
DECchip 21030
PCI Graphics Accelerator

Reference Manual
Order Number: EC–N0683–72

Revision/Update Information: This is a new manual.

Digital Equipment Corporation

Maynard, Massachusetts

September 1994

While Digital believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

© Digital Equipment Corporation 1994. All Rights Reserved.

AccuLook, Alpha AXP, AXP, DEC, DECsystem, Digital, OpenVMS, RapiDraw, the DIGITAL logo,
and VAX are trademarks of Digital Equipment Corporation.

Brooktree is a registered trademark and RAMDAC is trademark of Brooktree Corporation.
Microsoft and Windows NT are registered trademarks and Windows is a trademark of Microsoft
Corporation.
Motorola is a registered trademark of Motorola, Inc.
OpenGL is a trademark of Silicon Graphics Inc.
OSF/1 is a registered trademark of Open Software Foundation, Inc.
UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

Preface . xix

1 Introduction

1.1 Overview . 1–1
1.2 Features . 1–3
1.3 Basic Programming Model . 1–6
1.4 Frame Buffer Configurations . 1–8

2 Memory Space

2.1 Overview . 2–1
2.2 Core Space . 2–1
2.2.1 Frame Buffer Space . 2–2
2.2.2 Register Space . 2–5
2.2.3 Alternate ROM Space . 2–9
2.2.3.1 Reading Alternate ROM Space . 2–10
2.2.3.2 Writing Alternate ROM Space . 2–11

3 Internal Architecture

3.1 PCI Interface . 3–1
3.1.1 PCI Configuration Reads and Writes 3–3
3.1.2 Memory Reads and Writes . 3–3
3.1.2.1 Memory Write to Core Space . 3–3
3.1.2.2 Memory Read of Core Space . 3–3
3.1.2.3 Read Interlock . 3–4
3.1.2.4 Memory Read of Expansion ROM Space 3–4
3.1.3 DMA Transfers . 3–4
3.1.3.1 DMA Read Transfer . 3–4
3.1.3.2 DMA Write Transfer . 3–4
3.2 DMA Read FIFO . 3–5
3.3 Copy Buffer and DMA Write FIFO . 3–5

iii

3.4 Command FIFO . 3–5
3.5 Command Parser . 3–6
3.5.1 Pixel-Processing Pipeline Coherence 3–6
3.5.2 External Device and Register Writes 3–6
3.5.3 Frame Buffer Writes . 3–7
3.5.4 Bresenham Setup Hardware . 3–7
3.6 Pixel Engine . 3–7
3.7 Pixel Merge . 3–9
3.8 Write Buffer . 3–10
3.9 Memory Controller . 3–10
3.10 CRTC and Cursor . 3–12
3.10.1 Monitor Timing . 3–12
3.10.2 Video Refresh . 3–13
3.10.3 Cursor Generation . 3–13
3.11 Frame Buffer and Device Access . 3–13
3.12 PCI Registers . 3–14
3.13 Core Registers . 3–14

4 Register Descriptions

4.1 Overview . 4–1
4.2 PCI Registers . 4–2
4.2.1 PCI Command and Status Register . 4–4
4.2.2 PCI Device Base Address Register . 4–7
4.2.3 PCI Identification Register . 4–9
4.2.4 PCI Class and Revision Register . 4–10
4.2.5 PCI Latency Timer Register . 4–11
4.2.6 PCI Expansion ROM Base Address Register 4–12
4.2.7 PCI Line Interrupt Register . 4–13
4.2.8 PCI VGA Redirect Register . 4–14
4.3 Graphics Command Registers . 4–15
4.3.1 Slope Registers . 4–16
4.3.2 Span Width Register . 4–19
4.3.2.1 Write . 4–19
4.3.2.2 Read . 4–19
4.3.3 Continue Register . 4–21
4.3.3.1 Write in Any Mode . 4–21
4.3.3.2 Write in Line Mode . 4–22
4.3.3.3 Read . 4–23
4.3.3.4 Writes to Alternate ROM Space . 4–24
4.3.4 Copy-64 Source and Destination Registers 4–25
4.4 Graphics Control Registers . 4–27

iv

4.4.1 Mode Register . 4–28
4.4.1.1 Write . 4–28
4.4.1.2 Read . 4–31
4.4.2 Address Register . 4–33
4.4.3 Raster Operation Register . 4–35
4.4.4 Block-Color Registers . 4–38
4.4.5 Pixel-Shift Register . 4–41
4.4.6 Copy-Buffer Registers . 4–43
4.4.7 DMA Base-Address Register . 4–45
4.4.8 Data Register . 4–46
4.4.8.1 Line Mode . 4–46
4.4.8.2 Block-Fill, Opaque-Fill, and Transparent-Fill Modes 4–47
4.4.8.3 DMA-Write Copy Mode . 4–48
4.4.9 Slope-No-Go Registers . 4–49
4.4.9.1 Write . 4–49
4.4.9.2 Read . 4–50
4.4.10 Bresenham 1 Register . 4–51
4.4.11 Bresenham 2 Register . 4–53
4.4.12 Bresenham 3 Register . 4–54
4.4.13 Bresenham Width Register . 4–55
4.4.14 Stencil Mode Register . 4–56
4.4.15 Z-Base-Address Register . 4–59
4.4.16 Z-Value High and Low Registers . 4–60
4.4.17 Z-Increment High and Low Registers 4–62
4.4.18 Foreground Register . 4–64
4.4.19 Background Register . 4–66
4.4.20 Plane Mask Registers . 4–67
4.4.21 Pixel Mask Register . 4–69
4.4.21.1 Opaque-Stipple Mode . 4–69
4.4.21.2 Simple and Simple-Z Modes . 4–69
4.4.21.3 Any Mode . 4–70
4.4.22 Red-Value Register . 4–71
4.4.22.1 Color-Interpolated Line Mode . 4–71
4.4.22.2 Sequential-Interpolated Line Mode 4–72
4.4.23 Red-Increment Register . 4–74
4.4.23.1 Color-Interpolated Line Mode . 4–74
4.4.23.2 Sequential-Interpolated Line Mode 4–75
4.4.24 Green-Value Register . 4–77
4.4.25 Green-Increment Register . 4–78
4.4.26 Blue-Value Register . 4–79
4.4.27 Blue-Increment Register . 4–80
4.4.28 Deep Register . 4–81
4.5 Video Timing Registers . 4–84

v

4.5.1 Horizontal Control Register . 4–84
4.5.2 Vertical Control Register . 4–87
4.5.3 Video Base-Address Register . 4–89
4.5.4 Video Valid Register . 4–91
4.5.5 Video Shift-Address Register . 4–93
4.6 Cursor Registers . 4–94
4.6.1 Cursor XY Register . 4–95
4.6.2 Cursor Base-Address Register . 4–97
4.7 Status Registers . 4–99
4.7.1 Command Status Register . 4–99
4.7.2 Interrupt Status Register . 4–101
4.8 External Device Registers . 4–103
4.8.1 EEPROM Write Register . 4–103
4.8.2 Palette and DAC Setup Register . 4–104
4.8.3 Palette and DAC Data Register . 4–106
4.8.4 Clock Generator Register . 4–108

5 PCI Operations

5.1 Configuration Operations . 5–1
5.2 Target Operations . 5–1
5.2.1 Access Granularity . 5–2
5.2.2 Transaction Termination . 5–2
5.3 Master Operation . 5–3
5.3.1 Transaction Termination . 5–3
5.3.2 Aborted DMA Transaction Termination 5–4
5.4 Parity . 5–4
5.5 Address and Data Stepping . 5–4
5.6 Bus Parking . 5–5
5.7 Functions Not Supported . 5–5

6 Graphics Operations

6.1 Overview . 6–1
6.1.1 Frame Buffer Writes . 6–1
6.1.2 Graphics Command Register Writes 6–2
6.1.3 Invoking Graphics Operations . 6–4
6.1.4 Register Load Synchronization . 6–5
6.1.5 Visual Bitmap and Buffer Formats . 6–6
6.1.5.1 8-bpp Frame Buffer . 6–6
6.1.5.2 32-bpp Frame Buffer . 6–7
6.1.5.3 Z-Buffer and Stencil-Buffer Formats 6–10

vi

6.1.6 Source and Destination Operands . 6–11
6.1.6.1 Address Alignment Requirements 6–13
6.1.6.2 24-bpp Bitmap Operands . 6–13
6.1.6.3 12-bpp Bitmap Operands . 6–14
6.1.6.4 8-bpp Bitmap Operands . 6–15
6.2 Graphics Modes . 6–18
6.2.1 Simple Mode . 6–19
6.2.2 Simple-Z Mode . 6–21
6.2.3 Opaque-Stipple Mode . 6–25
6.2.4 Transparent-Stipple Mode . 6–28
6.2.5 Block-Stipple Mode . 6–30
6.2.5.1 Frame Buffer Address Alignment 6–34
6.2.5.2 Stipple Mask Alignment . 6–35
6.2.5.3 Block Color Pattern Alignment . 6–35
6.2.5.4 Using Block Stipple Mode . 6–35
6.2.6 Block-Fill Mode . 6–37
6.2.7 Opaque-Fill Mode . 6–41
6.2.8 Transparent-Fill Mode . 6–44
6.2.9 Copy Mode . 6–45
6.2.9.1 Source and Destination Alignment 6–48
6.2.9.2 Backward Copies . 6–52
6.2.9.3 Priming and Flushing the Residue Register 6–53
6.2.9.4 Copy Direction Flag . 6–55
6.2.9.5 64-Byte Unmasked Span Copies 6–56
6.2.9.6 Copy Buffer Operation . 6–56
6.2.9.7 Fast Frame Buffer Access Using the Copy Buffer

Registers . 6–59
6.2.9.8 Copy Mode Source and Destination Bitmaps 6–60
6.2.10 DMA-Read Copy Mode . 6–63
6.2.10.1 Priming and Flushing the Residue Register 6–66
6.2.10.2 Bitmap Formats Supported in DMA-Read Copy Mode . . . 6–69
6.2.10.3 Dithering in DMA-Read Copy Mode 6–69
6.2.11 DMA-Write Copy Mode . 6–70
6.2.11.1 Priming and Flushing the Residue Register 6–74
6.2.11.2 Bitmap Formats Supported in DMA-Write Copy Mode . . . 6–76
6.2.12 Opaque-Line Mode . 6–77
6.2.12.1 Drawing Lines with the Slope Registers 6–80
6.2.12.2 Destination Bitmap Support in Opaque-Line Mode 6–83
6.2.12.3 Extending and Linking 2D Lines 6–83
6.2.13 Transparent-Line Mode . 6–88

vii

6.2.14 3D Line and Span Modes . 6–89
6.2.14.1 Color Interpolation . 6–92
6.2.14.2 Sequential Interpolation . 6–95
6.2.14.3 Z-Buffer and Stencil-Buffer Operation 6–96
6.2.14.4 Extending and Linking 3D Lines 6–101

7 Programming Guide

7.1 PCI Configuration Firmware . 7–1
7.1.1 Device Address Mapping . 7–1
7.1.2 Bus Mastering . 7–2
7.1.3 Interrupt Routing . 7–3
7.1.4 VGA Pass-Through . 7–3
7.1.5 Expansion ROM . 7–4
7.2 Graphics Drivers and Servers . 7–4
7.2.1 Bit-Block Transfers . 7–4
7.2.1.1 Screen-to-Screen Copy . 7–4
7.2.1.2 Host-to-Screen Copy . 7–7
7.2.2 Fills . 7–7
7.2.2.1 Solid . 7–7
7.2.2.2 Stippling or Filling with a Monochrome Brush 7–8
7.2.2.3 Tiling or Filling with a Non-Monochrome Brush 7–9
7.2.3 2D Lines . 7–10
7.2.3.1 Line Drawing Under X . 7–10
7.2.3.2 Line Drawing Under Win32 . 7–12
7.2.3.3 21030 Turbo Lines . 7–14
7.2.4 Text . 7–15
7.2.5 3D Lines . 7–16
7.2.5.1 Software Z-Buffering . 7–19
7.2.6 3D Polygons . 7–19
7.2.7 Animations . 7–19
7.2.7.1 Offscreen-Copy Double-Buffering 7–19
7.2.7.2 In-Place Double-Buffering . 7–20
7.2.8 Cursor Display . 7–21
7.3 Programming for Alpha AXP CPUs . 7–21
7.3.1 Programmed I/O Through the CPU Write Buffer 7–21
7.3.2 Address and Continue Register Access 7–23

viii

8 Hardware Interface

8.1 Frame Buffer Organization . 8–1
8.1.1 8-Plane Frame Buffer . 8–1
8.1.2 32-Plane Frame Buffer . 8–4
8.1.2.1 Horizontal Access Mode . 8–4
8.1.2.2 Broadcast Access Mode . 8–4
8.1.2.3 Diagonal Access Mode . 8–4
8.1.3 Supported Memory Devices . 8–7
8.2 System Configurations with VGA . 8–8
8.3 External Device Interfaces . 8–8
8.4 Signal Descriptions . 8–8
8.4.1 Frame Buffer Interface Signals . 8–9
8.4.1.1 addr<17:0> . 8–9
8.4.1.2 addren_l<1:0> . 8–9
8.4.1.3 cas_l<3:0>, casen<1:0>, casmode<1:0> 8–9
8.4.1.4 dacc<2:0>, dacce_l<1:0>, dacrw . 8–9
8.4.1.5 data<63:0> . 8–10
8.4.1.6 dsf<1:0> . 8–10
8.4.1.7 fbclk . 8–10
8.4.1.8 icsce_l . 8–10
8.4.1.9 oe_l<1:0> . 8–10
8.4.1.10 ras_l<3:0>, rasen_l<3:0> . 8–11
8.4.1.11 romce_l, romoe_l, romwe_l . 8–11
8.4.1.12 we_l<7:0> . 8–11
8.4.2 PCI Signals . 8–11
8.4.2.1 ad<31:0> . 8–11
8.4.2.2 cbe_l<3:0> . 8–11
8.4.2.3 devsel_l . 8–12
8.4.2.4 frame_l . 8–12
8.4.2.5 gnt_l . 8–12
8.4.2.6 idsel . 8–12
8.4.2.7 inta_l . 8–12
8.4.2.8 irdy_l . 8–12
8.4.2.9 par . 8–13
8.4.2.10 pciclk . 8–13
8.4.2.11 req_l . 8–13
8.4.2.12 rst_l . 8–13
8.4.2.13 stop_l . 8–13
8.4.2.14 trdy_l . 8–13

ix

8.4.3 Video Interface Signals . 8–13
8.4.3.1 blank_l . 8–14
8.4.3.2 cursor<7:0> . 8–14
8.4.3.3 hsync_l . 8–14
8.4.3.4 hold_l . 8–14
8.4.3.5 toggle . 8–14
8.4.3.6 vidclk . 8–14
8.4.3.7 vsync_l . 8–14
8.4.4 Test Signals . 8–15
8.4.4.1 testin_l . 8–15
8.4.4.2 toggle . 8–15

A DECchip 21030 step A Differences

A.1 Memory Space . A–1
A.1.1 Extending 21030 step A Memory Space A–2
A.2 PCI Registers . A–4
A.2.1 PCI Device Base Address Register . A–4
A.2.2 PCI Address Extension Register . A–6
A.3 Video Timing Registers . A–7
A.4 PCI Operations . A–7
A.4.1 Access Granularity . A–7
A.4.2 Device Address Mapping . A–7
A.4.2.1 Address Mapping in Alpha AXP Systems A–8

B Pin Summary

C Register Summary

D Technical Support, Ordering, and Associated Literature

Glossary

Index

x

Figures

1–1 Typical System Application . 1–2

1–2 Typical 8-bpp Configuration . 1–10

2–1 21030 step B Memory Space Organization 2–3

2–2 Core Space Map for 8-bpp Frame Buffers 2–4

2–3 Core Space Map for 32-bpp Frame Buffers 2–5

2–4 Register Space Organization . 2–6

2–5 Alternate ROM Space Read Format . 2–10

3–1 DECchip 21030 Block Diagram . 3–2

4–1 PCSR Format . 4–4

4–2 PDBR Format . 4–7

4–3 PIDR Format . 4–9

4–4 PCRR Format . 4–10

4–5 PLTR Format . 4–11

4–6 PRBR Format . 4–12

4–7 PLIR Format . 4–13

4–8 PVRR Format . 4–14

4–9 GSLR<7:0> Format . 4–16

4–10 Slope Registers and Drawing Octants 4–17

4–11 GSWR Read Format . 4–19

4–12 GCTR Write Format . 4–21

4–13 GCTR Line-Mode Write Format . 4–22

4–14 GCTR Read Format . 4–23

4–15 GCSR and GCDR Formats . 4–25

4–16 GMOR Write Format . 4–28

4–17 GMOR Read Format . 4–31

4–18 GADR Format . 4–33

4–19 GOPR Format . 4–35

4–20 GBCR<7:0> Format . 4–38

4–21 GBCR Color Pattern Formats . 4–40

4–22 GPSR Format . 4–41

4–23 GCBR<7:0> Format . 4–43

4–24 Copy Buffer Layout . 4–44

4–25 GDBR Format . 4–45

4–26 GDAR Line-Mode Format . 4–46

4–27 GDAR Fill-Mode Format . 4–47

xi

4–28 GDAR DMA-Write Copy Mode Format 4–48

4–29 GSNR<7:0> Write Format . 4–49

4–30 GSNR<7:0> Read Format . 4–50

4–31 GB1R Format . 4–51

4–32 GB2R Format . 4–53

4–33 GB3R Format . 4–54

4–34 GBWR Format . 4–55

4–35 GSMR Format . 4–56

4–36 GZBR Format . 4–59

4–37 GZVR-H and GZVR-L Formats . 4–60

4–38 GZIR-H AND GZIR-L Formats . 4–62

4–39 GFGR Format . 4–64

4–40 Foreground and Background as a Function of Bitmap

Depth . 4–65

4–41 GBGR Format . 4–66

4–42 GPMR Format . 4–67

4–43 Plane Mask Formats . 4–68

4–44 GPXR Opaque-Stipple Mode Format 4–69

4–45 GPXR Simple and Simple-Z Modes Format 4–70

4–46 GRVR Color-Interpolated Line-Mode Format 4–71

4–47 GRVR Sequential-Interpolated Line-Mode Format 4–72

4–48 GRIR Color-Interpolated Line-Mode Format 4–74

4–49 GRIR Sequential-Interpolated Line-Mode Format 4–75

4–50 GGVR Format . 4–77

4–51 GGIR Format . 4–78

4–52 GBVR Format . 4–79

4–53 GBIR Format . 4–80

4–54 GDER Format . 4–81

4–55 VHCR Format . 4–84

4–56 VVCR Format . 4–87

4–57 VVBR Format . 4–89

4–58 VVVR Format . 4–91

4–59 VSAR Format . 4–93

4–60 CXYR Format . 4–95

4–61 CCBR Format . 4–97

4–62 SCSR Format . 4–99

4–63 SISR Format . 4–101

xii

4–64 ERWR Format . 4–103

4–65 EPSR Format . 4–104

4–66 EPDR Read Format . 4–106

4–67 EPDR Write Format . 4–107

4–68 ECGR Format . 4–108

6–1 Packed 8-bpp Bitmap . 6–7

6–2 8-bpp Unpacked Bitmap Formats . 6–8

6–3 12-bpp Bitmap Formats . 6–9

6–4 24-bpp True-Color Bitmap Format . 6–9

6–5 Z24 Z and Stencil Buffer Format . 6–11

6–6 Z16 Z and Stencil Buffer Format . 6–11

6–7 Hardware Replication of 12-bpp Source Bitmap to

Destination Dword . 6–14

6–8 8-bpp Bitmap Access in 32-bpp Frame Buffers 6–16

6–9 Simple Mode PCI Write-Data Format 6–19

6–10 Simple-Z Mode PCI Write-Data Format 6–22

6–11 Opaque-Stipple Mode PCI Write-Data Format 6–25

6–12 Opaque-Stipple Mode Operation . 6–27

6–13 Transparent-Stipple Mode PCI Write-Data Format 6–28

6–14 Transparent-Stipple Mode Operation 6–29

6–15 Block-Stipple Mode PCI Write-Data Format 6–30

6–16 Block-Stipple Mode Operation . 6–31

6–17 Block-Stipple Mode Address and Mask Alignment 6–33

6–18 Block-Fill Mode PCI Write-Data Format 6–37

6–19 Block-Fill Mode Operation . 6–40

6–20 Opaque-Fill Mode PCI Write-Data Format 6–41

6–21 Opaque-Fill Mode Operation . 6–43

6–22 Copy Mode PCI Write Data Formats 6–46

6–23 Forward Span Copy . 6–51

6–24 Primed Forward Span Copy . 6–54

6–25 Copy Buffer Layout . 6–58

6–26 DMA-Read Copy-Mode PCI Write-Data Format 6–64

6–27 DMA-Read Copy . 6–68

6–28 DMA-Write Copy-Mode PCI Write-Data Format 6–71

6–29 DMA-Write Copy . 6–75

6–30 Opaque-Line Mode PCI Write-Data Format 6–78

6–31 Opaque Line Drawing . 6–83

xiii

6–32 Opaque-Line Drawing Sequence . 6–86

6–33 Color Interpolator Output for a 24-bpp Destination 6–93

6–34 Color Interpolators Output for 12-bpp and 8-bpp

Destinations . 6–95

6–35 Z-Buffered, Color-Interpolated Line Segment 6–100

7–1 BitBlt Using Copy Mode Example . 7–6

7–2 Drawing Clipped Lines . 7–12

8–1 Frame Buffer Option T8-01 . 8–2

8–2 Frame Buffer Option T8-02 . 8–2

8–3 Frame Buffer Option T8-22 . 8–3

8–4 Frame Buffer Option T8-44 . 8–3

8–5 Frame Buffer Option T32-04 . 8–5

8–6 Frame Buffer Option T32-08 . 8–6

8–7 Frame Buffer Option T32-88 . 8–6

A–1 Memory Space Organization . A–1

A–2 Extended 21030 step A Core Space Map for 32-bpp Frame

Buffers . A–3

A–3 PDBR Format . A–4

A–4 PAER Format . A–6

Tables

1–1 Typical Applicable Systems . 1–3

1–2 Supported Frame Buffer Configurations 1–9

2–1 Frame Buffer Configuration and Core Space 2–2

2–2 Core Registers . 2–7

2–3 Alternate ROM Space Read Field Description 2–10

4–1 21030 PCI Configuration Space . 4–3

4–2 PCSR Field Description . 4–4

4–3 PDBR Field Description . 4–7

4–4 PIDR Field Description . 4–9

4–5 PCRR Field Description . 4–10

4–6 PLTR Field Description . 4–11

4–7 PRBR Field Description . 4–12

4–8 PLIR Field Description . 4–13

4–9 PVRR Field Description . 4–14

4–10 GSLR<7:0> Field Description . 4–16

xiv

4–11 GSWR Read-Format Field Description 4–19

4–12 GCTR Write-Format Field Description 4–21

4–13 GCTR Line-Mode Write-Format Field Description 4–22

4–14 GCTR Read-Format Field Description 4–23

4–15 GCSR and GCDR Field Description . 4–25

4–16 GMOR Write-Format Field Description 4–28

4–17 Graphics Modes . 4–29

4–18 GMOR Read-Format Field Description 4–31

4–19 GADR Field Description . 4–33

4–20 GOPR Field Description . 4–35

4–21 Boolean Raster Operations . 4–36

4–22 GBCR<7:0> Field Description . 4–38

4–23 GPSR Field Description . 4–41

4–24 GDBR Field Description . 4–45

4–25 GDAR Line-Mode Format Field Description 4–46

4–26 GDAR Fill-Mode Format Field Description 4–47

4–27 GDAR DMA-Write Copy Mode Format Field Description 4–48

4–28 GSNR<7:0> Write-Format Field Description 4–49

4–29 GSNR<7:0> Read Format Contents . 4–50

4–30 GB1R Field Description . 4–51

4–31 GB2R Field Description . 4–53

4–32 GB3R Field Description . 4–54

4–33 GBWR Field Description . 4–55

4–34 GSMR Field Description . 4–56

4–35 GSMR Pass and Fail Fields Codes . 4–57

4–36 GSMR Test Fields Codes . 4–57

4–37 Stencil Buffer Update Conditions . 4–58

4–38 GZBR Field Description . 4–59

4–39 GZVR-H and GZVR-L Field Description 4–60

4–40 GZIR-H and GZIR-L Field Description 4–62

4–41 GFGR Field Description . 4–64

4–42 GBGR Field Description . 4–66

4–43 GPMR Field Description . 4–67

4–44 GPXR Opaque-Stipple Mode Format Field Description 4–69

4–45 GPXR Simple and Simple-Z Modes Field Description 4–70

4–46 GRVR Color-Interpolated Line-Mode Format Field

Description . 4–71

xv

4–47 GRVR Sequential-Interpolated Line-Mode Format Field

Description . 4–72

4–48 GRIR Color-Interpolated Line-Mode Format Field

Description . 4–74

4–49 GRIR Sequential-Interpolated Line-Mode Format Field

Description . 4–75

4–50 GGVR Field Description . 4–77

4–51 GGIR Field Description . 4–78

4–52 GBVR Field Description . 4–79

4–53 GBIR Field Description . 4–80

4–54 GDER Field Description . 4–81

4–55 VHCR Field Description . 4–84

4–56 VVCR Field Description . 4–87

4–57 VVBR Field Description . 4–89

4–58 Video Base-Address Alignment According to VRAM Size 4–89

4–59 VVVR Field Description . 4–91

4–60 VSAR Field Description . 4–93

4–61 Interrupt Shift-Address to Frame Buffer Byte-Address

Map . 4–94

4–62 CXYR Field Description . 4–95

4–63 Cursor Coordinate Limits . 4–95

4–64 CCBR Field Description . 4–97

4–65 SCSR Field Description . 4–99

4–66 SISR Field Description . 4–101

4–67 ERWR Field Description . 4–103

4–68 EPSR Field Description . 4–104

4–69 EPSR MPU Control Field Mapping . 4–105

4–70 EPDR Read-Format Field Description 4–106

4–71 EPDR Write-Format Field Description 4–107

4–72 ECGR Field Description . 4–108

6–1 Mode-Dependent Frame Buffer Write Operations 6–1

6–2 Graphics Command Register Write Operations 6–3

6–3 Graphics Command Register Write Operations in 3D Line

Modes . 6–3

6–4 32-bpp Frame Buffer Supported Bitmaps 6–7

6–5 Source and Destination Operands According to Mode 6–12

6–6 Unsupported Bitmap Formats According to Mode 6–12

6–7 Source, Destination, and Plane Mask Fields 6–13

xvi

6–8 8-bpp Source and Destination Bitmap and Byte Field

Values . 6–17

6–9 Simple Mode Parameters . 6–19

6–10 Simple-Z Mode Parameters . 6–21

6–11 Opaque-Stipple Mode Parameters . 6–25

6–12 Transparent-Stipple Mode Parameters 6–28

6–13 Block-Stipple Mode Parameters . 6–30

6–14 Block-Fill Mode Parameters . 6–37

6–15 Opaque-Fill Mode Parameters . 6–41

6–16 Transparent-Fill Mode Parameters . 6–44

6–17 Copy Mode Parameters . 6–45

6–18 Copy Mode Span Limits . 6–47

6–19 Assigning the Pixel Shift Value . 6–52

6–20 Format Parameters for 12-bpp Bitmaps 6–61

6–21 Format Parameters for 8-bpp Bitmaps in a 32-bpp Frame

Buffer . 6–62

6–22 DMA-Read Copy-Mode Parameters . 6–63

6–23 Edge Mask Settings in DMA-Read Copy Mode 6–67

6–24 Edge Mask for Short Spans in DMA-Read Copy Mode 6–67

6–25 DMA-Write Copy-Mode Parameters . 6–70

6–26 Edge Mask for Short Spans in DMA-Write Copy Mode 6–74

6–27 Opaque-Line Mode Parameters . 6–77

6–28 Opaque-Line Mode Parameters Using Slope Registers 6–80

6–29 Transparent-Line Mode Parameters . 6–88

6–30 3D Line Mode Parameters . 6–90

6–31 Reduced Color Interpolator Output for 8-bpp and 12-bpp

Destinations . 6–94

7–1 21030 Base Address and Memory Space Enable Fields 7–1

7–2 PCI Latency Timer and Master Enable Fields 7–2

7–3 VGA Redirect Register Fields . 7–3

8–1 RAMDAC MPU Interface Connection 8–10

A–1 PDBR Field Description . A–4

A–2 PAER Field Description . A–6

A–3 21030 Base Address and Memory Space Enable Fields A–8

A–4 PCI Address Space Requirements in Alpha AXP Systems . . . A–9

B–1 Frame Buffer Interface Pin Summary B–1

B–2 PCI Interface Pin Summary . B–2

xvii

B–3 Video Interface Pin Summary . B–3

B–4 Test Pin Summary . B–3

C–1 PCI Configuration Registers . C–1

C–2 Graphics Command Register Summary C–2

C–3 Graphics Control Register Summary C–3

C–4 Video Timing Register Summary . C–5

C–5 Cursor Control Register Summary . C–5

C–6 Status Register Summary . C–5

C–7 External Device Register Summary . C–6

xviii

Preface

This manual describes the architecture, internal design, and external

interface of the DECchip 21030 PCI Graphics Accelerator. It includes register

descriptions, an overview of the chip’s microarchitecture, descriptions of the the

graphics processing algorithms, and programming information.

Note

The DECchip 21030 step A and DECchip 21030 step B are nearly

identical. Differences between the two are noted as they occur in this

manual, and the description ‘‘defaults’’ to functionality that is specific to

the 21030 step B; the equivalent 21030 step A functionality is described

in Appendix A.

Audience

This manual is for system designers, software developers, and hardware

engineers who use the DECchip 21030 PCI Graphics Accelerator.

Manual Organization

This manual contains the following chapters and appendices as well as a

glossary and an index.

• Chapter 1, Introduction

• Chapter 2, Memory Space

• Chapter 3, Internal Architecture

• Chapter 4, Register Descriptions

• Chapter 5, PCI Operations

• Chapter 6, Graphics Operations

• Chapter 7, Programming Guide

xix

• Chapter 8, Hardware Interface

• Appendix A, DECchip 21030 step A Differences

• Appendix B, Pin Summary

• Appendix C, Register Summary

• Appendix D, Technical Support, Ordering, and Associated Literature

• Glossary

• Index

Conventions

The following conventions are used throughout this manual.

Abbreviations

• bpp

The terms ‘‘bits per pixel’’ and ‘‘bits/pixel’’ are abbreviated as bpp.

• Binary Multiples

The abbreviations K, M, and G (Kilo, Mega, and Giga) represent binary

multiples and have the following values.

K = 210 (1024)

M = 220 (1,048,576)

G = 230 (1,073,741,824)

For example:

2KB = 2 Kilobytes = 2 � 210 bytes

4MB = 4 Megabytes = 4 � 220 bytes

8GB = 8 Gigabytes = 8 � 230 bytes

2K pixels = 2 Kilopixels = 2 � 210 pixels

4M pixels = 4 Megapixels = 4 � 220 pixels

• Register Access

The abbreviations used to indicate the type of access to register fields and

bits have the following definitions:

IGN — Ignore

Bits and fields specified as IGN are ignored when written.

RAZ — Read As Zero

Bits and fields specified as RAZ return a zero when read.

xx

RES — Reserved

Bits and fields specified as RES are reserved by Digital and should not

be used.

RO — Read Only

Bits and fields specified as RO can be read and are ignored (not written)

on writes.

RW — Read/Write

Bits and fields specified as RW can be read and written.

R/W1C — Read/Write One to Clear

Bits and fields specified as R/W1C can be read. Writing a one clears

the bits.

WO — Write Only

Bits and fields specified as WO can be written but not read.

Aligned and Unaligned

The terms aligned and naturally aligned are interchangeable and refer to data

objects that are powers of two in size. An aligned datum of size 2� is stored

in memory at a byte address that is a multiple of 2�; that is, one that has n

low-order zeros. For example, an aligned 64-byte stack frame has a memory

address that is a multiple of 64.

A datum of size 2� is unaligned if it is stored in a byte address that is not a

multiple of 2�.

Bit Notation

Multiple bit fields are shown as extents (see Ranges and Extents, below).

Caution

Cautions indicate potential damage to equipment or loss of data.

Core, Core Space, and Core Registers

This manual frequently refers to the 21030 core, core space, and core registers.

• The 21030 core is all of the chip functions except the PCI interface and PCI

registers.

• The 21030 memory space consists of one to eight copies of core space. Each

copy of core space maps the same frame buffer, external EEPROM, and

core registers (see Chapter 2).

xxi

• The core registers are all the registers physically implemented in the 21030

except the PCI configuration registers. Note that the block color and plane

mask registers are addressed in core space but are physically implemented

in the VRAMs.

Data Units

The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Nibble ¼ ½ 4

Byte ½ 1 8

Tribyte 1½ 3 24

Word 1 2 16

Dword 2 4 32 Longword

Quadword 4 8 64 2 Dwords

Octaword 8 16 128 4 Dwords

Hexaword 16 32 256 8 Dwords

External

Unless otherwise stated, throughout this manual the term external means not

contained in the DECchip 21030.

Note

Notes emphasize particularly important information.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. In cases

of ambiguity, a subscript indicates the radix of nondecimal numbers. For

example, 19 is decimal, but 1916 and 19A are hexadecimal.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods (..) and

are inclusive. For example, a range of integers 0..4 includes the integers 0, 1,

2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets (<>) separated

by a colon (:) and are inclusive. For example, bits <7:3> specifies an extent

including bits 7, 6, 5, 4, and 3.

xxii

Signal Names

Signal names are printed in lowercase, bold-faced type. The names of low-

asserted signals carry the suffix _l. The names of high-asserted signals have

no suffix. For example, pll_clk_in is a high-asserted signal, and pll_clk_in_l

is a low-asserted signal.

xxiii

1
Introduction

This chapter briefly describes the DECchip 21030 PCI Graphics Accelerator

and its hardware features, programming model, and supported frame buffer

configurations.

1.1 Overview

The 21030 is an application-specific integrated circuit (ASIC) for high-

performance 2D and 3D graphics acceleration in systems that use the

peripheral component interconnect (PCI). The 21030 accelerates 2D and

3D applications, and enhances X and Win32 windowing system graphics

performance. It includes an on-chip glueless PCI interface and is particularly

suited for use in high-performance PCs and entry-level workstations.

The 21030 takes advantage of the speed and power of today’s microprocessors

to provide best-in-class acceleration without the expense and complexity

of a separate graphics coprocessor. As a PCI peripheral in systems based

on Digital’s Alpha AXP architecture or other current microprocessors (see

Table 1–1), the 21030 gives desktop products, such as PCs and windows

terminals, the graphics performance of a workstation at PC prices.

The 21030 is the latest implementation of Digital’s proven graphics

architecture, the same architecture that is designed into Digital’s Alpha

AXP workstations. With the on-chip inclusion of the PCI interface, the 21030

provides a multigenerational plug-and-play graphics system for a variety of

current and emerging PCI-based systems. Its high-level of integration provides

low-cost and reliable acceleration with the minimum number of additional

chips.

The 21030 provides leadership graphics performance for PCI-based desktop

workstations and PCs driven by high-performance microprocessors and

industry-standard operating systems, graphics user’s interfaces (GUIs),

and applications programming interfaces (APIs). The 21030 architecture

is carefully tuned to work in conjunction with a high-performance CPU,

especially an Alpha AXP processor. The 21030 supports the industry-standard

Introduction 1–1

2D graphics APIs Win32 and X and the industry-standard 3D API OpenGL,

ported to Windows NT.

Figure 1–1 shows the 21030 in a typical system based on an Alpha AXP

microprocessor. The 21030-based graphics subsystem can reside on the

motherboard or on a PCI add-in card, possibly opposite the CPU through a

PCI-to-PCI bridge.

Figure 1–1 Typical System Application

PCI Bus

Combo Chip

PCI−EISA/ISA
Bridge

EISA Slot 1

EISA Slot 8

Frame
Buffer

Keyboard

Multimedia

Controller

SCSI

System

Controller

MemoryController

Mouse

Ethernet

Controller

Controller

Parallel
Controller

Serial
Controller

Serial
Controller

PCI
Arbiter

Video
Subsystem

21030
DECchip

CPU
Alpha AXP

Table 1–1 lists some of the applicable platforms for the 21030.

1–2 Introduction

Table 1–1 Typical Applicable Systems

Processor Operating Systems APIs

DECchip 21064 Windows NT Win32, X, OpenGL

DECchip 21066 Windows NT Win32, X, OpenGL

DECchip 21068 Windows NT Win32, X, OpenGL

1.2 Features

The following is a summary of the 21030 hardware features.

• 8-bpp and 32-bpp frame buffers

The 32-bpp frame buffer supports 8-bpp pseudo color, 12-bpp direct color,

and 24-bpp true color.

• 64-byte copy buffer

The copy buffer supports high-bandwidth local frame buffer bit-block

transfers (BitBlts).

• Bresenham line drawing engine and setup hardware

The on-chip Bresenham line drawing engine and setup hardware performs

Bresenham per-pixel line stepping and most of the Bresenham-term setup.

• Faster and simpler line drawing

In many systems, software is responsible for all of the cumbersome line

setup calculations, including generating the Bresenham error and address

increments for the major and minor axis steps as well as the initial error

term.

In the 21030’s streamlined interface, software needs to write only the

absolute dx and absolute dy values of the line segment to one of eight

slope registers, implicitly specifying the drawing octant. The 21030

then automatically generates all of the Bresenham terms, initializes the

Bresenham registers, and draws up to 16 pixels. This interface allows

software to process more line endpoints, and, combined with 4-way access

to the frame buffer, yields 8-bpp line rates in excess of 2,000,000 lines per

second.

• Color expansion

The 21030 expands monochrome bitmaps to various pixel depths, for

drawing text or filling regions with solid or bitonal brushes.

Introduction 1–3

• Video RAM (VRAM) block-write support

VRAM block-write greatly improves the performance of solid fills and

common brushed fills.

• Direct memory access (DMA) engine for image data

The 21030 has DMA-read copy and DMA-write copy modes for fast host-to-

screen BitBlts. These modes allow large, contiguous regions to be directly

transferred between main memory and the frame buffer. The on-chip PCI

interface allows main memory, other PCI graphics devices, or PCI video

devices to be the external source or destination.

• High-performance memory controller

The 64-bit memory interface implements Digital’s RapiDraw technology

(patent pending) to maximize page mode accesses and support 4-way

independent addressing to greatly enhance line drawing performance.

The memory controller also supports multiple access modes to the frame

buffer, which gives 1MB and 2MB frame buffers the same 8-bpp drawing

performance as 4MB and 8MB frame buffers.

• 3D support

The 21030 includes hardware to perform color-interpolation for each of

three channels (red, green, and blue), Z-buffering, and stencil processing

compatible with OpenGL specifications. These functions accelerate typical

3D primitives such as Gouraud-shaded, Z-buffered polygons and depth-cued

lines.

• Proprietary dithering

The 21030 implements Digital’s AccuLook dithering algorithm (patent-

pending) to support rendering to 8-bpp and 12-bpp bitmaps. The quality of

dithered 8-bpp pseudo-color images surpasses standard 16-bpp direct-color

image quality. The quality of the dithered 12-bpp direct-color images is

comparable to 24-bpp true-color image quality.

• Support for multiple visual types

Within the context of a 32-bpp frame buffer, the 21030 supports drawing to

8-bpp and 12-bpp bitmaps as well as typical 24-bpp bitmaps. This feature

supports independent bitmap depths per window (that is, per application)

and high-speed animation.

• 64 � 64 � 2 on-chip cursor

The 21030 incorporates on-chip cursor control. Optionally, it can retain a

cursor image in its off-screen frame buffer memory and pass its control to

the RAMDAC.

1–4 Introduction

• High-performance CRT control (CRTC)

The 21030 provides monitor timing and VRAM serial-port control signals

to refresh screens up to 1600 � 1280 pixels, 76 Hz, and 16M colors.

• Glueless interface for external RAMDAC and flash ROM

The 21030 can be connected directly to several Brooktree RAMDAC

MPU-style interfaces as well as a 256K � 8 flash ROM.

• Stereo support

The 21030 supports 2 � reduced-resolution vertical refresh with explicit

frame indicator output (that is, stereo goggle control).

• PCI-compliant interface

The 21030 is fully electrically compliant with the PCI Local Bus

Specification, Revision 2.0. The 21030 and its external RAMDAC,

EEPROM, and clock generator present only one PCI load.

Functions Not Supported

By design, the 21030 generally provides a lower-level hardware interface than

typical GUI accelerators. The 21030 does not support the following common

GUI accelerator functions, which have little effect on performance.

• The complete Windows set of 256 Boolean raster operations

The Windows manager and most applications typically use only three or

four of the 256 Boolean raster operations (ROPs). The most commonly used

ROPs are included in the 16 functions supported by the 21030 hardware.

For the infrequent cases when the 21030 Windows NT display driver

encounters an unsupported ROP, it defaults to the graphics device interface

(GDI). This does not affect performance for Windows or the majority of

applications (including Windows benchmarks) and has only a negligible

effect on the performance of the remaining minority of applications.

• On-chip VGA

Windows NT on an Alpha AXP platform does not require VGA compatibil-

ity. The 21030 supports external VGA (that is, palette snooping) but does

not include VGA register-level compatibility. This saves approximately

12,000 unnecessary gates for applications that do not need VGA.

• Traditional bit-ordering in Windows monochrome bitmaps

In the 21030 stippling (color expansion) modes, bytes and bits-within-bytes

increase from left-to-right across the screen. Traditionally, in Windows

monochrome device-independent bitmaps (DIBs), bytes are also mapped

from left-to-right, but bits-within-bytes increase from right-to-left with

respect to the screen. Although the 21030 hardware does not support such

Introduction 1–5

ordering, the 21030 display driver can use the lazy realization paradigm

of Windows brush-management to handle this format with negligible

degradation in performance.

Under Windows, the driver realizes a brush only when the brush is ready

to be used. Once realized, the brush can be used indefinitely without being

realized again. Therefore, the display driver can reverse the bit order once

during the realization process and never again for the life of that brush.

Because the most commonly used brushes are stock Windows brushes

that can be cached after they are realized, they can be used by multiple

applications without being realized multiple times. Consequently, one-time

brush preprocessing has little effect on performance.

• Advanced rendering

Functions such as antialiasing and texture mapping must be implemented

in software, although the 21030 accelerated modes can be used to assist

more advanced rendering algorithms; for example, simple-Z mode can be

used for texture mapping.

1.3 Basic Programming Model

In the basic 21030 programming model, the processor writes directly to

addresses within the 21030’s frame buffer address space. The data is

interpreted according to the current graphics mode to perform the desired

operation. Exceptions to this paradigm are described below.

There are four primary 21030 operating modes: simple, stipple, line, and

copy. Each primary mode of operation has an associated plane mask, Boolean

raster operation, and destination bitmap depth. The plane mask determines

which bits in a pixel can be modified during a write. The raster operation

provides one of sixteen 2-operand Boolean function of source (or pattern)

and destination, and automatically performs a read-modify-write cycle when

necessary. The bitmap depth (and associated byte selection for 8-bpp bitmaps

in a 32-bpp frame buffer) specify how pixel data maps to frame buffer Dwords.

• Simple mode

In simple mode, writes to the frame buffer are similar to writes to main

memory, except for the optional effects of the pixel mask, plane mask,

raster operation, bitmap depth, and bitmap rotation. In this mode, the PCI

byte mask and the pixel mask determine which pixels are written.

• Stipple mode

1–6 Introduction

In stipple mode (color expansion mode), data written to the frame buffer is

interpreted as a monochrome pattern, in which the following occurs:

– Ones are expanded into foreground pixels.

– Zeros are either expanded into background pixels (opaque stipple mode)

or not expanded (transparent stipple mode).

In opaque stipple mode, the pixel mask can be programmed to write fewer

than 32 pixels.

• Line mode

In line mode, the processor sets up registers for the Bresenham engine and

then writes into the frame buffer at the starting address of the line. The

data written by the processor is interpreted as a monochrome pattern, in

which the following occurs:

– Ones are expanded into foreground pixels.

– Zeros are either expanded into background pixels (opaque line mode) or

have no effect (transparent line mode).

In the 3D line modes, ones are expanded into a shaded, and optionally

dithered, color.

• Copy mode

In copy mode, the processor writes alternately to the source and destination

address within the frame buffer. The data written by the processor is

interpreted as a bit mask that specifies which pixels are to be read (source)

or written (destination).

Extensions to the Basic Programming Model

Several extensions to the basic programming model are available.

• Stipple-fill and block-fill modes

In stipple-fill and block-fill modes, each write causes the 21030 to fill

as many as 2K pixels on a scan line, using the 32-bit data as a 32-bit

monochrome pattern. The block-fill modes use VRAM block-write cycles for

high-bandwidth fills.

• Line mode

In line mode, the eight slope registers (one per octant) allow the processor

to offload some of the traditional line setup computations. The processor

writes the absolute values of the line rise and run to one of the slope

registers, implicitly specifying a drawing octant, and causes the 21030 to

generate the Bresenham address and error terms and draw up to 16 pixels

Introduction 1–7

at one time. Consequently, the processor can specify a short, connected line

with one 32-bit write.

• Copy mode

In copy mode, the copy-64 source and copy-64 destination registers allow

the processor to read 64 unmasked bytes from the source and write 64

unmasked bytes to the destination with one write to each register. This

makes full use of the 64-byte copy buffer for large area copies of 8-bit

pixels.

In DMA copy modes, the processor can specify the addresses of the source

(DMA-read copy mode) or destination (DMA-write copy mode) in PCI

memory space. One write to the frame buffer then causes the 21030 to

begin reading from the frame buffer (or PCI) and writing to the PCI (or

frame buffer), up to 2K transfers at a time.

Chapter 6 describes all of the 21030 modes and processing algorithms that are

implemented in hardware.

1.4 Frame Buffer Configurations

While the design-center configurations for the 21030 are 8-bpp and 32-bpp

frame buffers, the 21030 supports a variety of 8-, 16-, 24-, and 32-bpp

configurations. The supported configurations range from a minimal 8-bpp,

1M-pixel option to a 32-bpp, 2M-pixel option with a full-screen Z-buffer. The

32-bpp frame buffers support 8-bpp, 12-bpp, and 24-bpp bitmap formats. The

21030 supports VRAM-mapped display buffers (that is, the entire visible

screen) between 1MB and 16MB. Additional memory for Z-buffers, double-

buffers (back buffers), or arbitrary off-screen cache and storage can be mapped

into DRAM, VRAM, or graphics DRAM (GRAM).

The 21030 normally uses the persistent plane mask and block-write features

of advanced VRAMs and GRAMs. However, if these features are not used for

drawing off-screen and some performance degradation is acceptable, off-screen

memory can be populated with standard DRAMs.

Table 1–2 lists some of the possible frame buffer configurations.

1–8 Introduction

Table 1–2 Supported Frame Buffer Configurations

Size
Resolution
@75 Hz NI Depth

Z-Buffer and
Stencil Buffer

Double
Buffer

1MB 1024 � 768
800 � 600
640 � 480

8
16
24

NA
NA
NA

NA
NA
NA

2MB 1600 � 1280
1024 � 768
800 � 600
640 � 480

8
16
24
32

NA
NA
NA
NA

NA
NA
NA
NA

4MB 1600 � 1280
1600 � 1280
1280 � 1024
1024 � 768

8
16
24
32

NA
NA
NA
Partial

NA
NA
NA
8/8/8, 12/12 *

8MB 1600 � 1280
1600 � 1280
1280 � 1024
1280 � 1024
1024 � 768

8
16
24
32
32

NA
NA
NA
Partial
Full

NA
NA
NA
8/8/8, 12/12 *
8/8/8, 12/12 *

16MB 1600 � 1280
1280 � 1024
1024 � 768

32
32
32

Full
Full
Full

8/8/8, 12/12 *
8/8/8, 12/12, full *
Full *

NI — Noninterlaced
NA — Not applicable
* Recommended 3D configurations

Only the 4MB, 8MB, and 16MB 32-bpp configurations provide Z-buffering

with stencil support. However, the 21030 can support Z-buffering without a

dedicated back buffer to store a full screen of Z data. Any available off-screen

space in a 32-bpp frame buffer can be used to perform Z-buffering on a portion

of the visible screen (for example, the window for an animation application).

While the 8-bpp frame buffer supports double-buffering only by copy, the

32-bpp frame buffer can support two different types of double-buffering,

depending on the configuration of the video back end. A second bank of DRAM

can be added as a back buffer to store a full screen of full-depth (24-bit) color.

In addition, the 21030 supports multiple formats for 12-bpp and 8-bpp bitmaps

within the context of the 32-bpp frame buffer. That is, the 21030 can draw

to two 12-bpp bitmaps and three 8-bpp bitmaps at the same pixel locations

within 32-bpp buffers. Consequently, in-place double-buffering is possible by

coupling the 21030 with either a RAMDAC that can handle images that reside

in different planes on a per-window basis (such as the Bt463 RAMDAC) or

external multiplexing hardware. By drawing to one 8-bpp or 12-bpp bitmap

Introduction 1–9

while displaying from another bitmap, animation can be performed without

copying from off-screen to on-screen memory. In-place double-buffering is

possible only on the 32-bpp options at reduced pixel depth.

Figure 1–2 shows a typical 8-bpp frame buffer.

Figure 1–2 Typical 8-bpp Configuration

Control Buffer

VRAM
256K X 8

Shift Register

MUX

Clock
Buffer

Shift Clock 0

Shift Clock 1

Multiplexer Control

RAMDAC Control

ROM Control

PLL Load Path

RAMDAC Load Data Path

Pixel Clock

Data

Address Buffer VRAM
256K X 8

Shift Register

R

G

B

Color
Lookup
Tables

Cursor

Video
PLL

Clock
Source

ROM

PCI
Interface

Frame
Buffer

Control
and

Rendering

PCI Bus

RAMDAC
Control

and
Video
Timing

DECchip
21030

64

32

32

VGA
Feature

Connector

Bt485
RAMDAC

1–10 Introduction

2
Memory Space

The 21030 address space consists of three discrete spaces:

• Memory space, described in this chapter

• Configuration space, which includes all of the PCI configuration registers

described in Chapter 4

• Expansion ROM space, a 256KB byte-readable address space described in

Section 4.2.6

2.1 Overview

The 21030 memory space includes the following:

• All 21030 registers except the PCI configuration registers

• The 21030 frame buffer

• Alternate ROM space, an alternate Dword-readable 1MB window into the

expansion ROM

The size of the 21030 step B memory space is 128MB. It is mapped into the

PCI memory space at the address specified in the PCI device base address

register (PDBR). The memory space consists of 4 to 32 copies of core space.

(See Appendix A for 21030 step A differences.)

2.2 Core Space

Each copy of core space is identical and maps the same frame buffer (frame

buffer space), external EEPROM (alternate ROM space), and core registers

(register space). Core space ranges between 4MB and 16MB for an 8-bpp frame

buffer and between 16MB and 32MB for a 32-bpp frame buffer, depending on

the application (Figure 2–1). The organization and size of each core space is

a function of the address-mask and deep fields in the deep register (GDER).

These fields are programmed with the values needed to organize the core

according to the physical size and depth of the frame buffer in a particular

configuration.

Memory Space 2–1

Table 2–1 shows the core space size and the deep and address mask field

values for some of the supported 21030 frame buffer configurations.

Table 2–1 Frame Buffer Configuration and Core Space

Configuration
Physical Memory

Size
Core Space

Size
Deep�

Field
Address�

Mask

1MB 8-bpp 1MB 4MB 0 000

2MB 8-bpp 2MB 4MB 0 000

4MB 8-bpp 4MB 8MB 0 100

4MB 8-bpp 8MB 16MB 0 110

4MB 24-bpp 4MB 8MB 1 110

8MB 24-bpp 8MB 16MB 1 110

16MB 24-bpp 16MB 32MB 1 111

�Fields in the GDER (Section 4.4.28)

See Table 1–2 and Section 8.1 for the capabilities and physical layout of each

configuration.

Figure 2–1 shows memory space mapping as a function of core space size.

2.2.1 Frame Buffer Space

The frame buffer space consists of one or more buffers, each identified as a

display buffer or back buffer. A display buffer is populated by VRAM and maps

to the screen (at least). A back buffer is populated by VRAM, GRAM, or DRAM

and maps to such things as a second screen buffer, tiles or brush patterns, and

Z and stencil buffers (4MB or 8MB frame buffers only). The block-fill mode,

block-stipple mode, and plane-mask feature cannot be used with back buffers

populated by DRAMs. The frame buffer space can be accessed through any of

the drawing modes described in Chapter 6.

Figures 2–2 and 2–3 show the core space mapping for 8-bpp and 32-bpp frame

buffers. Note that some of the reserved regions are aliases for the display and

back buffers.

2–2 Memory Space

Figure 2–1 21030 step B Memory Space Organization

Offset from PCI base address (PDBR)

0

4MB Core Space

4MB Core Space

16MB Core Space

16MB Core Space

32MB Core Space

32MB Core Space

8MB Core Space

8MB Core Space

32MB

64MB

28MB

60MB

24MB

56MB

20MB

52MB

16MB

48MB

12MB

44MB

8MB

40MB

4MB

36MB

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

8MB Core Space

8MB Core Space

8MB Core Space

8MB Core Space

8MB Core Space

8MB Core Space

16MB Core Space

16MB Core Space

4MB Core Space

16MB Core Space

32MB Core Space

8MB Core Space

96MB

92MB

88MB

84MB

80MB

76MB

72MB

68MB

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

8MB Core Space

8MB Core Space

8MB Core Space

16MB Core Space

4MB Core Space

16MB Core Space

32MB Core Space

8MB Core Space

128MB

124MB

120MB

116MB

112MB

108MB

104MB

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

8MB Core Space

8MB Core Space

8MB Core Space

16MB Core Space

100MB

Memory Space 2–3

Figure 2–2 Core Space Map for 8-bpp Frame Buffers

Offset from (PCI base address + core space offset)

16MB

3MB

14MB

12MB

10MB

8MB

6MB

4MB

2MB

1MB

0

RESERVED

Register Space

Alternate
ROM Space

Register Space

Alternate
ROM Space

RESERVED2

Register Space

Alternate
ROM Space

Register Space

RESERVED

Alternate
ROM Space

1

1
Aliases Display Buffer 0

Aliases Display Buffer 0 and Back Buffer 0

Frame Buffer Space

2

Display Buffer 0

Display Buffer 0

Back Buffer 1

Display Buffer 1

Back Buffer 0

Display Buffer 0

Back Buffer 0

Display Buffer 0

8MB
Frame Buffer

4MB
Frame Buffer

2MB
Frame Buffer

1MB
Frame Buffer

2–4 Memory Space

Figure 2–3 Core Space Map for 32-bpp Frame Buffers

16MB

Offset from (PCI base address + core space offset)

Frame Buffer
8MB

Frame Buffer
4MB

Frame Buffer

2MB

1MB

Register Space

0

Alternate
ROM Space

Register Space

Alternate
ROM Space

RESERVED

Register Space

Alternate
ROM Space

2
RESERVEDRESERVED

2

32MB

24MB

16MB

12MB

8MB

RESERVED

RESERVED
1

Display Buffer 0

Display Buffer 0

Frame Buffer SpaceFrame Buffer Space

Aliases Back Buffer 0

Aliases portions of Display Buffer 0

1

2

Back Buffer 0

Display Buffer 0

2.2.2 Register Space

The register space contains the 21030 core registers; that is, the graphics

command, graphics control, video timing, cursor, status, and external device

registers. It also maps the block-color and plane-mask registers (physically

implemented in VRAM). It does not contain the PCI configuration registers.

The 1MB register space is divided into 2K 512-byte regions of register space

core (Figure 2–4). Each of the 512-byte cores are identical aliases and maps

Memory Space 2–5

the registers according to offsets into the 512-byte space (Table 2–2). The

register space supports only Dword accesses; individual PCI byte enables are

ignored.

Note

To avoid a significant performance degradation, drivers can be

programmed to use the register aliases rather than memory barrier

(MB) instructions with DECchip 21064, 21066, and 21068 processors

(Section 7.3). Digital recommends that the drivers be programmed to

use aliases separated by 1KB rather than 512 bytes.

Figure 2–4 shows the register space mapping.

Figure 2–4 Register Space Organization

+ core space offset
+ register space offset)

Offset from (PCI base address

1MB

1023.5KB

1.5KB

Register Space Core 2047

1KB

Register Space Core 2

0.5KB

Register Space Core 1

0

Register Space Core 0

Register Space Core 2046

Table 2–2 lists the core registers in descending order-of-offset into register

space core. See Appendix C for an alphabetical list of the registers.

2–6 Memory Space

Table 2–2 Core Registers

Offset� Register Mnemonic Access

1FC Reserved — —

1F8 Command status register‡ SCSR RW

1F4 Reserved — —

1F0 Palette and DAC data register‡ EPDR RW

1EC Reserved — —

1E8 Clock register ECGR WO

1E4 Reserved — —

1E0 EEPROM write register ERWR WO

1DC..180 Reserved — —

17C Copy 64 destination register† GCDR WO

178 Copy 64 source register† GCSR WO

174 Copy 64 destination register† GCDR WO

170 Copy 64 source register† GCSR WO

16C Copy 64 destination register† GCDR WO

168 Copy 64 source register† GCSR WO

164 Copy 64 destination register GCDR WO

160 Copy 64 source register GCSR WO

15C Block color register 7 GBCR7 WO

158 Block color register 6 GBCR6 WO

154 Block color register 5 GBCR5 WO

150 Block color register 4 GBCR4 WO

14C Block color register 3 GBCR3 WO

148 Block color register 2 GBCR2 WO

144 Block color register 1 GBCR1 WO

140 Block color register 0 GBCR0 WO

13C Slope register 7 GSLR7 WO

138 Slope register 6 GSLR6 WO

134 Slope register 5 GSLR5 WO

130 Slope register 4 GSLR4 WO

12C Slope register 3 GSLR3 WO

128 Slope register 2 GSLR2 WO

124 Slope register 1 GSLR1 WO

120 Slope register 0 GSLR0 WO

11C Slope-no-go register 7 GSNR7 WO

118 Slope-no-go register 6 GSNR6 WO

114 Slope-no-go register 5 GSNR5 WO

110 Slope-no-go register 4 GSNR4 WO

�Offset from (PCI base address + core space offset + register space offset)

†Register alias

‡Registers that do not read exactly as written

(continued on next page)

Memory Space 2–7

Table 2–2 (Cont.) Core Registers

Offset� Register Mnemonic Access

10C Slope-no-go register 3 GSNR3 WO

108 Slope-no-go register 2 GSNR2 WO

104 Slope-no-go register 1 GSNR1 WO

100 Slope-no-go register 0 GSNR0 WO

0FC..0C4 Reserved — —

0C0 Palette and DAC setup register EPSR WO

0BC Span width register‡ GSWR WO

0B8 Blue value register GBVR RW

0B4 Green value register‡ GGVR RW

0B0 Red value register‡ GRVR RW

0AC Address register† GADR WO

0A8 Z-base address register GZBR RW

0A4 Z-value high register‡ GZVR-H RW

0A0 Z-value low register GZVR-L RW

09C Bresenham width register GBWR RW

098 DMA base address register GDBR RW

094 Z-increment high register GZIR-H RW

090 Z-increment low register GZIR-L RW

08C Blue increment register GBIR RW

088 Green increment register GGIR RW

084 Red increment register GRIR RW

080 Data register GDAR RW

07C Interrupt status register SISR RW

078 Video shift address register‡ VSAR RW

074 Cursor XY register‡ CXYR RW

070 Video valid register VVVR RW

06C Video base address register VVBR WO

068 Vertical control register VVCR RW

064 Horizontal control register VHCR RW

060 Cursor base address register CCBR RW

05C Pixel mask (persistent) register GPXR WO

058 Stencil mode register GSMR RW

054 Reserved — —

050 Deep register GDER RW

04C Continue register‡ GCTR RW

048 Bresenham-3 register‡ GB3R RW

044 Bresenham-2 register GB2R RW

�Offset from (PCI base address + core space offset + register space offset)

†Register alias

‡Registers that do not read exactly as written

(continued on next page)

2–8 Memory Space

Table 2–2 (Cont.) Core Registers

Offset� Register Mnemonic Access

040 Bresenham-1 register GB1R RW

03C Address register GADR RW

038 Pixel shift register GPSR RW

034 Raster operation register GOPR RW

030 Mode register‡ GMOR RW

02C Pixel mask (one-shot) register GPXR RW

028 Plane mask register GPMR WO

024 Background register GBGR RW

020 Foreground register GFGR RW

01C Copy buffer register 7 GCBR7 RW

018 Copy buffer register 6 GCBR6 RW

014 Copy buffer register 5 GCBR5 RW

010 Copy buffer register 4 GCBR4 RW

00C Copy buffer register 3 GCBR3 RW

008 Copy buffer register 2 GCBR2 RW

004 Copy buffer register 1 GCBR1 RW

000 Copy buffer register 0 GCBR0 RW

�Offset from (PCI base address + core space offset + register space offset)

‡Registers that do not read exactly as written

2.2.3 Alternate ROM Space

Note

The 21030 supports one optional, external ROM (normally an

EEPROM). It is accessible either in the standard PCI expansion

ROM space or in the alternate ROM space. The EEPROM is typically

a flash ROM.

The 1MB alternate ROM space is embedded in core space. It provides an

alternate, read-only map of the EEPROM in addition to the standard PCI

expansion ROM space. The PCI expansion ROM space is an independent,

256KB, byte-readable address space. Its location in PCI memory space is

defined by the PCI expansion ROM base address register (PRBR, Section 4.2.6).

Unlike the PCI expansion ROM space, alternate ROM space is not byte-

contiguous. Each Dword read returns 1 byte of ROM data. Alternate ROM

space, in which 3 null bytes exist between consecutive valid ROM bytes, is

effectively a sparse version of the PCI expansion ROM space.

Memory Space 2–9

Figure 2–5 shows the format (on the PCI bus) of the Dword read from alternate

ROM space, and Table 2–3 describes the fields.

Figure 2–5 Alternate ROM Space Read Format

31 8 7 0

Application Specific Data ROM Read Byte

Table 2–3 Alternate ROM Space Read Field Description

Bits Field Description

31:8 Application
specific data

Arbitrary data that can be read from an external source
along with the EEPROM byte

7:0 ROM Read
Byte

The desired byte read from external EEPROM at the
alternate ROM space Dword address

Because of the sparse layout of alternate ROM space, software must effectively

multiply the desired byte offset by 4 (left shift 2 bits) to get the correct

alternate ROM space address. The alternate ROM space Dword address is

determined as follows:

alternate ROM space address = PCI base address + core space offset

+ alternate ROM space offset

+ (desired byte address � 4)

2.2.3.1 Reading Alternate ROM Space

The EEPROM is read through the LSBs the 64-bit memory port. To avoid bus

contention, the 21030 disables its drivers and the RAM data bus drivers before

reading the EEPROM. Externally, the byte-wide EEPROM must be located on

the low byte (data<7:0>) of the RAM data bus. When the 21030 reads the low

byte, it also latches the next 3 bytes, (data<31:8>). This connectivity allows

reading arbitrary, application-specific data, such as configuration information

(frame buffer size, monitor type, and so on), in the 3 upper bytes of the Dword

(Figure 2–5). For example, in Digital options, the option ID is hardwired into

the Dword MSBs. The EEPROM data and optional application-specific data

must not be driven on data<31:0> unless the EEPROM chip enable (romce_

2–10 Memory Space

l) and output enable (romoe_l) pins are active. (See Section 8.3 for more

information about the hardware interface to the external EEPROM.)

2.2.3.2 Writing Alternate ROM Space

Writes to alternate ROM space address either the continue register (GCTR) or

address register (GADR) according to the specific write address, as follows:

If alternate ROM space base address � (address MOD 8 = 0) < alternate ROM

space + 512K then the write addresses the GADR.

If alternate ROM space base address � (address MOD 8 = 4) < alternate ROM

space + 512K then the write addresses the GCTR.

In other words, when writing to the first 512KB of alternate ROM space,

writes to even locations address the GADR, and all other writes address the

GCTR. Sequential access to the GADR and GCTR is useful for 21030 graphics

processing on Alpha AXP platforms (Section 7.3.2). The alternate ROM space

supports only Dword write accesses; individual PCI byte enables are ignored.

Note

The EEPROM cannot be written through alternate ROM space; the

EEPROM write register (ERWR, Section 4.8.1) must be used to write

the EEPROM.

Memory Space 2–11

3
Internal Architecture

This chapter describes the 21030 microarchitecture. Figure 3–1 is a block

diagram of the chip showing its major functional areas. The functions are

described in the remainder of this chapter.

3.1 PCI Interface

The PCI interface connects the 21030 core to the PCI bus. The primary

function of the PCI interface is to keep the command FIFO filled with writes

and commands issued over the PCI to the 21030 registers and frame buffer.

The PCI interface provides read access to all 21030 core registers and external

devices such as the EEPROM, RAMDAC, and clock generator. It also provides

exclusive read and write access to the 21030 PCI configuration registers.

The PCI interface supports most of the PCI cycles as a target. It also allows

the 21030 to be a PCI master for direct memory access (DMA) operations,

transferring pixel data between the 21030 frame buffer and memory that can

be accessed from the PCI. DMA read data is taken from the PCI and passed

to the DMA read FIFO; DMA write data is taken from the DMA write FIFO

and burst over the PCI. As a target or master, the PCI interface initiates and

responds to different types of termination sequences. (See Chapter 5 for more

information about supported PCI transactions and terminations.)

As a target, the PCI interface decodes addresses to the following 21030 address

spaces.

• PCI configuration register space

• PCI expansion ROM space

• 21030 core space

• VGA color register I/O space

Internal Architecture 3–1

Figure 3–1 DECchip 21030 Block Diagram

32

64

Command
Parser

Command
FIFO

Data

PCI

32

16161616

16161616

8

32

16

64

16 16 16

3232

64

Copy
Buffer/
DMA
Write
FIFO

DMA
Read
FIFO

Cursor
<3:0>

VRAM
Serial

Port
Control

Sync
and

Blank

Core
Registers

CRTC
and

Cursor

32

32

PCI
Registers

RAMDAC
Control

EEPROM
Control

Frame
Buffer
and

Device
Access

32

PCI Interface

Pixel Engine

Pixel Merge

Write Buffer

Memory Controller

3–2 Internal Architecture

3.1.1 PCI Configuration Reads and Writes

When the PCI interface detects a PCI configuration write or read operation

while the idsel_l signal is asserted and ad<1:0> = 00, it latches data into

or fetches data from the PCI configuration register indexed by the ad<7:2>

signals. The PCI interface controls all access to the PCI configuration registers.

(See Chapter 4 for more information about the PCI configuration registers.)

3.1.2 Memory Reads and Writes

The PCI interface decodes all memory read and write transactions and detects

accesses to either the 21030 expansion ROM space or core space. These

address spaces are specified by the PCI device base address register (PDBR,

Section 4.2.2) and PCI expansion ROM register (PRBR, Section 4.2.6). Core

space maps the entire frame buffer, the alternate ROM space, and all of the

21030 registers except the PCI configuration registers. (See Chapter 2 for more

information about 21030 address space mapping.)

3.1.2.1 Memory Write to Core Space

On a memory write to core space, the PCI interface loads the write address and

data into the command FIFO. On a memory write burst, the interface loads the

starting address and successive Dwords of data into the command FIFO. If the

command FIFO becomes full at any data phase, the interface waits for 8 PCI

clock cycles for entries to become free. If a command FIFO entry is still not

free, the PCI interface terminates the transaction.

3.1.2.2 Memory Read of Core Space

On a memory read of core space, the PCI interface fetches data from one of the

following:

• A core register

• The frame buffer, through the frame buffer and device access (FBDA)

function

• The alternate ROM space, through the FBDA function

The interface drives the read data on the PCI and immediately terminates

the transaction. The 21030 does not support burst read cycles, and terminates

such transactions as soon as the second data phase begins.

Internal Architecture 3–3

3.1.2.3 Read Interlock

The PCI interface provides a read interlock for the 21030 core registers, frame

buffer, and all external devices. A read of these objects is not complete until

the 21030 is idle; that is, the busy bit is clear in the command status register

(SCSR <0>, Section 4.7.1). The PCI interface waits 8 PCI clock cycles for the

chip to become idle. If the chip is still not idle, the PCI interface retries the

read operation.

Note that the PCI configuration registers and SCSR are exceptions; read data

is returned from these registers whether the busy bit is set or clear.

3.1.2.4 Memory Read of Expansion ROM Space

On a memory read of expansion ROM space, the PCI interface shifts the

address left 2 bits, to map to the alternate ROM space, and then forwards the

request to the FBDA function. To complete the transaction, the interface shifts

the bytes that are read to align the data to the PCI byte masks.

3.1.3 DMA Transfers

The command parser can request a DMA read or write transfer over the PCI.

While a DMA operation is in progress, the PCI interface retries all target

accesses except those to the SCSR or PCI configuration space.

3.1.3.1 DMA Read Transfer

If the command parser requests a DMA read transfer, the PCI interface

requests the PCI bus. When the bus is granted, the PCI interface attempts

to read from the specified address until the request is completed and as long

as the DMA read FIFO is not full. If the DMA read FIFO becomes full, the

interface immediately terminates the transaction by deasserting frame_l

according to the PCI protocol.

3.1.3.2 DMA Write Transfer

If the command parser requests a DMA write transfer, the PCI interface

requests the PCI bus and the memory controller returns source pixel data

to the DMA write FIFO. When the bus is granted, the PCI interface fetches

consecutive Dwords from the FIFO and drives them over the bus, starting

at the specified address. If the target terminates the transaction, the PCI

interface immediately terminates the transaction by deasserting frame_l

according to the PCI protocol.

3–4 Internal Architecture

3.2 DMA Read FIFO

The DMA read FIFO contains 8 Dword entries. It is loaded by the PCI

interface during a DMA-read copy operation and unloaded by the pixel engine.

The DMA read FIFO contains only pixel data.

The DMA read FIFO is a boundary between chip clocking domains. The input

runs at the PCI clock rate and the output runs at the 21030 core clock rate.

3.3 Copy Buffer and DMA Write FIFO

The copy buffer contains 8 quadword (64-bit) entries. It is used when

transferring data from a frame buffer source to a destination in either the

frame buffer or PCI-accessible memory.

The memory controller returns source data to the copy buffer. In copy mode,

the pixel engine forwards the data, tagged with a destination address, down

the pixel processing pipeline to the memory controller. In DMA-write copy

mode, the copy buffer acts as a DMA write FIFO. The PCI interface fetches the

data for transfer over the PCI.

3.4 Command FIFO

The command FIFO contains 16 Dword entries. It buffers writes to the frame

buffer and core registers for processing by the 21030 core. The PCI interface

loads the command FIFO with an address followed by an arbitrary number of

data entries. The command parser unloads the entries and initiates processing.

The command FIFO contains only core-space write data, such as writes to the

21030 core registers, alternate ROM space, and frame buffer space. Because

the PCI interface accepts burst memory writes as a PCI target, the command

FIFO can independently store an address or data in each of its 16 entries. In

other words, the command FIFO can hold any combination of addresses and

data, from one address and 15 entries of burst data to eight pairs of address

and data entries. If the command parser detects a sequence of one address and

multiple data entries, it generates and matches the correct address to each

data entry when it unloads the command FIFO.

The command FIFO is a boundary between chip clocking domains. The input

runs at the PCI clock rate and the output runs at the 21030 core clock rate.

Internal Architecture 3–5

3.5 Command Parser

The command parser processes graphics commands and register write accesses.

It unloads graphics commands (in the form of address and data) from the

command FIFO and performs initial processing before passing commands to

the pixel engine. If the command parser detects a sequence of one address and

multiple data entries, it generates an address for each data entry.

The command parser runs at the 21030 core clock rate.

3.5.1 Pixel-Processing Pipeline Coherence

The pixel-processing pipeline consists of the pixel engine, pixel-merge function,

write buffer, and memory controller. The command parser imposes hardware

register interlocks to ensure coherent processing through the pipeline. The

interlocks allow the pipeline to operate concurrently with register updates; that

is, updates to graphics operation parameters.

Most of the parameter registers are double-buffered. The command parser

schedules buffered-register loading and swapping, and, in certain cases, delays

command processing to maintain parameter coherence through the pipeline. In

the case of writes to the command status register (SCSR), raster operation

register (GOPR), and mode register (GMOR), the interlock mechanism

waits until the pipeline has been flushed before resuming processing. (See

Section 6.1.4 for information about register accesses that are not managed by

hardware interlock and require software scheduling.)

3.5.2 External Device and Register Writes

The command parser detects all writes to the external RAMDAC through the

RAMDAC setup and data registers (EPSR and EPDR) and to the external

EEPROM through the EEPROM write register (ERWR). It forwards the

accesses directly to the FBDA function for processing.

The command parser forwards writes to the VRAM-resident block color

registers (GBCR<7:0>) and plane mask registers (GPMRs) through the

pixel-processing pipeline.

The command parser writes directly to all other registers.

3–6 Internal Architecture

3.5.3 Frame Buffer Writes

The command parser detects all writes to the frame buffer and begins

processing the graphics command specified by the current graphics mode.

The command parser does not perform any pixel address or data calculations,

but forwards predigested commands to the pixel engine for processing.

For all fill mode drawing (opaque fill, transparent fill, block fill, DMA-read copy,

and DMA-write copy), the command parser breaks large-span fill commands

into 32-pixel span commands which the pixel engine can accept and process.

The pixel engine can process individual pixels, 16-pixel lines, and 32-pixel

spans.

3.5.4 Bresenham Setup Hardware

The command parser incorporates the Bresenham setup hardware. When the

command parser receives a write to the slope registers (GSLR<7:0>), span

width register (GSWR), or slope-no-go registers (GSNR<7:0>), it calculates the

Bresenham terms: length, initial error, error increments 1 and 2, and address

increments 1 and 2. When the write is to a slope register or the span width

register, the command parser also forwards the line command to the pixel

engine. The command parser forwards all other line, span, and pixel mode

drawing commands directly to the pixel engine.

3.6 Pixel Engine

The pixel engine does all of the pixel address and value calculations. It receives

single-pixel, 16-pixel line, and 32-pixel span commands from the command

parser and reduces them into individual 16-bit-aligned or 64-bit-aligned frame

buffer address and data pairs destined for the memory controller. The pixel

engine contains all of the following pixel processing hardware to generate pixel

addresses and data.

• Stipple logic

The stipple logic expands a monochrome bitmap (and optional bitmap

mask) into foreground or background color (or neither), on a per-pixel basis

over a 16-pixel line or 32-pixel span.

• Bresenham engine

The Bresenham engine steps through the pixels of a line (up to 16 pixels

at a time), generating a pixel address and, optionally, a Z address for each

step.

Internal Architecture 3–7

• Color interpolators

The color interpolators generate linearly interpolated 8.12 (integer.fraction)

format values for each channel (red, green and blue) at each Bresenham

engine step. The color interpolators include three independent adders

running in lock-step with the Bresenham engine as it steps along the

line. The color interpolators can also generate a single, interpolated, 8-bit

grey-scale value in a sequential-interpolation drawing mode.

• Z-interpolator

In Z-buffered modes, the Z-interpolator generates a linearly interpolated,

24.12 format Z value at each Bresenham engine step across a line or

span. It also compares each Z value read from the frame buffer with the

calculated value for each step. The results of the comparison determine

whether the calculated Z value and the calculated pixel value are written.

• Dither logic

The dither logic implements Digital’s AccuLook dithering algorithm. The

algorithm maps 8 bits per channel RGB (24-bpp) color to 4 bits per channel

(12-bpp) and 3:3:2 (R:G:B) 8-bpp pseudo-color. The source of the 24-bpp

RGB can be selected from the color interpolators or the DMA-read copy

24-bit pixel stream.

After the pixel engine reduces spans into pixels and calculates the mode-

dependent pixel data, it translates pixel addresses into frame buffer addresses

as a function of the frame buffer depth and target bitmap. The pixel engine

forwards each memory access to the pixel-merge function.

The pixel engine also processes register-write requests for the VRAM-resident

block color (GBCR<7:0>) and plane mask (GPMR) registers. It aligns the write

data to the appropriate 32 bits of the frame buffer data path and forwards the

write to the pixel-merge function.

The pixel engine passes a control tag with each address and data pair that it

passes to the pixel-merge function. The tag indicates:

• VRAM cycle type—color register cycle, plane mask cycle, or standard read

or write cycle

• Whether the access is a read or write

• Whether a write is in block mode

The pixel engine also passes a channel-synchronization code to the pixel-merge

function. Processing-channel synchronization is necessary for a read access or

when accessing a 32-bpp frame buffer in an unpacked 8-bpp bitmap format.

3–8 Internal Architecture

The pixel engine receives data directly from the memory controller for the

following classes of operation.

• Z-buffered spans and lines

The pixel engine sends a read request at the current Z-address (generated

by the Bresenham engine) to the pixel-merge function. Eventually, the

memory controller receives the read request and returns the reference-Z

value to the pixel engine. The pixel engine then compares the reference-Z

value with the calculated-Z value from the Z-interpolator.

• Copy mode

In copy mode, the pixel engine first forwards a series of read requests,

tagged with the source address, to the pixel-merge function. Eventually,

the memory controller returns source pixel data (64 bits at a time) to the

copy buffer/DMA write FIFO. Then, when instructed by the command

parser, the pixel engine unloads the copy buffer and forwards that data

back to the pixel-merge function as a write tagged with the destination

address.

• DMA-write copy mode

In DMA-write copy mode, the memory controller returns source pixel data

to the copy buffer/DMA write FIFO. The pixel engine unloads the FIFO

and transfers the data to the PCI interface for transfer over the PCI.

The pixel engine runs at the core clock rate.

3.7 Pixel Merge

The pixel-merge function merges byte-writes to eliminate consecutive writes

to different bytes at the same 16-bit address. (The Bresenham engine often

generates such sequences.) By eliminating redundant writes to the same

address, the pixel-merge function greatly improves line drawing rates.

The pixel-merge function data path is divided into 16-bit channels. Merging

occurs only within channels. Each channel receives frame buffer write requests

from the pixel engine, temporarily stores the most recent request, and tags

the byte to be written. If the next write request is to a different byte at

the same channel address as the previous request, the pixel-merge function

merges the two requests into one write. In all other cases, the pixel-merge

function forwards each separate request downstream to the write buffer,

maintaining the order of the requests. The pixel-merge function does not

collapse consecutive writes to the same byte address.

The pixel-merge function runs at the core clock rate.

Internal Architecture 3–9

3.8 Write Buffer

The write buffer is an eight-entry FIFO. It is divided into four independent

16-bit channels in the same way as the pixel-merge function. The FIFO buffers

post-merged frame buffer requests from the pixel engine. The requests are

unloaded by the memory controller and processed sequentially for VRAM

access.

The pixel engine runs at twice the speed of the memory controller’s maximum

page-mode access time. Therefore, depending on the operation and address

sequence, the pixel engine can generate address and data pairs much slower or

much faster than the memory controller can process the requests. The write

buffer helps to smooth the access rate at the VRAM interface and optimize

throughput over time.

The write buffer runs at the core clock rate.

3.9 Memory Controller

The memory controller provides the interface to the VRAM frame buffer. It

is actually four independent memory controllers. Each controller addresses a

16-bit channel of the 64-bit memory bus and can independently address, read,

and write its channel.

The memory controller responds to requests from two sources: the pixel engine

and the FBDA function. It responds to requests from the pixel engine (through

the pixel-merge function and write buffer) for accelerated drawing operations

in the frame buffer. It also responds to requests from the FBDA function. The

FBDA function makes occasional asynchronous requests for the following:

• Direct host reads of the frame buffer

• RAMDAC reads and writes

• External EEPROM reads and writes

• Cursor data fetches

• VRAM read-transfer cycles to support screen refresh

To conserve 21030 pins, the RAMDAC data lines and the external EEPROM

address and data lines are tied to a subset of the memory controller address

and data lines. Therefore, to read or write the RAMDAC or external EEPROM,

the memory controller must interrupt processing of write buffer address, data,

and tag triplets.

3–10 Internal Architecture

The memory controller can process requests for all of the following VRAM cycle

types:

• Page-mode read and write cycles, which are used for most graphics

operations.

• Block-write cycles, which are used for block-fill and block-stipple mode

graphics operations. Each address and data pair unloaded from the write

buffer is tagged to indicate whether the write is a block write or standard

page-mode write.

• CAS-before-RAS dynamic memory refresh cycles.

• Standard read-transfer cycles.

• Split read-transfer cycles.

• Block-color register read and write cycles.

• Plane-mask register read and write cycles.

As long as the write buffer contains valid entries, each memory controller

continues to unload address, data, and tag triplets from its corresponding

channel. The tag determines how the memory controller processes the

associated address and data pair. The tag contains the following information:

• Read or write—Specifies the type of operation.

• Block-write enable—On a write access, instructs the memory controller to

execute a block-mode write cycle.

• Color register write—Specifies that the write is a VRAM block-color

register write.

• Plane mask register write—Specifies that the write is a VRAM plane-mask

register write.

• Synchronization code—Specifies whether an individual memory controller

should synchronize with the other controllers before proceeding with an

access. If the tag does not specify a synchronization code, the memory

controllers are free to work independently, asynchronously processing

entries from the write buffer.

The memory controller processes the address and data pair from each write-

buffer entry as specified by the tag. Independent of the tag, the memory

controller performs a Boolean ROP function on each write (except block write),

as specified by the raster operation register (GOPR). If the ROP is a function

of the destination, the memory controller automatically performs the necessary

read-modify-write operation.

Internal Architecture 3–11

The memory controller returns requested read data to the pixel engine through

the copy buffer.

When the memory controller detects an interrupt from the FBDA function, it

suspends write-buffer entry processing within a maximum latency and services

the interrupt. The FBDA function specifies the type of access and passes

address and data as required. The memory controller services the interrupts

as follows:

• RAMDAC access—The memory controller drives (writes) or latches (reads)

a byte of data.

• External EEPROM access—The memory controller drives an address and

either drives (write) or latches (read) a byte of data.

• Cursor data fetch—The memory controller performs a frame buffer read at

the specified address and returns two quadwords to the FBDA function.

• Standard or split read-transfer cycle request—The memory controller

executes the cycle with the internally stored, current frame address. After

each transfer cycle is completed, the memory controller updates its frame

pointer to select the next address from which to transfer. In addition, the

CRTC and cursor function signals the memory controller when to update

its current frame pointer to top-of-frame.

After an asynchronous access has been serviced, the memory controller

resumes processing write-buffer address, data, and tag triplets.

The memory controller also issues CAS-before-RAS refresh cycles frequently

enough to keep the dynamic memory refreshed.

The memory controller runs at the core clock rate, and its CAS cycle time is

twice the core clock rate.

3.10 CRTC and Cursor

The CRTC and cursor function provides monitor timing, schedules screen

refresh, and provides a 2-bpp cursor during refresh. It directly drives the

external cursor, sync, blank, and VRAM serial port control signals.

3.10.1 Monitor Timing

The CRTC and cursor function provides digital, composite sync and blank

signals to drive a noninterlaced monitor. The signal edges are specified by the

parameters in the horizontal and vertical control registers (VHCR and VVCR).

The CRTC and cursor function also provides stereo control. It drives stereo,

sync, and blank control signals through pins blank_l, vsync_l, and hysnc_l.

3–12 Internal Architecture

3.10.2 Video Refresh

The CRTC and cursor function monitors how often the 21030 must issue VRAM

read-transfer cycles to keep the serial-access memories (SAMs) replenished

during active scan time. At regular intervals, the CRTC and cursor function

requests the memory controller (through the FBDA function) to perform a

standard or split read-transfer cycle. The CRTC and cursor function also

generates the signals that control the VRAM serial port clock and external

video multiplexers, driving the control signals through the toggle and hold_l

pins.

3.10.3 Cursor Generation

The CRTC and cursor function monitors which scan line is currently being

refreshed. During the horizontal blank time preceding a scan line that

intersects the cursor, the CRTC and cursor function generates a request

(through the FBDA function) for the memory controller to read a scan line’s

worth of 2-bpp cursor. Then, at the proper position during the horizontal scan,

the CRTC and cursor function drives up to 64 consecutive 2-bit cursor values

on the cursor<1:0> pins synchronously with the video stream and monitor

timing.

The CRTC and cursor function runs at one-fourth of the monitor dot clock rate.

3.11 Frame Buffer and Device Access

The frame buffer and device access (FBDA) function collects requests for access

to the frame buffer and external devices (RAMDAC, EEPROM, and clock

generator) from several sources. It prioritizes and forwards the requests to the

memory controller. The memory controller processes the requests as interrupts

to write-buffer processing. The following requests are routed to the FBDA

function.

• Direct frame buffer read—From the host through the PCI interface.

• Cursor frame buffer read—CRTC and cursor function reads of the cursor

array (stored in the off-screen frame buffer).

• VRAM read transfers—CRTC and cursor function requests for the memory

controller to execute VRAM standard and split read-transfer cycles.

• RAMDAC read and write—Palette and DAC data register (EPDR) write

requests detected by the command parser and read requests detected by

the PCI interface.

Internal Architecture 3–13

The FBDA function provides the signals required to control up to two

RAMDACs on pins dacc<2:0>, dacrw, and dacce<1:0>. The FBDA

function directly controls the signals to the RAMDAC and external

EEPROM. Two of the RAMDAC interface signals are also used to control

the external clock generator.

• External EEPROM read and write—Alternate ROM space or PCI

expansion ROM space read requests detected and routed by the PCI

interface, and EEPROM write register (ERWR) write requests detected and

routed by the command parser.

The FBDA function provides the signals required to write one 8-bit

EEPROM and read up to 32 bits of EEPROM (and system-specific) data on

pins romce_l, romoe_l, and romwe_l.

• Clock generator write—Clock generator register (ECGR) write requests

detected and routed by the command parser.

The FBDA function provides the clock generator data and hold signals on

RAMDAC interface pins dacc1 (hold) and dacc0 (data).

The maximum latencies for requests serviced by the FBDA function (and

processed by the memory controller) are as follows:

• Cursor data is returned some minimum period before the end of horizontal

blank time.

• VRAM read-transfer cycles are completed before the last valid pixels from

the previous read-transfer cycle have been shifted out of the SAMs.

3.12 PCI Registers

The PCI registers reside in the 21030 PCI configuration space and include

the device-independent registers required for all PCI devices as well as the

PCI device registers specific to the 21030. (The PCI registers are described in

Chapter 4.)

3.13 Core Registers

The core registers are all the registers physically implemented in the 21030

except the PCI configuration registers. (Note that the block color and plane

mask registers are addressed in core space but are physically implemented in

the VRAMs.) Many of the core registers are double-buffered to allow pipelined

graphics processing to overlap register updates. The command parser controls

the core register read access, write access, and double-buffering. (The core

registers are described in Chapter 4.)

3–14 Internal Architecture

4
Register Descriptions

This chapter describes all of the 21030 registers.

4.1 Overview

With a few exceptions, all of the 21030 registers can be read and written.

Reserved fields return zero when read and are ignored on writes. Most of the

registers are cleared at power-up and while chip reset is asserted. Exceptions

are noted in the appropriate register descriptions.

On reads, the command status register (SCSR) and all PCI configuration

registers are immediately accessible. Reads to other registers do not complete

until the command buffer is flushed, because writes might be in progress.

The registers are divided into two classes and several subclasses, as follows:

• PCI registers

The PCI registers control PCI configuration for the 21030 device.

– Device-independent registers are required in all PCI devices to

implement generic PCI functions.

– Device-specific registers implement PCI functions specific to the

device.

• Core registers

The core registers implement the core functions.

– Graphics command registers initiate graphics operations.

– Graphics control registers provide the parameters for graphics

operations.

– Video timing registers control the timing of monitor sync, blank, and

screen refresh signals.

– Cursor control registers define the location and display of the chip’s

64 � 64 � 2 cursor.

Register Descriptions 4–1

– Status registers indicate the current status of chip processing and

pending interrupts, enable interrupts, and provide a mechanism for

scheduling commands.

– External device registers provide access to the external RAMDAC,

EEPROM, and clock generator.

Note

The abbreviations in the type column of the register field description

tables indicate field access behavior. The abbreviations are defined in

the Conventions section of the Preface.

4.2 PCI Registers

The PCI registers control the PCI configuration. They identify the device and

vendor, soft-map the device in I/O or memory space, and specify the allowed

modes of operation for the device as a PCI master and PCI target. All PCI

devices must implement the PCI configuration registers.

The PCI registers populate the 21030 configuration space as shown in

Table 4–1. All other configuration space addresses are reserved. Configuration

space occupies 256 bytes, as follows:

• Device-independent, configuration-space header block—64 bytes

The device-independent registers are implemented in the configuration-

space header block.

• Device-specific register set—192 bytes

The device-specific registers implement VGA pass-through video mode and

extend PCI addressing for systems based on Alpha AXP microprocessors.

They are implemented in the device-dependent configuration space.

Table 4–1 shows how the 256-byte PCI configuration space is mapped and lists

the PCI registers in descending address order.

4–2 Register Descriptions

Table 4–1 21030 PCI Configuration Space

PCI Registers Mnemonic Byte Address Range

Device-Dependent Configuration Space

Reserved — FF..48

PCI Address extension register� PAER 47..44

PCI VGA redirect register PVRR 43..40

Configuration Space Header Block

PCI line interrupt register PLIR 3F..3C

Reserved — 3B..34

PCI expansion ROM base address register PRBR 33..30

Reserved — 2F..14

PCI device base address register PDBR 13..10

PCI latency timer register PLTR 0F..0C

PCI class and revision register PCRR 0B..08

PCI command and status register PCSR 07..04

PCI identification register PIDR 03..00

�Active only in the 21030 step A. See Appendix A for more information.

For more information about PCI configuration space organization, see the PCI

Local Bus Specification, Revision 2.0.

Register Descriptions 4–3

4.2.1 PCI Command and Status Register

Figure 4–1 shows the PCI command and status register (PCSR) format, and

Table 4–2 describes its fields.

Figure 4–1 PCSR Format

931 830 2429 2328 627 2226 525 4 23 110 0

DEVRES
M
A

T
A

RES
R
E
S

B
B
C

M
E

B
B
E

P
S

M
S

R
E
S

I
RES

O

R
E
S

R
E
S

7

B
S

1110 00

Table 4–2 PCSR Field Description

Bits Field Type Description

31:30 RES RAZ/IGN Reserved.

29 MA R/W1C Master abort—Set when the 21030 issues a master-
abort termination; otherwise, clear.

28 TA R/W1C Target abort—Set when the 21030 detects a target-
abort termination; otherwise, clear.

27 RES RAZ/IGN Reserved.

26:25 DEV RO Device select timing—Indicates the 21030 has a
medium response time to PCI device select. The
code in this field is 01.

24 RES RAZ/IGN Reserved.

23 BBC RO Back-to-back capable—Indicates the 21030 can
handle fast back-to-back PCI transactions as a
target. The value of this bit is 1.

22:10 RES RAZ/IGN Reserved.

9 BBE RO Back-to-back enable—Enables the 21030, as
a master, to perform fast back-to-back PCI
transactions. The value of this bit is 0.

8 RES RAZ/IGN Reserved.

7 BS RO Bus stepping—Indicates the 21030 drives the
ad<31:0> PCI signals over two PCI clock cycles.
The value of this field is 1.

(continued on next page)

4–4 Register Descriptions

Table 4–2 (Cont.) PCSR Field Description

Bits Field Type Description

6 RES RAZ/IGN Reserved.

5 PS RW VGA palette snoop—When set, the 21030 snoops
writes to VGA color register space. When clear, the
21030 responds normally to writes to VGA color
register space. This bit is enabled by PVRR <31>.

4:3 RES RAZ/IGN Reserved.

2 ME RW Master enable—When set, enables the 21030 to
become bus master; when clear, the 21030 cannot
become bus master.

1 MS RW Memory space enable—When set, enables response
to memory space accesses; when clear, response to
memory space accesses is disabled.

0 IO RO I/O space enable—When clear, I/O space is disabled.
The value of this bit is 0, and the 21030 does not
respond to I/O space accesses.

The PCSR specifies the 21030 configuration as a PCI device. It also indicates

whether the 21030 detected a target abort or issued a master abort.

The master abort and target abort bits (<29:28>) are set when the 21030 issues

or detects the respective transaction terminations. Each of these bits remains

set until software explicitly clears it by writing a one to the bit (writing a zero

is ignored).

The back-to-back capable bit (<23>) enables the 21030, as a target, to respond

to fast back-to-back PCI transactions. The back-to-back enable bit (<9>),

enables the 21030, as a master, to perform fast back-to-back cycles.

The VGA palette snoop bit (<5>) determines how the 21030 responds to VGA

color register (palette) writes. When the bit is set, the 21030 snoops; that is,

it transparently accepts write data but does not explicitly respond to write

transactions. When <5> is clear, the 21030 responds normally to VGA color

register writes; that is, it responds as it does to any other write to its address

space. VGA palette snoop is active only when VGA enable is set in the VGA

redirect register (PVRR <31>, Section 4.2.8). If VGA enable is not set, the

21030 does not respond to VGA palette writes.

The master enable bit (<2>) must be set in order to invoke any 21030 DMA

graphics operation. (The DMA modes are described in Sections 6.2.10 through

6.2.10.2.)

Register Descriptions 4–5

The 21030 address space can be mapped only into PCI memory space. The

21030 responds to PCI memory accesses within its address space when the

memory space enable bit (<1>) is set. (Address mapping is described in

Chapter 2.)

At power-up and reset, the value of the PCSR is 028000A016 — the VGA

palette snoop bit is set and bits <26:25,23,9,7,0> return their respective

hard-wired values.

4–6 Register Descriptions

4.2.2 PCI Device Base Address Register

Note

This section describes 21030 step B functionality. See Section A.2.1 for

a description of the equivalent 21030 step A functionality.

Figure 4–2 shows the PCI device base address register (PDBR) format, and

Table 4–3 describes its fields.

Figure 4–2 PDBR Format

31 4 3 1 02

RES
S
P

P
F

Device
Base Address

MSBs

Device
Base Address

LSBs

10000000000000000000 0

27 26

00 00

Table 4–3 PDBR Field Description

Bits Field Type Description

31:27 Device
Base
Address
MSBs

RW The most significant bits of the 21030 address-space
base address.

26:4 Device
Base
Address
LSBs

RO The value of this field is 00000016. It indicates
that the base address must be aligned to 128MB or
greater.

3 PF RO Prefetchable—Indicates that prefetched reads and
merged writes to the 21030 address space are
allowed. The value of this bit is 1.

2:1 RES RAZ/IGN Reserved.

0 SP RO Space—Specifies that the 21030 address space must
be mapped into PCI memory space. The value of this
bit is 0.

The device address space is mapped to the location specified in the PDBR.

Register Descriptions 4–7

The value of the space bit (<0>) is zero, indicating that the 21030 can be

mapped only into memory space. The value of the 23 least significant address

bits (<26:4>) is zero. This value indicates to configuration firmware that the

21030 and its associated memory requires 128MB of address space. Therefore,

configuration firmware can map the 21030 address space into any naturally

aligned, contiguous 128MB (or larger) region.

The prefetchable bit (<3>) indicates that there are no side effects on reads to

the 21030 address space. The 21030 returns all bytes on reads regardless of

the byte enables, and host bridges can merge writes into this region without

causing errors.

The value of the PDBR is 0000000816 at reset.

4–8 Register Descriptions

4.2.3 PCI Identification Register

Figure 4–3 shows the PCI identification register (PIDR) format, and Table 4–4

describes its fields.

Figure 4–3 PIDR Format

31 16 15 0

Vendor ID Device ID

100000000000001000100000001000 00

Table 4–4 PIDR Field Description

Bits Field Type Description

31:16 Vendor ID RO Identifies Digital as the device vendor. The value of
this field is 101116.

15:0 Device ID RO Identifies the 21030 as the device. The value of this
field is 000416.

The read-only PIDR identifies the vendor and device to system software.

Writes to this register are ignored.

The value of the PIDR is 1011000416 at reset.

Register Descriptions 4–9

4.2.4 PCI Class and Revision Register

Figure 4–4 shows the PCI class and revision register (PCRR) format, and

Table 4–5 describes its fields.

Figure 4–4 PCRR Format

7 031

Revision ID

8

0

24 23

0

16

0

15

0000

SubclassBase Class
Programming

Interface

00000000000000111000000 00

Table 4–5 PCRR Field Description

Bits Field Type Description

31:24 Base Class RO Indicates that the 21030 is a display controller. The
value of this field is 0316.

23:16 Subclass RO Indicates that the 21030 is not VGA or XGA
compatible; that is, its display controller subclass
is ‘‘other.’’ The value of this field is 8016.

15:8 Programming
Interface

RO Indicates that the 21030 does not support a
particular standard programming interface. The
value of this field is 0016.

7:0 Revision ID RO The 21030 revision number. The value of this field is
revision specific, as follows:
0116 for 21030 step A
0216 for 21030 step B

The PCRR identifies the 21030 revision number, device base class and subclass,

and any compatible register-level programming interfaces.

The PCI power-on self-test (POST) code reads the device class information

to determine whether the 21030 is suitable as a boot display device. The

programming interface code (<15:8>) indicates that the 21030 provides no

special support for any register-level programming standard.

The value of the PCRR at reset is 0380000116 for the 21030 step A and

0380000216 for the 21030 step B.

4–10 Register Descriptions

4.2.5 PCI Latency Timer Register

Figure 4–5 shows the PCI latency timer register (PLTR) format, and Table 4–6

describes its fields.

Figure 4–5 PLTR Format

31 8 724 23 16 15 0

RESHeader Type Latency TimerRES

00000000

Table 4–6 PLTR Field Description

Bits Field Type Description

31:24 RES RAZ/IGN Reserved.

23:16 Header
Type

RO Indicates that the 21030 configuration space header
block conforms to standard PCI configuration space.
The value of this field is 0016.

15:8 Latency
Timer

RW The length of time that the 21030 owns the PCI bus
is limited to the number of PCI clocks specified in
this field.

7:0 RES RAZ/IGN Reserved.

The PLTR specifies the length of time that the 21030 retains bus ownership in

the presence of other bus requests. It also indicates whether the configuration

header space is standard.

The value of the PCRR is 0000000016 at reset.

Register Descriptions 4–11

4.2.6 PCI Expansion ROM Base Address Register

Figure 4–6 shows the PCI expansion ROM base address register (PRBR)

format, and Table 4–7 describes its fields.

Figure 4–6 PRBR Format

31 18 17 111 010

RES
D
E

ROM
Base Address

LSBs

ROM
Base Address

MSBs

0000000

Table 4–7 PRBR Field Description

Bits Field Type Description

31:18 ROM
Base
Address
MSBs

RW The most significant bits of the 21030 expansion-
ROM base address.

17:11 ROM
Base
Address
LSBs

RO The value of this field is 0016. It indicates that the
base address must be aligned to 256KB or greater.

10:1 RES RAZ/IGN Reserved.

0 DE RW Decode enable—When this bit and PCSR <1>
(Section 4.2.1) are set, the 21030 responds to ROM
space accesses. When this bit is clear, ROM access
decoding is disabled.

The 21030 expansion ROM (EEPROM) is mapped to the memory space location

specified by the PRBR. The 21030 supports PCI-compliant EEPROM sizes

up to 256KB. The EEPROM must be mapped on naturally aligned 256KB

boundaries. The 21030 responds to all accesses in the 256KB ROM space if

the decode enable bit (<0> in this register) and the memory space enable bit

(PCSR <1>, Section 4.2.1) are both set.

The value of the PRBR is 0000000016 at reset.

4–12 Register Descriptions

4.2.7 PCI Line Interrupt Register

Figure 4–7 shows the PCI line interrupt register (PLIR) format, and Table 4–8

describes its fields.

Figure 4–7 PLIR Format

31 8 716 15 0

RES Interrupt Pin Interrupt Line

10000000

Table 4–8 PLIR Field Description

Bits Field Type Description

31:16 RES RAZ/IGN Reserved.

15:8 Interrupt
Pin

RO Indicates that the 21030 signals interrupts on the
inta_l pin. The value of this field is 0116.

7:0 Interrupt
Line

RW The 21030 inta_l pin is tied to the system interrupt
controller input identified by this field. POST
firmware initializes this field.

The PLIR provides hardware support for POST firmware interrupt

configuration and identification.

The value of the PLIR is 0000010016 at reset.

Register Descriptions 4–13

4.2.8 PCI VGA Redirect Register

Figure 4–8 shows the PCI VGA redirect register (PVRR) format, and Table 4–9

describes its fields.

Figure 4–8 PVRR Format

31 30 28 27 8 724 23 4 3 0

RES RES
V
E

VGA
Data

VGA VGA
MaskAddress

Table 4–9 PVRR Field Description

Bits Field Type Description

31 VE RW VGA enable—When set, enables VGA color register
snooping. When clear, disables VGA color register
snooping. This bit enables PCSR <5> and is set at
reset.

30:28 RES RAZ/IGN Reserved.

27:24 VGA
Data

RW The redirected address for the VGA pixel data
register (3C9). Initialized to 116 at reset.

23:8 RES RAZ/IGN Reserved.

7:4 VGA
Address

RW The redirected address for the VGA pixel address
register (3C8). Initialized to 016 at reset.

3:0 VGA
Mask

RW The redirected address for the VGA pixel mask
register (3C6). Initialized to 216 at reset.

The PVRR enables the 21030 to respond to PCI I/O writes to the VGA color

registers. It also controls the destination of snooped VGA color register

(palette) data transfers.

The VGA enable bit (<31>) determines whether the 21030 responds to

VGA palette writes. If the bit is set, then VGA palette snoop (PCSR <5>,

Section 4.2.1) determines whether the 21030 will snoop the write or respond

normally. The VGA enable bit is set at power-up and reset to place the 21030

in VGA pass-through mode without explicit initialization.

4–14 Register Descriptions

The 21030 can respond to three VGA color register addresses: pixel data

register, pixel address register, and pixel mask register. For each of these

register addresses, the PVRR contains a redirected destination address field:

VGA data (<27:24>), VGA address (<7:4>), and VGA mask (<3:0>). When the

21030 detects a write to one of the snooped locations, it redirects the write to

the location pointed to by the corresponding field.

At reset, the VGA data, VGA address, and VGA mask fields are initialized

to be compatible with the Bt485 RAMDAC and similar DAC interfaces that

support VGA multiplexing.

The 21030 supports other types of devices in pass-through mode only if

initialization code can be run at boot time, before a display is required. If

that is the case, the initialization code can rewrite the PVRR to redirect the

accesses. The device will be initialized at boot time to redirect each VGA

palette write to the appropriate register in the 21030 graphics subsystem

RAMDAC.

The value of the PVRR is 8100000216 at reset.

4.3 Graphics Command Registers

The 21030 accelerated graphics operations are selected by specifying a mode in

the mode register (GMOR, Section 4.4.1) and initiated by a write to either of

the following:

• The frame buffer address space (standard)

The chip is set to a specific mode and the frame buffer is written directly.

The address and data are interpreted according to the mode.

• Any graphics command register (alternate)

The graphics software initiates a drawing operation by writing to a

graphics command register.

The graphics command registers are the only 21030 registers that initiate a

drawing action when written. They provide a faster and simpler mechanism to

draw, extend, and link lines and spans, copy large spans, and allow software to

indirectly address the frame buffer. The graphics command registers are also

the only mechanism for invoking the 3D line and span drawing operations.

Register Descriptions 4–15

4.3.1 Slope Registers

Figure 4–9 shows the slope registers (GSLR<7:0>) format, and Table 4–10

describes the fields.

Figure 4–9 GSLR<7:0> Format

31 16 15 0

Absolute dy Absolute dx

Table 4–10 GSLR<7:0> Field Description

Bits Field Type Description

31:6 Absolute
dy

RW An unsigned integer equal to the absolute value of the
difference in y of the two line endpoints.

15:0 Absolute
dx

RW An unsigned integer equal to the absolute value of the
difference in x of the two line endpoints.

The GSLRs initialize the internal Bresenham engine for line drawing. On a

write to a GSLR, the following Bresenham terms are automatically calculated

as a function of absolute dx and absolute dy.

• Initial error

The 16-bit signed initial value stored in the Bresenham engine error

accumulator.

• Length

A 4-bit value specifying the number of pixels to be drawn in this line

segment.

• Error Increment 1

The positive value added to the error term when the Bresenham error term

is < 0 (a major axis step).

• Address Increment 1

The signed value added to the current address when the Bresenham error

term is < 0 (a major axis step).

4–16 Register Descriptions

• Error Increment 2

The positive value subtracted from the error term when the Bresenham

error term is � 0 (a step along the major and minor axes).

• Address Increment 2

The signed value added to the current address when the Bresenham error

term is � 0 (a step along the major and minor axes).

Each GSLR is associated with one of the drawing octants, and each specifies a

slope in terms of the absolute values of the rise in y (absolute dy) and the run

in x (absolute dx). Results are undefined if both absolute dy and absolute dx

are zero. Software must filter out zero-length lines. (Section 6.2.12.1 includes

the algorithm for calculating the Bresenham terms.)

Figure 4–10 shows the slope register associated with each of the drawing

octants.

Figure 4–10 Slope Registers and Drawing Octants

GSLR0

GSLR1

GSLR2

GSLR3

GSLR4 GSLR6

GSLR7

y

x

GSLR5

Register Descriptions 4–17

On a write to a GSLR, the pixel length of the line segment is initialized to the

major axis length MOD 16 (GB3R <3:0>, Section 4.4.12). This means that the

21030 is initialized to draw up to 16 pixels when the GSLR is written. For

example, if the major axis length (the greater of absolute dx and absolute dy)

is 19, the GSLR initializes the pixel length to 3. When used with the continue

register (GCTR, Section 4.3.3), this feature allows software to draw lines of

arbitrary length without monitoring the length of each segment. If the line to

be drawn is not an exact multiple of 16 pixels, the shorter line (length MOD

16) is drawn first, and the line is completed with successive writes to the GCTR

(which always draws 16 pixels).

Depending on the graphics environment (GMOR <13>, Section 4.4.1), writing

a GSLR sets up the Bresenham terms correctly for all X-compliant lines and

most lines that comply with Windows NT. The GSLRs create the correct initial

terms for lines drawn under Windows NT only if the following criteria are met:

• The endpoint coordinates of the line are integers.

• The length of the line, as measured by the run of the line along the major

axis, is limited to 64K�1 pixels.

In general, lines that have subpixel endpoints and clipped lines cannot be

drawn with the GSLRs; the slope-no-go registers (GSNR<7:0>) and GCTR can

be used to draw such lines.

(See Section 6.2.12.1 for more information about using the GSLRs to draw

lines.)

Note

The Bresenham width register (GBWR, Section 4.4.13) must be written

before writing a GSLR.

The GSLRs are cleared at reset.

4–18 Register Descriptions

4.3.2 Span Width Register

The function of the span width register (GSWR) depends on whether it is being

written or read.

4.3.2.1 Write

On a write, the GSWR is an alias for slope register 7 (GSLR7), with the same

format and field descriptions (Section 4.3.1). Typically, this register is used

to draw shaded, Z-buffered, or dithered spans, and absolute dy is zero. (See

Section 6.2.14 for more information about using the GSWR to draw 3D spans.)

4.3.2.2 Read

Figure 4–11 shows the GSWR read format, and Table 4–11 describes its fields.

Figure 4–11 GSWR Read Format

31 8 7 3 213 112 0

RES Row Column

dxGEdy
dxGE0
dyGE0

Table 4–11 GSWR Read-Format Field Description

Bits Field Type Description

31:13 RES RAZ/IGN Reserved.

12:8 Row RO The current internal value of the dither row.

7:3 Column RO The current internal value of the dither column.

2 dxGEdy RO Set when the absolute value of the run parameter
(dx) is greater than or equal to the absolute value of
the rise parameter (dy); otherwise, clear (dx is less
than dy).

(continued on next page)

Register Descriptions 4–19

Table 4–11 (Cont.) GSWR Read-Format Field Description

Bits Field Type Description

1 dxGE0 RO Set when the run (dx) of the slope is greater than
or equal to 0 (dx is positive); otherwise, clear (dx is
negative).

0 dyGE0 RO Set when the rise (dy) of the slope is greater than
or equal to 0 (dy is positive); otherwise, clear (dy is
negative).

When the GSWR is read, the parameters indicate the state of the internal

Bresenham engine and dithering hardware. The slope parameters are

generated by the Bresenham engine on the most recent write to the GSWR,

the slope registers, or the slope-no-go registers. The dither row (GRVR,

Section 4.4.22) and dither column (GGVR, Section 4.4.24) values are initialized

at the start of a dithered 3D line drawing operation and are then updated by

hardware on a per-pixel basis. (See Section 6.2.12 for more information about

the algorithm that generates the slope parameters.)

The GSWR is cleared at reset.

4–20 Register Descriptions

4.3.3 Continue Register

The function of the continue register (GCTR) depends on whether it is being

written or read.

4.3.3.1 Write in Any Mode

Figure 4–12 shows the GCTR write format, and Table 4–12 describes its field.

Figure 4–12 GCTR Write Format

31 0

Mode−Specific Data

Table 4–12 GCTR Write-Format Field Description

Bits Field Type Description

31:0 Mode-
Specific
Data

WO The same format as the mode-specific PCI write data
format described in Sections 6.2.1 through 6.2.14.

On a write, the two primary functions of the GCTR are to indirectly address

the frame buffer and continue a line or span for an additional 16 pixels without

recomputing and reloading parameters.

A PCI write to the 21030 frame buffer space usually initiates a drawing action.

The address used for the operation is the frame buffer address of the write, and

the PCI write data is interpreted according to the drawing mode. Alternatively,

software can initiate mode-dependent operations by writing the GCTR, and

indirectly specify the frame buffer address. Writes to the GCTR are interpreted

exactly the same as writes to the frame buffer.

Indirect Frame Buffer Addressing

If the address register (GADR, Section 4.4.2) was written since the previous

operation, the GCTR will take the frame buffer address from the GADR and

initiate a graphics operation. The GCTR mode-specific data (<31:0>) has

the mode-dependent format of the frame buffer PCI write-data (Sections 6.2.1

through 6.2.14). For example, when the GCTR is written in transparent-stipple

mode, the mode-specific data includes the stipple mask; but when the GCTR is

Register Descriptions 4–21

written in DMA-write copy mode, the mode-specific data includes a read count

and the edge masks. Line mode mode-dependent data is different because it

includes the low-order address bits; the GADR fully contains these bits, so they

are not part of the GCTR mode-specific data (Section 4.3.3.2).

Line or Span Continuation

If the GADR is purposely not written before initiating a line mode operation,

the GCTR can be written to effectively extend, or continue, the line drawn

immediately prior to the current operation, using the address in the 21030

internal addressing hardware.

At the completion of a line or span drawing operation, the 21030 leaves its

internal line-drawing hardware in a state that allows a subsequent line-mode

operation to continue where the preceding line-mode operation stopped. That

state includes at least the frame buffer address, and can also include variables

such as the Bresenham error terms and color values, depending on the specific

line mode (for example, color-interpolated lines or opaque lines). Therefore,

the GCTR can quickly and easily extend the previous line-mode operation. For

example, a write to a slope register will set up and draw 16 pixels along a

line. After the initial write to the slope register, software can simply write the

GCTR twice to extend the line or span to a length of 48 pixels.

4.3.3.2 Write in Line Mode

Figure 4–13 shows the GCTR line-mode write format, and Table 4–13 describes

the fields.

Figure 4–13 GCTR Line-Mode Write Format

31 16 15 0

RES Line Mask

Table 4–13 GCTR Line-Mode Write-Format Field Description

Bits Field Type Description

31:16 RES RAZ/IGN Reserved.

(continued on next page)

4–22 Register Descriptions

Table 4–13 (Cont.) GCTR Line-Mode Write-Format Field Description

Bits Field Type Description

15:0 Line
Mask

WO The mask or stipple for the next 16-pixel line
segment.

The format of GCTR mode-specific data in line mode matches the frame

buffer PCI write-data format in opaque-line mode (Section 6.2.12), except

that the address LSBs (AD<1:0>) are unnecessary because the address is fully

contained in the GADR. (See Sections 6.2.1 through 6.2.14 for more information

about using the GCTR to extend lines.)

4.3.3.3 Read

Figure 4–14 shows the GCTR read format, and Table 4–14 describes its fields.

Figure 4–14 GCTR Read Format

31 16 15 0

Z−Address Increment 2 Z−Address Increment 1

Table 4–14 GCTR Read-Format Field Description

Bits Field Type Description

31:16 Z-Address
Increment 2

RO The signed value of the Z-address increment used
when stepping along the minor and major axes in a
Z-buffered line mode.

15:0 Z-Address
Increment 1

RO The signed value of the Z-address increment used
when stepping along the major axis in a Z-buffered
line mode.

On a read in any mode, the GCTR returns the value of the Z-address increment

1 and Z-address increment 2 stored in the Bresenham engine.

Register Descriptions 4–23

When a write to a slope, slope-no-go, or the span width register sets up a

line drawing operation, the internal Bresenham engine calculates the address

increments to be added to the current Z-buffer address as the engine takes

a major axis step or a major and minor axes step. The Z-buffer width

parameter in the Bresenham width register (GBWR, Section 4.4.13) is used

in the calculation of one or both increments. (See Section 6.2.14 for more

information about the generation and use of Z-address increment 1 and

Z-address increment 2.)

4.3.3.4 Writes to Alternate ROM Space

The GCTR and GADR are mapped sequentially on writes to the alternate ROM

space (Section 2.2.3). Basically, software can alternately write the GCTR and

GADR by writing sequential locations in the otherwise read-only alternate

ROM space. This method of sequential access can help make effective use of

the write buffer in an Alpha AXP CPU. (See Sections 7.3 through 7.3.2 for more

information about this method of access and alternate ROM space mapping.)

The GCTR is cleared at reset.

4–24 Register Descriptions

4.3.4 Copy-64 Source and Destination Registers

Figure 4–15 shows the copy-64 source register (GCSR) and copy-64 destination

register (GCDR) formats, and Table 4–15 describes their fields.

Figure 4–15 GCSR and GCDR Formats

31 24 23 0

RES Frame Buffer Address Source

GCSR

31 24 23 0

RES Frame Buffer Address Destination

GCDR

Table 4–15 GCSR and GCDR Field Description

Bits Field Type Description

GCSR

31:24 RES RAZ/IGN Reserved.

23:0 Frame
Buffer
Address
Source

WO Frame buffer address of the source—The 8-byte-
aligned base address of the 64-byte span to be loaded
into the 21030 copy buffer.

GCDR

31:24 RES RAZ/IGN Reserved.

23:0 Frame
Buffer
Address
Destination

WO Frame buffer address of the destination—The 64-
byte span will be copied from the 21030 copy buffer
to the destination starting at this 8-byte-aligned
address.

The GCSR and the GCDR are used together to perform fast, simple copies of

aligned, unmasked, 64-byte spans. Both registers are write-only.

Register Descriptions 4–25

A write to the GCSR initiates a fill from the frame buffer to the on-chip 64-byte

copy buffer, beginning at the frame buffer address source (GCSR <23:0>). A

subsequent write to the GCDR unloads the contents of the copy buffer into

the frame buffer, beginning at the frame buffer address destination (GCDR

<23:0>).

The frame buffer source and destination addresses must be aligned to 8 bytes

except when copying unpacked 8-bpp bitmaps, in which case they must be

aligned to 32 bytes.

Writing the frame buffer address of the source span to the GCSR and then

writing the frame buffer address of the destination span to the GCDR

effectively copies a 64-byte span from an 8-byte-aligned source to an

8-byte-aligned destination.

Copying 8-bpp bitmaps with the GCSR and GCDR, which copies 64 pixels at

a time, is faster than copying with writes to the frame buffer, which copies

only 32 pixels at a time. However, the GCSR and GCDR can be used to copy

only unmasked spans in which the source and destination are aligned to 8

bytes. Therefore, the GCSR and GCDR are used primarily to copy the interiors

of large spans. Given an arbitrary source and destination, addresses are not

likely to be aligned to 8 bytes. In such cases, the edges of the span must be

copied with writes to the frame buffer in standard copy mode. The GCSR and

GCDR can then be used to quickly fill the remaining 8-byte-aligned interior of

the span.

Although the 21030 does not support masking when using the GCSR and

GCDR, it does shift pixel data to support copies in which the source and

destination are unaligned. Pixel data is shifted as specified in the pixel shift

register (GPSR, Section 4.4.5).

The GCSR and GCDR are cleared at reset.

4–26 Register Descriptions

4.4 Graphics Control Registers

The graphics control registers control 21030 graphics processing and are the

largest part of the register set. Reading and writing the graphics control

registers does not initiate any drawing activity. The register parameters

characterize the operations that are initiated by writing to the graphics

command registers or frame buffer.

The graphics control registers need not be written for every drawing operation.

The number of graphics control registers needed to perform a graphics

operation depends on the mode the chip is in and whether drawing is initiated

by a write to the frame buffer or to a graphics command register. Additionally,

register fields that contain configuration-specific information, such as frame

buffer depth or the type of RAM used, are written only at initialization

time. (Chapter 6 describes the graphics operations and the registers that are

required, optional, or ignored for each type of operation.)

All the graphics control registers can be read and written; however, as noted in

the register descriptions, some registers do not read exactly as written.

Register Descriptions 4–27

4.4.1 Mode Register

The function of the mode register (GMOR) depends on whether it is being

written or read.

4.4.1.1 Write

Figure 4–16 shows the GMOR write format, and Table 4–16 describes its fields.

Figure 4–16 GMOR Write Format

31 8 7 616 15 14 13 12 11 010

RES Mode
C
E

Z
1
6

G
E

R
E
S

SBY SBM

Table 4–16 GMOR Write-Format Field Description

Bits Field Type Description

31:16 RES RAZ/IGN Reserved.

15 CE RW Cap ends—When set, last pixel write is enabled;
when clear, last pixel write is disabled.

14 Z16 RW When set, Z-values are 16 bits; when clear, Z values
are 24 bits.

13 GE RW Graphics environment—When set, the 21030 is
operating in a Win32 graphics environment; when
clear, the 21030 is operating in an X graphics
environment.

12:11 SBY RW Source byte—Selects the source byte, as follows:

0 0
0 1
1 0
1 1

byte 0
byte 1
byte 2
byte 3

(continued on next page)

4–28 Register Descriptions

Table 4–16 (Cont.) GMOR Write-Format Field Description

Bits Field Type Description

10:8 SBM RW Source bitmap—Identifies the type of source bitmap,
as follows:

000 8-bpp packed

001 8-bpp unpacked

010 12-bpp (low)

110 12-bpp (high)

011 24-bpp

Unused codes are reserved

7 RES RAZ/IGN Reserved.

6:0 Mode RW Determines the 21030 graphics mode (Table 4–17).

Table 4–17 lists the 21030 graphics modes.

Table 4–17 Graphics Modes

Code� Graphics Mode

0000000 Simple

0010000 Simple Z

0000001 Opaque stipple

0100001 Opaque fill

0000101 Transparent stipple

0100101 Transparent fill

0001101 Block stipple

0101101 Block fill

0000010 Opaque line

0000110 Transparent line

0001110 Color-interpolated, transparent, non-dithered line

0101110 Color-interpolated, transparent, dithered line

1001110 Sequential-interpolated, transparent line

0010010 Z-buffered, opaque line

0010110 Z-buffered, transparent line

0011010 Z-buffered, opaque, color-interpolated, non-dithered line

0111010 Z-buffered, opaque, color-interpolated, dithered line

1011010 Z-buffered, opaque, sequential-interpolated line

0011110 Z-buffered, transparent, color-interpolated, non-dithered line

0111110 Z-buffered, transparent, color-interpolated, dithered line

�Code in GMOR <6:0>. Unused codes are reserved.

(continued on next page)

Register Descriptions 4–29

Table 4–17 (Cont.) Graphics Modes

Code� Graphics Mode

1011110 Z-buffered, transparent, sequential-interpolated line

0000111 Copy

0010111 DMA-read copy, non-dithered

0110111 DMA-read copy, dithered

0011111 DMA-write copy

�Code in GMOR <6:0>. Unused codes are reserved.

The mode register determines how the 21030 interprets the address and data

on a write to the frame buffer, and how it interprets the data on a write to

the graphics command registers. (See Sections 6.1 through 6.2.14.4 for more

information about the graphics modes.)

The cap ends bit (<15>) determines whether the last pixel in a line is drawn.

It affects only lines drawn by writing to the slope registers; it has no effect

when writing to the frame buffer in a line mode. The host must adjust the line

length when lines are drawn by writing to the frame buffer.

The Z16 bit (<14>) selects the Z-buffer depth and format when drawing in the

Z-buffering modes. (See Section 6.1.5 for more information about the Z-buffer

formats, and Section 6.2.14 for more information about Z-buffer manipulation

in the 3D line modes.)

The graphics environment bit (<13>) specifies whether graphics processing

must conform to Win32 or X specifications. (Currently, this bit controls how

lines are drawn, because Win32 requires a style incompatible with existing

X-server drawing code.)

A 32-bpp frame buffer can support a variety of 8-bpp, 12-bpp, and full 24-

bpp bitmap formats. The source byte and source bitmap fields (<12:11,10:8>)

specify the source bitmap for 32-bpp frame buffers. (Both fields must be zero

on all 8-bpp frame buffer systems.) In several graphics modes, these two fields

provide all the control necessary for the 21030 to extract source data from less

than 32-bpp bitmaps. These fields complement the destination bitmap and

destination byte fields in the raster operation register (GOPR, Section 4.4.3).

Only the source bitmap field selects a 12-bpp or 24-bpp source bitmap; the

source byte field must be set to zero. Together, both fields specify one of the

possible 8-bpp source bitmaps. (See Section 6.1.5 for more information about

the bitmap formats and the source bitmap and byte fields.)

4–30 Register Descriptions

4.4.1.2 Read

Figure 4–17 shows the GMOR read format, and Table 4–18 describes its fields.

Figure 4–17 GMOR Read Format

31 8 7 616 15 14 13 12 11 024 1023

RES Mode
C
E

19

Z
1
6

G
E

R
E
S

SR SB

22 21 20

RES
C
D

B
A

A
A

G
S

Table 4–18 GMOR Read-Format Field Description

Bits Field Type Description

31:24 Same as write format. See Table 4–16.

23 GS RO GPXR state—When set, indicates that the pixel mask
register (GPXR) is in the persistent state; when clear,
indicates that the GPXR is in the one-shot state.

22 AA RO Address age—When set, indicates that the GADR value
is newer than the previous frame buffer operation; when
clear, indicates that the GADR value is older than the
previous frame buffer operation.

21 BA RO Bresenham age—When set, indicates that the GB3R
value is newer than the previous frame buffer operation;
when clear, indicates that the GB3R value is older than
the previous frame buffer operation.

20 CD RO Copy direction—When set, indicates that the next copy
mode operation will drain the copy buffer; when clear,
indicates that the next copy mode operation will fill the
copy buffer.

19:0 Same as write format. See Table 4–16.

On a read, 4 GMOR read-only bits (<23:20>) return the current internal 21030

processing status. Software can read these bits to accurately restore 21030

context. The bits can be probed when saving state and then used to update the

appropriate registers when restoring state.

The GPXR state bit (23) returns the current state of the GPXR. It indicates

whether the GPXR retains its value from operation to operation (persistent) or

if its value will be used only for the next operation (one-shot).

Register Descriptions 4–31

At the start of a line mode operation (initiated by a write to a slope register, the

continue register, or the frame buffer), the 21030 conditionally uses the values

stored in the Bresenham 3 register (GB3R, Section 4.4.12) and the address

register (GADR, Section 4.4.2) for the operation. Only new GB3R and GADR

values are used; that is, only values written after the previous line operation

was initiated. The address age and Bresenham age bits (<22:21>) indicate

whether the corresponding register values are new. The conditional use of

these values makes it easier to draw long or linked lines. (See Section 6.2.12.3

for more information.)

In copy mode, the 21030 interprets alternate writes to the frame buffer as

read-source and write-destination operations. Read-source operations fill and

write-destination operations drain the copy buffer, starting at the specified

address. The copy direction flag (<20>) indicates the current direction of

the copy operation. (See Section 6.2.9 for more information about copy mode

operations.)

The GMOR is cleared at reset.

4–32 Register Descriptions

4.4.2 Address Register

Figure 4–18 shows the address register (GADR) format, and Table 4–19

describes its field.

Figure 4–18 GADR Format

31 0

Frame Buffer Address

Table 4–19 GADR Field Description

Bits Field Type Description

31:0 Frame
Buffer
Address

RW The starting address for the next operation initiated by
a write to a graphics command register.

The frame buffer address (<31:0>) is defined as the offset into the 21030

frame buffer space. A value of 0000000016 in this field corresponds to the

first memory location in frame buffer space. The GADR can be used to access

only frame buffer memory; it cannot be used to access the 21030 registers

or external ROM address spaces, because they are separate spaces. (See

Chapter 2 for more information about address mapping.)

In typical operations initiated by a write to the frame buffer, the write address

is the starting address of the operation. On the other hand, when an operation

is initiated by a write to certain graphics command registers, the starting

address is in the GADR. It specifies the address of the first pixel for a drawing

operation.

The GADR is used only for operations initiated by writes to the slope registers

(GSLR<7:0>, Section 4.3.1), span width register (GSWR, Section 4.3.2), or

continue register (GCTR, Section 4.3.3). For example, when writing GSLR0 to

draw a line, the address in the GADR is the starting address of the drawable.

Writing to the GADR does not initiate a drawing operation; it is used on the

next write to a GSLR or the GCTR.

Register Descriptions 4–33

When the GADR is written in any of the line modes, the frame buffer address

(<31:0>) is used only for the line operation immediately following. If the GADR

was not written since the last line operation, the 21030 uses the final address

of the most recent operation rather than the address in GADR <31:0>. This

feature helps accelerate the drawing of long or linked lines (Section 6.2.14). A

write to the GADR also sets the address age bit in the mode register (GMOR

<22>, Section 4.4.1.2) to indicate that the address was written since the last

operation.

The GADR can also be used with the GCTR to indirectly address the frame

buffer. If a particular system cannot map all of the 21030 address space, all

drawing can be done exclusively through the graphics command registers,

with no direct writes to the frame buffer. Furthermore, because all drawing

can be done by accessing registers, the frame buffer need not be mapped in

PCI memory space. In any case, indirect addressing using the GADR with the

GCTR is independent of whether the frame buffer is mapped in PCI memory

space.

The GADR can also be written through the even Dword locations of the first

512KB of alternate ROM space (Section 2.2).

The GADR is cleared at reset.

4–34 Register Descriptions

4.4.3 Raster Operation Register

Figure 4–19 shows the raster operation register (GOPR) format, and

Table 4–20 describes its fields.

Figure 4–19 GOPR Format

31 9 8 7 4 312 11 010

RESDBY DBM
Raster

Op
RES

Table 4–20 GOPR Field Description

Bits Field Type Description

31:12 RES RAZ/IGN Reserved.

11:10 DBY RW Destination byte—Selects the destination byte, as
follows:

0 0
0 1
1 0
1 1

byte 0
byte 1
byte 2
byte 3

9:8 DBM RW Destination bitmap—Identifies the type of
destination bitmap, as follows:

0 0 8-bpp packed

0 1 8-bpp unpacked

1 0 12-bpp

1 1 24-bpp

7:4 RES RAZ/IGN Reserved.

3:0 Raster
Op

RW Raster operation—Specifies how the source (src)
pixel data and destination (dest) pixel data are
logically combined on a write to the destination in
most of the graphics modes (Table 4–21).

Table 4–21 lists the Boolean raster operations.

Register Descriptions 4–35

Table 4–21 Boolean Raster Operations

Code� Operation X OpenGL Win32

0000 dest � 0 GXclear lo_zero blackness

0001 dest � src AND dest GXand lo_and srcand/mergecopy

0010 dest � src AND NOT dest GXandReverse lo_andr srcerase

0011 dest � src GXcopy lo_src srccopy/patcopy

0100 dest � (NOT src) AND dest GXandInverted lo_andi (2216)

0101 dest � dest GXnoop lo_dst (AA16)

0110 dest � src XOR dest GXxor lo_xor srcinvert/patinvert

0111 dest � src OR dest GXor lo_or srcpaint

1000 dest � (NOT src) AND NOT dest GXnor lo_nor notsrcerase

1001 dest � (NOT src) XOR dest GXequiv lo_xnor (9916)

1010 dest � NOT dest GXinvert lo_ndst dstinvert

1011 dest � src OR (NOT dest) GXorReverse lo_orr (DD16)

1100 dest � NOT src GXcopyInverted lo_nsrc notsrccopy

1101 dest � (NOT src) OR dest GXorInverted lo_ori mergepaint

1110 dest � (NOT src) OR NOT dest GXnand lo_nand (7716)

1111 dest � 1 GXset lo_one whiteness

�GOPR raster operation field (<3:0>)

The 21030 uses the GOPR to support all of the Boolean operations specified

under X and OpenGL, and a subset of 2-operand operations specified under

Windows (Table 4–21). The source (src) can be used as the source or the

pattern to implement the Windows 2-operand raster operations. To update the

pixel value, most of these operations require the 21030 to perform read-modify-

write cycles to display memory. (The 21030 does not directly support Windows

3-operand operations; for information about handling such operations, see

Section 7.2.1.)

The raster operation field (<3:0>) defines the Boolean operation that is

performed on the source and destination pixel data when writing to the

destination bitmap in any graphics mode except block fill, block stipple, or

DMA-write copy. In these modes, regardless of the code in the raster operation

field, the Boolean operation performed is dest� src (00112).

In all cases except DMA-write copy, the destination operand is the pixel

value stored in a destination bitmap residing in the frame buffer. The source

operand can either be specified as a frame buffer bitmap or provided explicitly

by software. (See Section 6.1.6 for more information about specifying source

and destination operands.)

4–36 Register Descriptions

A 32-bpp frame buffer can support a variety of 8-bpp, 12-bpp, and 24-

bpp bitmap formats. The destination byte and destination bitmap fields

(<11:10,9:8>) specify the destination bitmap for 32-bpp frame buffers. (Both

fields must be zero in all 8-bpp frame buffer systems.) In several graphics

modes, these two fields provide all the control necessary for the 21030 to write

pixel data to destination bitmaps other than 32-bpp bitmaps. These fields

complement the source bitmap and source byte fields in the mode register

(GMOR, Section 4.4.1).

Only the destination bitmap field selects a 12-bpp or 24-bpp destination

bitmap; the destination byte field must be set to zero. Together, both fields

specify one of the 8-bpp destination bitmaps. (See Section 6.1.5 for more

information about the various bitmap formats and using the destination

bitmap and destination byte fields.)

On a write to the GOPR, the 21030 flushes the write buffer before the write

takes effect.

The GOPR is initialized to 0000000316 at reset.

Register Descriptions 4–37

4.4.4 Block-Color Registers

Note

The block-color registers are physically resident in the VRAMs rather

than the 21030, and are undefined at reset. Because most standard

DRAMs do not support block write cycles, block mode operations should

not be performed to back buffers populated by such DRAMs.

Figure 4–20 shows the block color registers (GBCR<7:0>) format, and

Table 4–22 describes the field.

Figure 4–20 GBCR<7:0> Format

31 0

Block Color Data

Table 4–22 GBCR<7:0> Field Description

Bits Field Type Description

31:0 Block
Color
Data

RW The pixel data written to the destination in block-mode
operations. Figure 4–21 shows the pixel data formats.

The block-color registers define the block-color pattern. The pattern is 8 pixels

wide and is written to display memory during block-stipple and block-fill

operations. The block-color pattern is defined as follows:

block-color pattern = block color 7�block color 6 . . . block color 1�block color 0

In the equation, � denotes concatenate.

In either block mode, the 21030 uses VRAM block-write cycles to draw up to

four copies of the block-color pattern in one memory write cycle. As a result,

the 21030 draws as many as 32 pixels per memory CAS cycle, independent of

the bitmap depth. In other words, whether drawing to an 8-bpp frame buffer,

or to 8-bpp, 12-bpp, or 24-bpp bitmaps in a 32-bpp frame buffer, block-mode

operations fill an 8-pixel block-color pattern four times.

4–38 Register Descriptions

A 32-bpp 8-pixel pattern is equivalent to 32 bytes of data; therefore, all eight

GBCRs are used to specify the block-color pattern for 12-bpp and 24-bpp

bitmaps in 32-bpp frame buffers (see Figure 4–21). However, 8-bpp bitmaps

in either 8-bpp or 32-bpp frame buffers need only 8 bytes of data, and only

GBCR1 and GBCR0 are used to specify the block color pattern.

The GBCRs support all destination bitmap formats except packed 8-bpp

bitmaps in a 32-bpp frame buffer. (See Section 6.1.5 for more information

about bitmap and buffer formats.)

Before the GBCRs are written when drawing to unpacked 8-bpp bitmaps in

a 32-bpp frame buffer, the appropriate subset of GBCRs must be correctly

initialized by setting the destination bitmap field in the GOPR (<9:8>,

Section 4.4.3) according to the type of block-mode drawing to be done with

the GBCRs.

The format of block color in a 32-bpp frame buffer depends on the format of the

destination bitmap. As Figure 4–21 shows, in 24-bpp bitmaps, each block color

contains one RGB triplet. For 12-bpp, the blue, green and red fields must be

replicated across nibbles. For 8-bpp destination bitmaps, the color index must

be replicated across the bytes of block color.

To draw to individual bits within each byte when drawing in a block mode (as

in nonblock-mode writes), the plane mask registers (GPMR, Section 4.4.20) can

be used with the GBCRs. (See Sections 6.2.5 and 6.2.6 for more information

about block mode operations.)

The GBCRs and block-mode drawing are useful for fast, solid-color fills (for

example, when clearing the screen) and for fast tiling, or brushing, a pattern

across a fill region. (See Section 7.2.1 for more information about using

block-mode operations to implement standard 2D graphics operations.)

Figure 4–21 shows the GBCR color pattern formats.

Register Descriptions 4–39

Figure 4–21 GBCR Color Pattern Formats

green

green

tag24−bpp Bitmap

greentag12−bpp Bitmap

32−bpp Frame Buffer

31 8 72423 1615 0

8−bpp Destination Bitmap

31 8

GBCR0

GBCR1

GBCR2

GBCR3

GBCR4

GBCR5

GBCR6

GBCR7

72423

31 0

1615 0

GBCR0

GBCR1

(8−bpp or 32−bpp Frame Buffer)

Block Color 3 Block Color 2

Block Color 7

Block Color 1

Block Color 6

Block Color 0

Where GBCR in a 32−bpp frame buffer is a function of the destination bitmap format:n

Block Color 5 Block Color 4

12− or 24−bpp Destination Bitmap
(32−bpp Frame Buffer)

Block Color 0

Block Color 4

Block Color 1

Block Color 5

Block Color 2

Block Color 6

Block Color 3

Block Color 7

red

redred

blue

blueblue

The GBCRs are undefined at reset.

4–40 Register Descriptions

4.4.5 Pixel-Shift Register

Figure 4–22 shows the pixel-shift register (GPSR) format, and Table 4–23

describes its fields.

Figure 4–22 GPSR Format

31 4 3 0

RES
Pixel
Shift

Table 4–23 GPSR Field Description

Bits Field Type Description

31:4 RES RAZ/IGN Reserved.

3:0 Pixel
Shift

RW A signed value indicating the number of bytes to
shift source data on a write into the copy buffer.

The GPSR specifies the number of bytes to shift source data in the copy,

DMA-read copy, and DMA-write copy modes. The GPSR is ignored in all other

modes. In the copy and DMA-read copy modes, the shift takes place before

data is loaded into the copy buffer. In the DMA-write copy mode, the shift

takes place before the data is driven onto the PCI bus. The range of the signed

pixel-shift value is as follows:

Mode Range

Copy –8 � pixel-shift value � +7

DMA-read copy 0 � pixel-shift value � +3

DMA-write copy 0 � pixel-shift value � +7

This allows arbitrary source and destination byte-alignment and copy direction

when copying spans.

Writing the GPSR also resets the copy direction flag (GMOR <20>,

Section 4.4.1) to select read-source on the next frame buffer write in copy mode.

In copy mode, the flag determines whether the current frame buffer write

should read the source into the copy buffer or write the copy buffer into the

Register Descriptions 4–41

destination. The flag switches between the read-source and write-destination

states on every frame buffer write in copy mode.

(See sections 6.2.9 through 6.2.9.8 for more information about using the GPSR

and the copy direction flag.)

The GPSR is cleared at reset.

4–42 Register Descriptions

4.4.6 Copy-Buffer Registers

Figure 4–23 shows the copy-buffer registers (GCBR<7:0>) format.

Figure 4–23 GCBR<7:0> Format

31 0

Copy Buffer Dword

The GCBRs provide read and write access into the internal, 64-byte copy

buffer. A read or write to each GCBR returns one Dword from or stores one

Dword into the copy buffer.

The copy buffer comprises 8 quadword (64-bit) entries (entry<7:0>). When

reading a source bitmap in copy mode, the 21030 fills the copy buffer 1

quadword at a time, from entry0 to entry7. When writing a destination bitmap

in copy mode, the 21030 unloads the copy buffer 1 quadword at a time (with

mask) in the same sequence.

Software can also write the copy buffer in the same order (entry0 to entry7), by

alternately writing even-numbered and odd-numbered GCBRs. A write to an

even-numbered GCBR specifies, but does not load, the low Dword of the next

empty copy buffer entry. A subsequent write to an odd-numbered GCBR loads

that Dword into the high Dword of the next entry and loads the previously

specified Dword into the low Dword of that entry. The results of a write to a

full copy buffer are undefined.

On read, software directly and randomly accesses individual Dwords of each

quadword entry (Figure 4–24). The 8 GCBRs are directly mapped to copy-

buffer entries<3:0> and the slope-no-go registers (GSNR<7:0>, Section 4.4.9)

are directly mapped to copy-buffer entries<7:4>. The GSNRs are mapped to

the copy buffer only in read mode.

Figure 4–24 shows how the GCBRs and GSNRs are mapped to the copy buffer

entries.

Register Descriptions 4–43

Figure 4–24 Copy Buffer Layout

Slope−No−Go7

Copy Buffer7

Slope−No−Go6
Slope−No−Go5
Slope−No−Go4
Slope−No−Go3
Slope−No−Go2
Slope−No−Go1
Slope−No−Go0

Copy Buffer6
Copy Buffer5
Copy Buffer4
Copy Buffer3
Copy Buffer2
Copy Buffer1
Copy Buffer0

Entry7

Entry6

Entry5

Entry4

Entry3

Entry2

Entry1

Entry0

Temporary
Hold

Write to
copy buffer
even entry

Write to
copy buffer
odd entry

Indexed Direct−Mapped
Register

Read Access
Register

Write Access

Copy Buffer

Write
low longword

Write
high longword

The GCBRs are cleared at reset.

4–44 Register Descriptions

4.4.7 DMA Base-Address Register

Figure 4–25 shows the DMA base-address register (GDBR) format, and

Table 4–24 describes its field.

Figure 4–25 GDBR Format

31 0

DMA Address

Table 4–24 GDBR Field Description

Bits Field Type Description

31:0 DMA
Address

RW Dword-aligned PCI address (<1:0> = 00), pointing to
base address of a drawable bitmap.

The GDBR specifies the 32-bit PCI memory address of the bitmap used as the

source or destination in DMA-read copy or DMA-write copy mode operations.

On a write to the frame buffer in one of these modes, the 21030 begins to read

or write pixels at the DMA address (<31:0>).

To the 21030, the DMA address is a physical address. The 21030 has no

indication of how the CPU maps system addresses into physical PCI memory

addresses, how virtual addresses are translated to physical addresses, or how

some systems support scatter/gather mapping from the PCI into main memory.

Software must translate these levels of address indirection before writing the

GDBR.

Note

Writes to the GDBR alter the contents of the Z-base-address register

(GZBR, Section 4.4.15), and writes to the GZBR alter the contents of

the GDBR.

The GDBR is cleared at reset.

Register Descriptions 4–45

4.4.8 Data Register

The data register (GDAR) specifies a mask for some line-mode operations and

all block-fill and DMA-write copy operations. The GDAR format depends on

the enabled mode.

4.4.8.1 Line Mode

Figure 4–26 shows the GDAR line-mode format, and Table 4–25 describes its

fields.

Figure 4–26 GDAR Line-Mode Format

31 16 15 0

RES Line Mask

Table 4–25 GDAR Line-Mode Format Field Description

Bits Field Type Description

31:16 RES RAZ/IGN Reserved.

15:0 Line
Mask

RW The mask for a 16-pixel line. In transparent-line
mode, the foreground color is written to any pixel
in the line that corresponds to a set bit in this field.
No color is written to any pixel in the line that
corresponds to a clear bit in this field.

In opaque-line mode, the foreground color is written
to any pixel in the line that corresponds to a set bit
in this field and the background color is written to
any pixel in the line that corresponds to a clear bit
in this field.

In any line-mode operation initiated by a write to a slope register (GSLR

<7:0>), the write data is the slope data, and the GDAR specifies the mask for

the 16 pixels of that line segment.

When drawing line segments by writing to either the frame buffer in a line

mode or the continue register (GCTR), the GDAR is not used because the write

data specifies the line mask.

4–46 Register Descriptions

The line mask passed in the GDAR is expanded, on a per-pixel basis, into

foreground colors in transparent-line mode, and into background or foreground

colors (as specified in the foreground and background registers) in opaque-line

mode. In color-interpolated line modes, the interpolated color is written to

pixels that correspond to set bits in the line mask, and no color is written to

pixels that correspond to clear bits.

The GDAR must be written before the slope register, because the write to the

GSLR starts the drawing operation.

4.4.8.2 Block-Fill, Opaque-Fill, and Transparent-Fill Modes

Figure 4–27 shows the GDAR fill-mode format, and Table 4–26 describes its

field.

Figure 4–27 GDAR Fill-Mode Format

31 0

Fill Mask

Table 4–26 GDAR Fill-Mode Format Field Description

Bits Field Type Description

31:0 Fill Mask RW The mask for each aligned 32-pixel span.

In any of the fill modes, the GDAR defines a repeating mask, aligned to 4

pixels. The 32-bit fill mask enables writes, on a per-pixel basis, for each

aligned, 32-pixel span drawn in a block-fill operation. Only one mask is

specified, regardless of the span length (that is, regardless of the pixel count

passed in block-fill mode). The mask is repeated, or tiled, across the span at

32-pixel intervals. (See Chapter 6 for more information about the fill modes.)

In transparent-fill mode, the foreground color is written to each pixel of the

span that corresponds to a set bit in the fill mask; no color is written to pixels

that correspond to clear mask bits.

In opaque-fill mode, the foreground color is written to each pixel of the span

that corresponds to a set bit in the fill mask; the background color is written to

pixels that correspond to clear mask bits.

Register Descriptions 4–47

In block-fill mode, the block color is written to each pixel of the span that

corresponds to a set bit in the fill mask; no color is written to pixels that

correspond to clear mask bits.

In the block-, opaque-, and transparent-fill modes, the GDAR must be written

before the frame buffer, because the write to the frame buffer starts the fill

operation.

4.4.8.3 DMA-Write Copy Mode

Figure 4–28 shows the GDAR DMA-write copy mode format, and Table 4–27

describes its field.

Figure 4–28 GDAR DMA-Write Copy Mode Format

31 0

AND Mask

Table 4–27 GDAR DMA-Write Copy Mode Format Field Description

Bits Field Type Description

31:0 AND
Mask

RW The bit mask to be ANDed with each Dword written
across the PCI bus.

In DMA-write copy mode, the GDAR data is logically ANDed with write data

from the PCI bus. Before the GDAR can be written in this mode, the chip must

be idle; that is, the busy bit in the command and status register (SCSR <0>,

Section 4.7.1) must be clear. This software interlock can be enforced by writing

the SCSR immediately before the GDAR, because a write to the SCSR is not

completed until the chip is idle.

The GDAR is set to FFFFFFFF at reset.

4–48 Register Descriptions

4.4.9 Slope-No-Go Registers

The function of the slope-no-go registers (GSNR<7:0>) depends on whether the

registers are being written or read.

4.4.9.1 Write

Figure 4–29 shows the GSNR write format, and Table 4–28 describes the fields

(identical to the slope registers).

Figure 4–29 GSNR<7:0> Write Format

31 16 15 0

Absolute dy Absolute dx

Table 4–28 GSNR<7:0> Write-Format Field Description

Bits Field Type Description

31:6 Absolute
dy

RW Unsigned integer equal to the absolute value of the
difference in y of the two line endpoints.

15:0 Absolute
dx

RW Unsigned integer equal to the absolute value of the
difference in x of the two line endpoints.

On a write, the GSNRs mimic the behavior of the slope registers (GSLR<7:0>,

Section 4.3.1), but they do not initiate drawing. That is, they initialize the

internal Bresenham engine for line drawing, but do not start the Bresenham

pixel stepping or draw any pixels.

The GSNRs are primarily used to simplify the drawing of clipped lines

and, potentially, to assist in drawing lines with subpixel endpoints. (See

Section 7.2.3.2 for more information about drawing clipped lines.)

Note

The Bresenham width register (GBWR, Section 4.4.13) must be written

before writing a GSNR.

Register Descriptions 4–49

4.4.9.2 Read

Figure 4–30 shows the GSNR read format, and Table 4–29 describes the

contents.

Figure 4–30 GSNR<7:0> Read Format

31 0

Copy Buffer Dword

Table 4–29 GSNR<7:0> Read Format Contents

Register Contents

GSNR7 Copy buffer entry 7 <63:32>

GSNR6 Copy buffer entry 7 <31:0>

GSNR5 Copy buffer entry 6 <63:32>

GSNR4 Copy buffer entry 6 <31:0>

GSNR3 Copy buffer entry 5 <63:32>

GSNR2 Copy buffer entry 5 <31:0>

GSNR1 Copy buffer entry 4 <63:32>

GSNR0 Copy buffer entry 4 <31:0>

On a read, each GSNR returns one Dword of the copy buffer entries <7:4>

(Figure 4–24).

(See Sections 4.4.6 and 6.2.9 for more information about programmed I/O

access to the copy buffer.)

The GSNRs are cleared at reset.

4–50 Register Descriptions

4.4.10 Bresenham 1 Register

Note

The Bresenham 1 and 2 register (GB1R and GB2R) descriptions are

included for continuity. They are explicitly written only when line

drawing is initiated using the standard frame buffer write mechanism.

However, the alternate slope register write mechanism (Section 4.3.1)

more efficiently provides the equivalent functionality. There is no

practical reason for explicitly using the GB1R and GB2R. Furthermore,

the GB3R is explicitly written only in unusual cases (Section 7.2.3.2).

See Sections 6.2.12 and 6.2.13 for more information.

Figure 4–31 shows the Bresenham 1 register (GB1R) format, and Table 4–30

describes its fields.

Figure 4–31 GB1R Format

31 16 15 0

Address Increment 1 Error Increment 1

Table 4–30 GB1R Field Description

Bits Field Type Description

31:16 Address
Increment 1

RW The signed value added to the current address when
the Bresenham error term is < 0 (a major axis step).

15:0 Error
Increment 1

RW The positive value added to the error term when the
Bresenham error term is < 0 (a major axis step).

The GB1R specifies the address and error increments used by the internal

Bresenham line-drawing engine when the cumulative error is negative.

Register Descriptions 4–51

When the cumulative error is negative:

• Error increment 1 (<15:0>) is added to the cumulative error.

• Address increment 1 (<31:16>) is added to the current internal address, to

point to the next pixel address to be written along the line.

This is effectively one step along the major axis of the line.

The GB1R is cleared at reset.

4–52 Register Descriptions

4.4.11 Bresenham 2 Register

See the note at the beginning of the GB1R description, Section 4.4.10.

Figure 4–32 shows the GB2R format, and Table 4–31 describes its fields.

Figure 4–32 GB2R Format

31 15 14 0

Address Increment 2 Error Increment 2

Table 4–31 GB2R Field Description

Bits Field Type Description

31:16 Address
Increment 2

RW The signed value added to the current address when
the Bresenham error term is � 0 (a step along the
major and minor axes).

15:0 Error
Increment 2

RW The positive value subtracted from the error term
when the Bresenham error term is � 0 (a step along
the major and minor axes).

The GB2R specifies the address and error increments used by the internal

Bresenham engine when the cumulative Bresenham error value is greater than

or equal to zero:

• Error increment 2 (<15:0>) is subtracted from the error term.

• Address increment 2 (<31:16>) is added to the current address.

This is effectively one step along the major and minor axes of the line.

The GB2R is cleared at reset.

Register Descriptions 4–53

4.4.12 Bresenham 3 Register

Figure 4–33 shows the Bresenham 3 register (GB3R) format, and Table 4–32

describes its fields.

Figure 4–33 GB3R Format

31 4 315 14 0

Initial Error RES Length

Table 4–32 GB3R Field Description

Bits Field Type Description

31:15 Initial Error RW The signed initial value stored in the Bresenham
error accumulator.

14:4 RES RAZ/IGN Reserved.

3:0 Length RW The length, in pixels, of the line segment to be
drawn. A value of 016 = 16 pixels.

The GB3R specifies:

• The initial error (<31:15>) used by the Bresenham error logic to determine

how to step along the line segment

• The length (<3:0>), which specifies the number of pixels to draw in the line

Although software can write the GB3R directly to set either parameter, it is

usually unnecessary for software to write the GB3R under any circumstances.

A write to a slope or slope-no-go register sets the parameters to the appropriate

value as a function of rise and run of the line. However, when drawing clipped

lines and lines under Windows NT that specify subpixel endpoints, software

might have to adjust the initial error term by writing the GB3R to draw the

appropriate pixels (see Sections 7.2.3.1 and 7.2.3.2 for more information).

Section 6.2.12 describes how the 21030 hardware presets the initial error as a

function of the slope, octant, and whether the line is being drawn in a Win32

or X graphics environment.

The GB3R is cleared at reset.

4–54 Register Descriptions

4.4.13 Bresenham Width Register

Figure 4–34 shows the Bresenham width register (GBWR) format, and

Table 4–33 describes its fields.

Figure 4–34 GBWR Format

31 16 15 0

Z Buffer Width Bitmap Width

Table 4–33 GBWR Field Description

Bits Field Type Description

31:16 Z-Buffer
Width

RW The width of the Z-buffer. Value is number of bytes for
8-bit packed pixels and number of Dwords for all other
pixel types.

15:0 Bitmap
Width

RW The width, in bytes, of the destination bitmap.

The GBWR specifies the width of the destination bitmap and the Z-buffer used

in the line drawing operation. Bitmap width (<15:0>) is required for all line

drawing, but Z-buffer width (<31:16>) is required only for the Z-buffering line

modes.

The 21030 Bresenham setup hardware uses both fields to calculate the

increments to the pixel’s destination bitmap address and the Z-address, on

steps along the minor and major axes as the line is drawn.

Note

The GBWR must be written before writing a slope or slope-no-go

register.

The GBWR is cleared at reset.

Register Descriptions 4–55

4.4.14 Stencil Mode Register

Figure 4–35 shows the GSMR format, and Table 4–34 describes its fields.

Figure 4–35 GSMR Format

31 30 28 27 825 724 22 21 19 18 16 15 0

S
Test

S
Fail

D
Fail

D
Pass

Z
Test

Z
U

S
Read Mask

S
Write Mask

Table 4–34 GSMR Field Description

Bits Field Type Description

31 ZU RW Z-buffer update—When set, the Z-buffer is not updated
after the Z-test; when clear, the Z-buffer is updated.

30:28 Z Test RW Z-buffer test—Specifies the type of reference and stored
value comparison (Table 4–36).

27:25 D Pass RW Depth-test pass—Specifies the action to be taken when
the comparisons specified in the S-test and Z-test fields
both pass (Table 4–37). Table 4–35 defines the codes
and actions.

24:22 D Fail RW Depth-test fail—Specifies the action to be taken when
the comparison specified in the S-test field passes
and the comparison specified in the Z-test field fails
(Table 4–37). Table 4–35 defines the codes and actions.

21:19 S Fail RW Stencil test fail—Specifies the action to be taken if the
comparison specified in the S-test field fails. Table 4–35
defines the codes and actions.

18:16 S Test RW Stencil test—Specifies the type of reference and stored
value comparison (Table 4–36).

15:8 S Read
Mask

RW Stencil read mask—Specifies which of the bits in the
8-bit reference-stencil and stored-stencil values are
masked before performing the S-test. Set bits in this
field correspond to unmasked bits; clear bits correspond
to masked bits.

(continued on next page)

4–56 Register Descriptions

Table 4–34 (Cont.) GSMR Field Description

Bits Field Type Description

7:0 S Write
Mask

RW Stencil write mask—Determines which bits of the 8-bit
stencil buffer can be modified on update. Set bits in this
field enable update for corresponding bits in the stencil
buffer; clear bits disable update.

Table 4–35 defines the GSMR pass and fail field codes and actions.

Table 4–35 GSMR Pass and Fail Fields Codes

Code� Action

000 KEEP No update to stored stencil

001 ZERO 0s � stored stencil

010 REPLACE Reference stencil � stored stencil

011 INCR Stored stencil +1 � stored stencil

100 DECR Stored stencil �1 � stored stencil

101 INVERT Invert stored stencil � stored stencil

Unused codes are reserved

�Code in GSMR fields D pass, D fail, and stencil fail (<27:25,24:22,21:19>).

Table 4–36 defines the GSMR test field codes and comparisons.

Table 4–36 GSMR Test Fields Codes

Code� Comparison

000 GEQUAL Reference value � stored value

001 ALWAYS Always pass

010 NEVER Never pass

011 LESS Reference value < stored value

100 EQUAL Reference value = stored value

101 LEQUAL Reference value � stored value

110 GREATER Reference value > stored value

111 NOTEQUAL Reference value �� stored value

�Code in GSMR fields Z-test and stencil buffer test (<30:28,18:16>).

The stencil mode register (GSMR) controls the behavior of the stencil-buffer

and Z-buffer logic in simple-Z mode (Section 6.2.2) and the 3D line-drawing

Register Descriptions 4–57

modes (Section 6.2.14). The GSMR-defined stencil and Z-buffer operations are

compatible with the OpenGL API.

The Z-buffer-test and stencil-test fields (<30:28,18:16>) specify a comparison;

both tests compare a potential reference value with the stored value currently

in the buffer. The Z-buffer update bit (<31>) determines whether the Z-buffer

is updated after the Z-buffer compare.

The stencil read mask (<15:8>) specifies which bit-planes of the reference- and

stored-stencil values are masked prior to the comparison.

The depth-test pass, depth-test fail, and stencil-test fields (<27:25,24:22,21:19>)

define the how the stencil buffer is updated under the conditions listed in

Table 4–37.

Table 4–37 Stencil Buffer Update Conditions

S-Test Result Z-Test Result Update According to Field:

Pass Pass D Pass (<27:25>)

Pass Fail D Fail (<24:22>)

Fail Pass or Fail S Fail (<21:19>)

See Sections 6.2.2 and 6.2.14 for a description of stencil- and Z-buffer

operations in the simple-Z and 3D line-drawing modes. See Section 6.1.5

for a description of the frame buffer memory format for the buffers.

The GSMR is cleared at reset.

4–58 Register Descriptions

4.4.15 Z-Base-Address Register

Figure 4–36 shows the Z-base-address register (GZBR) format, and Table 4–38

describes its fields.

Figure 4–36 GZBR Format

31 24 23 0

RES Z−Address

Table 4–38 GZBR Field Description

Bits Field Type Description

31:24 RES RAZ/IGN Reserved.

23:0 Z-Address RW The starting Z-address for Z-buffered line drawing
operations.

The GZBR specifies the starting Z-buffer address for a Z-buffered line or span

drawing operation. The GZBR is used in all Z-buffered line-mode operations.

To initiate a Z-buffered line or span drawing operation, software writes a slope

register or the GSWR (Section 4.3.2). This action usually, but not always

(Section 6.2.14), causes the value in the Z-address field (<23:0>) to be loaded

into the internal Z-interpolator hardware, to specify the first Z-address for the

line or span drawing operation. The Z-interpolator calculates subsequent Z

addresses by Bresenham-stepping through the Z-buffer. (See Section 6.2.14 for

more information about using the GZBR to draw Z-buffered lines and spans.)

Note

Writes to the GZBR alter the contents of the DMA base address register

(GDBR, Section 4.4.7), and writes to the GDBR alter the contents of

the GZBR.

The GZBR is cleared at reset.

Register Descriptions 4–59

4.4.16 Z-Value High and Low Registers

Figure 4–37 shows the Z-value high register (GZVR-H) and Z-value low register

(GZVR-L) formats, and Table 4–39 describes their fields.

Figure 4–37 GZVR-H and GZVR-L Formats

GZVR−L

Z−Reference Integer <19:0>

GZVR−H

Z−Reference Fraction

31 12 11 0

RESStencil Reference

31 24 23 4 3 0

Z−
Reference

Integer
<23:20>

Table 4–39 GZVR-H and GZVR-L Field Description

Bits Field Type Description

GZVR-H

31:24 Stencil
Reference

RW The stencil value to be used in all stencil-buffer
operations.

23:4 RES RAZ/IGN Reserved.

3:0 Z-Reference
Integer
<23:20>

RW The integer MSBs of the starting Z-value for a
Z-buffered line drawing operation.

GZVR-L

31:12 Z-Reference
Integer
<19:0>

RW The integer LSBs of the starting Z-value for a
Z-buffered line drawing operation.

11:0 Z-Reference
Fraction

RW The fractional part of the starting Z-value for a
Z-buffered line drawing operation.

4–60 Register Descriptions

The GZVR-H and GZVR-L specify the starting 36-bit Z-value for a Z-buffered

line or span drawing operation. The GZVR-H and GZVR-L are used in all

Z-buffered line-mode operations.

To initiate a Z-buffered line or span drawing operation, software writes a GSLR

(Section 4.3.1) or the GSWR (Section 4.3.2). This action usually, but not always

(Section 6.2.14), causes the 24-bit Z-reference integer value (GZVR-H <3:0> and

GZVR-L <31:12>) and 12-bit Z-reference fraction value (GZVR-L <11:0>) to be

loaded into the internal Z-interpolator hardware, to specify the first Z-address

for the line or span drawing operation.

The Z-interpolator calculates subsequent Z-values (in full 24.12 precision) by

adding the 36-bit Z-increment integer and fraction value from the Z-increment

registers (GZIR-L and GZIR-H) to the accumulated Z-value at each step across

the span or line.

The GZVR-H also specifies the stencil reference value (<31:24>) used in all

stencil-buffer operations. The stencil buffer is packed with the Z-buffer in each

frame buffer Dword, such that the Z value at that pixel location resides in the

3 low bytes and the stencil value resides in the high byte. Stencil operations

are enabled and parameterized in conjunction with Z operations in the stencil

mode register (GSMR, Section 4.4.14). When read, the stencil reference field

returns arbitrary data.

(See Section 6.1.5 for more information about stencil and Z-buffer organization.

See Section 6.2.14 for more information about using the GZVR-L and GZVR-H

in Z-buffered and stencil operations.)

The GZVR-H and GZVR-L are cleared at reset.

Register Descriptions 4–61

4.4.17 Z-Increment High and Low Registers

Figure 4–38 shows the Z-increment high register (GZIR-H) and Z-increment

low register (GZIR-L) formats, and Table 4–40 describes their fields.

Figure 4–38 GZIR-H AND GZIR-L Formats

GZIR−L

RES

Z−Increment Integer <19:0>

GZIR−H

Z−Increment Fraction

31

31 12 11 0

Z−
Increment

Integer

4

<23:20>

3 0

Table 4–40 GZIR-H and GZIR-L Field Description

Bits Field Type Description

GZIR-H

31:4 RES RAZ/IGN Reserved.

3:0 Z-Increment
Integer
<23:20>

RW The integer MSBs of the Z-increment value for a
Z-buffered line drawing operation.

GZIR-L

31:12 Z-Increment
Integer
<19:0>

RW The integer LSBs of the Z-increment value for a
Z-buffered line drawing operation.

11:0 Z-Increment
Fraction

RW The fractional part of the Z-increment value for a
Z-buffered line drawing operation.

The GZIR-H and GZIR-L specify the 36-bit Z-increment value in 24.12 precision

for a Z-buffered line or span drawing operation. The GZIR-L and GZIR-H are

used in all Z-buffered line-mode operations.

4–62 Register Descriptions

To initiate a Z-buffered line or span drawing operation, software writes a GSLR

(Section 4.3.1) or the GSWR (Section 4.3.2). This action always causes the 24-

bit Z-increment integer value (GZIR-H <3:0> and GZIR-L <19:0>) and 12-bit

Z-increment fraction value (GZIR-L <11:0>) to be loaded into the internal Z-

interpolator hardware, to specify the Z-increment for the line or span drawing

operation.

During Z-buffered operations, the Z-interpolator calculates the next pixel’s

Z value by adding the 36-bit Z-increment integer and fraction value to the

previous pixel’s Z value at each step across the span or line.

(See Section 6.2.14 for more information about using the GZIR-L and GZIR-H

in Z-buffered operations.)

The GZIR-H and GZIR-L are cleared at reset.

Register Descriptions 4–63

4.4.18 Foreground Register

Figure 4–39 shows the foreground register (GFGR) format, and Table 4–41

describes its field.

Figure 4–39 GFGR Format

31 0

Foreground

Table 4–41 GFGR Field Description

Bits Field Type Description

31:0 Foreground RW Defines the foreground color (or set of colors) used in
pixel substitution in any of the transparent or opaque
stipple, line, or fill modes.

The GFGR defines foreground pixel colors. In any of the transparent or opaque

stipple, line, or fill modes, foreground color is substituted for ones in the data.

The data can be any of the following:

• Write data on a write to the frame buffer or GCTR

• Data in the GDAR on a write to a GSLR or the GSWR

• Data in the GDAR on a write to the frame buffer in a fill mode

The foreground field is a 32-bit quantity regardless of the depth of the bitmap

type currently being drawn to. Consequently, software must compensate for

the actual depth by replicating the color across the foreground field for bitmap

depths less than 32-bpp (Figure 4–40). For example, to present the same color

to each possible buffer in 8-bpp mode, the foreground color must be replicated

four times across foreground field. Similarly, in 12-bpp mode, the foreground

color must be replicated across both sets of RGB values. (The bitmap formats

are described in Sections 6.1.5 through 6.1.5.3.)

When drawing to 12-bpp bitmaps in a 32-bpp frame buffer, the plane mask

registers (GPMR, Section 4.4.20) can be used with the GFGR and background

register (GBGR) to draw to only the target bitmap while masking off the other

bitmap.

4–64 Register Descriptions

Note

A write to the red or blue increment register (GRIR, Section 4.4.23 or

GBIR, Section 4.4.27) alters the contents of the GFGR.

The GFGR is initialized to 0000000016 at reset.

Figure 4–40 shows the GFGR and GBGR contents as a function of the bitmap

depth in 8-bpp and 32-bpp frame buffers.

Figure 4–40 Foreground and Background as a Function of Bitmap Depth

indexindexindexindex

index

green

green

tag

index

24−bpp Bitmap

indexindex

greentag12−bpp Bitmap

8−bpp Frame Buffer

32−bpp Frame Buffer

8−bpp Bitmap

31 8

31

72423

8 7

16

24

15

23

0

1615 0

8−bpp Bitmap

blue

blueblue

red

redred

Register Descriptions 4–65

4.4.19 Background Register

Figure 4–41 shows the background register (GBGR) format, and Table 4–42

describes its field.

Figure 4–41 GBGR Format

31 0

Background

Table 4–42 GBGR Field Description

Bits Field Type Description

31:0 Background RW Defines the background color (or set of colors) used in
pixel substitution in any of the opaque stipple, line, or
fill modes.

The GBGR defines background pixel colors. In any of the opaque-stipple,

opaque-line, or opaque-fill modes, background color is substituted for zeros in

the stipple mask or line mask. The stipple mask and line mask data can be

any of the following:

• Write data on a write to the frame buffer or GCTR

• Data in the GDAR on a write to a GSLR or the GSWR

• Data in the GDAR on a write to the frame buffer in a fill mode

The background field is a 32-bit quantity regardless of the depth of the

destination bitmap currently being drawn to. Consequently, software must

arrange the colors or indices based on the actual depth, as it does for the

foreground register (GFGR, Section 4.4.18). See Figure 4–40.

Note

A write to the green or blue increment register (GGIR, Section 4.4.25

or GBIR, Section 4.4.27) alters the contents of the GBGR.

The GBGR is initialized to 0000000016 at reset.

4–66 Register Descriptions

4.4.20 Plane Mask Registers

Note

Several copies of the plane mask registers (GPMRs) are physically

resident in the VRAMs rather than the 21030, and are undefined

at reset. Because most standard DRAMs do not support persistent

write-per-bit, GPMR writes should not be performed to back buffers

populated by such DRAMs.

Figure 4–42 shows the GPMR format, and Table 4–43 describes the field.

Figure 4–42 GPMR Format

31 0

Plane Mask

Table 4–43 GPMR Field Description

Bits Field Type Description

31:0 Plane
Mask

RW A depth-dependent mask. Writes are enabled for bits
in the pixel value that correspond to set mask bits, and
disabled for bits in the pixel value that correspond to
clear mask bits.

The GPMRs specify the bits within each pixel value that are affected by a write

to the frame buffer. Each GPMR bit determines whether the corresponding

bit in a pixel value is updated on a write. A mask bit value of one enables

the corresponding pixel value bit to be updated, and a mask bit value of zero

disables updating.

Although drawing to an 8-bpp destination requires only an 8-bit plane mask,

the 21030 requires that the 8-bit mask be replicated across the 32-bit register

(Figure 4–43).

Register Descriptions 4–67

The GPMRs are used primarily to:

• Disable writes to one or more 8-bpp or 12-bpp color bitmaps in a 32-bpp

frame buffer

• Isolate writes to overlay planes, window tags, and so on

• Isolate Z-buffer access to either the Z value or the stencil value

(See Chapters 6 and 7 for more information about using the plane mask

registers.)

The GPMRs are undefined at reset.

Figure 4–43 shows the plane-mask format for 8-bpp, 12-bpp, and 24-bpp

destinations.

Figure 4–43 Plane Mask Formats

Plane MaskPlane MaskPlane MaskPlane MaskGPMR

8−bpp Destination

12−bpp or 24−bpp Destination

31 8 72423 1615 0

Plane MaskGPMR

31 0

4–68 Register Descriptions

4.4.21 Pixel Mask Register

The pixel mask register (GPXR) is used to mask pixels in opaque-stipple,

simple, and simple-Z modes; its format is mode-dependent.

4.4.21.1 Opaque-Stipple Mode

Figure 4–44 shows the GPXR opaque-stipple mode format, and Table 4–44

describes its field.

Figure 4–44 GPXR Opaque-Stipple Mode Format

31 0

Pixel Mask

Table 4–44 GPXR Opaque-Stipple Mode Format Field Description

Bits Field Type Description

31:0 Pixel
Mask

RW The mask data for each 32-pixel stippled span. Writes
are enabled for pixels that correspond to set mask bits,
and disabled for pixels that correspond to clear mask
bits.

In opaque-stipple mode, the frame buffer write data determines whether each

of the 32 pixels beginning at that address should be filled with foreground or

background color, and the GPXR determines which pixels are written. Prior to

the frame buffer write, the 32-bit mask is written to the GPXR to selectively

write-enable each pixel on the subsequent opaque-stipple operation.

4.4.21.2 Simple and Simple-Z Modes

Figure 4–45 shows the GPXR simple and simple-Z modes format, and

Table 4–45 describes its fields.

Register Descriptions 4–69

Figure 4–45 GPXR Simple and Simple-Z Modes Format

31 4 3 0

RES
Mask
GPXR

Table 4–45 GPXR Simple and Simple-Z Modes Field Description

Bits Field Type Description

31:4 RES RAZ/IGN Reserved.

3:0 Mask
GPXR

RW Mask data for each 32-bit frame buffer write. Writes
are enabled for pixels that correspond to set mask
bits, and disabled for pixels that correspond to clear
mask bits.

The mask GPXR field (<3:0>) determines which data bytes are to be written

in the next frame buffer write. The field is logically ANDed with the incoming

PCI byte mask, to create the byte mask that is ultimately used in simple

and simple-Z modes. When writing to 12-bpp or 24-bpp destinations, <0>

determines whether to write the pixel.

Pixel-mask data for simple and simple-Z modes is primarily useful in systems

based on Alpha AXP microprocessors. Because the Alpha AXP instruction set

does not support byte granularity, a true PCI byte mask might not be available.

4.4.21.3 Any Mode

The GPXR is mapped into the 21030 register space twice: as a persistent

GPXR and as a one-shot GPXR (Table 2–2). When written as a one-shot GPXR,

the value in the GPXR is used only for the next operation. After that operation

is complete, the GPXR reinitializes to an inactive state of FFFFFFFF. When

written as a persistent GPXR, the GPXR retains its value until next written

at either address. The GPXR state bit in the mode register (GMOR <23>,

Section 4.4.1) indicates the current state of GPXR.

The GPXR is initialized to FFFFFFFF at reset.

4–70 Register Descriptions

4.4.22 Red-Value Register

The function of the red-value register (GRVR) depends on whether the graphics

mode is a color-interpolated or a sequential-interpolated line mode.

4.4.22.1 Color-Interpolated Line Mode

Figure 4–46 shows the GRVR color-interpolated line-mode format, and

Table 4–46 describes its fields.

Figure 4–46 GRVR Color-Interpolated Line-Mode Format

31 27 26 20 19 12 11 0

RES
Red−Value

Integer
Red−Value

Fraction
Dither
Row

Table 4–46 GRVR Color-Interpolated Line-Mode Format Field Description

Bits Field Type Description

31:27 Dither
Row

RW The row pointer into the 32 � 32 dither matrix.

26:20 RES RAZ/IGN Reserved.

19:12 Red-
Value
Integer

RW The integer part of the starting red value for a
color-interpolated line drawing operation.

11:0 Red-
Value
Fraction

RW The fractional part of the starting red value for a
color-interpolated line drawing operation.

The GRVR specifies the starting 20-bit red value for a color-interpolated line or

span drawing operation. The GRVR is used in all color-interpolated line mode

operations.

To initiate a color-interpolated line or span drawing operation, software writes

a slope register (GSLR<7:0>) or the span width register (GSWR). This action

usually loads the red-value integer and fraction (<19:12,11:0>) into the internal

color-interpolator hardware as the starting red value for the line or span

drawing operation. However, the red-value parameters are sampled only if

the address register (GADR) was written since the last drawing operation (see

Section 6.2.14.4 for more information).

Register Descriptions 4–71

The color interpolator calculates subsequent red values for each pixel in the

span or line (in full 8.12 precision) by adding the 20-bit red-increment integer

and fraction values from the red increment register (GRIR, Section 4.4.23)

to the accumulated red value at each step across the span or line. (See

Section 6.2.14 for more information about using the GRVR in color-interpolated

line and span drawing operations.)

The dither-row field (<31:27>) specifies the row pointer into the internal

32 � 32 dither matrix, which is used in all dithered line-drawing modes. The

pointer addresses the matrix row and, together with the column pointer from

the green-value register (GGVR, Section 4.4.24), produces the dither offsets

added to each color prior to decimation when drawing in a dithering mode.

4.4.22.2 Sequential-Interpolated Line Mode

Figure 4–47 shows the GRVR sequential-interpolated line-mode format, and

Table 4–47 describes its fields.

Figure 4–47 GRVR Sequential-Interpolated Line-Mode Format

31 20 19 12 11 0

RES
Grey−Value

Integer
Grey−Value

Fraction

Table 4–47 GRVR Sequential-Interpolated Line-Mode Format Field Description

Bits Field Type Description

31:20 RES RAZ/IGN Reserved.

19:12 Grey-
Value
Integer

RW The integer part of the starting grey-scale value for
a sequentially interpolated line drawing operation.

11:0 Grey-
Value
Fraction

RW This is the fractional part of the starting grey-scale
value for a sequentially interpolated line drawing
operation.

The GRVR specifies the starting 20-bit grey-scale value for a sequentially

interpolated line drawing operation to an 8-bpp destination bitmap. The GRVR

is used in all sequential-interpolated line mode operations.

4–72 Register Descriptions

To initiate a sequentially interpolated line or span drawing operation, software

writes a GSLR or the GSWR. This action usually loads grey-value integer and

fraction (<19:12,11:0>) into the internal sequential-interpolator hardware as

the starting grey-scale value for the line or span drawing operation. However,

the grey-value parameters are sampled only if the address register GADR

was written since the last drawing operation (see Section 6.2.14.4 for more

information).

The sequential interpolator calculates subsequent grey-scale values for each

pixel in the span or line (in full 8.12 precision) by adding the 20-bit grey-

increment integer and fraction value from the GRIR to the accumulated

grey-scale value at each step across the span or line. Sequentially interpolated

lines can also be drawn without using the GSLRs.

(See Section 6.2.14 for more information about using the GRVR in sequentially

interpolated line and span drawing operations.)

The GRVR is cleared at reset.

Register Descriptions 4–73

4.4.23 Red-Increment Register

The function of the red-increment register (GRIR) depends on whether the

graphics mode is a color-interpolated or a sequential-interpolated line mode.

Note

Writes to the foreground register (GFGR, Section 4.4.18) alter the

contents of the GRIR.

4.4.23.1 Color-Interpolated Line Mode

Figure 4–48 shows the GRIR color-interpolated line-mode format, and

Table 4–48 describes its fields.

Figure 4–48 GRIR Color-Interpolated Line-Mode Format

31 20 19 12 11 0

RES
Red−Increment

Integer
Red−Increment

Fraction

Table 4–48 GRIR Color-Interpolated Line-Mode Format Field Description

Bits Field Type Description

31:20 RES RAZ/IGN Reserved.

19:12 Red-
Increment
Integer

RW The integer part of the red-increment value for a
color-interpolated line drawing operation.

11:0 Red-
Increment
Fraction

RW The fractional part of the red-increment value for a
color-interpolated line drawing operation.

The GRIR specifies the 20-bit red-increment value for a color-interpolated line

or span drawing operation. The GRIR is used in all color-interpolated line

mode operations.

4–74 Register Descriptions

To initiate a color-interpolated line or span drawing operation, software writes

a slope register (GSLR<7:0>) or the span width register (GSWR). This action

loads the red-increment integer and fraction values (<19:12,11:0>) into the

internal color-interpolator hardware as the red-increment for the line or span

drawing operation.

During color-interpolated operations, the color interpolator calculates the next

pixel’s red value by adding the 20-bit red-increment integer and fraction value

to the previous pixel’s red value, at each step across the span or line. (See

Section 6.2.14 for more information about using the GRIR in color-interpolated

line and span drawing operations.)

4.4.23.2 Sequential-Interpolated Line Mode

Figure 4–49 shows the GRIR sequential-interpolated line-mode format, and

Table 4–49 describes its fields.

Figure 4–49 GRIR Sequential-Interpolated Line-Mode Format

31 20 19 12 11 0

RES
Grey−Increment

Integer
Grey−Increment

Fraction

Table 4–49 GRIR Sequential-Interpolated Line-Mode Format Field Description

Bits Field Type Description

31:20 RES RAZ/IGN Reserved.

19:12 Grey-
Increment
Integer

RW The integer part of the grey-scale increment
value for a sequentially interpolated line drawing
operation.

11:0 Grey-
Increment
Fraction

RW The fractional part of the grey-scale increment
value for a sequentially interpolated line drawing
operation.

The GRIR specifies the 20-bit grey-scale increment value for a sequentially

interpolated line drawing operation to an 8-bpp destination bitmap. The GRIR

is used in all sequential-interpolated line mode operations.

Register Descriptions 4–75

To initiate a sequentially interpolated line or span drawing operation, software

writes a GSLR or the GSWR. This action loads the grey-increment integer

and fraction values (<19:12,11:0>) into the internal sequential-interpolator

hardware as the grey-increment for the line or span drawing operation.

During sequentially interpolated operations, the sequential interpolator

calculates the next pixel’s grey-scale value by adding the 20-bit grey-increment

integer and fraction value to the previous pixel’s grey-scale value, at each step

across the span or line.

(See Section 6.2.14 for more information about using the GRIR in sequentially

interpolated line and span drawing operations.)

The GRIR is cleared at reset.

4–76 Register Descriptions

4.4.24 Green-Value Register

Figure 4–50 shows the green-value register (GGVR) format, and Table 4–50

describes its fields.

Figure 4–50 GGVR Format

31 27 26 20 19 12 11 0

RES
Green−Value

Integer
Green−Value

Fraction
Dither

Column

Table 4–50 GGVR Field Description

Bits Field Type Description

31:27 Dither
Column

RW The column pointer into the 32 � 32 dither matrix.

26:20 RES RAZ/IGN Reserved.

19:12 Green-
Value
Integer

RW The integer part of the starting green value for a
color-interpolated line drawing operation.

11:0 Green-
Value
Fraction

RW The fractional part of the starting green value for a
color-interpolated line drawing operation.

The GGVR specifies the starting 20-bit green value for a color-interpolated line

or span drawing operation. The behavior and use of the GGVR are the same

as the GRVR in color-interpolated line mode (Section 4.4.22), except that the

GGVR specifies the following:

• Green value rather than red value

• Column pointer, rather than row pointer, into the dither matrix

The GGVR is cleared at reset.

Register Descriptions 4–77

4.4.25 Green-Increment Register

Figure 4–51 shows the green-increment register (GGIR) format, and Table 4–51

describes its fields.

Figure 4–51 GGIR Format

31 20 19 12 11 0

RES
Green−Increment

Integer
Green−Increment

Fraction

Table 4–51 GGIR Field Description

Bits Field Type Description

31:20 RES RAZ/IGN Reserved.

19:12 Green-
Increment
Integer

RW The integer part of the green-increment value for a
color-interpolated line drawing operation.

11:0 Green-
Increment
Fraction

RW The fractional part of the green-increment value for
a color-interpolated line drawing operation.

The GGIR specifies the 20-bit green-increment value for a color-interpolated

line or span drawing operation. The behavior and use of the GGIR are the

same as the GRIR in color-interpolated line mode (Section 4.4.23), except that

the GGIR specifies the green increment rather than the red increment.

Note

Writes to the background register (GBGR, Section 4.4.19) alter the

contents of the GGIR.

The GGIR is cleared at reset.

4–78 Register Descriptions

4.4.26 Blue-Value Register

Figure 4–52 shows the blue-value register (GBVR) format, and Table 4–52

describes its fields.

Figure 4–52 GBVR Format

31 20 19 12 11 0

RES
Blue−Value

Integer
Blue−Value

Fraction

Table 4–52 GBVR Field Description

Bits Field Type Description

31:20 RES RAZ/IGN Reserved.

19:12 Blue-
Value
Integer

RW The integer part of the starting blue value for a
color-interpolated line drawing operation.

11:0 Blue-
Value
Fraction

RW The fractional part of the starting blue value for a
color-interpolated line drawing operation.

The GBVR specifies the starting 20-bit blue value for a color-interpolated line

or span drawing operation. The behavior and use of the GBVR are the same

as the GRVR in color-interpolated line mode (Section 4.4.22), except that the

GBVR specifies the blue value and does not specify an index into the dither

matrix.

The GBVR is cleared at reset.

Register Descriptions 4–79

4.4.27 Blue-Increment Register

Figure 4–53 shows the blue-increment register (GBIR) format, and Table 4–53

describes its fields.

Figure 4–53 GBIR Format

31 20 19 12 11 0

RES
Blue−Increment

Integer
Blue−Increment

Fraction

Table 4–53 GBIR Field Description

Bits Field Type Description

31:20 RES RAZ/IGN Reserved.

19:12 Blue-
Increment
Integer

RW The integer part of the blue-increment value for a
color-interpolated line drawing operation.

11:0 Blue-
Increment
Fraction

RW The fractional part of the blue-increment value for a
color-interpolated line drawing operation.

The GBIR specifies the 20-bit blue-increment value for a color-interpolated line

or span drawing operation. The behavior and use of the GBIR are the same as

the GRIR in color-interpolated line mode, except that the GBIR specifies the

blue increment rather than the red increment.

Note

Writes to the foreground or background register (GFGR, Section 4.4.18

or GBGR, Section 4.4.19) alter the contents of the GBIR.

The GBIR is cleared at reset.

4–80 Register Descriptions

4.4.28 Deep Register

Figure 4–54 shows the deep register (GDER) format, and Table 4–54 describes

its fields.

Figure 4–54 GDER Format

31 9 8 5 417 16 15 214 13 112 11 010

R
E
S

S
D
A
C

H
S
S

C
S

R
D
e
e
p

W
Addr
Mask

E

Block
<3:0>

S
A
M
S

R
E
S

R
E
S

R
E
S

RES

Table 4–54 GDER Field Description

Bits Field Type Description

31:17 RES RAZ/IGN Reserved.

16 HSS RW Horizontal sync select—When set, vsync_l carries
vertical sync pulses and hsync_l carries horizontal
sync pulses; when clear, vsync_l carries a composite
sync signal and hsync_l carries a stereo control
signal.

15 RES RAZ/IGN Reserved.

14 SDAC RW Slow DAC—When set, the RAMDAC MPU port delay
is enabled; when clear, the delay is disabled.

13 RES RAZ/IGN Reserved.

12 RWE RW ROM write enable—When set, the optional, external
EEPROM can be written; otherwise, writes to the
EEPROM are disabled.

11 RES RAZ/IGN Reserved.

10 SAMS RW Serial-access memory size—Set for SAMs with 256
entries; clear for SAMs with 512 entries.

9 CS RW Column size—Set for 256 columns (128K � n parts);
clear for 512 columns (256K � n parts).

8:5 Block
<3:0>

RW For each block bit n: When set, eight columns are
enabled for VRAMs in segment n; when clear, four
columns are enabled for VRAMs in segment n.

(continued on next page)

Register Descriptions 4–81

Table 4–54 (Cont.) GDER Field Description

Bits Field Type Description

4:2 Addr
Mask

RW Address mask—Determines which bits of the
incoming PCI address are masked according to
the size of the 21030 address space, as follows:

<4:2> Mask Core Map Size

000 Mask <24:22> 4MB

001 Mask <24:23> 8MB

011 Mask bit 24 16MB

111 No masking 32MB

Unused codes are reserved.

1 RES RAZ/IGN Reserved.

0 Deep RW Set for a 32-bpp frame buffer and clear for an 8-bpp
frame buffer.

The GDER specifies the type and configuration of the frame buffer. The 21030

supports 8-bpp and 32-bpp frame buffers, comprising various types of VRAM

parts. The GDER also determines whether video sync is for a standard or

stereo display, enables RAMDAC access delay, and write-enables the external

EEPROM. The GDER must be written before the first frame buffer access (it is

typically written once, at initialization time).

The horizontal sync select bit (<16>) specifies the type of video sync pulses on

both the vsync_l and hsync_l pins. When this bit is set, the 21030 generates

separate horizontal and vertical sync pulses; when cleared, the 21030 generates

a composite vertical sync signal and a stereo display output control signal.

The slow DAC bit (<14>) specifies whether the 21030 inserts a delay period

after each RAMDAC MPU access cycle to comply with the minimum MPU cycle

specifications of certain RAMDACs. The delay occurs while the dacce<1:0>

signals are deasserted and the delay period is 4 frame buffer clocks.

The ROM write enable bit (<12>) is set to write-enable the external EEPROM.

When <12> is clear, external EEPROM writes are disabled; however, the cycle

is externally visible and can be used to implement a write-only parallel port

(Section 8.3).

4–82 Register Descriptions

Note

The 21030 supports block write and persistent plane mask, but most

DRAMs do not. If DRAMs that do not support these features are used,

plane masking and block-mode operations cannot be used.

The SAM size bit, column size bit, and block field (<10,9,8:5>) identify the type

of VRAM.

The SAM size and column size bits (<10,9>) are set according to the size (128K

� n or 256K � n) of the VRAM parts that populate the frame buffer.

The block field (<8:5>) defines the format of block-write data expected by the

VRAMs. Depending on the vendor and the memory organization, a VRAM can

be enabled to write eight or four columns per block-write CAS cycle. However,

the 21030 writes only four columns at a time, though the different types of

VRAM require slightly different control. The 4-bit width of the block field

allows different VRAM devices to occupy different segments in the same frame

buffer bank. VRAMs map to the 21030 frame buffer segments and banks

(Section 8.1).

The address mask (<4:2>) determines how incoming PCI address bits

<24:22> are masked to index into the address space. (See Chapter 2 for

more information.)

The deep bit (<0>) specifies the physical depth of the frame buffer. Note

that this bit does not always indicate the depth of the displayed bitmap in a

32-bpp frame buffer, which supports various bitmap depths. The visual depth

is specified separately in the GMOR (Section 4.4.1). (Sections 6.1.5 through

6.1.5.3 describe the bitmaps supported by the 21030.)

The GDER is cleared at reset.

Register Descriptions 4–83

4.5 Video Timing Registers

The video timing registers control the screen and VRAM shift-register timing.

They specify the parameters to generate composite sync and blank and VRAM

shift clocks, and determine whether stereo display is enabled.

4.5.1 Horizontal Control Register

Figure 4–55 shows the horizontal control register (VHCR) format, and

Table 4–55 describes its fields.

Figure 4–55 VHCR Format

31

Active

30

Back
Porch

9

Horizontal
Sync

28

Front
Porch

27

O
d
d

821 20 14 13 0

H
S
P

29

<8:0>

Active <10:9>

Table 4–55 VHCR Field Description

Bits Field Type Description

31 Odd RW When clear, enables the last 4 pixels on a scan line
to be displayed if the value of active (<29:28,8:0>) is
an odd number. When set, the last 4 pixels are not
displayed.

30 HSP RW Horizontal sync polarity. When set, horizontal sync
is asserted high. When clear, horizontal sync is
asserted low. (Describes 21030 step B functionality.
In the 21030 step A, this bit is reserved and
horizontal sync is low.)

29:28 Active
<10:9>

RW Active field MSBs. See bits <8:0>.

27:21 Back
Porch

RW The value of this field is �2. It specifies the number
of pixels between the deassertion of horizontal sync
and the deassertion of horizontal blank, as follows:

Number of pixels = back porch value � 4

(continued on next page)

4–84 Register Descriptions

Table 4–55 (Cont.) VHCR Field Description

Bits Field Type Description

20:14 Horizontal
Sync

RW The value of this field is �2. It specifies the number
of pixels between the assertion of horizontal sync
and the deassertion of horizontal sync, as follows:

Number of pixels = horizontal sync value � 4

13:9 Front
Porch

RW The value of this field is �2. It specifies the number
of pixels between the assertion of horizontal blank
and the assertion of horizontal sync, as follows:

Number of pixels = front porch value � 4

8:0 Active
<8:0>

RW Active field LSBs. The value of <29:28,8:0> (Active
<10:0>) is �2. It specifies the number of pixels
between the deassertion of horizontal blank and the
assertion of horizontal blank (that is, the number of
active display pixels on the scan line), as follows:

Number of pixels = active value � 4

Although 00016 and 00116 = <2, they are exceptions,
as follows:

<8:0> Pixels

002 8

003 12
...

...

7FF 8188

000 8192

001 8196

The VHCR contains the horizontal timing parameters for the monitor in use.

The parameters specify various times between the assertion and deassertion of

the horizontal sync and blank signals. The values are specified in multiples of

4 pixels.

The odd bit (<31>) determines whether the last 4 pixels of all scan lines are

displayed when active (<29:28,8:0>) value MOD 2 = 1. For example, if the

scan-line active width is 1028 pixels, the odd bit determines whether pixels

1024..1027 are displayed. This allows the specification of active field values

that are 4 pixels longer than expected by the monitor. It also effectively skews

the scan lines by 4 pixels when they are mapped into frame buffer memory.

Because the 21030 memory controller comprises four independent memory

controllers, skewing maps vertically contiguous screen pixels into memory in a

Register Descriptions 4–85

way that allows such pixels to be drawn simultaneously. This greatly improves

the drawing rates for tall, thin areas (that is, lines). (See Section 7.2.3.3 for

information about programming this feature. See Section 8.1 for information

about mapping the visible screen using the 21030 memory controller.)

Note

The VHCR must be initialized before enabling video in the video valid

register (VVVR, Section 4.5.4).

The VHCR is cleared at reset.

4–86 Register Descriptions

4.5.2 Vertical Control Register

Figure 4–56 shows the vertical control register (VVCR) format, and Table 4–56

describes its fields.

Figure 4–56 VVCR Format

RES

31

Active Lines

30

Back
Porch

Vertical

28

Sync
Front
Porch

27 0

S
E

22 21 16 15 11 10

V
S
P

29

Table 4–56 VVCR Field Description

Bits Field Type Description

31 SE RW Stereo enable—When set, the refresh pointer is
reloaded with the video base address after every
other frame; when clear, it is reloaded after every
frame.

30 VSP RW Vertical sync polarity. When set, vertical sync is
asserted high. When clear, vertical sync is asserted
low. (Describes 21030 step B functionality. In the
21030 step A, this bit is reserved and vertical sync is
low.)

29:28 RES RAZ/IGN Reserved.

27:22 Back
Porch

RW The value of this field is �1. It specifies the number
of lines between the deassertion of vertical sync and
the deassertion of vertical blank.

21:16 Vertical
Sync

RW The value of this field is �1. It specifies the number
of lines between the assertion of vertical sync and
the deassertion of vertical sync.

15:11 Front
Porch

RW The value of this field is �0. It specifies the number
of lines between the assertion of vertical blank and
the assertion of vertical sync.

10:0 Active
Lines

RW The value of this field is �1. It specifies the number
of lines between the deassertion of vertical blank and
the assertion of vertical blank; that is, the number of
active scan lines in the frame.

The VVCR contains the vertical timing parameters for the monitor in use. The

parameter values are specified in number of scan lines.

Register Descriptions 4–87

The refresh pointer is an address pointer in the 21030’s timing logic. It

contains the frame buffer location at which the screen is being refreshed. The

stereo enable bit (<31>) determines when to reload the working-screen refresh

pointer from the video base-address field in the video base-address register

(VVBR <8:0>, Section 4.5.3). In nonstereo modes, the 21030 reloads the refresh

pointer with the video base address at vertical sync time to reset the frame.

The 21030 implements stereo by dividing the visible screen into left-eye and

right-eye portions that are contiguous in frame buffer memory. Each portion

is then stretched to fill one full left or right screen in one-half of the normal

frame time. The video pointer is reloaded with the video base-address value

after every two frames, displaying left, then right; left, then right; and so on.

The VVCR is cleared at reset and must be initialized before enabling video in

the video valid register (VVVR, Section 4.5.4).

4–88 Register Descriptions

4.5.3 Video Base-Address Register

Figure 4–57 shows the video base-address register (VVBR) format, and

Table 4–57 describes its fields.

Figure 4–57 VVBR Format

31 9 8 0

RES Video Base Address

Table 4–57 VVBR Field Description

Bits Field Type Description

31:9 RES RAZ/IGN Reserved.

8:0 Video
Base
Address

WO The row address of the start of the visible frame in
21030 frame buffer space.

The VVBR specifies the frame buffer row-address that is the start of the

visible portion of video memory. The video base-address field (<8:0>) contains

a pixel address aligned to either 2K pixels or 4K pixels, depending on whether

the frame buffer is populated with 128K � n or 256K � n VRAMs; that is,

depending on the value of the column size bit in the deep register (GDER <9>,

Section 4.4.28).

Table 4–58 shows the required video base-address alignment as a function of

the VRAM size.

Table 4–58 Video Base-Address Alignment According to VRAM Size

VRAM
Frame
Buffer Row Size Frame Buffer

Size Depth Pixels Bytes Address Bits

128KB 8-bpp 2K 2K <19:11>

128KB 24-bpp 2K 8K <21:13>

256KB 8-bpp 4K 4K <20:12>

256KB 24-bpp 4K 16K <22:14>

Register Descriptions 4–89

Note

Software must ensure that sufficient video memory exists beyond the

video base address to display the entire screen.

The write-only VVBR is cleared at reset.

4–90 Register Descriptions

4.5.4 Video Valid Register

Figure 4–58 shows the video valid register (VVVR) format, and Table 4–59

describes its fields.

Figure 4–58 VVVR Format

31 3 2 1 0

RES
C
E

B
D

V
V

Table 4–59 VVVR Field Description

Bits Field Type Description

31:3 RES RAZ/IGN Reserved.

2 CE RW Cursor enable—When set, the 21030’s on-chip
64 � 64 � 2 cursor is enabled; when clear, it is
disabled.

1
0

BD
VV

RW
RW

Blank Disable
Video Valid

These bits enable the display of the 21030 frame
buffer, as follows:

0 0
0 1
1 0
1 1

Video disabled (but not blanked)
Active display
Screen blanked
Screen blanked (but active sync signals)

The VVVR enables display of the 21030 frame buffer and on-chip cursor.

The blank disable bit (<1>) determines whether blank_l (composite blank) is

asserted. When blank disable is set, blank_l is asserted. When blank disable

is clear, blank_l is asserted as a function of the video blank circuits. Its edges

are controlled by the VHCR (Section 4.5.1) and VVCR (Section 4.5.2).

The video-valid bit (<0>) enables the 21030 video sync and VRAM clock control

circuits and enables the assertion of the corresponding control pins: hsync_l,

vsync_l, hold_l, and toggle. The video-valid bit indicates that the VHCR

and VVCR parameters are valid; that is, the correct parameters for the screen

mode and type of monitor.

Register Descriptions 4–91

Note

The VHCR (Section 4.5.1) and VVCR (Section 4.5.2) must be initialized

before video is enabled in the VVVR.

The VVVR is cleared at reset.

4–92 Register Descriptions

4.5.5 Video Shift-Address Register

Figure 4–59 shows the video shift-address register (VSAR) format, and

Table 4–60 describes its fields.

Figure 4–59 VSAR Format

31 920 19 010

RES
Last

Shift Address
Interrupt

Shift Address

Table 4–60 VSAR Field Description

Bits Field Type Description

31:20 RES RAZ/IGN Reserved.

19:10 Last Shift
Address

RO Returns the shift address most recently used in a
split read-transfer cycle.

9:0 Interrupt
Shift
Address

RW The address of a VRAM split read-transfer cycle at
which an interrupt should be issued.

The VSAR specifies the address of a VRAM split read-transfer cycle at which

an interrupt should be issued. Every time the 21030 executes a split read-

transfer cycle it compares the address issued with the interrupt shift-address

(<9:0>). If a match is detected and shift-address interrupts are enabled in

the interrupt status register (SISR <17>, Section 4.7.2), the 21030 posts an

interrupt on the inta_l pin.

A split read-transfer cycle transfers one-half of the row specified by the

shift-address VRAMs in display banks (for 8-bpp frame buffers) or display

segments (for 24-bpp frame buffers). Each split read-transfer cycle loads

1024 or 2048 pixels, depending on the VRAM size, into the VRAM SAMs.

Table 4–61 indicates the number of pixels that are loaded and how the

interrupt shift-address is mapped to the frame buffer byte address.

Register Descriptions 4–93

Table 4–61 Interrupt Shift-Address to Frame Buffer Byte-Address Map

VRAM
Depth

Frame Buffer
Depth

Pixels Loaded per
Split Read Transfer

Shift-Address Bits in
Frame Buffer
Byte-Address

128KB 8-bpp 1K pixels <19:10>

256KB 8-bpp 2K pixels <20:11>

128KB 32-bpp 1K pixels <21:12>

256KB 32-bpp 2K pixels <22:13>

Requesting an explicit interrupt at a specific shift address or polling for the

last shift address can be useful in scheduling the off-screen buffer clear, copy,

and draw operations that are typical in performing animations to a portion of

the visible screen (a window).

(See Section 8.1 for more information about mapping display screens to the

physical VRAM devices in 8-bpp and 32-bpp frame buffers.)

The VSAR is cleared at reset.

4.6 Cursor Registers

The cursor registers specify the screen location of the on-chip 64 � 64 � 2

cursor and the frame buffer location of the cursor image. The cursor output

pins (cursor<7:0>) are typically driven into the overlay ports of the RAMDAC.

(See Section 7.2.8 for more information about programming the cursor.)

For system applications in which the RAMDAC contains a cursor generator,

the 21030 cursor registers and display function can be disabled by clearing the

cursor enable bit in the video valid register (VVVR <2>, Section 4.5.4).

4–94 Register Descriptions

4.6.1 Cursor XY Register

Figure 4–60 shows the cursor XY register (CXYR) format, and Table 4–62

describes its fields.

Figure 4–60 CXYR Format

31 24 23 12 11 0

RES Cursor XCursor Y

Table 4–62 CXYR Field Description

Bits Field Type Description

31:24 RES RAZ/IGN Reserved.

23:12 Cursor Y RW The Y coordinate of the top-most pixels inside the
cursor.

11:0 Cursor X RW The X coordinate of the left-most pixels inside the
cursor.

The CXYR specifies the location of the displayed cursor.

Cursor X (<11:0>) and cursor Y (<23:12>) specify the top-left pixel inside the

cursor. The cursor is displayed in the rectangular region from cursor x, cursor y

through cursor x + 63, cursor y + 63.

The 21030 imposes limits on the range of programmable x and y coordinates

for the cursor. Table 4–63 specifies the minimum and maximum values.

Table 4–63 Cursor Coordinate Limits

Limit Value

Cursor X minimum = (Number of pixels between the start of horizontal sync and
the end of horizontal back porch) �63

Cursor X maximum = (Number of pixels between the start of horizontal sync and
the start of horizontal front porch) �1

(continued on next page)

Register Descriptions 4–95

Table 4–63 (Cont.) Cursor Coordinate Limits

Limit Value

Cursor Y minimum = (Number of lines between the start of vertical sync and the
end of vertical back porch) �63

Cursor Y maximum = (Number of lines between the start of vertical sync and the
start of vertical front porch) �1

The CXYR is cleared at reset.

4–96 Register Descriptions

4.6.2 Cursor Base-Address Register

Figure 4–61 shows the cursor base-address register (CCBR) format, and

Table 4–64 describes its fields.

Figure 4–61 CCBR Format

31 9 4 316 15 010

RES
Cursor

Rows −1
Cursor

Base Address RES

Table 4–64 CCBR Field Description

Bits Field Type Description

31:16 RES RAZ/IGN Reserved.

15:10 Cursor
Rows �1

RW Specifies the number of cursor rows to display �1.

9:4 Cursor
Base
Address

RW Specifies the value of frame buffer byte-address bits
<9:4> that points to the bottom of the cursor array
in memory. Note that this corresponds to the top of
the displayed cursor.

3:0 RES RAZ/IGN Reserved.

The CCBR specifies the frame buffer address of the first visible row of the

cursor. The cursor data is arranged in a linear array in the first 1KB of VRAM.

Cursor data is stored as consecutive bits, starting with the first 2 bits of the

upper left pixel, continuing horizontally across the 64 pixels of the row, and

then to the next row down.

Each row of the 64-pixel-wide cursor consumes 16 bytes of memory. The cursor

base address (<9:4>) must be aligned to the start of a cursor row. Therefore,

the cursor base address is specified with bits <9:4> of the full byte-address

(bits <3:0> are all zero).

The cursor rows �1 field (<15:10>) defines the number of rows in the cursor

display. It is usually set to 63.

Register Descriptions 4–97

Constraints imposed by certain monitor-timing specifications might make it

necessary to specify a cursor base address that does not correspond to the first

row of the 64-row cursor, and to specify a cursor rows �1 value other than 63.

(See Section 7.2.8 for more information about the cursor display function.)

The CCBR is cleared at reset.

4–98 Register Descriptions

4.7 Status Registers

The status registers return information on the current status of chip processing

and pending interrupts. They can be written to enable interrupts and provide

a synchronization mechanism for scheduling commands.

4.7.1 Command Status Register

Figure 4–62 shows the command status register (SCSR) format, and Table 4–65

describes its fields.

Figure 4–62 SCSR Format

31 1 0

RES

B
u
s
y

Table 4–65 SCSR Field Description

Bits Field Type Description

31:1 RES RAZ/IGN Reserved.

0 Busy RW When set, the 21030 is processing commands from
the command FIFO; when clear, the 21030 is idle.

When read, the SCSR returns the state of the busy bit (<0>). The busy bit

indicates whether the chip is processing commands or has completed all

command processing and the command FIFO is empty.

The SCSR and the PCI configuration registers are the only registers that are

immediately accessible for read; that is, the command FIFO does not have to

be flushed before completing a read of the SCSR.

The 21030 is optimized as a primarily write-only device and implements

pipelined processing. In typical graphics operations, the driver can stream

writes and commands to the chip without overflowing the command FIFO. The

21030’s PCI retry mechanism combined with short command processing times

prevents most writes from stalling. Hardware retries any writes that do stall

and software polling is unnecessary.

Register Descriptions 4–99

However, in many cases software should poll the busy bit and wait for the

21030 to become idle before continuing. Although the 21030 provides hardware

interlocks to ensure coherency for most operations (such as holding a frame

buffer read until the write buffer is flushed), waiting for the 21030 to be

idle is necessary for unsupported interlocks and to synchronize hardware

and software processing. The following situations are examples of when it is

practical or necessary to wait for the 21030 to be idle.

Software should wait for the 21030 to be idle:

• As an interlock for not updating the GDAR until a DMA operation is

complete

• To avoid unnecessary retries on the PCI bus while long commands complete

• For algorithms that use DMA, to indicate that a DMA operation is complete

and main memory can be unlocked

The SCSR acts as a write memory barrier. The 21030 inserts a write

to the SCSR into the command FIFO as a flag to ensure that preceding

commands and writes are completely processed before subsequent commands

and writes are unloaded from the command FIFO. The command parser

unloads commands and writes from the command FIFO, performs some initial

processing, and then passes graphics processing requests to the pixel pipeline

(Section 3.5). The command parser provides a hardware interlock mechanism

to ensure that any writes it processes do not affect processing in-progress

downstream in the pipeline. The SCSR interlock mechanism is an additional

precaution, in case the hardware interlock fails or cannot handle a particular

operation.

The SCSR is cleared at reset.

4–100 Register Descriptions

4.7.2 Interrupt Status Register

Figure 4–63 shows the interrupt status register (SISR) format, and Table 4–66

describes its fields.

Figure 4–63 SISR Format

RES

E
O
F
I
P

S
A
I
P

T
I
P

T
I
E

S
A
I
E

E
O
F
I
E

RES RES RES

31 21 520 19 418 17 316 15 2 1 0

Table 4–66 SISR Field Description

Bits Field Type Description

31:21 RES RAZ/IGN Reserved.

20 TIE RW Timer interrupt enable—When set, enables timer
interrupts; when clear, the interrupts are disabled.

19:18 RES RAZ/IGN Reserved.

17 SAIE RW Shift-address interrupt enable—When set, enables
shift-address interrupts; when clear, the interrupts
are disabled.

16 EOFIE RW End-of-frame interrupt enable—When set, enables
end-of-frame interrupts; when clear, the interrupts
are disabled.

15:5 RES RAZ/IGN Reserved.

4 TIP R/W1C Timer interrupt pending—When set, indicates that a
timer interrupt is pending. Writing a one to this bit
clears the interrupt.

3:2 RES RAZ/IGN Reserved.

1 SAIP R/W1C Shift-address interrupt pending—When set,
indicates that a shift-address interrupt is pending.
Writing a one to this bit clears the interrupt.

0 EOFIP R/W1C End-of-frame interrupt pending—When set, indicates
that an end-of-frame interrupt is pending. Writing a
one to this bit clears the interrupt.

The SISR enables all supported 21030 interrupts and returns status for all

pending interrupts. For each interrupt, the register contains a read-write

Register Descriptions 4–101

enable bit and a read-only pending status bit. Each pending status bit and its

corresponding interrupt can be cleared by writing a one to the bit.

The 21030 supports three types of interrupts:

• End-of-frame—If enabled, this interrupt is posted at the start of vertical

sync.

• Shift address—If enabled, this interrupt is posted immediately after

a split read-transfer cycle in which the address matched the interrupt

shift-address in the VSAR (Section 4.5.5).

• Timer—If enabled, this interrupt is posted 256 frame buffer clocks after

the interrupt is cleared.

The SISR is cleared at reset.

4–102 Register Descriptions

4.8 External Device Registers

The 21030 has several interfaces to the external devices, including an

EEPROM interface and glueless interfaces to several Brooktree RAMDACs and

a clock generator. The external device registers provide an access window to

these external devices. (See Chapter 8 for more information on the hardware

interface to the external devices.)

4.8.1 EEPROM Write Register

Figure 4–64 shows the EEPROM write register (ERWR) format, and Table 4–67

describes its fields.

Figure 4–64 ERWR Format

31 826 25 7 0

RES ROM Address ROM Data

Table 4–67 ERWR Field Description

Bits Field Type Description

31:26 RES RAZ/IGN Reserved.

25:8 ROM
Address

RW The EEPROM address to be written.

7:0 ROM
Data

RW The EEPROM write data.

The ERWR provides a mechanism to write an external EEPROM (flash ROM),

up to 256K � 8 in size. On a write to the ERWR, the 21030 writes the

EEPROM data byte (<7:0>) to the EEPROM address (<25:8>). (See Sections

2.2.3 and 4.2.6 for more information about accessing the EEPROM.)

The ERWR is cleared at reset.

Register Descriptions 4–103

4.8.2 Palette and DAC Setup Register

Figure 4–65 shows the palette and DAC setup register (EPSR) format, and

Table 4–68 describes its fields.

Figure 4–65 EPSR Format

31 5 4 0

RES
MPU

Control

Table 4–68 EPSR Field Description

Bits Field Type Description

31:16 RES RAZ/IGN Reserved.

4:0 MPU
Control

RW The control and strobe signals for accessing the
RAMDAC. The bits in this field are mapped as
shown in Table 4–69.

The EPSR specifies the control bits to be used when accessing the external

RAMDAC. The palette and DAC data register (EPDR, Section 4.8.3) writes the

data to and reads the data from the RAMDAC. Before accessing the EPDR, the

EPSR MPU control field (<4:0>) must be written to select the appropriate data.

The function of the MPU control field depends on the specific RAMDAC being

used. The 21030’s pin interface is glueless for both PC-class and workstation-

class Brooktree RAMDACs. The pin interface to the RAMDACs comprises the

dacce_l<1:0>, dacrw, and dacc<2:0> pins. These pins are mapped to the

EPSR read-control bits (<4:0>) as shown in Table 4–69.

The Brooktree RAMDACs in the PC-class include the Bt485 and Bt484; and in

the workstation-class include the Bt458, Bt459, and Bt463. Two Bt458-class

RAMDACs can be used to implement a glueless, dual-headed subsystem.

Table 4–69 shows how the EPSR MPU control field is mapped to the 21030

pins, and how the 21030 pins connect to the Bt485-class and Bt458-class

RAMDAC pins.

4–104 Register Descriptions

Table 4–69 EPSR MPU Control Field Mapping

MPU Control 21030 RAMDAC Pin

Bit Function Pin Bt458 Bt485

4 Control dacc2 C2† RS3

3 Control dacc1 C1 RS2

2 Control dacc0 C0 RS1

1 Control dacrw RW RS0

0 = 1 Strobe dacce_l1 CE� (head 1) WR�

0 = 0 Strobe dacce_l0 CE� (head 0) RD�

�Brooktree designation for active-low pins is an asterisk.

†Not required on all Bt458-class RAMDACs.

For example, to read the byte selected by the value RS3:RS0 = 1010 from a

Bt458, software can write 0000001416 to the EPSR, then read the EPDR.

(See Section 8.3 for more information about the hardware interface.)

The EPSR is cleared at reset.

Register Descriptions 4–105

4.8.3 Palette and DAC Data Register

Figure 4–66 shows the palette and DAC data register (EPDR) read format, and

Table 4–70 describes its fields.

Figure 4–66 EPDR Read Format

Read RAMDAC 0
31 24 23 16 15 0

Read RAMDAC 1
31 24 23 0

RES Read Data RES

RESRead Data

Table 4–70 EPDR Read-Format Field Description

Number
of Bits Field Type Description

24 RES RAZ/IGN Reserved. The exact position of the 24 reserved
bits is application-specific.

8 Read
Data

RW The data byte read from the RAMDAC. The exact
position of the read byte is application-specific.

Figure 4–67 shows the EPDR write format, and Table 4–71 describes its fields.

4–106 Register Descriptions

Figure 4–67 EPDR Write Format

31 8 7 0

RES
Write
Data

Table 4–71 EPDR Write-Format Field Description

Bits Field Type Description

31:8 RES RAZ/IGN Reserved.

7:0 Write
Data

RW The data byte to be written to the RAMDAC.

The EPDR provides the read and write window into the external RAMDAC.

On a read, software writes the MPU control field (EPSR <4:0>) with the

appropriate value for a RAMDAC read, and reads the requested data in the

EPDR.

The location of the returned data byte in the EPDR depends on which

RAMDAC was read and is application-specific. That is, the application

determines which of the data<31:0> pins are connected to the RAMDAC’s

MPU data bus. The format shown in Figure 4–66 is a result of connecting the

data bus from RAMDAC 1 to data<31:24> and RAMDAC 0 to data<23:16>.

On a write, software writes the EPSR MPU control field with the appropriate

value for a RAMDAC write and writes the EPDR write data (<7:0>). The

21030 then writes the RAMDAC.

The EPDR is cleared at reset.

Register Descriptions 4–107

4.8.4 Clock Generator Register

Figure 4–68 shows the clock generator register (ECGR) format, and Table 4–72

describes its fields.

Figure 4–68 ECGR Format

31 2 1 0

RES

D
a
t
a

H
o
l
d

Table 4–72 ECGR Field Description

Bits Field Type Description

31:2 RES RAZ/IGN Reserved.

1 Hold RW Set on the last of 56 writes to the ECGR; otherwise,
clear.

0 Data RW The data bit to be written through the serial port to
the clock generator.

The write-only ECGR provides a serial interface to an external ICS1562 clock

generator chip. The interface consists of one data bit (<0>) and a strobe-control

bit (<1>). To program the ICS1562 chip, 56 consecutive data bits must be

written to ECGR <0>. The hold bit must be clear the first 55 writes. On the

last write, the hold bit must be set, to strobe all of the bits from the clock

generator chip’s holding register.

Although this interface is designed for the ICS1562 chip, the register and

hardware port can also be used to communicate with some other serial device.

(Additional external logic might also be required.)

(See Section 8.3 for more information about the clock generator interface.)

The ECGR is cleared at reset.

4–108 Register Descriptions

5
PCI Operations

This chapter describes the PCI functions supported by the 21030. The PCI

signals are described in Section 8.4. See the PCI Local Bus Specification,

Revision 2.0 for more information about the PCI bus transactions described in

this chapter.

5.1 Configuration Operations

Prior to normal device operation, configuration firmware must write several

configuration registers to define the following:

• Device address space

• Associated ROM address space

• Bus access privilege

• Bus ownership duration

To allow system configuration software to access the configuration registers,

the 21030 supports the following PCI configuration transactions:

• Configuration write

• Configuration read

When the 21030 detects either transaction, it uses address bits ad<7:3> to

index into the PCI configuration space header block (Section 4.2). Writes to

reserved configuration addresses are ignored, and reads return zeros. The

21030 will not terminate a configuration cycle.

5.2 Target Operations

As a target, the 21030 responds to the following PCI memory transactions:

• Memory read

• Memory write

PCI Operations 5–1

It responds to any memory read or memory write cycle in which the address

falls within the address space defined by the PCI device base-address register

(PDBR, Section 4.2.2). Additionally, the 21030 responds to any memory read

cycle in which the address falls within the address space defined by the PCI

expansion ROM base-address register (PRBR, Section 4.2.6). If the 21030

detects a write to a reserved location in the 21030 address space, it responds

to and completes the bus cycle, but ignores the data. Similarly, the 21030

responds to and completes a read transaction of a reserved location, but

returns zeros.

The 21030 also responds to the following types of memory transactions,

treating them as one of the simpler supported types:

• Memory write and invalidate (operates as memory write)

• Memory read line (operates as memory read)

• Memory read multiple (operates as memory read)

5.2.1 Access Granularity

As a target, the 21030 supports arbitrary, subDword (less than 32-bits) read

and write accesses. The 21030 handles all possible permutations of byte masks

presented on the cbe_l<3:0> pins during both read and write accesses, with

the following restrictions:

• Writes to 21030 registers are limited to Dword access. Byte masks are

ignored.

• Expansion ROM reads, through the alternate ROM space (Section 2.2.3),

return only Dword-aligned data.

(The byte mask restrictions are different in the 21030 step A. See

Section A.4.1.)

5.2.2 Transaction Termination

As a target, the 21030 supports arbitrary burst-length, memory write cycles

to the 21030 PCI memory space. If the internal command FIFO fills during a

burst write, the 21030 disconnects to avoid losing write data.

The 21030 does not support burst memory-read cycles or any burst transactions

to PCI configuration space. The 21030 disconnects such transactions after one

successful transfer.

The PCI interface loads all writes into the internal 16-entry command FIFO. If

the 21030 detects a memory write cycle to its address space and no command

FIFO entries are available, it stalls for up to 8 PCI clocks, waiting for an

entry to become available. If an entry is still not available, the 21030 issues

5–2 PCI Operations

a target-disconnect termination. The 21030 does not initiate a target-abort

termination.

5.3 Master Operation

The 21030 masters the PCI to move image data between display memory and

system memory. To support this function, the PCI interface initiates memory

read and memory write PCI transactions.

In response to a host read or write request, the 21030 attempts to read or write

in bursts of arbitrary length, according to the command it received. The 21030

responds in DMA-read copy or DMA-write copy mode. The specified length

can be between 1 and 2048 transfers (that is, burst read between 4 bytes and

8KB and burst write between 8 bytes and 16KB). The 21030 attempts to string

together the largest burst possible, but allows the PCI target to regulate the

access through its target-disconnect mechanism.

The 21030 monitors the number of transfers remaining to complete the DMA

request, making the number of separate burst-transfers transparent to the

driver. If the initial attempt to transfer the entire burst length is disconnected,

the 21030 attempts to remaster the bus as many times as necessary to

complete the request without driver assistance. For example, if a DMA read

requests 100 bytes, the 21030 attempts one burst-read of 100 bytes. However,

depending on the speed of the target (for example, a bridge to system memory),

the transfer could comprise 10 bursts averaging 10 bytes each, or 20 bursts

averaging 5 bytes each, and so on.

5.3.1 Transaction Termination

The 21030 supports the PCI-master latency timer mechanism that limits a

master’s tenure in the presence of other bus requests. The 21030 limits its bus

ownership to the number of PCI clocks programmed in the PCI latency timer

register (PLTR, Section 4.2.5). The timer is cleared and disabled when the

21030 is not asserting frame_l. While frame_l is asserted, the timer counts.

If the count equals the value in the PLTR and gnt_l is deasserted (that is,

another agent needs the bus), the 21030 terminates the transaction as soon as

the target asserts trdy_l for the current data transfer.

When initiating a memory transaction, the 21030 issues a master abort if it

does not detect the assertion of devsel_l within 6 PCI clocks after it asserts

frame_l. In such cases, the 21030 terminates the transaction, relinquishes

PCI bus ownership, and sets the master-abort bit in the PCI command and

status register (PCSR <29>, Section 4.2.1).

PCI Operations 5–3

Cycles terminated by a target abort are handled similarly. If a target signals

target abort, the 21030 immediately terminates the cycle, relinquishes bus

ownership and sets the target-abort bit (PCSR <28>).

5.3.2 Aborted DMA Transaction Termination

The 21030 treats an aborted DMA-read copy transaction as a successfully

completed transaction, but it sets the appropriate abort-bit status in the PCSR.

The 21030 immediately completes all subsequent DMA transfers internally (no

PCI activity) until the abort bit is cleared.

An aborted DMA-write copy operation is handled differently. If the target

aborts a DMA-write copy operation, the 21030 relinquishes the bus, sets the

target-abort bit (PCSR <28>), and begins to flush its internal DMA write FIFO.

It does not begin another DMA-write copy operation until the target-abort bit

is cleared.

As a master, the 21030 supports all types of target-initiated terminations

defined by the PCI Local Bus Specification, Revision 2.0.

5.4 Parity

The 21030 generates and drives parity on the par pin. However, the 21030

does not support parity-error checking and notification, because it is not

required to check for parity errors.

As a master, the 21030:

• Generates parity across 36 bits (ad<31:0> and cbe_l<3:0>) for all address

and write-data cycles

• Ignores parity received on par during read-data cycles

As a target, the 21030:

• Generates parity for all read-data cycles

• Ignores parity received on par during address and write-data cycles

5.5 Address and Data Stepping

The 21030 does not drive the ad<31:0> bus in 1 PCI clock tick. The 21030

requires 2 PCI clock cycles to assert signals across this bus during the data

phase of target reads, the address phase of master reads and writes, and the

data phase of master writes. The 21030 asserts frame_l, irdy_l, and trdy_l to

validate the assertions. The bus-stepping bit in the PCI command and status

register (PCSR <7>, Section 4.2.1) is set to indicate this behavior.

5–4 PCI Operations

5.6 Bus Parking

The 21030 supports PCI bus parking. The central PCI arbitration resource can

select the 21030 to actively drive much of the PCI bus to a known state while

the bus is idle, to prevent the bus from floating. When the arbiter asserts

the gnt_l input, the 21030 drives pins ad<31:0>, cbe_l<3:0>, and, at least 1

clock later, par, to an arbitrary state. The 21030 can enable these drivers over

several PCI clocks. When gnt_l is deasserted, the 21030 tristates ad<31:0>

and cbe_l<3:0> on the next clock, and tristates par 1 clock later.

5.7 Functions Not Supported

The 21030 does not support and ignores special cycle and interrupt

acknowledge PCI transactions. As a target, the 21030 does not support

exclusive accesses (LOCK cycles) for any of its registers or for display memory.

The 21030 does not request exclusive access as a master.

PCI Operations 5–5

6
Graphics Operations

This chapter describes the 21030 general graphics functions and specific

graphics modes.

6.1 Overview

The accelerated graphics operations are specified by mode and initiated by a

write to either of the following:

• The frame buffer address space (standard)

• Any graphics command register (alternative)

6.1.1 Frame Buffer Writes

Writing to the frame buffer address space is the standard way to invoke a

graphics function. In general, the 21030 responds to and interprets write data

according to the mode specified in the mode register (GMOR, Section 4.4.1).

When the 21030 detects a write to its frame buffer address space, it starts

the mode-specified graphics operation at the specified address using control

parameters passed in the write data, and possibly, one or more graphics control

registers.

Table 6–1 describes the graphics functions that can be invoked in each mode

on a write to the frame buffer. (Table 4–17 lists all the modes.)

Table 6–1 Mode-Dependent Frame Buffer Write Operations

Mode Action Initiated on Frame Buffer Write

Simple Write pixels.

Simple-Z Conditionally write pixels based on Z-buffer comparison.

Transparent stipple Draw masked, monotone 32-pixel spans.

(continued on next page)

Graphics Operations 6–1

Table 6–1 (Cont.) Mode-Dependent Frame Buffer Write Operations

Mode Action Initiated on Frame Buffer Write

Opaque stipple Draw masked, bitonal 32-pixel spans.

Block stipple Draw masked, patterned� 32-pixel spans.

Block fill Draw unmasked, solid or patterned� spans up to 2K pixels.

Opaque fill Fill bitonal span up to 2K pixels.

Transparent fill Fill solid span up to 2K pixels.

Transparent line Draw masked (styled), monotone 16-pixel lines.

Opaque line Draw masked (styled), bitonal 16-pixel lines.

Copy Fill the copy buffer with a 32-pixel, masked, 8-bpp span or a
16-pixel, masked, 32-bpp span; or, empty the copy buffer to a
32-pixel, masked, 8-bpp span or a 16-pixel, masked, 32-bpp
span.†

DMA-write copy Transfer an unaligned, edge-masked span up to 16KB from
display memory to PCI addressable memory.

DMA-read copy Transfer an unaligned, edge-masked span up to 8KB from PCI
addressable memory to display memory.

�No raster operation. Some additional restrictions apply. See the specific mode description in
Sections 6.2.1 through 6.2.14.

†Whether the copy buffer is filled or emptied depends on the state of the copy hardware.

In several graphics modes, writing to the frame buffer to initiate an operation

does not take full advantage of the 21030’s speed or range. For example, a

write to the frame buffer in copy mode uses only half of the 64-byte on-chip

copy buffer for an 8-bpp span. For another example, the 21030 memory

interface supports very fast line-drawing rates, but writing to the frame buffer

in line mode burdens the CPU with processing Bresenham-style setup code.

6.1.2 Graphics Command Register Writes

For better performance, the graphics command registers can be used to initiate

graphics operations. They give software a faster and simpler way to invoke

graphics operations.

Similar to writing directly to the frame buffer, writing to a graphics command

register invokes a mode-dependent graphics operation, but the frame-buffer

address is provided in a register rather than on the write. Writes to graphics

command registers cannot invoke all mode operations, but can and should be

used to generate the graphics functions listed in Table 6–2.

6–2 Graphics Operations

Table 6–2 describes the graphics operations that can be initiated by writing to

a graphics command register.

Table 6–2 Graphics Command Register Write Operations

Register Mode Action Initiated on Register Write

Slope<7:0> (GSLR<7:0>)
Span width (GSWR)

Line� Initializes the Bresenham engine and then
draws a mode-dependent 16-pixel 2D line
(Table 6–1) or a 3D span or line (Table 6–3).

Slope-no-go<7:0> (GSNR<7:0>) Line� Initializes the Bresenham engine.†

Continue (GCTR) Line� Continues the current line another 16 pixels.

Other In any mode other than a line mode, initiates
an operation based on the specified mode
(Table 6–1), conditionally using the address
from the GADR.

Copy 64 source (GCSR) Copy Fills up to 64 bytes of the copy buffer from
the specified frame buffer address.

Copy 64 destination (GCDR) Copy Empties up to 64 bytes from the copy buffer
to the specified frame buffer address.

�Any line mode.

†The GSNRs are included because they initialize the Bresenham engine, but they do not initiate
line drawing and are not graphics command registers.

Additionally, several graphics command registers provide exclusive access to

the 3D line and span drawing functions. These functions cannot be invoked

by direct frame-buffer writes. The GSLRs, GSWR, and GCTR are used to

invoke 3D line drawing operations, which can be programmed to be Z-buffered,

color-interpolated, masked, and dithered. The GSWR is an alias for GSLR0

with the slope set to zero to invoke a span rather than an arbitrary line.

Table 6–3 lists the functions generated on a write to these registers in the

supported 3D line and span modes.

Table 6–3 Graphics Command Register Write Operations in 3D Line Modes

Line Mode Action Initiated on Register Write�

Color-interpolated,
nondithered

Draw masked, depth-cued (shaded), 16-pixel line (span)
without dithering.

�To GSLRs, GSWR, and potentially, GCTR

(continued on next page)

Graphics Operations 6–3

Table 6–3 (Cont.) Graphics Command Register Write Operations in 3D Line
Modes

Line Mode Action Initiated on Register Write�

Color-interpolated,
dithered

Draw masked, depth-cued (shaded), 16-pixel line (span)
with dithering.

Sequential-interpolated Draw masked, grey-scale-shaded, 16-pixel line (span).†

Z-buffered Draw masked, monotone, 16-pixel, Z-buffered line or span.

Z-buffered,
color-interpolated,
nondithered

Draw masked, Z-buffered, depth-cued (shaded), 16-pixel
line (span) without dithering.

Z-buffered,
color-interpolated,
dithered

Draw masked, Z-buffered, depth-cued (shaded), 16-pixel
line (span) with dithering.

Z-buffered,
sequential-interpolated

Draw masked, Z-buffered, grey-scale-shaded, 16-pixel line
(span).†

�To GSLRs, GSWR, and potentially, GCTR

†8-bpp only

6.1.3 Invoking Graphics Operations

To invoke a graphics function in any supported mode, the basic sequence is as

follows:

1. Set the mode for the desired operation.

2. Write the required mode-specific parameters to the appropriate graphics

control registers.

3. Initiate the operation with a write to the frame buffer or to a graphics

command register.

This sequence of writes is grouped as one command packet. Each packet

typically contains none to several control parameters, followed by the operation

that initiates the write. Software streams command packets to the 21030

where they are stored in the 16-entry command FIFO. The 21030 unloads the

packets from the FIFO one at a time, and executes them as specified by the

mode.

The order of the control parameters is usually not important, but they all

must be written before the final write that initiates the operation. All 21030

drivers must maintain this level of ordering. In particular, Alpha AXP drivers

present special problems because the CPU write buffer does not enforce write

6–4 Graphics Operations

ordering. (See Section 7.3.1 for more information about 21030 support for the

write buffer in Alpha AXP CPUs.)

The 21030 uses a different set of control parameters for each operating mode.

The parameters are provided by the graphics control registers and also by the

data that the operation-initiating write passes to the frame buffer or to the

graphics command registers.

In each mode, the 21030 can operate on a variety of on-screen and off-screen

visual bitmaps; and in the 3D line modes, on off-screen Z-buffers and stencil

buffers. Supported bitmaps include an 8-bpp format in an 8-bpp frame buffer,

and packed 8-bpp, unpacked 8-bpp, 12-bpp, and 24-bpp formats in a 32-bpp

frame buffer. (See Section 6.1.5 for more information about the supported

bitmap and buffer formats, and the mechanisms for handling them.)

6.1.4 Register Load Synchronization

In general, software can write the frame buffer, any graphics control register,

or any graphics command register, without regard to the internal state of the

chip. The order of the writes within each command packet is important to the

extent that all control registers must be set before the frame buffer or graphics

command registers are written to initiate the graphics operation. However, in

all but a few cases, software need not send register data or command packets

in synchronism with the previous operation’s completion.

The 21030 does not schedule a command packet for execution until the previous

command has finished executing. Most of the graphics registers are double-

buffered, such that, while one set is being loaded from a command packet, the

other set can be used for graphics processing without interference. Therefore,

software can usually issue register and packet writes indefinitely, without

polling the state of the 21030 graphics processing hardware or registers. The

following exceptions require the chip to be idle (that is, processing complete

with the command buffer empty) before a write can occur:

• Write to the deep register (GDER) in any mode

• Write to the data register (GDAR) in DMA-write copy mode

For the few cases where it is required, register-load synchronization can be

done in either of the following ways:

• Software can poll the busy bit in the command status register (SCSR <0>,

Section 4.7.1) and write the register only when the value of busy is zero.

Graphics Operations 6–5

• Software can insert a synchronization barrier into the command stream.

A write to the SCSR effectively causes the 21030 to wait for the busy bit

to go to logical zero. A write to the SCSR goes into the command buffer

along with all other writes. But when the SCSR write is removed from

the command buffer for processing, the operation stalls until all previous

graphics processing is completed. For example, before writing the GDAR in

DMA-write copy mode, software can first write the SCSR and then write

the GDAR, rather than polling the busy bit and waiting for the chip to

become idle.

6.1.5 Visual Bitmap and Buffer Formats

The graphics functions support three types of frame buffer objects:

• Visual bitmaps

• Z-buffers

• Stencil buffers

The formats of all supported frame-buffer objects are described in the context

of the frame buffer in which they can exist. The supported visual bitmaps can

have various depths and organizations depending on whether they exist in

an 8-bpp or a 32-bpp frame buffer. The supported Z-buffer and stencil-buffer

objects exist only within the domain of 32-bpp frame buffers, and have two

specific formats (Section 6.1.5.3).

6.1.5.1 8-bpp Frame Buffer

For an 8-bpp frame buffer, the value of the deep bit in the deep register (GDER

<0>, Section 4.4.28) must be zero. A packed 8-bpp bitmap (PB8) is the only

supported type of frame-buffer object in an 8-bpp frame buffer; stencil and

Z-buffers are not supported.

With an 8-bpp frame buffer, the entire screen can be viewed as one large 8-bpp

bitmap. The pixel values (typically color map indices) are byte-packed such

that each Dword in the frame buffer contains four adjacent pixel values.

Figure 6–1 shows the format of a packed 8-bpp bitmap.

6–6 Graphics Operations

Figure 6–1 Packed 8-bpp Bitmap

31 8 724 23 16 15 0

Pixel 3 Pixel 2 Pixel 1 Pixel 0

PB8

6.1.5.2 32-bpp Frame Buffer

For a 32-bpp frame buffer, the value of the deep bit (GDER <0>, Section 4.4.28)

must be one. A 32-bpp frame buffer supports the full range of visual bitmaps

(Figures 6–1 through 6–4) as well as Z-buffers and stencil buffers.

Table 6–4 lists the bitmap formats supported in 32-bpp frame buffers.

Table 6–4 32-bpp Frame Buffer Supported Bitmaps

Mnemonic Description Figure

PB8 Packed 8-bpp bitmap 6–1

UB80

UB81

UB82

Unpacked 8-bpp bitmaps 6–2

DC120

DC121

12-bpp direct-color bitmaps 6–3

TC24 24-bpp true-color bitmap 6–4

Z24 24-bpp Z-buffer/8-bpp stencil 6–5

Z16 16-bpp Z-buffer/up to 8-bpp stencil 6–6

The 32-bpp frame buffer supports only 8-, 12-, and 24-bit bitmap depths. In

a 32-bpp frame buffer, 1 Dword in the frame buffer corresponds to 1 pixel

location, except in the PB8 bitmap. As a result, the 21030 can pack three 8-bit

pixels or two 12-bit pixels into a Dword allocated for a pixel (1 byte is reserved

for the tag field).

In addition to the packed 8-bpp and true-color 24-bpp bitmaps, three unpacked

8-bpp bitmap formats and two 12-bpp bitmap formats are supported in 32-bpp

frame buffers.

Graphics Operations 6–7

Figure 6–2 8-bpp Unpacked Bitmap Formats

Pixel

Pixel

RES

UB8

RES

UB8

2

UB8

RES

1

0

RES

31 8 724 23 16 15 0

31 24 23 16 15 0

Tag

Tag

31 8 724 23 0

Tag Pixel

Figures 6–1 through 6–4 show the content of a pixel Dword for all the possible

bitmap formats. The tag field is common to all and is application-dependent.

6–8 Graphics Operations

Figure 6–3 12-bpp Bitmap Formats

31 8 724 23 20 19 4 316 15 12 11 0

DC12
0

31 8 724 23 20 19 4 316 15 12 11 0

DC12
1

Tag

Tag

Blue

Blue

Green

Green

RES

RES

RES

RES

RES

RES

Red

Red

Figure 6–4 24-bpp True-Color Bitmap Format

TC24
31 8 724 23 16 15 0

Tag BlueGreenRed

The application-specific tag field can also be used to store such things as

overlay or window-ID information, on a per-pixel basis. It can facilitate in-

place, double-buffered or triple-buffered, 8- and 12-bpp bitmaps in a 32-bpp

frame buffer.

The color content in each 8-bpp and 12-bpp format aligns to mutually exclusive

fields within the Dword. While stored in the frame buffer, the multiple bitmaps

are merged, such that each Dword can contain 1 byte from each of three 8-bpp

bitmaps, or three nibbles from each of two 12-bpp bitmaps. In effect, the

reserved fields of one bitmap are aliases for the valid color fields in the other

bitmaps.

Because multiple pixels can be packed into 1 Dword, operating on 8-bpp or

12-bpp bitmaps in a 32-bpp frame buffer requires that the desired source be

specified and the desired destination be isolated, without corrupting another

bitmap within the Dword. For example, to copy from bitmap UB80 to bitmap

UB82 (Figure 6–2), the low byte must be specified as the source and written

Graphics Operations 6–9

to the upper byte, without writing either bitmap UB80 or bitmap UB81. The

21030 can be programmed to isolate the appropriate source and destination

bitmaps for each graphics operation (Section 6.1.6).

The supported bitmap formats depends on the RAMDAC, and all bitmap

formats cannot be used in all applications. For example, a frame buffer that

uses a Bt489 can display packed 8-bpp and 24-bpp formats, but cannot handle

unpacked formats. Conversely, a Bt463 can handle unpacked formats, but

cannot display the packed 8-bpp format.

The unpacked bitmap formats supported by the 21030 are compatible with

the Bt463 RAMDAC, which supports 8-bit pseudo-color, 12-bit direct-color, and

24-bit true-color visual types. The Bt463 allows the color fields to be located

at different bit positions within each pixel’s Dword as a function of the window

ID.

In a 21030 subsystem, bitmaps can be specified on a per-window basis by

using the tag field to specify different window IDs. This allows in-place double-

or triple-buffering without copying the displayed bitmaps, by specifying a

different 8-bpp or 12-bpp bitmap in alternating frames. (See Chapter 7 for

more information about using the 21030 and Bt463 to display the different

bitmap formats and do in-place double-buffering.)

6.1.5.3 Z-Buffer and Stencil-Buffer Formats

Hardware support for Z and stencil buffers is limited to 32-bpp frame buffers.

The 21030 supports two formats for the Z and stencil buffers: Z24 and Z16.

The Z16 bit in the mode register (GMOR <14>, Section 4.4.1) specifies the

format.

The Z24 format provides full, 24-bit Z resolution and is desirable for 3D image

quality. Full-screen, Z-buffering with the Z24 format requires an additional

4MB or 8MB of physical memory, depending on the screen resolution. In the

Z24 format, the 24-bit Z-buffer data and 8-bit stencil-buffer data are stored

packed in one Dword (Figure 6–5). In Z-buffering modes, the 21030 expects to

find stencil and Z information in this format and updates it accordingly.

Figure 6–5 shows the Z24 format for Z and stencil buffers.

6–10 Graphics Operations

Figure 6–5 Z24 Z and Stencil Buffer Format

31 24 23 0

Stencil Stored Z Stored

Alternatively, the Z16 format limits the resolution of the Z-values to 16 bits;

but unlike the Z24 format, it allows full-screen, Z-buffering of an 8-bpp image

in a 32-bpp frame buffer with only 4MB (1024 � 768) or 8MB (1280 � 1024 or

1600 � 1280) of physical memory. The Z16 format is limited to use in 8-bpp

bitmaps in a 32-bpp frame buffer.

Figure 6–6 shows the Z16 format for Z and stencil buffers.

Figure 6–6 Z16 Z and Stencil Buffer Format

8 7 031 24 23

Stencil Stored Z Stored Pixel Value

A separate destination bitmap is used when drawing with a Z24-format buffer,

but not with a Z16-format buffer. The Z16 format is special in that both

the Z-value and pixel value are packed in the Z-buffer Dword. In effect, the

Z16 format is a variant of the UB80 format. When drawing with the Z16

format, software must specify the destination-bitmap field value as 012 and the

destination-byte field value as 002.

6.1.6 Source and Destination Operands

The 21030 references a source and a destination operand for every graphics

operation.

Table 6–5 shows the specific source and destination operands according to

mode.

Graphics Operations 6–11

Table 6–5 Source and Destination Operands According to Mode

Mode Source
Source
Byte Destination

Destination
Byte

Simple
Simple-Z

PCI write data No Frame buffer bitmap Yes

Opaque stipple
Opaque line
Transparent stipple
Transparent line

GFGR or GBGR No Frame buffer bitmap Yes

Block stipple
Block fill

GBCR<7:0> No Frame buffer bitmap Yes

All interpolated line
modes

Interpolation engines No Frame buffer bitmap Yes

Copy Frame buffer bitmap Yes Frame buffer bitmap Yes

DMA-read copy PCI memory bitmap No Frame buffer bitmap Yes

DMA-write copy Frame buffer bitmap Yes PCI memory bitmap No

In most cases, the source and destination operands are simply pixel values

that are read from or written to a bitmap. For example, a copy mode operation

reads a pixel value from a source bitmap and writes it to a destination bitmap.

In general, the graphics operations support source and destination bitmaps in

any format described in Section 6.1.5, with the following restrictions:

• The source and destination bitmaps must have an equal number of

bits-per-pixel.

• Every mode does not support every format.

For example, an operation that references a format UB82 source bitmap can

reference a format PB8 destination bitmap, but not a format TC24 bitmap.

Table 6–6 lists the bitmap formats not supported by a particular mode.

Table 6–6 Unsupported Bitmap Formats According to Mode

Mode Unsupported Source Format Unsupported Destination Format

DMA-write copy None All unpacked 8-bpp bitmaps

DMA-read copy All unpacked 8-bpp bitmaps None

(continued on next page)

6–12 Graphics Operations

Table 6–6 (Cont.) Unsupported Bitmap Formats According to Mode

Mode Unsupported Source Format Unsupported Destination Format

Block stipple
Block fill

None PB8 (only in 32-bpp frame buffers)�

�The block modes can be used to fill packed 8-bpp bitmaps in a 32-bpp frame buffer, but not by
setting the destination to PB8. Software must simulate PB8 support by setting the destination
bitmap to TC24 and setting the block color registers accordingly.

The programmable graphics control register fields listed in Table 6–7 allow

software to independently specify the source and destination bitmaps, within

the previously stated limitations.

Table 6–7 Source, Destination, and Plane Mask Fields

Field Register Mnemonic Bits Description

Source Bitmap Mode GMOR 10:8 Section 4.4.1

Source Byte Mode GMOR 12:11 Section 4.4.1

Destination Bitmap Raster operation GOPR 9:8 Section 4.4.3

Destination Byte Raster operation GOPR 11:10 Section 4.4.3

Plane Mask Plane mask GPMR 31:0 Section 4.4.20

The source and destination bitmap fields determine whether the respective

bitmaps are 8-bpp packed, 8-bpp unpacked, 12-bpp, or 32-bpp. For an 8-bpp

source or destination in a 32-bpp frame buffer, the source bitmap and source

byte fields specify the specific format (PB8, UB80, UB81, and so on). For

12-bpp destination bitmaps, the plane mask must be used on writes to isolate

the desired bitmap (DC120 or DC121) from the unwanted bitmap.

6.1.6.1 Address Alignment Requirements

Each graphics mode requires the address of a source or destination bitmap

operand to be aligned to some number of bytes or pixels. The number varies as

a function of the mode and bitmap type. (Sections 6.2.1 through 6.2.14 describe

the alignment required for all supported bitmap formats in each mode.)

6.1.6.2 24-bpp Bitmap Operands

The TC24 format is the only 21030-supported 24-bpp bitmap format. To specify

TC24 source and destination bitmaps, the source and destination bitmap

fields (Table 6–7) should be set to 0112 and 112, respectively. The source and

destination byte fields are ignored when manipulating 24-bpp bitmaps.

Graphics Operations 6–13

6.1.6.3 12-bpp Bitmap Operands

When manipulating 12-bpp source and destination bitmaps, software must

specify the appropriate codes for the source and destination bitmap fields

(Table 6–7), and ensure the following:

• The source data is aligned to match the format of the destination bitmap.

• The plane mask (GPMR) is set to update only the desired bitmap.

For the modes in which the PCI write data or a register (for example,

foreground, background, or block color register) provides the source data,

software must explicitly align the source data to the destination bitmap format

(Figure 6–3). In the simplest case, to align to format DC120 or DC121, data

can be replicated across the Dword.

In color-interpolated line, copy, DMA-read copy, and DMA-write copy modes,

the 21030 provides the source data. To allow the source data to be mapped to

one of the 12-bpp format bitmaps (Figure 6–3), the 21030 duplicates the source

bitmap data (either DC120 or DC121, as specified by the source bitmap field)

into both the DC120 and the DC121 format, as shown in Figure 6–7.

Figure 6–7 Hardware Replication of 12-bpp Source Bitmap to Destination
Dword

8 7 4 311 0

Source Color Provided: Blue

Hardware Replication

Green

31 8 724 23 20 19 4 316 15 12 11 0

Dword Source:

GreenTag GreenRed Red

Red

BlueBlue

In either case, when writing to a 12-bpp bitmap destination, software must

ensure that the plane mask (Table 6–7) is set to update only the desired

bitmaps. For example, to update only the DC120 bitmap color data, software

must set the plane mask to 000F0F0F; and to update the DC121 bitmap color

6–14 Graphics Operations

data, the plane mask must be 00F0F0F0. The source and destination byte

fields are ignored for 12-bpp operations.

6.1.6.4 8-bpp Bitmap Operands

The 21030’s flexible byte-access into 32-bpp frame buffers allows packed and

unpacked 8-bpp bitmap formats to be manipulated almost transparently to

the software. Software can set independent values in the source bitmap and

byte fields and the destination bitmap and byte fields (Table 6–7), to specify

any combination of packed and unpacked 8-bpp bitmaps as the source and

destination of a graphics operation. Independent-byte access into each bank of

memory and the unique layout of the bitmaps in the frame buffer provides this

capability.

Each time the 21030 accesses the frame buffer through its 64-bit memory port,

it can retrieve eight packed, or eight unpacked, 8-bit pixels, according to the

source bitmap value specified in the GMOR. In the simple case of a packed

source, the 21030 reads 1 contiguous quadword (64 bits) from the frame buffer,

returning 8 packed pixels to the 21030 for processing (Figure 6–8). On the

other hand, each Dword corresponds to 1 pixel in an unpacked source, and each

byte within the Dword corresponds to a different 8-bpp bitmap (Figure 6–2).

When reading from an unpacked 8-bpp source, the 21030 effectively reads 1

byte from each of 8 pixel Dwords (Figure 6–8). The 8 bytes are packed as they

are read into the chip, such that the source data inside the chip appears as

if it was read from a packed 8-pixel quadword. Internal to the chip, all 8-bpp

processing is handled in a packed format, regardless of the type of source and

destination bitmaps stored in the frame buffer.

Similarly, the 21030 can write 8 pixels at a time to a packed or unpacked

destination, as specified by the destination bitmap value in the GOPR. On a

write to an unpacked destination, the 8 internally packed pixels are effectively

unpacked, 1 pixel in each of 8 consecutive Dwords.

Figure 6–8 shows how the 21030 accesses 8-bpp packed (PB8) and unpacked

(UB81) bitmaps as a function of the source bitmap and byte fields. If the

direction of the arrows was reversed and destination was substituted for

source, the figure would show how the 21030 accesses the same 8-bpp bitmaps

on a write to destination.

Graphics Operations 6–15

Figure 6–8 8-bpp Bitmap Access in 32-bpp Frame Buffers

P7 P6 P5 P4 P3 P2 P1 P0

7 6 5 4 3 2 1 0

n+8

n+4

n+7

n+3

n+6 n+5

n+2 n+1

n+4 n+3

n

n+2 n+1 n

Dwords:

Dwords:

Packed 8−bpp Source (PB8)

Unpacked 8−bpp Source (UB8)

Source Bitmap = 01

Source Byte = 00

2

P7 P6 P5 P4 P3 P2 P1 P0

Processed Quadword:

21030

Source Byte = 01

2

2

P7 P6 P5 P4 P3 P2 P1 P0

Processed Quadword:

21030

Source Bitmap = 002

1

When the source and destination field values specify an unpacked 8-bpp

bitmap, the source byte field specifies the byte read from each Dword and the

destination byte field value specifies the byte written to each Dword. In other

words, when the source or destination bitmap field specifies an unpacked 8-bpp

source or destination, the source byte field specifies the bitmap format as either

UB80, UB81, or UB82. For example, if all the following are true:

• The source bitmap field specifies an 8-bpp unpacked bitmap.

• The source byte field value is 102.

• The 21030 reads the source as part of a copy operation.

then the 21030 reads the third bytes from 8 consecutive Dwords and packs

them into 1 quadword for on-chip processing; in other words, the 21030 reads 8

pixels from bitmap UB82.

6–16 Graphics Operations

The inverse is true for writing to an unpacked 8-bpp destination. When

the destination bitmap field specifies an unpacked 8-bpp destination, the

destination byte field effectively selects the byte from the packed on-chip

quadword that is written to each of 8 consecutive Dwords. For example, if the

destination byte value is 012, the 21030 writes one byte to the second byte

in each of 8 consecutive Dwords; in other words, it writes 8 pixels to bitmap

UB81.

When the source and destination bitmap fields specify other than an unpacked

8-bpp bitmap, the source and destination byte fields are ignored.

Table 6–8 summarizes the source and destination bitmap and byte field values

for specifying 8-bpp source and destination bitmaps in a 32-bpp frame buffer

(Table 6–7 points to the field descriptions).

Table 6–8 8-bpp Source and Destination Bitmap and Byte Field Values

Bitmap
Format

Source
Bitmap
GMOR<10:8>

Source
Byte
GMOR<12:11>

Destination
Bitmap
GOPR<9:8>

Destination
Byte
GOPR<11:10>

PB8 000 00 00 00

UB80 001 00 01 00

UB81 001 01 01 01

UB82 001 10 01 10

Additionally, if the respective source or destination byte value is 112, all 8

consecutive tag fields from an unpacked bitmap can either be read as a source

or written as a destination.

The hardware source-byte function affects only operations for which the source

bitmap is resident in the frame buffer (as in copy and DMA-write copy modes).

Otherwise, depending on the mode, the source is specified by the 21030,

specified explicitly by software, or fetched over the PCI bus.

Similarly, the hardware destination-byte function affects operations for which

the destination bitmap is resident in the frame buffer. This includes operations

in all modes except the DMA-write copy mode (which does not support drawing

to unpacked 8-bpp destination bitmaps, and therefore, does not require a

destination byte function).

Table 6–5 shows the modes that support the source and destination byte

functions. The table assumes that the corresponding source and destination

bitmaps are unpacked 8-bpp bitmaps.

Graphics Operations 6–17

In the dithered, interpolated-line, and sequential-interpolated modes, the on-

chip interpolation engines generate the source pixel data. The 21030 directs

the 8-bit result to the correct byte according to the destination alignment

specified in the destination-byte field.

In general, reading an unpacked 8-bpp source or writing an unpacked 8-

bpp destination requires a more rigid address alignment than packed 8-bpp

formats, depending on the mode. (Sections 6.2.1 through 6.2.14 describe each

mode and the specific addressing requirements for applicable source and

destination bitmaps.)

See Section 8.1 for more information about the frame buffer organization.

6.2 Graphics Modes

Sections 6.2.1 through 6.2.14 describe the graphics modes. Each section

describes the mode’s invocation, required parameter sets, and functional

operation. The descriptions include the standard invocation mechanism

(directly writing the frame buffer), and for applicable modes, the alternate

graphics command register mechanism.

Note

The functional-algorithm pseudo-code examples in the following

sections are for descriptive purposes and do not describe the exact logic

implementation.

6–18 Graphics Operations

6.2.1 Simple Mode

In the simple mode, a PCI write to the frame-buffer address space writes 4

independently masked bytes of data to the frame buffer at the Dword-aligned

write address. The 21030 performs the write as a function of the parameters

listed in Table 6–9.

Simple Write (Frame Buffer Address, Frame Buffer Data, Mask PCI, Plane Mask,
Mask GPXR, Raster Op, Destination Bitmap, Destination Byte);

Table 6–9 Simple Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Frame Buffer Data PCI write data <31:0> —

Mask PCI PCI data byte mask <3:0> —

Mask GPXR Pixel mask register GPXR <31:0> 4.4.21

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Raster Op Raster operation register GOPR <3:0> 4.4.3

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

Figure 6–9 shows the PCI write data format for the Frame Buffer Data and

Mask PCI.

Figure 6–9 Simple Mode PCI Write-Data Format

31 0

PCI Data
3

PCI
Byte Mask

Frame Buffer Data

0

Mask PCI

In the simple mode, the 21030 acts as a generic 32-bit memory controller with

the following exceptions:

• The GPXR specifies a byte mask (Mask GPXR) to be used in addition to the

mask passed over PCI (Mask PCI).

• The Raster Op programmed in the GOPR is applied.

Graphics Operations 6–19

• The Plane Mask specified in the GPMR is applied.

For every write in the simple mode, the 21030 ANDs Mask PCI and Mask GPXR
to generate the final byte mask that determines whether to write each byte. As

specified by the Raster Op, the write conditionally combines the Frame Buffer
Data and the data stored at the Frame Buffer Address. Only the bit-planes

that are enabled by the Plane Mask are written.

The Destination Bitmap and Destination Byte parameters allow access to all

types of destination bitmaps (Section 6.1.5). The Frame Buffer Address must

be aligned to 4 bytes (Dword-aligned) for all destinations except unpacked

8-bpp bitmaps, which must be aligned to 16 bytes. (The Source Bitmap and

Source Byte parameters are not used in the simple mode.)

The following pseudo-code represents the basic algorithm for the simple mode:

Write Mask = Mask PCI & Mask GPXR;
Write Pixel (Frame Buffer Address, Frame Buffer Data, Raster Op, Plane Mask,

Write Mask, Destination Bitmap, Destination Byte);

The 21030 always uses the GPXR to specify which Dword bytes are to be

written, but software does not always write the GPXR. Because hardware

resets the GPXR to FFFFFFF (all bytes unmasked) after every operation,

software must write the GPXR only if a different value is required.

Additionally, the 21030 always performs the Raster Op specified in the GOPR

when writing the frame buffer data (the Raster Op retains its value from

operation to operation).

The simple mode can be used to write arbitrary data in the frame buffer. When

writing visual, Z, or stencil data to the frame buffer, the Frame Buffer Data
must adhere to the 21030-supported formats described in Section 6.1.5.

6–20 Graphics Operations

6.2.2 Simple-Z Mode

In the simple-Z mode, a PCI write to the frame buffer address space writes

a Z-buffered set of 4 independently masked bytes of data to the frame buffer

at the Dword-aligned address. The 21030 performs the Z-buffered write as a

function of the parameters listed in Table 6–10.

Simple Z Write (Frame Buffer Address, Frame Buffer Data, Z Address,
Z Reference, Stencil Reference, Mask PCI, Mask GPXR,
Plane Mask, Raster Op, Z Test, Z Update, Stencil Read Mask,
Stencil Write Mask, D Pass, D Fail, S Fail, Z16,
Destination Bitmap, Destination Byte);

Table 6–10 Simple-Z Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Frame Buffer Data PCI write data <31:0> —

Mask PCI PCI write data byte mask <3:0> —

Z Address Z-base-address register GZBR <23:0> 4.4.15

Z Reference Z-value register GZVR-H <31:0>
GZVR-L <3:0>

4.4.16
4.4.16

Stencil Reference Z-value register GZVR-L <31:24> 4.4.16

Mask GPXR Pixel mask register GPXR <31:0> 4.4.21

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Raster Op Raster operation register GOPR <3:0> 4.4.3

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

Z16 Mode register GMOR <14> 4.4.1

Stencil Write Mask Stencil mode register GSMR <7:0> 4.4.14

Stencil Read Mask Stencil mode register GSMR <15:8> 4.4.14

S Test Stencil mode register GSMR <18:16> 4.4.14

S Fail Stencil mode register GSMR <21:19> 4.4.14

D Fail Stencil mode register GSMR <24:22> 4.4.14

D Pass Stencil mode register GSMR <27:25> 4.4.14

Z Test Stencil mode register GSMR <30:28> 4.4.14

(continued on next page)

Graphics Operations 6–21

Table 6–10 (Cont.) Simple-Z Mode Parameters

Parameter Source Section

Z Update Stencil mode register GSMR <31> 4.4.14

The simple-Z mode works in almost the same way as the simple mode, except

that the write to the Frame Buffer Data is conditional, based on the result of

fetching and comparing the Z Buffer and Stencil Buffer values.

As in the simple mode, the PCI write addresses the color value in the bitmap

at the Frame Buffer Address and passes the Frame Buffer Data and Mask PCI
in the PCI write data. Figure 6–10 shows the format of the PCI write data.

Figure 6–10 Simple-Z Mode PCI Write-Data Format

31 0

PCI Data
3

PCI
Byte Mask

Frame Buffer Data

0

Mask PCI

To perform a Z-buffered frame buffer write operation, the 21030 does the

following:

1. Fetches the Z Stored and Stencil Stored values and compares both to the

Stencil Reference and Z Reference values from the 21030 registers.

2. Conditionally updates the stencil buffer and the Z-buffer, based on the

results of the comparisons and the state of several control fields in the

GSMR.

3. Conditionally writes the Frame Buffer Data to the Frame Buffer Address.

For the stencil and Z logic operations, the 21030 does the following:

• Reads the Z Stored and Stencil Stored values from the frame buffer

at the Z Address. The 21030 extracts a 16-bit or 24-bit Z-value from

each Dword, depending on the Z-buffer format specified by Z16. (See

Section 6.1.5 for more information about the Z16 and Z24 formats.)

• For the stencil operation, logically ANDs the Stencil Read Mask with the

Stencil Stored and Stencil Reference values.

6–22 Graphics Operations

• Compares the masked versions of the Stencil Stored and Stencil
Reference values according to S Test.

The 21030 also compares the Z Stored value with the Z Reference value as

specified by Z Test.

– If S test fails, the Stencil Stored value is updated as specified by S
Fail.

– If S Test passes and Z Test fails, the Stencil Stored value is updated

as specified by D Fail.

– If both Z Test and S Test pass, the Stencil Stored value is updated as

specified by D Pass.

Standard plane masking is disabled on Z and stencil accesses. However,

the Stencil Write Mask parameter can be used as a plane mask for

the stencil. On any write back to Stencil Stored location, the only bit

positions modified are those specified by Stencil Write Mask. Per-bit

enables are not available for writes to Z Stored.

– If Z Test passes and Z Update is enabled, the Z Reference value is

written back to the stored Z location.

– If both Z Test and S Test pass, the Frame Buffer Data is written to

the Frame Buffer Address as a function of the Raster Op, Plane Mask,
Mask GPXR and Mask PCI parameters as in the simple mode.

On any write back to Stencil Stored location, only the bit positions

specified by the Stencil Write Mask are modified.

The Destination Bitmap and Destination Byte parameters allow access to all

types of destination bitmaps (Section 6.1.5). The Frame Buffer Address must

be aligned to 4 bytes for all destinations except unpacked 8-bpp bitmaps, which

must be aligned to 16 bytes. (The Source Bitmap and Source Byte parameters

are not used in the simple-Z mode.)

The simple-Z mode also supports a 16-bit or 24-bit Z-buffer format (Z16 or

Z24) as specified by the Z16 bit (GMOR <14>, Section 4.4.1). In the Z16

format, the Pixel Value and Z Stored value can be embedded in the same

Dword (Figure 6–5). If they are, software must explicitly set the Frame Buffer
Address and the Z Address to the same location.

Graphics Operations 6–23

The following pseudo-code represents the basic algorithm for the simple-Z

mode:

Read Z (Z Address, Stencil Stored, Z Stored);
Stencil Reference = Stencil Reference & SRdMask;
Stencil Stored = Stencil Stored & SRdMask;
if ! S Test (Stencil Stored, Stencil Reference)
{
Conditional Write Stencil (Stencil Stored, S Fail, Stencil Write Mask);
}
else if Z Test (Z Stored, Z Reference)
{
Conditional Write Stencil (Stencil Stored, D Fail, Stencil Write Mask);
}
else
{
Conditional Write Stencil (Stencil Stored, D Pass, Stencil Write Mask);
}
if Z Update && Z Test (Z Stored, Z Reference)
{
Write Z(Stencil Stored);
}
/* conditional write pixel */
Write Mask = Mask PCI & Mask GPXR;
if Z Test (Z Stored, Z Reference) && S Test (Stencil Stored, Stencil Reference)
{
Write Pixel (Frame Buffer Address, Frame Buffer Data, Raster Op,

Plane Mask,Write Mask,Destination Bitmap,Destination Byte);
}

The simple-Z mode primarily allows the host to draw to Z-buffered bitmaps

without the overhead involved in Z read, Z compare, conditional Z write,

and conditional color write, which is usually required in Z-buffered drawing.

Simple-Z mode operations are allowed only in the context of 32-bpp frame

buffers.

6–24 Graphics Operations

6.2.3 Opaque-Stipple Mode

In the opaque-stipple mode, a PCI write to the frame buffer address space

draws a bitonal, masked span of 32 contiguous pixels starting at that address.

The 21030 draws the span as a function of the parameters listed in Table 6–11.

Opaque Stipple Span (Frame Buffer Address, Stipple Mask, Plane Mask,
Pixel Mask, Raster Op, Foreground, Background,
Destination Bitmap, Destination Byte);

Table 6–11 Opaque-Stipple Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Stipple Mask PCI write data <31:0> —

Pixel Mask Pixel mask register GPXR <31:0> 4.4.21

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Raster Op Raster operation register GOPR <3:0> 4.4.3

Foreground Foreground register GFGR <31:0> 4.4.18

Background Background register GBGR <31:0> 4.4.19

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

The PCI write cycle to the Frame Buffer Address initiates the drawing

operation and specifies the Stipple Mask in the format shown in Figure 6–11.

Figure 6–11 Opaque-Stipple Mode PCI Write-Data Format

31 0

PCI Data
3

PCI
Byte Mask

Stipple Mask

0

IGN

Graphics Operations 6–25

The 21030 expands the 32-bit Stipple Mask to 32 pixels, masking each pixel

according to the Pixel Mask (Figure 6–12), as follows:

• Write is enabled for each pixel that corresponds to a Pixel Mask bit = 1.

• Pixels that correspond to a Pixel Mask bit = 0 are unmodified.

• The 21030 writes the foreground color to each pixel that corresponds to a

Stipple Mask bit = 1.

• The 21030 writes the background color to each pixel that corresponds to a

Stipple Mask bit = 0.

The 21030 applies the specified Raster Op and Plane Mask on the write to the

frame buffer.

The Destination Bitmap and Destination Byte parameters allow access to all

types of destination bitmaps (Section 6.1.5). (The Source Bitmap and Source
Byte parameters are not used in opaque-stipple mode.)

The destination address for 8-bpp destinations must be aligned to 4 pixels.

Consequently, the Frame Buffer Address must be aligned to 4 bytes for

drawing to 8-bpp packed bitmaps, and to 16 bytes for unpacked bitmaps;

12-bpp and 24-bpp destinations must be aligned to 8 bytes (1 quadword).

The following pseudo-code represents the basic algorithm for the opaque-stipple

mode:

for (n = 0; n <= 31; n++)
{
if (Pixel Mask<n> = 1)
{
Pixel = (Stipple Mask<n> ? Foreground : Background;
Write Frame Buffer (Frame Buffer Address, Pixel, Raster Op, Plane Mask,

Destination Bitmap, Destination Byte);
}

Increment Pixel Address (Frame Buffer Address);
}

The 21030 optimizes the algorithm by writing 64 bits at a time; that is,

up to 8 pixels to an 8-bpp packed bitmap, or 2 pixels to 8-bpp unpacked,

12-bpp, or 24-bpp bitmaps. The 21030 also increases performance by skipping

over leading and trailing strings of zeros in the Pixel Mask. A result of this

optimization is that the completion of opaque-stipple (and transparent-stipple)

mode operations can leave the internal pixel-processing address incorrectly set

for the next span (unlike line mode, Section 6.2.12).

6–26 Graphics Operations

The 21030 requires 4-byte or 8-byte address alignment and does not implicitly

mask span edges; software must align addresses and mask left and right

span-edges. Therefore, before delivering the Stipple Mask and Pixel Mask
parameters to the 21030, software must:

• Align the Stipple Mask

• Align and logically combine the intended Pixel Mask with the desired left

and right edge masks

The opaque-stipple operation writes a bitonal pattern to a bitmap. Figure 6–12

is an example of drawing in opaque-stipple mode.

Figure 6–12 Opaque-Stipple Mode Operation

Background

Pixel Mask:
Stipple Mask: X

0
0
1

1
1

0
1

0
1

X
0

X
0

0
1

1
1

1
1

X
0

ForegroundUnmodified

The 21030 does the following operations in the opaque-stipple mode:

• Under X, does opaque stippling and tiling operations

• Under Windows, paints a region with an arbitrary bitonal brush

• In certain cases, draws text

• Quickly fills a solid region (however, in most cases, the block-stipple and

block-fill modes are quicker)

(See Section 7.2.1 for more examples of opaque and transparent stipple mode

applications.)

Graphics Operations 6–27

6.2.4 Transparent-Stipple Mode

In the transparent-stipple mode, a PCI write to the frame buffer address space

draws a solid, masked span of 32 contiguous pixels starting at that address.

The 21030 draws the span as a function of the parameters listed in Table 6–12.

Transparent Stipple Span (Frame Buffer Address, Stipple Mask, Plane Mask,
Raster Op, Foreground, Destination Bitmap,
Destination Byte);

Table 6–12 Transparent-Stipple Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Stipple Mask PCI write data — —

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Raster Op Raster operation register GOPR <3:0> 4.4.3

Foreground Foreground register GFGR <31:0> 4.4.18

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

The PCI write cycle to the Frame Buffer Address initiates the drawing

operation and specifies the Stipple Mask in the format shown in Figure 6–13.

Figure 6–13 Transparent-Stipple Mode PCI Write-Data Format

31 0

PCI Data
3

PCI
Byte Mask

Stipple Mask

0

IGN

Transparent-stipple operations are, in effect, a simpler version of opaque-

stipple operations, and operate in the same way with the following exceptions:

• The Pixel Mask is not specified.

6–28 Graphics Operations

• The Stipple Mask bits determine whether foreground color is written or

write is disabled for the corresponding pixels, rather than determining

whether foreground or background color is written.

The transparent-stipple mode basic algorithm differs slightly from the opaque-

stipple mode basic algorithm, and is represented by the following pseudo-code:

for (n = 0; n <= 31; n++)
{
if (Stipple Mask<n> = 1)

Write Frame Buffer(Frame Buffer Address, Foreground, Raster Op, Plane Mask,
Destination Bitmap, Destination Byte);

Increment Pixel Address(Frame Buffer Address);
}

Figure 6–14 is an example of drawing in the transparent-stipple mode.

Figure 6–14 Transparent-Stipple Mode Operation

Stipple Mask: 0 0 1 0 0 1 1 0 1 1 1

ForegroundUnmodified

The transparent-stipple mode does the following operations:

• Fills regions in X transparent-stipple mode

• Under Windows, paints a region with a monochrome brush

• In many cases, draws text

• In some cases, fills solid regions

(See Section 7.2.1 for more examples of opaque-stipple and transparent-stipple

mode applications.)

Graphics Operations 6–29

6.2.5 Block-Stipple Mode

In the block-stipple mode, a PCI write to the frame buffer address space draws

a masked span of 32 contiguous pixels starting at that address. The 21030

draws the span as a function of the parameters listed in Table 6–13.

Block Stipple Span (Frame Buffer Address, Stipple Mask, Block Color Pattern <7:0>,
Plane Mask, Destination Bitmap, Destination Byte);

Table 6–13 Block-Stipple Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Stipple Mask PCI write data <31:0> —

Block Color Pattern <7:0> Block color registers GBCR<7:0> <31:0> 4.4.4

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

The PCI write cycle to the Frame Buffer Address initiates the drawing

operation and specifies the Stipple Mask in the format shown in Figure 6–15.

The Frame Buffer Address must be aligned to 1 pixel.

Figure 6–15 Block-Stipple Mode PCI Write-Data Format

31 0

PCI Data
3

PCI
Byte Mask

Stipple Mask

0

IGN

The block-stipple mode is functionally similar to the transparent-stipple mode,

with the following exceptions:

• The Raster Op is not specified.

• The GBCRs specify an 8-pixel color pattern that is repeated (tiled) four

times across the 32-pixel span, rather than substituting foreground color

on a per-pixel basis (Figure 6–16).

6–30 Graphics Operations

• The block-stipple mode draws four times faster than the transparent-

stipple mode.

The 21030 generates a 32-pixel pattern by replicating the specified 8-pixel

Block Color Pattern four times. The 21030 then writes the 32-pixel pattern,

masked by Stipple Mask, to the frame buffer beginning at the Frame Buffer
Address.

The 21030 writes the Block Color Pattern color to each pixel that corresponds

to a Stipple Mask bit = 1. Pixels that correspond to a Stipple Mask bit = 0 are

unmodified (Figure 6–16).

Graphically, the block-stipple operation writes a 32-pixel masked span,

composed of any arbitrary, 8-pixel, repeating color pattern, to a bitmap.

Figure 6–16 is an example of this operation.

Figure 6–16 Block-Stipple Mode Operation

Stipple Mask:

1 01 0 11 01 10 11 11 00 1 0 1 0 1 1 1 1

x8 Block Color Pattern
(as defined by

Block Color Registers)

The Plane Mask is enabled during block-stipple operations, but the Raster
Op is not enabled. In effect, the raster operation function is hardwired in the

block-stipple mode. This is because the GBCRs are physically resident in the

VRAMs and the Block Color Pattern (the source operand) is always written

Graphics Operations 6–31

directly to the memory (the destination operand). In effect, the block-stipple

mode raster-op function is hardwired to dest� src.

The following pseudo-code represents the basic algorithm for the block-stipple

mode:

for (i = 0; i <= 3; i++)
{
for (j = 0; j <= 7; j++)
{
if (Stipple Mask<i*8+j> = 1)
Write Frame Buffer(Frame Buffer Address, Block Color Pattern j, Raster Op,

Plane Mask, Destination Bitmap, Destination Byte);
}
Increment Pixel Address(Frame Buffer Address);

}

The 21030 optimizes the algorithm by using the block-write feature of the

VRAMs to write all 32 pixels in one or two write cycles. The number of write

cycles required depends on the span alignment, the destination bitmap depth,

and whether a non-trivial mask (that is, not all ones) is used. If the Frame
Buffer Address is aligned to 32 pixels in an 8-bpp frame buffer, or aligned to

32 pixels and unmasked in a 32-bpp frame buffer, the 21030 writes the entire

span in one VRAM write cycle; otherwise, the 21030 breaks the span into

two VRAM write cycles. If arbitrary masking is used, block writes to 32-bpp

bitmaps can take as many as eight cycles per 32 pixels. However, drawing to

8-bpp bitmaps in either 8-bpp or 32-bpp frame buffers takes a maximum of two

write cycles per 32-pixels.

Figure 6–17 shows how the hardware breaks a span that is not aligned to

32-pixels.

6–32 Graphics Operations

Figure 6–17 Block-Stipple Mode Address and Mask Alignment

931 831 9 7

31

8

3029

7

2221

3130

31

29

0

10

22 21

0

2221

0

100

0

931 831 7930 11100100

30 11

Desired Stipple Mask

Frame Buffer Address Pixel Alignment

Stipple Mask written to 21030

1 2

21030 aligns
Stipple Mask
to 32 pixels

21030 uses final rotated
mask to perform two
discrete VRAM block−write
cycles to separate aligned
spans of 32 pixels

Software rotates
Stipple Mask left 2 bits
to align to 4 pixels

Software
Rotate

Hardware
Rotate

The VRAM block-write feature allows the block-stipple mode to draw up

to four times faster than the transparent-stipple or opaque-stipple modes.

Additionally, the 21030 increases performance by skipping over leading and

trailing strings of zeros in the Stipple Mask.

Graphics Operations 6–33

The block-stipple mode supports drawing to all types of destination bitmaps,

except packed 8-bpp bitmaps in a 32-bpp frame buffer. All other destination

bitmaps can be specified through the Destination Bitmap and Destination
Byte parameters (Section 6.1.5). Software must initialize the Block Color
Pattern in the GBCRs according to the specific destination bitmap. (See

Section 4.4.4 for a description of the GBCR formats as a function of destination

bitmap format.)

The block-stipple mode requires the following parameter alignments:

Frame Buffer Address Aligned to 1 pixel

Stipple Mask Aligned to 4 pixels

Block Color Pattern Aligned to 8 pixels

6.2.5.1 Frame Buffer Address Alignment

The Frame Buffer Address must be aligned to 1 pixel. In terms of bytes, the

Frame Buffer Address must be aligned to 1 byte for drawing to 8-bpp packed

bitmaps (on 8-bpp frame buffers only), and to 4 bytes for all other destination

bitmaps.

When drawing to 24-bpp, 12-bpp, and unpacked 8-bpp bitmaps, this restriction

is insignificant, because the pixel address naturally aligns to 4 bytes and can

be specified in a normal PCI write to the frame buffer address space. Drawing

operations to 4-pixel-aligned packed 8-bpp destinations can be also initiated

with a direct write to the frame buffer.

However, the Frame Buffer Address alignment requirement becomes significant

when drawing to 1-pixel-aligned packed 8-bpp bitmaps. Such drawing implies

an address alignment of 1 byte, while the address of a PCI write is Dword-

aligned (aligned to 4 bytes). Consequently, software cannot use block-stipple

mode to draw to packed 8-bpp bitmaps and initiate the drawing operation by

writing to the frame buffer. The drawing operation can be initiated only by

writing to the continue register (GCTR, Section 4.3.3), with the byte address

explicitly specified in the address register (GADR, Section 4.4.2).

Ultimately, the memory controller executes one or two VRAM block-write cycles

to complete one block-stipple mode operation. When the Frame Buffer Address
is aligned to 32 pixels, only one block-write cycle is required; otherwise, the

21030 breaks the operation into two-consecutive block-write cycles. In either

case, Stipple Mask must be aligned to 32-pixels in order to apply the mask on

the block-write cycle.

6–34 Graphics Operations

6.2.5.2 Stipple Mask Alignment

Software and hardware share responsibility for aligning the Stipple Mask to

32-pixels. Software must first align the Stipple Mask to 4 pixels. To do this,

software must rotate the mask such that mask bit 0 aligns with the first pixel

in a naturally aligned 4-pixel span. The chip completes the alignment to 32

pixels through a hardware rotate operation. Figure 6–17 shows the two stages

of Stipple Mask rotation for a particular value of Frame Buffer Address and a

given pixel alignment. Note that the hardware initiates two VRAM block-write

cycles for unaligned values of the Frame Buffer Address.

This Stipple Mask alignment restriction significantly reduces chip complexity,

while requiring a minimum of additional CPU computation. For performance-

critical operations that use the block-stipple mode (for example, masked, large,

area fills), the CPU should not be the bottleneck, and the extra computation

should have no effect on throughput.

6.2.5.3 Block Color Pattern Alignment

Because the Block Color Pattern is fixed in the VRAM-resident GBCRs,

software must prealign the Block Color Pattern to 8-pixel boundaries.

6.2.5.4 Using Block Stipple Mode

The block-stipple mode can be used in place of the transparent-stipple and

opaque-stipple modes in the following situations:

• The fill span is of significant size.

An appreciable amount of overhead is involved when the CPU generates

and aligns the Block Color Pattern, and writes the pattern to the GBCRs.

Consequently, large, solid or tiled, fill regions can benefit greatly from

block-stipple operations (any benefit is unlikely for narrow spans).

• The desired raster-operation function does not include destination.

In the block-stipple mode, raster-operation functions are not used. When

generating the Block Color Pattern, software can perform some Boolean

operation on the source operand but not on the destination operand.

• The desired color pattern repeats on intervals of �� pixels, where ���.

Because the Block Color Pattern width is fixed at 8 pixels, repeating color

patterns that are 1, 2, 4, or 8 pixels wide are the only patterns that produce

the correct block stipple when mapped to the Block Color Pattern. More

specifically, the pattern width must equal �� , where ���. For example,

the opaque-stipple or transparent-stipple mode must be used in order for

software to fill a span with a pattern that is 5 pixels wide. Fortunately, the

most common X and Windows pattern-fill operations can take advantage

Graphics Operations 6–35

of the block-stipple mode. For example, under Windows, the most common

brush patterns are 8 pixels wide.

6–36 Graphics Operations

6.2.6 Block-Fill Mode

In the block-fill mode, a PCI write to the frame buffer address space writes a

span of up to 2K contiguous pixels starting at that address. The 21030 draws

the span as a function of the parameters listed in Table 6–14.

Block Fill Span (Frame Buffer Address, Pixel Count(-1), Frame Buffer Address <1:0>,
Block Color Pattern<7:0>, Plane Mask, Fill Mask,
Destination Bitmap, Destination Byte);

Table 6–14 Block-Fill Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Pixel Count (-1) PCI write data <10:0> —

Frame Buffer Address <1:0> PCI write data <17:16> —

Block Color Pattern <7:0> Block color registers GBCR<7:0> <31:0> 4.4.4

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Fill Mask Data register GDAR <31:0> 4.4.8

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

The PCI write cycle to the Frame Buffer Address initiates the drawing

operation and specifies the Pixel Count and Frame Buffer Address <1:0> in

the format shown in Figure 6–18. As in the block-stipple mode, the Frame
Buffer Address must be aligned to 1 pixel.

Figure 6–18 Block-Fill Mode PCI Write-Data Format

331 18 17 16

Frame Buffer Address <1:0>

15 11 010

PCI Data
PCI

0

Byte Mask

IGNRES RES Pixel Count (−1)

Graphics Operations 6–37

The block-fill mode is functionally similar to the block-stipple mode. The

primary differences in the block-fill mode are as follows:

• The span is limited to 2K pixels (rather than 32 pixels) and the Pixel
Count is encoded in the PCI write data.

• The Fill Mask is specified once (passed in GDAR) and repeated at 32-pixel

intervals across the span.

• Frame Buffer Address <1:0> (the starting address LSBs) is specified to

simplify drawing to packed 8-bpp bitmaps.

Drawing a 32 � n-pixel span in the block-fill mode is effectively the same as

drawing n 32-pixel spans in the block-stipple mode.

The 21030 replicates the 8-pixel wide Block Color Pattern four times to

generate a 32-pixel color pattern. Starting at the Frame Buffer Address, the

21030 writes the 32-pixel pattern through the Fill Mask to the frame buffer as

the first of n segments needed to fill an entire span (up to 2K pixels). For each

segment, the 21030 writes the Block Color Pattern color to each pixel that

corresponds to a Fill Mask bit = 1. Pixels that correspond to a Fill Mask bit =

0 are unmodified (Figure 6–19).

After writing each masked 32-pixel span segment, the 21030 decrements the

Pixel Count by 32. If the full span operation is not complete (that is, the Pixel
Count is positive), the 21030 updates the Frame Buffer Address to point to the

next contiguous span, and again draws the span segment. The 21030 repeats

the process until a full span of Pixel Count pixels is drawn.

All of the span segments (with the possible exception of the last segment)

are identical because the same Block Color Pattern is written through the

same Fill Mask for each segment drawn. If the Pixel Count is not an integer

multiple of 32, the last segment is Pixel Count MOD 32 and is masked by the

corresponding Fill Mask LSBs.

The block-fill mode alignment requirements for the Frame Buffer Address,

Fill Mask, and Block Color Pattern are the same as the block-stipple mode

alignment requirements (replacing Stipple Mask with Fill Mask). However,

unlike the block-stipple mode, the block-fill mode allows software to provide

Frame Buffer Address <1:0> (the two LSBs) as part of the PCI write data.

This allows drawing to packed 8-bpp bitmaps that are not aligned to four

pixels without using the GADR and the GCTR.

The block-fill mode supports the same destination bitmaps as the block-stipple

mode. All bitmap formats are supported except packed 8-bpp (PB8) in a 32-bpp

frame buffer. Software must initialize the Block Color Pattern in the GBCRs

6–38 Graphics Operations

according to the specific destination bitmap. (See Section 4.4.4 for a description

of the GBCR formats as a function of destination bitmap format.)

The following pseudo-code represents the basic algorithm for the block-fill

mode:

while (Pixel Count > 32)
{

Block Stipple Span(Frame Buffer Address, Fill Mask, Block Color);
Get Next Contiguous Span Address(Frame Buffer Address);
pixel count -= 32;

}
Block Stipple Span(Frame Buffer Address, Fill Mask < pixel count:0>, Block Color);

Graphically, the block-fill operation writes a span to a bitmap. The span can

be up to 2K pixels, composed of any arbitrary, 8-pixel, repeating color pattern,

and masked by a repeating, 32-bit, fill mask. Figure 6–19 is an example of this

operation.

Graphics Operations 6–39

Figure 6–19 Block-Fill Mode Operation

Fill Mask

Mask

00001111000011111111000011110000

Block−Fill Span

 Length = Pixel Count

x8 Block Color Pattern (as defined by Block Color Registers)

Typically, the block-fill mode, rather than the block-stipple mode, is used when

the Stipple Mask repeats at an interval of ��, where ���. That is, the block-fill

mode might work as well as or better than the block-stipple mode if the single

Fill Mask can be passed as the Stipple Mask for multiple span-segments.

The most common block-fill mode application is filling a large screen area with

a solid color, or a tile or brush with a width = �
� , where ���. Many X tile

and Windows brush sizes meet this requirement. Using the block-fill mode,

software can fill an entire window or the screen with one write per scan line to

the 21030.

The block-fill mode can also be used with appropriate Plane Mask values to

clear and select between in-place visual buffers in a 32-bpp frame buffer,

accelerating graphic animation rates. (See Section 7.2 for more information

about block-fill mode applications.)

6–40 Graphics Operations

6.2.7 Opaque-Fill Mode

In the opaque-fill mode, a PCI write to the frame buffer address space writes a

bitonal, unmasked span of up to 2K contiguous pixels starting at that address.

The 21030 draws the span as a function of the parameters listed in Table 6–15.

Opaque Fill Span (Frame Buffer Address, Pixel Count, Frame Buffer Address <1:0>,
Foreground, Background, Raster Op, Plane Mask, Pixel Mask,
Fill Mask, Destination Bitmap, Destination Byte);

Table 6–15 Opaque-Fill Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Pixel Count (-1) PCI write data <10:0> —

Frame Buffer Address <1:0> PCI write data <17:16> —

Foreground Foreground register GFGR <31:0> 4.4.18

Background Background register GBGR <31:0> 4.4.19

Raster Op Raster operation register GOPR <3:0> 4.4.3

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Pixel Mask Pixel mask register GPXR <31:0> 4.4.21

Fill Mask Data register GDAR <31:0> 4.4.8

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

The PCI write cycle to the Frame Buffer Address initiates the drawing

operation and specifies the Pixel Count and Frame Buffer Address <1:0> in

the format shown in Figure 6–20.

Figure 6–20 Opaque-Fill Mode PCI Write-Data Format

331 18 17 16

Frame Buffer Address <1:0>

15 11 010

PCI Data
PCI

0

Byte Mask

IGNRES RES Pixel Count (−1)

Graphics Operations 6–41

Functionally, the opaque-fill mode is a slower, but more flexible variation of the

block-fill mode. The primary differences in the opaque-fill mode are as follows:

• The 21030 uses standard page-mode write cycles, rather than fast (� 4)

block-write cycles.

• The applied colors are generated from the Foreground and Background
parameters (as in the opaque-stipple mode) and the Block Color parameter

is not used.

• The Boolean operation defined by Raster Op is applied.

Also (unlike an opaque-stipple operation), the Pixel Mask parameter is not

specified; therefore, individual pixels cannot be masked in the opaque-fill mode.

The opaque-fill mode fills a span of Pixel Count (up to 2K) pixels with a

repeating, bitonal, 32-pixel pattern, as follows:

1. The pattern is defined by the Foreground, Background, Pixel Mask, and

Fill Mask parameters.

2. Fill Mask enables the color for each pixel that corresponds to a Pixel Mask
bit = 1. Pixels that corresponds to a Pixel Mask bit = 0 are not modified.

3. The 21030 writes the Foreground color to each pixel that corresponds to

a Fill Mask bit = 1, and writes the Background color to each pixel that

corresponds to a Fill Mask bit = 0.

4. The 32-pixel pattern is repeated as many times as necessary to fill up to

Pixel Count pixels (Figure 6–21).

As in the block-fill mode, the Frame Buffer Address must be aligned to 1 pixel

(1 byte in 8-bpp frame buffers and 4 bytes on 32-bpp frame buffers) and both

Pixel Mask and Fill Mask must be aligned to 4 pixels. The Frame Buffer
Address <1:0> parameter (two LSBs) provides byte-granularity on 8-bpp frame

buffers.

6–42 Graphics Operations

Figure 6–21 Opaque-Fill Mode Operation

Fill Mask

Pattern

00001111000011111111000011110000

Opaque−Fill Span

 Length = Pixel Count

Foreground Background Pixel Mask

11111111111111111111111111111111

The opaque-fill mode can be used in place of the opaque-stipple or block-fill

mode for larger, bitonal fill operations that do not require per-pixel masking,

but do require a Boolean logic operation (the block-fill mode supports only

�������� Boolean operations).

Graphics Operations 6–43

6.2.8 Transparent-Fill Mode

In the transparent-fill mode, a PCI write to the frame buffer address space

writes a solid, masked span of up to 2K contiguous pixels starting at that

address. The 21030 draws the span as a function of the parameters listed in

Table 6–16.

Transparent Fill Span (Frame Buffer Address, Pixel Count, Frame Buffer Address <1:0>,
Foreground, Raster Op, Plane Mask, Fill Mask,
Destination Bitmap, Destination Byte);

Table 6–16 Transparent-Fill Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Pixel Count (-1) PCI write data <10:0> —

Frame Buffer Address <1:0> PCI write data <17:16> —

Foreground Foreground register GFGR <31:0> 4.4.18

Raster Op Raster operation register GOPR <3:0> 4.4.3

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Fill Mask Data register GDAR <31:0> 4.4.8

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

The transparent-fill mode fills a span of Pixel Count (up to 2K) pixels with a

repeating, bitonal, 32-pixel pattern defined by the Foreground, Background,

and Fill Mask parameters.

The transparent-fill mode is almost identical to the opaque-fill mode. The

Foreground color is written to each pixel that corresponds to a Fill Mask
bit = 1; but in the transparent-fill mode, pixels that correspond to a Fill Mask
bit = 0 are unmodified (rather than being written with the Background color).

As in the opaque-fill mode, the 32-pixel pattern is repeated as many times as

necessary to fill up to Pixel Count pixels.

The transparent-fill mode can be used in place of the transparent-stipple or

the block-fill mode for larger, solid-fill operations that require a Boolean logic

operation (the block-fill mode supports only �������� Boolean operations).

6–44 Graphics Operations

6.2.9 Copy Mode

In the copy mode, a set of two consecutive PCI writes to the frame buffer

address space copies a contiguous span of up to 64 bytes from the first address

to the second address. The span can be copied in either direction: left-to-

right (increasing addresses) or right-to-left (decreasing addresses). The 21030

performs the copy as a function of the parameters listed in Table 6–17.

Copy Span (Frame Buffer Address Source, Frame Buffer Address Destination,
Mask Source, Mask Destination, Plane Mask, Raster Op, Source Bitmap,
Source Byte, Destination Bitmap, Destination Byte);

Table 6–17 Copy Mode Parameters

Parameter Source Section

Frame Buffer Address Source PCI write address 1 — —

Mask Source PCI write data 1 — —

Frame Buffer Address
Destination

PCI write address 2 — —

Mask Destination PCI write data 2 — —

Pixel Shift Pixel shift register GPSR <3:0> 4.4.5

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Raster Op Raster operation register GOPR <3:0> 4.4.3

Source Bitmap Mode register GMOR <10:8> 4.4.1

Source Byte Mode register GMOR <12:11> 4.4.1

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

Two PCI write cycles are necessary to copy one span locally in the frame buffer.

The first PCI write addresses the location of the source span (Frame Buffer
Address Source) and passes a read mask for the source (Mask Source) as data.

The second PCI write addresses the location of the destination span (Frame
Buffer Address Destination) and passes a write mask for the destination

(Mask Destination) as data. Figure 6–22 shows the format of the PCI write

operations.

Graphics Operations 6–45

Figure 6–22 Copy Mode PCI Write Data Formats

IGN

IGNMask SourceIGN

Mask Source

PCI Write 1 at Frame Buffer Address Source
3 0

3 031 16 15 0

31 0

PCI Data PCI
Byte Mask

IGNMask DestinationIGN

3 031 16 15 0

3 0

IGN

31 0

Mask Destination

PCI Write 2 at Frame Buffer Address Destination

32−bpp Frame Buffer:

PCI Write 2 at Frame Buffer Address Destination

8−bpp Frame Buffer:

 PCI Write 1 at Frame Buffer Address Source

The maximum span limit of 64 bytes is set by the depth of the internal copy

buffer and is independent of the frame buffer size (Table 6–18). Consequently,

the maximum span size is 16 pixels when using copy mode in a 32-bpp

frame buffer, regardless of whether the bitmap involved is 24-bpp, 12-bpp, or

unpacked 8-bpp.

In an 8-bpp frame buffer, the size of the copy buffer allows 64-pixel spans, but

each PCI write can supply only 32 bits to specify the mask. Consequently, the

maximum span is 32-pixels when copying a masked span. (A different 21030

mechanism allows 64-pixel unmasked spans to be copied in an 8-bpp frame

buffer, Section 6.2.9.5.)

6–46 Graphics Operations

Table 6–18 Copy Mode Span Limits

Frame Buffer
Depth

Span Limit
(Masked)

Span Limit
(Unmasked)

8-bpp 32 pixels 64 pixels

32-bpp 16 pixels 16 pixels

In an 8-bpp frame buffer, the depth and byte parameter values must = 0 for all

copies. In a 32-bpp frame buffer, the depth and byte parameters are used when

copying between different format source and destinations; for example, copying

from an unpacked, 8-bpp bitmap to an off-screen, packed, 8-bpp bitmap. For

copies between a 24-bpp source and destination, the depth parameter values

must = 7, and the byte parameter values must = 0. (See Section 6.2.9.8 for

more information about depth and byte values, and copying between bitmaps

of different depths and formats in a 32-bpp frame buffer.)

Basically, the 21030 performs a masked, span copy operation in two stages, as

follows:

1. On the first PCI write, the 21030 reads up to 64 bytes from the Frame
Buffer Address Source, selectively aligning and depositing those bytes into

the copy buffer, starting at the bottom and filling upward. Only pixels that

correspond to a Mask Source bit = 1 are read.

2. On the second PCI write, the 21030 unloads up to 64 bytes from the

copy buffer, starting at the bottom and draining upward. Each pixel is

conditionally stored as a function of the Mask Destination, starting at the

Frame Buffer Address Destination. Only pixels that correspond to a Mask
Source bit = 1 are written.

On the final write to the destination, the Plane Mask and the Boolean

operation specified by the Raster Op parameter are applied.

Copy mode can handle any span including the following:

• Copies with aligned or unaligned source and destination

• Copies that require backward (right-to-left) processing in addition to

forward (left-to-right) processing

Arbitrarily aligned sources and destinations require the 21030 to shift source

data as it is processed. Backward processing is necessary in certain alignments

of overlapping copies, and requires the 21030 to increment and decrement its

addresses as it steps through the span.

Graphics Operations 6–47

6.2.9.1 Source and Destination Alignment

For most source and destination bitmaps, the Frame Buffer Address
Destination and Frame Buffer Address Source must be aligned to 8 bytes

rather than arbitrary pixel boundaries. However, unpacked 8-bpp source and

destination bitmaps in a 32-bpp frame buffer must be aligned to 32 bytes (see

Section 6.2.9.8 for more information on copy mode support for various bitmap

formats).

To copy a 32-pixel span, the 21030 reads up to 4 successive quadwords from

the Frame Buffer Address Source masked by Mask Source; and writes up to

4 successive quadwords to the Frame Buffer Address Destination masked by

Mask Destination. Consequently, copies are simple when both the Frame
Buffer Address Source and the Frame Buffer Address Destination lie

on natural quadword boundaries. However, graphics software (graphics

applications, window managers, and so on) is not limited to specifying

only quadword-aligned source and destination addresses. Therefore, the

21030 display driver must handle arbitrarily aligned source and destination

addresses. The 21030 driver and hardware share the responsibility for

ensuring that all possible combinations of desired source and destination

are correctly handled.

Software must first adjust (that is, decrement) the desired source-pixel

and destination addresses to quadword boundaries, such that the adjusted

addresses can be passed as the Frame Buffer Address Source and Frame Buffer
Address Destination. In addition, Mask Source and Mask Destination must be

bit-shifted by the number of bytes that the addresses were decremented. That

number is defined as Source Align and Destination Align for the source and

destination. They are calculated as follows:

Source Align = (desired source address) & Align Mask;
Destination Align = (desired destination address) & Align Mask;

In the previous equations,

Align Mask = 0000000716 for 8-bpp frame buffers

0000000416 for 32-bpp frame buffers

In general, the specified source and the destination alignment is random,

with Source Align and Destination Align taking values from 0 to 7 in 8-bpp

frame buffers, and 0 or 4 in 32-bpp frame buffers. In an aligned copy, Source
Align and Destination Align take the same value; however, the 21030 display

driver must usually process an unaligned copy in which Source Align and

Destination Align take different values.

6–48 Graphics Operations

To process unaligned spans, the 21030 includes a hardware byte-shifter

that aligns quadword source read data to the destination prior to filling

the copy buffer. The Pixel Shift parameter is a signed 4-bit value

(–8 � Pixel Shift � 7) that specifies the number of bytes to shift. Embedded

in the byte-shifter is a 64-bit residue register that stores the previous

quadword read from the copy source. (The residue register cannot be directly

read or written.) The byte-shift function in conjunction with the residue

register allows 21030 to process all possible combinations of the Source Align
and Destination Align values.

In an unaligned copy, at least 1 pixel from each of 2 successive quadwords

read from the source must be merged into 1 quadword in the destination.

Consequently, in each quadword the 21030 writes to the destination, it must

extract some subset of pixels from source quadword n and merge them with a

complementary subset of pixels from source quadword n–1. This amounts to

a 1-stage source-read pipeline, in which the residue register always stores the

last quadword read.

Starting at the Frame Buffer Address Source, the 21030 does the following:

1. Reads 1 to 4 quadwords, depending on the value in Mask Source.

2. Concatenates the 64 bits read from each quadword with the residue

register.

3. Rotates the resulting 128-bit quantity through the byte-shifter by the

amount specified by the Pixel Shift value (a negative value rotates left,

and a positive value rotates right).

4. Extracts a quadword (now properly aligned with the destination) from the

bit positions corresponding to the position of the read data before rotation.

5. Loads the extracted quadword into the copy buffer in the next available

quadword entry.

6. Stores the last quadword read into the residue register.

7. Moves on to the next source quadword and repeats the process until the

span is complete.

Graphics Operations 6–49

Figure 6–23 is an example of an unaligned forward (left-to-right) copy with

an 8-bpp packed source and destination. The individual pixels are labeled

a through q. Three quadwords are read through Mask Source and three

are written through Mask Destination. For each read, the figure shows a

‘‘snapshot’’ of the contents of the residue register and the resultant byte-shifter

output quadword. An example of a copy with a 24-bpp source and destination

would be almost the same, with the following exceptions:

• Letters a through q would correspond to bytes within a pixel.

• The Source Align and Destination Align values would be 0 or 4.

6–50 Graphics Operations

Figure 6–23 Forward Span Copy

a b c d e f g h i j k l m n o p

Desired Source Address (Source Align = 3)

q

Pixel Shift = (Destination Align − Source Align) = +3

Frame Buffer Address Desired Destination Address (Destination Align = 6)

00 08 10 18 20

D0 D8 E0 E8 F0

03

a b c

D6

d e f g h i j k l m n o p q

− − − a b c d e

f g h i j k l m

c d e f g h i j

n o p q − − − −

−k l m n o p q

− − − a b− − −

Source Read 0

Source Read 1

Source Read 2

Copy Buffer

Residue Register

− − − − − − − −

− − − a b c d e

f g h i j k l m

Mask Destination 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Mask Source 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Frame Buffer Address
Source

Destination

1

1

Graphics Operations 6–51

6.2.9.2 Backward Copies

In addition to arbitrary alignments, the 21030 must process forward (left-

to-right) and backward (right-to-left) copies. Spans that overlap require the

graphics server to pick a direction, to avoid corrupting a portion of the source

before it is read. Consequently, the 21030 selectively increments (forward) or

decrements (backward) source and destination quadword addresses in order

to step through the span. The sign of the Pixel Shift value determines the

direction of the span copy, as follows:

–8 � Pixel Shift � –1 for backward copies

0 � Pixel Shift � 7 for forward copies

For a negative Pixel Shift value, the 21030 does the following:

• Begins reading at the Frame Buffer Address Source and writing at the

Frame Buffer Address Destination.

• Decrements the Frame Buffer Address Source after each quadword is read.

• Decrements the Frame Buffer Address Destination after each quadword is

written.

For a positive Pixel Shift value, the 21030 also begins at Frame Buffer
Address Source and Frame Buffer Address Destination, but it increments the

respective addresses as it steps through the span.

The sign of the Pixel Shift value also determines the direction that the byte-

shifter rotates incoming source data (with residue): negative for rotate left and

positive for rotate right. Therefore, the assignment of the Pixel Shift value

must take into account that all incoming source data is rotated to the right in

a forward copy and to the left in a backward copy.

Table 6–19 shows how the Pixel Shift value is calculated as a function of

alignment and copy direction.

Table 6–19 Assigning the Pixel Shift Value

Direction Destination Align � Source Align

Forward Destination Align � Source Align

Backward (Destination Align � Source Align) � 8

Direction Source Align > Destination Align

Forward 8 � (Source Align � Destination Align)

Backward Destination Align � Source Align

6–52 Graphics Operations

6.2.9.3 Priming and Flushing the Residue Register

Certain combinations of alignment and copy direction require one additional

adjustment to be made prior to starting the copy mode operation. Two types of

copies fall into this category:

• Forward copies when Source Align > Destination Align

• Backward copies when Destination Align > Source Align

In either case, the first quadword written to the destination takes some bytes

from both the first and second quadwords read from the source. The Pixel
Shift value is set such that none of the valid pixels from the first read are

rotated into the first quadword generated by the byte-shifter. The byte-shifter

does not generate the proper quadword for the first destination quadword until

the second source quadword is read. In effect, the first read primes the residue

register, and every subsequent source read generates a valid destination

quadword to store in the copy buffer. This amounts to a 1-stage read-data path

pipeline.

To compensate for priming the residue register, software must adjust the

Frame Buffer Address Destination and Mask Destination by an additional

quadword. The Frame Buffer Address Destination must be decremented

(forward copies) or incremented (backward copies) by 8 and the Mask
Destination must be bit-shifted 8 bits to the right (forward) or left (backward)

(Figure 6–24).

In some cases, including those in which priming is not required, the pipeline

delay introduced by the residue register has a side effect. In such cases, the

residue register must be flushed after the last unmasked quadword has been

read, because it may contain leftover valid destination-pixels. Consider a

span copy similar to that shown in Figure 6–23, but with the the source span

extended 2 pixels to the right. In that case, the 21030 hardware flushes the

residue register when necessary, to generate the last destination-quadword

written into the copy buffer; software need not do anything special. However,

residue-register priming and flushing must also be considered in the DMA-

read and DMA-write copy modes. In those modes, flushing requires software

intervention (see Sections 6.2.10 and 6.2.11 for more information).

Figure 6–24 is an example of a forward copy in which priming is necessary.

Graphics Operations 6–53

Figure 6–24 Primed Forward Span Copy

Desired Destination Address (Destination Align = 1)

a b c d e f g h i j

a

k

b

l

c

m

d

n

e f g h i j k l m n

Desired Source Address (Source Align =3)

Pixel Shift = 8 − (Source Align − Destination Align) = +6

00 08 10 18 20

D0 D8 E0 E8 F0

03

D6

− − − a b c d e

f g h i j k l m

n − − − −

−

− − −

Source Read 0

Source Read 1

−

Source Read 2

− −

Copy Buffer

Residue Register

− − − − − − − −

− − − a b c d e

f g h i j k l m

Mask Destination

Mask Source

0 0

0

0 0

0

0 0

0

0 0

1

0 1

1

1 1

1

1 1

1

1

1 1

1

1 1

1

1 1

1

1

1

1

1

1

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0

− −

− a b c d e f g

− − −

h i j k l m n

Frame Buffer Address
Source

Frame Buffer Address
Destination

1

6–54 Graphics Operations

The following pseudo-code represents the basic algorithm for copying a span in

copy mode, including source and destination alignment:

On PCI write 1:

for (i = 0; i <= 3; i++)
{

Read Quadword (Frame Buffer Address Source, Mask Source <i*8+7:i*8>, Data Source,
Source Bitmap, Source Byte);

Byte Rotate (Data Source, Residue, Pixel Shift, Data Shift);
Load Copy Buffer (Data Shift);
Residue = Data Source;
Frame Buffer Address Source += 8*Sign(Pixel Shift);

}

On PCI write 2:

for (i = 0; i <= 3; i++)
{

Unload Copy Buffer (Data Out);
Store Quadword (Frame Buffer Address Destination, Mask Destination<i*8+7:i*8), Data Out,

Destination Bitmap, Destination Byte);
Frame Buffer Address Destination += 8*Sign(Pixel Shift);

}

The algorithm is for descriptive purposes and does not address all details of

the copy-mode operation. For example, the 21030 does not necessarily read

or write all four quadwords. The 21030 monitors leading and trailing zeros

in Mask Source and Mask Destination, to save time when copying. The 21030

jumps to the first unmasked pixel to start reading, and terminates the read

and copy-buffer fill after the last unmasked pixel.

6.2.9.4 Copy Direction Flag

In the copy-mode process, software does not pass an explicit parameter to

indicate whether the address and mask parameters passed on a PCI write

to the frame buffer correspond to the source or the destination. In the copy

mode, the 21030 requires a strict ordering of alternating source-reads and

destination-writes to the frame buffer, and uses the copy direction flag to

indicate the next operation. The copy direction flag is a 2-state, internal,

hardware pointer (GMOR <20>). The flag state, Source Next or Destination
Next, determines whether the next incoming PCI write to the Frame Buffer
Address space should trigger a read to, or a write from, the copy buffer.

Software neither reads the copy direction flag nor writes it directly. The flag

is initialized to Source Next on a write to the GPSR or copy buffer. Therefore,

when software sets the Pixel Shift parameter before starting the copy, the

hardware is ready to read the first span. Each time software writes the

frame buffer in the copy mode, the copy direction flag changes state. As

Graphics Operations 6–55

long as software properly initializes the GPSR and alternates source-reads

and destination-writes, the hardware always does the appropriate operation

without explicit software control. If necessary, software can rewrite the GPSR

to reset the copy direction flag.

6.2.9.5 64-Byte Unmasked Span Copies

The 32-bit masks passed in the copy mode limit the span to 32 bytes in

the packed 8-bpp format. This uses only half of the 64-byte copy buffer. To

overcome this limitation, the 21030 has a separate mechanism for copying

spans of 64, unmasked, contiguous bytes (masked copies are not supported).

In other words, this mechanism cannot be used to copy any span segment in

which either the source or destination includes an edge that is not naturally

aligned to an 8-byte boundary, because any such span must be masked.

Copying 64-byte spans involves a 2-stage operation: one PCI write to load the

copy buffer starting at a specified Frame Buffer Address Source aligned to 8

bytes; and a second PCI write to unload the copy buffer starting at the Frame
Buffer Address Destination. However in this case, rather than writing to

the frame buffer, software writes the copy-64 source register (GCSR) to load

the copy buffer, using the Frame Buffer Address Source as data. Similarly, to

write the copy buffer contents to the frame buffer, software writes the copy-64

destination register (GCDR), using the Frame Buffer Address Destination as

data.

Loading and unloading the copy buffer in this way always moves 64 bytes.

Although the GCSR and GCDR are not normally used for span segments

containing an edge, they can be used to fill interior span segments in a large

copy operation, where the edge segments are copied using alternating writes to

the frame buffer source and destination addresses.

6.2.9.6 Copy Buffer Operation

The 21030 copy buffer contains 8 quadword entries (Figure 6–25). The 21030

loads and unloads the copy buffer in copy-mode operations as follows:

• A write to the frame buffer in the copy mode with the copy direction flag

pointing to Source Next

For this operation, the 21030 loads the copy buffer with up to 8 quadwords

from a 32-pixel span, starting at copy buffer entry0 and filling contiguously

up to entry7. For 8-bpp frame buffers, a 32-pixel span consists of 32

bytes and only entries 0 through 3 are filled. The Mask Source parameter

specifies which pixels in the span are enabled to be loaded into the copy

buffer, but does not affect how each pixel is mapped to a copy-buffer entry.

In effect, each pixel in the quadword-aligned source span is mapped to a

specific byte (8-bpp) or Dword (32-bpp) of a specific entry. Zeros in the Mask

6–56 Graphics Operations

Source parameter affect only the leading and trailing ends of the span; the

21030 saves time by not reading pixels that will be masked.

For example, on a write to an 8-bpp frame buffer in the copy mode with

a Mask Source value of FFFFFFFF, the 21030 loads all bytes in all copy-

buffer entries, with the first pixel of the span loaded in the least significant

byte of entry0 and the last pixel in the most significant byte of entry7. On

the other hand, on a write with a Mask Source value of 00FFFF00, only

entries 1 and 2 are filled.

• A write to the frame buffer in copy mode with the copy direction flag

pointing to Destination Next

For this operation, the 21030 unloads up to 8 quadwords from the copy

buffer to a 32-pixel span, starting with entry0 and draining contiguously

up to entry7. For 8-bpp frame buffers, a 32-pixel span consists of 32 bytes

and only entries 0 through 3 are drained. On the write, Mask Destination
bits enable each byte in an 8-bpp frame buffer and each Dword in a 32-

bpp frame buffer. On the drain, the 21030 uses the Mask Destination
to optimize frame buffer accesses, skipping leading and trailing zeros.

The pixel masking does not affect how each copy buffer entry is mapped

to the quadword; for example, entry6 is always mapped to the starting

quadword-address + 7.

• A write to the copy-64 source register (GCSR)

For this operation, the 21030 fills the copy buffer with exactly 8 quadwords

from a quadword-aligned address, starting with entry0 and filling

contiguously up to entry7. Masking to read fewer than 8 quadwords is

not done.

• A write to the copy-64 destination register (GCDR)

For this operation, the 21030 drains exactly 8 quadwords from the copy

buffer to a quadword-aligned address, starting with entry0 and draining

contiguously up to entry7. Masking to write fewer than 8 quadwords is not

done.

Figure 6–25 shows how the copy buffer registers (GCBR<7:0>) and slope-no-go

registers (GSNR<7:0>) are mapped to the copy buffer entries.

Graphics Operations 6–57

Figure 6–25 Copy Buffer Layout

Slope−No−Go7

Copy Buffer7

Slope−No−Go6
Slope−No−Go5
Slope−No−Go4
Slope−No−Go3
Slope−No−Go2
Slope−No−Go1
Slope−No−Go0

Copy Buffer6
Copy Buffer5
Copy Buffer4
Copy Buffer3
Copy Buffer2
Copy Buffer1
Copy Buffer0

Entry7

Entry6

Entry5

Entry4

Entry3

Entry2

Entry1

Entry0

Temporary
Hold

Write to
copy buffer
even entry

Write to
copy buffer
odd entry

Indexed Direct−Mapped
Register

Read Access
Register

Write Access

Copy Buffer

Write
low longword

Write
high longword

Programmed I/O Copy Buffer Operation

The copy buffer is also available for programmed I/O read and write operations.

The host can sequentially fill or random-access-read all entries of the copy

buffer through the GCBRs and GSNRs.

• Programmed I/O write to the copy buffer

The host can write to the copy buffer only by filling sequentially, starting

with entry0. A write to any even-numbered GCBR specifies, but does not

load, the low Dword of the next empty copy-buffer entry. A subsequent

write to any odd-numbered GCBR loads that Dword into the high Dword of

6–58 Graphics Operations

the next entry and loads the previously specified Dword into the low Dword

of the same entry. The effect of writes to a full copy is undefined.

• Programmed I/O read of the copy buffer

Unlike programmed I/O writes, programmed I/O reads directly and

randomly access individual halves of each quadword entry (Figure 6–25).

The eight GSNRs are direct-mapped to copy buffer entries 7 through 4 and

the eight GCBRs are direct-mapped to copy buffer entries 3 through 0. The

GSNRs are mapped to the copy buffer only on reads.

6.2.9.7 Fast Frame Buffer Access Using the Copy Buffer Registers

The best way to copy back-and-forth between host and screen is to use the

DMA-read and DMA-write copy modes. While DMA should provide the best

performance for large operations, it incurs an appreciable amount of overhead

that can make it inefficient for small regions. On the other hand, simple mode,

particularly when reading, is too slow for extended, dumb frame buffer access

or image transfer between the host and screen. However, the copy mode, in

conjunction with direct software access to the copy buffer, allows localized

regions in the frame buffer to be quickly read and written.

Standard screen-to-screen copies involve groups of two alternating PCI writes,

either to the source and destination frame buffer addresses (the standard copy

mechanism) or to the GCSR and GCDR. However, each write can individually

load or unload the copy buffer from or to the frame buffer. Additionally,

software can directly read and write the copy buffer (Section 6.2.9.6). For

example, by interleaving writes to the GCSR and GCDR with programmed

I/O reads and writes, software can rapidly transfer image data between host

memory and the frame buffer.

To transfer a bitmap from host memory to the frame buffer, software can do

the following:

1. Write the GCBRs.

2. Write the resulting contents of the copy buffer to the frame buffer with

either a write to the destination address with the copy direction flag set to

write Destination Next or a write to the GCDR.

Similarly, to transfer a bitmap from the frame buffer to host memory, software

can load the copy buffer with either a write to the source address with the copy

direction flag set to read Source Next or a write to the GCSR.

In either transfer, using the copy direction flag can be awkward, because the

copy direction flag can be manipulated only through writes to the frame buffer

and the GPSR.

Graphics Operations 6–59

6.2.9.8 Copy Mode Source and Destination Bitmaps

In the preceding sections, the description of the copy mode is limited to moving

pixel data between bitmaps that have the same format. The examples in

Figures 6–23 and 6–24 show copying data between packed 8-bpp bitmaps

(PB8 format); copying between 24-bpp bitmaps is similar. However, the copy

mode supports all types of source and destination bitmaps (Section 6.1.5). The

only restriction is that the depth of the source and destination bitmaps must

be the same. That is, spans copied from a 24-bpp bitmap source can only be

written to a 24-bpp destination, a 12-bpp source can be specified only with a

12-bpp destination, and an 8-bpp source can be specified only with an 8-bpp

destination.

In the copy mode, the source and destination bitmaps can be specified

independently by setting some subset of the following parameters:

• Source Bitmap and Destination Bitmap

• Source Byte and Destination Byte (8-bpp formats only, otherwise ignored)

• Plane Mask (12-bpp formats only)

For each supported permutation, an associated Source Bitmap and Destination
Bitmap encoding is assigned (Section 4.4.1). Software must specify the

appropriate values for both bitmaps prior to initiating the copy. After the

values have been specified, the Source Byte and the Destination Byte or

Plane Mask values can be specified, based on the respective Source Bitmap
and Destination Bitmap specified encodings, and the specific source and

destination formats. (See Section 6.1.5 for more information about using the

source and destination bitmap and byte fields.)

• 24-bpp bitmaps

To copy from one 24-bpp bitmap to another, the Source Bitmap and

Destination Bitmap values must be set to 0112 and 112 respectively.

• 12-bpp bitmaps

When copying 12-bpp spans between format DC120 and DC121 bitmaps,

software must set the Source Bitmap value to specify the specific bitmap

and the Destination Bitmap value to 102 (to specify a 12-bpp destination).

However, the Destination Bitmap value does not explicitly specify one of

the two possible formats. Instead, the 21030 extracts the 4:4:4 (R:G:B)

pixel data from the specific source bitmap and replicates it into both of the

possible destination bitmap formats (Section 6.1.6). Consequently, software

needs to set only the Plane Mask to write-enable only the desired bitmap.

6–60 Graphics Operations

Table 6–20 defines the Source Bitmap, Destination Bitmap, and typical

Plane Mask settings for each permutation of 12-bpp copies.

Table 6–20 Format Parameters for 12-bpp Bitmaps

Source
Format

Destination
Format

Source
Bitmap
Value�

Destination
Bitmap
Value�

Typical
Plane Mask
Value

DC120 DC120 010 10 000F0F0F

DC120 DC121 010 10 00F0F0F0

DC121 DC120 110 10 000F0F0F

DC121 DC121 110 10 00F0F0F0

�Binary

The Source Byte and Destination Byte parameters do not apply and are

ignored when using 12-bpp bitmaps.

• 8-bpp bitmaps

In the copy mode, the appropriate values of the Source Bitmap, Source
Byte, Destination Bitmap, and Destination Byte parameters support any

combination of 8-bpp source and destination.

Table 6–21 shows all possible permutations of 8-bpp source and destination

bitmaps within the context of a 32-bpp frame buffer. The 21030 writes only

to the destination bitmap as specified by the Destination Byte parameter;

therefore, the Plane Mask parameter should not be used to specify the

destination. The Plane Mask parameter can be used to mask individual

pixel bits for unpacked 8-bpp bitmaps, in the same way that it is used for

packed bitmaps.

Unpacked 8-bpp bitmaps referenced as a source or destination require

extra attention in terms of Frame Buffer Address Source and Frame Buffer
Address Destination alignment. Unlike all other bitmap formats (which

require address alignment to 8 bytes), 8-bpp unpacked bitmaps require

alignment to 32 bytes.

Graphics Operations 6–61

Table 6–21 Format Parameters for 8-bpp Bitmaps in a 32-bpp Frame Buffer

Source
Format

Destination
Format

Source
Bitmap
Value�

Source
Byte
Value�

Destination
Bitmap
Value�

Destination
Byte
Value�

UB80 UB80 001 00 01 00

UB80 UB81 001 00 01 01

UB80 UB82 001 00 01 10

UB81 UB80 001 01 01 00

UB81 UB81 001 01 01 01

UB81 UB82 001 01 01 10

UB82 UB80 001 10 01 00

UB82 UB81 001 10 01 01

UB82 UB82 001 10 01 10

UB80 PB8 001 00 00 00

UB81 PB8 001 01 00 00

UB82 PB8 001 10 00 00

PB8 UB80 000 00 01 00

PB8 UB81 000 00 01 01

PB8 UB82 000 00 01 10

PB8 PB8 000 00 00 00

�Binary

6–62 Graphics Operations

6.2.10 DMA-Read Copy Mode

In the DMA-read copy mode, a PCI write to the frame buffer address space

copies a contiguous span of up to 2K Dwords (8KB) from external PCI memory

to the frame buffer. The 21030 copies the span as a function of the parameters

listed in Table 6–22.

DMA Read Copy Span (DMA Address, Frame Buffer Address Destination, Read Count (-1),
Mask Left <1:0>, Mask Right <1:0>, Plane Mask,
Pixel Shift, Raster Op, Destination Bitmap, Destination Byte)

Table 6–22 DMA-Read Copy-Mode Parameters

Parameter Source Section

Frame Buffer Address
Destination

PCI write address — —

Read Count (-1) PCI write data <31:16> —

Mask Left 0 PCI write data <11:8> —

Mask Left 1 PCI write data <15:12> —

Mask Right 0 PCI write data <3:0> —

Mask Right 1 PCI write data <7:4> —

DMA Address DMA base address register GDBR <31:0> 4.4.7

Pixel Shift Pixel shift register GPSR <3:0> 4.4.5

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Raster Op Raster operation register GOPR <3:0> 4.4.3

Source Bitmap Mode register GMOR <10:8> 4.4.1

Source Byte Mode register GMOR <12:11> 4.4.1

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

The PCI write cycle initiates a DMA-read copy of one span from PCI external

memory into the frame buffer. The PCI write addresses the location of the

destination span (Frame Buffer Address Destination). The PCI write data

consists of a Dword Read Count and four read masks for the destination.

Figure 6–26 shows the format of the PCI write data.

Graphics Operations 6–63

Figure 6–26 DMA-Read Copy-Mode PCI Write-Data Format

31

PCI Data
3

PCI
Byte Mask

8 0

IGN

7 4 316 15 12 11 0

Read Count (−1)
Mask
Left 0

Mask
Left 1

Mask
Right 1

Mask
Right 0

27 26

IGN

On the PCI write, the 21030 requests and then masters the PCI bus. It then

reads Read Count Dwords from PCI external memory starting at the DMA
Address and writes the Dwords to the frame buffer, starting at the Frame
Buffer Address. On each successful transfer, the 21030 reads and writes one

full Dword as follows:

• First Dword

1. Reads the Dword from PCI external memory.

2. Writes the Dword to the frame buffer at the Frame Buffer Address
Destination. On the write, Mask Left 0 masks the individual bytes of

the first Dword.

3. Decrements the Read Count.

• Second Dword

4. Reads the Dword from PCI external memory.

5. Writes the Dword to the frame buffer at the next frame buffer address.

On the write, Mask Left 1 masks the individual bytes of the second

Dword.

6. Updates the frame buffer address.

7. Decrements the Read Count.

• Third Dword through next-to-last Dword

8. Reads the Dword from PCI external memory.

9. Writes the Dword to the frame buffer at the next frame buffer address.

No bytes are masked.

10. Updates the frame buffer address.

11. Decrements the Read Count.

6–64 Graphics Operations

• Last Dword

12. Reads the Dword from PCI external memory.

13. Writes the Dword to the frame buffer at the next frame buffer address.

On the write, Mask Right 0 masks the individual bytes of the last

Dword.

14. Updates the frame buffer address.

15. Decrements the Read Count.

• After the last Dword is read and written, the 21030 writes the contents of

the residue register to the frame buffer at the next frame buffer address,

masked by Mask Right 1.

• For each write to the frame buffer destination, the 21030 also executes the

specified Raster Op and filters data through the Plane Mask.

The DMA-read copy mode is functionally similar to the copy mode. However,

the DMA-read copy mode differs in the following ways:

• Addresses are aligned to Dword (4 bytes) rather than quadword (8 bytes).

• The copy source is located in PCI external memory.

• External memory does not support all bitmap formats.

• The span can contain as many as 2K Dwords.

• The PCI write data passes two sets of mask data to mask the span’s left

and right edges (per-pixel masking is not allowed).

• The source can be optionally dithered.

The DMA-read copy operation can be considered to be a copy-mode operation

in which the source is accessed across the PCI bus and the granularity of

the operation is 32 bits rather than 64 bits. Both the Frame Buffer Address
Destination and DMA Address must be aligned to 4 bytes. The process of

reading the source, rotating using the residue register, and writing the

destination occurs in groups of 4 bytes rather than 8 bytes.

Because the Frame Buffer Address Destination and the DMA Address must be

aligned to 4 bytes, software must adjust the desired source and destination

addresses and masks for unaligned copies to the next whole Dword. However,

all bitmaps, except packed 8-bpp bitmaps, are naturally aligned to 4 bytes.

Graphics Operations 6–65

Each Dword read from PCI external memory is concatenated with a 32-bit

version of the residue register, and rotated by Pixel Shift bytes to produce the

destination Dword written to the frame buffer. In the DMA-read copy mode,

the Pixel Shift is calculated as in the copy mode (Table 6–19). However,

unlike the copy mode, the Pixel Shift value range is 0 to +3, because

backward copies are unnecessary and the granularity is 4 bytes rather than 8

bytes.

In the DMA-read and DMA-write copy modes, the copy buffer is not used,

and the destination Dword is written directly to the frame buffer, using the

specified Raster Op and Plane Mask. Residue-register priming and flushing is

similar to the copy mode (Section 6.2.9).

6.2.10.1 Priming and Flushing the Residue Register

The two left-edge masks compensate for residue-register priming. For the copy

alignments that require residue register priming, the following occur:

• The Frame Buffer Address Destination is decremented one Dword (that is,

the destination span’s left edge is extended 4 bytes).

• Mask Left 0 masks out the additional Dword.

• Mask Left 1 contains the desired edge mask.

For alignments that do not require residue-register priming, Mask Left 0
usually contains the desired edge mask and Mask Left 1 is set to 11112.

The two right-edge masks compensate for copy alignments that require-residue

register flushing. As in the copy mode, the pipelined nature of the source-read

data path causes valid source data to remain in the residue register under

certain conditions. Depending on the alignment and location of the span’s

right edge, this also applies to the DMA-read copy mode. But unlike the copy

mode, the DMA-read copy mode requires explicit software attention to flush the

residue register. Specifically, explicit residue-register flushing is required for

alignments in which Source Aligned and Destination Aligned are the desired

address alignments of the end of the span and one of the following is true:

Source Align > Destination Align and Source Aligned < Destination
Aligned

or

Source Align < Destination Align and Source Aligned > Destination
Aligned

To flush the residue register in such cases, Mask Right 1 contains the desired

edge mask and Mask Right 0 is set to 11112.

6–66 Graphics Operations

Table 6–23 shows how the four edge-mask parameters are set according to the

requirement to prime and flush the residue register.

Table 6–23 Edge Mask Settings in DMA-Read Copy Mode

Residue
Register Mask Left 0 Mask Left 1 Mask Right 0 Mask Right 1

Prime 00002 Left-edge mask — —

No prime Left-edge mask 11112 — —

Flush — — 11112 Right-edge mask

No flush — — Right-edge mask 00002

For short spans, in which fewer than 3 Dwords are read across the PCI, all

edge masks are not used. (However, the DMA copy modes are seldom used to

copy such small spans and the limitation can usually be ignored.) Table 6–24

lists the masks used for such spans.

Table 6–24 Edge Mask for Short Spans in DMA-Read Copy Mode

Read Count Mask Left 0 Mask Left 1 Mask Right 0 Mask Right 1

�3 Yes Yes Yes Yes

2 Yes No Yes Yes

1 No No Yes Yes

Figure 6–27 is an example of a packed, 8-bpp, short span copied to the frame

buffer over the PCI bus in DMA-read copy mode. The alignment requires an

extra frame buffer write to flush the residue register. For descriptive purposes,

the PCI cycle shown assumes a fast target response with no read latency.

Graphics Operations 6–67

Figure 6–27 DMA-Read Copy

Desired Destination Address (Destination Align = 3)

a b c d e f g h i j

Desired Source Address = XXXXXXX2 (Source Align = 2)

Pixel Shift = Destination Align − Source Align = +2

Frame Buffer Address

00 10 20 30 4001

Source Read 0

Source Read 1

Source Read 2

Residue Register

0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

−h i j

− − − − − a b c

− a b c d e f g

d e f g h i j −

j − − −

f g h i

DMA
Address

b c d e

− − − a

Mask
Right 1

Mask
Right 0

Mask
Left 1

Mask
Left 0

PCI Clock

ad<31:0>

DMA Address = XXXXXXX0

PCI Memory Read Cycle:

Flush Residue

Destination

−abc defg − hij

1

1

6–68 Graphics Operations

6.2.10.2 Bitmap Formats Supported in DMA-Read Copy Mode

Unlike the copy mode, the DMA-read copy mode does not support all 21030

bitmap formats. Specifically, the formats listed below are not supported as

an external memory source bitmap. This is because a bitmap in PCI memory

cannot be accessed in the same way as a frame buffer bitmap. Source Bitmap
and Source Byte can be set as described in Section 6.2.9.8, with the following

source formats not allowed:

• UB80

• UB81

• UB82

• DC120

Note that in each of the disallowed formats, each pixel occupies one Dword;

therefore, the unsupported formats could be read from a 24-bpp source. Source
Bitmap and Source Byte are effectively ignored in the DMA-read copy mode.

In the DMA-read copy mode, all 21030 bitmap formats can be specified as

frame buffer destination bitmaps with Destination Bitmap and Destination
Byte. When accessing unpacked 8-bpp destination bitmaps UB80, UB81 or

UB82, the Frame Buffer Address Destination must be aligned to 16 bytes

rather than 4 bytes (Dword) as required by all other formats.

Although the DMA-read copy mode does not support the DC120 12-bpp format

in external memory, it does support the DC120 and DC121 formats in the

frame buffer. If the Destination Bitmap specifies a 12-bpp format, the 21030

replicates the high nibble of each byte to the low nibble; that is, it replicates

DC120 to DC121. Therefore, software must set the Plane Mask to write only

the specified format.

6.2.10.3 Dithering in DMA-Read Copy Mode

The mode field (GMOR <6:0>) enables DMA-read copy mode in two ways:

• The source is dithered to the destination.

• Dithering is disabled.

When dithering is enabled, the 21030 expects the source to be a TC24

format bitmap (Figure 6–4). The 21030 dithers from the 24-bpp source to

the destination format specified by the Destination Bitmap parameter. To

allow the 21030 dithering logic to address the dither matrix, software must

initialize the dither row and dither column values in the red- and green-value

registers (GRVR <31:27>, Section 4.4.22 and GGVR <31:27>, Section 4.4.24).

Graphics Operations 6–69

6.2.11 DMA-Write Copy Mode

In the DMA-write copy mode, a PCI write to the frame buffer address space

copies a contiguous span of up to 2K quadwords (16KB) from the frame buffer

to the external PCI memory. The 21030 copies the span as a function of the

parameters listed in Table 6–25.

DMA Write Copy Span (DMA Address, Frame Buffer Address Source, Read Count (-1),
Mask Left, Mask Right, AND Mask, Source Bitmap, Source Byte,
Destination Bitmap, Destination Byte);

Table 6–25 DMA-Write Copy-Mode Parameters

Parameter Source Section

Frame Buffer Address Source PCI write address — —

Read Count (-1) PCI write data <31:16> —

Mask Left PCI write data <15:8> —

Mask Right PCI write data <7:0> —

DMA Address DMA base address register GDBR <31:0> 4.4.7

Pixel Shift Pixel shift register GPSR <3:0> 4.4.5

AND Mask Data register GDAR <31:0> 4.4.8

Source Bitmap Mode register GMOR <10:8> 4.4.1

Source Byte Mode register GMOR <12:11> 4.4.1

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

The PCI write cycle initiates a DMA-write copy of one span from the 21030

frame buffer to PCI external memory. The PCI write addresses the location of

the source span (Frame Buffer Address Source). The PCI write data consists of

a read count and two read masks (Read Count, Mask Left, and Mask Right) for

the destination. Figure 6–28 shows the format of the PCI write data.

6–70 Graphics Operations

Figure 6–28 DMA-Write Copy-Mode PCI Write-Data Format

31

PCI Data
3

PCI
Byte Mask

8 0

IGN

716 15 0

Read Count (−1) Mask RightMask Left

27 26

IGN

On the PCI write, the 21030 reads Read Count quadwords from the frame

buffer beginning at the Frame Buffer Address Source. Each quadword read

is selectively shifted, then written one Dword at a time over the PCI bus,

beginning at the DMA Address. Mask Left is the left-edge byte mask and Mask
Right is the right-edge mask data. As in the DMA-read copy mode, only

forward copies are necessary — backward copies are not supported.

In general, the DMA-write copy mode behaves as the inverse of the DMA-read

copy mode, with the following major differences:

• The source bitmap address (Frame Buffer Address Source) must be

quadword-aligned, except for unpacked 8-bpp source bitmaps, which must

be aligned to 32 bytes (Section 6.2.10.2).

• The Frame Buffer Address Source must be adjusted to always prime the

residue register.

• If residue-register flushing is required, the Read Count must be adjusted to

read an additional quadword.

The 21030 reads the first quadword from the Frame Buffer Address Source,

concatenates it with the residue register, and rotates the result by Pixel
Shift bytes (as in the copy mode). It then decrements Read Count. The first

quadword generated by the first read-concatenate-rotate operation is discarded

because the 21030 always assumes that the first quadword primes the residue

register, whether or not the particular alignment requires it. Consequently,

software must conditionally decrement the Frame Buffer Address Source by 8

for alignments that do not require residue-register priming.

The 21030 repeats the process for the second quadword and again decrements

Read Count, but this time it writes the quadword generated by the rotate

operation through Mask Left onto the PCI bus. Prior to writing, the 21030

masters the PCI bus, drives the DMA Address, and sets up a memory-write cycle

to burst Dwords until the last quadword is read from the frame buffer. (See

Section 5.3 for more information about the 21030’s behavior as a PCI master.)

Graphics Operations 6–71

The 21030 maps 1 bit of Mask Left to each byte of the first quadword written.

Because the PCI is 1 Dword (4 bytes) wide, the 21030 processes one-half of the

quadword at a time, as follows:

• If the lower nibble (<3:0>) of Mask Left is nonzero, the 21030 ignores the

low Dword and moves on to the second Dword.

• If the lower nibble of Mask Left is zero, the 21030 transfers the low Dword

over the PCI bus, specifying Mask Left <3:0> as the data byte enable.

• The 21030 then transfers the high Dword, specifying Mask Left <7:4> as

the data byte enable.

For each Dword successfully transferred, the 21030 decrements its internal

copy of the current PCI address. The 21030 monitors the PCI address because

the burst can be terminated on any cycle. If the burst is terminated, the 21030

must reacquire the bus and issue the address of the next untransferred Dword,

to resume the burst transfer.

After the second source quadword has been processed, and one or both Dwords

written, the 21030 repeatedly reads quadwords until the Read Count = 1. For

each quadword read, the 21030 performs the rotate operation with the residue

register, decrements the Read Count, and writes both Dwords of the destination

quadword over the PCI, twice incrementing its copy of the current PCI address.

(Note that when writing to a destination across the PCI, the Raster Op and

Plane Mask parameters are not used.)

Finally, the 21030 reads the last source-quadword from the frame buffer and

performs the concatenate and rotate operation. It then writes the destination

quadword through Mask Right onto the PCI bus. Again, each bit of Mask Right
corresponds to 1 byte of the quadword. The 21030 writes 1 Dword at a time,

starting with the lower Dword; however, if the upper nibble of Mask Right is

zero, the 21030 does not write the last Dword. The 21030 then terminates the

PCI memory write cycle, completing the DMA-write copy operation.

6–72 Graphics Operations

The following pseudo-code represents the basic algorithm for the DMA-write

copy operation:

/* process first quadword and ignore (priming) */
Read Quadword (Frame Buffer Address Source, Quadin, Source Bitmap, Source Byte);
Byte Shifter (Quadin, Residue, Pixel Shift, Quadout);
Read Count-- ;
Frame Buffer Address Source += 8;
/* process second quadword and write through left edge mask*/
Read Quadword (Frame Buffer Address Source, Quadin, Source Bitmap, Source Byte);
Byte Shifter (Quadin, Residue, Pixel Shift, Quadout);
Frame Buffer Address Source += 8;
if (Mask Left<3:0> != 0)
{

Write PCI (Quadout<31:0>, Mask Left<3:0>);
Read Count-- ;

}
Write PCI (Quadout<63:32>, Mask Left<7:4>);
/* process middle of span without masks*/
while (Read Count > 1)
{

Read Quadword (Frame Buffer Address Source, Quadin, Source Bitmap, Source Byte);
Byte Shifter (Quadin, Residue, Pixel Shift, Quadout);
Write PCI (Quadout<31:0>, Mask Right<3:0>);
Write PCI (Quadout<63:32>, Mask Right<7:4>);
Frame Buffer Address Source += 8;
Read Count-- ;

}
/* process last quadword and write through right edge mask*/
Read Quadword (Frame Buffer Address Source, Quadin, Source Bitmap, Source Byte);
Byte Shifter (Quadin, Residue, Pixel Shift, Quadout);
Write PCI (Quadout<31:0>, Mask Right<3:0>);
if (Mask Right<7:4> != 0)
{

Write PCI (Quadout<63:32>, Mask Right<7:4>);
Read Count-- ;

}

The preceding code does not necessarily indicate the exact behavior of the

21030 hardware. For example, when copying short spans, in which fewer than

3 Dwords are read across the PCI, all edge masks are not used. Table 6–26

lists the masks used for such spans. (However, the DMA-read and DMA-write

copy modes are seldom used to copy such small spans and the limitation can

usually be ignored.)

Graphics Operations 6–73

Table 6–26 Edge Mask for Short Spans in DMA-Write Copy Mode

Read Count Mask Left Mask Right

�3 Yes Yes

2 Yes No

1 No No

6.2.11.1 Priming and Flushing the Residue Register

Because the hardware does nothing special to flush the residue register,

alignments that need residue register flushing require software to increment

the Read Count by 1 to force an extra read to flush the residue register.

Figure 6–29 is an example of a DMA-write copy mode operation. In the

example, the alignments require residue-register priming; therefore, the

Frame Buffer Address Source requires no backward adjustment. Because

residue-register flushing is not required, the Read Count is not incremented.

6–74 Graphics Operations

Figure 6–29 DMA-Write Copy

* Pixel Shift = 8 − (Source Align − Destination Align) = +6

Desired Destination Address = 00000105 (Destination Align = 1)

− − − a b c d e

f g h i j k l m

c d e f g

− − − −

−

− − −

Source Read 0

Source Read 1

−

Source Read 2

− −*

Residue Register

− − − − − − − −

− − − a b c d e

f g h i j k l m

− −

− a b

− − −n

h i j k l m n

a b c d e f g h i j k l m n

Frame Buffer Address Desired Source Address (Source Align = 3)

00 10 18 20 2813 30

DMA Address = 00000104 (Dword Aligned)

00000104

Prime Residue

ad<31:0>

Memory
Readc/be<3:0> 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1

PCI Clock

k

0

j

7

i

0

h

7

−

1 1 1 1 1 1 1 01 1 1 1 1 1 1 0 Mask RightMask Left

n m lc gb fa e− d

Source

Graphics Operations 6–75

6.2.11.2 Bitmap Formats Supported in DMA-Write Copy Mode

Similar to the DMA-read copy mode, the DMA-write copy mode does not

support all 21030 bitmap formats. Specifically, it does not support any of the

formats listed below as an external-memory destination bitmap. Destination
Bitmap and Destination Byte can be set as described in Section 6.2.9.8, with

the following destinations not allowed:

• UB80

• UB81

• UB82

• DC120

In the DMA-write copy mode, all 21030 bitmap formats can be specified as

frame buffer source bitmaps with Source Bitmap and Source Byte. When

accessing unpacked 8-bpp source bitmaps UB80, UB81 or UB82, the Frame
Buffer Address Source must be aligned to 32 bytes rather than 8 bytes as

required by all other bitmap formats.

When copying to destinations across the PCI bus, normal plane masking is not

available. In its place, the 21030 provides the AND Mask from the GDAR. The

AND Mask can be used to clear bits in the destination-Dword as it is written.

For example, on a write to a format DC121 destination bitmap, software can

specify a mask value of 00F0F0F0 to zero the inactive fields.

The GDAR can be modified in the DMA-write copy mode only when the chip is

idle. Before writing the GDAR, software should wait for busy to be deasserted

in the command and status register (SCSR <0>, Section 4.7.1).

6–76 Graphics Operations

6.2.12 Opaque-Line Mode

Note

The first part of this description is included for continuity. It describes

opaque-line mode operations initiated by the standard frame buffer

write mechanism. However, the same functionality is more efficiently

implemented with the alternate slope register write mechanism

described in Section 6.2.12.1.

In the opaque-line mode, a PCI write to the frame buffer address space draws

a masked, 16-pixel, bitonal line segment starting at the specified address. For

this description, a line segment is defined as a string of 16 contiguous pixels

drawn along an arbitrary slope; a line is made up of multiple segments and its

length is arbitrary.

The 21030 draws the line segment as a function of the parameters listed in

Table 6–27.

Opaque Line (Frame Buffer Address, Frame Buffer Address <1:0>, Line Mask, Raster Op,
Plane Mask, Foreground, Background, Address Increment 1,
Address Increment 2, Error Increment 1, Error Increment 2, Initial Error,
Length, Destination Bitmap, Destination Byte. Cap Ends);

Table 6–27 Opaque-Line Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Frame Buffer Address <1:0> PCI write data <17:16> —

Line Mask PCI write data <15:0> —

Raster Op Raster operation register GOPR <3:0> 4.4.3

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Foreground Foreground register GFGR <31:0> 4.4.18

Background Background register GBGR <31:0> 4.4.19

Address Increment 1 Bresenham 1 register GB1R <31:16> 4.4.10

Error Increment 1 Bresenham 1 register GB1R <15:0> 4.4.10

Address Increment 2 Bresenham 2 register GB2R <31:16> 4.4.11

Error Increment 2 Bresenham 2 register GB2R <15:0> 4.4.11

(continued on next page)

Graphics Operations 6–77

Table 6–27 (Cont.) Opaque-Line Mode Parameters

Parameter Source Section

Initial Error Bresenham 3 register GB3R <31:16> 4.4.12

Length Bresenham 3 register GB3R <3:0> 4.4.12

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

Cap Ends Mode register GMOR <15> 4.4.1

The PCI write cycle initiates the line segment drawing operation to the 21030

frame buffer. The PCI write addresses the start of the segment (Frame Buffer
Address) and passes as data the two address LSBs (Frame Buffer Address
<1:0>) and a 16-bit Line Mask to pattern the line. Figure 6–30 shows the

format of the PCI write data.

Figure 6–30 Opaque-Line Mode PCI Write-Data Format

331 18 17 16

Frame Buffer Address <1:0>

15 0

PCI Data
PCI

0

Byte Mask

IGNRES Line Mask

The Frame Buffer Address must be aligned to 1 pixel. For drawing to packed

8-bpp bitmaps, the two LSBs of the frame buffer address (Frame Buffer
Address <1:0>) are part of the PCI write data. For drawing to any other

bitmap, the address is Dword-aligned (by default) and Frame Buffer Address
<1:0> is ignored.

Before writing to the frame buffer in a line mode, software must ensure that

the Address Increment, Error Increment, Length, and Initial Error values

stored in the Bresenham registers are appropriate to the slope, octant, and

length of the line segment. Software can write these parameters directly or

initialize them indirectly by writing the GSLRs or GSNRs (Section 6.2.12.1).

Before starting to draw the line segment, the 21030 uses the Frame Buffer
Address (concatenated with Frame Buffer Address <1:0>, if necessary) to

initialize the address stored in its Bresenham engine.

6–78 Graphics Operations

The 21030 draws a line segment as follows:

1. To draw the first pixel, the 21030 checks the bits from the Line Mask as

follows:

• If the first Line Mask bit = 1, Foreground color is written.

• If the first Line Mask bit = 0, Background color is written.

2. On any write in opaque-line mode, the 21030 does the specified Raster Op
and uses Plane Mask to mask the writes to individual pixel bits.

3. The Bresenham engine then takes one step along the line, as follows:

• If the current error term is <0, the engine adds Address Increment 1
to the current address and adds Error Increment 1 to the current error

term to take one step along the major axis of the line segment.

• If the current error term is �0, the engine adds Address Increment 2 to

the current address and subtracts Error Increment 2 from the current

error term to take one step along the major and minor axes of the line

segment.

4. The 21030 then decrements Length and repeats the process for each pixel

along the line, until the segment Length = 0. Once initialized by Frame
Buffer Address <1:0>, the 21030 internally monitors which Dword-byte is

to be written to a packed 8-bpp bitmap as it steps through the line.

The following pseudo-code represents the basic algorithm for opaque-line mode:

while (Length > 0)
{

Pixel = (Extract Bit(Line Mask,Length)) ? Foreground : Background;
Write Frame Buffer(Frame Buffer Address, Pixel, Raster Op, Plane Mask,

Destination Bitmap, Destination Byte);
/* Bresenham step along line */
if (Error < 0)
{

Frame Buffer Address += Address Increment 1;
Error += Error Increment 1;

}
else
{

Frame Buffer Address += Address Increment 2;
Error -= Error Increment 2;

}
Length --;

}

Graphics Operations 6–79

6.2.12.1 Drawing Lines with the Slope Registers

Drawing lines as described in the preceding sections results in a bottleneck for

the following reasons:

• Overall line throughput in the CPU or I/O is slow, due to the software

overhead incurred in setting up and writing all of the Bresenham address

and error terms for each line.

• The 21030’s high-performance, 64-bit memory bus can draw at a rate faster

than an Alpha AXP CPU can supply commands and data.

To avoid bottlenecks, the GSLRs are a faster and simpler mechanism for

drawing lines with less computation and fewer writes.

Table 6–28 is the modified list of parameters used in drawing lines with the

GSLRs.

Table 6–28 Opaque-Line Mode Parameters Using Slope Registers

Parameter Source Section

Absolute Dy Slope register GSLRn <31:16> 4.3.1

Absolute Dx Slope register GSLRn <15:0> 4.3.1

Frame Buffer Address Address register GADR <31:0> 4.4.2

Line Mask Data register GDAR <15:0> 4.4.8

Raster Op Raster operation register GOPR <3:0> 4.4.3

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Foreground Foreground register GFGR <31:0> 4.4.18

Background Background register GBGR <31:0> 4.4.19

Bitmap Width Bresenham width register GBWR <15:0> 4.4.13

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

Cap Ends Mode register GMOR <15> 4.4.1

Deep Deep register GDER <0> 4.4.28

Drawing lines with the GSLRs is similar to the standard line drawing

mechanism, with the following exceptions:

• A write to a GSLR, rather than to the frame buffer, initiates the drawing

operation.

• The address and line-mask data are specified in registers.

6–80 Graphics Operations

• Software must initialize the Bresenham width register (GBWR,

Section 4.4.13) instead of the GB1R, GB2R and GB3R registers.

Each GSLR corresponds to one drawing octant and contains two 16-bit fields,

one for the absolute value of the slope rise (Absolute Dy) and the other for the

absolute value of the slope run (Absolute Dx).

On a write to a GSLR, the 21030 calculates the Bresenham terms and then

starts the standard Bresenham line drawing algorithm. Because the PCI

write that initiates the drawing operation addresses a GSLR and passes slope

information as data, the Frame Buffer Address and Line Mask parameters are

specified in the GADR and GDAR, rather than in the PCI write data.

Given the slope and octant information, the 21030 does all of the Bresenham

setup. It calculates all of the Bresenham error and address terms and stores

them in the appropriate Bresenham register fields. The 21030 implements a

slightly different setup algorithm depending on whether the line must comply

with Win32 or be compatible with existing Digital conventions for lines drawn

under X.

The following pseudo-code represents the basic hardware setup algorithm:

Pixel Bytes = (deep ? 4 : 1);
dxGEdy = (Absolute Dx >= Absolute Dy);
dxGE0 = (Absolute Dx > 0);
dyGE0 = (Absolute Dy > 0);
dmajor = (dxGEdy ? Absolute Dx : Absolute Dy)
dminor = (dxGEdy ? Absolute Dy : Absolute Dx)
majorGE0 = (dxGEdy ? dxGE0 : dyGE0);
minorGE0 = (dxGEdy ? dyGE0 : dxGE0);
amajor = (dxGEdy ? PixelBytes : BitmapWidth);
aminor = (dxGEdy ? BitmapWidth : PixelBytes);
if Graphics Environment

{
errinc = (dxGEdy ? dyGE0 : !dxGE0);
}

else
{
errinc = majorGE0;
}

/* Initial Bresenham terms */
Length = dmajor + Cap Ends mod16;
Error Increment 1 = dminor;
Error Increment 2 = dmajor + ~dminor + 1;
Initial Error = ((dminor<<1) + ~dmajor + errinc) >>1;
Address Increment 1 = (majorGE0 ? amajor : ~amajor + 1);
Address Increment 2 = (minorGE0 ? aminor : ~aminor + 1) + Address Increment 1;

Graphics Operations 6–81

Cap Ends and Deep are additional parameters specified in GMOR and GDER,

respectively. Results are undefined if Absolute Dx and Absolute Dy are both

set to zero.

Note that Length is set to the major axis length MOD 16. Therefore, the 21030

draws up to, but not necessarily exactly, 16 pixels when a GSLR is written. For

example, if the major axis length is 19, writing a GSLR causes a 3-pixel line to

be drawn (assuming Cap Ends is set).

Because Win32 has strict requirements on which pixels must be illuminated

for a particular line, while X does not, the Initial Error term is calculated

differently for Win32 display drivers than for Digital X servers. Win32 lines

must comply with Microsoft’s grid intersect quantization (GIQ) specification:

‘‘That is, the geometric line from the starting point to the ending point

is imagined as drawn on a grid with p(ix)els at the grid intersections.

Whenever the geometric line crosses the grid, the nearest p(ix)el is

illuminated. In the case where two p(ix)els are equidistant, the upper

or left p(ix)el is illuminated, unless the slope of the line is exactly one, in

which case the upper or right p(ix)el is illuminated.’’

While Win32 lines are generally X-compliant, they do not comply with Digital’s

traditional way of drawing lines under X. Traditionally, Digital’s X servers draw

X-compliant lines that are not always Win32-compliant; specifically, the upper

or left pixel is not always illuminated in accordance with the GIQ specification.

Consequently, the 21030 line setup compensates for the difference by setting

Initial Error as a function of the graphics environment. If there is no need

to adhere to traditional practice, the 21030 draws X-compliant lines, including

when the graphics environment is Win32.

In any line mode, drawing lines by writing to the GSLRs is almost always

faster than drawing lines by writing to the frame buffer. However, additional

restrictions imposed when drawing Win32-compliant lines prevent using the

GSLRs. Therefore, some lines can be drawn only by directly writing to the

frame buffer. These restrictions affect the 21030 display driver rather than the

hardware (Section 7.2.3).

The slope-no-go registers (GSNR<7:0>) mimic the behavior of the GSLRs,

but they do not initiate drawing. That is, on a write to a GSNR, the 21030

processes the slope data, generates the Bresenham terms, and loads them into

the Bresenham registers, but the line is not drawn. The GSNRs are useful for

drawing clipped lines, in which some portion of the line is not drawn.

6–82 Graphics Operations

Figure 6–31 is an example opaque-line mode operation.

Figure 6–31 Opaque Line Drawing

Frame Buffer Address || Frame Buffer Address <1:0>

0101010101010101

0 15

Line Mask

Foreground

Background

Unmodified

6.2.12.2 Destination Bitmap Support in Opaque-Line Mode

Opaque-line mode drawing supports the destination bitmap formats described

in Section 6.1.5. The Destination Bitmap and Destination Byte parameters

must be set for the desired destination bitmap. The Source Bitmap and Source
Byte parameters are ignored, but software must align the Foreground and

Background to the desired destination. (See Section 6.1.6 for more information.)

6.2.12.3 Extending and Linking 2D Lines

The 21030 processes up to 16-pixels per line-segment drawing operation, but

graphics applications do not limit line drawing requests to lines that are 16 or

fewer pixels. Additionally, applications can request a string of lines, with each

subsequent line starting at the end of the preceding line. The line drawing

hardware supports two ways of linking 16-pixel line segments:

• A previously drawn line can be extended up to 16-pixels along the same

slope.

• A new line drawing can start at the end of a previously drawn line.

Graphics Operations 6–83

For example, to draw a 50-pixel line, the 21030 software must link four

segments along the same line. The 21030 allows multiple segments of the

same line and multiple lines to be drawn without software reassigning the

address and other parameters for each segment. The Bresenham engine has

several features to facilitate such operations.

The Bresenham engine contains a working set of the parameters Initial
Error, Length, and Frame Buffer Address. When a line-segment drawing

operation is initiated, the Bresenham engine conditionally loads the primary

parameter values into its working set. (The drawing operation can be initiated

by a write to a GSLR or the GCTR.) During the line-stepping process, the

Bresenham engine operates only on the working set.

On completion of the segment drawing operation, the Bresenham engine leaves

its working set in a state suitable for linking to the next segment or line.

Specifically, the Bresenham engine’s working set of parameters is managed as

follows:

• If a GSLR was written since the last line segment was drawn, the

Bresenham engine updates its working copies of Length and Initial
Error from the register before drawing a line segment. Otherwise, the line

segment is drawn without updating the working set parameters.

• If a new address was specified in the GADR since the last line segment

was drawn, the Bresenham Engine updates its working copy of the

Frame Buffer Address before drawing a line segment. Otherwise, the

line segment is drawn without updating the working copy of the Frame
Buffer Address.

• On completion of a line-segment drawing operation, the Bresenham engine

does the following:

– Leaves its working copy of the Frame Buffer Address at the address of

the next pixel along the line.

– Resets the value of its working copy of Length to 16.

– Sets its copy of Initial Error to the error term for the next pixel along

the line.

In other words, the Bresenham engine uses new values of Initial Error and

Length only if A GSLR was reloaded after the last line segment was drawn;

otherwise, the engine does not sample either parameter, but uses the current

working set values.

Similarly but independently, the Bresenham engine uses a new address only if

a new address was specified by a write to the GADR after the last line segment

was drawn.

6–84 Graphics Operations

Extending a Single Line

By taking advantage of the Bresenham engine behavior, software can extend

the current opaque line up to 16 pixels by writing the Line Mask for the

next segment to the GCTR. Because software does not write a GSLR, the

Bresenham engine’s working parameters correspond to the next pixel in the

line, with Length reset to 16. Given the new line mask, the 21030 extends the

line 16 pixels.

In summary, the fastest way for software to extend the current line by one

more 16-pixel segment is to write the following:

1. Any relevant registers, except the GADR and GSLR

2. The segment’s Line Mask to the GCTR

This process can be repeated as many times as necessary to draw lines of

arbitrary length. Usually, the first segment is drawn by writing to a GSLR,

and all subsequent segments along the same line are drawn by writing to the

GCTR.

Figure 6–32 shows a typical sequence for drawing a line of length n by drawing

the first segment and then drawing as many extending segments as necessary.

Note

Other than Length, Initial Error, and Frame Buffer Address, all

relevant opaque-line mode parameters (such as Foreground and

Background) are sampled every time a line segment drawing operation

is initiated.

Graphics Operations 6–85

Figure 6–32 Opaque-Line Drawing Sequence

N

Y
n > 16?

Mode
Foreground
Background
Plane Mask
Raster Operation

Data

Bresenham Width

Write registers:

Continue

Address

Write registers:

Slope

Write registers:

n n − 16

Set up for lines

Draw first segment

Draw segment

Draw last segment

n

Draw

Draw

Draw

Continue
Write registers:

6–86 Graphics Operations

Linking Multiple Lines

The Bresenham engine behavior also allows software to link multiple lines.

Each line can have different color, mask, or slope attributes, but the lines must

be drawn end-to-end (a polyline). In this case, software writes a GSLR, rather

than the GCTR, and does not write the GADR. This effectively reinitializes all

of the engine’s slope parameters, including Initial Error, but does not change

the working copy of the Fame Buffer Address.

In summary, to write the first segment of a new line where the previous line

terminated, software writes the following:

1. Any relevant registers except the GADR

2. A GSLR

Specifying Cap Ends

Whether extending or linking lines, software must specify the appropriate

value for Cap Ends (GMOR <15>). When the value of Cap Ends = 0, the last

pixel in the line is not drawn; otherwise, the last pixel is drawn. Therefore,

to extend or link line segments as described above, software must set

Cap Ends = 0, so that the last pixel in the previous line segment is not drawn.

If the value of Cap Ends = 1, the last pixel in the previous line segment and the

first pixel in the next line segment will be drawn at the same place, possibly

with undesired results.

Graphics Operations 6–87

6.2.13 Transparent-Line Mode

In the transparent-line mode, a PCI write to the frame buffer address space

draws a masked, 16-pixel solid-line segment starting at the specified address.

The 21030 draws the line segment as a function of the parameters listed in

Table 6–29.

Transparent Line (Frame Buffer Address, Frame Buffer Address <1:0>, Line Mask,
Raster Op, Plane Mask, Foreground, Address Increment 1,
Address Increment 2, Error Increment 1, Error Increment 2,
Initial Error, Length, Destination Bitmap, Destination Byte,
Cap Ends);

Table 6–29 Transparent-Line Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Frame Buffer Address <1:0> PCI write data <17:16> —

Line Mask PCI write data <15:0> —

Raster Op Raster operation register GOPR <3:0> 4.4.3

Plane Mask Plane mask register GPMR <31:0> 4.4.20

Foreground Foreground register GFGR <31:0> 4.4.18

Address Increment 1 Bresenham 1 register GB1R <31:16> 4.4.10

Error Increment 1 Bresenham 1 register GB1R <15:0> 4.4.10

Address Increment 2 Bresenham 2 register GB2R <31:16> 4.4.11

Error Increment 2 Bresenham 2 register GB2R <15:0> 4.4.11

Initial Error Bresenham 3 register GB3R <31:16> 4.4.12

Length Bresenham 3 register GB3R <3:0> 4.4.12

Destination Bitmap Raster operation register GOPR <9:8> 4.4.3

Destination Byte Raster operation register GOPR <11:10> 4.4.3

Cap Ends Mode register GMOR <15> 4.4.1

The transparent-line mode works in the same way as the opaque-line mode,

and is similarly more efficient when operations are initiated by writing a

slope register rather than the frame buffer. Transparent-line mode differs

in that Line Mask determines whether the Foreground color is written (Line
Mask bit = 1) or write is disabled (Line Mask bit = 0), rather than determining

whether foreground or background color is written.

6–88 Graphics Operations

6.2.14 3D Line and Span Modes

In any 3D line mode, a PCI write to a slope register (GSLR<7:0>) or the span

width register (GSWR), draws a masked, 16-pixel 3D line segment starting at

the specified address.

For this description, a 3D line segment is defined as a string of 16 contiguous

pixels drawn along a line of arbitrary slope and length. Additionally, line

segments drawn in any of the 3D line modes are described in the context of a

generic 3D line segment, and that segment can be Z-buffered, color-interpolated

or stippled, and dithered, depending on the mode specified. Span segments are

included in the context, and a 3D span segment is defined as a 3D line segment

in which the slope is zero.

The mode field (GMOR <6:0>) specifies the following 3D line modes:

• Z-buffered opaque line

• Z-buffered transparent line

• Z-buffered, opaque, color-interpolated, dithered line

• Z-buffered, opaque, color-interpolated, nondithered line

• Z-buffered, opaque, sequential-interpolated line

• Z-buffered, transparent, color-interpolated, dithered line

• Z-buffered, transparent, color-interpolated, nondithered line

• Z-buffered, transparent, sequential-interpolated line

• Color-interpolated, dithered line

• Color-interpolated, nondithered line

• Sequential-interpolated line

Unlike other modes, 3D line mode drawing operations cannot be initiated by

a write to the frame buffer. Software must initiate 3D line mode drawing

operations by writing to a GSLR, GSNR, or the GSWR, to initialize the

hardware for color- or sequential-interpolation and Z-buffering.

The GCTR can be used to extend and link 3D lines in a way similar to 2D lines

(Section 6.2.14.4).

The 21030 draws a 3D segment as a function of some or all of the parameters

listed in Table 6–30; all of the 3D line modes do not require all of the

parameters.

Graphics Operations 6–89

3D Line (Frame Buffer Address, Frame Buffer Address <1:0>, Line Mask, Raster Op,
Plane Mask, Z Address, Z Reference Integer, Z Reference Fraction,
Z Increment Integer, Z Increment Fraction, Red Value, Red Increment,
Green Value, Green Increment, Blue Value, Blue Increment, Z Buffer Width,
Bitmap Width, Destination Bitmap, Destination Byte, Z16, Cap Ends,
Stencil Write Mask, Stencil Read Mask, S Test, S Fail, D Fail, D Pass,
Z Test, Z Update);

Table 6–30 3D Line Mode Parameters

Parameter Source Register Section Note

Absolute Dy Slope GSLRn <31:16> 4.3.1 1

Absolute Dx Slope GSLRn <15:0> 4.3.1 1

Frame Buffer Address Address GADR <31:0> 4.4.2 1

Line Mask Data GDAR <15:0> 4.4.8 1

Raster Op Raster operation GOPR <3:0> 4.4.3 1

Plane Mask Plane mask GPMR <31:0> 4.4.20 1

Pixel Mask Pixel mask GPXR <31:0> 4.4.21 2

Foreground Foreground GFGR <31:0> 4.4.18 3

Background Background GBGR <31:0> 4.4.19 2

Z Address Z-base-address GZBR <23:0> 4.4.15 4

Z Reference Integer Z-value high
Z-value low

GZVR-H <3:0>
GZVR-L<31:12>

4.4.16
4.4.16

4

Z Reference Fraction Z-value low GZVR-L <11:0> 4.4.16 4

Z Increment Integer Z-increment high
Z-increment low

GZIR-H <3:0>
GZIR-L <31:12>

4.4.17
4.4.17

4

Z Increment Fraction Z-increment low GZIR-L <11:0> 4.4.17 4

Red Value Red value GRVR <19:0> 4.4.22 5

Red Increment Red increment GRIR <19:0> 4.4.23 5

Green Value Green value GGVR <19:0> 4.4.24 5

Green Increment Green increment GGIR <19:0> 4.4.25 5

Blue Value Blue value GBVR <19:0> 4.4.26 5

Blue Increment Blue increment GBIR <19:0> 4.4.27 5

Dither Column Green value GGVR <31:27> 4.4.24 6

Dither Row Red value GRVR <31:27> 4.4.22 6

(continued on next page)

6–90 Graphics Operations

Table 6–30 (Cont.) 3D Line Mode Parameters

Parameter Source Register Section Note

Bitmap Width Bresenham width GBWR <15:0> 4.4.13 1

Z Buffer Width Bresenham width GBWR <31:16> 4.4.13 4

Z16 Mode GMOR <14> 4.4.1 4

Destination Bitmap Raster operation GOPR <9:8> 4.4.3 1

Destination Byte Raster operation GOPR <11:10> 4.4.3 1

Cap Ends Mode GMOR <15> 4.4.1 1

Stencil Reference Z-value high GZVR-H <31:24> 4.4.16 4

Stencil Write Mask Stencil mode GSMR <7:0> 4.4.14 4

Stencil Read Mask Stencil mode GSMR <15:8> 4.4.14 4

S Test Stencil mode GSMR <18:16> 4.4.14 4

S Fail Stencil mode GSMR <21:19> 4.4.14 4

D Fail Stencil mode GSMR <24:22> 4.4.14 4

D Pass Stencil mode GSMR <27:25> 4.4.14 4

Z Test Stencil mode GSMR <30:28> 4.4.14 4

Z Update Stencil mode GSMR <31> 4.4.14 4

The notes for Table 6–30 list the 3D line modes in which the parameters are

used, as follows:

1 All

2 Z-buffered opaque

3 Opaque line and transparent line

4 All Z-buffered

5 All interpolating

6 All dithering

In general, the 21030 generates 3D segments in the same way as 2D segments,

with the following exceptions:

• Write can be disabled to each pixel based on the result of comparing Z or

stencil values.

• Color can be supplied in one of the following ways:

– Color-interpolated and selectively dithered by the color interpolators

Graphics Operations 6–91

– Sequential-interpolated by the sequential interpolator

– As solid or patterned shades from the Foreground and Background
parameters

In the color-interpolated modes, the on-chip color interpolators use independent

red, green, and blue starting values and their respective incremental values to

generate an arbitrarily smooth-shaded, 24-bit, true-color value for each pixel in

the segment. The 24-bit value can be selectively dithered to 12-bpp or 8-bpp.

In the sequential-interpolated modes, the sequential interpolator uses one

8-bpp grey-scale value and 8-bpp grey-scale increment per line, to generate

one unique grey-scaled value per 8-bit pixel. Because the pixel resolution is

limited to 8 bits, sequential-interpolated modes support drawing to only 8-bpp

bitmaps. Dithering is neither useful nor available in these modes.

In the noninterpolated opaque or transparent modes, colors are supplied

as a function of the Line Mask, Pixel Mask, Foreground, and Background
parameters in the same way as in the 2D line modes. Noninterpolated opaque

or transparent 3D lines cannot be dithered.

6.2.14.1 Color Interpolation

The 21030 color interpolators contain a hidden working-set of parameters that

shadow the primary parameters Red Value, Green Value, and Blue Value (see

Table 6–30). When any 3D segment drawing operation is initiated, the color

interpolators conditionally load the primary parameter values into the working

set from their respective registers (GRVR, GGVR, and GBVR). In a color-

interpolated line mode, a write to a GSLR or the GCTR initiates a segment

drawing operation. During the drawing process, the color interpolators operate

only on the working set. On completion of the segment drawing operation,

the color interpolators leave the working set in a state suitable for linking

to the next segment or line (similar to the way that drawn 2D line segments

are ready for extension or linking). (See Section 6.2.14.4 for the conditions for

loading the working set.)

For this description, the color interpolators’ working-set of color values are

initialized to the primary color values stored in the GRVR, GGVR, and GBVR.

The color interpolators run in lock-step with the Bresenham engine to generate

either a 24-bit color-interpolated value or an 8-bit sequential-interpolated

value for each pixel in the segment. Each time the Bresenham engine steps

to the next pixel in a color-interpolated mode, the color interpolators add the

color increments Red Increment, Green Increment, and Blue Increment to the

respective working color values, generating 8-bit red, green, and blue values

for the pixel.

6–92 Graphics Operations

Note

The 21030 does not clamp interpolated values to avoid overflow and

underflow; software must do the clamping.

Because the color interpolators process 8 bits of each color for each pixel,

writing interpolator output to a 24-bpp bitmap is simple (Figure 6–33). Each

8-bit channel is mapped to the corresponding field specified by bitmap format

TC24 (Figure 6–4).

Figure 6–33 shows the color-interpolator output for a 24-bpp destination.

Figure 6–33 Color Interpolator Output for a 24-bpp Destination

Red

31 824 23 16 15 0

BlueGreenUndefined

Because the Destination Bitmap can specify 8-bpp or 12-bpp bitmap

destinations as well as 24-bpp, the 21030 reduces 24-bpp color to 8-bpp or

12-bpp in either of the following ways:

• Dithering through the on-chip dither logic

• Truncating each channel to the required depth

The specified mode determines whether to enable dithering. If a dithering

mode is specified, software must also specify the starting Dither Row and

Dither Column parameters for the segment, to specify the initial row and

column indices into the internal dither matrix. These parameters are usually

the LSBs of the starting y (row) and x (column) coordinates. After the initial

Dither Row and Dither Column values are sampled, the Bresenham engine

updates them modulo 32 as it walks the slope of the line. The addressed matrix

data is then be added to each channel, and the resultant value truncated. (See

Section 6.2.14.4 for information about the dithering algorithm.)

Graphics Operations 6–93

If a dithering mode is not specified, the 21030 simply truncates each channel

to the appropriate number of bits, leaving only the MSBs. Whether or not

dithering is enabled, the 21030 reduces the color interpolator output to the

number of shades shown in Table 6–31.

Table 6–31 Reduced Color Interpolator Output for 8-bpp and 12-bpp
Destinations

Number of Shades (Bits)

Destination Red Green Blue

8-bpp 8 (3) 8 (3) 4 (2)

12-bpp 16 (4) 16 (4) 16 (4)

When drawing to a 12-bpp destination, the 21030 disperses and replicates the

reduced colors across the output Dword. This effectively allows software to

specify the bitmap format DC120 or DC121 by simply applying the appropriate

value Plane Mask (000F0F0F or 00F0F0F0, respectively).

When drawing to an 8-bpp destination, the 21030 simply packs the reduced

fields into one byte. The 21030 routes the resultant byte to the proper byte

location according to the current address LSBs and the Destination Bitmap
and Destination Byte parameters; special plane masking is unnecessary.

Figure 6–34 shows the destination-specific color output for 8-bpp and 12-bpp

bitmaps.

6–94 Graphics Operations

Figure 6–34 Color Interpolators Output for 12-bpp and 8-bpp Destinations

RedRedUndefined

31 8 724 23 16 15 0

8−bpp

12−bpp
20 19 4 312 11

BlueBlueGreenGreen

012457

BlueGreenRed

6.2.14.2 Sequential Interpolation

The sequential interpolator operates in the same way as the color interpolators,

except that it maintains a working copy of only one Grey Value per pixel. When

a sequential-interpolated line drawing operation is initiated, the sequential

interpolator conditionally loads the value of the primary Grey Value from

the GRVR into the working copy. During the drawing process, the sequential

interpolator operates only on the working copy. On completion of the segment

drawing operation, the interpolator leaves its working copy in a state suitable

for linking to the next segment or line (similar to the way that drawn 2D line

segments are ready for extension or linking). The conditions for loading the

Grey Value working copy are identical to the conditions for the independent

red, green, and blue values (Section 6.2.14.4).

In the same way as the color interpolators, the sequential interpolator runs

in lock-step with the Bresenham engine to generate an 8-bit grey-scale value

for each pixel in the segment. In a sequential-interpolated mode, each time

the Bresenham engine steps to the next pixel, the sequential interpolator adds

the Grey Increment value to the working Grey Value, generating a new 8-bit

grey-scale value for the pixel.

Note

The 21030 does not clamp interpolated values to avoid overflow and

underflow; software must do the clamping.

Graphics Operations 6–95

As in drawing color-interpolated values dithered to 8 bits, the 21030 aligns the

resultant Grey Value byte to the proper byte location according to the current

address LSBs and the Destination Bitmap and Destination Byte parameters.

6.2.14.3 Z-Buffer and Stencil-Buffer Operation

If a Z-buffering mode is specified, the 21030 performs both a Z-buffer and a

stencil-buffer reference test for each pixel along the segment. The results of

the tests determine whether and how the stored-Z and stored-stencil values

are updated, as well as whether to write the corresponding pixel value. The

stored values are defined as those resident in frame buffer memory before the

operation. A Stencil Reference value (used for the entire segment) and a

Z Reference value are taken from the Z-value registers (GZVR-H and GZVR-H)

and the output of the Z-interpolator hardware. Z-buffering modes are allowed

only in 32-bpp frame buffers. (See Section 6.1.5 for more information about the

stored and reference stencil and Z formats.)

The Z-interpolator and its associated stencil and Z logic work in a way

similar to the color interpolators. The Z-interpolator runs in lock-step

with the Bresenham engine and operates with a working copy of the

Z Reference parameter. It can sample the primary Z Reference parameter

stored in the Z-value registers at the start of a 3D-segment drawing

operation. The Bresenham engine also contains a working copy of the

Z Address and conditionally samples the primary parameter stored in the

Z-base-address register (GZBR). In certain cases, the working copies of the

Z Reference parameter and Z Address are not updated at the time of drawing

(Section 6.2.14.4).

For this description, the working copies of the Z Reference parameter and

Z Address are initialized to their primary values. On a write to a GSLR, the

Bresenham engine executes its setup sequence (Section 6.2.12.1). In the same

way that it generates the pixel Address Increment 1 and Address Increment
2 as part of its setup procedure, in a Z-buffering mode the Bresenham engine

generates the Z Address Increment 1 and Z Address Increment 2, as a function

of the Z Buffer Width.

For each pixel step through the segment, the Bresenham engine updates the

Z Address at the same time it updates the Frame Buffer Address. Similarly,

on each pixel step, the Z-interpolator adds the Z Increment Integer and

Z Increment Fraction values to its working copy of the Z Reference value.

Therefore, new values of Z Reference and Z Address are available for each

pixel as the Bresenham engine steps through the segment.

6–96 Graphics Operations

The Z Address Increment 1 and Z Address Increment 2 parameters can be

supplied only by the Bresenham engine as a result of executing its setup —

software cannot explicitly specify these parameters; however, both parameters

can be read through the GCTR.

At each pixel, the stencil and Z logic reads the stored stencil and Z values from

the frame buffer at the Z Address. A 24-bit or 16-bit Z value is read, depending

on the value the Z16 parameter. (See Section 6.1.5 for more information about

the two supported Z-buffer formats.)

For the stencil operation, the 21030 logically ANDs both the Stencil Stored
and Stencil Reference values with the Stencil Read Mask. It then compares

the masked versions of Stencil Stored and Stencil Reference values as

specified by the S Test.

• If the S Test fails, the Stencil Stored value is updated as specified by the

S Fail parameter.

• If the S test passes and the Z Test fails, the Stencil Stored value is

updated as specified by the D Fail parameter.

• If both the Z Test and S Test pass, the Stencil Stored value is updated as

specified by the D Pass parameter.

On any write back to the Stencil Stored location, only the bit positions

specified by the Stencil Write Mask are modified.

For the Z operation, the 21030 compares the Z Stored and Z Reference values

as specified by the Z Test.

• If the Z Test passes and Z Update is enabled, the Z Reference value is

written back to the stored Z location.

• If the Z Test passes, the S Test passes, and the appropriate bit in the Line
Mask is set, the color from the color interpolator (interpolated modes) or

the Background and Foreground parameters (noninterpolated opaque or

transparent modes) is written to the Frame Buffer Address.

The standard plane mask is disabled for writes to the Stencil Stored and

Z Stored locations.

The foregoing description of Z-buffering assumes a transparent mode of

operation; that is, the Z and stencil tests determine whether the calculated

pixel value is written. In an opaque mode of operation, the Z and stencil values

are tested and updated as specified by the GSMR, but the pixel value is always

written, regardless of the Z and stencil test results.

(See the GSMR description in Section 4.4.14 for more information about

specifying the D, S, and Z test, pass, and fail parameters.)

Graphics Operations 6–97

The following pseudo-code represents the basic algorithm for a Z-buffered,

color-interpolated, dithered line. The algorithm for other 3D line modes is

similar, with Z-buffering, color-interpolation, or dithering individually optional

according to the specified mode.

/* generate all of the initial Bresenham error, error increment, and address
increment terms for color and Z */

Bresenham Setup (Absolute Dx, Absolute Dy, Bitmap Width, Z Buffer Width);
while (Length > 0)
{

/* generate next 24-bit color */
Red Value += Red Increment;
Green Value += Green Increment;
Blue Value += Blue Increment;
Dither (Dither Row, Dither Column, Red Value, Green Value, Blue Value,

Depth, Dither Out);
/* stencil and Z ops */
Z Reference += Z Increment;
ReadZ (Z Address, Stencil Stored, Z Stored);
Stencil Reference = Stencil Reference & Stencil Read Mask;
Stencil Stored = Stencil Stored & Stencil Read Mask;
if ! S Test (Stencil Stored, Stencil Reference)
{

Cond Write Stencil (Stencil Stored, S Fail, Stencil Write Mask);
}
else if Z Test (Z Stored, Z Reference)
{

Cond Write Stencil (Stencil Stored, D Fail, Stencil Write Mask);
}
else
{

Cond Write Stencil (Stencil Stored, D Pass, Stencil Write Mask);
}
if Z Update && Z Test (Z Stored, Z Reference)
{

Write Z (Stencil Stored);
}
/* conditional write pixel */
if ((Line Mask (Length) && Transparent) &&

((Z Test (Z Stored, Z Reference) &&
S Test (Stencil Stored, Stencil Reference))

|| Opaque))
{

Write Pixel (Frame Buffer Address, Pixel, Raster Op, Plane Mask,
Destination Bitmap, Destination Byte);

}
/* Bresenham step along line */
if (Error < 0)
{

Frame Buffer Address += Address Increment 1;
Z Address += Z Address Increment 1;

6–98 Graphics Operations

Error += Error Increment 1;
Adjust Dither Major (Dither Row, Dither Column);

}
else
{

Frame Buffer Address += Address Increment 2;
Z Address += Z Address Increment 2;
Error -= Error Increment 2;
Adjust Dither Minor (Dither Row, Dither Column);

}
Length --;

}

The pseudo-code does not reflect the exact logic implementation, but provides

a general description of the function. The 21030 actually optimizes the process

as follows:

• It minimizes the number of RAS cycles necessary to draw the segment.

• It tries to group the maximum number of reads or writes to the same row

before moving on to the next row.

• Because the frame buffer port is 64 bits wide, the 21030’s write buffer

tries to merge, without collapsing, Dwords and bytes into quadwords, to

minimize the number of CAS cycles.

Figure 6–35 is an example of a Z-buffered, color-interpolated line-segment

drawing operation. The figure shows the initial state of the Z buffer in off-

screen frame buffer memory and the result of the drawing operation.

Graphics Operations 6–99

Figure 6–35 Z-Buffered, Color-Interpolated Line Segment

Z Test = Fail Z Test = Pass

FB Address

0

0

15

0Line Mask 0011111

Interpolated

11

Unmodified

11111

Z Address

Stored Z

Initial Z Conditions: Z Reference = 2
Z Increment = 3
Z Test = Z Reference > Stored Z

Resultant Bitmap:

Color

16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

16 16

Stored Z = 1610

6–100 Graphics Operations

6.2.14.4 Extending and Linking 3D Lines

3D lines, as well as 2D opaque and transparent lines, can be extended and

linked. To efficiently extend the current 3D line, or start a new line where

the previous line ended, software can use 3D line mode features and also take

advantage of the Bresenham engine features available in the 2D modes. The

same mechanism works for spans. (See Section 6.2.12.3 for more information

about the features common to the 2D line modes.)

The following hardware features simplify 3D line-segment linking:

• Before drawing a line segment, the working copies of the following

parameters are updated with their primary values only if a new Frame
Buffer Address was written to the GADR after the last segment drawing

operation.

– Red Value, Green Value, and Blue Value (color interpolators)

– Grey Value (sequential interpolator)

– Z Reference (Z-interpolator)

– Z Address (Bresenham engine)

• On completion of a segment drawing operation, the working copies for the

above parameters are defined for the next pixel along the line.

To extend the line another 16 pixels, software can simply write the Line Mask
for the next segment to the GCTR.

To start a new line with different color and Z-slope values where the previous

line ended, software does the following:

• Rewrites the Red Increment, Green Increment, Blue Increment, and

Z Increment or Grey Increment values as required.

• Writes a GSLR, but does not write the GADR.

Graphics Operations 6–101

7
Programming Guide

This chapter contains programming information about the 21030 configuration

firmware, graphics drivers and servers, video support functions, and functions

to support Alpha AXP systems.

7.1 PCI Configuration Firmware

The 21030 hardware implements the full set of required PCI configuration

registers, and is fully configurable by generic PCI-compliant system firmware.

The 21030 is not limited to motherboard applications, but behaves as a

generic plug-and-play PCI option for all PCI-compliant systems independent of

operating system. (Section A.4.2.1 addresses systems that require dedicated

support for the 21030 in the base system firmware.)

7.1.1 Device Address Mapping

Configuration firmware can map the 21030 device and enable response to that

mapping by manipulating fields in the PCI device base address register (PDBR,

Section 4.2.2) and PCI command and status register (PCSR, Section 4.2.1).

Table 7–1 describes the fields to be manipulated.

Table 7–1 21030 Base Address and Memory Space Enable Fields

Field Register Bits Field Description

Device
base
address

PDBR <31:4> The PCI memory address defined as the base
address of the 21030 address space.

Memory
space
enable

PCSR <1> When set, enables the 21030 to respond to memory
space accesses.

The PDBR and PCSR are written in the following sequence:

1. Configuration firmware probes the PDBR to determine where the 21030 is

to be mapped and the amount of space to allocate to it; that is, firmware

Programming Guide 7–1

writes all ones to the PDBR and then reads back the value. The 21030

returns zeros in <26:4> to indicate the following 21030 requirements:

• It requires at least 128MB of total address space (PDBR <26:4> = 00000016).

• It must be mapped to PCI memory space (PDBR bit 0 = 0).

2. Firmware allocates 32MB of naturally aligned PCI memory space and

writes the base address to the PDBR.

3. Firmware sets memory space enable (PCSR <1>) to enable device response.

(Usually, memory space enable should not be set until the PDBR has been

properly initialized as described in steps 1 and 2.)

(The PDBR and PCSR write sequence differs for the 21030 step A. See

Section A.4.2.)

After the PDBR is written and memory space enable is set in the PCSR, the

21030 can respond as a normal PCI target (Section 5.2).

7.1.2 Bus Mastering

The 21030 supports DMA operations to rapidly transfer image data from

PCI-accessible memory to display memory. To invoke 21030 DMA operations,

the 21030 must be able to master the PCI bus. Configuration firmware must

write fields in the PCSR and PCI latency timer register (PLTR, Section 4.2.5),

to enable the 21030 to be a PCI bus master. Table 7–2 describes the fields to

be written.

Table 7–2 PCI Latency Timer and Master Enable Fields

Field Register Bits Field Description

Latency
timer

PLTR <15:8> 21030 bus ownership is limited to the number of
PCI clocks specified in this field.

Master
enable

PCSR <2> When set, enables the 21030 to become bus master.
It must be set to enable DMA operations, but
should not be set until the PLTR is initialized.

DMA operations usually involve a long (hundreds of bytes) burst transfer.

Therefore, a high latency-timer value helps improve performance. However, the

benefit of a high latency-timer value depends on the PCI bridging structure,

and is limited, for example, by PCI bridges that terminate transfers on

cache-line boundaries.

7–2 Programming Guide

7.1.3 Interrupt Routing

Configuration firmware is also responsible for mapping system interrupt lines

to PCI devices that require interrupt services (as does the 21030). After the

interrupt lines are mapped, configuration firmware must write the routing

information to the interrupt line field in the PCI line interrupt register (PLIR

<7:0>, Section 4.2.7). During subsequent normal graphics operation, display

drivers or the operating system can determine interrupt vectors and priorities

either by reading the PLIR or through the GET_DEVICE_INTERRUPT BIOS

routine.

7.1.4 VGA Pass-Through

The 21030 supports VGA in a pass-through mode. In this mode, the VGA

video stream is brought into the 21030 graphics subsystem through a VESA

standard-VGA feature connector and multiplexed into the main video stream

prior to color lookup and digital-to-analog conversion. (See Chapter 6 for more

information about VGA support.)

Many systems that use the 21030 also use VGA for the boot display. Boot code

requests display before any 21030-specific code can execute. Consequently, the

21030 is initialized into a VGA pass-through state without explicit firmware

initialization.

All VGA pass-through control is embedded in the PCI VGA redirect register

(PVRR, Section 4.2.8). The PVRR fields enable VGA color-register snooping in

I/O space, and define how the snooped VGA I/O addresses are translated into

MPU-port RAMDAC accesses (Table 7–3).

Table 7–3 VGA Redirect Register Fields

Field Bits Description

VGA
mask

3:0 The redirected address for the VGA pixel-mask register (3C6).
Initialized to 216 at reset.

VGA
address

7:4 The redirected address for the VGA pixel address register (3C8).
Initialized to 016 at reset.

VGA data 27:24 The redirected address for the VGA pixel data register (3C9).
Initialized to 116 at reset.

VGA
enable

31 When set, VGA color-register snooping is enabled; otherwise
snooping is disabled. Set at reset.

Each of the three snooped I/O cycles has a corresponding MPU-write cycle in

which the address of the write cycle is extracted from one of the three PVRR

redirected-address fields.

Programming Guide 7–3

The PVRR fields are initialized as follows:

• VGA enable is set.

• VGA address, VGA data, and VGA mask pointers are made compatible

with the Bt485 RAMDAC.

Therefore, if the RAMDAC used is compatible with the Bt485, the 21030 is

initialized in pass-through mode without firmware intervention. (See Sections

4.2.8, 4.8.2, and 6.1.5.2 for more information about RAMDAC compatibility.)

When a 21030 subsystem is implemented on the system motherboard, the base

firmware can modify the PVRR (or other registers) before display to support

RAMDACs that are not compatible with the Bt485 configuration.

Systems that do not require VGA for the boot display can disable pass-through

by clearing the PVRR VGA enable bit (this is unnecessary if the system I/O

space is PCI-compatible).

7.1.5 Expansion ROM

The 21030 supports an external EEPROM that conforms to PCI expansion

ROM specifications. See the PCI Local Bus Specification, Revision 2.0 for more

information.

7.2 Graphics Drivers and Servers

Sections 7.2.1 through 7.2.7.2 describe the implementation of standard graphics

server and driver functions using the 21030. The descriptions suggest the

21030 modes and functions that are most appropriate or specifically intended

to implement typical API functions. The descriptions assume familiarity with

the function and operation of each 21030 drawing mode, including parameter

lists, operation invocation, and expected results (Chapter 6).

7.2.1 Bit-Block Transfers

Bit-block transfers (BitBlts) can be implemented as screen-to-screen copies and

host-to-screen copies.

7.2.1.1 Screen-to-Screen Copy

For high performance, screen-to-screen copy is the most important function to

accelerate. The 20130 copy mode, 64-bit memory port, and 64-byte copy buffer

all contribute to the high speed screen-to-screen copies.

Typically, driver-level calls move a rectangular source region to a destination

region, and, possibly, apply a Boolean raster operation to the source and

destination. Because the copy mode (Section 6.2.9) supports only span copies,

software must break the rectangle into as many individual spans as necessary,

7–4 Programming Guide

with the width of each span equal to the width of the rectangle. Furthermore,

it must break each arbitrary-width span into as many individual segments

as necessary, with the length of each segment equal to 16, 32 or 64 pixels,

depending on the frame buffer, bitmap, and masking used.

For overlapping source and destination spans, software must choose the proper

copy direction (right-to-left or left-to-right), so that the source is not corrupted

before it is read. The copy mode supports both directions, and maintains the

internal state of the residue register for unaligned copies. Therefore, software

must prime the residue register for only the first span segment (if necessary),

rather than for each segment copy. Priming for subsequent segments occurs on

the last read of the previous segment.

Figure 7–1 shows how an arbitrary rectangle can be broken into segments and

where priming and flushing occur, if necessary.

Programming Guide 7–5

Figure 7–1 BitBlt Using Copy Mode Example

Segment 0

Segment 3

Segment 6

Segment 9

Segment 1

Segment 4

Segment 7

Segment 10

Segment 2

Segment 5

Segment 8

Segment 11

Segment 0

Segment 3

Segment 6

Segment 9

Segment 1

Segment 4

Segment 7

Segment 10

Segment 2

Segment 5

Segment 8

Segment 11

50 X 4 Pixel Source Rectangle

Destination Rectangle

Left−to−right copy direction
(If alignments require, prime only
for segments 0, 3, 6, and 9)

12 Consecutive Copy Mode Operations

For the most efficient copying of 8-bpp spans, the copy-64 source and

destination registers (GCSR and GCDR, Section 4.3.4) use the entire copy

buffer. Although the GCSR and GCDR can copy only aligned, unmasked span

segments, they can be used to copy the interior of a large unaligned copy,

where the left and right edges are copied by direct writes to the frame buffer.

The 21030 provides 16 raster-operation encodings to support the full set of

2-operand Boolean operations specified by X and OpenGL, but not the full

set of Win32 graphics operations. (Win32 supports 256 ternary operations,

two of which can be specified in a particular operation by a mask operand.)

However, the 21030 raster operation encodings do include the most commonly

used Win32 Boolean operations (such as srccopy and patcopy). (See the raster

operation register description, Section 4.4.3.) Therefore, under Win32, if the

Boolean operation passed in the DrvBitBlt call is not supported by the 21030, it

can be broken into supported operations (if possible and desirable), or handled

by the graphics device interface (GDI). Note that handling unsupported raster

7–6 Programming Guide

operations is not specific to BitBlts — raster operations are called into every

Win32 device-driver interface (DDI) graphics call.

7.2.1.2 Host-to-Screen Copy

An image or bitmap can be copied between host memory and the 21030 frame

buffer with X PutImage or GetImage calls or a Win32 DrvCopyBits call.

Ideally, the DMA-read copy or DMA-write copy mode can be used, depending

on direction. If DMA-read or DMA-write copy mode cannot be used, the image

or bitmap can be burst-written directly into the 21030 frame buffer space using

simple mode and standard programmed I/O. A final (and likely slower than

simple mode) option is to write the copy buffer in standard programmed I/O,

then unload the copy buffer with a write to the GCDR.

To use the DMA-read and DMA-write copy modes, the source rectangle

must be broken into spans (as in the case of local frame buffer copies).

However, because span lengths in the DMA modes are larger (>2K pixels)

than any supported screen width, spans need not be broken down to less than

64K pixels. The residue register is primed and flushed as necessary, with

appropriate address and pixel-count values. (See Sections 6.2.10 and 6.2.11 for

more information about the DMA-read and DMA-write copy modes.)

7.2.2 Fills

Sections 7.2.2.1 through 7.2.2.3 describe filling, stippling, and tiling functions.

7.2.2.1 Solid

A region can be solid-filled with X FillSpan or PolyFillRect calls, or under

Win32 with a DrvPaint call and a solid brush. The best way to do a solid fill

is to use the block-fill, transparent-fill, or opaque-fill mode. The specific mode

used depends on the following conditions:

• Fill region size

• Required raster operation

• Destination bitmap

The block-fill mode fills up to four times faster than the transparent- or

opaque-fill modes and is preferable for larger fills. The block-fill mode can be

used if the following conditions apply:

• The destination bitmap is not a packed 8-bpp bitmap in a 32-bpp frame

buffer.

• Only a trivial raster operation, such as ��������, is required.

Programming Guide 7–7

Because the block- and transparent-fill modes only fill spans, software must do

the following:

1. Break the fill region into spans no longer than 2K pixels.

2. In the block-fill mode, replicate the solid color across the block-color

registers (GBCR<7:0>, Section 4.4.4).

In the transparent-fill mode, replicate the solid color as necessary across

the foreground register (GFGR, Section 4.4.18).

3. Write the frame buffer as many times as necessary to fill the spans.

(The fill modes are described in Sections 6.2.6 through 6.2.8.)

7.2.2.2 Stippling or Filling with a Monochrome Brush

When stippling or filling with a monochrome brush, a 1-bpp bitmap is

expanded into a foreground (and optionally, background) color to tile a solid or

bitonal pattern across a region. The opaque-stipple, opaque-fill, block-stipple,

or block-fill mode can be used, depending on the following conditions:

• Size of the fill region

• Number of pixels at which the pattern repeats

• Raster operation

• Destination bitmap

• Masking

The block-fill mode runs up to four times faster than the transparent- or

opaque-fill mode, and is preferable for larger regions. The block-fill mode can

be used if the following conditions apply:

• The pattern repeats at intervals of 2� and ���.

• Only a trivial raster operation, such as ��������, is required.

• The destination is not a packed 8-bpp bitmap in a 32-bpp frame buffer.

• The mask, if used, repeats at intervals of 2� and ���.

Filling a region with a 4 � 4 or 8 � 8 monochrome brush is a common Windows

operation. The block-fill or block-stipple modes work in many typical cases and

fill extremely fast. The block-fill mode is appropriate for larger regions because

of the initial overhead required to set up the block-color pattern. If arbitrary

per-pixel masking is required, the block-stipple mode, rather than the block-fill

mode, can be used with a separate stipple-mask passed for every 32-pixel span.

7–8 Programming Guide

When either the block-fill or block-stipple mode is used, software must do the

following:

1. Expand the pattern into a full-depth 8-pixel block-color pattern.

2. Rotate the pattern to an 8-pixel alignment and write it to the GBCRs.

3. Break the region into spans of up to 2K pixels (block fill) or 32 pixels (block

stipple) in length.

4. For every span, write the frame buffer once in the appropriate mode.

If the block-fill or block-stipple mode cannot be used because a nontrivial raster

operation is required, the opaque- or transparent-fill mode can be used. In such

cases, the pattern must repeat at intervals of 2� and ���, and the foreground

and background color, rather than the block-color pattern, must be specified.

If none of the fill modes can be used or the region is very small, the opaque-

stipple (or transparent-stipple) mode can be used, in conjunction with the

foreground and background registers.

7.2.2.3 Tiling or Filling with a Non-Monochrome Brush

When tiling or filling with a non-monochrome brush, a tile or brush pattern

that is the same depth as the destination bitmap is repeated across the fill

region. The width and number of colors in the pattern can be arbitrary. The

block-stipple and block-fill modes are preferable, because of their fast fill rates,

but cannot be used in all cases. The simple, copy, or DMA-read copy mode

can be used to accelerate operations in which block mode operations are not

possible.

The block-fill mode is preferable for large fill operations because of the initial

overhead required to set up the block-color pattern. The block-fill mode can be

used if the following conditions apply:

• The width of the brush pattern (or tile) is 2� and ���.

• Only a trivial raster operation, such as ��������, is required.

• The destination is not a packed 8-bpp bitmap in a 32-bpp frame buffer.

Whether to use the block-fill or block-stipple mode depends on the type of

masking required for each pixel. The block-fill mode can be used if masking

is not used or the mask repeats at intervals of 32 pixels; otherwise, the block-

stipple mode can be used. In either case, software must do the following:

1. Expand and align the pattern to 8 pixels (if not previously so aligned).

2. Write the resulting 8-pixel block-color pattern to the GBCRs.

Programming Guide 7–9

3. Break the region into spans of up to 2K pixels (block fill) or 32 pixels (block

stipple) in length.

4. For every span, write the frame buffer once in the appropriate mode.

If either block mode is inappropriate, the copy mode or DMA-read copy mode

can be used to recopy the same pattern from off-screen memory or main

memory, respectively, to the destination as many times as necessary.

In the DMA-read copy mode, the 21030 can read more than 100 MB per second

from the PCI bus. It can write the frame buffer at approximately the same

rate, depending on the length of the copy. Therefore, the DMA-read copy mode

can theoretically tile (brush) at approximately 100 MB per second; however,

the actual rate in a specific system implementation varies as a function of

the PCI bus performance (that is, latency, burst lengths, use, and so on). By

comparison, the standard copy mode fill rate is more than 50 MB per second.

The simple mode can also be used, and might be the best choice for small

regions.

7.2.3 2D Lines

The X PolyLine or PolySegment calls or the Win32 DrvStrokePath call can

request 2D lines. The 21030 can draw lines in either of the following ways:

• Standard mechanism — Software initializes the Bresenham terms and

then writes the frame buffer to initiate the drawing operation.

• Alternate mechanism — Software writes a slope register (GSLR<7:0>,

Section 4.3.1) and the 21030 automatically generates the Bresenham terms

and initiates the drawing operation.

Drawing with the GSLRs is preferred because it is significantly faster than

drawing lines using the standard mechanism. In either case, the continue

register (GCTR) can be used to extend lines to an arbitrary length.

Typically, all X lines can be drawn using the GSLRs. Conversely, the GSLRs

cannot always be used to draw Win32 lines.

7.2.3.1 Line Drawing Under X

The following sequences list the steps for drawing various types of 2D lines

under X.

• Solid or Bitonal Lines

1. Set the mode to opaque- or transparent-line mode, as desired.

2. Set the foreground and background colors in the foreground register

(GFGR) and background register (GBGR, Section 4.4.19).

7–10 Programming Guide

3. Write the starting address to the address register (GADR, Section 4.4.2).

4. Initialize the data register (GDAR, Section 4.4.8) to XXXXFFFF to

draw all pixels (X = unused).

5. Write the appropriate GSLR.

6. Use the GCTR to extend the line to the desired length.

• Patterned or Styled Lines

Do the solid or bitonal lines sequence described above, but write the desired

pattern, rather than XXXXFFFF, to the GDAR.

• Connected Lines

Do the solid or bitonal lines sequence described above, but do not write to

the GADR. The 21030 will draw the new line starting 1 pixel beyond the

end of the previous line.

• Clipped Lines

Figure 7–2 shows a clipped line drawn through a clipping rectangle.

1. Write slope-no-go register 7 (GSNR7, Section 4.4.9) to draw in octant 7.

2. Write the starting pixel address to the GADR.

3. Write the initial error and line length to the Bresenham 3 register

(GB3R).

4. Write the GCTR to draw the line (and repeat for rectangle wider than

16 pixels).

5. Repeat steps 2 through 4 for each rectangle in the clip list.

Programming Guide 7–11

Figure 7–2 Drawing Clipped Lines

Clip Rectangle

Start End

7.2.3.2 Line Drawing Under Win32

The coordinate constructs supported by Win32 do not allow the GSLRs to be

used to draw all lines that the GDI might request from the display driver.

To improve the appearance of rendered lines, Win32 supports subpixel

coordinates. Each coordinate is in the 28.4 format (28 integer bits and 4

fraction bits). The coordinate system can be visualized as a grid in which

an endpoint can reside at any grid intersection, but pixels reside at every

sixteenth pixel in both X and Y. (For more information, see the Win32 device-

driver kit documentation.) The following is a more detailed description of this

‘‘problem’’ and its ‘‘solution.’’

Problem

On a write to a GSLR, the hardware sets up the line; that is, it translates the

absolute dx and absolute dy information into the Bresenham address and error

increment values and initial error term. However, absolute dx and absolute dy

are 16-bit quantities, assumed to be 16 bits of integer and 0 bits of fraction.

This presents two problems:

• The setup hardware cannot properly correct a subpixel endpoint to the

pixel centers.

7–12 Programming Guide

• Lines passed by the GDI can be too long for the Bresenham engine to

render without the risk of introducing error in the digital data-analysis

(DDA, or pixel-stepping) calculation.

The first problem is complex. Determining the starting pixel can be critical,

and depends on the location of the endpoint in the subpixel grid. For some

endpoints, the first pixel drawn is the pixel closest to the intersection of the

geometric line and the first major-axis grid, rather than the pixel nearest to

the specified endpoint. That is, the first pixel drawn can be a function of the

starting subpixel endpoint and the slope.

The 21030 setup hardware cannot handle such constructs. It cannot correctly

choose the address of the proper endpoint and cannot calculate the proper

Bresenham initial error term. The initial error generated would be relative

to the first subpixel rather than the first real pixel, which can be up to 16

subpixels away.

Secondly, if the 21030 could properly correct the starting address error term,

the 21030 DDA, with 16 bits of resolution, cannot draw lines greater than

64K pixels in major-axis length with guaranteed accuracy. Consequently,

the GSLRs cannot be used to draw any line with endpoints having nonzero

fractional components or any line longer than 64K pixels.

Solution

To support all possible lines requested by the Win32 GDI, the 21030 Win32

display driver must use a combination of GSLR accesses, direct manipulation

of the Bresenham registers, and writes to the frame buffer. The following is a

suggested strategy for dealing with an arbitrary GDI line drawing request:

1. If the line is less than 64K pixels in the major-axis, go to step 2. Otherwise,

do either of the following:

• Default to the GDI.

• Break long lines into smaller segments and go to step 2.

2. Screen for endpoints with nonzero fractional components.

For integer endpoints, draw by writing the GSLR, passing a 16.0 format

value for absolute dx and absolute dy.

For noninteger endpoints, do the following (and refer to the Win32 device-

driver kit documentation for more detail):

a. Determine the starting pixel and calculate the address.

Programming Guide 7–13

b. Write a GSNR to calculate the address and error increment terms (that

is, the parameters in the GB1R and GB2R) passing 12.4 format values

for absolute dx and absolute dy. The setup process will calculate these

terms correctly, regardless of the number of fractional bits.

c. Adjust the initial error term relative to the starting pixel. This can

be done by performing the DDA at subpixel increments until the first

major-axis grid is reached (which might be necessary in any case) and

scale the error term. Write the error term to the GB3R initial error

field.

d. Write the address of the starting pixel to the GADR and draw the first

16-pixel segment with a write to the GCTR. Repeat this step for lines

longer than 16 pixels.

In effect, this operation appears to be a clipped line with the edge of the

clipping rectangle set at the first integer major-axis grid crossed by the

geometric line.

7.2.3.3 21030 Turbo Lines

The unique 21030 RapiDraw feature greatly improves the drawing performance

for tall, thin objects, such as lines.

The 21030’s frame buffer interface implements four 16-bit memory controllers

(Section 3.9). Each controller can independently address each 16-bit channel of

the 64-bit frame buffer. When standard on-screen pixel widths of 1024 or 1280

are linearly mapped into the 21030’s frame buffer, vertically contiguous pixels

map into the same channel. Such mapping does not take advantage of the

independent memory controllers’ ability to draw consecutive pixels in parallel.

However, specifying a visible width 4 pixels longer (for example, 1028 rather

than 1024), effectively skews the scan lines by 4 pixels when mapped into

the frame buffer memory. Skewing maps vertically contiguous screen pixels

into different channels, allowing such pixels to be simultaneously drawn. The

vertical line drawing speed is doubled, and line drawing performance increases

approximately 50% compared to non-skewed mapping.

To take advantage of this turbo line support, software must do the following:

• When calculating screen addresses from coordinates, use a screen line

width that is 4 pixels greater than the standard screen width.

• Specify a value in the horizontal-control register active field (VHCR

<29:28,8:0>, Section 4.5.1) that is 4 pixels greater than the monitor

requires.

• Set the odd bit (VHCR <31>) to inhibit the display of the 4 extra pixels

during screen refresh.

7–14 Programming Guide

For example, to set the parameters for a 1280 � 1024 monitor, the active value

should be 1284 and the odd bit should be set.

7.2.4 Text

The 21030 stipple modes can process a request for any of the X text or glyph

calls or the Win32 DrvTextOut call. The opaque-, transparent-, and, in some

cases, block-stipple mode can be used, depending on the following:

• The destination bitmap

• Whether a nontrivial raster operation is required

• Whether the text foreground is filled with a solid, monochrome, or arbitrary

patterned brush or tile

The block-stipple mode draws up to four times faster than the other stipple

modes, and can be used if any of the following brushes is used:

• A solid brush is used, and it:

– Requires only a trivial raster operation, such as ��������

– Does not draw to a packed 8-bpp bitmap in a 32-bpp frame buffer

• A monochrome or arbitrarily patterned brush is used, and the pattern

repeats at intervals of 2� and ���.

The sequence for drawing in block-stipple mode is as follows:

1. Expand and align the solid or properly repeating patterned brush to 8

pixels.

2. Write the result to the block-color pattern in the GBCRs.

3. Write the glyph, span-by-span, with writes to the frame buffer in block-

stipple mode. Each write passes the glyph pattern for the span and writes

up to 32 pixels. For example, rendering an 8 � 16 (x � y) glyph requires 16

stipple-mode span-drawing operations.

If conditions prohibit block stipple-mode, opaque- or transparent-stipple mode

can be used. Transparent-stipple mode is used for a solid brush, with the

glyph mask specified as the stipple mask. Opaque-stipple mode is used for a

monochrome brush, with the glyph mask specified as the pixel mask. In either

case, if a mix raster operation is specified for the foreground under Win32,

each raster operation requires two passes using transparent-stipple mode. For

an arbitrarily patterned brush (that is, other than simple monochrome) that

does not repeat at appropriate intervals, simple mode can be used to write the

glyph foreground through the glyph mask.

Programming Guide 7–15

All stipple modes allow up to 32 pixels to be drawn per operation. Therefore, it

is advantageous to try to group spans from multiple glyphs that are contiguous

in display memory. For example, rather than draw four 8 � 16 glyphs one at

a time, draw all four in parallel, one span at a time — one write can draw one

span from each glyph at the same time.

7.2.5 3D Lines

The 3D line modes (Section 6.2.14) generate any of the following standard 3D

primitives:

• Gouraud-shaded spans, optionally Z-buffered or dithered to 8-bpp or 12-bpp

by hardware

• Depth-cued lines, optionally Z-buffered or dithered to 8-bpp or 12-bpp by

hardware

• 8-bpp smooth-shaded grey-scale lines, optionally Z-buffered by hardware

(Table 6–3 lists the modes to use for each primitive.)

The following drawing sequences are for several typical 3D spans and lines.

• Flat-Shaded Line or Span

A flat-shaded line or span is visually the same as a 2D line and is

programmed as such.

• Flat-Shaded, Z-Buffered Line or Span

1. Write the following registers:

a. Foreground register (GFGR) if changing color

b. Z-increment registers (GZIR-H and GZIR-L)

c. Z-value registers (GZVR-H and GZVR-L) if a noncontiguous

segment

d. Z-base-address register (GZBR) if a noncontiguous segment

e. Address register (GADR) with the frame buffer address if a

noncontiguous segment

f. A slope register (GSLR) with absolute dx and absolute dy to begin

drawing up to 16 pixels

2. For longer than 16-pixels, repeatedly write the continue register

(GCTR) to extend the line as necessary.

7–16 Programming Guide

• Depth-Cued Line

1. Write the following registers:

a. Red-increment register (GRIR)

b. Green-increment register (GGIR) if not grey-scale

c. Blue-increment register (GBIR) if not grey-scale

d. Address register (GADR) with the frame buffer address if a

noncontiguous segment

e. Red-value register (GRVR) if a noncontiguous segment

f. Green-value register (GGVR) if not grey-scale and a noncontiguous

segment

g. Blue-value register (GBVR) if not grey-scale and a noncontiguous

segment

h. A slope register (GSLR) with absolute dx and absolute dy to begin

drawing up to 16 pixels

2. For longer than 16-pixels, repeatedly write the continue register

(GCTR) to extend the line as necessary.

• Depth-Cued Z-Buffered Lines

1. Write the following registers:

a. Red-increment register (GRIR)

b. Green-increment register (GGIR) if not grey-scale

c. Blue-increment register (GBIR) if not grey-scale

d. Z-increment registers (GZIR-H and GZIR-L)

e. Red-value register (GRVR) if a noncontiguous segment

f. Green-value register (GGVR) if not grey-scale and a noncontiguous

segment

g. Blue-value register (GBVR) if not grey-scale and a noncontiguous

segment

h. Z-value registers (GZVR-H and GZVR-L) if a noncontiguous

segment

i. Z-base-address register (GZBR) if a noncontiguous segment

j. Address register (GADR) if a noncontiguous segment

Programming Guide 7–17

k. Span width register (GSWR) to begin drawing up to 16 pixels

2. For longer than 16-pixels, repeatedly write the continue register to

extend the span as necessary.

• Gouraud-Shaded Z-Buffered Spans

1. Write the following registers for each polygon:

a. Red-increment register (GRIR)

b. Green-increment register (GGIR) if not grey-scale

c. Blue-increment register (GBIR) if not grey-scale

d. Z-increment registers (GZIR-H and GZIR-L)

2. Write the following registers for each span:

a. Red-value register (GRVR)

b. Green-value register (GGVR) if not grey-scale

c. Blue-value register (GBVR) if not grey-scale

d. Z-base-address register (GZBR)

e. Z-value registers (GZVR-H and GZVR-L)

f. Address register (GADR)

g. Span width register (GSWR) to begin drawing up to 16 pixels

3. For longer than 16-pixels, repeatedly write the GCTR to extend the

span as necessary.

The colors in any of the preceding lines and spans can be optionally dithered

and drawn to an 8-bpp or 12-bpp bitmap in a 32-bpp frame buffer.

The hardware Z-buffering is also advantageous for drawing that requires more

advanced shading techniques, such as Phong shading or texture mapping.

Rather than using one of the 3D line modes, the CPU can calculate the colors

and Z-reference for each pixel, and write the pixels, one at a time, using

simple-Z mode. However, depending on the primitive and application, this may

be slower than doing all of the rendering and Z-buffering in software.

7–18 Programming Guide

7.2.5.1 Software Z-Buffering

Although the 21030’s performance is optimized to do Z-buffering in hardware,

the line and span hardware also works well with Z-buffering performed in

software. When this is done, a pixel mask is created to determine which pixels

are written as a function of Z. The created Z-mask and the standard pixel

mask are logically ANDed and then passed as a unified line mask either to the

GDAR or on a PCI write in line mode.

7.2.6 3D Polygons

Software must break polygons into spans. It must walk all of the polygon

edges and create a sequence of Gouraud-shaded (and optionally, Z-buffered)

spans that can be programmed as described in Section 7.2.5. Note that the

color and Z span-increment parameters need not be reloaded for each span.

7.2.7 Animations

The 21030 can use double-buffering to accelerate animation sequences. It

supports two types of double-buffering: in-place double-buffering in 32-bpp

frame buffer options and standard double-buffering. Software can draw to one

buffer while displaying from the other.

In both types of double-buffering, software must be synchronized with the

screen display to avoid tearing. Tearing occurs at the start of vertical retrace if

the entire screen is double-buffered, or in the middle of the display if a window

is being animated. Waiting until the display is complete eliminates tearing.

Typically, the buffer swap begins as soon as the scan completes drawing to the

region to be animated (for example, a window or the entire screen).

The 21030 provides two types of interrupts to synchronize software with screen

refresh: end-of-frame interrupts and shift-address interrupts. Both types of

interrupt are programmed in the interrupt status register (SISR, Section 4.7.2).

The end-of-frame interrupt is used to wake up software at the start of vertical

retrace, and the shift-address interrupt is used to wake up software at a

programmable location in mid-screen.

7.2.7.1 Offscreen-Copy Double-Buffering

In a standard double-buffering scheme, the double-buffer is physically located

apart (that is, off-screen) from the display buffer. After the current buffer has

been displayed, the double-buffer is physically block-transferred to the screen.

The following is a typical sequence for doing animation in an 8-bpp frame

buffer.

Programming Guide 7–19

On an end-of-frame or shift-address interrupt, do the following:

1. Use the copy mode to block-transfer the off-screen buffer to the on-screen

buffer.

2. Clear the off-screen buffer. Use the block-fill mode to clear the back-buffer

as quickly as possible.

3. Clear the Z-buffer (if doing Z-buffered drawing). Use the block-fill mode to

clear the Z-buffer as quickly as possible.

4. Draw the (optionally Z-buffered) image to the off-screen buffer. Use the

21030’s 3D line modes to draw 3D lines or polygons.

5. Wait for the next interrupt.

7.2.7.2 In-Place Double-Buffering

In an in-place double-buffering scheme, each 32-bpp pixel can have three 8-bpp

pixels or two 12-bpp pixels, and each can be allocated to a separate unpacked

buffer (or bitmap). Each pixel starts at a different offset within the 32 bits.

Destination bitmap and destination byte can be specified as required to draw

to each distinct bitmap.

When refreshing the screen, a Bt463 RAMDAC can select a different offset on

a per-region (window) basis. For example, on one frame, software can specify

an offset in the Bt463 to refresh from bitmap format UB80 while drawing

to UB81. On the following frame, the offset can be switched to refresh from

bitmap format UB81 while moving on to draw to UB80. All the buffer switches

are accomplished by specifying a different offset; a BitBlt is not required (that

is, the buffers remain in place).

In the 21030, the upper byte of a 32-bit pixel is a tag that can be used for

anything the application desires. When doing in-place double-buffering,

software should use at least some of the tag bits to identify the region to

which the pixel belongs. When the tag is used in this way, the in-place buffers

can be switched by simply writing a new tag (or tag subset) and instructing the

Bt463 to refresh from the range of the 32-it pixel that corresponds to that tag.

In-place double-buffering is the optimal method of double-buffering in a 32-

bpp frame buffer, provided that the RAMDAC can support a selectable range

from the incoming 32-bit pixel. Because of the 21030’s superior dithering,

8-bpp image quality is excellent, and 12-bpp image quality is indistinguishable

from 24-bpp image quality. Consequently, animating with less than full-color

resolution provides an increase in animation rates with fewer memory parts.

The following is a typical in-place double-buffering sequence:

7–20 Programming Guide

On an end-of-frame or shift-address interrupt, do the following:

1. Switch the buffers and clear the back-buffer (that is, clear the buffer that

was just displayed).

Use the block-fill mode to perform both functions simultaneously. Specify

a 32-bpp destination and set the GBCRs to the background color. Use the

block-fill mode with a plane mask to isolate the tag and desired bitmap

field.

2. Clear the Z-buffer (if doing Z-buffered drawing). Use the block-fill mode to

clear the Z-buffer as quickly as possible.

3. Draw the (optionally Z-buffered) image to the back-buffer. Use the 21030’s

3D line modes to draw 3D lines or polygons.

4. Wait for next interrupt.

7.2.8 Cursor Display

Moving the cursor off the top of the screen is often a problem because most

monitors specify fewer than 64 lines between the assertion of vertical sync and

the end of the vertical back porch (that is, the top of the displayable screen).

Consequently, the entire cursor height cannot ‘‘fit’’ off the top of the screen.

To compensate for this situation, the driver must specify the cursor y (CXYR

<23:12>, Section 4.6.1) as cursor y minimum (Table 4–63) and then specify a

cursor base address (CCBR <9:4>, Section 4.6.2) that offsets into the cursor

array, such that the top of the cursor is ‘‘cut off.’’ The offset the driver adds to

the cursor base address depends on the number of scans cut off the top of the

cursor.

7.3 Programming for Alpha AXP CPUs

Sections 7.3.1 and Section 7.3.2\VALUE) describe special programming

considerations when using the 21030 with Alpha AXP microprocessors.

7.3.1 Programmed I/O Through the CPU Write Buffer

The DECchip 21064, 21066, and 21068 Alpha AXP microprocessors contain an

internal 4-entry write buffer. To optimize the use of system bus bandwidth,

the write buffer attempts to collapse and merge quadwords (64 bits) and

Dwords before they are written externally. This mechanism has an unwanted

side-effect on write-ordering. Specifically, an ordered-packet of Dwords written

by a simple string of STL instructions (as in writing a command packet to the

21030) is not necessarily written on the PCI bus in the same order or with all

the Dwords intact.

Programming Guide 7–21

To counter this unwanted side-effect, a 21030 driver running on an Alpha AXP

microprocessor must:

• Avoid collapsing two separate writes to the same address

• Enforce write-ordering to order-critical 21030 registers

To enforce write-ordering, the Alpha AXP instruction set includes the memory

barrier (MB) instruction that allows software to flush the write buffer between

stores. However, the MB instruction significantly degrades performance when

it is used as frequently as is necessary with an order-dependent, bandwidth-

consuming, programmed I/O device such as the 21030. Therefore, to selectively

enforce ordering and eliminate collapsed writes, the 21030 software can:

• Access multiple aliased regions in the 21030 address space

• Carefully order accesses within aligned hexawords (eight Dwords) as

appropriate

The 21030 memory space provides multiple aliases to access the 21030

registers as well as the frame buffer. In most cases, the multiple address-space

aliases can be used to work around the CPU write buffer’s lack of ordering,

without using MB instructions. (Memory space can be extended for 21030

options on Alpha AXP systems to create the appropriate number of core space

aliases. See Sections A.1 and A.1.1.)

For example, rather than writing to the same register twice and issuing an

explicit MB instruction, software can write to two aliases of the same register.

The different addresses will reside in different write-buffer entries, such that

the writes will not merge and will maintain ordering.

Ordering within each CPU write-buffer entry must also be carefully monitored.

Each hexaword (eight Dwords) write-buffer entry empties from least significant

to most significant Dword (or so it appears on the PCI bus). Therefore, stores

to the same hexaword are in low-to-high order regardless of when they were

written.

However, strict ordering is not necessary for all writes to the 21030. A typical

graphics drawing command packet (Section 6.1.2) written to the 21030 consists

of several order-independent register writes, followed by an ordered write to

another register or the frame buffer. The first several writes can be arbitrarily

reordered among themselves, but they all must appear after the previous

command packet and before the last write of the current packet.

7–22 Programming Guide

The 21030 register-space core map is organized by hexaword to map cleanly to

the CPU’s write buffer. Within a typical command packet, order-independent

register writes are mapped in the same hexaword, and the order-dependent

register or frame buffer write is mapped either in the most-significant Dword

location of the same hexaword or in another hexaword. If software needs to

address another hexaword entry for the order-dependent write, it should choose

a different alias for every fourth consecutive access. The order-dependent write

then always appears after the order-independent writes.

7.3.2 Address and Continue Register Access

The alternate ROM space aliases of the address and continue registers (GADR

and GCTR) is another mechanism for using the unenforcing write buffer in

Alpha AXP processors. The GADR maps to all the even offsets in the first

512KB of alternate ROM space, and the GCTR maps to all the odd offsets

(Section 2.2.3.2).

Any graphics operation invoked by a write to the frame buffer can also be

invoked by a write to the GADR followed by a write to the GCTR. This allows

the 210030 to be programmed by a continuous stream of alternating writes

to the GADR and GCTR. By taking advantage of the odd and even aliases in

alternate ROM space, software can effectively pack GADR-GCTR writes in the

CPU write buffers. This also minimizes the translation-lookaside buffer (TLB)

overhead in the CPU, because all the writes are local.

Programming Guide 7–23

8
Hardware Interface

This chapter describes the frame buffer organization, external device

interfaces, and external signals on the 21030 pins.

8.1 Frame Buffer Organization

Sections 8.1.1 through 8.1.3 describe the 8- and 32-plane frame buffer options

and supported memory devices.

8.1.1 8-Plane Frame Buffer

The 8-plane frame buffer consists of one segment of memory which includes up

to four contiguous banks. Figures 8–1 through 8–4 show typical 8-bpp frame

buffer configurations.

Hardware Interface 8–1

Figure 8–1 Frame Buffer Option T8-01

Frame Buffer Depth:
Banks Populated:
Total Physical Size:

8−bpp
1
1MB

1024 X 768 256 No NA

Unpopulated

Back Buffer 1

Display Buffer 1

Back Buffer 0

Display Buffer 0

8M

6M

4M

2M

0

Bank

1M

3

2

1

0

 DRAMN256K X VRAMN256K X VRAMN128K X

Resolution Colors
Double
Buffer Z Buffer

Figure 8–2 Frame Buffer Option T8-02

Frame Buffer Depth:
Banks Populated:
Total Physical Size:

8−bpp
1
2MB

1024 X 768 256 Yes NA

Unpopulated

Back Buffer 1

Display Buffer 1

Back Buffer 0

Display Buffer 0

8M

6M

4M

2M

0

Bank

3

2

1

0

 DRAMN256K X VRAMN256K X VRAMN128K X

Resolution Colors
Double
Buffer Z Buffer

1280 X 1024
1600 X 1200

256
256

No
No

8–2 Hardware Interface

Figure 8–3 Frame Buffer Option T8-22

Frame Buffer Depth:
Banks Populated:
Total Physical Size:

8−bpp
2
4MB

1024 X 768 256 Yes NA

Unpopulated

Back Buffer 1

Display Buffer 1

Back Buffer 0

Display Buffer 0

8M

6M

4M

2M

0

Bank

3

2

1

0

 DRAMN256K X VRAMN256K X VRAMN128K X

Resolution Colors
Double
Buffer Z Buffer

1280 X 1024
1600 X 1200

256
256

Yes
Yes

Figure 8–4 Frame Buffer Option T8-44

Frame Buffer Depth:
Banks Populated:
Total Physical Size:

8−bpp
4
8MB

1024 X 768 256 Yes NA

Unpopulated

Back Buffer 1

Display Buffer 1

Back Buffer 0

Display Buffer 0

8M

6M

4M

2M

0

Bank

3

2

1

0

 DRAMN256K X VRAMN256K X VRAMN128K X

Resolution Colors
Double
Buffer Z Buffer

1280 X 1024
1600 X 1200

256
256

Yes
Yes

Hardware Interface 8–3

8.1.2 32-Plane Frame Buffer

The 32-plane frame buffer consists of two memory segments, each of which

contains up to four contiguous 2MB banks. A 32-plane frame buffer can

support a total of 16MB of physical memory.

In an 8-bpp frame buffer, four cas_l<3:0> pins select one of 16 channel-banks

(4 banks � 4 channels). This is possible because rasen_l<3:0> enables RAS

in only one bank per segment in an 8-bpp frame buffer. The bank on the

selected channel that responds to the CAS cycle is selected by rasen_l<3:0>.

In a 32-bpp frame buffer, RAS is enabled for an entire segment at a time.

Because each segment requires 16 independent CAS controls (one control per

channel-bank), the 21030 provides the casen<1:0> pins to help select the bank

of VRAM that should respond to the cas_l<3:0> pin for that channel.

8.1.2.1 Horizontal Access Mode

When drawing to a 32-bpp frame buffer, the 21030 typically accesses two

consecutive aligned Dwords (that is, two consecutive pixels). This translates to

a 64-bit wide, horizontal access across one of the four banks. If 32-bpp frame

buffer accesses were limited to this mode, casen<1:0> would be all that is

required to indicate which of the four banks are enabled. However, the 32-bpp

frame buffer options also support broadcast and diagonal pixel-access modes.

8.1.2.2 Broadcast Access Mode

The broadcast frame-buffer access-mode supports simultaneous access to all

banks in the segment when all of the following are also supported:

• CAS-before-RAS dynamic memory refresh cycles

• Split and standard read-transfer cycles to support screen refresh

• Writes to the VRAM plane mask registers

8.1.2.3 Diagonal Access Mode

The diagonal frame-buffer access-mode supports access to unpacked 8-bpp

bitmaps. When drawing to unpacked 8-bpp bitmaps in a 32-bpp frame buffer,

the 21030 effectively reads 1 byte from each of 8 contiguous aligned Dwords.

In horizontal mode, each 8-byte read or write accesses 2 consecutive aligned

Dwords. In contrast, each 8-byte read or write in diagonal mode accesses 1

byte from each of 8 consecutive Dwords. The 21030 uses diagonal mode when

accessing unpacked 8-bpp bitmaps and horizontal mode when accessing all

other types of bitmaps. The casmode<1:0> signals encode whether the access

mode is diagonal, horizontal, or broadcast.

8–4 Hardware Interface

In a 32-bpp frame buffer, an external device (for example, a PLD) is required to

generate the 16 independent channel-bank CAS controls from the cas_l<3:0>,

casen<1:0>, and casmode(1:0) signals. In summary, cas_l<3:0> enables each

channel for independent access and casen<1:0> and casmode<1:0> select the

bank to respond when the cas_l<3:0> signal for that channel is active.

Figures 8–5 through 8–7 show typical 32-bpp frame buffer configurations.

Figure 8–5 Frame Buffer Option T32-04

Segment 0

Segment 1
Frame Buffer Depth:
Banks Populated:
Total Physical Size:

32−bpp
2
4MB

1024 X 768 16M 8/12−bpp No

16M

Unpopulated

Bank

14M

12M

3

10M

2

8M

1

6M

0

Resolution

4M

Colors

3

Double

2M

Buffer

2

Z Buffer

0

1

0

 DRAMN256K X VRAMN256K X VRAMN128K X

Display Buffer 0

 Back Buffer 0

Hardware Interface 8–5

Figure 8–6 Frame Buffer Option T32-08

Segment 0

Segment 1
Frame Buffer Depth:
Banks Populated:
Total Physical Size:

32−bpp
4
8MB

1024 X 768 16M 32−bpp No

16M

Unpopulated

Bank

14M

12M

3

10M

2

8M

1

6M

0

Resolution

4M

Colors

3

Double

2M

Buffer

2

Z Buffer

0

1

0

 DRAMN256K X VRAMN256K X VRAMN128K X

 Back Buffer 0

1280 X 1024
1600 X 1200

16M
16M

8/12−bpp
8/12−bpp

No
No

 Display Buffer 0

(continued on next page)

8–6 Hardware Interface

Figure 8–7 (Cont.) Frame Buffer Option T32-88

Figure 8–7 Frame Buffer Option T32-88

Segment 0

Segment 1
Frame Buffer Depth:
Banks Populated:
Total Physical Size:

32−bpp
8

16MB

1024 X 768 16M 32−bpp Yes

16M

Unpopulated

Bank

14M

12M

3

10M

2

8M

1

6M

0

Resolution

4M

Colors

3

Double

2M

Buffer

2

Z Buffer

0

1

0

 DRAMN256K X VRAMN256K X VRAMN128K X

 Display Buffer 0

 Back Buffer 0

1280 X 1024
1600 X 1200

16M
16M

8/12−bpp
8/12−bpp

Yes
Yes

8.1.3 Supported Memory Devices

Display-buffer memory must be populated with VRAMs. Back-buffer memory

can be populated with DRAMs but special care must be taken. The 21030

supports block-mode operations and the plane-mask function to accelerate and

simplify drawing. Both features rely on memory device support for block-write

cycles and persistent plane-mask, which are currently supported in only a few

Hardware Interface 8–7

types of DRAM such as the 256K � 16 graphics DRAM (GRAM). To ensure

the same performance with the same software whether drawing to back-buffer

or display-buffer memory, back buffers must be populated with VRAMs or

GRAMs. Conversely, if back buffers are populated with standard DRAMs,

software must not specify block-mode operations or use a plane mask when

drawing to the back buffers.

8.2 System Configurations with VGA

Systems using the 21030 can implement VGA pass-through support in

several different ways, depending performance, cost, and option integration

requirements. Additional information can be found in VGA Pass-Through

Support for DECchip 21030 Boards: An Application Note which describes

several possible configurations, including the following:

• The 21030 and ISA/EISA VGA on the motherboard

• The 21030 and PCI VGA on the motherboard

• The 21030 on a PCI option board and VGA on the motherboard

• The 21030 on a PCI option board and VGA in an ISA/EISA option slot

• The 21030 and VGA on a PCI option board

8.3 External Device Interfaces

Additional information about the RAMDAC, EEPROM, and clock generator

interfaces can be found in Interfacing to External Devices with DECchip

21030 Boards: An Application Note. The application note also describes the

implementation of the following alternate uses for these interfaces.

• Using the EEPROM interface as a serial communications port

• Using the EEPROM interface as an 8-bit parallel write-only port

• Using the EEPROM interface as an 8-bit parallel read-only port

• Using the RAMDAC interface as a serial communications port

• Using the Clock generator interface as an 8-bit parallel write-only port

8.4 Signal Descriptions

Sections 8.4.1 through 8.4.4 describe the frame buffer interface, PCI interface,

video interface, and test signals.

8–8 Hardware Interface

8.4.1 Frame Buffer Interface Signals

Sections 8.4.1.1 through 8.4.1.12 describe the frame buffer interface signals in

alphabetical order.

8.4.1.1 addr<17:0>

The addr<17:0>, addren_l<1:0>, dsf<1:0>, oe_l<1:0>, and we_l<7:0> signals

are inputs to external logic that generates the VRAM address and control (DSF,

DTOE, and WE) signals.

The addr<17:0> signals also directly address the optional, external EEPROM.

The addr<17:0> signals are output-only signals. They are driven and

undefined at reset.

8.4.1.2 addren_l<1:0>

The addren_l<1:0>, addr<17:0>, dsf<1:0>, oe_l<1:0>, and we_l<7:0> signals

are inputs to external logic that generates the VRAM address and control (DSF,

DTOE, and WE) signals. The addren_l<1:0> signals enable the external logic.

The addren_l<1:0> signals are output-only signals. They are driven low at

reset.

8.4.1.3 cas_l<3:0>, casen<1:0>, casmode<1:0>

The cas_l<3:0>, casen<1:0>, and casmode<1:0> signals are inputs to external

logic that generates the VRAM CAS signals. (See Section 8.1.2 for more

information.)

The cas_l<3:0>, casen<1:0>, and casmode<1:0> signals are output-only

signals. They are driven high at reset.

8.4.1.4 dacc<2:0>, dacce_l<1:0>, dacrw

The dacc<2:0>, dacce_l<1:0>, and dacrw signals form the MPU interface to

the various external RAMDACs supported by the 21030.

The exact function of these register-programmable signals depends on the type

of external RAMDAC. Table 8–1 shows some examples of how these signals are

connected.

The dacc<1:0> signals are also the data and hold inputs to the serial port of

an optional, external, clock generator chip.

The dacc<2:0> and dacrw signals are output-only signals. They are driven

and undefined at reset. The dacce_l<1:0> signals are output-only signals, and

are driven high at reset.

Hardware Interface 8–9

Table 8–1 shows how the 21030 dacc<2:0>, dacce_l<1:0>, and dacrw signals

are connected to the MPU interface pins of several typical RAMDACs.

Table 8–1 RAMDAC MPU Interface Connection

RAMDAC Type dacc2 dacc1 dacc0 dacrw dacce_l1 dacce_l0

Bt463, Bt459, Bt458 — C1 C0 RW Head 1 Head 0

Bt484, Bt485 RS3 RS2 RS1 RS0 RD WR

(See Sections 4.8.2 and 4.8.3 for more information.)

8.4.1.5 data<63:0>

The data<63:0> signals carry data between the 21030, VRAM, RAMDAC, and

optional EEPROM.

The data<63:0> signals are bidirectional. They are driven and undefined at

reset.

8.4.1.6 dsf<1:0>

The dsf<1:0>, addr<17:0>, addren_l<1:0>, oe_l<1:0>, and we_l<7:0> signals

are inputs to external logic that generates the VRAM address and control (DSF,

DTOE, and WE) signals.

The dsf<1:0> signals are output-only signals. They are driven low at reset.

8.4.1.7 fbclk

The fbclk signal is used by the frame buffer, RAMDAC, optional EEPROM,

and optional clock generator interface logic.

The fbclk signal is an input-only signal.

8.4.1.8 icsce_l

The icsce_l signal is the chip enable or data strobe for an optional, external,

clock generator chip. If the clock generator is not programmable, then

the function of this pin is application-specific. (See Section 8.3 for more

information.)

The icsce_l signal is an output-only signal, and it is driven high at reset.

8.4.1.9 oe_l<1:0>

The oe_l<1:0>, addr<17:0>, addren_l<1:0>, dsf<1:0>, and we_l<7:0> signals

are inputs to external logic that generates the VRAM address and control (DSF,

DTOE, and WE) signals.

The oe_l signal is an output-only signal, and it is driven high at reset.

8–10 Hardware Interface

8.4.1.10 ras_l<3:0>, rasen_l<3:0>

The ras_l<3:0> and the rasen_l<3:0> signals are the data input and

enable signals to external logic that generates the VRAM RAS signals. (See

Section 8.1.2 for more information.)

The ras_l<3:0> are output-only signals, and are driven high at reset. The

rasen_l<3:0> are also output-only signals, but are driven low at reset.

8.4.1.11 romce_l, romoe_l, romwe_l

romce_l is the chip enable signal, romoe_l is the output enable signal, and

romwe_l s the write enable signal for the optional, external EEPROM.

The romce_l, romoe_l, and romwe_l signals are output-only signals, and are

driven high at reset.

8.4.1.12 we_l<7:0>

The we_l<7:0>, addr<17:0>, addren_l<1:0>, dsf<1:0>, and oe_l<1:0> signals

are inputs to external logic that generates the VRAM address and control (DSF,

DTOE, and WE) signals.

The we_l signal is an output-only signal, and is driven high at reset.

8.4.2 PCI Signals

Sections 8.4.2.1 through 8.4.2.14 describe the PCI interface signals in

alphabetical order.

8.4.2.1 ad<31:0>

PCI address and data are multiplexed on the ad<31:0> pins. During the first

clock of a PCI transaction, the byte address is driven on the ad<31:0> pins.

During subsequent clock cycles, data is driven on the ad<31:0> pins.

The ad<31:0> signals are bidirectional signals and are tristated at reset.

8.4.2.2 cbe_l<3:0>

PCI bus command codes and byte enables are multiplexed on the cbe_l<3:0>

pins. During the address cycle of a PCI transaction, the PCI bus command code

is driven on the cbe_l<3:0> pins. During data cycles, inverted byte enables are

driven on the cbe_l<3:0> pins.

The cbe_l<3:0> signals are bidirectional signals and are tristated at reset.

Hardware Interface 8–11

8.4.2.3 devsel_l

The target of a PCI transaction asserts the devsel_l signal when it detects an

address matching its programmed address space.

The devsel_l signal is a bidirectional signal and is tristated at reset.

8.4.2.4 frame_l

The frame_l signal is asserted at the beginning of a PCI transaction. It is

also used to control the number of data transfers during the transaction (burst

length). The frame_l signal is deasserted during the final data phase of a

transaction.

The frame_l signal is a bidirectional signal and is tristated at reset.

8.4.2.5 gnt_l

The gnt_l signal is asserted by external arbitration logic when the 21030 is

granted ownership of the PCI bus.

The gnt_l signal is an input-only signal.

8.4.2.6 idsel

The idsel signal is asserted when the 21030 has been selected for a

configuration transaction.

The idsel signal is an input-only signal.

8.4.2.7 inta_l

The 21030 asserts the inta_l signal to request interrupt service.

The inta_l signal is an output-only signal and is tristated at reset.

8.4.2.8 irdy_l

The initiator of a PCI transaction asserts the irdy_l signal to indicate its

ability to complete the current data phase of a PCI transaction. During a

read cycle, the initiator asserts the irdy_l signal to indicate that it is ready to

accept read data. During a write cycle, the initiator asserts the irdy_l signal to

indicate that it is driving valid write data on the ad<31:0> pins. The current

data phase is completed when both the trdy_l and irdy_l signals are sampled

asserted.

The irdy_l signal is a bidirectional signal and is tristated at reset.

8–12 Hardware Interface

8.4.2.9 par

The par signal is the even parity signal for the ad<31:0> and cbe_l<3:0>

signals.

The par signal is a bidirectional signal and is tristated at reset.

8.4.2.10 pciclk

The pciclk signal provides timing for all transactions on the PCI bus. All

of the PCI signals, except the rst_l signal, are synchronous with the pciclk

signal. Inputs are sampled on the rising edge of the pciclk signal. Outputs

change state as a result of the rising edge of the pciclk signal.

The pciclk signal is an input-only signal.

8.4.2.11 req_l

The req_l signal is asserted when the 21030 needs to initiate a PCI transfer.

External arbitration logic is required.

The req_l signal is an output-only signal and is tristated at reset.

8.4.2.12 rst_l

The rst_l signal is the PCI system reset signal.

The rst_l signal is an output-only signal and is asserted at reset.

8.4.2.13 stop_l

The target of a PCI transaction drives the stop_l signal to request that the

initiator stop the current transaction.

The stop_l signal is a bidirectional signal and is tristated at reset.

8.4.2.14 trdy_l

The target of a PCI transaction asserts the trdy_l signal to indicate its ability

to complete the current data phase of a PCI transaction. During a read cycle,

the device asserts the trdy_l signal to indicate that valid data is being driven

onto the ad<31:0> pins. During a write cycle, the device asserts the trdy_l

signal to indicate that it is ready to accept write data. The current data phase

is completed when both the trdy_l and irdy_l signals are sampled asserted.

The trdy_l signal is a bidirectional signal and is tristated at reset.

8.4.3 Video Interface Signals

Sections 8.4.3.1 through 8.4.3.7 describe the functions of the video interface

signals in alphabetical order.

Hardware Interface 8–13

8.4.3.1 blank_l

The blank_l signal is the video blanking signal.

The blank_l signal is an output-only signal. It is driven low at reset.

8.4.3.2 cursor<7:0>

The cursor<7:0> signals provide cursor information to the overlay port of a

RAMDAC.

The cursor<7:0> signals are output-only signals. They are driven and

undefined at reset.

8.4.3.3 hsync_l

The hsync_l signal can be programmed to be either a video horizontal

synchronization signal or a stereo goggle control signal. The 21030 is

initialized during reset to generate the stereo goggle control signal.

The hsync_l signal is an output-only signal, and is driven high at reset.

8.4.3.4 hold_l

The hold_l and toggle signals are used with external logic to generate the

VRAM serial-shift clock.

The hold_l signal is an output-only signal, and is driven low at reset.

8.4.3.5 toggle

The toggle and hold_l signals are used with external logic to generate the

VRAM serial-shift clock. The toggle pin is also used for test information

output when the 21030 is in test mode.

(See the DECchip 21030 PCI Graphics Accelerator Data Sheet for more

information about the 21030 test mode.)

The toggle signal is an output-only signal, and is driven low at reset.

8.4.3.6 vidclk

The vidclk signal is the clock for the video logic.

The vidclk signal is an input-only signal.

8.4.3.7 vsync_l

The vsync_l signal can be programmed to be either a vertical synchronization

signal or a composite synchronization signal. The 21030 is initialized during

reset to generate the composite synchronization signal.

The vsync_l signal is an output-only signal, and is driven high at reset.

8–14 Hardware Interface

8.4.4 Test Signals

Sections 8.4.4.1 and 8.4.4.2 describe the test signals.

(See the DECchip 21030 PCI Graphics Accelerator Data Sheet for more

information about the 21030 test mode.)

8.4.4.1 testin_l

When asserted, the testin_l signal places the 21030 in test mode. When in

test mode, the integrity of the 21030 input receivers can be verified. The test

result data is output on the toggle pin.

The testin_l signal is an input-only signal.

8.4.4.2 toggle

The toggle signal is normally used with the hold_l signals and external logic

to generate the VRAM serial-shift clock. The toggle pin is also used for test

information output when the 21030 is in test mode.

The toggle signal is an output-only signal, and is driven low at reset.

Hardware Interface 8–15

A
DECchip 21030 step A Differences

This appendix describes the 21030 step A functionality that differs from the

21030 step B functionality described in the main parts of this manual.

A.1 Memory Space

The size of the memory space is typically 32MB. It is mapped into the PCI

memory space at the address specified in the PCI device base address register

(PDBR). In certain cases, 64MB or 128MB can be allocated to the 21030

(Section A.1.1).

The 32MB memory space consists of one to eight copies of core space.

Figure A–1 shows memory space mapping as a function of core space size.

Figure A–1 Memory Space Organization

4MB Core Space

16MB Core Space

32MB Core Space

8MB Core Space

32MB

Offset from PCI base address (PDBR)

28MB

24MB

20MB

16MB

12MB

8MB

4MB

0

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

8MB Core Space

8MB Core Space

8MB Core Space

16MB Core Space

(See Section 2.1 for the equivalent 21030 step B functionality.)

DECchip 21030 step A Differences A–1

A.1.1 Extending 21030 step A Memory Space

In platforms based on DECchip 21064, 21066, or 21068 Alpha AXP processors,

address-space aliasing provides an effective way to enforce write ordering in

the presence of the CPU’s unenforcing write buffer. With one of these CPUs as

the host, effective aliasing requires at least four 21030 address space aliases;

but, the 32MB memory space is mapped no more than twice in the 8MB

and 16MB 32-bpp frame buffer configurations (Figure 2–3). To support these

32-bpp configurations with four core space maps, the 21030 memory space can

be expanded from 32MB to 64MB or 128MB. The address extension field in

the PCI address extension register (PAER, Section A.2.2) can be written at

configuration time to cause the 21030 to respond to 64MB or 128MB of PCI

memory space, rather than 32MB. This effectively doubles or quadruples the

number of core space aliases for the 8MB and 16MB 32-bpp configurations.

Figure A–2 shows the extended core space map for 32-bpp frame buffers.

A–2 DECchip 21030 step A Differences

Figure A–2 Extended 21030 step A Core Space Map for 32-bpp Frame
Buffers

Offset from PCI base address (PDBR)

Core Space

Core Space

Core Space

Core Space

128M

96M

64M

48M

32M

16M

0

Core Space

Core Space

Core Space

Core Space

Core Space Size = 32MB
Memory Space Size = 128MB

Address Extension (PAER) = 112

Core Space Size = 16MB
Memory Space Size = 64MB

Address Extension (PAER) = 012

16MB
Frame Buffer

8MB
Frame Buffer

Normally, platforms not based on Alpha AXP processors do not need address-

space aliasing, and the 8MB and 16MB 32-bpp configurations do not need

address-space extension.

DECchip 21030 step A Differences A–3

A.2 PCI Registers

The 21030 step A PDBR (Section A.2.1) is different than the 21030 step B

PDBR and the PAER (Section A.2.2) is not used in the 21030 step B.

A.2.1 PCI Device Base Address Register

Figure A–3 shows the PCI device base address register (PDBR) format, and

Table A–1 describes its fields.

Figure A–3 PDBR Format

31 25 24 4 3 1 02

RES
S
P

P
F

Device
Base Address

MSBs

Device
Base Address

LSBs

1000000000000000000000 0

Table A–1 PDBR Field Description

Bits Field Type Description

31:25 Device
Base
Address
MSBs

RW The most significant bits of the 21030 address-space
base address.

24:4 Device
Base
Address
LSBs

RO The value of this field is 00000016. It indicates
that the base address must be aligned to 32MB or
greater.

3 PF RO Prefetchable—Indicates that prefetched reads and
merged writes to the 21030 address space are
allowed. The value of this bit is 1.

2:1 RES RAZ/IGN Reserved.

0 SP RO Space—Specifies that the 21030 address space must
be mapped into PCI memory space. The value of this
bit is 0.

The device address space is mapped to the location specified in the PDBR.

A–4 DECchip 21030 step A Differences

The value of the space bit (<0>) is zero, indicating that the 21030 can be

mapped only into memory space. The value of the 21 least significant address

bits (<24:4>) is zero. This value indicates to configuration firmware that the

21030 and its associated memory requires 32MB of address space. Therefore,

configuration firmware can map the 21030 address space into any naturally

aligned, contiguous 32MB (or larger) region.

Configuration firmware for systems based on Alpha AXP microprocessors

might also have to initialize the device-dependent PCI address extension

register (PAER, Section A.2.2). (See Section A.1.1 for more information about

expanding the 21030 memory space.)

The prefetchable bit (<3>) indicates that there are no side effects on reads to

the 21030 address space. The 21030 returns all bytes on reads regardless of

the byte enables, and host bridges can merge writes into this region without

causing errors.

The value of the PDBR is 0000000816 at reset.

(See Section 4.2.2 for the equivalent 21030 step B functionality.)

DECchip 21030 step A Differences A–5

A.2.2 PCI Address Extension Register

Figure A–4 shows the PCI address extension register (PAER) format, and

Table A–2 describes its fields.

Figure A–4 PAER Format

31 18 17 16 15 0

RES AX RES

Table A–2 PAER Field Description

Bits Field Type Description

31:18 RES RAZ/IGN Reserved.

17:16 AX RW Address extension—The code in this field determines
the amount of additional PCI address space (above
32MB) that is allocated to the 21030, as follows:

<17:16> Add Total Address Space

0 0
0 1
1 0
1 1

None
32MB
Reserved
96MB

32MB
64MB
—
128MB

15:0 RES RAZ/IGN Reserved.

In systems not based on Alpha AXP microprocessors, configuration firmware

typically probes the PDBR (Section 4.2.2) to determine that the 21030 requires

32MB of memory and allocates that much memory to the device. Such systems

should not need to access the PAER.

In systems based on Alpha AXP microprocessors, the display driver might

need to access more than 32MB of memory. In such systems, the PAER

allows configuration firmware to specify a 21030 address space allocation

that is larger than that specified in the PDBR. To enable the allocation of

more address space, system configuration firmware must explicitly write the

PAER. (Note that the value of PDBR <0> is zero, specifying that the additional

address space is mapped to memory space.) The PAER should be manipulated

A–6 DECchip 21030 step A Differences

only by the PCI device mapping code. (For more information about modifying

the PAER, see Section A.1.1.)

The PAER is cleared at reset.

A.3 Video Timing Registers

The 21030 step B allows horizontal and vertical sync to be asserted high or low

according to the value of the horizontal and vertical sync polarity bits (VHCR

<30>, Section 4.5.1 and VVCR <30>, Section 4.5.2). In the 21030 step A, the

sync polarity bits are not active and both sync signals are asserted low.

A.4 PCI Operations

Sections A.4.1 through A.4.2.1 describe 21030 step A PCI support that differs

from 21030 step B support.

A.4.1 Access Granularity

As a target, the 21030 supports arbitrary, subDword (less than 32-bits) read

and write accesses. The 21030 handles all possible permutations of byte masks

presented on the cbe_l<3:0> pins during both read and write accesses, with

the following restrictions:

• Writes to 21030 registers are limited to Dword access. Byte masks are

ignored.

• Expansion ROM reads, through the 256KB space defined by the PRBR, are

limited to byte access.

• Expansion ROM reads, through the alternate ROM space (Section 2.2.3),

returning only Dword-aligned data.

(See Section 5.2.1 for the equivalent 21030 step B functionality.)

A.4.2 Device Address Mapping

Configuration firmware can map the 21030 device and enable response to

that mapping by manipulating fields in the PCI device base address register

(PDBR) and PCI command and status register (PCSR). Table A–3 describes the

fields to be manipulated.

DECchip 21030 step A Differences A–7

Table A–3 21030 Base Address and Memory Space Enable Fields

Field Register Bits Field Description

Device
base
address

PDBR <31:4> The PCI memory address defined as the base
address of the 21030 address space.

Memory
space
enable

PCSR <1> When set, enables the 21030 to respond to memory
space accesses.

The PDBR and PCSR are written in the following sequence:

1. Configuration firmware probes the PDBR to determine where the 21030 is

to be mapped and the amount of space to allocate to it; that is, firmware

writes all ones to the PDBR and then reads back the value. The 21030

returns zeros in <24:4> to indicate the following 21030 requirements:

• It requires at least 32MB of total address space (PDBR <24:4> = 00000016).

• It must be mapped to PCI memory space (PDBR bit 0 = 0).

2. Firmware allocates 32MB of naturally aligned PCI memory space and

writes the base address to the PDBR.

3. Firmware sets memory space enable (PCSR <1>) to enable device response.

(Usually, memory space enable should not be set until the PDBR has been

properly initialized as described in steps 1 and 2.)

After the PDBR is written and memory space enable is set in the PCSR, the

21030 can respond as a normal PCI target (Section 5.2).

(See Section 7.1.1 for the equivalent 21030 step B functionality.)

A.4.2.1 Address Mapping in Alpha AXP Systems

In systems based on Alpha AXP microprocessors, the 21030 can require more

than 32MB of PCI memory space, depending on the amount of physical display-

memory in the graphics subsystem. To minimize the use of memory barrier

(MB) instructions in such systems, device driver-level software needs multiple

apertures into the frame buffer. To support this driver requirement, the 21030

supports multiple aliases of its core space (that is, frame buffer and register

space) in PCI memory space. (See Chapter 2 for more information about the

memory space.)

A–8 DECchip 21030 step A Differences

Table A–4 shows the amount of PCI memory space required according to the

total amount of physical display-memory included in the graphics subsystem.

Table A–4 PCI Address Space Requirements in Alpha AXP Systems

Physical Display Memory PCI Memory Space Required

1MB 32MB

2MB 32MB

4MB 32MB

8MB 64MB

16MB 128MB

(Systems based on microprocessors other than an Alpha AXP microprocessor

do not need to allocate more than 32MB of memory space to the 21030.)

To extend the 21030 memory space allocation beyond 32MB, configuration

firmware must explicitly write the PCI address extension register (PAER).

The initialization sequence to allocate 64MB or 128MB of naturally aligned,

physical, PCI memory differs slightly from the sequence to allocate 32MB of

memory space, as follows:

1. The base address is written to the PDBR.

2. The value of the PAER address extension field is set to 012 (64MB) or 112

(128MB).

3. Memory space enable (PCSR <1>) is set to enable device response.

Depending on how the PCI firmware standards evolve, the additional memory

can be allocated either by transparently executing code from the 21030

expansion ROM prior to device address mapping or through dedicated support

in the base system firmware.

DECchip 21030 step A Differences A–9

B
Pin Summary

Tables B–1 through B–4 summarize the 21030 signal pins.

Table B–1 lists the frame buffer interface pins alphabetically within functional

groups.

Table B–1 Frame Buffer Interface Pin Summary

Signal Qty Type Function Value at Reset

data<63:0> 64 I/O Data bus Driven, undefined

addr<17:0> 18 O VRAM address Driven, undefined

addren_l<1:0> 2 O VRAM address enable Driven, low

cas_l<3:0> 4 O VRAM CAS Driven, high

casmode<1:0> 2 O VRAM CAS Driven, low

casen<1:0> 2 O VRAM CAS logic enable Driven, high

dsf<1:0> 2 O VRAM special function Driven, low

oe_l<1:0> 2 O VRAM output enable Driven, high

ras_l<3:0> 4 O VRAM RAS Driven, high

rasen_l<3:0> 4 O VRAM RAS logic enable Driven, low

we_l<7:0> 8 O VRAM write enable Driven, high

dacc<2:0> 3 O RAMDAC clock Driven, undefined

dacce_l<1:0> 2 O RAMDAC chip enable Driven, high

dacrw 1 O RAMDAC read/write Driven, undefined

romce_l 1 O EEPROM chip enable Driven, high

romoe_l 1 O EEPROM output enable Driven, high

romwe_l 1 O EEPROM write enable Driven, high

(continued on next page)

Pin Summary B–1

Table B–1 (Cont.) Frame Buffer Interface Pin Summary

Signal Qty Type Function Value at Reset

fbclk 1 I Clock for frame buffer, RAMDAC,
optional ROM, and optional clock
generator interface logic

Not applicable

icsce_l 1 O Clock generator chip enable or data
strobe

Driven, high

Table B–2 is an alphabetical list of the PCI interface pins.

Table B–2 PCI Interface Pin Summary

Signal Qty Type Function Value at Reset

ad<31:0> 32 I/O PCI multiplexed address and data bus Tristate

cbe_l<3:0> 4 I/O PCI multiplexed cycle command and byte enables Tristate

devsel_l 1 I/O PCI device select Tristate

frame_l 1 I/O PCI cycle frame Tristate

gnt_l 1 I PCI bus grant Not applicable

idsel 1 I PCI initialization device select Not applicable

inta_l 1 O PCI interrupt request Tristate

irdy_l 1 I/O PCI initiator ready Tristate

par 1 I/O PCI even parity bit Tristate

pciclk 1 I PCI system clock Not applicable

req_l 1 O PCI bus request Tristate

rst_l 1 I PCI system reset Asserted

stop_l 1 I/O PCI target stop Tristate

trdy_l 1 I/O PCI target ready Tristate

B–2 Pin Summary

Table B–3 is an alphabetical list of the video interface pins.

Table B–3 Video Interface Pin Summary

Signal Qty Type Function Value at Reset

blank_l 1 O Video blank signal Driven, low

cursor<7:0> 8 O Cursor information to RAMDAC Driven, undefined

hold_l 1 O VRAM serial-shift clock generation Driven, low

hsync_l 1 O Horizontal synchronization or stereo goggle
control

Driven, high

toggle 1 O VRAM serial-shift clock generation or test
output

Driven, low

vidclk 1 I Video logic clock Not applicable

vsync_l 1 O Vertical synchronization signal or composite
synchronization

Driven, high

Table B–4 lists the test pins.

Table B–4 Test Pin Summary

Signal Qty Type Function Value at Reset

testin_l 1 I 21030 test mode select Not applicable

toggle 1 O VRAM serial-shift clock generation or test output Driven, low

Pin Summary B–3

C
Register Summary

Tables C–1 through C–7 are a summary of the 21030 registers.

Table C–1 lists the PCI configuration registers in descending address order.

Table C–1 PCI Configuration Registers

Register Mnemonic

Byte�

Address
Range

Value at Reset
(Hexadecimal)

Reserved — FF..48 —

PCI address extension register† PAER 47..44 Cleared

PCI VGA redirect register PVRR 43..40 81000002

PCI interrupt line register PLIR 3F..3C Cleared

Reserved — 3B..34 —

PCI expansion ROM base address register PRBR 33..30 Cleared

Reserved — 2F..14 —

PCI device base address register PDBR 13..10 Cleared

PCI latency timer register PLTR 0F..0C Cleared

PCI class and revision register PCRR 0B..08 03800001†
03800002‡

PCI command and status register PCSR 07..04 028000A0

PCI identification register PIDR 03..00 10110004

�In PCI configuration space

†Active only in the 21030 step A (Appendix A)

‡21030 step B

Register Summary C–1

Table C–2 lists the graphics command registers in alphabetical order. For a

list of the registers according to offset, see Table 2–2.

Table C–2 Graphics Command Register Summary

Register Mnemonic Access Offset� Reset State

Continue register GCTR RW 04C Cleared

Copy 64 destination register GCDR WO 164 Cleared

Copy 64 destination register GCDR WO 16C† Cleared

Copy 64 destination register GCDR WO 174† Cleared

Copy 64 destination register GCDR WO 17C† Cleared

Copy 64 source register GCSR WO 160 Cleared

Copy 64 source register GCSR WO 168† Cleared

Copy 64 source register GCSR WO 170† Cleared

Copy 64 source register GCSR WO 178† Cleared

Slope register 0 GSLR0 WO 120 Cleared

Slope register 1 GSLR1 WO 124 Cleared

Slope register 2 GSLR2 WO 128 Cleared

Slope register 3 GSLR3 WO 12C Cleared

Slope register 4 GSLR4 WO 130 Cleared

Slope register 5 GSLR5 WO 134 Cleared

Slope register 6 GSLR6 WO 138 Cleared

Slope register 7 GSLR7 WO 13C Cleared

Span width register GSWR WO 0BC Cleared

�In core register space 3FF..000

†Register alias.

C–2 Register Summary

Table C–3 lists the graphics control registers in alphabetical order. For a list

of the registers according to offset, see Table 2–2.

Table C–3 Graphics Control Register Summary

Register Mnemonic Access Offset� Reset State

Address register GADR RW 03C Cleared

Address register GADR WO 0AC† Cleared

Background register GBGR RW 024 Cleared

Block color register 0 GBCR0 WO 140 Undefined

Block color register 1 GBCR1 WO 144 Undefined

Block color register 2 GBCR2 WO 148 Undefined

Block color register 3 GBCR3 WO 14C Undefined

Block color register 4 GBCR4 WO 150 Undefined

Block color register 5 GBCR5 WO 154 Undefined

Block color register 6 GBCR6 WO 158 Undefined

Block color register 7 GBCR7 WO 15C Undefined

Blue increment register GBIR RO 08C Cleared

Blue value register GBVR RW 0B8 Cleared

Bresenham 1 register GB1R RW 040 Cleared

Bresenham 2 register GB2R RW 044 Cleared

Bresenham 3 register GB3R RW 048 Cleared

Bresenham width register GBWR RW 09C Cleared

Copy buffer register 0 GCBR0 RW 000 Cleared

Copy buffer register 1 GCBR1 RW 004 Cleared

Copy buffer register 2 GCBR2 RW 008 Cleared

Copy buffer register 3 GCBR3 RW 00C Cleared

Copy buffer register 4 GCBR4 RW 010 Cleared

Copy buffer register 5 GCBR5 RW 014 Cleared

Copy buffer register 6 GCBR6 RW 018 Cleared

Copy buffer register 7 GCBR7 RW 01C Cleared

Data register GDAR RW 080 FFFFFFFF

Deep register GDER RW 050 Cleared

DMA base address register GDBR RW 098 Cleared

�In core register space 3FF..000

†Register alias.

(continued on next page)

Register Summary C–3

Table C–3 (Cont.) Graphics Control Register Summary

Register Mnemonic Access Offset� Reset State

Foreground register GFGR RW 020 Cleared

Green increment register GGIR RO 088 Cleared

Green value register GGVR RW 0B4 Cleared

Mode register GMOR RW 030 Cleared

Pixel mask (one shot) register GPXR RW 02C Cleared

Pixel mask (persistent) register GPXR WO 05C FFFFFFFF

Pixel shift register GPSR RW 038 Cleared

Plane mask register GPMR WO 028 Undefined

Raster operation register GOPR RW 034 0000000316

Red increment register GRIR RO 084 Cleared

Red value register GRVR RW 0B0 Cleared

Slope-no-go register 0 GSNR0 WO 100 Cleared

Slope-no-go register 1 GSNR1 WO 104 Cleared

Slope-no-go register 2 GSNR2 WO 108 Cleared

Slope-no-go register 3 GSNR3 WO 10C Cleared

Slope-no-go register 4 GSNR4 WO 110 Cleared

Slope-no-go register 5 GSNR5 WO 114 Cleared

Slope-no-go register 6 GSNR6 WO 118 Cleared

Slope-no-go register 7 GSNR7 WO 11C Cleared

Stencil mode register GSMR RW 058 Cleared

Z base address register GZBR RW 0A8 Cleared

Z increment high register GZIR-H RW 094 Cleared

Z increment low register GZIR-L RW 090 Cleared

Z value high register GZVR-H RW 0A4 Cleared

Z value low register GZVR-L RW 0A0 Cleared

�In core register space 3FF..000

C–4 Register Summary

Table C–4 lists the video timing registers.

Table C–4 Video Timing Register Summary

Register Mnemonic Access Offset� Reset State

Horizontal control register VHCR RW 064 Cleared. The VHCR
must be initialized before
video is enabled in the
VVVR.

Vertical control register VVCR RW 068 Cleared. The VVCR
must be initialized before
video is enabled in the
VVVR.

Video base address register VVBR RW 06C Cleared

Video shift address register VSAR RW 078 Cleared

Video valid register VVVR RW 070 Cleared

�In core register space 3FF..000

Table C–5 lists the cursor control registers.

Table C–5 Cursor Control Register Summary

Register Mnemonic Access Offset� Reset State

Cursor base address register CCBR RW 060 Cleared

Cursor XY register CXYR RW 074 Cleared

�In core register space 3FF..000

Table C–6 lists the status registers.

Table C–6 Status Register Summary

Register Mnemonic Access Offset� Reset State

Command status register SCSR RW 1F8 Cleared

Interrupt status register SISR RW 07C Cleared

Reserved — — 1FC —

�In core register space 3FF..000

Table C–7 lists the external device registers.

Register Summary C–5

Table C–7 External Device Register Summary

Register Mnemonic Access Offset� Reset State

Clock register ECGR WO 1E8 Cleared

EEPROM write register ERWR WO 1E0 Cleared

Palette and DAC interface register EPDR RW 1F0 Cleared

Palette and DAC setup register EPSR WO 0C0 Cleared

Reserved — — 1E4 —

Reserved — — 1EC —

Reserved — — 1F4 —

�In core register space 3FF..000

C–6 Register Summary

D
Technical Support, Ordering, and

Associated Literature

This appendix describes how to obtain DECchip information and technical

support, as well as how to order DECchip products and associated literature.

Calling the DECchip Information Line for Information and Technical Support

Call the DECchip Information Line for information and technical support:

United States and Canada

TTY (United States only)

Outside North America

1–800–332–2717 (1–800–DEC–2717)

1–800–332–2515 (1–800–DEC–2515)

+1–508–568–6868

Ordering DECchip Products

To order the DECchip 21030 PCI Graphics Accelerator and DECchip 21030

8-bpp and 24-bpp Evaluation Boards, contact your local Digital sales office.

When working with your sales representative, you may be able to take

advantage of discounts and volume pricing.

You can order the following DECchip products from Digital:

Product Order Number

DECchip 21030 PCI Graphics Accelerator 21030–AA

DECchip 21030 8-bpp Evaluation Board PBXGA–AX

DECchip 21030 24-bpp Evaluation Board PBXGA–BX

Technical Support, Ordering, and Associated Literature D–1

Ordering Associated DECchip Literature

The following table lists some of the DECchip literature that is available.

For a complete list, and for information about ordering, contact the DECchip

Information Line.

Title Order Number

Alpha Architecture Reference Manual� EY–L520E–DP–YCH

DECchip 21030 8-bpp Evaluation Board User’s Guide EC–N0681–72

DECchip 21030 24-bpp Evaluation Board User’s Guide EC–N2730–72

DECchip 21030 PCI Graphics Accelerator Hardware
Reference Manual

EC–N0683–72

DECchip 21030 PCI Graphics Accelerator Product Brief EC–N2714–72

Direct Memory Access for DECchip 21030 Boards: An
Application Note

EC–N3126–72

Interfacing to External Devices with DECchip 21030
Boards: An Application Note

EC–N2746–72

VGA Pass-Through Support for DECchip 21030 Boards:
An Application Note

EC–N0686–72

�To order and purchase the Alpha Architecture Reference Manual, call 1–800–DIGITAL from
the U.S. or Canada, or contact your local Digital office, or technical or reference bookstore where
Digital Press books are distributed by Prentice Hall.

Associated Third-Party Literature

You can order the following third-party literature directly from the vendor.

Title Vendor

PCI Local Bus Specification,
Revision 2.0

PCI Special Interest Group
M/S HF3–15A
5200 N.E. Elam Young Pkwy
Hillsboro, Oregon 97124–6497
1–503–696–2000

D–2 Technical Support, Ordering, and Associated Literature

Glossary

The 21030 accelerates graphics in both Win32 and X graphics environments.

This manual uses terminology common to both environments, as well as

general graphics terminology. This glossary defines the terms as they apply in

this manual.

bitmap

An X term defining a pixmap of depth one. Analogous to a Windows 1-bpp

bitmap.

A Windows bitmap can be 1-bpp, 4-bpp, 8-bpp, and so on. A 1-bpp bitmap is

also called a monochrome bitmap. This also defines the term as it is used in

this manual, unless otherwise noted.

bpp

Bits-per-pixel. Synonymous with number of planes or depth in X.

brush

A Windows term defining a bitmap that is used to fill the interior of a region.

A monochrome brush is analogous to an X stipple, and an n-bpp brush (where

n > 1) is analogous to an X tile.

depth

See bpp.

display driver

A Windows term analogous to an X server.

drawable

An X term usually referring to pixmaps.

GDI

Graphics device interface.

Glossary–1

GUI

Graphics user interface.

pixmap

An X term usually referring to a two-dimensional array of pixels, where each

pixel can have a depth of one to many bits. Also see bitmap.

PLD

Programmable logic device.

server

An X term for the instrument that, among other things, processes X graphical

requests. Analogous to the Windows display driver.

stipple

An X bitmap used to tile a region with a solid (transparent) or bitonal (opaque)

pattern. Analogous to a Windows monochrome brush.

tile

This X term describes the action of replicating a pixmap across a region.

Analogous to using a Windows brush to fill a region.

Glossary–2

Index

8-bpp

bitmap

access in 32-bpp frame buffers, 6–15

destination color interpolator output,

6–94

operands, 6–15

frame buffer formats, 6–6

12-bpp bitmap

destination color interpolator output,

6–94

formats, 6–8

operands, 6–14

source to destination Dword replication,

6–14

24-bpp bitmap

destination color interpolator output,

6–93

formats, 6–9

operands, 6–13

32-bpp frame buffer formats, 6–7

A
Abbreviations

binary multiples, xx

bpp, xx

K pixel, M pixel, xx

Kilobyte, Megabyte, and Gigabyte, xx

register access, defined, xx

Aborted DMA transaction termination, 5–4

Absolute

dx field, 4–16, 4–49

dy field, 4–16, 4–49

Access

abbreviations defined, xx

frame buffer

broadcast mode, 8–4

diagonal mode, 8–4

horizontal mode, 8–4

granularity, PCI, 5–2, A–7

Active

<8:0> field, 4–85

<10:9> field, 4–84

lines field, 4–87

ad<31:0> signals, 8–11

addr<17:0> signals, 8–9

addren_l<1:0> signals, 8–9

Address

age (AA) bit, 4–31

alignment

frame buffer, 6–34

requirements, source and destination,

6–13

video base address, according to

VRAM size, 4–89

and data stepping, PCI, 5–4

extension (AX) field, A–6

field

device base address, 7–1, A–7

device base address LSBs, 4–7, A–4

device base address MSBs, 4–7, A–4

DMA, 4–45

frame buffer, 4–33

frame buffer destination, 4–25

frame buffer source, 4–25

ROM, 4–103

ROM base address LSBs, 4–12

ROM base address MSBs, 4–12

Index–1

Address

field (cont’d)

VGA, 4–14

video base address, 4–89

VRAM address and control, 8–9

Z, 4–59

Z increment 1, 4–23

Z increment 2, 4–23

increment

1 field, 4–51

2 field, 4–53

mapping

device, 7–1, A–7

in Alpha AXP systems, A–8

mask (Addr Mask) field, 4–82

register (GADR)

access, 7–23

field description, 4–33

format, 4–33

registers

address register (GADR), 4–33

cursor base address (CCBR), 4–97

DMA base address (GDBR), 4–45

PCI address extension register

(PAER), A–6

PCI device base address (PDBR), 4–7

PCI expansion ROM base address

(PRBR), 4–12

video base address (VVBR), 4–89

Z base address (GZBR), 4–59

shift

see Shift-address

space, 2–1, A–1

alternate ROM space, 2–9

configuration space, 4–2

core space, 2–1

expansion ROM space, 2–9, 4–12

frame buffer space, 2–2

register space, 2–5

requirements, Alpha AXP systems,

A–9

Aligned convention, xxi

Alignment

block color pattern, 6–35

Alignment (cont’d)

block-stipple mode address and mask,

6–32

frame buffer address, 6–34

source and destination, 6–48

stipple mask, 6–35

video base-address according to VRAM

size, 4–89

Alpha AXP

CPU programming, 7–21

documentation, D–2

systems

address space requirements, A–9

device address mapping, A–8

Alternate

drawing mechanism, 4–15

ROM space, 2–9

also see EEPROM, Expansion ROM,

External ROM, ROM

GCTR writes, 4–24

read, 2–10

read field description, 2–10

read format, 2–10

write, 2–11

AND mask field, 4–48

Animations, 7–19

Applicable systems, 1–2

Arbitration, external logic, 8–12, 8–13

Assigning pixel shift values, 6–52

Associated literature, D–2

B
Back

buffer, 1–8

defined, 2–2

porch field

VHCR, 4–84

VVCR, 4–87

Back-to-back

capable (BBC) bit, 4–4

enable (BBE) bit, 4–4

Background

as a function of bitmap depth, 4–65

register (GBGR), 4–66

Index–2

Background

register (GBGR) (cont’d)

field description, 4–66

format, 4–66

Backward copies, 6–52

Base

address

field, device, 7–1, A–7

LSBs, device, 4–7, A–4

LSBs, ROM, 4–12

MSBs, device, 4–7, A–4

MSBs, ROM, 4–12

register, cursor (CCBR), 4–97

register, DMA (GDBR), 4–45

register, PCI device (PDBR), 4–7

register, PCI expansion ROM (PRBR),

4–12

register, video (VVBR), 4–89

register, Z (GZBR), 4–59

video, 4–89

video, alignment according to VRAM

size, 4–89

class field, 4–10

Basic programming model, 1–6

extensions, 1–7

Bit-block transfer (BitBlt), 1–3, 7–4

copy mode example, 7–5

Bitmap width field, 4–55

Bitmaps

8-bpp

access in 32-bpp frame buffers, 6–15

destination color interpolator output,

6–94

format parameters, 6–61

operands, 6–15

packed format, 6–6

unpacked formats, 6–8

12-bpp

destination color interpolator output,

6–94

format parameters, 6–61

formats, 6–8

operands, 6–14

source to destination Dword

replication, 6–14

Bitmaps (cont’d)

24-bpp

destination color interpolator output,

6–93

formats, 6–9

operands, 6–13

formats

DMA-read copy mode, 6–69

DMA-write copy mode, 6–76

supported in 32-bpp frame buffers, 6–7

unsupported formats, 6–12

Blank disable (BD) bit, 4–91

blank_l signal, 8–14

Block

color

data field, 4–38

pattern alignment, 6–35

color registers (GBCR<7:0>), 4–38

color pattern formats, 4–39

field description, 4–38

format, 4–38

diagram, DECchip 21030, 3–1

<3:0> field, 4–81

fill mode, 1–7, 6–37

GDAR, 4–47

operation, 6–39

parameters, 6–37

PCI write-data format, 6–37

stipple mode, 6–30

address and mask alignment, 6–32

operation, 6–31

parameters, 6–30

PCI write-data format, 6–30

Blue

increment register (GBIR), 4–80

format, 4–80

fraction field, 4–80

integer field, 4–80

value register (GBVR), 4–79

format, 4–79

fraction field, 4–79

integer field, 4–79

Boolean raster operations, 4–35

Index–3

bpp abbreviation, xx

Bresenham

age (BA) bit, 4–31

engine, 3–7

1 register (GB1R), 4–51

field description, 4–51

format, 4–51

2 register (GB2R), 4–53

field description, 4–53

format, 4–53

3 register (GB3R), 4–54

field description, 4–54

format, 4–54

setup hardware, 3–7

width register (GBWR), 4–55

field description, 4–55

format, 4–55

Broadcast access mode, frame buffer, 8–4

Burst read cycles, unsupported, 3–3

Bus, PCI

mastering, 7–2

parking, 5–5

stepping (BS) bit, 4–4

Busy bit, 4–99

Byte, defined, xxii

C
Cap ends

(CE) bit, 4–28

specifying, 6–87

CAS signals

casen<1:0>, 8–9

casmode<1:0>, 8–9

cas_l<3:0>, 8–9

Caution convention, xxi

cbe_l<3:0> signals, 8–11

Clock generator register (ECGR), 4–108

data bit, 4–108

format, 4–108

hold bit, 4–108

Color

interpolated line mode

GRIR, 4–74

GRVR, 4–71

Color (cont’d)

interpolation, 6–92

interpolator output

8-bpp destination, 6–94

12-bpp destination, 6–94

24-bpp destination, 6–93

interpolators, 3–8

pattern

alignment, 6–35

formats, 4–39

Column

field, dither, 4–19

size (CS) bit, VRAM, 4–81

Command

FIFO, 3–5

parser, 3–6

status register (SCSR), 4–99

field description, 4–99

format, 4–99

Configuration

operations, 5–1

space, 4–2

Continue register (GCTR), 4–21

access, 7–23

format, 4–21

indirect frame buffer addressing, 4–21

line

mode write field description, 4–22

mode write format, 4–22

or span continuation, 4–22

read, 4–23

format, 4–23

format field description, 4–23

write

format field description, 4–21

in any mode, 4–21

in line mode, 4–22

to alternate ROM space, 4–24

Conventions, xx

aligned, xxi

binary multiples, xx

bit notation, xxi

byte abbreviations, xx

caution, xxi

core, core space, and core registers, xxi

Index–4

Conventions (cont’d)

data units, xxii

extents, xxii

external, xxii

field abbreviations, xx

ignore (IGN), xx

note, xxii

numbering, xxii

ranges, xxii

read as zero (RAZ), xx

read only (RO), xxi

read/write (RW), xxi

read/write one to clear (R/W1C), xxi

register access abbreviations defined, xx

reserved (RES), xxi

signal names, xxiii

unaligned, xxi

write only (WO), xxi

Copy

backward, 6–52

buffer, 3–5

layout, 4–43, 6–57

operation, 6–56

operation, programmed I/O, 6–58

registers, fast frame buffer access,

6–59

buffer registers (GCBR<7:0>), 4–43

format, 4–43

direction

(CD) bit, 4–31

flag, 4–31, 4–32, 4–41, 6–55

forward span, 6–50

primed, 6–53

host-to-screen, 7–7

mode, 1–7, 1–8, 3–9, 6–45

64-byte unmasked span, 6–56

BitBlt example, 7–5

DMA read, 1–8

DMA write, 1–8, 3–9

parameters, 6–45

PCI write-data format, 6–45

source and destination bitmaps, 6–60

span limits, 6–46

offscreen-copy double-buffering, 7–19

screen-to-screen, 7–4

Copy-64

destination register (GCDR), 4–25

field description, 4–25

format, 4–25

source register (GCSR), 4–25

field description, 4–25

format, 4–25

Core, xxi

registers, xxi, 3–14

also see Registers

table, 2–6

space, xxi, 2–1

also see Memory

map, 32-bpp frame buffers, 2–2

map, 8-bpp frame buffers, 2–2

map, extended for 32-bpp frame

buffers, A–2

CRTC and cursor function, 3–12

Cursor

base address field, 4–97

base-address register (CCBR), 4–97

field description, 4–97

format, 4–97

coordinate limits, 4–95

display, programming, 7–21

enable (CE) bit, 4–91

generation, 3–13

registers, 4–94

also see Registers

rows –1 field, 4–97

signals

cursor<7:0>, 8–14

X

field, 4–95

maximum field, 4–95

minimum field, 4–95

XY register (CXYR), 4–95

field description, 4–95

format, 4–95

Y

field, 4–95

maximum field, 4–96

minimum field, 4–96

Index–5

D
3D

line

and span modes, 6–89

mode parameters, 6–90

segment, defined, 6–89

lines, 7–16

polygons, 7–19

span segment, defined, 6–89

2D lines, 7–10

DAC

also see Palette and DAC, RAMDAC

signals

dacc<2:0>, 8–9

dacce_l<1:0>, 8–9

dacrw, 8–9

slow DAC (SDAC) bit, 4–81

Data

and address stepping, PCI, 5–4

bit, ECGR, 4–108

register (GDAR), 4–46

DMA-write copy mode, 4–48

DMA-write copy mode format, 4–48

DMA-write copy mode format field

description, 4–48

fill modes, 4–47

fill-mode format, 4–47

fill-mode format field description,

4–47

line mode, 4–46

line-mode format, 4–46

line-mode format field description,

4–46

signals

data<63:0>, 8–10

units defined, xxii

DECchip

documentation, D–2

information, D–1

Decode enable (DE) bit, 4–12

Deep

bit, 4–82

register (GDER), 4–81

Deep

register (GDER) (cont’d)

field description, 4–81

format, 4–81

Depth-test

fail (D fail) field, 4–56

pass (D pass) field, 4–56

Destination

8-bpp bitmap and byte field values, 6–17

alignment, 6–48

bitmap

address alignment requirements,

6–13

copy mode, 6–60

(DBM) field, 4–35

opaque-line mode, 6–83

byte (DBY) field, 4–35

fields, 6–13

operands, 6–11

according to mode, 6–11

Device

address mapping, 7–1, A–7

base address

field, 7–1, A–7

LSBs field, 4–7, A–4

MSBs field, 4–7, A–4

register, PCI (PDBR), 4–7

ID field, 4–9

independent bitmap (DIB), 1–5

select timing (DEV) field, 4–4

devsel_l signal, 8–12

Diagonal access mode, frame buffer, 8–4

Digital data analysis (DDA), 7–13

Direct memory access (DMA)

address field, 4–45

base-address register (GDBR), 4–45

field description, 4–45

format, 4–45

read

FIFO, 3–5

transfers, 3–4

read copy mode, 1–8, 6–63

bitmap formats, 6–69

dithering, 6–69

edge mask for short spans, 6–67

Index–6

Direct memory access (DMA)

read copy mode (cont’d)

edge mask settings, 6–67

operation, 6–67

parameters, 6–63

PCI write-data format, 6–63

transfers, 3–4

write

FIFO, 3–5

transfers, 3–4

write copy mode, 1–8, 3–9, 6–70

bitmap formats, 6–76

edge mask for short spans, 6–73

GDAR, 4–48

operation, 6–74

parameters, 6–70

PCI write-data format, 6–70

Display buffer, defined, 2–2

Dither

column field, 4–19, 4–77

logic, 3–8

row field, 4–19, 4–71

Dithering, DMA-read copy mode, 6–69

Documentation, D–2

Double-buffering

in-place, 7–20

offscreen-copy, 7–19

Drawing

lines with slope registers, 6–80

mechanism

alternate, 4–15

standard, 4–15

octants, 4–17

dsf<1:0> signals, 8–10

Dword, defined, xxii

dxGE0 field, 4–20

dxGEdy field, 4–19

dyGE0 field, 4–20

E
Edge mask

for short spans in DMA-read copy mode,

6–67

for short spans in DMA-write copy mode,

6–73

Edge mask (cont’d)

settings in DMA-read copy mode, 6–67

EEPROM

also see Alternate ROM, Expansion ROM,

External ROM, ROM

write register (ERWR), 4–103

field description, 4–103

format, 4–103

End-of-frame interrupt

enable (EOFIE) bit, 4–101

pending (EOFIP) bit, 4–101

Error

increment 1 field, 4–51

increment 2 field, 4–53

Expansion ROM, 7–4

also see Alternate ROM, EEPROM,

External ROM, ROM

space, 2–9, 4–12

read, 3–4

Extending

a single line, 6–85

and linking

2D lines, 6–83

3D lines, 6–101

memory space, A–2

Extensions to the basic programming model,

1–7

Extents convention, xxii

External

arbitration logic, 8–12, 8–13

clock generator

enable signal, 8–10

device

interfaces, 8–8

registers, 4–103

also see Registers

writes, 3–6

RAMDAC

see RAMDAC

ROM, 2–9

also see Alternate ROM, EEPROM,

Expansion ROM, ROM

alternate ROM space, 2–9

PCI expansion ROM space, 2–9

to DECchip 21030, xxii

Index–7

External (cont’d)

VRAM

see VRAM

F
fbclk signal, 8–10

Features, 1–3

FIFO

command, 3–5

DMA read, 3–5

DMA write, 3–5

Fill

mask field, 4–47

mode

block, 1–7, 6–37

opaque, 6–41

stipple, 1–7

transparent, 6–44

Filling

monochrome brush, 7–8

non-monochrome brush, 7–9

Fills, 7–7

solid, 7–7

Flag, copy direction, 6–55

Flash ROM

see Alternate ROM, Expansion ROM,

External ROM, ROM

Flushing the residue register

copy mode, 6–53

DMA-read copy mode, 6–66

DMA-write copy mode, 6–74

Foreground

as a function of bitmap depth, 4–65

register (GFGR), 4–64

field description, 4–64

format, 4–64

Formats

8-bpp frame buffer, 6–6

32-bpp frame buffer, 6–7

bitmap, 6–6

buffer, 6–6

stencil-buffer, 6–10

Z16, 6–11

Z24, 6–10

Formats (cont’d)

Z-buffer, 6–10

Z16, 6–11

Z24, 6–10

Forward span copy, 6–50

primed, 6–53

Frame buffer

8-bpp

core space map, 2–2

formats, 6–6

32-bpp

bitmaps, 6–7

core space map, 2–2

extended core space map, A–2

formats, 6–7

8-plane, 8–1

32-plane, 8–4

access

broadcast mode, 8–4

diagonal mode, 8–4

horizontal mode, 8–4

with copy buffer registers, 6–59

address

alignment, 6–34

destination field, 4–25

field, 4–33

source field, 4–25

and device access (FBDA) function, 3–3,

3–13

configurations, 1–8, 2–2

8-bpp example, 1–10

interface signals

see Signal descriptions

mode-dependent write operations, 6–1

option

T32-04, 8–5

T32-08, 8–5

T32-88, 8–6

T8-01, 8–1

T8-02, 8–2

T8-22, 8–2

T8-44, 8–3

organization, 8–1

space, 2–2

writes, 3–7, 6–1

Index–8

frame_l signal, 8–12

Front porch field

VHCR, 4–85

VVCR, 4–87

Functions not supported, 1–5

PCI, 5–5

G
gnt_l signal, 8–12

Goggle control, 1–5

GPXR state (GS) bit, 4–31

Graphics

command registers, 4–15

also see Registers

write operations, 6–3

write operations in 3D line modes,

6–3

writes, 6–2

control registers, 4–27

also see Registers

device interface (GDI), 1–5

DRAM (GRAM), 1–8, 8–8

drivers and servers, 7–4

environment (GE) bit, 4–28

mode field, 4–29

modes, 4–29

also see Mode

operations, 6–1

invoking, 6–4

Green

increment register (GGIR), 4–78

format, 4–78

fraction field, 4–78

integer field, 4–78

value register (GGVR), 4–77

dither column field, 4–77

format, 4–77

fraction field, 4–77

integer field, 4–77

Grey

increment

fraction field, 4–75

integer field, 4–75

value

Grey

value (cont’d)

fraction field, 4–72

integer field, 4–72

Grid intersect quantization (GIQ)

specification, 6–82

H
Hardware replication of 12-bpp source

bitmap to destination Dword, 6–14

Header type field, 4–11

Hexaword, defined, xxii

Hold bit, ECGR, 4–108

hold_l signal, 8–14

Horizontal

access mode, frame buffer, 8–4

control register (VHCR), 4–84

field description, 4–84

format, 4–84

sync

field, 4–85

polarity (HSP) bit, 4–84

select (HSS) bit, 4–81

Host-to-screen copy, 7–7

hsync_l signal, 8–14

I
icsce_l signal, 8–10

idsel signal, 8–12

Ignore (IGN) convention, xx

In-place double-buffering, 7–20

Indirect frame buffer addressing, GCTR,

4–21

Initial error field, 4–54

inta_l signal, 8–12

Internal architecture, 3–1

Interpolation

color, 6–92

sequential, 6–95

Interpolator

color, 3–8

Z, 3–8

Index–9

Interrupt

acknowledge, ignored, 5–5

end-of-frame interrupt

enable (EOFIE) bit, 4–101

pending (EOFIP) bit, 4–101

line field, 4–13

pin field, 4–13

routing, 7–3

shift-address

field, 4–93

interrupt enable (SAIE) bit, 4–101

interrupt pending (SAIP) bit, 4–101

to frame buffer byte-address map,

4–93

status register (SISR), 4–101

field description, 4–101

format, 4–101

timer interrupt

enable (TIE) bit, 4–101

pending (TIP) bit, 4–101

Invoking graphics operations, 6–4

irdy_l signal, 8–12

L
Last shift-address field, 4–93

Latency timer field, 4–11, 7–2

Length field, 4–54

Line

3D segment, defined, 6–89

drawing

under Win32, 7–12

under X, 7–10

with slope registers, 6–80

extending and linking

2D lines, 6–83

3D lines, 6–101

mask field, 4–23, 4–46

mode, 1–7

3D line and span, 6–89

opaque, 1–7, 6–77

transparent, 1–7, 6–88

opaque

drawing, 6–83

drawing sequence, 6–85

Line (cont’d)

or span continuation, GCTR, 4–22

segment, Z-buffered, color-interpolated,

6–99

Lines

2D, 7–10

3D, 7–16

extending a single line, 6–85

linking multiple lines, 6–87

turbo, 7–14

Linking

and extending 2D lines, 6–83

and extending 3D lines, 6–101

multiple lines, 6–87

Literature, D–2

Longword, defined, xxii

M
Mask GPXR field, 4–70

Master

abort (MA) bit, 4–4

enable (ME) bit, 4–5, 7–2

operation, PCI, 5–3

Memory

controller, 3–10

read, 3–3

core space, 3–3

expansion ROM space, 3–4

interlock, 3–4

space, 2–1, A–1

alternate ROM space, 2–9

core space, 2–1

enable field, 7–1, A–7

expansion ROM space, 2–9

extending, A–2

frame buffer space, 2–2

(MS) enable bit, 4–5

organization, 2–2, A–1

register space, 2–5

supported devices, 8–7

write, 3–3

core space, 3–3

Mode

block fill, 1–7, 6–37

parameters, 6–37

Index–10

Mode (cont’d)

block stipple, 6–30

parameters, 6–30

block-fill

operation, 6–39

PCI write-data format, 6–37

block-stipple

address and mask alignment, 6–32

operation, 6–31

PCI write-data format, 6–30

copy, 1–7, 1–8, 6–45, 6–46

parameters, 6–45

PCI write-data format, 6–45

3D line

and span, 6–89

parameters, 6–90

dependent frame buffer write operations,

6–1

DMA-read copy, 1–8, 6–63

operation, 6–67

parameters, 6–63

PCI write-data format, 6–63

DMA-write copy, 1–8, 6–70

operation, 6–74

parameters, 6–70

PCI write-data format, 6–70

field, 4–29

fill

block, 1–7

stipple, 1–7

graphics, 4–29, 6–18

line, 1–7

opaque, 1–7

transparent, 1–7

opaque-fill, 6–41

operation, 6–42

parameters, 6–41

PCI write-data format, 6–41

opaque-line, 6–77

parameters, 6–77, 6–80

PCI write-data format, 6–78

opaque-stipple, 6–25

operation, 6–27

parameters, 6–25

PCI write-data format, 6–25

Mode (cont’d)

primary, 1–6

register (GMOR), 4–28

read, 4–31

read format, 4–31

read-format field description, 4–31

write, 4–28

write format, 4–28

write-format field description, 4–28

simple, 1–6, 6–19

parameters, 6–19

PCI write-data format, 6–19

simple-Z, 6–21

parameters, 6–21

PCI write-data format, 6–22

specific data field, 4–21

stipple, 1–6

fill, 1–7

opaque, 1–7

transparent, 1–7

transparent-fill, 6–44

parameters, 6–44

transparent-line, 6–88

parameters, 6–88

transparent-stipple, 6–28

operation, 6–29

parameters, 6–28

PCI write-data format, 6–28

Monitor timing generation, 3–12

MPU

see RAMDAC MPU

N
Nibble, defined, xxii

Note convention, xxii

Numbering convention, xxii

O
Octaword defined, xxii

Odd bit, 4–84

oe_l<1:0> signals, 8–10

Index–11

Offscreen-copy double-buffering, 7–19

One-shot GPXR, 4–70

operation, 4–31

Opaque

fill mode, 6–41

GDAR, 4–47

operation, 6–42

parameters, 6–41

PCI write-data format, 6–41

line drawing, 6–83

sequence, 6–85

line mode, 1–7, 6–77

destination bitmaps, 6–83

parameters, 6–77, 6–80

PCI write-data format, 6–78

stipple mode, 1–7, 6–25

GPXR, 4–69

operation, 6–27

parameters, 6–25

PCI write-data format, 6–25

Operands

8-bpp bitmap, 6–15

12-bpp bitmap, 6–14

24-bpp bitmap, 6–13

source and destination, 6–11

according to mode, 6–11

Ordering products, D–1

P
Packed 8-bpp bitmap, 6–6

Palette

snoop (PS) bit, 4–5

snooping, 1–5

Palette and DAC

also see DAC, RAMDAC

data register (EPDR), 4–106

read format, 4–106

read-format field description, 4–106

write format, 4–106

write-format field description, 4–107

setup register (EPSR), 4–104

field description, 4–104

format, 4–104

MPU control field mapping, 4–104

par signal, 8–13

Parameters

block-fill mode, 6–37

block-stipple mode, 6–30

copy mode, 6–45

3D-line mode, 6–90

DMA-read copy mode, 6–63

DMA-write copy mode, 6–70

opaque-fill mode, 6–41

opaque-line mode, 6–77, 6–80

opaque-stipple mode, 6–25

simple mode, 6–19

simple-Z mode, 6–21

transparent-fill mode, 6–44

transparent-line mode, 6–88

transparent-stipple mode, 6–28

Parity

par signal, 8–13

PCI, 5–4

Parser, command, 3–6

Parts ordering, D–1

PCI

aborted DMA transaction termination,

5–4

access granularity, 5–2, A–7

address

and data stepping, 5–4

space requirements in Alpha AXP

systems, A–9

address extension register (PAER), A–6

field description, A–6

format, A–6

bus

mastering, 7–2

parking, 5–5

class and revision register (PCRR), 4–10

field description, 4–10

format, 4–10

command and status register (PCSR),

4–4

field description, 4–4

format, 4–4

configuration

firmware, 7–1

operations, 5–1

Index–12

PCI

configuration (cont’d)

reads, 3–3

space, 4–2

writes, 3–3

device base address register (PDBR), 4–7,

A–4

field description, 4–7, A–4

format, 4–7, A–4

expansion ROM base address register

(PRBR), 4–12

field description, 4–12

format, 4–12

functions not supported, 5–5

identification register (PIDR), 4–9

field description, 4–9

format, 4–9

interface overview, 3–1

interrupt

acknowledge, ignored, 5–5

routing, 7–3

latency timer field, 7–2

latency timer register (PLTR), 4–11

field description, 4–11

format, 4–11

line interrupt register (PLIR), 4–13

field description, 4–13

format, 4–13

master

enable bit, 7–2

operation, 5–3

transaction termination, 5–3

operations, 5–1, A–7

parity, 5–4

registers, 3–14, 4–2, A–4

also see Registers

signals

see Signal descriptions

special cycle, ignored, 5–5

target

operations, 5–1

transaction termination, 5–2

VGA redirect register (PVRR), 4–14

field description, 4–14

fields, 7–3

PCI

VGA redirect register (PVRR) (cont’d)

format, 4–14

write-data format

block-fill mode, 6–37

block-stipple mode, 6–30

copy mode, 6–45

DMA-read copy mode, 6–63

DMA-write copy mode, 6–70

opaque-fill mode, 6–41

opaque-line mode, 6–78

opaque-stipple mode, 6–25

simple mode, 6–19

simple-Z mode, 6–22

transparent-stipple mode, 6–28

pciclk signal, 8–13

Persistent GPXR, 4–70

operation, 4–31

Pin summary, B–1

Pipeline, pixel processing, 3–6

Pixel

assigning shift values, 6–52

engine, 3–7

mask field, 4–69

mask register (GPXR), 4–69

any mode, 4–70

opaque-stipple mode, 4–69

opaque-stipple mode format, 4–69

opaque-stipple mode format field

description, 4–69

simple and simple-Z modes, 4–69

simple mode format, 4–69

simple-mode format field description,

4–70

simple-Z mode format, 4–69

simple-Z mode format field

description, 4–70

merge function, 3–9

processing pipeline, 3–6

shift field, 4–41

shift register (GPSR), 4–41

field description, 4–41

format, 4–41

Index–13

Plane mask

fields, 6–13

formats, 4–68

registers (GPMR), 4–67

field description, 4–67

format, 4–67

Polygons, 3D, 7–19

Power-on self-test (POST) code, 4–10

Prefetchable (PF) bit, 4–7, A–4

Primary operating modes, 1–6

Priming the residue register

copy mode, 6–53

DMA-read copy mode, 6–66

DMA-write copy mode, 6–74

Programmed I/O

copy buffer operation, 6–58

through CPU write buffer, 7–21

Programming

Alpha AXP CPUs, 7–21

basic programming model, 1–6

extensions, 1–7

interface field, 4–10

Q
Quadword, defined, xxii

R
RAMDAC

also see DAC, Palette and DAC

MPU

control field, 4–104

control field mapping, 4–104

interface connection, 8–10

interface signals, 8–9

read data field, 4–106

write data field, 4–107

Ranges convention, xxii

RapiDraw, 7–14

RAS signals

rasen_l<3:0> signals, 8–11

ras_l<3:0> signals, 8–11

Raster

operation register (GOPR), 4–35

field description, 4–35

format, 4–35

operations, 4–35

Read

alternate ROM space, 2–10

as zero (RAZ) convention, xx

data field, 4–106

DMA transfers, 3–4

expansion ROM space, 3–4

FIFO, DMA, 3–5

GCTR, 4–23

interlock, 3–4

memory

core space, 3–3

interlock, 3–4

only (RO) convention, xxi

write (RW) convention, xxi

write one to clear (R/W1C) convention,

xxi

Red

increment register (GRIR), 4–74

color-interpolated line mode, 4–74

color-interpolated line-mode field

description, 4–74

color-interpolated line-mode format,

4–74

fraction field, 4–74

grey-increment fraction field, 4–75

grey-increment integer field, 4–75

integer field, 4–74

sequential-interpolated line mode,

4–75

sequential-interpolated line-mode field

description, 4–75

sequential-interpolated line-mode

format, 4–75

value register (GRVR), 4–71, 4–72

color-interpolated line mode, 4–71

color-interpolated line-mode field

description, 4–71

color-interpolated line-mode format,

4–71

dither row field, 4–71

Index–14

Red

value register (GRVR) (cont’d)

fraction field, 4–71

grey-value fraction field, 4–72

grey-value integer field, 4–72

integer field, 4–71

sequential-interpolated line mode,

4–72

sequential-interpolated line-mode field

description, 4–72

sequential-interpolated line-mode

format, 4–72

Refresh pointer, 4–88

Register

access abbreviations defined, xx

load synchronization, 6–5

space, 2–5

organization, 2–6

Registers

core, 3–14

cursor

base-address register (CCBR), 4–97

XY register (CXYR), 4–95

external device

clock generator register (ECGR),

4–108

EEPROM write register (ERWR),

4–103

palette and DAC data register

(EPDR), 4–106

palette and DAC setup register

(EPSR), 4–104

graphics command

continue register (GCTR), 4–21

copy-64 destination register (GCDR),

4–25

copy-64 source register (GCSR), 4–25

slope registers (GSLR<7:0>), 4–16

span width register (GSWR), 4–19

graphics control

address register (GADR), 4–33

background register (GBGR), 4–66

block-color registers (GBCR<7:0>),

4–38

blue increment register (GBIR), 4–80

Registers

graphics control (cont’d)

blue value register (GBVR), 4–79

Bresenham 1 register (GB1R), 4–51

Bresenham 2 register (GB2R), 4–53

Bresenham 3 register (GB3R), 4–54

Bresenham width register (GBWR),

4–55

copy-buffer registers (GCBR<7:0>),

4–43

data register (GDAR), 4–46

deep register (GDER), 4–81

DMA base-address register (GDBR),

4–45

foreground register (GFGR), 4–64

green increment register (GGIR),

4–78

green value register (GGVR), 4–77

mode register (GMOR), 4–28

pixel mask register (GPXR), 4–69

pixel shift register (GPSR), 4–41

plane mask registers (GPMR), 4–67

raster operation register (GOPR),

4–35

red increment register (GRIR), 4–74

red value register (GRVR), 4–71

slope-no-go registers (GSNR<7:0>),

4–49

stencil mode register (GSMR), 4–56

Z-base-address register (GZBR), 4–59

Z-increment high register (GZIR-H),

4–62

Z-increment low register (GZIR-L),

4–62

Z-value high register (GZVR-H),

4–60

Z-value low register (GZVR-L), 4–60

PCI, 3–14

address extension register (PAER),

A–6

class and revision register (PCRR),

4–10

command and status register (PCSR),

4–4

Index–15

Registers

PCI (cont’d)

device base address register (PDBR),

4–7, A–4

expansion ROM base address register

(PRBR), 4–12

identification register (PIDR), 4–9

latency timer register (PLTR), 4–11

line interrupt register (PLIR), 4–13

VGA redirect register (PVRR), 4–14

reset state, C–1

residue

description, 6–49

priming and flushing, 6–53, 6–66,

6–74

status

command status register (SCSR),

4–99

interrupt status register (SISR),

4–101

summary, C–1

video timing

horizontal control register (VHCR),

4–84

vertical control register (VVCR),

4–87

video base-address register (VVBR),

4–89

video shift-address register (VSAR),

4–93

video valid register (VVVR), 4–91

writes, 3–6

Related documentation, D–2

req_l signal, 8–13

Reserved (RES) convention, xxi

Reset state, registers, C–1

Residue register

description, 6–49

priming and flushing

copy mode, 6–53

DMA-read copy mode, 6–66

DMA-write copy mode, 6–74

Revision ID field, 4–10

ROM

also see Alternate ROM, EEPROM,

Expansion ROM, External ROM

address field, 4–103

base address

LSBs field, 4–12

MSBs field, 4–12

data field, 4–103

signals

romce_l, 8–11

romoe_l, 8–11

romwe_l, 8–11

write enable (RWE) bit, 4–81

Row field, dither, 4–19

rst_l signal, 8–13

S
Screen-to-screen copy, 7–4

Sequential

interpolated line mode

GRIR, 4–75

GRVR, 4–72

interpolation, 6–95

Serial-access memory size (SAMS) bit, 4–81

Shift-address

address field, 4–93

interrupt

enable (SAIE) bit, 4–101

pending (SAIP) bit, 4–101

last address field, 4–93

register (VSAR), 4–93

to frame buffer byte-address map, 4–93

Signal

naming convention, xxiii

summary, B–1

Signal descriptions, 8–8

frame buffer interface signals, 8–9

addr<17:0>, 8–9

addren_l<1:0>, 8–9

casen<1:0>, 8–9

casmode<1:0>, 8–9

cas_l<3:0>, 8–9

dacc<2:0>, 8–9

dacce_l<1:0>, 8–9

Index–16

Signal descriptions

frame buffer interface signals (cont’d)

dacrw, 8–9

data<63:0>, 8–10

dsf<1:0>, 8–10

fbclk, 8–10

icsce_l, 8–10

oe_l<1:0>, 8–10

rasen_l<3:0>, 8–11

ras_l<3:0>, 8–11

romce_l, 8–11

romoe_l, 8–11

romwe_l, 8–11

we_l<7:0>, 8–11

PCI signals, 8–11

ad<31:0>, 8–11

cbe_l<3:0>, 8–11

devsel_l, 8–12

frame_l, 8–12

gnt_l, 8–12

idsel, 8–12

inta_l, 8–12

irdy_l, 8–12

par, 8–13

pciclk, 8–13

req_l, 8–13

rst_l, 8–13

stop_l, 8–13

trdy_l, 8–13

test signals, 8–15

testin_l, 8–15

toggle, 8–15

video interface signals, 8–13

blank_l, 8–14

cursor<7:0>, 8–14

hold_l, 8–14

hsync_l, 8–14

toggle, 8–14

vidclk, 8–14

vsync_l, 8–14

Simple

mode, 1–6, 6–19

GPXR, 4–69

parameters, 6–19

PCI write-data format, 6–19

Simple (cont’d)

Z mode, 6–21

GPXR, 4–69

parameters, 6–21

PCI write-data format, 6–22

Slope registers (GSLR<7:0>), 4–16

drawing lines with, 6–80

drawing octants, 4–17

field description, 4–16

format, 4–16

Slope-no-go registers (GSNR<7:0>), 4–49

read, 4–50

read format, 4–50

contents, 4–50

write, 4–49

write format, 4–49

write-format

field description, 4–49

Slow DAC (SDAC) bit, 4–81

Software Z-buffering, 7–19

Solid fills, 7–7

Source

8-bpp bitmap and byte field values, 6–17

alignment, 6–48

bitmap

address alignment requirements,

6–13

copy mode, 6–60

(SBM) field, 4–29

byte (SBY) field, 4–28

fields, 6–13

operands, 6–11

according to mode, 6–11

Space (SP) bit, 4–7, A–4

Span

3D segment, definition, 6–89

limits, copy mode, 6–46

or line continuation, GCTR, 4–22

width register (GSWR), 4–19

read, 4–19

read format, 4–19

read-format field description, 4–19

write, 4–19

Index–17

Special cycle, ignored, 5–5

Specifying cap ends, 6–87

Standard drawing mechanism, 4–15

Status registers, 4–99

also see Registers

Stencil

buffer

operation, 6–96

update conditions, 4–58

buffer formats, 6–10

Z16, 6–11

Z24, 6–10

mode register (GSMR), 4–56

field description, 4–56

format, 4–56

pass and fail fields description, 4–57

test field codes, 4–57

read mask (S read mask) field, 4–56

reference field, 4–60

test (S test) field, 4–56

test fail (S fail) field, 4–56

write mask (S write mask) field, 4–57

Stereo

enable (SE) bit, 4–87

goggle control, 1–5

Stipple

fill mode, 1–7

logic, 3–7

mask alignment, 6–35

mode, 1–6

block, 6–30

opaque, 1–7, 6–25

transparent, 1–7, 6–28

Stippling, monochrome brush, 7–8

stop_l signal, 8–13

Subclass field, 4–10

Supported memory devices, 8–7

System configurations with VGA, 8–8

T
Target

abort (TA) bit, 4–4

operations, PCI, 5–1

Technical support, D–1

Test

signals—see Signal descriptions

depth-test fail (D fail) field, 4–56

depth-test pass (D pass) field, 4–56

stencil-test (S test) field, 4–56

stencil-test fail (S fail) field, 4–56

Z-buffer test (Z test) field, 4–56

testin_l signal, 8–15

Text, 7–15

Tiling, non-monochrome brush, 7–9

Timer interrupt

enable (TIE) bit, 4–101

pending (TIP) bit, 4–101

toggle signal, 8–14, 8–15

Transaction termination

aborted DMA, 5–4

PCI master, 5–3

PCI target, 5–2

Transparent

fill mode, 6–44

GDAR, 4–47

parameters, 6–44

line mode, 1–7, 6–88

parameters, 6–88

stipple mode, 1–7, 6–28

operation, 6–29

parameters, 6–28

PCI write-data format, 6–28

trdy_l signal, 8–13

Tribyte defined, xxii

Turbo lines, 7–14

Typical system application, 1–2

U
Unaligned convention, xxi

Unmasked span copies, 6–56

Unpacked 8-bpp bitmap formats, 6–8

Unsupported

bitmap formats, 6–12

functions, 1–5

PCI, 5–5

Index–18

V
Vendor ID field, 4–9

Vertical

control register (VVCR), 4–87

field description, 4–87

format, 4–87

sync

field, 4–87

polarity (VSP) bit, 4–87

VGA

address field, 4–14

data field, 4–14

enable (VE) bit, 4–14

mask field, 4–14

palette

snoop (PS) bit, 4–5

snooping, 1–5

pass-through, 7–3

redirect register fields, 4–14, 7–3

support, 1–5

system configurations, 8–8

vidclk signal, 8–14

Video

base-address

alignment according to VRAM size,

4–89

base-address register (VVBR), 4–89

field description, 4–89

format, 4–89

graphics array (VGA)

see VGA

interface signals

see Signal descriptions

refresh generation, 3–13

shift-address register (VSAR), 4–93

field description, 4–93

format, 4–93

timing registers, 4–84, A–7

also see Registers

valid (VV) bit, 4–91

valid register (VVVR), 4–91

field description, 4–91

format, 4–91

Visual bitmap and buffer formats, 6–6

VRAM

address and control signals, 8–9, 8–10,

8–11

CAS signals, 8–9

RAS signals, 8–11

serial-shift clock signals, 8–14

vsync_l signal, 8–14

W
we_l<7:0> signals, 8–11

Word defined, xxii

Write

alternate ROM space, 2–11

GCTR, 4–24

buffer, 3–10

data field, 4–107

DMA transfers, 3–4

external device, 3–6

FIFO, DMA, 3–5

frame buffer, 3–7, 6–1

mode-dependent operations, 6–1

graphics command register, 6–2

3D line mode operations, 6–3

operations, 6–3

line mode, GCTR, 4–22

memory, 3–3

only (WO) convention, xxi

registers, 3–6

Z
Z

address

field, 4–59

increment 1 field, 4–23

increment 2 field, 4–23

base-address register (GZBR), 4–59

field description, 4–59

format, 4–59

buffer

formats, 6–10

formats, Z16, 6–11

formats, Z24, 6–10

Index–19

Z

buffer (cont’d)

operation, 6–96

test (Z test) field, 4–56

update (ZU) bit, 4–56

width field, 4–55

buffered

color-interpolated line segment, 6–99

lines, 3–9

spans, 3–9

buffering, software, 7–19

increment

fraction field, 4–62

integer <19:0> field, 4–62

integer <23:20> field, 4–62

increment high register (GZIR-H), 4–62

field description, 4–62

format, 4–62

increment low register (GZIR-L), 4–62

field description, 4–62

format, 4–62

interpolator, 3–8

reference

fraction field, 4–60

integer <19:0> field, 4–60

integer <23:20> field, 4–60

value high register (GZVR-H), 4–60

field description, 4–60

format, 4–60

value low register (GZVR-L), 4–60

field description, 4–60

format, 4–60

Z16

bit, 4–28

Z and stencil buffer format, 6–11

Z24 Z and stencil buffer format, 6–10

Index–20

