 
Shows contents of highlighted variable or 
expression 
Changes contents of highlighted variable; does 
not affect expressions 

The following keys are shortcuts to local menu commands in this 
window: 

any character 
Enter 
Del 

Watch 
Edit 
Remove 

Chapter 73, Command reference 199 



Inspector window 

Class Inspector 
window 

Object Inspector 
window 

200 

An Inspector window shows the contents of a data item. 

Range 
Change 
Inspect 

Descend 

New Expression 

Type Cast 

Selects array members to inspect 
Changes the value of highlighted item 
Opens new Inspector window for highlighted 
item 
Expands highlighted item into this Inspector 
window 
Inspects a new expression in this Inspector 
window 
Typecasts highlighted item to new type 

Class Inspector windows have two panes that show the contents 
(data members and member functions) of a class. Their local 
menus, the same for both panes, are quite different from the local 
menu of regular Inspector windows. 

Inspect 
Hierarchy 
Show Inherited 

Shows the contents of the highlighted class 
Returns to the Hierarchy window 
Toggles between showing contents of all 
ancestor types of object and contents declared 
in current type 

Object Inspector windows contain three panes, of which only the 
first two have local menus. (The third displays only the class to 
which the object belongs). Both local menus are the same, and 
contain the following commands: 

Range 
Change 
Methods 

Selects data members to inspect 
Changes value of highlighted item 
Toggles whether member functions are 
summarized in middle pane 

Turbo Debugger for Windows User's Guide 



Text panes 

Show Inherited 

Inspect 

Descend 

New Expression 

Type Cast 
Hierarchy 

Toggles between showing contents all base 
classes of object and contents declared in 
current class 
Opens new Inspector window for highlighted 
item 
Expands highlighted item into this Inspector 
window 
Inspects a new expression in this Inspector 
window 
Typecasts highlighted data item to new type 
Returns to the Hierarchy window 

Text pane is the generic name for a pane that displays the contents 
of a text file. The blinking cursor shows your current position in 
the file. The following table lists all the commands: 

Table 13.2 
Text pane key commands Key Function 

~~~~~~~~~~~~~~~~~~~~~~~~~~-

1 n s Marks text block
i Moves up one line
J, Moves down one line
~ Moves right one column
~ Moves left one column
Ctr/~ Moves to next word
Ctr/~ Moves to previous word
Home Goes to start of line
End Goes to last character on line
PgUp Scrolls up one screen
PgDn Scrolls down one screen
Ctrl-Home Goes to top line of pane
Ctrl-End Goes to bottom line of pane
Ctrl-PgUp Goes to first line of file
Ctrl-PgDn Goes to last line of file

If you're not using the control-key shortcuts, you can also use the
WordStar-style control keys for moving around a text pane.

Chapter 73, Command reference 201

List panes

This is the generic name for a pane that lists information you can
scroll through. A highlight bar shows your current position in the
list. Here's a list of all the commands available to you.

Table 13.3
List pane key commands Key Function

~~~~~~~~~~~~~~~~~~~~~~~~~-

i Moves up one item 
.!. Moves down one item 
-? Scroll right 
~ Scroll left 
Home Goes to start of line 
End Goes to last character on line 
PgUp Scrolls up one screen 
PgDn Scrolls down one screen 
Ctrl-Home Goes to top line of list pane 
Ctrl-End Goes to bottom line of list pane 
Ctrl-PgUp Goes to first item in list 
Ctrl-PgDn Goes to last item in list 
Backspace Backs up one character in incremental match 
Letter Makes incremental search (select by typing) 
Ins Marks multiple list items for block copy 

If you're not using the control-key shortcuts, you can also use the 
WordStar-style control keys for moving around a list pane. 

Commands in input and history list boxes 

202 

The following table shows the commands available when you're 
inside an input or list box: 

Turbo Debugger for Windows User's Guide 



Table 13.4 
Dialog box key commands Key Function 

~~~~~~~~~~~~~~~~~~~~~~~~~~~-

i Moves up one list item
.!. Moves down one list item
~ Moves right one character
~ Moves left one character
Ctr/~ Moves to next word
Ctr/~ Moves to previous word
Home Goes to start of line
End Goes tc last character on line
PgUp Scrolls up one screen
PgDn Scrolls down one screen
Ctrl-Home Goes to top line of list pane
Ctrl-End Goes to bottom line of list pane
Ctrl-PgUp Goes to first item in list
Ctrl-PgDn Goes to last item in list
Backspace Deletes the character before the cursor
Enter Accepts your input and proceeds
Del Deletes the character at the cursor
Esc Cancels the dialog box and returns to menu
Ctrl-N Completes partially typed name in input box

Window movement commands

Table 13.5
Window movement key

commands

The following table shows the keys you can use to reposition and
resize a window:

Key

Ctrl-F5
i
j.
~

~

Shifti
Shift.!.
Shift~
Shift~
Home
End
Pg Up
Pg On
Enter
Esc

Function

Toggles window-positioning mode
Moves window up one line
Moves window down one line
Moves window right one column
Moves window left one column
Resizes window; moves bottom up
Resizes window; moves bottom down
Resizes window; moves right side away from left
Resizes window; moves right side toward left
Moves to left side of screen
Moves to right side of screen
Moves to top line of screen
Moves to bottom line of screen
Accepts current position
Cancels window-positioning command

Chapter 73, Command reference 203

Wildcard search templates

You can use wildcard search templates in two circumstances:

•when you enter a file name to load or examine

•when you enter a text search expression in a text pane

The ? (question mark) matches any single character in the search
expression. The * (asterisk) matches 0 or more characters in the
search expression.

Complete menu tree

204

Figure 13.l shows the complete structure of Turbo Debugger's
pull-down menus.

Turbo Debugger for Windows User's Guide

Figure 13.l: The Turbo Debugger menu tree

• lmll ... 111111 .. 1:mma•l•llilB m111 Blll·H~ .. ll!llil!D IDlil JI
l L_____, ,--J l I

= (System) Run Options

Repaint desktop Run F9 Language ... Source
Restore standard Go to cursor F4 Macros

·~ Trace into F7 Display options •••
About. .. Step over F8 Path for source •••

L .. _.
--~- ~--------- ----- Exe:::..:te t::: •.• A1t.of9

I
Save opt~ o:-:s . ..

Until return Alt-F8 Restore options •••
Animate ••.

l Back trace Alt-F4
File Instruction trace Alt-F7 l

Create .•. Alt =
Open •.. Arguments ..• Stop recording Alt -
Change dir ... Program reset Ctrl-F2 Remove ...
Get info •.. Delete all

Symbol load ...
Quit Alt-X

l l
Breakpoints Window

Toggle F2 Zoom F5
At .•. Alt-F2 Next F6

[Changed memory global ... Next pane Tab
Expression true global ... Size/move Ctrl-F5

Edit Hardware breakpoint ... Iconi ze/restore
Delete all Close Al t-F3

Copy Shft-F3 Undo close Alt-F6
Paste Shft-F4
Copy to log User screen Al t-F5
Dump pane to 1 og 1 (First open window)

(2-9 open windows)
Window pi ck •..

l l l
View Data Help

Breakpoints Inspect. .. Index Sh ft-Fl
Stack Evaluate/modify ..• Ctrl-F4 Previous topic Alt-Fl
Log Add watch ..• Ctrl-F7 Help on help
Watches Function return
Variables
Module •.• F3
File .•.
CPU
Dump
Registers
Numeric processor
Execution hi story
Hierarchy
Windows messages Wi Module ...
Clipboard Dump
Another .. File •.•

Chapter 73, Command reference 205

206 Turbo Debugger for Windows User's Guide

c H A p T E R

14

Debugging a standard C application

Debugging is like the other phases of designing and imple­
menting a program-part science and part art. There are specific
procedures that you can use to track down a problem, but at the
same time, a little intuition goes a long way toward making a long
job shorter.

The more programs you debug, the better you get at rapidly
locating the source of problems in your code. You learn
techniques that suit you well, and you unlearn methods that have
caused you problems.

In this chapter, we discuss some different approaches to debug­
ging, talk over the different types of bugs you may find in your
programs, and suggest some ways to test your program to make
sure that it works-and keeps on working.

Let's begin by looking at where to start when you have a program
that doesn't work correctly.

When things don't work

First and foremost, don't panic! Even the most expert pro­
grammer seldom writes a program that works the first time.

To avoid wasting a lot of time on fruitless searches, try to resist
the temptation to randomly guess where a bug might be. It is

Chapter 74, Debugging a standard C application 207

better to use a universally tried-and-true approach: divide and
conquer.

Make a series of assumptions, testing each one in turn. For
example, you can say, "The bug must be occurring before function
xyz is called," and then test your assumption by stopping your
program at the call to xyz to see if there's a problem. If you do
discover a problem at this point, you can make a new assumption
that the problem occurs even earlier in your program.

If, on the other hand, everything looks fine at function xyz, your
initial assumption was wrong. You must now modify that
assumption to "The bug is occurring sometime after function xyz
is called." By performing a series of tests like this, you can soon
find the area of code that is causing the problem.

That's all very well, you say, but how do I determine whether my
program is behaving correctly when I stop it to take a look? One
of the best ways of checking your program's behavior is to
examine the values of program variables and data structures. For
example, if you have a routine that clears an array, you can check
its operation by stopping the program after the function has
executed, and then examining each member of the array to make
sure that it's cleared.

Debugging style

208

Everyone has their own style of writing a program, and everyone
develops their own style of debugging. The debugging sugges­
tions we give here are just starting points that you can build on to
mold your own personal approach. ·

Many times, the intended use of a program influences the
approach you take to debug it. If a program is for your own use or
will only be used once or twice to perform a specific task, a full­
scale testing of all its components is probably a waste of time,
particularly if you can determine that it is working correctly by
inspecting its output. If a program is to be distributed to other
people or performs a task of which the accuracy is hard to
determine by inspection, your testing must be far more rigorous.

Turbo Debugger for Windows User's Guide

Run the whole
thing

Incremental
testing

Types of bugs

For a simple or throwaway program, the best approach is often
just to run it and see what happens. If your test case has
problems, run the program with the simplest possible input and
check the output. You can then move on to testing more compli­
cated input cases until the output is wrong. This testing
procedure will give you a good feeling for just how much or how
little of the program is working.

When you want to be very sure that a program is healthy, you
must test the individual routines, as well as checking that the
program works as expected for some test input data. You can do
this in a couple of ways: You can test each routine as you write it
by making it part of a test program that calls it with test data. Or
you can use TOW to step through the execution of each routine
when the whole program is finished.

Bugs fall into two broad categories: those peculiar to the language
you're working in and those that are common to any program­
ming language or environment.

By making mental notes as you debug your programs, you learn
both the language-specific constructs you have trouble with, and
also the more general programming errors you make. You can
then use this knowledge to avoid making the same mistakes in
the future, and to give you a good starting point for debugging
future programs.

Understanding that each bug is an instance of a general family of
bugs or misunderstandings will improve your ability to write
errorless code. After all, it's better to write bug-free code than to
be really good at finding bugs.

Chapter 14, Debugging a standard C application 209

General bugs
The following examples barely scratch the surface of the kinds of
problems you can encounter in your programs.

Hidden effects If you are careless about using global variables in functions, a call
to a function can leave unexpected contents in a variable or data
structure:

Assuming initialized
data

char workbuf[20];
strcpy(workbuf,"all done\n");
convert("xyz");
printf (workbuf);

convert(char *p)
{

strcpy(workbuf, p);
while (*p)

Here, the correct thing to do would be to have the function use its
own private work buffer.

Don't assume that another routine has already set a variable for
you:

char *workbuf;
addworkstring(char *s)
{

strcpy{workbuf, s); I* oops */

You should code a routine of this sort defensively by adding the
statement

if (workbuf == 0) workbuf = (char *)malloc(20);

Not cleaning up This sort of bug can crash your program by exhausting heap
space:

210 Turbo Debugger for Windows User's Guide

crunch_string(char *p)
{

char ·*work= (char *)malloc(strlen(p));
strcpy(work, p);

return (p); /* whoops--work still allocated */

Fencepost errors Thest> bugs are named after the old brain teaser that goes "If I
want to put up a 100-foot fence with posts every 10 feet, how
many fenceposts do I need?" A quick but wrong answer is ten
(what about the final post at the far end?). Here's a simple
example:

C-specific bugs

Using uninitialized
automatic variables

for (n = 1; n < 10; n++)
{

/* oops--only 9 times */

Here you can easily see the numbers 1 and 10, and you think that
your loop goes from one to ten. (Better make that < into a <=.)

Turbo C++ for Windows is very good at finding C-specific bugs
that other compilers don't warn you about. You can save yourself
some debugging time by turning on all the warnings that the
compiler is capable of generating. (See the Turbo C++ for
Windows manuals for information on setting these warnings.)

What follows is by no means an exhaustive list of ways you can
get in trouble with C. For some of these errors, Turbo C++ for
Windows issues a warning message. Remember to examine the
cause of any warning messages; they may be telling you about a
bug in the making.

In C, an automatic variable declared inside a function is unde­
fined until you assign a value to it:

do_ ten_ times()
{

int n;
while (n < 10)

n++;

Chapter 14, Debugging a standard C application 211

This function executes the while loop an unpredictable number of
times because n is not initialized to 0 before being used as a
counter.

Confusing = and == C lets you both assign a value (=) and test for equality <==) within
an expression; for example,

Confusing operator
precedence

if (x = y)

This expression inadvertently loads y into x and performs the
statements in the if expression if the value of y is not 0. You
almost certainly meant to say

if (x == y)

C has so many operators that it is hard to remember which ones
are applied first when an expression is evaluated. One combi­
nation that often causes grief is the mixture of shift operators with
addition or subtraction. For example,

x=3«1+1

evaluates to 12, not 7, as you might expect if you thought << took
effect before the +.

Bad pointer arithmetic When you use a pointer to step through an array, be careful how
you increment and decrement it. For example,

212

int *intp;
intp += sizeof(int);

does not increment intp to point to the next element of an integer
array. Instead, intp is advanced by two array elements because in
adding to or subtracting from a pointer, C takes into account the
size of the item the pointer is pointing to. All you have to do to
move the pointer to the next element is

intp++

Turbo Debugger for Windows User's Guide

Unexpected sign Be careful about assigning between integers of different sizes:
extension

int i = OXFFFE;
long l;
l = i;
if (1 & OX80000000) (

/* this DOES get executed */

One of C's strong ooints can cause vou trouble if vou are not
........ J ,J

aware of how it operates. C lets you assign freely between scalar
values (char, int, and so on). When you copy an integer scalar into
a larger scalar, the sign (positive or negative) is preserved in the
larger scalar by propagating the sign (highest) bit throughout the
high portion of the larger scalar. For example, an int value of -2
(Oxfffe) becomes a long value of -2 (Oxfffffffe).

Unexpected truncation This problem is the opposite of the previous one:

int i;
long l = OXlOOOO;
i = l;
while (i > 0)

/* this does NOT get executed */

Here, the assignment of I to i resulted in the top 16 bits of I being
truncated, leaving a value of zero in i.

Misplaced semicolons The following code fragment may appear to be fine at first glance:

for (x = O; x < 10; x++);
{

/* only executed once */

Why does the code between the braces execute only once? Closer
inspection reveals a semicolon (;) at the end of the for expression.
This hard-to-find bug causes the loop to execute ten times, but
does nothing. The subsequent block is then executed once. This is
a nasty problem because you can't find it with the usual technique
of examining the formatting and indenting of code blocks in your
program.

Chapter 74, Debugging a standard C application 213

Macros with side
effects

The following problem is enough to make you swear off #define
macros for life:

#define toupper (c) 'a'<= (c) && (c) <=' z' (c)-' a'-' A' (c)
char c, *p;
c = toupper(*p++);

Here, pis incremented two or three times, depending on whether
the character is uppercase. This type of problem is very hard to
find, because the side effect is hidden within the macro definition.

Repeated autovariable Another hard one to find:
names

myfunc ()
{

int n;
for (n = 5; n >= 0; n--)
{

int n = 10;

if (n == 0)

/* never gets executed */

Here, the automatic variable name n is reused in an inner block,
hiding access to the one declared in the outer block. You must be
careful about reusing variable names in this manner. You can get
into trouble more easily than you might think, especially if you
use a limited number of variable names for local loop counters
(for example, i, n, and so forth).

Misuse of autovariables This function means to return a pointer to the result:

214

int *divide_by_3(int n)
{

int i;
i = n I 3;
return (&i);

The trouble is that by the time the function returns, the automatic
variable is no longer valid and is likely to have been overwritten
by other stack data.

Turbo Debugger for Windows User's Guide

Undefined function
return value

Misuse of break
keyword

If you don't end a function with the return keyword followed by
an expression, it returns an indeterminate value; for example,

char *first_capital_letter(char *p)
{

while (*p)

if ('A' <= *p && *p <= 'Z')
return (p);

pt+;

/* Oops--nothing returned here */

If there are no capital letters in the string, a garbage value is
returned. You should put a return (0) as the last line of this
function.

The break keyword exits from only a single level of do, for,
switch, or while loops:

for (...)
{

while (...)
if (...)

break; /* we want to exit for loop */

Here, the break exits only from the while loop. This is one of the
few cases where it is excusable to use the goto statement.

Code has no effect Sometimes a typo results in source code that compiles, but doesn't
do what you want it to. It may not do anything at all.

a + b;

Here, the intended line of code was a += b.

Accuracy testing

Making a program work with valid input is only part of the job of
testing. The following sections discuss some important test cases

Chapter 14, Debugging a standard C application 215

that any program or routine should be subjected to before being
given a clean bill of health.

Testing boundary
conditions Once you think a routine works with a range of data values, you

should subject it to data at the limits of the range of valid input.
For example, if you have a routine to display a list from 1 to 20
items long, you should make sure it behaves correctly both when
there is exactly 1 item and exactly 20 items in the list. This can
flush out the one-too-few and one-too-many "fencepost" errors
(described on page 211).

Invalid data input

Empty data input

Once you are sure that a routine works with a full range of valid
input, check that it behaves correctly when it's given invalid
input. Check that erroneous input is rejected, even when it's very
close to valid data. For example, the previous routine that
accepted values from 1 to 20 should make sure that 0 and 21 are
rejected.

Empty data input is a frequently overlooked area, both in testing
and in designing a program. If you write a program to have
reasonable default behavior when some input is omitted, you
greatly enhance its ease of use.

Debugging as part of program design

216

When you first start designing your program, you can plan for the
debugging phase. One of the most basic tradeoffs in program
design involves the degree to which the different parts of your
program check that they are getting valid input and that their
output is reasonable.

If you do a lot of checking, you end up with a very resilient pro­
gram that can often tell you about an error condition but
continues to run after performing some reasonable recovery. You
also end up with a larger and slower program. This type of pro­
gram can be fairly easy to debug because the routines themselves
inform you of invalid data before the dangers can be propagated.

Turbo Debugger for Windows User's Guide

You can also implement a program whose routines do little or no
validation of input or output data. Your program will be smaller
and faster, but bad input data or a small bug can bring things to a
grinding halt. This type of program can be the most difficult to
debug, since a small problem can end up manifesting itself much
later during execution. This makes it hard to track down the
original error.

Most programs end up being a mixture of these two techniques.
You should treat input from external sources (such as the user or
a disk file) with greater suspicion than data from one internal
routine calling another.

The sample debugging session

Looking for errors

This sample session uses some of the techniques we talked about
in the previous sections. The program you are debugging,
TDDEMOB, is a version of the demonstration program used in
Chapter 3 (TDDEMO.C), except this one has some deliberate bugs
in it. As with TDDEMO, TDDEMOB was compiled using the
Turbo C ++ for Windows Easy Win feature to display its output
through Windows.

Make sure your working directory contains the two files needed
for the debugging demonstration, TDDEMOB.C and
TDDEMOB.EXE. (The B in these file names stands for "buggy.")

Before we start the debugging session, let's run the buggy demo
program to see what's wrong with it. To start the program, type

TD DEMOB

You are prompted for lines of text. Enter two lines of text

one two three
four five six

A final empty line ends your input. TDDEMOB then prints out its
analysis of your input:

Arguments:
Enter a line (empty line to end) : one two three
Enter a line (empty line to end) : four five six
Enter a line (empty line to end) :

Chapter 74, Debugging a standard C application 217

218

Deciding your
plan of attack

Starting Turbo
Debugger

Total number of letters = 7
Total number of lines = 6
Total word count = 2
Average number of words per line = 0.3333333
'E' occurs 1 times, 0 times at start of a word
'F' occurs 1 times, 1 times at start of a word
'N' occurs 1 times, 0 times at start of a word
'O' occurs 2 times, 1 times at start of a word
'R' occurs 1 times, 0 times at start of a word
'U' occurs 1 times, 0 times at start of a word
There is 1 word 3 characters long
There is 1 word 4 characters long

Notice that there are erroneous numbers for the total number of
words, letters, and word count. Later on, the letter and word
frequency tables seem to be based on an erroneous letter and
word count. This situation is all-too-typical-the program must
have more than one bug. This happens frequently in the early
stages of debugging a program.

Your first task is to decide which problem to attack first. A good
rule of thumb is to start with the problem that appears to be
happening first. In this program, each input line is broken down
into words, then analyzed, and finally, after all the lines have been
entered, the tables are displayed. Since the word and letter counts
are off as well as the tables, it's a good bet that something is
wrong during the initial breaking down and counting phase.

Now is the time to start debugging, after you've thought about the
problem for a moment and decided on a rough plan of attack.
Here, the strategy is to examine the routine makeintowords, to see if
it is correctly chopping the line into null-terminated words, and
then see if analyzewords is correctly counting the analyzed line.

To start the sample debugging session, make sure the Turbo C++
edit window with TDDEMOB is current, then use the Run I
Debugger command.

TOW loads the buggy demo program and displays the startup
screen. If you want to exit from the tutorial session and return to
Turbo C++, press Alt-X at any time. If you get hopelessly lost, you
can always reload the demonstration program and start from the

Turbo Debugger for Windows User's Guide

Inspecting

Breakpoints

beginning again by pressing Ctr/-F2. (Note that reloading doesn't
clear breakpoints or watches.)

Since the first thing you want to do is to check that makeintowords
is working correctly, run the program up to that routine and then
check it. There are two approaches you can use: Either step
through makeintowords as it executes, making sure that it does the
right thing, or stop the program after makeintowords has done its
stuff and see if it did the right thing

Since makeintowords has a clearly defined task and it's easy to
determine whether it's working correctly by inspecting the output
buffer it produces, let's opt for the second approach. To do this,
move down to line 42 and press F4 to run to this line. When the
program screen appears, type

one two three

and press the Enter key.

You are now stopped at the source line after the call to
makeintowords. Look at the contents of buffer to see if the right
thing happened. Move the cursor up a line, place it under the
word buffer, and press Alt-F10 I (for Inspector) to open an Inspector
window to show the contents of buffer. Use the arrow keys to
scroll through the elements in the array. Notice that makeintowords
has indeed put a single null character (0) at the end of each word
as it is meant to. This means that you should execute more of the
program and see if analyzewords is doing the right thing. First,
remove the Inspector window by pressing Esc. Then, press F7
twice to execute to the start of analyzewords.

Check that analyzewords has been called with the correct pointer to
the buffer by moving the cursor under bufp and pressing Alt-F10 I.
You can see that bufp indeed points to the null-terminated string
'one'. Press Escto remove the Inspector window. Since there
seems to be a problem with counting characters and words, let's
put a breakpoint at the places where a character and a word are
counted:

l. Move to line 93 and press F2 to set a breakpoint.

2. Move to line 97 and set another breakpoint.

Chapter 74, Debugging a standard C application 219

The Watches
window

The
Evaluate/Modify

dialog box

220

3. Finally, set a breakpoint on line 99 so you can look at the
character count this function returns.

Setting multiple breakpoints like this is a typical way to learn
about whether things are happening in the right order in a
program, and lets you check on important data values each time
the program stops at a breakpoint.

Run the program by pressing F9. The program stops when it
reaches the breakpoint on line 93. Now you want to look at the
value of charcount. Since you'll want to check it each time you hit
a breakpoint, this is an ideal time to use the Watch command to
place it in the Watches window. Move the cursor under charcount
and press Alt-F10 W. The Watches window at the bottom of the
screen now displays the current value of 0. To make sure that the
character is being counted properly, execute a single line by pres­
sing F7. The Watches window now shows that charcount is 1.

Run the program again by pressing F9. You are now back at line
93 for another character. Press F9 again twice to read the last letter
on the word and the terminating null. charcount now correctly
shows 3, and the wordcounts array is about to be updated to count
a word. Everything is fine so far. Press F9 again to start processing
the next word in the buffer. AHA! Something is wrong.

You expected the program to stop again on line 93 as it processed
the next word, but it didn't. It went straight to the statement that
returns from the function. The only way to end up on line 99 is if
the while loop that started on line 83 no longer has a true test
value. This means that *bufp != 0 must evaluate to false (that is, 0).

To check this, move back to line 83 and mark the entire expression
bufp != 0 by putting the cursor under the, pressing Ins, and
moving the cursor to the final '0' before the ') '. Now evaluate
this expression by opening the Data I Evaluate Modify dialog box
and either pressing Enter or choosing the Eval button to accept the
marked expression. The value is indeed 0. Press Esc to return to
the Module window.

Turbo Debugger for Windows User's Guide

Eureka!
Now here comes the analytical leap that enables you to "solve"
the bug. The reason bufp points to a 0 is because that is where the
inner while loop starting on line 86 left it at the end of a word. To
continue to the next word, you must increment bufp past the 0
that ended the previous word. To do this, you need to add a
"bufp++" statement before line 97. You could recompile your pro­
gram ~vith this statement added, but Turbo Debugger lets you
"splice" in expressions by using a fancy sort of breakpoint.

To do this, first reload the program by pressing Ctrl-F2 so you can
test with a clean slate. Now remove all the breakpoints you set in
the previous session by typing Alt-B D. Go back to line 97 and set a
breakpoint again by pressing F2. Now, open a Breakpoints
window by pressing Alt-VB. Do the following to set this break­
point to execute the expression bufp++ each time it is encountered:

1. With the Breakpoints window open, press Ctrl-S to open the
Breakpoint Options dialog box.

2. Press the Change button to display the Conditions and Actions
dialog box.

3. Set the Action radio buttons to Execute.

4. Press Tab to get to the Action Expression prompt.

5. Enter bufp++.

6. Press Enter twice to return to the Breakpoints window.
Displayed in the right pane of this window is the new action
Execute "bufp++".

7. Press Alt-F3 to return to the Module window.

Now run the program. Enter the usual two input lines.

one two three
four five six

Press Enter at the third prompt, and when the program terminates,
look at your output on the User screen.

You'll notice that things have improved considerably. The total
number of words and lines seem to be wrong, but the tables are
correct. Close the application window to get back to the Module
window.

Chapter 74, Debugging a standard C application 221

222

The next thing you'll do is stop at the beginning of the
printstatistics routine and see if it is given the correct values to
print. First reload the program by pressing Ctrl-F2 to reset. Then go
to line 104 and press F4 to execute to there.

Enter the usual two input lines,

one two three
four five six

then press Enter on the third prompt.

Now that you're back in the Module window on line 104, move
the cursor to the nlines argument and press Ctr/-/ to look at its
value. Note that the value is 6, the wrong value. It should be 2.

Next, go back to where nlines is called from in main and look at its
value there. Move the cursor to line 36, place it under nlines, and
press Ctrl-1 to look at the value. The value of nlines in main is 2,
which is correct. If you go down to line 46, you will notice that the
two arguments nwords and nlines have been reversed. There is no
way that the compiler could have known that you meant to have
them the other way around.

If you correct these two bugs, the program will run correctly. The
file TDDEMO.EXE is a corrected version you can run if you're
curious.

Turbo Debugge1 for Windows User's Guide

c H A p T E R

15

Debugging an ObjectWindows
application

If there are no .EXE files for
TDODEMO and TDODEMOB,

you'll have to open their
project files and compile

them with debug information
included.

The sample Windows programs in this chapter were written
using the ObjectWindows application framework that makes
Windows programming so much easier.

The programs are TDODEMO and TDODEMOB (the B stands for
buggy). TDODEMOB has several bugs in it that you'll discover by
working through this chapter.

Before continuing, it might be helpful if you start TDODEMO
from Windows and play with it a bit to get an idea of how it
works. You can either use the Program Manager File I Run
command to start TDODEMO.EXE or add it to a program group
as an icon.

About the program

TDODEMO is an ObjectWindows program that lets you use a
mouse to scribble in various colors on the screen. When you click
the left mouse button and drag the mouse, the program draws on
the screen. You can clear the window by clicking the right-hand
mouse button. TDODEMO has a menu bar that lets you pick any
of four pen colors: Red, Green, Blue, or Black.

You draw by pressing the mouse button, moving the mouse, and
releasing the mouse button. The program accomplishes this task

Chapter 7 5, Debugging an ObjectWindows application 223

The Color Scribble

easily by using the ObjectWindows library and dynamic virtual
member functions. A dynamic virtual member function is a virtual
member function with a numeric identifier (called a dispatch index)
attached to it.

Because Turbo C++ for Windows defines Windows message
names as numeric constants, you can use a Windows message
name as the dispatch of a dynamic virtual member function.
ObjectWindows can then call the member function whenever the
window for which the member function is declared receives a
message that matches the member function's dispatch index. If
there is no member function with an identifier matching the
Windows message, ObjectWindows calls the default window
function.

For example, in order to create a function that responds to
WM_MOUSEMOVE messages, you can declare a function within
a window object that looks like this:

virtual void WMMouseMove(RTMessage Msg) = [WM_FIRST+WM_MOUSEMOVE];

As you can see, immediately after the function declaration, you
use an equal(=) sign to attach an expression in brackets([]) to the
function, in this case WM_FIRST+WM_MOUSEMOVE. You add
ObjectWindows constant WM_FIRST to the message constant
WM_MOUSEMOVE to indicate that the message constant
represents a WM-type message.

The type RTMessage contains the Windows procedure
parameters wParam and lParam. These parameters often hold
additional information about the message, such as where the
cursor is positioned.

The next few sections explain how the TOODEMOB program
works. They purposely gloss over the bugs so you cap. discover
them later. It might be helpful to start Turbo C++ for Windows
and open TDODEMOB.CPP so you can follow along in the code.

window type The Color Scribble window class is defined as follows:

definition

224 Turbo Debugger for Windows User's Guide

class ScribbleWindow public TWindow

public:
HDC HandleDC; II Display context for drawing.
BOOL ButtonDown; II left-button-down flag
HPEN ThePen; II Pen that is used for drawing in color
ScribbleWindow(PTWindowsObject AParent, LPSTR ATitle);
~ScribbleWindow();

void GetWindowClass(WNDCLASS &AWndClass);

virtual void WMLButtonDown(RTMessage Msg)=[WM_FIRST+WM_LBUTTONDOWN];
virtual void WMLButtonUp(RTMessage Msg)=[WM_FIRST+WM_LBUTTONUP];
virtual void WMMouseMove(RTMessage Msg)=[WM_FIRST+WM_MOUSEMOVE];
virtual void WMRButtonDown(RTMessage Msg)=[WM_FIRST+WM_RBUTTONDOWN];
virtual void SelectRedPen(RTMessage Msg)=[CM_FIRST+CM_RED];

};

virtual void SelectGreenPen(RTMessage Msg)=[CM_FIRST+CM_GREEN];
virtual void SelectBluePen(RTMessage Msg)=[CM_FIRST+CM_BLUE];
virtual void SelectBlackPen(RTMessage Msg)=[CM_FIRST+CM_BLACK];
virtual void SetupWindow();

The ScrlbbleWindow class defines a window object that responds
to the following user input:

•Mouse movement

•Left mouse button press and release

•Right mouse button press

•Pen color and position

There are three data members, HandleDC, ButtonDown, and ThePen
that hold a device context, the state of the mouse button, and the
current pen the user draws with, respectively.

ScribbleWindow The ScrlbbleWindow constructor attaches the menu to the program
and initializes the ButtonDown data member to FALSE and ThePen
to CM_BLACK.

GetWindowClass The GetWindowClass member function calls the standard
TWindow GetWindowClass function to set up the window so it
behaves like any other TWlndow, and then initializes the program's
custom icon.

Chapter 15, Debugging an ObjectWindows application 225

WMLButtonDown When the user presses the left mouse button in the Color Scribble
window and is about to draw, the window receives a
WM_LBUTTONDOWN message, which causes ObjectWindows to
call WMLButtonDown (since it has an identifier of
WM_FIRST +WM_LBUTTONDOWN). WMLButtonDown moves
the pen to the current position of the mouse and sets ButtonDown
to indicate that the button is down, and then selects ThePen into the
current device context. There are additional Windows calls this
function should be making that will be discussed later.

WMLButtonUp When the user finishes scribbling and releases the mouse button,
the window receives a WM_LBUTTONUP message, which in turn
causes ObjectWindows to call WMLButtonUp. The program marks
the ButtonDown variable FALSE and releases the device context
associated with the window.

WMRButtonDown

WMMouseMove

When the user presses the right button to clear the screen,
ObjectWindows calls the function WMRButtonDown, which calls
the Windows function UpdateWindow. Calling this function is
supposed to clear the window.

Once the user starts moving the mouse over the window, the
window begins receiving WM_MOUSEMOVE messages, which
cause ObjectWindows to call the function WMMouseMove. If the
user has pressed the left inouse button, the program draws a line
each time the mouse is moved. If the user hasn't pressed a mouse
button, nothing at all happens.

The pen-color routines There are four functions that set the pen color by deleting the
current pen and creating a new one of the correct color. These
functions differ only in the color each one sets.

226

Creating the
application To create an application that uses the Color Scribble window, it's

necessary to derive a class based on the ObjectWindows class
TApplication. The purposes of this class, CScribbleApplication, are

• to redeclare the lnitMainWindow function so the application can
create a main window with the properties of ScribbleWindow

Turbo Debugger for Windows User's Guide

Main Window, used to set up
window message

breakpoints later in this
chapter, is a member of

My App.

•to provide a type for the object MyApp, which is used to set up
the window and run the program

Now that you know how the program works, you can begin to
debug it.

Debugging the program

"Exception 73" is the
message TOW displays when

your program causes an
unrecoverable application

error (UAE).

Finding the first
bug

Finding the function
that called Windows

If you haven't done so already, start Turbo C++ for Windows and
load the project file, TOODEMOB.PRJ, then load
TOODEMOB.CPP. Next, choose Run I Debugger to run TDW and
load the demo program, then press F9 to run the demo program
under TOW.

You can move the mouse around and even choose menu selections,
but when you press the left mouse button to start drawing, the
program fails and returns to TDW, which displays an "Exception
13" error message.

When you press Esc to clear the message box, TDW leaves you in
the CPU window. This window is displayed because your program
was executing Windows code when the failure occurred. Since you
didn't return to the Module window, you don't have a convenient
marker to tell you where you were in your program when it made
the call to Windows that caused the UAE.

Before continuing, press Alt-F3 to close the CPU window (you'll be
working primarily in the Module window).

Since the program failed when you pressed the left mouse button,
it's likely that the problem is in the WMLButtonDown function.
However, there's another technique you can use to see where your
program was, a stack trace.

To do a stack trace, display the Stack window (choose View I
Stack), then scroll down the list of hexadecimal instructions until
you come to a line indicating a routine in your program (you'll see
the name of the routine in ASCII characters). That line is the one
that called the Windows kernel.

As you can see in the Stack window, the routine you need to look
at is, indeed, WMLButtonDown. To go to this routine in the Module

Chapter 75, Debugging an ObjectWindows application 227

228

Debugging
WMLButtonDown

window, first click in that window. Next, press Ctr/-$, type
WMLButtonDown, and press Enterto find this routine. If you see the
message "Search expression not found," go to the top of the file
and press Ctrl-N to search again (in TDW, you can search only from
the current cursor position to the end of the file). You might have
to press Ctrl-N several times before you get to the function itself.

WMLButtonDown takes a variable of type RTMessage as a
parameter and extracts from this message the location of the
mouse. It then calls the Windows functions MoveTo and
SelectObject to position the pen in the window and select it as the
current drawing tool.

Since you saw the name of this routine in the Stack window, the
bad call to Windows has to be one of these two Windows calls. To
see which it is, you can run the program to the beginning of this
function and then single-step through it to see which call causes
theUAE.

With the cursor on the first line of WMLButtonDown, reload
TDODEMOB by pressing Ctrl-F2, then press F4 to run the program
to that point. When you see the Color Scribble window, press the
left mouse button to get the program to return to TDW. (You might
have to press a key to get Windows to release mouse messages.)
This time, there is no UAE (at least not yet), because all that has
executed so far is the Windows call to TOODEMOB's
WMLButtonDown function. TDW returns you to the first line of
that function.

Begin pressing Fl to single-step through the program. When you
press Fl on the call to MoveTo, you see the error box displaying
"Exception 13." The call to MoveTo must be the problem.

Debugging MoveTo The parameters of MoveTo are the handle of the pen and the X and
Y coordinates of the current cursor location. The coordinates come
from the Msg parameter, which gets them from Windows. Unless
the program picks up the wrong part of this message (it doesn't),
these two parameters should be OK.

The culprit must be HandleDC, the pen's device context handle.

At this point, since you've had two UAEs, the safest course of
action is to exit TDW and close Windows before continuing.

Turbo Debugger for Windows User's Guide

Fixing the bug If HandleDC was the cause of the UAE, the handle either was set
improperly or was never set in the first place. In fact, the handle
wasn't set. The program should have set the handle by initializing
a display context with the following Windows function call:

HandleDC = GetDC(HWindow);

The following code shows WMLButtonDown with the context
initialization statement added:

void ScribbleWindow: :WMLButtonDown(RTMessage Msg)
{

if (!ButtonDown I
{

ButtonDown = TRUE; II Mark mouse button as being
II pressed so when mouse movement
II occurs, a line will be drawn.

HandleDC = GetDC(HWindow); II Create display context for drawing.

MoveTo(HandleDC, Msg.LP.Lo, Msg.LP.Hi);
II Move drawing point to location
II where mouse was pressed.

SelectObject(HandleDC, ThePen);
II Select pen into display context.

Testing the fix Open Windows and Turbo C++ for Windows and reload the
TDODEMO project and source file. Add the context initialization
statement to ScribbleWindow::WMLButtonDown, then compile the
project with debug information included (choose Compile I Build
All).

Just in case there are more bugs, run the program program under
TOW again (choose Run I Debugger, then press F9 when the
Module window comes up).

Now if you draw with the pen, you see the drawing appear in the
default color, black. Try different colors by selecting pen colors
from the menu. Red, green, and blue all work fine; however, when
you try to change the pen color back to black, the pen won't change
color. It looks like you've found another bug.

Chapter 7 5, Debugging an ObjectWindows application 229

Finding the pen
color bug

Setting a window
message breakpoint

See the file TDWINST. TDW for
information on TDWINST.

230

The most likely culprit for this bug is the ScrlbbleWindow function
that creates a black pen, SelectBlackPen. Exit Color Scribble, then
press Ctrl-F2 to reset the program. Set a breakpoint at the opening
brace of ScribbleWlndow::SelectBlackPen, then run the program
and choose Pen I Black. (You might have to press a key to get
Windows to release mouse messages.) TOW should have stopped
execution at the breakpoint. Since it didn't, something else must be
wrong.

It appears that SelectBlackPen is never being called. Because this
routine relies on the dynamically dispatched virtual table (DDVT)
to get called, it's possible that there's something wrong with the
identifier for the function.

When a user chooses a menu item, Windows sends a
WM_ COMMAND message to the window that owns the menu.
The wParam parameter of the message contains the identifier of the
menu item that was selected. When an ObjectWindows window
receives a WM_ COMMAND message, it scans through the
dispatch indexes of the window object looking for the value
CM_FIRST +wParam. SelectBlackPen has an index of
CM_FIRST +CM_BLACK, where CM_ BLACK has the value 104.

In order to find out what the wParam parameter of the Pen I Black
command message is, you need to tell TOW to stop execution
when it receives a WM_ COMMAND message. You can then run
the program, make the menu selection, and then check the wParam
part of WM_ COMMAND to see if it matches the constant
CM_BLACK.

Before you can set the breakpoint, you have to get back to TOW.
Close the Color Scribble application window, then, when you're
back in the Module window, use Ctrl-F2 to reload TDODEMOB.
When the module window comes up, the next step is to set a
window message breakpoint using one of two methods, depending
on whether you have ObjectWindows message support enabled or
disabled.

By default, there is no special support for ObjectWindows window
message breakpoints. You can't use a window object you've
declared in your program to set a window message breakpoint;
you have to use the window handle instead. If you want to use the

Turbo Debugger for Windows User's Gulde

window object (which is easier, but might slow down debugging
when you have a window message breakpoint set), you have to
run TDWINST, choose Options I Source Debugging, and check the
OWL Window Messages checkbox.

Setting a window message breakpoint with a handle

If you don't have ObjectWindows support enabled, you must set
the window message breakpoint by using the wmdow handie.
Because most of the window setup is done in ObjectWindows, you
have to go to some lengths to get access to the handle.

Initial setup of the window is done in the lnitMainWindow
function, but the handle isn't set until later. To return control back
to TDW, you could set a breakpoint in one of the mouse-handling
functions (such as WMLButtonDown), run the program, then use
the mouse and cause the program to hit the breakpoint. (If your
breakpoint is in WMLButtonDown, you could press the left mouse
button.)

Another technique is to redeclare the ObjectWindows function that
initializes the handle, SetupWindow, so you can get control
immediately after the handle is initialized. This function is
redeclared in TDODEMOB as a virtual function and is defined as
follows:

void ScribbleWindow::SetupWindow()
{

TWindow::SetupWindow();

To use it, position the cursor on the closing brace of the
SetupWindow function, then press F4 to run the program to that
point.

Whichever method you use, when TDW regains control, do the
following to set a window message breakpoint on the message
WM_ COMMAND:

1. Choose Data I Inspect and inspect the window object
Main Window. Because it is now out of scope, you have to use
the following scope override syntax:

WinMain#MyApp.MainWindow

Chapter 75, Debugging an ObjectWindows application 231

232

Main Window is a member of My App because My App is of type
CScribbleApplication, which is derived from the class
TApplication, of which Main Window is a data member.

2. Zoom the Inspector window so you can see the data members
in the top pane. HWindow is the data member that holds the
window's handle.

3. Position the cursor on HWindow, then press Shift-F3 to copy it
into the Clipboard.

4. Choose View I Windows Messages to bring up the Windows
Messages dialog box.

5. Press Ctrl-A in the top left pane to display the Add dialog box.
Select the Handle button, then position the cursor in the text
entry box.

6. Press Shift-F4 to display the Clipboard. Put the cursor on
HWindow, select the Contents button (to copy the contents of
HWindow, the handle value), then choose OK to paste the
handle into the text entry box.

7. In the text entry box, append Ox to the front of the handle value
to indicate that it's a hexadecimal number, then press Enter.

8. Move to the top right pane and type WM_ COMMAND. You'll see the
Set Message Filter dialog box appear as you begin typing.

9. Set the Action for this message to Break, then press Enterto set a
breakpoint on this message.

The program will now return control to TOW whenever you make
a menu selection, because doing so generates a WM_ COMMAND
message.

Setting a window message breakpoint with a window object

If you've used TDWINST to enable ObjectWindows window
message breakpoint support, you can use the window object
Main Window to set the window message breakpoint.

1. Move the cursor to the closing brace of the InitMain Window
function and press F4 to run the program to that point.

2. When you see the Module window again, choose View I
Windows Messages to display the OWL Windows Messages
dialog box.

3. In the top left pane, type MainWindow and press Enter.

Turbo Debugger for Windows User's Guide

4. In the top right pane, type WM_ COMMAND, choose the Action button
Break, then press Enter to set a breakpoint on this message.

The program will now return control to TOW whenever you make
a menu selection, because doing so generates a WM_ COMMAND
message.

Inspecting wParam You can now resume execution of the program by pressing F9.

Choose Pen I Black Pen from the menu. Once you have selected a
black pen, TOW stops execution and displays the CPU Window,
indicating that the program was executing Windows kernel code at
the time the break occurred. Close the CPU window by pressing
Alt-F3.

If necessary, bring up the Windows Messages window again.
Zoom the window to full size so you can see the entire message in
the lower pane. You can see that the window received a
WM_ COMMAND message with 204 (OxCC) in the wParam
parameter. But the constant CM_BLACK is 104, not 204. The reason
the virtual function was not getting called was that the application
was looking for an identifier of CM_FIRST +204, but its value was
actually CM_FIRST + 104.

The value 204 was specified in the menu definition in the
TDODEMO.RC file. This error could have been avoided by using
the same identifiers for the menu as are in the header file and
putting an #INCLUDE statement for that header file at the start of
the .RC file. Instead, integers were used in this menu definition,
which left the responsibility for cross-checking the values to the
programmer.

If you edit TDODEMOB.H and change CM_BLACK to 204,
selecting a black pen should work correctly. When you've made
this change, the constant declarations in TDODEMOB.H will be as
follows:

#define PenWidth
#define MenuID 100
#define IconID 100
#define CM RED 101
#define CM GREEN 102
#define CM BLUE 103
#define CM_BLACK 204

Chapter 75, Debugging an ObjectWindows application 233

234

Testing the fix Run Color Scribble and exit it, then exit TOW. When you are back
in Turbo C++ for Windows, load the header file TDODEMOB.H,
change the CM_BLACK constant definition, then recompile the
project and run the program under TOW.

Finding the off­
screen drawing

bug

Logging the window
messages

Now when you draw in the window, you might notice another
problem. If, as you're drawing, you move the mouse off the
window, then back onto the window at another location, you'll see
that the program has drawn a straight line connecting the point
where you left the window and the point where you came back on.

What the program should do is just stop drawing when you leave
the window and start drawing when you come back. You've
discovered yet another bug.

A place to start looking for this bug is in the window messages the
window receives. Get out of the Color Scribble program and load
TDODEMOB.CPP into TDW's Module window.

Depending on whether or not you have ObjectWindows window
message support set, use one of the two methods described
starting on page 231 to initialize the window. Then indicate in the
Windows Messages window's top left pane (either by window
object or handle) which window to track messages for.

Next, move the cursor to the top right pane and add
WM_LBUTTONUP as a message breakpoint, to allow TOW to
regain control after you finish drawing.

You also want to look at all the messages that come back, but
setting WM_LBUTTONUP erased the Log All Messages setting. To
restore this setting, press Ctrl-A to display the Set Message Filter
dialog box, then select the Log All Messages class.

Discovering the bug Resume execution of TDODEMOB by pressing F9. Begin drawing,
then move the mouse off the client area, move it around a bit, and
then move it back on again at another place and release the left
mouse button so control returns to TOW.

Before looking at the Window Messages window, make sure to
zoom it to full size (press F5) so you can see more messages. When

Turbo Debugger for Windows User's Guide

you look in the lower pane of the Windows Messages window, you
see a lot of WM_NCHITEST and WM_SETCURSOR messages.

Scroll to the WM_LBUTTONDOWN message, which is where you
started drawing. After this message, you see a series of
WM_NCHITTEST, WM_SETCURSOR, and WM_MOUSEMOVE
messages, followed a series of WM_NCHITTEST,
WM_SETCURSOR, and WM_NCMOUSEMOVE messages,
followed by another series of WM MOUSEMOVE messages, and a
final WM_LBUTTONUP message.

A WM_MOUSEMOVE message happens only in the program's
client area. WM_NCMOUSEMOVE messages occur when the
mouse is moved off the program's client area.

Now it becomes clear what the bug is. The program draws from
the location of the last WM_MOUSEMOVE message to the location
of the current WM_MOUSEMOVE message. When the mouse exits
the client area, the program doesn't receive any
WM_MOUSEMOVE messages. Therefore, when the mouse returns
to the client area, the last location is where it left the screen, and
the program obediently draws a line from that location to the
current location.

Fixing the bug One possible solution would be to determine when the mouse is
off the client area, so the program can ignore the last mouse
position and begin drawing again when the mouse reenters the
client area. That would require some fancy logic to determine
when the mouse was leaving the client area of the window and
when it moves back over the client area. Fortunately, there is an
easier way.

The Windows function SetCapture does exactly what's needed.
This function tells Windows to send all mouse-related messages to
the specified window until the program calls ReleaseCapture, thus
causing the window to receive WM_MOUSEMOVE messages
when the mouse is off the client area instead of
WM_NCMOUSEMOVE messages.

If you put SetCapture in ScribbleWindow::WMLButtonDown and
ReleaseCapture in WMLButtonUp, WMMouseMove will actually
draw outside the window when the mouse is scribbling outside the
window. However, Windows will clip all the lines drawn outside
the client area, thus producing the desired effect.

Chapter 75, Debugging an ObjectWindows application 235

Testing the fix

Finding the
erase-screen bug

236

These changes are shown in the following code listing:

void ScribbleWindow::WMLButtonDown(RTMessage Msg)
{

if (!ButtonDown)
{

ButtonDown ; TRUE;

SetCapture(HWindow);

II Mark mouse button as being
II pressed so when mouse movement
II occurs, a line will be drawn.

II Tell Windows to send all mouse
II messages to window. WMLButtonUp
II function will release the capture.

HandleDC; GetDC(HWindow);
II Create display context for drawing.

MoveTo(HandleDC, Msg.LP.Lo, Msg.LP.Hi);
II Move drawing point to location
II where mouse was pressed.

SelectObject(HandleDC, ThePen);
II Select pen into display context.

void ScribbleWindow::WMLButtonUp(RTMessage)
{

if (ButtonDown)
{

ReleaseCapture();
ReleaseDC(HWindow, HandleDC);
ButtonDown ; FALSE;

Exit Color Scribble, then exit TDW. When you're back in Turbo
C++ for Windows, enter the changes to the two routines, then
recompile the program and run it. Now when you draw on the
window, everything works fine, but when you try to erase the
screen by using the right-hand mouse button, nothing happens.
You've found another bug.

Since WMRButtonDown is the function that handles the right-hand
mouse button, the bug probably has something to do with that
routine. Either WMRButtonDown isn't getting called, or there's a
bug in it.

Turbo Debugger for Windows User's Guide

Analyzing the cause of
the bug

Exit Color Scribble, then load TOOOEMOB into TOW. To execute
to WMRButtonDown, the function where the bug probably is, press
Alt-F9and type ScribbleWindow: :WMRButtonDown. Scribble a little in the
window, then press the right-hand mouse button. TOW stops the
program at the beginning of WMRButtonDown, so you know this
routine is getting called.

Using the F7key, step into WMRButtonDown and stop at the call to
UpdateWindow. (Don't press F7yet on this line) The only
parameter is HWindow. You can assume that HWindow has been set
correctly because other functions are using it successfully. Since
there's nothing obviously wrong, one thing you can do is test to see
if the WM_PAINT message that should be sent to the window by
the call to UpdateWindow is actually being received by the
window.

By now you probably know how to set a message breakpoint on
WM_PAINT. If not, review the description of how to set a message
breakpoint on page 231. In addition to setting a message
breakpoint on WM_P AINT, set the program to log WM_PAINT
messages. (In the Set Message Filter dialog box, add WM_PAINT
again, but this time select the Log button.)

After setting the message breakpoint, press F7 to execute the
UpdateWindow call. Since the program doesn't break and return,
WM_PAINT is never getting sent to the window.

You can verify that no WM_PAINT messages were received by
pressing the right-hand mouse button to return control to TOW at
WMRButtonDown, then checking the lower pane of the View I
Windows Messages dialog box. There are no WM_PAINT
messages there. For some reason, calling UpdateWindow isn't
working as expected.

This bug requires a little understanding of how Windows handles
the UpdateWindow function. When a program calls this function,
Windows checks to see if any part of the window is invalid and
needs repainting. If so, Windows sends a WM_PAINT message to
the window. If not, there's no reason to waste system resources
with an unnecessary message, so Windows does nothing. But how
does Windows know that the window needs updating?

An application notifies Windows that at least part of the Window
is invalid by calling either lnvalidateRect or lnvalidateRgn. These
two functions put an update area in the window and notify

Chapter 75, Debugging an ObjectWindows application 237

Windows that it should update the window with a WM_PAINT
message.

You could just replace the call to UpdateWlndow with a call to
lnvalidateRect. However, Windows assigns a low priority to the
WM_P AINT message it sends in response to either of these
function calls, so if you want to ensure that the window gets
updated immediately, you should retain the call to UpdateWindow.

Fixing the bug Adding a call to lnvalldateRect in WMRButtonDown will fix the
problem. lnvalidateRect takes three parameters, a window handle
that identifies the window, a pointer to a rectangle that marks the
rectangle to be added to the update rectangle, and a Boolean
parameter that specifies if the rectangle should be erased. You can
pass in NULL for the pointer to the rectangle, telling Windows that
the entire window should be added to the update rectangle. The
following code listing shows how WMRButtonDown should look
with the new function call added:

void ScribbleWindow::WMRButtonDown(RTMessage)
{

InvalidateRect(HWindow, NULL, TRUE);
UpdateWindow(HWindow);

Testing the fix Run Color Scribble and exit it, then exit TOW. When you are back
in Turbo C++ for Windows, enter the changes to
WMRButtonDown, then recompile the program and run it. Now
when you draw on the window, then press the right-hand mouse
button to erase it, the window does get erased. You've found all the
bugs, and the program now works perfectly.

238 Turbo Debugger for Windows User's Guide

A p p E N D x

A

Summary of command-line options

Table Al
TDW command-line options

When you start up TDW from the Windows Program Manager
File I Run command, you can at the same time configure it using
certain options. Here's the general format to use:

tdw [options] [program_name [program_args]]

Items enclosed in brackets are optional. Following an option with
a hyphen disables that option if it was already enabled in the
configuration file.

Option

-cfilename

-do
-ds

-h,-?

_,

-p

-SC

-sddir[;dir ...]

-tdirectory

What it means

Startup configuration file

Other display
Swap user screen contents

Display help screen listing all the command-line
options

Assembler startup code debugging for
applications and DLLs (the letter in this option is
a lowercase L)

Enable mouse

No case-checking of symbols

Source file directory

Set starting directory for loading configuration
and executable files

Appendix A Summary of command-line options 239

240 Turbo Debugger for Windows User's Guide

A p p E N D x

B

Error and information messages
TOW displays error messages and dialog boxes at the current
cursor location. This chapter describes the dialog boxes and error
and information messages TOW generates.

We tell you how to respond to both dialog box and error
messages. All the dialog box messages and error messages
(including the startup fatal error messages) are listed in
alphabetical order, with a description provided for each one.

Dialog box messages

TOW displays a dialog box when you must supply additional
information to complete a command. The title of the dialog box
describes the information that's needed. The contents may show a
history list (previous responses) that you have given.

You can respond to a dialog box in one of two ways:

• Enter a response and accept it by pressing Enter.

• Press Esc to cancel the dialog box and return to the menu
command that preceded the dialog box.

Some dialog boxes only present a choice between two items (like
Yes/No). You can use Tab to select the choice you want and then
press Enter, or press Y or N directly. Cancel the command by press­
ing Esc.

Appendix B, Error and information messages 241

242

For a more complete discussion of the keystroke commands to use
when a dialog box is active, refer to Chapter 2.

Here's an alphabetical list of all the messages generated by dialog
boxes:

Already recording, do you want to abort?
You are already recording a keystroke macro. You can't start
recording another keystroke macro until you finish the current
one. Press Y to stop recording the macro; N to continue
recording the macro.

Device error - Retry?
An error has occurred while writing to a character device,
such as the printer. This could be caused by the printer being
unplugged, offline, or out of paper. Correct the condition and
then press Y to retry or N to cancel the operation.

Disk error on drive _ - Retry?
A hardware error has occurred while accessing the indicated
drive. This may mean you don't have a floppy disk in the
drive or, in the case of a hard disk, it may indicate an
unreadable or unwriteable portion of the disk. You can press Y
to see if a retry will help; otherwise, press N to cancel the
operation.

Edit watch expression
Modify or replace the watch expression. The dialog box is
initialized to the currently highlighted watch expression.

Enter address, count, byte value
Enter the address of the block of memory you want to set to a
particular byte value, then a comma, then the number of bytes
you want to set, then another comma followed by the value to
fill the block with.

Enter address to position to
Enter the address you want to view in your program. You can
enter a function name, a line number, an absolute address, or a
memory pointer expression. See Chapter 9 for more on
entering addresses.

Enter animate delay {10ths of sec)
Specify how fast you want the Animate command to proceed.
The higher the number, the longer between successive steps
during animation.

Turbo Debugger for Windows User's Guide

Enter code address to execute to
Enter the address in your program where you want execution
to stop. See Chapter 9 for more information on entering
addresses.

Enter command-line arguments
Enter the command-line arguments for the program you're
debugging.

Enter comment to add to end of log
Enter an arbitrary line of text to add to the messages displayed
by the Log window. You can enter any text you want; it will
be placed in the log exactly as you type it.

Enter destination address for marked block
Enter the segment:offset or segment that you want to move the
marked block to.

Enter expression for conditional breakpoint
Enter an expression that must be true (nonzero) in order for
the breakpoint to be triggered. This expression will be
evaluated each time the breakpoint is encountered as your
program executes. Be careful about any side effects it may
have.

Enter expression to watch
Enter a variable name or expression whose value you want to
watch in the Watches window. If you want, you can enter an
expression that does not refer to a memory location, such as
x * y + 4). If the dialog box is initialized from a text pane, you
can accept the entry by pressing Enter, or change it and enter
something else entirely.

Enter inspect start Index, range
Enter the index of the first item in the array you want to view,
followed by the number of items you want to view. Separate
the two scalars by a space or a comma (,).

Enter instruction to assemble
Enter an assembler instruction to replace the one at the current
address in the Code pane. The file ASMDEBUG.TDW has a
condensed listing of all assembler keywords and discusses
assembly language in more detail.

Enter log file name
Enter the name of the file you want to write the log to. Until
you issue a Close Log File command, all lines sent to the log
will be written to the file, as well as displayed in the window.

Appendix 8, Effor and information messages 243

244

The default file name has the extension .LOG and is the same
file name as the program you are debugging. You can accept
this name by pressing Enter, or type a new name instead.

Enter memory address, count
Enter a memory address, followed by an optional comma and
the number of items you want to clear. You can use a symbol
name or a complete expression for the address.

Enter name of file to view
You can use DOS-style wildcards to get a list of file choices, or
you can type a specific file name to load.

Enter new bytes
Enter a byte list that will replace the bytes at the position in
the file marked by the cursor. See Chapter 9 for a complete
description of byte lists.

Enter new coprocessor register value
Enter a new value for the currently highlighted numeric
coprocessor register. You can enter a full expression to
generate the new value. The expression will be converted to
the correct floating-point format before being loaded into the
register.

Enter new data bytes
Enter a byte list to replace the bytes at the position in the
segment marked by the cursor. See Chapter 9 for a complete
description of byte lists.

Enter new directory
Enter the new drive or directory name that you want to
become the current drive and directory.

Enter new file offset
You are viewing a disk file as hexadecimal data bytes. Enter
the offset from the start of the file where you want to view the
data bytes. The file will be positioned at the line that contains
the offset you specified.

Enter new line number
Enter the line number you want to see in the current module.
If you enter a line number that is past the end of the file, you'll
see the last line in the file. Line numbers start at 1 for the first
line in the file. The current line number that the cursor is on is
shown as the first line of the Module window.

Turbo Debugger for Windows User's Guide

Enter new relocation segment value
Enter an expression in the current language. This value will be
used to set the base segment address of a symbol table that
you loaded with the File I Symbol Load command. The
expression that you enter should evaluate to the segment
number of the start of the code for which the symbol table
applies.

Enter new selector
Enter the selector value that you want to become current. You
can enter an actual sector hex value, or you can enter a
segment register value, such as CS, DS, or ES.

Enter new value
Enter a new value for the currently highlighted CPU register.
You can enter a full expression to form the new value.

Enter port number
Enter the 1/0 port number you want to read from; valid port
numbers are from 0 to 65,535.

Enter port number, value to output
Enter the 1/0 port number you want to write to, and the value
to write; separate the two expressions with a comma. Valid
port numbers are from 0 to 65,535.

Enter program name to load
Enter the name of a program to debug. You can use DOS
wildcards to get a list of file choices, or you can type a specific
file name to load. If you do not supply an extension to the file
name, .EXE will be appended.

Enter read file name
Enter a file name or a wildcard specification for the file you
want to read into memory. If you supply a wildcard specifi­
cation or accept the default*.*, a list of matching files will be
displayed for you to select from.

Enter search bytes
Enter a byte list to search for starting at the position in
memory marked by the cursor. See Chapter 9 for a complete
description of byte lists.

Enter search instruction or bytes
Enter an instruction, as you would for the Assemble local
menu command, or enter a byte list as you would for a Search
command in a Data pane.

Appendix 8, Error and information messages 245

246

Enter search string
Enter a character string to search for. You can use a simple
wildcard matching facility to specify an inexact search string;
for example, use * to match zero or more of any characters,
and ? to match any single character.

Enter source address, destination, count
Enter the address of the block you want to move, the number
of bytes to move, and the address you want to move them to.
Separate the three expressions with commas.

Enter source directory path
Enter a list of directories, separated by spaces or semicolons
(;).These directories will be searched, in the order that they
appear in this list, for your source files.

Enter symbol table name
Enter the name of a symbol table to load from disk. Usually
these files have an extension of .TDS. You must explicitly
supply the filename extension.

Enter value to fill marked block
Enter a byte value to be filled into the marked block.

Enter variable to inspect
Enter the name of a variable or expression whose contents you
want to examine. If the dialog box is initialized from a text
pane, you can accept the entry by pressing Enter or change it
and enter something else.

Enter write file name
Enter the name of the file you want to write the block of
memory to.

Overwrite ?
You have specified a file name to write to that already exists.
You can choose to overwrite the file, replacing its previous
contents, or you can cancel the command and leave the
previous file intact.

Overwrite existing macro on selected key
You have pressed a key to record a macro, and that key
already has a macro assigned to it. If you want to overwrite
the existing macro, press Y; otherwise, press N to cancel the
command.

Turbo Debugger for Windows User's Guide

Pick a method name
You have specified a routine name that can refer to more than
one method in an object. Pick the correct one from the list
presented.

Pick a module
Select a module name to view in the Module window. You are
presented with a list of all the modules in your program. If
you want to view a file that is not a program module, use
View I File.

Pick a name
Pick a name from the list of displayed symbols. You can start
to type a name, and you will be positioned to the first symbol,
starting with what you have typed so far.

Pick a source file
Select a source file from the list displayed; only the source files
that make up the current module are shown.

Pick a window
Pick a window from the list of active window titles.

Pick macro to delete
Pick the key or key combination for the macro you want to
delete. The key will be returned to its original pre-macro
functionality.

Press key to assign macro to
Press the key that you want to assign the macro to. Then, press
the keys to do the command sequence that you want to assign
to the macro key. The command sequence will actually be per­
formed as you type it. To end the macro recording sequence,
press the key you assigned the macro to, or press Alt-.

Program already terminated, Reload?
You have attempted to run or step your program after it has
already terminated. If you choose Y, your program will be
reloaded. If you choose N, your program will not be reloaded,
and your run or step command will not be executed.

Reload program so arguments take effect?
You have just changed the command-line arguments for the
program you' re debugging. If you type Y, yqur program will
be reloaded and set back to the start. You usually want to do
this after changing the arguments because programs written in
many Borland languages only look at their arguments once-­
just as the program is loaded. Any subsequent changes to the

Appendix B, Error and information messages 247

Error messages

Fatal errors

248

program arguments won't be noticed until the program is
restarted.

TOW uses error messages to tell you about things you haven't
quite expected. Sometimes the command you have issued cannot
be processed. At other times the message warns that things didn't
go exactly as you wanted.

You can easily tell an error message from a prompt if you turn on
Error Message Beeps in TOINST.

All fatal errors cause TOW to quit and return to Windows. Some
fatal errors are the result of trying to start TOW from the
command line. A few others occur if something fatal happens
while you are using the debugger. In either case, after having
solved the problem, your only remedy is to restart TOW.

Bad or missing configuration file
The configuration file is either corrupted or not a TOW
configuration file.

Invalid switch:
You supplied an invalid option switch on the command line.
Appendix A has an abbreviated list of all command-line
switches, and Chapter 4 discusses each one in detail.

Not enough memory
TOW ran out of working memory while loading.

Old configuration file
You have attempted to start TOW with a configuration file for
a previous version. You must create new configuration files for
this version of TOW.

Unsupported video adapter
TOW can't determine which display adapter you are using.
TOW supports EGA, VGA, Hercules, and Super-VGA.

Turbo Debugger for Windows User's Guide

Other error
messages ')' expected

While evaluating an expression, a right parenthesis was found
to be missing. This happens if a correctly formed expression
starts with a left parenthesis and does not end with a matching
right one. For example,

3 * (7 + 4

should have been

3 * (7 + 4)

':'expected
While evaluating a C expression, a question mark (?)
separating the first two expressions of the ternary?: operator
was encountered; however, no matching : (colon) to separate
the second and third expressions was found. For example,

x<0?46

should have been

x<0?4:6

']' expected
While evaluating an expression, a left bracket ([) starting an
array index expression was encountered without a matching
right bracket (]) to end the index expression. For example,

table[4

should have been

table[4]

This error can also occur when entering an assembler
instruction using the built-in assembler. In this case, a left
bracket was encountered that introduced a base or index
register memory access, and there was no corresponding right
bracket. For example,

mov ax,4[si

should have been

mov ax,4[si]

Appendix 8, Error and information messages 249

250

Already logging to a file
You issued an Open Log File command after having already
issued the same command without an intervening Close Log
File command. If you want to log to a different file, first close
the current log by issuing the Close Log File command.

Ambiguous symbol name
You have entered a symbol name in an expression that does
not uniquely identify a member function, and you have
chosen not to pick the correct symbol from a list. You must
pick the proper symbol from the list presented before your
expression can be evaluated.

Bad or missing configuration file name
You have specified a nonexistent file name with the -c
command-line option.

Cannot access an inactive scope
You entered an expression or pointed to a variable in a
Module window that is not in an active function. Variables in
inactive functions do not have a defined value, so you can't
use them in expressions or look at their values.

Cannot be changed
You tried to change a symbol that can't be changed. The only
symbols that can be changed directly are scalars (int, long, and
so forth) and pointers. If you want to change a structure or
array, you must change individual elements one at a time.

Can't have more than one segment override
You attempted to assemble an instruction where both
operands have a segment override. Only one operand can
have a segment override. For example,

mov es: [bx], ds: 1

should have been one of the following:

mov es: [bx], 1

or

mov ax, [1]
mov es: [bx], ax

Can't set a breakpoint at this location
You tried to set a breakpoint in ROM, nonexistent memory, or
in segment 0. The only way to view a program executing in

Turbo Debugger for Windows User's Guide

ROM is to use the Run I Trace Into command to watch it one
instruction at a time.

Can't set any more hardware breakpoints
You can't set another hardware breakpoint without first
deleting one you have already set. Different hardware
debuggers support different numbers and types of hardware
breakpoints.

Can't set hardware condition on this breakpoint
You've attempted to set a hardware condition on a breakpoint
that isn't a global breakpoint. Hardware conditions can only
be set on global breakpoints.

Can't set that sort of hardware breakpoint
The hardware device driver that you have installed in your
CONFIG.SYS file can't do a hardware breakpoint with the
combination of cycle type, address match, and data match that
you have specified.

Constructors and destructors cannot be called
This error message appears only if you are debugging a
program that uses objects. You probably tried to evaluate a
member function that's either a constructor or a destructor.
This is not allowed.

Count value too large
In the Data pane of the CPU window, you've entered too large
a block length to one of the local menu Block commands. The
block length can't exceed FFFFFh.

Ctrl-Alt-SysRq interrupt. System crash possible. Continue?
You attempted either to exit TOW or to reload your appli­
cation program while the program was suspended as a result
of your having pressed Ctrl-Alt-SysRq. Because Windows kernel
code was executing at the time you suspended the application,
exiting TOW or reloading the application will have
unpredictable results (most likely hanging the system and
forcing a reboot).

If possible, set a breakpoint in your code that will cause your
program to exit to TOW, and then run your program again.
When your program encounters the breakpoint and exits to
TOW, you can terminate TOW or reload your program.

Destination too far away
You attempted to assemble a conditional jump instruction
where the target address is too far from the current address.

Appendix B, Error and information messages 251

252

The target for a conditional jump instruction must be within
-128 and 127 bytes of the instruction itself.

Divide by zero
You entered an expression using the divide(/, div) or modulus
operators (mod, %) that had on its right side an expression that
evaluated to zero. Since the divide and modulus operators do
not have defined values in this case, an error message is
issued.

DLL already in list
In the View I Modules dialog box, you tried to add a OLL to the
OLLs & Programs list, but the OLL was already in the list.

Error opening file_
TOW couldn't open the file that you want to look at in the File
window. The file might not exist or might be in another
directory.

Error opening log file_
The file name you supplied for the Open Log File local menu
command can't be opened. Either there is not enough room to
create the file, or the disk, directory path, or file name you
specified is invalid. Either make room for the file by deleting
some files from your disk, or supply a correct disk, path, and
file name.

Error reading block into memory
The block you specified could not be read from the file into
memory. You probably specified a byte count that exceeded
the number of bytes in the file.

Error saving configuration
TOW could not write your configuration to disk. Make sure
that there is some free space on your disk.

Error writing block to disk
The block that you specified could not be written to the file
that you specified. You probably specified a count that
exceeded the amount of free file space available on the disk.

Error writing log file_
An error occurred while writing to the log file collecting the
output from the log window. Your disk is probably full.

Turbo Debugger for Windows User's Guide

Error writing to file
TOW could not write your changes back to the file. The file
might be marked as read-only, or a hard error may have
occurred while writing to disk.

Expression too complex
The expression you supplied is too complicated; you must
supply an expression that has fewer operators and operands.
You can ha~.re up to 64 operators and operands in an expres­
sion. Examples of operands are constants and variable names.
Examples of operators are plus(+), assignment(=), and
structure member selection(->).

Expression with side effects not permitted
You have entered an expression that modifies a memory
location when it gets evaluated. You can't enter this type of
expression whenever TOW might need to repeatedly evaluate
an expression, such as when it is in an Inspector window or
Watches window.

Extra input after expression
You entered an expression that was valid, but there was more
text after the valid expression. This sometimes indicates that
you omitted an operator in your expression. For example,

3 * 4 + 5 2

should have been

3 * 4 + s I 2

Another example,

add ax,4 5

should have been

add ax,45

You could also have entered a number in the wrong syntax for
the language you are using, for example, OxFOOO instead of
OFOOOh when you are in assembler mode.

Help file_ not found
You asked for help but the disk file that contains the help
screens could not be found. Make sure that the help file is in
the same directory as the debugger program.

Appendix 8, Error and information messages 253

254

Immediate operand out of range
You entered an instruction that had a byte-sized operand com­
bined with an immediate operand that is too large to fit in a
byte. For example,

add BYTE PTR[bx],300

should have been

add WORD PTR[bx],300

Initialization not complete
You have attempted to access a variable in your program
before the data segment has been set up properly by the
compiler's initialization code. You must let the compiler
initialization code execute to the start of your source code
before you can access most program variables.

The expression you entered contains a function call that does
not have a correctly formed argument list. An argument list
starts with a left parenthesis, has zero or more comma­
separated expressions for arguments, and ends with a right
parenthesis.

Invalid character constant
The expression you entered contains a badly formed character
constant. A character constant consists of a single quote
character (') followed by a single character, ending with
another single quote character. For example,

'A= 'a'

should have been

'A' = 'a'

Invalid format string
You have entered a format control string after an expression,
but it is not a valid format control string. See Chapter 9 for a
description of format strings.

Invalid function parameter(s)
You have attempted to call a routine in an expression, but you
have not supplied the proper parameters to the call.

Invalid instruction
You entered an instruction to assemble that had a valid
instruction mnemonic, but the operand you supplied is not

Turbo Debugger for Windows User's Guide

allowed. This usually happens if you attempt to assemble a
POP CS instruction.

Invalid Instruction mnemonic
When entering an instruction to be assembled, you failed to
supply an instruction mnemonic. An instruction consists of an
instruction mnemonic followed by optional arguments. For
example,

AX,123

should have been

MOV ax,123

Invalid number entered
In a File window or a Module window, you typed an invalid
number to go to (using the Goto command). Numbers must be
greater than zero and in decimal format.

Invalid operand(s)
The instruction you're trying to assemble has one or more
operands that aren't allowed. For example, a MOV instruction
cannot have two operands that reference memory, and some
instructions only work on word-sized operands. For example,

POP al

should have been

POP ax

Invalid operator/data combination
You've entered an expression where an operator has been
given an operand that can't have the selected operation
performed on it. For example, you attempt to multiply a
constant by the address of a function in your program.

Invalid pass count entered
You have entered a breakpoint pass count that is not between
1and65,535. You can't set a pass count of 0. While your code
is running, a pass count of 1 means that the breakpoint is
eligible to be triggered the first time it is encountered.

Invalid register
You entered an invalid floating-point register as part of an
instruction being assembled. A floating-point register consists
of the letters ST, optionally followed by a number between 0
and 7 within parentheses; for example, ST or ST(4).

Appendix B, Effor and information messages 255

256

Invalid register combination In address expression
When entering an instruction to assemble, you supplied an
operand that did not contain one of the permitted
combinations of base and index registers. An address
expression can contain a base register, an index register, or one
of each. The base registers are BX and BP, and the index
registers are SI and DI. Here are the valid address register
combinations:

BX BX+SI
BP BP+SI
DI BX+DI
SI BP+DI

Invalid register in address expression
You entered an instruction to assemble that tried to use an
invalid register as part of a memory address expression
between brackets([]). You can only use the BX, BP, SI, and DI
registers in address expressions.

Invalid symbol In operand
When entering an instruction to assemble, you started an
operand with a character that can never be used to start an
operand: for example, the colon (:).

Invalid type cast
A correct C cast starts with a left parenthesis, contains a possibly
complex data type declaration (excluding the variable name), and
ends with a right parenthesis. For example,

(x *)p

should have been

(struct x *)p

Invalid value entered
When prompted to enter a memory address, you supplied a
floating-point value instead of an integer value.

Keyword not a symbol
The expression you entered contains a keyword where a
variable name was expected. You can only use keywords as
part of typecast operations, with the exception of the slzeof
special operator. For example,

floatval = char charval

Turbo Debugger for Windows User's Guide

should have been

floatval = char (charval)

Left side not a record, structure, or union
You entered an expression that used one of the C structure
member selectors (. or->). This symbol, however, was not
preceded by a structure name, nor was it preceded by a
pointer to a structure.

No coprocessor or emulator installed
You tried to create a Numeric Processor window using the
View I Numeric Processor command, but there is no numeric
processor chip installed on your system, and the program
you're debugging either doesn't use the software emulator or
the emulator has not been initialized.

No hardware debugging available
You have tried to set a breakpoint that requires hardware
debugging support, but you don't have a hardware debugging
device driver installed. You can also get this error if your
hardware debugging device driver does not find the hardware
it needs.

No help for this context
You pressed Ft to get help, but TOW could not find a relevant
help screen. Please report this to Borland technical support.

No modules have line number information
You have used the View I Module command, but TOW can't
find any modules with enough debug information in them to
let you look at any source modules. This message usually
happens when you're debugging a program without a symbol
table. See the "Program has no symbol table" error message
entry on page 260 for more information on symbol tables.

No previous search expression
You attempted to perform a Next command from the local
menu of a text pane, but you had not previously issued a
Search command to specify what to search for. You can only
use Next after issuing a Search command in a pane.

No program loaded
You attempted to issue a command that requires a program to
be loaded. There are many commands that can only be issued
when a program is loaded. For example, none of the com­
mands in the Run menu can be performed without having a

Appendix B, Error and information messages 257

258

program loaded. Use the File I Open command to load a pro­
gram before issuing these commands.

No type information for this symbol
You entered an expression that contains a program variable
name without debug information attached to it. This can
happen when the variable is in a module compiled without the
correct debug information being generated. You can supply
type information by preceding the variable nar..:e with a
typecast expression to indicate its data type.

Not a function name
You entered an expression that contains a call to a routine, but
the name preceding the left parenthesis introducing the call is
not the name of a routine. Any time a parenthesis immediately
follows a name, the expression parser presumes that you
intend it to be a call to a routine.

Not a record, structure, or union member
You entered an expression that used one of the C structure
member selectors (. or->). This symbol, however, was not
preceded by a structure name, nor was it preceded by a
pointer to a structure.

Not enough memory for selected operation
You issued a command that needed to create a window, but
there is not enough memory left for the new window. You
must first remove or reduce the size of some of your windows
before you can reissue the command.

Not enough memory to load program
Your program's symbol table has been successfully loaded into
memory, but there is not enough memory left to load your
program.

Not enough memory to load symbol table
There is not enough room to load your program's symbol table
into memory. The symbol table contains the information that
TOW uses when showing you your source code and program
variables. If you have any resident utilities consuming
memory, you might want to remove them and then restart
TOW. You can also try making the symbol table smaller by
having the compiler only generate debug information for
those modules you are interested in debugging.

When this message is issued, you must free enough memory
to load both your program and its symbol table. If you're

Turbo Debugger for Windows User's Guide

debugging a TSR program that's already loaded, then you
must start Turbo Debugger using the -sm command-line
option to reserve memory for the program's symbol table.

Only one operand size allowed
You entered an instruction to assemble that had more than one
size indicator. Once you have set the size of an operand, you
can't change it. For example,

mov WORD PTR BYTE PTR[bx],1

should have been

mov BYTE PTR[bx],1

Operand must be memory location
You entered an expression that contained a subexpression that
should have referenced a memory location but did not. Some
things that must reference memory include the assignment
operator and the increment and decrement(++ and - -)
operators.

Operand size unknown
You entered an instruction to assemble, but did not specify the
size of the operand. Some instructions that can act on bytes or
words require you to specify which size to use if it cannot be
deduced from the operands. For example,

add [bx],1

should have been

add BYTE PTR[bx],1

Path not found
You entered a drive and directory combination that does not
exist. Check that you have specified the correct drive and that
the directory path is spelled correctly.

Path or file not found
You specified a nonexistent or invalid file name or path when
prompted for a file name to load. If you do not know the exact
nalt\e of the file you want to load, you can pick the file name
from a list by pressing Enter when the dialog box first appears.
The names in the list that end with a backslash (\) are
directories, letting you move up and down the directory tree
through the lists.

Appendix 8, Error and information messages 259

260

Program has Invalid symbol table
The symbol table attached to the end of your program has
become corrupted. Re-create an .EXE file and reload it.

Program has no objects or classes
You've attempted to open a View I Hierarchy window on a
program that isn't object-oriented.

Program has no symbol table
The program you want to debug has been successfully loaded,
but it doesn't contain any debug symbol information. You'll
still be able to step through the program using a CPU window
to examine raw data, but you won't be able to refer to any
code or data by name.

Program linked with wrong linker version
You are attempting to debug a program with out-of-date
debug information. Relink your program using the latest
version of the 9linker or recompile it with the latest version of
the compiler.

See page 57 for a description of how to compile your program
with debugging information.

Program not found
The program name you specified does not exist. Either supply
the correct name or pick the program name from the file list.

Register cannot be used with this operator
You have entered an instruction to assemble that attempts to
use a base or index register as a negative displacement. You
can only use base and index registers as positive offsets. For
example,

INC WORD PTR[12-BX]

should have been

INC WORD PTR[l2+BX]

Register or displacement expected
You have entered an instruction to assemble that has a badly
formed expression between brackets ([]).You can only put
register names or constant displacement values between the
brackets that form a base-indexed operand.

Run out of space for keystroke macros
The macro you are recording has run out of space. You can
record up to 256 keystrokes for all macros.

Turbo Debugger for Windows User's Guide

Search expression not found
The text or bytes that you specified could not be found. The
search starts at the current location in the file, as indicated by
the cursor, and proceeds forward. If you want to search the
entire file, press Ctrl-PgUp before issuing the search command.

Source file not found
TOW can't find the source file for the module you want to
examine Beforp issuing this message. it has looked in several
places:

•where the compiler found it

•in the directories specified by the -sd command-line option
and the Options I Path for Source command

• in the current directory

•in the directory where TOW found the program you're de­
bugging

You should add the directory that contains the source file to
the directory search list by choosing Options I Path for Source.

Symbol not found
You entered an expression that contains an invalid variable
name. You might have mistyped the variable name, or it might
be in some procedure or function other than the active one or
out of scope in a different module.

Symbol table file not found
The symbol table file that you have specified does not exist.
You can specify either a .TOS or .EXE file for the symbol file.

Syntax error
You entered an expression in the wrong format. This is a
general error message when a more specific message is not
applicable.

Too many files match wildcard mask
You specified a wildcard file mask that included more than
100 files. Only the first 100 file names will be displayed.

Unexpected end of line
While evaluating an expression, the end of your expression
was encountered before a valid expression was recognized.

For example,

99 - 22 *

Appendix B, Error and information messages 261

262

should have been

99 - 22 * 4

And this example,

SUB AX,

should have been

SUB AX,4

Unknown character
You have entered an expression that contains a character that
can never be used in an expression, such as a reverse single
quote(').

Unknown record, structure, or union name
You have entered an expression that contains a typecast with
an unknown record or enum. name. (Note that assembler
structures have their own name space different from
variables.)

Uoknown symbol
You entered an expression that contained an invalid local
variable name. Either the module name is invalid, or the local
symbol name or line number is incorrect.

Unterminated string
You entered a string that did not end with a closirig quote(").
To enter a string with quote characters, you must precede each
quote with a backslash (\) character.

Value must be between nn and nn
You have entered an invalid numeric value for an editor
setting (such as the tab width) or printer setting (such as the
number of lines per page). The error message will tell you the
allowed range of numbers.

Variable not available
Your program's code has been optimized, and the variable
you're looking for can no longer be accessed.

Video mode not available
You have attempted to switch to 43/50-line mode, but your
display adapter does not support this mode; you can only use
43/50-line mode on an EGA or VGA.

Turbo Debugger for Windows User's Gulde

N

..,..,,,,,

in Variables window 71
in Watches window 93

:: (double colon) operator 143, 145
-? option (help) 61
= (System) menu 187

activating 19
80x87 coprocessors See numeric coprocessors
80x86 processors

debugging, breakpoints 112
type, in CPU window 179

80386 processor
debugging, Windows applications 13
hardware debugging registers 13
registers 141

A
accuracy testing 215
action

breakpoints 104
sets of and breakpoints 115

active window 31
returning to 20

activity indicators 40
adapters See graphics adapters; video adapters
Add command

breakpoints 106, 116
window messages

message classes 162
window object 161
window selection 159

Add Comment command (log) 121, 122
Add Watch command 91
Add Window dialog box

ObjectWindows application 162
standard Windows application 159

addresses 133
instructions, disassembled 180

Index

D E

mcrr1ory Sec rrlcmory, addresses
running to specified 127

problems with 79
scope override for, C and C++ 134
symbol tables, base segment 245

Alt-key shortcuts See hot keys
Always option

breakpoints condition 112
display swapping 65

ancestor and descendant relationships 151
ancestor classes 156
Animate command 80, 242
Another command 30
arguments 3, See also parameters

calling function 27
command-line options 59, 247

changing 86
setting 81, 86

Arguments command 86
arrays

changing 250
indexes 243

x

inspecting 22, 31, See also Inspector windows
C tutorial 51
subranges of 97, 99, 101

quoted character strings and 148
watching 92, See also Watches window

arrow keys See also keys
history lists and 24
Inspector windows and 52
menu commands and 19
radio buttons and 21
resizing windows with 35

ASCII
files 201

display option for 130
searching 129

text, viewing files as 128, 129
ASMDEBUG.TDW file 10

263

assembler See also inline assembler
built-in 178, See also Code pane

problems with 249
code29

tracking 30
data, formatting 183
inline, keywords

problems with 256
instructions See also instructions

back tracing and unexpected side effects 83
breakpoints and 107
executing single 78, 79
execution history and 83
multiple, treated as single 79
recording 83
watching 28, See also CPU window

memory dumps 183, 184
mode, starting TDW in 62
registers See CPU, registers
stack See Stack window
symbols 180

Assembler option (language convention) 132
assembly code, debugging 10
assignment operators See also operators

language-specific 72, 94
Turbo C++ for Windows 143

expressions with side effects and 90, 144
At command (breakpoints) 105, 116

B
Back Trace command 80
backward trace 17, 83, See also Back Trace

command; reversing program execution
assembler instructions 83
interrupts and 82

binary operators See also operators
Turbo C++ for Windows 143

bits 178
blinking cursor 34
blocks

memory See memory, blocks
moving246
reading from, problems with 252
writing to files, problems with 252

books, reference 7
Borland, contacting 5
Both option (integer display) 66

264

bottom line See reference line
boundary errors 211

testing for 216
Break option (breakpoints) 113
Breakpoint Detail pane 106
Breakpoint List pane 106
breakpoints 26, 103-113, See also Breakpoints

window
actions 104, 113

setsof 115
At command 105
Boolean 112
Changed Memory 117
Changed Memory Global command 105
condition sets 114
conditional 118
conditions for triggering 103, 112

adding actions 111
customizing 111, 116
defined 103
Delete All command 105
disabling/ enabling 110
Expression True Global command 105
Get Info message about 76
global 110, 116

memory variables and 117
where occurred in program 77

groups
Add command 108
defined 107
delete 109
disable 109, 113
enable 109, 113
Group ID text box 110
List dialog box 108

hardware 112, 118
hardware-assisted

device drivers and 117, 251
problems with 251, 257

Hardware Breakpoint command 105
inspecting 107
local variables 118
location 103
logging values 119
pass counts 104, 118, See also pass counts

setting 115
reloading programs and 85

Turbo Debugger for Windows User's Guide

removing 104, 107
running programs to 50
saving 110
scope 118
setting 104

in module files 118
problems with 250, 251
tutorial 49

simple 116
templates and 119
Toggle command 105
using 221

with demo programs 219
viewing 106
window messages

Get Info message about 76
setting 164

TDODEM0230
Breakpoints command 105
Breakpoints menu 104, 189
Breakpoints window 26, 105-107

local menu 106, 191
opening 105
panes 106

bugs 15-16,207,209-211
accuracy testing 215
boundary errors 211

testing for 216
C-specific 211-215
finding 16, 81, 207-208

backward trace and 80
demo programs

TDODEMOB 223-238
execution history and 82
history lists and 120
interrupting programs and 83
in subroutines 210
TOODEMO

SelectBlackPen function 230
stack trace 227
WMLButtonDown function 234
WMMouseMove function 227
WMRButtonDown function 236

fixing
TOODEMOB

Index

line drawing 229
off-screen drawing 235

pen color 233
screen clearing 238
SelectBlackPen function 233
WMLButtonDown function 229, 235
WMRButtonDown function 238

incremental testing 209
returning information on 75

built-in assembler 178
built-in syntax checker 16
bullets (•)

Result box and 89
Watches window and 92

buttons 21, 38, See also dialog boxes
Help 21
radio See radio buttons

byte lists
entering 129, 139
language syntax 140

bytes 178, 180
formatting 183
hexadecimal, viewing files as 128
memory blocks

setting, responding to prompt 242
raw data 244

examining 94
searching for 261
watching 28

c
C++

arrays 53
code, tracing into 48
compound data types 53
data, types 51
demo programs 48
EasyWin module 43
expressions, entering in dialog boxes 54
functions 48, 49

returning from 48
tracing into 48

variables
inspecting 51
return values 53
watching 50

C++ expressions, problems with 250
C ++ programs

class instances, formatting 89

265

class member functions 7 4
debugging, this parameter and 89
multiple inheritance 151
stepping through 79
tracing into 78

-c option (load configuration file) 61
problems with 250

C programming language See Turbo C
calculator 91
calculator, using Watches window as 131
capturing WM_MOUSEMOVE messages 235
case sensitivity, overriding 62
casting See type conversion
central processing unit See CPU
CGA See graphics adapters; video adapters
Change command

Data Member pane local menu 155
Global pane local menu 72
Inspector window local menu 101
Static pane local menu 72
Watches window local menu 94

Change dialog box
global symbols and 72
local symbols and 72

Changed Memory Global command
(breakpoints) 105

Changed Memory option (breakpoints) 112
character constants 254
character devices, problems with 242
character strings

null-terminated 95, 99
quoted 129

arrays as 148
problems with 262

searching for
File window, in 129
Module window, in 126
responding to prompt 246

searching for next
File window, in 130
Module window, in 127

Turbo C++ for Windows 142
characters

display (ASCII vs. hex) 130
escape (Turbo C++ for Windows) 142
invalid 262
problems with scalar variables and 95

266

raw 148
value of 95

check boxes 21, See also dialog boxes
Breakpoint Disabled 110
Save Configuration 67

Class List pane 150
local menu 150

Class pane, local menu 197
classes, nested, scope of 137
clearing a window, TDODEMO program 237
Clipboard 36

local menu commands 39
tips for using 40
watching expressions 39

Clipboard window
local menu 196

clipping items from windows 36
close box 33
Close command 31, 36, 101
Close Log File command 122
code See also specific language application

breakpoints and 107, 110, 118
checking onscreen 30
current segment See programs, current
location
debugging See debugging
disassembled, problems with 71
editing 123-124
exit, returned to Windows 77
inspecting 82, See also Inspector windows
splicing in (breakpoints) 113
stepping through 79, See also Step Over
command
tracing into 78, See also Trace Into command

execution history and 81
viewing 178

execution history and 29
in multiple files 126, 130

watching See also Watches window
in slow motion 80

Code pane
current program location 180
disassembler and 180
immediate operands and 180
instruction addresses 180
local menu 191

color graphics adapters See graphics adapters

Turbo Debugger for Windows User's Guide

color monitors See monitors
.COM files, debugging 11
command-line options See also specific switch

arguments 247
changing 86
setting 81, 86

disabling 60
entering 59
setting in TCW 59
summary of 239
syntax 58

help with 61
TDW utilities 11

commands 22, See also specific menu command
assigning as macros 64
choosing 19

active windows and 31
dialog boxes and 241
escaping out of 20
hot keys and menu 20
local menu 24
summary of 185-205

onscreen 41, 42
comments

adding to history lists 121
adding to log 243

compiler directives, files and 123
compiling demo programs, TDODEMO 229
complex data objects 92
complex data types 87
compound data objects 91

inspecting 93
condition sets (breakpoints) 114
conditional breakpoints See breakpoints
conditions See also breakpoints

controlling (breakpoints) 118
CONFIG.SYS See configuration files
configuration files 63

changing default name 67
directory paths 62
loading 61
overriding 61, 63
problems with 248, 250
saving

options to 66
problems with 252

TDCONFIG.TDW 36, 61, 63

Index

constants
Inspector windows and 94
problems with 254
Turbo Assembler 146
Turbo C++ for Windows 142

constructors 90
problems with 251

context-sensitivity 21, 22
help40-42

continuous trace 80
control-key shortcuts See hot keys; keys
Control pane, local menu 197
conversion See type conversion
coprocessors See 80x87 coprocessors; numeric

coprocessors
copying and pasting 36
CPU See also CPU window

flags
state of 181
viewing 29, 184

memory, displaying 181
memory dump 183
registers 140

80386 processor 141
compound data types and 91
optimization with 52
viewing 29, 184

state, examining 28, 178
CPU command 94, 178
CPU window 28

cursor in 179
disassembled code and 71
opening 178

automatic 28
panes28
processor type in 179
program execution and 78-83

Create command 64
CScribbleApplication object (TOODEMO) 226
Ctrl-Alt-SysRq (program interrupt key) 83

Program Reset command, and 84, 234
TDDEBUG.386, need for 12

current activity, help with 40
current code segment See programs, current

location
cursor 34

CPU window 179

267

running programs to 78
tutorial 48

cursor-movement keys See keys
customer assistance 5
customizing TOW 63, 64

D
data 88-91, See also Data pane

accessing 132
bashing, global breakpoints and 116
formatting 89
input216, 217
inspecting 8 7-102, See also Inspector
windows

in recursive functions 74
manipulating 29
modifying 54
objects

complex 92
compound 91, 93
inspecting 88, 184
pointing at 91
watching 92

raw
displaying 183
examining 94
inspecting 184
viewing 28, 184, 244

structures, inspecting 22, 156
testing, invalid input and 216
truncated 89
types 87

complex 87
converting See type conversion
inspecting 31, 94-100
problems with 71, 89, 147
tracking 117
variables and 258

values 216
setting breakpoints for 117

viewing 178
in recursive routines 71
incorrect values shown 77

watching See Watches window
Data Member pane 152

local menu 153, 155
Data menu 88-91, 189

268

Data pane
local menu 192
memory addresses in 183

Debug Information command 57
debugging 15-19, 177, See also programs,

debugging
assembly code 10
.COM files 11
continuous trace 80
control 69-86, 133

memory use and 75
returning to TOW 78, 84

defined 15
demo programs See demo programs
dynamic link libraries 169

startup code 173
features 1, 18
functions 144

recursive 74
message logs and 27
multi-language programs 10
multiple components 53
object-oriented programs See object-oriented

programs, debugging
ObjectWindows programs 223
required files 2
restrictions 16
routines 123, 210

recursive 71
sessions 69

preparing programs for 57-67, 216
starting 85

simple programs 209
source files and 2
steps 15
strategies 218
terminology 3
tips

DLL Startup buttons 172
Load Symbols reset 172
window messages 165

tools 17
tutorial 43

Helpwith45
TOODEMOB 227-238

variables 210
uninitialized 210

Turbo Debugger for Windows User's Guide

Windows programs
features list 157
user interface 157

decimal numbers 66
integers displayed as 148

Decimal option (integer display) 66
default settings

overriding 63
restoring 67

Delete All command
Breakpoints window local menu 107
Macros menu 65
Watches window local menu 93
window messages

message classes 164
Windows Messages window

window proc 162
Delete All command (breakpoints) 105
demo programs 43

C++48
compiling and linking

TDODEM0229
Help with 45
reloading 44
source file 43
starting 218

TDDEM044
TDODEM0223

IDODEMOB 227-238
Turbo C++ for Windows 217

derived class relationships 150
Descend command

Data Member pane local menu 156
Inspector window local menu 101

descendant relationships 150, 151
destructors 90

problems with 251
device drivers

breakpoints and 117
problems with 257

dialog boxes 20-21
Add Group 108
bottom line in 42
Breakpoint Options 106, 109
Change 72
closing 67
commands and 241

Index

Conditions and Actions (breakpoints) 111
Display Options 65
Edit Breakpoint Groups 108
escaping out of 241
Evaluate/Modify 89, 131, 220
Expression Language 132
Hardware Breakpoint Options 112
icons 19
Load Program 85
messages 241-248
moving around in 21
responding to 241
Save Options 67
search 126, 129
Watch 72

directories
paths

for source 3
multiple 62
problems with 259
setting 62, 66, 246
starting directory, changing 63

disassembled instructions 180
disassembler 180
disk drives, accessing, problems with 242
disks

distribution 9
files on See files, disk
writing to, problems with 253

display
formats

expressions 147
integers 66

modes
defaults, setting 65
problems with 262

options, saving 36
output 65
problems with 36
swapping 65

Display As command
Data pane local menu 183
File window local menu 130

Display Options command 65
Display Options dialog box 65
Display Swapping radio buttons 65
Display Windows Info command 122, 166, 195

269

distribution disks 9
copying 9

DLL See dynamic link libraries
-do option (run on secondary display) 61
DOS

versions 75
wildcards, choosing files and 127

double colon(::) operator 143, 145
drawing, cursor off-screen, with TDODEMOB

235
drives See disk drives
-ds option (swap screens) 61
Dump Pane to Log command 121
Dump window 28, 184

local menu 194
duplicate windows, opening 30
Dynamic Link Libraries

expressions, accessing 138
scope considerations 138

dynamic link libraries
debugging 169

startup code 173
reverse execution, and 80

dynamic virtual member functions 223

E
EasyWin module 43
Edit command, Watches window local menu 93
Edit menu 188
editing

expressions 93
history lists 24

EGA See also graphics adapters; video adapters
line display 66

EMS
execution history and 82
information about 75

end of lines, problems with 261
Enhanced Graphics Adapters See EGA
Enter Program Name to Load dialog box 85
Erase Log command

Log window local menu 122
Windows Messages window 165

Erase Log File command 122
erasing a window, TDODEMO program 237

270

errors
boundary See boundary errors
Exception 13 77
fatal 248
messages 248-262

escape sequences, Turbo C++ for Windows 142
Evaluate input box 89
Evaluate/Modify command 88-91, 131
Evaluate/Modify dialog box 89, 131

using220
Exception 13 error message 77, 227
exception codes 77

13 77
executable program files See files
Execute option (breakpoints) 113
Execute To command 79
execution history 81

backward trace and 82
deleting 82
losing 83
recovering 83

Execution History command 82
Execution History window 29

opening 82
exit code, returned to Windows 77
exiting, TOW 67
exiting, TOW, tutorial 44
expanded memory specification See EMS
Expression Language dialog box 132
Expression True Global command (breakpoints)

105
Expression True option (breakpoints) 112
expressions 131-148

Clipboard, watching in 39
complex 88
editing 93
entering, problems with

character constants 254
inactive scope 250
invalid characters 262
invalid variables 261, 262
memory areas 259
no record name for field 257, 258
not routine name 258
operators 252, 253, 255
too complex 253

evaluating 88-91, 220

Turbo Debugger for Windows User's Guide

F

implied scope 139
language conventions 132
problems with

end of line 261
no right bracket 249
no right parenthesis 249
scope 139
side effects 253

formatting 147
problems with 254

inspecting 31, 88, 102, 246, See also Inspector
windows

language options 132
pointing at 91
return values 92, 131
scope override

CandC++ 134
Pascal 137

syntax
Turbo Assembler 146-147
Turbo C ++ for Windows 140-146

undefined 93
updating 93
watching 91, 243, See also Watches window

format specifiers and 89
with side effects (C programs) 90, 144

fatal errors 248
features, version 3.0 1
File command

File window local menu 130
Module window local menu 126
View menu 127

File menu 187
File window 28

local menu 128, 194
opening 126

FILELIST.DOC file 9
files See also File menu; File window

ASMDEBUG.TDW 10
compiler directives and 123
configuration See configuration files
demo program 43
disk 28, 123, 127

history lists and 121
executable program 123, 245

Index

required for debugging 2
FILELIST.DOC 9
HELPME!.TDW 10
include 123
INST ALL.EXE 9
list boxes and 26
loading See files, opening
log 243

problems with 250, 252
MANUAL.TDW 10
modifying, byte lists and 139
moving to specific line number in 126, 129
multiple, viewing 126, 130
opening 85, 127, 244

problems with 252
nonexistent drive and directory 259
nonexistent or invalid name 259
wildcard masks and 261

overriding 132
overwriting 246
program module

loading a new module 126
setting breakpoints in other 118
viewing 123

README 10
searching for 204
searching through

File window, in 129
Module window, in 126

source See source files
TDCONFIG.TDW 36, 61, 63
TDDEBUG.386 12
TDDEMO.C43
TDDEMO.EXE 222
TDDEMOB.C 217
TOODEMO.CPP 223
TOODEMOB.CPP 223
text 128, 201
tracking 30
UTILS.TDW 11
viewing 28, 124, 130

as ASCII text 128
as hex data 128, 130

offset address 244
multiple 126, 130
source code 124

writing to, problems with 253

271

filled arrow 48
Flags pane 181
floating point

constants
Turbo Assembler 146
Turbo C++ for Windows 142

numbers
formatting 148, 183
problems with 29

registers 244
problems with 255

format specifiers 89, 148
problems with

invalid string 254
Full History command 83
function keys 42, See also hot keys; keys

summary of 185-187
Function Return command 91
functions

calling 91
debugging 144
inspecting See Inspector windows
recursive, local data and 74
return values and current 91
returning from 79
stepping through 80
variables and inactive 250
Windows See Windows, functions

functions, member, dynamic virtual 223

G
Get Info command 75
GetWindowClass function (TDODEMO)

Scribble Window 225
gh2fp (type-cast symbol) 175
global breakpoints See also breakpoints, global

where occurred in program 77
global memory, Windows

information about 75
listing 166

global menus 19, See also menus
local vs. 23
reference 187-190

Global pane 70
local menu 71

Global Symbol pane local menu 198
global symbols 198

272

disassembler and 180
global variables See also variables

changing 72
debugging, in subroutines 210
inspecting 71, See also Inspector windows
same name as local 71
viewing 27, 70

instack27
Watches window, adding to 72

GlobalAlloc function 166
GlobalLock function 167
GlobalPageLock function 167
Go to Cursor command 78
Goto command

File window local menu 129
Module window local menu 127

graphics adapters See also hardware
EGA66
problems with 262
supported 248
VGA66

Group command (breakpoints) 107

H
-h option (help) 61
handle

memory
casting to far pointer 175
listing global memory, and 166

window
accessing in ObjectWindows programs 231
HWindow in Main Window 232
messages

and 159, 162
hardware

adapters See graphics adapters; video
adapters
breakpoints 118

memory variables and 117
debugging 13

problems with 251, 257
setting breakpoints 105
TDDEBUG.386 file required for 12

primary and secondary displays 61
requirements 2

Hardware Breakpoint command 105
Hardware option (breakpoints) 112

Turbo Debugger for Windows User's Guide

HDWDEBUG.TD 112
heap

allocation 210
global, Windows 166
local, Windows 168

Help
demo programs 45

help 40-42
accessing 41

problems with 253, 257
additional topics for 41
command-line options 61

TDW utilities 11
context-sensitive 40-42
current activity 40
dialog boxes 21

Help button 21
Help Index 41
Help menu 41, 190
Help on Help command 41
Help screen

activating 41
highlighted keywords in 41

HELPME!.TDW 10
HELPME!.TDW file 10
Hex display option (files) 130
Hex option (integer display) 66
hexadecimal bytes 129

viewing
data as 183
files as 128, 130

hexadecimal constants, Turbo Assembler 146
hexadecimal numbers 66

integers displayed as 148
hierarchies, class 149
Hierarchy command

Data Member pane local menu 153, 156
Member Functions pane local menu 154
View menu 149

Hierarchy Tree pane 150, 151
local menu 151, 198

Hierarchy window 149, 197
opening 149
panes 150-152

highlight bar in windows 34
history lists 24-25, See also execution history

breakpoints 120

Index

editing 24
logging to 121
moving around in 202

hot keys 20, See also keys
Alt= (Create Macros) 64
Alt-B (Breakpoints) 104
Alt-F4 (Back Trace) 80
Alt-F3 (Close) 36
Alt-F9 (Execute To) 79
Alt-F7 (Instruction Trace) 80
Alt-F6 (Undo Close) 36
Alt-FS (User screen) 30
Ctrl-F2 (Program Reset) 81
Ctrl-FS (Size/Move) 35
Ctrl-I (Inspect) 22
Ctrl-N (text entry) 25
dialog boxes 21
F2 (Breakpoints) 49
F4 (Go to Cursor) 78
F3 (Module window) 28
F6 (Next Window) 34
F9 (Run) 78
F8 (Step Over) 79
F7 (Trace Into) 78
F8 (Until Return) 79
FS (Zoom) 35
help with 42
local menus 23, 42
macros as 26, 64
summary of 185-187
Tab/Shift-Tab (Next Pane) 34

HWindow data member
window handle in Main Window 232

IBM display character set 148
Iconize/Restore command 35
icons

dialog boxes 19
menu 19
reducing windows to 33, 35
zoom33

identifiers, referencing in other modules 133
include files 123
incremental matching 25
Index command 41
indicators, activity 40

273

inline assembler See also assembler
arrays, inspecting 99
constants 146
data, inspecting 98-100
expressions 146-147
INCLUDE compiler directive 123
instructions See also instructions
keywords, problems with 256
operators, precedence 147
pointers, inspecting 98
scalars, inspecting 98
structures, inspecting 100
symbols 146
unions, inspecting 100

input See I/O
input boxes 21, See also dialog boxes

Action Expression 113
Address (breakpoints) 106, 110
Condition Expression 112
entering text in 24, 25
Evaluate 89
Group ID (breakpoints) 110
history lists and 24-25
moving around in 202
NewValue89
Pass Count 115
Result 89
Save To 67
Tab Size, TDW 66

Inspect command 51
Breakpoints window local menu 107
Class List pane local menu 150
Data Member pane local menu 152, 153, 156
Data menu 31, 88
Global pane local menu 71
Hierarchy Tree pane local menu 151
Inspector window local menu 101
Instructions pane local menu 82
Member Functions pane local menu 154
Module window local menu 125
Parent Tree pane local menu 152
Stack window local menu 74
Static pane local menu 72
Watches window local menu 93

Inspector windows 17, 22, 31, 94-102
arrays 97, 99
classes 154

274

closing 31
compound data objects and 88, 102
functions 9 7
global symbols and 71
language-specific programs and 94
local menus 100-102

class 200
object 200

local symbols and 72
member functions 152
objects 156
opening 26

additional 31
panes

class 152
object 155

pointers 95, 98
problems with

character values in 95
multiple lines and 96, 99
pointers to arrays 96

reducing number onscreen 102
scalars 95, 98
structures 96, 100
unions 96, 100
using

C tutorial 51
in demo programs 219

variables in 71
viewing contents as raw data bytes 94

INSTALL.EXE 9
installation 12

TDDEBUG.386 12
TDW9

instruction opcodes, illegal 77
Instruction Trace command 80

execution history and 82
instructions See also Instructions pane

assembling 178
• I problems with 254, 255, 256

base and index registers 256, 260
instruction mnemonics 255
invalid registers 256
size indicators 259
target addresses 251

back tracing into 83
breakpoints and 116

Turbo Debugger for Windows User's Guide

built-in assembler and 178
divide, information about 77
execution history and 82-83
inspecting 82, See also Inspector windows
machine 178

executing 78, 79, 80
multiple assembly treated as single 79
referencing memory 180
viewing history of 82
watching See also CPU window; Watches

window
Instructions pane, local menu 82, 194
Integer Format radio buttons 66
integers

constants
Turbo Assembler 146
Turbo C ++ for Windows 142

formatting 66
viewing

decimal 148
hexadecimal 148

watching 92, See also Watches window
international sort order 2
interrupting programs

using Ctrl-Alt-SysRq 83
using message breakpoints, in TDODEMO
230

interrupts
back tracing into 82
program See also Ctrl-Alt-SysRq
tracing into 80
Windows program, messages about 77

InvalidateRect function, in TDODEMO 237
InvalidateRgn function 237
I/0

K

ports
reading from 245
writing to 245

video 65

keys See also arrow keys; function keys; hot
keys
assigning as macros 64
cursor-movement 34, 203

CPU window 179
dialog boxes 21, 203

Index

Help window 41
menu commands 20
text boxes 202
text files 201

keystrokes
assigning as macros 64
displayed 29
recording 260

problems with 242
restoring to previous 65

keywords, inline assembler
problems with 256

keywords in Help window 41

L
-1 option (assembler mode) 62, 173
labels, running programs to 79

tutorial 49
Language command 132
language-specific applications

assignment operators and 72
conventions 132
expressions and 131
Inspector windows and 94
scope override and 134
using 16, 131

Layout option (save configuration) 67
layouts, restoring 36
lh2fp (type-cast symbol) 175
Line command 126
line numbers 244

Code pane 180
displaying current 48
generating scope override 134
moving to specific 126, 129
problems with, source files and current 125

lines
end of, problems with 261

lines, multiple, problems with 96, 99
linked lists 102
list boxes 21, See also dialog boxes

Conditions and Actions (breakpoints) 111
incremental matching in 25
moving around in 202

list panes, Pick a Module 123
lists

choosing items from 34

275

global memory 166
local heap 168
modules, Windows 168

Load Modules or DLLs dialog box 170
LoadLibrary function 172
local and static variables

selecting for Variables window 73
watching 73

local heap 168
local memory, Windows, listing 168
local menus 22-24, See also menus

accessing 23
Breakpoints window 106-10 7, 191
Class List pane 150
Class pane 19 7
Code pane 191
Control pane 197
Data Member pane 153, 155
Data pane 192
Dump window 194
File window 194
Global pane 71
Global Symbol pane 198
Hierarchy Tree pane 151, 198
Inspector windows 100-102, 200
Instructions pane 82, 194
Local Symbol pane 199
Log window 121, 194
Member Function pane 154
Message Class pane 196
Messages pane 196
Modulewindow 125-127, 195
Object Member function pane 156
Parent Tree pane 152, 198
Register pane

CPU window 193
Numeric Processor window 197

Registers window 198
Selector pane 192
Stack pane 193
Stack window 7 4, 198
Static pane 72
Status pane 197
Varibles window 198
viewing hot keys in 42
Watches window 93, 199
Window Selection pane 195

276

Local Symbol pane local menu 199
local variables See also variables

breakpoints and 118
changing 72
global values and 71
inspecting 72, See also Inspector windows
problems with 262
viewing 27

in stack 27
specific instances of 71, 74

LocalAlloc function 168
Locals command 71, 74
location, breakpoints 103
LockData function 167
Log command (breakpoints) 120
log files 243

opening, problems with 250, 252
writing to, problems with 252

Log option (breakpoints) 113
Log To File command 252
Log window 27, 120-122

adding comments to 243
local menu 121, 194
opening 120
window messages, sending to 165

Logging command 122

M
machine instructions 178

executing 78, 79, 80
macros 26

recording
keystrokes as 64
problems with 246, 260

removing 65
restoring to previous 65
saving 67

Macros command 64
Macros option (save configuration) 67
Main Window object, inspecting 231
MANUAL.TDW 10
math coprocessor See numeric coprocessors
Member Function pane 152

local menu 154
memory

addresses 131
disassembler and 180

Turbo Debugger for Windows User's Guide

displaying 181
dump 183
entering 244
problems with 256

allocation
inspecting 75
problems with 210, 258

blocks 242
problems with 252

dump28, 184
problems with 183

global Windows
information about 75
listing 166

handle
casting to far pointer 175
listing global memory 166

local, Windows, listing 168
locations, problems with 253, 259
read-only 250
references, formatting 148
running out of 258
watching 112
Windows global, selectors (accessing) 181

menu bar 19, 45
activating 19
commands 187

menu trees 204-205
menus 19-20

=(System) 19, 187
activating 19
Breakpoints 104, 189
commands See commands
Data 88-91, 189
Edit 188
exiting 20
File 187
global 19

local vs. 23
reference 187-190

Help 41, 190
hot keys and 20
local See local menus
Options 64-67, 189
pop-up 19
pull-down 19
Run 69, 78-80, 189

Index

program termination and 84
tutorial 45
View 26, 188
Window 33, 47, 190

message breakpoints
Get Info message about 76

Message Class pane
local menu 196

message classes 163
Windows Messages window

adding to 162
deleting from 164

message log 27, See also log files
messages See also error messages

dialog boxes 241-248
program termination 76
window

debugging tips 165
setting breakpoints, TOODEMO 230

Windows
logging

to a file 165
to the TOW window 158

setting breakpoints 164
Messages pane, local menu 196
Methods command 155
Microsoft Windows See Windows
Mixed command 180
modes See display modes
Module command 257

Module window local menu 126
View menu 124

Module window 28, 124-127
filled arrow and 48
local menu 125, 195
opening 124

duplicate 126
source files and 124

modules 3, 123, See also Module window
compiling 57
current

changing 170
overriding 132

loading 124, 247
new 126

problems with 127
referencing identifiers in other 133

277

scope override and 93
CandC++ 134
Pascal 137

setting breakpoints in other 118
tracing into 80
tracking 30
viewing 28, 124-127

duplicate 126
problems with 257, 261
source code in 244

Windows, listing 168
modulus operator, problems with 252
monitors See also hardware; screens

display swapping 61
monochrome 61

mouse
choosing menu commands 19-20
moving around in dialog boxes 21
setting breakpoints 49, 104
support

disabling/ enabling 62
online help 41
windows and 32-33

multi-language programs 10
multiple inheritance 151

N
nested classes, scope of 137
New Expression command

Data Member pane local menu 156
Inspector window local menu 102

new features for version 3.0 1
New Value input box 89
Next command See also Search command

File window local menu 130
Module window local menu 127
problems with 257

Next Pane command 34
Next Window command 34
nonprinting characters 95

return value 148
null-terminated character string 95, 99
numbering system, windows 33
numbers 91

decimal 66
floating-point See floating point, numbers
formatting 148

278

problems with 253
Turbo Assembler 147
Turbo C++ for Windows 142

hexadecimal 66
scalar 139

numeric coprocessors See also 80x87
. coprocessors
current state, viewing 29
registers, entering new values for 244

numeric exit code 77
Numeric Processor window 29

opening, problems with 257
panes 197

0
Object Member function pane

local menu 156
object modules 123
object-oriented programs

classes, inspecting 154
compatibility with Turbo Debugger 149
debugging 17, 156

nested object structures 152
this parameter and 93

expressions, problems with 250
member functions

problems with viewing 251
member functions, inspecting 152
objects

formatting 89
hierarchy tree 150
inspecting 156

scope override 137
objects, data See data, objects
Object Windows

applications, debugging 223
TApplication object 226

online help See also help
dialog boxes 21

OOP See object-oriented programs
opcodes, illegal instruction 77
Open command 85
Open Log File command 121
operands 91, 253

instruction, memory pointers and 180
problems with 259

invalid 255

Turbo Debugger for Windows User's Guide

out of range 254
segment overrides and 250
size 180

problems with 259
operators 253

assignment 72, 94, See assignment operators
binary 143
C programs and 90
invalid 255
modulus, problems with 252
precedence

Turbo Assembler 147
Turbo C ++ for Windows 143

options 64, See also Options menu
command-line See command-line options
display swapping 65
program execution 78
restoring defaults 67
saving 66

Options menu 64-67, 189
Options option (save configuration) 67
Origin command 75

Module window local menu 127, 139
output See also 1/0

display onscreen 65

p
-p option (mouse support) 62
panes

blinking cursor in 34
Breakpoints window 26, 106
Code 180, See Code pane
CPU window 28

cycling through 179
Data 183, See Data pane
Execution History window 29, 82
Flags 181
Hierarchy window 150-152
highlight bar in 34
Inspector windows 31

class 152
object 155

list boxes 202
local menus and 22
moving between window 34
Numeric Processor window 29, 197
recording current contents of 121

Index

Register 181
Registers window 29
Selector 181
Stack 183
text See text panes
Variables window 27, 70
Windows Messages window 195

parameters 3, See also arguments
logging (breakpoints) 119
this 89, 93
viewing, program-calling 73

Parent Tree pane 151
local menu 152, 198

Parents command 151
parsing, TDW vs. Turbo C++ 10
Pascal option (language convention) 132
pass counts 104, 115

problems with 255
pasting and copying 36
Path for Source command 3, 66
paths, directory See directories
Pick a Module list pane 123
pointers 148

compound data objects 91
memory 132, 180
stack, current location 183

pointing at data objects 91
pop-up menus 19
ports, 1/0 245
precedence, operators See operators
Previous command 41

Module window local menu 126
primary display 61, See also screens, swapping
printers, problems with 242
processors See 80x86 processors; CPU
program execution, interrupting 83
Program Reset command 81, 85

Ctrl-Alt-SysRq, and 84
TDODEMOB demo program 234

programs 216
accuracy testing 215
compiling 18
current location 48, 146

CPU window 180
Inspector windows 71
Module window 74
problems with 81, 125

279

returning to 75, 127, 139
scope 139

overriding mechanism and 92
verifying 30
watching 72, 80, 123, See also Watches
window

current state 70
inspecting 70-77, See also Inspector
windows

debugging 16, 17, 57-60, 207-208, See also
debugging
current scope and 139
dynamic link libraries 169
planning for 67, 216
returning information on 75-77
starting TDW 58
with no debug information 80, 260
with out-of-date debug information 260

demo See demo programs
execution See also programs, running

controlling 69-86
menu options 78
reversing 80, 82

problems with 83
terminating See programs, stopping

fatal errors and 248
full output screen 30
incremental testing 209
inspecting 22, See also Inspector windows
language options, overriding 132
loading 245, See also files, opening

dynamic link libraries 169
new85
problems with 257, 260

symbol tables and 258
message logs and 27
modifying See programs, altering
multi-language 10
opening See programs, loading
patching, temporarily 178
recompiling 18
recovering 83
reloading 81, 85

Windows and Ctrl-Alt-SysRq 84
restarting a debugging session 85
returning from 48
returning to 75, 126

280

running 29, 69, 86, See also programs,
execution
to breakpoints 50
command-line options and 86
to cursor 48, 78
at full speed 78
to labels 49, 79
returning information on 75
in slow motion 80
Windows, from 60

scope See scope
source code See code
source files and 124
stepping through

problems with 76
tutorial 48

stopping 84, See also breakpoints
stopping (breakpoints) 118
watching See Watches window
Windows

debugging 157
not loaded, problems with debugging 76
stopping, messages about 76
unexecuted, problems with examining values
77

protected mode, selectors, accessing 181
pseudovariables (Turbo C++ for Windows) 140
pull-down menus 19

Q
Quit command, TDW 67

R
radio buttons 21, See also dialog boxes

Action 113
Changed Memory 117
changing settings 21
Condition 112
Display Swapping 65
Expression Language 132
Integer Format 66
Log 119
Screen Lines 66

Range command
Data Member pane local menu 155
Inspector window local menu 101

Turbo Debugger for Windows User's Guide

read-only memory See ROM
README file 10
READY indicator 25
RECORDING indicator 64
records, problems with 258, 262
recursive functions 74
recursive procedures 71
reference books 7
reference line, dialog boxes 42
Register pane 181

CPU window, local menu 193
Numeric Processor window, local menu 197

registers 94, See also Registers window
80386 hardware debugging 13
CPU See CPU, registers
floating-point 244
problems with 260

invalid 255, 256
segment 84, 148
valid address combinations 256
values, accessing 29

Registers window 29, 184
local menu 198
panes29

ReleaseCapture function 235
reloading programs 81

Windows and Ctrl-Alt-SysRq 84
Remove command

Breakpoints window local menu 107
Macros menu 65
Watches window local menu 93
Windows Messages window

message classes 164
window selection 162

Repaint Desktop command 36
repeat counts 147
resize box 33
restarting a debugging session 85
Restore Options command 36, 67
Restore Standard command 36
Result input box 89
return values 131

changing 94, 101
expressions 243
inspecting 91, See also Inspector windows
nonprinting characters 148
problems with 77, 256

Index

tracking 92
variables See variables

return values (breakpoints) 119
Reverse Execute command 82
reversing program execution 80, 82, See also

backward trace
problems with 83

Windows code 80
ROM, programs executing in 250
routines

accessing 132
problems with 247

calling
problems with

invalid name 258
invalid parameters 254

debugging 123, 210
inspecting 7 4

variable with same name as 71
names, finding 27
recursive, local data and 71
stepping over 17
testing 216
viewing in stack 27, 73

Run command 78
execution history and 82

Run menu 69, 78-80, 189
program termination and 84

running

s

programs See also programs, running
TDW60

sample programs See demo programs
Save Configuration check box 67
Save Options command 36, 66
Save Options dialog box 67
Save To input box 67
-sc option (ignore case), Turbo Debugger 62
scalar numbers 139, 243
scalar variables 95
scientific notation 142, 146
scope 92, 133-139

breakpoint expressions 118
current 132, 139

accessing symbols outside 133
DLLs, and 138

281

implied, evaluating expressions and 139
nested classes 137
overriding 134-138

tips
C, C++, Turbo Assembler 136
Pascal 138

problems with, inactive 250
templates 136
this parameter 89

Screen Lines radio buttons 66
screens See also hardware; monitors

display modes See display, modes
layouts, restoring 36
lines per, setting 66
problems with

graphics display 36
writing to 65

startup, TDDEMO 44
swapping 65
User See User screen

ScribbleWindow type (TDODEMO) 225
scroll bars 32
scrolling 31

dialog boxes 203
Help screens 41
Inspector windows 52
menus20
text boxes 202
text panes 201

-sd option {set source directories) 62
Search command See also Next command

File window local menu 129
history lists and 24
Module window local menu 126

search paths, source files, for 2
search templates 204
secondary display 61, See also display,

swapping
segment

overrides, problems with 250
pointers to register 148
registers, program termination and 84

select by typing 25
SelectBlackPen function (TDODEMO)

bugs

282

finding 230
fixing 233

Selector command
Selector pane local menu 182

Selector pane 181
local menu 182, 192
memory segments in 181

Send to Log Window command (Windows
Messages window) 165

Set Message Filter dialog box 163
Set Options command (breakpoints) 106
SetCapture function 235
SetupWindow function, redeclaring 231
shortcuts See hot keys
Show command 73
Show Inherited command

Data Member pane local menu 153, 156
Member Functions pane local menu 154

side effects
changing variable values with 90
splicing code (breakpoints) 113

Size/Move command 35
Smart option (display swapping) 65
software, requirements 2
sort order, international 2
source code See code
source files 3, See also files

language conventions and 132
loading 124, 247

problems with 261
search paths for 2

Source option {language convention) 132
stack 84, 178, See also Stack pane; Stack

window
current state 27, 73-74
pointer, current location 183

Stack command 71, 73
Stack pane

current stack pointer 183
local menu 193

stack trace 227
Stack window 27, 73-74

local menu 74, 198
opening 71, 73
stack trace 227

Standalone Debugging command 57
starting directory, changing 63
starting TDW 58

in assembler mode 62

Turbo Debugger for Windows User's Gulde

command-line options and 239
startup code

dynamic link libraries 173
program, debugging 62
types of 172

startup screens, TODEMO 44
Static pane 71

local menu 72
static symbols, disassembler and 180
status line 41, 42
Status pane, local menu 197
Step Over command 79

execution history and 82
stepping over routines 17
stepping through

functions 80
programs

problems with 76
Stop Recording command 64
strings 148

byte lists and 139
character

null-terminated 95, 99
quoted 129

problems with 262
searching for

File window, in 129
Module window, in 126
responding to prompt 246

searching for next
File window, in 130
Module window, in 127

Turbo C++ for Windows 142
format control See format specifiers
text, searching for 24
truncated 89, 92

structures
changing 250
inspecting complicated data 88, 102
problems with 258, 262

Super VGA support 2
support, technical 5
switches See command-line options
switching Windows applications, TOW and 60
symbol names, problems with 250
Symbol pane 27
symbol tables 132

Index

base segment address 245
creating 57, 260
dynamic link libraries, and 169
invalid 260
loading 246

problems with 258, 261
symbols 71, 131

accessing 133-139, 247
disassembler and 180
global 198
problems with 250, 261, 262

invalid 256
type information and 258

scope 133
Turbo C ++ for Windows 140

syntax
checkers, built-in 16
errors 16, 261

System Information box 75
System menu See= (System) menu

T
-t option (starting directory) 63
Tab Size input box 66
Table Load command 245
tabs, setting 66

problems with 262
TApplication, object 226
Task List, Windows, TOW and 60
T0386 virtual debugger

setting breakpoints 112
TDCONFIG.TOW 36, 63

loading 61
overriding 63

TODEBUG.386 file 12
TODEM043

source files 44
TODEMO.EXE 222
TDODEMO

CScribbleApplication object 226
GetWindowClass function, ScribbleWindow
225
InvalidateRect function 237
InvalidateRgn function 237
Main Window object 231
ScribbleWindow type 225

283

SelectBlackPen function
bug, finding 230
bug, fixing 233

SetupWindow function 231
stack trace 227
UpdateWindow function 237
WMLButtonDown function

bug, finding 234
bug, fixing 229, 235
ScribbleWindow 226

WMLButtonUp function 226
WMMouseMove function 226

bug, finding 227
WMRButtonDown function 226

bug, finding 236
bug, fixing 238

.TDS files, creating 11
TOW

logging window messages 158
window object, adding 161
window selection

adding 159
deleting 162

technical support 5
templates

breakpoint behavior 119
scopeof 136

ternary operators 143
text 66

entering
active windows and 31
in input boxes 24, 25
incremental matching 25
in log 243

searching for 204, 261
strings, searching for 24

text files 128, 201
text modes See display, modes
text panes 201, 243, 246

moving around in 201
this parameter 89

watching 93
tiled windows 46
time delays, setting 80, 242
Toggle command

Breakpoints menu 116
Toggle command 105

284

Trace Into command 78
continuous. tracing 80
execution history and 82
programs executing in ROM and 251

tracepoints 103, See breakpoints
tracing 17, See also Trace Into command

backward See backward trace
continuous (animation) 80, 242
execution history and 81
into interrupts 80
into functions 48
program termination, and, information about
76
this parameter and 89, 93

Tree command 151
Turbo C++, versions compatible with TOW 2
Turbo C++ for Windows

arrays 212
inspecting 97

problems with 96
automatic variables (autovariables) 214

scope 214
uninitialized 211

bugs specific to 211-215
character strings 142
compiler 211
constants 142
data

inspecting 95-98
types, converting 145

demo programs, debugging 217
dynamic virtual member functions 223
escape sequences 142
expressions 140-146, 212

with side effects 90, 144
#define macros and 214

functions 144
inspecting 97
problems with 90
returning from 214

integer assignment 213
keywords 145
keywords, problems with 256
loops, exiting 215
operators 212

expressions with side effects and 90, 144
precedence 143, 212

Turbo Debugger for Windows User's Guide

pointers
incrementing and decrementing 212
inspecting 95

pseudovariables 140, 141
scalars, inspecting 95
source code 213, 215
structures, inspecting 96
symbols 140
unions, inspecting 96
variables, return values 92

Turbo C, expressions, problems with 249
Turbo Pascal

units, override syntax 137
type conversion 72, 94

memory handle to far pointer 175
problems with 256, 262
Turbo C++ for Windows reserved words and
145

typecasting See type conversion
types

u

data See data, types
object See objects, types

UAE See unrecoverable application error
unary operators

Turbo C++ for Windows 143
Undo Close command 36
union members, problems with 258
units, scope override and 137
unrecoverable application error (UAE) 227
Until Return command 79
UpdateWindow function 237
User screen 30, 65
User Screen command 30
utilities, disk-based documentation for 11
UTILS.TDW file 11

v
variables 27, See also Variables window

accessing 132
problems with 254
with no type information 145

debugging 210
DLLs, accessing in 138

Index

evaluating 88-91
global See global variables
inactive functions and 250
inspecting 31, 88, 94-100, 102, 246, See also

Inspector windows
function with same name as 71
in recursive functions 7 4

language conventions and 132
local See local variables
logging (breakpoints) 119
names 92

finding 27
problems with 258

pointing at 91
private 93
program termination and 84
return values 17, 90

inspecting 31
problems with 71, 95

scalar, character values and 95
scope override 135, 137
uninitialized 210
updating 93
viewing 70-73

in recursive routines 71
watching 27, 91, 92, 243, See also Watches

window
Clipboard, and 39

Variables command 70
Variables window 27, 70-73

local menu 198
opening 70

VGA See also graphics adapters; video adapters
line display 66

video adapters See also graphics adapters,
hardware
display options 66
problems with 262
Super VGA support 2
supported 248

Video Graphics Array Adapter See VGA
videos See monitors; screens
View menu 26, 188
virtual member functions

dynamic223

285

w
Watch command

Global pane local menu 72
Module window local menu 125
Static/Local pane local menu 73
Watches window local menu 93

Watch dialog box, global symbols and 72
Watches command 92
Watches window 27, 92-94

local and static symbols and 73
local menu 93, 199
opening 92
using220

C tutorial 50
watchpoints 17, 103, See also breakpoints

C tutorial 50
Clipboard, and 39
reloading programs and 85

wild cards
DOS 127,261
searching with 126, 204

window handle
accessing in ObjectWindows programs 231
HWindow in Main Window 232

Window menu 47, 190
opening 33
window management and 33

window messages
breakpoints

Get Info message about 76
setting 164
setting in TDODEMO 230

logging
to a file 165
to the TDW window 158

window object
adding to TDW Windows Messages window
161

Window Pick command 34
window selection

adding to TDW Windows Messages window
159
deleting from TDW Windows Messages
window 162

Window Selection pane, local menu 195
Windows

Display Windows Info command 166

286

exit code returned to 77
functions

GlobalAlloc 166
GlobalLock 167
GlobalPageLock 167
lnvalidateRect, in TOODEMO 237
InvalidateRgn 237
LoadLibrary 172
LocalAlloc 168
LockData 167
ReleaseCapture 235
SetCapture 235
UpdateWindow 237

Languages setting 2
reference books 7
returning to 6 7
running programs from 60
selectors, accessing 181
switching applications, TDW and 60
Task List, TDW and 60
TDW,and 157
tips, debugging tips 83
window messages

TOO DEMO
WM_LBUTTONOOWN 234
WM_LBUTTONUP 234
WM_MOUSEMOVE 234
WM_NCMOUSEMOVE 234
WM_P AINT 237

Windows Messages command 158
windows 17, 26-36

active 31
returning to 20

bottom line in 42
Breakpoints 26, 105-107
Clipboard 30, 196
closing 36

temporarily 35
CPU See CPU window
Dump 28, 184, 194
Execution History 29

opening 82
File 28, 194

opening 126
Hierarchy 149, 197
Inspector See Inspector windows
layout, saving 36, 67

Turbo Debugger for Windows User's Guide

local menus and 22
Log 27, 120, 120-122, 194
Module See Module window
mouse support 32-33
moving35
moving around in 203
multiple 33-34, 126, 130

moving among 33
Numeric Processor 29, 197

problems with 257
opening

duplicate 30
new26

panes See panes
problems with 30, 258

current program location and 81
recovering last closed 36
reducing to icon 33, 35
Registers 29, 184, 198
repainting 36, See also display updating
resizing 33, 35
single-line borders and 35
Stack 27, 73-74, 198

opening 71
tiled 46
tutorial 46
Variables 27, 70-73, 198

opening 70
Watches See Watches windows
Windows Messages 30, 195

Windows Information dialog box 166
Windows Messages window

for an ObjectWindows program 160

Index

panes 195
standard Windows application 158

WM_LBUTTONDOWN message 234
WM_LBUTTONUP message 234
WM_MOUSEMOVE message 234

capturing 235
WM_NCMOUSEMOVE message 234
WM_PAINT message

erase-screen bug 237
WMLButtonDown function (TDODEMO)

bug
finding 234
fixing 229, 235

Scribble Window 226
WMLButtonUp function (TDODEMO) 226
WMMouseMove function (TDODEMO) 226

bug, finding 227
dynamic virtual member function, as a 224

WMRButtonDown function (TDODEMO) 226
bug

finding 236
fixing 238

word 180
formatting 183

WordStar-style cursor-movement commands
201, 202

z
zoombox33
Zoom command 35
zoomicon33

287

TURBO
DEBUGGER® 3.0
FOR WINDOWS

BORLAND
CORPORATE HEAOOUARTERS: 1800 GREEN HILLS ROAO, P.O. BOX 660001. SCOTTS VALLEY, CA 95067-0001 . (408) 438-5300. OFFICES IN: AUSTRALIA.
DENMARK, FRANCE. GERMANY, ITALY, JAPAN. NEW ZEALAND, SINGAPORE. SWEDEN ANO THE UNITED KINGDOM • PART #14MN-TCW03-10 • BOA 2883

