
FORTRAN IV-PLUS
Object Time System
Reference Manual
Order No. DEC-11-LFPOA-A-D

FORTRAN IV-PLUS
Object Time System
Reference Manual
Order No. DEC-11-LFPOA-A-D

digital equipment corporation · maynard. massachusetts

First Printing, December 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use or
reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright @ 1975 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-IO
DECtape
DIBOL
EDU SYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8

6/78-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET-11

PREFACE

CHAPTER 1

1.1
1.1.1
1.1. 2
1.1. 3
1.1. 4
1. 2
1. 2.1
1. 2. 2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.2.4
1.2.2.5
1. 2. 3
1. 2. 4
1. 2. 5
1. 3
1. 4
1. 4 .1

1. 4. 2

CHAPTER 2

2.1
2.1.1
2.1. 2
2 .1. 3
2 .1. 4
2.1. 5
2.1. 6
2.1. 7
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2.3.1
2.3.2
2.4
2.5
2.5.1
2.5.2
2.5.3
2.6

CONTENTS

Page

vii

INTRO DUCT ION 1-1

OBJECT TIME SYSTEM SUMMARY 1-1
I/O Processing Routines 1-1
Mathematical Functions and System Subroutines 1-2
Compiled-Code Support Routines 1-2
Error Processing Routines 1-2

CONVENTIONS AND STANDARDS 1-3
Registers 1-3
Calling Sequences 1-3
RS Calls 1-3
PC Calls 1-4
R4 Calls 1-5
FO Calls 1-5
Special Call Conventions 1-6
Data Formats 1-6
Labeling Conventions 1-6
Context Save and Restore 1-6

OTS COMPATIBILITY WITH FORTRAN IV (FOR} 1-6
ASSEMBLY LANGUAGE INTERFACING TO THE OTS 1-6

Writing a FORTRAN Main Program in Assembly
Language 1-7
Linkage to the FORTRAN Impure Storage Area 1-7

DATA BASE

PROGRAM SECTION DESCRIPTIONS
$$0TSI OTS Instructions
$$0TSD OTS Pure Data
$$AOTS OTS Impure Storage
$$DEVT Logical Unit Device Table
$$IOB1 User Record Buffer
$$0BF1 Object-Time Format Buffer
Format Conversion PSECTs

IMPURE STORAGE DESCRIPTION
Named Offsets
QIO Directive Parameter Block
Error Message Text Buff er
Error Control Table
Synchronous System Trap Vector Table

LOGICAL UNIT DEVICE TABLE
FFDB Off sets
FFDB Status Bit Definitions

ERROR PROCESSING DATA STRUCTURES
ARRAY DESCRIPTOR BLOCKS

ADB Off sets
Array Dimension Spans
Notes on ADB Usage

TRACEBACK CHAIN

iii

2-1

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2-6
2-7

CHAPTER 3

3.1
3 .1.1
3 .1. 2
3 .1. 3
3 .1. 4
3 .1. 5
3.2
3.2.1
3.2.1.l
3.2.1.2
3.2.1.3
3.2.1.4
3.2.1.5
3.2.1.6
3.2.1.7
3.2.1.8
3.2.1.9
3.2.2
3.2.2.1
3.2.2.2
3.2.3
3.2.3.l
3.2.3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

3.4.6
3.4.7
3.4.8
3.4.9

CHAPTER 4

4.1
4 .1.1
4 .1. 2
4 .1. 3
4 .1. 4
4 .1. 5
4 .1. 6
4 .1. 7
4 .1. 8
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

CONTENTS (Cont.)

INPUT/OUTPUT PROCESSING

COMMON I/O SUPPORT
$FCHNL,$GETFILE and $IOEXIT
Default Open-$0PEN
File Close -- $CLOSE
I/O Initialization -- $INITIO
Element Transmission -- $IOELEM and $IOARY

RECORD PROCESSING SUPPORT
Formatted I/O
Sequential Input -- ISF, ISFE$
Sequential Output -- OSF$, OSFE$
Direct Access Input -- IRF$,IRFE$
Direct Access Output -- ORF$,ORFE$
List-Directed Input -- ISL$,ISLE$
List-Directed Output -- OSL$,OSLE$
ENCODE Statement -- ENF$,ENFE$
DECODE Statement -- DEF$,DEFE$
PRINT,TYPE and ACCEPT Statements
Unformatted Sequential I/O
Sequential Input -- ISU$,ISUE$
Sequential Output -- OSUE$,OSUE$
Unformatted Direct Access I/O
Direct Access Input -- IRU$,IRUE$
Direct Access Output -- 0RU$,ORUE$

FILE PROCESSING SUPPORT
OPEN Statement
CLOSE Statement
DEFINEFILE Statement
FIND Statement
BACKSPACE Statement
REWIND Statement
ENDFILE Statement

I/0 PROCESSING UTILITIES
Sequential Input -- $GETS
Sequential Output -- $PUTS
Direct Access In.put -- $GETR
Direct Access Output -- $PUTR and $PUTRI
Direct Access Record Number Checking -­
$CKRCN
Associated Variable Update -- $ASVAR
File Name Block Initialization -- $FNBST
Default File Name Generation -- $FLDEF
Register Save and Restore -- $SAVPx

FORMAT PROCESSING AND FORMAT CONVERSIONS

Page

3-1

3-1
3-2
3-3
3-3
3-3
3-4
3-4
3-6
3-6
3-6
3-6
3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-8
3-8
3-9
3-13
3-14
3-14
3-14
3-15
3-15
3-15
3-15
3-15
3-15
3-16

3-16
3-16
3-16
3-16
3-17

4-1

COMPILED FORMAT LANGUAGE 4-1
Format Code Byte 4-2
VFE Mask Byte 4-2
Repeat Count Byte 4-2
Field Width Byte 4-2
Decimal Part Byte 4-2
VFE Implementation 4-2
Hollerith Formats 4-2
Default Formats 4-3

FORMAT PROCESSING PSECT NOTES 4-4
FORMAT PROCESSOR -- $FIO 4-4
LIST-DIRECTED INPUT PROCESSOR -- $LSTI 4-5
LIST-DIRECTED OUTPUT PROCESSOR -- $LSTO 4-5
OBJECT-TIME FORMAT COMPILER -- FMTCV$ 4-5
INTEGER AND OCTAL CONVERSIONS 4-6
LOGICAL CONVERSIONS 4-6
REAL, DOUBLE PRECISION, AND COMPLEX CONVERSIONS 4-7
FORMAT CONVERSION ERROR PROCESSING 4-8

iv

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.4
5.5
5.6
5.7

CHAPTER 6

6.1
6.2
6.3

CHAPTER 7

7.1
7 .1.1
7 .1. 2
7 .1. 3
7 .1. 4
7.2
7.2.1
7.2.2
7.3
7.4
7.5
7.6

CHAPTER 8

8.1
8.1.1
8.1. 2
8 .1. 3
8.1. 4
8 .1. 5
8 .1. 6
8 .1. 7

8 .1. 8
8.1. 9
8 .1.10
8.1.11
8 .1.12
8.1.13
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5

CONTENTS (Cont.}

ERROR PROCESSING AND EXECUTION CONTROL

TRAP INSTRUCTION PROCESSING
ERROR CONTROL BYTE PROCESSING

Continuation-Type Processing
W.IOEF Error Processing

ERROR MESSAGE PROCESSING
Message Construction Utilities
Message Output Task {MO) Utilities

FLOATING POINT PROCESSOR ERRORS
STOP AND PAUSE STATEMENT PROCESSING
USER INTERFACING TO ERROR PROCESSING
USER INTERFACING TO TERMINAL MESSAGE OUTPUT

MATHEMATICAL FUNCTIONS AND SYSTEM SUBROUTINES

PROCESSOR-DEFINED FUNCTIONS
I/0-RELATED SUBROUTINES
EXECUTION CONTROL SUBROUTINES

COMPILED-CODE SUPPORT ROUTINES

OUT-OF-LINE ARITHMETIC OPERATIONS
Exponentiation -- PWxxt$
Complex Arithmetic Operations
INTEGER*4 Operations -- MLJt$,DVJt$
Stack Swap Operations -- SWPxy$

ARRAY PROCESSING SUPPORT
Adjustable Array Initialization
Array Subscript Checking

COMPUTED GO TO STATEMENT SUPPORT
ASSIGNED GO TO STATEMENT SUPPORT
TRACEBACK CHAIN PROCESSING
TASK INITIALIZATION

OPERATING SYSTEM INTERFACES

Page

5-1

5-1
5-1
5-1
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-4

6-1

6-1
6-2
6-2

7-1

7-1
7-2
7-2
7-3
7-3
7-4
7-4
7-5
7-5
7-5
7-6
7-6

8-1

FILE CONTROL SERVICES {FCS) 8-1
Direct Access Input -- GET$R 8-1
Direct Access Output -- PUT$R 8-1
Sequential Input -- GET$S 8-1
Sequential Output -- PUT$S 8-1
File Open Processing -- OFNB$ 8-2
Default Directory Processing -- .GTDID 8-2
File Name Bleck Processing -- .PARSE, CSI$1
and CSI$2 8-2
File Positioning -- .POINT 8-2
Direct Access Record Processing .POSRC 8-2
File Close Processing -- CLOSE$ 8-2
File Deletion -- .DLFNB 8-2
File Printing -- .PRINT 8-2
Register Save and Restore -- .SAVRl 8-2

OVERLAYING THE OTS AND FCS 8-3
File Processing Overlay Notes 8-3
Record Processing Overlay Notes 8-3

TASK BUILDER OPTIONS 8-3
UNITS = n 8-3
ACTFIL = n 8-4
MAXBUF = n 8-4
FMTBUF = n 8-4
ASG = dv:n 8-4

v

CHAPTER 9

9.1
9 .1.1
9 .1. 2
9 .1. 3
9 .1. 4
9 .1. 5
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

FIGURE

TABLE

C.l
C.2
C.3
C.4
C.5
C.6
C.7
C.8
C.9
C.10
C.11
C.12

4-1

3-1
3-2
4-1

CONTENTS (Cont.)

OTS SYSTEM GENERATION AND TAILORING

ASSEMBLY OPTIONS
Operating System Options
EIS Instruction Set Option
Double Precision Arithmetic Option
Format Conversion Option
No-I/O Subset Option

OTS SYSTEM MACROS
OTSWA Macro
ERRDEF Macro
FBLOCK Macro
$AOTS Macro
OTS$I Macro
OTS$D Macro
ADBDEF Macro

IMPURE STORAGE OFFSET DEFINITIONS

FFDB OFFSET DEFINITIONS

OTS SIZE SUMMARY

MODULES ALWAYS PRESENT
COMMON I/O SUPPORT
FORMAT PROCESSING ROUTINES
SEQUENTIAL INPUT/OUTPUT
DIRECT ACCESS INPUT/OUTPUT
OTHER I/O SUPPORT
I/O RELATED SUBROUTINE CALLS
MISCELLANEOUS COMPILED-CODE SUPPORT
PROCESSOR-DEFINED FUNCTIONS
COMPILED-CODE ARITIDJ!..ETIC SUPPORT (R4 CALLS)
SERVICE SUBROUTINES
OPTIONAL MODULES

FIGURES

Format Code Form

TABLES

I/O Initialization Entries
Summary of Argument Blocks by Keyword
Compiled Format Codes

Vi

Page

9-1

9-1
9-1
9-1
9-2
9-2
9-2
9-2
9-2
9-2
9-2
9-3
9-3
9-3
9-3

A-1

B-1

C-1

C-1
C-2
C-2
C-2
C-3
C-3
C-3
C-3
C-4
C-5
C-5
C-6

Index-1

Page

4-1

Page

3-5
3-10
4-3

PREFACE

MANUAL OBJECTIVES

This manual contains detailed information about the FORTRAN IV-PLUS
Object Time System (OTS) not contained in the FORTRAN IV-PLUS User's
Guide. The material in this manual is not necessary for normal use of
FORTRAN IV-PLUS. However, many users do require a more detailed
knowledge of the OTS for specialized applications. This manual should
be especially useful for programmers interfacing MACR0-11 and FORTRAN
routines to the OTS.

INTENDED AUDIENCE

The reader is assumed to be proficient in MACRO and FORTRAN, and to be
familiar with all the information presented in the FORTRAN IV-PLUS
User's Guide, as well as the operating system's Executive Reference
manual and I/O Operations Reference manual.

The material presented here is for information purposes. Internal OTS
interfaces are NOT guaranteed to remain constant across releases of
FORTRAN IV-PLUS. The. use of calls to the OTS identical to the
compiled code calls, and the use of the named offsets of the OTS will
provide as much release-to-release compatibility as is possible.

DOCUMENTATION CONVENTIONS

Unless otherwise noted, all numeric values are represented in decimal
notation. Values in MACR0-11 examples are in octal notation.

Unless otherwise specified, all commands terminate in a carriage
return.

Variable information is indicated by
literal information (i.e., must be
indicated by all uppercase characters.

vii

lowercase
entered

characters, whereas
exactly as shown) is

CHAPTER 1

INTRODUCTION

There are two versions of the FORTRAN IV-PLUS (F4P) Object Time System
(OTS): one for RSX-llM, and one for RSX-llD and IAS. Either version
can be built from the standard distribution kit. The hardware
environment required is a PDP-11/45, 11/50 or 11/70 with Floating
Point Processor (FPll) • Optional hardware supported by the operating
system is supported by the OTS.

1.1 OBJECT TIME SYSTEM SUMMARY

The FORTRAN IV-PLUS OTS is a library of assembly language modules that
complements the compiled code. The OTS is composed of five principal
parts:

1. I/O processing routines.

2. Mathematical functions and system subroutines.

3. Compiled-code support routines.

4. Error and exception-condition processing routines.

5. Tables, buffers and impure storage required by the routines.

1.1.1 I/O Processing Routines

The I/O processing routines are designed as a collection of small
modules so that only those modules required by a given FORTRAN source
program are actually loaded in the user's task.

An I/O statement produces three types of subroutine calls:

1. An initialization call

This call sets up the I/O system for the specific I/O
requested, opens the specified logical unit if necessary, and
declares the I/O system to be active.

2. Element transmission calls (if any)

Each entity in the I/O list generates a call. to the OTS.
Each call transmits a single value except in the case of
arrays, which are transmitted through a single call.

1-1

INTRODUCTION

3. A termination call

This call completes the I/0 operation and declares the I/O
system inactive.

For example, the FORTRAN statements:

DIMENSION
READ (2)

A (10)
I,A,B

are compiled into the code:

MOV
JSR
MOV
JSR
MOV
JSR
MOV
JSR
JSR

#2,-(SP)
PC,ISU$
:fl:I, - (SP)
PC,IOAI$
:fl:A$ADB,-(SP)
PC, IOAA$
:fl:B,- (SP)
PC,IOAR$
PC,$EOLST

;unit number
;initialize READ
;address of I
;transmit integer
;address of ADB for A
;transmit array A
;address of B
;transmit real
; end-of-list

The various routines are described in Chapter 3.

1.1.2 Mathematical Functions and System Subroutines

The mathematical routines, called processor-defined functions (PDF's),
are called from the compiled code using special names as described in
the FORTRAN IV-PLUS User's Guide. The algorithms used for the
mathematical library routines are described in Appendix B of the
FORTRAN IV-PLUS User's Guide.

The system subroutines are described in Appendix D of the FORTRAN
IV-PLUS User's Guide.

1.1.3 Compiled-Code Support Routines

These routines complement the compiled code by performing operations
too complicated or cumbersome to perform with in-line code. Examples
are array subscript checking, exponentiation and complex arithmetic.

1.1.4 Error Processing Routines

Errors detected by the OTS are signaled by executing a TRAP
instruction with the error number in the low byte of the instruction.
Floating point processor asynchronous traps are processed by a service
routine within the error processing modules.

There are two methods of error recovery: an 'ERR=' transfer within an
I/O statement, or a return to the error site for appropriate action.
The actual action taken is determined by a byte within the OTS impure
storage. Each defined error number has a corresponding error control
byte which may be accessed using the FORTRAN-callable subroutines,
ERRSET, ERRTST and ERRSNS.

1-2

INTRODUCTION

1.2 CONVENTIONS AND STANDARDS

The following sections describe procedural and naming conventions used
in the FORTRAN IV-PLUS system.

1. 2 .1 Registers

The processor general registers are referred to as:

RO - RS
SP
PC

Register 0-S
Register 6
Register 7

The Floating Point Processor accumulators 0-S are referred to as
FO-FS.

1.2.2 Calling Sequences

Four different calling sequence conventions are used by the FORTRAN
IV-PLUS compiled code to call various components of the OTS. The
calling conventions, and their usage, are described below:

1. RS Calls - The standard PDP-11 FORTRAN Calling Sequence
Convention, used for all system subroutines, most
processor-defined functions, and all user routine calls.

2. PC Calls - Used for I/O operations and system dependent
routines.

3. R4 Calls - Used for out-of-line, stack-oriented arithmetic
routines and certain miscellaneous compiled-code support
routines.

4. FO Calls - Used for faster calls to certain processor-defined
functions.

1.2.2.1 RS Calls - This calling sequence convention is the standard
PDP-11 FORTRAN Calling Sequence Convention. It is described in detail
in the FORTRAN IV-PLUS User's Guide and is summarized below.

The basic form of the call is

; IN INSTRUCTION-SPACE

MOV #LIST,RS

JSR PC,SUB

;IN DATA-SPACE

LIST: .BYTE N,O
.WORD ADRl

.WORD ADRN

;ADDRESS OF ARGUMENT LIST TO
; REGISTER S
;CALL SUBROUTINE

;NUMBER OF ARGUMENTS
;FIRST ARGUMENT ADDRESS

;N'TH ARGUMENT ADDRESS

Note that the argument list must reside in Data-space and that except
for label type arguments, all addresses in the list must also refer to
Data-space.

1-3

Also note that the
undefined and not
defined by DIGITAL.

INTRODUCTION

byte at address
referenced. This

LIST+l
byte

should be considered
is reserved for use as

Control is returned to the calling program by restoring (if necessary)
the stack pointer (SP) to its value on entry and executing

RTS PC

Function subprograms return a single result in the processor general
registers. The register assignments for returning the different
variable types are listed below:

~

INTEGER*2
LOGICAL*l
LOGICAL*2

INTEGER*4
LOGICAL*4

REAL

DOUBLE
PRECISION

COMPLEX

RO

RO
Rl

RO
Rl

RO
Rl
R2
R3

RO
Rl
R2
R3

Result in

low order result
high order result

high order result
low order result

highest order result

lowest order result

high order real result
low order real result
high order imaginary result
low order imaginary result

A calling program must save any values in general purpose registers RO
through RS which it requires after a return from a subprogram. The
argument list pointer value in register RS can not be assumed to be
valid after return. Any floating point registers in use by a calling
program must also be saved and restored by the calling program. The
calling program can not assume that the floating point status bits I/L
(integer/long integer) or F/D (floating/double precision) are restored
by the called routine.

Null arguments are represented in an argument list by using an address
of -1 (177777 octal). This address is chosen to assure that the use
of null arguments, in subprograms that are not prepared to handle
them, will result in an error when the routine is called. The errors
most likely to occur are illegal memory reference and/or word
reference to odd byte address.

1.2.2.2 PC Calls - These calls receive all arguments on the stack,
are called with a JSR PC,xxx, and return with the arguments deleted
from the stack. Registers RO-RS, FO-FS and the FPP status register
are unmodified.

All I/O statements except OPEN and CLOSE are implemented by one or
more calls using this convention. The STOP, PAUSE, Computed GO TO and
Assigned GO TO statements use this convention. Array subscript
checking, if enabled, and task initialization use this convention.

1-4

INTRODUCTION

Example:

The FORTRAN statement:

REWIND 3

is compiled into the code:

MOV
JSR

#3,- (SP)
PC, REWI$

;unit number
;REWIND processor

1.2.2.3 R4 Calls - This convention is used for out-of-line,
stack-oriented arithmetic routines and other compiled-code support.
These routines receive argument values on the stack, or a pointer to
an argument value as an in-line argument immediately following the
call. The stack arguments are deleted and a result value is returned
on the stack. The routine is called with a JSR R4,xxx instruction.
Registers RO-R4, FO-FS and the FPP status register are assumed to be
modified by R4 calls. RS is preserved. The modules that use this
convention are described in Chapter 7.

Example:

The FORTRAN statement:

x=A**I

is compiled into the code:

MOV A+2,-(SP}
MOV A,-(SP}
JSR R4, PWRIC$
.WORD I
MOV (SP}+,X
MOV (SP}+,X+2

;push A

;compute A**I
;address of I
;store at X

1.2.2.4 FO Calls - This convention is used for some commonly used
processor-defined functions. The FPP F/D status bit is set to the
type of argument and the argument is loaded into FO. The routine is
called with a JSR PC,xxx instruction. The result value is returned in
FO with the FPP F/D status bit preserved. Registers RO-RS, Fl-FS and
the FPP I/L status bit are assumed to be modified. The functions that
use this convention are named $$xxxx and are described in Section 6.1.

Example:

The FORTRAN statement:

Y = SIN(X)

is compiled into the code:

SETF
LDF
JSR
STF

;set FPP mode
X,FO
PC,$$SIN
FO,Y

1-5

INTRODUCTION

1.2.2.5 Special Call Conventions - In addition to the four general
calling conventions, special variants are used in the following cases:

OPEN (OPEN$) and CLOSE (CLOSE$) statements use the RS convention with
a special argument list encoding.

Object-time format compilation (FMTCV$) uses a PC call but returns a
stack result, which is used in a subsequent I/O initialization call.

Adjustable array initialization (MAKI$, MAK2$, and MAKN$) uses a PC
call but preserves only RS.

Traceback name initialization (NAM$) uses a co-routine call.

These special usages are described in detail in the corresponding
module descriptions.

1.2.3 Data Formats

The data formats are described in the FORTRAN IV-PLUS
Guide.

1.2.4 Labeling Conventions

User's

All OTS routines have a title that begins with '$' followed by the
name or a contraction of the name. All external entry point names
contain a '$' as either the first or last character.

1.2.S Context Save and Restore

The OTS register context conventions are determined by the calling
sequence used, as described in Section 1.2.2.

Internal to the OTS, various conventions are used.
calling routine saves those registers it requires.

1.3 COMPATIBILITY WITH FORTRAN IV (FOR)

In general the

The OTS's for F4P and FOR are similar but NOT identical and cannot be
used together in the same task. They do however have identical FFDB
(see Section 2.3) definitions and some common modules. The impure
areas and errors are defined to have identical values for identical
use (i.e., offset VARAD is the list element address in both systems,
and error ICERR is the input conversion error code in both systems.)
Some FORTRAN IV-PLUS OTS modules contain conditional assembly code for
FORTRAN IV. This code is conditionalized on the definition of symbol
F4.

1.4 ASSEMBLY LANGUAGE INTERFACING TO THE OTS

The following short sections provide a brief summary of the methods of
interfacing a MACR0-11 program to the FORTRAN IV-PLUS OTS.

1-6

INTRODUCTION

1.4.1 Writing a FORTRAN Main Program in Assembly Language

The following MACR0-11 code represents a "canonical" FORTRAN main
program:

START::

JSR PC, OT!$

MOV #AR<.MA>,-(SP)
MOV #AR<IN.>, R4
JSR R4, NAM$

JSR PC, EXIT$
.GLOBL $0TSVA
.GLOBL RCI$
.GLOBL LC!$
.GLOBL ICI$
.END START

initialize the OTS and FCS

first 3 letters of name in RADIX-50
last 3 letters of name in RADIX-50
initialize traceback chain if desired

close files and exit
link in the impure area
floating point format conversions
logical format conversions
integer format conversions

The call to OTI$ initializes the FPP (SFPA$S) , the SST vector (SVTK$S)
and FCS (FINIT$). The reference to $0TSVA loads the FORTRAN impure
area. The references to the format conversion routines are required
only if the desired conversion routine is required. Note that a
FORTRAN subprogram that contains a FORMAT statement will contain the
required format conversion references.

1.4.2 Linkage to the FORTRAN Impure Storage Area

The FORTRAN impure area defines a global symbol ($0TSVA) that is
referenced by the compiled code in FORTRAN main programs (but not
subprograms!). When the Task Builder processes a reference to this
symbol, it loads the FORTRAN impure area and causes an additional
global symbol ($0TSV) to be defined in the task that contains the
address of the symbol $0TSVA. All of the FORTRAN OTS routines obtain
the address of the impure area by referencing the contents of the
location $0TSV; see the discussion of $AOTS macro in Section 9.2.4.

1-7

CHAPTER 2

DATA BASE

The information used and manipulated by the OTS is maintained in two
major areas of impure storage: the work area and the device table.

The work area contains two kinds of information: task-specific data,
such as address pointers, and information on the currently active
operation, such as a direct access record number.

The device table contains a block of storage for each logical unit
allocated to the FORTRAN OTS. This block contains all the information
the OTS requires to perform I/O to the unit.

2.1 PROGRAM SECTION DESCRIPTIONS

This section describes the program sections (PSECTs) used by the OTS.
PSECTs are named segments of code or data. The attributes associated
with each PSECT direct the Task Builder when constructing an
executable task image.

2.1.1 $$0TSI -- OTS Instructions

This PSECT contains all of the executable code in the OTS except the
formatted and list-directed I/O processors. This PSECT has the
attributes: RW,I,CON,LCL.

2.1.2 $$0TSD -- OTS Pure Data

This PSECT contains all of the read-only pure data in the OTS except
the formatted and list-directed I/O data. This PSECT contains
constants and dispatch tables used by the code in $$0TSI. It has the
attributes: RW,D,CON,LCL.

2.1.3 $$AOTS -- OTS Impure Storage

$$AOTS contains the FORTRAN work area impure storage associated with
each task. It must be contained in the task's root segment and is
pointed to by the contents of global symbol $0TSV. A detailed
description is contained in Appendix A. All references in this manual
to "the work area" or "the FORTRAN work area" apply to this PSECT,
which has the attributes: RW,D,CON.

2-1

DATA BASE

2.1.4 $$DEVT -- Logical Unit Device Table

$$DEVT defines the FORTRAN logical unit device table. The entries in
this table are fixed-length FORTRAN File Descriptor Blocks (FFDBs).
An FFDB is composed of a File Control Services (FCS) FOB and a 6-word
header for FORTRAN usage. At task startup, the actual number of FFDBs
available to the FORTRAN task is determined from the size of $$DEVT.
This area is pointed to by the value of offset W.DEV in the work area.
This PSECT has the attributes: RW,D,OVR.

2.1.5 $$IOB1 -- User Record Buffer

$$IOB1 defines the FORTRAN user record buffer. The length is
determined at task build time by the MAXBUF keyword: the default
value is 132 (decimal) bytes. This area 1s pointed to by offsets
W.BFAD (start address) and W.BEND (end address+l) in the work area and
its length is computed at task initialization and stored at offset
W.BLEN in the work area. This PSECT has the attributes: RW,D,OVR.

2.1.6 $$0BF1 -- Object-Time Format Buffer

$$0BF1 defines the FORTRAN object time format buffer. The length is
determined at task build time by the FMTBUF keyword: the default
value is 64 (decimal) bytes. This area is pointed to by offsets
W.OBFL (start address) and W.OBFH (end address+l) in the work area.
This PSECT has the attributes: RW,D,OVR.

2.1.7 Format Conversion PSECTs

The formatted and list-directed I/O processors minimize task size by
loading only those format conversion modules referenced by the user's
format specifications. Each module is in an independent PSECT and
places a pointer to itself in a sp~cial PSECT used as a dispatch
table. These PSECTs have the global (GBL) attribute to ensure that
this collection of modules will be placed in the lowest common segment
of an overlaid task.

The PSECTs are named as follows:

$$FIOC - Contains the format processor code and the list-directed
processor code:

$$FIOD - Contains the format and list-directed processor pure data:

$$FIOI - Contains the integer and octal conversions:

$$FIOL Contains the logical conversions:

$$FIOR - Contains the floating point conversions: and

$$FI02 - Contains the conversion dispatch table.

2.2 IMPURE STORAGE DESCRIPTION

This section describes ~he contents of the FORTRAN impure storage
PSECT $$AOTS.

2-2

DATA BASE

2.2.1 Named Offsets

The named offsets comprise the first 167 words of the work area. They
have names of the form W.xxxx or xxxxxx. There are both word and byte
offsets as well as a 16-word pushdown list for format processing.
Several words in the work area are used in more than one context.
Consult Appendix A for the list of offsets and their use.

2.2.2 QIO Directive Parameter Block

The work area contains a 12-word DPB for performing error message
QIO's to the user's terminal using event flag 30. This DPB is used in
RSX-llM for all message output and in RSX-llD and IAS if the message
output task (MO ••••) is not loaded or not present.

2.2.3 Error Message Text Buffer

A buffer for the error text message line is allocated.
57 words in RSX-llD and IAS, and 32 words in RSX-llM.
pointed to by offsets W.ERLN (start address) and
address+l) •

2.2.4 Error Control Table

This buffer is
This buff er is

W.ERLE (end

A 56-word area for the error control table is allocated with one byte
for each error. These are impure data and are used and manipulated by
the error handling routines. A prototype version of the table is
copied into this area by the task initialization routine OTI$.

2.2.5 Synchronous System Trap Vector Table

The Synchronous System Trap (SST) vector address table, $SST, contains
an entry for each defined SST. User level modification or
interception of trap vectors is described in Section 5.7.

2.3 LOGICAL UNIT DEVICE TABLE

All FORTRAN input/output is done through logical units. Each unit has
a FORTRAN File Descriptor Block (FFDB) allocated in the PSECT $$DEVT.
There is one FFDB allocated for each unit declared in the Task Builder
UNITS= statement or the default value of 6 units. Each FFDB is a
fixed length block consisting of an FCS FOB and a 6-word header for
FORTRAN usage. Each FFDB is initialized to 0 at task initialization
and is also zeroed by a close operation.

2.3.1 FFDB Offsets

The FORTRAN header portion of the FFDB is described by offsets of the
form D.xxxx as follows:

D.STAT
D.STA2

- status word 1 (bits defined below)
- status word 2 (bits defined below)

2-3

DATA BASE

D.RCNM - number of direct access records (low order)
D.RCN2 - number of direct access records (high order)
D.RCCT - record count for BACKSPACE (low order)
D.RCC2 - record count for BACKSPACE (high order)
D.AVAD - direct access associated variable address (0 if not

present)

Several of the words have different uses depending upon the kind of
I/O operations.

2.3.2 FFDB Status Bit Definitions

The FORTRAN header portion of the FFDB contains two status words. The
bits contained in these status words have symbolic names of the form
DV.xxx. Definitions of these bits follow:

status bits - word 1

DV.FAK
DV.FNB
DV .-DFD
DV.FACC
DV.OPN
DV.FMP
DV.UFP
DV.ASGN
DV.CLO
DV.FRE
DV.RW

only a partial FFDB is allocated for ENCODE/DECODE
File Name Block is initialized
direct access unit
file attributes byte of FDB (F.FACC) is defined
unit is open
formatted unit
unformatted unit
filename is defined
close in progress
free format allowed (short field termination)
input or output operation (0 = read, 1 = write)

status bits - word 2

DV.AI4
DV.CC
DV .SPL
DV.DEL
DV .SAV
DV.RDO
DV.UNK
DV.OLD
DV.NEW
DV.SCR
DV.APD

associated variable is INTEGER*4
explicit carriage control
DISP = 'PRINT' specified
DISP = 'DELETE' specified
DISP = 'SAVE' specified
READONLY specified
TYPE 'UNKNOWN' specified
TYPE 'OLD' specified
TYPE 'NEW' specified
TYPE 'SCRATCH' specified
ACCESS = 'APPEND' specified

2.4 ERROR PROCESSING DATA STRUCTURES

Error processing and reporting in FORTRAN IV-PLUS is done through TRAP
instructions. The low byte of the TRAP contains the FORTRAN error
number plus 128 (decimal). The error processing is controlled by an
error control byte in impure storage.

The FORTRAN error numbers range from l to 110 (decimal). Not all
numbers are defined. Appendix C of the FORTRAN IV-PLUS User's Guide
describes the errors in detail.

The error control byte is bit-encoded. The bit descriptions are:

EC.CON
EC.CNT
EC.UER

continue
count
use ERR= exit if 1, return if 0

2-4

EC.LOG
EC. INU
EC.RTS
EC.ERE

DATA BASE

log
this number defined for use
return continuation permitted
ERR= continuation permitted

The sign bit is unnamed, but if clear, this error has not occurred;
if set, the error has occurred. This bit is tested and cleared by the
ERRSET system subroutine.

The standard bit combinations used are:

Fatal
Errors: EC.FAT EC.INU + EC.LOG

I/O
Errors: EC.IO = EC.INU + EC.CON + EC.CNT + EC.LOG + EC.UER + EC.ERE

Other
Errors: EC.NRM EC.INU + EC.CON + EC.CNT + EC.LOG + EC.RTS

2.5 ARRAY DESCRIPTOR BLOCKS

Array descriptor blocks (ADBs) are used for dummy arrays, input/output
statements that transmit an entire array, and array subscript checking
(/CK compiler switch). The ADB is initialized at compile time for all
constant items. Variable portions of ADBs for dummy arrays are
initialized at subprogram entry. The ADB contains the array base
address, the array zeroth-element address, the upper and lower bounds
and the dimension spans for each dimension.

2.5.l ADB Offsets

The offsets within the ADB are denoted as follows:

A.ASTR

A.AO

A.CWRD

A.BPE

A.Dl

A.SIZB

A.PLYA

actual base storage address (1st element)

zeroth-element address (address of A (0,0,0 ••• 0))

codeword containing the number of dimensions, data
type, and element size in bytes:

data type # dim elem size

5 bits 3 bits 8 bits

number of bytes per array element (BPE) (low byte of
A.CWRD)

first dimension span. (Other dimensions follow A.Dl
but are not named; i.e., A.Dl+2 is the second
dimension span.) Dimension spans are described in
Section 2.5.2.

total array size in bytes, A.SIZB = Dl*D2* ••• Dn*BPE

addressing polynomial evaluated for the first element,
polyA (Ll,L2, ••. Ln)

2-5

DATA BASE

A.PWRD (used for adjustable arrays) 2N 1-bit fields denoting
an adjustable/non-adjustable bound. Encoding is left
justified as follows:

Un Ln I Un-1 I Ul Ll not used

A.UN last upper bound. (Other bounds are stored in front
of A.UN but are not named; i.e., A.UN-2 is the last
lower bound, A.UN-4 is the next-to-last upper bound,
etc.) •

The data type codes contained in A.CWRD are:

LOGICAL*! (BYTE)
LOGICAL*2
LOGICAL*4
INTEGER*2

= INTEGER*4
REAL*4

A.LGCl
A.LGC2
A.LGC4
A. INT2
A. INT4
A.REA4
A.REAS
A.CMP8
A.HOLL

REAL*8 (DOUBLE PRECISION)
COMPLEX
Hollerith

These codes are used not only for ADB's, but also for I/O transmission
to denote the list item data type.

2.5.2 Array Dimension Spans

The dimension spans (Di) for arrays are the sizes of each dimension:

Di= upper bound (Ui)-lower bound (Li) + 1.

Dimension spans are used to determine the subscript value by the
compiled code. The upper bounds and lower bounds for arrays are
retained in the ADB for determining the size and shape of arrays.

2.5.3 Notes on ADB Usage

The array addressing polynomial function, polyA, for a 3-dimensional
array is defined by:

DIMENSION A{Ll:Ul,L2:U2,L3:U3)

polyA(I,J,K)=({K*D2+J)*Dl+I)*BPE

A.AO is defined as A.ASTR - polyA (Ll,L2,L3)

The address of an array element is then calculated as:

address of A(i,j,k)=A.ASTR+polyA(i,j,k) -polyA (Ll,L2,L3)

=A.AO+polyA(i,j,k)

Array bounds checking consists of verifying that the array element
address is:

1. greater than or equal to the base address, A.ASTR

2. less than the high address + 1, A.ASTR+A.SIZB

2-6

DATA BASE

Note that this means only that the complete subscript value is within
the array; individual dimensions are NOT checked against their
corresponding dimension bounds.

The FORTRAN statements:

SUBROUTINE X(A,N)
DIMENSION 1(100), A(lO:N-1,N)

create the following ADB's for I and A:

.WORD 310 A.SIZB
I .ADB: .WORD I A.ASTR

.WORD I-2 A.AO

.WORD 20402 A.CWRD
;no Di values since I is not
;an adjustable array

.WORD 12 L 1 10

.WORD 0 u 1 N-1

.WORD 1 L 2 1

.WORD 0 u 2 N

.WORD 120000 A.PWRD

.WORD 0 A.SIZB
A.ADS: .WORD 0 A.ASTR

.WORD 0 A.AO

.WORD 31004 A.CWRD

.WORD 0 Dl

.WORD 0 D2

2.6 TRACEBACK CHAIN

The traceback chain for error processing is a linked list constructed
dynamically on the run-time stack.

The list head and the current statement number are contained in the
work area. The list head is at offset W.NAMC with global name $NAMC.
The current statement number is at offset W.SEQC with global name
$SEQC.

The list elements are 4-word blocks located on the stack in the
following form:

$NAMC -> statement number

pointer to next

program unit

name in RADSO

The list head points to the currently active program unit entry. This
block contains the currently active program unit name in Radix-SO;
the current statement number in the calling program at the time of the
call; and a pointer to the calling program list block. Note that the
statement number pertains to the program unit of the NEXT list block
since the current program unit statement number is maintained at the
fixed global location $SEQC.

2-7

DATA BASE

NOTE

This list structure is "known" to the
RSX-llD and !AS message output task (MO)
and cannot be changed.

If traceback level NONE is used, no list block is created.

If traceback level NAMES is used, a list block is linked in but $SEQC
is zero.

If traceback level BLOCKS is used, a list block is linked in and $SEQC
is periodically updated with the negative of the current statement
number, i.e., -21 for statement 21.

If traceback level LINES is used, a list block is created and $SEQC is
incremented on every statement, i.e., a positive number is maintained.

2-8

CHAPTER 3

INPUT/OUTPUT PROCESSING

This chapter discusses the basic procedures, program flow and module
interdependencies of the I/O processing portion of the OTS.

3.1 COMMON I/O SUPPORT

This section documents the processing common to all forms of
input/output: opening files, closing files, accessing the device
table, default values, I/O initialization and element transmission.

All OTS I/O calls preserve the user-level register state and generally
take all arguments on the stack and return with stack arguments
deleted. During I/O processing the calling program generally saves
those registers it requires and passes arguments in registers. The
actual conventions used are given in the module descriptions.

The general form of I/O involves three phases:

1. An initialization call to an operation-specific module as
shown in Table 3-1.

These modules set the correct mask word for the operation
into Rl and call $INITIO to initialize the I/O system.

2. Element transmission calls to pass the list elements to the
I/O system. This is done in a co-routine fashion between the
user level and the I/O processor through work area offset
W.EXJ. The user code calls the element transmission routine,
which saves the registers, sets the work area offsets:

VARAD = variable address
ITEMSZ variable length
W.VTYP = variable data type

and calls the I/O processor through W.EXJ. The I/O processor
transfers the data and does a co-routine call back to the
element processor, which saves this address at W.EXJ,
restores the registers and returns to the user code.

3. An end-of-list call sets offset VARAD to zero to indicate the
end of the I/O list and calls the I/O processor. The I/O
processor completes the I/O operation and returns to the
end-of-list routine, which restores the registers, releases
the I/0 system and returns to the user code.

The work area offset FILPTR contains zero if the I/O system is
inactive, and the address of the active FFDB if I/0 is in progress.
This location is loaded by $INITIO at I/O initialization and cleared
by the end-of-list processor ($EOLST}.

3-1

INPUT/OUTPUT PROCESSING

Within the I/O portion of the OTS the following register assignments
are normally made:

RO address of the FCS FDB

Rl address of the FFDB

R3 address of the work area

R2 and R4 are scratch registers

All routines, except the co-routine calls, are called by a JSR PC,xxx
instruction. RS is generally preserved.

Example:

The FORTRAN statements:

DIMENSION A (10)
WRITE (3,100,ERR=99) I,A,B+l.

are compiled into the code:

MOV
MOV
CLR
MOV
JSR
MOV
JSR
MOV
JSR
LDF
ADDF
STF
JSR
JSR

#3,-(SP)
#.100,-(SP)
-(SP)
#.99,-(SP)
PC, OSFE$
#I,- (SP)
PC, IOAI$
#A.ADB,-(SP)
PC, IOAA$
B,FO
#1.0,FO
FO,-(SP)
PC, IOVR$
PC, EOLST$

unit number
FORMAT statement address
NO END=address
ERR=address
initialize I/O
address of I
transmit integer
address of ADB for A
transmit array A

compute B+l. 0
value
transmit real value
end-of-I/0-list

3.1.1 $FCHNL, $GETFILE and $IOEXIT

These routines serve as the common entrance and exit to the I/O
system.

$FCHNL locates the FFDB for a given logical unit number, and issues an
error for invalid units. This routine is called with the unit number
in R2 and returns the address of the associated FFDB in RO. The PSW
C-bit is used as an error flag on return: set if error, clear if no
error.

$GETFILE executes a $FCHNL, sets the FILPTR offset and checks the
status of the unit. This routine is called identically to $FCHNL. It
does not return the C-bit error flag. The PSW N-bit is returned as a
status flag (N-bit set if the unit is open, N-bit clear if closed).

$IOEXIT restores the user level status and executes the 'ERR='
transfer. This routine is called with the ERR=transfer address in R4
and the work area pointer in R3.

3-2

INPUT/OUTPUT PROCESSING

3.1.2 Default OPEN -~ $OPEN

A default OPEN is the implicit opening of a unit due to execution of a
READ or WRITE statement to a closed unit. The default file access is
FO.WRT if a WRITE statement is being executed and FO.UPD if a READ
statement is being executed.

3.1.3 File Close -- $CLOSE

When a close operation is specified by a CLOSE statement, a CALL
CLOSE, or by task termination, the close processor handles the file
disposition: 'SAVE', 'PRINT' or 'DELETE'. A specification in a CLOSE
statement overrides an existing specification. The following rules
are enforced:

1. A 'SCRATCH' file cannot be saved or printed.

2. A 'READONLY' file cannot be deleted or printed.

The close processor is called with the unit number in R2.

3.1.4 I/0 Initialization -- $INITIO

The call to $INITIO to initialize the I/O system places a bit-encoded
value into Rl to denote the arguments present in the I/O statement and
the processing forms required. These encodings are:

Bit 15 1 --> END=/ERR= addresses present
Bit 14 1 --> ENCODE/DECODE array address present
Bit 13 1 --> FORMAT address present
Bit 12 1 --> INTEGER*4 record number present
Bit 11 1 --> set up ENCODE/DECODE

0 --> set up normal I/0
Bit 10 = 1 --> Direct access operation
Bit 9 1 --> Formatted operation

= 0 --> Unformatted operation
Bit 8 = 1 --> Write operation

0 --> Read operation
Bit 7 1 --> Open file if not open

Common operations and combinations are defined as follows:

FL.FMP
FL.ERR
FL.ENC
FL.FMT
FL.REC
FL.WRT =
FL.RD =

formatted operation
END=/ERR= present
ENCODE/DECODE operation
FORMAT present and formatted operation
direct access operation/record number pres~nt
write operation with open implied
read operation with open implied

$INITIO initializes the I/O system, performs a default OPEN if needed
and sets up the element transmission co-routine.

3-3

INPUT/OUTPUT PROCESSING

The FORTRAN statement:

READ {l,5,END=99) A

has the mask value FL.ERR+FL.FMT+FL.RD.

The FORTRAN statement:

WRITE {3'I) Z

has the mask value FL.REC+FL.WRT.

3.1.5 Element Transmission -- $IOELEM and $IOARY

Module $IOELEM contains 17 entry points to transmit individual list
items to the I/0 processor. The element transmission entry names are
of the form:

where

!Oat$

a designates whether the argument is an address or a value: A
means address, V means value.

t designates the data type of the list element as follows:

B - Byte
L - Logical*2
M - Logical*4
I - Integer*2
J - Integer*4
R - Real
D - Double Precision
C - Complex

Complex list elements are passed to the I/O processor as a sequence of
two Real values. Offset W.CPXF is 0 for a non-Complex value; +l for
the real part of a Complex value and -1 for the imaginary part.

For output, the entry IOAH$ transmits a Hollerith constant or
alphanumeric literal where the argument is the address of the first
byte of the constant.

Module $IOARY contains the entry point IOAA$ which is used for array
input/output. Its argument is the address of the array descriptor
block (ADB). For formatted I/O, each array element is transmitted
individually to the I/O processor. For unformatted I/O, the entire
array is transmitted as a single element.

3.2 RECORD PROCESSING SUPPORT

There are 24 entry points for initializing I/O operations. They are
shown in Table 3-1 and described below. Each I/O operation has two
entry points: XXX$ and XXXE$. The XXX$ entry is used for normal I/O
statements. The XXXE$ entry is used if END= or ERR= elements are
present in the I/O statement. The notation "[+FL.ERR]" is used in the
description to distinguish the mask used for the two entry points.

3-4

Entry
Name

ISF$
ISFE$

ISU$
ISUE$

IRF$
IRFE$

IRU$
IRUE$

OSF$
OSFE$

OSU$
OSUE$

ORF$
ORFE$

ORU$
ORUE$

ENF$
ENFE$

DEF$
DEFE$

ISL$
ISLE$

OSL$
OSLE$

Arguments

u,f
u,f ,e

u
u,e

u,r,f
u,r,f,e

u,r
u,r,e

u,f
u,f ,e

u
u,e

u,r,f
u,r,f,e

u,r
u,r,e

c,f ,a
c,f ,a,e

c,f ,a
c,f ,a,e

u
u,e

u
u,e

INPUT/OUTPUT PROCESSING

Table 3-1
I/O Initialization Entries

Function

Input sequential formatted
Input sequential formatted with END=/ERR=

Input sequential unformatted
Input sequential unformatted with END=/ERR=

Input direct access formatted
Input direct access formatted with END=/ERR=

Input direct access unformatted
Input direct access unformatted with
END=/ERR=

Output sequential formatted
Output sequential formatted with END=/ERR=

Output sequential unformatted
Output sequential unformatted with END=/ERR=

Output direct access formatted
Output direct access formatted with END=/ERR=

Output direct access unformatted
Output direct access unformatted with
END=/ERR=

ENCODE
ENCODE with END=/ERR=

DECODE
DECODE with END=/ERR=

Input sequential list-directed
Input sequential list-directed with END=/ERR=

Output sequential list-directed
Output s~quential list-directed with
END=/ERR=

u
c

=
=

logical unit number (INTEGER*2)
character count .for ENCODE/DECODE

r =
f =
a =
e =

record number for direct access (INTEGER*4)
compiled format string address (see discussion of FMTCV$)
array address of data for ENCODE/DECODE
END= address followed by ERR= address. If only one address is
present, then 0 is supplied for the other address.

3-5

INPUT/OUTPUT PROCESSING

3.2.1 Formatted I/O

The I/O routines for each type of formatted I/O contain two code
segments: an initialization segment and a record processing segment.

The initialization segment performs the following operations:

1. Store the proper argument mask in Rl and call $INITIO to
initialize the I/O system.

2. Store the record processing segment address into work area
offset RECIO. The format processors perform record transfers
by executing a JSR PC,@RECIO(R3) instruction.

3. Miscellaneous operation-specific initialization e.g., record
buffer pointers.

4. Jump to the format processor: $FIO for formatted I/O, $LSTI
for list-directed input, and $LSTO for list-directed output.

The record processing code segment calls the appropriate I/O
transmission utility (Section 3.4) and updates miscellaneous
information such as buffer pointers and counts as required.

3.2.1.1 Sequential Input -- ISF$, ISFE$ These routines have
FL.FMT+FL.RD[+FL.ERR] as the argument mask. The record processing
code calls $GETS to read the record.

3.2.1.2 Sequential Output -- OSF$, OSFE$ - These routines have
FL.FMT+FL.WRT[+FL.ERR] as the argument mask, and initialize the work
area buffer pointers. The record processing code computes the actual
record length and calls $PUTS to write the record.

3.2.1.3 Direct Access Input -- IRF$, IRFE$ - These routines have
FL.RD+FL.REC+FL.FMT[+FL.ERR] as the argument mask. The record
processing code checks for multiple record requests and calls $GETR to
read the record.

3.2.1.4 Direct Access Output -- ORF$, ORFE$ These routines have
FL.WRT+FL.REC+FL.FMT[+FL.ERR] as the argument mask, call $PUTRI to
initialize the record and initialize the work area buffer pointers.
The record processing code checks for multiple record requests and
calls $PUTR to write the record.

3.2.1.5 List-Directed Input -- ISL$, ISLE$ - These routines have
FL.RD+FL.FMP[+FL.ERR] as the argument mask, set the buffer pointers to
be at end of record and create the pointer to the constant value
storage block. The record processing code calls $GETS to read a
record.

3-6

INPUT/OUTPUT PROCESSING

3.2.1.6 List-Directed Output -- OSL$, OSLE$ - These routines have
FL.WRT+FL.FMP[+FL.ERR] as the argument mask and initialize buffer
pointers. The record processing code calls $PUTS to write a record,
inserts a blank character for carriage control and sets the buffer
length to 72 characters.

3.2.1.7 ENCODE Statement -- ENF$, ENFE$ - ENCODE is processed
identically to formatted output. These routines have
FL.ENC+FL.FMT[+FL.ERR] as the argument mask. A partial FFDB in the
work area is initialized. The record processing code checks for
multiple record requests.

3.2.1.8 DECODE Statement -- DEF$, DEFE$ - DECODE is processed
identically to formatted input. These routines have the argument mask
FL.ENC+FL.FMT[+FL.ERR]. A partial FFDB in the work area is
initialized. The record processing code checks for multiple record
requests.

3.2.1.9 PRINT, TYPE and ACCEPT Statements - These statements are
compiled into equivalent READ and WRITE statements using default unit
numbers. Default unit numbers are small negative integers, which are
mapped by $FCHNL through the work area to actual unit numbers. The
number of such unit numbers is the value of offset W.LNMP and the
mapped values are contained at offsets W.PRNT for PRINT, W.TYPE for
TYPE, W.ACPT for ACCEPT and W.READ for READ with no unit number.

PRINT
TYPE
ACCEPT
READ

compiles into OSF$ with unit number
compiles into OSF$ with unit number
compiles into ISF$ with unit number·
compiles into !SF$ with unit number

3.2.2 Unformatted Sequential I/O

-1, maps to 6.
-2, maps to 5.
-3, maps to 5.
-4, maps to 1.

The I/O routines for unformatted sequential I/O perform the following
operations:

1. Store the proper argument mask in Rl and call $INITIO to
initialize the I/O system.

2. Miscellaneous operation-specific initialization.

3. Initiate the I/O list transmission co-routine via a JSR
PC,@(R4)+ instruction.

4. For each I/O list element, move the data bytes to or from the
record.

5. Call the appropriate I/O utility routine to transmit the
record and update miscellaneous data such as record counts
and buffer pointers.

FORTRAN unformatted sequential I/O utilizes a spanned record concept
as described in the FORTRAN IV-PLUS User's Guide. Each I/O operation
transmits a single FORTRAN record which may be one or more FCS
physical records.

3-7

INPUT/OUTPUT PROCESSING

The FORTRAN to physical record mapping is provided by a 2-byte field
at the beginning of each physical record. Bit 0 is set for the first
segment and bit one is set for the last segment of a logical record.
All 4-bit combinations are possible. A physical record has a maximum
size of 126 bytes which contains 124 bytes of data.

3.2.2.l Sequential Input -- ISU$, ISUE$ - These routines have
FL.RD[+FL.ERR] as the argument mask. The element processing code
moves the data bytes from the record to the list items. $GETS is
called to read a physical record.

3.2.2.2 Sequential Output -- OSU$,_ OSUE$ - These routines have
FL.WRT[+FL.ERR] as the argument mask. The element processing code
moves the data bytes from the list items to the record. $PUTS is
called to write a physical record.

3.2.3 Unformatted Direct Access I/0

The I/O routines for unformatted direct access I/O perform the
fo~lowing operations:

1. Store the proper argument mask in Rl and call $INITIO to
initialize the I/O system.

2. Miscellaneous operation-specific initialization.

3. Initiate the I/O list transmission co-routine via a JSR
PC,@(R4)+ instruction.

4. For each I/O list element, move the data bytes to or from the
record.

5. Call the appropriate I/O utility routine to transfer the
record.

3.2.3.1 Direct Access Input -- !RU$, IRUE$ - These routines have
FL.RD+FL.REC[+FL.ERR] as the argument mask and call $GETR to read the
record. The element processing code moves data bytes from the record
to the list elements.

3.2.3.2 Direct Access Output -- ORO$, ORUE$ - These routines have
FL.WRT+FL.REC[+FL.ERR] as the argument mask and call $PUTRI to
initialize the record. The element processing code moves data bytes
from the list elements to the record. $PUTR is called to write the
record.

3.3 FILE PROCESSING SUPPORT

The following modules provide unit and file processing facilities.

3-8

INPUT/OUTPUT PROCESSING

3.3.l OPEN Statement

The OPEN statement provides the user program detailed control of file
attributes and characteristics. The OPEN statement processor is
called using the standard RS calling sequence with a specialized
argument list encoding. The argument list has the following form:

ARGLST: .WORD
KEY!

KEYn

2*n

There is one argument for each
keywords

keyword
are not

in the
allowed.

FORTRAN source
The order of statement. Duplicate

arguments is immaterial.

Each argument consists of a 2-word block formatted as follows:

15 8 7 0

m ARGTYPE l KEYWRD

m + 2 INFO

where

KEYWRD keyword identification number

ARGTYPE type of information in INFO word

INFO use depends upon ARGTYPE value

ARGTYPE distinguishes among the following cases:

ARGTYPE=l - Keyword value is an INTEGER*2 constant expression.
In this case, the INFO word contains the value.

ARGTYPE=2 Keyword value is an INTEGER*2 value. INFO
contains the address of the value.

ARGTYPE=3 Keyword value is an INTEGER*4 value. INFO
contains the address of the value.

ARGTYPE=4 - Keyword value is an alphanumeric literal decodable
by the compiler. INFO contains the keyword value
encoded as a small integer.

ARGTYPE=S - Keyword value is a variable, array, array element
or alphanumeric literal terminated by an ASCII null
character (zero-byte). INFO contains the address of
the start of the string.

3-9

INPUT/OUTPUT PROCESSING

Table 3-2
Summary of Argument Blocks by Keyword

Keyword
Name

UNIT

ACCESS

ASSOCIATE VARIABLE

BLOCKSIZE

BUFFERCOUNT

CARRIAGECONTROL

DISPOSE

ERR

EXTENDSIZE

FORM

INITIALSIZE

MAXREC

NAME

NOSPANBLOCKS

RE ADON LY

RECORDSIZE

SHARED

TYPE

Keyword
Number

1

4

17

18

9

7

2

3

11

5

10

16

14

12

8

6

13

15

Allowed Literal
Argtypes Values

1,2,3

4

2,3

1,2;3

1,2,3

DIRECT
SEQUENTIAL
APPEND

4 FORTRAN
LIST
NONE

4 SAVE
DELETE
PRINT

(NOTE 1) -

1,2,3

4

1,2,3

1,2,3

5

1,2,3

4

FORMATTED
UNFORMATTED

OLD
NEW
SCRATCH
UNKNOWN

Literal
Encoding

1
2
3

1
2
3

1
2
3

label address

1
2

1
2
3
4

(1) The ARGTYPE field for the ERR= keyword contains the number of
bytes of temporary stack storage which must be deleted if an ERR=
transfer occurs.

3-10

INPUT/OUTPUT PROCESSING

Table 3-2 provides a summary of the keywords and keyword values
supported by the OPEN statement. The basic OPEN statement processing
searches through the argument list locating each keyword in a
prescribed order. The ordering is determined so that all relevant
information required by a given keyword is available when that keyword
is processed. If a keyword is not present in the list, an appropriate
default is used. A running error count is maintained. At the end of
keyword processing, if any errors have occurred, the actual OPEN is
not attempted. If errors occur, the ERR= transfer is taken and the
FFDB is zeroed. The processing for each keyword is described below in
the order of processing. (Consult Section 2.3.2 for the definitions
of the status bits DV.xxx.)

1. ERR - The ERR= transfer address is obtained and the stack
adjustment value is saved in the work area at offset COUNT.
The transfer address, if present, is stored at offset ERREX;
if it is not present, ERREX is cleared.

2. UNIT - The unit number is obtained and $FCHNL is called to
obtain the FFDB pointer. Fatal errors that immediately abort
processing occur if there is no unit number, the unit number
is invalid, or the unit is already open.

3. READONLY - If present, DV.RDO is set.

4. ACCESS - 'DIRECT' sets DV.DFD, 'APPEND' sets DV.APD. If
DV.RDO is set and DV.APD is specified, an error occurs. If
not specified, the default is 'SEQUENTIAL'.

5. TYPE - If not present, the default is 'NEW'. 'NEW' sets
DV.NEW, 'OLD' sets DV.OLD, 'SCRATCH' sets DV.SCR and
'UNKNOWN' sets DV.UNK. If DV.RDO is set and DV.SCR, DV.NEW
or DV.UNK is specified an error occurs. If DV.APD is set and
DV.SCR or DV.NEW is specified an error occurs. The file
access byte F.FACC is set up as follows:

DV.RDO
DV.APD
DV.SCR
DV.NEW
DV.OLD
DV.UNK

--> FO.RD
--> FO.APD
--> FO.WRT + FA.TMP
--> FO.WRT
--> FO.UPD
--> FO.UPD

6. DISPOSE 'SAVE' sets DV.SAV, 'PRINT' sets DV.SPL and
'DELETE' sets DV.DEL. If DV.RDO is set, and DV.DEL or DV.SPL
is specified, an error occurs. If a DISPOSE value is not
specified, 'DELETE' is the default if DV.SCR is set. 'SAVE'
is the default otherwise.

7. FORMAT - 'FORMATTED' sets DV.FMP, 'UNFORMATTED' sets DV.UFP.
If not specified and DV.DFD is set then DV.UFP is the
default, otherwise DV.FMP is the default.

8. RECORDSIZE - The value is stored at F.RSIZ. If the value is
negative or larger than the user record buffer size (MAXBUF
value), an error occurs. If DV.UFP (unformatted) is
specified, the value is converted to bytes from storage units
(four bytes per storage unit). If the value given does not
equal the value for an existing file, an error occurs unless
the system subroutine ERRSET has been called to set the
continuation-type for Error 37 (Inconsistent Record Length)
to a return continuation.

3-11

INPUT/OUTPUT PROCESSING

9. CARRIAGECONTROL - DV.CC is set; 'FORTRAN' sets FD.FTN in
F.RATT, and 'LIST' sets FD.CR in F.RATT. If DV.CC is not set
and DV.FMP is specified, FD.FTN is the default.

10. BUFFERCOUNT - The value specified is stored at F.MBCT. If
the value is negative or greater than 127, an error occurs.
Note that the actual number of buffers used depends upon the
FCS version in use and the number of buffers available at
file open. If a buffer count of -1 is specified, the unit
will be opened in block (READ$/WRITE$) mode rather than in
record (GET$/PUT$) mode. Normal FORTRAN I/O is then not
permitted but the user can perform asynchronous block mode
I/O through the FORTRAN Special Subroutines provided by the
operating system.

11. INITIALSIZE - The value specified is stored at F.CNTG. If
the value is positive, a contiguous allocation is made; if
negative, a non-contiguous allocation is made. If the value
is greater than 32767 or less than -32767, an error occurs.

12. EXTENDSIZE - The value specified is stored at F.ALOC. If the
value is positive, a contiguous extend is made; if negative,
a non-contiguous extend is made. If the value is greater
than 32767 or less than -32767 an error occurs.

13. NOSPANBLOCKS - If specified, FD.BLK is set in F.RATT.

14. SHARED - If specified, FA.SHR is set in F.FACC.

15. NAME - If specified, $FNBST is called to initialize the file
name block and DV.ASGN is set. $FNBST returns an error if
the string is incorrect.

16. MAXREC - The value specified is stored at D.RCNM and D.RCN2.
If the value is negative, an error occurs.

17. ASSOCIATE VARIABLE The variable address is stored at
D.AVAD. If the variable is INTEGER*4 type, DV.AI4 is set.

18. BLOCKSIZE - The value specified is stored at F.OVBS. If the
value is negative or greater than 32767, an error occurs.

The FORTRAN statement:

OPEN (UNIT = I, ERR
INITIALSIZE = I**J}

is compiled into the code:

MOV I, - (SP)
JSR R4, PWIIC$
.WORD J

99, NAME I A . DAT I , TYPE 'OLD',

I
compute I**J on stack

MOV SP, ARGLST+24 save address in argument list
address of arg list MOV

JSR
TST

ARGLST: .WORD
.BYTE
.WORD
.BYTE
.WORD
.BYTE

#ARGLST, RS
PC, OPEN$
(SP)+

12
1,2

I
3,2
.99
16,S

open the file
delete stack temp

5 arguments
UNIT, arg type = 2
address of I
ERR, 2 bytes of stack temp
address of label
NAME, arg type = 5

3-12

.WORD

.BYTE

.WORD

.BYTE

.WORD

STRING
17,4

1
12,2

0

INPUT/OUTPUT PROCESSING

address of ASCIZ string
TYPE, arg type = 4
'OLD' encoded value
INITIALSIZE, arg type = 2
filled-in address of I**J

STRING: .BYTE 101,56,104,101,124,0 ; 'A.DAT'

3.3.2 CLOSE Statement

The CLOSE statement provides the user program flexibility in file
processing and logical unit utilization based upon run-time events.
The CLOSE statement is compiled using an encoded argument list similar
to that for the OPEN statement; only the UNIT, ERR and DISPOSE
keywords are allowed. Processing is similar to OPEN: the argument
list is searched for each allowed keyword and appropriate actions are
taken. If any errors are encountered, the CLOSE is not attempted and
the FFDB is NOT zeroed.

1. ERR - The ERR= transfer address is obtained
adjustment value is saved at offset COUNT.
stored at offset ERREX if present.

and the stack
The address is

2. UNIT - The unit number is obtained and $FCHNL is called to
obtain the FFDB address. If no unit number is present or an
invalid unit number is specified, a fatal error occurs.

3. DISPOSE - If not present, the existing disposition is used.
The existing disposition is superseded by the CLOSE statement
specification. 'SAVE' sets DV.SAV, 'PRINT' sets DV.SPL and
'DELETE' sets DV.DEL. If DV.SCR is set and DV.SPL or DV.SAV
is specified an error occurs. If DV.RDO is set and DV.SPL or
DV.DEL is specified, an error occurs.

3.3.3 DEFINEFILE Statement

The DEFINEFILE statement is compiled as follows:

1. Convert unit number to Integer*2 (if needed) and push onto
the stack.

2. Convert number of records to Integer*4 (if needed) and push.

3. Convert words per record to Integer*2 (if needed) and push.

4. Push address of associated variable.

5. If associated variable is type Integer*2 then push zero; if
type Integer*4 then push the value -1.

6. Call DEFF$.

The unit number is obtained and $GETFILE is called to obtain the FFDB
address. If the unit is open, an error occurs. The number of records
is stored at D.RCNM and D.RCN2 in the FFDB. The recordsize is
converted to bytes and stored at F.RSIZ in the FOB. The associated
variable address is stored at D.AVAD and DV.AI4 is set if the
associated variable is Integer*4. DV.DFD and DV.UFP are set. If
DV.DFD was previously set then an error occurs. If the number of
records or record size is negative, an error occurs.

3-13

INPUT/OUTPUT PROCESSING

The FORTRAN statement:

DEFINE FILE 2(N, 100, U, IVAR}

is compiled into the code:

MOV
MOV
MOV
MOV
MOV
CLR
JSR

#2, -(SP)
N+2, - (SP)
N, -(SP)
#144, - (SP)
#IVAR, - (SP)
- (SP)
PC, DEFF$

3.3.4 FIND Statement

unit number
high order value of record number
low order value of record number
record length
associated variable address
associated variable is INTEGER*2

The FIND statement is contained in the same module as the DEFINEFILE
statement. It is compiled as follows:

1. Convert unit number to Integer*2 (if needed) and push.

2. Convert record number to Integer*4 (if needed) and push.

3. Call FIND$.

The argument mask for $INITIO is set to FL.REC!FL.RD and $INITIO is
called. The associated variable, if present, is set to the record
number.

The FORTRAN statement:

FIND (4 I 1310 7 3)

is compiled into the code:

MOV
MOV
MOV
JSR

#4, -(SP)
#2, -(SP)
U, -(SP)
PC, FIND$

3.3.5 BACKSPACE Statement

unit number
high order value of record number
low order value of record number

The BACKSPACE statement is compiled as follows:

1. Push unit number (Integer*2) on the stack.

2. Call BKSP$.

The unit number is obtained and $GETFILE is called to obtain the FFDB
address. If the file is closed or direct access the operation is
ignored. If the file is opened for append, an error occurs. A call
to the FCS routine .POINT is made to position the file at the
beginning (virtual block 1, byte 0). The record count is obtained
from D.RCCT and D.RCC2 in the FFDB. The record count is decremented
by 1, and then n-1 reads are performed. Note that the count is the
logical record count, hence multiple physical reads may be required
for the unformatted spanned records.

3-14

INPUT/OUTPUT PROCESSING

3.3.6 REWIND Statement

The REWIND statement is compiled as follows:

1. Push unit number (Integer*2) on the stack.

2. Call REW!$.

The unit number is obtained and $GETFILE is called to obtain the FFDB
address. If the file is closed or direct access, the operation is
ignored. The append bit is cleared and the record count D.RCCT and
D.RCC2 is zeroed. A call to the FCS routine .POINT is made to
position the file at the beginning (virtual block 1, byte 0).

3.3.7 ENDFILE Statement

The ENDFILE statement is compiled as follows:

1. Push unit number (Integer*2) on the stack.

2. Call ENDF$.

The unit number is obtained, and $GETFILE is called to obtain the FFDB
address. If the file is direct access, an error occurs and the
operation is ignored. The file is opened by $OPEN (default open) for
write if not open. A 1-byte record, containing an octal 32 (CTRLZ) is
output to the file, using $PUTS.

3.4 I/0 PROCESSING UTILITIES

These low-level OTS routines are called by the I/O statement
processors and format processors to perform the actual calls to FCS
for record transfer and to perform miscellaneous utility tasks. These
routines are called with the work area address in R3.

3.4.1 Sequential Input -- $GETS

The FFDB pointer is obtained from offset FILPTR. The FCS macro call
GET$S is made to get a record. If FCS error IE.EOF is returned or an
ENDFILE record is read, the END= transfer is made; any other error
causes the ERR= transfer to be taken. The record count D.RCCT and
D.RCC2 is incremented.

3.4.2 Sequential Output -- $PUTS

The FFDB pointer is obtained from offset FILPTR. The FCS macro call
PUT$S is made to output the record. The record count D.RCCT and
D.RCC2 is incremented. This routine is called with the record length
in Rl.

3.4.3 Direct Access Input -- $GETR

The FFDB pointer is obtained from offset FILPTR, and $CKRCN is called
to verify the validity of the record number and return the record
number in Rl and R2. The FCS macro call GET$R is made to read the
record. $ASVAR is called to update the associated variable.

3-15

INPUT/OUTPUT PROCESSING

3.4.4 Direct Access Output -- $PUTR and $PUTRI

$PUTRI is called to initialize a direct access write operation. The
FFDB pointer is obtained from offset FILPTR, and $CKRCN is called to
verify the record number. The record number is stored at F.RCNM and
F.RCNM+2 in the FOB. The FCS routine .POSRC is called to position the
file to the desired record. If FCS error IE.EOF is returned, it is
ignored. All other errors cause the ERR= transfer to be taken.

$PUTR is called to write the record. The FFDB pointer is obtained
from FILPTR. The number of unfilled bytes in the record is computed
and the record is padded with blanks for formatted records and zero
bytes for unformatted records to the correct length. The FCS macro
call PUT$R is made to write the record. $ASVAR is called to update
the associate variable.

3.4.5 Direct Access Record Number Checking -- $CKRCN

$CKRCN verifies the validity of the current record number by comparing
it against the maximum record number for the file. The current record
number is stored at offsets W.RECL (low order) and W.RECH (high
order). The maximum record number, if it exists, is at D.RCNM in the
FFDB (low order) and D.RCN2 (high order). The record number, if
valid, is returned in Rl (high order) and R2 (low order). This
routine is called with the FFDB address in RO.

3.4.6 Associated Variable Update -- $ASVAR

The current record number is obtained from offsets W.RECL and W.RECH,
incremented by one and stored in the associate variable at the address
in D.AVAD in the FFDB.

3.4.7 File Name Block Initialization -- $FNBST

This module sets up the Filename Block (FNB) of the FFDB pointed to by
offset FILPTR. It is called from the ASSIGN subroutine if a file name
argument is present, and from the NAME keyword processor of the OPEN
statement processor. It invokes the command string interpreter
routines (.CSil and .CSI2) and the FCS .PARSE logic to construct the
FNB. If no file name is found in the name string, $FLDEF is called to
fill in the default file name. This routine is called with R2
containing the length of the name string and Rl pointing to the start
of the string.

3.4.8 Default File Name Generation -- $FLDEF

This routine stores the default FORTRAN file name and file type into
the filename block of the FFDB pointed to by offset FILPTR. The
FORTRAN default filename is FOROnn.DAT where nn is the unit number.

3-16

INPUT/OUTPUT PROCESSING

3.4.9 Register Save and Restore -- $SAVPx

This routine provides the register save/restore and argument
processing support for implementing the OTS PC call convention
(Section 1.2.2.2). This convention pushes all arguments on the stack,
calls the OTS routine via a JSR PC, xxx instruction and returns with
arguments deleted and all context preserved. This register
save/restore routine is called by the OTS routine. It saves all
registers on the stack, sets RO to point to the call arguments, and
co-routine calls the OTS module. Upon return from the OTS routine, it
restores the registers, deletes the stack arguments and returns to the
original caller. Seven entry points are provided: $SAVPO-$SAVP6 for
routines with zero to six argument words on the stack. For routines
with more than six arguments or with a variable number of arguments,
$SAVPO is called to save the registers; when returning, RO contains
the number of arguments and $SAVPC is jumped to instead of returning.
For ERR= transfers $SAVPX is jumped to with R4 containing the transfer
address.

3-17

CHAPTER 4

FORMAT PROCESSING AND FORMAT CONVERSIONS

This chapter discusses the internal form of format specifications, the
format processing algorithm and the format conversion routines.

4.1 COMPILED FORMAT LANGUAGE

The formats used by the I/O system for formatted I/O are compiled into
a standard internal form, with all error checking performed either by
the FORTRAN IV-PLUS compiler, or by the OTS routine FMTCV$ at
run-time. This allows the format interpreter itself to be simpler and
smaller.

Each format code has a unique 6 bit code and requires one or more
bytes of format text. All format code parameters (field widths,
repeat counts, etc.) are stored in single bytes following the format
code. A variable format expression (VFE) is represented by the
address of the compiled machine instructions for the VFE. Figure 4-1
shows the form of a format code. Note that only the format code byte
is required, but that each format code requires a fixed number of
additional values, which are described in the following sections.

bit 7 6 5 0 address

R v FORMAT n
CODE

VFE MASK n+l

REPEAT COUNT n+2

FIELD WIDTH:W n+3

DECIMAL PART:D n+4

Figure 4-1 Format Code Form

4-1

FORMAT PROCESSING AND FORMAT CONVERSIONS

4.1.1 Format Code Byte

The format code consists of a 6-bit format code, a 1-bit repeat count
flag (R) and a 1-bit VFE flag (V). Table 4-1 lists the format codes
and the additional values required. If the repeat count flag is O,
the repeat count is 1 and the repeat count byte is not present; if it
is a 1 then the repeat count is not 1 or is a VFE. If the VFE flag is
0, no VFE's are present; if 1, the VFE mask byte is present and VFE
addresses are required.

4.1.2 VFE Mask Byte

This byte describes which of the values required are
starting at bit 7 from left to right describe the value;
0 means compiled constant.

4.1.3 Repeat Count Byte

VFE's. Bits
1 means VFE,

This byte contains the optional repeat count value if the repeat count
is not 1. The value is 1 less than the source code value.

4.1.4 Field Width Byte

This byte is the field width, tab position or scale factor in the
range 1 to 255 (-128 to 127 for scale factor).

4.1.5 Decimal Part

This byte is the decimal field width for the floating point conversion
codes, in the range 0 to 255.

4.1.6 VFE Implementation

If the repeat count, W value or D value is a Variable Format
Expression (VFE) as indicated by the VFE Mask, the VFE address XXX
begins on the next word boundary. The VFE is compiled as an
unparameterized arithmetic statement function of type Integer*2 and is
called by a JSR PC, xxx with RS pointing to the program unit argument
list. All range checking is done by the format interpreter on the
result.

4.1.7 Hollerith Formats

Quoted format strings (alphanumeric literals) are compiled as
Hollerith constants. The count for Hollerith constants may NOT be a
VFE and the characters to be transmitted are contained in the compiled
format following the repeat count.

4-2

FORMAT PROCESSING AND FORMAT CONVERSIONS

4.1.8 Default Formats

Most format code field descriptors have a default value supplied if
the numeric value is not present. These defaults are determined
jointly from the format code and the data type of the corresponding
list element as follows:

Format Code

I ,O
I,O

D,E,F,G
D,E,F,G

L
A

x

Code Source Form

O* --
2* --
4 (
6 n (
8)
10)
12 I
14 $
16 :
18 sP
20 Q
22 Tn
24 nX
26 nHcl. •• en

28 nAw
30 nLw
32 now
34 niw
36 nFw.d
38 nEw.d
40 nGw.d
42 nDw.d

44 nA
46 nL
48 no
50 nI
52 nF
54 nE
56 nG
58 nD

Data Ty:ee Default Values of W or W.D

I*2 7
!*4 12
R*4 15.7
R*8 25.16
all 2
all Number of bytes in the

variable
1

Table 4-1
Compiled Format Codes

Repeat Count W D Notes

-- -- -- format syntax error
-- -- -- format too large
-- -- -- format reversion point
n-1 -- -- left par en of repeat group
-- -- -- right par en of repeat group
-- -- -- end of format
-- -- -- record separator
-- -- --
-- -- --
-- s -- -128<s<l27
-- -- --
-- n -- 1 < n < 255
n-1 -- -- 1 < n < 127
n-1 -- -- n not VFE, n chars follow

n-1 w -- Standard conversions
n-1 w --
n-1 w --
n-1 w --
n-1 w a
n-1 w a
n-1 w d
n-1 w a

n-1 -- -- Default formats
n-1 -- --
n-1 -- --
n-1 -- --
n-1 -- --
n-1 -- --
n-1 -- --
n-1 -- --

* These codes are generated only by FMTCV$.

4-3

FORMAT PROCESSING AND FORMAT CONVERSIONS

The FORTRAN statement:

1 FORMAT(lX, Fl3.5, 'ABCDE', <K>IlO, 3(2El5.7)/)

is compiled into the following:

.1:

L$VFE:

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.WORD

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.EVEN

MOV
RTS

30 lX
44,15,5 Fl3.5

232 Hollerith code
4 ; repeat count

101,102,103,104,105 ; 'ABCDE'
342 I format code
200 VFE mask

0 ; make an even address
L$VFE VFE address

12 IlO
4 reversion point

206,2 left paren and repeat count
246,1 E format code and repeat count
17,7 ElS.7
10 ; right paren
14 I code
12 end-of-format

K, RO
PC

4.2 FORMAT PROCESSING PSECTs

Six PSECTs are used for format and list-directed processing. $$FIOC
contains the pure code of the format processor ($FIO) and the
list-directed processors ($LSTI and $LSTO). $$FIOD contains pure data
(constants and dispatch tables) used by these processors. $$FIOI
contains the code for integer and octal conversions; $$FIOL contains
the code for logical conversions; $$FIOR contains the code for
floating point conversions. $$FI02 contains only the addresses of the
conversion routine entry points. Each module stores only its own
entry point addresses in $$FI02. The processing routines pick up the
address of the conversion routine; if that address is O, an error
occurs.

None of the actual conversion routines reference the work area or any
other portion of the OTS. They preserve RS and the FPP registers and
leave all other registers undefined.

4.3 FORMAT PROCESSOR -- $FIO

This module, in conjunction with the format conversion modules,
processes formatted I/O. It operates as a co-routine with the I/O
transmission operators. It is called at the end of formatted I/O
initialization and continues to process list items and formats until
called by $EOLST with offset VARAD equal to O. $FIO processes through
the format, calling an internal routine for each format code.
Variable format expressions are called as encountered with all context
saved and RS restored to the user code value. When a format requiring
a list item is encountered, if no element remains (offset VARAD 0)
then p~ocessing terminates. If an element exists, a call is made to a
conversion routine. 'A' format is handled within $FIO. Nested group
repeat specifications are handled by a pushdown stack contained within
the work area. Offset FSTKP points to the current position; offset
FSTK is the base of the pushdown stack.

4-4

FORMAT PROCESSING AND FORMAT CONVERSIONS

4.4 LIST-DIRECTED INPUT PROCESSOR -- $LSTI

This module, in conjunction with the format conversion modules,
processes list-directed input. It acts as a co-routine with the I/O
transmission operators. It is called at the end of I/O initialization
by ISL$ and processes list items until called with offset VARAD equal
to O.

$LSTI lexically scans the external record and delimits a field of
input characters, determines the data type of the field and calls the
appropriate input conversion routine to perform the conversion. The
resulting internal data value is converted to the type of the list
element and moved to the list element. The currently active data
value is stored in the work area at offset W.LICB, which is pointed to
by offset W.LICP.

The parameters passed to the format conversion modules are the buffer
pointer, the actual field width as determined by the delimiter scan,
and a decimal part of 0 and scale factor of 0 for floating point
conversions.

4.5 LIST-DIRECTED OUTPUT PROCESSOR -- $LSTO

This module, in conjunction with the format conversion modules,
processes list-directed output. It acts as a co-routine with the I/O
transmission operators. It is called at the end of I/O initialization
by OSL$ and processes list items until called with offset VARAD equal
o.

$LSTO accepts the list element and determines a format based on the
list element data type as follows:

IS
L2
L2
I7
!12
1PG15.7
1PG25.16

BYTE
LOGICAL*2
LOGICAL*4
INTEGER*2
INTEGER*4
REAL*4
REAL*8
COMPLEX*8
Hollerith

lX, ' (' , lPGl 4. 7, ' , ' , lPGl 4. 7, ') '
lX, nAl where n is the string length.

If the field length thus computed is longer than the remaining
characters in the record, the current record is written and a new
record begun. Each item is contained in a single record except for
alphanumeric literals that are longer than a single record. A space
is inserted at the front of each record for carriage control. The
record length is fixed at 73 bytes, which yields 72 print positions.

4.6 OBJECT-TIME FORMAT COMPTLER -- FMTCV$

Format specifications stored in arrays must
execution into the required form prior to use.
as follows:

be compiled during
This is accomplished

1. Push the address of the beginning of the array specification.

2. JSR PC, FMTCV$

This routine does not delete the stack arqument but rather replaces
its value with the address of the compiled format.

4-5

FORMAT PROCESSING AND FORMAT CONVERSIONS

Object time formats are compiled into an internal buffer within the
OTS whose length may be controlled by the FMTBUF option during task
building. The format buffer address is stored at offset W.OBFL and
its high address+! is stored at W.OBFH. Offset FMTAD points to the
current entry in the output format buffer.

Within the FMTCV$ processing routines, RS points to the source
characters; RO contains the current source byte; R2 contains any
numeric value being accumulated; offset NOARG notes the number of
expected arguments for this code; offset PARLVL notes the parentheses
depth encountered; and offset NUMFL notes that a number is available
in R2.

The module proceeds through the source characters. If the character
is a digit, a number is accumulated; if a letter, a dispatch is made
to process the format code; if a special character, a dispatch is
made to process the format code.

If the buffer space is exhausted, the FMTBIG format code (2) is stored
in the first byte of the compiled format and processing ceases. If a
format syntax error is detected, the FMTBAD format code (0) is stored
in the first byte and processing ceases.

4.7 INTEGER AND OCTAL CONVERSIONS

For input, OCI$ is called for octal conversion and ICI$ for integer
conversion. The calling sequence is:

1. push address of input string

2. push number of input characters

3. call ICI$ or OCI$

The return is made with arguments deleted and a 2-word value on the
stack in Integer*4 format. If an error occurs, the C-bit is set and
the value returned is O. An entry point $ECI is called by the
floating point conversions to input the exponent field.

For output, OCO$ is called for octal conversion and ICO$ is called for
integer conversion. The calling sequence is:

1. push address of output field

2. push width of output field

3. push Integer*4 value

4. call ICO$ or OC0$.

The return is made with arguments deleted. If an error occurs, the C
bit is set and the output field is filled with asterisks.

4.8 LOGICAL CONVERSIONS

For input, LCI$ is called as follows:

1. push address of input field

2. push width of input field

3. call LCI$
4-6

FORMAT PROCESSING AND FORMAT CONVERSIONS

The return is made with arguments deleted and a 1-word value on the
stack; 0 for .FALSE., and -1 for .TRUE. If an error occurs, the
C-bit is set and .FALSE. is returned.

LCO$ is called for output as follows:

1. push address of output field

2. push width of output field

3. push 1-word word logical value

4. call LC0$

The return is made with arguments deleted and C-bit clear.

4.9 REAL, DOUBLE PRECISION AND COMPLEX CONVERSIONS

For input, RCI$ is called for all formats (D, E, F and G format codes)
as follows:

1. push address of input field

2. push width of input field

3. push decimal part width

4. push scale factor (P format)

5. call RCI$

The return is made with arguments deleted and a 4-word double
precision value on the stack. If an error occurs, the C-bit is set
and the value returned is 0.0. If an exponent subfield is
encountered, a call is made to $ECI in the integer input conversion
routine to handle the conversion. The conversion is done entirely in
software; the FPP unit is not used.

For output, the call is made as follows:

1. push address of output field

2. push width of output field

3. push decimal part width

4. push scale factor

5. push 4-word double precision value

6. call DC0$ or ECO$ or FCO$ or GCO$

The return is made with arguments deleted. If an error occurs, the
C-bit is set and the output field is filled with asterisks. The
conversion is done in software, without using the FPP unit.

The optional module provided, F4PCVF, is an FPP implementation that is
significantly faster but slightly less accurate. The entire FPP state
is conserved.

4-7

FORMAT PROCESSING AND FORMAT CONVERSIONS

4.10 FORMAT CONVERSION ERROR PROCESSING

When a format conversion error occurs, both methods of error
continuation, ERR=transfer and return, are generally supported. The
action taken for each error that supports return continuation is as
follows:

Error 59 - List-Directed I/O Syntax Error
-- Result value is null (no change).

Error 61 - Format/Variable Type Mismatch Error
-- Value is used as is.

Error 63 - Input Conversion Error
-- Result value is 0, O. or ODO.

Error 64 - Output Conversion Error
Field is filled with asterisks.

Table 2-7 in the FORTRAN IV-PLUS User's Guide gives the initial
settings of the error continuation-type. The system subroutine ERRSET
is used to change the initial settings.

4-8

CHAPTER 5

ERROR PROCESSING AND EXECUTION CONTROL

This chapter discusses the detection and processing of run-time
errors, and the generation of error message output.

5.1 TRAP INSTRUCTION PROCESSING

The OTS reports errors using a TRAP instruction with the error
contained in the low byte of the instruction. The error
internally is 128(decimal) larger than the reported number,
error 21 is represented internally as 149. The first 128 TRAP
are available to the user; see Section 5.6.

number
number
i.e. ,

values

Upon execution of a TRAP instruction, the operating system transfers
control to the TRAP instruction processor, $SST6. This routine checks
the range of the error number and, if it is valid, calls $ERRAA to do
the error analysis and reporting. If invalid, an invalid error number
error (Error 1) is reported. All processor registers are preserved by
the error processing routines.

5.2 ERROR CONTROL BYTE PROCESSING

$ERRAA obtains the error control byte from the OTS impure area and
does the processing based upon the contents of that byte. If offset
FILPTR is non-zero and the F.ERR byte of the corresponding FDB is
negative, then the values F.ERR, F.ERR+l and F.LUN are saved for the
error report.

The error-occurred bit is set in the error byte and the error analysis
is performed as follows. If the continue bit is off, the error report
is printed with the exit flag. If the count bit is on, offset W.ECNT
is decremented; if it is less than or equal to zero, the report is
printed with the exit flag. If the continue-type bit indicates an
ERR= transfer and no ERR= address exists, the error report is printed
with the exit flag. If the log bit is set, the error report is
printed with the no-exit flag. If the task exits, the message is
always logged.

$ERRLG is called to log all terminal messages, both error reports and
the messages from STOP and PAUSE statements.

5.2.1 Continuation-type Processing

Two types of continuation after an error are supported: return to the
source of the error for corrective action; or transfer to an ERR=
address. Most I/O errors provide ERR= support, but not return, while
most other errors provide return.

5-1

ERROR PROCESSING AND EXECUTION CONTROL

S.2.2 W.IOEF Error Processing

For certain I/O errors, it is convenient for the ERR= transfer not to
be initiated by the error processor but for the I/O routine itself to
take the ERR= transfer. For example, OPEN statement processing
processes all keywords even though an error occurs for a keyword and
then takes the ERR= exit. Work area offset W.IOEF is used to obtain
this special processing. If W.IOEF is O, default processing is
enabled. If W.IOEF is negative, default processing is performed
except that the ERR= transfer is not made and a return is made to the
source of the error for the ERR= transfer. Note that regardless of
the W.IOEF setting, if no ERR= address exists, the task will exit. If
W.IdEF is set positive, a return continuation will always be executed.;
W.IOEF is initially zero and is reset to zero before exiting from a 1

routine which utilizes it.

5.3 ERROR MESSAGE PROCESSING

The error message construction and processing is performed by numerous
small routines. Message processirrg is begun by a call to $ERRLG.
This routine controls the flow of message processing and calls the
message utilities as required. It prints the task name and error
number on the first line, message text if available on the second
line, the program counter value at the time of the error on line
three, the error count exceeded message on line four, the FCS data on
line five, followed by the program unit traceback. Any line that is
not available or is inappropriate is not printed. Offset W.PC
contains the saved program counter value and controls the third line.
Offset W.ECNT contains the error limit count and controls line 4.
Offset W.FERR contains the F.ERR field of the FFDB and controls line
S. Messages are printed via the message output task (MO) on RSX-llD
and IAS. On RSX-llM messages are output by issuing .QIO's to the
user's terminal (TI:).

The message construction process requires R3 to point to the work
area, and RS to point to the current position in the message text
being constructed. Offset W.MOTY is 0 if MO is being used, and
non-zero if QIO's to the terminal are being performed. Offset W.ERLN
points to the beginning of the error message buffer.

$ERRLG is also called to output the messages from STOP and PAUSE
statements. The type of message being generated is determined from
the values of RO and Rl. A STOP or PAUSE message is signaled by Rl=O
and RO pointing to the message text block. An error message is
signaled by Rl being non-zero and then R0=-1 if the task is exiting or
RO=O if the task is continuing.

5.3.l Message Construction Utilities

These routines are used to construct the error report text in the
error text buffer. These routines operate identically regardless of
whether the message output task (MO) is in use or not.

Terminal QIO - Perform a QIO of message to the user's terminal.

$~TT

Compute the message length; set MO LUN number (offset
W.MO, global symbol .MOLON) in the QIO DPB. Issue the
QIO. Wait for the QIO to complete.

- Initialize RS to error
carriage return-line

5-2

message buff er and store a
feed (CR-LF) as the first two

$ERRNL

$ERRZA

$BINAS

$FILL

ERROR PROCESSING AND EXECUTION CONTROL

characters. Set RS into offset W.MOAl.

- Start a new line. Stores a CR-LF into buffer.

- Perform a GTSK$S directive to obtain the task name.
Call $ATT and call $RSOAB to decode the Radix-SO task
name.

- Convert a binary number to decimal ASCII.

- Move ASCIZ text pointed to by Rl to error message
buffer pointed to by RS.

$RSOAS,$R50AB - Convert Radix-SO value to ASCII by calling $RSO.

S.3.2 Message Output Task (MO) Utilities

These routines in RSX-llD and IAS construct the MO parameter block
(global symbol .MOPRM) and perform the QIO to MO.

$ERRW1 - Write the first segment. Store length of string in W.MOVl
and set W.MOA2 equal to RS.

$DETIC - Output in-core message text. Store no error number, call
$ERRW1 to set up MO pointers and branch to $DET.

$DET - Output the message. Call MO if present, on error call
$REAMO to reassign the MO lun to the terminal. If MO not
present, call Terminal QIO. Go to $ATT.

$REAMO - Reassign the MO Lun. Perform ALUN$S of the MO unit number
to the user terminal since MO is not present or not loaded
and set the no MO switch (W.MOTY).

S.4 FLOATING POINT PROCESSOR ERRORS

All Floating Point Processor (FPP) errors are processed as
Asynchronous System Traps in routine $FPERR. All possible FPP errors
can be processed. For floating divide by zero, overflow and
unoerflow, a value of zero is supplied as the result of the operation
that caused the trap.

S.5 STOP AND PAUSE STATEMENT PROCESSING

STOP and PAUSE statements are compiled to calls as follows:

1. Push address of display (0 indicates no display)

2. Call statement specific entry:

STOP$ for STOP
PAUS$ for PAUSE

All context is saved.
then jumps to $EXIT.

$ERRLG is called to output the message. STOP
PAUSE issues a SPND$S directive and returns.

5-3

ERROR PROCESSING AND EXECUTION CONTROL

5.6 USER INTERFACING TO ERROR PROCESSING

Users can use the first 128 (0 to 127) trap codes as follows. TRAP
instructions transfer control to the OTS error processor by means of a
System Synchronous Trap Table located in the OTS impure work area.
The first word of this table has the global symbol $SST. Coding
similar to the following can be used to intercept control:

INITIAL! ZATION
;
INIT: MOV

MOV
$SST+l4,SST6
#INTCEP,$SST+l4

;SAVE OTS TRAP ADDR
;PUT NEW ADDR IN SST
;TABLE

SST6: .WORD

; TRAP HANDLER
INTCEP: CMP

1$:

BHI
JMP

TST

RTI

0

U28.*2,@SP

1$
@SST6

(SP)+

;LOW BYTE *2 OF TRAP
;INSTRUCTION FROM
;EXECUTIVE
;BRANCH IF USER CODE
;GOTO OTS
;USER TRAP
;PROCESSING CODE

;DISCARD EXTRA WORD
;TRAP NUMBER
;EXIT INTERRUPT

Similar techniques can be used to intercept the other synchronous
traps.

5.7 USER INTERFACING TO TERMINAL MESSAGE OUTPUT

Users can utilize the error reporting message facility to write text
on the user terminal without doing FORTRAN I/O. A message text block
similar to that used for STOP and PAUSE statements is constructed as
follows: Rl equal to O; RO points to a 2-word message block, the
first word contains the address of an ASCIZ string (ASCII string
terminated by a zero-byte), the second word is 0. The text is then
output by executing a JSR PC, $ERRLG instruction.

Example:

The following prints "HELLO" on the user terminal:

In FORTRAN:

IN MACR0-11:

CALL MSG {I HELLO I)
END

MSG:: CLR - {SP)
MOV 2(R5) ,-(SP)
MOV SP,RO
CLR Rl
JSR PC,$ERRLG
CMP {SP)+, (SP)+
RTS PC
.END

2nd word of message block
address of ASCIZ text
RO points to message block
signal non-error type message
output the message
delete message block
return

The user text will be preceded by the task name. Only a single line
can be output. The message will appear as follows:

taskname user text
5-4

CHAPTER 6

MATHEMATICAL FUNCTIONS AND SYSTEM SUBROUTINES

This chapter summarizes the mathematical library functions and system
subroutines. Detailed descriptions are contained in the FORTRAN
IV-PLUS User's Guide.

6.1 PROCESSOR-DEFINED FUNCTIONS

Most of the processor-defined functions are called using the standard
PDP-11 FORTRAN Calling Sequence Convention, (Section 1. 2. 2 .1).

Some processor-defined functions are called using the FO sequence
described in Section 1.2.2.4. This calling sequence is used with the
following internal entry names:

$$SIN
$$DSIN

$$SQRT
$$DSQR

$$ATAN
$$DATN

$$COS
$$DCOS

$$ALOG
$$DLOG

$$ALG1
$$DLG1

$$EXP
$$DEXP

$$TAN
$$DTAN

Real sine
Double precision sine

Real square root
Double precision square root

Real arctangent
Double precision arctangent

Real cosine
Double precision cosine

Real logarithm (base e)
Double precision logarithm {base e)

Real logarithm (base 10)
Double precision logarithm (base 10)

Real exponential {base e)
Double precision exponential {base e)

Real tangent
Double precision tangent

6-1

MATHEMATICAL FUNCTIONS AND SYSTEM SUBROUTINES

6.2 I/0-RELATED SUBROUTINES

ASSIGN-

The unit number is placed in R2 and $GETFILE is called to get the
FFDB address. The file specification string address is placed in
Rl. The string length computed by scanning for a zero-byte if no
length is present. $FNBST is called to parse the file
specification and set up the file name block in the FDB.

CLOSE-

The unit number argument is moved to R2 and the OTS routine
$CLOSE is called to close the file.

FOBS ET-

The unit number is placed in R2 and $GETFILE is called to get the
FFDB address. The first character of the access mode string is
checked against the list and the corresponding· file access is
stored at F.FACC in the FDB:

'NEW'
'OLD'
'READONLY'
'APPEND'
'MODIFY'
'ISUP'
'UNKNOWN'

FO.WRT
FO.UPD
FO.RD
FO.APD
FO.MFY
FO.WRT + FA.NSP
FO.UPD

If the third argument begins with the character S, FA.SHR is set in
F.FACC in the FDB. The fourth argument is stored at F.MBCT, the fifth
at F.CNTG and the sixth at F.ALOC.

6.3 EXECUTION CONTROL SUBROUTINES

ERRS ET-

The error number specified by the user is extracted and checked
for validity. The following logical arguments are extracted and
the appropriate bits in the error control byte are manipulated.
If a limit count is provided, it is stored at offset W.ECNT.

ERRS NS-

This routine is called with zero to four integer arguments:

CALL ERRSNS (NUM, FERR, FERl, UNIT)

The saved information from the latest error is returned as
follows:

off set W.ERNM into NUM
off set W.FERR into FERR
off set W.FERl into FERl
offset W.ERUN into UNIT

These off sets are then zeroed.

6-2

MATHEMATICAL FUNCTIONS AND SYSTEM SUBROUTINES

ERRTST-

EXIT-

The error number is retrieved and checked for validity. The
error occurred bit. of the error control byte is tested and
cleared and the result returned in the second argument.

Performs a jump to $EXIT

USEREX-

Stores the argument address at work area off set EXADDR for use at
task termination.

6-3

CHAPTER 7

COMPILED-CODE SUPPORT ROUTINES

This group of routines is used for performing arithmetic operations
which are impractical to perform by in-line code sequences - notably
exponentiation and complex arithmetic.

7.1 OUT-OF-LINE ARITHMETIC OPERATIONS

All of these entries follow a common naming convention in which:

1. The first two letters indicate the operation performed as
follows:

AD - addition
SB - subtraction
ML - multiplication
DV - division
PW - exponentiation
CM - comparison
TS - test for zero
NG - negation

2. The next letter (two in the case of exponentiation) indicates
the data type of the argument(s) as follows:

I - Integer*2
J - Integer*4
R - Real
D - Double Precision
C - Complex

3. The last letter indicates how the argument for a I-argument
operation, or the second (right hand) argument for a
2-argument operation is accessed. For 2-argument operations,
the first (left hand) argument is always on the stack.

S - indicates the argument is at top of stack
C - indicates that the following in-line word is the

address of the argument
P - indicates that the following in-line word is the

offset in the parameter list (pointed to by RS) which
contains the address of the argument.

All of these entries delete their stack arguments, return their result
on the stack, and preserve the contents of general register 5 (RS).

7-1

COMPILED-CODE SUPPORT ROUTINES

7.1.1 Exponentiation -- PWxxt$

The following entries are used:

PW (I , J , R , or D) (I , J , R , or D) (S , C , or P) $
PWC (I or J) (S,C, or P) $

The FORTRAN statement:

I= (J**K)**(L**M)

is compiled into the code:

MOV
JSR
.WORD
MOV
JSR
.WORD
JSR
MOV

J, -(SP)
R4, PWIIC$
K
L, - (SP)
R4, PWIIC$
M
R4, PWIIS$
(SP)+, I

push J
compute J**K
result on stack
push L
compute L**M
result on stack
compute tl**t2
store result at I

7.1.2 Complex Arithmetic Operations

tl

t2

Complex Add, Subtract, Multiply, Divide, Test for Zero, Negate and
Compare.

The following entries are

ADC(S,C, or P)$
SBC(S,C, or P)$
MLC(S,C, or P)$
DVC(S,C, or P)$
TSC(S,C, or P)$
NGC(S,C, or P)$
CMC(S,C, or P)$

Example:

The FORTRAN statements:

SUBROUTINE S (C)
COMPLEX A,B,C
A= -(B * C)

used:

are compiled into the code:

MOV
MOV
MOV
MOV
JSR
.WORD
JSR
MOV
MOV
MOV
MOV

B+6,-(SP)
B+4,-(SP)
B+2,-(SP)
B,-(SP)
R4, MLCP$
2
R4, NGCS$
(SP)+, A
(SP)+, A+2
(SP)+ ,A+4
{SP)+ ,A+6

push B
multiply by C
first argument
negate result

store at A

7-2

COMPILED-CODE SUPPORT ROUTINES

7.1.3 INTEGER*4 Operations MLJt$ and DVJt$

The following entries are used:

Example:

MLJ(S,C, or P)$
DVJ(S,C, or P)$

The FORTRAN statements:

INTEGER * 4 I,J,K
I= J/K

are compiled into the code:

MOV
MOV
JSR
.WORD
MOV
MOV

J+2,-(SP}
J,-(SP}
R4, DVJC$
K
(SP}+,I
(SP}+,I+2

7.1.4 STACK SWAP OPERATIONS SWPxy$

These routines are used in conjunction with the R4 entries for those
cases in which the order of evaluation causes the two arguments of an
R4 call to be on the stack in reverse order. Entry names are of the
form

where

SWPlr$

1 is the number of words the left argument occupies: 1, ·2,
or 4

r is the number of words the right argument occupies: 1, 2,
or 4.

The two arguments are swapped on the stack.

Example:

The FORTRAN statements:

INTEGER*4 K,L
INTEGER*2 I,J
K= L**J**I

are compiled into the code:

MOV
JSR
.WORD
MOV
MOV
JSR
JSR
MOV
MOV

J,-(SP)
R4 ,PWIIC$
I
L+2,-(SP}
L, -(SP)
PC,SWP21$
R4, PWJIS$
(SP)+K
(SP)+,K+2

7-3

COMPILED-CODE SUPPORT ROUTINES

7.2 ARRAY PROCESSING SUPPORT

An Array Descriptor Block (ADB) is a data structure provided by the
compiler which describes an array {see Section 2.S). FORTRAN IV-PLUS
compiled code uses ADBs for the following purposes:

1. Array subscript calculations for dummy argument arrays,

2. Input/Output calls that transmit an entire array, and

3. Array subscript limit checking when specified by the compiler
/CK command switch.

Constant parts of an ADB are defined by the compiler.
are initialized at run-time upon entry to the
contains the array declaration.

7.2.1 Adjustable Array Initialization

Varying parts
subprogram which

Three entries are used for initializing the contents of ADB's for
dummy argument adjustable arrays: MAK1$, MAK2$ and MAKN$. MAK1$ is
called for I-dimensional arrays, MAK2$ for 2-dimensional arrays and
MAKN$ for arrays with three to seven dimensions. Only RS is preserved
by these routines which are called as follows:

1. Push the dimension bounds for any non-constant elements onto
the stack in order of their appearance in the array
declarator.

2. Push the base address of the dummy argument array passed in
the subprogram call.

3. Push address of array descriptor block onto stack.

4. JSR PC, MAK1$, MAK2$ or MAKN$.

The FORTRAN statements:

SUBROUTINE X(A,N)
DIMENSION A(O:N-1,N)

are compiled into the code:

A.ADB:

MOV
DEC
MOV
MOV
MOV
MOV
JSR

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

@4(RS), RO
RO
RO, - (SP)
@4(RS), -(SP)
2 (RS) , - (SP)
#A.ADB, - (SP)
PC, MAK2$

0
0
1
0

120000
0
0
0

31004
0
0

get N
compute N-1
push N-1
push N
push address of A
push address of ADB
initialize 2-dimensional ADB

Ll
Ul
L2
U2
A.PWRD
A.SIZB
A.ASTR
A.AO
A.CWRD
Dl
D2

7-4

COMPILED-CODE SUPPORT ROUTINES

7.2.2 Array Subscript Checking

If the compiler switch option /CK is in effect then each array
reference will be checked to verify that the array element address is
within the bounds established for the array by the array declarator.

The form of the call is:

1. Push array element address onto stack.

2. Push address of array descriptor block.

3. JSR PC,ARYCK$.

This call preserves all registers.

7.3 COMPUTED GO TO STATEMENT SUPPORT

A computed GO TO statement is compiled to a call as follows:

1. Push address of label list.

2. Convert index expression value to Integer*2 (if needed) and
push.

3. JSR PC,CGO$.

The FORTRAN statement:

GO TO (20,1,99,30,10), I+4

is compiled into the code:

CGLST:

MOV
MOV
ADD
MOV
JSR

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

#CGLST, -(SP)
I, RO
#4, RO
RO, - (SP)
PC, CGO$

5
.20
.1
.99
.30
.10

address of label list

compute I+4
push value

7.4 ASSIGNED GO TO STATEMENT SUPPORT

An assigned GO TO statement is compiled to a call as follows:

1. Push assigned label address

2. Push address of allowed label list

3. JSR PC,AGO$.

7-5

COMPILED-CODE SUPPORT ROUTINES

The FORTRAN statement:

GO TO IV, (20,30,10)

is compiled into the code:

AGLST:

MOV
MOV
JSR

.WORD

.WORD

.WORD

.WORD

IV, -(SP)
#AGLST, -(SP)
PC, AGO$

3
.20
.30
.10

7.5 TRACEBACK CHAIN PROCESSING

push value
push address of label list

If the compiler command option /TR:NAMES, /TR:BLOCKS or /TR:ALL is in
effect upon entry to the program unit, a call will be made to lirrk the
program unit name into the OTS name list for producing the error
traceback information. The form of the call is:

1. Push last three letters of entry name (represented in
Radix-50) onto stack.

2. Load first three letters of entry name into register R4.

3. JSR R4,NAM$

The traceback information is maintained on the execution stack. The
NAM$ returns in a co-routine fashion so that, when the program unit
finally returns, it actually returns to the NAM$ routine, which resets
the stack, removes the name chain link, and then returns to the
ultimate caller.

7.6 TASK INITIALIZATION

The first instruction of every FORTRAN main program is a call to the
OTS initialization routine as follows:

JSR PC,OTI$

This routine initializes the OTS. It issues an SVTK$S directive to
initialize the synchronous trap table; it calls $STFPP to initialize
the floating point processor; and it calls .FINIT to initialize FCS
for I/O operations. It computes the number of available device table
entries and zeroes them. It copies the error control byte table into
impure storage. It computes the user I/O buffer length and clears
miscellaneous words in the work area that must be zero initially. All
FORTRAN programs are dynamically initialized so that tasks that are
fixed in memory may be re-executed.

7-6

CHAPTER 8

OPERATING SYSTEM INTERFACES

This chapter describes the OTS interfaces to the operating system.
The OTS performs input/output through File Control Services and relies
on the Task Builder for allocation of impure storage and
initialization of address pointers.

8.1 FILE CONTROL SERVICES (FCS}

All FORTRAN I/0 is performed through FCS with synchronous
record-oriented I/O so as to obtain FCS support of record blocking and
deblocking.

Not all of the facilities available in FCS are used.
that are used are described below.

The facilities

Only 13 entries of FCS are called directly by the FORTRAN OTS.
However, each of these modules may require additional FCS subroutines.
The calls to FCS routines are always contained within a single module
of the OTS. The OTS is partitioned so that no call is made to an FCS
routine unless required by the FORTRAN program.

8.1.1 Direct Access Input -- GET$R

The GET$R macro is invoked from the OTS routine $GETR to perform
direct access input.

8.1.2 Direct Access Output -- PUT$R

The PUT$R macro is invoked from the OTS routine $PUTR to perform
direct access output.

8.1.3 Sequential Input -- GET$S

The GET$S macro is invoked from the
sequential input. GET$S is also
after rewinding the unit.

8.1.4 Sequential Output -- PUT$S

OTS routine $GETS to perform
invoked by BKSP$ to read forward

The PUT$S macro is invoked from the OTS routine $PUTS to perform
sequential output.

8-1

OPERATING SYSTEM INTERFACES

8.1.5 File Open Processing -- OFNB$

All file open operations are performed by OFNB$. This means that if
the filename parsing logic is not required, i.e., FORTRAN default file
names are used, the routines for filename parsing are not included in
the task. The OFNB$ macro is invoked from the OTS routine $OPEN$.

8.1.6 Default Directory Processing -- .GTDID

This routine is called by $OPEN$ to obtain the default directory for
use in constructing the filename block for use by OFNB$.

8.1.7 File Name Block Processing -- .PARSE, CSI$1 and CSI$2

All of these routines are required if a user-specified file
specification is to be used rather than the FORTRAN default filenames.
These modules are called by $FNBST.

8.1.8 File Positioning -- .POINT

The OTS routines REWI$ and BKSP$ call .POINT to reposition the file to
the beginning (byte O, virtual block 1).

8.1.9 Direct Access Record Positioning -- .POSRC

The OTS routine $PUTRI calls .POSRC to position the file to a
specified record for a direct access write.

8.1.10 File Close Processing -- CLOSE$

-
The OTS routine $CLOSE invokes the CLOSE$ macro to close a file.

8.1.11 File Deletion -- .DLFNB

The OTS routine $CLOSE calls .DLFNB to delete a file.

8.1.12 File Printing -- .PRINT

The OTS routine $CLOSE calls .PRINT to print and delete a file.

8.1.13 Register Save and Restore -- .SAVRl

Several OTS routines call .SAVRl to save and restore registers RI
through RS in co-routine fashion.

8-2

OPERATING SYSTEM INTERFACES

8.2 OVERLAYING THE OTS AND FCS

Because the I/O portion of the OTS is composed primarily of two parts,
a natural overlay structure is to do file processing (open/close) on
one branch and record processing (read/write) on the other. The
following notes indicate potential problems and suggestions.

8.2.1 File Processing Overlay Notes

Because the OPEN statement (OPEN$) requires $CLOSE, these modules can
not overlay each other, nor can the FCS routines .CLOSE, .PRINT, or
.DLFNB overlay OPEN$. If OPEN$ is not used, $CLOSE may be on its own
overlay branch.

$FNBST is the only routine that calls the system filename parsing
routines, therefore a sub-tree with .CSil and .CSI2 on one branch and
.PARSE on the other is an effective space saving arrangement.

8.2.2 Record Processing Overlay Notes

Because $INITIO is called by all I/O initialization modules and also
references $OPEN, it should always be resident in the root.

$IOELEM and $IOARY should be root resident.

If formatted I/O is used, several constraints exist. The format
processors ($FIO, $LSTI, $LSTO) must be in the same overlay segment as
the format conversion routines ($CONVI, $CONVL, $CONVR). Either the
record processors ($GETS, $PUTR, etc.) or the format processors must
be root resident, or they must be in the same overlay segment.

If user code on more than one overlay does formatted I/O, the format
processor should be root resident.

If an associated variable is declared for a direct access file, it
must be root resident.

8.3 TASK BUILDER OPTIONS

At Task Build time, the Task Builder links in the FORTRAN impure area
and, at the user's option, extends the impure storage.

8.3.1 UNITS=n

This specification causes the PSECT $$DEVT to have a size of n * F.FDB
bytes. The value of n is stored at offset W.LUNS, the address of
$$DEVT is at offset W.DEV and the address of the end of $$DEVT is at
offset W.DEVL. The value of F.FDB is determined by the OTS to be the
length of the FCS FDB (S.FDB) plus the length of the FORTRAN header
(D.FDB). The Task Builder default value for n is 6.

8-3

OPERATING SYSTEM INTERFACES

8.3.2 ACTFIL=n

This specification causes the PSECT $$FSR1 to have a size of n*F.BFHD
bytes. The value of F.BFHD is determined by the OTS to be the length
of the FCS buffers (S.BFHD). The Task Builder default value for n is
4.

8.3.3 MAXBUF=n

This specification causes the PSECT $$IOB1 to be n bytes long. The
address of $$IOB1 is stored at offset W.BFAD and the end address at
offset W.BEND. The minimum and default value for n is 132. This
value is the user record buffer length.

8.3.4 FMTBUF=n

This specification causes the PSECT $$0BF1 to be n bytes long. The
address of $$0BF1 is stored at offset W.OBFL and the end address at
offset W.OBFH. The minimum and default value for n is 64.

8.3.5 ASG=dv:n

This specification causes logical unit n to be initially assigned to
device dv.

8-4

CHAPTER 9

OTS SYSTEM GENERATION AND TAILORING

The OTS is built during the installation process as described in the
FORTRAN IV-PLUS Installation Guide. The material in this Chapter
gives a more detailed explanation of the installation options, as well
as information on building the OTS from sources.

9.1 ASSEMBLY OPTIONS

All assembly options are
non-definition of a symbol.

determined by the definition or

There are two operating system assembly options, two hardware assembly
options and three special assembly options. No two options affect the
same module, thus options can be combined.

9.1.1 Operating System Options

The two system option symbols are RSXD for RSX-110 V6 and IAS Vl, and
RSXM for RSX-llM V2. The following modules are affected:

$0TV - impure area allocation
$ERRMO - error report interface
$ERRLOG - error report construction
$ERRPT - error processor

The modules $ERTXT and $SHORT are used only with RSX-llM.

9.1.2 EIS Instruction Set Option

The two hardware options are defined by the symbol FPP. If FPP is not
defined, then the OTS can be used on an 11/45 or 11/40 with EIS,
provided no floating point computations are attempted. (See Section
4.4.1 of the FORTRAN IV-PLUS User's Guide.)

The modules affected are:

$MLJ - Integer*4 multiplication
$DVJ - Integer*4 division
$JMOD - Integer*4 modulo
$FPPUTI - FPP save/restore and initialization

9-1

OTS SYSTEM GENERATION AND TAILORING

9.1.3 Double Precision Arithmetic Option

The symbol F4PDP is used to assemble certain mathematical functions in
double precision mode.

The modules affected are:

$ASIN
$ACOS
$TAN
$SINH
$COSH
$TANH

- arc sine
- arc cosine
- tangent

hyperbolic sine
hyperbolic cosine

- hyperbolic tangent

9.1.4 Floating Point Format Conversion Option

The symbol FPP is also used to define the floating point output
conversion module that utilizes the FPP.

The module affected is:

$CONVR - floating point format conversion

9.1.5 No-I/O OTS Subset Option

The symbol NONIO is used to define a subset of the OTS that cannot
perform FORTRAN input/output.

The modules affected are:

$0TV - impure area allocation
$0TI - task initialization
$CLOSE - file close processor

9.2 OTS ASSEMBLY MACROS

The OTS data base, PSECT attributes and errors are defined at assembly
time by the following macros contained in the parameter file F4P.MAC.

9.2.1 OTSWA Macro

This macro defines the work area offsets. These offsets are described
in Appendix A.

9.2.2 ERRDEF Macro

This macro defines the OTS errors, error control byte control bits and
the error message text.

9.2.3 FBLOCK Macro

This macro defines the FFDB offsets, the FCS FDB offsets and the
QIOSYM values. The FFDB offsets are described in Appendix B.

9-2

OTS SYSTEM GENERATION AND TAILORING

9.2.4 $AOTS Macro

This macro obtains the impure area pointer from location $0TSV and
places it in a register, usually R3.

9.2.5 OTS$I Macro

This macro defines the OTS code PSECT $$OTSI.

9.2.6 OTS$D Macro

This macro defines the OTS pure area PSECT $$0TSD.

9.2.7 ADBDEF Macro

This macro, defined in the parameter file ADBDEF.MAC, defines the
array descriptor block offsets and the data type codes.

9-3

APPENDIX A

IMPURE STORAGE OFFSET DEFINITIONS

This Appendix briefly describes each of the named offsets in the
FORTRAN impure storage area.

OFFSET SIZE
(Decimal

W.SEQC 2
W.NAMC 2
W.LUNS 2
W.MO 2
W.BFAD 2
W.BLEN 2
W.BEND 2
LNBUF 2
W.QIO 2
W.DEV 2
RECIO 2
FMTAD 2
FILPTR 2
EOLBUF 2
FMTCLN 2

BLBUF 2
PS CALE 2
FSTKP 2
W.LICP 2

FSTK 32

W.LICB 10
NOARG 2
PARLVL 2
NU MF LG 2

FMTRET 2
VARAD 2
TSPECP 2
TYPE 2
REPCNT 2
UNFLGS 2
LENGTH 2
D 2
ITEMSZ 2
DOLF LG 1
COUNT 2

RAC NT 2

FMTLP 2

Bytes)
MEANING

Current sequence number
Listhead of traceback chain
Number of FFDBs
LUN used for error reporting
User record buffer address
User record buffer length
User record buffer end address +l
Address of active buffer
Address of QIO DPB used for error reports
Address of FFDB table
Address of active I/O record processing routine
Current address in format
Address of active FFDB or 0
Current buffer end address +l
Value of SP at entry to current I/O operation,
used for error recovery
Address of next data byte in current buffer
Floating point scale factor
Pointer to current format pushdown entry
Pointer to current data value for list-directed
input
Base of 16-word pushdown stack for format
processing
List-directed input current data value block
Object time format compiler argument count
Object time format compiler parentheses depth
Object time format compiler argument number
flag word
Format reversion pointer
Current I/O list element address
Current maximum line length
Format code type flag
Repeat count for current format code
Flag word for unformatted I/O
Format width (w of w.d)
Format decimal part (d of w.d)
Current I/O list element size in bytes
Dollar format encountered flag
No. of array elements to transfer or no. of
stack arguments for ERR= during OPEN and
CLOSE statements
No. of bytes left in direct access unformatted
record
Infinite format loop flag

A-1

IMPURE STORAGE OFFSET DEFINITIONS

OFFSET SIZE
(Decimal Bytes}

UNCNT 2
DENCWD 2

W.PC 2
EXADDR 2
END EX 2
ERREX 2
W.ECNT 2
W.ERNM .2
W.MAIN 2
W.OPFL 2
W.ERLN 2
W.ERLE 2
W.TKNP 2

W.ERTB 2
W.FERR 2
W.FERl 2
W.SST 2
W.OBFL 2
W.OBFH 2
W.ERUN 2
W.FPST 2
W.EXJ 2
W.PNTY 1
W. IOEF 1
W.RS 2
W.VTYP 2
W.RECL 2
W.RECH 2
W.FPPF 1
W.DFLT 1
W.LNMP 2
W.PRNT 2
W.TYPE 2
W.ACPT 2
W.READ 2
W.MOPR 2
W.MOVl 2
W.MOAl 2
W.MOV2 2
W.MOA2 2
W.MOTC 2
W.MOTR 2
W.MOT2 2
W.MOTY 1
W.DEVL 2
W.CPXF 1
W.NULL 1
W.END

MEANING

Unformatted sequential read record size
No. of records permitted for this I/O
operation; 0 if no limit
Saved PC value for traps
User exit routine address
Address for END= return
Address for ERR= return
Task error limit count
Last error number that occurred
FOR traceback word - spare but reserved
OPEN/CLOSE statement error flag
Address of error message text buffer
Address of end of error message text buffer
Address of task name - used by GTSK$S
directive
Address of error control byte table
F.ERR value of latest I/O error
F.ERR+l value of latest I/O error
Address of SST table
Address of object time format buff er
Address of end of object time format buffer
Unit number of latest I/O error
FPP status save word
I/O co-routine exchange jump location
VFE mask byte
Special error handling flag
User's RS value
I/O list element data type code
Direct access record number (low order}
Direct access record number (high order}
FPP present flag byte
Default format code byte
Number of negative mappable LONS (4}
Actual LON for LON -1
Actual LON for LON -2
Actual LON for LON -3
Actual LON for LON -4
Address of MO parameter list
1st string length in MO parameter list
1st string address in MO parameter list
2nd string length in MO parameter list
2nd string address in MO parameter list
No. of MO traceback levels
Start of MO traceback chain (wd l}
Start of MO traceback chain (wd 2}
Error message mode byte
Address of device table end
Complex I/O list item flag byte
List-directed input null flag (slash seen}
End of named work area off sets

Offsets FSTKP and W.LICP occupy the same memory location.
Offsets FSTK and W.LICB begin at the same memory location.
Offsets NOARG, PARLVL and NUMFLG begin at offset FSTK.
Offsets RACNT, FMTLP and UNCNT occupy the same memory location.
Offsets REPCNT and UNFLGS occupy the same memory location.

A-2

APPENDIX B

FFDB OFFSET DEFINITIONS

This Appendix summarizes the FORTRAN header portion of the FORTRAN
File Descriptor Block. Consult the operating system's I/O Operations
Reference manual for the description of the FCS FDB.

NAME

D.STAT
D.STA2
D.RCNM
D.RCCT
D.RCN2
D.RCC2
D.AVAD
D.SPAR
D.FDB

SIZE
(Bytes)

2
2
2
2
2
2
2
2

Status word 1
Status word 2

MEANING

Direct access record count (low order)
Sequential record count (low order)
Direct access record count (high order)
Sequential record count (high order)
Associate variable address
Reserved spare word
Start of FCS FCB

Offsets D.RCNM and D.RCCT occupy the same memory location.
Offsets D.RCN2 and D.RCC2 occupy the same memory location.

B-1

APPENDIX C

OTS SIZE SUMMARY

This Appendix is a guide to the approximate sizes of all the modules
in the FORTRAN IV-PLUS OTS. Modules are grouped by related function,
and identified by the TITLE as shown in Task Builder storage
allocation maps. All object module sizes are shown in decimal words.

If the module size for RSX-llM is different from that for RSX-llD, the
RSX-llM value is enclosed in parentheses.

C.l MODULES ALWAYS PRESENT

$0TI
$CLOSE
$ERRPT
$ERRLO
$ERRMO
$ERTXT
$FPERR
$FPPUT
$R50
$0TV

OTS Initialization
Close files
Error reporting
Error message logging
Error message output
Error message ASCII text
FPP Interrupt handler
FPP Utilities
Radix-SO to ASCII
OTS Impure area (by PSECT)

$$AOTS Common Work Area
$$DEVT Logical Unit Control

Table (Size=UNITS*54}
$$FSR1 FCS Buffer area

(Size=ACTFIL*264)
$$IOB1 I/O Buffer

(Size=max(MAXBUF,66))

Module Size in
Decimal Words

76
46

244 (321)
219 (296)
113 (36)

54
37
44

256

324

1056

66

(933 or 1)

(231)

$$0BF1 Object Time Format Buffer
(Size=max(FMTBUF,32))

$$FSR2 FCS impure area
$$0TSI Mixed FORTRANs trap

$0TV Total (maximum)

(If UNITS=O and ACTFIL=O, m1n1mum
$0TV size is 376 (352) words)

C-1

32
21

1

1756 (1732)

OTS SIZE SUMMARY

C.2 COMMON I/0 SUPPORT

The following modules are used by all I/O operations.

$OPEN
$INITI
$IOELE
$FCHNL
$SAVRG

$IOARY

Default File Open
Initialize Read/Write
I/O Element Transmission
Find Logical Unit Control Block
Register Save/Restore

Total

Array I/O Transmission

C.3 FORMAT PROCESSING ROUTINES

Module Size in
Decimal Words

246
138
155
61
53

653

72

The following routines are used by formatted I/O.

$FIO
$LSTI
$LSTO
$CONVL
$CONVI
$CONVR

$FMTCV

Format Interpreter
List-Directed Input
List-Directed Output
Logical Conversions (1)
Integer and Octal Conversions (1)
Real Conversions (1)

Object Time Format Compiler (used
only for formats stored in arrays)

C.4 SEQUENTIAL INPUT/OUTPUT

Module Size in
Decimal Words

724
421
205
35
162
558

326

The following modules are needed for sequential input/output
statements.

$ISU
$0SU
$ISF
$0SF
$ISL
$0SL
$GETS
$PUTS

Sequential Unformatted READ
Sequential Unformatted WRITE
Sequential Formatted READ (2)
Sequential Formatted WRITE (2)
List-Directed READ (2)
List-Directed WRITE (2)
Get Sequential Record
Put Sequential Record

Module Size in
Decimal Words

76
78
29
36
46
38
34
16

(1) Loaded only if needed or if ·list-directed or object time format is
used.

C-2

OTS SIZE SUMMARY

C.5 DIRECT ACCESS INPUT/OUTPUT

The following modules are used for direct access input/output
statements.

$IRU Direct Access Unformatted READ
$0RU Direct Access Unformatted WRITE
$IRF Direct Access Formatted READ (2)
$ORF Direct Access Formatted WRITE
$GETR Get Direct Access Record
$PUTR Put Direct Access Record
$CKRCN Check Record Number, Update

Associated Variable

C.6 OTHER I/O SUPPORT

$BACKS
$CLSST
$DEFF
$ENCDE
$ENDF
$FNBST
$0PNST
$REWIN

BACKSPACE Statement
CLOSE Statement
DEFINEFILE/FIND Statements
ENCODE/DECODE Statements (2)
ENDFILE Statement
File Name Block Setup
OPEN Statement
REWIND Statement

C.7 I/O RELATED SUBROUTINE CALLS

$AS SIG
$CLSCA
$EXIT
$FDBSE

ASSIGN Subroutine
CLOSE Subroutine
EXIT Subroutine
FDBSET Subroutine

C.8 MISCELLANEOUS COMPILED-CODE SUPPORT

$AGO
$ARY CK
$CGO
$MAOBI
$MADB2
$MADBN
$NAM
$STPPA

Assigned GO TO Statement
Array Subscript Checking
Computed GO TO Statement
!-Dimensional Adjustable Array
2-Dimensional Adjustable Array
N-Dimensional Adjustable Array
Traceback Chain Processing
STOP/PAUSE Statements

(2) Requires format processing routines.

C-3

(2)

Module Size in
Decimal Words

38
40
33
35
17
50
42

Module Size in
Decimal Words

75
152
64
43
32
70
433
35

Module Size in
Decimal Words

49
9
2
95

Module Size in
Decimal Words

12
12
18
34
56
58
15
31

OTS SIZE SUMMARY

C.9 PROCESSOR-DEFINED FUNCTIONS

$ABS
$ACOS
$AIMAG
$AINT
$ALOG
$AMAX1
$AMINO
$AMOD
$AN INT
$ASIN
$ATAN
$CABS
$CEXP
$CLOG
$CMPLX
$CONJG
$COSH
$CSIN
$CSQRT
$DABS
$DACOS
$DAS IN
$DATAN
$DBLE
$DCOSH
$DDIM
$DIM
$DINT
$DLOG
$DMIN1
$DMOD
$DPROD
$DSIGN
$DSIN
$EXP
$FCALL
$FLOAT
$FLOTJ
$I4FIX
$IABS
$IAND
$IDIM
$IEOR
$IFIX
$IMOD
$INOT
$IOR
$ISHFT
$ISIGN
$JABS
$JAND
$JDIM
$JEOR
$JMIX
$JMOD
$JNOT
$JOR
$JSHFT
$JSIGN

Real Absolute Value
Arc Cosine
Imaginary Part
Real Truncation
Real Log
Maximum of Reals
Minimum of Reals
Real Modulo
Real and Double Nearest Integer
Arc Sine
Arc Tangent
Complex Absolute Value
Complex Exponential
Complex Logarithm
Complex From Reals
Complex Conjugate
Hyperbolic Cosine
Complex Sine
Complex Square Root
Double Absolute Value
Double Arc Cosine
Double Arc Sine
Double Arc Tangent
Double From Real
Double Hyperbolic Cosine
Double Positive Difference
Positive Difference
Double Truncation
Double Logarithm
Minimum of Doubles
Double Modulo
Double Product of Reals
Double Transfer of Sign
Double Sine
Real Exponential
Internal Service Entry
Integer*2 to Real
Integer*4 to Real
Real to Integer*4
Integer*2 Absolute Value
Integer*2 AND
Integer*2 Positive Difference
Integer*2 Exclusive OR
Real to Integer*2
Integer*2 Modulo
Integer*2 NOT
Integer*2 Inclusive OR
Integer*2 Shift
Integer*2 Transfer of Sign
Integer*4 Absolute Value
Integer*4 AND
Integer*4 Positive Difference
Integer*4 Exclusive OR
Integer*4 Minimum and Maximum
Integer*4 Modulo
Integer*4 NOT
Integer*4 Inclusive OR
Integer*4 Shift
Integer*4 Transfer of Sign

C-4

Module Size in
Decimal Words

7
52
6
9
66
49
24
15
24
47
120
51
38
28
9
10
77
51
66
9
54
49
158
7
79
17
13
7
96
36
17
12
15
116
146
7
8
17
12
8
7
10
6
8
11
4
5
7
12
11
13
23
11
46
22
7
9
30
27

$MAXO
$MINO
$NINT
$REAL
$RJMIX
$SIGN
$SIN
$SINH
$DSINH
$SNGL
$SQRT
$TAN
$DTAN
$TANH
$DTANH

OTS SIZE SUMMARY

Integer*2 Maximum
Integer*2 Minimum
Nearest Integer
Real From Complex
Real Maximum or Minimum of
Real Transfer of Sign
Real Sine
Hyperbolic Sine
Double Hyperbolic Sine
Real From Double
Square Root
Real Tangent
Double· Tangent
Hyperbolic Tangent
Double Hyperbolic Tangent

10
10
19
5

Integer*4 27
11
94
77
79
14
43
20
22
76
78

C.10 COMPILED-CODE ARITHMETIC SUPPORT (R4 CALLS)

$ADC
$CMC
$DVC
$DVJ
$MLC
$MLJ
$NGC
$PWCJ
$PWDD
$PWII
$PWJJ
$PWRI
$PWRR
$SWPXY
$TSC

Module Size in
Decimal Words

Add/Subtract Complex
Compare Complex
Divide Complex
Divide Integer*4
Multiply Complex
Multiply Integer*4
Negate Complex
Complex to Integer Exponentiation
Floating to Floating Exponentiation
Integer*2 to Integer*2 Exponentiation
Integer*4 to Integer*4 Exponentiation
Floating to Xnteger Exponentiation
Real to Real Exponentiation
Stack Swap
Test Complex

29
22
38
26
27
24
16
158
71
53
139
111
55
95
16

C.11 SERVICE SUBROUTINES

$DATE
$ERRSE
$ERRSN
$ERRTS
$!DATE
$!RADS
$R50AS
$RAD50
$RAN
$RANDU
$SECND
$TIME
$USERE

DATE
ERRS ET
ERRS NS
ERRTST
IDA TE
IRADSO
RSOASC
RAD SO
RAN
RAN DU
SECNDS
TIME
USEREX

C-5

Module Size in
Decimal Words

70
95
30
22
29
15
6
11
7
11
37
43
6

OTS SIZE SUMMARY

C.12 OPTIONAL MODULES

$CONVR
$FPPUT
$SHORT
$ERRLO
$CLOSE
$0TV
$0TI
$MLJ
$DVJ
$JMOD

Module Size in
Decimal Words

Real Format Conversions(FPP Version)
EIS Version

523

1 Null Error Message Text
Null Error Message Logging
No I/O OTS Version
No I/O OTS Version
No I/O OTS Version
EIS Version
EIS Version
EIS Version

C-6

1
2
274
50
58
75
25

.
«> c

1=
1.!?
1-£
I g>
1-2
I~

'I B
I~
I~
10::
I
I
I
I
I
I

~:

READER'S COMMENTS

FORTRAN IV-PLUS Object
Time System Reference
Manual
DEC-11-LFPOA-A-D

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement •

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[] Student programmer

[] Non-progranuner interested in computer concepts and capabilities

Organization~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Street~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

CitY~~~~~~~~~~~~~~State~~~~~~-Zip Code~~~~~~~­
or

Country

If you require a written reply, please check here. 0

---Fold llere--

·--- Do Not Tear • Fold If ere and Staple --- t

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

~amaomo
digital equipment corporation

Printed in U.S.A.

ACCEPT statements, 3-7
ACCESS, 3-11
Acc'limulators, Floating Point

Processor, 1-3
ACTFIL, 8-4
ADBs (Array Descriptor Blocks) ,

2;...5
offsets, 2-5
usage, 2-6

ADBDEF macro, 9-3
Adjustable array initialization,

1-6, 7-4
Alphanumeric literals, 4-2
$AOTS macro, 2-1, 9-3
Area, FORTRAN impure, 1-7
Area, work, 2-1
ARGTYPE 1 ' 3-9
Argument Blocks by Keyword,

Summary of, 3-10
Arguments, null, 1-4
Arithmetic operations,

complex, 7-2
out-of-line, 7-1

Array
bounds checking, 2-6
descriptor blocks (ADBs) , 2-5
dimension spans, 2-6
initialization, adjustable,

1-6, 7-4
proces~ing support, · 7-4
subscript checking, 7-5

ASG, 8-4
Assembly Language, Writing a

FORTRAN Main Program in,
1-7

Assembly options, 9-1
ASSIGN, 6-2
Assigned GO TO statemertt support,

7-5
Assignments, register, 3-2
ASSOCIATE VARIABLE, 3-12
Associated Variable Update, 3-16
$ASVAR, 3:...16
$ATT, 5-2
Attribute, global (GBL), 2-2

BACKSPACE statement, 3-14
$BINAS, 5-3
Bit Definitions, FFDB Status,

2-4
Bits, floating point status, 1-4
BLOCKS, 2-8
BLOCKSIZE, 3-12
Bounds checking, array, 2-6

INDEX

Buffer,
error message text, 2-3
object-time format, 2-2
user record, 2-2

BUFFERCOUNT, 3-12
Byte,

decimal part, 4-2
field width, 4-2
format code, 4-2
processing, error control, 5-1
repeat count, 4-2
VFE mas, 4-2

Call,
element transmission, 1-1, 3-1
end-of-list, 3-1
initialization, 1-1, 3-1
termination, 1-2

Calling sequence conventions, 1-3
Calls,

FO I 1-3 I 1-5
PC, 1-3, 1-4 ·
R4, 1-3, 1-5
RS, 1-3

CARRIAGECONTROL, 3-12
Chain, traceback, 2-7
Characters,

· lowercase, vii
uppercase, vii

$CKRCN I 3-16
$CLOSE, 3-3
CLOSE, 6-2
CLOSE (CLOSE$) statements, 1-6,

3-13, 8-2
Code Form, Format, 4-1
Codes, Compiled Format, 4-3
Compatibility, FORTRAN IV (FOR),

1-6
Compiled-Code Support Routines,

1-2, 7-1
Compiled Format,

codes, 4-3
language, 4-1

Compiler, Object-time format, 4-5
Complex arithmetic operations,

7-2
Complex Conversions, Real, Double

Precision and, 4-7
Computed GO TO statement support,

7-5
Continuation-type Processing, 5-1
Conventions, calling sequence, 1-3
Conversion,

integer, 4-6

Index-1

INDEX (Cont.)

Conversion (cont.),
logical, 4-6
octal,_ 4-6
real, double precision, and

complex, 4-7
CSI$1, 8-2
CSI$2, 8-2

Data, OTS Pure, 2-1
Data type, list element, 4-5
Decimal notation, vii
Decimal part byte, 4-2
DECODE statement, 3-7
DEF$, 3-7
Default

directory processing, 8-2
filename generation, 3-16
formats, 4-3
OPEN, 3-3

DEFE$, 3-7
DEFINEFILE statement, 3-13
Definitions,

FFDB offset, B-1
FFDB status bit, 2-4
impure storage offset, A-1

$DET, 5-3
Determining subscript values,

2-6
$DETIC, 5-3
Device table, 2-1

logical unit, 2-2
$$DEVT, 2-2
Dimension Spans, Array, 2-6
Direct access

input, 3-6, 3-8, 3-15, 8-1
I/O, unformatted, 3-8
output, 3-6, 3-8, 3-16, 8-1
record number checking, 3-16
record positioning, 8-2

DISPOSE, 3-11, 3-13
.DLFNB, 8-2
Dollar sign ($), 1-6
Double Precision Arithmetic

Option, 9-2
DVJt$, 7-3

EIS Instruction Set Option,
9-1

Element transmission, 3-4
call, 1-1, 3-1
entry names, 3-4

ENCODE statement, 3-7
ENDFILE statement, 3-15
End-of-list

call, 3-1
processor ($EOLST), 3-1

Index-2

$ENFE, 3-7
ENFS, 3-7
Entries, I/O Initialization, 3-5
Entry names, element transmis-

sion, 3-4
Entry point names, external, -1-6
$EOLST (end-of-list) processor,

3-1
ERR, 3-11, 3-13
$ERRAA, 5-1
ERRDEF macro, 9-2
$ERRLG, 5-1, 5-2
$ERRNL, 5-3
Error

control byte processing, 5-1
control table, 2-3
message processing, 5-2
message text buffer, 2-3
processing, 2-4

format conversion, 4-8
routines, 1-2
user interfacing to, 5-4
W.IOEF, 5-2

recovery methods, 1-2
Errors,

fatal, 2-5
Floating Point Processor (FPP) ,

5-3
I/O, 2-5
other, 2-5

ERRSET, 6-2
ERRSNS, 6-2
ERRTST,. 6-3
$ERRW1, 5-3
$ERRZA, 5.,.3
Execution Control Subroutines,

6-2
EXIT, 6-3
Exponentiation, 7-2
Expression (VFE) , variable

format, 4-1
EXTENDSIZE, 3-12
External entry point names, 1-6

Fatal Errors, 2-5
FBLOCK macro, 9-2
$FCHNL, 3-2
FCS (File Control Services), 8-1

overlaying the OTS, 8-3
F/D (Floating/Double precision),

1-4
FDBSET, 6-2
FFDB

offset definitions, B-1
offsets, 2-3
status bit definitions, 2-4

Field Width byte, 4-2

INDEX (Cont.)

File
close, 3-3
close processing, 8-2
control services (FCS) , 8-1
deletion, 8-2
name block initialization,

3-16
name block processing, 8-2
name generation, default,

3-16
open processing, 8-2
positioning, 8-2
printing, 8-2
processing overlay notes, 8-3
I READONLY' ' 3- 3
I SCRATCH I ' 3-3

$FILL, 5-3
FILPTR, 3-1
FIND statement, 3-14
$FIO, 4-4
$$FIOC, 2-2, 4-4
$$FIOD, 2-2, 4-4
$$FIOI, 2-2, 4-4
$$FIOL, 2-2, 4-4
$$FIOR, 2-2, 4-4
$$FI02, 2-2, 4-4
$FLDEF, 3-16
Floating Point

format conversion option, 9-2
processor accumulators, 1-3
processor (FPP) errors, 5-3
status bits, 1-4

FMTAD, offset, 4-6
FMTBUF, 8-4
FMTCV$, 4-1
FMTCV$ (Object-time format)

compilation, 1-6
processing routines, 4-6

$FMTCV$, 4-5
$FNBST, 3-16, 8-3
Format, 3-11

buffer, object-time, 2-2
code, 4-1

byte, 4-2
form, 4-1

codes, 4-3
conversion error processing,

4-8
conversion, PSECTs, 2-2
expression (VFE), variable,

4-1
language, compiled, 4-1
processing PSECTs, 4-4
processor, 4-4
strings, quoted, 4-2

Formatted I/O, 3-6, 4-4
Formats,

default, 4-3
Hollerith, ·4-2

FORTRAN impure area, 1-7

FORTRAN IV (FOR) compatibility,
1-6

FORTRAN IV-PLUS OTS, 1-1·
FPP (Floating Point Processor)

errors, 5-3
FSTK, offset, 4-4
FSTKP, offset, 4-4
Functions, processor-defined,

6-1, C-4
FO calls, 1-3, 1-5

GBL (global) attribute, 2-2
General processor registers, 1-3
Generation, Default File Name,

3-16
GET$R, 8-1
GET$S, 8-1
$GETFILE, 3-2
$GETR, 3-15
$GETS, 3-15
Global (GBL) attribute, 2-2
Global symbol

Index-3

$0TSV, 1-7
$0TSVA, 1-7

.GTDID, 8-2

Hollerith formats, 4-2

ICI$, 4-6
ICO$, 4-6
I/L (integer/long integer) , 1-4
Impure

area, FORTRAN, 1-7
storage offset definitions, A-1
storage, OTS, 2-1

INFO, 3-9
Initialization,

adjustable array, 1-6
call, 1-1, 3-1
entries, I/O, 3-5
filename block, 3-16
(NAM$) traceback name, 1-6
segment, 3-6
task, 7-6

INITIALSIZE, 3-12
$INITIO, 3-3
Input,

direct access, 3-6, 3-8, 3-15,
8-1

list-directed, 3-6
processor, li~t-directed, 4-5
sequential, 3-6, 3-8, 3-15, 8-1

Instructions, OTS, 2-1
Integer conversion, 4-6

INDEX (Cont.)

INTEGER*4 operations, 7-3
Interfacing to Error Processing,

User, 5-4
Interfacing to Terminal Message

Output, User, 5-4
I/O

errors, 2-5
formatted, 3-6, 4-4
initialization, 3-3
initialization entries, 3-5
processing, 3-1
processing routines, 1-1
related subroutines, 6-2
unformatted direct access, 3-8
unformatted sequential, 3-7

IOAA$, 3-4
IOAH$, 3-4
$IOARY, 3-4
$$IOBI, 2-2
$IOELEM, 3-4
$IOEXIT, 3-2
IRF$, 3-6
IRFE$, 3-6
IRU$, 3-8 -
IRUE$, 3 8
ISF$, 3-6
ISFE$, 3-6
ISL$, 3-6
ISLE$, 3-6
ISU$, 3-8
ISU~$, 3-8
ITEMSZ, 3-1

Keyword, 3-11
summary of argument blocks by,

3-10
Keyword identification number,

3-·9

LCI$, 4-6
LCO$, 4-7
LINES, 2-8
List-directed,

input, 3-6
processor, 4-5

output, 3-7
processor, 4-5

List element data type, 4-5
Logical

conversions, 4-6
unit device table, 2-2
units, 2-3

Lowercase characters, vii
$LSTI, 4-5
$LSTO, 4-5

Macro,
ADBDEF, 9-3
$AOTS, 9-3
ERRDEF, 9-2
FBLOCK, 9-2
OTS$D, 9-3
OTS$I, 9-3
OTSWA, 9-2

Mathematical functions, 1-2
MAXBUF, 8-4
MAXREC, 3-12
Message

construction utilities, 5-2
output task (MO) , 5-2

utilities, 5-3
output, user interfacing to

terminal, 5-4
processing, 5-2

MLJt$, 7-3
MO (Message Output) task utilities,

5-3

NAME, 3-12
Name, initialization (NAM$)

traceback, o-6
NAMES, 2-8
Names,

element transmission entry, 3-4
external entry point, 1-6
offsets, 2-3

No-I/O OTS subset option, 9-2
NONE, 2-8
NOSPANBLOCKS, 3-12
Notation,

decimal, vii
octal, vii

Null arguments, 1-4

$$0BFI, 2-2
Object-time format

buffer, 2-2
compilation (FMTCV$), 1-6
compiler, 4-5

Object time system summary, 1-1
OCI$, 4-6
OC0$, 4-6
Octal

conversion, 4-6
notation, vii

Offsets,

Index-4

ADB, 2-5
definitions, impure storage,

A-1
FFDB, 2-3, B-1
FMTAD, 4-6

INDEX (Cont.)

Offsets (cont.),
FSTK, 4-4
FSTKP I 4 ... 4
names, 2-3
work area, 3-1

OFNB$, 8-2
OPEN (OPEN$) statements, 1-6,

3-3, 3-9, 3-11
Operating System Options, 9-1
Options,

assembly, 9-1
double precision arithmetic,

9-2
EIS instruction set, 9-1
floating point format conver­

sion, 9-2
non-I/O OTS subset, 9-2
operating system, 9-1

ORF$, 3-6
ORFE$, 3-6
ORU$, 3-8
ORUE$, 3-8
OSF$, 3-6
OSFE$, 3-6
OSL$, 3-7
OSLE$, 3-7
OSU$, 3-8
OSUE$, 3-8
Other errors, 2-5
OTS

and FCS, overlaying the~ 8-3
FORTRAN IV~PLUS, 1-1
impure storage, 2-1
instructions, 2-1
pure data, 2~1

size summary, c-1
$$0TSD, 2-1
OTS$D macro, 9-3
$$0TSI, 2-1
OTS$I macro, 9-3
$0TSV, global symbol, 1-7
OTSVA,global symbol, 1-7
OTSWA macro, 9-2
Out-of-line arithmetic opera­

tions, 7-1
Output,

direct-access, 3-6, 3-8, 3 16,
8-1

list-directed, 3-7
processor, list-directed, 4-5
sequential, 3-6, 3-8, 3-15,

8-1
Overlay notes,

file processing, 8-3
record processing, 8-3

Overlaying the OTS and FCS, 8-3

Parameter Blo_ck, QIO Directive, 2-3

Index-5

.PARSE I 8-2
PC calls, 1-3, 1~4
.POINT, 8-2
• POSRC, 8-2
.PRINT, 8-2
PRINT statements, 3-7
Processing,

continuation-type, 5-1
default directory, 8-2
error control byte, 5-1
error message, 5-2
filename, 8-2
file name block, 8-2
file open, 8-2
message, 5-2
routines, FMTCV$, 4-6
Stop and Pause statement, 5-3
trap instruction, 5-1

Processor
$EOLST (end-of-list) , 3-1
list-directed input, 4-5
list-directed output, 4-5
$SST6, trap instruction, 5-1

Processor-defined f.unctions,
6-1, C-4

Program in Assembly Language,
Writing a FORTRAN Main, 1-7

Program sections (PSECTs) , 2-1
PSECTs (program sections) , 2-1

format conversion, 2-2
format processing, 4-4
names, 2-2

Pure data, OTS, 2-1
$PUTR, 3-16
PUT$R, 8-1
$PUTRI, 3-16
$PUTS, 3-15
PUT$S, 8-1
PWxxt$, 7-2

QIO Directive Parameter Block,
2-3

QIO, terminal, 5-2
Quoted format strings, 4-2

Range checking, 4-2
RCI$, 4-7
'READONLY' file, 3-3, 3-11
Real, Double Precision and

Complex Conversions, 4-7
$REAMO, 5-3
Record

buffer, user, 2-2
number checking, direct access,

3-16
positioning, direct access, 8-2

INDEX (Cont.}

Record (cont,},
processing overlay notes, 8-3
processing segment, 3-6

RECORDSIZE, 3-11
Register assignments, 3-2
Register Save and Restore, 3-17,

8-2
Registers, general processor,

1-3
Repeat Count Byte, 4-2
Restore, Register Save and, 3-17,

S-2
REWIND statement, 3-15
R4 calls, 1-3, 1-5
RS calls, 1-3
$R50AB, 5-3
$R50AS, 5-3
Routines,

compiled-code support, 1-2,
7-1

error processing, 1-2
FMTCV$ processing, 4-6
I/O processing, 1-1

Save and Restore, Register, 3-17,
8-2

$SAVPx, 3-17
.SAVRI, 8-2
'SCRATCH' file, 3-3
Segment,

initialization, 3-6
record processing, 3-6

$SEQC I 2-8
Sequential

I/O, unformatted, 3-7
input, 3-6, 3-8, 8-1
output, 3-6, 3-8, 3-15, 8-1

Service subroritines, C-5
SHARED, 3-12
Size Summary, OTS, C-1
Stack swap operations, 7-3
Statement,

ACCEPT, 3-7
BACKSPACE, 3-14
CLOSE, 1-6, 3-13
DECODE, 3-7
DEFINE FILE, 3-13
ENCODE, 3-7
ENDFILE, 3-15
FIND, 3-14
OPEN, 1-6, 3-9, 3-11
PRINT, 3-7
processing, Stop and Pause,

5-3
REWIND, 3-15
TYPE, 3-7

Status bit definitions, FFDB, 2-4

Index-6

Status bits, floating point, 1-4
Stop and Pause statement process­

ing, 5-3
Storage

offset definitions, impure,
A-1

OTS impure, 2-1
Subroutine calls, type of, 1-1
Subroutines,

execution control, 6-2
I/a-related, 6-2
service, C-5

Subscript
checking, array, 7-5
values, determining, 2-6

Summary
Object Time System, 1-1
of Argument Blocks by Keyword,

3-10
OTS size, C-1

Support,
array processing, 7-4
assigned GO TO statement, 7-5
computed GO TO statement, 7-5
routines, compiled-code, 7-1

SWPxy$, 7-3
Symbol, global

$0TSV, 1-7
$0TSVA, 1-7

Synchronous System Trap Vector
table, 2-3

System subroutines, 1-2

Table,
device, 2-1
Error Control, 2-3

Task initializatibn, 7-6
Terminal Message Output, User

Interfacing to, 5-4
Terminal QIO, 5-2
Termination call, 1-2
Traceback chain, 2-7

name initialization (NAM$},
1-·6

processing, 7-6
Trap

instruction processing, 5-1
instruction processor, $SST6,

5-1
instructions, 2-4
vector table, synchronous

system, 2-3
TYPE, 3-11
TYPE statements, 3-7
Types of subroutine calls, 1-1

INDEX (Cont.)

Unformatted direct access I/O,
3-8

Unformatted sequential I/O, 3-7
UNIT, 3-11, 3-ll, 8-3
Update, associated variable,

3-16
Uppercase characters, vii
User

interfacing to error process­
ing, 5-4

interfacing to terminal mes­
sage output, 5-4

record buffer, 2-2
USEREX, 6-3
Utilities,

message construction, 5-2
message output task, 5-3

VARAD, 3-1
Variable format expression (VFE) ,

4-1
Variable update, associated,

3-16
Vector table, synchronous system

trap, 2-3
VFE implementation, 4-2
VFE mask byte, 4-1

W.EXJ, 3-1
W.IOEF, work area offset, 5-2

error processing, 5-2
Work area, 2-1

offset (W.IOEF), 5-2
offsets, 3-1

Writing a FORTRAN Main Program
in Assembly Language, 1-7

W.TYP, 3-1

Index-7

