
PDP-11

COBOL User's Guide

Order No. AA-17570-TC

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
Digital.

Copyright@ 1974, 1976, 1977, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DEC COMM
ASSIST-11
VAX
DECnet

DECsystem-1,0'
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-2,0'
RTS-8
VMS
!AS

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-1,0'
SB!

2.'79-15

November 1978

This document describes how to use Version 4 of the PDP-11 COBOL com­
piler. It is a companion guide to the PDP-11 COBOL Language Reference
Manual.

PDP-11

COBOL User's Guide

Order No. AA-17570-TC

SUPERSESSION/UPDATE INFORMATION: This document supersedes the document of the same
name, Order No. AA-1757C-TC published April 1977.

OPERATING SYSTEM AND VERSION: RSTS/E V06C
RSX-11 M V03
IAS V02

SOFTWARE VERSION: PDP-11 COBOL V04

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
Digital.

Copyright@l974, 1976, 1977, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last
document requests the user's critical evaluation
preparing future documentation.

page of this
to assist us in

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DEC COMM
ASSIST-11
VAX
DECnet

DECsystem-1,0'
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-2,0'
RTS-8
VMS
IAS

MASS BUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-1,0'
SBI

PREFACE

ACKNOWLEDGMENTS

CHAPTER 1

CHAPTER 2

2.1
2.1.1
2.1. 2

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.4.1
2.4.2
2.5
2.5.l
2.5.2
2.5.3
2.6
2.6.l
2.6.2

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.3
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2
3.5
3.6
3.6.1
3.6.2
3.6.2.1

CONTENTS

INTRODUCTION

USING THE PDP-11 COBOL SYSTEM

CREATING A SOURCE FILE
Choosing a Reference Format
Entering a Source Program

USING THE LIBRARY FACILITY (COPY)
Creating a COBOL Library File
The COPY Statement
The COPY REPLACING Statement
The Source Listing
Common Errors in Using the Library Facility

USING THE PDP-11 COBOL COMPILER
PDP-11 COBOL Command Line
Compiler Switches
Error Message Summary
Common PDP-11 COBOL Command Line Errors

THE COBOL MERGE UTILITY
Using the Merge Utility
Merge Utility Error Messages

TASK-BUILDING PDP-11 COBOL PROGRAMS
Using ODL-File Input
Using Object-File Input
Program Task Size

EXECUTING A COBOL TASK
The RUN Command
Setting Program Switches

NON-NUMERIC DATA HANDLING

INTRODUCTION
DATA ORGANIZATION

Group Items
Elementary Items

SPECIAL CHARACTERS
TESTING NON-NUMERIC FIELDS

Relation Tests
Classes of Data
The Comparison Operation
Class Tests

DATA MOVEMENT
THE MOVE STATEMENT

Group Moves
Elementary Moves
Edited Moves

iii

Page

xv

xvii

1-1

2-1

2-1
2-1
2-2
2-2
2-3
2-3
2-5
2-8
2-8
2-9
2-10'
2-11
2-15
2-16
2-16
2-18
2-23
2-25
2-25
2-27
2-29
2-29
2-30'
2-30'

3-1

3-1
3-2
3-2
3-2
3-3
3-4
3-4
3-5
3-6
3-6
3-7
3-8
3-8
3-8
3-1~

3.6.2.2
3.6.3
3.6.4
3.6.5
3.6.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.8
3.8.1
3.8.2
3.8.2.1
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8.8
3.8.9
3.9
3.9.1
3.9.2
3.9.3
3.9.3.1
3.9.3.2
3.9.3.3
3.9.4
3.9.5
3.9.5.1
3.9.5.2
3.9.5.3
3.9.5.4
3.9.6
3.9.6.1
3.9.6.2
3.9.6.3
3.9.6.4
3.986.5
3.9.7

CHAPTER 4
4cl
4 .1.1
4 .1. 2
4 .1. 3
4 .1. 4
4.2
4.3
4.4
4.5
4.5.1

CONTENTS (Continued)

Justified Moves
Multiple Receiving Fields
C:::nh<:!l"'r;n+-orl MnuoQ
..,,..., ~ I:''-'-"'&..&""'¥'-

Common Errors, MOVE Statement
Format 2, MOVE CORRESPONDING

THE STRING STATEMENT
Multiple Sending Fields
The POINTER Phrase
The DELIMITED BY Phrase
The OVERFLOW Phrase
Subscripted Fields in STRING Statements
Common Errors, STRING Statement

THE UNSTRING STATEMENT
Multiple Receiving Fields
The DELIMITED BY Phrase
Multiple Delimiters
The COUNT Phrase
The DELIMITER Phrase
The POINTER Phrase
The TALLYING Phrase
The OVERFLOW Phrase
Subscripted Fields in UNSTRING Statements
Common Errors, UNSTRING Statement

THE INSPECT STATEMENT
The BEFORE/AFTER Phrase
Implicit Redefinition
The INSPECT Operation
Setting the Scanner
Active/Inactive Arguments
Finding an Argument Match
Subscripted Fields in INSPECT Statements
The TALLYING Phrase
The Tally Counter
The Tally Argument
The Tally Argument List
Interference in Tally Argument Lists
The REPLACING Phrase
The Search Argument
The Replacement Value
The Replacement Argument
The Replacement Argument List
Interference in Replacement Argument Lists
Common Errors, INSPECT Statement

NUMERIC CHARACTER HANDLING
USAGES

DISPLAY
COMPUTATIONAL
COMPUTATIONAL-6
COMPUTATIONAL-3

DECIMAL SCALING POSITION
SIGN CONVENTIONS
ILLEGAL VALUES IN NUMERIC FIELDS
TESTING NUMERIC FIELDS

Relation Tests

iv

Page

3-1.0
3-11
3-11
3-12
3-12
3-13
3-13
3-14
3-15
3-17
3-18
3-2~
3-21
3-21
3-23
3-27
3-28
3-29
3-3~
3-32
3-33
3-34
3-36
3-36
3-37
3-38
3-4.0
3-41
3-41
3-42
3-43
3-43
3-44
3-44
3-45
3-47
3-51
3-51
3-52
3-52
3-53
3-54
3-55

4-1
4-1
4-1
4-1
4-3
4-5
4-6
4-6
4-8
4-8
4-8

4.5.2
4.5.3
4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5

4.7.6
4.7.7
4.7.8
4.7.9
4.7.1.0'
4.7.11
4.8

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.1.0'

5.4.11
5.4.12
5.4.13
5.4.14

CHAPTER 6

6.1
6 .1.1
6 .1. 2
6 .1. 3
6 .1. 4
6 .1. 5
6 .1. 6
6.1.6.1

C0NTENTS (Continued}

Sign Tests
Class Tests

THE MOVE STATEMENT
Group Moves
Elementary Numeric Moves
Elementary Numeric Edited Moves
Common Errors, Numeric MOVE Statements

THE ARITHMETIC STATEMENTS
Intermediate Results
The ROUNDED Phrase
The SIZE ERROR Phrase
The GIVING Phrase
Multiple Operands in ADD and SUBTRACT
Statements
The ADD Statement
The SUBTRACT Statement
The MULTIPLY Statement
The DIVIDE Statement
The COMPUTE Statement
Common Errors, Arithmetic Statements

ARITHMETIC EXPRESSION PROCESSING

TABLE HANDLING

INTRODUCTION
DEFINING TABLES

The OCCURS Phrase - Format 1
The OCCURS Phrase - Format 2

MAPPING TABLE ELEMENTS
Initializing Tables

SUBSCRIPTING AND INDEXING
Subscripting with Literals
Operations Performed by the Software
Subscripting with Data-Names
Operations Performed by the OTS
Subscripting with Indexes
Operations Performed by the OTS
Relative Indexing
Index Data Items
The SET Statement
Referencing a Variable-Length Table
Element at OTS Time
Referencing a Dynamic Group at OTS Time
The SEARCH Verb
The SEARCH Verb - Format 1
The SEARCH Verb - Format 2

FILE HANDLING

SEQUENTIAL FILE ORGANIZATION
Record Size
RECORD CONTAINS'Clause
SAME RECORD AREA Clause
Print-Controlled Records
Record Blocking
Buffering
Buffer Size

v

Page

4-9
4-1.0'
4-1.0'
4-11
4-11
4-13
4-14
4-15
4-15
4-16
4-17
4-18

4-18
4-19
4-19
4-2.0'
4~21

4-21
4-21
4-22

5-1

5-1
5-1
5-2
5-2
5-3
5-7
5-9
5-1.0'
5-11
5-11
5-11
5-12
5-12
5-13
5-14
5-14

5-15
5-15
5-16
5-16
5-17

6-1

6-3
6-4
6-4
6-5
6-6
6-6
6-7
6-8

6.1.6.2
6.1.6.3
6.1.6.4
6.1. 7
6.1.7.1
6.1.7.2
6.1.7.3
6.1.7.4
6.1.7.5
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.5.1
6.2.5.2
6.2.5.3
6.2.5.4
6.2.6
6.2.6.1
6.2.6.2
6.2.6.3
6.2.6.4
6.2.6.5
6.2.6.6
6.2.6.7
6.2.6.8
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.5.1
6.3.5.2
6.3.5.3
6.3.5.4
6.3.6
6.3.6.1
6.3.6.2
6.3.6.3
6.3.6.4
6.3.6.5
6.3.6.6
6.3.6.7
6.4
6.4.l
6.4.2
6.4.3
6.5
6.5.1

6.5.2
6.5.3
6.6
6.6.1
6.6.2

CONTENTS (Continued)

I-0 Buffer Areas
Buffer Space
Sharing Buffer Space Among Files
Sequential I/O Statements
Opening Sequential Files
Reading Sequential Files
Rewriting Records into Sequential Files
Writing Sequential Files
Closing Sequential Files

RELATIVE FILE ORGANIZATION
Record Size
RECORD CONTAINS CLAUSE
SAME RECORD AREA Clause
Record Blocking
Buffering
Buffer Size
I/0 Buffer Areas
Buffer Space
Sharing Buffer Space Among Files
Relative I/O Statements
Access Modes
Opening Relative Files
Reading Relative Files
Rewriting Records into a Relative File
Writing Records in a Relative File
Deleting Records from a Relative File
Specifying the Next Record to be Read
Closing Relative Files

INDEXED FILE ORGANIZATION
Record Size
RECORD CONTAINS Clause
SAME RECORD AREA Clause
Record Blocking
Buffering
Buffer Size
I/O Buffer Areas
Buffer Space
Sharing Buffer Space Among Files
Indexed I/O Statements
Access Mode
Opening Indexed Files
Reading Indexed Files
Rewriting Records into an Indexed File
Deleting Records from an Indexed File
Specifying the Next Record to be Read
Closing Indexed Files

DEVICES
Disk
Magnetic Tape
Card Reader and Line Printer

FILES AND FILENAMES
Using Explicit Filenames (VALUE OF ID
Clause)
Device Asssignment by ASSIGN Clause
Files and Logical Units

COMMUNICATING WITH THE PROGRAM
Using the ACCEPT Statement
Using the DISPLAY Statement

vi

Page

6-8
6-8
6-8
6-9
6-9
6-11
6-12
6-12
6-13
6-13
6-14
6-14
6-15
6-15
6-17
6-18
6-18
6-18
6-18
6-18
6-19
6-2J
6-21
6-22
6-22
6-22
6-23
6-24
6-24
6-27
6-27
6-27
6-27
6-3J
6-3$J
6-3J
6-31
6-31
6-31
6-32
6=33
6-34
6-34
6-35
6-35
6-37
6-37
6-38
6-39
6-39
6-4J

6-41
6-43
6-43
6-45
6-45
6-46

6.7

6.7.1

6.7.2

6.7.3
6.8

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
., c
I• U

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6

CHAPTER 8

CHAPTER 9

9.1
9 .1.1
9.2
9.3
9.4

CHAPTER 1,0

1,0'.l
1.0 .1.1

1,0.1.2
1,0'.2
1,0. 3
1,0'.4

CHAPTER 11

11.1
11. 2
11. 3
11. 4
11.4.1

11.4.2

11. 4. 3

CONTENTS (Continued)

FILE COMPATIBILITY WITH OTHER PROGRAMMING
LANGUAGES

Writing Files for Other Programming
Languages
Reading Files Written in Other
Programming Languages
Data File Transportability

PROCESSING I/O ERRORS - USE STATEMENT

GOOD PROGRAMMING PRACTICES

FORMATTING THE SOURCE PROGRAM
USE OF PUNCTUATION
USE OF THE ALTER STATEMENT
USE OF THE PERFORM STATEMENT
USE OF LEVEL-88 CONDITION NAMES
USE OF QUALIFIED REFERENCES

Qualified Data References
Guideline 1 (Data Item Definition)
Guideline 2 (Reference Format)
Guideline 3 (Unique Referability)
Qualified Procedure References
Qualification and Compiler Performance

REFORMAT UTILITY PROGRAM

SEGMENTATION

USING THE PDP-11 COBOL SEGMENTATION FACILITY
Programming Considerations

SEGMENTATION AND THE PDP-11 COBOL COMPILER
SEGMENTATION USING THE /OV SWITCH
USING THE CSEG:nnnn SWITCH

INTER-PROGRAM COMMUNICATIONS

COBOL MAIN PROGRAMS VS SUBPROGRAMS
Calling a COBOL Subprogram from a COBOL
Program
Returning from a COBOL Subprogram

UNIQUENESS OF PSECT NAMES
COBOL OTS - ERROR CHECKING
INCLUDING A NON-COBOL OBJECT MODULE IN A
TASK

HAND-TAILORING ODL FILES

STANDARD ODL FILE
ODL FILE HEADER
ODL FILE BODY
COMPILER-GENERATED ODL FOR COBOL PSECTS

ODL Generated for Overlays Containing
Only One PSECT
ODL Generated for Overlays Containing
More Than One PSECT
ODL Generated for All Overlayable PSECTS

vii

Page

6-47

6-47

6-48
6-48
6-49

7-1

7-1
7-4
7-5
7-5
7-6
7-8
7-8
7-1.0
7=1.0'
7-11
7-12
7-12

8-1

9-1

9-1
9-2
9-2
9-2
9-3

1.0'-l

1.0-1

1.0'-2
1.0'-3
1.0'-3
1.0'-3

1.0'-4

11-1

11-1
11-1
11-2
11-3

11-3

11-3
11-3

11. 5
11. 6
11.6.l , , ..,
..1. .J. • I

11. 7 .1
11. 7. 2

CHAPTER 12

12.1
12.2
12.3
12.4

CHAPTER 13

CHAPTER

13 .1
13. 2
13.3
13.3.l
13.3.2
13.4
13.4.1
13.4.2
13.4.3
13.4.4
13.4.5
13.4.6
13.4.7
13.5
13. 6
13.7
13. 8
13.9
13.9.1
13.9.2

1 A
.L ".t

14.1
14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.3
14.3.1
14.3.2
14.3.3
14.3.3.1
14.3.3.2
14.3.3.3
14.3.3.4
14.4
14.5

CONTENTS (Continued)

MERGING STANDARD ODL FILES
INCLUDING NON-COBOL PROGRAMS IN A TASK

Creating a Standard COBOL ODL File
REARRANGING A COMPILER-GENERATED ODL FILE

Modifying the Compiler-Generated ODL File
Specifying Task Builder Options

ERROR MESSAGES

COMPILER SYSTEM ERRORS
DIAGNOSTIC ERROR MESSAGES
RUNTIME FILE I/O ERROR PROCEDURES
RUNTIME ERROR MESSAGES

COBOL INTERACTIVE DEBUGGER (CID)

HOW TO INCLUDE CID
COMMAND MODE AND THE CID ENVIRONMENT
ADDRESSING

Addressing Data
Addressing Procedure Division Code

COMMANDS
CANCEL BREAKPOINT Command
DEPOSIT Command
EXAMINE Command
GO Command
SET BREAKPOINT Command
SHOW BREAKPOINTS Command
XIT Command

PROGRAM INITIATION
USING BREAKPOINTS
PROGRAM TERMINATION AND SUSPENSION
CID COMMAND ERRORS
EXAMPLES

Sample Debugging Session
Sample Program Listings

OPTIMIZATION

OPTIMIZING MASS STORAGE I/O
PROGRAM DEVELOPMENT

Overlay Structure
Sequentially Reading Indexed Files
Caching Index Roots
Multi-block Reading and Writing

FILE DESIGN
Sequential Files
Relative Files
Indexed Files
General Rules for Indexed Files
Bucket Size
Index Depth
File Activity

OPTIMIZING COMPUTATION
FILE SPECIFICATION SWITCHES

viii

Page

11-5
11-5
11-5
11-6
11-6
11-8

12-1

12-1
12-1
12-4
12-5

13-1

13-1
13-2
13-3
13-3
13-3
13-4
13-5
13-5
13-6
13-7
13-7
13-8
13-8
13-8
13-9
13-9
13-1,,
13-11
13-11
13-14

14-1

14-1
14-2
14-2
14-3
14-3
14-3
14-4
14-4
14-5
14-5
14-7
14-8
14-9
14-9
14-1.0'
14-11

APPENDIX A

APPENDIX B

APPENDIX c

APPENDIX D

D.l

APPENDIX E

E.l
E .1.1
E. l. 2
E. l. 3
E. l. 4
E. l. 5
E.2
E.3
E.4
E.5
E.6
E.7

APPENDIX F

F.l
F .1.1
F .1. 2
F .1. 3
F .1. 4
F .1. 5
F .1. 6
F .1. 7
F.2

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

INDEX

C-0-N'I'-B-N'I'-S (C-e-n t i-nue-d)

Page

THE COBOL FORMATS A-1

LOGICAL UNIT NUMBER (LUN) ASSIGNMENT B-1

PDP-11 COBOL COMPILER IMPLEMENTATION
LIMITATIONS C-1

COMPILER-GENERATED PSECTS D-1

PSECT NAMING CONVENTIONS D-1

SORTING FILES IN A COBOL PROGRAM E-1

CALL STATEMENTS REQUIRED E-1
Initializing the SORT - CALL RSORT E-1
Passing a Record to the Sort - CALL RELES E-2
Merging the Scratch Files - CALL MERGE E-2
Requestinq an Output Record - CALL RETRN E-2
Terminating the Sort - CALL ENDS E-3

SETTING UP THE KEY E-3
WORK AREA SIZE E-3
TYPICAL USAGE SEQUENCE E-3
LINKING SORT ROUTINES WITH A COBOL PROGRAM E-4
COMPARISON WITH ANS COBOL SORT VERB E-4
ERROR CODES E-5

RSTS/E TERMINAL HANDLING SERVICES F-1

GENERAL SERVICES F-1
Opening a Logical Unit for Terminal I/O F-2
Close a Terminal Logical Unit F-2
Assigning a Terminal F-2
Deassigning a Terminal F-3
Write to a Specific Terminal F-3
Read from a Specific Terminal F-4
READ Unsolicited from Any Terminal Assigned F-4

ERROR CODES DURING MULTI-TERMINAL HANDLING F-5

SOURCE PROGRAM LISTINGS G-1

DIAGNOSTIC ERROR MESSAGES H-1

RECORD MANAGEMENT SERVICES ERROR CODES I-1

OBJECT TIME SYSTEM ERROR MESSAGES J-1

Index-I

ix

FIGURE 1-1
2-1
2-2

2-3

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10'
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20'

3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-31}
3-31
3-32
3-33

3-34

3-35
3-36

3-37

3-38
3-39
3-41}
3-41
3-42
3-43
3-44

FIGURES

Building a COBOL Task Image
Merging Library Text
Merge Dialogue Using Multiple Object
Modules and Default I/O Overlaying
Merge Dialogue Using One Object Module
and No I/O Overlaying
Field Sizes
Redefining Special Characters
ASCII Code Chart
Relation Condition
The Meanings of Relational Operators
Class Condition, General Format
Data Movement with Editing Symbols
Data Movement with No Editing
Subscripted MOVE Statements
Sample STRING Statement
Concatenation with the STRING Statement
Literals as Sending Fields
Indexed Sending Fields
Sample POINTER Phrase
Delimiting with the Word SIZE
SPACE as a Delimiter
Repeating the DELIMITED BY Phrase
Delimiting with More Than One Space Character
The ON OVERFLOW Phrase
Various STRING Statements Illustrating the
Overflow Condition
STRING Statement with Pointer
Subscripting with the Pointer
Subscripting with the Delimiter
Sample UNSTRING Statement
Multiple Receiving Fields
Delimiting with a Space Character
Delimiting with Multiple Receiving Fields
Delimiting with an Identifier
Multiple Delimiters
The COUNT Phrase
The DELIMITER Phrase
The POINTER Phrase
Examining the Next Character by Using the
Pointer Data Item as a Subscript
Examining the Next Character by Placing
It Into a One-Character Field
The TALLYING Phrase
The POINTER and TALLYING Phrases used
Together
Subscripting the COUNT Phrase with the
TALLYING Data Item
Using the OVERFLOW Phrase
Sequence of Subscript Evaluation
Erroneously Repeating the Word INTO
Sample INSPECT .•. TALLYING Statement
Sample INSPECT •.• REPLACING Statement
Sample INSPECT ••. BEFORE Statement
Matching the Delimiter Characters to the
Characters in a Field

x

Page

1-4
2-4

2-22

2-23
3-2
3-3
3-4
3-4
3-5
3-6
3-10'
3-11
3-11
3-13
3-13
3-14
3-14
3-14
3-15
3-15
3-16
3-16
3-17

3-17
3-18
3-19
3-19
3-21
3-21
3-23
3-24
3-27
3-27
3-28
3-29
3-30'

3-31

3-31
3-32

3-32

3-33
3-34
3-35
3-36
3-37
3-37
3-37

3-38

3-45
3-46
3-47
3-48
3-49
3-50'
3-51
3-52

3-53
3-54

3-55

3-56
3-57

3-58

3-59

3-6.0

3-61
3-62

3-63
3-64

3-65
3-66

3-67
3-68
3-69
3-7.0

3-71

3-72

3-73

4-1
4-2
4-3
4-4
4-5

4-6
4-7
4-8

FIGURES (Continued)

Sample INSPECT Statement
Sample REPLACING Argument
Sample AFTER Delimiter Phrase
Where Arguments Become Active in a Field
Sample Subscripted Argument
Format of the Tally Argument
CHARACTERS Form of the Tally Argument
Results of Counting with the LEADING
Condition ·
Argument List Adding into One Tally Counter
Argument List Adding into Separate Tally
Counters
Argument List (with Delimiters) Adding into
Separate Tally Counters
Results of the Scan in Figure 3-55
Two Tallying Arguments that Do Not Interfere
with Each Other
Two Tallying Arguments that Do Interfere
with Each Other
Two Tallying Arguments that, Because of
Their Positioning, Only Partially Interfere
with Each Other
An Attempt to Tally the Character B with
Two Arguments
Tallying Asterisk Groupings
Placing the LEADING Condition in the
Argument List
Reversing the Argument List in Figure 3-62
An Argument List that Counts Words in a
Statement
Counting Leading Tab or Space Characters
Counting the Remaining Characters with the
CHARACTERS Argument
Format of the Search Argument
Format of the Replacement Value
The Replacement Argument
R~placement Argument List that is Active
Over the Entire Field
Replacement Argument List that "Swaps"
Ones for Zeroes and Zeroes for Ones
Replacement Argument List that Becomes
Inactive with the Occurrence of a Space
Character
Argument List with Three Arguments that
Become Inactive with the Occurrence of a
Space
Memory Storage of COMP Data Items
Memory Storage of COMP-6 Data Items
Memory Storage of COMP-3 Data Items
Truncation Caused by Decimal Point Alignment
Zero Filling Caused by Decimal Point
Alignment
Numeric Edi ting
Rounding Truncated Decimal Point Positions
Rounding Truncated Decimal Scaling Positions

xi

Page

3-40'
3-40'
3-41
3-42
3-43
3-44
3-44

3-45
3-45

3-46

3-46
3-46

3-47

3-47

3-47

3-48
3-48

3-49
3-49

3-49
3-50'

3-50'
3-51
3-52
3-53

3-53

3-53

3-54

3-54
4-2
4-4
4-5
4-12

4-12
4-14
4-16
4-16

4-9

4-1,0

4-11

5-1
5-2
5-3
5-4

5-5

5-6

5-7

5-8
5-9
5-1,0
5-11
5-12
5-13

5-14
5-15
5-16
5-17
5-18
5-19
5-2g
6-1
6-2

6-3
6-4
6-5

6-6

7-1
7-2
7-3
7-4

9-1
9-2
10'-l
10'-2
11-1
11-2
11-3

14-1

FIGURES (Continued)

Explicit Programmer-Defined Temporary Work
Area
Arithmetic Statement Intermediate Result
Field Attributes Determined from Composite
of Operands
Arithmetic Expression Intermediate Result
Field Attributes Determined by Implementor­
Def ined Rules
Defining a Table
Mapping a Table into Memory
Synchronized COMP Item in a Table
Adding a Field without Altering the Table
Size
Adding One Byte which Adds Two Bytes to
the Element Length
Forcing an Odd Address by Adding a 1-Byte
FILLER Item to the Head of the Table
The Effect of a SYNCHRONIZED RIGHT Clause
Instead of a FILLER Item as Shown in
Figure 5-6
Initializing Tables
Initializing Mixed usage Fields
Initializing Alphanumeric Fields
Literal Subscripting
Subscripting a Multi-Dimensional Table
Subscripting Rules for a Multi-Dimensional
Table
Subscripting with Data-Names
Index-Name Item
Subscripting with Index-Name Items
Relative Indexing
Index Data Item
Legal Data Movement with the SET Statement
Example of Using SEARCH to Search a Table
Placement of End-of-File Mark
Placement of the End-of-Volume Label and
End-of-File Mark in a Multi-Volume File
Single Key Indexed File Organization
Multi-Key Indexed File Organization
Assigning Logical Names to the Card Reader
and Line Pr inter
Assigning the Card Reader and Line Printer
to Files
Unqualified Data Item Reference
Qualified Data Item Reference
General Format of a Qualified Data Reference
General Format og a Qualified Procedure
Reference
Segmentation Using the /OV Switch
Using the /CSEG:nnnn Switch
Sample LINKAGE SECTION and USING Phrase
Argument Address List
Merged ODL File Listing
Modified ODL File
Overlay Description Map Before and After
Modification
Three-Level Primary Key Index

X ; ;

Page

4-23

4-23

4-24
5-2
5-3
5-4

5-5

5-5

5-6

5-6
5-7
5-8
5-8
5-9
5-1g

5-lg
5-11
5-12
5-12
5-14
5-14
5-15
5-19
6-3

6-4
6-25
6-26

6-39

6-4g
7-8
7-9
7-lg

7-11
9-3
9-4
lg-2
lg-6
11-7
11-8

11-9
14-6

TABLE 2-1
2-2
2-3
3-1
3-2
3-3
3-4

3-5
3-6
3-7

3-8
3-9
3-1.0

3-11

3-12

4-1

4-2
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-1.0
14-1
D-1
D-2

TABLES

COPY REPLACING Matches
Operating System Prompts and Compiler Names
Compiler Switches
Legal Non-Numeric Elementary Moves
Results of the Preceding Sample Statements
Results of the Preceding Sample Statements
Values Moved into the Receiving Fields
Based on the Value in the Sending Field
Handling a Sending Field that is Too Short
Results of Delimiting with an Asterisk
Results of Delimiting Multiple Receiving
Fields
Results of Delimiting with Two Asterisks
Results of Delimiting with ALL Asterisks
Results of Delimiting with ALL Double
Asterisks
Results of the Multiple Delimiters Shown
in Figure 3-29
Original, Altered, and Restored Values
Resulting from Implicit Redefinition
The Resulting ASCII Character from a Sign
and Digit Sharing the Same Byte
The Sign Tests
COBOL File Types
I/O Statements
Sequential OPEN Modes
Bucket Sizes for Record Lengths
Relative OPEN Modes
Bucket Sizes for Record Lengths
Indexed OPEN Modes
Device Codes
Comparison of PDP-11 Disk Devices
Form Control Characters
File Specification Switches
$KK PSECT Name Suffixes
PSECT Name Suffixes

xiii

Page

2-6
2-9
2-12
3-9
3-18
3-2'

3-22
3-23
3-24

3-25
3-25
3-26

3-26

3-28

3-39

4-7
4-9
6-2
6-2
6-9
6-16
6-19
6-28
6-32
6-37
6-38
6-47
14-11
D-2
D-3

PREFACE

The PDP-11 COBOL User's Guide is intended primarily for reference use.
It is a companion guide to the PDP-11 COBOL Language Reference Manual.
Because it is not a tutorial guide for--beg1nn1ng programmers, you
should have a working knowledge of the COBOL language.

This guide describes the COBOL file structures: data formats; some of
the features of the PDP-11 COBOL Version 4 compiler, error messages
generated by the compiler and run-time systems, I/O devices available
with the system, some hints on good programming practices, some
techniques for debugging source programs, and a description of the
PDP-11 COBOL utility programs, Merge and REFORMAT.

xv

ACKNOWLEDGMENTS

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or by
the CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

The authors and copyright holders of the copyrighted material used
herein are: FLOW-MATIC (trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole
or in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Chairman of the CODASYL COBOL Committee, P.O. Box
124, Monroeville; Pa. 15146.

xvi

CHAPTER 1

INTRODUCTION

The PDP-11 COBOL compiler translates ANS-74 COBOL source programs into
relocatable object modules; it runs under the supervision of the
following PDP-11 operating systems:

e RSTS/E

• RSX-llM

e IAS

To run a COBOL program, you follow a five-step process:

• Prepare a source program

• Compile a source program

• Merge or prepare an overlay description file (optional)

• Task-build object modules into an executable task

• Execute the task

The PDP-11 COBOL compiler accepts COBOL source statements from source
input files. This means that you must manually enter your source
statements onto an acceptable medium prior to the compilation process.

Once you have decided upon an input medium and format for your source
input files and have created them, you compile the source program.

The PDP-11 COBOL compiler reads source statements from the source
input file, translates them into object code modules consisting of
program sections (PSECTs), and produces the following files:

• Listing (LST)

• Object (OBJ)

• Overlay Description Language (ODL)

The listing file (LST) contains a listing of the source statements in
the order in which they were compiled, any diagnostic error messages,
and any optional special format listings, e.g., cross-reference
listings and data and procedure maps. You obtain special format
listings by appending an appropriate switch to the COBOL command line
at compile-time.

1-1

INTRODUCTION

The object file (OBJ) contains a collection of program sections called
PSECTs which are not executable. They must be linked into an
executable task image by an operating system task called Task Builder.
The ability to compile COBOL subprograms to produce linkable object
files independently enables you to create modular programs.

The Overlay Description Language (ODL) file contains directives that
describe the overlay structure of the object module generated from the
COBOL source program. ODL directives are generated into the ODL file
for each overlayable object module program section.

The compiler can compile only one source program or subprogram per
command string execution. Therefore, a program which consists of a
main program plus one or more subprograms requires multiple executions
of the compiler. Each compilation generates a separate listing, ODL,
and object file. The ODL files, in this instance, must be merged
together into a single ODL file to be submitted as input to the Task
Builder.

To accomplish this, you use the Merge Utility, which performs the
following functions:

1. Merges the ODL statements from one or more ODL files into a
single ODL file

2. Analyzes the I/O requirements for the entire task and
provides directives to include the required I/O routines

3. Inserts the missing but required ODL directives not provided
by the compiler

Whether you have a large segmented program, a main program plus
subroutines, or a small stand-alone program, the ODL files generated
by the compiler require merging or modification.

Task Builder provides you with a facility for linking separately
compiled object modules into an executable task image. You can,
depending on your knowledge of your operating system and PDP-11 COBOL,
link object modules created by another programming language into your
COBOL task image. Task Builder also allows you to take full advantage
of the COBOL system library to selectively link into your COBOL task
only those runtime support routines actually needed to run your task.

The Task Builder, using the ODL file as a guide, provides the facility
to build large amounts of code into a task by careful use of code
segments that overlay each other. Careful use of segmentation or
calls to subprograms within your COBOL source program will allow you
to compile and execute large and complex COBOL programs. If you add
some functionality to an existing COBOL program and find that, after
task-building, the resulting task will not fit in memory, you have an
alternative other than reprogramming: you can segment the program or
make subprograms out of some of the existing procedures, replac ng
these procedures with CALL statements to the newly crea ed
subprograms. When the source program has been compiled, the ODL f ie
merged, and task-building accomplished, the task is ready to be
executed.

1-2

INTRODUCTION

The task is an executable form of the declarations and instructions
represented in your COBOL source programs. It includes input-output
routines and other subprograms that were inserted by the Task Builder
as a result of your commands or the contents of the ODL file. It also
includes the COBOL run-time system, which is a library of predefined
routines that perform standard functions for your program, such as
arithmetic and data movement. The run-time system is also referred to
as the Object-Time System, or OTS.

Figure 1-1 shows the process of preparing a COBOL program for
execution.

COBOL System Utility Programs

The PDP-11 COBOL System includes two utility programs:

MERGE

The Merge Utility merges compiler-generated ODL files into a
single ODL file. It also allows you to specify several options
in it dialogue. Chapter 2 discusses Merge in detail.

REFORMAT

PDP-11 COBOL accepts source programs that were coded using either
the ANSI ai-column card reference format or the shorter,
terminal-oriented PDP-11 reference format. The REFORMAT utility
program reads source programs that were coded in the PDP-11
terminal format and converts them to si-column ANSI-compatible
source programs. Chapter 8 describes the use of REFORMAT. The
two reference formats are discussed in the PDP-11 COBOL Language
Reference Manual.

1-3

OBJECT
MODULE

INTRODUCTION

COMPILER
(CBL)

ODL FILE

ODL
MERGE
UTILITY

ODL FILE

TASK
BUILDER

(TKB)

LISTING

Figure 1-1 Building A COBOL Task Image

1-4

CHAPTER 2

USING THE PDP-11 COBOL SYSTEM

This chapter discusses the procedures for creating, compiling and
using COBOL programs. The procedure can be described as a 5-step
process:

1. Creating or entering source programs.

2. Compiling the source programs to produce object files and
Overlay Descriptor Language (ODL) files.

3~ Optionally merging ODL files to produce an ODL file that
contains the structural specification for an executable task.

4. Task-building the object modules to produce the executable
task.

5. Executing the task and setting optional program switches.

2.1 CREATING A SOURCE PROGRAM

This section discusses the selection of a source reference format and
the preparation of a source program file for input to the compiler.

2.1.1 Choosing ~ Reference Format

The PDP-11 COBOL compiler can accept source programs in either
conventional or terminal reference format (both are described in the
PDP-11 COBOL Reference Manual). However, it is important to note that
you cannot mix reference formats in the same source program (including
text copied from a COBOL library).

Terminal format was designed to be easily used by programmers at
interactive terminals; therefore, the compiler accepts terminal
reference format as a default (you can use a compiler switch to
specify conventional format). Using terminal format can result in a
significant saving of file space used to store COBOL source programs.
In addition, you will find that it is usually easier to edit source
programs written in terminal format, because spacing requirements are
more flexible.

2-1

USING THE PDP-11 COBOL SYSTEM

You may want to select the conventional reference format if your COBOL
program was originally written that way for another compiler.

You can convert a terminal format program
using the REFORMAT utility, which is
REFORMAT to transport a terminal format
accepts only conventional format. You
formats of source files and COBOL library
same.

to conventional format by
described in Chapter 8. Use
program to a system that
can also use it to match the
files if they are not the

2.1.2 Entering ~ Source Program

Create a source program file from your terminal by using a text
editing program that is available on your system; or use a system
utility to transfer existing source files from external media. You
can also use a text editor to update existing source program files. ·

2.2 USING THE LIBRARY FACILITY (COPY)

The PDP-11 COBOL library facility allows you to copy COBOL source
language text from a library file into your COBOL program during
compilation. One COPY statement can include large amounts of library
source text in a program, eliminating a great deal of repetitious
coding and the errors that often go along with it. The compiler
treats the copied text as if it were a part of the source program;
however, the copied material does not change the source program file
in any way.

The COBOL library facility provides two important benefits:

1. Standardization of File and Coding Conventions

A data file is usually processed by more than one program.
Each of those programs must describe the characteristics of
the file, such as file-name, blocking factor and record
descriptions. The programs are often written by one
programmer, then maintained and updated by another. Because
it is often difficult for a programmer to understand a
program written by someone else, many organizations design
and code standardized file descriptions, then keep them in
COBOL libraries; programmers then COPY the file descriptions
into their programs, frequently without having to understand
(or even know) their details.

This technique also applies to Procedure Division code that
is used in many different programs. For example, a library
could contain a standardized routine to convert calendar
dates to Julian dates, or to format standard report headings.

2. Saving Time and Reducing Errors

Defining and coding file aQd record descriptions are both
time-consuming and error-prone activities. When the
descriptions already exist in COBOL libraries, you can easily
COPY them into a source program; you save time because you
don't have to code them again, and you avoid potential errors
in re-entering complex code.

2-2

USING THE PDP-11 COBOL SYSTEM

Chang_in_g t:he format of a file is a_nother common
time-consuming chore. When a file format changes, you
usually must change and recompile all programs that use the
file. If the file description is in a COBOL library, only
the library must be changed: individual programs often then
need only recompilation, since the library coding changes are
included by the COPY.

Putting commonly used Procedure Division code in libraries
yields the same benefits.

2.2.1 Creating~ COBOL Library File

Each line of a COBOL library file must form syntactically correct
COBOL text when it is merged into the source program. It can meet
this condition by being itself syntactically correct or by becoming
correct when it is merged with the source program.

Library text must conform to the rules for the COBOL source reference
format: for example, library text that will appear in Area A of the
source program must be in Area A in the library file. You can write
library text using either the conventional
however, the library text format must be
program into which it is merged.

2.2.2 The COPY Statement

format or terminal format:
the same as the source

COPY is a compiler-directing statement that merges a COBOL library
file into a COBOL source program. The simplest form of the statement
is:

COPY text-name.

Text-name must be either an alphanumeric literal or a file name.
Remember that the COPY statement must end with a terminator period
regardless of where it appears in the source program.

If you specify a literal, the compiler uses its value as a file
specification: therefore, you can include or omit all components of
the file specification that are allowed by your operating system, such
as device, UIC (or PPN), file type, and version number. The only
required component is the file name itself.

For example:

COPY "DKl: [7,2J]ACCFIL.XYZ:3".

causes the compiler to acce~s version number 3 of the file ACCFIL.XYZ
in UIC [7,2J] on the device DKl:.

If you use a file name in the COPY statement, the compiler uses .LIB
as the default file type.

For example:

COPY ACCOUNT.

causes the compiler to access the latest version of the file
ACCOUNT.LIB on the default device and UIC.

2-3

USING THE PDP-11 COBOL SYSTEM

Only four conditions require the use of the alphanumeric literal to
indicate the full file specification for the copy statement:

1. When the file type is other than .LIB.

2. When the library file is not on the default device.

3. When the library file is not in the default directory.

•4. When the default directory contains more than one version of
the 1 ;hr::iru file and ,71"'\11 want +-I"\ rtl"\Y"'\"'C7 a version other than ~ .. llJ """I .I"' '-"' "'.I::' .I

the latest. This condition cannot occur under RSTS/E, which
does not support multiple file versions.

Figure 2-1 demonstrates the use of the COPY statement to include
Procedure Division code. Note that the format of the library text is
maintained when it is included in the source program.

COBOL Source Program I
PROCEDURE DIVISION.
START-PROC SECTION.
BEGIN-PROC.

ACCEPT TO-DATE
FROM DATE.

OPEN-FILES. COPY OPENF.
OPEN I-0 WORK-FILE.

INPUT-LOOP.
READ CUST-FILE .••

Library File (OPENF.LIB)

*
OPEN INPUT CUST-FILE.
OPEN I-0 ORDERS.

GET-VERSION.

*

DISPLAY "VERSION?".
ACCEPT VER-NUM.
IF VER-NUM NOT NUMERIC

GO TO GET-VERSION.

Resulting Source Program I

*

*

PROCEDURE DIVISION.
START-PROC SECTION.
BEGIN-PROC.

ACCEPT TO-DATE
FROM DATE.

OPEN-FILES. COPY OPENF.

OPEN INPUT CUST-FILE.
OPEN I-0 ORDERS.

GET-VERSION.
DISPLAY "VERSION?".
ACCEPT VER-NUM.
IF VER-NUM NOT NUMERIC

GO TO GET-VERSION.

OPEN I-0 WORK-FILE.
INPUT-LOOP.

READ CUST-FILE ...

Figure 2-1 Merging Library Text

2-4

USING THE PDP-11 COBOL SYSTEM

The COPY statement can appear anywhere that a COBOL
a so-urce prog-ra-m; the-r-e-f-o-r-e, yo-u ca-n use it in
different problems. For example, if a library
contains the single entry MORTGAGE-PAYMENT-AMOUNT,
in the Data Division:

Source Statement: g3 COPY MTG. PIC 999V99.

Resulting

word is allowed in
rna-n-y w--ay-s -to s--e-l v-e
file called MTG

it could be copied

Source Statement: g3 MORTGAGE-PAYMENT-AMOUNT PIC 999V99.

or in the Procedure Division:

Source Statement: MULTIPLY COPY MTG. BY 12
GIVING ANNUAL-PAYMENT.

Resulting
Source Statement: MULTIPLY MORTGAGE-PAYMENT-AMOUNT BY 12

GIVING ANNUAL-PAYMENT.

The periods following the COPY statements in these examples do not
become part of the source text. If the library text requires
punctuation: it must be included in the library file~

NOTE

The two preceding examples are not
recommended uses of the COPY statement.
They are included only to illustrate the
mechanics of the COBOL library facility.

2.2.3 The COPY REPLACING Statement

It is sometimes necessary to tailor library file text for use in a
particular program. For example, if a record description in a library
file has level-numbers incremented by 1 (gl, g2, g3, ...) and you want
them to be incremented by four (gl, gs, ~9, .••),you can change the
level-numbers as the library text is merged into the source program.
During the copying process, the COPY statement can replace all
occurrences of a literal or word with an alternate literal or word.
For example:

COPY ACCTREC REPLACING ~2 BY gs,
~3 BY gg, g4 BY 13.

This sample statement causes the compiler to scan the file ACCTREC
searching for the character-string ~2. Wherever it finds a g2, the
compiler substitutes gs. A match occurs only if the compiler finds a
~2; no match occurs for a g or a 2 alone. The compiler follows the
same procedure for occurrences of g3 and g4.

The REPLACING character-string can be a literal or a word; it must
compare equally, character for character, with the entire
character-string in the library text. Table 2-1 illustrates the
results of some character-string comparisons.

2-S

USING THE PDP-11 COBOL SYSTEM

Table 2-1 COPY REPLACING Matches

REPLACING Literal
or word Library Text Match?

"ABC" "ABCD" No

HRLY-RATE HRLY-RATE Yes

1 1 Yes

II 2" 2 No

II 15" "15" No

".0'12" "12" No

0'12 12 No

SUBTRACT SUBTRACT Yes

".0'12" II .0'12 II Yes

ACCT ACCTl No

The following examples COPY the library file named NEWSBOY, which
contains this text:

,0'1 A.

Example .!.

,0'2 B PIC 99.
,0'2 C PIC 99 VALUE 2.
,0'2 D PIC X(5) VALUE "ABCDE" •
.0'2 EPIC 99V99 VALUE 3.75.
,0'2 F PIC 99 VALUE ,0'2.

Statement:

COPY NEWSBOY REPLACING B BY X.

Result:

.0'1 A •
.0'2 x PIC 99.
.0'2 c PIC 99 VALUE 2.
.0'2 D PIC x (5) VALUE "ABCDE".
j2 E PIC 99V99 VALUE 3.75.
.0'2 F PIC 99 VALUE .0'2.

2-6

USING THE PDP-11 COBOL SYSTEM

Statement:

COPY NEWSBOY REPLACING 2 BY 6.

Result:

.0'1 A •
.0'2
.0'2
.0'2
.0'2
.0'2

Example l

Statement:

COPY

Result:

_01 A.
63
63
63
63
63

Example !

Statement:

COPY

Result:

.0'1 A •
.0'2
.0'2
.0'2
.0'2
.0'2

B PIC 99 •
C PIC 99 VALUE 6 .
D PIC X(5) VALUE "ABCDE" .
EPIC 99V99 VALUE 3.75 •
F PIC 99 VALUE .0'2.

NEWSBOY REPLACING .0'2 BY 63.

B PIC 99.
c PIC 99 VALUE 2.
D PIC x (5) VALUE "ABCDE".
E PIC 99V99 VALUE 3.75.
F PIC 99 VALUE 63.

NEWSBOY REPLACING B BY X,
"ABCDE" BY "HIJ",
3.75 BY 4.234.

x PIC 99.
c PIC 99 VALUE 2.
D PIC x (5) VALUE "HIJ".
E PIC 99V99 VALUE 4.234.
F PIC 99 VALUE .0'2.

In the third example, level-number .0'2 was changed to level-number 63,
which is not legal under COBOL rules; therefore, although both the
COPY statement and the library text are syntactically correct, the
merged text is incorrect and would generate syntax errors.

2-7

USING THE PDP-11 COBOL SYSTEM

2.2.4 The Source Listing

The compiler displays copied
however, you can suppress
switch.

library text
this display

on the source listing;
by using the /NL compiler

Depending on how you write the COPY statement, library text can appear
either before or after the COPY statement. The compiler normally
prints a line of source text when it scans to the end of the line;
however, when the compiler recognizes a completed COPY statement
before the end of the line, it locates the library file, then:

1. Prints the library text.

2. Scans the rest of the source program line.

3. Prints the entire source line.

Thus, if the source line contains a COPY statement followed by other
text (including spaces), the compiler prints the library text before
the source line containing the COPY statement; this results in a
somewhat confusing listing.

You can cause the compiler to produce a more readable listing by
making sure that you write each COPY statement as the last entry on a
source program line.

2.2.5 Common Errors in Using the Library Facility

Some of the more common errors to avoid when using the library
facility are:

• Failing to follow the rules for the COBOL reference format
when creating the library file.

• Merging a library file in one format (conventional or
terminal) with a source program written in the other.

• Forgetting to end the COPY statement with a terminator
period.

• Inadvertently defining data-names in the source program when
they are also defined in the library file, thus causing
duplicate names.

• Writing library file text that becomes syntactically
incorrect when it is merged with the source program.

• Merging the wrong library file, either because multiple
versions exist, or because of misspellings.

• Writing source text following the COPY statement on the same
line, thus causing confusion in the source program listing.

• Forgetting that numeric literals (such as J2, 77, .••) used
in the REPLACING option replace level-numbers, picture
descriptions, and paragraph or section names, when they find
matches in the library file.

e Forgetting that a period must appear in the library file if
it is to appear in the source program; the terminator period
that ends the COPY statement is replaced by library text.

2-8

USING THE PDP-11 COBOL SYSTEM

The PDP-11 COBOL compiler translates the COBOL text in a source
program file into an object module that contains relocatable code, and
an Overlay Descriptor Language (ODL) file that contains a structural
description of the program. The compiler also produces an optional
listing that contains the source statements and other information that
you can request by using compiler switches. This section describes
the procedure for compiling your source program; it discusses the
COBOL command line, compiler switches and the error message summary.
Finally, the section lists some common errors to avoid in entering
compiler command lines. Appendix G discusses the components of the
source program listing.

System prompts, COBOL compiler names, and command line formats differ
for the three supported operating systems. Table 2-2 shows the system
prompt and compiler name for each operating system.

Table 2-2
Operating System Prompts and Compiler Names

Operating
I

System Compiler
System Prompt Name

RSX-llM > CBL

IAS PDS> COBOL
I

RSTS/E J READY COBOL

Examples in this section are for the RSTS/E operating system. RSX-llM
COBOL command lines are the same except for the compiler name. The
IAS COBOL compiler command line format is described in the IAS User's
Guide. The compiler switches described in this section can be used on
each system.

Depending on whether you want to compile a single source program or
more than one, you invoke the compiler in one of two ways:

1. To compile a single program, call for the compiler and supply
its command line on a single line, followed by a carriage
return; when the compilation is finished, the operating
system prompt appears. For example:

READY

COBOL <command line>

READY

2-9

USING THE PDP-11 COBOL SYSTEM

2. To compile more than one program during a single execution of
the compiler, call the compiler on one line (followed by a
carriage return), then enter command lines in response to
compiler prompts. When a compilation is finished, the
compiler prompts you for the next command line. Enter a
CTRL-Z (AZ} when the last program has been compiled:

READY

COBOL
CBL> <command line>
CBL> <command line>
CBL> <command line>

CBL> <command line>
CBL> "'z

READY

2.3.1 PDP-11 COBOL Command Line

The PDP-11 COBOL command line has the following format:

<object-file>,<listing-file>=<source-file></switch> •.. </switch>

where:

<object-file>

<listing-file>

<source-file>

</switch>

is the file specification for the file that
is to contain the object module generated by
the compiler.

is the file specification for the file that
is to contain the source program listing.

is the file specification for the file that
contains the COBOL source program to be
compiled.

is a compiler switch option, written as a
slash (/) followed by one or more ASCII
characters. (The next section discusses
compiler switches.)

You can write each file specification with or without the file type
(or extension). If you omit the file type, the compiler assumes the
following as defaults:

<object-file> OBJ

<listing-file> LST

<source-file> CBL

2-10

USING THE PDP-11 COBOL SYSTEM

You can omit either or hath 0-f the -CO-mp-il.e-r 's out-p.u-t f il-e--s -b--y 0-mitting:
the corresponding file specifications from the command line.

Consider the following examples:

CBL> OBJECT,LIST=SOURCE

produces OBJECT.OBJ and LIST.LST and uses SOURCE.CBL. The three files
are assumed to be in the default directory on the default device.

CBL> OBJECT=[7,2l]SOURCE.CBS

produces no listing-file. It uses the source-file SOURCE.CBS in
directory [7,21] and produces OBJECT.OBJ in the default directory on
the default device.

CBL> ,LIST.LSX=SOURCE

produces a listing-file (LIST.LSX) on the default device; however, no
object-file is produced. The source-file is SOURCE.CBL.

CBL> =SOURCE

produces no output files at all. The source-file is SOURCE.CBL in the
default directory on the default device. The only output of this
compilation is the error message summary; however, it will appear
only if the compiler detects errors.

NOTE

The compiler generates an ODL file only
if it produces an object file. The ODL
file name, device, and PPN (UIC) are the
same as those of the object file.

2.3.2 Compiler Switches

PDP-11 COBOL provides a series of compile-time switches that you can
use to select or suppress compiler options. Table 2-3 summarizes the
compiler switches, which are then described in detail.

2-11

/ACC:n
/-BOU
/CM6
/CREF
/CSEG:nnnn
/CVF'
/ERR:n
/HELP
/KER:kk
/MAP
/NL
/OBJ
/-ODL
/OV
/PFM:nn
/-PLT
/RO
/SYM:n

/ACC:n

/-BOU

USING THE PDP-11 COBOL SYSTEM

Table 2-3
Compiler Switches

Acceptable diagnostics to produce object file
Suppress bounds checking
COMPUTATIONAL-6 interpretation
Cross-reference listing
Specify maximum procedural PSECT size
Conventional format
Diagnostic print suppression
Display compiler command line information
Specify PSECT kernel name
Produce map on listing
Suppress listing of library text
Print object code locations on listing
Suppress ODL file generation
Overlay all procedural PSECTS
Specify maximum PERFORM nesting
Suppress literal pooling
Generate read-only PSECTS
Add symbol table space

Causes the compiler to produce an object file only if
the source program generates diagnostics with severity
numbers equal to or less than n. Acceptable values for
n are ~, 1, and 2:

~ Informational diagnostics
1 Warning diagnostics
2 = Fatal diagnostics

The default is /ACC:l.

Suppresses the generation of code to check that
subscripts and indexes are in their legal ranges when
they are used. If this switch is not specified, a
program's use of an out-of-range subscript or index
results in its termination by the OTS. Suppression of
bounds checking can increase execution speed for a
program that executes a large number of subscripted or
indexed data references. The default is /BOU.

NOTE

If /-BOU is specified and a program uses
out-of-range subscripts or indexes, the results
are unpredictable.

2-12

I /C.M6

/CREF

/CSEG:nnnn

/CVF

/ERR:n

/HELP

USING THE PDP-11 COBOL SYSTEM

causes t-he c·crmptler to interpret COMPUTATIONAL usage as
it did in releases prior to Version 4.~. The effect is
the same as changing all COMPUTATIONAL references to
COMPUTATIONAL-6.

NOTE

Since COMPUTATIONAL-6 is a temporary data
format, intended only for program conversion
from PDP-11 COBOL releases prior to Version 4.~,
its use for conversion purposes should also be
considered temporary.

Produces a cross-reference listing as part of the
listing file. Data-names and procedure-names are listed
in ascending order with the source program line numbers
on which they appear. On the listing, the symbol #
indicates the source line on which the name is defined.

NOTE

The /CREF switch significantly increases the
compilation time for large source programs.

Specifies the maximum size for procedural PSECTs to be
generated by the compiler; nnnn is a decimal number
greater than ii? that specifies the maximum PSECT size
in bytes.

Specifies that the source program is in conventional
format; the compiler then expects si-character images
with optional sequence numbers in character positions
1-6, indicators in position 7, Area A beginning in
position 8, Area B beginning in position 12, and the
identification area in positions 73-8~.

Suppresses the printing of compiler diagnostic messages
with severity numbers less than n. Acceptable values
for n are ~' 1, and 2:

i = Informational diagnostics
1 = Warning diagnostics
2 = Fatal diagnostics

You cannot suppress fatal diagnostics. The default is
/ERR:~.

Displays information about the compiler command line
(including switches) on the default output device.

2-13

/KER:kk

/MAP

/NL

/OBJ

/PFM:nn

/-PLT

l
!

l
T

USING THE PDP-11 COBOL SYSTEM

Specifies a two-character kernel for PSECT names in this
compilation. Use this switch when two more object files
will be merged into a single task. The Task Builder
requires all PSECT names to be unique; specifying
different kernels for each object file in the task
overrides the compiler's default names and ensures
uniqueness.

The kernel (kk) is a two-character string that can
contain any combination of the letters A-Z and the
numbers j-9.

Causes the compiler to produce the following maps in the
listing file:

• Data Division
• Procedure Map
• External Subprograms Referenced
• Data and Control PSECTs
• OTS Routines Referenced
• Segmentation Map

Appendix G contains a description and example of each
map.

Suppresses the
files; only
listing file.

listing of text copied from library
the COPY statement itself appears in the

Causes the compiler to list the object location for each
verb in the Procedure Division. The location appears on
the line before the source line in which the verb is
used.

Specifies the maximum number of nested PERFORM
statements in the program being compiled. The default
is lj. Using this switch to specify the exact number of
nested PERFORMS causes the compiler to reserve no more
memory than necessary for the PERFORM stack.

Causes the compiler to suppress literal pooling. As a
default (/PLT), the compiler pools literals to minimize
the space required to contain them. Depending on PSECT
size, literal pooling can also avoid the generation of
additional PSECTS that would otherwise result from
reaching maximum PSECT size. However, literal pooling
increases compile time; you can therefore speed up
compilations by using the /-PLT switch.

2-14

J

1

I
J
I

/RO

/SYM:n

USING THE PDP-11 COBOL SYSTEM

Ca-us-es the cumpiler to g-enera-te read-nnly ps-E-C-Ts for
Procedure Division object modules. The default PSECT
access code attribute is read/write. The access code
attribute of a PSECT affects its memory allocation by
the Task Builder. If your system supports hardware
memory protection, specifying read-only PSECTs can help
avoid unintentional damage to Procedure Division code,
especially if you compile your program with the /-BOU
switch. You will find more information about this
attribute in your system's Task Builder Reference
Manual.

NOTE

Do not use the /RO switch if you intend to
include the COBOL Interactive Debugger (CID) in
the task; CID breakpoints require read/write
PSECTs.

Causes the compiler to reserve more symbol table space
for the compilation. The acceptable values for n, which
represents the space required for the maximum number of
data-names and procedure-names, are 1, 2, 3, and 4:

Maximum Maximum
n Data-Names Procedure-Names

1 761 761
2 1.0'21 1,0'21
3 1531 1531
4 2.0'39 2,0'39

The default is /SYM:l.

2.3.3 Error Message Summary

If the compiler detects any errors during a compilation, it
an error message summary on the system output device.
message summary has the following format:

CBL -- nnnnn ERROR(S), nnnnn FATAL

NOTE

If any fatal errors occur, the compiler
does not generate an object file unless
you use the /ACC:2 switch in the command
line.

2-15

displays
The error

USING THE PDP-11 COBOL SYSTEM

2.3.4 Common PDP-11 COBOL Command Line Errors

Some of the more common errors to avoid when entering PDP-11 COBOL
command lines are:

• Omitting the /CVF switch for ~ource programs that are in
conventional format.

• Including switches that contradict file specifications in the
command line, such as using the /MAP switch when no
listing-file is specified.

• Omitting version numbers from file specifications, causing
the compiler to use an unintended version of a file (on IAS
and RSX-llM systems) •

• Forgetting to use a file type in the file specification when
you intend to use or create a file with other than the
default file type.

• Forgetting to enter a comma when you want only a listing
file. For example, CBL> ,A=A produces only a listing file,
while CBL> A=A produceS-an object file and an ODL file, but
no listing.

2.4 THE COBOL MERGE UTILITY
~- -~~ ~~-

The PDP-11 COBOL compiler produces an object file and an Overlay
Descriptor Language (ODL) file for each source file. The ODL file
contains directives that describe the structure of the associated
object modules; it must be supplied to the Task Builder to produce an
executable task image that contains overlayable segments. Even when
you do not require overlaying, you may want to supply ODL files to the
Task Builder to combine several object modules. However, the Task
Builder cann9t directly use the compiler-generated ODL files because:

1. The compiler-generated ODL file is not complete; it requires
additional ODL directives to include the required I/O
routines.

2. The compiler generates an ODL file for each program (and
subprogram); thus, multiple ODL files are required when the
task consists of a main program that calls one or more
subprograms. On the other hand, the Task Builder can accept
only a single ODL file; therefore, multiple ODL files must
first be merged.

The Task Builder can operate on object modules directly only if you do
not require overlaying and if only a few object modules combine to
produce the executable task. Section 2.5.2 describes this use of the
Task Builder.

2-16

USING THE PDP-11 COBOL SYSTEM

Assuming that your task is complex or does require overlaying, you
must s_uppLy .an DDL fi1-e ta the Ta.sk Builde-r,. In tha-t ca-ser r-eg.a-r-d-l-e-SS
of the attributes of your program (and its subprograms), the
compiler-generated ODL file{s} require merging or modification before
the Task Builder can use them. You can merge or modify these files
yourself if you have an in-depth knowledge of:

1) your operating system,

2) ODL file concepts,

3) PDP-11 COBOL segmentation and interprogram communications,
and

4) the Task Builder.

Chapter 11 (Hand-Tailoring ODL Files) describes the techniques for
modifying ODL files yourself. However, the COBOL Merge Utility
performs these functions for you quickly and easily in a standardized,
systematic way.

The Merge Utility has
features and tailor
For example:

several options that allow you to select
the resulting ODL file to fit particular needs.

1. You can select either a "merged" or an "abbreviated" output
ODL file.

The merged ODL file is a concatenation of all the input ODL
files (that is, it contains the contents of each file, one
directly after the other) followed by Merge-supplied ODL
statements:

PROGl.ODL statement
PROGl.ODL statement

PROG2.0DL statement
PROG2.0DL statement

PROG3.0DL statement
PROG3 .ODL statement

PROGn.ODL statement
PROGn.ODL statement

ODL statements supplied
by the Merge Utility

2-17

USING THE PDP-11 COBOL SYSTEM

The abbreviated ODL file contains indirect command file
specifications (one for each input ODL file) followed by
Merge-supplied ODL statements:

@PROGl.ODL
@PROG2.0DL
@PROG3.0DL
@PROGn.ODL

ODL statements supplied
by the Merge Utility

The merged ODL file takes more file space than the
abbreviated ODL file; however, it is a complete ODL file,
and the compiler-generated partial ODL files need not be
available to the Task Builder. The abbreviated ODL takes
less space because it contains indiiect command file
specifications; however, because the specifications are
essentially pointers to other files, the compiler-generated
files must also be available when you use the Task Builder.

2. You can include the COBOL Interactive Debugger (CID) in the
executable task. Chapter 13 describes CID and discusses its
use.

3. You can overlay I/O routines to
executable task; overlaying may
to prevent address space overflow.
overlaying I/O routines, program
greater•

reduce the size of the
be necessary in some cases

However, if you can avoid
execution speed will be

4. If you elect to overlay I/O routines, the Merge Utility
allows yo~ to tailor I/O for the executable task. Your
responses in the Merge dialogue specify options that balance
execution speed against memory space.

2.4.1 Using the Merge Utility

Invoke the Merge Utility by typing MRG, RUN $MRG, or RUN CBLMRG
(depending on your system) in response to a system prompt. Merge
guides you through the specification process by asking a series of
questions. The dialogue sequence is affected by your answers;
therefore, the order can vary from one use of Merge to another.
Figures 2-2 and 2-3 show two sample Merge dialogues.

For the purposes of this discussion, the dialogue steps are numbered.
However, the numbers do not appear in an actual Merge dialogue.

2-18

USING THE PDP-11 COBOL SYSTEM

PLEASE ENTER FILE SPECIFICATION FOR OUTPUT FILE
~~- -~- -~ ~~

Respond with a complete or partial file specification for the
ODL file that you will supply to the Task Builder. If you
enter a partial specification, Merge will assume the default
system device and directory, and the file type ODL. For
example, if you enter PROGA, the output ODL file will be
PROGA.ODL. The specification for this file should not
duplicate the name of an input ODL file. Merge opens the
output file immediately; using the name of an ODL file that
you intend for input will cause that file to be lost (in the
case of RSTS/E) or will cause an error later in the session.

DO YOU WANT AN ABBREVIATED OR MERGED ODL FILE?
PLEASE ANSWE~A(BBREVIATED)~, M(ERGED)' OR--a(ELP)

If your response is "A" or "M", Merge generates the output ODL
file in one of the formats described earlier. If you enter
"H", Merge displays a short description of each type of file.
Otherwise, Merge asks for a valid response and waits for more
input.

DO YOU WANT TO INCLUDE THE COBOL DEBUGGER
PLEASE ANSWERY (ES) OR N (0) --

lf""TT"'I\ ")
\'-.L.LJJ•

If you enter "Y", Merge generates a directive in the ODL file
that causes the Task Builder to. include the CID module in your
executable task. If you entei an invalid response, Merge
prompts you for a correction and waits for more input.

Do not include CID if any of the object modules were
with the /RO compiler switch; CID breakpoints
read/write procedural PSECTs.

compiled
require

CID adds approximately liii (decimal)
memory address space requirement. If
program's size limit, you can overlay
Merge dialogue or recompile the
purposes only) with the /OV switch.

words to your program's
the increase exceeds the
I/O routines through the
program (for debugging

DO YOU WANT TO OVERLAY I/O SUPPORT ROUTINES?
PLEASE ANSWERY(ES)' N(O) OR H(ELP)

Entering "N" will cause a library of I/O routines (RMSLIB) to
be included in your task image. Execution will be faster than
if you overlay I/O; however, the included routines could
cause your program's maximum size to be exceeded. If you
enter "N", Merge continues the dialogue at Step 7.

Entering "Y" causes Merge to ask more questions about I/O
routine overlaying, allowing you to choose from standard
Record Management Services (RMS) ODL files, or to specify your
own.

As before, an invalid response causes Merge to request a
correction.

2-19

©

USING THE PDP-11 COBOL SYSTEM

DO YOU WANT TO USE A DEC-SUPPLIED I/0 OVERLAY STRUCTURE?
PLEASE ANSWERY(ES)-; N(O) OR H(ELP)?

If you answer "Y", Merge continues the dialogue at Step 7 and
includes one of the standard RMS ODL files:

Operating System
Functions

RSX-llM and IAS RSTS/E

All except INDEXED RMSllS .ODL I RMSRTS.ODL I

All RMSllX.ODL RMSRTX.ODL
All RMS12X.ODL RMS12R.ODL

Entering "N" allows you to specify your own ODL file to
include I/O routines in the next step of the dialogue.

If you enter "H", Merge advises you to answer "Y". Unless you
have an ODL file to include I/O routines, and it has been
tested and verified, you are advised to use one of the default
files supplied with your system.

PLEASE ENTER YOUR ODL FILE SPECIFICATION.
~~- -~- -~ ~~

Enter a file specification that includes both file name and
file type. If either the file name or file type is missing or
invalid, Merge asks you to re-enter the entire file
specification.

PLEASE ENTER FILE SPECIFICATION FOR INPUT ODL FILE
~~- -~- -~ ~~- -~ ~~

As in Step 1, you can enter a partial or complete file
specification. Merge uses the same defaults as before for a
partial file specification. After validating the file
specification, Merge processes the input ODL file.

OBJECT PROGRAM REFERENCED IN ODL FILE IS:
(object-file> ~ ~- -~- -~

PLEASE ENTER OBJECT FILE DEVICE AND PPN IN
THE FORMAT: DEV: [PR6JECT,PROGRAMMERJ ~

If you enter only a carriage return, the device and PPN (or
UIC) for the input object file are the same as the system
defaults. However, Merge gives you the option of overriding
the defaults by entering other specifications.

2-20

@

USING THE PDP-11 COBOL SYSTEM

ANY MORE ODL FILES?
~AS"EANSWi-R Y (-ES} GR -N-W-)

Entering "Y" causes Merge to return to Step 7 to request the
name of the next input ODL file. If you enter "N", indicating
that all ODL files have been processed, the dialogue continues
with:

Step l~ if Merge has detected use of indexed file
organization, and you specified the default I/O
overlay option in Step 5

Step 11 if indexed I/O is not indicated in any of the
input ODL files, or if you used a non-default
ODL file for overlays

DO YOU WANT THE SMALLER OR THE LARGER I/0 ROUTINES?
PLEASE ANSWER S(MALLER) ,L(ARGER), OR H(ELP)

If you answer "S", Merge includes RMSllX.ODL (for RSX-llM and
IAS systems) or RMSRTX.ODL (for RSTS/E systems). The I/O
routines take about 9KB of user address space.

Entering "L" causes Merge to include one of the larger ODL
files: RMS12X.ODL (for RSX-llM and IAS systems) or RMS12R.ODL
(for RSTS/E) • These I/O routines take about 12KB of user
address space. If you select this option and an "address
overflow" condition is detected during task-building, merge
the ODL files again and enter "S" to try reducing the size of
the task.

If you are not sure which set of routines ~o specify, enter
"L"; selecting the larger I/O overlay may increase your
program's execution speed.

ODL FILE MERGE COMPLETE
MERGEi)QDL FILE IS: <output-ODL-file>

Merge tells you the name of the ODL file it created, which is
the name that you entered in Step 1. If you entered a file
specification without a file type, the actual file
specification includes the default file type, ODL.

After displaying this message, Merge terminates. You are then
ready to use the Task Builder to create an executable task
image.

2-21

USING THE PDP-11 COBOL SYSTEM

Figure 2-2
Merge Dialogue Using Multiple Object Modules

and Default I/O Overlaying

MRG
PLEASE ENTER FILE SPECIFICATION FOR OUTPUT FILE
PAYROL
DO YOU WANT AN ABBREVIATED OR MERGED ODL FILE?
PLEASE ANSWERA(BBREVIATED)-,-M(ERGED)' OR~P)
A
DO YOU WANT TO INCLUDE THE COBOL DEBUGGER (CID)?
PLEASE ANSWERY(ES) OR N(O)--
NO ------
DO YOU WANT TO OVERLAY I/0 SUPPORT ROUTINES?
PLEASE ANSWERY(ES) OR N(O)
y -----

DO YOU WANT TO USE A DEC-SUPPLIED I/O OVERLAY STRUCTURE?
PLEASE ANSWE~Y(ES)~ N(O)' OR H(EL~
YES -- -
PLEASE ENTER FILE SPECIFICATION FOR INPUT ODL FILE
PAYRLl.ODL -- -- -- -- ---
OBJECT FILE REFERENCED IN ODL FILE IS:

PAY"RLI:OBJ - - -- --

PLEASE ENTER OBJECT FILE DEVICE AND PPN IN
THE FORMAT: DEV: [PR0JECT,PROGRAMMER] -

<CR>
ANY MORE ODL FILES?
PLEASEJ\NSWER Y(ES) OR N(O)
y -----

PLEASE ENTER FILE SPECIFICATION FOR INPUT ODL FILE
PAYRL2 -- -- -- -- -- ---

OBJECT FILE REFERENCED IN ODL FILE IS:

I
PAY'RE2:0BJ - -- -- --

PLEASE ENTER OBJECT FILE DEVICE AND PPN IN
1 THE FORMAT: DEV: [PROJECT, PROGRAMMER]

<CR>
ANY MORE ODL FILES?
PLEASEJ\NSWER Y(ES) OR N(O)
NO -----
DO YOU WANT THE SMALLER OR THE LARGER I/0 ROUTINES?
PLEASE ANSWER S(MALLER),~(ARGER), OR Ff1ELP)
L
ODL FILE MERGE COMPLETE
MERGEDC5DL FILE IS: PAYROL

2-22

USING THE PDP-11 COBOL SYSTEM

Figure 2-3
M-erg-e Dialog-ue U-Sing One Object M..-0-d-ule

and No I/O Overlaying

MRG
PLEASE ENTER FILE SPECIFICATION FOR OUTPUT FILE
PRSNEL.ODL --
DO YOU WANT AN ABBREVIATED OR MERGED ODL FILE?
PLEASE ANSWERA(BBREVIATED)-, M(ERGED) I OR~P)
A
DO YOU WANT TO INCLUDE THE COBOL DEBUGGER (CID)?
PLEASE ANSWERY (ES) OR N (0)--
NO
DO YOU WANT TO OVERLAY I/0 SUPPORT ROUTINES?
PLEASE ANSWERY(ES) OR N(O)
N -----

PLEASE ENTER FILE SPECIFICATION FOR INPUT ODL FILE
PERSNL.ODL -- -- -- -- ---
OBJECT FILE REFERENCED IN ODL FILE IS:

PER~OBJ - -- --- --
PLEASE -ENTER OBJECT FILE DEVICE AND PPN IN

THE FORMAT: DEV: [PR6JECT,PROGRAMMER] -
<CR> - -- - - -

ANY MORE ODL FILES?
PLEASE ANSWER Y(ES) OR N(O)
N
ODL FILE MERGE COMPLETE
MERGE5C5DL FILE IS: PRSNEL.ODL

2.4.2 Merge Utility Error Messages

When the Merge Utility detects an error, it displays an error message,
then waits for another entry from you if it can recover from the
error. The error messages are self-explanatory in most cases; this
section lists Merge error messages that require further explanation.

THIS ODL FILE CONTAINS A ;COBMAIN LINE
A ;COBMAIN LINE HAS ALREADY OCCURRED
THIS ODL FILE IS IGNORED

A ;COBMAIN line in an ODL file identifies the
object program as a main program. A task image
can contain only one main program; therefore,
Merge ignores the ODL file.

ODL file, continue
the correct file

that the PROCEDURE

If you specified the incorrect
the dialogue by entering
specification. It is possible
DIVISION USING phrase was
subprogram that is referenced in
that case, change the program,
use the Merge Utility again.
condition could also exist in an
incorrectly modified.

2-23

omitted from the
the ODL file; in
recompile it, and
Of course, this
ODL file that was

USING THE PDP-11 COBOL SYSTEM

MULTIPLE ;COBKER HEADER LINE DETECTED
THIS ODL FILE IS IGNORED

The ;COBKER line in an ODL file specifies the
two-character kernel that particularizes PSECT
names in the referenced object file. Only one
;COBKER line is allowed; therefore, Merge ignores
the ODL file.

The most likely cause for this condition is
incorrect modification of the ODL file.

MULTIPLE ;COBOBJ HEADER LINE DETECTED
THIS ODL FILE IS IGNORED

The ;COBOBJ line identifies the object file for
which the ODL file is produced. Merge assumes
that the ODL file is incorrect because a
compiler-generated ODL file contains only one
;COBOBJ header line.

NOT STANDARD COBOL ODL FILE
FILE IS IGNORED

OPEN UNSUCCESSFUL

The ODL file contains nonstandard ODL lines. The
file was probably modified incorrectly.

The Merge Utility could not open a file for one of
the following reasons:

1. The device is not on line.

2. The device is not mounted.

3. A hardware failure occurred.

4. The file does not exist on the device.

5. Access to the file is not allowed.

Determine and correct the condition; then, invoke
the Merge Utility again.

2-24

USING THE PDP-11 COBOL SYSTEM

READ ERROR -- MUST ABORT

The Merge Utility encountered an unrecoverable
error while attempting to read the input ODL file.
Merge terminates after closing the input and
output ODL files. The error occurred for one of
the following reasons:

1. The device is not on line.

2. The device is not mounted.

3. A hardware failure occurred.

4. The volume is full.

Determine and correct the condition;
execute the Merge Utility again.

2.5 TASK-BUILDING PDP-11 COBOL PROGRAMS

then,

Compiler-generated object modules contain relocatable code; they must
be linked by the Task Builder (TKB) to create executable task images.

The Task Builder's input can be either:

a) a single ODL file, or

b) one or more object files and one or more library files.

On RSTS/E and RSX-llM systems, invoke the Task Builder by entering
TKB. The Task Builder displays the prompt,

TKB>

and waits for you to enter a TKB command line. The next two sections
discuss two forms of the TKB command line, each of which corresponds
to one of the input file options just mentioned. Section 2.5.3
summarizes the factors that determine program task size.

On IAS systems, enter the command line as described in the next two
sections.

2.5.1 Using ODL-File Input

You must supply an ODL file to TKB if you want overlaying in the task
image. However, you can use TKB with an ODL file regardless of
overlay requirements.

The ODL file, which the Merge Utility created or which the compiler
generated and you modified, contains directives to TKB; the
directives cause TKB to include component object modules and library
modules and to create an executable image with a specified overlay
structure.

2-25

USING THE PDP-11 COBOL SYSTEM

RSTS/E and RSX-llM Users:

When the TKB prompt appears, enter the command line in the following
format:

<task-file>,<map-file>=<ODL-file>/MP

where:

<task-file> is the file specification for the task image file
to be generated. If you do not specify a file
type, TKB uses the default extension, TSK.

<map-file>

<ODL-f ile>

/MP

is the file specification for the file to contain
the optional map listing. If you omit the file
type, TKB uses the default extension, MAP.- If you
do not want a map file, do not enter either the
comma or the file specification.

is the file specification for the input ODL file.
If you do not specify a file type, TKB assumes the
default extension, ODL.

is the required switch that identifies
preceding file specification as an ODL file.

the

The Task Builder validates the contents of the command line. If it
detects no errors, TKB displays the following message and prompt:

ENTER OPTIONS:
TKB>

NOTE

The Task Builder may display the TKB>
prompt after you enter the command line.
You can continue with the dialogue by
entering a slash (/), or you can end the
dialogue by entering two slashes (//) if
you do not want to specify any TKB
options.

The RSTS/E user enters HISEG=RMSll, which causes TKB to associate the
task image with the RSTS/E RMSll run-time system. TKB then again
displays its prompt: TKB>.

At this point, enter // to end the dialogue; or enter other options
followed by // when you have entered all options and a new prompt
appears.

2-26

USING THE PDP-11 COBOL SYSTEM

NQTE

The most likely options you will use are
UNITS and ASG. Your system's Task
Builder Reference Manual describes all
TKB options.

Consider the following example of running TKB on a RSTS/E system:

READY

TKB
TKB> PAYROL,PAYPRG=PAYROL/MP
ENTER OPTIONS:
TKB> HISEG=RMSll
TKB> UNITS=9
TKB> ASG=SY:7,9,MT1:8
TKB> II

READY

This dialogue causes TKB to use the ODL file, PAYROL.ODL, to produce a
task image, PAYROL.TSK, and a map in file PAYPRG.MAP. The UNITS
option specifies that the task image requires three additional logical
units (LUNs); six is the default. The ASG option assigns LUNs 7 and
9 to the system disk and LUN 8 to magtape 1.

IAS Users:

On IAS systems, enter the LINK command:

LINK/OVERLAY:<ODL-file>/MAP:<map-file>/TASK:<task-file>

If you do not include the /TASK qualifier, the Task Builder generates
a task file with the same name as the ODL file and the default
extension, TSK. If you omit the /MAP qualifier, the Task Builder
produces no map file. Use the /OPTIONS qualifier to enter Task
Builder options.

The IAS Task Builder Reference Manual describes all qualifiers and
options.

2.5.2 Using Object-File Input

The Task Builder can use object files and library files directly
(without an ODL file) if you do not need segment overlaying in the
task image. Therefore, you can sometimes bypass the Merge Utility
process by using the Task Builder as described in this section.

2-27

USING THE PDP-11 COBOL SYSTEM

RSTS/E and RSX-llM Users:

Enter the TKB command line in the following format:

<task-file>,<map-file>=<object>,<object>, ••• ,LB:CID,LB:COBLIB/LB,LB:RMSLIB/LB

where:
<task-file> is the file specification for the task image file

to be generated. If you do not specify a file
type, TKB uses the default extension, TSK.

<map-file>

<object>

LB:CID

LB:COBLIB

LB :RMSLIB

/LB

is the file specification for the file to contain
the optional map listing. If you omit the file
type, TKB uses the default extension, MAP. If you
do not want a map f·ile, do not enter the comma or
the file specification.

is a file specification for the files containing
the object modules to be linked. You can enter
one or more object file specifications. If you
omit the file type, TKB assumes the default object
file extension, OBJ.

is the file specification for the optional COBOL
Interactive Debugger (CID) • It must appear before
the COBLIB specification if you wish to include
CID.

is the file specification for the COBOL library
file, which contains the COBOL object-time system
(OTS).

is the file specification for the RMS-11 library
file, which contains the RMS I/O routines.

is the Task Builder switch that identifies the
preceding file as a library file.

After you enter the command line, the dialogue continues as described
in Section 2.5.1.

NOTE

For RSX-llM use~s, the format of the
command line is the same, except that
"LB:" is replaced by "[1,1]".

2-28

USING THE PDP-11 COBOL SYSTEM

IAS Users:

Enter the Task Builder command line in the following format:

LINK <object>,<object>, .•• ,LB: [l,l]CID,LB:[l,l]COBLIB/LIBRARY,RMSLIB/LIBRARY

You can enter the /MAP and /OPTIONS qualifiers as described in Section
2.5.1. The IAS Task Builder Reference Manual describes all qualifiers
and options.

2.5.3 Program Task Size

The size of a COBOL object module generated from a COBOL source file
depends on the memory requirements for the following components:

1. Data items in the Working-Storage Section.

2. Number of files in the File Section.

3. Amount of code generated for the Procedure Division.

4. Number and length of all unique numeric and non-numeric
literals used in the Procedure Division.

5. Total size of all run-time modules needed
These include arithmetic support,
segmentation support.

for
I/0

the program.
support, and

6. Stack space needed to support the executable code.

7. Directories for all referenced data items and literals.

If your COBOL program exceeds the memory storage size limit, the Task
Builder displays a diagnostic message and does not produce an
executable task. You can reduce the memory requirement by:

1. Overlaying sections
segmentation facility

of the program by using the
(See Chapter 9, Segmentation).

COBOL

2. Overlaying I/O routines (or choosing the smaller I/O routine
option) in the Merge Utility dialogue, as described earlier
in this chapter.

3. Using the Merge Utility if you have not done so. Program
size is sometimes reduced because of the techniques that
Merge uses to include run-time routines.

2.6 EXECUTING A COBOL TASK

When the object modules have been linked (task-built) to create an
executable task image, you can use the RUN command to execute the
task. If you specified SWITCH ON or OFF in the SPECIAL-NAMES
paragraph of any COBOL sour~e program in the run unit, the OTS prompts
you to set the switches as soon as execution begins.

2-29

USING THE PDP-11 COBOL SYSTEM

2.6.1 The RUN Command
~- -~

Enter the RUN command in response to a system prompt:

READY

RUN <task-file>

where <task-file> is the file specification for the task image.

2.6.2 Setting Program Switches

PDP-11 COBOL programs can test the ON/OFF status of up to 16 switches
to determine logic paths. The switches are specified in the
SPECIAL-NAMES paragraph in the Environment Division. When the task
begins execution, the OTS displays the following message:

SPECIFY "ON" SWITCHES

You can enter a list of switch numbers (separated by commas, spaces,
or tab characters) or an asterisk (*). Enter a list of switch numbers
to set specific switches; enter an asterisk (*) to set all switches.

For example:

2,7,16 sets switches 2, 7, and 16

* sets all switches (1-16)

2-30

CHAPTER 3

NON-NUMERIC CHARACTER HANDLING

3.1 INTRODUCTION

COBOL programs hold their data in fields whose sizes are described in
their source programs. These fields are thus "fixed" during
compilation to remain the same size throughout the lifespan of the
resulting object program.

The data descriptions of the fields in a COBOL program describe them
as belonging to any of three data classes -- alphanumeric, alphabetic,
or numeric class. Numeric class data items contain only numeric
values, alphabetic class only A-Z and space, but alphanumeric class
data items may contain values that are all alphabetic, all numeric, or
a mixture of alphabetic bytes, numeric bytes, or, in fact, any
character from the ASCII character set.

Further, these three classes are subdivided into five categories:
alphabetic, numeric, numeric edited, alphanumeric edited, and
alphanumeric. Every elementary item except for an index data item
belongs to one of the classes and further to one of the categories.
The class of a group item is treated at object time as alphanumeric
regardless of the classes of subordinate elementary items.

For alphabetic and numeric (data items) class and category are
synonymous.

An alphabetic field is a field declared to contain only alphabetic
(A-Z and space) characters.

An alphanumeric class field that is declared to contain any ASCII
character is called an alphanumeric category field.

If the data description of an alphanumeric class field specifies that
certain editing operations will be performed on any value that is
moved into it, that field is called an alphanumeric or numeric edited
category field.

When reading the following sections of this chapter, this distinction
between the class or category of a data item and the actual value that
the item contains should always be kept in mind.

Sometimes the text refers to alphabetic, alphanumeric, and
alphanumeric edited data items as non-numeric data items. This is to
distinguish them from items that are specifically described as numeric
items.

Regardless of the class of an item, it is usually possible to store a
valu~ in the item, at object time, that is "illegal". Thus,
non-numeric ASCII characters can be placed into a field described as
numeric class, and an alphabetic class field may be loaded with
non-alphabetic characters.

3-1

NON-NUMERIC CHARACTER HANDLING

To increase readability, the following sections occasionally omit the
word "class" when describing an item; however, the reader should
regard the descriptive word, numeric, alphabetic, or alphanumeric, as
referring to the class of an item unless it applies specifically to
the value in the item.

This chapter discusses non-numeric class data and the non-arithmetic,
non-input-output operations that manipulate this typ~ of data.

3.2 DATA ORGANIZATION

Usually, the data areas in a COBOL program are organized into group
items with subordinate elementary items. A group item is a data item
that is followed by one or more dat~ items (elementary items) with
higher valued level numbers. An elementary item has no higher valued
subordinate level number.

All of the data areas used by COBOL programs (except for certain
registers and switches) must be described in the Data Division of the
source program. The compiler allocates memory space for these fields
and fixes them in size at compilation time.

The following sub-sections (3.2.1 and 3.2.2) discuss, on a general
level, how the compiler handles group and elementary data items.

3.2.1 Group Items

The size of a group item is the total size of
by its subordinate elementary items. The
items to be alphanumeric DISPLAY items.
manipulates group items as if they had
items, and ignores the structure of the data

3.2.2 Elementary Items

the data area occupied
compiler considers group

Thus, the software
been described as PIC X()
contained within them.

The size of an elementary item is determined by the number of
allowable symbols it contains that represent character positions. For
example, consider the following fields:

01 TRANREC.
03 FIELD-1 PIC X(7).
03 FIELD-2 PIC S9(5)V99.

Figure 3-1
Field Sizes

Both fields consume seven bytes of memory; however, FIELD-1 contains
seven alphanumeric bytes while FIELD-2 contains decimal digits and an
operational sign. Although certain verbs handle these two classes of
data differently, the data, in either case, occupies seven bytes of
PDP-11 memory. COBOL operations on such fields are independent of the
mapping of the field into PDP-11 memory words (16-bit words that hold
two 8-bit bytes). Thus, a field may begin in the left or right-hand
byte of a word with no effect on the function of any operations that
may refer to that field.

3-2

NON-NUMERIC CHARACTER HANDLING

In effect, the compiler sees memory as a continuous array of bytes,
not words. This becomes particularly important when declaring a table
with the OCCURS clause (see Chapter 5, Table Handling}.

Records (a 01 level entry and all of its subordinate entries} and data
items that have a level number of 77 and all literal values given in
the Procedure Division automatically begin on even byte addresses.

I/O verbs require that records be aligned on word boundaries because
the PDP-11 COBOL file system reads and writes integral numbers of
words.

Non-input-output verbs do not require alignment of the data. However,
when two fields are aligned identically, the processing verb can
sometimes increase its efficiency by processing them a word at a time
rather that a byte at a time.

In all cases, automatic word alignment of literals, records, and/or 77
items increase the opportunity for more efficient processing.

3.3 SPECIAL CHARACTERS

COBOL allows the user to manipulate any of the 128 characters of the
ASCII character set as alphanumeric data even though many of the
characters are control characters, which usually control input/output
devices. Generally, alphanumeric data manipulations are performed in
a manner that attaches no "meaning" to an 8-bit byte. Thus, the user
can move and compare these control characters in the same manner as
alphabetic and numeric characters.

Although the object program can manipulate all ASCII characters,
certain control characters cannot appear in non-numeric literals since
the compiler uses them to delimit the source text. Further, the
keyboards of the console and keypunch devices have no convenient input
key for many of the special characters, thus making it difficult to
place them into non-numeric literals.

Special characters may be placed into data fields of the object
program by placing the binary value of the special character into a
numeric COMP field and redefining that field as alphanumeric DISPLAY.
Consider the following example of redefinition. (Keep in mind that
the even byte of a word corresponds to the low-order bits of a binary
word.)

01 LF-COMP PIC 999 COMP VALUE 10.
01 LF REDEFINES LF-COMP PIC X.
01 HT-COMP PIC 999 COMP VALUE 9.
01 TAB REDEFINES HT-COMP PIC X.
01 CR-COMP PIC 999 COMP VALUE 13.
01 CR REDEFINES CR-COMP PIC X.

Figure 3-2
Redefining Special Characters

The sample coding in Figure 3-2 introduces each character as a 1-word
COMP item with a decimal value, then redefines it as a single byte.
(The second byte of the redefinition need not be described at the 01
level, since redefinition at this level does not require identically
sized fields.)

3-3

NON-NUMERIC CHARACTER HANDLING

The following ASCII code chart may be used to determine the decimal
value for any ASCII character. To use the chart, find the desired
character; then add its row and column values together to determine
the decimal integer to be supplied as a VALUE for the computational
i tern.

~ 000 008 016 024
w

e

e

0 NUL BS OLE CAN
1 SOH HT DC1 EM

2 STX LF DC2 SUB
3 ETX VT DC3 ESC
4 EOT FF DC4 FS
5 ENO CR NAK GS
6 ACK so SYN RS
7 BEL SI ETB us

032

space
! ..

$
%
&

apos

040 048 056 064

(0 8 @

) 1 9 A
* 2 : B
+ 3 ; c

4 < D
5 = E
6 > F

I 7 ? G

Figure 3-3
ASCII Code Chart

3.4 TESTING NON-NUMERIC FIELDS

3.4.1 Relation Tests

072 080 088 096 104 112 120

H p x grave h p x
I a y a i q y
J R z b j r z
K s [c k s I
L T \ d I t I
M u 1 e m u I
N v (t) f n v (E~)
0 w (!:) g 0 w DEL

An IF statement that contains a relation condition (greater-than,
less-than, equal-to, etc.} can compare the value in a non-numeric data
item with another value and use the result to alter the flow of
control in the program.

An IF statement with a relation condition compares two operands,
either of which may be an identifier or a literal, except that both
cannot be literals. If the relation exists between the two operands,
the relation condition has a truth value of true.

Figure 3-4 illustrates the general format of a relation condition.
(The relational characters ">!" "<t" and "=," although required, are
not underlined to avoid confusion with other symbols such as
greater-than-or-equal-to.}

(IS
'~~~n~~~i~r-1 f Ji~
).Lii:.era.L-.L ({IS
'arithrnetic-expression-1' IS

IS

[NOT]
[NOT]
[NOT]
[NOT]
fNOTl
(NOTJ

GREATER THAN l
LESS THAN . . .
EQUAL TO f ~~:~==~=~r- 2 t
-> ()..1....1..1..C:..LQ...L-"' (
< {arithrnetic-expression-2J

J

Figure 3-4
Relation Condition

3-4

NON-NUMERIC CHARACTER HANDLING

When coding a relational operator, leave a space
reserved word. When the reserved word NOT is
considers it and the next key word or relational
relational operator that defines the comparison.
meanings of the relational operators.

before and after each
present, the software
character to be one
Figure 3-5 shows the

OPERATOR MEANING

IS [NOT] GREATER THAN The first operand is greater than
IS [NOT] > (or not greater than) the second operand.

IS [NOT] LESS THAN The first operand is less than
IS [NOT] < (or not less than} the second operand.

IS [NOT] EQUAL TO The first operand is equal to
IS [NOT] = (or not equal to) the second operand.

Figure 3-5
The Meanings of the Relational Operators

3.4.1.1 Classes of Data - COBOL allows comparison of both numeric
ciass operands and non-numeric ciass operands; however, it handles
each class of data slightly differently. For example, it allows a
comparison of two numeric operands regardless of the formats specified
in their respective USAGE clauses, but requires that all other
comparisons (including comparisons of any group items) be between
operands with the same usage. It compares numeric class operands with
respect to their algebraic values and non-numeric (or a numeric and a
non-numeric) class operands with respect to a specified collating
sequence.

If only one of the operands is numeric, it must be an integer data
item or an integer literal and it must be DISPLAY usage; further, the
manner in which the software handles numeric operands depends on the
non-numeric operand. Consider the following two types of non-numeric
operands:

1. If the non-numeric operand is an elementary item or a
literal, the software treats the numeric operand as if it had
been moved into an alphanumeric data item (which is the same
size as the numeric operand) and then compared. This causes
any operational sign, whether carried as a separate character
or as an overpunch, to be stripped from the numeric item;
thus, it appears to be an unsigned quantity. In addition, if
the picture-string of the numeric item contains trailing P
characters indicating that there are assumed integer
positions that are not actually present, these are filled
with zero digits during the operation of stripping any sign
that is present. Thus, an item with a picture-string of
S9999PPP is moved to a temporary location where it is
described with a picture-string of 9999999. If its value is
432J (-4321}, the value in the temporary location will be
4321000. The numeric digits, stored as ASCII bytes, take
part in the comparison.

2. If the non-numeric operand is a ~roup item, the software
treats the numeric operand as 1f 1t had been moved into a
group item (which is the same size as the numeric operand)
and then compared. This is equivalent to a "group move".
The software ignores the description of the numeric field
(except for length} and, therefore, includes any operational
sign, whether carried as a separate character or as an

3-5

NON-NUMERIC CHARACTER HANDLING

overpunch, in its length. (Over punched char act er s are never
ASCII numeric digits, but characters in the range of from A
through R, {, or }.) Thus, the sign and the digits, stored as
ASCII bytes, take part in the comparison, and zeroes are not
supplied for P characters in the picture-string.

The compiler will not accept a comparison between a non-integer
numeric operand and a non-numeric operand, and any attempt to compare
these two items will cause a diagnostic message at compile time.

3.4.1.2 The Comparison Operation - If the two operands are
acceptable, the software compares them byte for byte starting at their
left-hand end. It proceeds from left to right, comparing the
characters in corresponding character positions until it either
encounters a pair of unequal characters or reaches the right-hand end
of the longer operand.

If the software encounters a pair of unequal characters, it considers
their relative position in the collating sequence. The operand with
the character that is positioned higher in the collating sequence is
the greater operand.

If the operands have different lengths, the comparison proceeds as
though the shorter operand were extended on the right by sufficient
ASCII spaces (040) to make them both the same length.

If all of the pairs of characters compare equally, the operands are
equal.

3.4.2 Class Tests

An IF statement that contains a class condition (NUMERIC or
ALPHABETIC) can test the value in a non-numeric data item (USAGE
DISPLAY only) to determine if it contains numeric or alphabetic data
and use the result to alter the flow of control in the program.

Figure 3-6 illustrates the general format of a class condition. If
the data item consists entirely of the ASCII characters 0123456789
with or without the operational sign, the class condition would
determine that it is NUMERIC. If the item consists entirely of the
ASCII characters A through z and space, the class condition would
determine that it is ALPHABETIC.

identifier IS [NOT] ~NUMERIC }
(ALPHABETIC

o.;n.,vo. "l_t::
.L .L.'j\..l.L. ti;; ..J v

Class Condition, General Format

3-6

NON-NUMERIC CHARACTER HANDLING

When the reserved word, NOT, is present, the software considers it and
the next key word as one class condition that defines the class test
to be executed; for example, NOT NUMERIC is a truth test for
determining if an operand contains at least one non-numeric byte.

If the item being tested was described as a numeric data item, it may
only be tested as NUMERIC or NOT NUMERIC. (For further information on
using class conditions with numeric items, see Chapter 4.) The NUMERIC
test cannot examine an item that was described either as alphabetic or
as a group item containing elementary items whose data descriptions
indicate the presence of operational signs.

3.5 DATA MOVEMENT

COBOL provides three statements (MOVE, STRING, and UNSTRING) that
perform most of the data movement operations required by
business-oriented programs. The MOVE statement simply moves data from
one field to another. The STRING statement concatenates a series of
sending fields into a single receiving field. The UNSTRING statement
disperses a single sending field into multiple receiving fields. Each
has its uses and its limitations. This section discusses data
movement situations which take advantage of the versatility of these
statements.

The MOVE statement handles the majority of data movement operations on
character strings. However, the MOVE statement has limitations in its
ability to handle multiple fields; for example, it cannot, by itself,
concatenate a series of sending fields into a single receiving field
or disperse a single sending field into several receiving fields.

Two MOVE statements will 1 however, bring the contents of two fields
together into a third (receiving) field if the receiving field has
been "subdivided" with subordinate elementary items that match the two
sending fields in size. If other fields are to be concatenated into
the third field and they differ in size from the first two fields,
then the receiving field will require additional subdivisions (through
redefinition).

Another method of concatenation with the MOVE statement is to
subdivide the receiving field into single character fields, creating a
"table" of a single character field that occurs as many times as there
are characters in the receiving field, and execute a data movement
loop which moves each sending field, a character at a time, using a
subscript that moves continuously across the receiving field.

Two MOVE statements can also be used to disperse the contents of one
sending field to several receiving fields. The first MOVE statement
can move the left-most end of the sending field to a receiving field;
then the second MOVE statement can move the right-most end of the
sending field to another receiving field. (The second receiving field
must first be described with the JUSTIFIED clause.} Characters from
the middle of the sending field cannot easily be moved to any
rece1v1ng field without extensive redefinitions-of the sending field
or a character-by-character movement loop {as with concatenation).

The concatenation and dispersion limitations of the MOVE statement are
handled quite easily by the STRING and UNSTRING statements. The
following sections (3.6, 3.7, and 3.8) discuss these three statements
in detail.

3-7

NON-NUMERIC CHARACTER HANDLING

3.6 THE MOVE STATEMENT

The MOVE statement moves the contents of one field into another. The
following illustration shows the two formats of the MOVE statement.

Format 1

MOVE FIELDl TO FIELD2

Format 2

MOVE CORRESPONDING FIELDl TO FIELD2

NOTE

Format 2 is discussed in Section 3.6.6.

FIELDl is the name of the sending field and FIELD2 is the name of the
rece1v1ng field. The statement causes the software to move the
contents of FIELDl into FIELD2. The two fields need not be the same
size, class, or usage; and they may be either group or elementary
items. If the two fields are not the same length, the software will
align them on one end or the other and will truncate or pad (with
spaces) the other end. The movement of group items and non-numeric
elementary items is discussed below.

A point to remember when using the MOVE statement is that it will
alter the contents of every character position in the receiving field.

3.6.1 Group Moves

If either the sending or rece1v1ng field is a group item, the software
considers the move to be a group move. It treats both the sending and
receiving fields in a group move as if they were alphanumeric class
fields. If the sending field is a group item and the receiving field
is an elementary item, the software ignores the receiving field
description (except for the size description, in bytes, and any
JUSTIFIED clause); therefore, the software conducts no conversion or
editing on the receiving field.

3.6.2 Elementary Moves

If both fields of a MOVE statement are elementary items, their data
description clauses control their data movement. (If the receiving
field was described as numeric or numeric edited, the rules for
numeric moves -- see Chapter 4, Numeric Character Handling -- control
the data movement.)

The following table shows ithe legal (and illegal)
elementary moves.

3-8

non-numeric

NON-NUMERIC CHARACTER HANDLING

Table 3-1
L-eg-al Ne-a-Nu-me-r ic El-eme--ntary M-0-v-e-s

SENDING FIELD CATEGORY

ALPHABETIC

ALPHANUMERIC

ALPHANUMERIC EDITED

NUMERIC INTEGER
(DISPLAY ONLY)

NUMERIC EDITED

RECEIVING FIELD CATEGORY

ALPHABETIC

Legal

Legal

Legal

Illegal

Illegal

ALPHANUMERIC
ALPHANUMERIC EDITED

Legal

Legal

Legal

Legal

Legal

In all of the legal moves shown above, the software treats the sending
field as thouqh it had been described as PIC X(). If the sending
field description contains a JUSTIFIED clause, the clause will have no
effect on the move. If tne sending field picture-string contains
editing characters, the software uses them only to determine the
field's size.

Numeric class data must be in DISPLAY (byte) format and must be an
integer.

If the description of the numeric data item indicates the presence of
an operational sign (either as a character or an overpunch} or if
there are P characters in the picture-string of the numeric data item,
the software first moves the item to a temporary location. During
this move, it removes the sign and fills out any P character positions
with zero digits. It then uses the temporary value (which may be
shorter than the original if a separate sign were removed, or longer
if P character positions were filled in with zeroes) as the sending
field as if it had been described as PIC X(), that is, as if its
category were alphanumeric.

If the sending item is an unsigned numeric class field with no P
characters in its picture-string, the software does not move the item
to a temporary location.

A numeric integer data item sending
justification of the receiving field.
shorter than the receiving field, the
field with spaces.

field has no effect on the
If the numeric sending field is
software fills the receiving

In legal, non-numeric elementary moves, the rece1v1ng field actually
controls the movement of data. All of the following items, in the
receiving field, affect the move: (1) the size, (2) the presence of
editing characters in its description, and (3) the presence of the
JUSTIFIED RIGHT clause in its description. The JUSTIFIED clause and
editing characters are mutually exclusive; therefore, the two classes
are discussed separately below.

When a field that contains no editing characters or JUSTIFIED clause
in its description is used as the receiving field of a non-numeric
elementary MOVE statement, the statement moves the characters by
starting at the left-hand end of the fields and scanning across,
character-by-character to the right. If the sending item is shorter

3-9

NON-NUMERIC CHARACTER HANDLING

than the receiving item, the software fills the remaining character
positions with spaces.

3.6.2.1 Edited Moves - Alphabetic or alphanumeric fields may contain
editing characters. Consider the following insertion editing
characters. Alphabetic fields will accept only the B character;
however, alphanumeric fields will accept all three characters.

B blank insertion position

0 zero insertion position

I slash insertion position.

When a field that contains an insertion editing character in its
picture-string is used as the receiving field of a non-numeric
elementary MOVE statement, each receiving character position that
corresponds to an editing character receives the insertion byte value.
Figure 3-7 illustrates the use of such symbols with the statement,
MOVE FIELD! TO FIELD2. (Assume that FIELD! was described as PIC
X(7).)

FIELD2

FIELD! PICTURE-STRING CONTENTS AFTER MOVE

070476 XX/99/XX 07/04/76

04JUL76 99BAAAB99 04 JUL 76

2351212 XXXBXXXX/XX/ 235 1212/ I

123456 OXBOXBOXBOX 01 02 03 04

Figure 3-7
Data Movement with Editing Symbols

Data movement always begins at the left end of the sending field, and
moves only to the byte positions described as A, 9, or X in the
receiving field picture-string. When the sending field is exhausted,
the software supplies space characters to fill any remaining character
positions (not insertion positions) in the receiving field. If the
receiving field becomes exhausted before the last character is moved
from the sending field, the software ignores the remaining sending
field characters.

3.6.2.2 Justified Moves - A JUSTIFIED RIGHT clause in the data
description of the receiving field causes the software to reverse its
usual data movement conventions. (It starts with the right-hand
characters of both fields and proceeds from right to left.) If the
sending field is shorter than the receiving field, the software fills
the remaining left-hand character positions with spaces. Figure 3-8
illustrates various data description situations for the statement,
MOVE FIELD! TO FIELD2, with no editing.

3-10

NON-NUMERIC CHARACTER HANDLING

FIELDl FIELD2

PICTURE-STRING CORT-EN-TS l?:tCTORB-STRtNG CONTENTS AFTER
{AND JUST CLAUSE) MOVE

xx AB

xxxxx ABC

xxx ABC xx JUST BC

xxxxx JUST ABC

Figure 3-8
Data Movement with No Editing

3.6.3 Multiple Receiving Fields

If a MOVE statement is written with more than one rece1v1ng field, it
moves the same sending field value to each of the receiving fields.
It has essentially the same effect as a series of separate MOVE
statements that all have the same sending field. (For information on
subscripted fields, see section 3.6.4.)

The receiving fields need have no relationship to each other. The
software checks the legality of each one independently, and performs
an independent move operation on each one.

Multiple receiving fields on MOVE statements provide a convenient way
to set many fields equal to the same value, such as during
initialization code at the beginning of a section of processing. For
example:

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD.

MOVE ZEROES TO EOL-FLAG, EXCEPT-FLAG, NAME-FLAG.

MOVE 1 TO COUNT-1, CHAR-PTR, CURSOR.

3.6.4 Subscripted Moves

Any field of a MOVE statement may be subscripted and the referenced
field may also be used to subscript another name in the same
statement.

When more than one receiving field is named in the same MOVE
statement, the order in which the software evaluates the subscripts
affects the results of the move. Consider the following two
situations:

Situation 1 MOVE FIELDl{FIELD2) TO FIELD2 FIELD3.

Situation 2 MOVE FIELDl TO FIELD2 FIELD3{FIELD2).

Figure 3-9
Subscripted MOVE Statements

3-11

NON-NUMERIC CHARACTER HANDLING

In situation 1, the software evaluates FIELDl{FIELD2) only once,
before it moves any data to the receiving fields. In effect it is as
if the statement were replaced with the following statements:

MOVE FIELDl{FIELD2) TO TEMP.

MOVE TEMP TO FIELD2.

MOVE TEMP TO FIELD3.

In situation 2, the software evaluates FIELD3{FIELD2) immediately
before moving the data into it (but aLL~L moving the data from FIELDl
to FIELD2). Thus, it uses the newly stored value of FIELD2 as the
subscript value. In effect, it is as if the statement were replaced
with the following statements:

MOVE FIELDl TO FIELD2.

MOVE FIELDl TO FIELD3{FIELD2).

3.6.5 Common Errors, MOVE Statement

A most important thing to remember when writing MOVE statements is
that the compiler considers any MOVE statement that contains a group
item to be a group move. It is easy to forget this fact when moving a
group item to an elementary item, and the elementary item contains
editing characters, or a numeric integer. These attributes of the
receiving field {which would determine the action of an elementary
move) have no effect on the action of a group move.

3.6.6 Format 2 - MOVE CORRESPONDING

Format 2 of the MOVE statement allows the programmer to move multiple
elementary items from one group item to another, by using a single
MOVE statement. When the corresponding phrase is used, selected
elementary items in the sending field are moved to those elementary
items in the receiving field whose data-names are identical. For
example:

01 A-GROUP 01 B-GROUP

02 FIELDl 02 VTVTn~ ~i~uv~

03 A PIC x 03 A PIC x

03 B PIC 9 03 c PIC xx

03 c PIC xx 03 E PIC xxx

03 D PIC 99

03 E PIC xxx

MOVE CORRESPONDING A-GROUP TO B-GROUP

OR

MOVE CORRESPONDING FIELDl TO FIELD2

NON-NUMERIC CHARACTER HANDLING

The above examples are equivalent to the following series of MOVE
statements:

MOVE A OF FIELDl TO A OF FIELD2

MOVE C OF FIELDl TO C OF FIELD 2

MOVE E OF FIELDl TO E OF FIELD2

3.7 THE STRING STATEMENT

The STRING statement concatenates the contents of two or more sending
fields into a single field.

The statement has many forms; the simplest is equivalent, in
function, to a non-numeric MOVE statement. Consider the following
illustration; if the two fields are the same size, or if the sending
field (FIELDl) is larger, the statement is equivalent to the
statement, MOVE FIELDl TO FIELD2.

STRINGl FIELDl DELIMITED BY SIZE INTO FIELD2.

Figure 3-10
Sample STRING Statement

If the sending field is shorter than the receiving field, an important
difference between the STRING and MOVE statements emerges: the
software does not fill the receiving field with spaces. Thus, the
STRING statement may leave some portion of the receiving field
unchanged.

Additionally, the receiving field must be an elementary alphanumeric
field with no JUSTIFIED clause or editing characters in its
description. Thus, the data movement of the STRING statement always
fills the receiving field from left-to-right with no editing
insertions.

3.7.1 Multiple Sending Fields

An important characteristic of the STRING statement is its ability to
concatenate a series of sending fields into one receiving field.
Consider the following example of the STRING statement:

STRING FIELDlA FIELDlB FIELDlC DELIMITED BY SIZE
INTO FIELD2.

Figure 3-11
Concatenation with the STRING Statement

In this sample STRING statement, FIELDlA, FIELDlB, and FIELDlC are all
sending fields. The software moves them to the receiving field
(FIELD2) in the order in which they appear in the statement, from left
to right, resulting in the concatenation of their values.

3-13

NON-NUMERIC CHARACTER HANDLING

If FIELD2 is not large enough to hold all three items, the operation
stops when it is full. If this occurs while moving one of the sending
fields, the software ignores the remaining characters of that field
and any other sending fields not yet processed. For example, if
FIELD2 became full while receiving FIELDlB, the software would ignore
the rest of FIELDlB and all of FIELDlC.

If the sending fields do not fill the receiving field, the operation
stops with the movement of the last character of the .last sending item
(FIELDlC in Figure 3-11). The software does not alter the contents
~or space-fill the remaining character positions of the receiving
field.

The sending fields may be non-numeric literals and figurative
constants (except for ALL literal). For example, the following
statement sets up an address label with the literal period and space
between the STATE and ZIP fields:

STRING CITY SPACE STATE ". " ZIP

DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-12
Literals as Sending Fields

Sending fields may also be subscripted. For
statement uses subscripts to concatenate
(A-TABLE) into a single field {A-FOUR). {I,
subscript or an index-name.)

example, the following
the elements of a table
of course, must be a

STRING A-TABLE{!) A-TABLE(I+l) A-TABLE(I+2) A-TABLE(I+3)
DELIMITED BY SIZE INTO A-FOUR.

Figure 3-13
Indexed Sending Fields

3.7.2 The POINTER Phrase

Although the STRING statement normally starts at the left-hand end of
the receiving field, with the POINT?R phrase it is possible to start
it scanning at another point within the field. (The scanning,
however, remains left-to-right.)

MOVE 5 TO P.
STRING FIELDlA FIELDlB DELIMITED BY SIZE

INTO FIELD2 WITH POINTER P.

Figure 3-14
Sample POINTER Phrase

When the POINTER phrase is used, the value of P determines the
starting character position in the receiving field. In Figure 3-14,
the 5 in P causes the software to move the first character of FIELDlA
into character position 5 of FIELD2 (the left-most character position
of the receiving field is character position 1) and leave positions l
through 4 unchanged.

3-14

NON-NUMERIC CHARACTER HANDLING

When the STRING operation is complete, the software leaves P pointing
to one character position beyond the last character replaced in the
receiving field. If FIELD1A and -PTELD1B in Figure 3-14 are both four
characters long, P will contain a value of 13 (5+4+4} when the
operation is complete (assuming that FIELD2 is at least 12 characters
long} .

3.7.3 The DELIMITED BY Phrase

Although the sending fields of the STRING statement are fixed in size
at compile time, they frequently contain variable-length items that
are padded with spaces. For example, a 20-character city field may
contain only the word MAYNARD and 13 spaces. A valuable feature of
the STRING statement is that it may be used to move only the useful
data from the left-hand end of the sending field. The DELIMITED BY
phrase, written with a data-name or literal, instead of the word SIZE,
performs this operation. (The delimiter may be a literal, a data
item, a figurative constant, or the word SIZE. It may not be ALL
literal since ALL literal has an indefinite length. When the phrase
contains the word SIZE, the software moves each sending field, in
total, until it either exhausts the sending field, or fills the
receiving field.)

Consider the following example:

STRING CITY SPACE STATE ". " ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

Figure 3-15
Delimiting with the word SIZE

If CITY is a 20-character field, the result of the STRING operation
shown in Figure 3-15 might look like the following:

AYER~~-,,-~~~~MA. 01432

"~~~-16 spaces

A far more attractive printout can be produced by having the STRING
operation produce the following:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter
on the sending field; thus,

MOVE 1 TO P.
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LINE WITH POINTER P.
STRING ", " STATE ". " ZIP

DELIMITED BY SIZE
INTO ADDRESS-LINE WITH POINTER P.

Figure 3-16
SPACE as a Delimiter

3-15

NON-NUMERIC CHARACTER HANDLING

This sample coding uses the pointer's characteristic of pointing to
one character position beyond the last character replaced in the
receiving field to enable the second STRING statement to begin at a
position one character past where the first STRING statement stopped.
(The first STRING statement moves data characters until it encounters
a space character a match of the delimiter SPACE. The second
STRING statement adds the literal, the 2-character STATE field,
another literal, and the 5-character ZIP field.)

The delimiter can be varied for each field within a single STRING
statement by repeating the DELIMITED BY phrase after the sending field
names to which it applies. Thus, the following shorter statement has
the same effect as the preceding example. (Placing the operands on
separate source lines, as shown in this example, has no effect on the
operation of the statement, but improves program readability and
simplifies debugging.)

STRING CITY DELIMITED BY SPACE
", " STATE ". "
ZIP DELIMITED BY SIZE

INTO ADDRESS-LINE.

Figure 3-17
Repeating the DELIMITED BY Phrase

The sample STRING statement in Figure 3-17 cannot handle 2-word city
names, such as New York, since the software would consider the space
between the two words as a match for the delimiter SPACE. A longer
delimiter, such as two or three spaces (non-numeric literal), can
solve this problem. Only when a sequence of characters matches the
delimiter will the movement stop for that data item. With a 2-byte
delimiter, the same statement can be rewritten in a simpler form:

STRING CITY ", " STATE ". " ZIP
DELIMITED BY " " INTO ADDRESS-LINE.

Figure 3-18
Delimiting with More Than One Space Character

Since only the CITY field may contain two consecutive spaces (the
entire STATE field is only two bytes long), the delimiter's search of
the other fields will always be unsuccessful and the effect is the
same as moving the full field (delimiting by SIZE).

Data movement under control of a data-name or literal is generally
slower in execution speed than movement delimited by SIZE.

The example in Figure 3-18 illustrates a frequent source of error in
the use of STRING statements to concatenate fieldso The remainder of
the receiving field is not space-filled as with a MOVE statement. If
ADDRESS-LINE is to be printed on a mailing label, for example, the
STRING statement should be preceded by the statement, MOVE SPACES TO
ADDRESS-LINE. This guarantees a space fill to the right of the
concatenated result. Alternatively, the last field concatenated by
the STRING statement can be a field previously set to SPACES. (This
sending field must be moved under control of a delimiter other than
SPACE, of course.)

NON-NUMERIC CHARACTER HANDLING

3.7.4 The OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING
operation and the pointer value is either known or the POINTER phrase
is not used, the programmer can tell, by simple addition, if the
receiving field is large enough to hold the sending fields. However,
if the DELIMITED BY phrase contains a literal or an identifier, or if
the pointer value is not predictable, it may be difficult to tell
whether the size of the receiving field is adequate, and an overflow
may occur.

Overflow occurs when the receiving field is full and the software is
either about to move a character from a sending field or is
considering a new sending field. Overflow may also occur if, during
the initialization of the statement, the pointer contains a value that
is either less than 1 or greater than the length of the receiving
field. In this case, the software moves no data to the receiving
field and terminates the operation immediately.

The ON OVERFLOW phrase at the end of the STRING statement tests for an
overflow condition:

STRING FIELDlA
INTO FIELD2 WITH POINTER PNTR
ON OVERFLOW GO TO PN57.

Figure 3-19
The ON OVERFLOW Phrase

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad
initial value in pointer PNTR from the overflow caused by a receiving
field that is too short. Only a separate test, preceding the STRING
statement, can distinguish between the two.

The following examples illustrate the overflow condition:

DATA DIVISION.

01 FIELDlA PIC XXX VALUE "ABC".
01 FIELD2 PIC XXXX.

PROCEDURE DIVISION.

1. STRING FIELDlA QUOTE DELIMITED BY SIZE INTO FIELD2.
2. STRING FIELDlA FIELDlA DELIMITED BY SIZE INTO FIELD2.
3. STRING FIELDlA FIELDlA DELIMITED BY "C" INTO FIELD2.
4. STRING FIELDlA FIELDlA FIELDlA FIELDlA

DELIMITED BY "B" INTO FIELD2.
5. STRING FIELDlA FIELDlA "C" DELIMITED BY "C"

INTO FIELD2.
6. MOVE 2 TO P.

STRING FIELDlA "AC" DELIMITED BY "C"
INTO FIELD2 WITH POINTER P.

Figure 3-20
Various STRING Statements

Illustrating the Overflow Condition

3-17

NON-NUMERIC CHARACTER HANDLING

The results of executing the numbered statements follow:

Table 3-2
Results of the

Preceding Sample Statements

Value of FIELD2 after
the STRING operation Overflow?

1. ABC" NO

2. ABCA YES

3. ABAB NO

4. AAAA NO

5. ABAB YES

6. AABA NO

3.7.5 Subscripted Fields in STRING Statements

All data-names used in the STRING statement may be s~bscripted, and
the pointer value may be used as a subscript.

Since the pointer value might be used as a subscript on one or more of
the fields in the statement, it is important to understand the order
in which the software evaluates the subscripts and exactly when it
updates the pointer. (The use of the pointer as a subscript is not
specified by ANS-74 COBOL. Before using it, read the note at the end
of this subsection.)

The software updates the pointer after it moves the last character out
of each sending field. Consider the following sample coding:

MOVE 1 TO P.
STRING "ABC"

SPACE
"DEF" DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-21
STRING Statement with Pointer

During the movement of "ABC" into the receiving field (R), the pointer
value remains at 1. After the move, the software increases the
pointer value by 3 (the size of the sending field literal "ABC") and
it takes on the value 4. The software then moves the figurative
constant SPACE and increases the pointer value by 1 and it takes on
the value 5. "DEF" is then moved and, on completion of the move, the
software increases the pointer to its final value for this operation,
8.

3-18

NON-NUMERIC CHARACTER HANDLING

Now, consider the updating characteristics of the pointer when applied
to subscripting:

MOVE 1 TO P.
STRING CHAR(P)

CHAR(P)
CHAR(P)
CHAR(P) DELIMITED BY SIZE
INTO R WITH POINTER P.

Figure 3-22
Subscripting with the Pointer

If CHAR is a !-character field in a table, the pointer increases by
one after each field has been moved and the software will move them
into R as if they had been subsctjpted as CHAR(!), CHAR(2), CHAR(3),
and CHAR(4). If CHAR is a 2-character field, the pointer increases by
two after each field has been moved and the fields will move into R as
if they had been subscripted as CHAR(!), CHAR(3), CHAR(S), and
CHAR (7) •

Thus, the software evaiuates the subscript of a sending item once,
immediately before it considers the item as a sending item.

The software evaluates the subscript of a receiving item only once, at
the start of the STRING operation. Therefore, if the pointer is used
as a subscript on the receiving field, changes occurring to the
pointer during the execution of the STRING statement will not alter
the choice of which receiving string is altered.

Even the delimiter field can be subscripted, and it too can be
subscripted with the pointer. The software re-evaluates the delimiter
subscript once for each sending field, immediately before it compares
the delimiter to the field. Thus, by subscripting it with the pointer
value, the delimiter can be changed for each sending field. This has
the peculiar effect of choosing the next sending field's delimiter
based on the position, in the receiving field, into which its first
character will fall. For example, consider the following sample
coding:

01 DTABLE.
03 D PIC X OCCURS 7 TIMES.

~Vll 1 TO P. ~
STRING "ABC"

"ABC"
"ABC" DELIMITED BY D(P)
INTO R WITH POINTER P.

Figure 3-23
Subscripting the Delimiter

3-19

NON-NUMERIC CHARACTER HANDLING

The following table shows the value that will arrive in the receiving
field (R) from the three "ABC" literals if DTABLE contains the values
shown in the left-hand column:

DTABLE Value

A BCD EFG

BCDEFGH

CD EFG HI

cccccccc

Table 3-3
Results of the

Preceding Sample Statements

R Value

(Unchanged)

AA BA BC

ABABCABC

ABABAB

NOTE

The rules in this section, concerning
subscripts in the STRING statement, are
rules that are not specified by 1974
American National Standard COBOL.
Dependence on these rules, particularly
those involving the use of the pointer
field as a subscript, may produce
programs that will not perform the same
way on other COBOL compilers.

If the pointer field is not used as a
subscript on any of the fields in the
statement, the point at which the
software evaluates the subscripts is
immaterial to the execution of the
statement. Thus, by avoiding the use of
the pointer as a subscript, uniform
results can be expected from all COBOL
compilers that adhere to 1974 ANS COBOL.

3.7.6 Common Errors, STRING Statement

The most common errors made when writing STRING statements are:

• using the word "TO" instead of "INTO"

e forgetting to write "DELIMITED BY SIZE";

• forgetting to initialize the pointer;

• initializing the pointer to 0 instead of l;

• forgetting to provide for space fill of the receiving field
when it is desirable.

3-20

NON-NUMERIC CHARACTER HANDLING

3.8 THE UNSTRING STATEMENT

The UNSTRING statement disperses the contents of a single sending
field into multiple receiving fields.

The statement has many forms; the simplest is equivalent in function
to a non-numeric MOVE statement. Consider the following illustration;
the sample statement is equivalent to MOVE FIELDl TO FIELD2,
regardless of the relative sizes of the two fields.

UNSTRING FIELDl INTO FIELD2.

Figure 3-24
Sample UNSTRING Statement

The sending field (FIELDl) may be either a group item or an
alphanumeric, or alphanumeric edited elementary item. The receiving
field (FIELD2) may be alphabetic, alphanumeric, or numeric, but it
cannot specify any type of editing.

If the receiving field is numeric, it must be DISPLAY usage. The
picture-string of a numeric receiving field may contain any of the
legal numeric description characters except for P and, of course, the
editing characters. The UNSTRING statement moves the sending field to
numeric receiving fields as if the sending field had been described as
an unsigned integer; further, it automatically truncates or zero
fills as required.

If the receiving field is not numeric, the software follows the rules
for elementary non-numeric MOVE statements. It left-justifies the
data in the receiving field, truncating or space-filling as required.
(If the data-description of the receiving field contains a JUSTIFIED
clause, the software right-justifies the data, truncating or
space-filling to the left as required.)

3.8.1 Multiple Receiving Fields

An important characteristic of the UNSTRING statement is its
to disperse one sending field into several receiving fields.
the following example of the UNSTRING statement written with
receiving fields:

UNSTRING FIELDl INTO
FIELD2A FIELD2B FIELD2C.

Figure 3-25
Multiple Receiving Fields

ability
Consider
multiple

In this sample statement, FIELDl is the sending field. The software
performs the UNSTRING operation by scanning across FIELDl from left to
right. When the number of characters scanned is equal to the number
of characters in the receiving field, the software moves the scanned
characters into the receiving field and begins scanning the next group
of characters for the next receiving field.

3-21

NON-NUMERIC CHARACTER HANDLING

Assume that each of the receiving fields in the preceding illustration
(FIELD2A, FIELD2B, and FIELD2C) is five characters long, and that
FIELDl is 15 characters long. The size of FIELD2A determines the
number of characters for the first move. The software scans across
FIELDl until the number of characters scanned equals the size of
FIELD2A (5). It then moves those first five characters to FIELD2A,
and sets the scanner to the next (sixth) character position in FIELDl.
The size of FIELD2B determines the size of the next move. The
software begins this move by scanning across FIELDl from character
position six, until the number of scanned characters equals the size
of FIELD2B (5). It then moves the sixth through the tenth characters
to FIELD2B, and sets the scanner to the next (eleventh) character
position in FIELDl. FIELD2C determines the size of the last move (for
this example) and causes characters 11 through 15 of FIELDl to be
moved into FIELD2C, thus terminating this UNSTRING operation.

Each data movem~nt acts as an individual MOVE statement, the sending
field of which is an alphanumeric field equal in size to the receiving
field. If the receiving field is numeric, the move operation will
convert the data to the numeric form. For example, consider what
would happen if the fields under discussion had the data descriptions
and were manipulating the values shown in the following table:

Table 3-4
Values Moved Into the Receiving Fields

Based on the Value in the Sending Field

FIELDl FIELD2A FIELD2B
PIC X (15). PIC X(5) PIC S9(5)
VALUE IS: LEADING SEPARATE

ABCDE1234512345 ABCDE +12345

XXXXX0000100123 xxxxx +00001

FIELD2A is an alphanumeric field and, therefore, the
conducts an elementary non-numeric move with
characters.

FIELD2C
PIC S999V99

3450

1230

software simply
the first five

FIELD2B, however, has a leading separate sign that is not included in
its size. Thus. the software moves onlv five numeric characters and
generates a positive sign in the separate-sign position.

FIELD2C has an implied decimal point with two character positions to
the right of it, plus an overpunched sign on the low-order digit. The
sending field should supply five numeric digits; but, since the
sending field is alphanumeric, the software treats it as an unsigned
integer; it truncates the two high-order digits and supplies two zero
digits for the decimal positions. Further, it supplies a positive
overpunch sign, making the low-order digit a +O (or the ASCII
character, {) . (There is no simple way to have UNSTRING recognize a
sign character or a decimal point in the sending field.)

If the sending field is shorter than the sum of the sizes of the
receiving fields, the software ignores the remaining receiving fields.
If it reaches the end of the sending field before it reaches the end
of one of the receiving fields, the software moves th~ scanned
characters into that receiving field. It left-justifies and fills the
rema1n1ng character positions with spaces for alphanumeric data, or
decimal point aligns and zero fills the remaining character positions

3-22

NON-NUMERIC CHARACTER HANDLING

for numeric data. Consider the following examples of a sending field
that is to_o sh-0-rt. (The st-ateme-n-t is UNSTRING FIE-LD-l INT-0 FIELD-2A
FIELD2B. FIELD2A is a 3-character alphanumeric field, and receives
the first three characters of FIELDl (ABC) in every operation.
FIELD2B, however, runs out of characters every time before filling.
Since FIELD2A always contains the characters ABC, it is not shown.)

Table 3-5
Handling a Sending Field that is Too Short

FIELDl FIELD2B FIELD2B
PIC X(6) PICTURE IS: Value after UNSTRING Operation
VALUE IS:

ABC DEF xxxxx DEF
S99999 0024F

ABC246 S9V999 600
S9999 +0246
LEADING SEPARATE

3.8.2 The DELIMITED BY Phrase

The size of the data to be moved can be controlled
rather than by the size of the receiving field.
phrase supplies the delimiter characters.

by a delimiter,
The DELIMITED BY

UNSTRING delimiters are quite flexible; they can be literals,
figurative constants t1nc~ua1ng ALL literal), or identifiers
(identifiers may even be subscripted data-names). This sub-section
discusses the use of these three types of delimiters. Subsequent
sections cover multiple delimiters, the COUNT phrase, and the
DELIMITER phrase. Subscripting delimiters is discussed at the end of
this section under Subscripted Fields in UNSTRING Statements.

Consider the following sample UNSTRING statement;
figurative constant, SPACE, as a delimiter:

UNSTRING FIELDl DELIMITED BY SPACE INTO FIELD2.

Figure 3-26
Delimiting with a Space Character

it uses the

In this example, the software scans the sending field (FIELDl),
searching for a space character. If it encounters a space, it moves
all of the scanned (non-space) characters that precede that space to
the receiving field (FIELD2). If it finds no space character, it
moves the entire sending field. When it has determined the size of
the sending field, the software moves the contents of that field
following the rules for the MOVE Statement, truncating or zero filling
as required.

The following table shows the results of an UNSTRING operation that
delimits with a literal asterisk (UNSTRING FIELDl DELIMITED BY "*"
INTO FIELD2) .

3-23

NON-NUMERIC CHARACTER HANDLING

Table 3-6
Results of Delimiting with an Asterisk

FIELDl FIELD2 FIELD2 l
I

PIC X(6) PICTURE IS: VALUE AFTER

I VALUE IS: UNSTRING
1 xxx ABC I

ABC DEF y (7 \ ABC DEF '~ \ ' I

xxx JUSTIFIED DEF

****** xxx M/J.

*ABCDE xxx /J.M
A***** xxx JUSTIFIED MA

246*** S9999 024F

12345* S9999 SEPARATE 2345+
TRAILING

2468** S999V9 SEPARATE +4680
LEADING

*246** 9999 0000

If the delimiter matches the first character in the sending field, the
software considers the size of the sending field to be zero. The
movement operation still takes place, however, and fills the receiving
field with spaces or zeroes depending on its class.

A delimiter may' also be applied to an UNSTRING statement that has
multiple receiving fields:

UNSTRING FIELDl DELIMITED BY SPACE
INTO FIELD2A FIELD2B.

Figure 3-27
Delimiting with Multiple Receiving Fields

The sample instruction in Figure 3-27 causes the software to scan
FIELDl searching for a character that matches the delimiter. If it
finds a match, it moves the scanned characters to FIELD2A and sets the
scanner to the next character position to the right of the character
that matched. It then resumes scanning FIELDl for a character that
matches the delimiter. If it finds a match, it moves all of the
characters that lie between the character that first matched the
delimiter and the character that matched on the second scan, and sets
the scanner to the next character position to the right of the
character that matched. (Tqe DELIMITED BY phrase could handle
additional receiving fields in the same manner as it handled FIELD2B.)

The following table shows the results of an UNSTRING operation that
applies a delimiter to multiple receiving fields (UNSTRING FIELDl
DELIMITED BY "*" INTO FIELD2A FIELD2B).

3-24

FIELD!
PIC X{8)
VALUE IS:

ABC*DEF*

ABCDE*FG

A*B*****

*AB*CD**

**ABCDEF

A*BCDEFG

ABC**DEF

A******B

NON-NUMERIC CHARACTER HANDLING

Table 3-7
Re-SU-lts O-f D-e-limi ti-Rg

Multiple Receiving Fields

VALUES AFTER UNSTRING
FIELD2A FIELD2B
PIC X(3) PIC X(3)

ABC DEF

ABC FG~

AM I BM
l

M~ 1 AB!i

llM I Mll l
AA I BCD

ABC

AM

OPERATION

The last two examples illustrate the limitations of a single character
delimiter. Accordingly, the delimiter may be longer than one
character and it may be preceded by the word ALL.

The following table shows the results of an UNSTRING operation that
uses a 2-character delimiter {UNSTRING FIELD! DELIMITED BY "**" INTO
FIELD2A FIELD2B) :

FIELD!
PIC X{8)
VALUE IS:

ABC**DEF

A*B*C*D*

AB***C*D

AB**C*D*

AB**CD** I

I
AB***CD* 1
AB*****CD 11

Table 3-8
Results of Delimiting

with Two Asterisks

VALUES AFTER UNSTRING OPERATION
FIELD2A FIELD2B
PIC XXX PIC XXX

JUSTIFIED

ABC DEF

A*B Mll

AB~ C*D .
ABll *D*

AB!i
I

liCD

ABll CD*

AB~ Mll

3-25

I

1

j

l
!

NON-NUMERIC CHARACTER HANDLING

Unlike the STRING statement, the UNSTRING statement accepts the ALL
literal as a delimiter. When the word ALL precedes the delimiter, the
action of the UNSTRING statement remains essentially the same as with
one delimiter until the scanning operation finds a match. At this
point, the software scans farther, looking for additional consecutive
strings of characters that also match the delimiter item. It
considers the "ALL delimiter" to be one, two, three, or more adjacent
repetitions of the delimiter item.

The following table illustrates the results of an UNSTRING operation
that uses an ALL delimiter (UNSTRING FIELDl DELIMITED BY ALL "*" INTO
FIELD2A FIELD2B).

FIELD!
PIC X(8)
VALUE IS:

ABC*DEF* i
ABC**DEF

A******F

A*F*****

A*CDEFG

Table 3-9
Results of Delimiting

with ALL Asterisks

VALUES AFTER UNSTRING OPERATION
FIELD2A FIELD2B
PIC XXX PIC XXX

JUSTIFIED

ABC DEF

ABC DEF

AM MF

AM MF

AM EFG

The next table illustrates the results of an UNSTRING operation that
combines ALL with a 2-character delimiter (UNSTRING FIELD! DELIMITED
BY ALL "**" INTO FIELD2A FIELD2B).

FIELD!
PIC X(8)
VALUE IS:

I ABC**DEF I

··- --
A***D***

A*******

Table 3-10
Results of Delimiting with

ALL Double Asterisks

VALUES AFTER UNSTRING OPERATION
PIC XXX PIC XXX

JUSTIFIED

ABC I DEF

ABt. - - ~DE

AM fl *D

AM flfl *

3-26

J

I

I

!

J

J

NON-NUMERIC CHARACTER HANDLING

In addition to unchangeable delimiters, such as literals and
figurative constants, delimiters may be designated by identifiers.
Identifiers (~hich may even be subscripted data-names) permit variable
delimiting. Consider the following sample statement:

UNSTRING FIELD! DELIMITED BY DEL!
INTO FIELD2A FIELD2B.

Figure 3-28
Delimiting with an Identifier

The data-name, DE~l, must be alphanumeric. It may be a group or
elementary item, and it may be edited. (Since the delimiter is not a
receiving field, any editing characters will not effect its use, other
than contributing to the size of the item.)

If the delimiter contains a subscript, the subscript may be varied as
a side effect of the UNSTRING operation. The evaluation of subscripts
is discussed later in this section.

3.8.2.1 Multiple Delimiters - The UNSTRING statement has the ability
to scan a sending field, searching for a match from a list of
delimiters. This list may contain ALL delimiters and delimiters of
various sizes. The only requirement of the list is that delimiters
must be connected by the word OR.

The following sample statement separates a sending field into three
receiving fields. The sending field consists of three strings
separated by the following: (1) any number of spaces, or (2) a comma
followed by a single space, or (3) a single comma, or (4) a tab
character, or (5) a carriage return character. (The " " must precede
the "," in the list if it is ever to be recognized.)

UNSTRING FIELD! DELIMITED BY
ALL SPACE OR
", " OR
"," OR
TAB OR
CR
INTO FIELD2A FIELD2B FIELD2C.

Figure 3-29
Multiple Delimiters

The following table illustrates the potential of this statement. The
tab (represented by the letter t) and carriage return (represented by
the letter r) characters represent single character fields containing
the ASCII horizontal tab and carriage return characters.

3-27

NON-NUMERIC CHARACTER HANDLING

Table 3-11
Results of the Multiple Delimiters

Shown in Figure 3-29

FIELD! FIELD2A FIELD2B FIELD2C
PIC X(l2) PIC XXX PIC 9999 PIC XXX

A,0,Cr AM 0000 CM

At456,~E AM 0456 EM I
I

AM~ 3~M9 AM 0003 9M

AttBr AM 0000 BM

A,,C AM 0000 CM

ABCD,~4321,Z ABC 4321 ZM

t--tab character, r--carriage return character

3.8.3 The COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and
stores the length in a user-supplied data area.

The length of a delimited sending field may vary widely (from zero to
the full length of the field) and some programs may require knowledge
of this length. For example, if it exceeds the size of the receiving
field (which is fixed in size) some data may be truncated and the
program's logic may require this information.

To use the phrase, simply follow the receiving field name with the
words COUNT IN and an identifier. Consider the following sample
statement:

UNSTRING FIELDl DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C.

Figure 3-30
The COUNT Phrase

In this sample statement, the software will count the number of
characters between the left-hand end of FIELD! and the first asterisk
in FIELD! and place that value into COUNT2A; thus, COUNT2A contains
the size of the first sending string. The software does not include
the delimiter in the count (as it is not a part of the string).

The software then counts the .number of characters in the second
sending field and places that value into COUNT2B.

The phrase should be used only where needed;
length of the string moved to FIELD2C is
phrase follows it.

3-28

in
not

this example the
needed, so no COUNT

NON-NUMERIC CHARACTER HANDLING

If the rece1v1ng field is shorter than the value placed in the count
field, the software truncates the sending string. (If the number of
inte-ger positions in a numeric field is smaller than the value placed
into the count field, high-order numeric digits have been lost.)

If the software finds a delimiter match on the first character it
examines, it places a zero in the count field.

The count field must be described as a numeric integer, either COMP or
DISPLAY usage, with no editing symbols nor the character P in its
picture-string. The software moves the count value into the count
field according to the rules for an elementary numeric MOVE statement

The COUNT phrase may be used only in conjunction with the DELIMITED BY
phrase.

3.8.4 The DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that
delimited the sending field to be stored in a user-supplied data area.
This phrase is most useful when: (1) the statement contains a
delimiter list, (2) any one of the items in the list might have
delimited the field, and (3) program logic flow depends on which one
found a match. In fact, the DELIMITER and COUNT phrases could be used
together and program logic flow could depend on both the size of the
sending string and the delimiter character that terminated it.

To use the DELIMITER phrase, simply follow the rece1v1ng field name
with the words DELIMITER IN and an identifier. (The software places
the delimiter character in the area named by the identifier.) Consider
the following sample UNSTRING statement:

UNSTRING FIELDl DELIMITED BY "," OR TAB OR
ALL SPACE OR CR
INTO FIELD2A DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELD2C.

Figure 3-31
The DELIMITER Phrase

After moving the first sending string to FIELD2A, the software takes
the character (or characters) that delimited that string and places it
in DELIMA. DELIMA, then, contains a comma, or a tab, or a carriage
return, or any number of spaces. Since the delimiter string is moved
under- the rules of the elementary non-numeric MOVE statement, the
software truncates or space fills with left or right justification
(depending on its data description).

The software then moves the second sending string to FIELD2B and
places its delimiting character into DELIMB.

When a sending string is delimited by the end of the sending field
(rather than a match on a delimiter) the delimiter string is of zero
length. This causes the DELIMITER item to be space filled. The
phrase should be used only where needed; in this example, the
character that delimits the last sending string is not needed, so no
DELIMITER phrase follows FIELD2C.

3-29

NON-NUMERIC CHARACTER HANDLING

The data item named in the DELIMITER phrase must be described as an
alphanumeric item. It may contain editing characters and it may even
be a group item.

When the DELIMITER and COUNT phrases are used together, they must
appear in the correct order (DELIMITER phrase preceding the COUNT
phrase). Both of the data items named in these phrases may be
subscripted or indexed. If they are subscripted, the subscript may be
varied as a side effect of the UNSTRING operation. (The evaluation of
subscripts is discussed in section 3.8.8.)

3.8.5 The POINTER Phrase

Although the UNSTRING statement normally starts at the left-hand end
of the sending field, the POINTER phrase permits the user to select a
character position in the sending field for the software to begin
scanning. (The scanning, however, remains left-to-right.)

When a sending field is to be dispersed into multiple receiving
fields, it often happens that the choice of delimiters, the size of
subsequent receiving fields, etc. depend on the value in the first
sending string or the character that delimited that string. Thus, the
program may need to move the first field, hold its place in the
sending field, and examine the results of the operation to determine
how to handle the sending items that follow. This is done by using an
UNSTRING statement with a POINTER phrase that fills only the first
receiving field. When the first string has been moved to a receiving
item, the software updates the pointer data item with a new position
(one character beyond the delimiter that caused the interruption) to
begin the next scanning operation. The program may then examine the
new position, the receiving field, the delimiter value, the sending
string size, and resume the scanning operation by executing another
UNSTRING statement with the same sending field and pointer data item.
Thus, the UNSTRING statement can move one sending string at a time,
with the form of each move being dependent on the context of the
preceding string of data.

The POINTER phrase must follow the last receiving item in the
statement. Consider the following two UNSTRING statements with their
accompanying POINTER phrases and tests:

MOVE 1 TO P.
UNSTRING FIELDl DELIMITED BY

tt:tt OR TAB OR CR OR ALL SPACE
INTO FIELD2A
DELIMITER IN DELIMA
COUNT IN LSIZEA
WITH POINTER PNTR.

IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA= ":"

IF PNTR > 8 GO TO BIG=LABEL=PROCESS
ELSE GO TO LABEL-PROCESS.

IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

UNSTRING FIELDl DELIMITED BY ... WITH POINTER PNTR.

Figure 3-32
The POINTER Phrase

3-30

NON-NUMERIC CHARACTER HANDLING

PNTR contains the current position of the scanner in the sending
field.. Th-e second UNSTRING state-ment uses PNTR to begir:i scanning the
additional sending strings in FIELDl.

Since the software considers the left-most character to be character
position one, the value returned by PNTR may be used to examine the
next character. To do this, simply use PNTR as a subscript on the
sending field (providing that the sending field is also described as a
table of characters). For example, consider the following sample
coding:

01 FIELDl.
02 FIELDl-CHAR OCCURS 40 TIMES.

UNSTRING FIELDl

WITH POINTER PNTR.
IF FIELDl-CHAR(PNTR) = "X"

Figure 3-33
Examining the Next Character

By Using the Pointer Data
Item as a Subscript

Another way to examine the next character of the sending field is to
use the UNSTRING statement to move it to a 1-character receiving
field. Consider the following sample coding:

UNSTRING FIELDl

WITH POINTER PNTR.
UNSTRING FIELDl INTO CHARl WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHARl = "X" ...

Figure 3-34
Examining the Next Character

By Placing It Into a 1-Character Field

The program must decrement PNTR in order for this case to
the one illustrated in Figure 3-33, since the second
statement will increment the pointer value by 1.

work - like
UN STRING

The program must initialize the POINTER phrase data item before the
UNSTRING statement uses it. The software will terminate the UNSTRING
operation if the initial value of the pointer is less than one or
greater than the length of the sending field. (A pointer value that
is less than one or greater than the length of the sending field
causes an overflow condition. Overflow conditions are discussed in
section 3.8.7.)

The POINTER and TALLYING phrases may be used together in the same
UNSTRING statement; but, when both are used, the POINTER phrase must
precede the TALLYING phrase.

3-31

NON-NUMERIC CHARACTER HANDLING

3.8.6 The TALLYING Phrase

The TALLYING phrase counts the number of receiving fields that
received data from the sending field.

When an UNSTRING statement contains several receiving fields, the
possibility exists that there may not always be as many sending
strings as there are receiving fields. The TALLYING phrase provides a
convenient method for keeping a count of how many fields were acted
upon.

MOVE 0 TO RCOUNT.
UNSTRING FIELDl DELIMITED BY "," OR ALL SPACE

INTO FIELD2A
FIELD2B
FIELD2C
FIELD2D
FIELD2E
TALLYING IN RCOUNT.

Figure 3-35
The TALLYING Phrase

If the software has moved only three sending strings when it reaches
the end of FIELDl, it adds 3 to RCOUNT. The first three fields
(FIELD2A, FIELD2B, and FIELD2C} contain data from the operation, and
the last two (FIELD2D and FIELD2E) do not.

The TALLYING data item always contains the sum of its initial contents
plus the number of sending strings acted upon by the UNSTRING command
just executed. Thus, the programmer may want to initialize the tally
count before each use.

When used in the same statement with a POINTER phrase, the TALLYING
phrase must follow the POINTER phrase and both phrases must follow all
of the field names, the DELIMITER and COUNT phrases. The data items
for both phrases must contain numeric integers, that is, be without
editing characters or the letter P in their picture-strings; both
data items may be either COMP or DISPLAY usage. They may be signed or
unsigned and, if they are DISPLAY usage, they may contain any desired
sign option.

The data items for both phrases may be subscripted or indexed, or they
may be used as subscripts on other fields in the statement. (The
evaluation of subscripts is discussed in section 3.8.8.) A convenient
use of the TALLYING phrase data item is as a subscript of a receiving
field. Consider the following sample coding, which causes program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field.

PARl.
MOVE 1 TO PNTR, TLY.

UNSTRING FIELDl DELIMITED BY
INTO FIELD2(TLY)
DELIMITER IN DEL2
WITH POINTER PNTR
TALLYING IN TLY.

IF DEL2 "," GO TO PARl.

Figure 3-36

" " OR CR

The POINTER and TALLYING Phrases
Used Together

3-32

NON-NUMERIC CHARACTER HANDLING

This sample coding causes program control to loop through the UNSTRING
stateme_nt, using th_e pointer, PNTR1 to scan acro-s--s -FIE-LDl with
successive executions. Each comma isolates a sending string until
control reaches either a carriage return character or the end of
FIELD!. If it reaches the end of the field without encountering a
carriage return character, the software places a space into the
delimiter field, DEL2, and control falls through the IF statement and
out of the loop.

Since the TALLYING data item, TLY, is increased by 1 after each data
movement, it serves as a subscript on the receiving field. In effect
this causes the software to unpack the value in FIELD! into an array
of fixed-size fields. Further, an array of COUNT data items can be
supplied and loaded by the UNSTRING/TALLYING statement by adding the
following phrase to the coding in Figure 3-36:

COUNT IN C (TLY}

Figure 3-37
Subscripting the COUNT Phrase

With the TALLYING Data Item

The TALLYING data item, in the above example, is one greater than
number of receiving fields acted upon by the UNSTRING operation.
is because the data item must be initialized to a value of one
order to be used as a subscript for the first receiving item.

3.8.7 The OVERFLOW Phrase

the
This

in

The OVERFLOW phrase detects the overr~ow condition and provides an
imperative statement to be executed when it detects the condition. An
overflow condition exists when either of the following two situations
occurs:

1. The UNSTRING statement is about to be executed and its
pointer data item contains a value of less than one or
greater than the size of the sending field. When it detects
this situation, the software executes the OVERFLOW phrase
before it moves any data. Thus, the values of all of the
receiving fields remain unchanged.

2. The UNSTRING statement has filled all of the rece1v1ng fields
and data still remains in the sending field that has not been
matched as a delimiter or included in a sending string. When
it detects this situation, the software executes the OVERFLOW
phrase after it has executed the UNSTRING statement. Thus,
the values of all of the receiving fields are updated, but
some data has not been moved.

If the UNSTRING operation causes the scanner to move off the end of
the sending field (thus exhausting it), the software will not execute
the OVERFLOW phrase.

Consider the following set of instructions, which cause program
control to execute the UNSTRING statement repeatedly until it exhausts
the sending field. The TALLYING data item is a subscript indexing the
receiving field. (Compare this loop with the one in Figure 3-36,
which accomplishes the same thing.}

3-33

PARl.

NON-NUMERIC CHARACTER HANDLING

MOVE 1 TO TLY PNTR.
UNSTRING FIELDl DELIMITED BY

INTO FIELD2(TLY)
WITH POINTER PNTR
TALLYING IN TLY

" " '

ON OVERFLOW GO TO PARl.

Figure 3-38

OR CR

Using the OVERFLOW Phrase

NOTE

The overflow condition also occurs if
the value of a pointer data item lies
outside the sending field at the start
of execution of the UNSTRING statement.
{The pointer value must not be less than
1, nor greater than the length of the
sending field.) This type of overflow is
not distinguishable from the overflow
condition described at the start of this
section, except that this condition
causes the UNSTRING statement to
terminate before any data movement takes
place. Then, the values of all
receiving fields remain unchanged.

3.8.8 Subscripted Fields in UNSTRING Statements

Since the flexibility of the UNSTRING statement is enhanced by
subscripting and indexing and particularly by subscripting with other
fields within the statement (such as subscripting the receiving field
with the TALLYING data item as discussed above), it is important to
understand how often and exactly when the software evaluates these
subscripts and indexes. This sub-section discusses the frequency and
times of subscript evaluation.

The software evaluates subscripts and indexes on the following items
only once, at the initiation of the UNSTRING statement; thus, any
change in subscript values during the execution of the statement has
no effect on these fields:

1. Sending field,

2. POINTER data item,

3. TALLYING data item.

The software evaluates subscripts and indexes on the following items
immediately before it moves data into the item. It moves the data to
these items in the order in which they are listed in the statement
(which is the same order as below):

1. Receiving field,

2. DELIMITER data item,

3. COUNT data item.

3-34

NON-NUMERIC CHARACTER HANDLING

The software evaluates any subscripts and indexes on the data-names in
the DELIMITED BY phrase (delimiters) imm.ediately before it sc.ans each
sending string looking for a delimiter match. Thus, it re-evaluates
these data-names once for each receiving field in the statement.

If any of the following items are used as subscripts on any receiving
fields, the programmer must be aware of the point at which these items
are updated:

• POINTER data-item,

• TALLYING data-item,

e COUNT data-item,

• Another receiving field.

Figure 3-39 illustrates, with a flow chart, the sequence of evaluation
operations:

,,,--....... ,,,--.......

~ ± l I-

y
z
LU

EVALUATE CONTINUE
(/) EVALUATE IF STORE
UJ DELIMITER

ALL SCANNING FOR c::: POINTER SCANNER IN
c.. RECEIVING PHRASE POINTER DELIMITER REPETITIVE UJ FIELD (/) PRESENT DATA ITEM SUBSCRIPTS MATCHES ~ SUBSCRIPT c:::

B :i::
c..
c:::
UJ
I- STORE IF SCAN ~ I DELIMITER I ADD 1 TO TALLY1NG SENDING UPDATE :i l STRING IN TALLYING

FIELD FOR SCANNER UJ PHRASE
DATA ITEM 0 RECEIVING PRESENT DELIMITER

~ FIELD

EVALUATE I- EVALUATE
z COUNT RECEIVING UJ

FIELD
(/) FIELD UJ

SUBSCRIPT
c::: SUBSCRIPT c..
UJ
(/)

~
c:::
:i::
c..

MOVE SENDING I- STORE COUNT z
STRING TO ::::i VALUE IN
RECEIVING 0 COUNT FIELD u

FIELD ~

Figure 3-39
Sequence of Subscript Evaluation

3-35

NON-NUMERIC CHARACTER HANDLING

NOTE

The rules in this section concerning the
exact point at which the software
evaluates the identifiers in the
DELIMITED BY phrase and the point at
which it updates the POINTER and
TALLYING data items, are rules that are
specified by 1974 American National
Standard COBOL, as opposed to the STRING
statement where these are not so
specified.

3.8.9 Common Errors, UNSTRING Statement

The most common errors made when writing UNSTRING statements are:

• Leaving the OR connector out of a delimiter list;

• Misspelling or interchanging the words,
DELIMITER;

DELIMITED and

• Writing the DELIMITER and COUNT phrases in the wrong order
when both are present (DELIMITER must precede COUNT) ;

• Leaving out the word INTO or writing it as TO;

• Repeating the word INTO where it is not needed; thus:

UNSTRING FIELD! DELIMITED BY SPACE OR TAB
INTO FIELD2A DELIMITER IN DELIMA
INTO FIELD2B DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

Figure 3-40
Erroneously Repeating the Word INTO

• Writing the POINTER and TALLYING phrases in the wrong order
(POINTER must precede TALLYING) .

3.9 THE INSPECT STATEMENT

The INSPECT statement examines the character positions in a field and
counts or replaces certain characters (or groups of characters) in
that field.

Like the STRING and UNSTRING operations, INSPECT operations scan
across the field from left to right; further, like those two
statementsi the INSPECT statement features a phrase which allows it to
begin or terminate the scanning operation with a delimiter match.
{Thus, the operation can begin within the field instead of at the
left-hand end, or it may begin at the left-hand end and terminate
within the field.)

The TALLYING operation {which counts certain characters in the field)
and the REPLACING operation (which replaces certain characters in the
field) are quite versatile and may be applied to all of the characters
in the delimited area of the field being inspected, or they may be
applied only to those characters that match a given character string

3-36

NON-NUMERIC CHARACTER HANDLING

under stated conditions. Consider the following sample statements,
which both caus.e a sc.an of the complete field:

INSPECT FIELDl TALLYING TLY FOR ALL "B".

Figure 3-41
Sample INSPECT ... TALLYING Statement

This statement scans FIELDl looking for the character B. Each time it
finds a B, it increments TLY by 1.

INSPECT FIELDl REPLACING ALL SPACE BY ZERO.

Figure 3-42
Sample INSPECT ... REPLACING Statement

This statement scans FIELDl looking for space characters. Wherever it
finds a space character, it replaces it with zero.

One INSPECT statement can contain both a TALLYING phrase and a
REPLACING phrase. However, when used together, the TALLYING phrase
must precede the REPLACING phrase. An INSPECT statement with both
phrases is equivalent to two separate INSPECT statements and, in fact,
the software compiles such a statement into two distinct INSPECT
statements. (To simplify debugging, therefore, it is best to
initially write the two phrases in separate INSPECT statements.)

3.9.1 The BEFORE/AFTER Phrase

The BEFORE/AFTER phrase acts as a delimiter and (possibly) restricts
the area of the field being inspected.

The following sample statement would count only the zeroes that
precede the percent sign (%) in FIELDl.

INSPECT FIELDl TALLYING TLY
FOR ALL ZEROES BEFORE "%".

Figure 3-43
Sample INSPECT .•. BEFORE Statement

The delimiter (the percent sign in the preceding sample statement) can
be a single character, a string of characters, or any figurative
constant. Further, it can be either an identifier or a literal.

• If the delimiter is an identifier, it must be an elementary
data item of DISPLAY usage. It may be alphabetic,
alphanumeric, or numeric, and, it may contain editing
characters. The compiler always treats the item as if it had
been described as an alphanumeric string. (It does this by
implicit redefinition of the item, as described in Section
3.9.2.)

• If the delimiter is a literal, it must be non-numeric.

3-37

I

NON-NGMERIC CHARACTER HANDLING

The software repeatedly compares the delimiter characters against an
equal number of characters in the field being inspected. If none of
the characters matches the delimiter, or if insufficient characters
remain in the field for a full comparison (at the right-hand end), the
software considers the comparison to be unequal.

The examples of the INSPECT statement in Figure 3-44, illustrate the
way the delimiter character finds a match in the field being
inspected. (The portion of the field the statement ignores as a
result of the BEFORE/AFTER phrase delimiters is crossed out with a
slash, and the portion it inspects is underlined.)

INSTRUCTION FIELDl VALUE

INSPECT FIELDl ..• BEFORE "E II. ABCDtti9ft
INSPECT FIELDl ... AFTER "E". iJt~l1tFGHI

INSPECT FIELDl ..• BEFORE "K". ABCDEFGHI
INSPECT FIELDl •.. AFTER "K". it(twtti9ft
INSPECT FIELDl ... BEFORE "AB". ilt(tl1tti~t
INSPECT FIELDl ... AFTER "AB". itCDEFGHI

INSPECT FIELDl ... BEFORE "HI II. ABCDEFG~t
INSPECT FIELDl ... AFTER "HI". iit(twtr~~,

INSPECT FIELDl ... BEFORE "I I:!. II. ABCDEFGHI
INSPECT FIELDl ... AFTER II I I:!. II • ¥Jt~l1Jl11~~1

The ellipsis represents the position of the TALLYING or REPLACING
phrase.

Figure 3-44
Matching the Delimiter Characters

to the Characters in a Field

The software scans the field for a delimiter match before it scans for
the inspection operation (TALLYING or REPLACING), thus establishing
the limits of the operation before beginning the actual inspection.
The importance of the separate scan is discussed further in Section
3.9.3.

3.9.2 Implicit Redefinition

The software requires that certain fields referred to by the INSPECT
statement be alphanumeric fields. If one of these fields was
described as another data class, the compiler redefines that field so
the INSPECT statement can handle it as a simple alphanumeric string.
This implicit redefinition is conducted as follows:

• If the field was described as alphabetic, alphanumeric
edited, or unsigned numeric, the compiler simply redefines it
as alphanumeric. This is a compile-time operation; no data
movement occurs at object-time.

• If the field was described as signed numeric, the compiler
first removes the sign and then redefines the field as
alphanumeric. If the sign is a separate character, the
compiler ignores that character, essentially shortening the

3-38

NON-NUMERIC CHARACTER HANDLING

field, and that character does not participate in the
implicit redefiniti_o_n.. If the sign is an "_overpunch" o_n the
leading or trailing digit, the compiler actually removes the
sign value and leaves the character with only the numeric
value that was stored in it. The compiler alters the digit
position containing the sign before beginning the INSPECT
operation and restores it to its former value after the
operation. If the sign's digit position does not contain a
valid ASCII signed numeric digit, the action of the
redefinition causes the value to change. Table 3-12 shows
these original, altered, and restored values.

The compiler never moves an implicitly redefined item from its storage
position. All redefinition occurs in place.

The position of an implied decimal point on numeric quantities does
not affect implicit redefinition.

Table 3-12
Original, Altered, and Restored Values Resulting

from Implicit Redefinition

ORIGINAL VALUE ALTERED VALUE RESTORED VALUE

} (173) 0 (60) } (17 3)
A (101) 1 (61) A (101)
B (102) 2 (62) B (102)
c (10 3) 3 (63) c (10 3)
D (104) 4 (64) D (104)

E (105) 5 (65) E (105)
F (106) I 6 (66) F (106)
G (107) I 7 (67) G (107)
H (llO) 8 (70) H (llO)
I (lll) I 9 (71) I (111)

{ (17 5) 0 (60) { (17 5)
J (ll2) 1 (61) J (112)
K (ll3) 2 (62) K (ll3)
L (114) 3 (63) L (114)
M (ll5) 4 (64) M (115)

N (ll6) 5 (6 5) N (116)
0 (ll 7) 6 (66) 0 (117)
p (120) 7 (67) p (120)
Q (121) 8 (7 0) Q (121)
R (122) 9 (71) R (122)

0 (60) 0 (60) } (173)
1 (61) 1 (61) A (101)
2 (62) 2 (62) B (10 2)
3 (63) 3 (63) c (103)
4 (64) 4 (64) D (104)

5 (65) 5 (6 5) E (105)
6 (66) 6 (66) F (106)
7 (67) 7 (67) G (107)
8 (70) 8 (70) H (110)
9 (71) 9 (71) I (lll)

All other values 0 (60) } (17 3)

3-39

I

NON-NUMERIC CHARACTER HANDLING

3.9.3 The INSPECT Operation

Regardless of the type of inspection (TALLYING or REPLACING), the
INSPECT statement has only one method for inspecting the characters in
the field. This section describes this method.

However, before discussing how the inspection operation is conducted,
let's analyze the INSPECT statement itself:

INSPECT FIELDl

The field being__/
inspected

_T_A_L_L_Y_I_N-'-G_T_L_Y PO R iLL II B II

~ The argument

BEFORE

I
The operation

phrase

Figure 3-45
Sample INSPECT Statement

The delimiter
phrase

117\ II
n •

The format of the INSPECT statement requires that a field be named
which is to be inspected (FIELDl above); the field name must be
followed by an operation phrase (TALLYING TLY above); and, that
phrase must be followed by one or more identifiers or literals ("B"
above). These identifiers or literals comprise the "arguments" (items
to be compared to the field being inspected} . More than one argument
makes up the "argument list".

e TALLYING Arguments

Each argument in an argument list can have other fields
associated with it. Thus, each argument that is used in a
TALLYING operation must have a tally counter (TLY above)
associated with it. The software increments the tally
counter each time it matches the argument with a character or
group of characters in the field being inspected.

e REPLACING Arguments

INSPECT FIELDl REPLACING ALL "O" BY "$".
7

replacing argument

Figure 3-46
Sample REPLACING Argument

Each argument in an argument list that is used in a REPLACING
operation must have a replacement item ($ above) associated
with it. The software uses the replacement item to replace
each string of characters in the field that matches the
argument.

Each argument in an argument list (that is used with either a TALLYING
or REPLACING operation} may have a delimiter field (BEFORE/AFTER
phrase) associated with it. If the delimiter field is not present,
the software applies the argument to the entire field. If the
delimiter field is present, the software applies the argument only to
that portion of the field specified by the BEFORE/AFTER phrase.

3-40

NON-NUMERIC CHARACTER HANDLING

3.9.3.1 Setting the Scanner - The INSPECT operation begins by setting
the scanner to the leftmost character position of the field b-ein-g
inspected. It remains on this character until an argument has been
matched with a character (or characters) or until all arguments have
failed to find a match at that position.

3.9.3.2 Active/Inactive Arguments - When an argument has a
BEFORE/AFTER phrase associated with it, that argument has a delimiter
and may not be eligible to participate in a comparison at every
position of the scanner. Thus, each argument in the argument list has
an active/inactive status at any given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it
starts the INSPECT operation in an inactive state. The delimiter of
the AFTER phrase must find a match before the argument can participate
in the comparison. When the delimiter finds a match, the software
retains the character position beyond the matched character string;
then, when the scanner reaches or passes this position, the argument
becomes active.

INSPECT FIELDl TALLYING TLY
FOR ALL ~a~ AFTER ~x~.

Figure 3-47
Sample AFTER Delimiter Phrase

If FIELDl in Figure 3-47 has a value of "ABABXZBA", the argument B
remains inactive until the scanner finds a match for the delimiter X.
Thus, argument B remains inactive while the software scans character
positions 1 through 5. At character position 5, the delimiter X finds
a match, and since the character position beyond the matched delimiter
character is the point at which the argument becomes active, argument
B is compared for the first time at character position 6. It finds a
successful match at character position 7 and this causes TLY to be
incremented by 1.

The examples in Figure 3-48 illustrate other situations where the
arguments and/or the delimiters are longer than one character.
(Consider the sample statement to be an INSPECT ... TALLYING statement
that is scanning FIELDl, tallying in TLY, and looking for the
arguments and delimiters in the left-hand column. Assume that TLY is
initialized to 0.)

3-41

NON-NUMERIC CHARACTER HANDLING

ARGUMENT AND FIELD! ARGUMENT CONTENTS OF
DELIMITER VALUE ACTIVE AT TLY AFTER SCAN

POSITION

BXBXXXXBB 6 2
"B" AFTER "XX" xxxxxxxx 3 0

I

BXBXBBBBXX never 0

BXBXXBXXB 6 2
"X" AFTER "XX" xxxxxxxx 3 6

BBBBBBXX never 0

BXYBXBXX 7 0
"B" AFTER "XB" XBXBXBXB 3 3

BBBBBBXB never 0

XXXXBXXXX 6 0
"BX" AFTER "XB" XXXXBBXXX 6 1

XXBXXXXBX 4 1

Figure 3-48
Where Arguments Become Active in a Field

When an argument has an associated BEFORE delimiter, the
inactive/active states reverse roles: the argument is in an active
state when the scanning begins, and becomes inactive at the character
position that matches the delimiter. Additionally, regardless of the
presence of the BEFORE delimiter, an argument becomes inactive when
the scanner approaches the right-hand end of the field and the
remaining characters are fewer in number than the characters in the
argument. (In such a case, the argument cannot possibly find a match
in the field so it becomes inactive.)

Since the BEFORE/AFTER delimiters are found on a separate scan of the
field, the software recognizes and sets up the delimiter boundaries
before it scans for an argument match; therefore, the same characters
can be used as arguments and delimiters in the same phrase.

3.9.3.3 Finding an Argument Match - The software selects arguments
from the argument list in the order in which they appear in the list.
If the first one it selects is an active argument and the conditions
stated in the INSPECT statement allow a comparison; the software
compares it to the character at the position of the scanner. If the
active argument does not find a match, the software takes the next
active argument from the list and compares that to the same character.
If none of the active arguments finds a match, the scanner moves one
position to the right and begins the inspection operation again with
the first active argument in the list. The inspection operation
terminates at the right-hand end of the field.

When an active argument does find a match, the software ignores any
remaining arguments in the list and conducts the TALLYING or REPLACING
operation on the character. The scanner moves to a new position and
the next inspection operation begins with the first argument in the
list. (The INSPECT statement may contain additional conditions, which
are described later in this section; this discussion, however,
assumes that the argument match is allowed to take place and that
inspection is allowed to continue following the match.)

3-42

NON-NUMERIC CHARACTER HANDLING

The software updates the scanner by adding the size of the matching
argument to it. This moves the scanner to the next character beyond
the string of characters that matched the argument. Thus, once an
active argument matches a string of characters, the statement does not
inspect those character positions again unless program control
executes the entire statement again.

3.9.4 Subscripted Fields in INSPECT Statements

Any identifier named in an INSPECT statement may be subscripted or
indexed.

The software evaluates all subscripts in an INSPECT statement once,
before the inspection begins; therefore, if the action of the INSPECT
statement alters one of the subscripts, the new subscript value has no
effect on the selection of operands during that inspection operation.
For example, consider the following illustration:

MOVE 1 TO TLY.
INSPECT FIELDl TALLYING TLY

FOR ALL X(TLY).

Figure 3-49
Sample Subscripted Argument

In this sample statement, the software evaluates the address of X(TLY)
only once, before it begins inspecting the field; hence, it will
evaluate X(TLY) as X(l). The alteration of TLY by the action of
inspecting and tallying has no effect on the choice of the X operand.
(X(l) will be used throughout the operation.)

NOTE

When subscripting an INSPECT statement
that contains both a TALLYING and a
REPLACING phrase, keep in mind that the
statement will be compiled into two
separate INSPECT statements. Therefore,
any field that is altered by the action
of the INSPECT ... TALLYING statement will
be in its altered state if used as a
subscript by the INSPECT ... REPLACING
statement.

3.9.5 The TALLYING Phrase

An INSPECT statement that contains
occurrence of various character
conditions. It keeps the count in a
here, a tally counter.

3-43

a TALLYING phrase counts the
strings under certain stated
user-design~ted field called,

NON-NUMERIC CHARACTER HANDLING

3.9.5.l The Tally Counter - The identifier that follows the word
TALLYING designates the tally counter. The identifier may be
subscripted or indexed. The data item must be a numeric integer with
no editing or P characters; it may be COMP or DISPLAY usage, and it
may be signed (separate or overpunched).

Each time the tally argument matches the delimited string being
inspected, the software adds 1 to the tally counter.

The programmer can initialize the tally counter to any numeric value.
(The INSPECT statement does not initialize it.)

3.9.5.2 The Tally Argument - The tally argument specifies a
character-string and a condition under which that string should be
compared to the delimited string being inspected. The following
figure shows the format of the tally argument:

{
{

ALL }
LEADING

CHARACTERS
{ i~entifier}} literal

Figure 3-SO
Format of the Tally Argument

The CHARACTERS form of the tally argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the tally argument.
This increments the tally counter by a value that equals the size of
the delimited string. For example, the statement in the following
illustration causes TLY to be incremented by the number of characters
that precede the first comma, regardless of what those characters
might be.

INSPECT FIELDl TALLYING TLY FOR
CHARACTERS BEFORE ",".

Figure 3-51
CHARACTERS Form of the Tally Argument

The ALL and LEADING forms of the tally argument specify a particular
character string, which may be represented by either a literal or an
identifier. The tally argument character string may be any length;
however, each character of the argument must match a character in the
delimited string before the software considers the argument matched.

• A literal character string must be either non-numeric or a
figurative constant (other than ALL literal). A figurative
constant: such as SPACE, ZERO, etc., represents a single
character and can be written as" ", or "O", etc., with the
same effect.

• An identifier must be•an elementary item of DISPLAY usage.
It may be any data class. However, if it is other than
alphanumeric, the software performs an implicit redefinition
of the item. (This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed earlier in
Section 3.9.1.)

3-44

NON-NUMERIC CHARACTER HANDLING

The words ALL and LEADING supply conditions that further delimit the
inspection operation.

I

• The word ALL specifies that every match that the search
argument finds in the delimited character string be counted
in the tally counter. When a literal follows the word ALL,
it does not have the same meaning as the figurative constant,
ALL literal. (The ALL literal meaning of ALL "," is a string
of consecutive commas, as many as the context of the
statement requires.) ALL "," used as a tally argument means,
"count each comma without regard to adjacent characters."

• The word LEADING specifies that only adjacent matches of the
TALLY argument at the left-hand end of the delimited
character string be counted. At the first failure to match
the tally argument, the software terminates counting and
causes the argument to become inactive. Consider the
examples in Figure 3-52. (The sample statement is an
INSPECT ... TALLYING statement, scanning FIELDl, tallying in
TLY, and looking for the arguments and delimiters in the
left-hand column. Assume that the program initializes TLY to
0.)

ARGUMENT AND
DELIMITER

LEADING 11*11

LEADING 11**11

FIELDl
VALUE

F***O**F
F**OF**

AFTER II 0 II
0

F**F**O
O***F**

F**O**F***

j
F**FO***FF**

AFTER II 0 II
0

F**FO****F**
F**F**O*

Figure 3-52
Results of Counting with the

LEADING Condition

AFTER SCAN

2
0

0
3

1
1

2
0

3.9.5.3 The Tally Argument List - One INSPECT ... TALLYING statement
can contain more than one tally argument, and each argument can have a
separate BEFORE/AFTER phrase and tally counter associated with it.
These tally arguments with their associated tally counters and
BEFORE/AFTER phrases form an argument list. The manner in which this
list is processed affects the action of any given tally argument.

The following sample statements show INSPECT statements with argument
lists. The text following each one tells how that list will be
processed.

INSPECT FIELDl TALLYING T FOR
ALL II' II

ALL II II

ALL ";".

Figure 3-53
Argument List Adding Into

One Tally Counter

3-45

NON-NUMERIC CHARACTER HANDLING

These three tally arguments have the same tally counter, T, and are
active over the entire field being inspected. Thus, this statement
adds the total number of commas, periods, and semicolons in FIELDl to
the initial value of T.

INSPECT FIELDl TALLYING
Tl FOR ALL ","
T2 FOR ALL " "
T3 FOR ALL ";".

Figure 3-54
Argument List Adding Into
Separate Tally Counters

Each tally argument in this statement has its own tally counter, and
is active over the entire field being inspected. Thus, the action of
this statement is to add the total number of commas in FIELDl to the
initial value of Tl, the total number of periods to the initial value
of T2, and the number of semicolons to T3.

INSPECT FIELDl TALLYING
Tl FOR ALL "," AFTER "A"
T2 FOR ALL "." BEFORE "B"
T3 FOR ALL ";".

Figure 3-55
Argument List (with Delimiters) Adding

into Separate Tally Counters

Each tally argument in this statement has its own tally counter; the
first two arguments have delimiter phrases, and the last one is active
over the entire field being inspected. Thus, the first argument is
initially inactive and becomes active only after the scanner
encounters an A; the second argument begins the scan in the active
state but becomes inactive after a B has been encountered; and the
third argument is active during the entire scan of FIELDl.

Figure 3-56 shows various values of FIELDl and the contents of the
three tally counters after the scan. Assume that the counters are
initialized to 0 before the INSPECT statement.

FIELDl
VALUE

A.C;D.E,F
A.B.C.D
A,B,C,D
A;B;C;D
*,B 6 C,D

CONTENTS

Tl

1
0
3
0
0

OF TALLY

T2

2
1
0
0
0

COUNTERS

T3

1
0
0
3
0

Figure 3-56

AFTER SCAN

Results of the Scan in Figure 3-55

The BEFORE/AFTER phrase applies only to the argument that precedes it,
and delimits the field for that argument only. Each BEFORE/AFTER
phrase causes a separate scan of the field to determine the limits of
the field for its corresponding argument.

3-46

NON-NUMERIC CHARACTER HANDLING

3.9.5.4 Interference in Tally Argument Lists - When several tally
arguments contain one or more identical characters that are active at
the same time, they ~ay interfere with each other (i.e., when one of
the arguments finds a match, the scanner is stepped past the matching
character(s) which prevents those character(s) from being considered
for any other match) .

The example in Figure 3-57 illustrates two identical tally arguments
that do not interfere with each other since they are not active at the
same time. (The first A in FIELD! causes the first argument to become
inactive and the second argument to become active.)

MOVE 0 TO Tl T2.
INSPECT FIELDl TALLYING

Tl FOR ALL "," BEFORE "A"
T2 FOR ALL "," AFTER "A".

Figure 3-57
Two Tallying Arguments that

Do Not Interfere with Each Other

The two identical tally arguments in Figure 3-58 will interfere with
each other since both are active at the same time. (For any given
position of the scanner, the arguments are applied to FIELDl in the
order in which they appear in the statement. When one of them finds a
match, the scanner moves to the next position and ignores the
remaining arguments in the argument list.) Each comma in FIELD! causes
Tl to be incremented by 1 and the second argument to be ignored.
Thus, Tl will always contain an accurate count of all of the commas in
FIELDl, and T2 will always be unchanged.

INSPECT FIELDl TALLYING
Tl FOR ALL ","
T2 FOR ALL "," AFTER "A".

Figure 3-58
Two Tallying Arguments that
Do Interfere with Each Other

The following statement achieves the same results as the statement in
Figure 3-57. The first argument does not become active until the
scanner encounters an A. The second argument tallies all commas that
precede the A. After the A, the first argument counts all commas and
causes the second argument to be ignored. Thus, Tl contains the
number of commas that precede the first A and T2 contains the number
of commas that follow the first A. This statement works well as
written, but could be more confusing to debug than the one in Figure
3-57.

INSPECT FIELDl TALLYING
T2 FOR ALL "," AFTER "A"
Tl FOR ALL ",".

Figure 3-59
Two Tallying Arguments that,

Because of their Positioning,
Only Partially Interfere with

Each Other

3-47

NON-NUMERIC CHARACTER HANDLING

The preceding three examples show that one INSPECT statement cannot
count any character more than once. Thus, when using the same
character in more than one argument of an argument list, consider the
nature of the interference and choose the order of the arguments very
carefully. The solution to the problem may require two or more
INSPECT statements. Consider the following problem:

INSPECT FIELDl TALLYING
Tl FOR ALL "AB"
T2 FOR ALL "BC".

Figure 3-60
An Attempt to Tally the Character B

with Two Arguments

If FIELDl contains "ABCABC", after the scan Tl will be incremented by
a 2 and T2 will be unaltered. The successful matching of the argument
includes each B in the field. Each match resets the scanner to the
character position to the right of the B, and causes the second
argument to never be successfully matched. Reversing the order of the
arguments has no effect, the results remain the same. Only separate
INSPECT statements can develop the desired counts.

Sometimes the programmer can use the interference characteristics of
the INSPECT statement to good advantage. Consider the following
sample argument list:

MOVE 0 TO T4 T3 T2 Tl.
INSPECT FIELDl TALLYING

T4 FOR ALL "****"
T3 FOR ALL "***"
T2 FOR ALL "**"
Tl FOR ALL "*"

Figure 3-61
Tallying Asterisk Groupings

The argument list in Figure 3-61 counts all of the asterisks in FIELD!
but in four different tally counters. T4 counts the number of times
that four asterisks occur together; T3 counts the number of times
three asterisks appear together; T2 counts double asterisks; and Tl
counts singles.

If FIELD! contains a string of more than four consecutive asterisks,
the argument list breaks the string into groups of four, and counts
them in T4. It then counts the less-than-four remainder in T3, T2, or
Tl.

Reversing the order of the arguments in this list causes Tl to count
all of the asterisks and T2, T3, and T4 to remain

When the LEADING condition is used with an argument in the ar~ument
list, that argument becomes inactive as soon as it fails to be matched
in the field being inspected. ,Therefore, when two arguments in an
argument list contain one or more identical characters and one of the
arguments has a LEADING condition, the argument with the LEADING
condition should appear first. Consider the following sample
statement:

3-48

NON-NUMERIC CHARACTER HANDLING

MOVE 0 TO Tl T2.
INSPECT FIELDl TALLYING

Tl FOR LEA-DING 11 * 11

T2 FOR ALL 11 * 11

Figure 3-62
Placing the LEADING Condition

in the Argument List

The placement of the LEADING condition in this sample statement causes
Tl to count only leading asterisks in FIELDl; the occurrence of any
other character stops this counting and causes the first tally
argument to become inactive. T2 keeps a count of any remaining
asterisks in FIELDl.

Reversing the order of the arguments in this statement results in an
argument list that can never increment Tl.

INSPECT FIELDl TALLYING
T2 FOR ALL "*"
Tl FOR LEADING "*".

Figure 3-63
Reversing the Argument
List in Figure 3-62

I
J

If the first character in FIELDl is not an asterisk, neither argument
can match it and the second argument becomes inactive. If the first
character in FIELDl is an asterisk, the first argument matches and
causes the second argument to be ignored. The first non-asterisk
character in FIELDl will fail to match the first argument and the
second argument will become inactive. (The second argument becomes
inactive because it has not found a match in all of the preceding
characters.}

An argument with both a LEADING condition and a BEFORE phrase can
sometimes sucessfully "delimit" the field being inspected:

MOVE 0 TO Tl T2.
INSPECT FIELDl TALLYING

Tl FOR LEADING SPACES
T2 FOR ALL II II BEFORE II II

T2 FOR ALL II II BEFORE 11
•

11

T2 FOR ALL II II BEFORE II II

IF T2 > 0 ADD 1 TO T2.

Figure 3-64
An Argument List that Counts

Words in a Statement

The statements in Figure 3-64 count the number of "words" in the
English statement in FIELDI. (This assumes that no more than three
spaces separate the words in the sentence and that the sentence ends
with a period.) When FIELDl has been scanned, T2 contains the number
of gaps between the words. Since a count of the gaps renders a number
that is one less than the number of words, the conditional statement
adds one to the count.

3-49

NON-NUMERIC CHARACTER HANDLING

The first argument removes any leading spaces, counting them in a
different tally counter. This shortens FIELD! by preventing the
application of the second through the fourth arguments until the
scanner finds a non-space character. The BEFORE phrase on each of the
other arguments causes them to become inactive when the scanner
reaches the period at the end of the sentence. Thus, the BEFORE
phrases "shorten" FIELD! by making the second through the fourth
arguments inactive before the scanner reaches the right-hand end of
FIELD!. If the sentence in FIELD! is indented with tab characters
instead of spaces, a second LEADING argument can count the tab
characters. The following sample statement illustrates this
technique:

INSPECT FIELD! TALLYING
Tl FOR LEADING SPACES
Tl FOR LEADING TAB
T2 FOR ALL " " etc.

Figure 3-6S
Counting Leading Tab or Space Characters

When an argument list contains a CHARACTERS argument, it should be the
last argument in the list. Since the CHARACTERS argument always
matches the field, it prevents the application of any of the following
arguments in the list. However, as the last argument in an argument
list, it can count the remaining characters in the field being
inspected. Consider the following illustration.

MOVE 0 TO Tl T2 T3 T4 TS.
INSPECT FIELD! TALLYING

Tl FOR LEADING SPACES
T2 FOR ALL " " BEFORE ","
T3 FOR ALL "+" BEFORE ","
T4 FOR ALL "-" BEFORE ","
TS FOR CHARACTERS BEFORE ",".

Figure 3-66
Counting the Remaining Characters

With the CHARACTERS Argument

If F!ELDl is known to contain a number in the form frequently used to
input data, it may contain a plus or minus sign, and a decimal point;
further, the number may possibly be preceded by spaces and terminated
by a comma. If this statement were compiled and executed, it would
deliver the following results:

Tl would contain the number of leading spaces,

T2 would contain the number of periods,

T3 would contain the number of plus signs,

T4 would contain the number of minus signs,

TS would contain the number of remaining characters (assumed to
be numeric), and

the sum of Tl through TS (plus 1) gives the character position
occupied by the terminating comma.

3-50

NON-NUMERIC CHARACTER HANDLING

3.9.6 The REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement
selectively replaces characters or groups of characters in the
designated field.

The REPLACING phrase names a search argument consisting of a character
string of one or more characters and a condition under which the
string may be applied to the field being inspected. Associated with
the search argument is the replacement value, which must be the same
length as the search argument. Each time the search argument finds a
match in the field being inspected, under the condition stated, the
replacement value replaces the matched characters.

A BEFORE/AFTER phrase may be used to delimit the area of the field
being inspected. A search argument applies only to the delimited area
of the field.

3.9.6.1 The Search Argument - The search argument of the REPLACING
phrase names a character string and a condition under which the
character string should be compared to the delimited string being
inspected. Figure 3-67 shows the format of the search argument:

I
ALL I
LEADING (

FIRST }

' CHARACTERS

Figure 3-67

{
identifier}

literal

Format of the Search Argument

I

The CHARACTERS form of the search argument specifies that every
character in the delimited string being inspected should be considered
to match an imaginary character that serves as the search argument.
Thus, the replacement value replaces each character in the delimited
string. (The replacement value, in this case, must be one character
long.)

The ALL, LEADING, and FIRST forms of the search argument specify a
particular character string, which may be represented by a literal or
an identifier. The seaLch argument character string may be any
length. However, each character of the argument must match a
character in the delimited string before the software considers the
argument matched.

• A literal character string must be either non-numeric or a
figurative constant (other than ALL literal). A figurative
constant, such as SPACE, ZERO, etc., represents a single
character and can be written as " ", "O", etc. with the same
effect. Since a figurative constant represents a single
character, the replacement value must be one character long.

• An identifier must represent an elementary item of DISPLAY
usage. It may be any class. However, if it is other than
alphabetic, the software performs an implicit redefinition of
the item. (This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed in Section
3.9.1.)

3-51

NON-NUMERIC CHARACTER HANDLING

The words ALL, LEADING, and FIRST supply conditions which further
delimit the inspection operation:

• The word ALL specifies that each match that the search
argument finds in the delimited string is to be replaced by
the replacement value. When a literal follows the word ALL,
it does not have the same meaning as the figurative constant,
ALL literal. (The figurative constant meaning of ALL "," is
a string of consecutive commas, as many as the context of the
statement requires.) ALL "," as a search argument of the
REPLACING phrase means, "replace each comma without regard to
adjacent characters."

• The word LEADING specifies that only adjacent matches of the
search argument at the left-hand end of the delimited
character string be replaced. At the first failure to match
the search argument, the software terminates the replacement
operation and causes the argument to become inactive.

• The word FIRST specifies that only the leftmost character
string that matches the search argument is to be replaced.
After the replacement operation, the search argument
contafning this condition becomes inactive.

3.9.6.2 The Replacement Value - Whenever the search argument finds a
match in the field being inspected, the matched characters are
replaced by the replacement value. The word BY followed by an
identifier or literal specifies the replacement value.

{
identifier}

BY
literal

Figure 3-68
Format of the Replacement Value

The replacement value must always be the same size as its associated
search argument.

If the replacement value is a literal character string, it must be
eitner a non-numeric literal or a figurative constant (other than ALL
literal). A figurative constant represents as many characters as the
length that the search argument requires.

If the replacement value is an identifier, it must be an elementary
item of DISPLAY usage. It may be any class. However, if it is other
than alphanumeric, the software conducts an implicit redefinition of
the item. (This redefinition is the same as the BEFORE/AFTER
redefinition discussed in Section 3.9.1.)

3.9.6.3 The Replacement Argument - The replacement argument consists
of the search argument (with its condition and character string), the
replacement value, and an optional BEFORE/AFTER phrase.

3-52

NON-NUMERIC CHARACTER HANDLING

ALL ";" BY SPACE

search/
argument /

replacement
value

BEFORE "."

~ BEFORE/AFTER
phrase (optional)

Figure 3-69
The Replacement Argument

3.9.6.4 The Replacement Argument List - One INSPECT ... REPLACING
statement can contain more than one replacement argument. Several
replacement arguments form an argument list, and the manner in which
the list is processed affects the action of any given replacement
argument.

The following examples show INSPECT statements with replacement
argument lists. The text following each one tells how that list will
be processed.

I INSPECT FIELDl REPLACING
ALL II " BY SPACE

I
' ALL " " BY SPACE .

ALL " . " BY SPACE. L_ '

Figure 3-70
Replacement Argument List that is

Active Over the Entire Field

These three replacement arguments all have the same replacement value,
SPACE, and are active over the entire field being inspected.

Thus, this statement replaces all commas, periods, and semicolons with
space characters; and leaves all other characters unchanged.

INSPECT FIELDl REPLACING
ALL "O" BY "l"
ALL "l" BY "O"

Figure 3-71
Replacement Argument List that

"Swaps" Ones for Zeroes and Zeroes for Ones

Each of these two replacement arguments has its own replacement value,
and is active over the entire field being inspected. This statement
exchanges zeros for ones and ones for zeroes, and leaves all other
characters unchanged.

NOTE

When a search argument finds a match in
the field being inspected, the software
replaces that character string and scans
to the next position beyond the replaced
characters. It ignores the remaining
arguments and applies the first argument
in the list to the character string in

3-53

NON-NUMERIC CHARACTER HANDLING

the new position. Thus, it never
inspects the new value that was supplied
by the replacement operation. Because
of this, the search arguments may have
the same values as the replacement
arguments with no chance of
interference.

~PECT FIELDl REPLACING
ALL "O" BY "l" BEFORE SPACE
ALL "l" BY "O" BEFORE SPACE. I

Figure 3-72
Replacement Argument List that

Becomes Inactive with the
Occurrence of a Space Character

This sample statement is identical to the statement in Figure 3-71,
except that, here, the first occurrence of a space character in FIELDl
causes both arguments to become inactive.

INSPECT FIELDl REPLACING
ALL "O" BY "l" BEFORE SPACE
ALL "l" BY "O" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE.

Figure 3-73
Argument List with Three Arguments

That Become Inactive with the
Occurrence of a Space

Just as in the argument list in Figure 3-72, the first space character
causes all of these replacement arguments to become inactive. This
argument list exchanges zeroes for ones, ones for zeroes, and
asterisks for all other characters that are in the delimited area.

If the BEFORE phrase is removed from the third argument, that argument
will remain active across all of FIELDl. Within the area delimited by
the first space character, the third argument replaces all characters
except ones and zeroes with asterisks. Beyond this area, it replaces
all characters (including the space that delimited FIELDl for the
first two arguments and any zeroes and ones) with asterisks.

3.9.6.5 Interference in Replacement Argument Lists - When several
search arguments that are active at the same time contain one or more
identical characters, they may interfere with each other, and
consequently have an effect on the replacement operation. This
interference of one search argument with the matching of other search
arguments is similar to the interference that occurs between tally
arguments.

The action of a search argument is never affected by the BEFORE/AFTER
delimiters of other arguments, since the software scans for delimiter
matches before it scans for replacement operations.

The action of a search argument is never affected by the characters of
any replacement value, since the scanner does not inspect the replaced
characters again during execution of the INSPECT statement.

3-54

NON-NUMERIC CHARACTER HANDLING

Interference between search arguments, therefore, depends on the order
of the arguments, the values of the arguments, and the active-inactive
status of the arguments. (The discussion in Section 3.9.5.4
Interference in Tally Argument Lists, applies, generally, to
replacement arguments as well.)

The following rules will help minimize interference in replacement
argument lists:

1. Place search arguments with LEADING or FIRST conditions at
the start of the list;

2. Place several arguments with the CHARACTERS condition at the
end of the list;

3. Consider, very carefully, the order of
search arguments that contain one
characters.

3.9.7 Common Errors, INSPECT Statement

appearance of any
or more identical

The most common errors made when writing INSPECT statements are:

e Leaving the FOR out of an INSPECT ... TALLYING statement.

• Using the word "WITH" instead of "BY" in the REPLACING
phrase.

• Failing to initialize the tally counter.

-.. Omitting the word n 7\ TT n ,.... ,.. •
rl.J..J.U c. '::;:j • •

INSPECT FIELDl TALLYING TLY FOR SPACES.

3-55

CHAPTER 4

NUMERIC CHARACTER HANDLING

This chapter discusses numeric class data and the COBOL operations
that can be performed on numeric data items. It is assumed that you
have read Chapter 3, and that you understand the concept of COBOL data
classes.

4.1 USAGES

The USAGE of a numeric class item specifies the form in which the data
is stored in memory. PDP-11 COBOL has four formats for numeric data
storage: DISPLAY (which is equivalent to DISPLAY-6 and DISPLAY-7),
COMPUTATIONAL (abbreviated COMP) I COMPUTATIONAL-6 (abbreviated
COMP-6) , and COMPUTATIONAL-3 (abbreviated COMP-3) •

4 .1.1 DISPLAY

Items with DISPLAY usage are stored as strings of characters (bytes)
in decimal radix with an assumed decimal point and optional sign.

4.1.2 COMPUTATIONAL

COMPUTATIONAL usage is the standard PDP-11 binary format. A COMP item
is stored as a binary value with an assumed decimal scaling position;
it is automatically SYNCHRONIZED on a word boundary and stored in
memory (in one, two, or four words) as follows:

PICTURE RANGE

S(9) to S9(4)
S9(5) to S9(9)
S9(11J) to S9(18)

STORAGE

1 word (2 bytes)
2 words (4 bytes)
4 words (8 bytes)

Figure 4-1 indicates the significance of each byte in a COMP data item
by the number in parentheses. For example, "(l)" indicates that the
byte contains the lowest-valued bits. Observe that the computer
address (the first-referenced byte) of each COBOL data item
corresponds to the low byte of the least significant word.

4-1

NUMERIC CHARACTER HANDLING

The number in parentheses also indicates the order of characters if
the data item is redefined as an alphanumeric item. Consider an
example of a two-word COMP item:

i1 COMP-ITEM PIC 9(9) USAGE IS COMP.
i1 GROUP-ITEM REDEFINES COMP-ITEM.

i3 CHARACTER-ITEM PIC X OCCURS 4 TIMES.

The subscripts of CHARACTER-ITEM correspond to the numbers in
parentheses in Figure 4-1.

NOTE

The internal formats of one-word COMP
and COMP-6 data items are identical.

addressed
word

high low
byte byte
(2) (1)

one-word COMP data item

addressed I next
word word

high low high low
byte byte byte byte
(2) (1) (4) (3}

two-word COMP data item

addressed next next next
word word word word

high low high low high low high
byte byte byte byte byte byte byte
(2) (1) (4) (3) (6) (5) (8)

four-word COMP data item

Figure 4-1
Memory Storage of COMP Data Items

4-2

low
byte
(7)

NUMERIC CHARACTER HANDLING

4.1.3 COMPUTATIONAL-6

NOTE

COMP-6 is temporarily defined for
compatibility with the COMP data type in
PDP-11 COBOL releases prior to Version
4.ii. Its use is not recommended except
for converting data files containing
data items defined as COMP in earlier
releases of PDP-11 COBOL. COMP-6 is not
compatible with the standard binary data
types.

A COMP-6 item is stored as a binary value with an assumed decimal
scaling position; it is automatically SYNCHRONIZED on a word boundary
and stored in memory (in one, two, three, or four words) as follows:

PICTURE RANGE STORAGE

s (9) to S9(4) 1 word (2 bytes)
89 (5) to 89(9) 2 words (4 bytes)
89 (li) to S9(14) 3 words (6 bytes)
S·9 (15) to S9(18) 4 words (8 bytes)

Figure 4-2 indicates the significance of each byte in a COMP-6 data
item by the number in parentheses. For example, "(l)" indicates that
the byte contains the lowest-valued bits. Note that the computer
address (the first-referenced byte) of each COBOL data item
corresponds to the low byte of the most significant word.

The number in parentheses does not indicate the order of characters if
the data item is redefined -a5 an alphanumeric item. Consider an
example of a four-word COMP-6 item:

i1 COMP-6-ITEM PIC 9(16) USAGE IS COMP-6.
i1 GROUP-ITEM REDEFINES COMP-6-ITEM.

~3 CHARACTER-ITEM PIC X OCCURS 8 TIMES.

The occurrences of the subscripted data item CHARACTER-ITEM map into
memory storage as follows:

OCCURRENCE OF
CHARACTER-ITEM

1
2
3
4
5
6
7
8

4-3

BYTE (N) IN
FIGURE 4-2

(7)
(8)
(5)
(6)
(3)
(4)
(1)
(2)

NUMERIC CHARACTER HANDLING

NOTE

The internal formats of one-word COMP
and COMP-6 data items are identical.

addressed
word

high low
byte byte
(2) (1)

one-word COMPUTATIONAL-6 data item

addressed next I word word

high low high low
byte byte byte byte
(4) (3) (2) (1)

two-word COMPUTATIONAL-6 data item

addressed next next
word word word

high low high low high low
byte byte byte byte byte byte
(6) (5) (4) (3) (2) (1)

three-word COMPUTATIONAL-6 data item

addressed next next next
word word word word

n; nn low high low l-.irrn low high .&..&.•":Ja. '::::t ... "

byte byte byte byte byte byte byte
(8) (7) (6) (5) (4) (3) (2)

four-word COMPUTATIONAL-6 data item

Figure 4-2
Memory Storage of COMP-6 Data Items

4-4

low
byte
(1)

NUMERIC CHARACTER HANDLING

4.1.4 COMPUTATIONAL-3

COMP-3 specifies packed-decimal data items. They are stored as two
decimal digits per byte (byte-aligned) with an assumed decimal scaling
position. The sign is contained in the rightmost half (four bits) of
the rightmost byte.

The maximum size of a COMP-3 item is 18 decimal digits, regardless of
the decimal scaling position. In the following example, both NUM-1
and NUM-2 represent COMP-3 items of maximum size:

j3 NUM-1 PIC S9(18) USAGE IS COMP-3 .
.0'3 NUM-2 PIC S9(6)V9(12) USAGE IS COMP-3.

The description of a COMP-3 data item must have a sign in its PICTURE
character-string.

When you specify an even number of digits, the value zero is stored in
the leftmost four bits of the leftmost byte.

Signs resulting from operations in which the receiving item is
specified as COMP-3 are:

"+"
"-"

binary ll.0'.0'
binary ll.0'1

octal 14
octal 15

The following signs are also recognized as valid, but they are not
generated as a result of program operations:

Positive signs- binary iin, octal 12
binary ll.0'.0'' octal 14
binary lll.0'' octal 16
binary llll, octal 17

Negative signs- binary ljll, octal 13
binary ll.0'1, octal 15

Figure 4-3 represents the memory storage of COMP-3 data items of one,
two, and three digits:

1st byte

5 +

PICTURE 89
value: +5

1st

.0'

byte 2nd byte

3 2

PICTURE S9(2)
value: -32

-

Figure 4-3

1st

2

byte 2nd byte

6 2

PICTURE S9(3)
value: +262

+

Memory Storage of COMP-3 Data Items

4-5

NUMERIC CHARACTER HANDLING

4.2 DECIMAL SCALING POSITION

The assumed decimal scaling position, or scaling factor, is not stored
as part of an actual numeric value. However, it is used by the OTS to
control operations on numeric data items. Consider the following
field description:

~l ORDER-PRICE PIC 99V99 COMP VALUE 12.34.

PDP-11 COBOL stores this item as a 1-word binary number. The word
contains the integer value 1234 and anotner location contains ~ne
scaling faptor. In this example, the scaling factor records the fact
that this integer has two decimal fractional positions. Thus, the
COBOL OTS knows that the stored binary integer is l~~ times larger
than the programmer intends it to be.

If the compiler encounters the following statement:

ADD 1 TO ORDER-PRICE.

it generates instructions to add a 1 to the 1234 in ORDER-PRICE. The
OTS, however, scales the literal 1 up by two decimal places and adds
the resultant literal, l~~, to the number in ORDER-PRICE. Thus, after
the ADD operation, ORDER-PRICE contains the new value 1334 (which is
actually 13.34 with the stored decimal scaling position).

Thus, the PDP-11 COBOL compiler and OTS manipulate the data in
DISPLAY, COMP, COMP-6, and COMP-3 data items in much the same way.
All four usages have exactly the same accuracy and precision, and can
be freely mixed in a program. To illustrate, if a DISPLAY usage
number and a COMP usage number are both involved in the same
arithmetic statement, the OTS converts them to a common radix with no
loss of information. It also converts the result, if necessary, with
no loss of significance.

The only effect of specifying a binary or packed-decimal usage is that
it reduces the space required for most numbers and can speed up the
execution of arithmetic statements.

4.3 SIGN CONVENTIONS

COMP-3 data items must be signed; however, DISPLAY, COMP, and COMP-6
numeric items can be signed or unsigned. Unsigned numbers can contain
values that range from zero to the largest positive value allowed by
their declared precision. Negative values are not allowed. All
PDP-11 COBOL arithmetic operations yield signed results. When the OTS
must store such a result, whether positive or negative, in an unsigned
data item, it stores only the absolute value of the result. Thus,
unsigned items always contain zero or positive values.

This guide does not recommend unsigned numbers for general use. They
are usually a source of programming errors, and are handled less
efficiently than signed quantities by the OTS.

Signed quantities always contain a. numeric value and an operational
sign. The OTS stores the sign with the numeric value in a variety of
ways depending on the usage of the item and the presence of the SIGN
clause.

4-6

NUMERIC CHARACTER HANDLING

NOTE

If numeric data is read into a field
described using the picture character s,
then that data must include an
operational sign of the appropriate
format to pass the NUMERIC test.

PDP-11 COBOL always stores signed COMP and COMP-6 items in two's
complement binary form. Thus, the high-order bit indicates the sign
of the item. Sign representation for COMP-3 data items is described
in Section 4.1.4.

PDP-11 COBOL always stores signed DISPLAY items as a sequence of byte
positions containing numeric ASCII characters. It may include the
sign in the high-order byte, the low-order byte, or as a separate,
extra, byte on either the high-order or low-order end of the item.

When the OTS stores the sign as part of a byte that also contains a
numeric digit, the sign causes a value change in that byte and, hence,
changes the value of the numeric digit. Table 4-1 shows the actual
ASCII character that results when a numeric value and a sign share the
same byte.

[

+
SIGN

-

Table 4-1
The Resulting ASCII Character From a
Sign and Digit Sharing the Same Byte

I DIGIT VALUE

~ 1 2 3 4 5 6

t A B c D E F

l J K L M N 0

7 8 9

G H I

p Q R

A byte containing a +~ stores as an octal 173, which prints as either
a tor a [depending on the printing device.

A byte containing a -~ stores as an octal 175, which prints as either
a l or a] depending on the printing device.

When the OTS stores the sign as a separate distinct character, the
actual ASCII character that it stores is the graphic plus sign (octal
~53) or the graphic minus sign (octal ~55).

4-7

NUMERIC CHARACTER HANDLING

4.4 ILLEGAL VALUES IN NUMERIC FIELDS

All PDP-11 COBOL arithmetic operations store legal values in their
result fields. However, it is possible, by reading invalid data or
through redefinition and group moves, to store data in numeric fields
that do not obey the descriptions of those fields. (For example, it
is possible to place signed values into unsigned fields, and to place
non-numeric or improperly signed data into signed numeric DISPLAY
fields.)

The results of arithmetic operations that use invalid data in numeric
fields are unpredictable.

4.5 TESTING NUMERIC FIELDS

COBOL provides the following three kinds of tests for evaluating
numeric fields:

1. Relation tests, that compare the field's contents to another
numeric value;

2. Sign tests, that examine the field's sign to see if it is
positive or negative; and,

3. Class tests, that inspect the field's digit positions for
legal numeric values.

The following sub-sections explain these tests in detail.

4.5.1 Relation Tests

A relation test compares two numeric quantities and determines if the
specified relation between them is true. For example, the following
statement compares FIELDl to FIELD2 and determines if the numeric
value of FIELDl is greater than the numeric value of FIELD2. If so,
the relation condition is true and program control takes the True path
of the statement.

IF FIELDl > FIELD2 ...

Either field in a relation test may be a numeric literal or the
figurative constant, ZERO. (The numeric literals ~' ~~' ~.~, or ZERO
are all equivalent, both in meaning and in execution speed.)

The sizes of the fields in a numeric relation test do not have to be
the same (this includes the sizes of numeric literals). The
comparison operation aligns both fields on their assumed decimal
positions (through actual scaling operations in temporary locations or
by accessing the individual digits) and supplies leading or trailing
(as required) zeroes to either or both fields.

The comparison operation always compares the signs of non-zero fields
and considers positive fields to be greater than negative fields.
However, since it does not compare them, positive zeroes and negative
zeroes are equal. (A negative zero could arrive in a field through
redefinition of the field or a MOVE to a group item.) Further, the
operation considers unsigned numeric fields to be positive.

4-8

NUMERIC CHARACTER HANDLING

The form of representation of the number (COMP, COMP-6, COMP-3, or
DISP-LAY usage) and the various methods of storing DISPLAY usage signs
have no effect on numeric relation tests.

For comparison purposes, the operation converts any illegal characters
stored in DISPLAY usage fields to zeroes. It does not, however, alter
the actual values in those fields.

4.5.2 Sign Tests

The sign test compares a numeric quantity to zero and determines if it
is greater (positive), less (negative), or equal (zero). Both the
relation test and the sign test can perform this function. For
example, consider the following relation test:

IF FIELDl > ~ •••

Now consider the following sign test:

IF FIELDl POSITIVE ...

Both of these tests accomplish the same thing and would always arrive
at the same resu~t. The sign test, however, shortens the statement
and shows, at a glance, that it is testing the sign.

Table 4-2 shows the sign tests and their equivalent relation tests as
applied to FIELDl.

SIGN TEST

IF FIELDl POSITIVE . . .
IF FIELDl NOT POSITIVE
IF FIELDl NEGATIVE ...
IF FIELDl NOT NEGATIVE
IF FIELDl ZERO ...
IF FIELDl NOT ZERO ...

Table 4-2
The Sign Tests

EQUIVALENT

IF FIELDl
... IF FIELDl

IF FIELDl
... IF FIELDl

IF FIELDl
IF FIELDl

RELATION TEST

> ~ ...
NOT > ~ . ..
< ~ . ..
NOT < ~ . ..
= ~ . ..
NOT = ~ . ..

Sign tests have no execution speed advantage over relation tests. The
compiler actually substitutes the equivalent relation test for every
correctly written sign test. (Sections 4.2.1 and 4.2.2 discuss the
acceptable sign values and the treatment of illegal sign values.)

4-9

NUMERIC CHARACTER HANDLING

4.5.3 Class Tests

The class test interrogates a numeric field to determine if it
contains numeric or alphabetic data, and uses the result to alter the
flow of control in a program. For example, the following statement
determines if FIELDl contains numeric data. If so, the test condition
is true and program control takes the true path of the statement.

IF FIELDl IS NUMERIC

When reading in newly prepared data, it is often desirable to check
certain fields for valid values. Relation tests and sign tests can
only determine if the field's contents are within a certain range, and
these tests both treat illegal characters in DISPLAY usage items as
zeroes. Thus, some data preparation errors could pass both of these
tests.

The NUMERIC class test checks numeric (or alphanumeric) DISPLAY usage
fields for valid numeric digits.

If the field being tested contains a sign (whether carried as an
overpunch or as a separate chara~ter), the test checks it for a valid
sign value. If the character position carrying the sign contains an
illegal sign value, the NUMERIC class test rejects the item and
program control takes the false path of the IF statement. If the
character position contains a valid sign and all digit positions in
the field contain valid numeric digits, the NUMERIC class test passes
the item and program control takes the true path of the IF statement.

The ALPHABETIC class test checks alphabetic (or alphanumeric) fields
for valid alphabetic characters and the space character. If all of
the character positions of the field contain ASCII characters (A-Z or
space), the item passes the ALPHABETIC class test and causes program
control to take the true path of the IF statement. (For further
information concerning the ALPHABETIC class test, see Chapter 3,
Section 3.3.2.)

4.6 THE MOVE STATEMENT

The MOVE statement moves the contents of one field into another. The
following sample MOVE statement moves the contents of FIELDl into
FIELD2.

MOVE FIELDl TO FIELD2.

Section 3.5 discusses the basic MOVE statement. This section
considers MOVE statements as applied to numeric fields. These MOVE
statements can be grouped into the following three categories:

1. Group moves,

2. Elementary moves with numeric receiving fieids, and

3. Elementary moves with numeric edited receiving fields.

The following three sub-sections (4.6.l, 4.6.2, and 4.6.3) discuss
each of these categories separately.

4-10

NUMERIC CHARACTER HANDLING

4.6.1 Group Moves

The software considers a move to be a group move if either the sending
field or the receiving field is a group item. It treats both fields
in a group move as alphanumeric class fields and performs the move as
an alphanumeric to alphanumeric elementary move.

If either field in a group move is a numeric elementary item, the OTS
treats the storage area occupied by that item as a field of
alph?numeric bytes; thus, it ignores the USAGE, sign, and decimal
point location characteristics of the numeric item.

Only the item's allocated size, in bytes, affects the move operation.
The OTS considers a separate sign character to be part of the item and
moves it with the numeric digit positions.

4.6.2 Elementary Numeric Moves

If both fields of a MOVE statement are elementary items and the
rece1v1ng field is numeric, the OTS considers the move to be an
elementary numeric move. (The sending field may be either numeric or
alphanumeric.) The numeric receiving field may be DISPLAY, COMP,
COMP-6, or COMP-3 usage. The elementary numeric move converts the
data format of the sending field to the data format of the receiving
field.

An alphanumeric sending field may be either an elementary data item or
any alphanumeric literal other than the figurative constants SPACE,
QUOTE, LOW-VALUE, HIGH-VALUE, or ALL "literal". The elementary
numeric move accepts the figurative constant ZERO and considers it to
be equivalent to the numeric literal i. It treats alphanumeric
sending fields as unsigned integers of DISPLAY usage.

If necessary, the numeric move operation converts the sending field to
the data format of the receiving field and aligns the sending field's
decimal point on that of the rece1v1ng field. It then moves the
sending field digits to their corresponding receiving field digits.

If the sending field has more digit positions than the rece1v1ng
field, the decimal point alignment operation truncates the sending
field, with the resultant loss of digits. The end truncated
(high-order or low-order) depends upon the number of sending field
digit positions that find matches on each side of the recelVJng
field's decimal point. If the rece1v1ng field has fewer digit
positions on both sides of the decimal point, the operation truncates
both ends of the sending field. Thus, if a field described as PIC
999V999 is moved to a field described as PIC 99V99, it loses one digit
from the left end and one from the right end. Figure 4-4 illustrates
this alignment operation (the carat (~) indicates the stored decimal
scaling position):

4-11

NUMERIC CHARACTER HANDLING

g1 AMOUNTl PIC 99V99.

MOVE 123.321 TO AMOUNTl.

Before execution

After execution 23 32

Figure 4-4
Truncation Caused By Decimal Point Alignment

If the sending field has fewer digit positions than the receiving
field, the move operation supplies zeroes for all unfilled digit
positions. Figure 4-5 illustrates this alignment (the carat ()
indicates the stored decimal scaling position):

g1 TOTAL-AMT PIC 999V99.

MOVE 1 TO TOTAL-AMT.

Before execution

After execution

Figure 4-5
Zero Filling Caused By Decimal Point Alignment

The following statement produces the same results:

MOVE JJl.JJ TO TOTAL-AMT.

Consider the following two MOVE statements and their resultant
truncating and zero-filling effects:

STATEMENT

MOVE JJlJJ TO TOTAL-AMT

MOVE "JJlJJ" TO TOTAL-AMT

TOTAL-AMT AFTER EXECUTION

Literals with leading or trailing zeroes have no significant advantage
in space or execution speed with PDP-11 COBOL, and· the zeroes are
often lost by decimal point alignment.

The MOVE statement's receiving field dictates how the sign will be
moved. A signed DISPLAY usage receiving field causes the sign to be
moved as a separate quantity. An unsigned DISPLAY usage rece1v1ng
field causes no sign movement. A COMP or COMP-6 usage receiving
field, whether signed or unsigned, causes the sign to be moved;
however, if the receiving field is unsigned, the OTS sets its value to
absolute. A COMP-3 receiving field always causes the sign to be
moved.

4-12

NUMERIC CHARACTER HANDLING

4.6.3 Elementary Numeric Edited Moves

The PDP-11 COBOL object time system considers an elementary numeric
move to a receiving field of the numeric edited category to be an
elementary numeric edited move. The sending field of an elementary
numeric edited move may be either numeric or alphanumeric and, if
numeric, its usage can be DISPLAY, COMP, COMP-6, or COMP-3. The OTS
treats alphanumeric sending fields in numeric edited moves as unsigned
DISPLAY usage integers.

The OTS considers the receiving field to be numeric edited category if
it is described with a BLANK WHEN ZERO clause, or a combination of the
following symbols:

B Space insertion position;

P Decimal scaling position;

V Location of assumed decimal point;

Z Leading numeric character position to be replaced by a space
if the position contains a zero;

g Zero insertion position;

9 Position contains a numeric character;

I Slash insertion position;

Comma insertion position;

Decimal point insertion position;

* Leading numeric character position to be replaced by an
asterisk if the position contains a zero;

+ Positive editing sign control symbol;

Negative editing sign control symbol;

CR Credit editing sign control symbol;

DB Debit editing sign control symbol;

cs Currency symbol ($) insertion position.

A numeric edited field may contain 9, V, and P,
those symbols without an editing character
numeric edited.

but combinations of
do not make the field

The numeric edited move operation first converts the sending field to
DISPLAY usage and aligns both fields on their decimal point locations,
truncating or padding (with zeroes) the sending field until it
contains the same number of digit positions on both sides of the
decimal point as the receiving field. It then moves the resulting
digit values to the receiving field digit positions following the
COBOL editing rules.

4-13

NUMERIC CP.ARACTER HANDLING

The COBOL editing rules allow the numeric edited move operation to
perform any of the following editing functions:

• Suppress leading zeroes with either spaces or asterisks;

• Float a currency sign and a
suppressed zeroes, inserting
field;

plus or minus sign through
the sign at either end of the

• Insert zeroes and spaces;

• Insert commas and a decimal point.

Figure 4-6 illustrates several of these functions with the statement,
MOVE FLD-B TO TOTAL-AMT. (Assume that FLD-B is described as
S9999V99.)

FLD-B

111123 1111
111185 90
1234 1111
111112 34
11111111 3 4
1234 1111
111112 34
111112 34
11111111 1111
111112 3M
111Jl2 34

TOTAL-AMT
PICTURE STRING

ZZZZ.99
++++.99

Z,ZZZ.99
$,$$$.99
$,$$9.99

$$,$$$.99
$$9,999.99

$$$$,$$$.99
$$$,$$$.$$

++++.99
$***,***.99

Figure 4-6
Numeric Editing

CONTENTS AFTER

23.1111
-85.96

1,234.1111
$12.34

$11. 3 4
$1,234.1111
$11,,012.34

$12.34

-12.34
$*****12.34

MOVE

The currency symbol ($) and the editing sign control symbols (+ -) are
the only floating symbols. To float them, enter a string of two or
more occurrences of the symbol.

4.6.4 Common Errors, Numeric MOVE Statements

The most common errors made when writing numeric MOVE statements are:

• Placing an incorrect number of repl~cement characters in a
numeric edited item.

• Moving non-numeric data into numeric fields with group moves.
• Trying to float the $ or + insertion characters past the

decimal point to force zero values to appear as .1111 instead of
spaces. (Use $$.99 or ++.99.)

• Forgetting that the $ or + insertion characters require an
aaa1~1onal pos1~1on on the leftmost end that cannot be
replaced by a digit (unlike the * insertion character which
can be completely replaced) .

4-14

NUMERIC CHARACTER HANDLING

4.7 THE ARITHMETIC STATEMENTS

The COBOL arithmetic statements, ADD, SUBTRACT, MULTIPLY, DIVIDE, and
COMPUTE allow COBOL programs to perform simple arithmetic operations
on numeric data.

This section covers the use of COBOL arithmetic statements. The first
five sub-sections (4.7.1 through 4.7.5} discuss the statements' common
features, and the following five (4.7.6 through 4.7.li) discuss each
statement individually.

4.7.1 Intermediate Results

Most forms of the arithmetic statements perform their operations in
temporary work locations, then move the results to the receiving
fields, aligning the decimal points and truncating or zero filling the
resultant values.

This temporary work field, called the intermediate result field, has a
maximum size of 18 numeric digits. The actual size of the
intermediate result field varies for each stateme~t, and is determined
at compile
statement.

time based on the s; '70 c of the operands used

When the compiler determines that the size of the intermediate result
field exceeds 18 digits, it truncates the excess high-order digits.
Thus, a program that requests a multiplication operation between the
following two fields,

PIC 9(18) and PIC V99.

(which would otherwise cause
intermediate result field
intermediate result field

PIC 9(16)V99.

the compiler to set up a 2i-digit
9(18}V99) actually causes the following

PDP-11 COBOL truncates high-order digits or low-order digits to the
right of the decimal point, based on the assumption that most large
data declarations are larger than ever need be, so zeroes occupy most
of their high-order digit positions. Numeric data may be declared as
PIC 9(12) or PIC 9(15) but the values that are placed in these fields
will probably not exceed nine digits of range (1 billion) in most
applications.

When using large numbers (or numbers with many decimal places) that
are close to 18 digits long, examine all of the arithmetic operations
that manipulate those numbers to determine if truncation will occur.

If truncation is a possibility, reduce the size of the number by
dividing it by a power of lj prior to the arithmetic operation. (This
scaling down operation causes the low-order end to lose digits, but
these are probably less critical.} Then, after the arithmetic
operation, multiply the result by the same power of lj.

To save the low-order digits in such an operation, move the field to a
temporary location before the scaling DIVIDE, perform separate,
identical arithmetic operations on both the original and the temporary
fields, then, after the scaling MULTIPLY, combine their results.

4-15

NUMERIC CHARACTER HANDLING

4.7.2 The ROUNDED Phrase

Rounding-off is an important tool with most arithmetic operations.
The ROUNDED phrase causes the OTS to round-off the results of COBOL
arithmetic operations.

The phrase may be used on any COBOL arithmetic statement.
Rounding-off takes place only when the ROUNDED phrase requests it, and
then only if the intermediate result has more low-order digits than
the result field.

PDP-11 COBOL rounds-off by adding a 5 to the leftmost truncated digit
of the absolute value of the intermediate result before it stores that
result.

Consider the following illustration and assume an intermediate result
of 54321. 2468:

Coding: J
.01 FLD-A PIC S9(5)V9999.
.01 FLD-B PIC S9(5)V99. ...

ADD FLD-A TO FLD-B ROUNDED. ...
Intermediate result field: I

PIC S9C6)V9999.

The ROUNDED operation: J Truncated
digits

Intermediate result field: ,054321. 24 6
,LEFT-MOST

ROUNDED: (ADD) .,0,0 5,0 truncated
FLD-B's ROUNDED result: ,054321. 25 18 digit

Figure 4-7
Rounding Truncated Decimal Point Positions

The following ROUNDING example rounds-off to the decimal scaling
position (P). Assume an intermediate result of 2468g. (Section 4.5.4
discusses the GIVING phrase in numeric operations.)

Coding:

,01 AMOUNTl PIC 9999.
,01 AMOUNT2 PIC 9999PP.

MULTIPLY AMOUNTl BY 1.0

GIVING AMOUNT2 ROUNDED.

Figure 4-8
Rounding Truncated Decimal Scaling Positions

4-16

NUMERIC CHARACTER HANDLING

Intermediate re-sul t field: J
PIC 999999.

The ROUNDED operation: 1
Truncated

Intermediate result field: i246 80. digits

ROUNDED (ADD) :

AMOUNT2's ROUNDED result: 0247 3i.

Figure 4-8 (continued)
Rounding Truncated Decimal Scaling Positions

4.7.3 The SIZE ERROR Phrase

The SIZE ERROR phrase detects the loss of high-order non-zero digits
in the results of COBOL arithmetic operations.

The phrase may be used on any COBOL arithmetic statement.

When the execution of a statement with no SIZE ERROR phrase results in
a size error, the OTS truncates the high-order digits and stores the
result without notifying the user. When the execution of a statement
with a SIZE ERROR phrase results in a size error, the OTS discards the
entire result (it does not alter the receiving fields in any way) and
executes the SIZE-ERROR imperative phrase.

If the statement contains both ROUNDED and SIZE ERROR phrases, the OTS
rounds the result before it checks for a size error.

The phrase cannot be used on numeric MOVE statements. Thus, if a
program moves a numeric quantity to a smaller numeric field, it may
inadvertently lose high-or.der digits. For exampl~, consider the
following MOVE of a field to a smaller field:

i1 AMOUNT-A PIC 9(8)V99.

i1 AMOUNT-B PIC 9(4)V99.

MOVE AMOUNT-A TO AMOUNT-B.

This MOVE operation always loses four of AMOUNT-A's high-order digits.
Either of the following two statements could determine whether these
digits are zero or non-zero, and could be tailored to any size field:

1. IF AMOUNT-A NOT > 9999.99
MOVE AMOUNT-A TO AMOUNT-B
ELSE ...

2. ADD ZERO TO AMOUNT-A GIVING AMOUNT-B
ON SIZE ERROR ...

4-17

NUMERIC CHARACTER HANDLING

Both of these alternatives allow the MOVE operation to occur only if
AMOUNT-A loses no significant digits. If the value in AMOUNT-A is too
large, both alternatives avoid altering AMOUNT-B and take the
alternative execution path.

4.7.4 The GIVING Phrase

The GIVING phrase moves the intermediate result field of an arithmetic
operation to a receiving field. (The phrase acts exactly like a MOVE
statement with the intermediate result serving as a sending field and
the data item following the word GIVING (in the statement) serving as
a receiving field.)

The phrase may be used on the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements.

If the data item following the word GIVING is a numeric edited field,
the OTS performs the editing the same way it does for MOVE statements.

4.7.5 Multiple Operands in ADD and SUBTRACT Statements

Both the ADD and SUBTRACT statements may contain a string of more than
one operand preceding the word TO, FROM, or GIVING.

Multiple operands in either of these statements cause the OTS to add
the string of operands together and use the intermediate result of
that operation as a single operand to be added to or subtracted from,
the receiving field.

The following three equivalent coding groups illustrate how the
software executes the multiple operand statements:

1. Statement:

Equivalent coding:

2. Statement:

Equivalent coding:

3. Statement:

Equivalent coding:

ADD A B C D TO E F G H.

ADD A B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING TEMP.
ADD TEMP, E, GIVING E.
ADD TEMP, F GIVING F.
ADD TEMP, G GIVING G.
ADD TEMP, H GIVING H.

SUBTRACT A, B, C, FROM D.

ADD A, B, GIVING TEMP.
ADD TEMP, C GIVING TEMP.
SUBTRACT TEMP FROM D GIVING D.

ADD A B C D GIVING E.

ADD A B GIVING TEMP.
ADD TEMP C GIVING TEMP.
ADD TEMP D GIVING E.

4-18

NUMERIC CHARACTER HANDLING

(Just as with all COBOL statements, any commas in these statements are
optional.)

Only statement 3 may have a numeric edited receiving field, since it
is the only statement containing a GIVING phrase.

4.7.6 The ADD Statement

The ADD statement adds two or more operands together and stores the
result.

The statement may contain multiple operands (with
Format 3) and the ROUNDED and SIZE ERROR phrases.
in one of the following formats:

the exception of
It may be written

Format 1. ADD FIELDl ••• TO FIELD2 FIELD3 .•..

Format 2. ADD FIELDl FIELD2 ..• GIVING FIELD3 FIELD4

Format 3. ADD CORRESPONDING FIELDl TO FIELD2.

In Format 1, the receiving fields (FIELD2, FIELD3) are one of the
addends. These must not be in the numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are not one of the
addends. They may either be numeric or numeric edited. When using
this format, omit the word TO.

In Format 3, the receiving field (FIELD2) is one of the addends. Both
FIELDl and FIELD2 must be qroup items. The corresoondinq elements of
FIELDl are added to the corresponding elements of FIELD2.-

4.7.7 The SUBTRACT Statement

The SUBTRACT statement subtracts one, or the sum of two or more,
operands from another operand and stores the result.

The statement may contain multiple operands (with
Format 3) and the ROUNDED and SIZE ERROR phrases.
in one of the following formats:

the exception of
It may be written

Format 1. SUBTRACT FIELDl FROM FIELD2 FIELD3 .••.

Format 2. SUBTRACT FIELDl FROM FIELD2
GIVING FIELD3 FIELD4

Format 3. SUBTRACT CORRESPONDING FIELDl FROM FIELD2.

In Format 1, the rece1v1ng fields (FIELD2, FIELD3) are both the
subtrahend and the difference (the result). These must not be in the
numeric edited category.

In Format 2, the receiving fields (FIELD3, FIELD4) are used only to
store the result. They may be either numeric or numeric edited.

In Format 3, the receiving field (FIELD2) is both the subtrahend and
the difference (results). Both FIELDl and FIELD2 must be group items.
The corresponding elements of FIELD2.

4-19

NUMERIC CHARACTER HANDLING

4.7.8 The MULTIPLY Statement

The MULTIPLY statement multiplies one operand by another and stores
the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple receiving operands. It may be written in either of
the following formats:

Format 1. MULTIPLY FIELDl BY FIELD2, FIELD3 .••.

Format 2. MULTIPLY FIELDl BY FIELD2 GIVING FIELD3, FIELD4 •.•.

In Format 1,
multipliers.

the receiving fields (FIELD2, FIELD3) are also the
These must not be in the numeric edited category.

In Format
multiplier
edited.

2, the receiving
nor multiplicand.

fields (FIELD3, FIELD4) are neither
These may be either numeric or numeric

COBOL's "near English" format could cause a problem with the MULTIPLY
statement, since it is common to speak of multiplying a number
(multiplicand) by another number (multiplier) and to think of the
result as a new value for the multiplicand; thus:

MULTIPLY EARNINGS BY i.24.
Multiplier

Multiplicand

This statement is incorrect since the OTS stores the result in the
multiplier field, and this multiplier is a literal. The compiler
could diagnose this error, but would not diagnose it if the multiplier
were a data item. Consider this multiplier written as a data item:

MULTIPLY EARNINGS BY TAX-RATE.

The compiler would not diagnose this statement's error, and would
store the result of the operation in TAX-RATE. A good practice when
using MULTIPLY statements is to always write them in Format 2. This
ensures that the result is properly stored. The following two
statements safely capture their results:

MULTIPLY EARNINGS BY i.24 GIVING EARNINGS.

or

MULTIPLY EARNINGS BY TAX-RATE GIVING EARNINGS.

4-20

NUMERIC CHARACTER HANDLING

4.7.9 The DIVIDE Statement

The DIVIDE statement divides one operand into another and stores the
result.

The statement may contain the ROUNDED and SIZE ERROR phrases. With
the exception of Formats 4 and 5, it may not contain multiple
receiving operands. It may be written in any of the following
formats:

Format l. DIVIDE FIELDl INTO FIELD2 FIELD3

Format 2. DIVIDE FIELDl INTO FIELD2 GIVING FIELD3 FIELD4 ...
Format 3. DIVIDE FIELD2 BY FIELDl GIVING FIELD3 FIELD4
Format 4. DIVIDE FIELDl INTO FIELD2 GIVING FIELD3 REMAINDER

FIELD4.

Format 5. DIVIDE FIELDl BY FIELD2 GIVING FIELD3 REMAINDER
FIELD4.

In Format 1: the receiving fields (FIELD2: FIELD3) are also the
dividends. These must not be in the numeric edited category.

In Formats 2 and 3, the rece1v1ng fields (FIELD3, FIELD4 are
neither dividends nor divisor. These may be either numeric or numeric
edited.

In Formats 4 and 5, the receiving field (FIELD3) is neither a dividend
nor a divisor. FIELD4 is the remainder. The receiving field and the
remainder may be either numeric or numeric edited.

4.7.l~ The COMPUTE Statement

The COMPUTE statement computes the value of an arithmetic expression
and stores the value in the result.

The statement may contain the ROUNDED and SIZE ERROR phrases. It may
contain multiple receiving operands. The COMPUTE statement has the
following format:

COMPUTE FIELDl FIELD2 arithmetic-expression.

The receiving fields (FIELDl, FIELD2) may be either numeric or numeric
edited.

4.7.11 Common Errors, Arithmetic Statements

The most common errors made when using arithmetic statements are:

• Using an alphanumeric class field in an arithmetic statement.
The MOVE statement allows data movement between alphanumeric
class fields and certain numeric class fields, but arithmetic
statements require that all fields be numeric.

4-21

.

•

•

NUMERIC CHARACTER HANDLING

Writing the ADD or SUBTRACT
phrase, but attempting to
edited field.

statements
put the

without the GIVING
result into a numeric

Writing a Format 2 ADD statement with the word TO;
example:

For

ADD A TO B GIVING C.

• Subtracting a 1 from a numeric counter that was described as
an unsigned quantity, and testing for a value of less than
zero.

• Forgetting that the MULTIPLY statement,
phrase, stores the result back into
(multiplier).

without the GIVING
the second operand

• Performing a series of calculations in such a way as to
generate an intermediate result that is larger than 18 digits
when the final result will be fewer digits. (The programmer
should be careful to intersperse divisions with
multiplications or to drop non-significant digits that result
from multiplying large numbers (or numbers with many decimal
places) .

• Performing an operation on a field that contains a value
greater than the precision of its data description. This can
happen only if the field was disarranged by a group move or
redefinition.

• Forgetting that, in an arithmetic statment containing
multiple rece1v1ng fields, the ROUNDED phrase must be
specified for each receiving field that is to be rounded.

• Forgetting that, in an arithmetic statement containing
multiple receiving fields, the ON SIZE ERROR phrase, if
specified, applies to all rece1v1ng fields. Only those
receiving operands for which a size error condition is raised
are left unaltered. The ON SIZE ERROR imperative statement
is executed after all the receiving fields are processed by
the OTS.

4.8 ARITHMETIC EXPRESSION PROCESSING

COBOL provides language facilities for manipulating user-defined data
arithmetically. In particular, the language provides the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE and the facilities of
arithmetic expressions using the +, -, *, /, and ** operators. In
simple terms, a given arithmetic functionality may be expressed in one
of several ways. For example, consider a COBOL application in which
the total yearly sales of a salesman are to be computed as the sum of
the four individual sales quarters. Figure 4-9 illustrates one method
of expressing a solution to this problem in COBOL:

4-22

NUMERIC CHARACTER HANDLING

MOVE J TO TEMP.

ADD lST-SALES TO TEMP.

ADD 2ND-SALES TO TEMP.

ADD 3RD-SALES TO TEMP.

ADD 4TH-SALES TO TEMP GIVING TOTAL-SALES.

Figure 4-9 Explicit Programmer-Defined Temporary Work Area

In figure 4-9, the COBOL programmer chooses to use a series of single
ADD statements to develop the final value for TOTAL-SALES. In the
process of computing TOTAL-SALES, a COBOL data-name, called TEMP, is
used to develop the partial sums {i.e.,• intermediate results). The
important point here is that the programmer explicitly defines and
declares the temporary work area TEMP in the data division of the
COBOL program. That is, the attributes (i.e., class, USAGE, number of
integer and decimal places to be maintained) are specified explicitly
by the COBOL programmer.

Figure 4-lJ below illustrates another way of expressing a solution to
the problem:

ADD lST-SALES, 2ND-SALES, 3RD-SALES, 4TH-SALES
GIVING TOTAL-SALES.

Figure 4-lJ
Arithmetic Statement Intermediate Result Field Attributes

Determined from Composite of Operands

4-23

NUMERIC CHARACTER HANDLING

In this example, the programmer chooses to compute TOTAL-SALES with a
single ADD statement. Analogous to the previous example, an
intermediate result field is required to develop the partial sums of
the four quarterly sales quantities. In Figures 4-9, the programmer
is cognizant of this requirement, but chose to define the intermediate
result area TEMP explicitly in the data division of his COBOL program.
However, for the example in Figure 4-1~, the compiler defines the
intermediate result field in a manner transparent to the COBOL source
program. That is, the compiler allocates storage for and assigns
various attributes to this "transparent" intermediate result field
according to a well-defined set of rules defined by the COBOL language
specification. In particular, the attributes of
number-of-integer-places, number-of-decimal-places, and USAGE assigned
by the software to the intermediate result field are a function of the
composite of source operands in the ADD statement. (The reader should
read the PDP-11 COBOL Reference Manual for details concerning the
composite of operands for the arithmetic statements.) The important
point here is that the ANS-74 COBOL language standard prescribes rules
for determining the attributes of intermediate result fields for the
arithmetic statements, and the language processor, the PDP-11 COBOL
compiler, must implement those rules.

As a final example, consider the following solution to our problem:

COMPUTE TOTAL-SALES = !ST-SALES + 2ND-SALES + 3RD-SALES
+ 4TH-SALES.

Figure 4-11
Arithmetic Expression Intermediate Result Field

Attributes Determined by Implementor-Defined Rules

In Figure 4-11, the programmer solves the problem by using a single
CO~PUTE statement with an embedded arithmetic expression. Again, an
intermediate result field is required and, as in Figure 4-1~, is
defined by the software. However, in defining the attributes of
intermediate result fields for COBOL arithmetic expressions, the
ANS-74 COBOL language standard is not as helpful to the user as it
could be. In fact, the COBOL language standard gives almost complete
freedom to the implementor in defining the attributes of the
arithmetic expression intermediate result fields. The only rules
imposed by the ANS-74 COBOL language specifications are:

1. Arithmetic operations are to be combined without restrictions
on the composite of operands and/or receiving fields.

2. Each implementor will indicate techniques used in handling
arithmetic expressions.

4-24

NUMERIC CHARACTER HANDLING

Thus, the user can
implementations of
how the PDP-11 COBOL
result fields.

and should expect differences between various
ANS-74 COBOL. The rest of this section describes

compiler computes the sizes of intermediate

The compiler computes the size of an intermediate result field for
each component operation of an arithmetic expression. Each operation
can be stated as:

OPl OPR OP2

where:

OPl is the first operand

OPR is an arithmetic operator

OP2 is the second operand

The size of an intermediate result is described in terms of the number
of inceger places (IP) and the number of decimal places (DP). The
symbol DPEXP represents the maximum number of decimal places in the
entire arithmetic

OPR

+ and -

*

I

**

IP
DP

IP
DP

IP
DP

max(IP(OPl), IP(OP2)) + l
max (DP (OPl), DP (OP2))

IP(OPl) + IP(OP2)
DP(OPl) + DP(OP2)

IP(OPl) + DP(OP2)
max(DPEXP, max(DP{OPl), DP(OP2) + 1))

For exponents that convert to one-word values,
a OP2
b = OP2 + DP(OPl)

Otherwise,

and

a= 9, if IP(OP2) = l,
otherwise, a = 19

b DPEXP

IP IP(OPl) * a
DP max(DPEXP, DP(OPl) * b)

4-25

CHAPTER 5

TABLE HANDLING

5.1 INTRODUCTION

With COBOL, as with any other language, any data item to which the
program refers must be uniquely identified. This unique
identification of data items is usually accomplished by assigning a
unique name to each item. However, in many applications this is
tedious and inconvenient; often programs require too many names for
items that have different names but contain the same tvoe of
information. Tables provide a simple solution to this problem.
PDP-11 COBOL includes full table handling capabilities as outlined for
standard COBOL in the 1974 ANSI Standards.

A table is a repetition of one item (element) in memory. This
repetition is accomplished by the use of the OCCURS clause in the data
description entry. The literal value in the OCCURS clause causes the
software to duplicate the data description entry as many times as
indicated by that value, thus creating a matrix or table.

The elements may be initialized with the VALUE clause or with a
procedural instruction. They may contain synchronized or
unsynchronized data. They may be accessed only with subscripted
procedural instructions. A subscript is a parenthesized integer or
data name (with an integer value). The integer value represents the
desired occurrence of the element.

This chapter discusses how to set up tables and access them accurately
and efficiently. It attempts to cover any problems that may be
encountered while handling tables. Read it through carefully before
setting up tables with PDP-11 COBOL. Section 6 of the PDP-11 COBOL
Reference Manual for the PDP-11 contains reference information on the
individual table handling instructions (OCCURS, USAGE IS INDEX, SET,
and SEARCH).

5.2 DEFINING TABLES

To define a table with PDP-11 COBOL, simply complete a standard data
description for one element of the table and follow it with an OCCURS
clause. The OCCURS clause contains an integer which dictates the
number of times that element will be repeated in memory, thus creating
a table.

5-1

TABLE HANDLING

The OCCURS phrase has two formats:

Format 1

OCCURS integer-2 TIMES

[{

ASCENDING }
KEY IS data-name-2

DESCENDING
[, da ta-name-3] ... J

[INDEXED BY index-name-1 [, index-name-2] ... J

Format 2

OCCURS integer-! TO integer-2 TIMES DEPENDING ON data-name-1

[{

ASCENDING }
KEY IS data-name-2

DESCENDING
[, data-name-3] ••• J

[INDEXED BY index-name-! [, index-name-2] ... J
In either format, the system generates a buffer large enough to
accommodate integer-2 occurrences of the data description. Therefore,
the amount of storage allocated in either case is equal to the amount
of storage required to repeat the data entry integer-2 times.

The software will automatically map the elements into memory. When
mapping a table into memory, the software follows the rules for
mapping which depend on whether the element contains synchronized
items or not. If they do not contain synchronized items, the software
maps them into adjacent memory locations and the size of the table can
be easily calculated by multiplying the size of the element times the
number of occurrences (5Xl0 for the table illustrated in Figure 5-1,
or 50 bytes of memory) .

01 A-TABLE
03 A-GROUP PIC X(5) OCCURS 10 TIMES.

Figure 5-1
Defining a Table

5.2.1 The OCCURS Phrase - Format 1

When Format 1 is used, a fixed length table is generated, whose length
(number of occurrences) is equal to the value specified by integer-2.
This format is useful for storing large amounts of frequently used
reference data whose size never changes. Tax tables, used in payroll
deduction programs, are an excellent example of where a Format 1
(fixed length} table might be used.

5.2.2 The OCCURS Phrase - Format 2

Format 2 is used to generate variable length tables. When used, a
table whose length (number of occurrences} is equal to the value
specified by data-name-i is generated.

5-2

TABLE HANDLING

NOTE

Data-name-1 must always be a positive
integer whose value is equal to or
greater than integer-1 but not greater
than integer-2.

Unlike format 1 tables, the number of occurrences of data items in
format 2 tables can be dynamically expanded or reduced to satisfy user
needs.

By generating a variable length table, the user is, in effect, saying;
"build me a table that can contain at least integer-1 occurrences, but
no more than integer-2 occurrences, and set its number of occurrences
equal to the ~alue specified by data-name-1".

Data-name-1 always reflects the number of occurrences available for
user access. To expand the size (number of occurrences available for
use) of a table, the user need only increase the value of data-name-1
accordingly.

Likewise, reducing the value in data-name-1 will reduce the number of
occurrences available for user access.

5.3 MAPPING TABLE ELEMENTS

As mentioned in Section 5.2,
clause in an unsynchronized
adjacent locations in memory.
of a simple table and the way

when the software detects an OCCURS
item, it maps the table elements into

Consider the following data description
it is mapped into memory:

Table Description: 01 A-TABLE.
03 A-GROUP PIC X(5) OCCURS 10 TIMES.

Memory Map:

words
bytes l1B111TI1ft I J1 I VLITIB

A-GROUP A-GROUP A-GROUP A-GROUP

Figure 5-2
Mapping a Table into Memory

The data description in Figure 5-2 causes the software to set up ten
items of five bytes each (elements) and place them in adjacent
ascending memory locations for a total of 50 character positions, thus
creating a table. Since the length of each A-GROUP element is odd
(5), the memory addresses of each subsequent element will alternate
between odd and even locations.

The SYNCHRONIZED clause causes the software to add a fill byte to
items that contain an odd number of bytes, thereby making the number
of bytes in that item even. This ensures that each subsequent
occurrence of the element will not alternate between odd and even
addresses, but will map the same (odd or even) as the first repetition
of that element.

5-3

TABLE HANDLING

If the data description of A-GROUP contained a SYNCHRONIZED clause,
the software would map it quite differently. If A-GROUP were
synchronized, it would expand its length to three words. The item
will, by default, be synchronized to the left occupying the first five
characters of the three words. The software supplies a padding
character to fill out the third word. This padding character is not a
part of the A-GROUP element and table instructions referring to
A-TABLE will not detect the presence or absence of the character.

The padding character does, however, affect the overall length of the
group item and, hence, the table. Without the SYNCHRONIZED clause,
A-TABLE required only 50 character positions; now, with the clause,
it requires 60 character positions. (This length includes the last
padding character -- following the tenth element in the table.)

Although the SYNCHRONIZED clause has little value when used with
alphanumeric fields, an understanding of the concept is essential
before attempting to use COMP and INDEX data items in tables. The
software automatically synchronizes all COMP and INDEX usage data
items, and will most probably alter the size of any table (often
drastically) that contains these data types. Consider the following
illustration of a synchronized data item being mapped by the software:

Table Description: 01 A-TABLE.

Memory Map:

words
bytes

03 A-GROUP OCCURS 20 TIMES.
05 ITEMl PIC X.
05 ITEM2 PIC 8999 COMP.

A-GROUP A-GROUP A-GROUP A-GROUP

Figure 5-3
Synchronized COMP Item in a Table

1--ITEMl
2--ITEM2
S--SLACK

BYTE

Since the software synchronizes the ITEM2 fields (COMP), these fields
each occupy a single word in memory; thus, a slack byte follows each
occurrence of ITEMl. Each repetition of A-GROUP consumes four bytes
of memory -- one byte for ITEMl, one byte for the slack byte, and two
bytes for ITEM2. A-TABLE, then, requires 80 bytes of memory (20
elements of four bytes each).

Now, consider the e.ffect of adding a 1-byte field to A-TABLE. If we
place the field between ITEMl and ITEM2, it will take the space
formerly occupied by the slack byte. This has the effect of adding a
data byte but leaving the size of the table unchanged. Consider the
foiiowing iiiustration:

5-4

TABLE HANDLING

Table Description: 01 A-TABLE.
03 A-GROUP OCCURS 20 TIMES.

05 ITEMl PIC X.
05 ITEM3 PIC X.
05 ITEM2 PIC 8999 COMP.

Memory Map:

words
bytes ~-·· liiili2Dii2 ...

A-GROUP A-GROUP A-GROUP

Figure 5-4
Adding a Field without Altering the Table Size

1--ITEMl
2--ITEM2
3--ITEM3

If, however, we place the 1-byte field after ITEM2, it has the effect
of adding its own length plus another slack byte. Now, each element
requires six full bytes and the complete table consumes 120 bytes of
memory (6X20) ! This is due to the fact that the first repetition of
ITEMl falls on an even byte and, in order to keep the mapping of each
A-GROUP element the same, the software allocates each successive
repetition of ITEMl to an even byte address. Thus, it assigns ITEM3
to the even byte of the third word and adds a slack byte to guarantee
that the next element begins on an even byte. Consider the following
illustration:

Table Description: 01 A-TABLE.

Memory Map:

03 A-GROUP OCCURS 20 TIMES.
05 ITEMl PIC X.
05 ITEM2 PIC 8999 COMP.
05 ITEM3 PIC X.

Odd or Even E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0
~~~~:I..---1-k-~...-?J-I-2~1-~-M-fililil...-i-v---..-2-v-2 ..--1 ~-@---rl-Y-~-~~...-i-g_2_I.--l3_b_J:@--r-----

A-GROUP A-GROUP A-GROUP 

Figure 5-5 
Adding One Byte which Adds Two Bytes 

to the Element Length 

NOTE 

The illustrations in this section show 
each byte with an even address (E} as 
the leftmost byte, and each byte with an 
odd address (O) as the rightmost byte. 
(The two bytes, odd and even, are 
reversed in actual memory.) 

5-5 



TABLE HANDLING 

If, however, we use a FILLER byte to force the first allocation of 
ITEM! to occur on an odd byte, A-GROUP again requires only four bytes 
and no slack bytes. Figure 5-6 illustrates this. Since the FILLER 
item occupies the even byte of the first word, ITEM! falls on an odd 
byte. The software requires that each repetition of ITEM! must be an 
even number of bytes in length in order to guarantee that the 
synchronized item(s) will map onto word boundaries. No slack bytes 
are needed and A-GROUP elements are again only foqr bytes long, and 
A-TABLE requires only 81 bytes. 

Table Description: 01 A-TABLE. 
03 FILLER PIC X. 
03 A-GROUP OCCURS 20 TIMES. 

05 ITEMl PIC X. 
05 ITEM2 PIC S999 COMP. 
05 ITEM3 PIC X. 

Memory Map: 

odd or 
words 
bytes 

even E 0 E 0 E 0 E 0 E 0 E 0 E 0 .. . Ji hlllilJillifilihl]illf I .. . F 1 2 2 3 1 2 2 3 1 2 2 3 .•. 

FILLER A-GROUP A-GROUP A-GROUP 

Figure 5-6 
Forcing an Odd Address By Adding a 1-Byte FrLLER 

Item to the Head of the Table 

If we try to force ITEMl onto an odd byte with a SYNCHRONIZED RIGHT 
clause, the software maps ITEMl into the odd byte, but prohibits all 
repetitions of the element from using the even byte. Thus, the first 
repetition of A-GROUP has a slack byte at its beginning and, so that 
the next element can begin (with a slack byte) at an even address, 
another slack byte (odd) following ITEM3. This expands the element 
length to six bytes and the table length to 120 bytes. 

Table Description: 

Memory Map: 

A=GROUP 

01 A-TABLE. 
03 A-GROUP OCCURS 20 TIMES. 

05 ITEM! PIC X SYNCHRONIZED RIGHT. 
05 ITEM2 PIC S999 COMP. 
05 ITEM3 PIC X. 

A-GROUP 

Figure 5-7 
The Effect of a SYNCHRONIZED RIGHT Clause Instead 

of a FILLER Item as shown in Figure 5-6 

5-6 



TABLE HANDLING 

To determine how the software will map a given table, apply the 
following two rules: 

1. The software maps all items in the first repetition of a 
table element into memory words as with any item properly 
defined with a data description, obeying any implicit or 
explicit synchronization requirements. 

2. If the first repetition contains any elementary items with 
implicit or explicit synchronization, the software maps each 
successive repetition of the element into memory words in the 
same way as the first repetition. It does this by adding one 
slack byte, if necessary, to make the size of the element 
even. 

5.3.l Initializing Tables 

If a table contains only DISPLAY items, it can be set to any desired 
initial value (initialized). To initialize a table, simply specify a 
VALUE phrase on the record level preceding the item containing the 
OCCURS clause. The sample data definitions, below, will set up 
initialized tables: 

Table Description: 

Memory Map: 

words 

01 A-TABLE VALUE IS 11 JANFEBMARAPRMAY 
JUNJULAUGSEPOCTNOVDEC 11

• 

03 MONTH-GROUP PIC XXX USAGE DISPLAY 
OCCURS 12 TIMES. 

byte contents~..._..._~_.__....L--+---'-_.__-+-_,__,_-t-___.____._-+~_.__._-+---'----'---+--'--'--'--+---

MONTH-GROUP 
MONTH-GROUP 

MONTH-GROUP 
MONTH-GROUP 

MONTH-GROUP 
MONTH-GROUP 

MONTH-GROUP 
MONTH-GROUP 

Figure 5-8 
Initializing Tables 

Often a table is too long to initialize with a single literal, or it 
contains items that cannot be initialized (numeric, alphanumeric, or 
COMP). These items can be individually initialized by redefining the 
group level preceding the level that contains the OCCURS clause. 
Consider the following sample table descriptions: 

5-7 



Table Description: 

Memory Map: 

words 
byte contents at 
initialization time 

TABLE HANDLING 

01 A-RECORD-ALT. 
05 FILLER PIC XX VALUE "AX". 
05 FILLER PIC 99 COMP VALUE 1. 
05 FILLER PIC XX VALUE "BX". 
05 FILLER PIC 99 COMP VALUE 2. 

01 A-RECORD REDEFINES A-RECORD-ALT. 
03 A-GROUP OCCURS 26 TIMES. 

05 ITEMl PIC X. 
05 ITEM2 PIC S99 COMP. 

A-GROUP A-GROUP 

Figure 5-9 
Initializing Mixed Usage Fields 

In the preceding example, the slack bytes in the alphanumeric fields 
(ITEMl) are being initialized to X. 

Table Description: 01 A-RECORD-ALT. 

Memory Map: 

03 FILLER PIC X(30) VALUE IS 
"AAAAAAAAAABBBBBBBBBBCCCCCCCCCC". 

03 FILLER PIC X(30) VALUE IS 
"DDDDDDDDDDEEEEEEEEEEFFFFFFFFFF". 

(etc. ) 

01 A-RECORD REDEFINES A-RECORD-ALT. 
03 ITEMl PIX X(lO) OCCURS 26 TIMES. 

word I II IV VI VII VIII IX X XI 
B B B B B B B B B B C C byte A A A A A A 

contents at 
initialization ITEMl ITEMl 
time 

Figure 5-10 
Initializing Alphanumeric Fields 

In the preceding example, each FILLER item initializes three 10-byte 
table elements. 

When redefining or initializing table elements: allow space for any 
slack bytes that may be added due to synchronization (implicit or 
explicit). The slack bytes do not have to be initialized; however, 
they may be and, if initialized to an uncommon value, they may even 
serve as a debugging aid for situations such as a statement referring 
to the record level above the OCCURS clause or another record 
redefining that level. 

5-8 



TABLE HANDLING 

Sometimes the length and format of table items are such that they 
would best be initialized by statements in the Procedure Division. 
This initialization coding could be executed once and then overlaid 
(due to the automatic segmentation feature) if the entire Procedure 
Division is too large to be held in memory at one time. 

Once the OCCURS clauses have established the necessary tables, the 
program must be able to access the elements of those tables 
individually. Subscripting and indexing are the two methods provided 
by COBOL for accessing individual elements. 

5.4 SUBSCRIPTING AND INDEXING 

To refer to a particular element within a table, simply follow the 
name of the desired element with a parenthesized subscript or index. 
A subscript is an integer or a data-name that has an integer value; 
the integer value represents the desired occurrence of the element 
an integer value of 3, for example, refers to the third occurrence of 
the element. An index is a data-name that has been named in an 
INDEXED BY phrase in the OCCURS clause. 

5.4.1 Subscripting with Literals 

A literal subscript is simply a parenthesized integer whose value 
represents the occurrence number of the desired element. In figure 
5-11, the literal subscript in the MOVE instruction (2) causes the 
software to move the contents of the second element of the table, 
A-TABLE, to I-RECORD. 

01 A-TABLE. 
Table Description 03 A-GROUP 

Procedural Instruction MOVE A-GROUP(2) 

Figure 5-11 
Literal Subscripting 

PIC X(5) 
OCCURS 10 TIMES. 

TO I-RECORD. 

If the table has more than one level (or dimension), follow the name 
of the desired item with a list of subscripts, one for each OCCURS 
clause to which the item is subordinate. The first subscript in the 
list applies to the first OCCURS clause to which the item is 
subordinate. (This is the most encompassing level -- A-GROUP in the 
following example.) The second subscript in the list applies to the 
next most encompassing level, and the last subscript applies to the 
lowest level OCCURS clause being accessed (or the desired occurrence 
number of the item named in the procedural instruction -- ITEMS in the 
following example). 

Consider Figure S-12; the subscripts (2,11,3) in the MOVE instruction 
cause the software to move the third repetition of ITEMS in the 
eleventh repetition of ITEM3 in the second repetition of A-GROUP to 
I-FIELDS. (For illustration simplicity, I-FIELDS is not defined.) 
(ITEMS(l,1,1) would refer to the first occurrence of ITEMS in the 
table and ITEMS(S,20,4) would refer to the last occurrence of ITEMS.) 

S-9 



TABLE HANDLING 

01 A-TABLE. 
03 A-GROUP OCCURS S TIMES. 

OS ITEMl PIC X. 
Table Description OS ITEM2 PIC 99 COMP OCCURS 20 

TIMES. 
OS ITEM3 OCCURS 20 TIMES. 

07 ITEM4 PIC x. 
07 ITEMS PIC xx OCCURS 4 TIMES. 

Procedural Instruction MOVE ITEMS(2, 11, 3) TO I-FIELDS. 

Figure S-12 
Subscripting a Multi-Dimensional Table 

NOTE 

Since ITEMS is not subordinate to ITEM2, 
an occurrence number for ITEM2 is not 
permitted in the subscript list. 

Figure S-13 summarizes the subscripting rules for each of the above 
items and shows the size of each field in bytes. 

NAME 
OF 

FIELD 

A-TABLE 
A-GROUP 
I TE Ml 
ITEM2 
ITEM3 
ITEM4 
ITEMS 

* Plus 

NUMBER OF SUBSCRIPTS 
REQUIRED TO REFER TO 
THE NAMED FIELD 

NONE 
ONE 
ONE 
TWO 
TWO 
TWO 
THREE 

a slack byte 

Figure S-13 
Subscripting Rules for a 
Multi-Dimensional Table 

S.4.2 Operations Performed by the Software 

SIZE 
OF 

FIELD 

1110 
222 

l* 
2 
9 
1 
2 

When a literal subscript is used to refer to an item in a table, the 
software performs the following steps to determine the exact address 
of the item: 

1. The compiler converts the literal to a 1-word binary value. 

2. The compiler range checks the subscript value (the value must 
not be less than 1 nor greater than the number of repetitions 
specified by the OCCURS clause) and prints a diagnostic 
message if the value is out of range. 

3. The compiler decrements the value of the subscript by 1 and 
multiplies it by the size of the item that contains the 
OCCURS clause corresponding to this subscript, thus forming 
an index value; it then stores this value, plus the literal 
subscript, in the object program. 

S-10 



TABLE HANDLING 

4. At object execution time for a fixed length table, the run 
time system adds the index value (from 3 above) to a base 
address, thus determining the address of the desired item. 
For a variable length table reference, the procedure for 
fixed length tables is preceded by the procedure described in 
Section 5.4.6. 

5.4.3 Subscripting with Data-Names 

As discussed earlier in this section, subscripts may also be specified 
using data-names instead of literals. To use a data-name as a 
subscript, simply define it as a numeric integer (COMP or DISPLAY). 
It may be signed, but the sign must be positive at the time it is used 
as a subscript. 

The sample subscripts in figure 5-14 ref er to the same element 
accessed in Figure 5-12, ( 2' 11, 3) . 

Data Descriptions 
of Subscript data-names 

Procedural Instructions 

01 KEY! PIC 99 USAGE 
01 KEY2 PIC 99 USAGE 
£\, T7rii-,::7' "'l PIC ,... £\ £\ 
U.1. L'\.C..I..J ~-:J-:J. 

MOVE 2 TO KEY!. 
MOVE 11 TO KEY 2 . 
MOVE 3 TO KEY3. 

GO TO TABLERTN. 
TABLERTN. 

DISPLAY. 
COMP. 

MOVE ITEM5(KEY1 KEY2 KEY3) TO 
I-FIELDS. 

Figure 5-14 
Subscripting with Data-Names 

5.4.4 Operations Performed by the OTS 

When a data-name subscript is used to refer to an item in a table, the 
OTS performs the following steps at object execution time: 

1. If the data-name's data type is DISPLAY, the software 
converts it to a !-word binary value. 

2. For fixed length tables, the software range checks the 
subscript value (the value must not be less than 1 nor 
greater than the number of repetitions specified by the 
OCCURS clause) and terminates the object program (with a 
diagnostic message) if it is out of range. For variable 
length tables, the procedure described in Section 5.4.6 is 
followed. 

3. The software decrements the value of the subscript by 1 and 
multiplies it by the size of the item that contains the 
OCCURS clause corresponding to this subscript, thus forming 
an index value. 

4. The software adds the index value (from 3 above) to a base 
address, thus determining the address of the desired item. 

5-11 



TABLE HANDLING 

5.4.5 Subscripting with Indexes 

The same rules apply for the specification 
subscripts except that the index must 
phrase of the OCCURS clause. 

of indexes as apply to 
be named in the INDEXED BY 

An index-name item (an item named in the INDEXED BY phrase of the 
OCCURS clause) has the ability to hold an index value. (The index 
value is the product formed in step 3 of the operations performed by 
the software for literal or data-name subscripts ~- the relative 
location, within the table, of the desired item.) 

The compiler allocates a 2-part data item for each name that follows 
an INDEXED BY phrase. These index-name items cannot be accessed as 
normal data items; they cannot be moved about, redefined, written to 
a file, etc. However, the SET verb can change their values and 
relation tests can examine their values. One part of the 2-part 
index-name item contains a subscript value and the other part contains 
an index value. Consider the following illustration: 

INDEX PART :' l 
SUBSCRIPT PART -------1-1-----------1 

Figure 5-15 
Index-Name Item 

Whenever a SET statement places a new value in the subscript part, the 
software performs an index value computation and stores the result in 
the index part. Only the subscript part of the item acts as a sending 
or receiving field. The index part is never altered by any other 
operation and is never moved to another item. It is used only when 
the index-name is used as an index referring to a table item. The 
sample MOVE statement in Figure 5-16 would move the contents of the 
third repetition of A-GROUP to I-FIELD. (For illustration simplicity, 
once again, I-FIELD is not defined.) 

01 A-TABLE. 
Table Description 03 A-GROUP OCCURS 5 TIMES 

INDEXED BY IND-NAME. 

Procedural Instructions SET IND-NAME TO 3. 
MOVE A-GROUP (IND-NAME) 

Figure 5-16 
Subscripting With Index-name Items 

5.4.6 Operations Performed by the OTS 

TO I-FIELD. 

The OTS performs the following steps when it executes the SET 
statement: 

1. The OTS converts the c>ontents of the sending field of the SET 
statement to a 1-word binary value. 

2. The OTS range checks the value (the value must not be less 
than 1 nor greater than the number of repetitions specified 
in the OCCURS clause) and terminates the object program with 
a diagnostic message if it is out of range. 

5-12 



TABLE HANDLING 

3. The OTS decrements the value by 1 and multiplies it by the 
size of the item that contains the OCCURS clause, thus 
forming an index value. 

For fixed length tables, once the SET statement has been executed and 
the software has encountered the index-name item as an index, it only 
has to add the index value (from 3 above) to a base address to 
determine the address of the desired item. Since this is the only 
action performed, the execution speed of a procedural statement with 
an indexed data-name is equivalent to a reference with a literal 
subscript. 

For a variable length table, when the index-name is encountered as an 
index, the procedure described in Section 5.4.6 is invoked before 
following the fixed length table logic. However, the SET statement 
itself is not impacted by the fixed/variable characteristic of the 
associated table. 

PDP-11 COBOL initializes the value of all index-name items to a 
subscript value of 1 (index value of 0), hence an attempt to use an 
index-name item as an index before it has been the receiving field of 
a SET verb will not result in an out-of-range termination. 

NOTE 

Initialization of index-name items is an 
extension to the ANSI COBOL standards. 
Users concerned with writing COBOL 
programs that adhere to standard COBOL 
should not rely on this feature. 

5.4.7 Relative Indexing 

To perform relative indexing, when referring to a table item, simply 
follow the index-name with a plus or minus sign and an integer 
literal. Relative indexing, albeit easy to use, causes additional 
overhead to be generated each time a table item is referenced in this 
fashion. At compile time, the compiler has to compute the index value 
corresponding to the specified literal; and transfer this index value 
to the object file. At object run time, the index value for the 
literal is added to (+) or subtracted from (-) the index value of the 
index-name. The resulting index value is stored in a temporary 
location. The OTS adds this temporary index value to the base address 
of the table to determine the address of the desired table item. At 
this point, a range check is performed on the temporary index value to 
insure that the resulting index is within the permissible range for 
the table. 

tables, this index manipulation is relatively For fixed length 
straightforward. 
and this size is 
compare against 
if a given index 

The size of the table is known at compilation time, 
passed along to the OTS in the object file. A simple 
this fixed value is all that is required to determine 
value is within the permissable range for the table. 

For a variable length table, h'owever, the process is more involved. 
The current number of occurrences (data-name-1) for the table must be 
determined and range checked; the index value corresponding to the 
current number of occurrences must be calculated; then the temporary 
index value must be range checked using the current number of 
occu-r rence' s index value. 

5-13 



TABLE HANDLING 

The object time overhead required for the relative indexing of 
variable length tables is significantly greater than that required for 
fixed length tables. In either case, the index portion of the 
index-name is not altered. If any of the range checks reveals an 
illegal (out of range) value, execution is terminated with an 
apropriate error message. 

The sample MOVE instruction in Figure 5-17 moves the fourth repetition 
of A-GROUP to I-FIELD if IND-NAME has not been altered with a SET 
verb. 

MOVE A-GROUP{IND-NAME + 3) TO I-FIELD. 

Figure 5-17 
Relative Indexing 

The actual operation of accessing a table element is shorter at run 
time since the compiler has calculated the index value of the literal 
at compile time and has stored it in the object program ready for use. 
Relative indexing, therefore, involves two additions and a range check 
during object execution. It leaves the index-name item unaltered. 

5.4.8 Index Data Items 

Often a program will require that the value of an index-name item be 
stored outside of that item. It is for this purpose that PDP-11 COBOL 
provides the index data item. 

Index data items 
synchronization. 
of the index-name 
phrase and they 
statement. 

are 1-word binary integers with implicit 
{The 1-word size corresponds to the subscript part 

item.) They must be declared with a USAGE IS INDEX 
may be modified (explicitly) only by the SET 

Subscript Part~~~---1-~~~~~~--

Figure 5-18 
Index Data Item 

Since index data items are considered to contain only the subscript 
part of an index-name item, when a SET statement "moves" an index-name 
item to an index data item, only the subscript part is moved. 
Likewise, when a SET statement "moves" an index data item to an 
index-name item, a new index value is computed by the software. This 
is done to guarantee that an index-name item will always contain a 
good index value. 

The only advantage gained by using index data items over numeric, COMP 
items is that the data description is shorter, easier to write, and 
more self-documenting. Further, the restrictions placed on access to 
index items may be useful in debugging the program. 

5.4.9 The SET Statement 

The SET statement alters the value of index-name items and copies 
their value into other items. When used without the UP BY/DOWN BY 
clause, it functions like a MOVE statement. Figure 5-19 illustrates 
the legal data movements that the SET statement can perform. 

5-14 



TABLE HANDLING 

INDEX-NAME ITEM 

NUMERIC LITERAL (INDEX PART) INDEX DATA ITEM 
1-----1- (SUBSCRIPT-PART)1---__._ 

"---~~~~~~----' '--~~~~~~-----' 

NUMERIC DATA NAME 
(COMP OR DISPLAY) 

Figure 5-19 

INDEX-NAME ITEM 
_J!_N~~~y~~TJ. 

(SUBSCRIPT PART) 

Legal Data Movement with the SET Statement 

The SET statement may be used with the UP BY/DOWN BY clause to alter 
the value of an index-name item arithmetically. The numeric literal 
is added to (UP BY) or subtracted from (DOWN BY) the subscript part, 
and the index part is recalculated by the software after the 
appropriate range check against the number of repetitions for the 
table. The SET statement is not affected by whether the table is 
fixed or variable length. 

5.4.10 Referencing a Variable Length Table Element at OTS Time 

At OTS time, when a procedural reference involves an element in a 
variable length table, the following procedure is used: 

1. Determine the number of occurrences in the table (the value 
contained in data-name-1), and verify its legality. 

(integer-1 <= data-name-1 <= integer-2) 

2. Verify that the subscript is within the legal range. 

(subscript <= data-name-1) 

If any of the above checks fails, execution is terminated with an 
appropriate error message. 

5.4.11 Referencing a Dynamic Group at OTS Time 

A dynamic group is defined as a group item that contains a subordinate 
item that is a variable length table. At OTS time, when a dynamic 
group is referenced, the following procedures are followed: 

1. The number of occurrences of the subordinate variable length 
table is determined, and checked for legality; i.e., 
integer-l<=data-name-l<=integer-2. If this check fails, 
execution terminates and the appropriate error message is 
issued. 

2. The size of the dynamic group is calculated. The number of 
occurrences of the variable length table (data-name-1) is 
multiplied by the size of one table entry. The resulting 
number is then added to the fixed size of the dynamic group. 

5-15 



TABLE HANDLING 

NOTE 

The fixed size of a dynamic group is the 
size of the group up to but not 
including the variable length table. 

5.4.12 The SEARCH Verb 

The SEARCH verb has two formats: Format 1, which performs a 
sequential search of the specified table beginning with the current 
index setting; and Format 2 which performs a selective (binary) 
search of the specified table, beginning with the middle of the table. 

Both formats allow the programmer to specify imperative statements 
within the SEARCH verb. At OTS time, an imperative statement 
contained within a search verb is executed only when one of the exit 
paths (success or failure) is taken. 

The failure path is defined either explicitly by the AT END statement, 
in which case the imperative statement which follows it is executed; 
or by default, in which case control is passed to the next procedural 
sentence. In either case (success or failure), after an imperative 
statement is executed, control is passed to the next procedural 
sentence. 

5.4.13 The SEARCH Verb - Format 1 

Format 1 directs the OTS to search the indicated table sequentially. 
The OCCURS clause for the table being searched must contain the 
INDEXED by phrase. Unless otherwise specified in the SEARCH 
statement, the first index is the controlling index for the table 
search. The search begins with the current index setting, and 
progresses through the table, augmenting the index by one as each 
occurrence is interrogated. If any of the specified conditions is 
true (success), the associated imperative statement is executed; the 
search exits; and the index remains at the current setting. 

If the possible number of occurrences 
before any of the specified conditions 
exit path is taken. That is, either 
specified) is taken, or control is 
sentence. 

for the table is exhausted 
are met, the specified failure 

the AT END exit path (if 
passed to the next procedural 

Figure 5-20 contains an example of using the SEARCH verb to search a 
table in a serially. 

Associated with Format 1 is the optional VARYING phrase. This phrase 
can be specified by using any of the following methods: 

1. default ~ phrase omitted 

2. VARYING index-name-n 

3. VARYING identif ier-2 

4. VARYING index-name-2 

5-16 



TABLE HANDLING 

NOTE 

The following is true regardless of which of the 
above methods is used. 

a. An index name associated with the table is methodically 
augmented by one, by the OTS, for each cycle of the 
serial search. This controlling index, when compared to 
the allowable number of occurrences for the table, 
dictates the permissible range of search cycles at OTS 
time. When an exit occurs (success or failure), this 
index remains at the current setting. 

b. The OTS will not initialize the index when the search 
begins. It is the programmers responsibility to insure 
that the initial index setting is the appropriate one. 
The OTS will begin processing the table with the setting 
it finds when the search is initiated. 

When method 1 i <:! 11<:!on +-ho ..._ -- ----I W6. .. _ 
Fir<:!+- innov n~mo finnov-n~mo-1\ .- .... .._ - - ..._.., .. __ , .. ..,..,_,.,,....... \ .-. .... _._,.., .. ..,~ ..... ,- _.I associated 

with the table is used as the controlling index. Only this index is 
set to consecutive values by the OTS serial search processor. See 
Figure 5-20, Example 2, for an example of using method 1. 

When method 2 is used, index-name-n is any index that is associated 
with the table being searched. It becomes the controlling index for 
the table. It alone is set to consecutive values by the OTS search 
processor. See Figure 5-20, Example 3, for an example of using method 
2. 

When method 3 is used, identifier-2 is augmented by one each time the 
first index (controlling index) for the table is augmented by one. 
Identifier-2 is not a substitute index. It merely allows the 
programmer to maintain an additional pointer to elements within a 
table. See Figure 5-20, Example 4, for an example of method 3. 

When method 4 is used, index-name-2 is an index that is associated 
with a table other than the one being searched. Each time the 
controlling index (1st index for the table) of the searched table is 
augmented, index-name-2 is also augmented. See Figure 5-20, Example 
5. 

5.4.14 The SEARCH Verb - Format 2 

Format 2 is used to direct the OTS to search the indicated table 
selectively. The selective (binary) search is predicated upon the 
ASCENDING/DESCENDING KEY attributes of the table being searched. 
Therefore, an ASCENDING and/or DESCENDING KEY(s) must be specified in 
the OCCURS clause that defines the table, to inform the OTS that the 
keys are stored within the table in ascending or descending order. 

The INDEXED BY phrase must also be specified. When the binary search 
is executed, the OTS uses the first or only index associated with the 
table as the controlling index for the search. 

5-17 



TABLE HANDLING 

The selective (binary) search is implemented in the OTS as follows: 

1. The OTS examines the range of permissible values for the 
index of the table being searched; selects the median value; 
and assigns this median value to the index. 

2. The OTS then proceeds to process the sequence of simple tests 
for equality, beginning with the first, with the index set to 
the median value. 

3. If all of the tests for 
search is terminated; 
executed; the search 
current value. 

equality are true (success), the 
the associated imperative statement is 
exits; and the index retains its 

4. If any of the tests for equality is false, the following 
results occur. 

a. The OTS determines if all of the possible occurrences for 
the table have been tested. If the table has been 
exhausted, the imperative statement which accompanies the 
AT END statement (if specified) is executed. In either 
case, control is passed to the next procedural statement. 

b. The OTS will now determine which half of the table is to 
be eliminated from further consideration. This 
determination is predicated on whether the key being 
tested is in ascending or descending order, and whether 
the test failed because of a greater than or less than 
comparison. For example, if the key values being tested 
are stored in ascending order, and the median table 
element being tested is greater than the value being 
tested for equality, the OTS will assume that all key 
elements following the one tested are also greater than 
the value being tested for equality. Therefore, the 
lower half of the table, those items which follow the 
current index setting, are no longer in contention. 

c. Once the direction of search is determined, half of the 
table is eliminated from further consideration. A new 
range of permissible index values is computed from the 
remaining half of the table. 

d. Processing begins all over again from step 1. 

See Figure 5-20, Example 6, for an example of searching a table using 
Format 2 of the SEARCH verb. 

5-18 



TABLE HANDLING 

FED•TAX•TABLES, 
02 ALLOWANCE•DATA, 

03 FILLER PIC XC70) VALUE 
"0001440 
"0202880 
"0304320 
"0405760 
"0$07200 
1 0&08oU0 
"0710080 
"0811520 
"0q12~60 
"10144~0"· 

02 ALLOWANCE•TABLE REDEFINES ALLOWANCE•OATA, 
03 FED•ALLOWANCES OCCURS 10 TIMES 

ASCENDING KEV lS ALLOWANCE•NUMBER 
INDEXED BV IND•1, 
04 ALL0W4NCE•NUMBER PIC XX, 
04 ALLOWANCE P?C qqqv99, 

02 SINGLES•DEOUCTION•OATA, 
03 FILLER PIC XC112) VALUE 

·~~·~nAL•A~~~~-~~ 
. ~C~~~~O(~~~~~~lC 

"0~700115000b7220 
"115001830016321.3 
1 1s3002400031qo21 
"2400027900~3q32b 
"2790034o005U0730 
•1ab00qqqqq7u173~"• 

02 SINGLES•OEOUCTION•TABLE REDEFINES SINGLES•OEDUCTION•OATA, 
03 SINGLES•TABLE OCCURS 7 TIMES 

ASC~NDING KEY ?S S•M!N•RANGE !•MAX•RANGE 
INDEXED BV IN0•2, TEMP•INOEX, 
04 S•MIN•RANGE PIC qqqvqq, 
04 S•MAX•RANGE PIC qqqvqq, 
04 S•TAX PIC qqyqq, 
04 S•PERCENT PIC yqq, 

02 MARRIED•DEOUCTION•OATA, 
03 FI~~£R PIC XC119) VA~UE 

"048000~6000000017 
"0qo001130~00a1020 
"173002~4000235617 
"2b40034b000390325 
"34600433000595328 
n43300s00000e38932 
"S0000qqqqq105333b", 

02 MARRIED•DEDUCTION•TABLE REDEFINES MARRIED•OEOUCTION•OATA, 
03 MARRIED•TABLE OCCURS 7 TIMES 

•SCENOJNG KEY IS M•MIN•RANGE M•MAX•RANGE 
INDEXED BY IN0•0, IND•3, 
04 M•MIN•RANGE PIC qqqyqq, 
04 M•MAX•RANGE PIC 999V99, 
04 M•T4X PIC qqqyqq, 
04 M•PERCENT PIC vqq, 

TEMP•INDEX USAGE INDEX, 

Figure 5-20 
Example of Using SEARCH 

To Search a Table 

5-19 



TABLE HANDLING 

Example 1 

SINGLE. 
IF TAXABLE•INCOME c 024~q 

GO TO ENO•FEO•COMP, 
SET IND•2 TO 1, 
SEARCH SINGLES•TAB~E VARYING IND•2 AT ENO 

GO TO TABLE•2•ERROR 
WHEN TAXABLE•lNCOME • S•MIN•RANGECINO•Z) 

MOVE S•TAX(lN0•2) TO FEO•TAX•DEOUCTION OF 
OUTPUT•MASTER 

GO TO STORE•FEO•TAX 
WHEN TAXABLE•?NCOME c S•MAX•RANGECIN0•2) 

SUBTRACT S•MIN•RANGECIN0•2) FROM TAXABLE•INCOME 
MULTIPLY TAXABLE•INCOME BY S•PERCENTCIND•2) ROUNDED 
ADD TAXABLE•?NCOME TO FEO•TAX•DEDUCTION OF 

OUTPUT•MASTER, 

Example 2 

SINGLE, 
IF TAXABLE•INCOME c 024qq 

GO TO ENO•FED•COMP, 
SET IND•2 TO 1. 
SEARCH SINGLES•TABLE VARVING IND•2 AT END 

GO TO TABLE•2•ERROR 
WHEN TAXABLE•INCOME • S•MIN•RANGECIN0•2) 

MOVE S•TAXCIND•2) TO FED•TAX•OEOUCTlON OF 
OUTPUT•MASTER 

GO TO STORE•FEO•TAX 
WHEN TAXABLE•INCOME c S•MAX•RANGECIND•2) 

SUBTRACT S•~IN•RANGECINO•c) FROM TAXABLE•INCOME 
MULTIPLV TA~ABLE•INCOME BY S•PERCENTCIN0•2) ROUNDED 
ADO TA~ASLE•tNCOME TO FED•TAX•O!DUCTION OF 

OUTPUT•MASTER, 

Example 3 

MARRIED, 
IF TAXABLE•INCOME c 047q~ 

~OVE ZEROS TO FEO•T•X•OEDUCTION OF OUTPUT•MASTER, 
GO TO ENO•FEO•COMP, 

SET INO•l TO 1. 
SEARCH MARRIED•TABLE VARYING IND•3 

AT END GO TO TABLE•3•ERROR 
WHEN TAXABLE•INCOME • M•MIN•RANGECIND•3) 

MOVE M•TAXClND•3) TO FED•TAX•OEOUCTION OF OUTPUT•MASTER, 
GO TO STORE•FED•TA.X, 

WMEN TAXABLE•INCOME c M•MAX•RANGE(IN0•3) 
MOVE M•TAXCINO•l) TO FED•TAX•OEOUCTION OF OUTPUT•MASTER, 
SUBTRACT M•MIN•RANGECIND•3) FROM TAXABLE•INCOME ROUNDEO, 
MULTIPLY TAXAB~E•INCOME BY M•PERCENTCIN0•3) ROUNDED, 
ADO .TAXABLE•INCOME TO FEO•TAX•OEDUCTION 

OF OUTPUT•MASTER ROUNOEO, 
GO TO STORE•FED•TAX, 

Figure 5-20 (Cont.) 
Example Of Using SEARCH 

To Search a Table 

5-20 



SINGLE, 

TABLE HANDLING 

IF TAXABLE•INCOME < 021q~ 
GO TO ENO•FED•COMP, 

SET IND•2 TO 1. 
SEARCH SINGLES•TAB~E VARYING TEMP•IN.DEX AT ENO 

GO TO TABLE•2•ERROR 
WHEN TAXABLE•INCOME : S•MIN•RANGECIN0•2) 

MOVE S•TAXCIND•2) TO FED•TAX•OEOUCTION OF 
OUTPUT•MASTER 

GO TO STORE•FED•TAX 
WHEN TAXABLE•INCOME c S•MAX•RANGECIN0•2) 

SUBTRACT S•MIN•RANGECIND•2) FROM TAXABLE•INCOME 
MULTIPLY TA.XABLE•INCOME BV S•PERCENTCIN0•2) ROUNDED 
ADO TAXAB~E•INCOME TO FED•TAX•DEOUCTION OF 

OUTPUT•MASTER, 

Example 5 

SINGLE, 
!F TAX•BLE•!NCOME < 024qq 

GO TO ENO•FEO•COMP, 
SET IN0•2 TO 1, 
SEARCH SING~ES•TAS~E VARYING IND•0 AT ENO 

GO TO TAB~E•2•ERROR 
WHEN TAXAB~E•INCOME = S•MIN•RANGECIN0•2) 

MOVE S•T4XCIN0•2) TO F!D•TAX•OEOUCT!ON OF 
OUTPUT•MASTER 

GO TO STORE•FED•TAX 
WHEN TAXABLE•INCOME c S•MAX•RANGECIN0•2) 

SUBTRACT S•MIN•RANGECIN0•2) FROM TAXABLE•INCOME 
MU~TIPLY TAXABLE•INCOME BY S•PERCENTCIN0•2) ROUNOEC 
ADO TAXABLE•INCOME TO FED•TAX•OEOUCTION OF 

OUTPUT•MASTER, 

Example 6 

FED•DEOUCT•COMPUTATION, 
SET IND•1 TO 1, 
SEARCH ALL FED•ALLOWANCES AT END GO TO TABLE•1•ERROR 

WHEN ALLOWANCE•NUMBERCIND•1) m NR•OEPENOENTS OF 
OUTPUT•MASTER, 

SUBTRACT ALLO~ANCECIND•t)· FROM GROSS•WAGE OF OUTPUT•MASTER 
GIVING TAXAR.LE•INCOME ROUNDED, 

IF MARRITAL•STATUS OF OUTPUT•MASTER • "M" 
GO TO MARRIE"• 

Figure 5-20 (Cont.) 
Example of Using SEARCH 

To Search a Table 

5-21 





CHAPTER 6 

FILE HANDLING 

PDP-11 COBOL provides three ways to arrange the records in its 
(file organization): sequential, relative, and indexed. 
ORGANIZATION in the Environment Division clause specifies the 
organization for COBOL files. 

NOTE 

Indexed file organization is available 
only to users with RMS-11K software. 

files 
The 

file 

PDP-11 COBOL provides three ways to process the records in its files 
(file access): sequential, random, and dynamic. The ACCESS MODE 
clause specifies the file access mode for each file used by COBOL 
programs. The following chart shows the three file organizations and 
the file access methods that apply to each of them: 

FILE ORGANIZATIGN FILE ACCESS 

SEQUENTIAL SEQUENTIAL 

SEQUENTIAL 

RELATIVE RANDOM 

DYNAMIC 

SEQUENTIAL 

INDEXED RANDOM 

DYNAMIC 

Once a program creates a file, all other programs that access it must 
describe it with the same file organization. For example, it is not 
possible to create a sequential file in one program and read it as a 
relative file with another program. However, programs can use 
different access methods to process records in the same file as long 
as the organization of the file supports the access method. 

6-1 



FILE HANDLING 

The following table compares the different file organizations with 
their file manipulation capabilities. 

Access 

Capabilities 

Sequential 

Random 

Record 
Replacement 

Record 
Addition (at end of file) 

Record 
Insertion 

Record 
Deletion 

Table 6-1 
COBOL File Types 

File Type (Organization) 

Sequential Relative Indexed 

Yes Yes Yes 

No Yes Yes 

Limited Yes Yes 

Yes Yes Yes 

No Limited Yes 

No Yes Yes 

COBOL I/O statements allow COBOL programs to communicate with the 
system devices. These statements differ for sequential, relative, and 
indexed file organizations. Therefore, the COBOL I/O statements are 
discussed separately by file organization. Section 6. 1 discusses 
sequential organization, Section 6.2 discusses relative organization, 
and Section 6.3 discusses indexed organization. All file processing 
is performed by the COBOL object time system (OTS), regardless of 
organization. 

Table 6-2 shows which statements apply to each file organization 
methods: 

Sequential I/O Statements 

CLOSE 

OPEN 

READ 

REWRITE 

WRITE 

Table 6-2 
I/O Statements 

Relative and 

6-2 

Indexed I/O Statements 

CLOSE 

DELETE 

OPEN 

READ 

REWRITE 

START 

WRITE 



FILE HANDLING 

6.1 SEQUENTIAL FILE ORGANIZATION 

Sequential file organization arranges the records in a file serially; 
each record (except the first) has another record preceding it and 
each record (except the last) has another record following it. The 
records remain in the order in which they were written. Thus, COBOL 
statements cannot delete records from the file, insert new records 
between existing records, or alter the order of the existing records 
in any way. However, they can replace existing records (providing the 
length of the replacement record is identical to the original) and add 
new records onto the end of the file. 

The opening operation for reading, writing, or updating sequential 
files must begin with the first record in the file and proceed by the 
prescribed order through the file. For example, to read a particular 
record in the file, say the 15th record, the program must open the 
file and successfully execute 14 READ statements before the 15th 
execution can read the desired record. The program can read all of 
the remaining records (from record 16 on), but it cannot read any 
record prior to record 16 without opening the file again and beginning 
with record 1. 

Sequential files always contain an end-of-file mark that designates 
the end of the file. COBOL statements can write over the end-cf-file 
mark and, thus, extend the length of a file. (The software inserts 
another end-of-file mark after the last record written.) Since the 
end-of-file mark indicates the end of useful data, PDP-11 COBOL 
provides no method for reading beyond the end-of-file mark; even 
though the amount of space reserved for the file exceeds the amount 
actually used. See Figure 6-1. 

End-of-File Mark~~- Unused Portion of Medium 
Reserved for File 

Figure 6-1 Placement of End-of-File Mark 

Occasionally a file with sequential organization is so large that it 
requires more than one volume (such as a multi-reel magnetic tape 
file). An end-of-volume label marks the end of recorded information 
on each volume and signals the file system to switch to a new volume. 
On multi-volume files, the end-of-file mark appears once, at the end 
of the last record on the last volume. See Figure 6-2. 

NOTE 

RSTS/E does not support multi-volume 
files. 

6-3 



VOL. 1 

VOL. 2 

VOL. 3 

FILE HANDLING 

End-of-Volume 
~ REC REC REC ? ~ REC REC REC ~Label 

End-of-Volume 
~ REC REC REC H REC REC REC r---Label 

{ REC REC REC ? ? REC I~ 
t End-of-File Mark 

Figure 6-2 Placement of the End-of-Volume Label and 
End-of-File Mark in a Multi-Volume File 

6. 1.1 RECORD SIZE 

If there is only one record description for a file or if there are 
more than one that describe the same length record, that file contains 
fixed-length recorrs. If the data descriptions for a sequential file 
consist of more than one record description, which describe several 
different-sized records, that file contains variable-length records. 

When a program creates a sequential file with variable-length records, 
the software places a count field in front of each record it writes 
into the file. This count field contains the number of character 
positions in the record. When a COBOL statement requests the record, 
the software releases a record whose length is that specified by the 
count field. The OTS creates and uses the count field automatically. 
COBOL statements cannot access it during input operations, and the 01 
level record description entries must not describe it. 

REC REC 

6. 1.2 RECORD CONTAINS Clause 

The RECORD CONTAINS clause, when specified without the "integer-1 TO" 
option, is for documentation purposes only. The compiler determines 
record size from the data descriptions. When the "integer-1 TO" 
option is specified, it forces the compiler to generate a variable 
length record file, even if the data descriptions describe fixed 
length records. 

Conversely, if the data descriptions for a sequential file describe 
variable-length records, the software sets up variable sized records 
automatically and ignores this clause. 

Even though the software ignores the values in the "integer-1 TO ... " 
phrase, the clause may be used in any program to document record 
sizes. 

6-4 



FILE HANDLING 

6.1.3 SAME RECOR~ AREA Ciause 

The file system reserves a record processing area in memory for each 
file. This area is the current record area. The system fixes the 
location of the current record area when it opens the file. It also 
reserves a byte preceding ~nd following each current record area for 
possible print-control characters. The current record area always 
begins on an even byte boundary. Two or more files may share a 
current record area if a SAME RECORD AREA clause contains their 
~ile-names. This clause causes the system to begin the current record 
area of each file listed at a common location. (Thus, current record 
areas that share space are aligned on their leftmost bytes.) The 
records do not have to be the same size and the current record areas 
need not have the same maximum size. The following sample statement 
would cause FILEA and FILEB to share the same current record area: 

I-0-CONTROL. 

SAME RECORD AREA FOR FILEA FILEB 

Since the system places a file's current record area in a separate 
location from its buffers, each READ; WRITE; and REWRITE operation 
causes a record to move between the buffers and the current record 
area. When a program reads a record from a file, modifies it, and 
writes it into another file, a SAME RECORD AREA clause, containing 
both file-names, can save an entire move of the record. The following 
illustration shows these record movements: 

WITHOUT SHARING A CURRENT RECORD AREA 

READ WRITE 

FIL EA FILEB 
Buff er Buff er 

FI LEA 
Current 
Record 

Area 

MOVE 

SHARING A CURRENT RECORD AREA 

READ 

FI LEA 
Buff er 

FILEA & FILEB 
Current Record Area 

FILEB 
Current 
Record 

Area 

Record Movement Caused by 
Reading, Processing, and Writing 

Records in Two Files 

6-5 

WRITE 

FILEB 
Buff er 



FILE HANDLING 

6.1.4 PRINT-CONTROLLED RECORDS 

If a sequential file is described in a LINAGE IS clause, an APPLY 
PRINT-CONTROL clause, or is referenced in a WRITE statement with the 
ADVANCING clause specified, and the file is not going directly to a 
printing device (is going to be spooled), the software designates the 
file as a print-controlled file. Print-controlled files contain form 
advancing information with each record. Explicit forms control bytes 
are placed directly into the file. Therefore, any COBOL program 
trying ~n process a print-controlled file may have unpredictable 
results. 

6. 1.5 RECORD BLOCKING 

The manner in which the file system blocks the records of sequential 
files depends on the device to which the file is assigned and the 
presence and format of the BLOCK CONTAINS clause. 

COBOL programs can assign sequential 
fixed-length virtual blocks, and 
variable-length blocks. 

files to disk which requires 
to magnetic tape, which allows 

The BLOCK CONTAINS clause of a COBOL program refers to a logical block 
size. For magnetic tape, the logical block size and virtual block 
size are the same. For disk, however, the logical block size is equal 
to one or more virtual blocks. (A virtual block on disk is 512 
bytes). 

For files assigned to disk, the OTS packs records 
(end-to-end) until a logical block is filled. The logical 
written to disk, and any portion of the previously processed 
that did not fit into the logical block is put into the next 
block. This process is called record spanning in that it 
records to span virtual block boundaries. 

together 
block is 

record 
logical 

allows 

Record spanning is prohibited for files assigned 
For these files, only complete records (fixed or 
placed end-to-end in a logical block. The OTS 
block out to the file when it determines that the 
extent that the next record will not fit into it. 

to magnetic tape. 
variable length) are 
writes the logical 
block is full to the 

There are three ways to specify block size in a COBOL program; by 
default; by using the BLOCK CONTAINS integer RECORDS clause; or by 
using the BLOCK CONTAINS integer CHARACTERS clause. The default 
philosophy is to make the logical block size as small as possible; 
thus minimizing the memory buffer space required. By using the BLOCK 
CONTAINS (integer RECORDS or integer CHARACTERS) clause, you can 
increase the memory buffer space required. Increasing the buffer 
space, allows for faster I/O by decreasing the number of I/O 
operations required to process a file. Use the BLOCK CONTAINS clause 
only if you can afford the price of additional memory buffer space for 
the ability to process your files faster. The following paragraphs 
further define the three blocking methods: 

Default 

By default, the logical block size is made equal to the record 
size (add four bytes for variable length records on magnetic tape 
or two bytes for variable length records on disk). For disk 
files, the logical block size is rounded up to the next even 
multiple of 512 bytes to make the logical block size an integral 
number of virtual blocks. For example: 

6-6 



FILE HANDLING 

If the maximum record size for a disk file is 510 bytes, and the 
file contains variable length records, then the logical block 
size is 1024 bytes. (510 plus 4 for variable length reccrds is 
514, and 514 rounded up to the next even multiple of 512 is 
1024.) 

BLOCK CONTAINS integer RECORDS 

If this clause is used, the logical block size is equal to the 
record size (plus four bytes for variable length records on 
magnetic tape or two bytes for variable length records on disk) 
times the number of records per block. For disk files, the 
logical block size is rounded up to the next even multiple of 512 
bytes to make the block size an integral number of virtual 
blocks. For example: 

If the record size for a fixed-length disk file is 100 bytes and 
the clause BLOCK CONTAINS 10 RECORDS is specified, the logical 
block size is 1024 bytes. (100 times 10 is 1000, and 1000 
rounded up to the next even multiple of 512 is 1024). 

BLOCK CONTAINS integer CHARACTERS 

If this clause is used, the logical block size is equal to the 
number of characters given in the clause. If the specified 
number of characters is less than the actual record size (plus 
four bytes for variable-length records on magnetic tape or two 
bytes for variable length records on disk) the compiler generates 
a block size that is equal to the actual record size. For disk 
files, the specified number of characters must equal an even 
multiple of 512. If the number you specify is not correct, the 
OTS will round the logical block size it finds to the next even 
multiple of 512 bytes. 

When a program assigns a file to) magnetic tape, all programs that 
access the file must describe it the same way that the creating 
program described it in order to guarantee an accurate allocation of 
buffers. 

Note: The previous discussion has used the following format: 

[BLOCK CONTAINS integer {
RECORDS }] 

CHARACTERS 

If the following format is used: 

[ { 
RECORDS }] 

BLOCK CONTAINS[integer-1 TOJinteger-2 
CHARACTERS 

the compiler ignores integer-1, and integer-? is used as the integer. 

6. 1. 6 BUFFERING 

When the system performs an input operation, it reads a block from the 
medium into the buffer, and moves a record from the buffer to the 
current record area. Each subsequent read operation moves a record 
from the buffer to the current record area. When it has exhausted the 
buffer (has read an entire block), the system reads another block into 
the buffer. 

6-7 



FILE HANDLING 

When performing an output operation, each write operation moves a 
record from the file's current record area into the file's buffer. 
Each subsequent write operation moves a record from the current record 
area into the buffer. The system writes the block to the medium when 
it has filled the buffer. 

The following subsections discuss the size of the buffers, the number 
of buffers, and the sharing of buffers. 

6.1.6.1 Buffer Size - Buffer size depends on the size of the largest 
record in the file and on the blocking factor. For files with 
sequential organization, the buffer size will be at least 512 bytes. 

6.1.6.2 I-0 Buffer Areas - The RESERVE clause in the Environment 
Division specifies the number of I-0 buffer areas to be allocated for 
each file. Each I-0 area represents the space for one logical block. 
A minimum of one and a maximum of two are permitted for sequential 
files. One is the default. Since two I-0 areas do not increase the 
speed of access and take additional memory space, it is recommended 
that this clause not be used. 

6. 1.6.3 Buffer Space - To calculate the total amount of buffer space 
required for each sequential file, the following algorithm may be 
used: 

Buffer space = record size + (logical blocksize * no. of areas) 
+ 234 

In addition there are 76 bytes of buffer space that are shared among 
all files. 

6.1.6.4 Sharing Buffer Space Among Files - The SAME AREA clause 
provides a simple method of sharing buffer space among several files. 
Two or more files may share the same buffers if the SAME AREA clause 
contains their file-names and only one of them is open at any time 
during program execution. Further~ since only one file is open at a 
time, the files will also share the same current record area. The 
size of the current record area is set to the size of the largest 
record description specified in the group. 

If only one of these files is open at a time, the following sample 
statement causes them all to share the same buffer and current record 
area. 

I/0-CONTROL. 

SAME AREA FOR FILEA FILEB FILEC. 

6-8 



FILE HANDLING 

6.1.7 SEQUENTIAL I/O STATEMENTS 

PDP-11 COBOL provides the following I/O statements for sequential 
files: 

• CLOSE 
• OPEN 
• READ 
e REWRITE 
e WRITE 

Before a COBOL program can access a file, it must open the file; 
then, when the program is finished with the file, it must close the 
file. 

A COBOL program may open a sequential file in one of four modes, 
INPUT, OUTPUT, I-0 (input/output), or EXTEND. In INPUT mode, records 
may be read from the file; in OUTPUT mode the file is created and 
records can only be written to it; in I-0 mode, records can be read 
from the file and updated; in EXTEND mode, records may be added onto 
the end of the file. Table 6-3 shows which statements apply to the 
four different OPEN modes of sequential files. (The table does not 
include the OPEN and CLOSE statements since they apply to all modes.) 

Statement Input 

READ x 

REWRITE 

WRITE 

Table 6-3 
Sequential OPEN Modes 

Open Mode 
Output Input-Output 

x 

x 

x 

Extend 

x 

6.1.7.1 Opening Sequential Files - The OPEN statement makes a file 
available for processing by a COBOL program. A program must execute 
an OPEN statement for a file before it executes any other I/O 
statement for that file. Consider the following sample OPEN 
statement. It opens the file named THOREAU for input/output. The 
program containing this statement could, after executing it, READ, 
REWRITE, and CLOSE THOREAU. 

6-9 



FILE HANDLING 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT THOREAU 
ASSIGN TO "DK1:". 

DATA DIVISION. 
rlL~ SECTION. 
FD THOREAU 

PROCEDURE DIVISION. 

OPEN I-0 THOREAU. 

The OPEN statement must refer to the file by the file-name appearing 
in both the SELECT clause in the Environment Division and the FD 
paragraph in the Data Division. 

When the OTS executes an OPEN statement, it performs the following 
actions for the file named in the statement: 

• If the file is already open, the OTS generates an error 
message and performs the USE procedure section (if 
specified). (Section 6.8 discusses USE procedures and 
Section 12.3 discusses error messages.) 

• When opening an existing file, the attributes (i.e., record 
length, block size, etc.) of the file are used for accessing 
the file. Those specified in the program are ignored. Be 
sure that the attributes specified in the COBOL program agree 
with the actual attributes of the file. 

• If the SELECT clause of the File-Control paragraph declares 
the file OPTIONAL, the OTS displays the following message: 

"FILE nnn ... OPTIONAL FILE MOUNTED? YORN?" 

(nnn represents the file-name.) 

If the file is available for processing, type a Y. If not, 
type an N. If the file is not available (N), the OTS 
disables all I/O processing on the file except READ and 
CLOSE; a later READ statement causes program control to take 
the AT END imperative path. 

• If a SAME AREA clause contains the name of the file and none 
of the other files named in the clause is open, the OTS 
allocates buffer space for the file. 

• When the file has passed all of the preceding checks and is 
ready for opening, the OTS instructs the Record Management 
Services to open the file. If the Record Management Services 
fails to open the file, the OTS reports an error condition 
and performs any applicable USE procedure (if present). 

6-10 



FILE HANDLING 

• If the program is creating the file (OPEN OUTPUT) and the 
file description specifies LINAGE or APPLY PRINT-CONTROL, the 
OTS initializes the LINAGE counters. 

• Finally, depending on which statements apply to the open 
mode, the OTS enables or disables all of the program's I/O 
statements that refer to the file (see Table 6-3). For 
example, if the OPEN mode is INPUT, it enables all READ 
statements for that file and disables all REWRITE and WRITE 
statements for that file. 

Since the EXTEND mode simply allows the WRITE statement to add records 
onto the end of the file, files opened in this mode must already exist 
on disk or tape (only the last file on magnetic tape can be extended). 
If the file does not exist, the OPEN statement fails and the OTS 
issues an error message. 

6.1.7.2 Reading Sequential Files~ The READ statement makes the next 
logical record of an open sequential file available to the program. 
If the preceding I/O operation was an OPEN: it makes the first record 
of the file available to the program. 

Consider the following example. If the last I/O operation on the file 
named THOREAU was an OPEN, this statement would provide the program 
with the first record in the file THOREAU. Every time the statement 
is executed, it provides the program with the next sequential record 
in THOREAU. Program control transfers to the paragraph named LIBRARY 
when an end-of-file mark is encountered during the READ. 

BEGIN. 
LOOP. 

OPEN THOREAU. 
READ THOREAU AT END GO TO LIBRARY. 

GO TO LOOP. 

If the file contains variable-length records, the program must 
determine the length of the record just read. No such information is 
supplied to the user program. 

NOTE 

RSTS/E processes records from unit 
record devices as variable length 
records. This means that records read 
in from a card reader or paper tape 
reader will have trailing blanks 
deleted. For example, reading blank 
records will not change the user record 
area. To avoid problems, move blanks 
into the record area before each read. 

If the file is open in the I-0 mode, the successful execution of a 
READ statement enables any following REWRITE of the record just read. 
(For further information on the REWRITE statement, see the next 
subsection -- 6.1.7.3.) 

6-11 



FILE HANDLING 

If the file has more than one record description, the records 
automatically share the same current record area. The OTS does not 
clear this area before it executes the READ statement (no blank 
filling, etc.). Therefore, if the record read by the latest READ 
statement does not fill the entire current record area, the area not 
overlaid by the incoming record remains unchanged. For example, if 
the file's record area contains ten 3's, and a READ operation moves in 
a 6-character record containing all 1 's, the current record area then 
contains six 1 's followed by four 3's. Consider the following 
example: 

Current Record Area with all 3's 

Next Record in the File 

Current Record Area after READ 

133333333331 

11111111 

111111133331 

6. 1.7.3 Rewriting Records into Sequential Files - The REWRITE 
statement places the record just read from an input-output file back 
into its file on disk or magnetic tape. (The WRITE statement cannot 
access I-0 files.) The following sample statement writes the record, 
REC1, back into its file. (REC1, of course, must be a record in the 
file read by the preceding READ for that file.) 

REWRITE REC1 

Before the REWRITE statement can refer to a record, the program 
containing the statement must meet the following conditions: 

• The file containing the record must be open in the I-0 mode; 

• The last I/O operation on the file containing the record must 
have been a successful READ; 

• The record length of the record to be rewritten must be the 
same as the record last read from the file. 

6. 1.7.4 Writing Sequential Files - The WRITE statement releases a 
logical record to an output file, thereby creating an entirely new 
record in the file. 

The following sample WRITE statement releases the record PRINT-LINE to 
the device assigned to that record's file, then skips three lines. 
When it reaches the end of a page (as specified by the LINAGE clause), 
it causes program control to transfer to the subroutine, HEADER-RTN. 

WRITE PRINT-LINE BEFORE ADVANCING ~ T T'llr.'C'I 
.J L .Ll'lCu 

AT EOP GO TO HEADER-RTN. 

Note that this produces two blank lines following every line printed. 

The WRITE statement releases records to files that are open in either 
the output or extend mode. The following text discusses the two modes 
separately. 

• OUTPUT Mode - The WRITE statement can create the following 
two kinds of files in the OUTPUT mode: 

6-12 



FILE HANDLING 

1. P~int-files - A print-file produces a listing on a 
printing device. The LINAGE clause, the APPLY 
PRINT-CONTROL clause, or a WRITE statement with the 
ADVANCING option included, designates a file as a 
print-file. One or more records containing 
carriage-control characters are written to perform line 
spacing. The WRITE statement does not have to release 
print-files directly to a printing device, but may also 
release them to a storage medium such as disk for 
printing at a later time. 

2. Storage files - A storage file remains on disk or tape 
for future reference. All files that are not print-files 
are storage files. A sample storage file WRITE statement 
follows; this statement writes a record named WALDEN 
into a file: 

WRITE WALDEN 

• EXTEND Mode - A WRITE to a storage file opened in the EXTEND 
mode simply adds new records logically in sequence after the 
last record in the file. As the statement extenu~ Lne file, 
the Record Management Services automatically handles requests 
for additional storage space. (Print-files on disk should 
only be opened for EXTEND if they are being opened as a 
print-file.) 

6.1.7.5 Closing Sequential Files - The CLOSE statement terminates 
processing on the file referred to in the statement. The following 
sample CLOSE statement terminates processing on the file named 
THOREAU: 

CLOSE THOREAU 

When the CLOSE statement closes a file, no other I/O operation can 
access that file until another OPEN statement opens the file. 

If the statement specifies the LOCK option, the program cannot open 
the file again in this run. The CLOSE statement with the LOCK clause 
is shown below: 

CLOSE THOREAU WITH LOCK 

The lock option has no effect on the physical device containing the 
file. 

If a SAME AREA clause contains the name of the file just closed, the 
program may open one of the other files named in the clause. 

6.2 RELATIVE FILE ORGANIZATION 

Relative file organization arranges the records of the file into 
numbered record positions. It assigns each record position a number 
that identifies that position relative to the beginning of the file 
(the first record position in the file has record number 1, the second 
has record number 2, etc.). 

6-13 



FILE HANDLING 

2 3 4 5 6 I 7 I 8 I 9 10 

Record Positions in a Relative File 

When a program executes a random DELETE, REWRITE, READ or WRITE 
operation on a relative file, the value in the relative key is used to 
select records from these numbered record positions in the same way 
that a subscript selects an item in a table. 

Thus, while sequential and relative files both arrange their record 
positions in a serial order, COBOL statements can address the record 
positions of a relative file by their position numbers, and successive 
accesses do not have to proceed through the file in a prescribed, 
serial, order. 

Another significant feature of relative file organization is that each 
record position does not have to contain a valid record. Although 
each position actually occupies one record space, a byte preceding the 
record on the storage medium indicates whether or not that space 
contains a valid record. Thus, a file may have fewer records than it 
has record positions, and the indicated empty record positions may be 
anywhere in the file. 

The numerical order of the record positions remains the same during 
all operations on a relative file; however, the accessing statements 
can move a record from one position to another, delete a record from a 
position, or insert new records into empty positions. 

6.2. 1 RECORD SIZE 

A relative file may contain either fixed-length or variable-length 
records. (Fixed-length records have one or more record descriptions 
that describe the same size record. Variable-length records have more 
than one record description that describe several different sized 
records.) However, the COBOL compiler allocates a record area on the 
I/O device, equal to the largest record described plus one. This 
extra byte is an existence byte. It indicates whether the record area 
contains a valid record. For variable length records in a relative 
file, the software adds a two byte count field. On a write operation 
the actual record is written out to the I/O device not the maximum 
length record. The length of this record is placed in the two byte 
count field. On a read operation this two byte count field is used to 
determine the length of the record to be read in. 

6.2.2 RECORD CONTAINS Clause 

The RECORD CONTAINS clause, when specified without the "integer-1 TO" 
option, is for documentation purposes only. The compiler determines 
record size from the data descriptions. When the "integer-1 TO" 
option is specified, it forces the compiler to generate a variable 
length record file, even if the data descriptions describe fixed 
length records. 

Conversely, if the data descriptions for a sequential file describe 
variable-length records, the software sets up variable sized records 
automatically and ignores this clause. 

Even though the software ignores the values in the "integer-1 TO ... " 
prrase, the clause may be used in any program to document record 
~izes. 

6-14 



FILE HANDLING 

6.2.3 SAME RECORD AREA Clause 

The SAME RECORD AREA clause is identical for all file organizations. 
See Section 6.1.3. 

6.2.4 RECORD BLOCKING 

The size of a file is expressed as an integral number of 
blocks. Virtual blocks are physical storage structures. 
each virtual block within a file is a unit of data whose size 
on the physical medium on which the file resides. 

virtual 
That is, 
depends 

Relative files may reside only on disk. The size of virtual blocks 
within files on disk devices is always 512 bytes. 

Relative files use a logical storage structure known as a logical 
block or bucket. A bucket consists of from 1 to 32 virtual blocks. 

This distinction should be made clear. A virtual block is a physical 
entity which is fixed in size and cannot be changed. A bucket, 
however, is a logical enLiLy. Its size is airecLiy under your 
control. Records may span virtual block boundaries. They may never 
span bucket boundaries. 

Increasing the bucket size increases the speed of sequential 
processing of a file because fewer I/O operations are needed to access 
the smaller number of buckets in the file. On the other hand, a 
larger bucket size means that more memory space is taken up by the I/O 
buffers. Increasing the bucket size may not increase the speed of 
random processing of a relative file. 

There are three ways that the bucket size may be specified in a COBOL 
program; by default, by using the construct BLOCK CONTAINS integer 
RECORDS, or by using the construct BLOCK CONTAINS integer CHARACTERS. 

The default is to make the bucket size as small as possible, to 
m1n1m1ze the memory buffer space required. By using the BLOCK 
CONTAINS integer (RECORDS of integer CHARACTERS) clause, you can 
increase the memory buffer space required. Increasing the buffer 
space allows for faster I/O by decreasing the number of operations 
required to access a file. The following paragraphs further define 
the three blocking methods: 

Default 

The default philosophy is to make the bucket size as small as 
possible to m1n1m1ze the memory buffer space required. The 
algorithms for calculating the bucket size follow: 

Bnum= ((1+Rlen)/512)+1 Fixed length record 

Bnum= ((3+Rmax)/512)+1 Variable length record 

Where: 

Bnum is the number of virtual blocks per bucket. 

Rlen is the fixed record length (in bytes). 

Rmax is the maximum record length (in bytes) if the 
record length is variable. 

6-15 



FILE HANDLING 

The number 1 is for the existence byte. The number 3 is for the 
existence byte plus 2 bytes for the record length. 

Table 6-4 gives the bucket size for record lengths. 

Table 6-4 
Bucket Sizes for Record Lengths 

Bnum Rlen Rmax 

1 1-511 1-509 
2 512-1023 510-1021 
3 1024-1535 rn'22-1533 
4 1536-2047 1534-2045 
5 2048-2559 2046-2557 
6 2560-3071 2558-3069 
7 3072-3583 3070-3581 
8 3584-4095 3582-4093 

••• • •• • •• 

BLOCK CONTAINS Rnum RECORDS 

If the BLOCK CONTAINS Rnum RECORDS clause is used, where Rnum is 
an integer, then the following algorithms are used to calculate 
the bucket size. 

Bnum= (((Rlen+l)*Rnum)/512)+1 Fixed length record 

or 

Bnum= (((Rmax+3)*Rnum)/512)+1 Variable length record 

Where: 

Bnum is the number of virtual blocks per bucket, 
ranging from 1 to 32. 

Rlen is the fixed record length (in bytes). 

Rmax is the maximum record length (in bytes) if the 
record length is variable. 

Rnum is the number of records per bucket as given in 
the BLOCK CONTAINS clause. 

BLOCK CONTAINS Cnum CHARACTERS 

If the BLOCK CONTAINS Cnum CHARACTERS clause is used, where Cnum 
is an integer, then Cnum is subject to the following constraints. 

(1) Cnum Rlen+1 for fixed length records 
or 

Cn um Rm ax+ 3 for variable length records 

(2) Cnum mod 512 = 0 

6-16 



FILE HANDLING 

Based on CNUM, the bucket size is calculated as follows: 

Bnum=Cnum/512 

where: 

Cnum 

Rlen 

is the number of characters per bucket as given in 
the BLOCK CONTAINS clause. 

is the fixed record length (in bytes). 

Rmax is the maximu~ record length (in bytes) if the 
record length is variable. 

Bnum is the number of virtual blocks per bucket, 
ranging from 1 to 32. 

Violation of constraint (1) causes a warning error and the 
default method is used to calculate the bucket size. Constraint 
(2) means that Cnum should be a mu1t1p1e of 512. If not, a 
warning error is given and Cnum is increased to the next even 
m111f-;?"\1o r..f' i::1? 
1.lJ.\,A_.. V..&..t"..I..'- .....,~ J I'- e 

The bucket size must be the same when the file is created and 
each time the file is accessed. Therefore, the BLOCK CONTAINS 
clause must never change for a particular file. 

Note: The previous discussion has used the following format: 

rBLOCK CONTAINS integer 
L-

i RECORDS }] 

(CHARACTERS 

If the following format is used: 

[BLOCK CONTAINS[integer-1 TO ]integer-2 {
RECORDS }] 

CHARACTERS 

the compiler ignores integer-1, and integer-2 is used as the 
integer. 

6.2.5 BUFFERING 

When the system performs a sequential or random input operation, it 
reads a bucket from the medium into the buffer, and moves a record 
from the buffer to the current record area. Any subsequent sequential 
read operations move a record from the buffer to the current record 
area. When it has exhausted the buffer (has read an entire bucket), 
the system reads another bucket into the buffer. 

When performing a random read operation, the appropriate bucket is 
read into a file's buffer. The record is then moved from the buffer 
to the current record area. 

When performing a sequential output operation, each write operation 
moves a record from the file's current record area into the file's 
buffer. Each subsequent sequential write operation· moves a record 
from the current record area into the buffer. The system writes the 
bucket to the medium when it has filled the buffer. 

6-17 



FILE HANDLING 

When performing a random output operation, the appropriate bucket is 
read and the record is moved from the file's current record area into 
the appropriate position in the file's buffer. The system writes the 
bucket back out to the medium before reading any additional blocks. 

The following subsections discuss the size of the buffers, the number 
of buffers, and the sharing of buffers. 

6.2.5.1 Buffer Size - Buffer size depends on the size of the largest 
record in the file and on the blocking factor. For relative files, 
buffer size must be some multiple of 256 words (512 bytes). 

6.2.5.2 I/O Buffer Areas - The RESERVE clause in the Environment 
Division specifies the number of I/O buffer areas to be allocated for 
each file where an area represents the space for one bucket. A 
minimum of one and a maximum of two I/O areas are permitted for 
relative files. One is the default. It is recommended that this 
clause not be used, because two I/O areas do not increase the speed of 
access and take up additional space. 

6.2.5.3 Buffer Space - To calculate the total amount of buffer space 
in bytes required for each Relative file, the following algorithm may 
be used: 

Buffer space = record size + bucket size + 266 

In addition, there are 76 bytes of buffer space that are shared among 
all files. 

6.2.5.4 Sharing Buffer Space Among Files - The SAME AREA clause 
provides a simple method of sharing buffer space among several files. 
This clause is identical for all file organizations. See Section 
6.1.6.4. 

6.2.6 RELATIVE I/O STATEMENTS 

The COBOL I/O statements, CLOSE, DELETE, OPEN, READ, WRITE, REWRITE, 
and START can refer to relative files. 

A COBOL program may open a relative file in one of three modes, INPUT, 
OUTPUT, or I-0, and access an open relative file in one of three ways, 
sequentially, randomly, or dynamically. In INPUT mode, records may be 
read from the file; in OUTPUT mode, the file is created and records 
may be written to the file; in I-0 mode, records may be read from the 
file, updated on the file, deleted from the file, or written to the 
file. The following table shows which statements and access methods 
apply to the three different OPEN modes of relative files. 

6-18 



FILE ACCESS 
MODE 

Sequential 

Random 

Dynamic 

FILE HANDLING 

Table 6-5 
Relative OPEN Modes 

STATEMENT INPUT 

DELETE 
READ x 
REWRITE 
START x 
WRITE 

DELETE 
READ x 
REWRITE 
START 
TT T t;' wR ... Ti;. 

DELETE 
READ x 
READ NEXT x 
REWRITE 
START x 
WRITE 

NOTE 

OPEN MODE 
OUTPUT 

x 

x 

x 

The term, current record pointer, used 
in the following sections, refers to a 
location in the operating system used to 
determine the record number of the next 
available record in a file. 

I-0 

x 
x 
x 
x 

x 
x 
x 

I v 
A 

x 
x 
x 
x 
x 
x 

6.2.6.1 Access Modes - The ACCESS MODE clause in the File-Control 
paragraph dictates which of the three access modes may be used on that 
file. 

When the ACCESS 
must refer to 
opening) with 
reference to 
positions that 

MODE clause specifies SEQUENTIAL, the I/O statements 
the records in the file sequentially, starting (after 

the first record and stepping through with each 
the end of the file. The I/O statements ignore record 
do not contain valid records. 

When the ACCESS MODE clause specifies RANDOM, the I/O statements refer 
to the records in the file by record position. Thus, the statements 
may refer to record positions that do not contain valid records. The 
program must specify the desired record position number by placing a 
value in the file's relativ~ key: If an I/O statement refers to a 
record position with the relative key, and that record position does 
not exist (either because the position does not contain a record or 
because it is beyond the end of the file), the INVALID KEY imperative 
statement may be executed depending on the particular I/O ~tatement 
used. (The INVALID KEY imperative statement is explained with each of 
the relative I/O statements in this section.) 

6-19 



FILE HANDLING 

When the ACCESS MODE clause specifies DYNAMIC, the I/O statements may 
refer to the records in the file either sequentially or randomly. The 
OTS determines which access method to use from the OPEN mode (INPUT, 
OUTPUT, or I-0) and the form of the I/O statement. For example, if 
the statement READ ... INVALID KEY is to access an open input file 
dynamically, the OTS uses the relative key for random access; if the 
statement READ NEXT ... is to access an open input file dynamically, 
the OTS sequentially accesses the next existing record. 

The following sections 
statements themselves 
modes. 

(6.2.5.2 through 6.2.5.8) ~~ using the I/O 
contain additional information about access 

6.2.6.2 Opening Relative Files - The OPEN statement for a relative 
file makes an INPUT, OUTPUT, or I-0 mode file available so the COBOL 
program can access the records in the file sequentially, randomly, or 
dynamically. 

The OPEN statement sets the current record pointer for the file to 
zero. 

For example, the following sample OPEN statement opens the file named 
ARTICHOKE for input, and sets ARTICHOKE's current record pointer to 
zero. The program containing this statement could, after executing 
the statement, access ARTICHOKE with READ and START statements in the 
sequential access mode, READ statements in the random access mode, or 
READ, READ NEXT, and START statements in the dynamic access mode. 

OPEN INPUT ARTICHOKE. 

When the OTS executes an OPEN statement, it performs the following 
actions for the file named in the statement: 

• If the file is already open, the OTS generates an error 
message and performs the USE procedure section (if 
specified). (Section 6.8 discusses USE procedures and 
Section 12.3 discusses error messages.) 

• When opening an existing file, the attributes (i.e., record 
length, block size, etc.) of the file are used for accessing 
the file. Those specified in the program are ignored. Be 
sure that the attributes specified in the COBOL program agree 
with the actual attributes of the file. 

• If a SAME AREA clause contains the name of the file and none 
of the other files named in the clause is open, the OTS 
allocates buffers space for the file. 

• When the file has passed all of the preceding checks and is 
ready for opening, the OTS instructs the Record Management 
Services to open the file. If the Record Management Services 
fails to open the file, the OTS reports an error condition 
and performs any applicable USE procedure (if present). 

• Finally, depending on ~hich statements apply to the open 
mode, the OTS enables or disables all of the program's I/O 
statements that refer to the file (see Table 6-5). For 
example, if the OPEN mode is INPUT, it enables all READ and 
START statements for that file .and disables all REWRITE, 
DELETE and WRITE statements for that file. 



FILE HANDLING 

If the file is being accessed randomly or dynamicallyj the program 
must maintain a correct value in the relative key. If the file is 
being accessed sequentially, the OTS ignores the value of the relative 
key, but updates it to contain the position number of the record being 
accessed. 

6.2.6.3 Reading Relative Files - When applied to 
accessed sequentially, the READ statement makes 
record of an open file available to the program. 

a file being 
the next logical 

When applied to a file being accessed randomly, the READ statement 
selects a specified record from an open file and makes it available to 
the program. The value of the relative key for the file identifies 
the specific record. 

When applied to a file being accessed dynamically, the READ statement 
has two formats so that it can either select the next logical record 
(sequentially) or select a specified record (randomly) and make it 
available to the program. The READ NEXT statement takes the number in 
the current record pointer and finds the next present record. The 
following sample READ statement reads the file named ARTICHOKE 
sequentially and, when it exhausts the file, causes program control to 
transfer to the subroutine named FILEOUT: 

READ ARTICHOKE NEXT RECORD 
AT END GO TO FILEOUT. 

For further information concerning the mechanics of the READ NEXT 
statement, see Section 6.2.5.7, Specifying the Next Record to be Read. 

The READ with key takes the value in the relative key, moves it to the 
current record pointer, and reads the record being pointed to. The 
following READ (with key) statement reads the file named ARTICHOKE 
randomly, selecting records through the value in the file's relative 
key. If the relative key supplies a value that does not contain a 
valid record, the statement causes program control to transfer to the 
subroutine named NO-REC. 

READ ARTICHOKE RECORD 
INVALID KEY GO TO NO-REC. 

If the file has more than one record description, the records 
automatically share the same current record area. The OTS does not 
clear this area before it executes the READ statement (no blank 
filling, etc.). Therefore, if the record read by the latest READ 
statement does not fill the entire current record area, the area not 
overlaid by the incoming record remains. unchanged. For example, if 
the file's record area contains ten 3's, and a READ operation moves in 
a 6-character record containing all 1 's, the current record area then· 
contains six 1 's followed by four 3's. Consider the following 
example: 

Current Record Area with all 3's 13333333333 I 
Next Record in the File I 1111111 

Current record Area after READ I 1111113333 I 

6-21 



FILE HANDLING 

6.2.6.4 Rewriting Records into a Relative File - The REWRITE 
statement places a record back into its file on disk or magnetic tape. 
The following sample statement writes the record, BREAKERS, back into 
its file. 

REWRITE BREAKERS. 

If the file is open in 
rewrites the record 

the sequential access 
just successfully read. 

mode, the statement 
If the file is open in 

either the random or dynamic access mode, the statement rewrites the 
record to the record position specified by the relative key. 

6.2.6.5 Writing Records in a Relative File - The WRITE statement 
releases a logical record to a file. The following sample WRITE 
statement releases the record BREAKERS to the device assigned to that 
record's file. If the record already exists, program control 
transfers to the subroutine, WRITE-ERR. 

WRITE BREAKERS 
INVALID KEY GO TO WRITE-ERR. 

The WRITE statement releases records to files that are open in either 
the OUTPUT or I/O mode. The following text discusses the two modes 
separately: 

• OUTPUT Mode - The WRITE statement's only function with output 
files is to place entirely new records into the file. If 
more space is required for new record positions, the Record 
Management Services automatically extends the file size, 
regardless of the access mode being employed. 

• I/O Mode - The statement's function with input-output files 
is to place records in record positions that already exist 
and are empty. The length of the records must not exceed the 
maximum length record specified for the file when it was 
created. 

The relative WRITE statement creates only storage files since 
print-files are sequential files. The following SAMPLE statement 
writes a record named BREAKERS into its file: 

WRITE BREAKERS. 

6.2.6.6 Deleting Records from a Relative File - The DELETE statement 
logically removes an existing record from a relative file. After a 
DELETE statement has successfully removed a record from a file, that 
record can no longer be· accessed. 

If the file is open in the sequential access mode, the statement 
removes the record just successfully read. For example, the following 
sample statement removes the record just read from the file named 
ARTICHOKE: 

DELETE ARTICHOKE RECORD. 

6-22 



FILE HANDLING 

If the file is open in either the random or dynamic access mode, the 
statement removes the record from the record position specified by the 
relative key. For example, the following sample statement deletes the 
record specified by the relative key from the file named ARTICHOKE; 
if the relative key supplies a value that does not contain a valid 
record, the statement transfers control to the subroutine named 
NO-REC. 

DELETE ARTICHOKE RECORD 
INVALID KEY GO TO NO-REC. 

6.2.6.7 Specifying the Next Record to be Read - The START statement 
specifies which record in a file will be the next one to be referenced 
sequentially. 

A READ NEXT statement should follow the START statement since the READ 
NEXT statement reads the next record from the one being pointed to by 
the current record pointer. 

If the data area, SOMETHING, in the following example contains a 30 
and position 33 in the file contains the next present record, the 
START statement sets the current record pointer to one less than 33 
(32). The READ NEXT statement would then find the next present 
record, which we know is 33. 

WORKING-STORAGE SECTION. 
77 SOMETHING PIG S99 VALUE 30. 
77 ARTKEY PIG 99. 

RD-SET. 

IN1. 

MOVE SOMETHING TO ARTKEY. 
START ARTICHOKE 

KEY IS GREATER THAN ARTKEY 
INVALID KEY GO TO NEWKEY. 

READ ARTICHOKE NEXT RECORD 
AT END GO TO FILEOUT. 

The value of the RELATIVE KEY data item specified in the statement 
(ARTKEY in the preceding example) together with the conditional phrase 
specified in the statement (IS GREATER THAN in the preceding example) 
determines which record in the file will be accessed by the READ NEXT 
statement. 

The START statement uses the value in the RELATIVE KEY data item to 
set the current record pointer. If record positions 30 and 33 contain 
valid records and ARTKEY contains 30, the START statement would set 
the current record pointer and RELATIVE KEY data item as follows: 

1. If the conditional phrase specifies KEY IS GREATER THAN 
ARTKEY, the statement sets the current record pointer to 32. 

2. If the conditional phrpse specifies KEY IS EQUAL TO ARTKEY or 
NOT LESS THAN ARTKEY, the statement sets the current record 
pointer to 29. 

The READ NEXT statement takes the number in the current record pointer 
and finds the next present record from that number. (If the pointer 
contains a 30 and the next present record is in position 33, it finds 
record number 33). The READ NEXT statement gets that record and 
places its record position number (3~) into the current record pointer 
and the relative key. 

6-23 



FILE HANDLING 

A subsequent READ NEXT takes the number in the current record pointer, 
which is now 33 in our example, and finds the next present record. It 
fetches that record and places its record position number in the 
current record pointer and relative key. 

6.2.6.8 Closing Relative Files - The CLOSE statement terminates 
processing on the file referred to in the statement. The following 
sample CLOSE statement terminates processing on the file named 
ARTICHOKE: 

CLOSE ARTICHOKE. 

When the statement closes a file, no other I/O operation can access 
that file until another OPEN statement opens the file. 

If the statement specifies the LOCK option, the program cannot open 
the file again in that run. 

If a SAME AREA clause contains the name of the file just closed, the 
program may open one of the other files named in the clause. 

6.3 INDEXED FILE ORGANIZATION 

WARNING 

Indexed file organization is available 
only to users having RMS-11K software. 

Unlike the physical ordering of records in a sequential file or the 
relative positioning of records in a relative file, the location of 
records in the indexed file organization is transparent to your 
program. The presence of keys in the records of the file governs the 
placement of records in an indexed file. 

A key is a character string present in every record of an indexed 
file. The location and length of this character string is identical 
in all records. When creating an indexed file, you decide which 
character string in the file's records is to be a key. By selecting 
such a character string, the contents (i.e., key value) of that string 
in any particular record written to the file can be used by a program 
to identify that record for subsequent retrieval. 

You must define at least one key for an indexed file. This mandatory 
key is the primary key of the file. Optionally, you can define up to 
255 additional keys (i.e., alternate keys). Each alternate key 
represents an additional character string in records of the file. The 
key value in any one of these additional strings can also be used as a 
means of identifying the record for retrieval. 

As programs write records into an indexed file, the values contained 
in the primary and alternate keys are used to locate the record in the 
file. From the values in keys within records a tree-structured table 
known as an index is built. An index consists of a series of entries. 
Each entry contains a key value copied from a record that a program 
wrote-into the file. With each key value is a pointer to the location 
in the file of the record from which the value was copied. A separate 

6-24 



FILE HANDLING 

index is built and maintaine_d for each key you define for the file~ 
Each index is stored in the file. Thus, every indexed file contains 
at least one index, the primary key index. When you define alternate 
keys, an additional index is built and maintained for each alternate 
key. Figure 6-3 shows the general structure of an indexed file that 
has been defined with only a single key. Figure 6-4 depicts an 
indexed file defined with two keys, a primary key and one alternate 
key. 

KEY DEFINITION 

19724 I . . . ABLE 
i 

ELM AV I 24379 I ··I JONES 
i 
: MAIN ST 

I I 
I I 

SMITH I HOLT RD : 35888 

Figure 6-3 Single Key Indexed File Organization 

6-25 



°' I 
IV 

°' 

PRIMARY INDEX 
(Employee Name) 

fB?,~~~\ij,~~tt [2J~~ 
/ 

~ 
---------

1 I~ ABLE I ELM AV I 24379 • • 
I I 

KEY DEFINITIONS 

ALTERNATE INDEX 

11733 

\ ---__ ?.......--~~-- --- - - -
--- -_,,,,.,,. 

-~·---w------

1 
JONES I MAIN ST 19724 

I 
L--~~-..L.___.. __ ..._~---

I 
SMITH I HOLT RD 

I 
11733 

'- -~----~---~-~~-~~--DAT A RECORDS-------------------' 

Figure 6-4 Multi-key Indexed File Organization 

45591 

t:EJ 
H 

~ 

~ 
0 
t-t 
H z 
G"l 



FILE HANDLING 

6.3.1 RECORD SIZE 

A relative file may contain either fixed-length or variable-length 
records. (Fixed-length records have one or more record descriptions 
that describe the same size record. Variable-length records have more 
than one record description that describe several different sized 
records.) For variable length records in an indexed file, the software 
adds a two byte count field. On a write operation the actual record 
is written out to the I/O device not the maximum length record. The 
length of this record is placed in the two byte count field. On a 
read operation this two byte count field is used to determine the 
length of the record to be read in. 

6.3.2 RECORD CONTAINS Clause 

The RECORD CONTAINS clause, when specified without the "integer-1 TO" 
option, is for documentation purposes only. The compiler determines 
record size from the data descriptions. When ~ne "integer-1 TO" 
option is specified, it forces the compiler to generate a variable 
length record file, even if the data descriptions describe fixed 
length records. 

Conversely, if the data descriptions for a sequential file describe 
variable-length records, the software sets up variable sized records 
automatically and ignores this clause. 

Even though the software ignores the values in the "integer-1 TO ... " 
phrase, the clause may be used in any program to document record 
sizes. 

6.3.3 SAME RECORD AREA Clause 

The SAME RECORD AREA clause is identical for all file organizations. 
See Section 6.1.3. 

6.3.4 RECORD BLOCKING 

The size of a file is expressed as an integral number of virtual 
blocks. Virtual blocks are physical storage structures. That is, 
each virtual block within a file is a unit of data whose size depends 
on the physical medium on which the file resides. 

Indexed files may reside only on disk. The size of virtual blocks 
within files on disk devices is always 512 bytes. 

Indexed files, like relative files, use a logical storage structure 
known as a logical block or bucket. A bucket consists of 1 to 32 
virtual blocks. The user may specify the number of virtual blocks 
contained within each bucket by using the BLOCK CONTAINS clause. This 
distinction should be made clear. A virtual block is a physical 
entity which is fixed in size and cannot be changed by the user. A 
bucket is a logical entity and its size is directly under user 
control. Records may span virtual block boundaries. They may never 
span bucket boundaries. 

6-27 



FILE HANDLING 

Increasing the bucket size increases the speed of processing of a file 
because fewer I/O operations are needed to access the smaller number 
of buckets in the file. On the other hand, a larger bucket size means 
that more memory space is taken up by the I/O buffers. 

There are three ways that the bucket size may be specified by the user 
in a COBOL program: by default, by using the construct BLOCK CONTAINS 
integer RECORDS, or by using the construct BLOCK CONTAINS integer 
CHARACTERS. 

The default is to make the bucket size as small as possible to 
min1m1ze the memory buffer space required. By using the BLOCK 
CONTAINS (integer RECORD or integer CHARACTERS) clause, you can 
increase the memory buffer space required. Increasing the buffer 
space allows faster I/O by decreasing the number of operations to 
process a file. The following paragraphs further define the three 
blocking methods: 

Default 

The default philosophy is to make the bucket size as small as 
possible to min1m1ze the memory buffer space required. The 
algorithms for calculating the bucket size follow: 

Bnum= ((22+Rlen)/512)+1 Fixed length record 

or 

Bnum= ((24+Rmax)/512)+1 Variable length record 

where: 

Bnum is the number of virtual blocks per bucket. 

Rlen is the fixed record length (in bytes). 

Rmax is the maximum record length (in bytes) if the record 
length is variable. 

The number 22 comes from a bucket overhead 
fixed length record header of 7 bytes; 
overhead of 15 bytes and a variable length 
bytes. 

of 15 bytes and a 
24 comes from a bucket 
record header of 9 

Table 6-6 gives the bucket size for record lengths. 

Table 6-6 
Bucket Size for Record Lengths 

Bnum Rlen Rmax 

1 1-490 1-488 
2 490-1002 489-1000 
3 1003-1514 1001-1512 
4 1515-2026 1513-2024 
5 2027-2538 2025-2536 
6 2539-3050 2537-3048 
7 3051-3562 3049-3560 
8 3563-4074 3561-4072 
9 4075-4095 4073-4095 

••• ••• ••• 

6-28 



FILE HANDLING 

BLOCK CONTAINS Rnum RECORDS 

If the BLOCK CONTAINS num RECORDS clause is used, where num is an 
integer, then the following algorithms are used to calculate the 
bucket size. 

Bnum= ((15+(Rlen+7)*Rnum)/512)+1 Fixed length r.ecord 

or 

Bnum= ((15+(Rlen+9)*Rnum)/512)+1 Variable length record 

where: 

Bnum is the number of virtual blocks per bucket, ranging 
from 1 to 32. 

Rlen is the fixed record length (in bytes). 

Rmax is ~ne maximum record length (in bytes) if the record 
length is variable. 

Rnum is the number of records per bucket as given in the 
BLOCK CONTAINS clause. 

The number 15 is bucket overhead, 7 is the fixed length record 
header and 9 is the variable length record header. 

BLOCK CONTAINS Cnum CHARACTERS 

If the BLOCK CONTAINS Cnum CHARACTERS clause is used, where Cnum 
is an integer, then Cnum is subject to the following constraints. 

(1) Cnum Rlen+1 for fixed length records 
or 

Cnum Rmax+3 for variable length records 

(2) Cnum mod 512=0 

Based on Cnum, the bucket size is calculated as follows: 

Bnum=Cnum/512 

where: 

Cnum is the number of characters per bucket as given in the 
BLOCK CONTAINS clause. 

Rlen is the fixed record length (in bytes). 

Rmax is the maximum record length (in bytes) if the record 
length is variable. 

Bnum is the number of virtual blocks per bucket, ranging 
from 1 to 32. 

6-29 



FILE HANDLING 

Violation of constraint (1) causes a fatal error and the default 
method is used to calculate the bucket size. Constraint (2) 
means that Cnum should be a multiple of 512. If not, a warning 
error is given and Cnum is increased to the next even multiple of 
512. 

The bucket size must be the same when the file is created and 
each time the file is accessed. Therefore, the BLOCK CONTAINS 
clause must never change for a particular file. 

Note: The previous discussion has used the following format: 

[ BLOCK CONTAINS integer {
RECORDS }] 

CHARACTERS 

If the following format is used: 

[BLOCK CONTAINS[integer-1 TO]integer-2 {
RECORDS }] 

CHARACTERS 

the compiler ignores integer-1, and integer-2 is used as the integer. 

L 

6.3.5 BUFFERING 

When the system performs a sequential or random input operation, one 
or more index buckets are read into the buffer area until the bucket 
containing the specified record is located. The bucket containing the 
record is then read into the buffer area. Any subsequent sequential 
read operations will use the current index buffer to locate and read 
subsequent records in the current or other record buckets. When it 
has exhausted the current index buffer (has read all the records 
identified in the bucket), the system reads the next index bucket into 
the buffer area. 

When performing a sequential or random output operation, the system 
moves a record from the files current record area into the files 
buffer. Each subsequent write operation moves a record from the 
current record area into the buffer. The system writes the bucket to 
the medium when it has filled the buffer. Every output operation also 
causes the appropriate index bucket to be read into the buffer area, 
the indexes for each of the keys to be added to the appropriate 
buckets, and the buckets to be rewritten to the storage medium. 

6.3.5. 1 Buffer Size - Buffer size depends on the size of the largest 
record in the file and on the blocking factor. For indexed files, 
buffer size must be some multiple of 256 words (512 bytes). 

6.3.5.2 I/O Buffer Areas - The RESERVE clause in the Environment 
Division specifies the number of I/O buffer areas to be allocated for 
each file. Each I/O area represents the space for one bucket. A 
minimum of two is required for an Indexed file (this is the default). 
Three areas will increase the speed of random access. Four areas will 
increase the speed of random access if the file is being accessed on 

6-30 



FILE HANDLING 

two different keys. For each additional key, an additional area will 
increase the speed of access. Therefore, to speed up random access 
time, the optimum number of buffer areas is equal to the number of 
keys by which the file is being accessed plus two. Of course, each 
area means that more memory space is being taken up. 

6.3.5.3 Buffer Space - To calculate the total amount of buffer space 
required for each Indexed file, the following algorithm may be used: 

Buffer Space = record size+((bucket size+20)*no. of areas) 

+(48*no. of keys in file)+((MAXKSIZ*2+MAXNKEY+3)/4*4) 

+272 

where: 

MAXKSIZ 

MAXNKEY 

is the maximum key size in the program. 

is the maximum number of record keys for any file in 
the program. 

Note that in the division, the result is truncated to the next lowest 
integer. 

In addition to the above, there are 76 bytes of buffer space that are 
shared among all files and 44 times MAXNKEY bytes of buffer space that 
are shared among all indexed files. 

6.3.5.4 Sharing Buffer Space Among Files - The SAME AREA clause 
provides a simple method of sharing buffer space among several files. 
This clause is identical for all file organizations and is described 
in Section 6. 1.6.4. 

6.3.6 INDEXED I/O STATEMENTS 

The COBOL I/O statements, CLOSE, DELETE, OPEN, READ; WRITE, REWRITE, 
and START can refer to indexed files. 

A COBOL program may open an indexed file in one of three modes, INPUT, 
OUTPUT, or I-0, and access an open indexed file in one of three ways, 
sequentially, randomly, or dynamically. In INPUT mode, records may be 
read from the file; in OUTPUT mode, the file is· created and records 
may be written to the file; in I-0 mode, records may be read from the 
file, updated on the file, deleted from the file, or written to the 
file. The following table shows which statements and access methods 
apply to the three different OPEN modes of indexed files. 

6-31 



File Access 
Mode 

Sequential 

Random 

Dynamic 

Statement 

DELETE 
READ 
REWRITE 
START 
WRITE 

DELETE 
READ 
REWRITE 
START 
WRITE 

DELETE 
READ 

FILE HANDLING 

Table 6-7 
Indexed OPEN Modes 

Input 

I x 

x 

x 

x 
READ NEXT x 
REWRITE 
START x 
WRITE 

NOTE 

O~en Mode 
Output 

x 

x 

x 

The term, current record pointer, used 
in the following sections, refers to a 
location in the operating system used to 
store the record number of available 
record in a file. 

I I-0 

x 
x 
x 
x 

x 
x 
x 
x 

x 
x 
x 
x 
x 
x 

6.3.6.1 Access Mode - The ACCESS MODE clause in the File-Control 
paragraph indicates which of the three access modes may be used on 
that file. When the ACCESS MODE clause specifies SEQUENTIAL, the I/O 
statements must refer to the records in the file sequentially, 
starting (after opening) with the first record and stepping through 
with each reference to the end of the file. 

When the ACCESS MODE clause specifies RANDOM, the I/O statements refer 
to the records in the file by the value of the key or keys. Usually 
the prime key is used unless a specific alternate key is designated. 
If an I/O statement refers to a record with a key, and that record 
does not exist, the INVALID KEY imparative statement may be executed 
depending on the particular I/O statement used. (The INVALID KEY 
imperative statement is explained with each of the indexed I/O 
statements in this section.) 

When the ACCESS MODE clause specifies DYNAMIC, the I/O statements may 
refer to the records in the file either sequentially or randomly. The 
OTS determines which access method to use from the OPEN mode (INPUT, 
OUTPUT, or I-0) and the form of the I/O statement. For example, if 
the statement READ ... INVALID KEY is to access ~a open input file 
dynam±cally, the OTS uses the designated key for random access. If 
the statement READ NEXT ... is to access an open input file 
dynamically, the OTS sequentially accesses the next existing record. 

6-32 



FILE HANDLING 

The following sections (6.3.6.2 through 6.3.6.8) on using the I/O 
statements themselves contain additional information about access 
modes. 

6.3.6.2 Opening Indexed Fil~s - The OPEN statement for an indexed 
file makes an INPUT, OUTPUT, or I-0 mode file available so the COBOL 
program can access the records in the file sequentially, randomly, or 
~ynamically. Consider the following example: 

Example 

The following sample OPEN statement opens the file named ARTICHOKE for 
input, and sets ARTICHOKE's current record pointer to the first record 
in the file. The program containing this statement could, after 
executing the statement, access ARTICHOKE with READ and START 
statements in the sequential access mode, READ statements in the 
random access mode, or READ, READ NEXT, and START statements in the 
dynamic access mode. 

OPEN INPUT ARTICHOKE. 

When the OTS executes an OPEN statement, it performs the following 
actions for the file named in the statement: 

• If the file is already open, the OTS generates an error 
message and performs the USE procedure section (if 
specified). (Section 6.8 discusses USE procedures and 
Section 12.3 discusses error messages.) 

• When opening an existing file, the attributes (i.e., record 
length, block size, etc.) of the file are used for accessing 
the file. Those specified in the program are ignored. Be 
sure that the. attributes specified in the COBOL program agree 
with the actual attributes of the file. 

• If a SAME AREA clause contains the name of the file and none 
of the other files named in the clause is open, the OTS 
allocates buffer space for the file. 

• When the file has passed all of the preceding checks and is 
ready for opening, the OTS instructs the Record Management 
Services to open the file. If the Record Management Services 
fails to open the file, the OTS reports an error condition 
and performs any applicable USE procedure (if present). 

• Finally, depending on which statements apply to the open 
mode, the OTS enables or disables all of the program's I/O 
statements that refer to the file (see Table 6-7). For 
example, if the OPEN mode is INPUT, it enables all READ and 
START statements for that file and disables all REWRITE, 
DELETE and WRITE statements for that file. 

The OPEN statement sets the current record pointer for the file to the 
first existing record in the file as established by the prime record 
key. If the file is being accessed randomly or dynamically, the 
program should maintain correct values in the prime and aternate key 
fields. 

6-33 



FILE HANDLING 

6.3.6.3 Reading Indexed Files - When applied to a file being accessed 
sequentially, the READ statement makes the next logical record of an 
open file available to the program. The information made available is 
based on positioning by the OPEN, START, or last READ operation. 

When applied to a file being accessed randomly, the READ statement 
selects a specified record from an open file and makes it available to 
the program. The value of the specified key (prime key, if the no key 
is specified) identifies the record. 

When applied to a file being accessed dynamically, the READ statement 
has two formats so that it can either select the next logical record 
(sequentially) or select a specified record (randomly) and make it 
available to the program. The READ NEXT statement takes the number in 
the current pointer and finds the next present record. The following 
sample READ statement reads the file named ARTICHOKE sequentially and, 
when it exhausts the file, causes program control to transfer to the 
subroutine named FILEOUT: 

READ ARTICHOKE NEXT RECORD 
AT END GO TO FILEOUT. 

For more information concerning the mechanics of the READ NEXT 
statement see Section 6.3.6.6, Specifying the Next Record To Be Read. 

The READ with key takes the value in the specified key, moves it to 
the current record pointer, and reads the record being pointed to. 
The following READ (with key) statement reads the file named ARTICHOKE 
randomly, selecting records through the value in the file's primary 
key. If the designated key supplies a value that is not identified 
with a valid record, the statement causes program control to transfer 
to the subroutine named NO-REC. 

READ ARTICHOKE RECORD 

INVALID KEY GO TO NO-REC. 

Note: a random read repositions the current record pointer and thus 
effects further sequential reads. 

If the file has more than one record description, the records 
automatically share the same current record area. The OTS does not 
clear this area before it executes the READ statement (no blank 
filling, etc.). inerefore, it ~ne record read by the latest READ 
statement does not fill the entire current record area, the area not 
overlaid by the incoming record remains unchanged. For example, if 
the file's record area contains ten 3's, and a READ operation moves in 
a 6-character record containing all 1's, the current record area then 
contains six 1's followed by four 3's. Consider the following 
example: 

Current Record Area with all 3's I 33333333331 

Next Record in the File 11111111 

Current Record Area after READ I 11111133331 

6.3.6.4 Rewriting Records into an Indexed File - The REWRITE 
statement releases a logical record to an output or input-output file. 
In all of the access modes, the record is positioned based on the 

6-34 



FILE HANDLING 

prime key, any alternate keys are also processed properly, including 
duplicate keys. If more space is required for new record positions, 
the Record Management Services automatically extends the file size, 
regardless of the access mode being employed. 

If the file is open in sequential access mode and the records are not 
written in ascending order of the prime key values, an INVALID KEY 
condition exists. In any access mode an attempt to write an existing 
record having the same prime key value or an alternate key value where 
duplicates are not allowed, results in an INVALID KEY condition. 

The following sample WRITE statement releases the record BREAKERS to 
the indexed file. If the record already exists, program control 
transfers to WRITE-ERR. 

WRITE BREAKERS 
INVALID KEY GO TO WRITE-ERR. 

The indexed WRITE statement creates only storage files because 
print-files are sequential files. 

6.3.6.5 Deleting Records from an Indexed File - The DELETE statment 
logically removes an existing record from a file. After a DELETE 
statement has successfully removed a record from a file, that record 
can no longer be accessed. 

If the file is open in the sequential access mode, the statement 
removes the record just successfully read. For example, the following 
sample statement removes the record just read from the file named 
ARTICHOKE: 

DELETE ARTICHOKE RECORD. 

If the file is open in either the random or dynamic access mode, the 
statement 
key. For 
specified 
prime key 
statement 

removes the record from the record specified by the prime 
example, the following sample statment deletes the record 

by the prime key from the file named ARTICHOKE. If the 
supplies a value that does not contain a valid record, the 
transfers control to NO-REC. 

DELETE ARTICHOKE RECORD 
INVALID KEY GO TO NO-REC. 

6.3.6.6 Specifying the Next Record to be READ - The START 
specifies which record will be the next record to be 
sequentially in a file opened for INPUT or I-0 processing. 
statement updates the current record pointer for future 
READs. 

Suppose we have the following START statement: 

START FILE-A KEY IS EQUAL TQ SUB-KEY-A. 

statement 
referenced 
The START 
sequential 

SUB-KEY-A must be alphanumeric. In addition, SUB-KEY-A must be a 
record key or alternate record key or subordinate to a record key or 
alternate record key whose leftmost character position corresponded to 
its own leftmost character position. For example, if the following 
fields were defined in the record: 

6-35 



FILE HANDLING 

02 KEY-A. 
03 SUB-KEY-A. 

04 SUB-KEY-A1 PIC XXX. 
04 SUB-KEY-A2 PIC XX. 

03 SUB-KEY-B PIC XXX. 

and if KEY-A was a record key or alternate record key, then the 
following would be legal START statements: 

START FILE-A KEY IS EQUAL TO KEY-A. 

START FILE-A KEY IS EQUAL TO SUB-KEY-A. 

START FILE-A KEY IS EQUAL TO SUB-KEY-A 1. 

The following START statements are illegal. 

START FILE-A KEY IS EQUAL TO SUB-KEY-A2. 

START FILE-A KEY IS EQUAL TO SUB-KEY-B. 

The leftmost character positions of SUB-KEY-A2 and SUB-KEY-B do not 
correspond to the leftmost character position of KEY-A. 

The relational operator IS EQUAL TO (or IS =) means that the current 
record pointer is set to point to the record associated with the first 
key equal to SUB-KEY-A. If SUB-KEY-A is shorter than the record key 
or alternate record key, then the record keys or alternate record keys 
in the file are truncated on the right to the same length as SUB-KEY-A 
for the purposes of the comparison. 

If the following START statement is used: 

START FILE-A KEY IS GREATER THAN SUB-KEY-A. 

or 

START FILE-A KEY IS > SUB-KEY-A. 

then the current record pointer is set to point to the 
associated with the first key that is greater than SUB-KEY-A. 
if the file had records with the following keys: 

Record # 743 629 ~15 

record 
Thus, 

KEY-A ABCDDZZX ABCDEABC ABCDEXYZ ABCDEZZZ ABCDGAAA ABCDGZZX 

and SUB-KEY-A contained ABCDE, then the current record pointer would 
be set to point to record number 233. 

If the following START statement is used: 

START FILE-A KEY IS NOT LESS THAN SUB-KEY-A. 

or 

START FILE-A KEY IS NOT < SUB-KEY-A. 

then the current record pointer is set to point to the record 
associated with the first key that is greater than or equal to 
SUB-KEY-A. In the previous example that would be record number 629. 

6-36 



FILE HANDLING 

If there is no record that satisfies the comparison, the invalid key 
exit is taken. In our example the following statement: 

START FILE-A KEY IS EQUAL TO SUB-KEY-A. 

would take the invalid key exit if SUB-KEY-A contained ABCDF. 

If the comparison is satisfied and the current record pointer is set, 
then subsequent READs would update the current record pointer using 
KEY-A as the key of reference. 

If the key phrase is not specified, then the default key is the prime 
record key and the default comparison is IS EQUAL TO. 

6.3.6.7 Closing Indexed Files - The CLOSE statement terminates 
processing on the file referred to in the statement. The following 
sample CLOSE statement terminates processing on the file named 
ARTICHOKE: 

CLOSE ARTICHOKE. 

When the statement closes a file, no other I/0 operation can access 
that file until another OPEN statement opens the file. If the 
statement specifies the LOCK option, the program cannot open the file 
again in that run. If a SAME AREA clause contains the name of the 
file just closed, the program may open one of the other file~ named in 
the clause. 

6.4 DEVICES 

The PDP-11 COBOL object time system supports any devices supported by 
the Record Management Se~vices. Table 6-8 contains a partial list of 
these devices: 

Table 6-8 
Device Codes 

Device Device Code 

Card Reader CR 

Disk (RK03/RK05) DK 

Disk (RF 11IRS11 ) DF 

Disk (RS03/RS04) DS* 

Disk (RP11/RP02/RP03) DP 

Disk (RJP04) DB 

Line Printer LP 

Magnetic Tape (TU10/TS03) MT 

Magnetic Tape (TU16/TU45) MM 

*The DS device code does not apply to RSTS/E. 

6-37 



FILE HANDLING 

Some devices are better suited to certain uses than others. For 
example, since PDP-11 COBOL is a disk-oriented system, the disk 
provides COBOL files with the best performance and reliability. On 
the other hand, COBOL files on magnetic tape are limited to sequential 
organization. 

The following subsections discuss the devices that are available and 
how to use them to best advantage. 

6.4.1 DISK 

The primary means for storage and processing of PDP-11 COBOL files is 
a disk. Several disk units are supported, including RK05, RF11, 
RP11/RP03, RP04 and RS04. Each device has its own file handling 
characteristics, and differs with respect to capacity, speed, and 
portability. The following table compares these characteristics. The 
values, low, mod (moderate), and high, describe the relative 
characteristics of the devices in the table. The efficiency 
characteristic commbines the values of capacity, speed, and 
portability for that unit into a single value. 

Table 6-9 
Comparison of PDP-11 Disk Devices 

Device RK05 RF 11 RP11/RP03/RP04 RS04* 

CAPACITY LOW/MOD 

I 
LOW VERY HIGH I LOW 

(4800 ( 1024 
I 

(80,0'0'0 (2048 
BLOCKS) BLOCKS) BLOCKS) BLOCKS) 

(RP04 160,000' 
BLOCKS) 

SPEED MOD HIGH HIGH HIGH 

PORTABILITY HIGH (EASY) NONE HIGH (BULKY) NONE 

EFFICIENCY HIGH MOD HIGH MOD 

*RSTS/E supports the RS04 only as a swapping device. 
It cannot be used for user files. 

The characteristics of the devices in the table suggest suitable 
applications. Consider the Tnllnwin~ PY~mnlPR~ - - - - - •• - '"''"'O - ...... --.. -r - - - ... 

• The portable, moderate capacity RK~5 is ideal for storage of 
COBOL source and object files as well as small data files; 

• The fast, low capacity RF11 is ideal for scratch files requiring 
either random or sequential access; 

• The high-capacity RP11/RP03/RP0'4 is excellent for large files 
requ1r1ng high volume access in either the random or sequential 
modes. Further, its portability makes it ideal for master file 
storage on multiple systems. 

6-38 



FILE HANDLING 

6.4.2 MAGNETIC TAPE 

All PDP-11 operating systems support magnetic tape files; all COBOL 
operations concerned with magnetic tape are fully supported by the 
compiler, including the MULTIPLE-FILE TAPE clause and the CLOSE REEL 
[WITH NO REWIND] clause. (RSTS/E does not support multi-reel files.) 

6.4.3 CARD READER AND~ PRINTER 

COBOL programs can use both the card reader and the line printer as 
I/O devices. 

If these devices have been assigned logical names in the Special-Names 
paragraph of the Environment Division, the ACCEPT and DISPLAY 
statements can access them. For example, consider the following 
coding: 

ENVIRONMENT DIVISION. 

SPECIAL-NAMES. 
CARD=READER IS CARDS 
LINE-PRINTER IS LOG. 

PROCEDURE DIVISION. 

ACCEPT INREC FROM CARDS. 

DISPLAY PRINTREC UPON LOG. 

Figure 6-5 Assigning Logical Names to the 
Card Reader and Line Printer 

If filenames have been assigned to these devices in the SELECT clause 
of the File-Control paragraph, the READ and WRITE statements can 
access them for I/O files. For example, consider the following 
coding: 

6-39 



FILE HANDLING 

FII~-CONTROL. 

SELECT INFILE ASSIGN TO "CR:". 
SELECT OUTFILE ASSIGN TO "LP:". 

FD OUTFILE 
DATA RECORD IS OUTREC. 

PROCEDURE DIVISION. 

READ INFILE. 

WRITE OUTREC. 

Figure 6-6 Assigning the Card Reader and 
Line Printer to Files 

6.5 FILES AND FILENAMES 

The OTS and the operating system use the device codes described in 
Section 6.4 to communicate with the devices. Further, the COBOL OTS 
uses the operating system's file specification and interfaces for all 
file manipulation with file storage devices (disk and magtape). The 
VALUE OF ID clause (discussed in the following subsection) in the FD 
entry describes the file specification to the OTS. The format for the 
full file specification follows: 

dev:[uic] filename.typ;version/switches 

where: 

dev: 

[uic] 

filename 

typ 

version 

switches 

- device code 

- user's identification code or the code of the user 
for whom the file was created - the user directory 
ID. (The brackets [ ] are required.) 

- an alphanumeric field containing up to nine 
characters that identifies the file (RSTS/E allows a 
length of from one to six characters). 

an alphanumeric field containing up 
characters that qualify the filename. 

to three 

- a numeric field containing up to five 
that give the version number of 
specifying version numbers, the user 
several versions of the same file 
device. (Not available with RSTS/E.) 

octal digits 
the file. By 

can maintain 
on a directory 

- identifies certain actions for the operating system 
to perform for the file. (See Chapter 14, 
Optimization.) 

6-40 



FILE HANDLING 

These entries default as follows: 

dev: - the device code of the disk containing the operating 

[uic] 

filename 

typ 

version 

switches 

system. 

- the user identification code of the user currently 
using the system. 

- null 

- null 

the version number defaults differently for IAS and 
RSX-11M input and output files. 

• input files - the highest numbered version of the 
file (thus selecting the latest version); 

• output files one greater 
highest numbered version 
creating the latest version). 

- null 

than that of the 
of the file (thus 

For example, the following sample file specification causes the file 
system to process version 3 of a file on disk named ARIES. The user 
has an identification code of 140,222. 

DK:[140,222]ARIES;3 

The following sample RSTS/E file specification causes the file system 
to process a file on disk named ARIES. The user has an identification 
code of 140,222. Note that RSTS/E does not support the version number 
feature. 

DK:[140,222]ARIES. 

6.5.1 USING EXPLICIT FILENAMES (VALUE OF ID CLAUSE) 

The VALUE OF ID clause, in the FD entry, describes the file 
specification to the COBOL OTS. The VALUE OF ID clause is optional; 
however, the system requires it whenever the program refers to an 
explicit file unless a sufficient file description is provided in the 
ASSIGN clause. The clause accepts either a literal entry or an 
identifier entry. Consider the following sample literal form of the 
clause: 

VALUE OF ID IS "DK:[140,222]ARIES;3" 

Elements of the file specification appearing in the VALUE OF ID clause 
supersede their counterparts specified in the ASSIGN clause for the 
file. (Subsection 6.5.2 discusses the ASSIGN clause.) 

When written in the literal form, the literal may be a complete file 
specification or a part of a file specification. 

When written in the identifier form, the value of the identifier may 
be a complete or partial file specification. 

The identifier form of this clause is especially useful when different 

6-41 



FILE HANDLING 

runs of a program process different files. If a program must process 
different files in the same way on different runs, an ACCEPT statement 
in the Procedure Division can request a file specification from the 
user at the user's console or from a batch input stream. 

The following example illustrates how a COBOL program could request a 
file specification from an interactive terminal: 

DATA DIVISION. 

FD FILEIN 
VALUE OF ID IS INFILE. 

WORKING-STORAGE SECTION. 
11 INFILE PIC X(20). 

PROCEDURE DIVISION. 

DISPLAY "TYPE IN INPUT FILE SPEC". 
ACCEPT INFILE. 

OPEN INPUT FILEIN. 

This sample coding 
program and the 
underlined): 

causes the following interaction between the 
user (the message printed by the program is 

TYPE IN INPUT FILE SPEC 
DK1:THOREAU RET 

Following this interaction, the sample OPEN statement will open (for 
inputj the file, THOREAU on DKi. 

6-42 



FILE HANDLING 

6.5.2 DEVICE ASSIGNMENT BY ASSIGN CLAUSE 

If the VALUE OF ID clause does not specify a complete file 
specification, the ASSIGN clause in the File-Control paragraph can 
assign a defalt to those components not specified. The ASSIGN clause 
must be written as part of the SELECT statement as shown below: 

SELECT THOREAU ASSIGN TO "DK1:" 

This example assigns a default device code "DK1:" for the location of 
the file THOREAU. Another device code specification in the VALUE OF 
ID clause could override it later in the source program. 

6.5.3 FILES AND LOGICAL UNITS 

Each file in an executable task must have a unique Logical Unit Number 
(LUN) assigned to it. The COBOL compiler can only generate a relative 
LUN assignment for each file in a COBOL program, because there may be 
multiple COBOL programs in a task. (See Figure 2-10 which contains a 
sample file=to=relative=LUN assignment table.) Actual LUN assignments 
are made by the COBOL Object Time System (OTS) at task execution time. 
The number of LUNs needed by a task is equal to 1+n, where n is the 
total number of individual files included in each program comprising 
the task. For example, if a task consists of three programs, each 
program requiring three files, then the number of LUNs required is 10. 
(The first LUN is reserved for ACCEPT/DISPLAY and message 
processing.) If more than six LUNs are required for an executable 
task, the UNITS option must be specified at task-build time, because 
the Task Builder default is 6. 

Each LUN must have a physical device associated with it before the 
associated file can be opened. You can assign a physical device to 
the file by specifying the VALUE OF ID or ASSIGN clause in your COBOL 
program, or you can specify the ASG option at task-build time. 

NOTE 

The default LUN assignments generated by 
the Task Builder do not always equate to 
the system device. 

(Refer to the Task Builder Manual for your particular operating system 
for more information concerning task builder options.) 

As previously stated, each COBOL program receives relative LUN 
assignments for its files by the compiler. At task-execution time, 
the OTS converts these relative LUN assignments to actual assignments 
according to the following rules: 

1. If the task consists of only one COBOL program, the OTS adds 
1 to each of the relative LUN assignments yielding the actual 
assignments. Therefore, a 'file rece1v1ng a relative LUN 
assignment of 2 by the compiler would receive an actual LUN 
assignment of 3 at execution time. 

2. If the task consists of more than one COBOL program having 
files assigned to it, simply addini 1 to the relative LUN 
assignments would obviously yield duplicate actual LUN 

6-43 



I 

FILE HANDLING 

assignments. The OTS, in the case of multiple program tasks, 
utilizes the relative assignment +1 formula for the first 
program in the task. For each subsequent program, it takes 
the highest actual LUN assignment for the previous program 
and adds 1 to it to arrive at the first LUN assignment. It 
then applies the +1 formula to this first LUN assignment to 
arrive at each subsequent assignment for the program. 
Consider the following example: 

Example 

A task consists of three programs (PROGA, PROGB, and PROGC). 
Each program has three files with relative LUN assignments of 
1, 2, and 3. At execution time, assuming that the programs 
were presented to the Task Builder or Merge Utility in the 
order PROGA, PROGB, and PROGC, the OTS would assign actual 
LUNs as follows: 

Program LUN assignment 

1 (reserved for ACCEPT/DISPLAY and message 
processing) 

PROGA 
2 1st. File 
3 2nd. File 
4 3rd. File 

PROGB 
5 1st. File 
6 2nd. File 
7 3rd. File 

PROGC 
8 1st. File 
9 2nd. File 

10 3rd. File 

6-44 



FILE HANDLING 

6.6 COMMUNICATING WITH THE PROGRAM 

The ACCEPT and DISPLAY statements allow low-volume,- terminal-oriented 
interaction between a COBOL program and the user of the program. 

While these statements are primarily intended for use with keyboard 
devices, PDP-11 COBOL allows the ACCEPT statement to accept cards from 
a card reader. and the DISPLAY statement to display data on a line 
printer. The following two Sections (6.6.1 and 6.6.2) discuss these 
capabilities in greater-detail. 

6.6. 1 USING THE ACCEPT STATEMENT 

The ACCEPT statement makes small amounts of data available to the 
specified data item. 

Consider the following example; it causes data to be transferred from 
the device identified by the mnemonic-name, OPERATOR, to the area 
represented by the identifier, COMM-AREA. 

ACCEPT COMM-AREA FROM OPERATOR. 

OPERATOR must be a mnemonic-name specified for a device in the 
Special-Names paragraph (in this example, possibly the console). The 
area represented by the identifier COMM-AREA receives the data 
requested without any editing. 

The ACCEPT statement causes the transfer of a stream of bytes from the 
device specified in the FROM phrase, if it is present (OPERATOR in the 
previous example). If the FROM phrase is not present, the data is 
transferred from the user's console. 

Enough bytes are transferred to fill the identifier's area. The size 
of COMM-AREA in this example dictates the number of bytes being 
transferred. 

If the device contains more data than there are bytes in COMM-AREA, 
the data is truncated. 

• If the length of the identifier exceeds 80 bytes, the OTS 
performs one or more additional transfers of data until it 
either fills the identifier or transfers less than 80 bytes. 

• If the length of the identifier is less than or equal to 80 
bytes and the length of the data is less than the identifier 
on a teletype or cards, the OTS pads the identifier with 
blank characters. 

The ACCEPT statement has a second format that allows it to retrieve 
the current DAY, DATE, or TIME from the system, and store it in the 
specified identifier. (DAY, DATE, and TIME are reserved words that 
the user does not define. The user must define identifiers into which 
to accept the values of DAY, DATE, or TIME.} The following sample 
statements place the current date into the identifier, GREENWICH, and 
the day of the year into the identifier, DAY-OF-YEAR: 

ACCEPT GREENWICH FROM DATE. 
ACCEPT DAY-OF-YEAR FROM DAY. 

6-45 



FILE HANDLING 

If the date were February 3, 1979, GREENWICH would contain 790203 
(YYMMDD), and DAY-OF-YEAR would contain 79034 (YYDDD). 

The systems provide the time as follows (HH is the hour; MM is the 
minutes; SS is the seconds; CC is the hundredths of a second): 

TIME -- HHMMSSCC 

If the time were 20 seconds after 5: 15 PM, the systems (which nave a 
24-hour clock) would provide the numbers 17152000. (Since the PDP-11 
clock has no hundredths of a second capability, the systems place 
zeroes in the last two positions.) 

The identifier receives the data according to the rules for the MOVE 
statement. Chapters 3 and 4 discuss the MOVE statement as applied to 
non-numeric fields (Chapter 3) and numeric fields (Chapter 4). 

6.6.2 ~ l1iE. DISPLAY STATEMENT 

The DISPLAY statement transfers small amounts of data from he 
specified data item or literal to the specified device. 

Consider the following example; it causes the transfer of data from 
the area represented by the identifier, COMM-AREA, to the device with 
the mnemonic-name, OPERATOR: 

DISPLAY COMM-AREA UPON OPERATOR. 

OPERATOR must be a mnemonic-name specified for a device in the 
Special-Names paragraph (possibly the console in this example). The 
area represented by the identifier, COMM-AREA, contains the data being 
transferred. 

The DISPLAY statement causes the transfer of a stream of bytes to the 
device specified in the UPON phrase if it is present (OPERATOR in the 
preceding example). If the UPON phrase is not present, the OTS 
transfers the data to the user's console. 

All of the bytes in all of the identifiers or literals in the DISPLAY 
statement are transferred first. The size of COMM-AREA, in this 
example, dictates the number of bytes being transferred. 

The system does not convert COMP items from binary to ASCII; it 
simply transfers them as they exist in storage. 

If a single DISPLAY statement must transfer large amounts of data, 
that data must contain appropriate vertical and horizontal form 
control characters. If the data being transferred does not contain 
form control characters and the length of the data stream exceeds the 
device's single line capacity, the excess characters will all print in 
the last position (overprinting each other). 

Table 6-10 contains several of the terminal form control characters: 

6-46 



FILE HANDLING 

Table 6-10 
Form Control Characters 

Octal Control 
Code Character Function 

007 BEL (CTRL G) Bell ringer 
011 HT (CTRL I) Horizontal tab 
012 LF (CTRL J) Line feed or line space (new line) 
013 VT (CTRL K) Vertical tab 
014 FF (CTRL L) Form feed to head of form 
015 CR (CTRL M) Carriage return 

When it has transferred all of the data from all of the items listed 
in the statement, a carriage return and linefeed character are 
automatically appended onto the data. The WITH NO ADVANCING phrase 
suppresses this appending operation. 

NOTE 

The WITH NO ADVANCING phrase is an 
extension to the ANS-74 standard. 

6.7 FILE COMPATIBILITY WITH OTHER PROGRAMMING LANGUAGES 

All files generated by other programming languages are compatible with 
COBOL provided that they were generated using Record Management 
Services. Files generated by other file systems must conform to 
Record Management Services formats. 

6.7. 1 WRITING FILES FOR OTHER PROGRAMMING LANGUAGES 

PDP-11 COBOL writes files that can be read only by languages using the 
Record Management Services system interface for user program I/O. 
When creating a file that is to be read by a language, that does not 
use the Record Management Services interface (i.e., BASIC-PLUS), 
adhere to the following restrictions: 

• Ensure that the file has sequential file organization. 

• Ensure that the file is not a COBOL print-file (no LINAGE or 
APPLY PRINT-CONTROL clauses are applicable to the file). 
Printer control is handled differently by each PDP-11 
programming language. 

• Do not use the ADVANCING option in WRITE statements when 
creating the file. 

The file may contain fixed-length or variable-length records, and the 
records should only contain only printable ASCII character data. 

6-47 



FILE HANDLING 

6.7.2 READING FILES WRITTEN IN OTHER PROGRAMMING LANGUAGES ----- -- -----
PDP-11 COBOL reads files that were written only by languages using the 
Record Management Services system interface for user program I/O. 
Before reading a file that was written by another language that does 
not use the Record Management Services interface, be certain that the 
file meets the following restrictions: 

• Ensure that the file is an ASCII file. 

• Ensure that the 
attribute (the 
not be set). 

file does not have a carriage control 
FORTRAN carriage control file attribute must 

FORTRAN meets these restrictions when it writes ASCII (not binary) 
data with formatted WRITE statements. However, the user must disable 
the carriage control attributes in the OPEN statement for the file. 

CALL OPEN (UNIT=n, CARRIAGE CONTROL="NONE" 

WRITE (n,100) list 

FORMAT( ..... ) 

BASIC+2 is capable of reading and 
Services files. Therefore, files 
compatible with COBOL. 

writing all Record Management 
written by BASIC+2 programs are 

BASIC-PLUS meets all of these restrictions when it writes a formatted 
ASCII (sometimes called sequential) file as described in the 
BASIC-PLUS Language Manual. PDP-11 COBOL cannot read BASIC-PLUS 
Virtual Array files. 

6.7.3 DATA FILE TRANSPORTABILITY 

The user who wishes to transport data files from one language 
processor to another or from one system to another (RSX-11M to RSTS/E 
or vice versa) should be careful to write such files using the Record 
Management Services. Record Management Services is the only file 
interface used by PDP-11 COBOL. 

Non-printable ASCII characters are subject to misinterpretation by the 
different language processors and operating system utilities. If, for 
example, COBOL were to write records which contained COMPUTATIONAL 
(binary) data items, the values these items could contain would be 
written in the file in the same binary format as represented in the 
cornputere Such binary values may look like non=printable ASCII 
characters such as CR, LF, CTRL/Z, escape, which could cause system 
utilities to perform in an unpredictable manner while processing the 
records. 

Other ways that non-printable ASCII characters can get into a file 
are: 

1. having data definitions that contain the USAGE IS INDEX 
clause; 

2. moving HIGH-VALUES or LOW-VALUES; 

6-48 



FILE HANDLING 

3. moving any redefinition of a COMP or USAGE IS INDEX field; 

4. reading a data file that contains non-printable 
characters; 

ASCII 

5. having multiple record definitions of varying sizes and 
filling a shorter record area then writing a longer one. 
(The excess characters, not filled, may be non-printing.) 

This list is not complete. There are many other ways for non-printing 
ASCII characters to find their ways into printable ASCII files. 

6.8 PROCESSING I/O ERRORS - USE STATEMENT 

The USE statement provides COBOL programs with a way to process I/O 
errors. It allows the program to specify possible recovery steps 
following the I/O handling procedures performed by the software. 

When a COBOL program contains a USE procedure and an I/O error occurs, 
the OTS and Record Management Services execute their standard I/O 
error handling procedures and then transfer control to the procedure 
following the USE statement. (For further information concerning 
run-time I/O errors, see section 12.3.) 

Consider the following sample coding. When either THOREAU or 
ARTICHOKE causes an I/O error, the OTS executes its standard I/O error 
procedures and then transfers control to the paragraph (or paragraphs) 
that follow the USE statement. 

PROCEDURE DIVISION. 
DECLARATIVES. 
REPAIR SECTION. 

USE AFTER STANDARD ERROR PROCEDURE 
ON THOREAU ARTICHOKE. 

DISPLAY-ERROR. 
IF ... 

The paragraphs following the USE statement may contain any valid COBOL 
statement, except for the following: 

1. Those statements that refer to a procedure outside of the 
DECLARATIVES. (Any attempt to transfer control out of the 
DECLARATIVES causes the OTS to abort the program.) 

2. Those statements that would cause the USE procedure being 
executed to be invoked again. (Recursive USE procedures 
cause the ors to abort the program.) 

USE procedures are executed in the same manner PERFORM ranges 
in Procedure Division coding. Therefore, paragraphs with the 
USE procedure section should follow all rules specified for 
paragraphs within PERFORM ranges. For further information on 
PERFORM ranges, see Use of the PERFORM Statement in Chapter 7 
of this guide.) 

If a status key is declared for the file in error, all status 
information is made available for processing in the USE 
procedure. 

6-49 



FILE HANDLING 

6-50 



CHAPTER 7 

GOOD PROGRAMMING PRACTICES 

7.1 FORMATTING THE SOURCE PROGRAM 

Since most COBOL programs are usually long, the programmer needs 
techniques that will help him to simplify and improve the readability 
of his COBOL programs. The guidelines in this chapter, if followed, 
will help produce source programs that are easy to read and maintain. 

Before considering these guidelines, consider the reference formats 
that are available with PDP-11 COBOL: 

1. the Conventional (ANS) format, and 

2. the Terminal format. 

Although the Conventional format produces ANS compatible programs, it 
also produces source printouts that are somewhat more cluttered than 
those produced by the Terminal format. These guidelines, therefore, 
recommend the use of Terminal format and all of the following 
suggestions and examples assume the use of that format. Besides the 
obvious advantage of an uncluttered printout, the Terminal format has 
other programming advantages: 

1. it requires less storage area; 

2. it requires no line numbers; 

3. its statements may be aligned with tab characters. 

Further, whenever required, the REFORMAT utility program will convert 
Terminal format programs to the Conventional format. (The REFORMAT 
utility program is discussed in Chapter 11). 

The following suggestions should help to further simplify even the 
most complicated source programs. 

1. Begin division, section, and paragraph names in column 1. 
Although these names may start anywhere in Area A, aligning 
them in column 1 produces a much more readable listing. When 
required, place the * and - in column 1. (Column 1 then 
becomes column 0.) 

2. Insert a blank line, o~ one or more comment lines (describing 
the purpose of the file) before each SELECT statement in the 
FILE-CONTROL paragraph. Place the phrases of the SELECT 
statement on separate lines and begin each of them in column 
5 (use the tab character to skip over Area A). Consider the 
following illustration of a typical SELECT statement: 

7-1 



GOOD PROGRAMMING PRACTICES 

AREA A 

1 . . . 

AREA B 

5 • • • • . • • 
SELECT MASTER-FILE 
ASSIGN TO "DKl:" 
ORGANIZATION IS RELATIVE 
ACCESS IS SEQUENTIAL. 

3. Place the phrases of the file description statement on 
separate lines and begin each of them in column 5. {Use the 
tab to skip over Area A.} Consider the following illustration 
of a typical file description entry: 

AREA A 

1 . 
FD 

AREA B 

5 • • • • • • . 
MASTER-FILE 
LABEL RECORDS ARE STANDARD 
VALUE OF ID IS MASTER-FILE-NAME 
DATA RECORD IS MASTER-RECORD. 

4. In both the File and working-Storage sections, begin all 01 
level items in column 1. 

Indent, by four columns, all subordinate items with 
higher-valued level numbers. {For example, if the item that 
is subordinate to a 01-level record description is 05, begin 
the record description level number in column 1 and the 05 
level number in column 5.) Use the tab character for the 
first indentation, a tab and four spaces for the second, two 
tabs for the third, etc. When indented in this manner, the 
listing will show, clearly and neatly, the hierarchical 
relationships of all of the data names in the program as well 
as their level number values. 

Increment level numbers by 5; then later, if it becomes 
necessary to insert additional group items, they may be 
inserted without having to change the level numbers of all 
items that are subordinate to that group. 

If desired, write the level numbers as single digits (such as 
1 instead of 01). 

Use level number 01 instead of 77 in the Working-Storage 
Section. (77, as a level number has the same meaning as 01, 
and 77 may eventually be omitted from the COBOL standard.} 

Since all elementary items, except for index data items, 
require PICTURE clauses, these clauses fill a good part of 
the source program listing. However, the PICTURE clause 
itself may be simplified to enhance the listing's readability 
as follows: 

a. use PIC as an abbreviation for PICTURE, 

b. omit the noiseword IS, and 

c. align the PIC clauses on successive lines. {Use the tab 
character to align the clauses.} 

5. Put all paragraph name declarations in the Procedure Division 
on lines separate from the statements in the paragraph. This 
not only makes the program more readable, it also makes 
modification of the first statement in the paragraph easier. 

7-2 



GOOD PROGRAMMING PRACTICES 

6. Follow all imperative statements with a period, making them 
1-statement sentences. Place only one statement on a line. 
In addition to making the lines shorter and more readable, 
this will prove quite helpful when debugging the program. 
For example, if the program contains a coding error, it will 
be on one line and therefore easier to modify without 
affecting the other portions of the sentence; further, the 
diagnostic messages will refer to the correct line and their 
meanings will be clearer. 

Since left-aligned statements in any program enhance the 
readability of that program, develop the habit of starting 
all COBOL sentences in column 5. (Use the tab character to 
skip over Area A.) Some statements, however, should be 
further indented, as explained in the following paragraphs. 

7. If the true path of a conditional statement contains another 
conditional statement or more than one imperative statement, 
place all statements in the true path on lines immediately 
following the conditional statement and indent them to show 
their dependence upon that statement. Consider the following 
illustration of an IF statement and its true path: 

IF COMPUTED-TAX 
SUBTRACT TAX-LIMIT FROM COMPUTED-TAX GIVING EXCESS-TAX 
MOVE TAX-LIMIT TO COMPUTED-TAX 
ADD EXCESS-TAX TO TOTAL-EXCESS-TAX. 

If the statement has an ELSE (or false) path, align the word 
ELSE under the preceding IF and indent all statements that 
are dependent on the ELSE statement. Thus: 

IF condition 
true path statement 
true path statement 

ELSE 
false path statement 
false path statement. 

Be sure to place the period after the last statement only! 

Another good method for simplifying conditionals is to write 
only a single imperative statement in the true or false path. 
If the path requires more statements, place them in a 
separate paragraph and either PERFORM the paragraph from the 
path or GO to it. This technique avoids the possibility of 
inadvertently placing a period at the end of a statement 
within the path, thereby terminating it prematurely. 

When writing a GO TO ... DEPENDING statement, place each 
procedure name on a separate line and indent them all. 
Consider the readability of the following sample statement: 

GO TO P35 
P40 
P45 
P60 
P65 
DEPENDING ON P-SWITCH. 

7-3 



GOOD PROGRAMMING PRACTICES 

8. When grouping statements into paragraphs and sections, use 
the following organizational ideas: 

Group together logical units of processing into a section. 
Select a section name that reflects the type of processing 
being conducted within that section {such as TAX-COMPUTATION 
SECTION, PRINT-LINE-FORMATTER SECTION, etc.). Follow the 
section name with sufficient comment lines to explain the 
processing that is carried out by the statements within that 
section. 

Make paragraph names as short and simple as possible. A 
numbered abbreviation of the section name often suffices. 
Thus the paragraph names in the TAX-COMPUTATION section might 
be TClO, TC20, TC30, etc. Use paragraph names sparingly, 
placing them only where the true and false paths of 
conditional statements require branch points for GO TO 
statements. If the temptation arises to give a paragraph a 
longer name in an attempt to reflect the type of processing 
in that paragraph, use comment lines instead. {Comment lines 
usually convey more information, more clearly.) 

When using simple numbered paragraph names, assign increasing 
numeric characters to sequential paragraphs. If the numeric 
portion of the names increases by 5 or 10, new ones may be 
inserted later without disturbing the sequence of the names. 

Do not use the PERFORM verb in the form, PERFORM a THRU b. 
If the paragraphs a thru b must be performed, place them in a 
section by themselves and PERFORM the section, thus avoiding 
the use of the THRU option. 

Place single paragraphs that are to be performed into 
sections and use the section name as the object of PERFORM 
verbs. Then, if future design changes introduce complicated 
conditional logic into the paragraph, requiring additional 
paragraph names, the PERFORM statements need not be altered. 

The preceding guidelines divide the Procedure Division into 
modular blocks of coding. If these guidelines are used, the 
following additional techniques may be applied. 

a. Restrict entry to all sections through the first 
statement of the section by use of a GO TO, a PERFORM, or 
a "fall through" from the preceding section: 

b. Ensure that all GO TO statements refer to only section 
names or paragraph names that are internal to the section 
containing the GO TO statement. 

7.2 USE OF PUNCTUATION 

Avoid using the COBOL punctuation characters, comma and semicolon. 
They lend little to the readability of programs that have their 
statements neatly aligned, as discussed earlier in this chapter. 
Further, it is quite easy to misuse these characters, which can cause 
serious errors for many compilers. {Other compilers either ignore 
incorrect punctuation characters or flag them with warning messages.) 
At best, even when used correctly and in the proper places, they have 
no effect on the meaning of the program. 

7-4 



GOOD PROGRAMMING PRACTICES 

7.3 USE OF THE ALTER STATEMENT 

Avoid using the ALTER statement to change the flow of control in a 
program. It is impossible to test the setting of an alterable GO 
statement except by executing it. Also, unless explicit comments 
accompany an alterable GO statement, it is difficult to tell whether 
or not it is referenced by ALTER statements or what the possible 
destinations might be. All of this makes debugging programs that 
contain these statements quite difficult. There are two other 
techniques that may be used in their place: 

1. If control branches one of two ways (i.e., a binary switch), 
write the switch as a conditional variable. Consider the 
following sample coding: 

01 P-SWITCH PIC S9 COMP VALUE 0. 
88 NO-PRINT VALUE 1. 

MOVE 1 TO P-SWITCH 

IF NO-PRINT GO TO P40. 

P40. 
MOVE 0 TO P-SWITCH. 

2. If control branches more than two ways, use MOVE statements 
to place integers into a data item, and a GO TO ... 
DEPENDING ... statement to test the data item and branch 
accordingly. Consider the following sample coding: 

01 P-SWITCH PIC 89999 COMP VALUE O= 

MOVE 1 TO P-SWITCH 

MOVE 3 TO P-SWITCH. 

GO TO 
PART-TIME 
PIECE-WORK 
HOURLY 
SALARIED-WEEKLY 
SALARIED-OTHER 
DEPENDING ON P-SWITCH. 

* FALL THROUGH IS A BUG 
DISPLAY "?17". 
STOP RUN. 

7.4 USE OF THE PERFORM STATEMENT 

The general rules for the PERFORM statement are augmented with the 
following rules: 

7-5 



GOOD PROGRAMMING PRACTICES 

1. The endpoint of a section and the endpoint of the last 
paragraph in the same section are two distinct points. This 
means that it is possible to execute a PERFORM of the 
section, then while that PERFORM is still active, to execute 
a PERFORM of the last paragraph. 

2. On the start of a PERFORM, if the end point of the new 
PERFORM is the end point of an already active PERFORM, the 
OTS aborts the task and issues an error message. 

3. At the end of any procedure, a check is made to see if the 
procedure being ended is the end of the most recent PERFORM 
range. If so, the most recent PERFORM range is exited. If 
not, the end point of the most recent procedu~e is checked 
against the end point of all currently active PERFORMs. 
If the end point of the procedure is the end point of any 
currently active PERFORM range, the OTS issues an error 
message and aborts the task because the perform ranges are 
not being exited in the reverse of the order in which they 
were entered. 

NOTE 

The OTS error messages are discussed in 
Section 12.4, Run-time Error Messages. 

7.5 USE OF LEVEL 88 CONDITION-NAMES 

Condition-names provide a convenient method for testing a value or 
range of values in a field. The use of condition-names makes programs 
easier to maintain, because it ensures a uniform method of testing 
fields and helps to reduce recoding when the specifications of the 
program change. 

The following example illustrates the use of condition-names and shows 
the advantages inherent in their use. 

Suppose the records of a file each describe a student in an 
educational institution (or an employee in a corporation}. Some of 
the records contain categories of information which are not present in 
other records. A "code" field, which contains a digit or letter, 
indicates the presence (or type) of some categories; while a special 
value in the information itself (such as a numeric value being zero, 
negative, or maximum) indicates the presence of other categories. The 
processing of such a record may vary considerably depending on these 
indicator fields. The fields may require interrogation at various 
points in the program; and the interrogation may require more than a 
simple relation test. 

Consider a "code" field that holds one of seven 
mnemonic character. For example, S,1,2,3,4,G,P 
that indicate student categor1es of Special, 1st 
year, 4th year, Graduate, and Postgraduate. The 
follows: 

05 STUDENT-CATEGORY PIC X. 

7=6 

values, coded as a 
might be seven values 
year, 2nd year, 3rd 
field is described as 



GOOD PROGRAMMING PRACTICES 

Program logic requires certain processing for enrolled undergraduates, 
different processing for special students, and still different 
processing for all students except enrolled undergraduates. Without 
the aid of condition-names, statements might be written as follows to 
resolve this problem: 

IF STUDENT-CATEGORY= "S" ... 

IF STUDENT-CATEGORY NOT LESS THAN "l" 
IF STUDENT-CATEGORY NOT GREATER THAN "4" 

IF STUDENT-CATEGORY EQUAL TO "G" NEXT SENTENCE 
ELSE IF STUDENT-CATEGORY EQUAL TO "P" 

NEXT SENTENCE ELSE GO TO ... 

However, if various level 88 entries follow the STUDENT-CATEGORY 
description, as shown below, condition-names can simplify this coding. 

05 STUDENT-CATEGORY PIC X. 
88 UNDERGRADUATE VALUE "l" THRU "4". 
88 SPECIAL-STUDENT VALUE "S". 
88 GRAD-STUDENT VALUE "G" "P". 
88 SENIOR VALUE "4". 
88 NON-DEGREE-STUDENT VALUE ~s~ ~P~. 

Now, the following procedural statements can solve the problem: 

IF SPECIAL-STUDENT .. . 
IF UNDERGRADUATE .. . 
IF GRAD-STUDENT .. . 

Procedural statements with condition-names are much easier to read and 
debug than those containing the complete test. For example, the 
procedural statements, IF UNDERGRADUATE ... , and IF STUDENT-CATEGORY 
NOT LESS THAN "l" IF STUDENT-CATEGORY NOT GREATER THAN "4" both 
accomplish the same thing, but the first statement is simpler and less 
confusing. 

In addition, the statement, IF NOT UNDERGRADUATE can test the 
category of not being an undergraduate, which is equivalent to any one 
of the following statements: 

IF NOT (STUDENT-CATEGORY NOT < "l" AND 
STUDENT-CATEGORY NOT > "4") 

or 

IF STUDENT-CATEGORY < "l" OR 
STUDENT-CATEGORY > "4" 

or 

IF STUDENT-CATEGORY < "l" NEXT SENTENCE 
ELSE IF STUDENT-CATEGORY > "4" NEXT SENTENCE 

ELSE GO TO ... 

Statements such as these are tedious to write and a frequent source of 
coding errors. Further, if a change creates a new student category, 
the recoding takes more time and is even more error prone. A careful 
and controlled use of condition-names forces a higher degree of 
programming control and checkout. If the program logic does require 
the modification of the STUDENT-CATEGORY field, it can even be named 
FILLER thus removing the opportunity to shortcut the use of 
condition-names. 

7-7 



GOOD PROGRAMMING PRACTICES 

To apply condition-names, follow the description of the item to be 
tested with a level 88 entry. The item being tested, known as the 
conditional variable (STUDENT-CATEGORY in the preceding 
illustrations), may be either DISPLAY or COMPUTATIONAL usage, but not 
INDEX usage; it may also be a group item. 

The compiler stores all of the values supplied by the level 88 entries 
in the object program exactly as writ ten. (They are pooled with all 
of the literals from the Procedure Division.) A value supplied by a 
level 88 entry for a conditional variable of COMPUTATIONAL usage is 
stored in binary format to save conversion at object time. The 
compiler stores all other values as byte strings with the proper 
attributes. It does not make the level 88 entries equal to their 
conditional-variables in size. This means that it neither truncates 
nor pads (with spaces) non-numeric literals. Further, it neither 
truncates nor pads (with zeros) numeric literals, but stores them as 
written or, if converted to binary, in the minimum size COMP item that 
will hold the converted value. It stores signs as trailing 
overpunches on numeric DISPLAY literals, and removes and remembers 
decimal points. 

Do not enter level 88 items under group items 
entries containing any of the following 
JUSTIFIED, COMPUTATIONAL, INDEX. 

7.6 USE OF QUALIFIED REFERENCES 

7.6.1 Qualified Data References 

that have subordinate 
clauses: SYNCHRONIZED, 

The COBOL language provides facilities to define and reference 
user-defined data items. Data items are programmer-defined variables 
declared in the Data Division of a COBOL program. Such variables 
include, among others, file record descriptions and internal working 
areas. These data items are processed by procedural statements such 
as the WRITE, MOVE, and ADD statements. Procedural operations on 
these data are facilitated through references to the data items by 
name. For example, to update a variable, YTD-GROSS-PAY, by a weekly 
gross pay amount WEEKLY-GROSS, write the program fragment shown in 
Figure 7-1. 

WORKING-STORAGE SECTION. 
01 YTD-GROSS-PAY PIC 9(5)V99. 
01 WEEKLY-GROSS PIC 999V99. 

ADD WEEKLY-GROSS TO YTD-GROSS-PAY. 

Figure 7-1 
Unqualified Data Item Reference 

In this example, YTD=GROSS-PAY and WEEKLY-GROSS are defined in the 
working Storage Section of the Data Division as COBOL variables with a 
level number of 01. The variable representing the "year-to-date gross 

7-8 



GOOD PROGRAMMING PRACTICES 

pay (YTD-GROSS-PAY)" is computed by incrementing its present value by 
the "weekly gross pay (WEEKLY-GROSS)" amount through reference to the 
appropriate data items in the ADD statement. References are made to 
the data items by the singular, unqualified names of YTD-GROSS-PAY and 
WEEKLY-GROSS. Since YTD-GROSS-PAY and WEEKLY-GROSS are defined with 
level numbers of 01 in the working Storage Section, these variables 
must be unique in their spelling and, hence, can only be referenced by 
the spelling of each data item's name without any COBOL qualification. 

The example in Figure 7-1 is artificial because the data item 
representing the "year-to-date gross pay" is defined as a level 1 
variable in the Working Storage Section. More realistically, 
YTD-GROSS-PAY is defined as a field within an employee payroll record 
residing on an external master payroll file. The process of updating 
the "year-to-date gross pay" by a "weekly gross pay" amount is shown 
more appropriately in Figure 7-2. 

FILE SECTION. 
FD MASTER-IN 

LABEL RECORD IS STANDARD 
VALUE OF ID IS "MASTER.PAY". 

01 PAY-RECORD. 
03 NAME PIC X(30). 

PIC9(9). 
PIC 9(5)V99. 

FD 

03 EMPLOYEE-NO 
03 YTD-GROSS-PAY 

MASTER-OUT 
LABEL RECORD IS STANDARD 
VALUE OF ID IS 11 MASTER.PAY 11

• 

01 PAY-RECORD. 
03 NAME PIC x ( 30) • 
03 EMPLOYEE-NO PIC 9 ( 9) . 
03 YTD-GROSS-PAY PIC 9(5)V99. 

WORKING-STORAGE SECTION. 
01 WEEKLY-GROSS PIC 999V99. 

PROCEDURE DIVISION. 
!NIT. 

OPEN INPUT MASTER-IN. 
OPEN OUTPUT MASTER-OUT. 

ADD WEEKLY-GROSS, YTD-GROSS-PAY OF MASTER-IN 
GIVING YTD-GROSS-PAY OF MASTER-OUT. 

Figure 7-2 
Qualified Data Item Reference 

7-9 



GOOD PROGRAMMING PRACTICES 

In this example, YTD-GROSS-PAY is defined as a field in both the input 
and output record descriptions. There are two separate data items 
whose spellings are identical. 

To reference each data item, it is necessary to qualify the name of 
each data item with sufficient information to constitute a unique 
reference. Thus, to reference the "year-to-date gross pay" amount in 
the output record, we write "YTD-GROSS-PAY OF MASTER-OUT" where such a 
reference is called a qualified reference. The filename MASTER-OUT is 
functioning as a qualifier in the reference. The reserved word "OF" 
is the qualification connector and may be used interchangeabely with 
the reserved word "IN" in this context. Another way of referencing 
the same data item is to write "YTD-GROSS-PAY OF PAY-RECORD IN 
MASTER-OUT". This reference is called a completely qualified 
reference because all possible qualifiers are specified in the 
reference. A reference of the form "YTD-GROSS-PAY" or "YTD-GROSS-PAY 
OF PAY-RECORD" is illegal since it does not uniquely identify which of 
the two data items is desired. Such a reference is termed an 
ambiguous reference. 

In the area of data item definition and referencing, COBOL is unlike 
other languages such as FORTRAN and ALGOL 60. While FORTRAN requires 
each data item to have a unique name (i.e., no two data items may have 
a name of identical spelling) , COBOL relaxes this requirement to the 
extent that each data item must be uniquely referable. That is, two 
or more data items may have their names spelled identically, but there 
must exist a way to reference each distinct data item. Thus, there is 
a distinction between a data item and its name. Central to 
understanding this distinction is understanding the concept of unique 
referability. 

The functionalities of data item definition and referencing may be 
understood by stating three guidelines which relate the concepts of 
data item definition, reference format, and unique referability. 

7.6.2 Guideline 1 (Data Item Definition) 

Each data item has a name. Each name is immediately preceded by an 
associated positive integer called its level number. A name either 
refers to an elementary item or else it is the name of a group of one 
or more items whose names follow. In the latter case, each item in 
the group must have the same level number, which must be greater than 
the level number of the group item. 

7.6.3 Guideline 2 {Reference Format) 

Data-name qualification is performed by following a data-name or 
condition-name by one or more phrases of a qualifier preceded by IN or 
OF. IN and OF are logically equivalent. The general format of a 
qualified reference to an elementary item or group of items named 
"name-0" is given in Figure 7-3. 

name-0 OF name-1 ... 0F name-m 

Figure 7-3 
General Format of a Qualified Data Reference 

7-10 



GOOD PROGRAMMING PRACTICES 

where m >= 0 and where, for 0 <= j < m, name-j is the name of some 
item contained directly or indirectly within a group item named 
"name-j+l". A reference of the form given in Figure 7-3 is called a 
(partially) qualified reference with name-l,name-2, ... ,name-m being 
called qualifiers. Such a reference is termed a completely qualified 
reference if "name-j+l" is the father of name-j for 0 <= j <= m-1. 

In the hierarchy of qualification, names associated with an FD 
indicator are the most significant, then the names associated with 
level-number 01, then names associated with level-number 02, ... ,49. 
The most significant name in the hierarchy must be unique and cannot 
be qualified. Subscripted or indexed data-names, unsubscripted 
data-names, and condition variables may be made unique by 
qualification. The name of a condition variable can be used as a 
qualifier for any of its condition-names. Enough qualification must 
be mentioned to make the reference unique; however, it may not be 
necessary to mention all levels of the hierarchy as the example in 
Figure 7-2 demonstrates. 

7.6.4 Guideline 3 (Unique Referability) 

If more than one data item is defined with the same name "name-0", 
there must be a way to refer to each use of the name by using 
qualification. That is, each definition of "name-0" must be uniquely 
referable. A data item is uniquely referable if the complete set of 
qualifiers for the data item are not identical to any partial 
(including complete) set of qualifiers for another data item. 

7.6.5 Qualified Procedure References 

The facility of qualification may be applied to procedure references. 
A procedure name is either a paragraph or section name. By 
definition, a paragraph name is unique only within a section 
containing the paragraph while, on the other hand, section names must 
be unique within a COBOL program. The general format of a qualified 
procedure reference is shown in Figure 7-4. 

paragraph-name OF section-name 

Figure 7-4 
General Format of a Qualified Procedure Reference 

A paragraph name may be qualified by its containing section name; a 
section name may never be qualified in a procedure reference. When a 
paragraph name is referenced without an explicit section name 
qualifier, the paragraph name is implicitly qualified by the 
appropriate section name. 

If a paragraph name is unique within a COBOL program it is not 
necessary to qualify the paragraph name in the procedure reference. 
Finally, if a paragraph name is not unique within a COBOL program, the 
paragraph name must be qualified in a procedure reference when the 
reference is made outside of the section which contains the paragraph. 

7-11 



GOOD PROGRAMMING PRACTICES 

7.6.6 Qualification and Compiler Performance 

Qualification is a powerful language facility for the development of 
COBOL programs. used wisely, it increases the readability of COBOL 
programs. However, the user pays a price for utilization of this 
facility in terms of a slower compilation rate (i.e., COBOL source 
lines per unit of time). 

Qualification requires a tree-structured symbol table at compile-time. 
The time .required for building and looking up on a tree-structured 
svmbol table is considerably longer than for a non-tree-structured 
symbol table. This translates into a general degradation of compiler 
performance. If qualification is not employed in a program compiled 
by the PDP-11 COBOL compiler, compilation speed is not affected. 
However, when qualification is used, the compilation rate slows down 
due to the additional system overhead. 

In general, if there are deeper levels of qualification, there will be 
a slower compilation. This is especially so at the end of the Data 
Division text where duplicate data-name declarations are detected by 
the compiler. Object-time performance is not affected by usage of the 
qualification facility. 

7-12 



CHAPTER 8 

REFORMAT UTILITY PROGRAM 

PDP-11 COBOL accepts source programs that were coded using either the 
conventional si-column card reference format or the shorter, 
terminal-oriented PDP-11 terminal format. The REFORMAT utility 
program reads source programs that were coded in the terminal format 
and converts them to si-column conventional format source programs. 
The PDP-11 COBOL Language Reference Manual discusses both formats in 
detail. 

Consider the two formats: 

• The terminal format is designed for ease of use with text 
editors controlled from an on-line console keyboard and is 
compatible for use with the PDP-11 system. It eliminates the 
line-number and identification fields and allows horizontal 
tab characters and short lines. 

• The conventional format produces source programs that are 
compatible with the reference format of other COBOL compilers 
throughout the industry. 

REFORMAT lets you write source programs in the terminal format; then, 
if compatibility is ever required for any of those programs, it 
provides a simple method for conversion to the conventional format. 

REFORMAT follows the following steps to expand each line of terminal 
format coding to the conventional format: 

• It generates a 6-character line number of iiii1i, places that 
number in the first six character positions of the line, and 
increases it by iiii1i for each subsequent line. 

• It places any continuation or comment symbols {-,*, or/) into 
character position 7. 

• It places the coding from the terminal format 
character positions 8-72, thereby creating 
conventional format coding. 

line into 
a line of 

• It replaces any horizontal tabs with the appropriate number of 
space characters to simulate tab stops at character positions 
5,13,21,29,37,45,53,61, and 66 of the terminal format line. 

• It moves spaces into any character positions left between the 
last character of coding and character position 73; 

8-1 



REFORMAT UTILITY PROGRAM 

• It places either identification characters (if they were 
supplied at program initialization) or spaces into character 
positions 73-81!; 

• It right justifies (at position 72) the first line of a 
continued non-numeric literal, thus guaranteeing that the 
literal will remain the same length as it was in the default 
format; 

e Ti- rinh+- ..;11c+-if:ioeo l":>i- .... '"".,.;+-;,..,.,.... 7')\ +-h,... 
..&.'- .... ..L."°='.L.&.'- J'--'...,'-..L..a....L.'-~ \\..4.\- l:"''-'0..L\....LVl.l 1'6./ \...J..1~ first of any 
COBOL word that is split over two lines; 

• It creates a line containing a slash (/) in position 7 and 
space characters in positions 8 through 72 for every form-feed 
character that it encounters. 

REFORMAT Command String 

Since REFORMAT is written in COBOL, it runs as a COBOL object program. 
It has no logical switches. To run it, enter the following command: 

RFM RET 

This causes REFORMAT to begin execution. REFORMAT immediately 
requests the file specifications for the two files (input and output) 
to be processed. In response to its prompting messages, type in the 
file specifications for your two files. 

RFM-INPUT FILE SPEC: 
RPM-OUTPUT FILE SPEC: 

When the system has successfully opened both files, REFORMAT types the 
following request for an identification entry in columns 73 through 
8i. If you desire an identification entry, type in from one to eight 
characters. REFORMAT places these characters, left justified, in 
columns 73 through 81! of each output line. If no entry is required, 
type a carriage return. 

RFM-COLS 73 TO 8i: 

Following this response, REFORMAT reads the input file and writes it 
as 8f!-character records, in conventional reference format. 

When it has processed the last record in the file, REFORMAT displays 
the following messages; the first indicating the number (nnnnn) of 
output records produced and the second requesting another input file. 

RFM-nnnnn LINES PROCESSED. 
RFM-INPUT FILE SPEC: 

If there is another file to be reformatted, follow the s~me sequence 
with the specifications for the next file. If not, type CTRL-Z to 
terminate execution. 

8-2 



REFORMAT UTILITY PROGRAM 

REFORMAT Error Messages 

If any of the responses to the prompting messages contain detectable 
errors, REFORMAT displays the following messages indicating the 
problem. 

RFM-ERROR IN OPENING INPUT FILE 
RFM-TRY AGAIN 
RFM-INPUT FILE SPEC: 

The system could not open the input file. Either the file is not 
present on the device specified (the default device is SY:) or the 
file name is typed incorrectlyA The usual I/O error messages precede 
this message. 

To continue processing that file, examine the input file spec and type 
in a corrected version. To process another file, type in a new input 
file specification. To terminate execution, type CTRL-Z. 

RFM-ERROR IN OPENING OUTPUT FILE 
RFM-TRY AGAIN 
RFM-OUTPUT FILE SPEC: 

The system could not open the output file. An incorrectly typed file 
specification usually causes this error. (The default device is SY:.) 
The usual I/O error messages precede this message. To continue, 
examine the output file specification and type in a corrected version. 
To terminate execution, type CTRL-Z. 

RFM-INPUT FILE IS EMPTY 
RFM-INPUT FILE SPEC: 

The system successfully opened the input file, but the first READ 
statement encountered the AT END condition. 

To continue, type in a new input file specification for another file. 
To terminate execution, type CTRL-Z. 

RFM-ERROR IN READING INPUT FILE 
RFM-INPUT FILE SPEC: 

The first attempt to read the input file was unsuccessful. This error 
is usually caused by an input record length exceeding 86 characters. 
(Although terminal format records should not exceed 66 characters in 
length, REFORMAT provides a record area of 86 characters and ignores 
the right-most 2i characters.) 

To continue, type in a new input file specification for another file. 
To terminate execution, type CTRL-Z. 

RFM-ERROR IN READING INPUT FILE 
RFM-REFORMATTING ABORTED 
RFM-nnnnn LINES PROCESSED 
RFM-INPUT FILE SPEC: 

8-3 



REFORMAT UTILITY PROGRAM 

While reading input records (other than the 
was unsuccessful in an attempt to read 
execution and closes both files. 

To process another file, type in a new input 
continue with the prompting message sequence. 
type CTRL-Z. 

RFM-ERROR IN WRITING OUTPUT FILE 
RFM~REFORMATTING ABORTED 
RFM-nnnnn LINES PROCESSED 
RFM-INPUT FILE SPEC: 

first record) , REFORMAT 
a record. It terminates 

file specification and 
To terminate execution, 

REFORMAT was unsuccessful in an attempt to write an output record. It 
terminates execution and closes both files. 

To process another file, type in a new input 
continue with the prompting message sequence. 
type CTRL-Z. 

8-4 

file specification and 
To terminate execution, 



CHAPTER 9 

SEGMENTATION 

PDP-11 COBOL allows you to break the Procedure 
overlayable and non-overlayable program segments 
utilization. An overlayable program segment can be 
other overlayable segment. A non-overlayable 
however, can never be overlayed. 

NOTE 

Division up into 
to optimize memory 
overlayed by any 
program segment, 

The object code generated for the 
Identification Division through the Data 
Division is non-overlayable. 

9.1 USING THE PDP-11 COBOL SEGMENTATION FACILITY 

The PDP-11 COBOL Segmentation Facility allows you to specify your own 
segmentation requirements. To effect segmentation, you must define a 
segment limit by specifying the SEGMENT-LIMIT IS clause in the 
Environment Division of your source program. The value you specify in 
this clause is used by the compiler as a basis for determining whether 
a program segment is overlayable or non-overlayable. A segment 
consists of one or more COBOL sections. Each COBOL section should be 
composed of a series of closely related operations designed to 
collectively perform a particular function. To designate a section as 
belonging to an overlayable or non-overlayable segment, assign a 
segment number to it using the following format: 

Section-name SECTION segment-number. 

Where: 

Section-name Is a user-defined COBOL word that names the 
section 

Segment-number Is an inte~er ranging from 0 to 49. 

If you specify a segment-number whose value is less than the value 
specified in the SEGMENT-LIMIT IS clause, you have defined the section 
as being non-overlayable. A segment-number whose value is greater 
than or equal to the value specified in the SEGMENT-LIMIT IS clause 
defines the segment as being overlayable. 

9-1 



SEGMENTATION 

9.1.1 Programming Considerations 

The most frequently used sections of your program should be made 
non-overlayable. Assign segment-numbers that are less than the value 
specified in the SEGMENT-LIMIT rs clause to these sections. 
Infrequently used sections should be made overlayable. Assign 
segment-numbers that are greater than or equal to the value specified 
in the SEGMENT-LIMIT IS clause to these sections. Sections that 
communicate with each other should be assigned to the same segment. 
Assign the same segment-number to these sections. Sections having 
identical segment-numbers are assigned to the same segment. 

9.2 SEGMENTATION AND THE PDP-11 COBOL COMPILER 

The previous sections told you how to effect segmentation. This 
section tells you what segmentation means in terms of code generation. 
The PDP-11 COBOL compiler breaks up the object code it generates into 
program sections called PSECTs. One or more PSECTs are generated for 
each program SECTION. The maximum size PSECT generated is 2000 
decimal words. However, this maximum size can be altered by 
specifying the /CSEG:nnnn switch in the compiler command line. 
{PSECTs are described in Appendix D: The /CSEG:nnnn Switch is 
described in Section 9.4, and Section 2.5.3). 

Also generated, are Overlay Description Language {ODL) directives that 
group together all PSECTs that belong in the same overlay. These ODL 
directives are placed in an ODL file to be used as input to the Task 
Builder. The Task Builder uses the ODL file to generate a task image 
containing the correct combination of overlayable/non-overlayable 
PSECTs. 

If the source program is written without explicit segmentation, all of 
the generated PSECTs are concatenated into one non-overlayable 
program. If the source program does contain explicit segmentation, 
ODL directives are created to group PSECTs together into the correct 
combination of overlayable and non-overlayable program segments. 

9.3 SEGMENTATION USING THE /OV SWITCH 

The /OV switch, when appended to the compiler command line, directs 
the compiler to produce ODL directives that make all of the procedural 
PSECTs overlayable. Therefore, the amount of memory required to store 
the program is equal to that required to contain the root 
{non-overlayable portion) and the largest PSECT. (See Figure 9-1, 
Segmentation Using The /OV Switch; and Section 2.5.3, Compiler 
Switches). 

The /OV switch is particularly useful for quickly segmenting programs 
that were written without explicit segmentation or for overriding 
explicit segmentation. 

9-2 



I 

I 

I 

available 
memory 

available 
memory 

n 
I 

I 
I 

SEGMENTATION 

Data 

and 

Control 

PSECTs 

S1 SECTION ----- program too big 

S2 SECTION 

procedural PSECTs 

S3 SECTION 

I 

S4 SECT! 0" I 
._____ __ I) 

generated code using /OV switch 

l l 
Data S1 SECTION S2 SECTION S3 SECTION 
and 

Control 

PSECTs 

J I 

I I 
I 

procedural PSECTs 

Figure 9-1 Segmentation Using the /OV Switch 

9.4 USING THE /CSEG:nnnn SWITCH 

I 
S4 SECTION 

I 

The PDP-11 COBOL compiler generates a PSECT for each COBOL section. 
If the code generated for a particular section exceeds the default 
maximum size for a PSECT (4000 decimal bytes}, more than one PSECT is 
generated. PDP-11 COBOL provides a switch (/CSEG:nnn) that allows you 
to control the size of PSECTs generated by the compiler. (See Section 
5.2.3 Compiler Switches). 

If, for example, you compile a program that produces a PSECT that is 
too large to be task built, you can recompile the program using the 
/CSEG:nnn switch to reduce the size of the PSECTs generated. See 
Figure 9-2 for an example of using the /CSEG:nnnn switch. 

9-3 



SEGMENTATION 

Command Line (Without /CSEG:nnnn switch specified) 

CBL> CBLMRG,CBLMRG/MAP=CBLMRG~ 

SEGMENTATION MAP 

SECTION NAME SEGMENT NO. NAME SIZE 

OUTPUT-OOL-USE 00 $C$001 000172 00061 
INPUT-OOL-USE 00 $C$002 000172 00061 

* MAIN-CONTROL 00 $C$003 003336 00879 
PROCESS-INPUT-OOL 00 $C$004 001130 00300 
HOR-CHECK 00 $C$005 000322 00105 

* One large PSECT is generated 

Command Line (With the /CSEG:nnnn switch specified) 

CBL> CBLMRG,CBLMRG/MAP/CSEG:lOOO=CBLMRG~ 

SEGMENTATION MAP 

SECTION NAME SEGMENT NO. NAME SIZE 

OUTPUT-OOL-USE 00 $C$001 000172 00061 
INPUT-OOL-USE 00 $C$002 0001 72 00061 

* MAIN-CONTROL 00 $C$003 001744 00498 
00 $C$004 001426 00395 

PROCESS-INPUT-OOL 00 $C$005 001130 00300 
HOR-CHECK 00 $C$006 000322 00105 

* Two PSECTs are generated 

Figure 9-2 Using the /CSEG:nnnn Switch 

9-4 



CHAPTER 10 

INTER-PROGRAM COMMUNICATIONS 

Inter-program communications is the passing of control and optional 
data from one program within a task to another. PDP-11 COBOL provides 
you with the ability to Task-build separately compiled COBOL programs 
into a single task image. During task execution, these separately 
compiled programs can communicate with each other via the COBOL CALL 
statement. 

A task can consist of a stand-alon~ program or a main program and one 
or more subprograms. A stand-alone program is one that does not call 
subprograms and cannot itself be called. A COBOL main program is one 
that calls subprograms but can never be called in return. A COBOL 
subprogram, however, is always called by another program, either the 
main program or a subprogram. Inter-program communications deals only 
with main programs and subprograms. 

Developing a program as a main program and a set of subprograms offers 
a number of advantages: 

1. Large monolithic programs are no longer required. These 
large programs can be replaced by a controlling main program 
and a set of subprograms, where each subprogram is designed 
to perform a well-defined function. 

2. Small subprograms can be developed independently by several 
members of a programming staff. 

3. Small subprograms can be tested more easily than large 
programs. 

4. Small subprograms can be modified and recompiled faster than 
large programs. 

5. General purpose subprograms can be developed and used in more 
than one programming application. 

10.1 COBOL MAIN PROGRAMS VS SUBPROGRAMS 

A COBOL main program is one that calls other programs (subprograms) 
but cannot be called in return. A COBOL main program contains at 
least one CALL statement. A COBOL subprogram is one that is called by 
another program, either the m~in program or another subprogram. The 
main program is automatically activated at task execution time. A 
subprogram, however, is activated only when called by another program. 

The COBOL compiler differentiates between a 
subprogram by the presence or absence of 
Procedure Division header of the program being 

10-1 

main program and a 
a USING phrase in the 
compiled. The USING 



INTER-PROGRAM COMMUNICATIONS 

phrase is used only in COBOL subprograms. It defines the program as 
being a subprogram and optionally identifies the data expected from 
the calling program. The Procedure Division header has the following 
format: 

PROCEDURE DIVISION [USING [data-name-1 da ta-name-2] ... ] . 

A subprogram, that does not process data (arguments) passed to it by a 
calling program, has only the word USING appended to the Procedure 
Division header. For example: 

PROCEDURE DIVISION USING. 

A subprogram that processes passed data, has a USING phrase with one 
or more data-names specified. If a data-name(s) is specified, the 
program must also contain a Linkage Section in the Data Division. The 
Linkage Section describes the size and type of data being passed. 
(See Figure 10-1, Sample LINKAGE SECTION and USING phrase). 

LINKAGE SECTION. 

* SUBPROGRAM-DATA. 

01 !ST-PARAMETER PIC X(S). 

01 2ND-PARAMETER PIC X(S). 

01 3RD-PARAMETER PIC X(S). 

PROCEDURE DIVISION USING 2ND-PARAMETER, 3RD-PARAMETER. 

NOTES 

1. All of the data-names appearing in the using phrase must also 
appear in the LINKAGE SECTION. 

2. Not all of the data-names in the LINKAGE SECTION need appear 
in the USING phrase. 

3. A LINKAGE SECTION can appear in a subprogram even if the 
USING phrase does not contain a data-name. However, if any 
of the data-items contained in the LINKAGE SECTION are 
referenced in procedures, the compiler will issue a fatal 
diagnostic. 

Figure 10-1 Sample LINKAGE SECTION and USING Phrase 

10.l.l Calling a COBOL Subprogram from a COBOL Program 

To call a subprogram from a COBOL program, a CALL statement having the 
following format must be used: 

CALL literal [USING data-name-1 [, data-name-2] ... ]. 

10-2 



Where: 

literal 

data-name-1 
through 

data-name-n 

INTER-PROGRAM COMMUNICATIONS 

is the name that appears in the PROGRAM-ID entry 
of the called program. 

identify those data-ite11s in the calling program 
that can be referred to by the called program. 

10.1.2 Returning from a COBOL Subprogram 

In addition to the required USING phrase and optional LINKAGE SECTION, 
a subprogram should contain at least one EXIT PROGRAM statement. The 
EXIT PROGRAM statement identifies the subprogram return point. That 
is, the point in the subprogram at which control is returned to the 
calling program. If the EXIT PROGRAM statement is missing, the COBOL 
compiler will generate one after the last statement in the program. 

NOTE 

More than one EXIT PROGRAM statement is 
allowed in a subprogram. 

10.2 UNIQUENESS OF PSECT NAMES 

The names of all PSECTs within a task must be unique. When a task is 
composed of more than one COBOL program, you must insure that the 
PSECTs generated by the COBOL compiler for each program are unique. 
(See Section D.l, PSECT Naming Conventions). 

10.3 COBOL OTS - ERROR CHECKING 

At task execution, the COBOL OTS performs a check to insure that the 
number of arguments passed to a called COBOL subprogram is the same as 
the number expected. That is, the subprogram Procedure Division USING 
phrase must contain the same number of data-names as the USING phrase 
in the calling programs CALL statement. If the number of data-names 
in each USING phrase are not equal, the OTS issues a diagnostic error 
message and aborts the task. No checks are made to insure that the 
passed arguments are the same size as the expected arguments. It is 
your responsibility to insure that these sizes are compatible. 

Recursive calls to COBOL subprograms are not allowed. If a COBOL 
subprogram contains a CALL statement that directly or indirectly 
causes a subprogram to be re-entered before it has exited from its 
original entry, the OTS will issue a diagnostic error message and 
abort the task. 

10-3 



INTER-PROGRAM COMMUNICATIONS 

10.4 INCLUDING A NON-COBOL OBJECT MODULE IN A TASK 

Non-COBOL object modules can be combined with COBOL object modules at 
task-build time to produce a single task image. However, you are 
advised to use the same language to write programs that perform I/O 
operations. This note of caution is very important, because, the 
PDP-11 programming languages do not share a common OTS. 

To activate a COBOL subprogram, a non-COBOL calling program must 
contain the equivalent of a COBOL CALL statement. If data is being 
passed to the COBOL subprogram, program register R5 must be set to the 
address of an argument list. The argument list must contain pointers 
to the data being passed. (See Figure 10-2, Argument List Format}. 

A non-COBOL subprogram, to be activated by a COBOL program, must 
contain the equivalent of the COBOL PROGRAM-ID statement and the COBOL 
EXIT PROGRAM statement (See Example 1 below}. If data is being 
passed, the non-COBOL subprogram can access that data via program 
register RS. 

The following sections provide an example of how non-COBOL programs 
can be written for inclusion in a COBOL task image. The MACRO 
programming language is used for the purposes of this example. 

Example 1 - (Calling MACRO Programs from COBOL} 

The format for calling any program from COBOL is: 

CALL literal [USING data-name-1[, data-name-2] .•. ] 

when a MACRO program is being called, literal 
entry point specified in the MACRO program. 
contains: 

CALL "BILBO" USING BOFFIN, BOMBUR, BOFUR. 

The MACRO program must contain: 

contains the global 
If the COBOL program 

.GLOBL BILBO! 
;entry point - equivalent to PROGRAM-ID 

BILBO: 

RTS PC ;return point - equivalent to EXIT PROGRAM 

If there are any arguments to be passed to the called program (BOFFIN, 
BOMBUR, and BOFUR in this example}, these arguments can be accessed 
via program register RS. 

10-4 



INTER-PROGRAM COMMUNICATIONS 

Example 2 - (Calling COBOL Programs from MACRO) 

When the calling program is a MACRO program, control is passed to the 
called program with the following instruction: 

JSR PC,subprogram-name 

Where: Subprogram-name is the first six characters of the COBOL 
PROGRAM-ID. 

If the MACRO program contains: 

.GLOBL FRODO 

MOV #ARGLST,RS ;point RS to argument list 

JSR PC,FRODO ;subprogram call statement 

The COBOL subprogram will contain: 

PROGRAM-ID. FRODO 

LINKAGE SECTION. 

* FRODO-ARGUMENTS. 

01 

01 

01 

BOFFIN 

BOMB UR 

BO FUR 

PIC X(S). 

PIC X(S). 

PIC X(S). 

PROCEDURE DIVISION USING BOFFIN,BOMBUR. 

EXIT PROGRAM. 

The MACRO program, in this example, has set 
argument list expected by the COBOL program. 
RS to access the passed arguments. 

10-S 

RS to point to the 
The COBOL OTS will use 



Word 1 

Word 2 

Word 3 

Word n 

INTER-PROGRAM COMMUNICATIONS 

ARGUMENT ADDRESS LIST 

unused l #of arguments 
~ 

in list (n - 1) 

address of argument #1 

address of argument #2 

I 1 
address of argument #n - 1 

R 5 must be set 
to point here 

Figure 10-2 Argument Address List 

10-6 



CHAPTER 11 

HAND-TAILORING ODL FILES 

This chapter is provided as a guide to those of you who are faced with 
the problem of having to generate ODL files that are compatible with 
either the Merge Utility or the Task Builder. The most common reason 
for having to hand tailor an ODL file occurs when non-COBOL programs 
are being merged into a COBOL task image. The info~mation presented 
here is predicated vu the assumption that you have read and are 
familiar with the Task Builder Reference Manual that pertains to your 
operating system. The following sections describe the standard ODL 
file as it pertains to PDP-11 COBOL. 

11.1 STANDARD ODL FILE 

The standard ODL file generated by the PDP-11 COBOL compiler consists 
of a header and a body. The header contains information that is 
required to merge one or more ODL files. The body contains ODL 
directives that describe the object program. 

11.2 ODL FILE HEADER 

The ODL file header consists of a sequence of comment lines. Two are 
required in every ODL file, others are supplied as needed. The 
required comment lines are: 

;COBOBJ=XXXXXX.OBJ 
;COBKER=KK 

Where: 

XXXXXX.OBJ 

KK 

is the name of the object module being described 

is the kernel that was used to generate the PSECT 
names for the COBOL program. 

The following comment lines are supplied as needed: 

;COBMAIN This comment line is supplied if the program being 
described is a main program. The absence of this 
line means that the ODL file was generated for a 
COBOL subprogram. 

;RMSSEQ=CIOOXY This comment line is specified if the program 
requires RMS-11 I/O support. One or more lines 
may be supplied. X and Y represent integer codes 
that respectively specify the file organization 
and operational support required for that 

11-1 



HAND-TAILORING ODL FILES 

organization. File organization is specified by 
the following codes: 

CODE ORGANIZATION 

1 sequential 

2 relative 

3 indexed 

The values allowed for the 
code are meaningful only 
PDP-11 COBOL and the Merge 
they are not defined here. 

operational support 
to future versions of 
Utility. Therefore, 

11.3 ODL FILE BODY 

The ODL file body describes the overlay £tructure of the COBOL 
program. The body contains the following ODL directive types: 

1. .PSECT defines the name of the code PSECT and makes it 
known to the Task Builder. 

2. .NAME defines the name to be assigned to the overlay 
segment by the Task Builder. 

3. .FCTR describes the contents of the segments. 

4. .ROOT defines the root. 

5. .END informs the Task Builder that the end of the ODL 
file has been reached. 

6. ;comments contains comment entries. 

The .ROOT and .END directives are not supplied by the COBOL compiler. 
They are inserted into the ODL file generated by the Merge Utility. 
If you are generating a stand alone ODL file, these directives must be 
supplied by you. If the ODL file you are generating is to be used as 
input to the Merge Utility, leave these directives out. 

Within a compiler-generated ODL file, the directives .PSECT, .NAME, 
and .FCTR are generated around the PSECT kernel. If the PSECT name 
kernel for a given program is KK, the format of the names generated in 
the ODL file is: 

Entity 

.PSECT 

.NAME 

.FCTR 

Format of Name 

$KKMMM 

KK$MMM 

KKMMM$ 

Each .PSECT defined in the ODL file begins with a $ followed by the 
two character kernel ($KK}. Each .NAME directive begins with the two 
character kernel followed by $ (KK$). Finally, each .FCTR directive 
begins with the two-character kernel and ends with a $ (KKMMM$). 

11-2 



HAND-TAILORING ODL FILES 

11.4 COMPILER-GENERATED ODL FOR COBOL PSECTS 

The following sections discuss the ODL directives generated for 
different types of overlay requirements. The characters NNN when used 
in examples refer to the three character suffix generated by the 
compiler for each PSECT. The characters KK refer to the kernel 
characters that make the PSECT unique to a particular compilation. 

11.4.1 ODL Generated for Overlays Containing Only One PSECT 

For overlays containing only one PSECT, the following lines are 
generated: 

.PSECT $KKNNN,GBL,RW,CON,I 

.NAME KK$NNN,GBL 

KKNNN$ .FCTR *KK$NNN-$KKNNN 

11.4.2 ODL Generated for Overlays containing More Than One PSECT 

For each overlay that contains more than one PSECT, a .PSECT directive 
is generated for each PSECT in the overlay. These .PSECT directives 
are followed by a .NAME and .FCTR directive. Consider the following 
example. 

Example 

Two PSECTs, $AA001 and $AA002, 
The segment~number assigned 
directives are generated: 

are to be placed .1..u the same overlay. 
to the PSECTs is 20. The following ODL 

;DEFINE PSECT $AA001 

.PSECT $AA001,GBL,RW,CON,I 

;DEFINE PSECT $AA002 

.PSECT $AA002,GBL,RW,CON,I 

;DEFINE THE OVERLAY NAME 

.NAME AA$020,GBL 

;DEFINE OVERLAY CONTENTS 

AA020$: .FCTR *AA$020-$AA001-$AA002 

11.4.3 ODL Generated for All Overlayable PSECTS 

All .FCTR directives that desc~ibe the overlayable PSECTs must be 
collapsed into one final .FCTR directive. This directive describes 
the entire overlayable portion of the object code. The name 
associated with this .FCTR directive is derived from the two-character 
kernel assigned to the PSECTs. If the kernel is KK, then the name of 
the .FCTR directive that describes the entire overlayable part of the 
object code is KKOVR$. 

11-3 



HAND-TAILORING ODL FILES 

The following example shows how the KKOVR$ factor is developed for 
various overlay configurations: 

Example 1: All Code Psects Overlay One Another 

AA001: 

AA002$: 

AA003$: 

AA004$: 

.PSECT 

.NAME 

.FCTR 
; 
.PSECT 
.NAME 
.FCTR 

.PSECT 

.NAME 

.FCTR 

.PSECT 

.NAME 

.FCTR 
; 

$AA001,GBL,RW,CON,I 
AA$001,GBL 
*AA$001-$AA001 

$AA002,GBL,RW,CON,I 
AA$002,GBL 
*AA$002-$AA002 

$AA003,GBL,RW,CON,I 
AA$003,GBL 
*AA$003-$AA003 

$AA004,GBL,RW,CON,I 
AA$004,GBL 
*AA$004-$AA004 

.PSECT $AA005,GBL,RW,CON,I 

.NAME AA$005,GBL 
AA005$: . FCTR *AA$005-$AA005 

;IN THIS EXAMPLE, ALL PSECTS OVERLAY 
:ONE ANOTHER. 

AAOVR$: .FCTR (AA001$,AA002$,AA003$,AA004$,AA004$,AA005$) 

Example 2: Two Code Psects Are in the Same Overlay 

AA001$: 

AA003$: 

AA004$: 

AA005$: 

AAOVR$: 

.PSECT 

.PSECT 
; 
.NAME 
.FCTR 

.PSECT 

.NAME 

.FCTR 

.PSECT 

.NAME 

.FCTR 
; 
.PSECT 
.NAME 
.FCTR 
; 
.FCTR 

$AA001,GBL,RW,CON,I 

$AA002,GBL,RW,CON,I 

AA$001,GBL 
*AA$001-$AA001-$AA002 

$AA003,GBL,RW,CON,I 
AA$003,GBL 
*AA$003-$AA003 

$AA004,GBL,RW,CON,I 
AA$004,GBL 
*AA$004-$AA004 

$AA005,GBL,RW,CON,I 
AA$005,GBL 
*AA$005-$AA005 

AA001$,AA003$,AA004$,AA005$ 

Example 3: Two Occurrences of Two Psects in the Same Overlay 

;IN THIS EXAMPLE, PSECTS $AA001 AND $AA002 
;ARE IN THE SAME OVERLAY. PSECTS $AA003 
;AND $AA004 ARE IN THE SAME OVERLAY. 
;PSECT $AA005 IS IN AN OVERLAY ALL BY ITSELF 
; 
;PSECT 
; 
;PSECT 

.NAME 

$AA001,GBL,RW,CON,I 

$AA002,GBL,RW,CON,I 

AA$001,GBL 

11-4 



HAND-TAILORING ODL FILES 

AA001$: .FCTR *AA$001-$AA001-$AA002 

;PSECT $AA003,GBL,RW,CON,I 
; 
.PSECT $AA004,GBL,RW,CON,I 

.NAME AA$003,GBL 
AA003$: .FCTR *AA$003~$AA003-$AA004 

.PSECT $AA005,GBL,RW,CON,I 

.NAME AA$005,GBL 
AA005$: .FCTR *AA$005-$AA005 

AAOVR$: .FCTR AA001$,AA003$,AA005$ 

11.5 MERGING STANDARD ODL FILES 

To develop an ODL file for a task composed of more than one 
object program, it is necessary to merge the ODL files for 
individual object program into a single ODL file that describes 
overlay requirements for the task. 

COBOL 
each 
the 

All of the ODL files to be merged are partial ODL files. Tnat is, 
none of these ODL files can be submitted directly to the Task Builder 
to build a task; because, none of the compiler generated ODL files 
contain a .ROOT directive. The .ROOT directive that describes the 
task is supplied by the Merge Utility. 

11.6 INCLUDING NON-COBOL PROGRAMS IN A TASK 

To use the Merge Utility to include a non-COBOL object module in a 
task image, you must: 

1. Create a standard COBOL ODL file (use any text editor) 

2. Specify this ODL file as input to the Merge Utility. 

11.6.l Creating a Standard COBOL ODL File 

A standard COBOL ODL file for a non-COBOL object module contains one 
or two directive lines: 

1. Object Program ID Line This 
identifies the object module to 
image. The format of this line is: 

;COBOBJ=XXXXXX.OBJ 

line 
be 

is required. It 
included in the task 

Where XXXXXX.OBJ is the name of the object module to be 
included in the task image. 

11-5 



HAND-TAILORING ODL FILES 

2. Main Program ID Line This line is present only for 
non-COBOL object modules that are main programs as opposed to 
being subprograms. The format of the line is: 

;COBMAIN 

For each invocation of the COBOL ODL Merge Utility, one and only one 
main program ODL file can be specified. If no main program ODL file 
is specified, the Merge Utility continues to request more input until 
a main program ODL file is specified. If more than one main program 
ODL file is specified, all but the first is rejected, and appropriate 
diagnostic error messages are issued. Consider the following 
examples. 

Example 1 

MACRO program START.OBJ is a main program in a task 
main program and several subprograms. The 
hand-generated is: 

;COBOBJ=START.OBJ 
;COBMAIN 

Example 2 

consisting 
ODL file 

of a 
to be 

Macro subprogram SUBX.OBJ is to be part of a task image that consists 
of several COBOL subprograms and a COBOL main program. The ODL file 
to be hand-generated is: 

;COBOBJ=SUBX.OBJ 

11.7 REARRANGING A COMPILER-GENERATED ODL FILE 

The ODL file generated by the compiler can be rearranged to modify the 
overlay structure of a task. If the ODL file describes a task that 
has overlayable segments, one or more of these segments can be 
converted into non-overlayable segments by: 

1. Modifying the compiler-generated ODL file. 

2. Specifying a one-line Task Builder option at task-build time 
for each segment made non-overlayable. 

11.7.1 Modifying the Compiler-Generated ODL File 

Modifying the compiler generated ODL file requires the following 
steps: 

1. Each overlayable segment is named in the ODL file by an ODL 
.NAME directive. This .NAME directive must be removed. 

2. Each name appearing in a .NAME directive is marked with an * 
and placed as the first element of a .FCTR directive. For 
each .NAME directive removed by step 1, this .FCTR directive 
must be removed. 

11-6 



HAND-TAILORING ODL FILES 

3. All references to the name of the .FCTR directive removed in 
step 2 must be removed from the ODL file. 

4. All PSECTs referenced in the .FCTR directive that was removed 
in step 3, must be removed from the ODL file. 

Example 

The task image contains three overlayable segments, C$$010, 
and C$$020. Segment C$$020 is to be forced into the root. 
11-1 contains a listing of the merged ODL file. 

;MERGED ODL FILE CREATED ON 26-JAN-77 AT 10:50:00 
;COBOL STANDARD ODL FILE GENERATED ON: 26-JAN-77 10:48:37 
;COBOBJ=TESTl.OBJ 
;COBKER=C$ 
;COBMAIN 

.NAME C$$010,GBL 

.PSECT $C$003,GBL,I,RW,CON 
C$010$: .FCTR *C$$010-$C$003 

.NAME C$$015,GBL 

.PSECT $C$004,GBL,I,RW,CON 
C$ 015$: . FCTR *C$$ Ol 5-$C$ 004 

C$020$: 
C$0VR$: 
CBOBJ$: 
CBOVR$: 
CBOTS$: 
RMS$: 
OBJRT$: 

.NAME C$$020,GBL 

.PSECT $C$005,GBL,I,RW,CON 

.FCTR 

.FCTR 

.FCTR 

.FCTR 

.FCTR 

.FCTR 

.FCTR 

*C$$020-$C$005 
C$010$,C$015$,C$020$ 

TESTl.OBJ 
C$0VR$ 
[320,13]COBLIB/LB 

[l,l]RMSLIB/LB 
CBOBJ$-CBOTS$-RMS$ 

.ROOT OBJRT$-(CBOVR$) 

.END 

Figure 11-1 Merged ODL File Listing 

C$$015, 
Figure 

To force segment C$$020 into the root, the merged ODL file must be 
modified as follows: 

1. The .NAME directive referencing C$$020 must be removed. 

2. The .FCTR directive containing *C$$020 must be removed. 

3. All references to the PSECTs in the removed .FCTR directive 
must be removed. 

11-7 



HAND-TAILORING ODL FILES 

Figure 11-2 contains the ODL listing after the modifications have 
been made. 

;MERGED ODL FILE CREATED ON 26-JAN-77 AT 10:55:22 
;COBOL STANDARD ODL FILE GENERATED ON: 26-JAN-77 10:48:37 
;COBOBJ=TESTl.OBJ 
;COBKER=C$ 
;COBMAIN 

C$010$: 

C$015$: 
C$0VR$: 
CBOBJ$: 
CBOVR$: 
CBOTS$: 
RMS$: 
OBJRT$: 

.NAME C$$010,GBL 

.PSECT $C$003,GBL,I,RW,CON 

.FCTR *C$$010-$C$003 

.NAME C$$0i5,GBL 

.PSECT $C$004,GBL,I,RW,CON 

.FCTR *C$$015-$C$004 

.FCTR C$010$,C$015$ 

.FCTR TESTl.OBJ 

.FCTR C$0VR$ 

.FCTR [l,l]COBLIB/LB 

.FCTR [l,l]RMSLIB/LB 

.FCTR CBOBJ$-CBOTS$-RMS$ 

.ROOT OBJRT$-(CBOVR$) 

.END 

Figure 11-2 Modified ODL File 

11.7.2 Specifying Task Builder Options 

For each overlayable 
Builder option must 
the option is: 

GBLDEF=KK$MMM:O 

Where: 

segment made non-overlayable, a GBLDEF Task 
be specified at task-build time. The format of 

KK$MMM is the name of the segment that is being made 
non-overlayable. (This is the name in the .NAME ODL 
directive that was deleted when the ODL file was modified) . 

Consider the following example. 

Example 

To make the overlayable segment (C$$020) described in the example in 
Section 11.7 non-overlayable, enter the following in response to the 
Task Builder ENTER OPTIONS prompt: 

GBLDEF=C$$020:0 ( REt) 

Figure 11-3 shows the overlay description of the task image before and 
after segment C$$020 was made non-overlayable. 

11-8 



HAND-TAILORING ODL FILES 

BEFORE 

TESTl.TSK;l MEMORY ALLOCATION MAP TKB M27 
26-JAN-77 10:51 

PARTITION NAME : GEN 
IDENTIFICATION : 026108 
TASK UIC [320,4] 
STACK LIMITS: 000176 001175 001000 00512. 
PRG XFR ADDRESS: 022514 
TOTAL ADDRESS WINDOWS: 1. 
TASK IMAGE SIZE 6880. WORDS 
TASK ADDRESS LIMITS: 000000 032657 

TESTl.TSK;l OVERLAY DESCRIPTION: 

BASE TOP LENGTH 

000000 032507 032510 13640. TEST! 
032510 032607 000100 00064. 
032510 032657 000150 00104. 
032510 032617 000110 00072. 

AFTER 

TEST2.TSK;2 MEMORY ALLOCATION MAP TKB M27 
26-JAN-77 10:57 

PARTITION NAME : GEN 
IDENTIFICATION : 026108 
TASK UIC [320,4] 
STACK LIMITS: 000176 001175 001000 00512. 
PRG XFR ADDRESS: 022514 
TOTAL ADDRESS WINDOWS: 1. 
TASK IMAGE SIZE 6912. WORDS 
TASK ADDRESS LIMITS: 000000 032743 

TEST2.TSK;2 OVERLAY DESCRIPTION: 

BASE TOP LENGTH 

C$$010 
C$$015 
C$$020 

000000 
032574 
032574 

032573 
032673 
032743 

032574 
000100 
000150 

13692. 
00064. 
00104. 

TES Tl 
C$$010 
C$$015 

3 overlayable 

segments 

2 overlayable 
segments 

Figure 11-3 Overlay Description Map Before and After Modification 

11-9 





CHAPTER 12 

ERROR MESSAGES 

12.1 COMPILER SYSTEM ERRORS 

The PDP-11 COBOL compiler is a complex system program consisting of 
many program overlays that manipulate numerous data structures. 
Throughout the compiler, consistency checks are performed on program 
flow and the contents of data fields. If the compiler detects an 
inconsistency, it types a message on the console and terminates the 
compilation. A system error message has the foiiowing format: 

SYSTEM ERROR NNNNN 

where NNNNN is a number used by the DEC COBOL developers to determine 
the probable cause of the error. When a system error occurs, the 
compiler's input file is closed and all output files (object, list, 
and ODL) are closed and deleted. 

In the event of a PDP-11 COBOL compiler system error, contact your DEC 
Software Support Specialist immediately. 

12.2 DIAGNOSTIC ERROR MESSAGES 

Appendix H contains a numerical listing of the diagnostic messages 
generated by the PDP-11 COBOL compiler. The compiler generates these 
messages whenever it detects an error in the source program. In 
general, a source error detected by the compiler results in the 
associated diagnostic message being embedded in the source program 
listing. That is, when an error is detected in the source program, 
the compiler prints the diagnostic message either before or after the 
erroneous source program line. There are two exceptions to the 
general concept of "embedded diagnostics": 

1. There may be diagnostic messages listed after the last entry 
in the Data Division and before the Procedure Division 
header. These are diagnostics which logically cannot be 
issued until the entire Data Division text is processed. 

2. There may be diagnostic messages listed after the last line 
of the Procedure Division. These are diagnostics which 
logically cannot be issued until the entire Procedure 
Division text is processed. 

12-1 



ERROR MESSAGES 

In addition to the error message number and message text, the display 
contains a source line number, which identifies the error line, and an 
alphabetic code (discussed below) which informs you of the seriousness 
of the error. The information in a diagnostic message line is 
displayed (from left to right) in the following order: 

1. Alphabetic code, 

2. Source line number, 

3. Numerical error number, 

4. Text of the diagnostic message. 

For convenience, the alphabetic code is left-justified in the listing 
so you merely scan the listing to identify any diagnostic message 
issued during compilation. Again, for your convenience, a summary of 
the number of errors detected during the compilation is given at the 
end of the source listings. If no errors are detected during the 
compilation, the compiler prints "NO ERRORS" at the end of the source 
listing. 

The following illustration shows a typical diagnostic message and the 
manner in which it appears on the source listing: 

COBOL 4.00 SRC:MAP.CBL;j jS-NOV-78 18:49:10 PAGE 003 

I 

0'0096 
0jj97 
00j98 
00099 

000'99 

jjl00 
jjljl 
jjlj2 
0jlj3 
0010'4 

372 

MOVE TMP-AMT TO HIGH-AMOUNT. 
IF HIGH-AMOUNT NOT = HIGHEST-AMT DISPLAY "ERR 10". 

* 
MOVE TMP-AMT TO NEW-AMT. 

POSSIBLE LOW ORDER RECEIVING FIELD TRUNCATION. 

IF NEW-AMT NOT = OLD-AMT DISPLAY "ERR 11". 
* 

MOVE NEW-AMT TO NEXT-AMT. 
IF NEXT-AMT NOT = MIN-AMT DISPLAY "ERR 12". 

* 
In the example, the diagnostic message is immediately identified by 
the appearance of the left-justified alphabetic code I. The 
alphabetic code indicates that the message is an I-type 
(informational) diagnostic; the diagnostic is issued for source line 
number 99; the error number is 372; and the text of the message is 
POSSIBLE LOW ORDER RECEIVING FIELD TRUNCATION. Note that the 
diagnostic message line, in this example, appears after the source 
line for which it was issued. 

The error messages, used in conjunction with this chapter, provide you 
with an important debugging tool. This chapter contains information 
necessary for interpreting tne messages. i~ explains what caused the 
error and how the compiler handled the error. 

12-2 



ERROR MESSAGES 

Since different errors cause varying degrees of problems for the 
compiler (some do not affect the compilation at all, while others may 
be so critical that they cause an abort of the compilation), the 
PDP-11 COBOL compiler provides four general types (or severity levels) 
of diagnostic messages. Alphabetic codes (I, W, F, and A) identify 
these error levels. When it detects an error in the source program, 
the compiler attempts to recover from the error and continue to 
compile the program. This recovery action may force the compiler to 
make an assumption about the source program. The four levels of 
diagnostic messages are categorized according to the likelihood that 
the result of the compiler's assumption will be an object program that 
runs as originally intended by the programmer. 

The following list explains the purpose of and the compiler's action 
for each of the four message levels: 

I (Informational) Informative diagnostic. The purpose of such 
a diagnostic is to convey information to you in an 
observational or advisory capacity. The compiler's error 
recovery (if any is required) is almost certain to follow 
your intent. 

W (Warning) Warning diagnostic. The purpose of this type of 
message is to warn you that something is wrong with the 
associated source statement, but that the compiler can take 
corrective action on the source element in error. The 
compiler's recovery action may not agree with your intent, 
but the statement, as corrected by the compiler, will be 
executable. 

F (Fatal) Fatal diagnostic. The purpose of such a diagnostic 
is to indicate to you that something is rataiiy wrong with 
the indicated source statement. By fatal, the compiler 
means it cannot generate the object code required for the 
functionality the programmer coded in the erroneous source 
statement. The compiler's error recovery action will 
probably leave out a portion of the source program. In 
general, the compiler will not produce an object program for 
COBOL source programs that have F-type errors in them. 
However, you can force the compiler to generate an object 
program by specifying the /ACC:2 switch in the command 
string input to the compiler prior to compilation (See 
Section 2.3.2, Compiler Switches, for a detailed explanation 
of the /ACC:n switch.) The /ACC:2 switch causes the compiler 
to generate an object program, even if the source program 
contains F-type errors. When the object program is 
executed, it can fail when it attempts to execute code 
generated as a result of the fatal, but accepted, error. 

12-3 



ERROR MESSAGES 

WARNING 

When you specify the /ACC:2 switch, you formally 
acknowledge that you are willing to let the program 
go into execution even though it may have fatal 
errors in it. Because the source program has very 
severe errors in it, the behavior of the associated 
object program is, in general, unpredictable. In 
certain cases, such as a COBOL program with files 
opened in I-0 mode, ietting the program with F-type 
errors go into execution could cause undetected 
serious errors, such as damage to files. Therefore, 
the /ACC:2 switch should be used with caution. The 
facility is provided as an extra debugging option. 
It can be useful in shortening the compile-debug 
cycle, particularly if applied to large COBOL 
programs which take considerable compilation time. 

A (Abortive) Abortive diagnostic. The purpose of this type of 
diagnostic is to inform you that the compiler must abort 
compilation. The compiler's error recovery is not possible: 
it can make no valid assumptions and has no choice but to 
abort the compilation. 

12.3 RUN-TIME FILE I/O ERROR PROCEDURES 

When an error condition occurs during I/O operations, the following 
procedure is used: 

1. If the file status key for the file is present, it is set to 
the appropriate code for the error condition. Appendix C of 
the PDP-11 COBOL Reference Manual lists file status key 
values. 

2. If an AT END or INVALID KEY imperative condition is specified 
for the I/O operation, the path indicated by the imperative 
statement is taken. The file system performs no other 
processing in the file for the current statement. The USE 
procedure, if one is declared for the file, is not performed. 

3. If no AT END or INVALID KEY imperative condition is ~pecified 
for the I/O operation and a USE procedure is declared for the 
file, the USE procedure section is performed, and then 
control is returned to the program. The file system performs 
no further processing for this file. 

If no USE procedure is declared for the file, a fatal error 
condition exists; the OTS aborts the program and displays an 
I/O error message. In the following example, RMS failed to 
find the specified r1~e. Having no USE procedure to execute, 
the OTS displays the message: 

CBL -- 17: OPEN ERROR USING FILE (ACCTG.DAT) 
ASSOCIATED RECORD SERVICES ERROR: -736 (-26) 

12-4 



ERROR MESSAGES 

NOTE 

The OTS does not display an I/O error 
message if it executes a USE procedure. 
However, if the program executes a STOP 
RUN statement in the USE procedure, the 
OTS displays the error message as if no 
USE procedure existed. 

The OTS error messages are listed and described in Appendix J; 
Appendix I describes the Record Management Services error messages. 

12.4 RUN-TIME ERROR MESSAGES 

Wherever it can, the COBOL OTS will list auxiliary information along 
with the error message: 

• PROGRAM-ID. The OTS displays the first six characters of the 
program-name in the PROGRAM-ID paragraph. 

e IDENT. Refers to the identification number that the compiler 
assigned to the program compilation. IDENT appears at the 
beginning of the compiler listing. 

• PSECT. Refers to the PSECT that was being executed when the 
OTS detected the error. PSECT names are found in the 
Procedure Map on the compiler listing. 

OFFSET. Specifies the octal byte offset from ~ne beginning 
of the PSECT. Offset locations appear on the compiler 
listing if the /OBJ switch is used when the program is 
compiled. 

e NESTED PERFORM SOURCE LINE NUMBERS. If the program was 
executing one or more PERFORM statements when the error 
occurred, the OTS lists the source listing line numbers of 
each PERFORM statement to help you locate the error. 

12-5 





CHAPTER 13 

COBOL INTERACTIVE DEBUGGER (CID) 

This chapter describes the use of the COBOL Interactive Debugger 
(CID), which is an interactive aid that you can include in your 
program during the merge or task-build process. The chapter concludes 
with a sample CID debugging session and a COBOL programming example. 

By using CID, you can: 

• Examine and change data in your program 

• Set, show, and cancel breakpoints 

• Control program flow 

CID allows you to find program errors without recompiling or changing 
your program. To use CID, you need only task-build the program with 
the CID module, then run it. 

NOTE 

In this chapter's examples, 
responses are underlined. 

13.1 HOW TO INCLUDE CID 

system 

All CID references to your program are in terms of program name, 
segment, and offset. A simple way of getting this information is to 
specify the /MAP and /OBJ switches when you compile your program. 

Follow this procedure to generate programs with CID: 

1. Produce a listing and specify the /MAP and /OBJ switches when 
you compile your COBOL program. 

2. Print the listing and keep it for the debugging session. 

13-1 



COBOL INTERACTIVE DEBUGGER (CID) 

3. Task-build your program. Place the CID module specifier 
before the COBLIB specification in the command line. If you 
use the MERGE utility, you can include CID ~hen. 

For example: 

RSTS/E: TKB> PROG:PROG,LB:CID,COBLIB/LB 
RSX-11M: TKB> PROG=PROG,[1,1]CID,COBLIB/LB 
IAS: LINK PROG,LB:[1,1]CID,LB:[1,1]COBLIB/LIBRARY, 

RMSLIB/LIBRARY 

If you use the MERGE utility, respond to the following 
question as shown: 

DO YOU WANT TO INCLUDE THE COBOL DEBUGGER (CID)? 
PLEASE ANSWER Y(ES) OR NCO): YES 

4. Execute the program. CID takes control and prompts you for 
input with: 

CID> 

NOTE 

Including CID adds about 1000 (decimal) 
words to your program's memory address 
space requirement. If the increase 
exceeds the program's size limit, 
recompile it (for debugging purposes 
only) with the /OV switch. 

13.2 COMMAND MODE AND THE CID ENVIRONMENT 

CID is in command mode when the debugger is waiting for your input 
(displaying the prompt CID>). When your program is in CID command 
mode, the current location (segment) is called the CID environment. 
The environment consists of the program name and segment number, 
where: 

1. Program name refers to the name in the PROGRAM-ID paragraph 
in the main program or called program. 

2. Segment number refers to the segment within the named 
program. 

Except for SET BREAKPOINT and CANCEL BREAKPOINT, commands affect only 
the current environment. You can examine and change data only in the 
current program (with the exception of linkage parameters). 

When you run a program that includes CID, the initial environment is 
segment 01 of the main program, and CID is in command mode. The 
environment changes only as the program executes. Therefore, to gain 
control of CID in a different environment, you can set breakpoints and 
continue execution; CID returns to command mode when it reaches the 
breakpoint. 

13-2 



COBOL INTERACTIVE DEBUGGER (CID) 

13.3 ADDRESSING 

Several CID commands refer to data or code locations in your program. 
The following sections describe the different methods of addressing 
data and code. 

13. 3. 1 Addressing Data 

The compiler generates data descriptors for all Data Division items 
that you reference in Procedure Division statements. The OTS accesses 
data items by using information in the descriptors. A DATA address is 
an octal number that specifies the relative location of the data 
descriptor. You find these addresses in the "DIR LOC" column on the 
data map listing. 

Linkage Section items are addresses prefixed with the letter "L" on 
the data map listing. Because the compiler assigns addresses for the 
Linkage Section differently than it does for other Data Division 
sections, you must use the /LINKAGE option to reference them. 

You cannot reference items marked on the data map with "*****" in 
place of an address. Asterisks indicate that you did not reference 
the item in the Procedure Division and that the compiler, therefore, 
did not generate a data descriptor. 

Reference table items by following the address with a list of 
subscripts enclosed in parentheses. Specify subscripts as unsigned 
decimal integers, and separate multiple subscripts with commas, as you 
would in a COBOL statement. 

Examples: 0 
56 
14(9) 
20(23,12) 

The first two examples reference data items whose data descriptors are 
located at octal 0 and 56. The third reference specifies the ninth 
occurrence of the table item whose data descriptor is located at octal 
address 14. The last example specifies a multiply-subscripted data 
item whose data descriptor is at octal address 20; the subscripts are 
written exactly as they would be in a COBOL statement. 

13. 3. 2 Addressing Procedure Division Code 

Procedure Division code addresses have three parts: 

1. Program name 

2. Segment number 

3. Octal offset in the segment 

For example, the address PROGA:2,6 refers to offset location 6 in 
segment 2 of the program named PROGA in its PROGRAM-ID paragraph. 

13-3 



COBOL INTERACTIVE DEBUGGER (CID) 

In some commands, the program name and the segment number are 
optional. However, if you specify the program name, you must also 
specify the segment number. If you omit the program name, but specify 
the segment number, the colon (:) is required. 

Examples: PROGA: 2, 16 
refers to program PROGA, 
segment 2, offset 16 

:3,32 

6 

refers to segment 3, 
offset 32 in the 
current program 

refers to offset 6 in the 
current environment 

The program listing contains the address for each verb in the 
Procedure Division on the program listing if the /OBJ switch was used. 
In the following extract from a listing for program PROGA, the full 
address of the MOVE statement is PROGA:5,70. 

IF 
MOVE 

05 000054 
05 000070 

00395 IF A = B MOVE B TO C. 

13.4 COMMANDS 

CID commands consist of words, numbers, alphanumeric strings and the 
special characters: 

Use upper-case 
separate the 
characters. 

left parenthesis 
right parenthesis 
period (decimal point) 
comma 
minus sign 

= equal sign 
colon 

I slash or stroke 

letters 
items of 

to enter command 
each command by 

and option words; and 
one or more spaces or tab 

You can abbreviate command and option words to a single letter. 
Because CID interprets only the first letter of each word, it accepts 
misspellings. 

13-4 



COBOL INTERACTIVE DEBUGGER (CID) 

These CID commands are discussed in the following sections: 

CANCEL BREAKPOINT Unmark a stop location 

DEPOSIT Change the value of a data item 

EXAMINE Display the value of a data item 

GO Control execution path 

SET BREAKPOINT Mark a location to stop execution 

SHOW BREAKPOINTS Display active breakpoints 

XIT Terminate debugging session 

13.4.1 CANCEL BREAKPOINT Command 

Format: CANCEL BREAKPOINT <code address> 

Use this command to cancel or remove a breakpoint that was set at the 
specified <code address>. 

CID displays the following message after it cancels the breakpoint: 

CAN <program name> : <segment number> <offset> 

Examples~ CID> CANCEL BR 6 
Cancels the breakpoint at 
location 6 in the current 
segment of the current 
program. 

CAN PROGA : 01 000006 

CID> C B PROGB :3,42 
Cancels the breakpoint at 
location 42 in segment 03 
of program PROGB. 

CAN PROGA 03 000042 
CID> 

13.4.2 DEPOSIT Command 

Format: DEPOSIT [/LINKAGE] <data address> = <value> 

Use this command to replace the value of the addressed data item with 
a new value. 

For numeric items, enter <value> as a 'decimal number. You can include 
a decimal point and leading minus sign. The OTS moves the value 
according to the COBOL rules for the MOVE statement. Therefore, 
decimal alignment, truncation, and other formatting occur as specified 
by the data description. 

13-5 



COBOL INTERACTIVE DEBUGGER (CID) 

For alphanumeric, alphabetic, group, and all edited items, enter 
<value> as an alphanumeric literal (enclosed in quotes). The OTS 
moves the literal according to the COBOL rules for a group move. 

Use the /LINKAGE option to deposit values into data items in the 
Linkage Section of your program. 

You cannot DEPOSIT values into inde~ data items. 

Examples: CID> DEPOSIT 6:1.34 
1. 34 
CID> D 12(3) =-15 
-15 
CID> DE 126="HELL0" 
HELLO 
CID> D0=0 
-0-

CID> 

CID displays the new value of the data item after a DEPOSIT operation. 
You can then confirm that the change is correct without using an 
additional EXAMINE command. For example, if the picture of the item 
is X(5) and you enter: 

CID> DEPOSIT 42="SYSTEM" 

CID displays: 

and you -see immediately that truncation occurred. 

13.4.3 EXAMINE Command 

Format: EXAMINE [/LINKAGE] <data address> 

Use the EXAMINE command to display the value of the addressed data 
item. CID displays numeric items as numeric values with decimal 
points and (for negative values) leading minus signs. It displays 
alphanumeric items, such as alphabetic or edited, as strings of ASCII 
characters, with non-printable characters disp1ayed as "?". 

Use the /LINKAGE option to display data items located in the Linkage 
Section of your program. 

Examples: CID> EXAMINE 104 
105.6 
C115>EX 142 
NEWHAMPSHIRE 
CID> E 12(3,5) 
=-16 
CID> EX/L 220 
0--

CID> 

13-6 



COBOL INTERACTIVE DEBUGGER (CID) 

13.4.4 GO Command 

Format: GO [<offset>] 

Use the GO command to resume execution of your program. Specify 
<offset> to continue execution at a different location in the current 
segment. Otherwise, execution continues at the next instruction. 
Remember that you can continue execution only in the current 
environment. 

CID does not confirm that a valid instruction exists at the specified 
offset; therefore, the result of specifying an incorrect offset is 
unpredictable. CID also does not reset PERFORM exits; therefore, 
using the GO command to le~ve an active PERFORM can result in a later 
error. 

13.4.5 SET BREAKPOINT Command 

Format: SET BREAKPOINT <code address> 

Use this command to set a breakpoint at <code address>. 

Up to ten breakpoints can be active at one tim.e. If all ten 
breakpoints are active, CID displays an error prompt when you type 
this command. To set a new breakpoint when ten are active: 

1. Use the SHOW BREAKPOINTS command to display the active 
breakpoints. 

2. Use the CANCEL BREAKPOINT command to remove breakpoints that 
you no longer need. 

3. Set the new breakpoint. 

CID displays the following message when the breakpoint is set: 

SET <program name> <segment number> <offset> 

If your program later reaches the breakpoint, CID displays: 

AT: <program name> : <segment number> <offset> 

It then waits in command mode for a new entry. 

Examples: CID> SET BREAKPOINT 26 
Sets a breakpoint at location 26 
in the current segment of the 
current program. 

SET PROGA : 02 000026 

CID> SB PROGA:3,1422 

SET PROGA 

Sets a breakpoint at location 1422 
in segment 3 of program PROGA. 

03 001422 

13-7 



COBOL INTERACTIVE DEBUGGER (CID\ 

13.4.6 SHOW BREAKPOINTS Command 

Format: SHOW BREAKPOINTS 

Use SHOW BREAKPOINTS to display the list of active breakpoints and the 
location of the current breakpoint. 

Notice that this command looks the same to CID as SET BREAKPOINT 
without a code address: since CID interprets only the first character 
of each word. 

Examples: CID> SHOW 
BP: PROGA 
BP: PROGA 
BP: SUBR 
AT: SUBC 
CID> S B 

BREAKPOINTS 
01 000026 
03 001422 
07 000104 
02 000062 

(same as above) 
CID> 

13.4.7 XIT Command 

Format: XIT 

Use this command to end the execution of your program and the 
debugging session as if your program executed a STOP RUN statement. 

13.5 PROGRAM INITIATION 

When your program begins, it automatically enters CID command mode as 
if you had set a breakpoint before the first instruction. However, 
CID cancels this breakpoint automatically when you enter any valid 
command. 

Use this automatic breakpoint to: 

1. Examine or change data before your program begins. 

2. Set breakpoints for use later in the debugging session. 

3. Begin execution at a different location. 

13-8 



COBOL INTERACTIVE DEBUGGER (CID) 

13.6 USING BREAKPOINTS 

CID suspends execution of your program and returns to command mode 
when your program reaches a breakpoint. 

Set breakpoints at significant locations so you can: 

1. Examine data to verify correctness. 

2. Change data to correct values. 

3. Change data or continue execution at another location to test 
a theory that explains incorrect results. 

Before you transfer control, analyze your program's current status to 
be sure that the transfer will not leave an active PERFORM. 
Otherwise, the OTS will terminate your program's execution if it 
detects an improperly nested PERFORM because the old PERFORM is still 
active. 

13.7 PROGRAM TERMINATION AND SUSPENSION 

Program execution can be terminated in three ways: 

1. You can terminate both your program and the debugging session 
by: 

• Using the XIT command during command mode 

• Typing a termination control character, 
such as ~c 

2. The OTS suspends execution of your program when it detects an 
error. It displays an error message and returns control to 
CID. CID then displays the following message and enters 
command mode: 

AT: <program name> <segment number> 177777 
CID> 

Although the CID message does not indicate the location of 
the error, you can find it in the OTS error message. You can 
continue execution by using the GO command with a new 
location, provided it is in the same environment in which the 
error occurred. Before transferring control, you may want to 
use other CID commands to examine or change data, or to set 
breakpoints. CID terminates the debugging session if you 
enter·a GO command without a location. 

3. The OTS suspends program execution when it executes a STOP 
RUN statement. It returns control to CID, as described 
earlier; the OTS error message does not appear since no 
error condition exists. You can terminate the session or 
continue execution as just described. 

13-9 



COBOL INTERACTIVE DEBUGGER (CID) 

13.8 CID Command Errors 

When CID detects an error in a command entry, it sounds an alarm 
(using the BELL character) and displays the prompt: 

Although more specific error reporting would be useful, it was omitted 
to mini~ize your program;s memory requirement when you request the CID 
module. 

Some errors that frequently occur are: 

1. Typing a non-existent command, such as a "2". 

2. Typing a command in lower case, such as "go". (You must use 
upper case.) 

3. Forgetting to enter the colon when you intend to specify the 
current program name in a code address, such as "S B 5,6". 
The correct command would be "S B :5,6". 

4. Forgetting to leave a space between multiple-word command 
words, such as typing "CB" instead of "C B" to abbreviate 
"CANCEL BREAKPOINT". 

5. Omitting the second word in two-word commands, such as 
entering "CANCEL" instead of "CANCEL BREAKPOINT". 

6. Omitting the equal sign in a DEPOSIT command. 

7. Omitting quotes in a DEPOSIT -command that refers to a 
non-numeric data item. 

8. Trying to DEPOSIT a non-numeric value into a numeric data 
item. 

9. Trying to DEPOSIT a value into an index data item. 

10. Trying to set more than ten breakpoints. 

11. Specifying an invalid offset. 

12. Trying to continue execution in a non-current environment. 

13. Forgetting to use the /LINKAGE option in the EXAMINE and 
DEPOSIT commands when trying to reference data items located 
in the Linkage Section. 

13-10 



COBOL INTERACTIVE DEBUGGER (CID) 

13.9 EXAMPLES 

This section contains an annotated debugging session that demonstrates 
the use of many CID features. Following it are sample listings of a 
COBOL program (TESTA) and a subprogram (TESTB); the debugging session 
references these listings. 

Program TESTA accepts a character string from the terminal and passes 
it to TESTB. TESTB reverses the character string and returns it (and 
its length) to TESTA. 

13. 9. 1 Sample Debugging Session 

The following debugging session does not demonstrate the location of 
actual program errors; it is designed to show the use of CID 
features. The session begins immediately after the RUN command is 
entered: 

ll'T'. 
l'l.J.. TESTA 01 000006 

1) We get control before execution of the 
first COBOL statement in the program. 

2) Now, we set a breakpoint in program 
TESTB just after it determines the 
length of the string. CID confirms that 
the breakpoint was set. 

CID> SET BREAKPOINT TESTB:1,164 
~TESTB : 01 000164 

CID> S B 46 
~ESTA : 01 000046 

CID>SET B :2,34 
~TESTA 02 000034 

CID> DEPOSIT 0 = 1.836 
1. 83 

CID> DEP 6 = 55 
-?-

3) We also set a breakpoint in TESTA just 
before it calls TESTB. Note that the 
abbreviation "S B" is sufficient, as is 
"SET B" in a later command. 

4) We set a third breakpoint just before 
TES TB displays the string length 
(DISP-COUNT). Note that the colon is 
required before the segment number. 

5) We change the value of LETTER-COUNT. 
CID displays the value it stored; note 
that the value was truncated because the 
PICTURE of LETTER-COUNT specifies only 
two digits following the assumed decimal 
point. 

6) We attempt to DEPOSIT a numeric value 
into INPUT-WORD (an invalid operation). 
CID responds by sounding an alarm (using 
the BELL character) and displaying a 
question mark. 

13-11 



COBOL INTERACTIVE DEBUGGER (CID) 

CID> GO TESTB:1,6 
1._ 

CID> GO 
ENTER WORD 

NOW IS THE TIME 
AT: TESTA 01 000046 

CID> EXAMINE 6 
~IS THE TIME 

CID> D 6 = "FOR ALL" 
FOR ALL 

CID> GO 
AT: TESTB 

CID> EXAMNIE 0 
-7-

CID> S B 174 

01 000164 

~TESTB : 01 000174 

CID> GO 
AT: TESTB 

CID> EX/L 26 
7.00 

01 000174 

7) We attempt to continue execution at 
location 6 in segment 01 of TESTB. CID 
rejects the command; we can transfer 
control only to a point in the current 
environment (program and segment). 

8) Having set breakpoints for later in the 
session, we continue execution with the 
next statement. The program continues: 
displays a prompt, and waits for input. 

9) We enter the string "NOW IS THE TIME". 
The program continues execution until it 
reaches the breakpoint we set in Step 3. 

10) We EXAMINE the contents of INPUT-WORD to 
confirm that it matches the actual 
entry. 

11) This command replaces the content~ of 
INPUT-WORD with the string "FOR ALL". 
CID echoes the stored value. 

12) We continue execution. The program 
re-enters CID command mode when it 
reaches the breakpoint in TESTB that we 
set in Step 2. 

13) Now that TESTB has determined the length 
of the string, we examine the contents 
of SUB1 to see the character count. 
Note that the command is misspelled; 
CID looks only at the first character of 
the word. 

14) We set another breakpoint one statement 
later. 

15) Then we continue. CID 
after the execution 
statement. 

regains control 
of a single COBOL 

16) We examine the contents of 
CHARACTER-COUNT. Note that the 
"/LINKAGE" option is necessary because 
the data item is in the LINKAGE SECTION. 

13-12 



COBOL INTERACTIVE DEBUGGER (CID) 

CID> S B 
BP: TES TB 01 00~164 
BP: TESTA 01 000046 
BP: TESTA 02 000034 
BP: TES TB 01 000174 
AT: TES TB 01 000114 

CID> CANCEL B 174 
~TESTB : 01 000174 

CID> GO 
ITAROF 
AT: TESTA 

CID> E0 
7.00 

CID> GO 6 
LIAR OF 
AT: TESTA 

CID> GO 
AT: TESTA 

CID> X 

02 000034 

02 000034 

02 177777 

17) 

18) 

We request a list of 
breakpoints. CID also 
current location. 

all active 
reports the 

We cancel the breakpoint at location 
174. Note that the "B" is required, 
since this is a two-word command. 

19) We continue execution. The program 
(TESTA) displays the result string that 
was returned by TESTB; it then enters 
CID command mode when it reaches the 
breakpoint we set in Step 4. 

20) We examine the contents of LETTER-COUNT. 
Note that a space is not required 
between a CID command and a numeric 
argument. 

21) We alter the flow of the program by 
specifying an offset in the GO command. 
CID transfers control to offset location 
6 in the current environment (segment 02 
of TESTA). The next COBOL statement 
executed is the DISPLAY at source line 
number 25; once again, CID regains 
control at the breakpoint set in step 4. 

22) We continue execution. When the program 
executes the STOP RUN statement, CID 
gains control and displays the 
pseudo-location 177777, which indicates 
program suspension (termination). Note 
that this is not an actual program 
location. 

23) We terminate the session (and the 
program, of course) by entering an XIT 
command. Since a STOP RUN has been 
executed, the program would also 
terminate if we entered a GO command 
with no location. We also could have 
continued program execution at another 
place by entering a GO command with a 
location. 

13-13 



COBOL INTERACTIVE DEBUGGER (CID) 

13.9.2 

DISPLAY 

MOVE 

ACCEPT 

CALL 

DISPLAY 

MOVE 

Sample Program 

01 000006 

01 000024 

01 000034 

0 1 000046 

02 000006 

02 000024 

Listings 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 

00019 

00020 

00021 

00022 
0002 3 
000 2 4 

00025 

00026 

IDENTIFICATION.DIVISION. 
PROGRAM-ID. 

TESTA. 
DATE-WRITTEN. SEPTEMBER 1978. 
DATE-COMPILED. 

13-SEP-78 . 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. PDP-11. 
OBJECT-COMPUTER. PDP-11. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 LETTER-COUNT PIC 9(2)V9(2). 
01 INPUT-WORD PIC X(20). 
01 DISP-COUNT PIC 9 ('2). 
PROCEDURE DIVISION. 
GETIT SECTION. 
BEGINIT. 

DISPLAY "ENTER WORD". 

MOVE SPACES TO INPUT-WORD. 

ACCEPT INPUT-WORD. 

CALL "TESTB" USING INPUT-WORD LETTER-COUNT 
DISPLAYIT SECTION. 
SHOW-IT. 

DISPLAY INPUT-WORD. 

MOVE LETTER-COUNT TO DISP-COUNT. 

I 00026 0)72 POSSIBLE LOW ORDER RECEIVING FIELD TRUNCATION. 

DISPLAY 02 000034 

STOP 02 000054 

LEVEL 

QJ 1 LETTER-COUNT 
rt .. INPUT-WORD \0 I 

01 DISP-COUNT 

NAME 

00027 

000 28 

DISPLAY DISP-COUNT " CHARACTERS". 

STOP RUN. 

DATA MAP 

SOURCE DDIV DIR USAGE CLASS occ LEN 
LINE LOCN LOC 

00013 000224 00 QJ 0 0 0 DISP NUM QJ 0 000 4 
0Grn 14 000230 000006 DISP AN 00 0020 
00015 000254 000014 DISP NUM 00 000 2 

13-14 



COBOL INTERACTIVE DEBUGGER (CID) 

F 

OVE 0i 000022 

10 

1ERFORM 

01 000042 

01 000052 

OVE 01 000164 

:OVE 01 000174 

1ERFORM 01 000204 

IOVE 01 000304 

:XIT 01 000322 

!OVE 01 000334 

:UBTRACT 01 000370 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 

00024 

00025 

00026 

00027 
VJVJVJ2 8 
00029 

00030 

00031 

00032 
00033 
00034 

00035 
00036 

00037 
00038 

00039 
00040 

00041 
00042 

IDENTIFICATION DIVISION. 
PROGRAM--ID. 

TESTB. 
DATE-WRITTEN. SEPTEMBER 1978. 
DATE-COMPILED. 

13-SEP-78 . 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. PDP-11. 
OBJECT-COMPUTER. PDP-11. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
01 SUB1 PIC 9(2). 
01 SUB2 PIC 9(2). 
01 HOLD-WORD. 

03 HOLD-CHAR PIC X OCCURS 20 TIMES. 
LINKAGE SECTION. 
01 THE-WORD. 

03 THE-WORD-CHAR PIC X OCCURS 20 TIMES. 
01 CHARACTER-COUNT PIC 99V99. 
PROCEDURE DIVISION USING THE-WORD, CHARACTER-COUNT. 
CONVERT-IT SECTION. 
STARTUP. 

IF THE-WORD = SPACES 

MOVE 0 TO CHARACTER-COUNT 

GO TO GET-OUT. 

PERFORM LOOK-BACK 
VARYING SUB1 FROM 20 BY -1 
UNTIL THE-WORD-CHAR (SUB1) NOT =SPACE. 

MOVE SUB1 TO CHARACTER-COUNT. 

MOVE SPACES TO HOLD-WORD. 

PERFORM MOVE-IT 
VARYING SUB2 FROM 1 BY 1 
UNTIL SUB 1 = 0. 

MOVE HOLD-WORD TO THE-WORD. 
GET-OUT. 

EXIT PROGRAM. 
MOVE-IT. 

MOVE THE-WORD-CHAR (SUB1) 
TO HOLD-CHAR (SUB2). 

SUBTRACT 1 FROM SUB1. 
LOOK-BACK. 

13-15 



COBOL INTERACTIVE DEBUGGER (CID) 

EXIT 01 000406 
00043 EXIT. 

DATA MAP 

LEVEL NAME SOURCE DDIV DIR USAGE CLASS occ LI 
LINE LOCN LOC 

01 SUB1 00013 000224 000000 DISP NUM 00 0( 
01 SUB2 00014 000226 000006 DISP NUM 00 0( 
01 HOLD-WORD 00015 000230 000014 DISP AN 00 0( 

03 HOLD-CHAR 00016 000230 000022 DISP AN 01 0( 
L 01 THE-WORD 00018 000000 000000 DISP AN <10 0( 
L 03 THE-WORD-CHAR 00019 000000 000006 DISP AN 01 0( 
L 01 CHARACTER-COUNT 00020 000000 000026 DISP NUM 00 0( 

13-16 



CHAPTER 14 

OPTIMIZATION 

Optimization is the process of designing or altering 
min1m1ze space allocation or execution time, or 
effective trade-off between the two. 

a 
to 

program 
achieve 

to 
an 

This chapter provides guidelines for optimizing performance of COBOL 
programs. It is oriented toward optimization techniques that are 
controllable at the COBOL source language level. 

For more information on optimization techniques you can use through 
Record Management Services (RMS) facilities, refer to appropriate RMS 
documentation. 

Before attempting to optimize a program, you should know the space and 
time constraints imposed by your equipment. Estimate how often the 
program will be run, and its importance in the system. Some other 
points to consider are: 

14.1 

1. What other routines are dependent on the results of your 
routine? 

2. What system resources are currently available? Will 
additional resources be added to your system in the near 
future? 

If program run 
attributable to 
of disk space? 

times seem excessive, is the problem 
slow I/O, and is slow I/O due to a scarcity 

OPTIMIZING MASS STORAGE I/0 

The COBOL source language is oriented toward commercial data 
processing applications, which tend to be heavily involved with file 
activity. Therefore, you can either enhance or undermine system 
performance, depending on how you design, populate, and handle files. 

14-1 



OPTIMIZATION 

When writing or revising COBOL programs with optimization in mind, 
your funda~ental goal should be to minimize I/O activity. Your 
answers to the following questions should influence your choice of 
file organization, record type, buffer size and number, and your 
program organization: 

1. What kinds of I/O operations are necessary to process the 
data? 

2. How can you best place I/O operations in the program? 

3. How should you structure the file? Are multiple access keys 
necessary or desirable? 

4. For each file, are frequent 
likely, or will file 
absolutely) stable? 

record updates 
contents remain 

5. How much task address space is available? 

14.2 PROGRAM DEVELOPMENT 

and insertions 
relatively (or 

You can influence performance greatly by the way you organize your 
program. This section offers several guidelines toward an efficient 
program structure. 

14.2.1 Overlay Structure 

Reading overlays 
Therefore, you 
program. 

into 
should 

memory 
plan 

requires considerable I/O activity. 
overlay structure before writing the 

It is difficult to give specific suggestions that apply in all cases. 
However, if you cluster all file openings at the beginning of the 
program, and a~l file closings at the end, you can obviously plac~ all 
record operations (READ, WRITE, REWRITE) between these portions. 
Then, by overriding the default RMS overlay structure, you can in some 
cases reduce the number of RMS-induced overlays during program 
execution. 

When you use a default RMS overlay structure, every RMS record 
operation requires at least one overlay, and frequently more. By 
minimizing overlays: you can reduce task-build time as well as program 
run time. 

Be alert for situations in which read-write thrashing can occur, and 
try to coordinate I/O activity to eliminate them. You can avoid the 
I/O overhead penalty of an overlayed task structure by task-building 
without an ODL file and creating a non-overlayed task, although this 
is feasible only in rare cases. In any case, organize your program to 
obtain the maximum benefit from each overlay. 

The Task Builder Reference Manual describes ODL files in detail. 

14-2 



OPTIMIZATION 

14.2.2 Sequentially Reading Indexed Files 

If you access an indexed file sequentially, and the file is 
write-shared, performance improves if you use OPEN I-0 instead of OPEN 
INPUT. Using OPEN I-0 implies a possibility that you will write to 
the file--even though you have no intention of doing so. 

Reading from a file that is open for input-output improves performance 
by locking the bucket, allowing you to obtain subsequent records from 
the same bucket without rereading it. 

14.2.3 Caching Index Roots 

RMS requires at least two buffers to process an indexed file. Each 
buffer is large enough to contain a single bucket. If your COBOL 
program does not contain a RESERVE n AREAS clause, the compiler 
includes these two required buffers in your task by default. By 
including a RESERVE n AREAS in the SELECT statement for a file, you 
can cause additional (but not fewer) buffers for the processing of an 
indexed file. At run time, RMS will retain (cache) the roots of one 
or more indexes of the file in memory. The random access of any 
record through that index will then require one less I/O operation. 

The following rules apply for caching index roots: 

1. The file must not be shared at run time. 

2. Allocate one buffer for each key that your program uses to 
access file records, in addition to the two required buffers. 
For example, if the file contains a primary key and two 
alternate keys, and you use all of these keys to access 
records, you should allocate five buffers total. If you use 
only one key to access this file in a program, you need only 
one additional buffer area, or three in all. 

3. Use the RESERVE n AREAS clause to obtain this allocation, 
where n is two more than the number of distinct keys used for 
access. For example, the clause RESERVE 5 AREAS causes 
allocation of the two required buffers, plus three buffer 
areas for caching the roots of three distinct file access 
keys. 

14.2.4 Multi-block Reading and Writing 

The multi-block read and write facility applies only to sequential 
files on disk devices. It allows reading or writing of more than one 
512-byte block at a time during a single I/O operation, reducing the 
number of I/O operations needed to process a file. However, the 
single buffer used to process the file must be correspondingly longer. 

14-3 



OPTIMIZATION 

To use this facility, be sure the file has SEQUENTIAL organization and 
resides on disk. Then, in the FD entry for the file, specify: 

BLOCK CONTAINS n CHARACTERS 

where n is a multiple of 512. Each such multiple represents the 
number of virtual blocks to be read or written during each access of 
the file. If n is not a multiple of 512, the compiler rounds the size 
to the next multiple of 512. 

14.3 FILE DESIGN 

This section describes the effect of file design on performance. The 
following suggestions apply to any type of file organization. 

1. Preallocate the entire file, contiguously if possible, using 
the /CO:n or /AL:n file switch (described in Table 14-1) or 
the RMS DEFINE utility. 

2. Select a suitable default extend quantity when you create the 
file, using the /EX:n file switch or the RMS DEFINE utility. 
(Refer to RMS documentation for a description of default 
extend quantities and the RMS DEFINE utility.) 

3. Know the relationships between record size and file storage, 
and try to define a record size suited for efficient storage 
and retrieval. 

4. Use the SAME RECORD AREA clause to save compute time and 
conserve address space. If records are being copied from one 
file to another, and both files share the same record area, 
no MOVE statement is needed to move record images between two 
record areas. The disadvantage is that records from both 
files cannot be available simultaneously unless one is moved 
to a work area. Note the distinction between the SAME RECORD 
AREA and SAME AREA clauses. 

5. The SAME AREA clause saves even more address space than the 
SAME RECORD AREA clause by causing two or more files to share 
the same buffer area. However, not more than one of the 
fiies can be open at any one time. 

14.3.l Sequential Files 

Sequential files have the simplest structure and the fewest options 
for definition, popuiation, and handiing. Reduce the number of disk 
accesses by keeping record length to a minimum. With a sequential 
disk file, you can use the multi-block read and writ~ facility 
described previously (that is, using the BLOCK CONTAINS n CHARACTERS 
clause in combination with ORGANIZATION IS SEQUENTIAL). Also, you can 
reduce overlay activity by grouping all sequential file record 
operations into one overlay. 

14-4 



OPTIMIZATION 

14.3.2 Relative Files 

For relative files: 

1. Select a record format and size that minimizes the empty 
space remaining in each record position and each bucket. 

2. If you create the file by means of the RMS DEFINE utility, 
select a realistic maximum record number. An attempt to 
insert a record with a number higher than the maximum will 
fail. Before inserting such a record, a redefinition and 
repopulation of the file is required. 

3. Group relative file operations into one overlay. 
reduces task-build time and run time. 

This 

4. Be aware that, before writing a record into a relative file, 
all buckets up to and including the bucket into which the 
record insertion will occur must be formatted. Thus, write 
operations have variable response times, depending on whether 
preliminary formatting is required, and how much. You might 
~ n n c::: i rl A r w r i t- i no t- h A h i o h A c::: t- - n nm h A r A rl r A l"' ri r ii F i r c::: t- t- ri Fri r l"' ~ --------- ··------;:;, ---- ---:;,----- -----·----- ------ ----- -- -----
formatting of the entire file only once. 

14.3.3 Indexed Files 

Indexed files have by far the greatest potential for inefficient 
usage. When using this file organization! be especially attentive to 
the issue of how well the design and use of the files map into the 
application. 

To use indexed files efficiently, you must first understand how they 
are organized and processed. As the name suggests, an indexed file 
contains not only a set of data records, but also information to 
facilitate access to the records. 

A bucket is an integral number of contiguous 512-byte virtual blocks, 
and the number of virtual blocks is known as the bucket size. The 
bucket is the basic retrievable element of an indexed file. 

Every indexed file must have a primary key: a field in the record 
that contains a unique value for each individual record. When RMS 
writes records into the indexed file, it arranges them in collated 
sequence, according to increasing primary key value, in a series of 
chained buckets. 

Thus, you can access the records sequentially by specifying ACCESS 
SEQUENTIAL. In fact, one advantage of the indexed file is that you 
can access it either sequentially or randomly. 

As RMS writes the records, it also constructs and maintains a 
tree-like structure of key-value and location pointers. Figure 14-1 
shows conceptually the overall structure of a primary key index. Each 
element of the index structure is a bucket. The buckets of the index 
are structured into a hierarchy of levels. The highest level of the 
index consists of a single bucket, called the root bucket. The root 
bucket contains location pointers to buckets at the next lower level. 

14-5 



~ 
w 
:x:: 
(.) 
::::> 

M CD N 
.... I- .... w 0 w 
>o > w a: w _._ .... 

_ _.. _ __.. 
--~ 

OPTIMIZATION 

14-6 

t 
I 
I 
I 

.... 
w 
> w .... 

/~ 
111 
I; ~ 

I/ Q) 

I 't:I s:: 
H 

~ 
Q) 
~ 

~ 
lo-I 
m s 

·r-1 
lo-I 

111 

r-1 
Q) 
:> 
Q) 
...:l 
I 
Q) 
Q) 
1--1 

..c: 
E-1 

r-1 
I 

oqo 
r-1 

Q) 
1--1 
;:::; 
tri ..... 
~ 

I 

w 
> 

Cl ~ 
.... <( w I-> <( w Cl _._ 



OPTIMIZATION 

Thus RMS scans one bucket at each level of the index for a pointer to 
a bucket at the next level, until it reaches the bottom level of the 
index; the bottom level is called the data level. In a primary key 
index, this level contains the actual data records of the indexed 
file. The buckets in each level above the data level are called index 
buckets. 

RMS also constructs an 
for the file. Like 
contained in the file. 
actual data records at 
to data records in the 

index for each alternate key that you define 
the primary index, alternate key indexes are 
However, alternate key indexes do not contain 

the data level; instead, they contain pointers 
data level of the primary index. 

For discussion purposes, the successive levels of an index are 
numbered. The data level of the index is level zero, and the number 
of levels above level zero is considered the depth of the index. Thus 
the level number of the root bucket is equal to the depth of the 
index. 

Each random· access request begins by comparing a specific key value 
against the entries in the root bucket, seeking the first entry in the 
root bucket whose key value is equal to or greater than the access 
request key. (This search is always successful, because the root 
bucket=s highest key value is the highest possible value that the key 
field can contain.) Having located the proper key value, RMS takes the 
bucket pointer associated with that value and uses it to bring the 
target bucket on the next lower level into memory. This process is 
repeated for each level of the index. RMS thus searches one bucket at 
each level of the index until it reaches a target bucket at the data 
level. At this point the desired data record location is determined, 
and a data record can be retrieved or deleted, if present, or written 
if such writing will not produce a duplicate primary key value. 

At times there may be insufficient room in a data level bucket to 
accommodate a new record. When this occurs, RMS includes a new bucket 
in the chain, moving enough records from the old bucket to preserve 
the key value sequence while making room to write the new record. 
This action is known as a bucket split. 

In summary, each index of an indexed file provides the mechanism for 
random access to records. Sequential access to records is also 
possible, because the records themselves (in the primary index) or 
pointers to the records (in each alternate index) are collated in 
ascending key value order throughout a series of linked buckets. 

14.3.3.1 General Rules for 
following general rules for 
COBOL source code. 

Indexed Files - You can apply the 
indexed files by direct alteration of 

1. While alternate keys are often useful, the more keys you 
define for an indexed file, the longer each WRITE , REWRITE, 
or DELETE operation takes. However, multiple keys have 
little effect on READ timing and provide multiple access 
paths. Thus, they are most useful for files that are not 
subject to frequent additions and updates and are accessed in 
many different programs. 

14-7 



OPTIMIZATION 

2. Select bucket sizes that reflect file activity and provide a 
suitable depth of index structure. (See Section 14.3.3.3, 
Index Depth.) 

3. Avoid excessive duplication of key values. COBOL does not 
allow duplicates on the primary key, but permits them on 
alternate keys. 

The following subsections deal with the specifics of indexed file 
design and creation. 

14.3.3.2 Bucket Size - Bucket size selection can influence indexed 
file performance markedly. 

To RMS, bucket size is expressed as an integral number of virtual 
blocks, each 512 bytes long. Thus, a bucket size of l specifies a 
512-byte bucket, while a bucket size of 2 ·specifies a HJ24-byte 
bucket, and so on. 

However, in COBOL you do not express bucket size in exactly those 
terms. The compiler passes bucket size values to RMS based on what 
you specify in the BLOCK CONTAINS clause. There, you indicate bucket 
size in terms of records or characters. 

If you express BLOCK SIZE in records, the bucket can in some cases 
contain more records than you specify, but never fewer. For example, 
assume that your file contains fixed-size 111-byte records, and you 
call for each bucket to contain five records, as follows: 

BLOCK CONTAINS 5 RECORDS 

This might seem to define a bucket as a 512-byte block containing five 
records of l1i bytes each. However, the compiler adds RMS record and 
bucket overhead to each bucket for control purposes, as follows: 

Bucket Overhead 15 bytes per bucket 

Record Overhead 7 bytes per record (fixed-length) 
9 bytes per record (variable-length) 

Thus, in the example, bucket size is calculated as follows: 

Bucket Overhead 
Record Size is iii bytes 

+ 7 bytes Record Overhead 
for each of 5 records 

Total Record Space is (lJJ ± 7)*5, or 
Total Block specified by user 

15 bytes 

535 bytes 
55j bytes 

Because virtual blocks are 512 bytes long and buckets are always some 
integral number of virtual blocksr the smallest buffer that the 
compiler can specify in this case is two virtual blocks (1i24 bytes) , 
not one. RMS, however, is not keyetl to the BLOCK CONTAINS clause from 
which this bucket specification was derived, and puts as many records 
as will fit into each bucket. The bucket actually will contain nine 
records, not five. 

14-8 



OPTIMIZATION 

This ettect may be desirable or undesirable, and no judgement is 
intended here. Nevertheless, as a COBOL user concerned with file 
optimization, you should be aware of the mechanism by which COBOL 
record and file descriptions are used to derive bucket sizes. 

The CHARACTERS option of the BLOCK 
specify bucket size more directly. 

BLOCK CONTAINS 2i4s CHARACTERS 

CONTAINS clause 
For example: 

allows you to 

This calls for a bucket size of four 512-byte virtual blocks. The 
number of characters in a bucket is always a multiple of 512. 

14.3.3.3 Index Depth - The size of data records, key fields, and 
buckets in-the file determines the depth of the index. Index depth, 
in turn, determines the number of disk accesses required to retrieve a 
particular record. 

In general, performance is best with an index depth of 3 or 4. A 
shallower index will require fewer accesses, but will reduce available 
address space because of the larger buffers required. 

14.3.3.4 File Activity - After the initial population of an indexed 
file, much of its activity is limited to record retrieval. In 
selecting a bucket size, also consider the likely frequency of random 
insert and delete operations. 

When a record is inserted, there must be sufficient room in the bucket 
to contain it. Otherwise, a bucket split occurs. Bucket splits can 
cause accumulation of storage overhead, and a consequent reduction of 
usable space. The new bucket contains records moved from the original 
bucket to make room for the new record. For each record moved out of 
the original bucket, seven bytes remain. Therefore, a bucket could 
accumulate overhead from bucket splits, possibly reducing usable space 
so much that it can no longer receive record insertions. 

Record deletions also can accumulate storage overhead. Under most 
circumstances, however, most of the space that was occupied by the 
original record becomes available for reuse. When duplicate primary 
keys are not allowed (as is always true with COBOL file operations), 
RMS can reclaim all but two bytes of the deleted record space. 

Several ways of avoiding overhead accumulation are available. First, 
determine or estimate the frequency with which certain operations will 
occur. If, for example, you expect only ii~ records of a i~i,~~~ 
record file to be added or deleted in an average month, your data base 
is stable enough that you might decide to allow some wasted space from 
record additions and deletions. 

14-9 



OPTIMIZATION 

However, if you expect more frequent additions and deletions, try the 
following: 

1. Choose a bucket size that allows for overhead accumulation, 
if possible. Avoid bucket sizes that are an exact or near 
multiple of your record size. 

2. To optimize for record insertion performance (as opposed to 
space optimization), first define the file with a fill number 
(using the RMS DEFINE utility or a MACRO program)~ A fill 
number specifies the number of bytes in the buckets of the 
file that you want to contain record information when the 
file is populated. Then, populate the file specifying the 
/LO switch (see Table 14-1 or RMS utilities documentation). 
Thereafter, the unused space is available for record 
insertions, with minimum bucket splitting. Make certain that 
programs that perform such record insertions do not specify 
the /LO switch. 

14.4 OPTIMIZING COMPUTATION 

You can improve computational 
carefully and avoiding coding 
object code. For example: 

efficiency 
techniques 

by choosing data types 
that produce inefficient 

1. Choose USAGE COMPUTATIONAL to maximize efficiency in 
arithmetic operations. Other data types, in decreasing order 
of efficiency, are: DISPLAY, COMPUTATIONAL-6, and 
COMPUTATIONAL-3. 

2. Avoid arithmetic operations that use more than one data type. 

3. When using COMPUTATIONAL data, minimize the size of the data 
items; this data type becomes exponentially less efficient 
as the size of elementary data items increases. 

4. Define subscripts as COMPUTATIONAL whenever possible. 

5. Indexing is slightly less efficient than subscripting with 
single-word COMPUTATIONAL data items, but significantly more 
efficient than using subscripts of any other type. 

6. If you can ensure that subscripts are always valid, you can 
use the switch, /-BOU, to suppress boundary checking. 
However, you risk unpredictable results if a subscript or 
index contains an out-of-range value. 

7. Avoid COMPUTE statements and expressions with many factors 
and operators to improve execution time. 

8. Avoid COMPUTATIONAL-6 
compatibility. 

to 

NOTE 

increase efficiency 

COMPUTATIONAL-6 is a temporary data format intended 
only for program conversion from releases of PDP-11 
COBOL prior to Version 4.~. 

14-10 

and 



OPTIMIZATION 

14 .. 5 FILE SPECIFICATION SWITCHES 

In PDP-11 COBOL, you can 
either the Environment 
clause} or the VALUE 
file-description-entry. 
where you can refer to 
identification. 

identify a file by its file specification in 
Division SELECT statement (using the ASSIGN 

OF ID clause in the Data Division 
These are the only places in a COBOL program 
a file in terms of its system-specific 

When you specify a file, you can qualify it with various switches, 
which are described in Table 14-1. These switches influence the 
storage and handling of files and are an aid in applying some of the 
optimization techniques described earlier in this chapter. 

Table 14-1 
FILE SPECIFICATION SWITCHES 

I SWITCH MEANING 

j /AL:n 

I 

I 

i 

! 

/CL:n 

Allocate n disk blocks to the file when it is created. 
This ensures that n blocks are available before 
processing begins. The switch can also be used to 
ensure that the volume can hold the entire file. If the 
output medium is an RK-type disk, the maximum value of n 
is 4jjj (decimal}. If n includes a decimal point as its 
rightmost character, it is considered decimal; if it 
includes no decimal point, it is considered octal. 

The blocks allocated need not be contiguous. 

NOTE 

The /AL switch is not supported by RSTS/E. 

Allocate disk space in clusters of n blocks. 
switch applies only to RSTS/E. 

This 

Specify n as a power of 2 in the range 1 to 256 
(decimal} , or 1 to 4jj (octal} . If n has no decimal 
point, it is considered octal. 

This switch is used only when creating very large files 
on an output device that can hold the entire file (such 
as an RP~3 disk}. It speeds file access when the file 
is being processed sequentially. 

14-11 



/CO:n 

/EX:n ! 
j 

/LO 

I 

/SH 

/WI:n 

OPTIMIZATION 

Table 14-1 (continued) 
FILE SPECIFICATION SWITCHES 

This switch is similar to /AL:n, except that it further I 
specifies that all blocks be contiguous. I 

J 

Specifies at file creation time an extension quantity of l 
n blocks. A reasonably large extension quantity i 
minimizes the overhead of dynamic extend operations. 

Instructs RMS to observe the fill numbers specified at 
file creation time. If you specify /LO, the buckets of 
the file will contain free space to allow later 
insertions. 

Specifies sharing of the file for output or I/O 
making it available for writing or altering by 
tasks running concurrently with the COBOL program. 
switch is not allowed for sequential files. For 
types of files, the following rules apply. 

record 

mode, 
other 
This 

other 

1. If the /SH is specified for one task sharing 
the file, it must be specified for all tasks 
sharing the file. 

2. If a file is being opened for OUTPUT or I/O 
with the /SH switch specified, all other tasks 
currently using the file must also have the /SH 
switch specified. 

3. If a file is opened for input without the /SH 
switch set, no other task can use the file for 
output or I/O. 

4. If a file is opened for input without the /SH 
switch set, no other task currently using the 
file can have the /SH switch set. 

If access is denied because one of the above rules has 
been violated, a file status code of 91 is stored in the 
FILE-STATUS data-item associated with the file, assuming 
that the SELECT statement for the file contains a 
FILE-STATUS clause. 

(RSX-llM systems only) Allows you to set the number of 
retrieval pointers in the window used to map virtual 
block numbers to logical block numbers. The acceptable 
values are 1 to 1~2 if you know exactly how many 
pointers are present on disk for the file, or 255, which 
requests assignment of pointers as needed. If /WI:n is 
not present, the default is 7. 

I 

I 



APPENDIX A 

THE COBOL FORMAT 

COBOL NOTATION USED IN FORMATS 

• Underlined upper-case words (key words) - required words; 

= Upper-case words {not underlined) - optional words; 

• Lower-case words - generic terms, must be supplied by the user; 

• Brackets [] - enclosed portion is optional; if several enclosed words are 
vertically stacked, only one of them may be used; 

• Braces {} - a selection must be made from the vertical stack of enclosed words; 

e Ellipsis eee - the position at which repetition may occur; 

• Comma and semicolon - optional punctuation; 

• Period - required where shown in the formats. 

NOTE: Shaded items represent PDP-11 COBOL extensions to the ANS-74 list of 
COBOL formats. 

IDENTIFICATION DIVISION. 

PROGRAM-ID. program-name. 
[AUTHOR. [comment-entry] ••• ] 
[INSTALLATION. [comment-entry] ••• ] 
[DATE-WRITTEN. [comment-entry] ••• ] 
[DATE-COMPILED. [comment-entry] ••• ] 
[SECURITY. [comment-entry] ••• ] 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER. PDP-11. 

[MEMORY SIZE integer OBJECT-COMPUTER. PDP-11 { w~s ~ CHARACTERS 
MODULES 

[PROGRAM COLLATING SEQUENCE IS alphabet-name] 
[SEGME~T-LIMIT IS segment-number]. 

A-1 



THE COBOL FORMAT 

[SPECIAL-NAMES. 

[CARD-READER IS mnemonic-name-1] 
[CONSOLE IS mnemonic-name-2] 
[LINE-PRINTER IS mnemonic-name-3] 
[PAPER-TAPE-PuNCH IS mnemonic-name-4] 
[PAPER-TAPE-READER IS mnemonic-name-5] 

[SWITCH integer-1 

[Alphabet-name IS 

{
ON STATUS IS condition-name-1 
OFF STATUS IS condition-name-2 

{
NATIVE }] 
STANDARD-1 

[CURRENCY SIGN IS literal-1] 
[DECIMAL-~ IS ~ 1 • T 

[INPUT-OUTPUT SECTION. 

FILE-CONTROL. {file-control-entry} ••• 

Format 1: 

SELECT [OPTIONAL] file-name 

ASSIGN TO literal-1 

l RESERVE integer-1 [::SJ] 
[; ORGANIZATION IS SEQUENTIAL] 
[; ACCESS MODE IS SEQUENTIAL] 
[; FILE STATUS IS data-name-1] • 

Format 2: 

SELECT file-name 

ASSIGN TO literal-1 

[• RESERVE integer-1 

ORGANIZATION IS RELATIVE 

[OFF STATUS ~ condition-name-2]}] 
[ON STATUS IS condition-name-!] 

~ ACCESS MODE IS { 

SEQUENTIAL 

{
RANDOM } 
DYNAMIC 

[, RELATIVE KEY IS data-name-1] }n 
RELATIVE KEY IS data-name-1 u 

[; FILE STATUS IS data-name-2] • 

Format 3: 

SELECT file-name 

ASSIGN TO literal-! 

l RESERVE integer-1 

ORGANIZATION IS INDEXED 

A-2 



THE COBOL FORMAT 

[ ACCESS MODE IS 

RECORD KEY IS data-name-1 
[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ••• 
[; FILE STATUS IS data-name-3] • 

[I-0-CONTROL. 
[SAME [RECORD] AREA FOR file-name-1 {file-name-2} ••• ] ••• 
[MULTIPLE FILE TAPE CONTAINS file-name-3 [POSITION integer-!] 

[file-name-4 [POSITION integer-2] ••• ] ••• 

[APPLY PRINT-CONTROL ON file-name-5 [file-name-6] ••• J ••• JJ 

DATA DIVISION. 

[FILE SECTION. 
[FD file-name 

r 
1~ CONTAINS [integer-1 TO] integer-2 
L.. 

, _______ \1 
J .ru:iL:VKl.J::> l I 
l CHARACTERSC 

[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS] 
L { RECORD IS Jl { STJl..NDA..'R.D } 

LABE RECORDS ARE OMITTED 

rVALUE OF ID IS {d~ta-name-l}] l:--- - - literal-1 
ft {RECORD IS } l:°ATA RECORDS ARE data-name-3 
r ln~r~-n~mo-~l 
l!iINAGE IS { -:---- ··-··- - ~ L t integer-5 J 

LINES 

[data-name-4] ···r ... 
L
rWITH FOOTING AT ~ata-name-6 lJ1 

integer-6 J 

[ LINES AT TOP {~ata-name-7 }] [LINES AT BOTTOM 
-- integer-7 

[CODE-SET IS alphabet-name]. 
[record-description-entry] ••• ] ••• ] 
[WORKING-STORAGE SECTION. 

{ ~ata-name-8 }]] 
integer-8 

[
77-level-description-entry] 
record-description-entry ... ] 

A-3 



THE COBOL FORMAT 

[LINKAGE SECTION. 

[
77-level-description-entry] 
record-description-entry ••• ] 

Data description entry: 
Format 1: 

{ 
data-name-1} 

level-number FILLER 

[REDEFINES data-name-2] 

[{ ~TURE} IS character=string] 

[~ISl 

COMPUTATIONAL 
COMP 
COMPUTATIONAL-6 
COMP-6 
COM?UTATIONAL-3 
COMP-3 
DISPLAY 
DISPLAY-6 
DISPLAY-7 
INDEX 

[ [~ IS] { ~~~~~G } [SEPARATE CHARACTER] 

~ 
{ ~~~HRONIZED } [ ~~~ jJ 
{
JUSTIFIED } ---
JUST RIGHT 
----cBLANK WHEN ZERO] 

['VALUE IS literal] 

OCCURS . -
[ 

---{integer-1 TO integer-2 TIMES DEPENDING ON data-name-3} 
integer-2 TIMES 

[{
ASCENDING } KEY IS data-name-4 [data-name-5] ••• J 
DESCENDING 

[INDEXED BY index-name-1 [index-name-2] ••• ]]. 

Format 2: 

66 data-name-1 RENAMES data-name-2 

[I ~:~GH) data-name-3]. 

Format 3: "" 

1 vALLW. TS l Lrl' =UGH Jl 88 condition-name l ~S -AREJ literal-1 

[literal-3 [\~UGH) literal-4]] ••• 

PROCEDURE DIVISION [USING [data-name-1] [,data-name-2] ••• ]. 

Format 1: 

[DECLARATIVES. 

1 
literal-2J 

{section-name SECTION [segment-number] • declarative-sentence 
[paragraph-name .. [sentence] ••• ].'• .. } .... 
END DECLARATIVES.] 
{section-name SECTION [segment-number]. 
[paragraph-name. [sentence] ••• ] ••• } ••• 

Format 2: 

{paragraph-name. [sentence] ••• } ••• 

A-4 



THE COBOL FORMAT 

STATEMENTS 

ACCEPT identifier ;::M mn{:?c}-name] 

TIME --
ACCEPT identifier 

{
identifier-!} [identifier-2] 

ADD literal-! literal-2 TO identifier-m [ROUNDED] 

[identifier-n[ROUNDED]] ••• [ON SIZE ERROR imperative-statement] 

{identifier-l}~ntifier-2-Y----[identifier-3] ADD literal-1 lliteral-2 f literal-3 ••• 
GIVING identifier-m [ROUNDED] [identifier-n [ROUNDED]] ••• 

[ON ~ ERROR imperative-statement] 

ADD { 
CORRESPONDING } 
CORR identif ier-1 TO identif ier-2 [ROUNDED] 
[ON SIZE ERROR imperative-statement] 

PJ.TER procedure-na.~e-1 TO [PROCEED TO] procedure-na.~e-2 

----rprocedure-name-3 TO-CPROCEED TO~procedure-name-4] ••• 

CALL literal-1 
--[USING data-name-1 [ ,data-name-2] ••• ] 

~r{ :~~ } [ :~~H ~~o~~IND ]~ 
CLOS;E file-name-1 --

WITH { NO REWIND } 
LOCK [

file-name-2 n :~~) l WITH 

COMPUTE identifier-1 [ROUNDED] [identifier-2 [ROUNDED]] ••• 
= arithmetic-expression [ON SIZE ERROR imperative-statement] 

DELETE file-name RECORD [INVALID KEY imperative-statement] 

{
identifier-1} [identifier-2] 

DISPLAY literal-1 literal-2 
[UPON mnemonic-name] [WITH NO ADVANCING] 

DIVIDE { 
identifier-1} 
literal-1 

INTO identifier-2 [ROUNDED] 

- ~11 lWITH NO REWIND] ~ 
FOR REMOVAL 

{ 
NO REWIND } • • • 
LOCK 

[identifier-3[ROUNDED]] ••• [ON SIZE ERROR imperative-statement] 

DIVIDE {
identifier-1} {identifier-2} 
literal-l INTO literal-2 GIVING identifier-3[ROUNDED] 

[identifier-4[ROUNDED]] ••• [ON SIZE ERROR imperative-statement] 

DIVIDE {
identifier-1} {identifier-2} 
literal-l BY literal-2 GIVING identifier-3[ROUNDED] 

[identifier-4[ROUNDED]] ••• [ON SIZE ERROR imperative-statement] 

DIVIDE {
identifier-1} {identifier-2} 
literal-l INTO literal-2 GIVING identifier-3[ROUNDED] 

REMAINDER identifier-4[0N SIZE ERROR imperative-statement] 

DIVIDE {
identifier-!} {identifier-2} 
literal-! BY literal-2 GIVING identifier-3[ROUNDED] 

REMAINDER identifier-4[0N SIZE ERROR imperative-statement] 

EXIT [PROGRAM] 

GO TO [procedure-name-!] 
GO TO procedure-name-1 [procedure-name-2] ••• procedure-name-n DEPENDING ON identifier 

A-5 



IF condition { 
statement-1 } 
NEXT SENTENCE 

INSPECT identifier-1 TALLYING 

THE COBOL FORMAT 

[
ELSE statement-2 ] 
ELSE NEXT SENTENCE 

-I identifier-2 ~ { { {~~ING } 
CHARACTERS 

{ i~entifier-4 }] ) ••• ) 
literal-2 

INSPECT identifier-1 REPLACING 

----- - ll.teral-4 AFTER literal-5 
-{ CHARACTERS BY { i~entifier-6} [{ BEFORE } INITIAL { identifier-7 }] 

{ { ~ING) I { i~entifier-5} BY { identifier-6} [{BEFORE} INITIAL 
FIRST ll.teral-3 literal-4 ~ { i~entifier-7}]) •• ·) 

literal-5 

INSPECT identifier-1 TALLYING 

-lidentifier-2 FOR {If ~~ING} 
CHARACTERS INITIAL { i~entifier-4}]} ••• ) 

literal-2 

REPLACING 

INITIAL {
identifier-7 }] 
literal-5 

{

CHARACTERS BY {~~~::~~~:r-6 } [{::~} 

11 
~~ING} I { i~entifier-5} BY { identifier-6} 
~ literal-3 literal-4 [ { ::~ } INITIAL { i~entifier-7}]) ···) 

literal-5 

MOVE 

MOVE 

{
identifier-!} TO identifier-2 [identifier-3] ••• 
literal 

{ ~~~SPONDING} identifier-! TO identifier-2 

•MULTIPLY {
identifier-!} 
literal-1 

BY identifier-2[ROUNDED] 

[identifier-3 [ROUNDED]] ••• [ON SIZE ERROR imperative-statement] 

{
identifier-!} 

MULTIPLY literal-! BY {
identifier-2 } GIVING identifier-3 [ROUNDED] 
literal-2 

OPEN 

[identifier-4 [ROUNDED]] ••• [ON ~ ERROR imperative-statement] 

!
INPUT file-name-l[WITH NO REWIND] [file-name-2 [WITH NO REWIND]] ••• } 
OU'Ti?UT file-name-3[WITH NO REWIND] [file-name-4 [WITH NO REWIND]] ••• 
I-0 file-name-5 [file-name-6] ••• 

lEXT°END file-name-7 [file-name-8] ••• 

PERFORM procedure-name-! [I =~UGH) procedure-name-2 J 

PERFORM procedure-name-1 [I ~::~UGH ) procedure-name-2 J fi.dentifier-1 }. 
linteger-1 TIMES 

PERFORM procedure=na..ue=l r J THROUGH \ l 
Ll I procedure=name=2J THRU 

Tn1'mTT ---...:3.: .... .: --- , UJ."4.L .LJ..I ""VUU..L'-..LV.U.-..L 

PERFORM procedure-name-! 

VARYING 

BY 

{ 
identifier-2 l 
index-name-1 J 

{ 
identifier-4} 
literal-2 

r{ THROUGH} L THRU 
l procedure-name-2J 

FROM { 
identifier-31 
index-name-2 

,literal-1 , 

UNTIL condition-1 

A-6 



THE COBOL FORMAT 

r 
{ identifier-6} 

l~ { identifier-5} FROM index-name-4 index-name-3 
literal-3 

BY { identifier-7} 
literal-4 

UNTIL condition-2 

[~ {identifier-a} {identifier-9} 
FROM index-name-6 index-name-5 

literal-5 

BY { identifier-lo} 
literal-6 UNTIL condition-~ J 

READ file-name [NEXT]RECORD[INTO identifier] [AT END imperative-statement] 
READ file-name RECORD[INTO identifier] [INVALID KEY imperative-statement] 
READ file-name RECORD[INTO identifier] [;KEY IS data-name] [;INVALID KEY imperative-statement] 
REWRITE record-name[FROM identifier] [INVALID KEY imperative-statement] 

~EARCH identifier-! 
r 
lVARYING l' ~dentifier-2 J\Jl 

1ndex-name-l [AT ~ imperative-statement-!] 

WHEN condition-1 

[WHEN condition-2 

J imperative-statement-2l 
l ~ SENTENCE I 

{
imperative-statement-3}] 
NEXT SENTENCE 

SEARCH ALL identifier-l[AT ~ imperative-statement-1] 

SET 

SET 

{data-name-1 

lcondition-name-1 

( identifier-3 ) } 
literal-1 

larithmetic-expression-1f 

[- {

data-name-2 

condition-name-2 

{ 
IS EQUAL TO } 
IS = {

identifier-4 l} 
literal-2 
arithmetic-expression-2 

{
imperative-statement-2} 
NEXT SENTENCE 

{
identifier-1 
index-name-1 

index-name-4 

[identifier-2] ••• } 
[index-name-2] ••• 

[index-name-5] ••• 

{ 

identifier-3} 
TO index-name-3 

integer-1 

{ 
UP BY } 
~BY {~dentifier-4} integer-2 

START file-name ~KEY {~~=~THAN} IS > 
IS NOT LESS THAN -----IS NOT < 

data-namj 

[INVALID KEY imperative-statement] 

STOP { ~~eral} 

A-7 

... ] 



STRING {
identifier-1} 
literal-1 

THE COBOL FORMAT 

[
identif ier-2] 
literal-2 DELIMITED BY 

u i~~:~!i::r-4 1 [i~~:~!i:~r-S J • • • DELIMITED BY 
INTO identifier-7 [WITH POINTER identifier-8] 

[ON OVERFLOW imperative-statement] 

{

identifier-3} 
literal-3 
SIZE 

{identifier-6~ literal-6 
SIZE 

{
identifier-1} [identifier-2] 

SUBTRACT literal-l literal-2 FROM identifier-m[ROUNDED] 

[identifier-n[ROUNDED]] ••• [ON SIZE ERROR imperative-statement] 

SUBTRACT { 
identifier-1} [identifier-2] 
literal-1 literal-2 FROM {

identifier-m} 
literal-m 

GIVING identifier-n[ROUNDED] [identifier-o[ROUNDED]] ••• 
[ON SIZE ERROR imperative-statement] 

--{ CORRESPONDING} SUBTRACT CORR identifier-1 FROM identifier-2 [ROUNDED] 

[ON SIZE ERROR imperative-statement] 

UNSTRING identifier-1 

[ {
identifier-2} [ {identifier-3}] ···] DELIMITED BY [ALL] literal-1 OR [ALL] literal-2 

INTO identifier-4[DELIMITER IN identifier-SJ [COUNT IN identifier-6] 
[identifier-7 [DELIMITER IN identifier-8] [COUNT IN identifier-9]] ••• 
[WITH POINTER identifier-10] [TALLYING IN identifier-11] 
[ON OVERFLOW imperative-statement] 

USE AFTER STANDARD ----- { 
EXCEPTION } 
ERROR 

~record-name[~ identifier-1] 

PROCEDURE ON 

Ii;) ADVANCING { w~~:~!;ier-2 1 [~~SJ}}~ 
L [~] ~ 

[AT 
I END-OF-PAGE ) 
l EOP I imperative-statementj 

I 
file-narne-1 [file-name-2] •• ·1 
INPUT 
OUTPUT 
I-0 
EXTEND 

WRITE record-name [FROM identifier] [INVALID KEY imperative-statement] 

,...,....nv f text-name\ 
vv.c-... l ' J ~~r literal-3 

I REPLACING (I literal-1} 
L \ \word-1 J 

BY l litera1-2 l l 
\ word-2 J J 

NOTE: A COPY statement may appear anywhere that a word appears in the COBOL source program. 

A-8 



APPENDIX B 

LOGICAL UNIT NUMBER (LUN) ASSIGNMENTS 

LON ASSIGNMENT 

1 Console, input 

2 Console, output 

3 Source input file 

4 Source listing output file 

5 Object output file 

6 ODL output file 

7 CREF scratch file 

8 COPY library input file 

9 Work file 

10 work file 

11 Intermediate file 

12 Sort work file 

13 Sort work file 

14 Sort work file 

B-1 





APPENDIX C 

PDP-11 COBOL COMPILER IMPLEMENTATION LIMITATIONS 

This appendix describes the implementation limitations for the PDP-11 
COBOL compiler system (compiler and OTS) . You should not confuse the 
term "limitation" with "restriction". A restriction is a language 
facility that is not implemented or should not be used due to known 
errors in its implementation. An implementation limitation quantifies 
the limits of a language facility that is supported by the system. 

Practical implementation limitations exist in every compiler; They 
result from the finite size of compiler tables, compiler data 
structure representations, and so on. Since the PDP-11 COBOL compiler 
employs a vir~ual Memory System to support many compiler data 
structures, the quantities specified for some implementatiqn 
limitations are approximations. However, as a general rule, the 
following guidelines should not be exceeded in the development of a 
COBOL program. 

IMPLEMENTATION LIMITATIONS 

1. The default depth of dynamic PERFORM statement nesting is l~. 
The default depth can be modified by using the /PFM switch at 
compile time. 

2. The maximum number of sending operands in a DISPLAY statement 
is 16. 

3. The maximum number of data-name definitions in a COBOL 
program is approximately 2~~~-

4. The maximum number of procedure name definitions in a COBOL 
program is approximately 2~~~-

5. The maximum nesting depth of matching parentheses in a COBOL 
expression is l~. 

6. The maximum number of qualifiers in a qualified data-name 
reference is 48. 

7. The maximum number of procedure names in a GO TO DEPENDING 
statement is 16. 

C-1 





APPENDIX D 

COMPILER GENERATED PSECTS 

An object program generated by the PDP-11 COBOL compiler 
of program sections called PSECTs. Three types of 
generated: 

is composed 
PSECTs are 

• Data Psects Contain the memory for the Data Division 
of a COBOL program. 

e Control PSECTS Contain the data that is required by the 
Ame ;:3, ....... .; """'~ - ..... -~ .... -ft"l - ... ·-- ... ~..: --v.i...., U.U.L.l.ll'::j t-".LV'::j.LQUL CAC\,..U"'-.l.VUe 

• Procedural PSECTS Contain the object code generated for 
the Procedure Division. 

Data and Control PSECTs are always non-overlayable. Procedural 
PSECTs, however, can be optionally overlayable or non-overlayable. 

D.l PSECT NAMING CONVENTIONS 

The PSECTs generated by the PDP-11 COBOL compiler are named entities. 
Each PSECT name is composed of a three character pref ix followed by a 
three character suffix. There are two different forms of the prefix: 

• $KK 

Where: $ 

KK 

• $CB 

Where: $ 

Is a sentinel character and is always present. 

Is a two character kernel that identifies the 
PSECT. It is this kernel character that is 
specified by the /KER:kk switch. The /KER:kk 
switch is appended to the compiler command line to 
assign a unique kernel value to the PSECTs 
generated during the compilation. The default 
kernel assignment is C$. 

Is a sentinel character, and is always present. 

CB Is a two character code that identifies the PSECT 
as a COBOL compiler generated PSECT. 

D-1 



i 
i 
! 
I 

COMPILER GENERATED PSECTS 

PSECTs with the pref ix $CB are generated to provide the 
control and work space required for I/O operations. 

PSECTs with these same names are generated for each COBOL 
compilation. They are either overlayed or concatenated at 
task-build time. Those that are overlayed, have a known fixed 
length at task-build time. Those that are concatenated, have 
a known length at compile-time and contribute their size to 
the total size of the PSECT that is built by the Task Builder. 

The three character suffix identifies the type of code or data the 
PSECT contains. Table D-1 describes the suffixes assigned to $KK type 
PSECTs, and Table D-2 describes the suffixes assigned to $CB type 
PSECTs. 

Table D-1 
$KK PSECT Name Suffixes 

r 
I Type 

Data 

Control I 

I 

I 
I 

Suffix 

DAT 

ODD 

ARG 

LIT 
I 

LTD 

!OB 

WRK 

PDT 

SDT 

Content 

Data Division data storage areas. 

Data Division directories - contains 
descriptions of referenced Data Division 
items. 

Directories of referenced Linkage Section 
items. 

Literal Pool - contains all of the literals 
referenced in the program. 

Literal Directory. 

Input/Output buffers. 

COBOL compile unit work space - contains a 
description of the 
environment. 

PSECT dispatch table 
intra- ro p g 
programs. 

ram control 

compile unit 

- used for 
of se g mented COBOL 

Subprogram dispatch table used for 
inter-program control (i.e., calling 
subprograms). 

LST Argument list work space - used to contain 
the argument list passed to the called 
subprogram. 

PFM Perform work 
control and 
state•ments. 

space 
checking 

used to 
of nested 

provide 
PERFORM 

ADT ALTER Dispatch Table - used to contain the 
destination of alterable GO TO statements. 

D-2 



Type Su ff ix 

USE 

Procedural ENT 

nnn 

Allocation Suffix 

OVR IOT 

OVR FAl 

OVR XAl 

OVR SW~ 

CON I Fl 

CON !RI 

CON KDl 

CON BDl 

COMPILER GENERATED PSECTS 

I 
I 
I 

Table D-1 (Cont.) 
$KK PSECT Name Suffixes 

Content 

Default USE procedure 
access the default 
OUTPUT, I-0, or EXTEND) 
present. 

Code generated by the 
program entry point. 

table - used to 
OPEN mode (INPUT, 
USE procedures, if 

compiler for the 

Numbered suffixes beginning with 001. 
These numbered PSECTs 
code generated for 
of a COBOL program. 

Table D-2 
PSECT Name Suffixes 

Content 

the 
contain the object 

Procedure Division 

Input/Output Table - contains a reference 
to each COBOL Input/Output OTS routine 
required by the COBOL compilation. 

File Access Block (FAB) - used to transmit 
information to RMS at open and close time. 

Auxiliary Access Blocks (XABs) used to 
transmit information on the keys for 
indexed files to RMS at open time. 

COBOL switches flag 
whether COBOL switches 
the COBOL program. 

PSECT. Indicates 
are referenced in 

Internal File Access Blocks (IFABs) - used 
internally by RMS to store information. 

Internal Record Access 
used internally by 
information. 

Blocks 
RMS 

( IRABs) 
to store 

Internal Key Descriptors - used internally 
by RMS to store information on the keys for 
indexed files. 

Buff~r Descriptor Blocks (BDBs) used 
internally by RMS to store information on 
the buffers. 

D-3 

I 



Allocation Suffix 

CON KBl 

CON FDl 

COMPILER GENERATED PSECTS 

Table D-2 (Cont.) 
PSECT Names Suffixes 

Content 

Key Buffers - used internally 
store keys for indexed files. 

by RMS 

FDA Index Vector - contains address 
first FDA in program. 

Note: 

OVR indicates overlayable PSECT. 

CON indicates concatenatable PSECT. 

D-4 

to 

of 



APPENDIX E 

SORTING FILES IN A COBOL PROGRAM 

Files prepared for or.by COBOL programs may be sorted using the SORT 
utility, which is discussed in the PDP-11 SORT Reference Manual. A 
major portion of that facility is available to the COBOL programmer 
through usage of a set of subroutine linkages, described in detail in 
this chapter. All such linkages involve use of a CALL statement with 
an appropriate parameter list. 

E.l CALL STATEMENTS REQUIRED 

A set of five CALL statements, each calling a particular SORT 
subroutine, is required within a COBOL program in order to produce a 
sorted output file. Each of these subroutines (RSORT, RELES, MERGE, 
RETRN, ENDS) performs a specialized function in the SORT procedural 
sequence and lets the COBOL programmer both specify sorting parameters 
and perform special operations on individual records as they pass 
through the initial and final phases. 

E.1.1 Initializing the SORT - CALL RSORT 

The following statement is needed to initialize the sorting operation: 

CALL "RSORT" USING IERROR, KEYSIZ, MAXREC, KEYLOC, SRTBUF, 
BUFSIZ, SCRNUM. 

Parameter usage is as follows: 

IERROR -

KEYSIZ -

MAXREC -

KEYLOC -

SRTBUF -

BUFSIZ -

location in which a SORT subroutine may place a 
non-zero error code, if necessary, in COMP form, 
value less than 100. 

location containing byte count of total key size 
in COMP form, a positive even integer. 

location containing byte count of maximum data 
record size in COMP form, a positive even integer. 
The sum of KEYSIZ and MAXREC cannot exceed 16,383 
(decimal) . 

address of most major word in key. See Section 
E.2 for details on setting up sort key. 

address of first word in sort work area. 

location containing byte count of sort work area 
size in COMP form. 

E-1 



SCRNUM -

SORTING FILES IN A COBOL PROGRAM 

location containing number of scratch files 
available to the SORT (not less than 3, not more 
than 8), in COMP form. 

E.1.2 Passing a Record to the Sort - CALL RELES 

The following statement is needed to pass a record to the sort: 

CALL "RELES" USING RECS I Z, INREC. 

Parameter usage is as follows: 

IERROR -

RECSIZ -

INREC -

usage is as described above. 

location containing byte count of data record size 
in COMP form, a positive even integer not greater 
than value in MAXREC. 

address of record to be passed to the sort. 

E.1.3 Merging the Scratch Files - CALL MERGE 

The following statement is needed to merge the scratch files in the 
sort after all input records have been passed to the sort: 

CALL "MERGE" USING IERROR. 

IERROR usage is as described above. 

E.1.4 Requesting an OUTPUT Record - CALL RETRN 

The following statement is needed to request the output records, one 
at a time, produced in sorted order by the sort: 

CALL "RETRN" USING !ERROR, RECSIZ, OUTREC. 

Parameter usage is as follows: 

IERROR -

RECSIZ -

OUTREC -

usage is as described above. 

location to receive byte count of returned data 
record size in COMP form, a positive even integer 
not greater than value in MAXREC. 

address of area to receive returned data record. 

NOTE 

RETRN indicates "no more records" by 
placing a negat,ive value in IERROR. 

E-2 



SORTING FILES IN A COBOL PROGRAM 

E.1.5 Terminating the Sort - CALL ENDS 

The following statement is needed to terminate the sort after all 
sorted output records have been returned: 

CALL "ENDS" USING IERROR. 

IERROR usage is as described above. 

E.2 SETTING UP THE KEY 

Before CALL RELES is executed, the COBOL programmer must first set up 
the key in an area outside the record itself. Since the key area must 
begin and end on a word boundary, usage of an 01 level description in 
the Working - Storage Section is recommended. The most major byte for 
the key, that byte "on the left", must be stored in the highest memory 
location of the key area, and the most minor byte, that byte "on the 
right", must be stored in the lowest memory location. 

Thus the data must be moved byte by byte, NOT word by word, to the key 
area, resulting in the key being stored "backwards" by bytes. If the 
actual key contains an odd number of bytes, the last unused position 
must be zeroed out, to insure proper results from word compares. Thus 
for a key of 7 bytes, KEYSIZ - 8; the contents of the lowest byte 
address should always be zero. 

The form of the comparison is logical, i.e., all eight bits of a byte 
are significant; there is no implied sign. The programmer is 
responsible for organizing the key data passed to the sort in a form 
which ensures the correct sequence. 

E.3 WORK AREA SIZE 

The size of the sort work area, BUFSIZ, must be at least as large as 
the result of the following calculation: 

Minimum BUFSIZE = SCRNUM * (1110 + MAXREC + KEYSIZE) 

If less space is provided, the sort will keep decreasing the number of 
work files until either the above equation is satisfied or the number 
of files drop below three; the latter is an error condition (error 
code 17). 

Any extra memory will be used to expand the in-core sort area. 
in general, the more space supplied, the faster the sort. 

E.4 TYPICAL USAGE SEQUENCE 

Sort the file SORT-IN to produce the file SORT-OUT. 

1. Open SORT-IN. 

2. Call RSORT to initialize the sort. 

Thus, 

3. Read the next logical record from SORT-IN. If no more data, 
go to step 7. 

~-3 



SORTING FILES IN A COBOL PROGRAM 

4. Perform any desired operations upon the input record. If it 
is not to be submitted to the sort, go to step 3. 

5. Set up the keys from the new record. 

6. Call RELES to give the record to the sort, then loop back to 
step 3. 

7. Close SORT-IN. 

8. Call MERGE to collate the records the 

9. Open SORT-OUT. 

10. Call RETRN to get the next sorted output record. If no more 
records, go to step 13. 

11. Perform any desired operations upon the sorted output record. 
If it is not to be included in the SORT-OUT file, go to step 
10. 

12. Write the record onto SORT-OUT, then loop back to step 10. 

13. Close SORT-OUT. 

14. Call ENDS to clean up the sort scratch files. 

E. 5 LINKING SORT ROD.TINES WITH A COBOL PROGRAM 

The actual sorting subroutines are contained in SORTS.OBJ and 
SIORMS.OBJ which are included in the COBOL object library (COBLIB). 
The programmer can link these to his own calling program, by following 
the usual procedure for using the Task Builder to task-build any COBOL 
program. 

Note that the sort subroutines use LUNs 5, 6, ... 12 for the scratch 
files. Use the task builder device assignment (ASG) command 
appropriately. The LUN can be overridden by globally patching 
location $RFIRL. Insure that the LUNs used by the sort subroutines do 
not conflict with the LUNs assigned to files in the COBOL program that 
might be open when the sort subroutines are called. 

E.6 COMPARISON WITH ANS COBOL SORT VERB 

Readers familiar with the ANS COBOL SORT verb will recognize that a 
substantial portion of that capability has been described in this 
chapter. The following points of comparison will be helpful in 
converting from such usage to the described facility: 

1. INPUT PROCEDURES are available thru the CALL RELES usage. 

2. OUTPUT PROCEDURES are available thru the CALL RETRN usage. 

3. Only ASCENDING keys are supported. The programmer can get 
the effect of DESCENDING key fields by simply complementing 
them when he stores them in KEYLOC. Note that the data 
record itself is unaffected by this procedure, so restoration 
of such fields after the sort is unnecessary. 

E-4 



SORTING FILES IN A COBOL PROGRAM 

4. The COLLATING-SEQUENCE option is not directly available. 
Again, however, the programmer could transform key fields 
when storing them in KEYLOC to achieve the desired effect. 

5. There is no MERGE feature. 

6. Multiple usages of the sort may occur within a given COBOL 
program provided that "RSORT" and "END" bracket each usage. 

7. There is no restriction on the presence of COBOL code in 
addition to INPUT and OUTPUT PROCEDURES. 

E.7 ERROR CODES 

Whenever the sort detects an error, it returns a non-zero code to the 
location specified by the programmer (!ERROR in discussion above). 
The error codes (octal representation) and their meanings are: 

DEC OCTAL 

8 

9 

10 

11 

12 

13 

00 No errors 

01 Device input error 

02 Device output error 

03 OPEN INPUT failure 

04 OPEN OUTPUT failure 

05 Size of current record is greater 
maximum size 

than 

06 Not enough work area 

07 "RETRN" was called after it had exited with a 
negative error code (end of sort). 

10 

11 

12 

13 

14 

15 

SORT routine called out of order. The order 
of the calls must be RSORT, RELES, MERGE, 
RETRN, ENDS. 

Sort already in progress. To do a second 
sort, ENDS must be called to clean up the 
first sort. 

Key size is not positive, SORTS detected a 
zero or negative key size in its calling 
parameter. 

Record size not positive. 

Key address not even. The keys must start at 
an even address (SORT uses word moves) . 

Record address not even. 

E-5 



SORTING FILES IN A COBOL PROGRAM 

DEC OCTAL 

14 

15 

1 &:. 
.1.V 

17 

18 

19 

20 

16 

17 

20 

21 

22 

23 

24 

Scratch records will be too large. The size 
of the keys plus the size of the largest 
record must be less than 377776 (octal). 

Too few scratch files. A m1n1mum of 3 
scratch files must be specified. 

Too many scratch files. A maximum of 10 
scratch files may be specified. 

End-of-string record was detected where none 
was expected. 

Like 21, but for End-of-File. 

SORT found a record larger than it expected. 

Record length is non-standard for SORTT, 
SORTA, SORT I. 

[COMP items are displayed in DECIMAL!] 

E-6 



APPENDIX F 

RSTS/E TERMINAL HANDLING SERVICES 

The PDP-11 COBOL runtime library contains a set of callable 
subroutines that support multi-terminal access from a single COBOL 
program. These subroutines run only on RSTS/E. 

The purpose of this subroutine package is to provide asynchronous 
terminal I/O support for COBOL programs running on RSTS/E. 

F.l GENERAL SERVICES 

The subroutines provide the following services: 

1. The ability to assign and deassign available 
f keyboards} to the running COBOL program. 

terminal 

2. The ability to OPEN or CLOSE a specific I/O channel and 
logical unit pair for terminal input/output. 

3. The ability to WRITE a message to any single terminal 
assigned to the program. 

4. The ability to READ a message from a specific terminal. 

5. The ability to READ a message from any terminal in the group 
assigned to the program and have the subroutine identify the 
terminal from which the message came. This technique is 
known as polling. 

6. In conjunction with the unsolicited READ capabilities, 
ability to specify how long to wait for a message from any 
terminal before returning to the user program. 

F-1 



RSTS/E TERMINAL HANDLING SERVICES 

F.1.1 Open ~ Logical Unit for Terminal I/O 

This function must be called to initialize the multi-terminal 
subroutines to expect terminal I/O on a specified logical unit fLUN). 
Subsequent terminal I/O subroutines require the LON to function 
properly. 

The form of the CALL is: 

CALL "KBOPEN" USING ERR, LON 

Where: 

ERR - is a binary data item [PIC 9(4) COMP] that contains the 
returned error status code. fSee Section F.2.) 

LON - a binary data item [PIC 9f4) COMP] that contains the 
logical unit number to use. 

Example 

MOVE 14 TO LON. 
CALL "KBOPEN" USING ERR, LON. 

An error code of zero indicates a successful call. 

The choice of LON number is very important and must comply with the 
following rules: 

1. It must be in the range of-~ to 15. 

2. It must not conflict with a LON number assigned by the COBOL 
compiler to a file in the COBOL program. 

F.1.2 Close ~Terminal Logical Unit 

This function disassociates a LON and all keyboards assigned to it 
from the running COBOL program. The form of the CALL is: 

CALL "KBCLOS" USING ERR, LON 

Where: 

ERR and LON are as specified in 

KBOPEN 

F.1.3 Assign~ Terminal 

In order to use the RSTS/E COBOL multi-terminal functions, each 
terminal must be assigned to the COBOL program. A CALL is made to the 
subroutine KBASGN to assign a specific terminal or keyboard (KB) to a 
logical unit fLUN). This LON must have been the subject of a 
previously executed CALL to KBOPEN in the COBOL program. 

F=2 



RSTS/E TERMINAL HANDLING SERVICES 

The form of the CALL is: 

CALL "KBASGN" USING ERR, KB-UNIT 

Where: 

ERR - A 2-byte binary data item [PIC 9(4) COMP] that contains 
an error code returned by the subroutine (see Section 
F. 2) • 

KB-UNIT - A 2-byte binary data item [PIC 9f4) COMP] that contains 
the keyboard number. 

F.1.4 Deassign~ Terminal 

This function removes the specified terminal unit from the list 
assigned to the specified LON. The form of the CALL is: 

CALL "KBDEAS" USING ERR, KB-UNIT 

Where: 

ERR AND KB-UNIT are as specified for the call to KBASGN. (See 
Section F .1. 3.) 

F.1.5 Write to~ Specific Terminal 

Assuming that the specified terminal has been assigned, this function 
delivers a message to it. The form of the CALL is: 

CALL "KBWRIT" USING ERR, COUNT, MESSAGE, LON, KB-UNIT 

Where: 

ERR -

COUNT -

the 2-byte binary data item as specified earlier. 

a 2-byte binary data item [PIC 9f4) COMP] that contains 
the length of the message in bytes. 

MESSAGE - the data item that contains the message to be written. 

LON -

This message must contain all vertical and horizontal 
formatting characters such as carriage returns, line 
feeds and tabs. 

a 2-byte binary item [PIC 9(4) COMP] as previously 
specified. 

KB-UNIT - a 2-byte binary data item [PIC 9(4) COMP] identifying 
the specific terminal to which the message is written •• 

F-3 



RSTS/E TERMINAL HANDLING SERVICES 

F.1.6 Read from~ Specific Terminal 

This function allows a COBOL program to read a message from a specific 
terminal. If a terminal operator types CONTROL-Z at a terminal, error 
code 11 (end-of-file on device) is returned. The form of the CALL is: 

CALL "KBREAD" USING ERR, COUNT, MESSAGE, LON, KB-UNIT 

Where: 

ERR 

COUNT -

is the 2-byte binary data item 
success/error code will be returned. 

into which a 

is the 2-byte binary data item which contains the 
length of the message just read. Before execution of 
the CALL, this data item must contain the maximum 
record length. 

MESSAGE - defines the data item into which the message is read. 

LON -

This data item should be long enough to contain the 
longest anticipated message to be read. 

When a message is read from a terminal, the message is 
prefixed by a 1-byte field which contains the terminal 
unit number in binary. Therefore, reserve space in the 
message input data item for this byte. 

i . e. , 

~l MESSAGE 
~2 KB-NUM PIC X. 
~2 REAL-MESSAGE PIC X(8~) 

All messages are returned as ASCII strings with no 
conversions taking place. 

a 2-byte binary data item containing the LON number. 

KB-UNIT - a 2-byte binary data item containing the terminal 
number to be used in the READ. 

F.1.7 Read Unsolicited from any Terminal Assigned 

This function allows a COBOL program to read a message from any 
terminal assigned to the program. The read is called unsolicited 
because no specific terminal is identified. The program reads a 
message from the first terminal found to have typed in a message. 
This function can also wait for input from a terminal for a specified 
length of time = up to 255 seconds. If no message is available from 
any assigned terminal within this time, then an error condition is 
returned. The error code is 13 a user data error on device 
condition that is generated by the RSTS/E monitor. 

Using this function, the COBOL program can effectively poll a group of 
terminals, requesting input. 

F-4 



RSTS/E TERMINAL HANDLING SERVICES 

The form of this CALL is: 

CALL "KBREAU" USING ERR, COUNT, MESSAGE, LON, KB-UNIT TIME 

Where: 

ERR, COUNT, MESSAGE, and LUN are as specified in the description 
of KBREAD fSee Section F.1.6.), 

and 

KB-UNIT is a 2-byte binary data item that contains (upon return 
from the call to KBREAD) the unit number (in binary) of 
the terminal from which the current message was read. 

TIME - is a 2-byte binary data item containing a value from 1 
to 255 which is the amount of time in seconds to wait 
for input from the terminal(s). If no message is 
available in this time, an error 13 (user data error on 
device) is returned. 

If TIME is given a zero value, then the svstem will 
wait indefinitely for input from the terminal(s). 

F.2 ERROR CODES DURING MULTI-TERMINAL HANDLING 

These values are returned in binary in the 2-byte data item used in 
every call to the multi-terminal subroutines. 

CODE MEANING 

Successful. 

6 NOT A VALID DEVICE. An attempt was made to write to an 
unassigned device with KBWRIT. 

7 I/O CHANNEL ALREADY OPEN. A KBOPEN call attempted to use a 
LUN that was already in use by the program for a file or for 
other terminal operations because of a previous KBOPEN call. 

8 DEVICE NOT AVAILABLE. A KBASGN call was made to assign a 
terminal that is unavailable to the program and is reserved 
by another user. 

9 I/O CHANNEL NOT OPEN. A call to KBASGN, KBREAD, KBREAU or 
KBWRIT was made using a LUN that was not opened by a KBOPEN 
call. 

11 END OF FILE ON DEVICE. A user at an assigned terminal typed 
CONTROL/Z during a KBREAD call. 

12 FATAL SYSTEM I/0 FAILURE. A system level I/O error occurred 
the user has no guarantee that the last operation was 

performed. 

F-5 



RSTS/E TERMINAL HANDLING SERVICES 

13 USER DATA ERROR ON DEVICE. Bad data may have been 
transmitted during the previous I/O call or a call to KBREAD 
or KBREAU did not get any data in the requested wait time. 

15 KEYBOARD WAIT EXHAUSTED. The wait time requested for input 
during a KBREAU call has passed with no input. 

31 ILLEGAL BYTE COUNT FOR I/O. A bad message length value was 
used as a parameter during a KBWRIT call. 

F-6 



APPENDIX G 

SOURCE PROGRAM LISTINGS 

This appendix contains compiler listings for two COBOL programs. The 
first, STATB, calls three subprograms; the second, DOCATS, is one of 
the subprograms. 

The examples demonstrate some of the features of PDP-11 COBOL, such 
as: 

e The COPY statement 

e The COPY REPLACING statement 

• The CALL statement 

• The results of using the /MAP and /OBJ compiler switches 

• PSECT names resulting from the /KER compiler switch 

The circled numbers on the source listings indicate features that are 
annotated in the text. 

Source Listing Features 

@- The version of the PDP-11 COBOL compiler. 

0- The source file, including file type, or extension, and version 
number (for RSX-llM and IAS). 

0-
0-

®-

0-

Date and time when the compilation began. 

The compiler command line. The contents of the command line 
help to explain why the listing looks like it does and how 
program runs. For example, this command line shows that 
/KER:ST switch was used; it explains why PSECT names contain 
characters "ST". 

can 
the 
the 
the 

The IDENTification number assigned by the compiler. This number 
identifies the specific compilation of the program and is used in 
OTS error message displays. 

Source line number assigned by the compiler. This number is used 
in OTS error message displays to indicate the location at which 
the error was detected. It also appears in error message 
displays that show nested PERFORMS. 

G-1 



G-
@-

G-

@-

SOURCE PROGRAM LISTINGS 

Sequence number. If the source file used conventional 
the sequence field (positions 1-6) appears here. 

format, 

Source text. This area contains the text that was processed by 
the compiler. If a line of text was too long, only the part that 
appears here was processed. The compiler also prints a 
diagnostic message when it truncates a line of source text. 

Identification field. If the source file used conventional 
format, this area contains the identification field (positions 
73-8~J). 

Identifies a source line that: a) contains a COPY statement, 
b} was copied from a library file. 

or 

@ - COBOL Verb (appears only when /OBJ switch is used). Identifies 
the COBOL verb that is referred to by the other entries on the 
line. 

@- Segment number (/OBJ switch only). Identifies the program 
segment, or PSECT. Notice that this is not the PSECT name; it 
is a consecutive number assigned to all procedural PSECTS during 
compilation and duplicates the segment numbers in other programs. 

@ - Offset (/OBJ switch only). Specifies the octal offset (distance) 
from the beginning of the segment for the object code generated 
by the COBOL verb (number 11) . 

@- Compiler diagnostic severity code. 
the compiler diagnostic. This 
which means that it probably 
condition. 

Describes the seriousness of 
diagnostic is "informational", 

does not indicate a serious 

@ - Diagnostic source line number. Identifies the source line to 
which the diagnostic applies. In this case, OPTIONS-AREA is 
defined as larger than CUSTOMER-FILE-ID; therefore, truncation 

@-
occurs. 

Compiler diagnostic number. 
Use this number to find 
Appendix H. 

Identifies the specific diagnostic. 
a description of the diagnostic in 

@ - Diagnostic message. A one-line description of the condition. 
,--...., 
~ - FILE-TO-LON ASSIGNMENT TABLE. This table appears for any program 

that contains file descriptions. 

@-

@-
~ 

File-name. 
file. 

Source line. 
iine. 

The name that is used in the program to refer to the 

The file-description-entry appears on this source 

~ - Relative LON. Identifies the file by relative Logical Unit 
Number. This number can duplicate relative LUNs in other 
programs in the run unit, because actual LUNs are assigned by the 
Task Builder. 

G-2 



SOURCE PROGRAM LISTINGS 

~ 
~ - Data Map. Describes the data-names and file-names used in ~ne 

program. This section appears only if the /MAP switch is used. 

@-

@­
@-

Level. Contains the level-indicator or level-number of the item. 
An L preceding the level indicates that the data-name is a 
Linkage Section item. 

Name. The file-name or data-name. 

Source line. The file-name or data-name 
source line in the Data Division. 

is defined on this 

@-Data Division location. Identifies the octal offset of the file 
or data-name from the beginning of data PSECT $kkDAT (kk=ke-rnel). 
For Linkage Section data-names, the offset is from the ii-level. 

@-

@-

@> -

@-

Directory location. Identifies the octal offset of the data 
item's descriptor. For Linkage Section data items, the offset is 
from data PSECT $kkARG (kk=kernel); for other data items, the 
offset is from data PSECT $kkDDD. The OTS uses the descriptor to 
operate on a data item. 

A directory location that contains asterisKs indicates ~nat the 
compiler did not generate a descriptor because the data-name was 
not used in the Procedure Division. 

USAGE. Corresponds to the USAGE clause or implicit usage of 
data item description. The following abbreviations are used: 

the 

DISP 
CMP 
CMP3 
CMP6 
INDX 

Class. Identifies 
compiler determines 
with the data-name. 

ALPHA 
NUM 
AN 
ANEDIT 
NMEDIT 

DISPLAY 
COMPUTATIONAL 
COMPUTATIONAL-3 
COMPUTATIONAL-.6 
INDEX 

the COBOL class of the data item. The 
class from the PICTURE or level associated 

The following abbreviations are used: 

Alphabetic 
Numeric 
Alphanumeric 
Alphanumeric Edited 
Numeric Edited 

Occurrence level. Indicates the number of 
to refer to the data-name. 

subscripts necessary 

@ - Length. Specifies the length of the data item in decimal bytes. 

@ - Procedure Name Map. 
the program. This 
used. 

Describes the procedure-names that appear in 
section appears only if the /MAP switch is 

@-

@-

Procedure-name. 
Division. 

This is the name as it appears in the 

Source line. Identifies 
procedure-name is defined. 

the 

G-3 

source line in 

Procedure 

which the 



SOURCE PROGRAM LISTINGS 

@- PSECT. Identifies the name of the executable code PSECT (program 
section) in which the procedure-name appears. 

@ - Offset. Specifies the octal offset (distance) of the location of 
the procedure-name from the beginning of the PSECT. 

@- Segment-number. Corresponds to the segment-number in the 
for the section in which the procedure-name appears. 

header 

@ - •section. An "S" indicates that the procedure-name is a 
section-name. 

@-

@-

@-

Paragraph. A "P" indicates that the procedure-name is a 
paragraph-name. 

Segmentation Map. 
Division section. 
used. 

Describes the segmentation for each Procedure 
This map appears only when the /MAP switch is 

Section Name. The name of the 
Procedure Division. 

section as it appears in the 

@ - Segment-number. The segment-number specified in the section 
header or the implied segment-number JJ. 

@-

@­
@­
@-

@­
@­
@­
@-

PSECT Name. Indicates the name of the procedural PSECT generated 
for the section. If the generated code exceeds the code segment 
limit, the compiler generates additional PSECTs; their names are 
displayed beneath the first. The code segment limit can be 
changed by using the /CSEG switch. 

The size of the procedural PSECT in octal bytes. 

The size of the procedural PSECT in decimal words. 

Compiler-Generated PSECTs. Describes the 
generated by the compiler to provide 
initialization. 

procedural PSECT's 
run-time execution 

PSECT Name. 

The size of the PSECT in octal bytes. 

The size of the PSECT in decimal words. 

Referenced OTS Routines. Lists the names of all COBOL 
routines that are referenced by the compiler-generated code. 

OTS 

@ - Data PSECT Map. Lists the nonexecutable PSECTs generated by the 
compiler. Appendix D describes the data PSECTs generated for 
each compilation. 

@ - PSECT Name. 

@ - The size of the PSECT in octal bytes. 

G-4 



SOURCE PROGRAM LISTINGS 

~ - The size of the PSECT in decimal words. 

@ - External Subprogram References. Lists the names of all 
subprograms referenced by CALL statements in the program. 

@ - Error Severity Code. Describes the seriousness of errors. 
Chapter 12 describes the severity codes and their meanings. 

@- Error Count. The number of errors detected 
for each severity level. 

in the compilation 

@ - Compiler-generated ODL File. Lists the contents of the ODL file 
generated for this compilation. 

G-5 



SOURCE PROGRAM LISTINGS 

JD A 
COBOL SRC 1STATB,CBL: I.I 05•0CT•78 00:41115 PAGE 001 

CMD1STATB1STATBaSTATB/~AP/ORJ/KE~;ST----(4'i ~ 

IDENT: 2780bb <fJ <?- ~ I ... 
~ 00001 IDENTIFICATION DIVISION, 

~ 
\ 

001:h~2 
01d.,,03 
l.Hl001.1 
ldi!ill~S 
0iil00b 
J0'307 
00008 
IM2'00q 
000113 
00011 
;!11?012 
00.,,13 
0011114 
00015 
;:!~01b 

00017 
00018 
0001q 
0002() 
00021 
00"'22 
00023 
00021.1 
1<101:125 
1!!002b 
00027 
00028 
0002q 
00030 
00031 
00032 
00033 
01103'1 
1'10035 
00031:1 
0011137 
00038 
01:'!0H 
r.Hl0!'10 
00iil1.11 
00042 
0001.13 
~00lll.I 

0011)45 
00iililb 
00.:llJ7 
0001J8 
000aq 
0ill05<l 
00051 
00\!!S.? 

L 00053 
L 01'105'1 
L 00055 
L 00050 
L 00057 
L i1l!i!058 
L ill<l059 
L 0"101:10 
L 00ilb1 
L 01il0b2 
L 0001:13 
I. 01:ii!bll 
L 0iil0oS 
L 00vH1b 
I. 00007 
L <!0;!1.18 
L 01d0o9 
L 01'.1070 
L 00071 
L 00072 
L 00073 
L 01'1074 
L iHliil75 

PROGilllH•lD, 
INSTALLATION, 
DATE•,.RITTEtlf, 
DATE•COMPILED, 

0~·0CT•78 • 

STATB, 
JONES M4IL ORDER COMPANY, 
s OCT 1•ne. 

~EM11RKS, U1in9 celled orogram11 thi• progrem d1mon1tr1t•1 
the effects and 1dv1nta;11 of moduler Program 
develooment, Deoendfng on operator•aoecified 
ootion1 and the content• of data r•cord1, th• 
orogr1~ 9ener1te1 v1riou1 output1, 

T~e called Programs ares 

NAME FUNCTION 

EXCE"T 
DOC ATS 
CREDLM 

Generates an exception report, 
Generates mailing labels, 
Generates 'credit 1fmft• letters, 

ENVIRO~MENT DIVISION, 

CONFIGURATION SECTION, 
SOURCE•COHPUTE~. POP•11. 
OSJECT•COMPUfE~. PDP•11 

INPUT•OUTPuT SECTION, 
FILE•CONTROL, 

SELECT CUSTOMER•FILE 

SEGMENT•LIMIT IS 25, 

ASSIGN TO "SYICUSTOM,DAT• 
ORGANIZ4Tl0~ IS INDEXED 
ACCESS MOOE IS DYNAMIC 
RtCORD KEY IS CUST•CUST•NUMBER 
AL.TER~ATE RECORD KEY IS CUST•CUSTOHER•NA~E 
FILE STATUS IS CUSTOMER•FILE•STATUS, 

SELECT STATEMENT•REPORT 
ASSIGN TO "SY1STATEM,REP" 
FILE STATUS IS STATEMENT•REPORT•STATUS, 

DATA OIVISIOt~, 

FILE SECTION, 

FD CUSTOMER•FILE 
LABEL RECORDS ARE STANDARD 
VALUE OF ID IS CUSTOMER•FILE•IDo 

COPY "CUSTRC,CPY" 

?1 

~EPLAC!N~ cvsr-ow~-AMT av cusT-CURRENT·BALANCE1 
CUST•80UGHT BY CUST•PURCHASES•YTO, 

CUSTO~ER•FILE•RECORD, 
03 CUST•CUST•NUMBER PIC XC&), 
03 CUST•CUSTOMER•NAME PIC XC3il), 
03 CUST•AOORESS·LINE•1 PIC XC30), 
03 CUST•4DDRESS•LINE•2 PIC X(30), 
03 CUST•AOORE55•LINE•3 PIC X( 3il) • 
03 CUST•ADDRESS•ZIP•CODE PIC X(5), 
l3 CUST•PHO~E. 

~S CUSi•PHONE•4REA•COOE PIC ~C3l, 

liJ3 
03 
03 

G-6 

05 CUST•PHONE•EXCHANGE 
05 CUST•PHONE•LAST•~ 
CUSi•PHONE•NUHSER 
REDEFINES CUST•PHONE 
CUST•ATTENTION•LINE 
CUST•CREDIT•LIHIT 
CUST•MEADER•DATA REDEFINES 
05 FILLER 
~5 NEXT•ACCT•NUMBER 
CUST•CURRENT•BALANCE 

PIC X(3) • 
PIC 9(Q), 

PIC ~c11n. 
PIC XC20), 
PIC 9(10)V99, 

CUST•CREDIT•LlMIT, 
PIC X(&), 
PIC 9(&), 

PIC 



SOURCE PROGRAM LISTINGS 

L. 00071:1 03 CUST•PURC~ASES•YTD 
L. 011l077 PIC 9( U)V99. 
I. 00078 03 CUST•NEXT•ORDER•SEQUENCE PIC 9(11). 
L. 00079 03 CuST•NEXT•PAYMENT•SEQUENCE PIC 9(11). 
L. 00080 

00081 FD STATEMENT•~EPORT 
00082 L.ABEL. RECORDS ARE STANDARD. 
00083 01 STATEMENT•REPORT•RECORD, 
001!!84 03 F IL.L.ER PIC XCS), 
00085 03 AOORE.SS•WINDO~ PIC X(.50) • 
0008b 03 F IL.L.ER PIC x c 1). 
00087 03 ADDRESS•ZIP PIC X(5), 
il0088 i:l3 F IL.L.E.R PIC XC25l, 
00089 03 FORM•NAMEe 
0009ill 05 F IL.L.ER PIC X(b), 
00091 05 FORM•DATE PIC X(8), 
00092 
00093 01 S•R•R•2, 
00091.1 03 FIL.L.ER PIC xc 15l. 
00095 03 REPORT•CREDIT PIC z,zzz,zzz,zzq.99, 
0009b 03 F IL.L.ER PIC XCUle 
00097 03 REPORT•YTD PIC z,zzz,zzz,zzq,99, 
00098 
00099 01 S•~•R•3 0 
00100 03 5 TA TEMENT•OATE PIC xc12>. 
00101 03 FIL.L.ER PIC )(( 10). 
00102 03 STATEMENT•CA~T!ON PIC ~!~~~:zzz.zz~.~~. '1Clj,t:.1~ "'" ST~iEMfNi•8~~~NCf r .,. 

001P.4 
01i'1 ~5 wOR~!NG•STURAGE SECTION, 
00106 
00107 01 CUSTOMER•FIL.E•STATUS PIC xc2>. 
1'!01!1!8 !1!! STATEMENT•REPORT•STATUS PIC XC2) 0 

00109 01 CUSTOMER~FIL.E•ID PIC x ( 14) 
00110 VAL.UE "SY1CUSTOM,OAT", 
00111 01 TOOAYS•DATE PIC 9(b). 
icl0112 01 TOR REDEFINES TODAYS•DATE. 
00113 IH TODAY•YEAR PIC 9(2). 
0011'1 03 TODAY•MONTH PIC 9(2). 
00115 03 TOOAY•DAY PIC 9(2). 
0011b 01 TODAYS•REPORT•DATE, 
00117 03 TODAY•MONTH PIC Z9, 
00118 03 FIL.I.ER PIC X( 1) VALUE .. , i. 

00119 i'l3 TODAY•OAY PIC 9(2). 
00120 03 FIL.I.ER PIC X(1) \IALUE •1•. 
00121 >l3 TODAY•YEAR PIC 9(2). 
00122 
00123 01 STANOARO•MESSA~E PIC XC51il) VAL.UE SPACES, 
01!1124 
00125 01 DISP•"IESSAGE, 
0012b 03 F IL.L.ER PIC XC3flll VAL.UE SPACES, 
00127 03 DISP•NUM PIC ZC5l, 
00128 
0M29 01 YTD•CATALOG•MINIMUM PIC 9(11)) VAL.UE U0011', 
00130 
00131 01 EXCEPTION•INDICATORS, 
00132 03 EXCEPTlON•!NOICATOR OCCURS 10 PIC 9( 1). 
00133 
00134 01 OPTIONS•AREA, 
00135 "13 OPTIONS•AREA•CHAR OCCURS 30 PIC x c 1). 
00130 
00137 01 A•COUNT PIC 9(2). 
00138 
00139 01 OPTION•STORAGE, 
0011.10 03 QPlION•ENTRY OCCURS 8 PIC 9( 1). 
001111 01 OPTION•VALUES REDEFINES OPTION•STORAGE. 
00142 03 FIL.I.ER PIC 9(1), 
00143 88 ilANT•STATEMENTS VAL.UE THRU 9. 
0011111 03 FIL.LEI< PIC 9( 1l. 
00145 88 ""lNT•INVO!CES \IAL.UE THRU 9. 
0014b 03 FIL.L.ER PIC 9(1). 
0011.17 88 ~ANT•4L.L.•CATAL.OGS VAL.UE THRU 9. 
001118 03 FIL.I.ER PIC 9( o. 
0011.19 88 ~ANT•SOME•CATAL.OGS VAL.UE T"1RU 9. 
00150 03 fIL.LER PIC 9(1), 
00151 88 1"'ANT•CREDIT•L.IMIT•L.ETTERS VAL.LIE 1 THRU 9 1 

00152 0:) FILL.ER PIC X(3) • 
00153 
00151.1 01 i<!ECCiRD•COU!',l PIC 9(5) VAL.UE "· 00155 IC1 S To\ T EMENT •COUNT PIC 9(5) VAL.UE "· 0015b 01 INVOICE•COUNT PIC 9(5) VALUE 0. 
00157 i;.1 CREOIT•LIMIT•COUNT PIC 9(5) VAl.UE 0. 
00158 01 CATAL.DG•COUNT PIC 9(5) VAL.WE 0. 
00159 
001b0 PROCEDURE DIVISION. 
00lb1 
00lb2 DECL.ARATIVES, 
001b3 
001bll CUSTOM•ERROR SECTION. 

G-7 



~ ~ 
USE I 01 

DISPLAY 

USE l 02 00000& 

DISPLAY 02 0~000& 

STOP 02 000033 

MOVE I 03 001!J0b2 

DISPLAY 

ACCEPT 

IF : 03 000122 

MOVE I ~3 00013& 

SOURCE PROGRAM LISTINGS 

0L'lb7 
001613 
<"0lbq 

30170 
~0171 
00172 

00173 
<"21171.1 

00175 
0Vl17b 
111"'177 

00178 
00179 
00180 
01!!181 
012'182 
lt1"1183 
00181.1 
00185 
0018& 
e0187 
0~188 

0>'1191 
0f!'192 
0':'193 
""1q4 
0(il1q5 

001q& 

USE AFTER STANDARD ERROR PROCEDURE ON CU8TOMER•FILE 1 

SSEGIN, 

DISPLAY "l•O ERROR ON CUSTOMER•FILE, CODE c• 
CUSTOMER•FILE•STATUS . ) .. 

STOP RUN, 

STATEM•ERROR SECTION, 

USE AFTER STANOARD ERROR PROCEDURE ON STATEMENT•REPORT, 
SBEGIN, 

DISPLAY "I•O ERROR ON STATEMENT•REPORT, CODE C" 
STATEMENT•REPORT•STATUS . ) .. 

STOP l'<UN, 

END DtCLARATIVES, 

***********~*********************************************** 

T~i• 1eetion perform• "ou1ek••Pin; 
fUP'ICtlor'!I OP'11Vo 

START•UP•HOUSE~EEPING SECTION 49, 
58EGIN, 

ACCEPT TOOAYS•DATE FROM DATE, 

~OVE CORRESPONDING TOR TO TODAVS•REPORT•DATE, 

~OVE SPACES TO OPTIONS•AREA. 

Get CUSTOMER•FILE n1me. U1e def1ult 
if none 11 eP'ltered, 

DISPLAY " ENTER CUSTOMER FILE NAME COR CR)"• 

ACCEPT OPTIONS•AREA. 

IF OPTIONS•AREA NOT • SPACES 

MOVE OPTIONS•AREA TO CUSTOMER•FILE•ID 

l 0~199 l'l371 POSSIBLE ~IG~ ORDER ~ECEIVING FIELO TRUNCATION, 

DISPLAY 

DISPLAY 

DISPLAY 

DISPLAY 

DISPLAY 

DISPi.AV 

ACCEPT 

I 03 0"'015& 

I 03 000174 

I 03 0illl'l2311 

I iH ~00302 

MOVE 03 000314 

IF 

DISPl.AV 

GO 

03 000341'.l 

IH 0iil035& 

00200 
~H'21(11 

002;,2 
110203 
00204 
00205 

002<!8 

00211 

00212 

0'1l213 

01il215 

iJ~217 

MOVE SPACES TO OPTIONS•AREA, 

Get optiol"l1 from t"• oper1tor el"ld 
1tore re1u1t1. I9nore l"IOn•1t1nd1rd 
option il"IPUto 

DISPLAY " a Print 1tatement1•, 

DISPLAY " • Print 11"1voic••"• 

DISPLAY " CA a '1111 al 1 c1telog1•. 

DISPLAY. co. Mail selective c1t1log1•. 

DISPLAY " CL• Credit limit letter1"1 

MOVE ALL ZERO TO OPTION•STORAGE, 

IF OPTIONS•AREA : SPACES 

DISPLAY "Di•crepancv Report 0P'11V" 

GO TO CONFIRM·OPTIONS, 

MOVE 0 TO A•COUNT 0 

G-8 



INSPECT I 03 00037& 

IF I 03 0005&& 

DISPL.AY 03 01Hlb02 

STOP 1 03 000&20 

OISPL.A1 I 03 000&21.1 

IF I 03 000&1.12 

OISPl.AY I 03 000&72 

IF I 03 000710 

OISPL.AY I 03 00071.10 

IF 1 03 000750 

OISPl.AY 03 00100& 

IF I 03 001024 

OISPL.AY 03 001054 

IF I 03 00107l 

O!SP!.U I 03 00!!22 

DISPLAY I 03 01H 14& 

ACCEPT I 03 0011&1.1 

IF I 03 00117& 

GO I 03 001240 

IF I 03 001250 

DISPLAY : 03 00127& 

STOP : 03 001311.1 

IF I 03 001320 

DISPLAY I 03 001350 

MOVE I 03 0013bb 

IF I 03 001410 

DISPLAY 

ACCEPT 

I 03 0011140 

I 03 0011.15b 

OPEN I 03 0011.170 

MOVE I 03 0015P0 

START I 03 001510 

OPEN 03 001531.1 

READ I 01.1 00000& 

GO I 01.1 00002& 

SOURCE PROGRAM LISTINGS 

00218 
0P-219 
00220 
00221 
00222 
00223 
00224 

lrHl225 

0f1122b 

00227 
00228 

i.'10229 

00230 

00231 

<10232 

00233 

00235 

~0237 

00238 

00239 
0Vl240 
002u1 

00243 

<H:t21.1b 

00247 

01!248 
0021.19 

00250 

00251 

00252 
00253 

00254 

00255 

0025& 
00257 

00258 

0025q 

002&0 
002&1 

00202 
002&3 
0l'l2b4 
002&5 
0P2bo 
002&7 

002&8 
002&9 

00270 

INSPECT OPTIONS•AREA TAI.LYING 
OPTION•ENTRY (1) FOR ALL •s• 
OPTION•ENT~Y (2) FOR AL.L •I• 
OPTION•ENTRY (3) FOR AL.L •cA• 
OPTION•ENT~Y (4) FO~ ALL •co• 
OPTION•ENTRY (5) FOR ALL •cL•. 

IF OPTION•STORAGE a ALL ZERO 

STOP RUN 0 

DISPl.AY •Se1ecte1 OPtio"11•. 

IF NANT•STATEMENTS 

DISPLAY • St1te~e"t1•. 

IF ~•~T•INYOICES 

OISPl.AY • I"voic••"· 

DISPl.AY. 411 c1t1log1•. 

IF ~ANT•CREDIT•l.IHIT•LETTERS 

DISPLAY. CPtdit limit lettep1•. 

CONFIRM•OPTIONS. 

DISPLAY "CONFIRM OPTIONSt (Yle• OP (N)o•. 

ACCEPT OPTIONS•AREA. 

GO TO CONFIRM•OPTIONS 0 

IF OPTIONS•A~EA•CHAR (1) • •N• 

DISPl.AI' "ABORTED 8Y OPERATOR• 

STOP RUN 0 

IF ~ANT•INYOICES 

HOVE 0 TO OPTION•ENTAY (2), 

IF ~AN!•STATEMENTS 

DISPLAY "E"t•P 1t1teme"t me111ge OP CA" 

OPEN INPUT CUSTOMER•FILE. 

~UVE "000000" TO CUST•CUST•NUMBER, 

&TART CUSTOMER•FILE 
KEY IS > CUST•CUST•NUMBER 0 

OPEN OUTPUT STATEMENT•REPORT. 

*********************************************************** 

MAINLINE SECTION. 
SBEGIN 0 

READ CUSTOMER•Fil.E NEXT 
AT END 

GO TO END•PROCESS 0 

G-9 



SOURCE PROGRAM LISTINGS 

ADD I 04 1!00031:> 
Nl271 ADD 1 TO RECORD•COUNT, 
0~272 

00273 Pr I 11t 1tate111ent If !"eQu!l"ed, 
00271.1 

IF I 011 000046 
0~275 IF CUST•CURRENT•dALANCE > 0 

PERFORM I 1!14 i111H1.-io2 
Jl'"':>~4. PEHFOR~ PR!NT~ST~TEMENT 

ADO 04 000070 
'li;;,271 ADO 1 TO STATEMENT•COUNT, 
00278 
0iil279 If we need 1 111111 Ing 1 abel for 
"'""280 11 catelog, DI' 1 nt Ito 
00281 

IF I 04 000100 
.ie.2112 IF ~ANT•ALL•CATALOGS 
00283 OR 
00281.1 .. ANT•SOME•CATA~OGS 
e028S ANO 
00280 CUST·PURCHASES·YTO NOT c YTD•CATALOG·MINIMUM 

CALL 04 (<100202 
iHl287 CALL "DOCATS" USING CUSTOMER•FILE•RECORO 

ADD 011 e0;;,214 
00288 ADD 1 TO CATALOG•COUNT, 
t:l0289 
1:!1il290 C"itCI( for di1crec1nc1e1 In U1e 
00291 cu1to111er•1 record, 
0~292 

MOVE I 011 0002.:!ll 
fr.lli.'293 '10\/E ALL ZERO TO EXCEPTION-INDICATORS, 

IF I 04 000231.1 
~02911 ff CUST•CUSTOMER•NAME : SPACES 

MC''vE I i<J(I ft'00250 
0'1215 '10YE 1 TO EXCEPTION•INDICATOR (1), 

IF I 011 011iid272 
002% IF CuST•ADDRESS·~INE•1 • SPACES 
<lr.l297 OR CUSl•ADORESS•Z!P•CODE NOT > •00000• 

f'IOVE I 011 000322 
!00290 11ovE 1 TO EXCEPTION•INDICATOR (2). 

IF I 04 00.l344 
1!!'12q9 IF CUST•PHONE :i SPACES 

MOVE I 011 iiH.!03b<l 
k!i.'130\d "l.:JVE 1 TO EXCEPTION•INOICATOR ~ 3). 

IF I 04 013.)1102 
0i:l301 IF cuST•CREDIT•LIMIT NOT > 0 

MOVE 04 00~Ulo 

t:0302 MOVE 1 TO EXCEPTION•IkDICATOR (4), 
IF I 04 llJ00Ullll 

00303 IF CUST•CURRENT•BALANCE > CuST•CREDIT•Llf'IIT 
MOVE 174 illl!lll1151.1 

l-J<l3~1.1 "'OVE 1 TO EXCEPTION•INOICATOR (5) 
E.LSE llJlj 0<)047b 

1'0305 ELSE 
IF 0U <''10')0b 

0030b IF CUST•CU~RENT•BALANCE > CUST•CREOIT·~IMIT * Ii!, 8 
1'10\/E I e11 011Jio534 

1110307 "IOYE 1 TO EXCEPTION•INDICATOR (b). 

IF ' 01.1 i.'li11055b 
1111"308 IF tXCEPTION•INOICATORS NOT 1 ALL ZERO 

CALL I 0LJ !ll(l\0572 
llJ03k19 CALL "EXCEPT" USING CUSTOMER•FILE•RECORD 
0031iJ EXCEPTION•INDICATORS, 
itllll311 
00312 Generate a •credit 111111 t 1 etter• 
00313 1f ttie cu1to~er ha1 exceeded or 
1!1:'1314 !• about to exceed 1'111 11 !!lit. 
IH'315 

IF I '64 00'6~'10 

01'l3lb IF ~ANT•CREDIT•L.IMIT·~ETTERS 

llJ03t 7 .lNO 
1(11"318 CJST•CURRENT•BALANCE NOT c CUST•CREDIT•LIMIT * 0,8 

GO I 011 00061:>1.1 
00319 GO TO DO•CR. 
iHH2J 
00321 Go get t tie next record, 
01.'322 

GO I 1!)11 00067'1 
0~323 GIJ Tn i'!AINL.INE. 
~1"324 
~0325 DO•CR. 

CALL 0'1 01110112 
llJ032b CALL "CREOLM" USING CUSTOMER•FILE•RECORD, 

ADD 0a 0eoe 121.1 
0'1327 ADD 1 TO CREDIT•L.l"'IT•COUNT, 

G-10 



GO I 04 000734 

CLOSE 

CLOSE 

I l!l5 00000b 

I 05 00001& 

MOVE I 05 00002b 

MOvE I 05 00003b 

DISPLAY I 05 000052 

MOVE I 05 000100 

DISPLAY I 05 000114 

MOVE I 05 000132 

MOVE I 05 000142 

05 00015b 

MOVE I 05 000174 

MOVE I 05 000204 

DISPLAY I 05 000220 

MOVE I 05 000230 

MOVE I 05 00024& 

DISPLAY I 05 000202 

STOP 05 000300 

MOVE I 0b 000000 

MOVE I 0b 000010 

l'!Rl TE I 0o 00002b 

MOVE I 0b 000050 

MOVE I 0o 000000 

MOVE I 0o 000070 

MOVE I 06 00010~ 

wRITE I 0o 000110 

MOVE I 06 000144 

MOVE I 0o 000154 

"'RITE 1 00 001illo4 

MOVE I 0o 000210 

MOVE I 0o 000220 

111RITE I 06 000231:1 

SOURCE PROGRAM LISTINGS 

00328 
0032'1 
"1'-l330 
00331 
00332 
00333 
00334 
00335 
0e33o 
00337 

0033'1 

0fll340 

00341 

0034b 

00347 

00348 

!110350 

00351 

00352 

00353 

00355 
00350 
0"357 
00358 
0035'1 
00360 
00301 
00302 
00303 
00304 
00305 

00300 

00307 

00368 

0030'1 

00371 

00372 

00374 

00375 

00376 

<l0377 

00378 

003H 

00380 

GO TO MAINL.INE. 

*********************************************************** 

T"e CUSTOMER•FILE "'' been co~Dletely 
Droce11ed, ReDort 1ign1f1c1nt counta. 

END•PROCESS SECTION 47 0 

SBEGIN, 

CLOSE CUSTOMER•Fil.E, 

CLOSE STATEMENT•REPORT, 

MOVE "RECORD COUNT" TO DISP•MESSAGE, 

MOVE RECORD·COUNT TO OISP•NUM, 

DISPLAY DISP•MESSAGE 0 

MOVE "STATEMENTS" TO DISP•MESSAGE, 

MOVE STATEMENT•COUNT TO DISP•NUM, 

MOVE •INVOICES" TO OISP•MESSAGE 0 

MOVE INVOICE•COUNT TO DISP•NUM 0 

MOVE "CATAl.OGS" TO DISP•HESSAGE. 

MOVE CATAl.OG•COUNT TO DISP•NUM 0 

DISPl.AY DISP•MESSAGE. 

MOVE "CREDIT LIMIT LETTERS" TO DISP•MESSAGE. 

MOVE CREDIT•LIMIT•COUNT TO OISP•NUM 0 

STOP RUN, 

*********************************************************** 
* Tnl• section generates • 1t•teme"t 

for tne curre"t CUSTDMER•Fil.E 
record. 

PRINT•STATEMENT SECTION 48 0 

SBEG!N 0 

MOVE SPACES TO STATEMENT•REPORT·RECORD, 

MOVE "STATEMENT" TO FORM•NAME, 

WRITE STATEMENT•HEPORT•RECORD AFTER ADVANCING PAGE, 

MOVE SPACES TO STATEMENT•REPORT•RECORD 0 

~OVE CUST•CUSTOMER•NAME TO ADDRESS•WINDOW 0 

MOVE "DATE:" TO FORM•NAME, 

MOVE TODAYS•REPORT•DATE TO FORM•DATE. 

WRITE STATEMENT•REPORT•RECORD AFTER ADVANCING 1 LINE, 

MOVE CUST•ADORESS•LINE•1 TO ADDRESS•WlNDOw, 

MOVE "ACCT1" TO FORM·NAME. 

MOVE CUST•CUST•NUMBER TO FORMaDATE 0 

WRITE STATEMENT•REPORT•RECORD AFTER ADVANCING 1 LINE 0 

MOVE SPACES TO STATEMENT·REPORT•RECORD 0 

MOVE CUST•ADDRESS·LINE•2 TO AODRESS•WINOOw. 

WRITE STATEMENT•REPORT•RECORD AFTER ADVANCING 1 l.INE, 

G-11 



HOVE I 06 000254 

HOVE I 06 000264 

wRITE I 06 000274 

HOVE I 0& 000320 

MOVE I 0& 000330 

MOVE I 06 00031.14 

WRITE I 0& 0003ci<l 

HOVE I 06 0001.101.1 

HOVE I 06 0001.1111 

lllRITE I 06 01HHl50 

HOVE I 06 0001.174 

lF I 06 000501.1 

MOVE I 06 000520 

ELSE I 06 000530 

lF I 06 000540 

HOVE I 0& 0005&& 

ELSE I 06 000576 

HOVE I 06 000&0& 

WRITE I 0& 000&16 

EXIT I 06 00065~ 

SOURCE PROGRAM LISTINGS 

00381 

00382 

00383 

003811 

00385 

0038b 

00387 

00388 

0P389 

01il390 

ll'03<>1 

01113<12 

01113<>3 

001.101 

001102 

001.103 
ld01.10U 
004~5 

00U0o 

MOVE CUST•AODRESS•LINE•3 TO AOORESS•WINOOw. 

MOVE CUST·AOORESS•ZIP•COOE TO AODRESS•ZIP. 

WRITE STATEMENT•REPORT•RECORD AFTER ADVANCING 1 LI~E. 

HOVE SPACES TO STATEMENT•REPORT•RECORD. 

HOVE CUST•PURCHASES·YTD TO REPORT•YTD, 

~RITE STATEMENT•REPORT•RECORO AFTER ADVANCING 8 LINES, 

MOVE SPACES TO STATEMENT•REPORT•RECORD. 

MOVE TODAYS•REPORT•DATE TO STATEMENT•DATE. 

HOVE CUST•CURRENT•BALANCE TO STATEMENT•BALANCE. 

MOVE "BALANCE OUE" TO STATEMENT•CAPTIONe 

wRITE STATEMENT•REPORT•RECORO AFTER ADVANCING 6 LINES, 

HOVE SPACES TO STATEMENT•REPORT•RECORD. 

IF CUST•CURRENT•8ALANCE > CUST•CREDIT•LlMIT 

ELSE 

MOVE "** CREDIT LIMIT EXCEEDED **" 
TO STATEMENT•REPORT•RECORD 

IF CUST•CURRENT•BALANCE > CUST•CREDIT•LIHIT • 0,8 

MOVE "CONSIDER AN INCREASED CREDIT LIMIT. " 
TO STATEMENT•REPORT•RECORD 

ELSE 

MOVE STANOARD•MESSAGE TO STATEMENT•REPORT•RECORD. 

WRITE STATEMENT•REPORT•RECORO AFTER ADVANCING 4 ~INES, 

SEXIT, 

EXIT, 

G-12 



SOURCE PROGRAM LISTINGS 

COBOi. 4,00 SRC1STAT6,CBl.1l.I 05•0CT•78 dbli.11113 PAGE 011 

Fil.E•TO•l.UN ASSIGNME~T TABl.E--@ 

!'-<AME SOURCE RELATIVE 

LPJE I.UN 

~ ~ ~ 
C:U&TOMER•FILE o!l0l4 7 0~0fl1. 

STATEMENT•REPOKT i!JIC0Bl 00002. 

DATA MAP 
,,(§) 

LEVEL NAME SOURCE DD!V DIR USAGE CLASS DCC LEN 

~ ~ @-L.INE@__LOCN LOC 

ro CUSHlMC.R•fo Il.t. ;,:!031l 7 li:l~<J01.11.1 @ @ @ @@ 
FD ST~TE~ENT•REPORT 0Ml6l <i2i004iU I I I I I 
01 CUSTO~Ek•Fil.E•RECORD i:l.aiil5b ld0ii726 00Nl00 DISP AN 00 0205 

03 CUST•CUST·~UMBER 00057 000726 01,HHHl& CISP AN 00 00f/J& 
03 CUST•CUSTOMER•NAME 00058 lil00731.1 000011.1 OISP AN 00 0030 
a:; CUSi•AOD~~ss-~!NE-i ~H1eiS; iiiilii:iii2 '5iii~Hi22 ors;;; •N i'iiii i'iiii3iii 
03 CUST•ADDRESS•l.I~E•2 00060 011'1030 000030 OISP AN 1110 0030 
!:l3 CUST••DDRESS,l.!~E,3 0006! ~010Cb 01rn.ne O!SP ~N 00 0030 
io!3 CUST•ADDRESS•ZIP•CODE 000&2 0011211 00001.14 DlSP AN 00 0005 
i03 CUST•Pl10NE 000&3 l'l01131 ;HFil052 DISP AN 00 0010 
i.l5 CUST•Pl10~E•AREA•COOE 0!1!3&1.1 01211131 ****** D!SP AN 00 0003 
05 CUST•Pl10NE•EXCl1ANGE 000&5 01211134 ****** DISP AN 0111 0003 
~5 CUST•P110NE•LAST•l.I 000/J& 001137 ****** DISP NUM 00 00011 
03 CUST•P~ONE•NUMBER 000&7 001 lll ****** DISP NUM 0(0 0010 
03 CUST•ATTENlION•LlNE .?J00b9 0011Li3 ****** DISP AN 00 0020 
03 CUST•CREOIT•LIMIT 001'l10 0011&7 0000&0 DISP NU"! 00 00u 
a3 CUST•HEAOE~•OATA ia0071 0011&7 ****** DISP AN 00 0012 
05 NEXT•ACCT•NUMBER 00073 001175 ****ill* OISP lllUM 00 01i!lli!b 
03 CUST•CURRENT•BALANCE 00074 1')01203 0i'l00&b DISP NUM 00 0012 
03 CUST•PURCHASES·VTD 0007& 001217 001iHH4 DISP NUM 00 0012 
03 CUSi•NEAi·O~DER•SE~UE~CE 0007Ci 001233 DI5P NU"i 00 0004 
03 CUST•NEXT•PAYMENT•SEQUENCE l'l0079 001237 ****** D!SP NUM 00 00011 

01 STATEMENT•REPORT•RECORD 00083 00124& 000102 DISP AN 00 0080 
03 ADDRESS•"INDO"' 00085 1~1211253 0lil0110 DISP AN 00 01i!l30 
03 ADDRESS•ZIP 0111087 001.312 ~0011& DISP AN 00 00k!5 
<'13 FORM•NAME 00089 001350 000121.1 DISP AN 00 00111 
05 FORM•OATE 01Hl91 00135& 00ran2 DISP A"l 00 0008 

01 S•R•R•2 00093 fd0121.1& ****** OISP AN 00 0057 
;n 'IEPORT•CREDIT 01~095 0012&5 0(1Jii!11.10 DISP NMEOIT 00 00111 
03 REPORT-no 01/1097 001317 00011.1& DISP NHEDIT 00 001& 

fll1 S•R•R•3 001;99 00121.1& ****** DISP AN 00 0f/J70 
23 STATE,.ENT•DATE :;JQ\100 0012LI& 000154 DISP AN 00 0012 
"3 STATEMENT•CAPTION 00102 001274 <l0!01&2 DISP AN 00 0032 
03 STATE~ENT•8ALANCE 0!.!103 0013311 ('!00170 DISP NHEOIT B0 001& 

01 CUSTOMER•FlLE•STATUS 00107 001370 0[il017& DISP AN 00 0002 
lll1 STATEMENT•REPURT•STATUS lllfll108 001372 000204 DISP AN 00 0002 
01 CUSTOMER•Fil.E•ID 0<'!109 0013711 000212 DISP AN 00 00111 
01 TODAYS•DHE 0121111 0011.112 "'1110220 DISP NUM 00 0kl0& 
01 TOR 00112 0011.112 00022& DISP AN 00 000& 

03 TOOAY•YEAR 0121113 iliH'112 000234 DISP NUM 00 0002 
~3 100AY•!'10NTrl 00114 0011111.1 000242 DISP NUr-1 00 0002 
<l3 TODAY•DAY 01<l115 012111.11& 00025fd DISP NUM 00 0f/J02 

01 TODAYS•REPORT•D4TE 0"'1 lb 001420 00025& DISP AN 0lil 0008 
:.13 TODAY•MONT~ illilll 17 001420 0002&4 DISP NMEOIT 00 0002 
;,,3 TODA1•0AY 00119 <l1211Li23 <!00272 DISP NUM illli!l 0002 
.n TODAY•YEAR 00121 001Ll2& 000H0 DISP NUM 00 0002 

li:l1 STANDARO•MESSAGE 00123 ldill143;.'J 00030& DISP AN 00 0050 
1:11 DISP•MESSAGE 00125 001512 000314 DISP AN 00 0035 

~3 OISP•"/UM 00127 001550 000322 DISP NMEDIT 00 0005 
01 YTD·CATALOG•M!N!MUM 01H29 001551:1 000330 DISP NUM 00 0010 
01 EXCEPTION•Ii'-<DlCATORS 00131 !.!0!1570 00[il33o DISP AN 00 0010 

H EXCEPTlON•INDICATOR 00132 001570 0003Ll4 DISP NUl'4 01 0001 
01 OPT!ONS•Af<EA i<ll<l13~ !1101&02 00fd3&4 DISP AN 00 0030 

lil3 QPTIONS•AREA•Cl1AR 00135 ;,01&02 000372 DISP AN 01 0001 
01 A•COUNT 00137 0'l1&40 0001112 DISP NUM 00 0002 
01 OPTIO~·STORAGE 00139 i<l01&Ll2 000420 DISP AN 0ra 0008 

"13 OPT!ON•ENTRY lii13ll.li! 1110lb'12 i.'1111211.12& DISP NUM 31 0001 
iH OPTION•\IALUES 0011.11 001&42 ****** DISP AN i!0 0008 
01 RECORD•COUNT 00154 001&52 000531' DISP NUM 00 0005 
ill STATEMENT-COUNT 00155 001&&0 00051.12 DISP NUM 00 0005 
01 !NVOICE•COUNT 0015& 001&&& 000550 OISP NUM 00 0005 
01 CREDIT·l.I~IT•COUNT ii:H'157 001&711 0111055& DISP NUM 00 0005 
01 CATAl.OG•COUNT [il0158 "101702 <l'<l05&4 DISP NUM 00 0005 

G-13 



SOURCE PROGRAM LISTINGS 

PROCEDURE NAME "1fl.P---® 

NAME 

fe 
SOURCE ~CT OFFSE.T SEG SECT P4RA 

@::_INE. 5 ~ <?!> @ 4 
CUSTOM•E.RROR 0illlb4 $ST001 00000& 00 s 
SSE.GIN 
STATEM•ERROR 
S&EiHN 
START•UP•MOUSEKEEPING 
Sl:H:.GI"I 
CO~F'I~M-OFiIQ~S 

MAI"ILINE 
SSE.GIN 
DO•CR 
ENlJ•PROCE.SS 
Sl:!EGl"I 
PRINT•STHEMENT 
SBEGIN 
SEX IT 

SECTION NA"1f . _JA1\ 

CUSTO..,•ER~ 
STATE"'•E'<ROR 
START•UP•HOUSt~EE.Pl~G 

MilINLINE 
ENO•PROCESS 
PR !NT·SHTEMElllT 

,........ 
REFEl<ENCED OTS f<OUTINE.S~ 
5MGNE SXOPEN SXkED"' 
SXGO SXENDP :SXSTPR 
SXl~lT SCZDl.T $CGZL.T 
SCFSNE. HSTGT HZDGT 
SMGLA UAr2D $11.MG4 

001bb SSHH11 0>'!00i:lb 01/J 
:/lill 72 iiiSHH:l2 01"01110b 1113 
00174 SST002 00000b 1111!l 
0~187 $ST003 lii01:h:l0b 4q 
00188 SST003 0ill01i106 4q 
002iii SSi003 001 iii& aq 
0..l2bb SST004 0000111b 0~ 

0~267 SST!il04 0k1000b 011 
lli'l325 SSTl/l011 0i:HH12 0~ 
111033b ssri;.0s ¥l0000b 47 
1'10337 SST005 0000i:!b 47 
l/J03bll 5Sh10b 01HHl0b 48 
i3'.'13o5 SSHl0b iil00k:'0b <18 
~0405 $ST00b idliliilbSii:! 48 

~
·~E."<T N0 0 

42 
@:.AME 

SSl 0"1 
$51002 
$STliHl3 
SST;il04 
SST .31!15 
SSHl0b 

& SIZE 

i}0 
0111 
4q 
0t:I 
117 
48 

$X,.RIT 
$XlNSH 
~CZDL.E 
!iCGZGT 
~SoIXl 

$XSTAR 
SXINTG 
SCGZL.E 
SMC Al) 
HPRF 1 

G-14 

SXCl.OS 
$XINTO 
SCSTEQ 
$MJUSl. 

0Wl00b<d 
"l0001:10 
001570 
00077~ 
0W!0330 
"'00b7i/J 

SXE•CC 
SXACCS 
SCFSEQ 
SMCFST 

rp> 

p 
p 

p 

p 
p 

f}) 
00024 
00024 
00444 
00252 
00108 
00220 

SXEDIS 
SXCAl.I. 
SCSTNE 
SMGNG 



SOURCE PROGRAM LISTINGS 

OAlA PSECT MAP-@ 

NAMEfe ~ SIZE 

SSlOAT 0017U2 00497 
SST DOD 000b0b 00195 
SST POT 000030 00012 
$STARG 000000 000~0 
$Sl~RK 00010b 00035 
SST LIT 001322 003b1 
SST LTD 000550 0018~ 
SS1LST 00000& 00003 
SS1PFM 00021U 00070 
SST SOT 00000& 00003 
'SlADT 000000 00000 
$S1USE 000030 00012 
SCBIOT 00013U 000Ub 
SCBFA1 000120 000U0 
SCbX41 0001&0 0~05b 
$51108 003000 007&8 
sCBIF1 0001U0 000u6 
SCBIR1 000100 00032 
SCBKD1 0001U0 000u8 
SCBBD1 0001uu 00050 
SCBK61 000100 00032 
SCBFD1 000002 00001 
SCBSWT 000002 00001 

EXTERNAL SUBPROGRAM REFERtNCES 

DOC HS EXCEPT 

~ cp 
SEVERITY ERROR COUt-;T 

r-... p 

COMPILER GENERATED ODL FILE~ 
1COBOL STANDARD ODL FILE GENERATED CNS 05•0CT•78 
,coBOBJ=STATB.OBJ 
JCOBKER•ST 
JCOBMAIN 
1RMSREQ:c1001s 
JRMSREQsCI0033 

0 NAME STS0u7,GBL 
0 PSECT SST005,GBL,I,R~,CON 

ST0U7SI 0 FCTR wSTS0U7•$ST005 
.NAME srs0a8,GBL 
.PSECT $ST00b,GBL,11Rw,coN 

ST0ass1 .FCTH •STS~aS-$STe06 
.NAME STs0uq,GBL 
.PSECT SST0~3,G6L,l,Rw,CON 

ST0U9SI 0 FCTR •STS~U9•$Sl003 
STOVRSI .FCTR ST~u7s,ST~u8$,ST~49S 

G-15 

0b:Ull13 



SOURCE PROGRAM LISTINGS 

COBOL 4,00 SRC:DOCATS,CBLl4 

CMD100C4TS,00CATS:DOCATS/MAP/06J/KE~1DO 
1DENT1 278~68 

0001111 
:.1001112 
00003 
~00~4 

0001115 
000eo 
iillHHH 
\l0008 
00i3'/19 
lll~ill\l 

0111011 
01'1012 
00013 
00014 
00015 
;tllil01b 
iJ.0iil17 
00i.118 
0ki019 
1Wiil2i.:l 
00021 
i,:l!~022 

0\lkl23 
00024 
00025 
\l002b 
00027 
0e02e 
1Hli<'l29 
<lli'it'l3io:l 
00031 
<'lfil032 
1()0033 
ihll03'1 
00035 
00irl:Sb 
lil00H 
1:10038 
'10039 
0004'1 
('1001.11 
<Hl01.12 
0~01.13 

00il4/.I 
1hliil''5 
00011b 
0fil047 
1Hl<l48 
00049 
00i.1151'l 
i-10051 

L 0111052 
L '10d53 
L 00051.1 
L 00055 
L 00i<l5b 
L 00057 

~eiase 

0il\l59 
"ll0bl:l 
\l00bl 
000b2 
0Ql0b3 
000b4 
01'l0b5 
l:l00bb 
0~0b7 

i.l01:l68 
0'110b9 
vrnia ;ta 
00071 
0('-072 
0<10i3 
;Jf/J!il74 
00075 
001d7b 
\:"10:a77 
<10078 
!o'lt"079 
111~081'1 

\'10081 

05•0CT•78 0bl48123 PAGE 001 

IDENTIFICATION DIVISION, 

DOC ATS. 
DATE•l'IRlTTEN, 

5 OCT 1978, 
OATE•COMPILED, 

lllS•OCT-78 , 
REMARKS, T~il l~b·proQra~ Prf"tl e ~.111"g l1b1l 

for eac" CUSTOMER•FILE record P111ed fro~ 
t"e ce111"g orogr1~. 

ENVIRONMENT DIVISION, 

CONFIGURATION SECTION, 

SOURCE•COMPUTER, PDP•11, 
OBJECT•COMPUTER. POP•11 

SEGMENT•LlMIT 25, 

JNPUT•OUTPUT SECTION, 
FlLE•CONTROL, 

SELECT LABEL•REPORT 
ASSIGN TO "SYILABEL,REP" 
FILE STATUS IS LASEL•REPORT•STATUS, 

DATA DIVISION, 

FILE SE:CTION, 

FD LABEL•REPORT 
LABEL RECORDS ARE STANDARD, 

01 LABEL•REPORT•RECORO PIC X(ll0), 
01 L•R•DETAIL, 

~l FILLER PIC XC34), 
03 LR•ACCOUNT PIC X(b) 0 

~1 L•R•DETAIL•2, 
~3 FILLER PIC XC32l. 
~3 LR•ZIP PIC X(5), 

WORKING•STORAGE SECTION, 

01 LABEL•MEPORT•STATUS 
VALUE. wxx•, 

LINKAGE SECTION, 

~1 CUSTOMER•FILE•RECORO, 
1113 CUST•CUST•NUMBER 
~3 CUST•CUSTOMER•NAME 
03 CUST•ADDRESS•LINE•1 
~l CUST•ADDRESS•LINE•2 
1113 CUST•4DORESS•LINE•3 

PlC XC2) 

03 CUST•ADD~ESS•ZIP•CODE 

~S CUST•PHONE•AREA•CODE 
~5 CUST•PHO~E•EXCHANGE 
05 CUST•PHONE•LAST•4 

03 CUST•PHONE•NUMBER 

PIC 
PIC 
PIC 
PIC 
PIC 
PIC 

PlC 
PIC 
PIC 

xcei>. 
x Cli!). 
X(30) • 
X(30) • 
X(30) • 
xc5>. 

X(3) 0 

XC3). 
9(4). 

REDEFINES CUST•PHONE PIC 9(10) 0 

03 CUST•ATTENTION•LINE PIC X(20) 0 
1113 CUST•CREDlT•LIMlT PIC 9(10)Y99, 
03 CUST•HEADER•OATA REDEFINES CUST•CREDIT•~lMIT, 

05 FILLER PIC X(&), 
05 ~EXT•ACCT•NUMBER PIC 9(b), 

03 CUST·O~E•AMT 

1113 CUST•80UGHT 

CUSi•NEXi•ORDE~·SEQUENCE 
CUST•NEXT•PAYMENT•SEQUENCE 

PROCEDURE DIYISIO~ USING 
CUSTOMER•FlLE•RECORD, 

DECLARATIVES. 

REPORT•ER~QR SECTION, 

G-16 

PIC 
PIC 
PIC 

9( Ul)Y99. 
9(4), 
C!(U) • 



SOURCE PROGRAM LISTINGS 

USE. I 01 00000b 
00082 USE AF!ER STANDARD ERROR PROCEDURE ON LABEL•REPORT 0 

01cl083 SBEGIN. 
DISPLAY I 01 000000 

00084 DISPLAY "I•O ERROR ON LABEL•REPORT, CODE C" 
00085 LA6EL•REPORT•STATUS 
00080 . ) .. 
00087 
00088 END DECLARATIVES. 
00089 
00090 MAINLINE SECTION 0 

00091 SBEGIN 0 

IF I 02 000000 
lde092 IF LAaEL•REPORT•STATUS • •xx• 

OPEN I 02 000022 
'110093 OPEN OUTPUT LABEL•REPORT 0 

MOVE I 02 000032 
1()0094 MOVE SPACES TO LABEL•REPORT•RECORD 0 

MOVE I 02 0000112 
00095 MOl/E CUST•CUST•NUMBER TO 1..R•ACCOUNT, 

lolRITE I 02 000052 
00090 ~RITE LABEL•REPORT•RECORO 
00097 AFTER AOl/ANCING 1 i..INE 0 

'40~E I 02 000010 
00098 MOVE CUST•CUSTOMER•NAME TO LABEl..•REPORT•RECORD. 

lolRITE I 02 01d010o 
00099 ~R!TE 1..ABEl..•RE?CRT•RECORO 
00100 AFTER ADVANCING 2 LINES. 

MOVE I 02 000132 
00101 MOVE CUST•AOORES3•LINE•1 TO LABEL•REPORT•RECORO, 

.il'fITE 02 000142 

COBOL 11.00 SRC:DOCATS.CBLJl.I ta5•0CT•78 00148123 PAGE 003 

00102 WRITE LABEL•REPORT•RECORD 
00103 AFTER ADVANCING 1 LINE, 

MOVE I 02 000100 
00104 MOVE CUST••DDRESS•LINE•2 TO LABEL•REPORT•RECORD 0 

WRITE ; 02 liH!017o 
til0105 WRITE LABEL•REPORT•RECORD 
3010b AFTER ADVANCING 1 LINE. 

MOVE 02 000222 
00107 MOVE CUST•AOORESS•l..INE•3 TO LABEL•REPORT•RECORD. 

MOVE 02 000232 
00108 MOVE CUST•ADORESS•ZIP•CODE TO LR•ZIP. 

WRITE I 02 00(121.12 
il!0109 WRITE LABEL•REPORT•RECORO 
00110 AFTER ADVANCING 1 LINE 0 

MOVE I 1:12 00id2oo 
00111 MOVE SPACES TO l..ASEL•REPORT•RECORD 0 

lriRITE I 02 00027b 
00112 WRITE LABEl..•REPO~T•RECORD 

0111113 AFTER ADVANCING 2 LINES. 
EXIT I 02 000322 

00114 EXIT PROGRAM. 

G-17 



SOURCE PROGRAM LISTINGS 

COBOL. 4.00 SRC:DOCATS 0 CHL.J4 05•0CT•78 0&148123 PAGE 004 

FIL.E•TO•L.UN ASSIGNMENT TABL.E 

NA"'E SOURCE RELATIVE 

l.INE !..UN 

l.ABEL.•REPOtH ftlli'HB1 1!0001. 

DATA MAP 

L.EVEL. NAME SOURCE ODI\I DIR USAGE CL.ASS OCC L.EN 

FD L.ABEL•REPORT 
01 L.A~EL.•REPORT•RECORD 
01 L.•R•DETAIL. 

03 L.R•ACCOUNT 
01 L.•R•DE TA IL.• 2 

il3 L.R•ZIP 
01 L.ABEL.•REPORT•STATUS 

L 01 CUSTOMER.FI!..E·RECORD 
I. 03 CUST•CUST•NUMofk 
I. 03 cusT-CUSTO~ER-NAME 
L J3 CUST•ADDRESS•LINE•1 
I. 03 CUST•ADOkESS•L.INE•2 
I. rn CUST•4DD~ESS•L.INE•3 

I. 03 CUST•ADDRESS·lIP•CODE 
I. 1.H CUST•PHDt.E 
I. .is CUST•PHD~E·A~EA·CODE 
L 05 CUST•PHONE•EXCHANGE 
I. 05 CUST·PHONE•LAST•l.I 
I. id3 CUST•PMONE•NUMBE~ 

L. i/13 CUST•ATTENT!ON-L.lNE 
L H CUST·C~EDIT•LIMIT 
I. 03 CUST·HfAOER•DATA 
L. 05 NEXT•4CCT•NUMoER 
L .n CUST•O"'E·Al'T 
I. '!)3 CUST·~OUGMf 

I. lll3 CUST·NEXT.O~DE~·SE~UENCE 
L. <13 CUST•NEXT•PAYMENT•SEQUE~CE 

PROCEDURE 

NAME 

REPORTm~RROR 
SBEGlt>i 
MA l Nl.I NE 
SBEGIN 

SE.CTION "'A"!E 

REPOl<T•El!RQl'I 
MA lP\IL!Nt 

NAME r-1AP 

SOURCE 
LI~E 

~~~:tel 

00083
0009iiJ
""'-'Cll

l.I NE

00031
00033
130034
0003b
00037
0003'1
ll00ll3
130051
00~52
00053
03054
00055
00\!So
00057
00058
00059
01:l0b0
0016&1
000b2
il00&ll
0ii10os
00iclbc
0001!8
il<l!d&9
0011171
00073
00074

PSECT

~oc~el
Si0001111
)00002
SD0"1r.12

L.OCN

00:dil40
0011147.0
iHh1470
000532
i00i01.170
001tl530
0005112
000000
011113000
00000&
000011ll
001H02
ililli11110
001117&
1:11H:l2id3
000203
00!d20b
000211-
000203
001cl215
000241
01Hl241
k'J0<l2'17
iHHl255
011l<l271
0i<H!305
000311

OFFSET

110e~eb
1311Hdill0b
00000&
1'10000&

SD0001
$00002

G-18

L.OC

000000

000i'l0&

000014
011hl022

013ih'100
0<'i000b
01cl01l14
00ftl022
000'-i30
00003&

***"'**

*"""***

SEG

'"~
00
0~

"'"'

DISP AN
DISP AN
DISP AN
DISP AN
DISP AN
DISP AN
DISP AN
DISP AN
DISP AN
DISP AN
DISP AN
DISP AN
DISP AN
D!SP AN
DISP A'-1
DISP A"-4
DISP NUM
DlSP NUM
DISP A"I
DISP NUM
DISP AN
DISP NUl'4
DISP NUM
DISP NUM
DISP NUM
DISP NUl-I

SECT PARA

SIZE

0011122
00115

00 !0040
00 00110
00 000&
00 0037
1110 0005
00 0002
00 0205
00 000&
00 0030
00 0030
00 0030
00 0A30
00 0005
A0 001111
1110 0003
00 0003
00 00011
00 0010
00 0020
00 0012
00 0012
1110 01110b
00 0012
0111 0012
00 0004
i/10 lll'!llllll

SOURCE PROGRAM LISTINGS

NAME

SDOE~T

SD00il3
0iil003b
iHl0051.1

SIZE

REFERENCED 015 ROUTINES

SXOPEN
SCST~E

DAlA PSECT

NA Mt

iDODAi
SOODDD
SDOPDT
SDCARG
SDOWRK
SDOLIT
SOOLTD
SOOLST
SOOPFM
SDOS!JT
SDOADT
SOOUSE
SCBIOT
SC6Fili
SCBXA1
SDOIOB
SCBIF1
SCBIRl
SCBKDl
SCBBDl
SCBK61
SCBFDl
SCBS>jT

~.4P

000541.1
000030
'100011.1
Z0~~a4
011010b
0'1100bll
0111003b
1<1001?102
0l'l0214
0~0e0e

00kl000
i1<'J003lil
000134
00<li20
00<H"00
001"!'100
il000M!'
000"'110
000 .. 00
1100021.1
000000
000002
000i'02

SXEDlS
!!>MCFST

SIZE

00ii8
00012
00<)00
00018
00035
0002b
01HH5
00i.hH
00117kl
0111000
00iH!l0
00kl12
li!<l0Ub
0ei0'1i:
i:H1000
lil"-125b
l:li<l0211
00010
00000
00010
0'100;:!
00001
iiHl0'-'1

SXGO
$MGLA

EXTERNAL SUBPROGRAM REFERENCES

NO EXTERNAL SUBPROGRAM REFERENCES

NO ERRORS

COMPILER GENERATtD ODL FILE

JCOBOL STANDARD ODL FILE GE~ERATED ONI 05•0CT•78
,coBOBJ:DOCATS.OBJ
1COB'<ER:DO
1RMS~EQ:C10015

,NA~E 00$025,GBL
,PSECT $000~3.GBL1I1Rw1CON

0002ss: ,FCTR •DOS~25•$000~3
DOOV~!: ,FCTR 00025$

G-19

SXEXIT SXSUBK

~6:118:23

APPENDIX H

DIAGNOSTIC ERROR MESSAGES

This Appendix contains a numerical listing of the diagnostic messages
generated by the compiler. Following the text of most messages are
explanations of the diagnostics, including descriptions of the
compiler's recovery actions.

iii CONTINUE PUNCH WITH BLANK STATEMENT. IGNORED.

A blank line has a continue indicator.
The continue indicator is ignored.

jj2 QUOTE OR CONTINUE PUNCH MISSING. QUOTE ASSUMED.

A non-numeric literal has no quote and
the following line has no continuation
indicator. A terminal quote is assumed
at the end of the line.

jj3 VIOLATION OF AREA A. ASSUMED CORRECT.

The first non-blank character on a
continued line occurs in Area A. The
error is ignored.

jj4 LINE LENGTH EXCEEDS INPUT BUFFER. TRUNCATED.

Continuation lines cause a COBOL word to
exceed the capacity of the input buffer.
The word is truncated on the right; the
number of characters retained depends on
the type of word being processed.

jjS .IO CONTROL. WITHOUT .FILE CONTROL. IGNORED.

An I-0-CONTROL paragraph appears when no
FILE-CONTROL paragraph was present. The
I-0-CONTROL paragraph is ignored.

jj6 .STRING. DATA ITEM MUST HAVE DISPLAY USAGE.

A data item in a STRING statement is not
defined with DISPLAY usage. Fatal.

jj7 NAME EXCEEDS 3j CHARACTERS. TRUNCATED TO 3j.

A character-string that appears to be a
name exceeds 3j characters in length.
The string is truncated on the right to
3j characters.

H-1

DIAGNOSTIC ERROR MESSAGES

g1g NUMERIC LITERAL OVER 18 DIGITS. TRUNCATED TO 18.

A numeric literal exceeds 18 digits in
length. The literal is truncated on the
right, with any necessary adjustm1 •nt to
scaling. The sign is retained.

g11 NUMERIC LITERAL HAS MULTIPLE DECIMAL POINTS.

A numeric literal has more than one
decimal point.

g12 PICTURE CLAUSE ILLEGAL ON GROUP LEVEL. IGNORED.

A group level item has a PICTURE clause.
The clause is ignored.

jl3 .SELECT. NOT FOUND. SENTENCE IGNORED.

A FILE-CONTROL statement should begin
with the word SELECT, but does not. All
words up to the next period are ignored.

jl4 JUST.SYNC.BLANK CLAUSES WRONG AT GROUP. IGNORED.

A group level item may not contain
JUSTIFIED, SYNCHRONIZED, or BLANK WHEN
ZERO clauses. The clause is ignored.

jl5 FILENAME MISSING OR INVALID. SELECT IGNORED.

A SELECT statement either contains no
user name or the the user name is
invalid. The SELECT statement is
ignored.

g16 USAGE CONFLICTS WITH GROUP USAGE. USES GROUP.

The usage specified for this
differs from the usage stated
higher group level. The group
usage is used.

jl7 ILLEGAL NUMERIC DATANAME IN .STRING.

item
at a
level

A numeric
statement
Fatal.

data item in a STRING
has an illegal description.

g2g .ALL. ILLEGAL IN CONTEXT OF .STRING. STATEMENT.

An ALL literal has been used in a STRING
statement. Fatal.

g21 SYNTAX ERROR OR NO TERMINATOR. CLAUSES SKIPPED.

A SELECT statement is missing its
terminating period, or an error causes
the statement to be processed before all
clauses were found. The SELECT
statement is ignored.

H-2

DIAGNOSTIC ERROR MESSAGES

~22 NUMERIC LITERAL ILLEGAL IN THIS STATEMENT.

A STRING, UNSTRING, or INSPECT statement
contains a numeric literal. Fatal.

~23 SENDING LIST OMITTED IN .STRING. STATEMENT.

A STRING statement contains
fields before a DELIMITED
Fatal.

no sending
BY phrase.

~24 MORE THAN ONE FILENAME IN .ASSIGN.

The non-numeric literal
clause contains more
specification. Only
specification is used.

of
than

the

an ASSIGN
one file

first

~25 ILLEGAL DATANAME FOLLOWS .INTO. IN .STRING.

The receiving field of a
statement is invalid~ Fatal~

~26 SUBSCRIPTING DEPTH EXCEEDS 3. OVER 3 IGNORED.

STRING

The OCCURS clause is nested more than
three deep. The clause is ignored.

~27 VALUE ILLEGAL IN OCCURS ITEM. IGNORED.

A VALUE clause appears in an item
an OCCURS clause or in an
subordinate to an OCCURS clause.
VALUE clause is ignored.

~3~ VALUE ILLEGAL IN REDEFINES ITEM. IGNORED.

with
item

The

A VALUE clause appears in an item that
either contains a REDEFINES clause or is
subordinate to an item with a REDEFINES
clause.

~31 NO TERMINATOR FOR .IO CONTROL. PARAGRAPH.

The I-0-CONTROL paragraph is not
terminated by a period. The terminator
is assumed present.

~32 .MAP. NO LONGER APPLICABLE. IGNORED.

An APPLY clause with the MAP option is
not applicable for this version and
future versions of the compiler. The
APPLY clause is ignored.

~33 AN IO CONTROL CLAUSE WITHOUT FILES.

A file-name is missing in a clause of
the I-0-CONTROL paragraph. The clause
is ignored.

H-3

DIAGNOSTIC ERROR MESSAGES

~34 SYNTAX ERROR IN .APPLY.

An APPLY clause has illegal syntax. The
clause is ignored.

~35 INVALID ACCESS MODE. TREAT AS SEQUENTIAL.

The SELECT statement contains an invalid
ACCESS mode. SEQUENTIAL ACCESS mode is
assumed.

~36 INVALID FILE ORGANIZATION. TREAT AS SEQUENTIAL.

~37 NO SELECT STATEMENTS.

The SELECT statement contains an invalid
ORGANIZATION specification. SEQUENTIAL
organization is assumed.

A FILE-CONTROL paragraph either contains
no SELECT statements or none of those
present is valid. The FILE-CONTROL
paragraph is ignored.

~4~ .ASSIGN. OMITTED FROM SELECT. SELECT IGNORED

~41 DECIMAL PLACES TRUNCATED.

A SELECT statement contains no ASSIGN
clause. The SELECT statement is
ignored.

Decimal places have been truncated from
a numeric literal during conversion for
use as an integer. The integer
positions are used.

~42 INTEGER EXPECTED, ZERO ASSUMED.

An integer literal was expected, but
fractional positions were found. The
literal is ignored and a value of zero
is assumed.

~43 INTEGER VALUE TOO BIG. LARGEST VALUE USED.

A numeric literal is too big for
conversion as an integer in the given
context. A value of 32,767 is used.

~44 ERROR IN DATA RECORDS CLAUSE. CLAUSE SKIPPED.

The word DATA is not followed by RECORD
or RECORDS in the DATA RECORDS clause.
The DATA RECORDS clause is ignored.

~45 ERROR IN LABEL RECORDS CLAUSE. CLAUSE SKIPPED.

The word LABEL is not followed by RECORD
or RECORDS in the LABEL RECORDS clause.
The LABEL RECORDS clause is ignored.

H-4

j46

j47

DIAGNOSTIC ERROR MESSAGES

NO INTEGER IN BLOCK

BAD VALUE IN BLOCK

CLAUSE. CLAUSE SKIPPED.

The BLOCK clause does not contain a
numeric literal. The BLOCK clause is
ignored.

CLAUSE. CLAUSE SKIPPED.

The numeric literal in the BLOCK clause
causes an illegal block size. The block
size in bytes must be greater than j and
less than 32768. The BLOCK clause is
ignored.

jS~ NO INTEGER IN RECORD CLAUSE. CLAUSE SKIPPED.

The RECORD CONTAINS clause does not
contain a numeric literal. The RECORD
CONTAINS clause is ignored.

jSl INVALID VALUE IN RECORD CLAUSE. CLAUSE SKIPPED.

The numeric literal in the RECORD
CONTAINS clause is not greater than
zero. The RECORD CONTAINS clause is
ignored.

j52 INVALID FILENAME. FD SKIPPED.

The word following FD is not valid as a
file-name. The FD entry is ignored.

j53 FD TERMINATOR MISSING. ASSUMED PRESENT.

The file description entry contains no
period terminator. The error is
ignored.

j54 KEY WORD EXPECTED. REMAINING CLAUSES SKIPPED.

A keyword that begins a clause, such as
BLOCK, LABEL, DATA, etc., is missing.
The remainder of the FD entry is
ignored.

jSS NO LABEL CLAUSE IN FD .. STANDARD. ASSUMED.

j56 NO SELECT. FILE DELETED.

The FD entry contains no LABEL RECORD
clause. LABEL RECORD IS STANDARD is
assumed.

The FD entry's file-name has no
corresponding SELECT statement. The FD
entry is ignored. All references to the
file-name will be diagnosed as
undefined.

H-5

DIAGNOSTIC ERROR MESSAGES

~57 ALLOCATED SPACE EXCEEDS LARGEST RECORD.

The maximum record size specified by the
RECORD CONTAINS clause exceeds the space
required for any ~l entry under the same
file. The value specified by the RECORD
CONTAINS clause is used.

~6f RECORD AREA EXTENDED TO CONTAIN LARGEST RECORD.

The space required by the largest fl
record under a file description exceeds
the space required by the RECORD
CONTAINS clause in the FD entry. The
value derived from the fl record
description is used.

f61 NO RECORD AREA. FILE DELETED.

No record area is allocated for a file
description. The file description is
ignored. All references to the file
will be diagnosed as undefined.

~62 ILLEGAL DATANAME FOLLOWS .WITH POINTER. PHRASE.

The data item used as a pointer in a
STRING or UNSTRING statement is illegal.
Fatal.

f63 ILLEGAL SYNTAX IN .STRING. STATEMENT.

A STRING statement contains
syntax. Fatal.

illegal

f64 77 ILLEGAL IN FILESECTION. CHANGED TO ~l.

A 77 level item description has been
found in the FILE SECTION. The 77 level
is treated as an fl level.

~65 ILLEGAL WORD FOLLOWS .DELIMITED BY. PHRASE.

A data-name or literal is expected
following a DELIMITED BY phrase in a
STRING or UNSTRING statement. Fatal.

f66 ILLEGAL USE OF .ALL •. IGNORED.

In the VALUE clause,
11teral is detected.
the compiler.

f67 CONDITION NAME MISSING OR INVALID. 88 IGNORED.

an ALL numeric
ALL is ignored by

The condition-name in an 88 level entry
is either missing or invalid. The
entire entry is ignored.

H-6

DIAGNOSTIC ERROR MESSAGES

i1i TWO INDEXED KEYS START AT SAME OFFSET IN RECORD.

The leftmost character position of the
RECORD KEY or ALTERNATE RECORD KEY
data-name corresponds to the leftmost
character position of some other RECORD
KEY or ALTERNATE RECORD KEY data-name.
The clause is ignored.

i11 .REDEFINES. ON i1 LEVEL IN FILE SECTION INVALID.

The REDEFINES clause is present on the
i1 level in the FILE SECTION, where
redefinition is implicit. REDEFINES
clause is ignored.

i12 PICTURE IGNORED FOR INDEX ITEM.

An item defined as USAGE INDEX has a
PICTURE clause. The PICTURE clause is
ignored.

i13 NONNUMERIC PIC ON COMP ITEM. TREATED AS DISPLAY.

An item defined with non-DISPLAY usage
has a picture-s*:r ing with non-numeric
characters. The stated usage is
ignored. The item is treated as USAGE
DISPLAY.

i74 SUBSCRIPT OUT OF RANGE. ASSUME 1.

A literal subscript is either less than
1 or greater than the maximum allowable
value. A value of 1 is used.

i1s .STATUS. OMITTED FROM .FILE STATUS .• ASSUMED.

The FILE STATUS clause has incorrect
syntax. The error is ignored.

i16 SOME FILES WITHOUT POSIT. NO. IN MUL. FILE TAPE.

A MULTIPLE FILE TAPE clause contains
file-names with POSITION clauses. Not
all the file-names contain POSITION
clauses. The error is ignored. File
searching during OPEN will find the
file.

i11 .MULTIPLE FILE TAPE. SYNTAX ERROR.

A MULTIPLE FILE TAPE clause contains a
syntax error. The clause is ignored.

ii~ OPERAND CLASSES IN CONFLICT.

One or more operands in a statement have
an invalid class. Fatal.

H-7

DIAGNOSTIC ERROR MESSAGES

lgl POSSIBLE RECEIVING FIELD TRUNCATION.

A MOVE statement results in right-hand
truncation of the receiving field value.
This is not an error and is ignored.

112 TOO FEW SOURCE FIELDS FOR ADD .GIVING ..

At least two valid source operands must
appear in an ADD .•• GIVING statement.
Fatal.

113 .EXIT. WAS NOT THE ONLY VERB IN PARAGRAPH.

An EXIT statement is not the only
statement in a paragraph. The EXIT
statement is ignored.

114 SENDING ITEM INVALID OR OMITTED.

A MOVE statement contains an invalid or
missing sending operand. Fatal.

115 SENDING ITEM NOT FOLLOWED BY .TO ..

A MOVE
keyword
operand.

statement does not have the
TO following the sending
Fatal.

116 RECEIVING ITEM INVALID OR OMITTED.

A MOVE statement has no valid receiving
operand. Fatal.

li7 INVALID CLASS FOR DESTINATION FIELD.

The rece1v1ng operand of an ADD or
SUBTRACT statement is not numeric or
numeric edited. Fatal.

11~ RELATIVE OR RECORD KEY OR STATUS NAME INVALID.

111 .STOP. SYNTAX ERROR.

The name referenced in a RELATIVE KEY,
RECORD KEY, ALTERNATE RECORD KEY or FILE
STATUS clause is invalid. The clause is
ignored.

The STOP statement is not followed by a
literal or the word RUN. Fatal.

112 .SIZE ERROR. STATEMENT INCORRECT.

The word ERROR is not found in the ON
SIZE.clause. Fatal.

113 .PROCEDURE DIVISION. OMITTED.

The source program does not contain a
PROCEDURE DIVISION. Fatal.

H-8

DIAGNOSTIC ERROR MESSAGES

114 INTERMEDIATE RESULT TOO LARGE. HIGH ORDER TRUNC.

An arithmetic statement calls for an
intermediate result in excess of 18
digits. The intermediate result is
truncated on the left to 18 digits, with
a possible loss of high-order, non-zero
digits at execution time.

115 INTERMEDIATE RESULT TOO LARGE. LOW ORDER TRUNC.

An arithmetic expression calls for an
intermediate result in excess of 18
digits. The intermediate result is
truncated on the right to 18 digits,
with a possible loss of low-order,
non-zero digits at execution time.

116 .DIVISION. OMITTED AFTER .PROCEDURE .•

The word DIVISION is missing in the
PROCEDURE DIVISION header. The error lS
ignored.

117 TERMINATOR MISSING AFTER DIVISION HEADER.

The period terminator is missing from a
division header. The error is ignored.

12~ LITERAL INCOMPATIBLE WITH ATTEMPTED USAGE.

Conversion of a literal from one form to
another has failed. Fatal.

121 DATANAME MUST FOLLOW .INTO. IN THIS STATEMENT.

A valid
following
statement.

data-name is not present
INTO in a STRING or UNSTRING
Fatal.

122 NUMERIC SUBJECT OR OBJECT MUST BE INTEGER.

A numeric, non-integer subject or object
is invalid in the context of this
relation condition. Fatal.

123 OPERANDS CONFLICT IN .SET ..• TO. STATEMENT.

A SET ... TO statement references invalid
operands. Fatal.

124 OPERANDS CONFLICT IN .SET ••• BY. STATEMENT.

A SET .•• BY statement references invalid
operands. Fatal.

H-9

DIAGNOSTIC ERROR MESSAGES

125 ILLEGAL FILENAME LITERAL OR FILENAME DATANAME.

An ASSIGN statement _or
statement contains
specification or
statement is ignored.

126 INVALID SUBJECT OF SIGN CONDITION.

a VALUE
an invalid

data-name.

OF ID
file

The

The subject of a sign condition is not a
valid arithmetic expression. Fatal.

127 ITEM IN TABLE MAY NOT BE USED AS A SUBSCRIPT.

A data item used as a subscript is
itself a table element. Fatal.

13~ .POINTER. MUST FOLLOW .WITH. IN THIS STATEMENT.

A STRING or UNSTRING statement has an
invalid WITH POINTER phrase. Fatal.

131 RELATIVE KEY INVALID FOR THIS FILE. IGNORED.

A RELATIVE KEY clause has been applied
to a file that does not have RELATIVE
organization. The RELATIVE KEY clause
is ignored.

132 SUBJECT OR OBJECT OMITTED IN RELATION CONDITION.

The subject or object is omitted in a
COBOL relation condition. Fatal.

133 UNIDENTIFIABLE WORD FOUND IN SUBSCRIPT.

A subscript list contains a word that is
neither a data-name nor a numeric
literal. The remainder of the list or
sentence is ignored. Fatal.

134 INVALID SUBJECT OR OBJECT IN RELATION CONDITION.

The subject or object of a relation
condition is an invalid operand. Fatal.

135 SUBSCRIPTS OMITTED. ASSUME VALUE OF 1.

A reference to a table item contains no
subscript list. Literal subscripts of 1
are supplied as defaults.

136 RELATIVE INDEX LITERAL OUT OF RANGE. INDEX USED.

The literal value of a relative index
causes an out-of-range reference to the
table. The literal value is ignored,
and only the index-name is used.

H-10

DIAGNOSTIC ERROR MESSAGES

137 SUBSCRIPTS GIVEN WHERE NOT REQUIRED. IGNORED.

A reference is made to a non-table item,
and a subscript list follows the
reference. The subscript list is
ignored.

14i TOO FEW SUBSCRIPTS GIVEN. ASSUME 1 FOR REST.

A reference to a table item contains a
subscript list with too few subscripts.
Default literal subscripts of 1 are
supplied for missing subscripts.

141 TOO MANY SUBSCRIPTS GIVEN. IGNORE EXCESS.

A reference to a table item contains too
many subscripts in the subscript list.
Extra subscripts are ignored.

142 SUBJECT AND OBJECT USAGE MUST MATCH.

A relation condition between non-numeric
operands requires the same usage for
both operands. Fatal.

143 ARITHMETIC EXPRESSION REQUIRED IN THIS CONTEXT.

An arithmetic expression is required in
the context of the COBOL statement being
compiled. The compiler has failed to
recognize the arithmetic expression in
this context. Fatal.

144 CONDITION EXPRESSION REQUIRED IN THIS CONTEXT.

A condition expression is required in
the context of the COBOL statement being
compiled~ The compiler has failed to
recognize the condition expression in
this context. Fatal.

145 ILLEGAL OPERAND FOUND IN COBOL EXPRESSION.

An invalid data-name or literal has been
found in the COBOL statement being
compiled. The class or USAGE of the
data item may be invalid here as a
reference in an expression. Fatal.

146 OPERATOR IS MISSING IN COBOL EXPRESSION.

An operator is omitted in the
specification of this COBOL expression.
The compiler cannot recognize this
expression as a syntactically valid
COBOL expression. Fatal.

H-11

DIAGNOSTIC ERROR MESSAGES

147 ABSOLUTE VALUE STORED.

A negative value has been supplied for
an unsigned numeric item. The absolute
value of the numeric literal is stored
in the item.

15~ ILLEGAL WORD FOUND AFTER .NOT. IN EXPRESSION.

The compiler has detected an
expression operator
keyword in the COBOL
compiled. Fatal.

151 VERB FOUND IN AREA A. ALLOWED.

following
expression

illegal
a NOT

being

A statement begins in Area A. The error
is ignored.

152 EXPECTED .RELATIVE KEY. DATANAME NOT DEFINED.

The data-name given in a RELATIVE KEY
clause has not been defined in the Data
Division.

153 .LINAGE. CLAUSE DATAITEM IS TOO LONG.

A data item named in a LINAGE clause is
declared in the Data Division with more
than four decimal integer positions of
precision.

154 PROCEDURE NAME DUPLICATES DATA NAME. ALLOWED.

A procedure
data-name.
there can
references.

name is identical to a
The error is ignored, since

be no ambiguity in legal

155 STATEMENTS FOLLOWING .GO. CAN NEVER BE EXECUTED.

A statement follows an unconditional GO
statement. The statements following the
GO are compiled, but cannot be executed.

156 NONSEQUENTIAL FILE MAY NOT BE OPTIONAL.

The SELECT
OPTIONAL only
organization.
ignorede

157 FILE HAS IO CONTROL CLAUSE CONFLICTS.

statement may specify
on files with sequential
The word OPTIONAL is

A file is given conflicting clause
specifications in the I-0-CONTROL
paragraph of the INPUT-OUTPUT SECTION.

H-12

DIAGNOSTIC ERROR MESSAGES

16j FILE REQUIRES REL. KEY. TREATED AS SEQ. ACCESS.

A file with relative organization and
random or dynamic access has no RELATIVE
KEY clause. The access mode is changed
to SEQUENTIAL.

161 INVALID INDEX DATAITEM USE IN RELATIONAL.

The compiler detects the invalid use of
an index data item reference as the
subject or object of a relation
condition. Fatal.

162 UNKNOWN WORD. SCAN TO NEXT CLAUSE.

An unknown word is encountered when a
clause keyword is expected. All words
are ignored up to the next valid clause.

163 CLAUSE DUPLICATED. SECOND OCCURRENCE USED.

164 NO FD FOR THIS SELECT.

A SELECT statement contains two
occurrences of the same clause. The
second occurrence is used.

The file-name supplied in a SELECT
statement is not further described in an
FD in the Data Division. The SELECT
statement is ignored, causing the
file-name to become undefined.

165 DIFFERENT SAME REC. AREAS FOR SAME AREA.

The compiler detects a conflict between
the SAME RECORD AREA clause and the SAME
AREA clause.

166 .READ. WITHOUT .INVALID KEY •• AT END. OR .USE.

A READ statement contains no conditional
clauses, and the file being read has no
USE procedure applied to it. Fatal.

167 IO CONTROL CLAUSE HAS FILE WITH NO .SE;ECT.

An I-0-CONTROL clause references a
file-name that was not named in a SELECT
statement. The file-name is ignored in
the I-0-CONTROL statement.

17~ INTEGER OMITTED IN .RESERVE •• DEFAULT ASSUMED.

A RESERVE clause fails to specify the
number of buffer areas to reserve. The
clause is ignored, and a default of one
area for SEQUENTIAL and RELATIVE, or two
areas for INDEXED, is supplied.

H-13

DIAGNOSTIC ERROR MESSAGES

171 INVALID SUBJECT OF CLASS CONDITION.

The subject of a class condition is not
a data item with an acceptable class.
Fatal.

172 VALUE EXCEEDS FIELD CAPACITY. TRUNCATED.

A numeric literal supplied by a VALUE
clause exceeds the length of the field~
The value is right truncated and stored
in the ·field.

173 NO DATA DIVISION STATEMENTS PROCESSED.

The Data
entries.

Division contains no valid
This is an observation only.

174 INVALID GRP LEV NUM. REST OF RECORD IGNORED.

A level-number is encountered that
terminates a previous group item, but
does not match any previous group item's
level-number. All data entries are
skipped until the next i1 level, level
indicator or header.

175 INVALID PROCEDURE NAME DEFINITION IN AREA A.

The compiler detects source text in Area
A of the Procedure Division that does
not conform to the rules for the
definition of a legitimate paragraph or
section name. Source text found in Area
A of the Procedure Division is
interpreted by the compiler as a user
attempt to define a new paragraph or
section name. The compiler supplies a
system-defined procedure name and
proceeds with the processing of the
source line text containing the invalid
Area A text. The system-defined
procedure name is transparent and, thus,
inaccessible to the user.

176 MISSING QUOTE ON CONTINUE LINE. QUOTE ASSUMED.

A non-numeric literal is continued, but
the first non-space character is not a
quote. The error is ignored by assuming
a quote in front of the first non-space
character.

177 COMPARISON OF LITERALS IS NOT PERMITTED.

A relation condition has
both subject and object.

H-14

a literal
Fatal.

as

DIAGNOSTIC ERROR MESSAGES

2iJJ COPY IGNORED WITHIN LIBRARY TEXT.

A COPY statement is encountered within
library text. The COPY statement is
ignored.

2i1 INVALID FILENAME ON COPY. COPY IGNORED.

2i2 COPY FILENAME NOT FOUND.

A COPY statement supplies a file
specification that is invalid. The COPY
statement is ignored.

A COPY statement supplies a valid file
specification, but the file cannot be
found on the specified device. The COPY
statement is ignored.

2)J3 PERIOD OMITTED AFTER .DECLARATIVES ••

The word DECLARATIVES is not followed by
a period. The error

2~4 .DECLARATIVES. OMITTED FROM .END. STATEMENT.

The word END is not followed by
DECLARATIVES. END DECLARATIVES is
assumed.

2~5 PERIOD OMITTED AFTER .END DECLARATIVES ..

The words
followed
ignored.

END
by a

2i6 SOURCE PROGRAM ENDS IN DECLARATIVES.

DECLARATIVES
period. The

are not
error is

The end of the source program occurs in
the Declaratives area. Fatal.

2i1 DATANAME MUST FOLLOW .WITH POINTER. PHRASE.

A STRING or UNSTRING statement contains
an invalid WITH POINTER phrase. Fatal.

2l)J .OVERFLOW. MUST FOLLOW .ON. IN THIS STATEMENT.

A STRING or UNSTRING statement contains
an invalid ON OVERFLOW phrase. Fatal.

211 ILLEGAL SENDING FIELD DATANAME IN .UNSTRING.

The sending field of an UNSTRING
statement has an invalid class. Fatal.

212 ILLEGAL SYNTAX IN .UNSTRING. STATEMENT.

An UNSTRING statement
syntax. Fatal.

H-15

has invalid

DIAGNOSTIC ERROR MESSAGES

213 MULTIPLE SIGN CLAUSES ON THIS ITEM.

More than one SIGN clause appears in a
data description. (SEPARATE must follow
LEADING or TRAILING.) The second clause
is used.

214 ILLEGAL SYNTAX IN COBOL EXPRESSION.

The compiler detects a syntax error of a
general nature in the COBOL expression
being compiled. Fatal.

215 SIGN CLAUSE ON NONNUMERIC ITEM.

A SIGN clause appears in a non-numeric
data description. The SIGN clause is
ignored.

216 SIGN CLAUSE APPLIED TO NONDISPLAY ITEM.

A SIGN clause appears in a numeric data
description with usage other than
DISPLAY. The SIGN clause is ignored.

217 SIGN CLAUSE APPLIED TO UNSIGNED DATAITEM.

A SIGN clause appears in a numeric data
description that has no "S" in its
PICTURE string. The SIGN clause is
ignored.

22~ ILLEGAL DELIMITING DATA ITEM IN .UNSTRING.

An UNSTRING statement references an
invalid delimiter. Fatal.

221 .ALL. FIGURATIVE CONSTANT ILLEGAL IN .UNSTRING.

An UNSTRING statement contains an ALL
literal reference. Fatal.

222 ILLEGAL RECEIVING DATANAME IN .UNSTRING.

An UNSTRING statement references a
receiving data item that is invalid.
Fatal.

223 .DELIMITED. CLAUSE REQUIRED IN THIS .UNSTRING.

An statement contains no
DELIMITED BY clause. Fatal.

224 DATANAME MUST FOLLOW .DELIMITER IN. PHRASE.

An UNSTRING statement
DELIMITER IN phrase with
reference. Fatal.

H-16

contains a
an illegal

DIAGNOSTIC ERROR MESSAGES

225 ILLEGAL DATANAME FOLLOWS .DELIMITER IN. PHRASE.

An UNSTRING statement contains a
DELIMITER IN phrase referencing a data
item that is invalid. Fatal.

226 DATANAME MUST FOLLOW .COUNT IN. PHRASE.

An UNSTRING statement contains a COUNT
IN phrase with an illegal reference.
Fatal.

227 ILLEGAL DATANAME FOLLOWS .COUNT IN. PHRASE.

An UNSTRING statement contains a COUNT
IN phrase that references an invalid
data item. Fatal.

23~ DATANAME MUST FOLLOW .TALLYING IN. PHRASE.

An UN STRING statement
m~TTVT~~ _ ___ _
..LOJ.JJ.J.l..J..L'll\,;J .1:-'LlL.Qi:><::

reference. Fatal.

231 ILLEGAL DATANAME FOLLOWS .TALLYING IN. PHRASE.

.. ~ ~
W.J..1..LJ

contains a
an

An UNSTRING statement contains a
TALLYING phrase referencing a data item
that is invalid. Fatal.

232 DATANAME MUST FOLLOW .INSPECT. VERB.

A valid data-name reference does not
follow the INSPECT keyword. Fatal.

233 ILLEGAL DATANAME FOLLOWS .INSPECT. VERB.

An INSPECT statement references a data
item that is invalid. Fatal.

234 ILLEGAL DATANAME PRECEDES .FOR. IN .INSPECT.

An INSPECT ... TALLYING statement
references a tally data item that is
invalid. Fatal.

235 .FOR. OMITTED IN .INSPECT. STATEMENT.

An INSPECT •.. TALLYING statement has
invalid syntax. Fatal.

236 DATANAME MUST FOLLOW .TALLYING. PHRASE.

An INSPECT .•• TALLYING statement does not
reference a tally data-name. Fatal.

237 ILLEGAL WORD FOLLOWS .FOR. IN .INSPECT.

An INSPECT .•• TALLYING statement does not
state a valid search condition. Fatal.

H-17

DIAGNOSTIC ERROR MESSAGES

24~ DATAITEM OMITTED AFTER .ALL .. LEADING. OR .FIRST.

An INSPECT statement does not reference
a valid search argument. Fatal.

241 .ALL. FIGURATIVE CONSTANT ILLEGAL IN .INSPECT.

An ALL literal appears in an INSPECT
statement. Fatal.

242 ILLEGAL DATANAME FOLLOWS .ALL. OR .LEADING.

An INSPECT statement does not reference
a valid search argument. Fatal.

243 ILLEGAL DATANAME FOLLOWS .BEFORE. OR .AFTER.

An INSPECT statement does not reference
a valid delimiter in the BEFORE/AFTER
phrase. Fatal.

244 ILLEGAL DATANAME FOLLOWS .BY.

An INSPECT statement does not reference
a valid replacement argument. Fatal.

245 ILLEGAL DATANAME PRECEDES .BY.

An INSPECT statement does not reference
a legal data-name or literal preceding
the BY phrase. Fatal.

246 DATAITEM OMITTED IN .BEFORE. OR .AFTER. PHRASE.

An INSPECT statement does not reference
a legal data-name or literal after the
BEFORE or AFTER phrase. Fatal.

247 ILLEGAL SYNTAX IN .INSPECT. STATEMENT.

Both the TALLYING and REPLACING keywords
are missing in the INSPECT statement.
Fatal.

25~ .BY. MUST FOLLOW .CHARACTERS. IN REPLACING LIST.

The INSPECT •.. REPLACING statement must
have CHARACTERS BY phrase completely
specified. Fatal.

251 DATAITEM OMITTED AFTER .BY. IN .INSPECT.

The INSPECT ... REPLACING statement does
not reference a legal data-name or
literal after BY. Fatal.

H-18

DIAGNOSTIC ERROR MESSAGES

252 DATAITEM FOLLOWING .BY. EXCEEDS 1 CHARACTER.

In an INSPECT •.. REPLACING statement,
when: 1) the CHARACTERS BY phrase is
specified, or 2) a figurative constant
preceding the BY keyword of the ALL,
LEADING, or FIRST phrase is specified,
the data-name or literal after the BY
keyword must be defined as one character
in length. Fatal.

253 'DATAITEMS BEFORE AND AFTER .BY. UNEQUAL IN SIZE.

In an INSPECT ••. REPLACING statement, the
data items before and after the BY
keyword of the ALL, LEADING, or FIRST
phrase must be equal in length. Fatal.

254 .BEFORE. OR .AFTER. OPERAND EXCEEDS 1 CHARACTER.

In an INSPECT ... REPLACING CHARACTERS BY
C!f-::.f-omonf-_ '- '- '-1 the data-name literal
following the BEFORE or AFTER keyword
must be one character in length. Fatal.

255 ILLEGAL WORD FOLLOWS .REPLACING. IN .INSPECT.

A legal keyword was not recognized
following REPLACING in the INSPECT
statement. Fatal.

256 .BY. OMITTED AFTER REPLACING COMPARISON OPERAND.

The keyword BY is omitted in
LEADING, or FIRST phrase
separates operands to be
Fatal.

257 TOO MANY RIGHT PARENTHESES IN COBOL EXPRESSION.

the ALL,
where it
compared.

The compiler detects an excess of right
parentheses in the COBOL expression
being compiled. Parentheses must be
specified in balanced pairs; that is, a
left parenthesis must exist for each
right parenthesis specified. Fatal.

26~ TOO MANY LEFT PARENTHESES IN COBOL EXPRESSION.

The compiler detects an excess of left
parentheses in the COBOL expression
being compiled. Parentheses must be
specified in balanced pairs; that is, a
right parenthesis must exist for each
left parenthesis specified. Fatal.

261 MISSING OPERAND IN ARITHMETIC EXPRESSION.

An operand is omitted in a
arithmetic expression. Fatal.

H-19

COBOL

DIAGNOSTIC ERROR MESSAGES

262 ILLEGAL OPERAND IN ARITHMETIC EXPRESSION.

The compiler detects an illegal operand
in a COBOL arithmetic expression. The
class or usage of the operand may be
invalid in the context as a reference in
an arithmetic expression. Fatal.

263 NONINTEGER EXPONENT FOUND IN COBOL EXPRESSION.

The compiler detects a non-integer,
numeric exponent in a COBOL arithmetic
expression. The arithmetic expression
is considered invalid. Fatal.

264 SUBJECT OMITTED IN CLASS CONDITION.

The compiler detects the omission of the
subject in a NUMERIC or ALPHABETIC class
condition. Fatal.

265 SUBJECT OMITTED IN SIGN CONDITION.

The compiler detects the omission of the
subject in a sign condition. Fatal.

266 OPERAND MISSING IN COMPLEX CONDITION.

The compiler detects the omission of an
operand in an AND or OR complex
condition. Fatal.

267 INVALID OPERAND IN COMPLEX EXPRESSION.

The compiler detects a complex condition
operand that is not a simple condition,
combined condition, or complex
condition. Fatal.

27~ ILLEGAL SYNTAX IN NEGATED SIMPLE CONDITION.

The compiler detects illegal syntax in a
COBOL negated simple condition. Fatal.

271 INVALID NEGATED SIMPLE CONDITION.

The compiler detects the application of
the NOT keyword to an invalid simple
condition. Fatal.

272 ILLEGAL SYNTAX IN .COMPUTE. STATEMENT.

The compiler detects illegal syntax in a
COMPUTE statement. The left side of the
assignment symbol or the assignment
symbQl itself may have been
omitted. Fatal.

H-20

DIAGNOSTIC ERROR MESSAGES

273 .AT END. ILLEGAL FOR RANDOM .READ.

The file is specified with either ACCESS
RANDOM or ACCESS DYNAMIC without the
word NEXT being included in the READ
statement. The AT END clause is treated
as an INVALID KEY clause.

274 INVALID KEY ILLEGAL FOR SEQUENTIAL .READ.

Either the file has ACCESS SEQUENTIAL or
the READ statement contains the word
NEXT. In either case, the INVALID KEY
clause is illegal. It is treated as an
AT END clause.

275 INDEX DATA ITEM ILLEGAL AS INDEX ON TABLE.

An index data item is used as an index
for a table. The index data item
reference is ignored. A literal
subscript of 1 replaces the index data
item reference.

276 INDEX NAME NOT DEFINED FOR THIS TABLE.

An index-name used in a subscript list
either is not defined for this table or
appears in the wrong logical position of
the subscript list for this table. The
index-name is ignored and a default
value of 1 is assumed as the subscript.

277 RELATIVE INDEX IS INVALID.

The literal component of a relative
index is zero or less in value, or is an
invalid word. Relative indexing is
ignored and only the index-name is used.

3j~ PROGRAM NAME OMITTED AFTER .CALL. VERB.

The program-name is omitted after the
key word CALL. Fatal.

3jl LINAGE ~ OR LESS THAN FOOTING.

The LINAGE clause must specify a page
body of at least one line, and the page
body size must be equal to or greater
than the footing size specified in the
FOOTING phrase.

3j2 FILE CLOSED BUT NOT OPENED.

A CLOSE statement was encountered for a
file that is not opened in this program.
Fatal.

H-21

DIAGNOSTIC ERROR MESSAGES

3j3 PRINT CONTROL ON NON SEQUENTIAL FILE. IGNORED.

An APPLY PRINT-CONTROL clause references
a file that does not have SEQUENTIAL
organization. The file-name is ignored
in the APPLY clause.

3j4 DATANAME OMITTED IN .KEY IS. PHRASE.

The KEY IS phrase of the START statement
is not followed by a data-name. The
prime RECORD KEY data-name is assumed
present.

3j5 SECTION OR PARAGRAPH NAME ·MISSING.

The Procedure Division does not start
with a section or paragraph name, or a
section header is not followed by a
paragraph name. Fatal.

3j6 .PROCEDURE. MISSING IN .USE. STATEMENT. ASSUMED.

The keyword PROCEDURE is missing in the
USE statement. It is assumed and
processing is continued.

3j7 .START. WITHOUT .INVALID KEY. OR .USE.

The INVALID KEY option is missing from
the START statement, or no USE procedure
is declared for the referenced file.
Fatal.

31~ .WRITE. WITHOUT .INVALID KEY. OR .USE.

The INVALID KEY option is missing from
the WRITE statement, or no USE procedure
is declared for the referenced file.
Fatal.

311 DATA DIVISION MUCH TOO LARGE.

Too much buffer space is being used for
the files in this program. Too many
files are declared to be OPEN
simultaneously. Fatal.

H-22

DIAGNOSTIC ERROR MESSAGES

312 .REDEFINES. SPECIFIES INVALID REDEFINITION.

The compiler detects the invalid
application of REDEFINES to a data
description entry that contributes new
character positions between the data
description entry containing the
REDEFINES clause and the item being
redefined. Also, the source of error
may be the definition of another data
description entry with a lower level
number appearing between the data
description entry containing the
REDEFINES clause and the item being
redefined. The compiler ignores the
REDEFINES clause and continues
processing the data description entry.

313 ILLEGAL TO REDEFINE ANOTHER REDEFINITION.

The REDEFINES clause specifies the
redefinition of a data item whose data
description entry contains a REDEFINES
clause itself. The compiler ignores the
REDEFINES clause and continues
processing the data description entry.

314 ILLEGAL TO REDEFINE A COBOL TABLE.

The REDEFINES clause specifies the
redefinition of a data item whose data
description entry contains an OCCURS
clause. The compiler ignores the
REDEFINES clause and continues
processing the data description entry.

315 .REDEFINES. APPLIED'TO VARIABLE LENGTH DATAITEM.

The compiler detects an application of
the REDEFINES clause to a data item
whose length is variable at run time
because it has a subordinate data item
whose data description entry contains an
OCCURS DEPENDING ON clause. The
application of the REDEFINES clause to
such a data item is syntactically
invalid. The compiler ignores the
REDEFINES clause and continues
processing the data description entry.

316 .OCCURS DEPENDING ON. ILLEGAL IN REDEFINITION.

The compiler detects a redefinition that
contains a data description entry
declared with an OCCURS DEPENDING ON
clause. The OCCURS DEPENDING ON clause
causes the redefinition to contain a
data item whose length is variable at
run time. The DEPENDING ON phrase is
ignored and processing continues.

H-23

DIAGNOSTIC ERROR MESSAGES

317 PICTURE EXCEEDS 3j CHARACTERS. PIC X ASSUMED.

The unexpanded PICTURE string exceeds 3j
characters in length. The compiler
ignores the user-supplied PICTURE and
treats the data item as alphanumeric
with a "PICTURE X" declaration.

32j FILENAME MUST FOLLOW .CLOSE VERB.

The data item following the CLOSE verb
was not a file-name. Fatal.

321 .NO. MUST FOLLOW .WITH. IT IS ASSUMED.

The keyword NO is missing in the WITH NO
REWIND phrase of the CLOSE statement.
NO is assumed present.

322 .REWIND. MUST FOLLOW .NO. IT IS ASSUMED.

The WITH NO REWIND phrase of the CLOSE
statement must be completely specified.
It is assumed present.

323 .REMOVAL. MUST FOLLOW .FOR. IT IS ASSUMED.

The FOR REMOVAL phrase of the CLOSE
statement must be completely specified.
It is assumed present.

324 .LOCK. OMITTED AFTER .WITH. IT IS ASSUMED.

The keyword WITH in a CLOSE statement is
recognized but is not followed by one of
the keywords NO or LOCK. The WITH LOCK
phrase is assumed present.

325 DATANAME SPECIFIED WHERE FILENAME EXPECTED.

The name used in an I/O verb to
reference a file was not a file name but
was some other data-name. Fatal.

326 FILENAME MUST FOLLOW MODE SPEC. IN .OPEN.

The OPEN statement does not reference a
valid file name where a file-name
reference is expected. Fatal.

327 ILLEGAL MODE SPECIFIED AFTER .OPEN. VERB.

One of the OPEN mode keywords INPUT,
OUTPUT, I-0, or EXTEND is required
immediately after the OPEN verb. Fatal.

33j .END. MUST FOLLOW .AT •• IT IS ASSUMED.

The keyword END was omitted in the AT
END phrase of the READ statement. The
AT END phrase is assumed present.

H-24

DIAGNOSTIC ERROR MESSAGES

331 FILENAME MUST FOLLOW .READ. VERB.

Either the file-name was omitted
following the READ verb or the data item
following the READ verb is not a valid
file-name reference. Fatal.

332 DATANAME OMITTED AFTER .INTO. IN .READ.

The data-name reference following the
INTO keyword of the READ statement was
omitted. Fatal.

333 RECORDNAME MUST FOLLOW .WRITE. OR .REWRITE.

The i1 record-name reference immediately
following the WRITE or REWRITE verb was
omitted. Fatal.

334 STATEMENT IGNORED DUE TO ILLEGAL RECORDNAME.

The data-name immediately following the
WRITE or REWRITE verb is not a valid 11
record-name reference. Fatal.

335 .ADVANCING. OPTION OMITTED IN .WRITE. 1 ASSUMED.

A data-name reference, numeric integer
literal reference, or the keyword PAGE
was not recognized in the BEFORE/AFTER
ADVANCING phrase of the WRITE statement.
A numeric integer literal value of 1 is
assumed.

336 .EOP. MUST FOLLOW .AT .. IT IS ASSUMED.

The keyword EOP was omitted in the AT
EOP phrase of the WRITE statement. The
AT EOP phrase is assumed present.

337 DATANAME OMITTED AFTER .FROM.

The data-name reference following the
FROM keyword of the WRITE or REWRITE
statement was omitted. Fatal.

34i .ADVANCING. INTEGER TOO BIG. TRUNCATED TO 63.

The numeric integer in the BEFORE/AFTER
ADVANCING phrase of the WRITE statement
is greater than 63. 63 is assumed.

341 .NO REWIND. ILLEGAL WITH .IO. OR .EXTEND. MODE.

An OPEN statement with the I-0 or EXTEND
mode specified cannot have the NO REWIND
phrase also specified. Fatal.

H-25

DIAGNOSTIC ERROR MESSAGES

342 ILLEGAL .ADVANCING. DATANAME. 1 IS ASSUMED

The data-name in the BEFORE/AFTER
ADVANCING phrase of the WRITE statement
is not an elementary numeric integer
data-name reference. A numeric integer
literal value of 1 is assumed.

343 4 FILENAME MUST FOLLOW .DELETE. VERB.

Either the file-name was omitted
following the DELETE verb or the data
item following the DELETE verb is not a
v~lid file-name reference. Fatal.

344 FILENAME MUST FOLLOW .START. VERB.

Either the file name was omitted
following the START verb or the data
item following the START verb is not a
valid file name reference. Fatal.

345 .LESS. OMITTED AFTER .NOT. IN .START. ASSUMED.

The keyword LESS is omitted after NOT in
the relational condition of the START
statement. LESS is assumed present.

346 DATANAME OMITTED IN .KEY IS. PHRASE. ASSUMED.

The RELATIVE KEY data-name for the
referenced file was omitted in the KEY
IS phrase of the START statement. The
RELATIVE KEY data-name is assumed
present.

347 RELATIONAL WORD OMITTED AFTER .KEY IS. PHRASE.

None of the relational keywords EQUAL,
GREATER, or NOT was recognized following
the KEY IS phrase of the START
statement. Fatal.

35~ TERMINATOR IGNORED IN .IO CONTROL. PARAGRAPH.

A clause is terminated by a period, but
a header does not follow in Area A. The
period is ignored. The compiler assumes
it is still in the I-0-CONTROL
paragraph.

351 TERMINATOR IGNORED IN .SPECIAL NAMES. PARAGRAPH

A clause is terminated
is not followed by a
The period is ignored,
continues processing
paragraph.

H-26

by a period, but
header in Area A.
and the compiler
the SPECIAL-NAMES

DIAGNOSTIC ERROR MESSAGES

352 .NATIVE. MISSING IN SPECIAL NAMES CLAUSE.

The alphabet-name clause does not
contain NATIVE or STANDARD-1. The
alphabet-name clause is ignored.

353 SYNTAX ERROR IN .OBJECT COMPUTER. PARAGRAPH.

The OBJECT-COMPUTER paragraph contains
an unrecognizable word. The compiler
scans over all words until a word is
found in Area A.

354 TERMINATOR OMITTED IN .OBJECT COMPUTER. PARA.

The OBJECT-COMPUTER paragraph is not
terminated by a period. The compiler
scans over all words until a word is
found in Area A.

355 DATANAME FOLLOWING .KEY IS. PHRASE IS ILLEGAL.

The data-name following the KEY IS
phrase of the START statement is not a
RECORD KEY associated with the
referenced indexed file, nor is it
subordinate to a RECORD KEY whose
leftmost character position corresponds
to its own leftmost character position.
Fatal.

356 INVALID USAGE ON CONDITIONAL VARIABLE.

The level 88 condition variable cannot
be defined as USAGE INDEX.

357 ILLEGAL SEPARATOR IN COBOL STATEMENT. IGNORED.

An illegal character was detected
between two consecutive words of a COBOL
statement. The illegal character is
ignored.

36i ILLEGAL CHARACTER FOUND WITHIN A COBOL WORD.

Illegal characters were found in an
alphanumeric COBOL word, but not in an
alphanumeric literal. The illegal
characters are replaced by dollar signs
in the internal representation of the
COBOL word.

361 UNRECOGNIZABLE TEXT FOUND IN COBOL STATEMENT.

In scanning the source text, the
compiler was unable to recognize an
alphanumeric COBOL word (a keyword or
user-defined word), an alphanumeric
literal, or a numeric literal. The
error is not internally corrected and
usually will cause further error
messages.

H-27

DIAGNOSTIC ERROR MESSAGES

362 COBOL WORD BEGINS WITH OR ENDS IN HYPHEN.

In attempting to recognize a keyword or
user-defined word, the compiler has
detected that the COBOL word begins or
ends with a hyphen.

363 NONNUMERIC LITERAL TOO LONG. TRUNCATED TO MAX.

An alphanumeric literal greater tnan 132
characters in length is detected. The
literal is truncated on the right,
retaining the first 132 characters as
the literal.

364 COBOL SOURCE LINE TOO LONG. TRUNCATED TO MAX.

The indicated COBOL source line contains
more than 65 characters in terminal
format. The excess characters are
ignored, and only those characters in
the printed COBOL source line are
retained.

365 .BY. OMITTED IN REPLACING OPTION. COPY IGNORED.

The keyword BY was not found in a
COPY ••• REPLACING statement. The
statement is ignored.

366 TERMINATOR OMITTED IN .COPY. IT IS ASSUMED.

The required period terminating the COPY
statement is omitted. It is assumed
present.

367 .LINAGE. CLAUSE DATANAME MUST BE AN INTEGER.

A data-name referenced in the· LINAGE
clause of the FILE SECTION is defined
with decimal places in the
WORKING-STORAGE SECTION.

37j .LINAGE.CLAUSE DATANAME MUST BE UNSIGNED.

A numeric data-name referenced in the
LINAGE clause of the FILE SECTION is
defined as a signed data item in the
WORKING-STORAGE SECTION.

371 POSSIBLE HIGH ORDER RECEIVING FIELD TRUNCATION.

Truncation of high-order information
during a MOVE or an arithmetic operation
upon a receiving field is possible.
This.is an observation only.

H-28

DIAGNOSTIC ERROR MESSAGES

372 POSSIBLE LOW ORDER RECEIVING FIELD TRUNCATION.

Truncation of low-order information
during a MOVE or an arithmetic operation
upon a receiving field is possible.
This is an observation only.

373 PD HEADER NOT FOLLOWED BY AN AREA A WORD.

The word following the PROCEDURE
DIVISION header does not begin in Area
A. The compiler scans over all words
until a word is found in Area A.

374 OPEN OPTIONAL FILES ONLY IN .INPUT. MODE.

An OPTIONAL file can be OPENed in INPUT
mode only. The compiler assumes that
the OPTIONAL file is OPENed in INPUT
mode.

375 EXPECTED .FILE STATUS. DATANAME NOT DEFINED.

A data-name referenced in a FILE STATUS
phrase of a SELECT clause in the
FILE-CONTROL paragraph is not defined in
the WORKING-STORAGE SECTION of the DATA
DIVISION.

376 EXPECTED .VALUE OF ID. DATANAME NOT DEFINED.

The data=name referenced in a VALUE OF
ID clause of an FD is not defined in the
WORKING-STORAGE SECTION of the DATA
DIVISION. Fatal.

377 EXPECTED .LINAGE. CLAUSE DATANAME NOT DEFINED.

A data-name referenced in the LINAGE
clause of the FILE SECTION is not
defined in the WOR~ING-STORAGE SECTION
of the DATA DIVISION.

4ii .RELATIVE KEY. DATANAME HAS INVALID CLASS.

A data-name referenced in a RELATIVE KEY
phrase of a SELECT clause in the
FILE-CONTROL paragraph is defined with
non-numeric class in the WORKING-STORAGE
SECTION.

4il .RELATIVE KEY. DATANAME HAS INVALID CLASS.

A data-name referenced in a RELATIVE KEY
phrase of a SELECT clause must not be
defined with INDEX usage in the
WORKING-STORAGE SECTION.

H-29

DIAGNOSTIC ERROR MESSAGES

4~2 .RELATIVE KEY. DATAITEM IS TOO LONG.

4,3 .RELATIVE KEY. DATANAME

4,4 .FILE STATUS. DATANAME

A numeric integer data-name referenced
in a RELATIVE KEY phrase is defined with
more than eight digits of precision in
the WORKING-STORAGE SECTION.

MUST BE AN INTEGER.

A numeric data-name referenced in a
RELATIVE KEY phrase is defined with
decimal places in the WORKING-STORAGE
SECTION.

HAS INVALID CLASS.

A data-name referenced in a the FILE
STATUS phrase of a SELECT clause must be
defined in with DISPLAY usage in the
WORKING-STORAGE SECTION.

4,5 .FILE STATUS. DATA NAME HAS INVALID USAGE.

A data-name referenced in a FILE STATUS
phrase of a SELECT clause is defined
with DISPLAY USAGE in the
WORKING-STORAGE SECTION.

4,6 LENGTH OF .FILE STATUS. DATAITEM IS ILLEGAL.

An alphanumeric data-name referenced in
a FILE STATUS phrase of a SELECT clause
must be defined in the WORKING-STORAGE
SECTION as an alphanumeric variable
consisting of two characters.

4,7 .VALUE OF ID. DATANAME HAS INVALID CLASS.

A data-name referenced in a VALUE OF ID
clause of an FD is defined with
non-alphanumeric class in the
WORKING-STORAGE SECTION.

41~ .VALUE OF ID. DATANAME HAS INVALID USAGE.

A data-name referenced in a VALUE OF ID
clause of an FD must be defined with
DISPLAY usage in the WORKING-STORAGE
SECTION.

411 LENGTH OF .VALUE OF ID. DATAITEM IS ILLEGAL.

An alphanumeric data-name referenced in
a VALUE OF ID clause of an FD must be
defined in the WORKING-STORAGE SECTION
as an alphanumeric variable whose
length, L, falls in the range 9<=L<=4~
characters.

H-30

DIAGNOSTIC ERROR MESSAGES

412 .LINAGE. CLAUSE DATANAME

413 .LINAGE. CLAUSE DATANAME

HAS INVALID CLASS.

A data-name referenced in the LINAGE
clause of the FILE SECTION is defined
with non-numeric class in the
WORKING-STORAGE SECTION.

HAS INVALID USAGE.

A data-name referenced in the LINAGE
clause of the FILE SECTION must be
defined with COMPUTATIONAL USAGE in the
WORKING-STORAGE SECTION.

414 INVALID RECEIVING OPERAND IN .SET •. IGNORED.

A receiving operand of a SET statement
is invalid. Fatal.

415 NO RECEIVING OPERAND SPECIFIED IN .SET .•

No receiving operands are specified in a
SET statementG FatalG

416 OMITTED OR ILLEGAL OPERAND AFTER .TO. IN .SET ..

A SET statement has no valid sending
operand. Fatal.

417 ILLEGAL SYNTAX IN .SET. STATEMENT.

The words TO, UP or DOWN do not follow
the rece1v1ng operands of a SET
statement. Fatal.

42~ .BY. MUST FOLLOW .UP. OR .DOWN .. ASSUMED.

The keyword BY does not follow the word
UP or DOWN in a SET statement. BY is
assumed present.

421 OMITTED OR ILLEGAL OPERAND AFTER .BY. IN .SET •.

422 NO OPERANDS SPECIFIED

The operand following the UP BY or DOWN
BY phrase in a SET statement is invalid
or omitted. Fatal.

No operands were recognized following
the keyword DISPLAY. Fatal.

423 SETTING INDEX NAME OUT OF RANGE .. SET. IGNORED.

A SET statement is attempting to set an
index name using a literal that is too
large. Fatal.

H-31

DIAGNOSTIC ERROR MESSAGES

424 .IF. TRUE PATH OMITTED. ASSUME .NEXT SENTENCE ..

The true path code is omitted from the
IF statement. NEXT SENTENCE is assumed
as the true path of the IF statement.

425 CONFLICTING SIGN SYMBOLS IN PICTURE STRING.

The compiler recognizes both the + and -
sign symbols in this PICTURE string.
The compiler ignores the user-supplied
PICTURE and treats the data item as
alphanumeric with a "PICTURE X"
declaration.

426 ZERO SUPPRESSION CONFLICTS IN PICTURE STRING.

The compiler recognizes both the z and *
zero suppression symbols in this PICTURE
string. The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

427 ILLEGAL CHARACTER IN THE PICTURE STRING.

A character that is not in the PICTURE
string character set is recognized in
this PICTURE by the compiler. The
compiler ignores the user-supplied
PICTURE and treats the data item as
alphanumeric with a "PICTURE X"
declaration.

43~ .BLANK WHEN ZERO. CONFLICTS WITH ZERO SUPPRESS.

A BLANK WHEN ZERO clause is recognized
with a zero suppression field specified
in the PICTURE string. The compiler
ignores the BLANK WHEN ZERO clause and
continues with its processing.

431 PARENTHESIZED SPECIFIER EXCEEDS 18 DIGITS.

The specification contained inside the
parentheses of a PICTURE string exceeds
18 digits in length. The compiler
ignores the user-supplied PICTURE and
treats the data item as alphanumeric
with a "PICTURE X" declaration.

432 SPECIFIER MISSING INSIDE PARENTHESES.

The specification contained inside
parentheses of a PICTURE string is
missin9. The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

H-32

DIAGNOSTIC ERROR MESSAGES

433 ILLEGAL SYMBOL PRECEDES LEFT PAREN. IN PICTURE.

The compiler recognizes an s, v, CR, DB,
or "." character preceding a left
parenthesis in a PICTURE string. The
error is ignored and processing
continues.

434 TERMINATOR OMITTED IN .NOTE. PARAGRAPH.

The compiler detected a NOTE paragraph
that does not end with a period.

435 INVALID OPERAND IN .VARYING. OR .AFTER. PHRASE.

The expected operand is not a valid name
reference in the VARYING or AFTER phrase
of this PERFORM VARYING statement.
Fatal.

436 INVALID OPERAND IN .FROM. OR .BY. PHRASE.

The FROM or BY phrase of a PERFORM
VARYING statement does not contain a
valid operand reference. Fatal.

437 TOO MANY .AFTER. PHRASES IN .PERFORM. STATEMENT.

The compiler detects more than two AFTER
phrases in the PERFORM VARYING statement
being compiled. Fatal.

44~ .FROM. OR .BY. OR .UNTIL. MISSING IN PERFORM.

The compiler detects the omission of the
keywords FROM, BY, or UNTIL in the
PERFORM VARYING statement. Fatal.

441 ILLEGAL CONDITION EXPRESSION IN THE PERFORM.

The compiler detects an invalid
condition expression in the PERFORM
statement. Fatal.

442 NONPOSITIVE LITERAL IN .FROM. OR .BY. PHRASE.

The compiler detects a non-positive,
numeric integer literal in this PERFORM
statement. Fatal.

443 INVALID RELATION CONDITION IN .SEARCH ALL.

The compiler detects either a syntax
error or an invalid operand in the
restricted form of a relation condition
in the SEARCH ALL statement. Fatal.

H-33

DIAGNOSTIC ERROR MESSAGES

444 NONINTEGER DATA CONFLICTS WITH INDEXNAME USAGE.

The compiler detects a non-integer data
item reference in a PERFORM VARYING
statement in which the VARYING, AFTER,
and/or FROM phrase contains an
index-name reference. Fatal.

445 IMPLICIT REFERENCE TO BAD CONDITION VALUES.

Through a reference to a condition-name,
the compiler detects a reference to an
associated condition-value that is
improperly declared in the Data
Division. Fatal.

446 IMPLICIT REFERENCE TO BAD CONDITION VARIABLE.

Through a reference to a condition-name,
the compiler detects that the associated
condition-variable is improperly
declared in the Data Division. Fatal.

447 TOO MANY NAMES IN COBOL PROGRAM. RECOMPILE.

The COBOL program being compiled has too
many data-names or procedure-names.
This condition has caused a compiler
table to overflow, aborting the
compilation. The program should be
recompiled using the "/SYM:N" switch to
reserve more space for the compiler
symbol tables.

45~ REFERENCE TO UNDEFINED DATANAME. IGNORED.

The COBOL
contains a
data-name.
reference.
issued in
diagnostics
Fatal.

statement being compiled
reference to an undefined
The compiler ignores the
This diagnostic may be
conjunction with other

for the erroneous statement.

451 QUALIFIED REFERENCE ILLEGAL IN THIS CONTEXT.

The compiler detects a qualified
reference in a context in which an
unqualified reference is required. The
comoiler oermits the qualified reference
in this context and continues with the
compilation of the statement containing
the reference.

H-34

DIAGNOSTIC ERROR MESSAGES

452 QUALIFIER OMITTED IN QUALIFIED REFERENCE.

A data-name is omitted after the keyword
OF or IN in a qualified reference in the
COBOL statement being compiled. The
reference is ignored. This diagnostic
may be issued in conjunction with other
diagnostics for the statement in error.

453 TOO MANY QUALIFIERS IN QUALIFIED REFERENCE.

The compiler detects more than 48
qualifiers in a qualified reference. The
excess qualifiers are ignored in the
reference.

454 UNDEFINED QUALIFIER IN QUALIFIED REFERENCE.

The compiler detects a qualified
reference in which a qualifier is a
reference to an undefined data-name. The
compiler ignores the entire qualified
reference. This diagnostic may be issued
in conjunction with other diagnostics
for the erroneous statement containing
the reference.

455 COBOL STATEMENT CONTAINS AMBIGUOUS REFERENCE.

The compiler detects a reference to
COBOL data that is not uniquely
referenceable through qualification. The
compiler uses a reference that satisfies
the reference in the text of the COBOL
program. This diagnostic may be issued
in conjunction with other diagnostics
for the statement in error.

456 DATANAME REFERENCE EXPECTED IN THIS CONTEXT.

The compiler detects a reference to a
data item that is not alphabetic,
numeric, alphanumeric-edited,
alphanumeric, or numeric-edited. The
context of this reference requires that
the reference be to one of these classes
of data items. This diagnostic may be
issued in conjunction with other
diagnostics for the statement in error.

457 ILLEGAL REFERENCE DETECTED IN THIS CONTEXT.

The compiler detects a reference to an
item that is invalid in the context of
its usage. This diagnostic may be
issued in conjunction with other
diagnostics for the statement in error.
Fatal.

H-35

DIAGNOSTIC ERROR MESSAGES

461 EXTRA OPENING QUOTE ON LITERAL IS IGNORED.

The compiler detects a superfluous quote
at the beginning of a non-numeric
literal specification. The compiler
ignores the extra quote and continues
processing the non-numeric literal.

462 PROGRAM NAME MUST BE A NONNUMERIC LITERAL.

The program-name literal
key word CALL is not
literal. Fatal.

464 LITERALS ARE ILLEGAL IN ARGUMENT LIST OF .CALL ••

following the
a nonnumeric

Literals are not allowed in the argument
list of a CALL statement. Fatal.

465 ARGUMENT LIST OMITTED AFTER .USING. IN .CALL ..

The required argument
after the key word
statement. Fatal.

47~ ILLEGAL SYNTAX IN .CODE SET. CLAUSE. IGNORED.

list is missing
USING in the CALL

A valid alphabet-name reference is
omitted in the CODE-SET clause. The
compiler ignores the CODE-SET clause and
continues to process the remainder of
the FD.

471 DATANAME IN .KEY IS. PHRASE NOT ALPHANUMERIC.

The data-name following the KEY IS
phrase in a START statement referencing
an indexed file must be alphanumeric.
Fatal.

472 .RECORD KEY. DATAITEM LENGTH GREATER THAN 255.

A data-name referenced in a RECORD KEY
or ALTERNATE RECORD KEY phrase of a
SELECT clause in the FILE-CONTROL
paragraph must be defined in the FILE
SECTION as an item whose length is less
than or equal to 255.

473 DATANAME IN .KEY IS PHRASE IS SUBSCRIPTED OR INDEX.

The data-name following the KEY IS
phrase in a READ or START statement
referencing an indexed file must not be
subscripted or indexed. Fatal.

H-36

DIAGNOSTIC ERROR MESSAGES

474 .RECORD KEY. DATAITEM MUST NOT BE A COBOL TABLE.

A data-name referenced in a RECORD KEY
or ALTERNATE RECORD KEY phrase of a
SELECT clause in the FILE-CONTROL
paragraph must not be defined in the
FILE SECTION with an OCCURS clause or be
subordinate to an item with an OCCURS
clause.

475 .RECORD. OMITTED FROM .ALTERNATE RECORD. ASSUMED.

The reserved word RECORD is missing from
the ALTERNATE RECORD KEY clause. The
error is ignored.

476 UNDEFINED .ALTERNATE RECORD KEY. DATANAME.

The data-name given in an ALTERNATE
RECORD K~Y clause has not been defined
in the Data Division.

477 .ALTERNATE RECORD KEY. CLAUSES ARE SEPARATED.

In the SELECT statement the ALTERNATE
RECORD KEY clauses are interleaved among
the other clauses. The ALTERNATE RECORD
KEY clauses should follow one another
with no intervening clauses. This error
is ignored.

sii LINKAGE SECTION ITEM APPEARS TWICE IN .USING ••

A LINKAGE SECTION data
appear more than once
phrase of a PROCEDURE
header. Fatal.

si1 ILLEGAL .SEGMENT-LIMIT. VALUE IGNORED.

item must not
in the USING

DIVISION USING

The segment-limit is not a numeric
literal or is a numeric literal whose
value is outside of allowed
segment-limit range.

si2 INTEGER 1 BEYOND AREA A TREATED AS LEVEL NUMBER.

An i1 level item was detected beyond
Area A and accepted as if in Area A.

si3 MULTIPLE PICTURES FOR SAME ITEM. LAST USED.

A data item has more than one PICTURE
clause. The compiler used the last
PICTURE clause specified.

H-37

DIAGNOSTIC ERROR MESSAGES

5~4 CLOSING PARENTHESIS MISSING IN PICTURE.

The right parenthesis is missing in the
PICTURE string. The compiler uses the
last four characters of the PICTURE
string.

5~5 NOT A SUBPROGRAM .PROGRAM. IGNORED.

An EXIT PROGRAM has been detected, but
the COBOL program being compiled is not
a subprogram. Because EXIT PROGRAM is
meaningful only in a subprogram, the
word PROGRAM is ignored, and the
statement is treated as if it were a
simple EXIT statement.

5~6 EXPANDED PICTURE STRING TOO LONG. PIC X ASSUMED.

The expansion of a PICTURE string
specification produces a string that
exceeds implementation limitations. The
compiler ignores the user-supplied
PICTURE and treats the data item as if
it had a "~ICTURE X" declaration.

5~7 SPECIFIER OMITTED BEFORE LEFT FAREN. IN PIC.

The first character of a PICTURE string
is a left parenthesis. The compiler
ignores the user-supplied PICTURE and
treats the data item as alphanumeric
with a "PICTURE X" declaration.

51~ SECTION NO. GREATER THAN 49 TREATED AS 49.

A segment number greater than 49 follows
the word SECTION. The segment is
treated as if it were 49.

511 INVALID ITEM LENGTH IN PARENTHESES OF PICTURE.

The parenthesized length specifier in a
PICTURE contains non-numeric characters.
The compiler ignores
PICTURE and treats
alphanumeric with
declaration.

512 VALUE CLAUSE NOT ALLOWED IN LINKAGE SECTION.

the user-supplied
the data item as

a "PICTURE X"

The VALUE clause cannot appear in data
items in the LINKAGE SECTION. The only
place the VALUE clause can appear in the
LINKAGE SECTION is in a condition name
definition.

513 OPERAND IN .USING. MUST BE LINKAGE SECTION ITEM.

Only level ~l or 77 LINKAGE SECTION
items may appear in the USING phrase of
a PROCEDURE DIVISION header. Fatal.

H-38

DIAGNOSTIC ERROR MESSAGES

514 MULTIPLE FLOATING FIELDS IN NUMERIC EDIT ITRM.

The PICTURE string contains multiple
floating fields. The compiler ignores
the user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

515 MULTIPLE ZERO SUPPRESS FIELDS IN PICTURE STRING.

Multiple zero suppression fields are
detected in a PICTURE string. The
compiler ignores the user-supplied
PICTURE and treats the data item as
alphanumeric with a "PICTURE X"
declaration.

516 ZERO SUPPRESSION ILLEGAL WITH FLOATING FIELD.

The PICTURE string contains both
floating and zero suppression fields.
The compiler ignores the user-supplied
PICTURE and treats the data item as
alphanumeric with a "PICTURE X"
declaration.

517 ILLEGAL SYNTAX IN PICTURE STRING.

The PICTURE string is not specified
correctly according to the rules of
PICTURE string syntax. The compiler
ignores the user-supplied PICTURE and
treats the data item as alphanumeric
with a "PICTURE X" declaration.

52~ MULTIPLE DECIMAL POINTS IN PICTURE.

The PICTURE string contains multiple
decimal point specifications (V's, P's,
or periods). The compiler ignores the
user-supplied PICTURE and. treats the
data item as alphanumeric with a
"PICTURE X" declaration.

521 OPERAND IN USING MUST BE LEVEL i1 OR 77.

522 INVALID USAGE. IGNORED.

Only level i1 or 77 LINKAGE SECTION
items may appear in the USING phrase of
a PROCEDURE DIVISION header. Fatal.

The USAGE clause contains an invalid
word. The compiler ignores the entire
USAGE clause.

H-39

523

524

DIAGNOSTIC ERROR MESSAGES

MULTIPLE USAGE CLAUSES.

MULTIPLE OCCURS CLAUSES.

LAST USED.

The defined data-name has multiple USAGE
clauses specified. The last USAGE
clause specified is used by the
compiler.

LAST USED.

The defined aaca-name has multiple
OCCURS clauses specified. The compiler
uses the last OCCURS clause specified.

525 OCCURS SPECIFICATION ERROR. 1 ASSUMED.

The integer entry of the OCCURS clause
is either non-numeric or non-integer or
is not in the range 1 to 4i95. The
compiler assumes an integer value of 1.

526 DATANAME OMITTED IN DATA DESCRIPTION ENTRY.

The data-name declaration is omitted
after a level-number in the data
description entry. The compiler supplies
a system-defined name and proceeds with
the processing of the data description
entry. The system-defined name is
transparent and, thus, inaccessible to
the user.

527 INVALID INDEX NAME. IGNORED.

The compiler did not recognize a valid
index name in the INDEXED BY phrase.
The compiler ignores the INDEXED BY
phrase.

53i USAGE OPTION NOT YET IMPLEMENTED. IGNORED.

The compiler detected COMP-1
USAGE clause. This option
implemented and is ignored. The
USAGE of DISPLAY is used
compiler.

531 TERMINATOR OMITTED AFTER DATAITEM DESCRIPTION.

in the
is not
default
by the

A data description entry in the DATA
DIVISION .is not terminated by a.period.
The compiler assumes the period is
present and continues processing.

H-40

DIAGNOSTIC ERROR MESSAGES

532 INVALID SIGN IN NUMERIC PICTURE.

The sign character S is detected in a
position other than the leading
character position of a numeric PICTURE
string. The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

533 PICTURE CLAUSE OMITTED ON ELEMENTARY ITEM.

An elementary item is recognized with
its PICTURE clause omitted in the
description. The compiler treats the
data item as alphanumeric with a PICTURE
X declaration.

534 NUMERIC ITEM EXCEEDS 18 DIGIT MAX. TRUNCATED.

A numeric field is defined
PICTURE with more than 18

in this
digits of

field is precision. The numeric
truncated to 18 digits.

535 COMP ITEM EXCEEDS 18 DIGITS. ASSIGN 4 WORDS.

A COMPUTATIONAL data item exceeds 18
digits in its specification. The
compiler truncates it and allocates four
words for its run-time storage.

536 INDEX ITEM HAS ILLEGAL CLAUSE.

The compiler recognized a JUSTIFIED,
SYNCHRONIZED, VALUE, PICTURE, or SIGN
clause on a data-item description that
has INDEX USAGE. The compiler ignores
the offensive clause.

537 NUMERIC VALUE FOR DISPLAY ITEM. IGNORED.

The VALUE clause specifies numeric value
initialization for a non-numeric
data-item that is defined with DISPLAY
USAGE. The VALUE clause is ignored.

54~ VALUE TOO LONG. TRUNCATED.

The non-numeric literal in the VALUE
clause is longer than the associated
data-item. The literal is truncated on­
the right to fit in the storage
allocated to the data-item.

541 CLAUSE DUPLICATION. IGNORED.

This clause has been
recognized for this item.
clause is ignored.

H-41

previously
The duplicate

DIAGNOSTIC ERROR MESSAGES

542 INVALID WORD IN .BLANK WHEN ZERO .• IGNORED.

The keyword ZERO was not recognized in
the BLANK WHEN ZERO clause. The entire
clause is ignored.

543 LEVEL NUMS UNEQUAL IN .REDEFINES. CLAUSE IGNORED.

A REDEFINES clause attempts to redefine
~wu items of different level numbers.
The REDEFINES clause is ignored.

544 POSSIBLE OVERLAP OF DEPENDING ON ITEM AND TABLEe

The DEPENDING ON item and variable
length table are both defined in the
LINKAGE SECTION. Because LINKAGE
SECTION items are associated with data
items appearing in a CALL statement,
there is no way at compile time to
ensure that the DEPENDING ON items and
table do not overlap. The COBOL
run-time OTS does not check for overlap
of the DEPENDING ON item and the table
during execution. It is, therefore,
your responsibility to ensure that
overlap does not occur.

545 LEVEL ILLEGAL AFTER 77. TREATED AS ~l.

An invalid level number (~2-49) follows
a 77 level item. The 77 level item is
treated as an ~l level item. This
action can cause further diagnostics if
it is not a valid group item.

546 PERIOD OMITTED AFTER .EXIT PROGRAM.

The words EXIT PROGRAM are not followed
by a period. The error is ignored.

547 .EXIT PROGRAM. NOT LASTSTMT OF SENTENCE.

An EXIT PROGRAM statement appears in a
sequence of statements within a
sentence. But, it is not the last
statement. All of the statements
following it are compiled, but can never
be executed.

55~ REDEFINING LENGTH SHOULD MATCH ORIGINAL LENGTH.

The length of a non-ii level REDEFINES
item is not the same as the length of
the item it REDEFINES. The new length
is used.

551 REDEFINITION OF .OCCURS. ITEM. IGNORED.

Items with OCCURS cannot be
redefined. REDEFINES is ignored.

H-42

DIAGNOSTIC ERROR MESSAGES

552 PROCESSING RESUMES AFTER BAD FD.

Prior to issuing this message, the
compiler discovered bad syntax in the FD
of the FILE SECTION. The compiler at
that time issued an error message
identifying the syntax error. Then the
compiler attempted to recognize another
FD, the WORKING-STORAGE SECTION header
or th~ PROCEDURE DIVISION. Upon
recognizing one of these three language
elements, the compiler issues this
diagnostic to indicate that normal
processing has resumed.

553 INVALID CLAUSE KEYWORD. OTHER CLAUSES SKIPPED.

A reserved clause keyword was expected
at this point in a data item description
entry of the DATA DIVISION, but was not
recognized by the compiler. The
compiler skips to the next level number
data item description.

554 INVALID WORD FOLLOWING .VALUE •• IGNORED.

The VALUE clause contains an invalid
word for this data description. The
entire VALUE clause is ignored.

555 VALUE CONFLICT. GROUP VALUE USED.

The VALUE clause assigns a value to an
item subordinate to a group item that
also has a VALUE clause. The
subordinate VALUE clause is ignored.

556 LEVEL NUMBER OMITTED. ITEM IGNORED.

The level number has been omitted in a
data-item description. All source text
is ignored up to and including the next
period.

557 NO VALUE AFTER CONDITION NAME. 88 IGNORED.

An 88 level condition-name has no VALUE
clause specified. The entire 88 level
data-item is ignored.

56i SYNTAX ERROR IN SWITCH CLAUSE. CLAUSE IGNORED.

The SWITCH clause has a syntax error in
its specification. The compiler ignores
the entire clause.

H-43

DIAGNOSTIC ERROR MESSAGES

561 .NO. MISSING IN ADVANCING PHRASE. ASSUMED.

The keyword NO is missing in the
ADVANCING phrase of the DISPLAY
statement. NO is assumed present.

562 .ADVANCING. MISSING AFTER .NO •. ASSUMED.

The keyword ADVANCING is missing in the
ADVANCING phrase of the DISPLAY
statement. ADVANCING is assumed
present.

563 DUPLICATE DATANAME DECLARATION DETECTED.

In the ENVIRONMENT DIVISION and/or DATA
DIVISION, a data-name is defined that is
not uniquely referenceable even with
complete qualification.

564 ILLEGAL PARAGRAPH HEADER ID DIV. PAR IGNORED.

An illegal paragraph header appears in
the IDENTIFICATION DIVISION. The
paragraph is ignored.

565 ILLEGAL PARAGRAPH HEADER ENV DIV. PAR IGNORED.

An illegal paragraph header appears in
the ENVIRONMENT DIVISION. The paragraph
is ignored.

566 NUMERIC LITERAL ILLEGAL ON GROUP ITEM. IGNORED.

A numeric literal is illegal in the
VALUE clause of a group item. The VALUE
clause is ignored.

567 .ENVIRONMENT. NOT FOLLOWED BY .DIVISION .•

The word ENVIRONMENT is not followed by
the word DIVISION. DIVISION is assumed
present.

57j TERMINATOR MISSING AFTER .DATA DIVISION. HEADER.

The DATA DIVISION header is not followed
by a period. The period is assumed
present and processing continues.

571 TERMINATOR MISSING AFTER PARAGRAPH HEADER.

A paragraph header in the IDENTIFICATION
or ENVIRONMENT DIVISION is not
terminated by a period. The period is
assu~ed present and processing
continues.

H-44

DIAGNOSTIC ERROR MESSAGES

572 .RENAMES. SPECIFIES STORAGE OVERLAP ON RIGHT.

In processing the RENAMES clause, the
compiler detects the condition in which
the end of the storage allocated to the
data-name after the THRO keyword is not
to the right of the end of the storage
allocated to the data-name after the
RENAMES keyword. The compiler ignores
the entire RENAMES data description
entry.

573 .SECTION. OMITTED FROM SECTION HEADER.

An ENVIRONMENT DIVISION section name is
not followed by the word SECTION. The
error is ignored.

574 TERMINATOR MISSING AFTER SECTION HEADER.

An ENVIRONMENT DIVISION
is not terminated by
error is ignored.

6ii ILLEGAL LEVEL NUMBER. TREAT AS i1.

section header
a period. The

This level number is not an jl-49, 66,
77, or 88 level number. The level
number is assumed to be i1.

6il TERMINATOR MISSING AFTER ENV DIV HEADER.

The ENVIRONMENT DIVISION header is not
terminated by a period. The period is
assumed present and processing
continues.

6i2 .DATA. NOT FOLLOWED BY .DIVISION.

The word DATA is not followed by the
word DIVISION. DIVISION is assumed
present.

6j3 ENVIRONMENT DIVISION HEADER OMITTED.

The program contains no ENVIRONMENT
DIVISION header. The compiler resumes
processing at the next paragraph header.

6j4 UNRECOGNIZABLE COBOL PROGRAM FORMAT. ABORT.

The compiler is unable to recognize the
reserved word IDENTIFICATION as the
first word required in a COBOL source
program. Failure to recognize this
required reserved word may be due to one
of the following reasons:
(!)IDENTIFICATION is, in fact, omitted
as the first word of the source file,
(2) the user is attempting to compile a

H-45

DIAGNOSTIC ERROR MESSAGES

COBOL source program in conventional
format without specifying the
~onventional format- switch, or (3) the
user is attempting to compile a file
that is not a COBOL source program. The
compiler issues a string of diagnostics
and then aborts the compilation.

6j5 .IDENTIFICATION. NOT FOLLOWED BY .DIVISION ..

The word IDENTIFICATION is not followed
by the word DIVISION. DIVISION is
assumed present.

6j6 TERMINATOR OMITTED AFTER .ID DIVISION. HEADER.

The IDENTIFICATION DIVISION
not terminated by a period.
is assumed present and
continues.

6j7 .PROGRAMID. EXPECTED AFTER DIVISION HEADER.

The IDENTIFICATION DIVISION
not followed by the
paragraph. The error is
processing continues.

6lj TERMINATOR OMITTED AFTER .PROGI~. PARA HEADER.

header is
The period
processing

header is
PROGRAM-ID

ignored and

The PROGRAM-ID paragraph-name is not
terminated by a period. The period is
assumed present and processing
continues.

611 INVALID PROGRAM NAME IN .PROGRAM ID. PARAGRAPH.

The program name of the PROGRAM-ID
paragraph contains an invalid character
or exceeds the maximum length. The
error is ignored and processing
continues.

612 TOO MANY FILES FOR LONS OR TEMPORARY SPACE.

The compiler has discovered either that
more than 3j files are declared in the
program or that more than 3j SAME RECORD
AREA clauses are specified in the
program. The compiler imposes a limit
of 3j in both cases, because the
associated compiler and/or object time
table space is exhausted.

613 INVALID WORD SUSPENDS PROCESSING. SCAN FORWARD.

An unidentifiable word is found where a
verb is expected. The compiler scans to
a verb, period, or word in Area A.

H-46

DIAGNOSTIC ERROR MESSAGES

614 PROCESSING RESTARTS ON VERB.

Due to a previous syntax error, the
compiler scanned forward for the next
verb, period, or Area A word at which to
resume compilation. The compiler
recognized a verb and resumes normal
compilation at this point. This message
is an observation only.

615 PROCESSING RESTARTS ON PROCEDURE NAME.

Due to a previous syntax error, the
compiler scanned forward for the next
verb, period, or Area A word ~t which to
resume compilation. The compiler
recognized an Area A word and resumes
compilation at this point. This message
is an observation only.

616 PROCESSING RESTARTS AFTER TERMINATOR.

Due to a previous syntax error, the
compiler scanned forward for the next
verb, period, or Area A word at which to
resume compilation. The compiler
recognized a period and resumes normal
compilation on the word following the
period. This is an observation only.

617 .IDENTIFICATION. KEYWORD NOT IN AREA A.

The compiler detects
IDENTIFICATION keyword is
A. The compiler ignores the
continues processing.

62~ PARAGRAPH TERMINATOR ASSUMED OMITTED.

that the
not in Area
error and

A paragraph was terminated without a
period. The period is assumed and
processing continues.

621 .LINAGE. INVALID FOR THIS FILE. CLAUSE IGNORED.

The LINAGE clause must not be specified
for a file that has RELATIVE or INDEXED
organization. The LINAGE clause is
ignored.

622 TERMINATOR MISSING AFTER PROCEDURE NAME.

A section
terminated
assumed
continues.

H-47

or paragraph name is not
by a period. The period is

present and processing

DIAGNOSTIC ERROR MESSAGES

623 .ELSE DOES NOT HAVE ASSOCIATED .IF .. IGNORED.

The word ELSE has no associated IF
statement. The ELSE is ignored.

624 VERB EXPECTED TO FOLLOW ELSE ••. ELSE. IGNORED.

A sentence ends with the word ELSE. The
ELSE is ignored.

625 .JUSTIFY. WITH NUMERIC OR EDITED ITEM. IGNORED.

The JUSTIFIED clause must not be
specified for a
numeric-edited data item.
clause is ignored.

626 .BLANK WHEN ZERO. ILLEGALLY SPECIFIED. IGNORED.

numeric or
The JUSTIFIED

The BLANK WHEN ZERO clause must be
specified only for a numeric or
numeric-edited data item. The clause is
ignored.

627 INVALID OR MISSING DATANAME AFTER .REDEFINES .•

The compiler detects the omission of a
valid data-name reference following the
keyword REDEFINES. The compiler ignores
the REDEFINES clause and continues
processing the data description entry.

63~ .REDEFINES. MUST FOLLOW DATA NAME. IGNORED.

The REDEFINES keyword appears in the
wrong position of a data description
entry. The REDEFINES clause is ignored.

631 DEPTH OF NESTED .IF. EXCEEDS LIMIT.

A nested IF statement has
maximum depth of 3~
compiler ignores nesting
depth.

632 DUPLICATE PROCEDURE NAME DETECTED.

exceeded
levels.

beyond

the
The

this

In the Procedure Division, a paragraph
or section-name is defined that is not
uniquely referenceable even with
qualification=

633 REFERENCE TO UNDEFINED PARAGRAPH NAME.

In the Procedure Division, an explicit
qualified reference is made to a
paragraph-name that is undefined in the
section specified by the qualifier.

H-48

DIAGNOSTIC ERROR MESSAGES

634 FILENAME LITERAL TOO LONG. TRUNCATED.

A file specification in the ASSIGN
clause exceeds 4~ characters in length.
It is truncated to 4~ characters.

635 ILLEGAL SYNTAX IN .GO TO. STATEMENT.

The compiler detects illegal syntax in
the GO TO statement. Fatal.

636 INVALID INTEGER OR DATANAME.

• GO HAS MULTIPLE

In the LINAGE clause, the compiler
failed to recognize a non-negative
integer literal or a numeric integer
data-name. This phrase of the LINAGE
clause is ignored.

PROCEDURE NAMES •

A GO TO statement without the
ON phrase has more than one
procedure-name. Fatal.

64j INVALID WORD FOLLOWS .DATA DIVISION.

The word following the DATA DIVISION
header either does not start in Area A
or is not one of the reserved words
FILE, WORKING-STORAGE! LINKAGE, or
PROCEDURE. The compiler skips all
source text until one of the keywords
FILE, WORKING-STORAGE, LINKAGE, or
PROCEDURE is recognized.

641 INVALID WORD IN FILE SECTION. SCAN FORWARD.

An invalid word was detected in the FILE
SECTION where the keyword FD is
expected. The compiler skips all source
text until one of the keywords FD,
WORKING-STORAGE, LINKAGE, or PROCEDURE
is recognized.

642 .OMITTED LABELS IGNORED WITH .VALUE OF ID.

The LABEL RECORDS ARE OMITTED clause is
ignored if VALUE OF ID is specified for
a file. STANDARD labels are assumed.
Warning.

643 .SECTION. EXPECTED AFTER HEADER WORD.

The keyword SECTION is omitted after the
word FILE, WORKING-STORAGE, OR LINKAGE
SECTION. It is assumed present and
processing continues.

H-49

DIAGNOSTIC ERROR MESSAGES

644 TERMINATOR EXPECTED AFTER SECTION HEADER.

The FILE SECTION, WORKING-STORAGE
SECTION, or LINKAGE SECTION header is
not terminated by a period. The period
is assumed and processing continues.

646 .OF. OR .ID. MISSING IN .VALUE OF ID .•

One or both of the keywords OF or ID is
omitted in the VALUE OF ID clause.
Their presence is assumed and processing
continues.

647 ILLEGAL WORD IN AREA A. SCAN FORWARD.

In the WORKING-STORAGE SECTION, an ~l or
77 level number or the PROCEDURE keyword
was expected in Area A, but was not
recognized. The compiler skips all
source text until one of the three
expected language elements is recognized
in Area A.

65~ GROUP LEVEL .VALUE. DISALLOWED.

The VALUE clause on this group item is
not permitted because a subordinate
elementary item has a non-DISPLAY usage
specified or has a SYNCHRONIZED clause
specified. The group VALUE clause is
ignored.

651 REFERENCED LINKAGE SECTION ITEM NOT ID .PD. USING ••

This LINKAGE SECTION item has been
referenced in the PROCEDURE DIVISION.
However, neither this item nor the level
~l to which it is subordinate appeared
in the PROCEDURE DIVISION USING phrase.
Only those LINKAGE SECTION items
appearing in the PROCEDURE DIVISION
USING phrase, or items subordinate to
them, may be referenced in the PROCEDURE
DIVISION of a COBOL program. Fatal.

652 NON-SEQ FILE IN .MULTIPLE. FILE TAPE. CLAUSE.

In the I-0 CONTROL paragraph, the
MULTIPLE FILE TAPE clause is specified
for a file whose organization is not
SEQUENTIAL. The MULTIPLE FILE TAPE
clause is ignored for this file.

653 .VALUE. CLAUSE ILLEGAL IN FILE SECTION.

A VALUE clause is specified for a data
description entry given in the FILE
SECTION. The VALUE clause is ignored.

H-50

DIAGNOSTIC ERROR MESSAGES

654 SYNTAX ERROR IN CURRENCY CLAUSE.

655 ILLEGAL CURRENCY SIGN.

The alphanumeric literal expected in
CURRENCY SIGN clause of
SPECIAL-NAMES paragraph is omitted.
clause is ignored and the currency
defaults to the dollar sign.

the
the
The

sign

The alphanumeric literal in the CURRENCY
SIGN clause is not allowed as the
currency sign either because the literal
is longer than one character or because
it is an invalid COBOL currency sign.
The CURRENCY SIGN clause is ignored, and
the currency sign defaults to the dollar
sign.

656 SPECIALNAMES CLAUSE INVALID.

An unrecognizable word appears in a
position where a SPECIAL-NAMES paragraph
clause keyword is expected. All source
text is skipped until the next keyword
is recognized.

657 SYNTAX ERROR IN DECIMALPOINT CLAUSE.

The keyword COMMA is
DECIMAL-POINT IS COMMA
SPECIAL-NAMES paragraph.
ignored.

66i .AFTER. MISSING IN .USE. STATEMENT. ASSUMED.

omitted in the
clause of the
The clause is

The keyword AFTER is omitted in the USE
statement. AFTER is assumed present and
processing continues.

661 NO .ERROR. OR .EXCEPTION. IN .USE. ASSUMED.

One of the keywords ERROR or EXCEPTION
is omitted in the USE statement. The
missing keyword is assumed present and
processing continues.

662 NO KNOWN CLAUSES IN SPECIALNAMES.

The SPECIAL-NAMES paragraph contains no
valid clauses. This is an observation
only.

663 REDUNDANT .USE. COVERAGE. PREV .. USE. IGNORED.

Multiple USE statements have referenced
the same file. The last USE statement
specified is then applied to the
referenced file. Fatal.

H-51

DIAGNOSTIC ERROR MESSAGES

664 UNKNOWN OPEN MODE IN .USE. STATEMENT.

An unrecognizable OPEN mode option was
specified in the USE statement. Fatal.

665 GROUP ITEM HAS BEEN CALLED FILLER.

A FILLER item cannot have any elementary
items subordinate to it. The compiler
replaces the FILLER declaration with a
system-defined name and proceeds with
the processing of the newly-named group
item. The system-defined name is
transparent and inaccessible to the
user.

666 MISSING ENVIRONMENT DIVISION.

667 DIVISION BY ZERO.

The program does not contain an
ENVIRONMENT DIVISION. The compiler
skips to the DATA DIVISION and continues
processing.

The divisor of a DIVIDE statement is a
literal of zero value. The error is
ignored.

67~ VALUE NOT PERMITTED WITH THIS ITEM.

A VALUE clause is recognized in a data
description entry that contains a
REDEFINES or an OCCURS clause. The
VALUE clause is ignored.

671 INVALID CONSTANT OR LITERAL FOLLOWING .ALL ••

The reserved word ALL is not followed by
a non-numeric literal or a figurative
constant. ALL is ignored and processing
continues.

672 BAD FILENAME IN .USE. STATEMENT.

673 FILE NOT CLOSED.

An unrecognizable word appears where a
file-name is expected in the USE
statement. Fatal.

The referenced file was opened, but
there was no CLOSE statement detected
for this file in the program.

H-52

DIAGNOSTIC ERROR MESSAGES

674 SUBJECT OF .ALTER. IS SECTION NAME.

The ALTER statement references a section
name. Only paragraph names may be
altered. If this statement is reached
during execution, the program will be
aborted.

675 FILE COVERED BY CONFLICTING USE PROCEDURE.

There was more than one conflicting USE
procedure specified for the referenced
file. Fatal.

676 DATA DIVISION EXCEEDS ADDRESS RANGE.

The maximum DATA DIVISION size is 65,535
bytes. Fatal.

677 SUPPLIED VALUE INVALID FOR NUM ITEM. IGNORED.

The VALUE clause specifies invalid value
initialization for a numeric data item.
The compiler ignores the VALUE clause.

711 FILE ACCESSED BY VERB REQUIRING REL. OR IDX ORG.

A file whose organization is SEQUENTIAL
is referenced by the START or DELETE
verbs or by an I/O verb that has the
INVALID KEY clause specified. In all
these cases, the referenced file must
have RELATIVE or INDEXED organization.
Fatal.

711 FILE ACCESSED BY VERB REQ. SEQUENTIAL ORG.

712 VERB NOT IMPLEMENTED.

A file whose organization is RELATIVE or
INDEXED is referenced by an I/O verb
that has the AT EOP or ADVANCING clauses
specified. The referenced file must
have SEQUENTIAL organization. Fatal.

An ANS 1974 COBOL verb appears that is
not implemented in this release of the
compiler. The compiler scans to another
verb, period, or word in Area A.

714 OCCURS ILLEGAL FOR 11 OR 77 ITEM. IGNORE.

An OCCURS clause is specified for an 11
or 77 level data-name. The compiler
ignores the OCCURS clause.

715 .ACCEPT FROM. OBJECT NOT IN SPECIALNAMES.

The mnemonic-name used in the ACCEPT
statement was not defined in the
SPECIAL-NAMES paragraph. Fatal.

H-53

DIAGNOSTIC ERROR MESSAGES

7g6 ACCEPT IDENTIFIER INVALID.

The word following the ACCEPT verb is
not a data-name or is a data-name that
has non-DISPLAY usage or invalid class.
Fatal.

7g7 VERB OR COND. CLAUSE CONFLICTS WITH FILE ACCESS.

There is a conflict between the ACCESS
MODE of the referenced file and the I/O
verbs ~nd/or condition clauses that
reference this file. Fatal.

7lg DATANAME AFTER .GO DEPENDING. INVALID.

The word following the DEPENDING ON
phrase of the GO TO statement is not a
data-name or is a data-name that has
INDEX usage. Fatal.

711 INVALID CLASS OF DATANAME AFTER .GO DEPENDING.

The data-name following the DEPENDING ON
phrase of the GO TO statement is not a
numeric data-name or is a numeric,
non-integer data-name. Fatal.

712 .DISPLAY UPON. OBJECT NOT IN SPECIALNAMES.

The mnemonic-name used in the DISPLAY
statement was not defined in the
SPECIAL-NAMES paragraph. Fatal.

713 .DISPLAY. OPERAND IS INVALID.

A data item in the DISPLAY statement has
invalid class or USAGE.

714 MISSING OR INVALID OPERAND FOR ARITHMETIC VERB.

One of the operands of an arithmetic
statement is either missing or invalid.
n-~-1
ra~ai.

715 MISSING OR INVALID SOURCE OPERAND.

The source operand is missing following
an arithmetic verb. Fatal.

716 MISSING OR INVALID DESTINATION OPERAND~

717 .GIVING. REQUIRED AFTER .DIV ... BY.

The GIVING phrase INTO is missing in a
DIVIDE •.. BY statement. Fatal.

H-54

DIAGNOSTIC ERROR MESSAGES

72i .GIVING. REQUIRED AFTER LITERAL OPERAND.

The GIVING phrase is
second operand of
MULTIPLY, or SUBTRACT
literal. Fatal.

721 .BY. MISSING IN .MULTIPLY.

required if the
an ADD, DIVIDE,
statement is a

The keyword BY is missing in a MULTIPLY
statement. Fatal.

722 .BY. OR .INTO. MISSING FROM aDIVIDE.

One of the keywords BY or INTO is
missing from the DIVIDE statement.
Fatal.

723 .FROM. MISSING IN .SUBTRACT.

The keyword FROM is missing from the
SUBTRACT statement. Fatal.

724 FILE NEEDS DYNAMIC ACCESS FOR .READ NEXT •.

In a READ NEXT statement, the referenced
file must have ACCESS MODE IS DYNAMIC
specified in the FILE-CONTROL paragraph.
Fatal.

725 BAD PROCEDURE NAME IN .PERFORM ..

A missing or invalid procedure name is
recognized in the PERFORM statement.
Fatal.

726 ILLEGAL OPERAND OF .TIMES. OPTION OF .PERFORM •.

The TIMES operand
statement is not a
data-name or numeric
The compiler assumes
the TIMES operand.

727 .TIMES. MISSING FROM .PERFORM .• ASSUMED.

of the PERFORM
numeric integer

integer literal.
a value of 1 for

The PERFORM statement does not contain
the keyword TIMES but does contain the
iteration value required to execute the
PERFORM correctly. The keyword TIMES is
assumed present.

73~ PROCEDURE NAME OMITTED IN .ALTER .•

A valid
recognized
Fatal.

H-55

procedure-name was not
in the ALTER statement.

DIAGNOSTIC ERROR MESSAGES

731 ILLEGAL .ALTER. DUE TO MISSING .TO •.

The keyword TO was not recognized in the
ALTER statement. Fatal.

732 FILE HAS VAR. SIZE RECS .. READ INTO. ILLEGAL.

It is illegal for the READ INTO
statement to reference a file that has
multiple record descriptions of
different lengths. Fatal.

733 FILE ACCESSED BY VERB REQUIRING .LINAGE.

A file that did not have a LINAGE clause
in its specification is accessed by an
I/O verb. Fatal.

734 .DELETE. OR .REWRITE. WITHOUT INV. KEY OR USE.

A DELETE or REWRITE statement without
the INVALID KEY phrase references a file
for which there is no USE procedure.
Fatal.

735 OPEN MODE OR NO READ PROHIBITS REWRITE OR DELETE.

A DELETE or REWRITE statement references
a file that was not OPENed in the proper
mode or that has no READ statement
referencing it in the program. Fatal.

736 .START. CONFLICTS WITH OPEN MODE.

A START statement references a file that
was not opened in the proper mode.
Fatal.

737 .WRITE. CONFLICTS WITH OPEN MODE.

A WRITE statement references a file that
was not opened in the proper mode.
Fatal.

74j .READ. CONFLICTS WITH OPEN MODE.

A READ statement references a file that
is only opened in OUTPUT or EXTEND mode.
Fatal.

741 USE NOT IN DECLAR. OR NOT FOLLOWING SECTION NAME~

The USE statement is not in the
DECLARATIVES section of the PROCEDURE
DIVIqION or is not immediately following
a section name inside the DECLARATIVES.
Fatal.

H-56

DIAGNOSTIC ERROR MESSAGES

742 MORE THAN 255 ALTERNATE KEYS. IGNORED.

The maximum of 255 ALTERNATE KEYS has
been exceeded. The clause is ignored.

743 INTEGER IN SWITCH CLAUSE INVALID OR OMITTED.

A SWITCH clause of the SPECIAL-NAMES
paragraph either contains an invalid
numeric integer or has omitted the
integer in its specification. A SWITCH
clause integer must be in the decimal
range l<=n<=l6. The SWITCH clause is
ignored.

744 .IS. OMITTED IN SPECIALNAMES. ASSUMED PRESENT.

The required keyword IS is omitted in a
clause of the SPECIAL-NAMES paragraph.
IS is assumed present and processing
continues.

745 DEVICE MNEMONIC OMITTED IN SPECIALNAMES.

A valid device mnemonic-name is not
recognized in one of the CONSOLE,
LINE-PRINTER, CARD-READER,
PAPER-TAPE-READER, or PAPER-TAPE-PUNCH
clauses of the SPECIAL-NAMES paragraph.
All source text is skipped until the
next recognizable keyword.

746 TERMINATOR OMITTED IN SPECIALNAMES.

The SPECIAL-NAMES paragraph is not
terminated by a period. The period is
assumed present and processing
continues.

747 SUBJECT OF .ALTER. NOT .GO TO .. ALTER IGNORED.

The paragraph referenced by an ALTER
statement does not contain a GO TO
statement as its first statement. The
ALTER statement is ignored.

75i KEYWORD OMITTED IN .SWITCH. CLAUSE.

One of the keywords OFF or ON is omitted
in the SWITCH clause of the
SPECIAL-NAMES paragraph. The SWITCH
clause is ignored.

751 CONDITION NAME MISSING IN .SWITCH. CLAUSE.

A valid condition-name is not recognized
in the SWITCH clause of the
SPECIAL-NAMES paragraph. The SWITCH
clause is ignored.

H-57

DIAGNOSTIC ERROR MESSAGES

752 .CR. OR .DB. NOT AT RIGHT END OF PICTURE.

753 , • CR. "T-.. T"\.,...
V~ • J.JO •

The PICTURE symbol CR or DB does not
appear at the right end of the PICTURE
string. The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" DECLARATION.

USED WITH SIGNED ITEM.

Both the PICTURE symbols, CR or DB, and
a sign, + or , appear in the same
PICTURE. The compiler ignores the
user-supplied PICTURE and treats the
data item as alphanumeric with a
"PICTURE X" declaration.

754 MULTIPLE DEFINITION OF SWITCH. FIRST USED.

Multiple definitions of a COBOL switch
are detected in the SPECIAL-NAMES
paragraph. All but the first definition
of SWITCH are ignored.

755 .SENTENCE. ASSUMED AFTER .NEXT.

The keyword NEXT is not followed by the
keyword SENTENCE. SENTENCE is assumed
present and processing continues.

756 SUBSCRIPT NOT NUMERIC INTEGER.

A data-name used as a subscript is not
numeric in class. A default value of 1
is assumed as the subscript.

76~ ILLEGAL SYNTAX IN .DIVIDE. STATEMENT.

The compiler detects illegal syntax in
the DIVIDE statement. Fatal.

761 INDEXED FILE REQUIRES .RECORD KEY. PHRASE.

Self explanatory.

762 RECORD KEY INVALID FOR THIS FILE.

The RECORD KEY clause is valid only for
indexed files.

763 .ALT RECORD KEY. INVALID FOR FILE. IGNORED.

The ALTERNATE RECORD KEY clause is valid
only for indexed files.

764 READ-AHEAD. OR. WRITE-BEHIND. NOT SUPPORTED.

The APPLY READ-AHEAD and APPLY
WRITE-BEHIND clauses are not supported
in this version of the compiler. The
APPLY clause is ignored.

H-58

DIAGNOSTIC ERROR MESSAGES

765 INTEGER INVALID IN. RESERVE AREA. CLAUSE.

The number of buffer areas reserved by
the RESERVE clause is invalid. The
clause is ignored, and a default of one
area for SEQUENTIAL and RELATIVE or two
areas for INDEXED is supplied.

766 BAD VALUE IN BLOCK CONTAINS CLAUSE.

The numeric literal in the BLOCK clause
is less than the sum of the record size,
the record header size, and the bucket
header size. The BLOCK CONTAINS clause
is ignored.

767 VALUE IN. BLOCK CONTAINS. CLAUSE IS ROUNDED UP.

The numeric literal in the BLOCK clause
is not a multiple of 512. The value is
rounded up to the next even multiple of
~.,
;:).!. ~.

77i EXPECTED .RECORD KEY. DATANAME NOT DEFINED.

The data-name in a RECORD KEY clause has
not been defined in the DATA DIVISION.

771 .RECORD KEY. DATANAME HAS INVALID CLASS.

A data-name referenced
or ALTERNATE RECORD
SELECT clause in
paragraph is

in a RECORD KEY
KEY phrase of a

the FILE-CONTROL
defined with

non-alphanumeric
SECTION.

class in the FILE

772 .RECORD KEY. DATA ITEM CANNOT BE VARIABLE LENGTH.

A data-name referenced in a RECORD KEY
or ALTERNATE RECORD KEY phrase of a
SELECT clause in the FILE-CONTROL
paragraph is defined in the FILE SECTION
as an item whose size is variable.

773 .RECORD KEY. ITEM NOT DEFINED IN RECORD OF FILE.

A data-name referenced in a RECORD KEY
or an ALTERNATE RECORD KEY phrase of a
SELECT clause is not defined in the
record description of the associated
file.

774 FILE ACCESSED BY VERB REQUIRING INDEXED ORG.

A file whose organization is SEQUENTIAL
or RELATIVE is referenced by the READ
verb that has the KEY IS data-name
phrase specified. The referenced file
must have INDEXED organization. Fatal.

H-59

DIAGNOSTIC ERROR MESSAGES

775 .KEY IS. PHRASE INVALID FOR SEQUENTIAL .READ.

Either the file has ACCESS SEQUENTIAL or
the READ statement contains the word
NEXT. In either case the KEY IS
data-name phrase is illegal. Fatal.

776 INVALID DATANAME IN .KEY IS. PHRASE.

The K~Y ~~ phrase of the READ s~acement
was not followed by a data-name. Fatal.

777 .KEY IS. PHRASE NOT FOLLOWED BY RECORD KEY.

The data-name following the KEY IS
phrase of the READ statement is not a
RECORD KEY or ALTERNATE RECORD KEY for
the referenced file. The RECORD KEY
data-name is assumed.

1,,, VARIABLE OCCURRENCES TABLE MUST END RECORD.

A COBOL table declared with the
DEPENDING ON phrase can be followed in
the record only by data description
entries whose level-numbers are greater
than the level-number of this table
entry. The compiler ignores the
remainder of the record descriptor from
the point where the error is detected.
Fatal.

1,,1 .ASCENDING. OR .DESCENDING. DATANAME EXPECTED.

A user-defined data-name was expected,
but not found, in the ASCENDING KEY IS
or DESCENDING KEY IS phrase.

1,,2 RENAMED DATAITEMS NOT IN CURRENT RECORD.

The data items specified after the
RENAMES keyword (that is, the data items
being renamed) are defined outside of
the current record description. The
compiler ignores the entire RENAMES data
description entry.

1,,3 MAXIMUM OCCURRENCES NOT GREATER THAN MINIMUM.

In a variable occurrence table
declaration, the integer following the
keyword TO (that is, the maximum) must
be greater than the integer following
the keyword OCCURS (that is, the
minimum) . The compiler assumes the
maximllm value to be one greater than the
minimum value.

H-60

DIAGNOSTIC ERROR MESSAGES

1~~4 .DEPENDING. IS OMITTED IN THE .OCCURS. CLAUSE.

In a variable occurrence table
declaration, the keyword DEPENDING has
been omitted. The compiler ignores the
remainder of the OCCURS clause and
treats the table declaration as an
ordinary COBOL table.

1~~5 A DATANAME MUST FOLLOW THE .DEPENDING. KEYWORD.

In a variable occurrence table
declaration, a valid data-name is not
found following the keyword
DEPENDING. The compiler ignores the
remainder of the OCCURS clause and
treats the table declaration as an
ordinary COBOL table.

iii6 .OCCURS DEPENDING. SUBORDINATE TO AN .OCCURS.

The compiler detects a table declaration
with a DEPENDING ON phrase subordinate
to a group item that has an OCCURS
clause. The compiler ignores the
DEPENDING ON phrase and treats the
declaration as an ordinary COBOL table.

1~~7 MAXIMUM NO. TABLE OCCURRENCES MUST BE POSITIVE.

In a variable occurrence table
declaration, the integer following the
keyword TO (that is, the maximum) must
be greater than zero. The compiler
assumes the maximum value to be one
greater than the integer value following
the keyword OCCURS (that is, the
minimum) .

l~l~ EXPECTED .DEPENDING ON. DATANAME NOT DEFINED.

The data-name referenced in a DEPENDING
ON phrase was not defined in the DATA
DIVISION. Fatal.

1~11 EXPECTED .ASCENDING KEY. DATANAME NOT DEFINED.

The data-name referenced in an ASCENDING
KEY phrase was not defined in the DATA
DIVISION .. Fatal.

1~12 EXPECTED .DESCENDING KEY. DATANAME NOT DEFINED.

The data-name referenced in a DESCENDING
KEY phrase was not defined in the DATA
DIVISION. Fatal.

H-61

DIAGNOSTIC ERROR MESSAGES

ljl3 .DEPENDING ON. DATANAME NOT A NUMERIC INTEGER.

The data-name referenced in a DEPENDING
ON phrase was not declared as a numeric
integer in the DATA DIVISION. Fatal.

ljl4 .RENAMES. APPLIED TO AN INVALID LEVEL OF DATA.

The RENAMES clause specifies the
renaming of data items whose level
number is jl, 66, 77, or 88. The
compiler ignores the entire RENAMES data
description entry.

ljl5 .DEPENDING ON. DATANAME DETECTED WITHIN TABLE.

The compiler detects a data-name, that
follows a DEPENDING ON phrase and that
defines the current number of
occurrences in a variable occurrence
table, to have its storage allocated
within the range of the table. Fatal.

ljl6 .OCCURS. CLAUSE ON A TABLE KEY DATANAME.

The compiler detects the presence of an
OCCURS clause on a data item that has
been declared as an ASCENDING or
DESCENDING KEY. Fatal.

1~17 .SEARCH ALL. TABLE DOES NOT HAVE KEYS.

The table being searched by a SEARCH ALL
statement must have the ASCENDING KEY or
DESCENDING KEY phrase specified in its
declaration. Fatal.

lj2~ IMPERATIVE STATEMENT EXPECTED DURING .SEARCH.

A period or a non-imperative statement
was found where the SEARCH statement
environment is expecting an imperative
statement. Fatal.

1~21 KEYS SPECIFIED FOR .SEARCH ALL. NOT DENSE.

When a key is referenced for the SEARCH
ALL statement, all preceding keys in the
KEY clause of the table declaration must
also be referenced. Fatal.

1~22 .WHEN. EXPECTED BUT NOT FOUND IN .SEARCH.

The compiler expected but failed to
recognize the WHEN keyword while
compiling the SEARCH statement. Fatal.

1~23 THE KEYWORD .WHEN. ILLEGAL IN THIS CONTEXT.

The compiler detects the presence of the
keyword WHEN outside the environment of
the SEARCH statement. Fatal.

H-62

DIAGNOSTIC ERROR MESSAGES

ii24 THE KEYWORD .SEARCH. ILLEGAL IN THIS CONTEXT.

While compiling a SEARCH statement, the
compiler detects the presence of another
SEARCH statement. The second SEARCH
statement is detected at a point where
an imperative statement is expected.
Fatal.

li2s KEY MUST BE SUBSCRIPTED BY FIRST INDEX OF TABLE.

The SEARCH ALL statement requires that
the key referenced on the left side of
the simple condition must be subscripted
by the first index name of the table
being searched. Fatal.

li26 THE KEYWORD .SENTENCE. EXPECTED AFTER .NEXT •.

The keyword SENTENCE was not detected
after the NEXT keyword during the
compilation of a SEARCH statement.
Fatal.

li27 TABLE NAME NOT FOUND AFTER .SEARCH. VERB.

The compiler failed to recognize a valid
table data item after the keyword SEARCH
or SEARCH ALL. Fatal.

i~3~ INVALID TABLE REFERENCE IN .SEARCH. STATEMENT.

The table data item reference following
the SEARCH or SEARCH ALL verbs must have
both the INDEXED BY and the OCCURS
clauses specified in its
declaration. Fatal.

li3l DATANAME EXPECTED AFTER .VARYING. IN .SEARCH.

No data-name reference was found after
the VARYING keyword in the SEARCH
statement being compiled. Fatal.

li32 .VARYING. ITEM MUST BE INDEX OR INTEGER.

The data-name reference following the
VARYING keyword must be an index data
item, an index-name, or an elementary,
numeric, integer data-name reference.
Fatal.

1~33 .SEARCH ALL. DATA ITEM IS NOT A KEY.

The data item referenced on the left
side of the SEARCH ALL simple condition
must be declared as an ASCENDING or
DESCENDING KEY. Fatal.

H-63

DIAGNOSTIC ERROR MESSAGES

1034 DATA ITEM NOT A KEY FOR THIS .SEARCH. TABLE.

The data item referenced on the left
side of the SEARCH ALL simple condition
is not a key for the table being
searched. Fatal.

1035 .RENAMES. SPECIFIES RENAMING OF A COBOL TABLE.

The RENAMES clause specifies the
renaming of an item that has an OCCURS
clause in its declaration or is
subordinate to another item having an
OCCURS clause. The compiler ignores the
entire RENAMES data description entry.

1036 .RENAMES. APPLIED TO VARIABLE LENGTH DATAITEM.

The compiler detects an application of
the RENAMES clause to a range of data
items that contains a data item whose
length is variable at run-time because
is has a subordinate data item whose
data description entry contains an
OCCURS DEPENDING ON clause. The
compiler ignores the entire RENAMES data
description entry.

1037 DATANAME OMITTED AFTER 66 LEVEL NUMBER.

The data-name declaration is omitted
after a 66 level number. The compiler
ignores the entire RENAMES data
description entry.

1040 .RENAMES. OMITTED IN LEVEL 66 DESCRIPTION ENTRY.

The RENAMES keyword is omitted in a
level 66 data description entry. The
compiler ignores the entire level 66
data description entry.

1041 SEARCH KEY NOT SUBORDINATE TO TABLE.

The compiler detects an ASCENDING or
DESCENDING data-name key that is not
defined as a data item subordinate to
the associated SEARCH table.

1042 INVALID OR MISSING DATANAME AFTER .RENAMES .•

The data-name is missing after the
RENAMES keyword or, if present, is not
recognized as a valid data item that was
previously defined. The compiler
ignores the entire RENAMES data
description entry.

H-64

DIAGNOSTIC ERROR MESSAGES

1~43 .OCCURS. ITEM NOT ALLOWED BETWEEN TABLE AND KEY.

The compiler detects a data item
declared with an OCCURS clause
"sandwiched" between the declaration of
another COBOL table and its associated
SEARCH key.

lg44 .RENAMES. SPECIFIES INVALID NOMENCLATURE RANGE.

In processing the RENAMES clause, the
compiler detects an invalid nomenclature
range specified by identical data-names
following the RENAMES and THRU keywords,
respectively. The compiler ignores the
entire RENAMES data description entry.

lg45 .RENAMES. SPECIFIES STORAGE OVERLAP ON LEFT END.

In processing the RENAMES clause; the
compiler detects the condition in which
the beginning of the storage allocated
to the data-name after the THRU keyword
is to the left of the beginning of the
storage allocated to the data-name after
the RENAMES keyword. The compiler
ignores the entire RENAMES data
description entry.

lg46 INVALID OR MISSING DATANAME AFTER .THRU ••

In specifying the RENAMES clause, a
data-name is missing after the THRU
keyword or, if present, is not
recognized as a valid data item that was
previously defined. The compiler
ignores the entire RENAMES data
description entry.

lg47 DATANAME MISSING AFTER .CORRESPONDING.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler detects the omission of a valid
data-name reference after the
CORRESPONDING keyword. Fatal.

lgsg .TO. OR .FROM. OMITTED IN .CORRESPONDING .•

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler detects the omission of the TO
or FROM keyword. Fatal.

lgSI INVALID OR MISSING DATANAME AFTER .TO. OR .FROM.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler detects the omission of a valid
data-name reference after the keyword TO
or FROM. Fatal.

H-65

DIAGNOSTIC ERROR MESSAGES

li52 NO OBJECT CODE PRODUCED FOR .CORRESPONDING.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler produced no object code because
no "correspondence" was found between
the two group items referenced in the
COBOL statement containing the
CORRESPONDING option. This diagnostic is
informational only.

li53 GROUP ITEM NOT REFERENCED IN .CORRESPONDING.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler discovered that one of the
references is a reference to an
elementary item. Fatal.

li54 LEVEL 66 REFERENCE DISALLOWED IN .CORRESPONDING.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler detects a reference to a
data-name declared at level 66. This is
an invalid reference. Fatal~

1~55 .FILE STATUS. ITEM DEFINED IN .FILE SECTION.

A data-name referenced in a FILE STATUS
phrase of a SELECT clause is defined in
the FILE SECTION of the COBOL
program. The compiler ignores this error
and continues to process the FILE STATUS
data-name.

1~56 INCOMPATIBLE OPERANDS FOUND IN .CORRESPONDING.

In the processing of an ADD, SUBTRACT,
or MOVE CORRESPONDING statement, the
compiler detects a pair of CORRESPONDING
data items that are incompatible. This
diagnostic is informational only.

1~57 EMPTY .GO TO. WAS NOT THE SUBJECT OF AN .ALTER •.

A GO TO statement without a procedure
reference was detected. The empty GO TO
is not the subject of an ALTER
statement. Fatal.

1~6~ QUALIFIER OMITTED IN PROCEDURE REFERENCE.

A section name is omitted after the
keyword OF or IN in a qualified
procedure reference of the COBOL
statement being compiled. Fatal.

H-66

DIAGNOSTIC ERROR MESSAGES

lj61 INCONSISTENT NUMBER OF ARGUMENTS IN .CALL ••

The subprogram referenced in this CALL
statement has been referenced before.
The number of arguments in the earlier
CALL differs from the number in the
current CALL.

lj62 PARAGRAPH WITHOUT SECTION PRECEDES THIS SECTION.

In a COBOL program, if one paragraph is
in a section, then all paragraphs must
be in sections. In this source program,
a paragraph not within a section has
been detected preceding this section in
the source program.

lj63 DUPLICATE PARAGRAPH NAME DETECTED.

In a section of the Procedure Division,
a paragraph name is defined more than
once and is net uniquely referenceable
even with qualification.

lj64 REFERENCE TO UNDEFINED PROCEDURE NAME.

The compiler detects a reference to an
undefined procedure name in the
PROCEDURE DIVISION.

1~65 UNDEFINED PROCEDURE QUALIFIER REFERENCE.

The compiler detects a qualified
procedure reference that contains an
undefined qualifier in the PROCEDURE
DIVISION.

lj66 ILLEGAL PROCEDURE NAME REFERENCE.

The compiler
procedure name

detects an
referen~e

PROCEDURE DIVISION.

lj67 AMBIGUOUS PROCEDURE NAME REFERENCE.

invalid
in the

The compiler detects a reference in the
PROCEDURE DIVISION to a procedure name
that is not uniquely referenceable, even
through qualification.

107~ PARAGRAPH NAME DISALLOWED AS QUALIFIER.

The compiler detects a qualified
procedure reference in which the
qualifier is a paragraph name.

1071 SECTION NAME REFERENCE MAY NOT BE QUALIFIED.

The compiler detects a qualified
procedure reference in which a section
name is qualified by another section
name.

H-67

DIAGNOSTIC ERROR MESSAGES

1~72 AMBIGUOUS PARAGRAPH NAME REFERENCE.

The compiler detects a reference in the
PROCEDURE DIVISION to a paragraph name
that is not uniquely referenceable, even
through qualification.

1~73 POSSIBLE .PERFORM. RANGE VIOLATION.

The compiler detects a PERFORM THRU
statement in which the procedure name
following THRU is defined before the
procedure name following the PERFORM.
This condition could a logic problem in
the COBOL program being compiled.

1~74 NUMERIC PROCEDURE NAME EXCEEDS 3~ CHARACTERS.

A numeric string that appears to be a
numeric procedure name exceeds 3J
characters in length. The string is
truncated on the right to 3J characters
and processing of the numeric procedure
name continues.

1~75 NUMERIC PROCEDURE NAME CONTAINS DECIMAL POINT.

A numeric string that appears to be a
numeric procedure name contains a
decimal point. The compiler ignores the
presence of the decimal point and
proceeds with the processing of the
numeric procedure name.

1~76 .RELATIVE KEY. ITEM DEFINED IN RECORD OF FILE.

A data-name referenced in a RELATIVE KEY
p~rase of a SELECT clause is defined in
the record description of the associated
file. The compiler ignores this error
and continues to process the RELATIVE
KEY data-name.

li77 NO. OF AREAS DEFAULTS TO MAX. FOR FILE TYPE.

The number of buffer areas reserved by
the RESERVE clause is greater than the
maximum allowed for the file
organization. The compiler allocates
two areas for a sequential file and one
for a relative file.

11~5 UNRECOGNIZED LITERAL TYPE ••• SYSTEM ERROR

The compiler
identify a
Fatal.

H-68

has failed to properly
literal. System error.

DIAGNOSTIC ERROR MESSAGES

11~7 .TO. OR .GIVING. MISSING IN ADD

The keyword TO or GIVING was not found
after the second operand in an ADD
statement. Fatal.

111~ MORE THAN 18. DIGITS IN COMPOSITE. TRUNCATING.

The length of an arithmetic composite is
greater than 18 digits. The composite
is truncated on the left to 18 digits.
Warning.

1111 ONLY ONE DEST ALLOWED AFTER .CORRESPONDING. USE FIRST.

More than one destination data-name
follows the keyword CORRESPONDING. The
compiler ignores all but the first.
Warning.

1113 UNSIGNED COMP 3 ITEMS ILLEGAL

The PICTURE for a COMP-3 item does not
contain an S character. Fatal.

H-69

APPENDIX I

RECORD MANAGEMENT SERVICES ERROR CODES

This appendix lists the RMS error codes that can be reported during
COBOL program execution. These codes appear in conjunction with COBOL
Object Time System error messages, which are described in Appendix J.

The error codes appear in the form:

CBL -- NN: (MESSAGE)
ASSOCIATED RECORD SERVICES ERROR: -nn (mm)

The NN portion of the CBL message is the COBOL OTS error code;
(MESSAGE) is the message text, which provides a brief description of
the error.

The nn portion of the RMS message is one of the error codes listed
below.

The (mm) portion of the RMS message is displayed for I/O errors only.
The (mm) error codes are listed in the:

• IAS/RSX-11 I/O Operations Reference Manual (Appendix I).

• RSTS/E Systems Manager's Guide (Appendix C).

Most errors can occur in RSX-llM, IAS, and RSTS/E systems.
System-specific errors are identified in the description. The term
"file processor" refers to FIP fon RSTS/E systems) or FllACP (on
RSX-llM and IAS systems) •

If you encounter an error code that is not listed, submit a Software
Performance Report fSPR).

-32 fmm)

-96

-112 (mm)

An OPEN statement in the program failed because the
file processor could not access the file.

The program failed to create a new file because the
allocation quantity specified in the /AL or /CO switch
was too large.

The program failed to OPEN a file on an ANSI-labelled
magnetic tape because the records in the file were
variable-length but not in ANSI D format.

I-1

-16~ (mm)

-176 fmm)

-32~

-336 (mm)

-368 frnm)

-448

-464

RECORD MANAGEMENT SERVICES ERROR CODES

The file processor detected an error while reading the
attributes of the file.

The file processor detected an error while writing the
attributes of a file.

A REWRITE operation failed because:

1. The value of the prime key field of the record to
be written has changed or,

2. The value of an ALTERNATE key field has changed
but the change attribute was not specified for the
key when the file was created.

NOTE

The second condition can occur only if the
file was not created by a COBOL program,
since all alternate keys are changeable
according to the 1974 ANSI COBOL standard.

The program failed to perform a record operation
because RMS detected an index bucket format check-byte
failure. The bucket has been corrupted and random
access to one or more records is affected. Use the
RMS DEFINE and CONVERT utilities to correct the file
or use a backup copy of the file to restore it.

The program failed to CLOSE a file on magnetic tape
because the RSTS/E CLOSE failed to access the magnetic
tape unit specified in the program's ASSIGN or VALUE
OF ID clause. This error can occur only on RSTS/E
systems.

The program failed to OPEN a file for OUTPUT because
the file processor could not create the file.

The program failed to CLOSE a file because the file
processor could not deaccess the file. ·

The program failed to OPEN a file because it specified
an invalid or inappropriate device. Assigning the
file to a non-existent device or assigning an indexed
file to a magnetic tape device could cause this error
to be reported.

The program failed to OPEN a file because a syntax
error appears in the directory portion of the file
specification. Check the VALUE OF ID and SELECT
clause for the file.

I-2

-48$

-496

-512

-520 (mm)

-544

-56~ f mm}

-576

-592

-616

-624 fmm)

-672

-7~4

RECORD MANAGEMENT SERVICES ERROR CODES

The program failed to OPEN the file because there is
insufficient buffer space for RMS to allocate either
I/O buffers or control structures to support file
processing. This can occur, for example, if the
actual bucket size for a relative or indexed file is
larger than the bucket size implied by the program's
BLOCK CONTAINS clause and/or record descriptions. Use
the RMS DISPLAY utility to determine the actual size
of the buckets in the file.

The program failed to OPEN the file because the
directory in the file-spec specified in either the
VALUE OF ID or SELECT clause cannot be found.

The program failed to OPEN a file because
specified device was not ready.

the

The program failed to OPEN the file because the file
processor detected a device positioning error. This
is a transient hardware error; however, if it
persists, contact your Digital field service
representative.

The program failed to perform a WRITE or REWRITE
operation because the operation would cause
duplication in the file of one or more alternate keys
that do not have the WITH DUPLICATES attribute.

The program failed to OPEN a file because the file
processor could not insert the file directory entry.

The program failed for one of the following reasons:

1. An OPEN operation has failed because the
organization of the file being opened was not
correctly specified in the file's SELECT clause.

2. A record operation has
inconsistent with the OPEN
example, this error would
program executed a WRITE
opened for INPUT.

failed because it is
mode of the file. For

be reported if the
statement for a file

The program detected end-of-file on a file that it was
processing.

The program failed to OPEN a magnetic tape file for
OUTPUT because the expiration date has not been
reached. Character positions 48-53 of the file-header
label fHDRl} contain the expiration date.

The program failed to perform a WRITE or REWRITE
operation because the file processor could not extend
the file.

The program
OUTPUT) a
exists.

failed to create
file because the

(that is, OPEN for
specified file already

The program was not able to access a file because the
file was locked by another user.

I-3

-72~

-736

-752

-784

-88~

-896

-96~

-lj~8

-1~24

-11~4

RECORD MANAGEMENT SERVICES ERROR CODES

The program failed to OPEN a file because the
processor could not locate the specified
directory entry.

The program failed to OPEN a file because it does
exist.

file
file

not

The program failed to OPEN a file because a syntax
error was detected in the file-name portion of the
file specification obtained from the ASSIGN or SELECT
clause of the program.

The program was not able to create (i.e., OPEN for
OUTPUT} or extend (as part of WRITE or REWRITE
operation} a file because the recording medium is
full.

The program attempted to perform an operation that is
not allowed for the file organization. For example,
deleting a record from a sequential file.

The program failed to perform a READ, WRITE, or
REWRITE operation because a record with an invalid
count field was detected in a sequential file.

The program failed to perform a READ or START
operation because the specified data item does not
represent a key that is defined for the file.

The program failed to OPEN a file on magnetic tape
because the tape volume was not in ANSI format.

The program failed to perform the specified operation
because the file processor detected a busy channel.

The program failed to perform a random record
operation on a relative file because the value in the
RELATIVE KEY data item exceeds the maximum record
number specified when the file was created.

NOTE

This condition can occur only if the file was
not created by a COBOL program (for example,
the file was created by the RMS DEFINE utility
which permits specification of a maximum
record number} .

The program failed to perform a WRITE operation to a
sequential file because the file was not positioned at
EOF.

I-4

-1168

-12i~ (mm)

-1248

-1296

- l 3 7 6 f m..rn)

-1392

-144,0

-1456 (mm)

-1472 (816)

-1488

-152i (mm)

-1568

RECORD MANAGEMENT SERVICES ERROR CODES

The program failed to OPEN a file because the SELECT
clause in the program did not specify the same number
of alternate record keys that were specified when the
file was created. Therefore, insufficient buffer
space is available in the task for the allocation by
RMS of internal control structures known as index
descriptors.

The program failed to OPEN a file because the RSTS/E
OPEN function could not access the magnetic tape unit
specified in the ASSIGN and/or SELECT clause. This
error occurs only on ~STS/E systems.

The program failed to perform the specified operation
because an error was detected in the file's prologue.
The file may be corrupted. use the RMS DEFINE and
CONVERT utilities to recreate and reload the file, or
use a backup copy of the file to restore it.

The program failed to OPEN a file because the program
does not have the proper privilege authority to access
the file.

The program failed to OPEN a file because the file
processor detected a read error.

The program failed to perform a WRITE operation to a
relative file because a record already exists in the
target record position.

The program failed to perform the specified operation
to a relative or indexed file because the target
bucket was locked by another user.

The program failed to CLOSE a file
RSX-FllACP REMOVE function could not
directory entry. This error occurs only
and IAS systems.

because the
delete the
on RSX-llM

The program failed to perform a READ, START, DELETE,
or REWRITE operation to a relative or indexed file
because the record specified in the random access
operation does not exist. When an (mm) code of -816
also appears in the RMS error message, it further
indicates that the operation is to an indexed file and
that the file is empty.

The program failed because it tried to UNLOCK a
bucket (record) that was not LOCKED.

The program failed because RMS detected a file
processor error. An error was detected while reading
the file prologue, and the file may be corrupted. Use
the RMS DEFINE and CONVERT utilities to recreate and
reload the file, or use a backup copy of the file to
restore it.

The program failed because:

1. The size of the record to be written by a WRITE or
REWRITE operation exceeds the maximum record size
specified when the file was created, or

I-5

-1584

-16~~

-1616

-1664

-168~

-1696

-1744

-1776 (mm}

-1784

-1792 fmm)

RECORD MANAGEMENT SERVICES ERROR CODES

2. The size of the record in a REWRITE operation to a
sequential file does not equal the size of the
original record.

The program failed to READ a record because the
program does not have a buffer large enough for the
record. Either the record descriptions or the BLOCK
CONTAINS clause are inconsistent with the actual size
of the records in the file. Use the RMS DISPLAY
utility to determine the actual or maximum size of the
file's records.

The program failed to perform a WRITE or REWRITE
operation to an indexed file in sequential access mode
becuase the prime key of the record is not greater
than the key of the last accessed record.

The program failed to OPEN a file because the file is
sequentially organized and cannot be shared with
another user. This error could be reported if the
program specifies the /SH switch in the ASSIGN or
VALUE OF ID clause for the file.

The program failed to OPEN or CLOSE a file because a
system directive error occured.

The program failed to perform a record
operation (READ, WRITE, REWRITE, UPDATE or DELETE) to
an indexed file. The file is corrupted. Use the RMS
DEFINE and CONVERT utilities to recreate and reload
the file, or use a backup copy of the file to restore
it.

The program failed to OPEN a file because a syntax
error was detected in the file type portion of the
file specification obtained from the SELECT and VALUE
OF ID clauses.

The program failed to OPEN a file because a syntax
error exists in the version number portion of the file
specification obtained from the VALUE OF ID and SELECT
clauses. This error can occur only on RSX-llM and !AS
systems.

The program failed to CLOSE a file because the file
processor detected a write error.

The program failed to OPEN a file because the
recording medium is write-locked. For magnetic tapes,
insert a write-ring; for disk-drives, move the
write-lock switch to the off position.

An error has occurred during an RMS write operation to
the file's prologue. The file may be corrupted. Use
the RMS DEFINE and CONVERT utilities to correct the
file, or use a backup copy of the file to restore it.

I-6

APPENDIX J

OBJECT-TIME SYSTEM ERROR MESSAGES

This appendix lists and describes the COBOL Object-Time System error
messages. The run-time system.displays these messages when it detects
errors during the execution of COBOL tasks.

In some cases, the OTS displays an additional line containing an
associated Record Management Services error code that further
specifies the error condition. RMS error codes appear in Appendix I.

NOTE

Error codes that are preceded by an
asterisk (*) indicate fault conditions
during task execution. They are
described in the documentation set for
your operating system.

These fault conditions could result from
COBOL program errors, such as:

• a "run-away" subscript or index in a
program compiled with the /-BOU
switch

• using CID in a program compiled with
the /RO switch

1: SUBSCRIPT TOO SMALL OR TOO LARGE

The subscript value for a data item is
not greater than zero, or it is greater
than the maximum number of occurrences
of the table data item.

2: INDEX TOO SMALL OR TOO LARGE

The value of an index-name is not
greater than zero, or it is greater than
the maximum number of occurrences of the
table data item.

J-1

OBJECT-TIME SYSTEM ERROR MESSAGES

3: DEPENDING ON ITEM TOO LARGE OR TOO SMALL

4: ILLEGAL PROGRAM REENTRY

The value of the data item that defines
the size of the table is not in the
table size range specified in the OCCURS
clause.

A COBOL subprogram attempted to call
itself, either directly or indirectly.
The EXIT PROGRAM statement must be
executed in a subprogram before the
subprogram can be called again.

5: INCORRECT NUMBER OF ARGUMENTS

6: PERFORM STACK OVERFLOW

The number of arguments received by a
COBOL subprogram does not agree with the
expected number of arguments; that is,
the number of CALL statement arguments
in the calling program is not the same
as the number of arguments in the
PROCEDURE DIVISION USING phrase of the
called program.

The number of nested PERFORMS has
exceeded the maximum; the maximum is
either the default (ten) or the number
specified by the value of the /PFM:n
compiler switch.

7: PERFORM END OF RANGE VIOLATION

8: ILLEGAL NESTED PERFORM

9: NULL ALTERABLE GO TO

The program reached the end of an active
PERFORM while processing a more-recently
executed PERFORM~ that is, the program
executed a PERFORM statement whose range
overlaps the end of the PERFORM
statement that is currently being
executed.

The program attempted to execute a
PERFORM statement whose exit is also the
exit of a previously executed PERFORM
that is still active.

The program reached an alterable GO TO
statement before assigning it a
procedure name.

l~: SAME AREA ALREADY BUSY WHEN OPENING

The program tried to OPEN a file that
uses the same buffer area as another
open file.

J-2

OBJECT-TIME SYSTEM ERROR MESSAGES

11: FILE ALREADY OPEN

12: FILE NOT OPEN

The program tried to OPEN a file that is
·currently open.

The program tried to CLOSE or otherwise
access a file that is not currently
open.

13: INVALID OPERATION ATTEMPTED

The program tried to execute one of the
following I/O statements for a file that
is open in an incompatible mode:

(a) a READ for a file open for OUTPUT

(b) a WRITE for a file open for INPUT

(c) an I/O opera~1on not consistent
with the file organization (for
example, START on a sequential
file)

14: READ MUST PRECEDE REWRITE OR DELETE

15: FILE PREVIOUSLY LOCKED

The program attempted to execute a
REWRITE or DELETE statement for a
sequentially accessed file, but the last
I/O operation on the file was not a
READ.

The program tried to access a file for
which it had previously executed a
CLOSE ... WITH LOCK statement.

16: CLOSING UNIT OR REEL UNSUCCESSFUL

1 7: OPEN ERROR

18: CLOSE ERROR

The program executed a CLOSE UNIT or
CLOSE REEL statement that failed. The
accompanying RMS error code £urther
specifies the error.

The execution of an OPEN statement
failed. The accompanying RMS error code
further specifies the error.

The execution of a CLOSE statement
failed. The accompanying RMS error code
further specifies the error.

J-3

OBJECT-TIME SYSTEM ERROR MESSAGES

19: NOT OPEN FOR OPERATION

2~: INVALID LINAGE VALUE

The program tried to execute an I/O
statement for a file that is not open.

The LINAGE clause specifies a page body
size that results in an invalid value;
the value is not greater than zero, or
it is out of range.

21: NO END OF FILE PROCESSING

22: READ ERROR

23: WRITE ERROR

24: REWRITE ERROR

25: DELETE ERROR

26: START ERROR

27: UNLOCK ERROR

28: BAD NAME USING file-name

An end-of-file has been detected, but
the I/O statement does not have an AT
END clause, and the program has no USE
procedure for end-of-file processing.

The execution of a READ statement
failed. The accompanying RMS error code
further specifies the error.

The execution of a WRITE statement
failed. The accompanying RMS error code
further specifies the error.

The execution of a REWRITE statement
failed. The accompanying RMS error code
further specifies the error.

The execution of a DELETE statement
failed. The accompanying RMS error code
further specifies the error;

The execution of a START statement
failed. The accompanying RMS error code
further specifies the error.

An unsuccessful attempt has been made to
unlock a record in
accompanying RMS error
specifies the error.

the r:i.ie. The
code further

The file specification or associated
switches for a file description are
syntactically incorrect.

J-4

OBJECT-TIME SYSTEM ERROR MESSAGES

29: STOP

3i: UNKNOWN PROCEDURE

31: ACCEPT ERROR

32: DISPLAY ERROR

Not an error. The program executed a
STOP literal statement. Enter a
carriage return to continue program
execution.

The program attempted to transfer
control to an undefined procedure-name;
a fatal diagnostic error message was
issued at compile time. The program was
compiled with the /ACC:2 switch. See
compiler source program listing.

The program failed to ACCEPT data from
the user. The input device is busy,
off-line, or otherwise unavailable.

The program failed to DISPLAY data to
the user. The output device is busy,
off-line, or otherwise unavailable.

33: UNABLE TO COMMUNICATE WITH USER

The run-time system failed to display an
error message to the user. This error
is not displayed, but its code is
returned as the exit status.

34: FATAL SOURCE ERROR ENCOUNTERED

The run-time system tried to execute a
part of the program that contains fatal
errors. The program was compiled with
the /ACC:2 switch. See compiler source
program listing.

35: ENVIRONMENTAL INTEGRITY FAULT

Part of the run-time system has been
damaged by the COBOL program or by an
error in the run-time system itself.
This error could result from a
"run-away" subscript or index in
programs compiled with the /-BOU switch.

36: SPECIFY ALL "ON" SWITCHES

Not an error. This message appears when
program execution begins if the
SPECIAL-NAMES paragraph contains a
SWITCH ON or OFF statement. fSee
Section 2.6.2, Setting Program
Switches.)

J-5

OBJECT-TIME SYSTEM ERROR MESSAGES

37: INVALID INPUT, TRY AGAIN

* 38: ODD ADDRESS FAULT

The user incorrectly responded to the
SPECIFY ALL "ON" SWITCHES message. fSee
Section 2.6.2, Setting Program
Switches.)

* 39: MEMORY PROTECTION VIOLATION

* 4~: BPT INSTRUCTION

* 41: IOT INSTRUCTION

* 42: RESERVED INSTRUCTION

* 43: INVALID EMT INSTRUCTION

* 44: FLOATING POINT EXCEPTION

45: PERFORM COUNT TOO LARGE

The value of the iteration counter used
in a PERFORM procedure identifier TIMES
statement exceeded the limit, which is
32767.

46: EXPONENT TOO LARGE OR TOO SMALL

The exponent used in a COMPUTE statement
is out of range. The legal range is
-32768 to 32767.

J-6

Abbreviated ODL file, 2-19
Abortive diagnostic, 12-4
/ACC:n switch, 2-12, 2-15, 12-4
ACCEPT statement, 6-39, 6-45
Access method, 6-1
ACCESS MODE clause, 6-19, 6-32
Acceps modes, 6-19
Accumulation of storage overhead,

14-9
Active/Inactive arguments, 3-41
ADD statement, 4-19

multiple operands, 4-18
Addressing,

CID, 13-3
ADVANCING clause, 6-6
/AL:n switch, 14-4, 14-11
Alignment of data, 3-3
ALL literal, 3-26
Alphabetic data, 3-1
Alphanumeric data. 3-1
ALTER statement, 7-5
Alternate key, 6-24
Alternate key index, 14-7
Argument,

Replacement, 3-52
Tally, 3-44

Argument address list, lf-6
Argument list,

Tally, '3-45
Argument match,

INSPECT, 3-42
Arguments,

Subprogram, lf-3
Arithmetic expression processing,

4-22
Arithmetic statements, 4-15

INDEX

Bucket pointer, 14-7
Bucket size,

Effect of, 6-15
Selecting, 14-8

Bucket split, 14-7
Buffer size, 6-8, 6-18, 6-3J
Buffer space, 6-31
Buffering, 6-7, 6-17, 6-3J

Caching index roots, 14-3
Calculating bucket size, 6-17, 6-28
Calculating buffer space, 6-8, 6-18,

6-31
CALL statement, lf-1, lf-2, E-1
Calling a subprogram, lf-2
Calling MACRO programs, lf-4
CANCEL BREAKPOINT,

CID command, 13-5
Card reader, 6-39
Characteristics of devices, 6-38
Characters,

Special, 3-3
Choosing data types, 14-lf
CID, 2-19, 13-1

breakpoints in, 13-9
command errors in, 13-lf
examples, 13-11
program initiation, 13-8
program suspension, 13-9
program termination, 13-9

CID addressing, 13-3
CID command, 13-4

CANCEL BREAKPOINT, 13-5
DEPOSIT, 13-5, 13-6
EXAMINE, 13-6
GO, 13-7

common errors, 4-21
ASCENDING/DESCENDING KEY attributes,

SET BREAKPOINT, 13-7
SHOW BREAKPOINTS, 13-8
XIT I 13-8 5-17

ASCII character set, 3-3
ASCII codes, 3-4
ASSIGN clause, 6-43
Assumed decimal point, 4-6
AT END condition, 12-4

BEFORE/AFTER phrase, 3-37, 3-41,
3-51

Binary format, 4-1
Binary search of table, 5-17
Blank insertion, 3-lf
Block,

logical, 6-6, 6-15, 6-27
Virtual, 6-6, 6-15, 6-27

BLOCK CONTAINS clause, 6-6, 6-15,
6-28, 14-8

Blocking factor, 6-8, 6-3J
Blocking of records, 6-15
/-BOU switch, 2-12, 14-lf
Breakpoints in CID, 13-9
Bucket, 6-15, 6-27, 14-5

CID command mode, 13-2
CID environment, 13-2
/CL:n switch, 14-11
Class,

on source listing, G-3
Class tests, 4-lf

Data, 3-6
Classes of data, 3-5
CLOSE REEL clause, 6-39
CLOSE statement, 6-13, 6-24, 6-37
Closing indexed files, 6-37
Closing relative files, 6-24
/CM6 switch, 2-13
/CO:n switch, 14-4, 14-12
COBOL file types, 6-2
COBOL Interactive Debugger, 13-1
Codes,

Device, 6-37
Collating sequence, 3-6
Command,

CID, 13-4

Index-1

INDEX (Continued)

Command line,
compiler, 2-1i, 2-11, 2-16

Command mode,
CID, 13-2

Common errors,
arithmetic statements, 4-21
INSPECT statement, 3-55
library facility, 2-8
MOVE statement, 3-12
numeric moves, 4-14
STRING statement, 3-2~
UNSTRING statement, 3-36

Communication with the program, 6-45
Comparison operation, 3-6
Compatibility, 6-47
Compilation, 2-9

identification number, G-1
multiple program, 2-1i
single program, 2-9

Compilation date and time, G-1
Compiler,

version, G-1
Compiler command line, 2-1i, 2-11,

2-16
Compiler error messages, H-1
Compiler-generated PSECTs, D-1, G-4
Compiler limitations, C-1
Compiler name, 2-9
Compiler performance,

Effect of qualification on, 7-12
Compiler switches, 2-11, 2-13, 2-14,

2-15
Compiler system errors, 12-1
COMPUTATIONAL, 4-1, 4-2, 4-12
COMPUTATIONAL-3, 4-5, 4-12
COMPUTATIONAL-3 signs, 4-5
COMPUTATIONAL-6, 4-3, 4-4, 4-12
COMPUTE statement, 4-21, 14-li
Concatenation of fields, 3-13
Condition,

AT END, 12-4
Class, 3-6
INVALID KEY, 6-35, 12-4
Overflow, 3-17, 3-34
Relation, 3-4

Condition-names, 7-6
Conventional format,

identification field, G-2
sequence number, G-2

Conventional reference format, 2-1
Conversion of reference format, 8-1
COPY, 2-2, 2-3

example, 2-4, 2-5, 2-6, 2-7
use of, 2-4

COPY in source listing, 2-8
COPY REPLACING, 2-5, 2-6
Count field, 6-4, 6-27
COUNT phrase, 3-28
Counter,

Tally, 3-44

/CREF switch, 2-13
/CSEG:nnnn switch, 2-13, 9-2, 9-3
/CVF switch, 2-13

Data,
Alphabetic, 3-1
Alphanumeric, 3-1
Non-numeric, 3-1
Numeric, 3-1

Data Division location, G-3
Data item,

Definition of, 7-1~
Qualification of, 7-1~

Data level buckets, 14-7
Data map, G-3
Data movement, 3-7
Data-name subscripting, 5-11
Data-names,

maximum, C-1
Data organization, 3-2
Data references,

Qualified, 7-8
DATE, 6-45
Date,

compilation, G-1
DAY, 6-45
Debugger, 2-19, 13-1
Debugging session example, 13-11
Decimal point,

assumed, 4-6
Decimal scaling position, 4-6
DECLARATIVES, 6-49
Defining a table, 5-1
Defining data items, 7-li
DELETE statement, 6-22, 6-35
Deleting records from a relative

file, 6-22
Deleting records from an indexed

file, 6-35
DELIMITED BY phrase; 3-15, 3-23
DELIMITER phrase, 3-29
Delimiters,

Multiple, 3-27
Variable, 3-27

DEPOSIT,
CID command, 13-5, 13-6

Determining buffer space, 6-8
Device assignment, 6-43
Device characteristics, 6-38
Devices, 6-37
Diagnostic,

informational, 12-2, 12-3
Diagnostic error messages, 12-1, H-1
Directory location, G-3
Disk processing, 6-38
DISPLAY, 4-1

maximum number of operands, C-1
DISPLAY statement, 6-39, 6-46
DIVIDE statement, 4-21
Dynamic access mode, 6-2~, 6-32

Index-2

INDEX (Continued)

Edited moves, 3-1~
elementary numeric, 4-13

Efficient program structure, 14-2
Elementary items, 3-2
Elementary moves, 3-8
Elementary numeric edited moves,

4-13
Elementary numeric moves, 4-11
Embedded diagnostics, 12-1
End-of-file mark, 6-3
ENDS routine, E-3
Environment,

CID, 13-2
/ERR switch, 2-13
Error codes,

sort, E-5
terminal handling, F-5

Error message summary; 2-15
Error messages, 12-1

diagnostic, H-1
Merge utility, 2-23, 2-24, 2-25
OTS, J-1
RMS, I-1
Run-time, 12-5

Error procedures,
Run-time file I/O, 12-4

/EX:n switch, 14-4, 14-12
EXAMINE,

CID command, 13-6
Executing a COBOL task, 2-29, 2-3~
EXIT PROGRAM statement, lj-3
Explicit filenames, 6-41
Expression processing,

arithmetic, 4-22
EXTEND mode, 6-11, 6-13
Extend quantity, 14-4

Fatal diagnostic, 12-3
File, 6-4j

abbreviated ODL, 2-19
listing, 1-1, 2-lj
merged ODL, 2-19
Multi-volume, 6-3
object, 1-2, 2-11
ODL, 1-2, 2-16, 2-17
Print, 6-13
source, 2-lj
Storage, 6-13
Transportable, 6-48

File activity, 14-9
File body,

ODL, 11-2
File design, 14-4
File Handling, 6-1
File header,

ODL, 11-1
File organization,

indexed, 6-24
relative, 6-13
Sequential, 6-3

File specification, 2-lj, 6-41
File specification switches, 14-11
File status key values, 12-4
File-to-LUN assignment table, G-2
File types,

COBOL, 6-2
Filenames, 6-41
Fixed-length records, 6-4, 6-14,

6-27
Form control characters, 6-47
Formatting source programs, 7-1

General formats, A-1
GIVING phrase, 4-18
GO,

CID command, 13-7
GO TO DEPENDING, C-1
Good programming practices, 7-1
Group items, 3-2
Group moves, 3-8, 4-11

/HELP switcn, ~-lJ
Hierarchy of index, 14-5
HISEG, 2-26

I/O buffer areas, 6-8, 6-18, 6-31
I/O mode, 6-22
I/O routines,

overlaying_, 2-19
I/O statements, 6-2
Identical tally arguments, 3-47
Identification field,

conventional format, G-2
Identification number,

compilation, 12-5, G-1
IF statement, 3-4
Illegal values in numeric fields,

4-8
Implicit redefinition of fields,

3-38
Including non-COBOL programs in

task, 11-5
Index buckets, 6-31
Index data items, 5-14
Index depth, 14-9
Index structure, 14-5
INDEXED BY phrase, 5-12, 5-17
Indexed file organization, 6-24
Indexed files, 14-5

Sequential reading, 14-3
Indexed I/O statements, 6-31
Indexed OPEN modes, 6-32
Indexed sending field, 3-14
Indexed subscripting, 5-12
Indexing, 5-9

Relative, 5-13
Informational diagnostic, 12-2, 12-3
Initializing tables, 5-7
Insertion,

Blank, 3-11

Index-3

INDEX (Continued)

Insertion (continued)
Slash, 3-1.0'
Zero, 3-1~

INSPECT operation, 3-4,0'
INSPECT statement, 3-36
Inter-program communications, 1,0'-l
Interactive debugger, 13-1
Interference of replacement

arguments, 3-54
Interference of tally arguments,

3-47
Intermediate results, 4-15, 4-25
INVALID KEY clause, 6-19, 6-35
INVALID KEY condition, 12-4

JUSTIFIED clause, 3-9
Justified moves, 3-1.0'

KBASGN terminal
F-2, F-3

KBCLOS terminal
F-2

KBDEAS terminal
F-3

KBOPEN terminal
F-2

KBREAD terminal
F-4

KBREAU terminal
F-4

KBWRIT terminal
F-3

/KER:kk switch,
Key,

Definition of,
Key value, 14-7
Keys,

sort, E-3

handling

handling

handling

handling

handling

handling

handling

2-14

6-24

LEADING condition, 3-49

routine,

routine,

routine,

routine,

routine,

routine,

routine,

Legal non-numeric elementary moves,
3=9

Level 88, 7-6
Level number, 7-1~
Library facility, 2-2

common errors, 2-8
Library file,

creating, 2-3
Library text,

merging, 2-4
Limitations.

compiler, C-1
LINAGE clause, 6-6
LINAGE counters, 6-11
Line number,

source, G-1
Line printer, 6-39
LINKAGE SECTION, l,0'-2
Linking sort routines, E-4

Listing,
source, G-1

Listing file, 1-1, 2-1.0'
Literal sending field, 3-14
Literal subscripting, 5-9
/LO switch, 14-12
Location,

Data Division, G-3
directory, G-3

LOCK option, 6-24, 6-37
Logical block, 6-6, 6-15, 6-27
Logical block size, 6-6
Logical name assignment, 6-39
Logical processing units,

Grouping of, 7-4
Logical Unit Number, 6-43
Logical unit number assignment, B-1
LUN, E-4

relative, G-2
LUN assignment, 6-43, B-1

MACRO programs,
Calling, 1.0'-4

Magnetic tape processing, 6-39
Main program,

COBOL, l~-1
Map,

data, G-3
procedure name, G-3

/MAP switch, 2-14, 13-1, G-3
Mapping table elements, 5-3
Mass storage I/O,

Optimizing, 14-1
Merge, 1-3, 2-16, 2-17, 2-18

ODL files for, 11-1
Merge dialogue, 2-19, 2-2,0', 2-21

example, 2-22, 2-23
MERGE routine, E-2
Merge utility, 2-16
Merge utility error messages, 2-23,

2-24, 2-25
Merged ODL file, 2-19
Merging library text, 2-4
Merging ODL files, 11-5
Mode,

EXTEND, 6-13
OUTPUT, 6-12

Modifying ODL files, 11-6
Modular proqrams, 1-2
Module, - -

object code, 1-1
MOVE CORRESPONDING, 3-8, 3-12
MOVE statement, 3-7, 3-8, 4-12

numeric, 4-1~
Moves,

elementary numeric, 4-11
elementary numeric edited, 4-13
group, 4-11

Multi-block read and write, 14-3
MULTI-FILE TAPE clause, 6-39

Index-4

INDEX (Continued)

Multi-volume files, 6-3
Multiple delimiters, 3-27
Multiple operands, 4-18
Multiple receiving fields, 3-11~

3-21
Multiple sending fields, 3-13
MULTIPLY statement, 4-2J

Names,
PSECT, D-1

Nested PERFORM source line number,
12-5

Nesting of parentheses, C-1
Nesting of PERFORM statements, C-1
/NL switch, 2-14
NO ADVANCING phrase, 6-47
Non-COBOL object modules, lJ-4, 11-5
Non-edited movesi 3-11
NOT, 3-5
Numeric character handling, 4-1
Numeric data, 3-1
Numeric edited moves,

elementary, 4-13
Numeric fields,

illegal values, 4-8
testing, 4-8

Numeric MOVE statement, 4-lJ
Numeric mo~1es,

common errors, 4-14
elementary, 4-11

/OBJ switch, 2-14, 13-1, G-2
Object code module, 1-1
Object file, 1-2, 2-lJ
Object file input to Task Builder,

2-27
Object modules, 1-1

Non-COBOL, lJ-4
Object-time system, 1-3
Object-time system error messages,

J-1
OCCURS clause, 5-1, 5-2, 5-17
ODL directives for overlays, 11-3
ODL file, 1-1, 1-2, 2-16, 2-17

abbreviated, 2-19
merged, 2-19
on source listing, G-5
Rearranging, 11-6
Standard, 11-1

ODL file body, 11-2
ODL file header, 11-1
ODL file input to Task Builder, 2-25
ODL file merging, 11-5
ODL files for Merge, 11-1
ODL files for Task Builder, 11-1
Offset, 12-5, 13-3, 13-4
OPEN I-0 statement, 14-3
OPEN statementi 6-9, 6-2J, 6-33
Opening indexed files, 6-33
Opening relative files, 6-2J

Opening sequential files, 6-9
Operating system prompts, 2-9
Operator,

Relational, 3-5
Optimization, 14-1
Optimizing computation, 14-lJ
Options,

Task Builder, 2-26
ORGANIZATION clause, 6-1
OTS, 1-3
OTS action on OPEN, 6-lJ
OTS error checking, lJ-3
OTS error messages, J-1
OTS operations on subscripted

references, 5-11
OTS routines,

on source listing, G-4
OUTPUT mode, 6-12, 6-22
/OV switch, 9-2
Overflow condition, 3-17, 3-34
OVERFLOW phrase, 3-17, 3-33
Overhead accumulation, 14-9
Overlay Description Language, 1-1
Overlay structure, 14-2
Overlaying I/O routines, 2-19

Parentheses,
nesting of, C-1

Passing of arguments, lJ-3
PERFORM statement, 7-5
PERFORM statement nesting, C-1
/PFM:nn switch, 2-14, C-1
/-PLT switch, 2-14
Pointer,

Bucket, 14-7
POINTER phrase, 3-14, 3-3J, 3-31
Position,

decimal scaling, 4-6
Preallocation of file, 14-4
Primary key, 6-24
Primary key index, 14-7
Print-controlled records, 6-6
Print files, 6-13
Procedure name map, G-3
Procedure-names,

maximum, C-1
Procedure reference,

Qualified, 7-11
Processing I/O errors, 6-49
Program development, 14-2
PROGRAM-ID, lJ-3, 12-5
Program initiation in CID, 13-8
Program segments,

Non-overlayable, 9-1
Overlayable, 9-1

Program suspension in CID, 13-9
Program switches, 2-29, 2-3J
Program termination in CID, 13-9
Prompts,

operating system, 2-9

Index-5

INDEX (Continued)

PSECT, 9-2, 12-5
compiler-generated, D-1, G-4
on source listing, G-4

PSECT names, l~-3, D-1
PSECT size, G-4
Punctuation,

use of, 7-4

Qualification and performance, 7-12
Qualified procedure reference, 7-11
Qualified references, 7-8
Qualifiers,

maximum number, C-1
Qualifying data items, 7~1~

RANDOM access mode, 6-19
Random access mode, 6-32
READ NEXT statement, 6-21, 6-23
READ statement, 6-11, 6-21, 6-34
Reading buckets, 6-17
Reading indexed files, 6-34
Reading relative files, 6-21
Reading sequential files, 6-11
Rearranging ODL files, 11-6
Receiving fields,

Multiple, 3-21
Record,

Fixed-length, 6-4
fixed-length, 6-14
variable-length, 6-14

Record blocking, 6-6, 6-15, 6-27
RECORD CONTAINS clause, 6-4, 6-14,

6-27
Record Management Services, 6-47
Record size, 6-4, 6-14, 6-27
Redefinition,

implicit, 3-38
Reference format, 2-1

conventional, 2-1
terminal, 2-1

Reference format conversion, 8-1
REFORMAT command string, 8-2
REFORMAT error messages, 8-3
REFORMAT utility program, 7-1, 8-1
Relation condition, 3-4
Relation tests, 3-4, 4-8
Relative file organization, 6-13
Relative files, 14-5
Relative I/O statements, 6-18
Relative indexing, 5-13
RELATIVE KEY clause, 6-23
Relative LUN, G-2
RELES routine, E-2
Replacement argument, 3-52
Replacement argument list, 3-53
Replacement arguments,

Interference of, 3-54
Replacement value, 3-52
REPLACING, 2-5, 2-6
REPLACING arguments, 3-4~

REPLACING phrase, 3-36, 3-51
RESERVE clause, 6-8, 6-18, 6-3~
Results,

intermediate, 4-15, 4-25
RETRN routine, E-2
Returning from a subprogram, l~-3
REWRITE statement, 6-12, 6-22, 6-34
Rewriting records,

indexed file, 6-34
relative file, 6-22
sequential files, 6-12

RMS default overlay structure, 14-2
RMS DEFINE utility, 14-4, 14-5
RMS error codes, I-1
RMS error messages, I-1
/RO switch, 2-15
Root bucket, 14-5
ROUNDED phrase, 4-16
RSORT routine, E-1
RSTS/E terminal handling, F-1
RUN command, 2-3i
Run-time error messages, 12-5
Run-time I/O errors, 12-4
Run-time system, 1-3

SAME AREA clause, 6-8, 6-13, 6-18,
6-24, 6-31, 6-37, 14-4

SAME RECORD AREA claQse, 6-5, 6-15,
6-27, 14-4

Scanner,
INSPECT, 3-41

Search argument,
REPLACING, 3-51

SEARCH statement, 5-16
SEARCH verb, 5-16
Section,

Linkage, l~-2
Section-name, 9-1
SEGMENT-LIMIT clause, 9-1
Segment-number, 9-1
Segmentation, 9-1
SELECT statement, 7-1
Selecting bucket size, 14-8
Sequence number,

conventional format, G-2
Sequential access mode, 6-19, 6-32
Sequential file organization, 6-3
Sequential files, 14-4
Sequential I/O statements, 6-9
SEQUENTIAL organization, 14-3
Sequential reading of indexed files,

14-3
Sequential search of table, 5-16
SET BREAKPOINT,

CID command, 13-7
SET statement, 5-12, 5-14
Setting the INSPECT scanner, 3-41
Severity code, G-2
Severity level of diagnostic, 12-3
/SH switch, 14-12

Index-6

INDEX (Continued)

Sharing buffer space among files,
6-8, 6-18, 6-31

SHOW BREAKPOINTS,
CID command, 13-8

Sign conventions, 4-6, 4-7
Sign movement, 4-12
Sign tests, 4-9
Signs,

COMPUTATIONAL-3, 4-5
SIZE ERROR phrase, 4-17
Slash insertion, 3-lj
Sort error codes, E-5
Sort keys, E-3
Sort routine,

ENDS, E-3
MERGE, E-2
RELES, E-2
RETRN, E-2
RSORT, E-1

Sort routines,
linking, E-4

Sorting, E-1
Source file, 2-lj
Source line number, G-1
Source program,

creating, 2-1
entering, 2-2

Source program formatting, 7-1
Source program listing, G-1
Special characters, 3-3
SPECIAL-NAMES, 2-29, 2-3j, 6-39
Specifying bucket size, 6-28
Specifying next record to be read,

6-23, 6-35
Specifying Task Builder options,

11-8
Standard ODL file, 11-1
START statement, 6-23, 6-35
Statement,

DISPLAY, 6-39
STRING, 3-7

Statements,
arithmetic, 4-15

Storage files, 6-13
STRING statement, 3-7, 3-18
Structure of index, 14-5
Subordinate data items, 3-2
Subprogram,

COBOL, lj-1
Return from, lj-3

Subprogram arguments, lj-3
Subprogram calls, lj-2
Subprogram references, G-5
Subscript evaluation,

Sequence of, 3-35
Subscripted fields in INSPECT

statement, 3-43
Subscripted fields in STRING

statement, 3-18

Subscripted fields in UNSTRING
statement, 3-34

Subscripted moves, 3-11
Subscripting, 3-19, 5-9
Subscripting operations by software,

5-lj
Subscripting with data-names, 5-11
Subscripting with indexes, 5-12
Subscripting with literals, 5-9
SUBTRACT statement, 4-19

multiple operands, 4-18
Switch,

/ACC:n, 2-12, 2-15, 12-4
/AL:n, 14-4, 14-11
/-BOU, 2-12, 14-lj
/CL:n, 14-11
/CM6, 2-13
/CO:n, 14-4, 14-12
/CREF, 2-13
/CSEG:nnnn, 2-13, 9-2, 9-3
/CVF, 2-13
/ERR, 2-13
/EX:n, 14-4, 14-12
/HELP, 2-13
/KER:kk, 2-14
/LO, 14-12
/MAP, 2-14, 13-1, G-3
/NL, 2-14
/OBJ, 2-14, 13-1, G-2
/OV, 9-2
/PFM:nn, 2-14, C-1
/-PLT, 2-14
/RO, 2-15
/SH, 14-12
/SYM:n, 2-15
/WI : n , 14 -12

Switches,
compiler, 2-11, 2-13, 2-14, 2-15
File specification, 14-11
program, 2-29, 2-3j

/SYM:n switch, 2-15
SYNCHRONIZED clause, 5-3

Table,
Definition of, 5-1
variable-length, 5-2

Table Handling, 5-1
Table search,

Binary, 5-17
Sequential, 5-16

Tally argument, 3-44
Interference of, 3-47

Tally arguments,
identical, 3-47

Tally counter, 3-44
TALLYING arguments, 3-4~
TALLYING phrase, 3-31, 3-32, 3-36,

3-43
Target bucket, 14-7
Task, 1-3

Index-7

INDEX (Continued)

Task Builder, 1-2, 2-16, 2-25, 2-26
object file input, 2-27
ODL file input, 2-25
ODL files for, 11-1

Task Builder options, 2-26, 11-8
Task-building, 2-25
Task image, 1,-1
Terminal handling (RSTS/E) , ¥-i
Terminal handling error codes, F-5
Terminal handling routine,

KBASGN, F-2, F-3
KBCLOS, F-2
KBDEAS, F-3
KBOPEN, F-2
KBREAD, F-4
KBREAU, F-4
KBWRIT, F-3

Terminal reference format, 2-1, 7-1
Testing non-numeric fields, 3-4
Testing numeric fields, 4-8
Tests,

class, 3-6, 4-1,
relation, 4-8
sign, 4-9

TIME, 6-45
Time of compilation, G-1
Truncation, 4-11, 4-12

Unique reference, 7-11
UNSTRING statement, 3-7, 3-21
Usage,

on source listing, G-3
Usages, 4-1
USE procedure, 12-4
USE statement, 6-49
USING phrase, l~-1
Utility programs, 1-3

Value,
Replacement, 3-52

VALUE cl·ause, 5-1
VALUE OF ID clause, 6-4,, 6-41
Variable delimiters, 3-27
Variable-length records, 6-14, 6-27
Variable-length tables, 5-2
Version of compiler, G-1
Virtual block, 6-6, 6-15, 6-27

Warning diagnostic, 12-3
/WI:n switch, 14-12
WRITE statement, 6-6, 6-12, 6-22

XIT,
CID command, 13-8

Zero insertion, 3-1,

Index-a

READER'S COMMENTS

PDP-11 COBOL
User's Guide
AA-1757D-TC

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR} form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer

0 Higher-level language programmer

0 Occasional programmer (experienced)

[] User with little programming experience

0 Student programmer

0 Non-programmer interested in computer concepts and capabilities

CitY~~~~~~~~~~~~~~State~~~~~~~Zip Code~~~~~~~­
or

Country

--Fold llere--

·--- Do Not Tear • Fold llere and Staple -------------------------------':"---------------

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mnmnoma
Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD; MASS.

digital equipment corporation

Printed in U.S.A.

