August 1978

Abstract

This document describes VAX/VMS support of the RSX-11M executive
directives. It contains the information needed by an RSX-11M program-

mer responsible for making RSX-11M Version 3.1 task images run under
VAX/VMS,

VAX-11/RSX-11M
Programmer’s

Reference Manual
Order No. AA-D0O20A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.
OPERATING SYSTEM AND VERSION: VAX/VMS V01

SOFTWARE VERSION: VAX/VMS V01 -

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage~prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-~
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS

CONTENTS

Page
PREFACE

'8
»

CHAPTER INTRODUCTION

[}
!

1
o whN b=

1 VAX-11/780 COMPATIBILITY WITH PDP-1lls

2 VAX/VMS COMPATIBILITY WITH RSX-11M VERSION 3.1
3

4

"RSX-11M DIRECTIVE REQUESTS

OVERLAYS, SHAREABLE REGIONS, MULTIUSER TASK
IMAGES, AND PLAS

.5 EMULATION OF FLOATING POINT INSTRUCTIONS

.6 VAX/VMS SYSTEM CONCEPTS

o7 DISTINCTION BETWEEN PROGRAMMING AND SYSTEM
ENVIRONMENTS

CHAPTER 2 THE VAX/VMS SYSTEM ENVIRONMENT

PRIVILEGES
UIC-BASED PROTECTION
RESOURCE USAGE LIMITS
PROCESS NAMES
Native Mode Considerations
EVENT FLAG CLUSTERS
Native Mode Considerations
SYSTEM STATUS CODES
MEMORY MANAGEMENT
Swapping
Paging
SYSTEM EVENTS
SYSTEM CLOCK
SOFTWARE PRIORITIES
GLOBAL SECTIONS
HIBERNATION
IMAGE TERMINATION
Normal Termination
Abnormal Termination
PARSING OF FILE SPECIFICATIONS
VAX/VMS I/0 SYSTEM

S
Lt

N
| T T T I |

1
HHEMHWOOONNNOAB_WNEE { ad o

NNNNNNNNNNNNN?NNNNN N R HRE RERe

.
N
!
[
-

PHRERERRRFEFOONSNNOUTOS D WN
N

1

-

>

Mk wwwhHO

N
[}
s}
[~

CHAPTER

w www (.;waw w
-3 W wWWwN - L

VAX/VMS I/C SYSTEM

VAX-11 RMS
VAX/VMS I/0 SYSTEM SERVICES
Assign I/0 Channel System Service
Queue I/O Request System Service
Create Mailbox and Assign I/O Channel
System Service
Additional I/O System Services
I/0 DRIVERS AND ACPs
RSX-11M IMAGE INTERFACE TO THE VAX/VMS I/O
SYSTEM

e« s e o o
| [|

« o e
> W=

www Wwwww

e o o

o wWN [NS OO0 S]

iii

CONTENTS (Cont.)

Page
3.5 DEVICE ASSIGNMENT 3-6
3.6 DEVICE MAPPING 3-7
3.7 HANDLING OF QUEUE I/0 FUNCTION CODES 3-8
3.8 MAILBOXES 3-9
3.8.1 Mailboxes for Send/Receive Directives 3-9
3.8.2 I1/0 to Mailboxes 3-10
3.9 ACP FUNCTIONS 3-11
3.10 SPOOLED DEVICES 3-11
3.10.1 FCS Spooling 3-11
CHAPTER 4 DIRECTIVE DESCRIPTIONS 4-1
4.1 DIRECTIVE CATEGORIES 4-1
4.1.1 Process Control Directives 4-1
4.1.2 Informational Directives 4-2
4.1.3 Event-Associated Directives 4-3
14.1.4 Trap-Associated Directives 4-4
4.1.5 I/0 and Interprocess Communications
Directives 4-5
4.2 UNSUPPORTED DIRECTIVES 4-6
4.3 SYSTEM DIRECTIVE DESCRIPTIONS 4-7
4,.3.1 ABORT TASK 4-8
4.3.2 ALTER PRIORITY 4-9
4.3.3 ASSIGN LUN 4-10
4.3.4 AST SERVICE EXIT 4-11
4,3.5 CLEAR EVENT FLAG 4-12
4,3.6 CANCEL MARK TIME REQUESTS 4-13
4.3.7 CANCEL TIME BASED INITIATION REQUESTS 4-14
4.3.8 DECLARE SIGNIFICANT EVENT 4-15
4.3.9 DISABLE (or INHIBIT) AST RECOGNITION 4-16
4.3.10 DISABLE CHECKPOINTING 4-17
4.3.11 ENABLE AST RECOGNITION 4-18
4,3.12 ENABLE CHECKPOINTING 4-19
4,.3.13 EXIT IF 4-20
4.3.14 TASK EXIT 4-21
4,3.15 EXIT WITH STATUS 4=-22
4.3.16 EXTEND TASK 4-23
4.3.17 GET LUN INFORMATION 4-24
4.3.18 GET MCR COMMAND LINE) - 4-26
4.3.19 GET PARTITION PARAMETERS 4-28
4.3.20 GET TIME PARAMETERS " 4-29
4.3.21 GET TASK PARAMETERS 4-30
4.3.22 MARK TIME 4-31
4.3.23 QUEUE I/0 REQUEST 4-33
4.3.24 QUEUE I/O REQUEST AND WAIT 4-35
4,3.25 RECEIVE DATA 4-36
4,.3.26 RECEIVE DATA OR EXIT 4-37
4.3.27 READ ALL EVENT FLAGS 4-38
4.3.28 REQUEST 4-39
4.3.29 RESUME 4-40
4.3.30 RUN . 4-41
4,3.31 SEND DATA 4-43
4.3.32 SET EVENT FLAG 4-44
4.3.33 SPECIFY FLOATING POINT PROCESSOR EXCEPTION
AST 4-45
4.3.34 SUSPEND 4-46
4.3.35 SPECIFY POWER RECOVERY AST 4-47
4,3.36 SPECIFY RECEIVE DATA AST 4~48

iv

CONTENTS (Cont.)

Page
4.3.37 SPECIFY SST VECTOR TABLE FOR DEBUGGING AID 4-50
4.3.38 SPECIFY SST VECTOR TABLE FOR TASK 4-51
4.3.39 WAIT FOR SIGNIFICANT EVENT 4-52
4,3.40 WAIT FOR LOGICAL OR OF EVENT FLAGS 4-53
4,3.41 WAIT FOR SINGLE EVENT FLAG 4-54
CHAPTER 5 I/0 DRIVERS 5-1
5.1 SUPPORTED DEVICES 5=-2
5.2 GET LUN INFORMATION DIRECTIVE 5=2
5.3 STANDARD I/0 FUNCTIONS 5~2
5.3.1 Attach and Detach I/0 Device (IO.ATT and
I0.DET) 5=2
5.3.2 Cancel I/0 Requests (I0.KIL) 5-3
5.4 I/0 STATUS BLOCK AND STATUS RETURNS 5-3
5.5 DISK DRIVER 5-7
5.6 MAGNETIC TAPE DRIVER 5-8
5.7 LINE PRINTER DRIVER 5-10
5.7.1 Programming Hints 5-10
5.8 TERMINAL DRIVER 5-12
5.8.1 IO.ATT Function 5-15
5.8.1.1 IO.ATT!TF.AST and IO.ATA Functions 5-15
5.8.1.2 I0.ATT!TF.ESQ Function 5~-15
5.8.2 I0.DET Function 5-15
5.8.3 I0.KIL Function 5-16
5.8.4 IO.RLB, IO.RAL, IO.RNE, and IO.RST
Functions 5-16
5.8.4.1 I0.RLB!TF.RAL and IO.RAL 5-16
5.8.4.2 IO.RLB!TF.RNE and IO.RNE Functions 5-17
5.8.4.3 IO.RLB!TF.RST and IO.RST Functions 5-17
5.8.5 IO.RPR Function 5=-17
5.8.5.1 I0.RPR!TF.XOF Function 5=17
5.8.6 I0.RVB Function 5-18
5.8.7 IO.RPB Function , 5-18
5.8.8 JO.WLB, I0O.CCO, and IO.WBT Functions 5-18
5.8.8.1 IO.WLB!TF.CCO and I10.CCO Functions 5-18
5.8.8.2 IO.WLB!WBT and IO.WBT Functions 5-18
5.8.9 JIO.WVB Function 5-18
5.8.9.1 I0O.WLB!TF.WAL, IO.WAL, and I0.CCO!TF.WAL
Functions 5-18
5.8.10 IO.WPB Function 5~19
5.8.11 I0.GTS Function 5-19
5.8.12 SF.GMC Function 5-20
5.8.13 SF.SMC Function 5-20
5.8.14 Terminal Read Status Returns 5-20
5.8.15 Programming Hints 5-21
5.9 CARD READER DRIVER 5=-22
5.10 NULL DEVICE ' 5-23
5.11 DISK AND MAGNETIC TAPE ACPs 5-24
5.11.1 General Correspondence of Parameters 5-26
5.11.2 IO.CRE Function 5-26
5.11.3 IO0.DEL with EX.ENA=0 5-27
5.11.4 IO.DEL with EX.ENA=1 5-27
5.11.5 I0.ACR Function 5=27
5.11.6 I0.ACW and IO.ACE Functions 5-28
5.11.7 I0.DAC Function 5-28
5.11.8 IO.EXT Function 5-29

5.11.9
5.11.10
5.11.11
5.11.12
5.11.13
5.11.14
APPENDIX A

APPENDIX

INDEX

FIGURE

TABLE

LI L I
HOOIAUTEdWN- G WK

U'IU1UIU1U1U1UI({IU'IU1 B R BN

CONTENTS (Cont.)

Page
IO.WAT Function 5-29
IO.RAT Function 5-29
I0.FNA Function 5-29
IO.RNA Function 5-30
IO.ENA Function 5-31
I0.APC Function 5-31
VAX-11/780 COMPATIBILITY MODE INSTRUCTION SET A-1
PARSE DIRECTIVE B-1
NORMAIL MODE PARSING B-1
DEVICE-ONLY PARSING . B-2
DEFAULT FILENAME BLOCK PARSING B-2
RMS-11 MODE OF PARSING B-2
DIRECTIVE CALL AND DPB FORMATS B-2
Index-1
FIGURES
Process Virtual Address Space 1-5
Format of VAX/VMS UICs 2-1
Group Association of Common Event Flag
Clusters 2-5
Components of VAX/VMS I/O System 3-2
RSX-11M Image Interface to VAX/VMS I/O
System 3-5
Use of Mailboxes for Send/Receive Directives 3-10
Format of RSX~1lM I/O Status Block Under
VAX/VMS 5-3
File Identification Block Format 5-25
TABLES
Reasons for RSX-11M Image Termination 2-13
Process Control Directives 4-2
Informational Directives 4-3
Event-Associated Directives 4-3
Trap-Associated Directives 4-4
I/0 and Interprocess Communications
Directives 4-5
I/0 Status Return Codes 5~4
Disk Function Code Correspondence 5-7
Disk Parameter Correspondence 5-7
Magnetic Tape Function Code Correspondence 5-8
Magnetic Tape Parameter Correspondence 5-9
Line Printer Function Code Correspondence 5-10
Line Printer Parameter Correspondence 5-10
Terminal Parameter Correspondence 5-12
Terminal Function Code Correspondence 5-13
Subfunction Bit Correspondence 5-14

vi

TABLE

5-11
5-12
5-13

5-14
A-1

CONTENTS (Cont.)

TABLES (Cont.)

Information Returned by Get Terminal Support
(I0.GTS)

Terminal Characteristics for SF.GMC and
SF.SMC Requests ‘

Card Reader Function Code Correspondence

ACP Parameter Correspondence

VAX-11/780 Compatibility Mode Instruction
Set

vii

Page

5-19
5-20
5-22
5-26

A-1

PREFACE

MANUAL OBJECTIVES

The VAX-11/RSX-11M Programmer's Reference. Manual describes VAX/VMS
support of RSX-11lM directives. This document bridges the gaps between
the RSX-11M Executive Reference Manual and the VAX/VMS System Services
Reference Manual; and between the RSX-11M I/O Drivers Reference
Manual and the VAX/VMS I/0 User's Guide.

INTENDED AUDIENCE

This manual contains information needed by an RSX-11M programmer who
is responsible for making RSX-11M Version 3.1 task images run under
VAX/VMS.

This document has two preregquisites:

e Understanding of the RSX-11M operating system and executive
directives

e Understanding of the material presented in the VAX-11/RSX-11M
User's Guide

STRUCTURE OF THIS DOCUMENT
Information in this document is organized as follows.

e Chapter 1 contains a general definition of VAX-11/780
compatibility mode and VAX/VMS support of RSX-11M Version 3.1
images. It also contains a general description of basic
VAX/VMS concepts, such as process and image, and their
relationship to an RSX-11M task.

e Chapters 2 and 3 discuss certain VAX/VMS system components and
explain the implications of their use for RSX-11M task images.
Chapter 3 focuses on the use of the VAX/VMS I/0 system for
RSX-11M image I/0.

® Chapter 4 describes each RSX-11M directive as it is supported
under VAX/VMS.

e Chapter 5 discusses QUEUE I/0 REQUEST directive function codes
and function-dependent parameters for devices supported by
VAX/VMS.

e Appendix A contains the VAX-11/780 compatibility mode

instruction set. Appendix B describes the VAX-11 RMS parse
directive.

ix

ASSOCIATED DOCUMENTS
The following documents may also be useful.

® VAX-l1ll Information Directory

® VAX/VMS Primer

® VAX/VMS System Services Reference Manual

® VAX/VMS I/0 User's Guide

® VAX/VMS Summary Description

® VAX-11/780 Technical Summary

® VAX/VMS System Manager's Guide

® VAX-1l Record Management Services Reference Manual

® RSX-11M Version 3.1 document set

CONVENTIONS USED IN THIS DOCUMENT

This manual uses the same conventions as the RSX-1l1M Executive
Reference Manual, for example, brackets ([]) indicate optional
parameters. In addition, the directive descriptions in Chapter 4 use
shading to highlight differences in VAX/VMS support of the directives.

CHAPTER 1

INTRODUCTION

Compatibility mode is a processor state that allows PDP-11 programs to
execute under the VAX-11/780 system. For compatibility mode execution
to occur, the needs of the program must be satisfied on two levels.

e At the hardware instruction set level
e At the level of program interface to the operating system

At the hardware level, VAX-11/780 provides an instruction set that is
a compatible subset of the PDP-11 instruction set. This compatibility
mode instruction set provides a general basis that potentially allows
any PDP-1l user mode program to execute using the VAX-11/780 hardware.
In addition, VAX/VMS supplements the subset of PDP-11 instructions
that can be used in compatibility mode through software emulation of
the FPP floating point instructions; FIS floating point instructions
are not emulated.

Because of the two instruction sets, VAX-11/780 has two basic modes of
operation: native and compatibility. The processor is in native mode
to execute native mode instructions and in compatibility mode to
execute compatibility mode instructions. Software controls the
processor mode. Thus, when a non-native program has been prepared for
execution, VAX/VMS places the processor in compatibility mode just
before passing control to the program. VAX/VMS accomplishes this in a
manner that is transparent to the user.

When an RSX-11M task image executing in VAX-11/780 compatibility mode
attempts to interface with the operating system, a hardware-generated
trap occurs. Hardware-generated traps are the mechanism by which the
processor notifies VAX/VMS that emulation of the RSX-11M operating
system's environment is required. The occurrence of a compatibility
mode trap automatically places the processor in native mode.
Executing in native mode, VAX/VMS duplicates the RSX-11M task/system
interface. VAX/VMS returns to the task in compatibility mode to allow
the task to continue execution. :

For example, RSX-11M tasks use EMT377 instructions to interface with
the operating system. An attempt to execute an EMT377 instruction on
VAX-11/780 hardware causes a trap to VAX/VMS. VAX/VMS then emulates
the requested service in native mode, places the processor in
compatibility mode, and returns to the task. The task continues
execution in compatibility mode.

The VAX-11/780 system . provides compatibility mode capabilities to
support the migration of task images from RSX-11M operating systems to
VAX/VMS. Compatibility mode provides a framework in which users can
run existing task images while upgrading to take full advantage of
VAX/VMS native capabilities.

INTRODUCTION

Compatibility mode programs requiring floating point instruction
emulation run do not run as fast under VAX/VMS as on a PDP-11l.
Compatibility mode programs not requiring floating point emulation and
written for a PDP-11/70 run under VAX/VMS at approximately the same
speed as they do under the system for which they were written.
Programs not requiring floating point emulation and written for
smaller PDP-11 processors run faster under VAX/VMS.

For Version 1, VAX/VMS supports execution of RSX-11lM Version 3.1
nonprivileged task images 1in compatibility mode. The majority of
nonprivileged, user mode RSX~11M Version 3.1 task images run under
VAX/VMS without program modification or rebuilding. Others require
modification.

VAX/VMS provides the RSX-11M components (for example, MACRO-11 and
RSX~-11M task builder) needed to make required modifications using the
VAX/VMS system as host. Modifications also can be made using an
RSX-11M system.

For an RSX-11M task image to execute successfully under VAX/VMS, it
must adhere to the requirements for compatibility mode operation.
Both the VAX-11/780 and VAX/VMS define specific requirements. These
requirements are detailed in Sections 1.1 and 1.2.

1.1 VAX-11/780 COMPATIBILITY WITH PDP-1lls

VAX-11/780 compatibility mode supports PDP-11 user mode operations.
That is, any PDP-11 program that operates only in user mode (not in
PDP-11 supervisor or kernel mode) potentially can run in VAX-11/780
compatibility mode. Any instruction or operation denied to a user
mode program executing on a PDP-11 is not allowed in VAX-11/780
compatibility mode. For example, use of privileged instructions such
as HALT and RESET is not permitted; an attempt to use a privileged
instruction causes a trap to VAX/VMS.

The VAX-11/780 compatibility mode instruction set also does not
support the FIS or FPP floating point instructions; however, VAX/VMS
emulates the FFP instructions. Appendix A of this document lists the
VAX-11/780 compatibility mode instruction set.

VAX/VMS places further restrictions on the use of the hardware by

RSX-11M task images running in compatibility mode. These restrictions
are detailed in Section 1.2.

1.2 VAX/VMS COMPATIBILITY WITH RSX~11lM VERSION 3.1

VAX/VMS supports the capabilities of RSX-11M Version 3.1 to allow the
execution of RSX-11M task images. However, to run in compatibility
mode, a task image must meet the following requirements.

e It must adhere to the hardware requirements for compatibility
mode. -

e It must have been built by the RSX-11M Version 3.1 -task
builder.

e It must be executable in a mapped RSX-11lM system.

INTRODUCTION

e It must not depend on environmental features of RSX-11M that
are not available in VAX/VMS, for example, partitions, PLAS,
or significant events. Environmental differences between
RSX-11M and VAX/VMS are discussed further in Chapters 2 and 3
of this document.

e It must execute within the limitations of task/executive
interaction described in the RSX-11M Executive Reference
Manual. It must not be privileged for the purpose of
overmapping the RSX~11lM executive. The RSX-11M executive is
not present in a VAX/VMS system.

e It must not overmap the I/0O page. The PDP-11 I/0 page is not
present in VAX-11/780 hardware.

e It must not depend on the 32-word memory granularity of the
KT1l memory management unit.

RSX-11M task images must not depend on special memory management
features available to RSX-11lM privileged tasks. Tasks can, however,
perform privileged functions that do not involve mapping of the
executive. For example, a task executing in compatibility mode can
use the QIO function codes IO.RLB and IO.WLB to read directly from and
write directly to a mounted volume if the system manager has not
restricted the user from so doing.

Task images that are developed under RSX-11D or 1IAS and that are
compatible with RSX-11M can execute under VAX/VMS if they meet the
requirements listed above. However, such task images must be rebuilt
using the RSX-11M Version 3.1 task builder. RSX~11M task images do
not have to be rebuilt to run under VAX/VMS unless program
modification or different task builder options are required.

1.3 RSX-11M DIRECTIVE REQUESTS

In RSX-11M, a task image interfaces with the operating system by
issuing directive requests. As a result of a directive request,
RSX-11M performs the desired function and returns control to the task.
VAX/VMS duplicates this task/system interaction. When an RSX-11M task
image issues a directive, the hardware traps to VAX/VMS. With the
exception of the RSX-11M memory management (PLAS) directives described
in Section 1.4, VAX/VMS duplicates the requested RSX-11M function with
either of the following results. '

® The RSX~11M directive function is duplicated in VAX/VMS, and
the image continues execution.

e VAX/VMS cannot duplicate the requested function but does take
whatever action 1is necessary to allow the task to continue
execution.

VAX/VMS duplicates the function of the majority of RSX-11M directives.

When VAX/VMS cannot duplicate an RSX~11M directive, it is because of
differences 1in the basic concepts of the two systems, that is/
differences in the environments of the two systems. For example, the
RSX-11M capability to declare a significant event does not exist in
VAX/VMS; therefore, VAX/VMS cannot declare one upon directive
request. Rather, it performs no operation and returns a success
status to the requesting task image, which continues execution
normally.

Subsequent chapters of this document describe the details and
implications of directive handlng in VAX/VMS.

1-3

INTRODUCTION

1.4 OVERLAYS, SHAREABLE REGIONS, MULTIUSER TASK IMAGES, AND PLAS

VAX/VMS supports the use of overlays produced using the overlay
descriptor language of the RSX~11M task builder by RSX-11M images.
VAX/VMS loads overlays from the image file at the appropriate point in
image execution.

VAX/VMS also supports use of shared regions by RSX-1llM images.
RSX-11M images can access both shared commons and 1libraries.,
Permanently available shared regions are identified to VAX/VMS by the
system manager, as described in the VAX/VMS System Manager's Guide.
Temporary regions are dynamically loaded when an image requiring them
executes.

In addition, VAX/VMS supports multiuser (shareable) task images. That
is, when a task image is specified at task build time as consisting of
a shareable and nonshareable portion, VAX/VMS allows multiple users to
access the shareable portion simultaneously. Each user has a private
copy of the nonshareable portion.

VAX/VMS does not support the RSX-11M memory management directives that
extend the program logical address space (PLAS) of an RSX-11M task.
Any task image issuing a memory management directive under VAX/VMS
receives an error status return.

1.5 EMULATION OF FLOATING POINT INSTRUCTIONS

VAX/VMS provides software emulation of the PDP-11 FPP floating point
instructions for images running in compatibility mode. The time
required for emulation of an ADDF (register to register) or ADDF
(memory to register) is approximately 25 that required on a PDP-11/70.
This timing is typical of most instructions emulated.

Results produced during emulation are the same as those produced by
PDP-11 processors with the following two exceptions:

1. The results of a MOD instruction are more accurate under
emulation.

2. On overflow, the emulator generates a reserved operand with a
value of zero, rather than providing the residue.

The FPP instruction set is detailed in the PDP-11/70 Processor
Handbook.

1.6 VAX/VMS SYSTEM CONCEPTS

In VAX/VMS, the concept of an RSX-11M task is separated into its two
basic components: the program image that executes, and the control
information and virtual address space required for image execution.
These two components correspond to the VAX/VMS concepts of image and
process, respectively. The concepts of image and process are basic to
VAX/VMS.

A process is the basic schedulable program entity that the VAX-11/780
processor executes. A process consists of a virtual address space and
control information that both the hardware and software require, for
example, saved register contents and status information. This control
information is called the process context.

INTRODUCTION

An image is the result of linking one or more object modules together.
An image can be linked by the VAX/VMS linker to execute in native mode
or by the RSX-11M task builder to run in compatibility mode. An image
executes 1in the virtual address space provided by a process and under
control of the process.

A process's virtual address space is divided into two areas: the
program region and the control region as illustrated in Figure 1-1.
Essentially, the program region provides virtual memory for an image.
The control region contains information required by the system to
control the process.

0
Program Region
RSX-11M images run in this region.
Control Region
231

Figure 1-1 Process Virtual Address Space

The concept of a process with an image is similar to the RSX-11M
concept of task. The main difference is that a task is a form of
process that executes a specific image while a process can execute any
image. Furthermore, a process remains to execute subsequent images
when the current image exits.

reference to an image. This is not the case with VAX/VMS; therefore,
it is useful to state explicitly whether an operation affects a
process or its image. For this reason, the terms process and image
are used throughout this document instead of the term task.

In RSX-11M. referring to a specific task also implies a specific

The VAX~11/780 Technical Summary further explains- the concepts of
process and image.

INTRODUCTION

1.7 DISTINCTION BETWEEN PROGRAMMING AND SYSTEM ENVIRONMENTS

VAX/VMS provides RSX-11M images with an environment similar to that
provided by RSX-11M. That is, when an RSX-1lM image is loaded, it has
a virtual address space starting at location 0. It has access to a
copy of its task header in the usual place, and RO through R7 are
initialized as they are under RSX~11M. This environment allows the
creation, assembly or compilation, linking, execution, and debugging
of RSX-11M images. VAX/VMS does not, however, attempt to duplicate
the total environment of the RSX-11M operating system.

Certain aspects of the RSX-11M environment have direct equivalents in
the VAX/VMS environment. An RSX-11M task name, for example, can be
considered a VAX/VMS process name; and RSX-11M local and common event
flags can be translated to VAX/VMS local and common event flags.

When a VAX/VMS process executes an RSX-11lM image, VAX/VMS receives the
traps and exceptions caused by that image and interprets them as
RSX-11M would. VAX/VMS then makes a response that is appropriate for
the VAX/VMS environment. For example, I1/0 operations and
communication with other processes (for example, SEND DATA) become
appropriate VAX/VMS functions.

Other aspects of RSX-11M equate to similar VAX/VMS functions. For
example, both systems use user identification codes (UICs). 1In
RSX~-11M, UICs are account (login) identifiers, provide a default user
file directory (UDF), and are used for file protection. 1In VAX/VMS,
the concept of UIC is separated from those of account identifier and
default directory name. Rather, the UIC concept is expanded in the
direction of additional protection, as described in Section 2.2.

Finally, some aspects of RSX-11M have no counterpart in VAX/VMS.
Because no parallel function exists in VAX/VMS, VAX/VMS cannot
translate functions associated with those concepts to VAX/VMS
functions. Examples of RSX-11M system environment aspects not
emulated under VAX/VMS are partitions, significant events, and a range
of priorities from 1 through 250. Although VAX/VMS does not duplicate
these RSX-11lM features, it does accept 1mage requests related to them
and takes an appropriate action to allow image execution to continue.

CHAPTER 2

THE VAX/VMS SYSTEM ENVIRONMENT

The environment that VAX/VMS provides for an RSX-11M image is
determined by two factors.

1. The privileges, UIC, and resource usage limits allotted to
the user who initiates the image

2. The VAX/VMS system components and conventions used to support
RSX-11M directives requested by the image

2.1 PRIVILEGES

The system manager maintains a user authorization file that contains
an entry for each user. That entry includes a list of the privileges
allowed that user's process. All of the privileges that can be
associated with a process are described in the VAX-11/RSX-11M User's
Guide.

VAX/VMS returns the RSX-11M DSW return code IE.PRI to an RSX-11M image
requesting a function for which it does not have the appropriate
privilege. The individual directive descriptions in Chapter 4
indicate the DSW codes returned for each directive.

2.2 UIC-BASED PROTECTION
In VAX/VMS, each process has an associated UIC. The UIC consists of

32 bits (1 longword). The member code is in bits 0 through 15 and the
group code is in bits 16 through 31, as illustrated in Figure 2-1.

31 16 15 0

Group : Member

Figure 2-1 Format of VAX/VMS UICs

VAX/VMS uses a process's UIC, with the privileges assigned to it by
the system manager, to control access to the system services that
affect other processes in the system.

When an RSX-11M image 1issues a directive, VAX/VMS executes the
corresponding system service. If this service is restricted by
UIC-based protection in VAX/VMS, the group number and privileges of

THE VAX/VMS SYSTEM ENVIRONMENT

the process executing the RSX-11lM image are checked before the service
is completed. An error status is returned if the issuing process is
not in the appropriate group or does not have the appropriate
privilege to affect the target process. ABORT TASK is an example of
an RSX-11M directive restricted by UIC~based protection in VAX/VMS.

VAX/VMS ignores the UIC specified when an RSX-11M image is built.

An RSX-11M image can gain access to the UIC of its process by issuing
a GET TASK PARAMETERS directive. The UIC is returned in two words of
the GET TASK PARAMETERS buffer:

® The low-order byte of the group code and the low-order byte of
the member code are returned in word 7, as under RSX-11M:

Bits O through 7 Bits O through 7
of group code of member code

e The high-order byte of the group code and the high-order byte
of the member code are returned in word 15:

15 8 7 0

Bits 8 through 15 Bits 8 through 15
of group code of member code

The UIC returned is for informational purposes only. The RSX-11M
image cannot use it to affect group protection or file protection.

An RSX-11M image cannot assume that its default account name is
related to its UIC. VAX/VMS provides a special directive that is used
by File Control Services (FCS) and RMS-11 to access the actual account
name.

2.3 RESOURCE USAGE LIMITS

VAX/VMS controls a process's use of system resources by enforcing
usage limits defined in the user's authorization file entry. All of
the limits that can be defined for a process are described in the
VAX-11/RSX-11M User's Guide. The following lists the gquotas that may
be relevant to an RSX-11M image running in VAX/VMS.

] Number of active buffered I/0 requests

° Number of bytes of system dynamic memory used for
buffered 1I/0

° Number of active direct I/O requests
) Number of files open simultaneously

By default, VAX/VMS places an RSX-11M or native image that attempts to
exceed a resource 1limit in a wait state until the function can be
accomplished without exceeding the limit, for example, until other
active I/0 requests have completed. Native images can disable and
enable resource waiting. The DCL and MCR RUN command provide an

THE VAX/VMS SYSTEM ENVIRONMENT

option for controlling resource wait mode for subprocesses and
detached processes.

If an RSX~11M image attempts to exceed a limit when resource waiting
is disabled, the image receives a DSW code of IE.UPN (insufficient
dynamic memory).

2.4 PROCESS NAMES

Each process in a VAX/VMS system has a unique 32-bit process
identification and a process name. A process name qualified by its
UIC is unique within a system.

When a user initiates an RSX-11M image that has a task name in its
image 1label block (that 1is, a task name specified at build time),
VAX/VMS assigns the task name as the process's name during image
initialization. That name remains in effect until the image exits.
Then, VAX/VMS restores the process name used prior to execution of the
RSX~11M image. Because VAX/VMS does not incorporate the concept of an
installed task, an RSX-11lM image cannot acquire a task name by any
means other than task building.

An RSX-11M image must have a task name in its label block to provide a
name for its process if any of the following is to occur:

e The image is to receive data using the RECEIVE DATA or
RECEIVE DATA AND EXIT directives

e The image is to cooperate with other images using common
event flags

e The process containing the image is to be the target of
directive action, for example, is to be requested or
resumed

The following RSX-11M directives accept a task name as an argument.

e ABORT TASK

e CANCEL TIME BASED INITIATION REQUESTS

e REQUEST
e RESUME
e RUN

e SEND DATA

VAX/VMS supports the RSX-11M convention of naming multiuser MCR tasks
with a string that starts with three periods, for example, ...PIP.
When VAX/VMS encounters an image with a task name of this type, it
recognizes that the image can be run by more than one user
simultaneously. For such images, VAX/VMS does not create a process
name from the task name or set up the mechanisms for it to receive
data from other processes and to synchronize with other processes
using common event flags.

THE VAX/VMS SYSTEM ENVIRONMENT

2.4.1 Native Mode Considerations

If an RSX~11M image is to issue directives that specify a process
executing a native image as the target, the user must be aware of the
difference in the allowable lengths of task names and process names.

A task name has a maximum length of six characters. A process name
has a maximum length of 15 characters. Therefore, if an RSX-11M image
is to refer to a process running a native image, that process's name
must not exceed six characters. An RSX-11M image cannot express a
process name that exceeds six characters.

A process running a native image can create a subprocess or a detached
process, assign it a process name, and designate an image that the
process is to execute. Thus, a process can create a named subprocess
or detached process that executes an RSX-1llM image. Once the process
is created, other processes can 1issue system service requests in
native mode or directive requests in compatibility mode that designate
the process as the target. The creator of a subprocess always is
allowed to affect the subprocess. Other processes and subprocesses
must have either group or world privilege to affect the subprocess.

Subprocess and detached process creation are described in the VAX/VMS
System Services Reference Manual.

2.5 EVENT FLAG CLUSTERS

In VAX/VMS, event flags are contained in clusters of 32 flags each. A
process automatically has two 1local event £flag clusters and,
optionally, can associate with up to two common event flag clusters.

VAX/VMS does not provide a single system-wide set of common event
flags. Instead, it creates common event flag clusters dynamically.
Each cluster can be shared among processes wishing to communicate by
means of event flags.

Access to common event flags in VAX/VMS is protected using UICs. This
fact has an operational implication: processes executing RSX-11M
images that are to cooperate using common event flags must run in the
same group.

VAX/VMS emulates both local and common RSX~-11lM event flags to provide
the event flag capability of RSX-11M. RSX-11M images need not make
any allowance for VAX/VMS handling of event flags.

When VAX/VMS loads an RSX-11lM image into memory, it checks the task
image 1label block for a task name. If it finds one, just prior to
actual image execution, VAX/VMS creates a common event flag cluster
named RSXCOMEFN and associates the process with it. If no task name
was specified when the image was built or if the task name is in the
form ...xxx, VAX/VMS does not allow the image to use common event
flags.

If a subsequent RSX~11lM image in another process meets the
requirements for common event flags and is loaded, VAX/VMS compares
group numbers. If the group numbers are the same, VAX/VMS associates
the process with the existing common event flag cluster. If the
numbers are different, VAX/VMS creates another common event £flag
cluster named RSXCOMEFN qualified by that group number and associates
that process with it.

THE VAX/VMS SYSTEM ENVIRONMENT

None of the event flags to which an RSX-1lM image has access is
reserved for VAX/VMS system use.

Any image, regardless of the presence, absence, or type of task name,
.can use local event flags.

Figure 2-2 illustrates the common clusters created for the following
processes that communicate using event flag clusters.

°® PROCA, PROCB, and PROCC running in group 200
° PROCD and PROCE running in group 300

VAX/VMS creates two event flag clusters: one for processes in group
200 and one for processes in group 300.

[200,25] PROCA
[200]
[200,27] PROCB 1 RSXCOMEFN
(32 flags)
[200,28] PROCC
[300,41] PROCD (300]
RSXCOMEFN
[300,45] PROCE (32 flags)

Figure 2-2 Group Association of Common Event Flag Clusters

2.5.1 Native Mode Considerations

Native images can interact with RSX-1lM images using event flags.
However, the native image must consider the treatment of the RSX-11M
image by VAX/VMS. Use of event flags for native mode images is
detailed in the VAX/VMS System Services Reference Manual.

A native mode image written to interact with a compatibility mode
image using common event flags needs to be aware of the flag number
conversion performed by VAX/VMS.

For a process running an RSX-11M image, VAX/VMS uses the first three
clusters, as follows:

e Cluster 0 (flags 0 through 31) 1s reserved for system use in
coordinating compatibility mode activities for the process

e Cluster 1 (flags 32 through 63) is the process's local event
flag cluster .

e Cluster 2 (flags 64 through 95) is the process's common event
flag cluster

THE VAX/VMS SYSTEM ENVIRONMENT

VAX/VMS converts RSX-11M local event flag numbers 1 through 32 to
VAX/VMS event flag numbers 32 through 63. It converts. the RSX-11M
common event flag numbers 33 through 64 to VAX/VMS event flag numbers
64 through 95.

Each process using common event flags must associate with the common
event flag cluster containing the flags. For RSX-11lM images, VAX/VMS
automatically associates the process with a cluster named RSXCOMEFN if
the 1image has a task name; see Section 2.4, "Process Names." Any
process executing a native image that wants to use flags in RSXCOMEFN
must first associate with that cluster. .

The process executing the native image must be in the same group as
other processes using the common cluster.

2.6 SYSTEM STATUS CODES

In VAX/VMS, the symbolic name for a system service status return has
the following format.

S5$_name

When an image issues an RSX-11M directive, VAX/VMS attempts to emulate
the desired function and then returns a DSW code to indicate success
or failure to the image. 1In most cases, VAX/VMS calls the system
service that performs the equivalent of the requested RSX-11M function
and converts the status code returned by the service to the equivalent
RSX-11M DSW code. For example, the VAX/VMS code SS$_NORMAL becomes
DSW code IS.SUC.

In some cases, however, a directive request results in a VAX/VMS error
for which no exact RSX-11M equivalent exists. This situation occurs
when an image attempts to violate a VAX/VMS concept that has no
RSX-11M equivalent. VAX/VMS handles the situation in one of the
following ways.

° By returning a default DSW code

° By returning a DSW code that is meaningful for the error but
that could not be returned for the directive when running
under RSX-11M

Default return codes are used when no clear one-to-one relationship
exists between VAX/VMS and RSX-11M codes; - for example, a VAX/VMS code
that is equally related to two DSW codes.

A new DSW code is returned when a VAX/VMS error has no counterpart in
RSX-11M. An example 1is IE.PRI which indicates that the image
attempted to issue a directive for which its process does not have the
appropriate privilege. For example, the image attempted to resume
another process in its group but does not have group privilege.

In some cases after a directive failure, VAX/VMS returns an error code
in the DSW that is more meaningful to I/0 operations. In these cases,
the high-order byte of the DSW contains 0. The DSW codes 1IE.PRI and
IE.DUN (for ASSIGN LUN) are examples of codes that are returned as
bytes rather than words. RSX-11M images can determine whether a DSW
code is returned as a byte or word by testing the high-order byte of
the DSW for 0.

DSW codes that can be returned for each directive are listed in
Chapter 4 with the individual directive descriptions.

THE VAX/VMS SYSTEM ENVIRONMENT

2.7 MEMORY MANAGEMENT

VAX/VMS memory management facilities control the use of physical
memory and virtual memory. VAX/VMS controls the use of physical
memory by processes through implementation of two system concepts.

® Balance sets and swapping

e Working sets and paging

The VAX/VMS Summary Description details these concepts.

2.7.1 Swapping

The swapper determines which processes reside in main memory. All the
resident processes are referred to as the balance set. Processes in
the balance set compete for access to the central processor.

VAX/VMS swaps processes from and to main memory to ensure that the
highest priority processes are always available in memory for
execution. The VAX/VMS swapper is considerably more sophisticated
than the RSX-~11lM checkpointing function. It does, however, provide an
equivalent mechanism to allow emulation of the RSX-1l1M ENABLE
CHECKPOINTING and DISABLE CHECKPOINTING directives.

The initial state of an RSX-11M image in a process is to have swapping
(checkpointing) enabled. This state is identical to the initial state
of an image under RSX-11M. An RSX~-11lM image that wants to wuse the
DISABLE CHECKPOINTING directive must have the VAX/VMS privilege to set
its swapping mode.

Because VAX/VMS controls the wuse of physical memory by swapping
processes out of and into a balance set, it does not support
partitioning of physical memory. As a result, when an RSX-11M image
issues a GET PARTITION PARAMETERS directive, VAX/VMS returns a
standard response for a system-controlled partition named GEN. The
exact content of the information returned is described in Section
4.3.19.

VAX/VMS ignores the partition name in the image label block.

2.7.2 Paging

The virtual address space for a process consists of a number of
512-byte pages. VAX/VMS, under control of the system manager, assigns
each process a limited number of pages of physical memory that the
process can use when it is in the balance set. That limit is referred
to as the process's working set. Normally, a process is allowed a
greater number o0f virtual pages than physical pagyes. The VAX/VMS
pager determines the pages of a process's virtual address space that
are 1in physical memory (that is, in the working set) at any instance
during process execution.

VAX/VMS facilities for control of a process's virtual address space
differ significantly from the RSX-11M approach to a task's virtual
memory. As a result, VAX/VMS does not support the RSX-11M memory
management (PLAS) directives.

Every RSX~11M image has 65K bytes of virtual memory available to it.
Because the address space 1is virtual rather than physical, RSX-11M

THE VAX/VMS -SYSTEM ENVIRONMENT

images can avoid overlaying; an image executes more efficiently by
depending on VAX/VMS memory management to determine which pages are
needed in physical memory and when they are needed. Further
efficiency can be gained by building RSX-11M images as shareable
(/MU) . So doing results in RSX~-11M images that can be partially
shared under VAX/VMS.

2.8 SYSTEM EVENTS

A system event in VAX/VMS is an occurrence that favorably or adversely
affects the ability of one or more processes in the system to execute.
For example, an executing process can put itself in a wait state, or
it can set an event flag that makes another process a candidate for
execution. System events are similar in concept to RSX-11M
significant events. In VAX/VMS, however, an image cannot request the
declaration of a system event. No VAX/VMS equivalent for the DECLARE
SIGNIFICANT EVENT and WAIT FOR SIGNIFICANT EVENT directives exists.
Issuing either of these directives has no effect on VAX/VMS; success
status is returned to the issuing image.

2.9 SYSTEM CLOCK

On PDP-11 systems, the number of ticks per second varies depending on
the type of clock used and its frequency. For the time-related
directives, VAX/VMS emulates a . 100-tick-per-second clock. This
difference may affect emulation of the following directives, which
have time-oriented arguments.

) MARK TIME
) RUN

° GET TIME PARAMETERS

2.10 SOFTWARE PRIORITIES

VAX/VMS priorities range from 0 through 15 for normal processes and
from 16 through 31 for time-critical (real-time) processes. For
further details on VAX/VMS handling of priorities, see the VAX/VMS
Summary Description.

Because RSX~-11M process priorities do not correspond to VAX/VMS
priorities in a meaningful fashion, VAX/VMS does not attempt to
convert a task's priority, as specified in the image's task header, to
a VAX/VMS priority.

An RSX-11M image runs at a priority that is determined by the default
priority in the user authorization file entry for the user initiating
the process. When an image issues an ALTER PRIORITY directive,
VAX/VMS performs no operation, and image execution continues at the
original process priority. An image requiring high priority must
execute in a process that has sufficiently high priority to meet the
image's needs.

THE VAX/VMS SYSTEM ENVIRONMENT

2.11 GLOBAL SECTIONS

In VAX/VMS, global sections are disk files containing data or code
that can be brought into memory and made available to processes for
manipulation and execution. Global sections are created by executing
images and by the system manager.

When a global section is created, its creator assigns a set of
characteristics to it. A global section can have the following
characteristics.

° Read-only or read/write
° Temporary or permanent
° Group or system wide

A temporary global section remains in the system only as long as
processes are mapped to it; when no processes are mapped to it,
VAX/VMS deletes it automatically. A permanent global section remains.
in the system until it is explicitly deleted.

VAX/VMS provides group protection for group global sections. Any
process can gain access to a system global section. A process must be
privileged to create a permanent or system global section.

VAX/VMS imposes no limit on the number of global sections to which a
process can map.

When VAX/VMS loads an RSX-11M image that was task built specifying one
of the options COMMON, LIBR, RESCOM, or RESLIB, it sets up the
specified library or common for the image. When VAX/VMS 1loads the
RSX-11M image, it determines whether the global section for the
library or common already exists.

If the global section exists, it is either of the following.
° A permanent global section created by the system manager

° A temporary global section created by VAX/VMS as a result of
previous RSX-11M image execution

In either case, VAX/VMS maps the RSX-11M image to the global section.

If the global section does not exist, VAX/VMS creates a temporary
group global section for the 1library or common specified in the
COMMON, LIBR, RESCOM, or RESLIB option to the task builder. The image
file for either the 1library or common must be located on logical
device and directory SYSSLIBRARY.

When VAX/VMS creates a global section for use by RSX-11M images, the
section has the following characteristics.

° Global sections are accessed as either read-only or
read/write, and either position dependent or position
independent, according to the task builder specification.

. Global sections are group and temporary.
) The global section name is either the library name specified

in a COMMON or LIBR option or the file name specified in a
RESCOM or RESLIB option.

THE VAX/VMS SYSTEM ENVIRONMENT

The disk file for a read/write global section is updated to reflect
data manipulation by processes that map to it.

VAX/VMS does not 1incorporate the concept of an installed global
section that can be re-installed to obtain a fresh copy. The disk
file for a read/write global section is wupdated to reflect data
written in the global section. Therefore, if it is necessary to
maintain the original state of a read/write (common) global section,
the user must Kkeep a protected copy of the common file in a place
other than SYSSLIBRARY.

If the library or common area referred to is not found, VAX/VMS prints
an error message on SYSSERROR specifying the name of the library or
common.

2.12 HIBERNATION

VAX/VMS defines a process state called hibernation in which a process
can remain in the system but be inactive. A hibernating process in
VAX/VMS is equivalent to a suspended task in RSX-11M; that is, both
can be reactivated by the following:

e A programmed request for activation (Wake system service
or RESUME directive)

e Delivery of an AST
Hibernating processes are quickly reactivated under VAX/VMS.

VAX/VMS also uses the Wake system service in the emulation of RUN and
REQUEST directives. As a result, the target of either directive must
be a hibernating process or one that is active in the system.

Both the DCL and MCR RUN commands provide the means of creating a
subprocess or detached process to execute a specified image,
scheduling the process for a future time, and placing that process in
hibernation before execution.

Before placing the process in hibernation, VAX/VMS 1loads the image,
performs the device assignment for any preassigned devices, and loads
any libraries or common areas, if needed.

2.13 IMAGE TERMINATION

Any image running in VAX/VMS can terminate normally or abnormally.
Normal termination occurs when the image terminates of its own accord.
Abnormal termination occurs when the system or another process forces
the image to exit.

2.13.1 Normal Termination

When an RSX-11M image terminates normally, VAX/VMS performs the same
image cleanup operations as it does for a native image. If an RSX-11M
image issues a TASK EXIT directive, VAX/VMS executes an Exit system
service, and returns the termination status of SS$ NORMAL. RSX-11M
images also can issue an EXIT WITH STATUS directive ~to specify the
appropriate status.

THE VAX/VMS SYSTEM ENVIRONMENT

For both VAX/VMS and RSX-1lM images, the termination status is
available to the command interpreter. Both the DCL and MCR command
interpreters use the termination status when processing indirect
files. DCL uses the termination status with the ON command for error
handling. MCR uses the status with .ONERR handling. The
VAX-11/RSX-11M User's Guide describes the use of indirect command
files with the MCR command interpreter. The VAX/VMS Command Language
User's Guide describes the use of DCL command procedures (indirect
command files).

2.13.2 Abnormal Termination

When a VAX/VMS image incurs a potentially fatal error condition,
either of the following can occur.

e The image can handle the condition
e VAX/VMS forces the image to terminate

VAX/VMS images can react to fatal errors using the VAX/VMS condition
handling mechanism. Through that mechanism, an image can provide one
or more condition handling routines that are to be executed to handle
an error (exception) condition. The condition handling mechanism
provides a function that is comparable to, but considerably more
flexible than, the RSX-11M synchronous system trap (SST) mechanism.
VAX/VMS condition handling is described in the VAX/VMS System Services
Reference Manual.

If an image incurring a condition handles it, the image can continue
execution or exit normally, as described above. If the image does not
handle the condition, the system terminates the image by issuing an
Exit system service. The Exit system service initiates image-related
cleanup operations and saves the termination status. That status is
available to the command interpreter or the next image to execute in
the process.

Abnormal termination of an RSX-11lM image can occur as a result of any
of the following:

e Violation of the hardware conventions for images running
in compatibility mode

e Issuance of an instruction, other than EMT377, that causes
a trap

® Use of an illegal JMP or JSR instruction format

® Occurrence of an odd address error

e Violation of memory protection

e Request for an abort from another process

e Attempt to exceed virtual memory usage limits
An RSX-11M image can supply a synchronous system trap (SST) service
routine to handle some of the errors listed above. If the address of
an SST service routine for an error is supplied in the SST vector
table and that error occurs, VAX/VMS continues image execution in the
SST routine. The routine determines whether the image is to exit or

continue. If no SST address iss supplied, VAX/VMS terminates the
image.

THE VAX/VMS SYSTEM ENVIRONMENT

If the error is one that cannot be handled by an SST service routine
or if no wvalid SST routine address is supplied, VAX/VMS issues a
termination message on the device assigned to SYSSERROR and
SYSSOUTPUT. VAX/VMS causes the image to exit with a termination
status that is available to the command interpreter.

Table 2-1 lists the reasons for image termination and indicates which
errors can be handled by an SST service routine. The status codes in
parentheses following the termination messages are defined by $RSXDEF
macro.

THE VAX/VMS SYSTEM ENVIRONMENT

-pomorTe
ST sse001d R ueY)} 20TAISS pajssnbai 8y3z 3Ije(nuwd 03
aoeds sSaippe Ten3jiTAa OTweuip a1ow SIITNHaI SWA/XVA

*aoeds ssa1ppe Ten3iTa s,9bewr ay3z sprsino

sT 3eyy AKzowsw Jo edie ue o3 sjutod d4s s,9bewt Byl
‘UOT3IONIISUT SNOSUOIId 3Y3} HUTMOTTOF uUOTIDNIISUT

ay3 JOo sSsaIppe 9yl SUTRIUOD D4 BYI ‘WIT-XS¥
ul <1011 9Uy3 posned 3ey3l UOT3IONIISUT 3Y3 JO SS31ppe
ay3 sure3juod D4 9yl ‘SHA/XYA UI ‘WIT-XSY¥ I9pun
pap1aoi1d 2soy3l wWoij 3IUSISIITP o1 papraoid s3jua3UOD
od 9{uL *MYYW I0 ‘1dS ‘13sqY ‘IIVM ‘IIVH :apou
K3171qTr3RedWwod UT POMOTIE JOU o1 JRYJ SUOTIONIISUT
PUTMOTTOF 9yl JO duo 23nd3axd 03 pdjdwsjje sbeuwr ayg

suoT3oniisur
snoauo11d 9yl burmol[oF uUOTIONIISUT dY3 JO SSd1Ippe
2y3 SuTElUOD JOd 29Ul ‘WIT-XS¥ UI *JI0118 3yl pasned
jeyl UOTIONIISUT SY3l JO SS3Ippe Syl surejuod Ddd
°y3 ‘SWA/X¥A UI °‘WIT-XS¥ Idpun papraoid ssoyj woiy
jud1933TP 91 papraoad s3jud3uod DOd SYL *Aaepunoq
93Kq ® Uuo ©2du213391 piom 2 pajdwdljze osbewr ayL

*UOT3ONI3SUT SNOd2UOIId 9Y3 DBUTMOTTOF UOTIONIISUT
sy3 Jo ssaippe oYy3l SUTLIUOd DA dYI ‘WIT-XS¥
Ul 10119 2Yy3 pIsSNEd eyl uUOIIONIISUT dY3l JO ssdippe
9Yy3 sure3luUod D4 dY3l ‘SWA/XYA Ul "WTIT-XS¥ I3pun
paptaoid dsoy3l wWoij 3IUSISIITIP o1e papraoid sjuajuod
od 3yl -ooeds ssoippe T[BN3ITA S3IT 9PIS3INO ST
Jeyy Azowsw Jo edIe Ue SSadoe 03 pojdwsije sbeuwr Byl

*UOT3IONIISUT SNOSUOIIS 3Y3l BUTMOTTOF UOTIONIJSUT
3y3z Jo SsdIppe 3yl sSureljuUOd od ay3 ‘WIT~XSY¥
ul -1011® 9Y3 pIasSned 3eyl UOTI3IONIFSUI dBY3j JO sSsSaappe
ay3 surejuod Dd 23Uyl ‘SWA/XVYA UI "WIT-XSY Idpun
poptaoad 9soy3l wWoiAF USISIITIP 23e papraoid sjusjuod
24 9yl *UOT3RUTISOP 193STHS1 ® Y3TM UOTIONIISUT
dSC 30 dWL ®B I3Yy3To 93noaxe o3 pajdwsjije abeuwr ayg

*IWd WIT-XSY PTTRA B jOouU ST j3eyly
uoT3oNnIjSUT JIWI ue 293ndaxe 03 paizdwelje abeuwr oyl

sUOT3IONIISUT dV¥¥l © Po3INdaxas abeuwr syl

‘deixy
319-3 ®© bBur3isanbsl UOTIONIISUT UER DPIINDIXd dbewT YL

*uoOT3ONIISUT Jdd B PIINDIXD obewr By

*uOT3ONI3SUT JOI Ue pa3ndexe abewr aylL

ou

ou

sak

sak

sak

sak

sak

sak

sak
sak

s9k

(WAWNAQJASNI $XS¥) 3OVAS OIWUNAA ON

(MovIsava $Xs¥) ¥O¥IS avd

(QIAYESTY $XSY) NOILONYISNI (JIAYISTY

(Jadvadao $Xs¥) dody¥d SSFIAAY ado

(OTADDY $XS¥)
NOILVTIOIA NOILOILOWI XUYOWIW

(LSNITTI $XS¥) NOILDNYISNI T¥DITTI

(IWIXSYNON $XS¥) NOILNDAXI IW3 XSH-NON

(d¥¥L $XS¥) NOILNDIXA dVdL

(3195 $XS49) NOIILNOFXH LIE-L
(¥YI9e $Xs4) NOIINOIXH Ld€

(I0I $XS¥) NOILNDAKI ILOI

uoT13dT 1083q

¢1Ss 104
a1qer13T102ds

abesson
UuoTIRUTWIDY,

uUOT3RUTWISL SbewI WIT-XSY I10F suosedy
T-C ST19eL

2-13

THE VAX/VMS SYSTEM ENVIRONMENT

2.14- PARSING OF FILE SPECIFICATIONS

Because of the VAX/VMS 1logical name capability, VAX/VMS file
specifications can differ from those used in RSX-11M. The normal
RSX-11M parsing routines cannot provide defaults for such VAX/VMS file
specifications. VAX/VMS provides a special directive that is issued
by FCS and RMS-11 running under VAX/VMS so that they provide proper
defaults in a manner that is transparent to the RSX-11lM image. Any
RSX-11M image that performs its own parsing also must call this
special directive, as described in Appendix B.

An RSX-11M image issuing such a directive uses the same sources for
default information as it does under RSX-11M, for example, the default
file name block and directory string. When the directive is issued,
VAX/VMS builds the necessary RMS data structures and calls VAX-11 RMS.
When VAX-11 RMS returns the expanded file specification, VAX/VMS
returns it to the image in the format used by FCS and RMS-11, for
example, in the resultant file name block and directory string.

2.15 VAX/VMS I/0 SYSTEM

VAX/VMS uses its own I/O system in duplicating RSX-11M I/O operations.
Components at all levels of the VAX/VMS I/0 system provide functions
that are similar to equivalent functions in RSX-11M. For example,
VAX/VMS 1I/0 system services provide functions similar to those
provided by RSX-11M I/O directives. Differences between the two I/0
systems arise in either of the following cases:

° VAX/VMS implementation of a function varies from RSX-11M
implementation to provide more flexibility or
efficiency, for example, certain Queue I/0O Request
function codes

) VAX/VMS implementation of a function or concept not
provided in RSX-11M and use of that function in
emulating RSX-11M I/0

Such differences affect emulation of the following I/O~-related
directives.

° ASSIGN LUN

® GET LUN INFORMATION

[QUEUE I/0 REQUEST

° QUEUE I/0 REQUEST AND WAIT
° SEND DATA

° RECEIVE DATA

[RECEIVE DATA OR EXIT

Chapter 3 presents an overview of the VAX/VMS I/0 system and relates
aspects of it to an RSX-11M image.

2-14

CHAPTER 3

VAX/VMS 1/0 SYSTEM

Components of the VAX/VMS I/0 system range in orientation from
user-level I/0 requests to device-level I/O drivers. The I/0O system
comprises the following components. :

° VAX-11 RMS for user-level, device-independent I/O

° f/O system services that provide the means for an image
to assign devices and issue I/0 requests directly

° Ancillary control processes (ACPs) for performing
file-oriented functions on disk and magnetic tape
volumes

° I/0 drivers

Figure 3-1 illustrates the relationship among these components.

3.1 VAX-1l RMS

VAX/VMS record management services (VAX-1ll RMS) provide native VAX/VMS
images with the capability to perform device-independent I/0. 1Images
issue commands to open a file, get and put records or read and write
blocks, and close the file. VAX-11 RMS, in turn, issues the I/0
system services that cause the driver or ACP to perform the function
requested by the user.

VAX-11 RMS is the VAX/VMS equivalent to FCS and RMS-11l. It has no
direct effect on and is inaccessible to an RSX-11M image executing in
compatibility mode. VAX/VMS does, however, call VAX-1ll RMS to perform
some I/0 services on behalf of an RSX~1l1lM image.

VAX-11] RMS is described in the VAX-1ll Record Management Services
Reference Manual.

VAX/VMS 1/0 SYSTEM

VAX/VMS
image

VAX-11
RMS

1/0 system services

or |

1/0 drivers - ACPs

Peripheral
devices

Figure 3-1 Components of VAX/VMS I/0 System

3.2 VAX/VMS I/0 SYSTEM SERVICES
A native image can call VAX/VMS I/0 system services to describe its
I/0 requirements directly, that is, without using VAX-11 RMS. The
request can be issued by a user image or by VAX~-11l] RMS on behalf of a
user image. I/0 services allow a suitably privileged process to
request the following functions:

° Assign a channel to a device and later deassign it

° Queue an I/0 request and, optionally, wait for its
completion

® Create a mailbox and later delete it
) Allocate a device and later deallocate it
° Get information about a device

° Cancel I/0 on a channel

VAX/VMS I/0 SYSTEM

3.2.1 Assign I/0 Channel System Service

Before a VAX/VMS image can request an I/O operation, it must establish
a path of reference from the process in which it is executing to the
device on which the operation is to be performed. In VAX/VMS, this
path of reference is obtained by calling the Assign I/O Channel system
service. This service returns a channel number (path designator) for
the assigned device. The channel number remains valid until the image
deassigns the channel or terminates.

In addition to the channels assigned by an image, a process has
channels assigned by the system. These channels are permanent for the
duration of the process. They provide the path of reference for the
process-permanent files used for system input (SYS$INPUT and
SYSSCOMMAND) , system output (SYS$OUTPUT), error messages (SYSSERROR),
and any user-created process-permanent files. For RSX-11M images
under VAX/VMS, user-created process-permanent files appear as
record-oriented terminal devices.

An image can request I/O operations on channels that it assigns and on
those that the system assigns to process-permanent files. However,
VAX-11 RMS must be used for I/O operations to process-permanent files
except those mapping to terminal devices. The Assign I/0 Channel
system service is the VAX/VMS equivalent of the ASSIGN LUN directive.

3.2.2 Queue I/O Request System Service

Once the image has assigned a channel to a device, the image can
request I/O operations by calling the Queue I/O Request system service
and specifying the channel number returned by the Assign I/0 Channel
service as an argument. Additional arguments provide
function-dependent and function-independent data required for the 1I/0
operation.

When called, the Queue I/0 Request system service allocates and-builds
an I/0.request packet that describes the operation to be performed as
indicated by the arguments passed to it by the image. Once the packet
is built, the Queue I/O Request system service places the packet in a
queue of requests for the designated device. Requests are queued
according to the priority of the process from which the image issued
the request. The driver for the device unit dequeues requests by
priority and performs them.

3.2.3 Create Mailbox and Assign I/0 Channel System Service

The Create Mailbox and Assign I/O Channel system service lets an image
create a virtual device, called a mailbox, and assign an I/0 channel
to it. Mailboxes provide the mechanism for protected interprocess
communication in VAX/VMS. Normally, ain image cicates a mailbox Liom
which it reads and to which other images in cooperating processes
write. Access to the mailbox is restricted using the normal UIC-based
protection according to system, owner, group, and world. An image
performs I/0 operations on a mailbox using VAX-11] RMS S$GET and $PUT
commands or the Queue I/0O Request system service.

A mailbox has no RSX-11M -equivalent. However, VAX/VMS does use
mailboxes 1in duplicating RSX-11M send/receive directives. If a
logical name is assigned to .an existing mailbox, an RSX-11lM image can
issue I/O requests to the mailbox using the mailbox's logical name.
An RSX~11lM image cannot create a mailbox directly. Use of mailboxes
for send/receive directives is detailed in Section 3.8.1, "Mailboxes
for Send/Receive Directives."

3-3

VAX/VMS I/0 SYSTEM

3.2.4 Additional I/0 System Services

The Allocate Device system service lets an image reserve a device for
exclusive use by the process in which the image is executing. The
device remains allocated until it is explicitly deallocated or until
the process terminates. VAX/VMS automatically allocates any
nonshareable device (for example, terminal or card reader) assigned by
a process. It does not automatically allocate a shareable device (for
example, disk). The concept of device allocation 1is the VAX/VMS
equivalent to the RSX-11lM concept of attaching a device.

The Get Device Information system service lets an image obtain the
name and characteristics of the device assigned to a particular
channel. It is equivalent to the GET LUN INFORMATION directive in
RSX-11M.

The Cancel I/O Request system service lets an image cancel all 1I/0
requests pending on the specified channel. It is equivalent to the
RSX-11M QUEUE I/0O REQUEST directive with a function code of IO.KIL.

I/0 system services are described in the VAX/VMS System Services
Reference Manual.

3.3 1I/0 DRIVERS AND ACPs

Using information in the I/O request packet, the I/0 driver for the
unit to which the request was queued initiates the actual hardware
operation that performs the requested function. Once the transfer is
initiated, the driver returns control to the Queue I/O Request system
service. The service returns the request status to its caller. When
the hardware operation completes, the hardware generates an interrupt
that causes the driver to be re-entered to ¢omplete processing of the
I/0 request.

When the driver completes the I/0 request, it issues a software
interrupt for the I/0 post routine. The I/0 post routine sets up the
mechanism that causes user-requested I/0 completion information to be
passed to the image. For example, it fills in the I/O status block
and passes information needed to set an event flag or queue an AST, if
either is requested.

If the driver cannot perform the request because it requires
understanding of file-structured volumes, ACP intervention is needed.
In that case, the driver queues the request for the appropriate ACP to
perform.

3.4 RSX-11lM IMAGE INTERFACE TO THE VAX/VMS I/0 System

RSX-11M images perform I/O by issuing requests at the FCS/RMS-11 level
or the QIO$ directive level. The number of steps required to perform
each I/0 operation varies depending on the level of the request.
Figure 3-2 illustrates the interface between an RSX-11M image and the
VAX/VMS I/0 system.

VAX/VMS I/0 SYSTEM

RSX-11M image issues

FCS or RMS-11 request OR RSX-11M image issues QI0$

/

Request goes to FCS or
RMS-11 running in
compatibility mode

|

FCS or RMS-11 issues
the appropriate QI0$

(2)

QIOS$ traps to VAX/VMS

Is
Ql10$ to
process-permanent
file
?

yes VAX/VMS issues
VAX-11 RMS $GET or $PUT

|

VAX-11 RMS issues

VAX/VMS issues appropriate $Q10
appropriate $Q10

VAX/VMS converts status
code returned to
appropriate DSW code

VAX/VMS returns DSW code
to image issuing Q10$

Driver notifies VAX/VMS
of 1/0 completion

\

VAX/VMS converts 1058
status and returns status,
if 10SB is defined

VAX/VMS issues 1/O done
AST for image and/or sets
event flag, if requested

Figure 3-2 RSX-11M Image Interface to VAX/VMS I/0 System

VAX/VMS 1/0 SYSTEM

Images issuing FCS and RMS-11 requests use the same FCS and RMS-11
routines available in RSX-11M.l Some of these routines have been
modified to take advantage of VAX/VMS features, for example, parsing
of file specifications that use the VAX/VMS logical name facility. To
take advantage of the modifications, the RSX-11M image must be rebuilt
under VAX/VMS. The VAX/VMS modifications are compatible with RSX-11M
versions of FCS and RMS-11. ’

Both FCS and RMS-11 run in compatibility mode under VAX/VMS. When an
RSX~-11IM 1image 1issues either an FCS or RMS-11 request, FCS or RMS-11
receives the request and reacts to it in the same mannner as it does
when running in RSX-11M. That is, FCS/RMS-1ll1 issues the appropriate
RSX-11M QIOS directive.

From this point, the steps involved are identical to those when any
RSX~11M image issues a QIO$ directive:

e The QIOS$ directive traps to VAX/VMS.

e VAX/VMS determines whether the QIO$ was to a process-permanent
file, for example, TI or SYSSOUTPUT. If it is and that device
is not a terminal, VAX/VMS issues a VAX-11] RMS SGET or SPUT
request., Otherwise, VAX/VMS issues the VAX/VMS $QIO system
service request that corresponds to the RSX-11M QIOS.

e Upon completion of the QIO request, VAX/VMS returns the
appropriate DSW code to the issuing image.

e Upon completion of the I/O operation, VAX/VMS returns status
information in the I/O status. block and sets an event flag or
declares an AST, if requested.

If the routine to which the DSW code is returned is either FCS or
RMS-11, that component in turn makes the appropriate status return to
the calling image.

3.5 DEVICE ASSIGNMENT

VAX/VMS performs device assignment for RSX-11M images as part of image
initialization when the image 1is 1loaded. It also performs device
assignment during image execution as a result of an ASSIGN LUN
directive.

In making a device assignment for an RSX-11M image, VAX/VMS proceeds
with the following steps, which result in the device unit's physical
name.

e VAX/VMS forms an ASCII string using the device name and unit
number supplied by the image. VAX/VMS uses the two characters
plus the binary unit number supplied. The unit number is
converted to ASCII base 8. No editing is performed on the
name; for example, if TT1 is supplied, that name 1is used
rather than TTO01.

1. Because the VAX/VMS Files-~11 ACP does not support block 1locking,
RMS-11 block locking across processes is not supported. As a result,
RMS-11 does not allow file sharing for write-accessed files of
relative and indexed organization under VAX/VMS.

VAX/VMS I/0 SYSTEM

e VAX/VMS attempts to translate the ASCII string as a logical
name using the Translate Logical Name system service. If the
attempt to translate fails, VAX/VMS assumes that the image
supplied an RSX-1l1lM physical device name. It converts the
unit number to decimal. It builds a VAX/VMS physical device
name using the image's original input and issues an Assign I/0
Channel system service using the VAX/VMS device name. VAX/VMS
maps RSX-11M physical device names to VAX/VMS physical device
names, as described in Section 3.6.

If the name translates, VAX/VMS attempts up to two more
translations. If the maximum number of translations (three)
is performed or if one of the attempts results in no
translation, VAX/VMS assigns a channel using the final
equivalence name.

For example, if INO is defined as a process's logical name for TTB3
and that process runs an RSX-11lM image which subsequently issues an
ASSIGN LUN directive for INO, VAX/VMS forms an ASCII string for INO,
translates the string to TTB3, and then assigns a channel to TTB3.

3.6 DEVICE MAPPING

If the user does not assign the RSX-11M device name as the logical
name for a VAX/VMS physical device unit, VAX/VMS automatically
performs the translation to a physical device by converting the
RSX-11M unit number to decimal and dividing it by 16 (decimal). The
quotient is added to the ASCII value representing the character A
(65). The result is the controller letter. The remainder becomes the
VAX/VMS unit number. For example, RSX-11M devices TTO0 and DB18 become
VAX/VMS devices TTAQ and DBB2, respectively.

TTO0 to TTAO:

Controller and unit = A + 0 = A + 0 with a remainder of 0
16
A+ 0 = 65 = controller
0 = unit number
DB18 to DBB2:
Controller and unit = A + 18 = A + 1 with a remainder of 2
16
A+ 1 =66 =B = controller
2 = unit number

VAX/VMS performs this conversion when assigning an I/0 device for an
RSX-11M image.

To convert back from a VAX/VMS device name to the RSX-11M form,
VAX/VMS performs the reverse operation. It subtracts the value
representing the ASCII character A (65) from the controller letter and

VAX/VMS 1/0 SYSTEM

multiplies the result by 16 (decimal). It then adds the VAX/VMS unit
number. The result is an RSX-11M unit number that is appended to the
2-character device name. For example, the VAX/VMS device name LPB1
converts to the RSX-11M device name LP17.

LPBl1 to LP17:

Unit =((B - A) * 16) + 1 = (1 * 16) + 1 = 17
VAX/VMS performs this conversion and stores it in the RSX-11M logical
name 1list for the image. This device information is returned as a
result of a GET LUN INFORMATION directive.
The logical names TI, CL, CO, SY, and OV are exceptions to the rules

for device name mapping. They always map to VAX/VMS logical names, as
follows:

RSX-11M Name VAX/VMS Equivalent Name Returned
. for GLUNS
TIO SYSSINPUT $In

SYSSOUTPUT $O0n

CLO SYSSERROR SEn

COo0 SYSSCOMMAND $Cn

SYO SYSSDISK mapped name

SPn Assigned by system mapped name
manager '

WKn Assigned by system mapped name
manager

LBn Assigned by system mapped name
manager

ovo For the LUN used by the -

overlay run-time system,

OV0 translates to provide
access to the task image

file.

Any other LUNs assigned
to OV0 cause VAX/VMS to
assign the device on

which the image resides.

3.7 HANDLING OF QUEUE 1/0 FUNCTION CODES

VAX/VMS provides both device-independent and device-dependent
functions at the Queue I/O Request service level. Device-independent
functions include read and write virtual block, read and write logical
block, and read and write physical block. Device-dependent functions
include operations such as the handling of control and escape
sequences for terminal I/0 and positioning functions for magnetic
tape, for example, rewind.

VAX/VMS I/O SYSTEM

For most RSX-11M function codes, VAX/VMS has a corresponding function
code or system service. For example, all disk and most magnetic tape
function codes have corresponding functions in VAX/VMS. However, two
areas exist where discrepancies between RSX-11M and VAX/VMS device
handling may appear:

e Handling of terminal devices
e Handling of spooled devices

Details concerning VAX/VMS handling of all RSX-11M device function
codes are provided in Chapter 5. The implications of spooling for
RSX-11M images is described in Section 3.10, "Spooled Devices."

3.8 MAILBOXES

A mailbox is a record-oriented virtual device used in VAX/VMS for
generalized communication among processes. VAX/VMS uses a mailbox to
duplicate the RSX-11M SEND DATA, RECEIVE DATA, and RECEIVE DATA OR
EXIT directives. These directives are the normal means of intertask
communication in the RSX-11M environment.

A mailbox has UIC-based protection associated with it. The creator of
the mailbox can specify read and write privileges for system, owner,
group, and world. Because the concepts of execute and delete are not
meaningful for mailboxes, the creator does not specify privileges for
these functions. -

When VAX/VMS <creates a mailbox for emulating the send/receive
directives, it specifies read access for the owner and write access
for the group. The owner is the image issuing the receive directives
and the group comprises the images issuing the send directives. Owner
and group are identified by the UIC under which they execute.

3.8.1 Mailboxes for Send/Receive Directives

When VAX/VMS loads a compatibility mode image, it determines whether
the image has a task name by examining the image's task label block.
The presence of a task name in the label block is an indication that
the image can issue RECEIVE DATA or RECEIVE DATA OR EXIT directives to
obtain data sent to it by other images. The system defines a process
name that 1is identical to the task name in the label block. If the
name is unique, just prior to actual image execution, the system
creates a mailbox and associates it with the process. The mailbox is
named as follows: .

RCVDtaskname
"L - - . ~ram T 2 £ A lhee mwmmsasm masembe A - Nl o~ . -~~~ - ~ o A A b~ L e
4l naince 4O YUALLLATU WY YeLevupy LU cs » W LiiCa LAy co LIl L OTIIM WU ew [
the mailbox must be within the same group and have group or world

privilege.

VAX/VMS does not create a mailbox for an image having a task name in
the form ...xxx, for example, ...MAC.

Figure 3-3 illustrates the use of mailboxes for the send and receive
functions.

VAX/VMS I/0 SYSTEM

[group] ABC

[group] RCVDABC

RSX-11M
RECEIVE_f+{ Image ABC
DATA :

SEND TO MAILBOX

ABC

{group]

RSX-11M
Image
(no name)

Figure 3-3 Use of Mailboxes for Send/Receive Directives

3.8.2 I/0 to Mailboxes

A mailbox has a device name of MBAn. The value of n is the unit
number . VAX/VMS unit numbers are 5-digit numbers in the range 0 to
65535. When an image creates a mailbox, VAX/VMS assigns a unit number
to it. Each time an image executes, the unit number assigned by
VAX/VMS to any mailboxes that the image creates can vary.

Because mailboxes are treated as devices under VAX/VMS, any RSX-11M
image can assign a channel to a mailbox using its logical name and
perform record I/0 to it. The RSX~11lM image must use the logical name
rather than the device name (MBAn) to refer to the mailbox because
RSX-11M images can accept only a unit number in the range 0 to 255.

Both RSX-11lM images and VAX/VMS images can assign a mailbox; however,
only VAX/VMS images can create a mailbox. Mailboxes assigned by an
RSX-11M image must be either permanently available in the system or
created by a native image. Assignment of a mailbox is treated the
same as the assignment of other VAX/VMS devices for RSX-11M images.

A mailbox can be shared by native images and RSX-11M images. As a
result, mailboxes provide a convenient means for native images to
communicate with RSX-11M images. The mailbox used for such
communication can be created by a native image or created by VAX/VMS
for emulating the send and receive directives.

A native image can send messages to a mailbox created for directive
emulation by issuing write requests to it. The image can use either
VAX-11 RMS or the Queue I/0 Request system service for the I/0
~perations.

3-10

VAX/VMS 1/0 SYSTEM

3.9 ACP FUNCTIONS

RSX~11M Files-11 ACP functions correspond directly to VAX/VMS Files-11
ACP functions. The mapping is transparent to the RSX-11M image, as
described in Chapter 5.

3.10 SPOOLED DEVICES

Under VAX/VMS, spooling occurs as a result of cooperation among the
I/0 related system services, Files-1l1l ACP, VAX-l1ll RMS, and output
symbionts. Spooling in RSX-11M requires interaction with the RSX-11M
spooler. Use of VAX/VMS spooled devices is transparent to RSX-11M
images.

If an image assigns a device that is spooled (for example, LP) the
resulting assignment is actually to an intermediate device, for
example, a disk. If the image issues a GET LUN INFORMATION directive,
the system returns characteristics that are consistent with the
intermediate device containing the spooled files. Characteristics of
the final output device (printer) are not returned to the RSX-11M
image. .

If an image uses RMS-11 or FCS to access a spooled device, the file is
spooled when it is deaccessed.

Use of the QUEUE I/O REQUEST directive to a VAX/VMS spooled device
without preceding the request with an OPEN$ or appropriate ACP
functions results in a privilege violation status return. Because the
device to which the QUEUE 1I/0 DIRECTIVE actually is directed is a
file-structured device, the appropriate ACP functions (for example,
access file) must occur before I/0 to the device can be performed.
Use of RMS-11 or FCS PUT$ requests ensures that the ACP functions
occur.

3.10.1 ECS Spooling

The FCS spooling macro PRINTS and the services associated with it
under RSX-11M are supported in VAX/VMS. Spooling in RSX-11M is
accomplished by a task named PRT... . When VAX/VMS detects a SEND
DATA directive with PRT... as the target, it executes a Send Message
to Symbiont Manager system service to spool the file.

CHAPTER 4

DIRECTIVE DESCRIPTIONS

This chapter is based on Chapter 4 of the RSX-11M Executive Reference
Manual for RSX-11M Version 3.1. VAX/VMS support of each RSX-11M
directive is described. Any differences in directive support under
VAX/VMS are presented in the shaded portions of the individual
directive descriptions.)

For ease of reference, individual directive descriptions in this
chapter are in alphabetic order according to the names of the RSX-11M
directive macro calls.

4.1 DIRECTIVE CATEGORIES

This section groups related directives by the following functional
categories.

° Process control directives

° Informational directives

) Event-associated directives

° Trap-associated directives

] I/0 and interprocess communications directives
The following sections summarize the directives within each category
in tabular form. One table entry exists for each directive. Each
table entry lists the differences in RSX-11M and VAX/VMS system

environments that may affect directive emulation and refers to the
sections in Chapters 2, 3, and 5 that describe these differences.

4.1.1 Process Control Directives

The process control directives deal principally with starting and
stopping images within a process or in other processes. VAX/VMS
allows images to affect processes executing in the same group (UIC) as
the requester.

Each of these requests (except EXTEND TASK) results in a change of an
image's state unless the image 1is already in the state being
requested.

Table 4-1 summarizes the process control directives.

DIRECTIVE DESCRIPTIONS

Table 4-1
Process Control Directives

Macro Directive Name System Differences

ABRTS ABORT TASK Protected by group (Section 2.2).
Requires privilege (Section 2.1).
Uses process name (Section 2.4).

RQSTS REQUEST Requested image must be in a
hibernating or active process
(Section 2.12). Protected by group
(Section 2.2). Requires privilege
(Section 2.1). Uses process name
(Section 2.4).

RUNS RUN Requested image must be in a
hibernating or active process
(Section 2.12). Protected by group
(Section 2.2). Requires privilege
(Section 2.1). Uses process name
(Section 2.4).

SPND$ SUSPEND Must have process name (Section
2.4).
RSUMS RESUME Protected by group (Section 2.2).

Requires privilege (Section 2.1).
Uses process name (Section 2.4).

ALTPS ALTER PRIORITY No operation performed (Section
2.10).
DSCP$ DISABLE Requires set swap mode privilege
CHECKPOINTING (Sections 2.7.1 and 2.1).
ENCPS$ ENABLE Requires set swap mode privilege
CHECKPOINTING (Sections 2.7.1 and 2.1).
EXTKS EXTEND TASK None.
CSRQS CANCEL TIME BASED Protected by group (Section 2.2).

INITIATION REQUESTS Requires privilege (Section 2.1).
Uses process name (Section 2.4).

EXITSS TASK EXIT Pertains to image termination
(Section 2.13).

EXSTS EXIT WITH STATUS Pertains to image termination
(Section 2.13). Used to signal
error condition to subsequent
image.

4.1.2 Informational Directives

Informational directives provide the issuing image with data retained
by the system; that is, the time of day, the image run parameters,
and partition parameters.

Table 4-2 summarizes the informational directives.

DIRECTIVE DESCRIPTIONS

Table 4-2
Informational Directives

Macro Directive Name System Differences
GPRTS GET PARTITION Returns parameters for GEN
PARAMETERS partition (Section 2.7.1).

GTIMS GET TIME PARAMETERS Uses 100 ticks-per-~second frequency
(Section 2.9).

GTSK$ GET TASK PARAMETERS Partition name is GEN (Section
2.701) 3

4.1.3 Event-Associated Directives

The event and event flag directives provide the means for interprocess
and intraprocess synchronization and signaling.

Table 4-3 summarizes the event-associated directives.

Table 4-3
Event-Associated Directives

Macro Directive Name System Differences
SETFS | SET EVENT FLAG No differences for local event
flags. Common event flags are

protected by group (Section 2.5)
and require a task name 1in the
image label block (Section 2.4).

CLEFS$ CLEAR EVENT FLAG No differences for 1local event
‘ flags. Common event flags are
protected by group (Section 2.5)
and require a task name in the
image label block (Section 2.4).

RDAFS$ READ ALL EVENT FLAGS| No differences for 1local event
flags. Common event flags are
protected by group (Section 2.5)
and require a task name in the
image label block (Section 2.4).

WTSES$ WAIT FOR SINGLE No differences for 1local event
EVENT FLAG flags. Common event flags are
protected by group (Section 2.5)

. T n +hAa

mm A A s A -~ ~elr " AamA
QU L TYULL C [%3 cuon Yo tite aa —iie

image label block (Section 2.4).

WTLOS WAIT FOR LOGICAL No differences for local event
OR OF EVENT FLAGS " flags. Common event flags are
protected by group (Section 2.5)
and require a task name in the
image label block (Section 2.4).

(continued on next page)

DIRECTIVE DESCRIPTIONS

Table 4-3 (Cont.)
Event-Associated Directives

Macro Directive Name System Differences

DECLSS DECLARE SIGNIFICANT Concept does not exist in VAX/VMS

EVENT (Section 2.8).
WSIGSS WAIT FOR SIGNIFICANT | No wait occurs; concept does not
EVENT exist in VAX/VMS (Section 2.8).
MRKTS$ MARK TIME Uses 100 tick-per-second clock
(Section 2.9).
CMKTSS CANCEL MARK TIME Protected by group (Section 2.2).
REQUESTS Requires privilege (Section 2.1).
EXIFS$S EXIT IF No differences for 1local event
flags. Common event flags are

protected by group (Section 2.5)
and require a task name in the
image label block (Section 2.4).
Pertains to image termination
(Section 2.13).

4.1.4 Trap-Associated Directives

The trap-associated directives provide the image with the same
facilities inherent in the PDP-11 hardware trap system. They allow
transfers of control (software interrupts) to the executing image
under certain fault conditions.

Table 4-4 summarizes the trap-associated directives.

Table 4-4
Trap-Associated Directives

Macro Directive Name System Differences

SPRAS SPECIFY POWER None.
RECOVERY AST

SRDAS SPECIFY RECEIVE None.
DATA AST

SVDBS SPECIFY SST VECTOR None.
TABLE FOR DEBUGGING
AID

SVTKS$ SPECIFY SST VECTOR None.
TABLE FOR TASK

ASTXS$S AST SERVICE EXIT None.

DSARSS | DISABLE AST None.
RECOGNITION

ENARSS ENABLE AST None.
RECOGNITION

SFPAS SPECIFY FLOATING POINT None.

PROCESSOR EXCEPTION AST

4-4

DIRECTIVE DESCRIPTIONS

4.1.5 I/0 and Interprocess Communications Directives

The I/O and interprocess communications directives allow images to
access 1I/0 devices at the driver interface level, to communicate with
other processes in the system, and to retrieve the command line that
initiated the image.

Table 4-5 summarizes the 1I/0 and interprocess communications
directives.

Table 4-5
I/0 and Interprocess Communications Directives

Macro Directive Name System Differences
ALUNS ASSIGN LUN Subject to VAX/VMS 1logical name
translation (Section 3.5).

Pertains to device assignment
(Section 3.5) and mapping (Section
3.6).

GLUNS GET LUN INFORMATION Returns intermediate device
characteristics for spooled device
(Section 3.10). See also Section
5.2.

GMCRS$ GET MCR COMMAND LINE | None.

QIOS QUEUE I/0 REQUEST See Chapter 5 for differences in
I/0 function codes.
QIOWS QUEUE I/0 REQUEST See to Chapter 5 for differences
AND WAIT in I/0 function codes.
SDATS SEND DATA Uses mailbox (Section 3.8.1) that

is protected by group (Section
2.2). Requires privilege (Section
2.1). Uses process name (Section
2.4). Also used as special case
for PRT... (Section 3.10.1).

RCVD$ RECEIVE DATA Uses mailbox (Section 3.8.1) that
is protected by group (Section
2.2). Requires privilege (Section
2.1). Uses process name (Section

2.4).
RCVXS RECEIVE DATA OR . Uses mailbox (Section 3.8.1) that
EXIT is protected by group (Section
2.2). Requires privilege (Section
2.1). Requires process name

(Section 2.4).

DIRECTIVE DESCRIPTIONS

4.2 UNSUPPORTED DIRECTIVES
VAX/VMS does not support the directives listed below.
ATTACH REGION (ATRGS)
CONNECT TO INTERRUPT VECTOR (CINTS)
CREATE ADDRESS WINDOW (CRAWS)
CREATE REGION (CRRGS)
DETACH REGION (DTRGS)
ELIMINATE ADDRESS WINDOW (ELAWS)
GET MAPPING CONTEXT (GMCXS$)
GET REGION PARAMETERS (GREGS)
GET SENSE SWITCH (GSSW$)
MAP ADDRESS WINDOW (MAPS)
RECEIVE BY REFERENCE (RREFS$)
SEND BY REFERENCE (SREFS)
SPECIFY RECEIVE-BY-REFERENCE AST (SRRAS)
UNMAP ADDRESS WINDOW (UMAPS)

VAX/VMS returns an error status of IE.SDP (invalid directive) to any
RSX-11M image that issues an unsupported directive.

Under RSX-11M, the CONNECT TO INTERRUPT VECTOR directive is used by
user-written I/0 drivers. Under VAX/VMS, an RSX~1lM image cannot
receive device interrupts; therefore, VAX/VMS does not support the
CONNECT TO INTERRUPT VECTOR directive.

The VAX-11/780 processor does not have sense switches. Therefore,
VAX/VMS handles the GET SENSE SWITCH directive in the same manner as
RSX-11M does for a system that disallowed access to sense switches
during system generation. It returns the DSW status IE.SDP.

The remaining 12 directives are RSX-11M memory management (PLAS)
directives. They are not supported because a VAX-11/780 performs
memory management very differently from the way that a PDP-11 does.

DIRECTIVE DESCRIPTIONS

4.3 SYSTEM DIRECTIVE DESCRIPTIONS

Each directive description includes all or most of the following
elements, as appropriate:

Name:
The function of the directive in VAX/VMS is described.
Macro Call:

The macro call is shown, each parameter is defined, and the
defaults for optional parameters are given in parentheses
following the definition of the parameter. Since 2zero is
supplied for most defaulted parameters, only nonzero default
values are shown. Parameters ignored by VAX/VMS and RSX-11M are
required for compatibility with RSX-11D and IAS.

DSW Return Code:

All return codes that are valid under VAX/VMS are listed and
defined. In some cases, a VAX/VMS return status code in
parentheses follows an RSX-11M status code. For example:

IE.RSU —- Device allocated to another image (SS$_DEVALLOC)

The VAX/VMS code indicates the VAX/VMS error that caused the
corresponding RSX-11M code to be returned.

Some RSX-11M codes reflect several VAX/VMS codes. In this case,
VAX/VMS returns the RSX-11M code that it uses by default. Such
codes are followed by the phrase "default error" in parentheses.
For example:

IE.IDU -- Device or unit unknown (default error)

In some cases after a directive failure, VAX/VMS returns an error
code that is more meaningful for an I/O operation. 1In these
cases, the high-order byte of the DSW contains 0.

Notes:

The notes presented with some directive descriptions further
explain the function, use, and/or consequences of these
directives under VAX/VMS. Users should read the notes carefully
to ensure proper use of directives.

DIRECTIVE DESCRIPTIONS

ABRTS$

4.3.1 ABORT TASK

The ABORT TASK directive instructs the system to terminate the
execution of the indicated process's image. The requester can abort
itself or an image executing in another process. ABORT TASK is
intended for use as an emergency or fault exit.

Macro Call:

ABRTS$ tsk

s) ’ZZC
S
Z’/ﬁw »;’m»’éi i’?"

DSW Return Codes:

3 % % ! ﬁwz’»ﬁw)
2 Comtbir e

Is.suC —-- Successful completion
IE.INS -- Process name unknown (default error)
IE.PRI = -- User not privileged (SS$ NOPRIV)

IE.ADP -- Part of the DPB is out of the issuing image's

address space
IE.SDP -— DIC or DPB size is invalid
Notes:

® VAX/VMS executes a Force Exit system service to terminate the
specified process's image on behalf of the image issuing the
ABORT TASK directive.

e The image issuing the ABORT TASK directive must be executing
in a process that meets either of the following requirements:

-- It is in the same group as the process to be aborted and
has group privilege.

-- It has world privilege.

e The exit status is supplied by an exit handling routine (exit
handler). It 1is assumed that the status returns a severe
error.

DIRECTIVE DESCRIPTIONS

ALTPS

4.3.2 ALTER PRIORITY

Macro Call:

ALTPS [tsk][,pril

tsk Active task name
pri = New priority, a number from 1 to 250 (decimal)

DSW Return Codes:

IS.SUC =-- Successful completion

IE.ADP -- Part of the DPB is out of the issuing image's
address space

IE.SDP ~-- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS
ALUNS

4.3.3 ASSIGN LUN

The ASSIGN LUN directive instructs the system to assign a physical
device wunit to a logical unit number. An I/0 channel is the VAX/VMS
equivalent of an RSX-11M logical unit number.

Macro Call:

ALUNS lun,dev,unt

lun = Logical unit number
dev = Device name (two characters)
unt = Device unit number

DSW Return Codes:

IS.SUC -- Successful completion
IE.IDU -- Device or unit unknown (default error)
IE Invalid logical uni

address space
IE.SDP -- DIC or DPB size is invalid

° VAX/VMS executes an Assign I/0 Channel system service on
behalf of the image issuing the ASSIGN LUN directive.

® The assignment of RSX~11M device names to VAX/VMS physical
devices is described in Section 3.5.

e If the RSX-11M device name and logical unit number are not
assigned as the logical name of a VAX/VMS device, VAX/VMS maps
the RSX-11M device name and unit number to an appropriate
VAX/VMS device name, controller, and unit number. To perform
the mapping, VAX/VMS divides the RSX-11M unit number by 16

(decimal). The guotient 1is added to the ASCII value
representing the character A (65). The result is the
controller designation. The remainder becomes the VAX/VMS

unit number. The following is an example of the conversion.
RSX-11M device name and unit number = DB2

A + 2 = A+0 with a remainder of 2; that is, device
16 DBA2.

Corresponding VAX/VMS device name, controller letter, and unit
number = DBA2

e If a LUN is reassigned, its previous assignment is deassigned.
The deassignment causes I/0 to be cancelled on the old
assignment. If the attempt to make a new assignment fails,
the LUN remains deassigned.

DIRECTIVE DESCRIPTIONS

ASTXS$

4.3.4 AST SERVICE EXIT

The AST SERVICE EXIT directive instructs the system to terminate
execution of an AST service routine.

If another AST is dqueued and ASTs are not disabled, VAX/VMS
immediately effects the next AST. Otherwise, the system restores the
image's state prior to the AST.

Macro Call:
ASTXSS [err]
err = Error routine address
DSW Return Codes:
IS.SUC -- Successful completion
IE.AST -~ Directive not issued from an AST service routine
IE.ADP -- Part of the DPB or stack is out of the issuing

image's address space

IE.SDP DIC or DPB size is invalid

Note:

e When an AST occurs, VAX/VMS pushes, at minimum, the following
information onto the stack:

SP+06,012 -~ 0

SP+04 ~- PS of process prior to AST
SP+02 -- PC of process prior to AST
SP+00 ~- DSW of process prior to AST

The stack must be in this state when the AST SERVICE EXIT
directive is executed.

‘DIRECTIVE DESCRIPTIONS

CLEF$

4.3.5

CLEAR EVENT FLAG

The CLEAR EVENT FLAG directive instructs the system to clear an
indicated event flag and report the flag's polarity before clearing.

Macro Call:

CLEFS efn

~efn = Event flag number

DSW Return Codes:

IS.CLR =—- Successful completion; flag was already clear

IS.SET

Successful completion; flag was set

Part of the DPB
address space

IE.SDP -- DIC or DPB size is invalid
Notes:

® VAX/VMS executes a Clear Event Flag system service on behalf
of the image issuing the CLEAR EVENT FLAG directive.

e VAX/VMS converts the RSX-11M event flag numbers to VAX/VMS
event flag numbers. The local RSX-11M event flag numbers 1
through 32 become VAX/VMS local flag numbers 32 through 63.
The RSX-11M common event flag numbers 33 through 64 become
flag numbers 64 through 95 in a VAX/VMS event flag cluster
named RSXCOMEFN.

® Access to common event flags is protected by group number.

e An image that wants to use common event flags must have been

built with a task name. The DSW status IE.IEF is returned if
an image that does not have a common event flag cluster
associated with it attempts to clear flags 33 through 64.

4.3.6

DIRECTIVE DESCRIPTIONS

CMKTS$S

CANCEL MARK TIME REQUESTS

The CANCEL MARK TIME REQUESTS directive instructs the system to cancel
all mark time requests that were made by the issuing image.

Macro Call:

CMKTS$S [,,err]

err = Error routine address

DSW Return Codes:

IS.SUC =-- Successful completion
IE.ADP -- Part of the DPB is out of the issuing image's
address space
IE.SDP -- DIC or DPB size is invalid
Note:
® VAX/VMS executes a Cancel Timer Request system service

specifying that all timer requests be .canceled for the image
issuing the CANCEL MARK TIME REQUESTS directive.

DIRECTIVE DESCRIPTIONS

CSRQ$

4.3.7 CANCEL TIME BASED INITIATION REQUESTS

5 b S
Macro Call:

CSRQ$ tsk

DSW Return Codes:

IS.SUC -- Successful completion

IE.INS -- Specified process name unknown (default error)
IE.PRI -~ Privilege violation (SS$_NOPRIV)
IE.ADP -- Part of the DPB is out of the issuing image's
address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e VAX/VMS executes a Cancel Wakeup system service on behalf of
the image issuing the CANCEL TIME BASED INITIATION REQUESTS
directive.

e The image issuing the CANCEL TIME BASED INITIATION REQUESTS
directive must be executing in a process that meets either of
the following requirements:

-— It is in the same group as the process for which requests
are to be canceled and has group privilege.

-— It has world privilege.

- DIRECTIVE DESCRIPTIONS

DECLSS

4.3.8 DECLARE SIGNIFICANT EVENT

instructs the system to

The DECLARE SIGNIFICANT EVENT directive
declare a significant event

Macro Call:

DECLSS [,err]

err = Error routine address

DSW Return Codes:

IS.SUC ~-- Successful completion
IE.ADP ~- Part of the DPB is out of the issuing image's
address space
IE.SDP -- DIC or DPB size is invalid
Note:

® No operation is performed and success is returned.

DIRECTIVE DESCRIPTIONS

or

4.3.9 DISABLE (or INHIBIT) AST RECOGNITION
The DISABLE AST RECOGNITION directive instructs the system to disable
recognition of wuser-level ASTs for the issuing image. The ASTs are
queued as they occur and are effected when the image enables AST
recognition. When an AST service routine 1is executing, AST
recognition also is disabled. The initial state of an image is to
have recognition enabled.
Macro Call:

DSARSS [err]

or
IHARS$S [err]

err = Error routine address

DSW Return Codes:

IS.SUC =-- Successful completion
IE.ITS -- AST recognition is already disabled
IE.ADP -- Part of the DPB is out of the issuing image's
address space
IE.SDP -- DIC or DPB size is invalid
Note:

e While disabled, ASTs are queued in a first-in/first-out list.

DIRECTIVE DESCRIPTIONS

DSCP$S

4.3.10 DISABLE CHECKPOINTING

Macro Call:
DSCP$S [err]
err = Error routine address
DSW Return Codes:

IS.SsUC -- Successful completion

IE ;gs ——%Swa- alread dlsabled

IE ADP -- Part of the DPB is out of the 1ssu1ng image's
address space

IE.SDP -- DIC or DPB size is invalid

Notes:

® VAX/VMS executes a Set Swap Mode system service on behalf of
the image issuing the DISABLE CHECKPOINTING directive.

e The image's initial state has swapping enabled.

e The requesting image must have the privilege to set its swap
mode.

DIRECTIVE DESCRIPTIONS
ENARS$S

4.3.11 ENABLE AST RECOGNITION

The ENABLE AST RECOGNITION directive instructs the system to recognize
user-level ASTs for the issuing image; that 1is, the directive
nullifies a DISABLE AST RECOGNITION directive. ASTs that were queued
while recognition was disabled are effected at issuance. The initial
state of an image is to have AST recognition enabled. ,
Macro Call:

ENARSS {err]
err = Error routine address

DSW Return Codes:

IS.SUC -- Successful completion

IE.ITS ~- AST recognition is not disabled

IE.ADP -- Part of the DPB is out of the issuing image's
address space

IE.SDP -- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS
ENCPS$S

4.3.12 ENABLE CHECKPOINTING

Macro Call:

ENCPS$S [err]
err = Error routine address
DSW Return Codes:

IS.SUC -~ Successful completion
IE.ITS -- S i alread nabled
Part of the DPB is out of the issuing image's
address space

IE.SDP -- DIC or DPB size is invalid

IE.ADDP --

Notes:

® VAX/VMS executes a Set Swap Mode system service on behalf of
the image issuing the ENABLE CHECKPOINTING directive.

e The initial state of an image has swapping enabled.

® The requesting image must have the privilege to set its ' swap
mode.

DIRECTIVE DESCRIPTIONS
EXIF$

4.3.13 EXIT IF
The EXIT IF directive instructs the system to terminate execution of
the 1issuing image if the specified event flag is not set. VAX/VMS
returns control to the issuing image if the specified event flag Iis
set.
Macro Call:

EXIFS efn

efn = Event flag number

DSW Return Codes:

IS.SET -- 1Indicated event flag is iet° 1mage dld not egit
o e AR Y i o e AR

s i frag 1o

Sl Enok

e o

*ﬁ;@ £ "‘ﬁﬁ; % #;‘«’»,,z;s? x?(2) s

v"“ ,;;ﬁ»y,;g,m w,fg £ SR @M@»@«@% &&ﬁ@?ﬁ%ﬁ 'gtj u% ‘;}2&

IE ADP ~—- Part of the DPB is out of the issuing image's

address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e VAX/VMS converts the RSX-11M event flag numbers to VAX/VMS
event flag numbers. The local RSX-11M event flag numbers 1
through 32 become VAX/VMS local event flag numbers 32 through
63. The RSX-11M common event flag numbers 33 through 64
become flag numbers 64 through 95 in a VAX/VMS common event
flag cluster named RSXCOMEFN.

® Access to common event flags is protected by group number.

e An image that wants to use common event flags must have been
built with a task name. The DSW status IE.IEF is returned if
an image that does not have a common event flag cluster

3 &fs\, A
A

e
%‘vi%‘m
RSO

DIRECTIVE DESCRIPTIONS

EXITS

4.3.14 TASK EXIT

The TASK EXIT directive instructs the system to terminate execution of
the issuing image.

Macro Call:
EXIT$S [err]
err = Error routine address

DSW Return Codes:

IE.ADP -~ Part of the DPB is out of the issuing image's
. address space
IE.SDP ~- DIC or DPB size is invalid
Notes:

® A return to the image occurs only if the directive is
rejected.

® VAX/VMS executes an Exit system service on behalf of the
issuing image. The success status is returned.

4-21

DIRECTIVE DESCRIPTIONS

EXST$

4.3.15 EXIT WITH STATUS

The EXIT WITH STATUS directive instructs the system to terminate
execution of the issuing image and to accept from the image a status
code indicating whether the termination is normal or abnormal.

Macro Call:

EXSTS sts [,err]

sts = exit status
EX$SUC -- Normal termination (RSX$_EXITSTATUS)
EX$WAR -- Warning (RSXS_EXITSTATUS)
EXSERR -- Abnormal termination (RSXS_EXITSTATUS)
EX$SEV -- Severe error termination (RSX$_EXITSTATUS)
err = Error routine address

DSW Return Codes:

IE.ADP -- Part of the DPB is out of the issuing image's
address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e A return to the image occurs only 1if the directive is
rejected.

® VAX/VMS executes an Exit system service specifying the exit
status of the image.

DIRECTIVE DESCRIPTIONS
EXTK$

4.3.16 EXTEND TASK

The EXTEND TASK directive instructs the system to modify the size of

the issuing task by a positive or negative increment of 32-word

blocks. If the directive does not specify an increment value, VAX/VMS

makes the issuing image's size equal to its initial size.

Macro Call:

EXTK$ [inc]
inc = A positive or negative number equal to the number of

32-word blocks by which the image size is to be
extended or reduced

DSW Return Codes:

IS.SUC -~ Successful completion

IE.ALG ~- The issuing image attempted to reduce its size
to 1less than the =size of its header; or the
image tried to increase its size beyond 32K
words or beyond the base of the lowest mapped
library or common block

IE.ADP -- Part of the DPB is out of the issuing image's
address space

IE.SDP -- DIC or DPB size is invalid

Notes:

® An image cannot extend itself past its 65K byte address space
or, if libraries or common areas are present, past the base of
the lowest mapped library or common block.

® An image can extend itself to the base of its read-only
section.

DIRECTIVE DESCRIPTIONS

GLUNS

4.3.17 GET LUN INFORMATION

The GET LUN INFORMATION directive instructs the system to fill a
6-word buffer with information about a physical device unit to which a
LUN is assigned.

Macro Call:

GLUNS lun,buf

lun = Logical unit number
buf = Address of 6-word buffer that is to receive the LUN
information

Buffer Format:
wD. 00 Name of assigned device

wD. 01 Unit number of assigned device in the low-order byte.
B g ER Sk i T e Sk 2 "*z 3 ; 47 e

wWD. 02 First device characteristics word:
Bit 0 -- Record-oriented device (l=yes) [FD.REC]*
Bit 1 -~ Carriage-control device (l=yes) [FD.CCL]
Bit 2 ~-- Terminal device (l=yes) [FD.TTY]
Bit 3 =-- Directory device (l=yes) [FD.DIR]
Bit 4 Single directory device (l=yes) [FD.SDI]
Bit 5 Sequential device (1l=yes) [FD.SQD]

ﬁ»@ gg%@

mountable és a Files- l device

Device
(l=yes)
Device mountable (l=yes)

A £ gt

WD. 05 Standard device buffer size

DSW Return Codes:

IS.SUC =-- Successful completion

IE.ULN -~-- Unassigned LUN

IE.ILU ~-- Invalid logical unit number

IE.ADP -- Part of the DPB or buffer is out of the issuing
image's address space

IE.SDP -- DIC or DPB size is invalid

* Bits with associated symbols have the symbols shown in square
brackets. These symbols can be defined for use by an image by means
of the FCSBTS$ macro. See the IAS/RSX-11 I/O Operations Reference
Manual.

4-24

Notes:

DIRECTIVE DESCRIPTIONS

VAX/VMS executes a Get Channel Information system service on
behalf of the image issuing the GET LUN INFORMATION directive.

VAX/VMS converts the name and unit number of the VAX/VMS
device to which the LUN is assigned to an RSX-11M device name
and unit number before returning the LUN information.

To convert from a VAX/VMS device name to the RSX-11M form,
VAX/VMS subtracts the value representing the ASCII character A
(65) from the value of the ASCII character representing the
controller 1letter and multiplies the result by 16 (decimal).
It then adds the VAX/VMS unit number. The final result is an
RSX-11M unit number that is appended to the 2-character device
name. For example, the VAX/VMS device name TTA2 converts to
the RSX-11M device name TT2.

TTA2 to TT2:

Unit =((A - A) * 16)+2 = (0 * 16) + 2 = 2
If the device to which the LUN is assigned is a spooled device
(for example, LP), VAX/VMS returns the characteristics of the
intermediate device (for example, disk).
Mailboxes have 16-bit unit numbers. The low-order 8 bits are
returned by GET LUN INFORMATION in word 1. Mailboxes must be

referred to using a logical name rather than using the unit
number returned.

4-25

DIRECTIVE DESCRIPTIONS

GMCRS$

4.3.18

The GET
80~-byte
used to
format.

GET MCR COMMAND LINE

MCR COMMAND LINE directive instructs the system to transfer an

command line to the issuing image. It is the command

line

invoke the image. As a result, it can be in either MCR or DCL

Macro Call:

GMCRS$

DSW Return Codes:

IE.

IE.

IE.

Notes:

+n -— Successful completion; n is the number of data
bytes transferred, excluding the termination
character. The termination character is,
however, in the buffer

AST -- No command line exists for the issuing image;
that is, the image was not requested by a
command other than RUN or the image has already
issued the GET MCR COMMAND LINE directive

ADP -- Part of the DPB is out of the issuing process's
address space

SDP -- DIC or DPB size is invalid

The system processes all lines to:

-~ Convert tabs to a single space

-~ Convert multiple spaces to a single space

-~ Convert lowercase characters to uppercase

-- Remove all trailing blanks

The terminator <CR> is the last character in the line.

The command line can be the result of the following types
user-issued DCL commands:

Format Example
$ MCR name command-string $ MCR PIP LP:=MYFILE
$ MCR $ MCR
MCR> name command-string MCR>PIP LP:=MYFILE

of

DIRECTIVE DESCRIPTIONS

The command line can be the result of he following types of
MCR commands:

Format Example
>name command-string >PIP LP:=MYFILE
>name >PIP

followed by prompt PIP>

The command line received as a result of the GET MCR COMMAND
LINE directive varies depending on the format of the command
typed. If the command contains a command string, for example,
LP:=MYFILE, that string and its length are available to the
image. If no string is supplied, VAX/VMS returns a command
string length of zero.

When an image executes as a result of a RUN command (either
DCL or MCR), the command line is zero-length.

DIRECTIVE DESCRIPTIONS

GPRT$

4.3.19 GET PARTITION PARAMETERS

The GET PARTITION PARAMETERS directive instructs the system to fill an
»1nd1cated 3— rd buffer w1th artltlon parameters. 2

Macro Call:

GPRTS [prt] ,buf

Partition name
Address of a 3-word buffer

prt
buf

The buffer has the following format:

7 e 5
YIRS ew&ﬂm%

o
ba,

DSW Return Codes:

Successful completion is indicated by carry clear and $DSW equal to 0
indicating a mapped system.

IE.ADP -- Part of the DPB or buffer is out of the issuing
image's address space
IE.SDP ~-- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

GTIMS

4.3.20 GET TIME PARAMETERS

The GET TIME PARAMETERS directive instructs the system to £fill an
indicated 8-word buffer with the current time parameters. All time
parameters are delivered as binary numbers. The value ranges are
shown in decimal below.

Macro Call:
GTIMS buf
buf = Address of 8-word buffer

The buffer has the following format:

WD. 0 -~ Year (since 1900)
WD. 1 -- Month (1-12)
WD. 2 -- Day (1-31)
wWD. 3 =-- Hour (0-23)
WD. 4 -~ Minute (0-59)
WD, 5 == . Second (0-59)
7*}5& %m s «%‘, e

NS %

SRS e

DSW Return Codes:

IS.SUC ~- Successful completion
IE.ADP -- Part of the DPB or buffer is out of the issuing
image's address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e VAX/VMS executes a Get Time system service for the image
issuing the GET TIME PARAMETERS directive.

® VAX/VMS provides a 100 tick-per-second clock.

DIRECTIVE DESCRIPTIONS

GTSKS$

4.3.21 GET TASK PARAMETERS
The GET TASK PARAMETERS directive instructs the system to fill an
indicated 1l6-word buffer with parameters relating to the issuing
process.
Macro Call:
GTSK$ buf
buf = Address of a 16-word buffer

The buffer has the following format:

Nuﬁbe?uéf 1ogiéai'1/b ﬁnlts (LUNSs)

Undefined

WD. 10 =-- ©Undefined

WD. 11 -- Address of task SST vector tables

WD. 12 -~ Size of task SST vector table in words

WD. 13 -- Size in bytes of image's address window excluding
'libraréfgwand common areas

DSW Return Codes:

IS.SUC =-- Successful completion

IE.ADP -- Part of the DPB or buffer is out of the issuing
image's address space

IE.SDP -- DIC or DPB is invalid

DIRECTIVE DESCRIPTIONS

MRKTS$

4.3.22 MARK TIME

The MARK TIME directive instructs the system to set an event flag
and/or declare an AST after an indicated time interval. The interval
begins when the image issues the directive. If an event flag is
specified, the flag 1is cleared when the directive is issued and set
when the interval elapses. If an AST entry point address is
specified, an AST occurs when the interval elapses.

Macro Call:

MRKTS [efn] ,tmg,tnt[,ast]

efn = Event flag number

tmg = Time interval magnitude

tnt = Time interval unit (1 through 4)
ast = AST entry point address

DSW Return Codes:

IS.SUC -- Successful completion
IE.ITI -- Invalid time parameter
Rga 1 o S T L S S AR A RS B g e e g

IESTER =i Ty S EYAY:
R A T U e
R S, : Py
R IR

oy
A el

IE.UPN =--

Sope G

IEZNODT = Imaig e ishs SR SLERE L ST S

IE.ADP ~-- Part of the DPB is out of the 1issuing image's
address space

IE.SDP -- DIC or DPB size is invalid

Notes:

e VAX/VMS executes a Set Timer system service on behalf of the
process issuing the MARK TIME directive.

e If an AST entry point address is specified, the AST service
routine is entered with the stack in the following state:

SpP+08,14 - 0

SP+06 - PS of process prior to AST

SP+04 - PC of process prior to AST

SP+02 - DSW of process prior to AST

SP+00 - Event flag number or 0 (if none was

specified in the MARK TIME directive)

The event flag number must be removed from the stack before an
AST SERVICE kX1l directlve 1ls executed.

DIRECTIVE DESCRIPTIONS

VAX/VMS returns the DSW code IE.ITI if the directive specifies
an invalid time parameter. The time parameter consists of two
components: the time interval magnitude (tmg) and the time
interval unit (tnt).

A legal magnitude value (tmg) is related to the value assigned
to the time interval unit (tnt). The unit values are encoded
as follows:

Ticks (1/100 of a second per tick)

Seconds

Minutes

> w N [l
[

Hours

The magnitude (tmg) is the number of units to be clocked. The
following 1list describes the magnitude values that are valid
for each type of unit. 1In no case can the value of tmg exceed
24 hours.

If tnt = 0, 1, or 2, tmg can be any positive value with a
maximum of 15 bits.

If tnt

3, tmg can have a maximum value of 1440(10).
If tnt = 4, tmg can have a maximum value of 24(10).

VAX/VMS converts the RSX-11M event flag numbers to VAX/VMS
event flag numbers. The local RSX-11M event flag numbers 1
through 32 become VAX/VMS local event flag numbers 32 through
63. The RSX-11M common event flag numbers 33 through 64
become flag numbers 64 through 95 in a VAX/VMS event flag
cluster named RSXCOMEFN.

An image that wants to use common event flags must have been
built with a task name. The DSW status IE.IEF is returned if
an image that does not have a common event flag cluster
associated with it attempts to set flags 33 through 64.

VAX/VMS enforces a quota on the number of ASTs that a process
can have pending.

DIRECTIVE DESCRIPTIONS

Ql0$

4.3.23 QUEUE I/O REQUEST

The QUEUE I/O REQUEST directive instructs the system to place an 1I/0
request for an indicated physical device unit into a queue of
priority-ordered requests for that device unit. The physical device
unit is specified as a logical unit number (LUN).

If the directive call specifies an event flag, VAX/VMS clears the flag
when the request is queued and sets the flag upon request completion.

The I/O status block is also cleared when the request is queued, and
set to the final I/O status when the I/O request is complete. If an
AST service routine entry point address is specified, the AST occurs
upon I/O completion, and the process's WAITFOR mask word, PS, PC, DSW
(directive status), and the address of the I/O status block are pushed
onto the stack.

Macro Call:

QIOS fnc,lun, [efn],[pri],[isb],[ast] [,prl]

fnc = 1I/0 function code

lun = Logical unit number

efn = Event flag number

pri = Priority; ignored, but must be present .
isb = Address of I/0 status block

ast = Address of AST service routine entry point

prl = Parameter list of the form <Pl,...,P6>

DSW Return Codes:

IS.SUC -- Successful completion
IE.ULN Unassigned LUN
IE.ILU Invalid LUN

: %i qﬁﬁ
N. R e‘,&nx*} w;» &{7@{

& §¥ o Q?; ;:
: 1€ SEXQUOS ,ﬁ&%”i§%ﬁﬁﬁ$¥ SNSBENESY G
nsufficient memory (SS$ NSFMEM)

IE.UPN
IE.ADP ~--~ Part of the DPB or I/O status block is out of the
issuing image's address space
IE.SDP ~-- DIC or DPB size is invalid
Notes:

® VAX/VMS executes a Queue I/0 Request system service on behalf
of the image issuing the QUEUE I/0 REQUEST directive.

e Chapter 5 explains function codes, parameter meanings, and I/0
status block return values.

DIRECTIVE DESCRIPTIONS

If the directive call specifies an AST entry point address,
the process enters the AST service routine with the stack in
the following state:

SP+16 - SP+10 - 0

SP+06 - PS of process prior to AST

SP+04 - PC of process prior to AST

SP+02 - DSW of process prior to AST

SP+00 - Address of I/O status block, or zero if none
was specified in the QIO directive.

The address of the I/O status block, which is a trap-dependent
parameter, must be removed from the stack before an AST
SERVICE EXIT directive is executed.

VAX/VMS pushes four words of zeros in SP+16 through SP+10.
RSX-11M pushes three words with undefined contents and a
l-word event flag mask.

If the directive is rejected, the specified event flag is not
guaranteed to be cleared or set. Consequently, if the process
indiscriminately executes a WAITFOR directive and the QIO
directive is rejected, the process may wait forever. Care
should be taken to ensure that the directive was successfully
completed.

VAX/VMS converts the RSX-11lM event flag numbers to VAX/VMS
event flag numbers. The local RSX-11M event flag numbers 1
through 32 become VAX/VMS local event flag numbers 32 through
63. The RSX-11M common event flag numbers 33 through 64
become flag numbers 64 through 95 in a VAX/VMS event flag
cluster named RSXCOMEFN.

Access to common event flags is protected by group number.

An image that wants to use common event flags must have been
built with a task name. The DSW status IE.IEF is returned if
an image that does not have a common event flag cluster
associated with it attempts to set flags 33 through 64.

VAX/VMS enforces a quota on the number of ASTs that a process
can have pending.

4-34

DIRECTIVE- DESCRIPTIONS

QIOWS

4.3.24 QUEUE I/O REQUEST AND WAIT

The QUEUE I/0 REQUEST AND WAIT directive is identical to QUEUE 1I/0
REQUEST with one exception: if the wait variation of the directive
specifies an event flag, VAX/VMS automatically effects a WAIT FOR
SINGLE EVENT FLAG directive. If an event flag is not specified,
however, VAX/VMS treats the directive as if it were a QUEUE 1I/O
REQUEST.

Macro Call:

QIOWS fnc,lun,efn, [pri] ,[isb],[ast] [,prl]

fnc = I/0 function code

lun = Logical unit number

efn = Event flag number

pri = Priority; ignored, but must be present
isb = Address of I/0 status block

ast = Address of AST service routine entry point
prl =

Parameter list of the form <Pl,...,P6>
DSW Return Codes:

IS.SUC -- Successful completion
IE.ULN =-- ©Unassigned LUN

et - GRELE. Fai ol
Part of the DPB or
issuing image's address space
IE.SDP -~ DIC or DPB size is invalid

Note:
® VAX/VMS executes a Queue I/0 Request and Wait for Event Flag
system service on behalf of the image issuing the QUEUE I/0
REQUEST AND WAIT directive.

® See the notes for the QUEUE I/0 REQUEST directive.

4-35

" DIRECTIVE DESCRIPTIONS

RCVD$

4.3.25

RECEIVE DATA

A 2-word sending process name in Radix-50 form and the 13-word data
block are returned in a 15-word buffer.

Macro Call: .

RCVD$ [tsk] ,buf

IE.ITS -~ No déta currently available in mailbox or no

mailbox (default error)

IE.ADP -- Part of the DPB or buffer is out of the issuing

image's address space

IE.SDP -- DIC or DPB size is invalid

Notes:

VAX/VMS executes a read Queue I/0 Request system service on
behalf of the process issuing the RECEIVE DATA directive. The
I/0 operation reads data from a mailbox associated with the
process by VAX/VMS when it loads the image.

The name of the mailbox is RCVD followed by the process name,
that is, RCVDname.

The mailbox is not created until the image actually begins to
execute.

Because protection is specified as read access for the owner
(receiving process) and write access for the group (sending
processes), this directive is useful only for passing data
between processes within the same group.

The image issuing the receive directives must have a name
specified at task build time; that is, the image label block
must contain a task name. VAX/VMS uses the presence of the
task name as an indication that the image may wish to receive
data and sets up the necessary mechanism.

" DIRECTIVE DESCRIPTIONS

4.3.26 RECEIVE DATA OR EXIT

St

A 2-word sending process name in Radix-50 form and the 13-word data
block are returned in a 15-word buffer.

&

Macro Call:
RCVXS [tsk] ,buf

‘Add

T i i
e b -
T R Seodll wut ey,

DSW Return Codes:

Is.sucC Successful completion
] £ AT & S

e

P—
Sreviaded
i

LE.UEN HoknsuELIC, BOLY: Lok i
IE.ADP -- Part of the DPB or buffer is out of the issuing
image's address space
IE.SDP -- DIC or DPB size is invalid
Notes:

® VAX/VMS executes a Queue I/O Request system service and, if
appropriate, an Exit system service on behalf of the process
issuing the RECEIVE DATA OR EXIT directive. The I/O operation
reads data from a mailbox associated with the process by
VAX/VMS when it loaded the image.

e The name of the mailbox is RCVD followed by the process name,
that is, RCVDname.

e The mailbox is not created until the image actually begins to
execute.

® Because protection is specified as read access for the owner
(receiving process) and write access for the group (sending
processes), this directive is useful only for passing data
between processes within the same group.

e If no data is obtained from the mailbox, VAX/VMS executes an
Exit system service for the image. The exit status is
SS$_NORMAL.

® The image issuing the receive directives must have a name
specified at task build time; that is, the image label block
must contain a task name. VAX/VMS uses the presence of the
task name as an indication that the image may wish to receive
data and sets up the necessary mechanism.

e This directive does not provide the same interlock between the
sender and the receiver as it does in RSX~11M.

e If no mailbox exists, the image exits with a success status.

DIRECTIVE DESCRIPTIONS
RDAF$

4.3.27 READ ALL EVENT FLAGS
The READ ALL EVENT FLAGS directive instructs the system to read all 64
event flags for the issuing process and record their polarity in a
64-bit (4~word) buffer.
Macro Call:

RDAFS buf

The buffer has the following format:

WD. 00 =-- Local flags 1 through 16
WD. 01 =-- Local flags 17 through 32
WD. 02 -- Common flags 33 through 48
WD. 03 -- Common flags 49 through 64

DSW Return Codes:

IS.SUC =-- Successful completion .
IE.ADP -- Part of the DPB or buffer is out of the issuing
image's address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e VAX/VMS issues a Read Event Flags system service on behalf of
the image issuing the READ ALL EVENT FLAGS directive.

5 #

s

e VAX/VMS converts the RSX-11M event flag numbers to VAX/VMS
event flag numbers. The local RSX-11M event flag numbers 1
through 32 become VAX/VMS local flag numbers 32 through 63.
The RSX-11M common event flag numbers 33 through 64 become
flag numbers 64 through 95 in a VAX/VMS event flag cluster
named RSXCOMEFN.

e Access to common event flags is protected by group number.

e An image that wants to use common event flags must have been
built with a task name. The DSW status IE.IEF is returned if
an image that does not have a common event flag cluster
associated with it attempts to read flags 33 through 64.

DIRECTIVE DESCRIPTIONS

4.3.28 REQUEST

i jaee

he Hibernate

services for real-time images.

REQUEST is a frequently used subset of the RUN directive.

Macro Call:
RQSTS$ tsk,[prt],[pri] [,ugc,umc]

RSk VAR YNS Process ane
prt Partition name; ignored
i Priority; ignored
o Thest 5 ‘ el o O s o B SO
SHOS UG oR Ul Sagnurdas

) &
T Agnored
DSW Return Codes:

@

IS.SUC -- Successful completion
IE.INS -- Process name not known (default error)
P R ot

JEEVPRIN S PN R €96 i 6T At Ton(SES SNOBRIWY
IE.UPN -- Insufficient dynamic memory (SS$ INSFMEM)
NOD:e2 U Procedsiguet SEEFeq ESS EXQUDTAY
IE.ADP -- Part of the DPB is out of the issuing image's
address space
IE.SDP -- DIC or DPB size is invalid

Notes:

® VAX/VMS executes a Wake system service on behalf of the
process issuing the REQUEST directive.

® The requested process must currently be present in the system;
that is, either hibernating or active.

® The image issuing the REQUEST directive must be executing in a
process that meets either of the following requirements:

-- It is in the same group as the requested process and has
group privilege.

== It has world privilege.

® VAX/VMS maintains an indicator to determine whether any wake
requests have been issued for an active process. If the
pending wake indicator is set and the process issues a
hibernaie request, the process remains active, and the pending
wake indicator is cleared. A subsequent hibernate request
causes the process to hibernate.

DIRECTIVE DESCRIPTIONS

RSUMS$

4.3.29 RESUME

42 desldoly

0
.%%%%ﬁ%

Macro Call:

RSUMS tsk

DSW Return Codes:

1S.SUC -- Successful completion
IE.INS -- DProcess name unknown (default error)
Privilege violation (SS$ NOPRIV)

i " . » % 9 P ghs g Fom Pade S Ea Y m - %4
Part of the DPB is out of the issuing image's
address space
IE.SDP -- DIC or DPB size is invalid

Notes:

e VAX/VMS executes a Wake system service on behalf of the
process issuing the RESUME directive.

e The image issuing the RESUME directive must be executing in a
process that meets either of the following requirements:

—— It is in the same group as the process to be resumed and
has group privilege. ’

-~ It has world privilege.

e VAX/VMS maintains an indicator to determine whether any wake
requests have been issued for an active process. If the wake
pending indicator is set and the process issues a hibernate
request, the process remains active, and the wake pending
indicator is cleared. A subsequent hibernate (SUSPEND)
request causes the process to hibernate.

e If a RESUME directive is issued for an image that is active,
the status returned is success. The process remains active.

DIRECTIVE DESCRIPTIONS

4.3.30 RUN

. The schedule time 1is specified in terms of
delta time from issuance. If the smg, rmg, and rnt parameters are
omitted, RUN is the same as REQUEST except that RUN causes the process
to become active one clock tick after the directive is issued.

Macro Call:

RUNS tsk,[prt],[pri],[ugc],[umc],[smg],snt[,rmg,rnt]
sk
prt = Partition name, ignored
Priorit ignored

smg = Schedule delta magnitude

snt = Schedule delta unit (either 1, 2, 3, or 4)
rmg = Reschedule interval magnitude

rnt = Reschedule interval unit

DSW Return Codes:

-- Successful completion .

IE.ITI -- Invalid time parameter

IE.ADP -~ Part of the DPB is out of the issuing 1mage s
address space

IE.SDP -- DIC or DPB size is invalid

Notes:

® VAX/VMS executes a Schedule Wakeup system service on behalf of
the process issuing the RUN directive.

® The target process must be present in the system.

e The image issuing the RUN directive must be executing in a
process that meets either of the following requirements:

-— It is in the same group as the process to be run and has
group privilege.

-- 1t has world privilege.

® VAX/VMS maintains an indicator to determine whether any wake
requests have been issued for an active process. If the wake
pending indicator is set and the process issues a hibernate
request, the process remains active, and the wake pending
indicator is cleared. A subsequent hibernate (SUSPEND)
request causes the process to hibernate.

DIRECTIVE DESCRIPTIONS

Time Intervals

VAX/VMS returns the DSW code IE.ITI if the directive specifies
an invalid time parameter. A time parameter consists of two
components: the time interval magnitude (smg or rmg) and the
time interval unit (snt or rnt).

A legal magnitude value (smg or rmg) is related to the value
assigned to the time interval unit snt or rnt. The unit
values are encoded as follows:

1 = Ticks (1/100 of a second per tick)
2 = Seconds

3 = Minutes

4 = Hours

The magnitude is the number of wunits to be clocked. The
following 1list describes the magnitude values that are valid
for each type of unit. In no case can the magnitude exceed 24
hours.

If unit = 0,1, or 2, the magnitude can be any positive
value with a maximum of 15 bits.

If unit = 3, the magnitude can have a maximum value of
1440(10) .

If unit = 4, the magnitude can have a maximum value of
24(10) .

The schedule delta time is the difference in time from the
issuance of the RUNS$ directive to the time the process is to
be run. This time can be specified in the range from one
clock tick to 24 hours.

DIRECTIVE DESCRIPTIONS

4.3.31 SEND DATA

When an event flag is specified in the SEND DATA directive, the
indicated flag is set for the sending process.

Macro Call:

SDATS$ tsk,buf][,efn]

BERAG
Lok Y.
buf =

efn

buffer

Event flag number

DSW Return Codes:

IS.SUC -- Successful completion
IE INS -- Receiver process name unknown (default error)

it msQuotas @Xﬁﬁﬁ@”@a [S(S8SZEXQ
- Insuf 101ent memory (SSS INSFMEM)
. Jmemory .. : ,

m«gm
ug§§ e
52 q&
0 .w’
e N%M&%%” - -‘ .§> '
G ;3»4 O & « f el
‘%«»’ﬁ%& § “‘“&"“‘iﬁ < ‘%ﬁr ’%wv“:@#{:x* m«ﬁ% ? AR e
.ADP -- or data block is ot of the 1ssu1ng
image's address space
IE.SDP -- DIC or DPB size is invalid
Notes:

e VAX/VMS executes a write Queue I/0O Request system service on
behalf of the process issuing the SEND DATA directive. The
I/0 operation writes to a mailbox named RCVD followed by the
specified process name, that is, RCVDname.

e The sending process must be in the same group as the receiving
process because protection allows the group write access to
the mailbox and denies access to the world.

e The target process must be executing an image that had a name
specified at task build time; that is, the image label block
must contain a task name. VAX/VMS uses the presence of the
task name as an indication that the image is going to receive
data and sets up the necessary mechanism.

e An image that wants to use common event flags must have been
built with a task name. The DSW status IE.IEF is returned if
an image that does not have a common event flag cluster
associated with it attempts to set flags 33 through 64.

DIRECTIVE DESCRIPTIONS
SETF$

4.3.32 SET EVENT FLAG

The SET EVENT FLAG directive instructs the system to set an
event flag and report the flag's polarity before it is set.

Macro Call:
SETFS$ efn
efn = Event flag number

DSW Return Codes:

IS.CLR =-- Flag was clear
was alreagy set

indicated

“Part of the DPB is out
address space
IE.SDP -- DIC or DPB size is invalid

Note:

e VAX/VMS executes a Set Event Flag system service on behalf

the image issuing the SET EVENT FLAG directive.

® VAX/VMS converts the RSX-11M event flag numbers to

of

VAX/VMS

event flag numbers. The local RSX-11M event flag numbers 1
through 32 become VAX/VMS local flag numbers 32 through 63.

The RSX-11M common event flag numbers 33 through
flag numbers 64 through 95 in a VAX/VMS event flag
named RSXCOMEFN.

64 become
cluster

e Access to common event flags is protected by group number.

e An image that wants to use common event flags must have

built with a task name. The DSW status IE.IEF is re

been
turned if

an image that is not associated with a common event flag

cluster attempts to set flags 33 through 64.

DIRECTIVE DESCRIPTIONS

SFPAS$

4.3.33 SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST

The SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST directive instructs
the system either to enable or disable delivery of floating point
processor exception ASTs.

When an AST service routine entry point address is specified, future
floating point processor exception ASTs occur for the issuing process,
and control is transferred to the indicated location at the time of
the AST's occurrence. When an AST service entry point address is not
specified, future floating point processor exception ASTs do not occur
until the image issues a directive that specifies an AST entry point.
Macro Call:
SFPAS [ast]
ast = AST service routine entry point address

DSW Return Codes:

IS.SUC =-- Successful completion

IE.UPN -~ Insufficient dynamic memory

IE.ITS ~-- AST entry point address is already unspecified

IE.AST -- Directive was issued from an AST service routine
or ASTs are disabled

IE.ADP ~- Part of the DPB is out of the issuing task's
address space

IE.SDP -- DIC or DPB size is invalid

Notes:

e SPECIFY FLOATING POINT PROCESSOR EXCEPTION AST - requires
dynamic memory.

® VAX/VMS queues floating point processor exception ASTs when a
floating point processor exception trap occurs for the task.
No future floating point processor exception ASTs are queued
for the process until the first one queued has actually been
effected. '

e The floating point processor exception AST service routine is
entered with the task stack in the following state:

SP+12 - Event flag mask word

SP+10 - PS of task prior to AST
SP+06 - PC of task prior to AST
SP+04 - DSW of task prior to AST
SP+02 - Floating exception code
SP+00 - Floating exception address

The image must remove the floating exception code and address
from the stack before an AST SERVICE EXIT directive is
executed.

® This directive cannot be issued from an AST service routine or
when ASTs are disabled.

DIRECTIVE DESCRIPTIONS
SPND$S

4.3.34 SUSPEND

The SUSPEND directive instructs the system to place the process in a
state of hibernation. An image can suspend only the process in which
it is executing. The suspended process can be restarted by another
process that issues a RESUME directive for it.

Macro Call:
SPNDSS [err]
err = Error routine address
DSW Return Codes:
suc - §ugge§§§g; completion
-~ Part of the DPB is out of the issuing image's

address space
IE.SDP -- DIC or DPB size is invalid

Notes:

e VAX/VMS executes a Hibernate system service on behalf of the
process issuing the SUSPEND directive.

e A suspended process retains control of the system resources
allocated to it. VAX/VMS makes no attempt to free these
resources.

® VAX/VMS maintains an indicator to determine whether any wake
requests have been issued for an active process. If the wake
pending indicator is set and the process issues a hibernate
request, the process remains active, and the wake pending
indicator is cleared. A subsequent hibernate request causes
the process to hibernate.

e If a SUSPEND directive is issued by an image that has pending
resume requests, the following occurs.

-- The status returned is success,
-~ The process remains active.
-~ The wake pending indicator is cleared.

® A process can be resumed only by specifying its process name;
therefore, a process is not allowed to suspend itself unless
it has a process name.

4-46

DIRECTIVE DESCRIPTIONS
SPRAS

4.3.35 SPECIFY POWER RECOVERY AST

The SPECIFY POWER RECOVERY AST directive instructs the system to
record either of the following:

e That power-recovery ASTs for the issuing process are desired,
and the address to which to transfer control when a powerfail
recovery AST occurs

e That power-recovery ASTs for the issuing process are no longer
desired

When an AST service routine entry point address is specified, future
power recovery ASTs occur for the issuing process. VAX/VMS transfers
control to the specified address whenever a powerfail recovery occurs.
When an AST service entry point address is not specified, future power
recovery ASTs do not occur until an AST entry point 1is again
specified.

Macro Call:
SPRAS [ast]
ast = AST service routine entry point address
DSW Return Codes:
IS.SUC -- Successful completion
IE.ITS -- AST entry point address is already unspecified

IE.AST -- Directive was issued from an AST service routine
or ASTs are disabled.

IE.ADP ~- Part of the DPB is out of the issuing image's
address space
IE.SDP -~ DIC or DPB size is invalid
Notes:

e VAX/VMS executes a Set Power Recovery AST system service for
the image issuing the SPECIFY POWER RECOVERY AST directive.

® ASTs are disabled while the AST recovery service routine
executes. They remain disabled until the service routine
issues an AST SERVICE EXIT directive.

® The process enters the powerfail AST service routine with the
task stack in the following state:

SP+06,12 ~ 0

SP+04 = PS8 of precess pricr ts AST
SP+02 - PC of process prior to AST
SP+00 — DSW of process prior to AST

No trap-dependent parameters accompany a power-recovery AST;
therefore, the AST SERVICE EXIT directive can be executed with
the stack in the same state as when the AST was effected.

e This directive cannot be issued from an AST service routine or
when ASTs are disabled. -

4-47

DIRECTIVE DESCRIPTIONS

SRDAS$

4.3.36 SPECIFY RECEIVE DATA AST

The SPECIFY RECEIVE DATA AST directive instructs the system to record
either of the following conditions:

e That receive-data ASTs for the issuing image are desired, and
the address to whlch to transfer control when data has been
placed in the image's mailbox - (RCVDprocessname)

® That receive-data ASTs for the issuing task are no longer
desired

When the directive specifies an AST service routine entry point
address, recelve—data ASTs for the image occur whenever data has been

placed in the image's mailbox (RCVDprocessname) . VAX/VMS transfers
control to the specified address.

When the directive omits an entry point address, VAX/VMS disables
receive data ASTs for the issuing image. Receive data ASTs do not
occur until the image issues another SPECIFY RECEIVE DATA AST
directive that specifies an entry point address.
Macro Call:

SRDAS [ast]

ast = AST service routine entry point address

DSW Return Codes:

IS.SUC ~-- Successful completion

IE.ITS -- AST entry point address is already unspec1f1ed

IE.AST -- Directive was issued from an AST service routine
or ASTs are disabled

IE.ADP -- Part of the DPB is out of the issuing image's
address space

IE.SDP -- DIC or DPB size is invalid

Notes:

® The task enters the receive-data AST service routine with the
task stack in the following state:

SP+06,12 - 0

SP+04 - PS of process prior to AST

SP+02 - PC of process prior to AST

SP+00 - DSW of process prior to AST

No trap-dependent parameters accompany a receive-data AST;
therefore, the AST SERVICE EXIT directive must be executed
with the stack in the same state as when the AST was effected.

@ This directive cannot be 1ssued from an AST service routine or
when ASTs are disabled.

DIRECTIVE DESCRIPTIONS

VAX/VMS implements the SPECIFY RECEIVE DATA AST through the
use of the set AST enable QIO I/O function for an unsolicited
message to the mailbox. When a message is sent to the
mailbox, an AST is given to the image. The AST is re-enabled
by a subsequent AST SERVICE EXIT directive.

Also refer to Section 4.3.25 for information on the RECEIVE
DATA directive.

SVDB$

DIRECTIVE DESCRIPTIONS

4.3.37 SPECIFY SST VECTOR TABLE FOR DEBUGGING AID

The SPECIFY SST VECTOR TABLE FOR DEBUGGING AID directive
system to record the address of a table of SST service
points for use by an intra-image debugging aid (ODT, for

instructs the
routine entry
example) .

To deassign the vector table, the parameters adr and len are omitted
from the macro call.

When an SST service routine entry is specified in both the table
by the image and the table used by a debugging !id, the trap occurs
for the debugging aid, not for the image.

Macro Call:

SVDBS$ [adr] [,1len]

used

adr = Address of SST vector table
len = Length of (that is, number of entries in) the table in
words

The vector table

wp. 00 ~--
wb. 01 --
WD. 02 -
wp. 03 --
wWD. 04 --
wWD. 05 --
wWD. 06 --
wWb. 07 =--

has the following format:

0dd address or nonexistent memory error

Memory protection violation

T-bit trap or execution of a BPT instruction
Execution of an IOT instruction

Execution of an illegal or reserved instruction
Execution of a non-RSX EMT instruction
Execution of a TRAP instruction

Not used

A table entry with a value of 0 indicates that the image does
intend to process the corresponding SST.

DSW Return Codes:

Is.suC --
IE.ADP --

IE.SDP ~--

Successful completion

Part of the DPB or table is out of the issuing
image's address space

DIC or DPB size is invalid

not

DIRECTIVE DESCRIPTIONS

SVTK$

4.3.38 SPECIFY SST VECTOR TABLE FOR TASK

The SPECIFY SST VECTOR TABLE FOR TASK directive instructs the system
to record the address of a table of SST service routine entry points
for use by the issuing image.

To deassign the vector table, the parameters adr and len are omitted
from the macro call.

When an SST service routine entry is specified in both the table used
by the image and the table used by a debugging aid, the trap occurs
for the debugging aid, not for the image.
Macro Call:
SVTKS$ [adr] [,1len]

adr = Address of SST vector table
len = Length of (that is, number of entries in) the table in

words

The vector table has the following format:

WD.00 -- 0Odd address or nonexistent memory error

WD.01 -~ Memory protection violation

WD.02 -- T-bit trap or execution of a BPT instruction
WD.03 -- Execution of an IOT instruction

WD.04 ~-- Execution of an illegal or reserved instruction
WD.05 —-- Execution of a non-RSX EMT instruction

WD.06 -- Execution of a TRAP instruction

WD.07 -- Not used

A table entry with a value of 0 indicates that the image does not want
to process the corresponding SST.

)

DSW Return Codes:

IS.SUC -- Successful completioh
IE.ADP ~- Part of the DPB or table is out of the issuing
image's address space

IE.SDP DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS

WSIG$S

4.3.39 WAIT FOR SIGNIFICANT EVENT

P s AT

Macro Call:
WSIGSS [err}
err = Error routine address

DSW Return Codes:

IS.SUC -- Successful completion

IE.ADP -- Part of the DPB is out of the issuing image's
address space

IE.SDP -- DIC or DPB size is invalid

DIRECTIVE DESCRIPTIONS
WTLOS

4.3.40 WAIT FOR LOGICAL OR OF EVENT FLAGS

THE WAIT FOR LOGICAL OR OF EVENT FLAGS directive instructs the system
to @block the execution gf the issuing image uftil VAX/VMS sets an
indicated event flag from one of the following groups.

GR 0 -- Flags 1 through 16
GR 1 -- Flags 17 through 32
GR 2 -- Flags 33 through 48
GR 3 -- Flags 49 through 64

The process does not wait if any of the indicated flags is already set
when it issues the directive.

Macro Call:
WTLOS grp,msk

grp = Desired group of event flags
msk = A 16-bit flag mask word

DSW Return Codes:

IS.suC - Successful comgletlon

“Noteventfl: :agépﬁ g«ie&mfn ”‘iﬁﬁ@

P deR s el "“ & &fgii
5 %ﬁé, gﬁnmwﬁ? 2yt aé ﬁ@wg
2 %M?’ @w s «Mu s o ':gg “gﬁg ggﬁb %}’uﬁi m'w &
FiE , ‘clistariis sinot associated s s
IE.ADP -- Part of the DPB is out of ‘the issuing image's
address space
IE.SDP -- DIC or DPB size is invalid

solll ®

Notes:

® VAX/VMS executes a Wait for Loglcal OR of Event Flags system
service on behalf of the image issuing the WAIT FOR LOGICAL OR
OF EVENT FLAGS directive.

® VAX/VMS converts the RSX-11M event flag numbers to VAX/VMS
event flag numbers. The local RSX-11M event flag numbers 1
through 32 become VAX/VMS local event flag numbers 32 through
63. The RSX-11M common event flag numbers 33 through 64
become flag numbers 64 through 95 in a VAX/VMS event flag
cluster named RSXCOMEFN.

® Access to common event flags is protected by group number.

® Use of common event flags requlres the 1mage to have a

task-built name. It is not sufficieni Lo establish a process

name using the DCL or MCR RUN command.

e The DSW status IE.IEF is returned if an image that does not
have a common event flag cluster associated with it attempts
to wait for flags 33 through 64.

DIRECTIVE DESCRIPTIONS
WTSES$S

4.3.41 WAIT FOR SINGLE EVENT FLAG
The WAIT FOR SINGLE EVENT FLAG directive instructs the system to block
the execution of the issuing image until the indicated event flag is
set. If the flag is set when the directive is issued, image execution
continues.
Macro Call:

WTSES efn

efn = Event flag number

DSW Return Codes:

o
i

a3
3 S8 gl iy : 5

eI [0SR SaT ¢ 5 8 g

e P S e B R ID b, i,

ut of the issuigé ?image‘s

sees

address space
IE.SDP ~-- DIC or DPB size is invalid

Notes:

e VAX/VMS executes a Wait for Logical OR of Event Flags system
service for the image issuing the WAIT FOR SINGLE EVENT FLAG
directive.

e VAX/VMS converts the RSX-11M event flag numbers to VAX/VMS
event flag numbers. The local RSX-11M event flag numbers 1
through 32 become VAX/VMS local event flag numbers 32 through
63. The RSX~11M common event flag numbers 33 through 64
become flag numbers 64 through 95 in a VAX/VMS event flag
cluster named RSXCOMEFN.

e Access to common event flags is protected by group number.

e An image that wants to use common event flags must have been
built with a task name. The DSW status IE.IEF is returned if
an image that is not associated with a common event flag
cluster attempts to wait for flags 33 through 64.

CHAPTER 5

I/0 DRIVERS

VAX/VMS images request services directly from I/0 drivers and ACPs by
issuing Queue I/O Request macro instructions. Each macro instruction
consists of the following types of arguments.

® An I/0 function code

e Function-independent parameters, for example, I/0 channel and
event flag number

® Function-dependent parameters Pl through P6
VAX/VMS I/0 function code names have the following format.
I0$_function

Many function codes have subfunction modifiers that can be associated
with them. Subfunction modifier names have the following format.

IOSM_subfunction

The following are examples of VAX/VMS function codes and subfunction
modifiers.

I0$_WRITELBLK
I0$_READPROMPT!IO$M_NOFILTR
I0$_READVBLK
I0$_DELETE!IO$M_DELETE

When an RSX-11M image running under VAX/VMS issues a QUEUE I/O REQUEST
directive, VAX/VMS determines the equivalent native function and
executes a Queue I/O Request system service on behalf of the image.
The I/0 request 1is processed by the VAX/VMS 1/0 system and the
function is performed by a standard VAX/VMS device driver or ACP.
Usually, RSX-11M I/O requests correspond to similar VAX/VMS requests.
As a result, the RSX~11M image is not aware of any differences in the
I/0 systems. However, if an image issues an I/0 request that depends
on idiosyncracies of the RSX-11M I/O system that are not present in
the VAX/UMS T/0 cyetem, the reguected I/C cperation may not ocCui
exactly as. expected. 1In that event, the user should consult the
information in this chapter.

Each RSX-11M I/0 request consists of a function code,
function-independent parameters, and function-dependent parameters.
When VAX/VMS receives a QUEUE I/O REQUEST directive, it forms the
equivalent VAX/VMS arguments for each RSX-11M parameter specified in
the directive. Because VAX/VMS issues queue I/O requests wusing the
VAX/VMS 1I/0 system, it must convert RSX-11M queue I/O requests to the
native format for processing by the appropriate driver or ACP.

5-1

I/0 DRIVERS

VAX/VMS handling of RSX-11M function-independent parameters, for
example, efn, 1lun, and ast, is described in Chapters 2 and 3 and
Section 4.3.23, "QUEUE I/O REQUEST." This chapter describes how
VAX/VMS handles 1/0 function codes and I/0 function-dependent
parameters.

5.1 SUPPORTED DEVICES

VAX/VMS supports RSX-11M I/O functions for devices supported by both
RSX-11M and VAX/VMS; that is, for disks, terminals, line printers,
card readers, magnetic tapes, and the null device. The VAX/VMS 1I/0
User's Guide lists the devices supported by VAX/VMS.

If an RSX-11M image performs I/O to a device that VAX/VMS does not
support and that does not require special-case software, the I/0O
request is handled as if it specified a disk device. The I/O function
code and parameters (Pl through P6) are handled just as they are for
disk. No subfunction bits are used.

5.2 GET LUN INFORMATION DIRECTIVE

The GET LUN INFORMATION directive returns the same device-independent
information under VAX/VMS as it does under RSX-11M Version 3.1l. The
format of the information returned for all devices is presented in the
description of the GET LUN INFORMATION directive (Section 4.3.17).
The VAX/VMS I/0 User's Guide describes the format of the
device-dependent information returned.

5.3 STANDARD I/0 FUNCTIONS

The standard RSX-11M I/0 functions -- attach, detach, and cancel I/0;
read and write virtual block; and read and write logical block -- are
supported for all devices in VAX/VMS. The sections that follow
provide additional information about attach, detach, and cancel I/0.

5.3.1 Attach and Detach I/0 Device (IO.ATT and IO.DET)

VAX/VMS categorizes devices as shareable and nonshareable. A
shareable device, for example, a disk, can be accessed by many users
without affecting the integrity of the data. Nonshareable devices,
for example, terminals, allow access from only one process at a time.
When an image assigns a channel to a nonshareable device, VAX/VMS
implicitly allocates the device for exclusive use by the process. 1In
the RSX-11M sense, it attaches the device for the process. Because
VAX/VMS performs implicit allocation, images do not have to explicitly
allocate and deallocate nonshareable devices during execution.

If an image must have exclusive access to a shareable device, the
device can be allocated in either of two ways.

1. By an image issuing an Allocate Device system service
2. By a user typing an allocate command to a command interpreter
Use of the allocate command has an advantage over use of the Allocate

Device system service. It eliminates the need for error recovery by
the image if the device is not available for allocation.

5-2

I/0 DRIVERS

Tasks running in RSX-11M frequently attach terminals and other devices
to prevent another task from using them. These devices are shareable
in an RSX-11M system. When an RSX-11M image running under VAX/VMS
issues a QUEUE I/0 REQUEST to attach a device, VAX/VMS performs no
operation and returns a success status to the image. If the target
device is nonshareable, VAX/VMS allocates the device when the image
assigns a LUN to it. 1In effect, therefore, the device 1is attached.
If the device is shareable, it remains unallocated after the directive
status is returned. When an RSX~-11M image requires allocation of a
shareable device, the device must be allocated from a terminal or an
indirect command file by using an allocate command.

The RSX-11M function code IO.ATT and IO.DET have meaning for terminals
under VAX/VMS, as described in Section 5.8, "Terminal Driver." For
example, issuing an attach or detach causes a cancel CTRL/O function.

5.3.2 Cancel I/0O Requests (IO.KIL)

When an RSX-11M image issues a kill I/0 request for a VAX/VMS device,
VAX/VMS * executes a Cancel 1I/0 on Channel system service. This system
service cancels all I/O issued from the designated channel. This
differs from the RSX-11M approach in that RSX-11M causes all I/0O from
the issuing task to the device to be canceled. When a cancel 1I/0
request is issued for a disk device, no operation is performed.
VAX/VMS returns a success status to the image.

When the Cancel I/O on Channel system service executes, it notifies
the driver immediately. Queued I/O requests are canceled immediately;
however, I/0 that the driver is currently processing is not
necessarily canceled.

5.4 I/0 STATUS BLOCK AND STATUS RETURNS

When VAX/VMS completes an I/O operation, it returns a code indicating
the status of the request in an I/0 status block. When an RSX-11M
image issues a request, VAX/VMS returns status information in an I/O
status block that has the standard RSX-11M format, as illustrated in
Figure 5-1.

Byte 1 Byte O

fi
0 except for Status code

Word O X
terminal read %

Word 1 Number of bytes transferred

Figure 5-1 Format of RSX-11M I/0 Status Block under VAX/VMS

The return code can be IS.SUC or any of the error status codes listed
in Table 5-1. The status code 1IS.SUC corresponds to the VAX/VMS
status code SS$_NORMAL. VAX/VMS equivalents for RSX-11M error codes
also are provided in Table 5-1.

I/0 DRIVERS

contains a zero except in the
For a terminal read request, that

The high-order byte of word 0 always
case of terminal I/0 read requests.

byte indicates the line terminator, as described in Section 5.8.13,
"Terminal Read Status Returns."
The second word of the I/O status block contains the number of bytes

read or written.

Table 5-1
I/0 Status Return Codes
RSX-11M Status Equivalent Meaning
Return Code VAX/VMS
Return Code
1E.ABO SS$_ABORT Operation is aborted.
IE.ALN SS$_FILALRACC File already is accessed.
IE.BAD SS$_BADFILENAME The file name specified is bad.
SS_BADPARAM One of the function-dependent
parameters Pl through P6 is
invalid on a file operation.
IE.BDR SS$_BADIRECTORY The directory specified is bad.
IE.BHD SS$_BADFILEHDR The file header is bad.
55$_FILESTRUCT Invalid file structure.
IE.BLK S§5$_ILLBLKNUM Illegal block number specified.
IE.BVR SS$_BADFILEVER The file version number is bad.
IE.CKS SS$_BADCHKSUM Bad checksum.
IE.CLO S$S8$_FILELOCKED File is locked.
IE.DAA SS$_DEVALLOC Device is allocated to another
process.
IE.DAO SS8$_BUFFEROVF The block of data being read
has over&lowed its buffer.
»
S_MBTOOSML Message is too big for the
mailbox.
SS_DATAOVERUN Record is too large for buffer.
IE.DFU SS$_DEVICEFULL The volume is full.
IE.DNA SS$_DEVNOTALLOC The device is not allocated.
IE.DNR SS$_DEVNOTMOUNT The device is not mounted.
IE.DUP SS$_DUPFILENAME The file name supplied
duplicates an existing file
name.

(continued on next page)

I/0 DRIVERS

Table 5-1
I/0 Status Return Codes

(Cont.)

RSX~11M Status
Return Code)

Equivalent
VAX/VMS
Return Code

Meaning

IE.EOF

IE.EOT

IE.EXP

IE.HFU

IE.IES

IE.IFC

IE.LCK
- IE.NLN

IE.NOD

IE.NSF

IE.OFL

IE.PES

IE.PRI

IE.RER

IE.RSU

IE.SNC

IE.SPC

SS$_ENDOFFILE

SS$_ENDOFTAPE

S_FILNOTEXP
S_HEADERFULL

SS$_BADESCAPE

S_ILLIOFUNC

SS$_ACCONFLICT
SS$_FILNOTACC

SS$_EXQUOTA

SS$_NOSUCHFILE

SS$_NOMOREFILES
SS$_DEVOFFLINE
SS$_PARTESCAPE

SS$_NOPRIV

SS$_FCPREADERR

SS$_FILENUMCHK

SS$_ACCVIO

End of file has been reached.

Physical
reached.

end of tape has been

File has not expired.

The file header is full.
The data being read was

terminated with an invalid
escape sequence.

Function is illegal for the
device.

File access conflict.

File is not accessed.

The request attempted to exceed
one of the process's I/0
guotas, e.g., buffered 1/0
limit.

The specified file does not
exist.

No additional files remain.
The device is off line.
Partial escape sequence.
Process does not have the
privilege to perform the

requested function.

File control primitives
incurred a read error.

Mailbox is full.

Attempli L0 enable for CTRL/C
when another more privileged
access mode already has enabled
for it.

File number check.
The image attempted to access

memory that was not in its
virtual address space.

(continued on next page)

I/0 DRIVERS

Table 5-

1

(Cont.)

I/0 Status Return Codes

RSX-11M Status
Return Code

Equivalent
VAX/VMS
Return Code

Meaning

IE.SQC
IE.TMO

KE.WAT
IE.WER

IE.WLK
IS.PND

Is.suC

QS$_FILESEQCHK
SS$_TIMEOUT

SS$_BADATTRIB
SS$_WRITERR

SS$_WRITLCK
none

SS$_NORMAL

File sequence check failed.
Device timeout occurred.

File attribute descriptors are
bad.

File control primitives
incurred a write error.

The device is write locked.
Request pending.

Successful operation.

5-6

5.5 DISK DRIVER

I/0 DRIVERS

Table 5-2 provides the correspondence between RSX~11M disk function
codes and VAX/VMS disk function codes and resultant actions.

Table 5

-2

Disk Function Code Correspondence

Function

RSX~11M Code

VAX/VMS Code or Action

Attach Device
Detach Device

Cancel I/O Requests

Read Logical Block
Write Logical Block
Read Virtual Block
Write Virtuql Block
Read Physical Block
Write Physical Block

Write Physical Block
with deleted data mark

Load Overlay

Pack Acknowledge

IO.ATT
IO.DET

IO.KIL

IO.RLB
I0.WLB
IO.RVB
IO.WVB
IO.RPB
IO.WPB

IO.WDD

I0.LOV

I0.STC

No operation in VAX/VMS.
No operation in VAX/VMS.
Cancel I/O on Channel
system service. No
operation for disks.
I0$_READLBLK
IO$_WRITELBLK
I0$_READVBLK
I0$_WRITEVBLK
I0$_READPBLK
I0$_WRITEPBLK

Not supported in VAX/VMS.
Special form of IO.RLB
performed only on OV:
(overlay device). An
IO.RVB is performed

on LUNs not assigned
to OV,

10$_PACKACK

Table 5-3 provides the correspondence
parameters to VAX/VMS arguments.

of RSX-11M function-dependent

Table 5-3
Disk Parameter Correspondence
Parameter Function RSX-11M Pn | VAX/VMS Pn
Starting buffer address Pl Pl
(staddy ’
Buffer size (size) P2 P2
High block number P4 P3 (high half of longword)
(bklh)
Low block number (blkl) P5 P3 (low half of longword)

I/0 DRIVERS

5.6 MAGNETIC TAPE DRIVER

Table 5-4 provides the correspondence between RSX-11M magnetic tape
function codes and VAX/VMS magnetic tape function codes and resultant
actions.

Table 5-4
Magnetic Tape Function Code Correspondence
Function RSX~-11M Code VAX/VMS Code or Action
Attach Device I0.ATT No operation in VAX/VMS.
Detach Device IO.DET No operation in VAX/VMS.
Cancel I/O Requests IO.KIL Cancel I/0 on Channel
system service.
Read Logical Block I0.RLB I0$_READLBLK
Write Logical Block I0.WLB I0$_WRITELBLK
Read Virtual Block IO0O.RVB I10$_READVBLK
Write Virtual Block I0.WVB I0$_WRITEVBLK
Write End-of-File Mark I0.EOF I0$_WRITEOF
Read Logical Block IO.RLV IO$_READPBLK!IO$M_REVERSE
Reverse
Rewind Unit I0.RWD I0$_REWIND
Rewind and Turn Unit I0.RWU I0O$_REWINDOFF
Off Line
Mount Tape and Set I0.SMO I0$_SETMODE. Parity and
Characteristics density are the charac-
teristics that can be
set.
Sense Tape Character- I0.SEC I0$_SENSEMODE
istics
Space Blocks I0.SPB IO$_SPACERECORD
Space Files I0.SPF I0S_SPACEFILE
Set Tape Character- I0.STC I0$_SETMODE. Parity and
istics density are the
characteristics that can
be set.

I/0 DRIVERS

Table 5-5 provides the correspondence of RSX-11M function-dependent
parameters to VAX/VMS arguments.

Table 5-5
Magnetic Tape Parameter Correspondence

Parameter Function RSX-11M Pn VAX/VMS Pn
Starting buffer address Pl Pl
(stadd)

Buffer size (size) P2 P2
Characteristic bits (cb) Pl Pl

of I0.SMO and I0.STC

Number of blocks to Pl Pl
space past (nbs) of

IO0.SPB

Number of EOFs to space Pl Pl

past (nes) of I0.SPF

I/0 DRIVERS

5.7 LINE PRINTER DRIVER

Table 5-6 provides the correspondence between RSX-11M 1line printer
function codes and VAX/VMS function codes or resultant action.
Table 5-6
Line Printer Function Code Correspondence
Function RSX-11M Code | VAX/VMS Code or Action
Attach Device I0.ATT No operation in VAX/VMS.
See Section 5.7.1.
Detach Device IO.DET No operation in VAX/VMS.
See Section 5.7.1.
Cancel I/O Requests I0.KIL Cancel I/O on Channel system
service. :
Write Logical Block I0.WLB I0$_WRITELBLK
Write Virtual Block I0.WVB I0$_WRITEVBLK
Write Physical Block IO.WPB I0$ WRITEBLK

Table 5-7 provides the correspondence of RSX-11M function-dependent

parameters to VAX/VMS arguments.

Table 5-7
Line Printer Parameter Correspondence
Parameter Function RSX-11M Pn VAX/VMS Pn

Starting buffer address Pl Pl
(stadd)

Buffer size (size) P2 P2
Vertical format control P3 P4
character (vfc)

5.7.1 Programming Hints

e VAX/VMS line printers are not shareable. VAX/VMS implicitly

allocates a line printer when a channel is assigned.

e VAX/VMS line printers normally are spooled. A spooled printer
is allocated to the print symbiont. VAX/VMS does not allow a
process to allocate a spooled device unless it has the
privilege to do so. An RSX-11M image is not allowed exclusive
use of a spooled device (for example, printer) unless the
process in which it is running has the necessary privilege and

the allocate command has been issued to reserve the
prior to image execution.

device

I/0 DRIVERS

If a printer is allocated or not spooled, the RSX-11M image's
I0O.WLB and IO.WVB requests for it produce exactly the same
results as in the RSX-11M operating system.

See Section 3.10, "Spooled Devices," for a discussion of the
requirements for issuing IO.WLB and IO.WVB requests to a
spooled device.

If an RSX-11M image issues a GET LUN INFORMATION directive for
a spooled device, the information returned is that for the
intermediate device.

I/0 DRIVERS

5.8 TERMINAL DRIVER

Table 5-8 illustrates the correspondence of the RSX-11M

function-dependent parameters Pl through P6 to their VAX/VMS
eguivalents for terminal devices. Table 5-9 provides the

correspondence of RSX-11M function codes to VAX/VMS functions. Table
5-10 lists the subfunction bits applicable for each RSX-11M function
code and provides notes describing VAX/VMS handling of these
subfunctions for terminals.

VAX/VMS places restrictions on the I/O functions that can be performed
on TI, CO, and CL because they are mapped to process-permanent files.
It places the same restrictions on I/0 to user-created
process-permanent files. Section 5.8.15, "Programming Hints,"
describes these restrictions.

Table 5-8 ,
Terminal Parameter Correspondence
Parameter Function RSX-11M Pn VAX/VMS Pn
Starting buffer address Pl Pl
(stadd)
Buffer size (size) P2 P2
Vertical format control P3 P4*

character (vfc) on write

Timeout count (tmo) on P3 P3
read with prompt

Prompt address (pradd) for P4 P5
read with prompt

Prompt size (prsize) for P5 P6
read with prompt

Vertical format control P6 none
character (vfc) for read
with prompt

* PFor all read functions except IO.RPB and IO.RST, the VAX/VMS P4
parameter specifies RETURN, ESCAPE, and CTRL/Z as terminators. For
IO.RPB, no characters are terminators. For IO.RST, P4 1is O
specifying that all characters with a value less than an ASCII space
are terminators except form feed, vertical TAB, backspace, delete,
and TAB.

5-12

I/0 DRIVERS

Table 5-9
Terminal Function Code Correspondence

Function RSX-11M Code | VAX/VMS Code or Action

Attach Device I0.ATT Terminal not attached.
Forces cancel CTRL/O
on next write.

Detach Device I0.DET Terminal not detached.
Forces cancel CTRL/O
on next write.

Cancel I/O Requests I0.KIL Cancel I/0 on Channel
system service.

Read Logical Block \ I0.RLB I0O$_READLBLK

Write Logical Block I0.WLB IO$_WRITELBLK

Read Virtual Block I0.RVB I0$_READVBLK

Write Virtual Block IO.WVB IOS_WRITEVBLK

Read Physical Block IO.RPB I0$_READPBLK

Write Pass All IO.WAL IO$_WRITEPBLK

Read Logical Block IO.RPR IO$_READPROMPT

after Prompt

Get Multiple Characteristics SF.GMC Get I/0 Channel Device
Information system
service.

Set Multiple Characteristics SF.SMC I0$_SETMODE

Get Terminal Support I0.GTS Standard data returned.

NOTE

The remaining device-specific function
codes are the equivalent of the logical
OR of a subfunction bit and one of the
standard function codes IO.ATT, IO.RLB,
or IO.WLB. See Table 5-10, "Subfunction
Bit Correspondence."

I/0 DRIVERS

Table 5-10

Subfunction Bit Correspondence

APPLICABLE SUBFUNCTION BITS

X = Corresponds directly to VAX/VMS function.
n = Indicates correspondingly-numbered note.

EQUIVALENT WITH
FUNCTION | SUBFUNCTION BIT | TF.AST|TF.BIN|TF.CCO|TF.ESQ|TF.RAL| TF.RNE|TF.RST| TF.WAL|TF .WBT TF.%OF
STANDARD FUNCTIONS:
I0.ATT 1 2
IO.DET
IO.KIL
IO.RLB 3 X X
IO.RVB 4
IO.RPB X
I0.WLB X X 2
I0.WVB 4
IO.WPB
DEVICE-SPECIFIC FUNCTIONS:
IO.ATA IO.ATT!TF.AST 2

(see Note 1)
I0.CCO IO.WLB!TF.CCO X 2
SF.GMC
IO.GTS
IO.RAL IO.RLB!TF.RAL X X

(see Note 3)
IO.RNE IO.RLB!TF.RNE 3
IO.RPR 2 3 2
JIO.RST IO.RLB!TF.RST 3 X
SF.SMC
IO.WAL IO.WLB!TF.WAL X 2
IO.WBT IO.WLB!TF.WBT X X

(See Note 2)
NOTES: 1. No attach performed.

Enables for CTRL/C ASTs only. See Section 5.8.1.

2. Subfunction bit ignored for one of the following reasons.

Function
TF.ESQ, TF.XON

TF.WBT

TF.BIN

Reason

These are characteristics of the terminal line and cannot be
controlled on a per-request basis.

The write breakthrough function is not supported in VAX/VMS.

See Section 5.8.8.

Function is not supported in VAX/VMS.

3. Sets the VAX/VMS function modifier IO$M NOFILTR. See Section 5.8.4.1.

4. RSX-1llM virtual functions do not accept these subfunction bits.

I/0 DRIVERS

5.8.1 IO.ATT Function

When an RSX-11M image issues an IO.ATT for a terminal, VAX/VMS
performs no operation to alter the attached/detached status of the
terminal, as described in Section 5.3.1, "Attach and Detach I/0
Device." VAX/VMS does, however, issue a request to the terminal driver
to cancel CTRL/O on the next operation to the terminal if that
operation is a write. The VAX/VMS terminal driver subfunction
modifier to cancel CTRL/O is IO$M_CANCTRLO. The RSX-11M terminal
driver also forces a cancel CTRL/O (TF.CCO) on a write operation that
follows an attach.

An IO.ATT function issued for TI, CO, or CL becomes a no-op.

5.8.1.1 IO.ATT!TF.AST and IO.ATA Functions - In VAX/VMS, an image can
enable to receive an AST when a user presses CTRL/C at a terminal.
When the AST occurs, the image can respond to the CTRL/C.

The RSX-11M function codes IO.ATT!TF.AST and IO.ATA are equivalent.
When an RSX-11M image executing in VAX/VMS issues either of these
codes, VAX/VMS issues a request to the terminal driver to enable the
image "for a CTRL/C AST. This function differs from the RSX-11M
operation in two respects:

® RSX-11M enables for an AST if any unsolicited character is
typed. VAX/VMS enables only for a CTRL/C AST.

® VAX/VMS retains unsolicited input characters other than CTRL/C
-in a typeahead buffer. Under RSX-11M, characters are lost if
no read 1is outstanding. For more information, see the
Terminal Driver chapter of the VAX/VMS I/0 User's Guide.

5.8.1.2 IO.ATT!TF.ESQ Function - In VAX/VMS, certain features that
are characteristic of a terminal 1line are set by issuing a set
terminal mode request (IO$_SETMODE) to the driver. Terminal
characteristics cannot be altered for the duration of an I/0 request
by specifying a modifier to the request; nor can they be modified as
a function of terminal allocation. The ability to recognize escape
sequences on a terminal line is a characteristic of the terminal and
must be set using IO$_SETMODE or a set command.

In RSX-11M, the subfunction bit TF.ESQ is used with either of the
attach function codes (IO.ATT or IO.ATA) to indicate that the image
recognizes any escape sequences generated at the designated terminal.
When VAX/VMS receives an I/0 request containing the TF.ESQ subfunction
from an RSX-11M image, it ignores that subfunction bit. The terminal
characteristics remain unaltered.

A

M image snould issue a set

DMMA AT AN AN -
Y A O R O S N 2 -

multiple characteristics request (S

5.8.2 IO.DET Function

When an RSX-11M image issues an 1IO.DET for a terminal, VAX/VMS
performs no operation to alter the attached/detached status of the
terminal, as described in Section 5.3.1, "Attach and Detach I1/0
Device." VAX/VMS does, however, issue a request to. the terminal driver
to cancel CTRL/O on the next operation to the terminal if that

I/0 DRIVERS

operation is a write. The VAX/VMS terminal driver subfunction
modifier to cancel CTRL/O is IOS$M_CANCTRLO. The RSX-11M terminal
driver also forces a cancel CTRL/O (TF.CCO) on a write operation that
follows a detach.

An IO.DET function issued for TI, CO, or CL becomes a no-op.

5.8.3 I0.KIL Function

An IO.KIL function issued for TI, CO, or CL becomes a no-op.

5.8.4 IO.RLB, IO.RAL, IO.RNE, and IO.RST Functions

The function codes IO.RLB, IO.RAL, IO.RNE, and IO.RST all allow an
image to read a logical block from a terminal. When VAX/VMS receives
a read logical block request from an RSX-11M image, it 1issues an
I0$_READLBLK request on behalf of the image. There is a direct
correspondence between IO.RLB and IO$_READLBLK. The RSX-1lM function
codes IO.RAL, IO.RNE, and IO.RST are the equivalents of the logical OR
of IO.RLB and a subfunction bit. The following sections describe
VAX/VMS handling of subfunction bits used with read logical block
requests.

5.8.4.1 IO.RLB!TF.RAL and IO.RAL - In VAX/VMS, the default terminal
driver operation on a read request is to intercept and interpret
control characters, for example, TAB, CTRL/R, CTRL/U, and DELETE.
However, a native image has two options for restricting the
interception of control characters by the driver.

e It can specify the subfunction modifier IOS$M NOFILTR on a read
function (either I0$ READLBLK, IO$_READVBLK, or
I0$_READPROMPT) to prevent the driver from intercepting
CTRL/U, CTRL/R, or DELETE.

e It can issue a read physical block (IO$_READPBLK) request to
prevent the driver from interpreting any characters.

Normally, an RSX-11M image that issues a read passing all data request
actually wants to receive only a subset of the possible control
characters; that is, it wants to receive CTRL/U, CTRL/R, and DELETE.
As a result, when VAX/VMS receives an IO.RLB!TF.RAL or IO.RAL request
from an RSX-11M image, it issues a request specifying
I0$_READLBLK!IOS$M_NOFILTR on behalf of the image.

The VAX/VMS equivalent of the RSX-11M read passing all data function
is read physical block (IO$_READPBLK). I0$ READPBLK corresponds
directly to the RSX-11M functioh code IO.RPB. IO.RPB has been added
to the 1legal set of function codes that can be issued by an RSX-11M
image to allow execution of the read passing all data function under
VAX/VMS. An RSX-11M image that wants to perform a read passing all
data function under VAX/VMS must be modified to issue an IO.RPB. An
image issuing TIO.RPB under the RSX-11M operating system runs without
receiving an error; that is, IO.RPB is a legal function.

5-16

I/0 DRIVERS

NOTE

In RSX-11M, an IO.RPB request is
equivalent to an IO.RLB request with a
subfunction bit set. IO.RAL or IO.RPB
work on both VAX/VMS and RSX-11M
systems.

VAX/VMS requires the image to have the appropriate privilege to read a
physical block.

5.8.4.2 IO.RLBI!TF.RNE and IO.RNE Functions - The RSX-11M function
codes IO.RLB!ITF.RNE and IO.RNE are equivalent. Either one corresponds
directly to the VAX/VMS function code IO$_READLBLK or IO$ READVBLK
with a no echo function modifier (IO$M_NOECHO). -

5.8.4.3 I0.RLB!TF.RST and I0.RST Functions - The RSX-11M function
codes IO.RLB!TF.RST and IO.RST are equivalent. Either one corresponds
directly to the VAX/VMS function code IO$_READLBLK with a function
modifier of IOSM_TRMNOECHO and a record termination parameter (P4) of
0. IOSM_TRMNOECHO prevents echoing of the line terminator. A record
termination parameter of 0 causes all characters with a value less
than an ASCII space to be terminators except form feed, vertical TAB,
backspace, and TAB.

5.8.5 I0.RPR Function

The IO.RPR function code corresponds directly to the VAX/VMS
IO$_READPROMPT function code. However, the RSX-11lM P6 parameter
(vertical control character) is ignored. VAX/VMS handling of the
subfunction bits TF.RAL, TF.RNE, and TF.RST with IO.RPR is exactly the
same as it is for 1IO.RLB. VAX/VMS does not support use of the
subfunction bit TF.BIN. VAX/VMS also ignores the subfunction bit
TF.XOF if it is specified.

If an IO.RPR function is issued for TI, CO, or CL and these devices
correspond to process permanent files, the prompt is ignored.

5.8.5.1 IO.RPRITF.XOF Function - In VAX/VMS, certain features that
are characteristic of a terminal 1line are set by issuing a set
terminal mode request (IO$_SETMODE) to the driver. A subfunction
modifier indicates the characteristic to be changed. Terminal
characteristics cannot be altered for the duration of an I/O request
by specifying a2 modifier to the regucst; nor can they be modified as
a function of terminal allocation. The ability to control XON/XOFF on
a terminal 1line 1is a characteristic of the terminal and must be set
using IO$_SETMODE.

In RSX-11M, the subfunction bit TF.XOF is used with I0O.RPR to control
XON/XOFF at the designated terminal. When VAX/VMS receives an I/0
request containing the TF.XOF subfunction from an RSX-11M image, it
ignores that subfunction bit. The terminal characteristics remain
unaltered.

To control XON/XOFF, an RSX-11M image should issue a set multiple
characteristics request (SF.SMC).

I/0 DRIVERS

5.8.6 IO.RVB Function

The IO.RVB function code corresponds directly to the VAX/VMS
I0S_READVBLK. No subfunction bits are supported in RSX-11M for
IO.RVB.

5.8.7 IO.RPB Function

See the discussion of IO.RAL in Section 5.8.4.1.

5.8.8 IO.WLB, IO.CCO, and IO.WBT Functions

The function codes IO.WLB, I0.CCO, and IO.WBT all allow an image to
write a logical block to a terminal. When VAX/VMS receives a write
logical block request from an RSX-11M image, it issues an
I0S WRITELBLK request. There is a direct correspondence between
I0.WLB and IO$_WRITELBLK. The RSX-11M function codes 1I0.CCO, and
IO.WBT are the equivalents of the 1logical OR of IO.WLB and a
subfunction bit. The sections that follow describe VAX/VMS handling
of subfunction bits on write logical block requests.

5.8.8.1 IO.WLB!TF.CCO and 1I0.CCO Functions - The RSX-11M function
codes IO.WLB!TF.CCO and I0.CCO are eguivalent. Either one corresponds
directly to the VAX/VMS I0$_WRITELBLK function with a function
modifier of IOSM_CANCTRLO.

5.8.8.2 IO.WLBI!WBT and IO.WBT Functions - In VAX/VMS, the write break
through function is implemented using the Broadcast system service.
As a result, neither of the RSX-11M function codes IO.WLB!WBT or
I0.WBT corresponds directly to a VAX/VMS driver function. When an
RSX-11M image requests write break through, VAX/VMS issues a
I0$_WRITELBLK function to the driver. A normal write logical block
function occurs.

5.8.9 I0.WVB Function

The RSX-11M function code I0.WVB corresponds directly to the VAX/VMS
function code I0$_WRITEVBLK. VAX/VMS handles the subfunction bits
allowed with IO.WVB in the same manner as it handles the subfunction
bits for IO.WLB. The resulting I/0 operation is a write virtual
block, however.

5.8.9.1 IO.WLB!TF.WAL, IO.WAL, and 1I0.CCO!TF.WAL Functions - The
RSX-11M function codes I0.WLB!TF.WAL and IO.WAL are equivalent. The
RSX-11M function IO.CCO!TF.WAL adds the cancel CTRL/O subfunction to
an IO.WAL request. When an RSX-11M image issues a write all data
request, VAX/VMS issues an IO$_WRITELBLK!IOSM_NOFORMAT request to
cause the data block to be transferred without interpretation to the
specified buffer.

VAX/VMS requires an image to have the appropriate privilege to write a
physical block. An RSX-11M image must have this privilege to
successfully issue an IO.WAL request.

5-18

I/0 DRIVERS

5.8.10 IO.WPB Function

The RSX-11M function code IO.WPB corresponds directly to the VAX/VMS
function code IO$_WRITEPBLK. No subfunction bits are applicable.

5.8.11 I0.GTS Function

VAX/VMS has no system generation options that control the features
included in the terminal driver.

When an RSX-11M image issues an IO.GTS request, VAX/VMS returns a
4-word buffer of information that describes the VAX/VMS terminal
driver features. Because these features cannot be altered, the same
information always is returned. Table 5-11 lists the terminal support
information returned under VAX/VMS.

That information includes all of the features that can be returned
under RSX-11M with the following exceptions, which are always zero:

Word 0, bit 1 F1.BTW Break through write
bit 2 F1l.BUF Checkpointing during terminal input
bit 14 Fl.UTP Input characters buffered in task's
address space
bit 15 F1.VBF Variable-length terminal buffers

Table 5-11
Information Returned by Get Terminal Support (IO.GTS)
Bit Mnemonic Meaning When Set
Word O
0 F1.ACR Automatic CR/LF on long lines
3 Fl1.UIA Unsolicited-input-character AST
4 Fl.CCO Cancel CTRL/O before writing
5 F1.ESQ Recognize escape sequences in solicited
input
6 F1.HLD Hold screen mode
7 F1l.LWC Lower-to-uppercase conversion
8 F1l.RNE Read with no echo
9 F1.RPR Read after prompting
10 F1.RST Read with special terminators
11 F1l.RUB CRT rubout
12 F1.SYN CTRL/R terminal synchronization
13 F1.TRW Read all and write all
Word 1
0 F2.SCH Set characteristics QIO (SF.SMC)
1 F2.GCH Get characteristics QIO (SF.GMC)
Words 2 Undefined in RSX-11M
and 3 .

An IO.GTS function issued for TI, CO, or CL returns no information.

I/0 DRIVERS

5.8.12 SF.GMC Function

When an RSX-11M image issues an SF.GMC request, VAX/VMS executes a Get
I/0 Channel Device Information system service and returns the
appropriate information to the RSX-11M image in the standard format.
Table 5-12 lists the terminal characteristics that can be returned for
SF.GMC requests. The RSX-11M characteristic TC.PRI is never returned
by VAX/VMS because VAX/VMS does not incorporate the concept of a
privileged terminal.

Table 5-12
Terminal Characteristics for SF.GMC and SF.SMC Requests
RSX-11M Bit Corresponding VAX/VMS
Name Meaning if Set Name
TC.ESQ Terminal can generate escape TMSM_ESCAPE
sequences

TC.HLD Terminal is in hold screen mode TM$M_HOLDSCREEN

TC.NEC Terminal is in no echo mode TM$M_NOECHO

TC.SCP Terminal is a scope TMSM_SCOPE

TC.SLV Terminal is slave TM$M_NOTYPAHEAD

TC.SMR Uppercase conversion is disabled TMS$SM_LOWER

TC.TTP Terminal type None

For the characteristic TC.TTP (terminal type), VAX/VMS always returns
the value T.UNKO (octal 16) indicating that the terminal type is not
known .

An SF.GMC function issued for TI, CO, or CL when the device
corresponds to a process permanent file becomes a no-op.

5.8.13 SF.SMC Function

When an RSX-11M image issues an SF.SMC function, VAX/VMS issues an
I0$_SETMODE request. Table 5-12 provides the correspondence among
RSX=11M terminal characteristics bit names and VAX/VMS subfunction
modifiers used with the function code IO$_SETMODE. An RSX-11M image
cannot set terminal type (TC.TTP) using a SF.SMC function. A DCL or
MCR SET command can be used to set the terminal type.

An SF.SMC function issued for TI, CO, or CL when the device
corresponds to a process permanent file becomes a no-op.

5.8.14 Terminal Read Status Returns

The content of an I/O status block used for terminal requests is the
same as that used for all QIO operations except for terminal read
operations. For terminal read operations, the high-order byte of the
first word contains a code that indicates the character or sequence

I/0 DRIVERS

that terminated the read operation. Any one of the following codes
can be returned.

5.8.15

IS.CR Read terminated by RETURN
IS.ESC Read terminated by ALTMODE
IS.ESQ Read terminated by an escape sequence
- Other terminator character

0 Read terminated by full buffer

Programming Hints
VAX/VMS terminals can be spooled.

See Section 3.10, "Spooled Devices," for a discussion of the
requirements for issuing IO.WLB and IO.WVB reguests to a
spooled device.

If an RSX-11M image issues a GET LUN INFORMATION directive for-
a spooled device, the information returned is for the
intermediate device, that is, for a disk.

TI, CO, and CL. map to VAX/VMS process-permanent files as
follows:

RSX-11M Pseudo-Device VAX/VMS Process-Permanent Files
TI SYSSINPUT and SYSSOUTPUT
CcO SYSSCOMMAND
CL SYSSERROR

Process-permanent files are controlled using VAX-11 RMS unless
they map to terminals. VAX/VMS, therefore, limits the I/0
function codes that can be used to access these files to read
and write functions only. All subfunction bits are ignored.
Functions other than read and write are illegal and result in
the 1I/0 status code IE.IFC (illegal function for this device)
being returned.

For RSX-11M images, user-created process-permanent files
appear as record-oriented terminal devices.

When process-permanent files map to terminals, queue I/0
requests can be issued.

The device characteristics for TI, CO, and CL are as follows:

-- terminal

-- 132-byte buffer
-- carriage control
-- no lowercase

I/0 DRIVERS

5.9 CARD READER DRIVER

Table 5-13 provides the correspondence between RSX-11M card reader
functions and VAX/VMS function codes or resultant actions.

Table 5-13
Card Reader Function Code Correspondence
Function RSX-11M Code VAX/VMS Code or Action

Attach Device IO.ATT No operation

Detach Device IO.DET No operation

Cancel I/O Request I0.KIL Cancgl I/0 on Channel system

service

Read Virtual Block IO.RVB IO$_READVBLK

Read Logical Block IO0.RLB I0OS$_READLBLK

Read Logical Block IO.RBD IO$_READLBLK!IO$M_BINARY

The two function-dependent parameters (P1 and P2) for RSX-11M card
reader functions correspond directly to Pl and P2 of VAX/VMS card
reader functions.

5-22

I/0 DRIVERS

5.10 NULL DEVICE

VAX/VMS supports the use of a null device by RSX-11M images. As under
RSX-11M, a read request to the null device results in an end-of-file
status return (IE.EOF), and a write request results in success status

return (IE.SUC).

I/0 to the null device is treated like I/0 to an unsupported device as
described in Section 5.1, "Supported Devices."

I/0 DRIVERS

5.11 DISK AND MAGNETIC TAPE ACPs

I/0 operations involving file-structured devices (disk and magnetic
tape) often require ACP intervention. Normally, RSX-11M images
perform I/0 using RMS-11 or FCS; they do not issue QUEUE I/O REQUEST
directives directly to an ACP. Any ACP intervention needed is
requested by RMS-11 or FCS and occurs transparently from the image's
point of view. It 1is possible, however, for images to request ACP
functions directly by issuing a QUEUE I/O REQUEST directive and
specifying an ACP function code.

The information in this section is relevant only to RSX-11M images
that issue ACP functions directly, for example, create file and enter
file name. Other RSX-11lM images running under VAX/VMS can rely on
RMS-11 or FCS to request appropriate RSX-11M ACP functions during
image execution.

VAX/VMS ACP functions are expressed using six function codes and three
function modifiers. The six function codes follow.

e IO$_CREATE -- Create file
e IOS_ACCESS —-- Access file
e IOS_DEACCESS -- Deaccess file
e IO$_MODIFY -- Modify file
e IO$_DELETE -- Delete file
e I0$_ACPCONTROL -- ACP control

The three function modifiers, which can be applied to the create,
access, and delete functions, follow.

e IOS$M_ACCESS -- Open file on user's channel
e IOSM_CREATE -- Create a file identification
e TIOSM _DELETE -- Delete file

By using a function code and a function modifier together, an image
can request multiple ACP operations in one I/O request. For example,
IO$_CREATE!IOSM_ACCESS requests the ACP to create a file and to access
the file on the specified channel. 1IOS$_DELETE!IO$M DELETE causes a
file's directory entry and file header to be deleted; that 1is, the
file 1is deleted. I0$_DELETE with no function modifier causes the
file's directory entry to be deleted.

In addition to function codes and modifiers, VAX/VMS ACPs use a file
identification block (FIB) as the main means of communication between
the requester and the ACP. The function-dependent parameter P1 for
all ACP requests 1is the address of a descriptor for the associated
FIB. The FIB contains much of the information passed to an ACP by an
RSX-11M image in Pl through P6. Figure 5-2 illustrates a FIB. The
VAX/VMS 1/0 User's Guide provides a detailed description of the
contents of a FIB and describes the ACP functions supported by
VAX/VMS.

I/0 DRIVERS

31 24 23 16 15 8 7 0

|
FIBSB_WSIZE FIBSL _ACCTL
|
!
FIBSW_FID
|

I
FIBSW_DID
!

1

FiB$L_wCC
|

FIBSW_EXCTL FIBSW_NMCTL

|
FIB$L_EXSZ
|
|
FIBSL_EXVBN
|

FIBSB_ALALIGN FIBSB_ALOPTS

|

]

|

— FIBSW_ALLOC B
|

!

|

Figure 5-2 File Identification Block Format

RSX-11M ACP functions are expressed using the following function
codes:

® IO.CRE -- Create file

® IO.ACR -- Access for read

e IO.ACW -- Access for write

® IO.ACE -- Access for extend

® IO0.EXT -~ Extend file

® IO.WAT -~ Write attributes

® IO.RAT -- Read attributes

e IO.DAC -- Deaccess file

® IO.DEL -- Delete file

® IO.FNA -- Find file name

® IO.RNA -- Remove file name

® IO.ENA -- Enter file name

e IO.APC -- ACP control

I/0 DRIVERS

When an RSX-11M image issues an ACP request under VAX/VMS, VAX/VMS
issues an ACP Queue I/O Request system service. It obtains the data
to fill in the FIB and function-dependent parameters for the request
from two sources:

e Function-dependent parameters supplied by the image in the
QUEUE I/0 REQUEST directive

e Data structures pointed to by function-dependent parameters,
for example, the file name block

Once the requested function is performed, VAX/VMS fills in the RSX-11M

image's data structures with the same information that is returned to
the image when executing under the RSX-11M operating system.

5.11.1 General Correspondence of Parameters
Table 5-14 identifies the relationship of RSX-11M function-dependent
parameters to VAX/VMS function-dependent parameters and FIB fields.

Table 5-14
ACP Parameter Correspondence

Parameter Function RSX-11M Pn VAX/VMS Eguivalent
File identification Pl (pointer) FIBSW_FID (value)
pointer
Attributé list pointer P2 P5 (reformatted)
Extend control P3 (high byte) FIBSW_EXCTL
Delta size in blocks P3 (low byte) and P4 FIBSL EXVBN for

truncate only or
FIBSL_EXSZ for

extend
Window size P5 (low byte) FIBSB_WSIZE
Access control P5 (high byte) FIBSL_ACCTL
File name block pointer | P6 P2 (name string)
and P4 (result
string)

5.11.2 I0.CRE Function
Eqguivalent Function Code: IO$_CREATE!IOSM_CREATE
Notes:

e If the extend size is supplied in the low byte of P3 and in
P4, it is stored in FIBSL_EXSZ.

5.11.3

I/0 DRIVERS

The high-order byte of P3 (extend control) is used to set bits
in FIBSW_EXCTL:

FIB$V_EXTEND = EX.ENA
FIB$V_ALCON = EX.ACl
FIBSV_ALCONB = EX.AC2
FIB§V_FILCON = EX.FCO
FIBSV_ALDEF = EX.ADF

The file identification is copied from FIBSW_FID and returned
in the address pointed to by P1 (FID pointer}.

Information in the VAX/VMS attribute list is derived from the
RSX-11M attribute list, if one is supplied.

The extend size in blocks is returned in bytes 1, 2, and 3 of
the I/0 status block.

I0O.DEL with EX.ENA=0

Equivalent Function Code: IO$_DELETE!IO$M_DELETE

Note:

5.11.4

The file identification pointed to by Pl is copied into
FIBSW_FID.

IO.DEL with EX.ENA=1

Equivalent Function Code: IO$_MODIFY

Notes:

5.11.5

The file identification pointed to by Pl is copied into
FIB$W_FID.

FIBSV_TRUNC is set in field FIBSW_EXCTL.

The extend size supplied in the low byte of P3 and in P4 is
incremented by 1 and stored in FIBSL_EXVBN.

The file round-up in blocks is returned in bytes 2 and 3 of
the I/0 status block. File round-up is the number of blocks
added to the specified file size to reach the next cluster
boundary.

IO.ACR Function

Equivalent Function Code: I0$_ACCESS!IOS$M_ACCESS

Notes:

The file identification pointed to by Pl is copied into
FIBSW_FID.

5.11.6

I/0 DRIVERS

The high byte of P5 (access control) is used to set bits in
FIB$L_ACCTL:

FIB$V_NOWRITE = AC.LCK
FIBSV_REWIND = AC.RWD
FIBSV_CURPOS = AC.POS
FIBSV_UPDATE = AC.UPD

The window size provided by the low byte of P5 1is stored in
FIB$B_WSIZE.

Information‘in the VAX/VMS attribute list is derived from the
RSX~11M attribute list, if one is supplied.

I0.ACW and IO.ACE Functions

Equivalent Function Code: IO$_ACCESS!IOS$M_ACCESS

Notes:

5.11.7

The file identification pointed to by Pl is copied into
FIBSW_FID.

The high byte of P5 (access control) is used to set bits in
FIBSL_ACCTL:

FIB$V_DLOCK = AC.DLK
FIBSV_NOWRITE = AC.LCK
FIB$SV_REWIND = AC.RWD
FIB$V_CURPOS = AC.POS
FIBSV_UPDATE = AC.UPD

In addition, VAX/VMS sets FIB$V_WRITE.

The window size provided by the low byte of P5 1is stored in
FIBSB WSIZE.

Information in the VAX/VMS attribute list is derived from the
RSX-11M attribute list, if one is supplied.

IO.DAC Function

Equivalent Function Code: IO$_DEACCESS

Notes:

The file identification pointed to by Pl is copied into
FIB$W_FID.

Information in the VAX/VMS attribute list is derived from the
RSX-11M attribute list, if one is supplied.

I/0 DRIVERS

5.11.8 IO0.EXT Function
Equivalent Function Code: IO$_MODIFY
Notes:

e The file identification pointed to by Pl is copied into

FIB$W_FID.
e The high byte of P3 (extend control) is used to set bits in
FIB$W_EXCTL:
FIBSV_EXTEND = EX.ENA
FIB$V_ALCON = EX.ACl
FIB$V_ALCONB = EX.AC2
FIBSV_FILCON = EX.FCO
FIBSV_ALDEF = EX.ADF

e The extend size supplied in the low byte of P3 and in P4 is
stored in FIBSL_EXSZ.

® The amount by which the file is extended is returned in bytes
1, 2, and 3 of the I/0 status block.

5.11.9 IO.WAT Function
Equivalent Function Code: IO$_MODIFY
Notes:

e The file identification pointed to by Pl is copied into
FIBSW_FID. /

o Information in the VAX/VMS attribute list is derived from the
RSX-11M attribute list, if one is supplied.

5.11.10 1IO.RAT Function
Equivalent Function Code: IO$_ACCESS
Notes:

e The file identification pointed to by Pl is copied into
FIBSW_FID.

e Information in the VAX/VMS attribute list is derived from the
RSX-11M attribute list, if one is supplied.

5.11.11 IO.FNA Function
Equivalent Function Code: IO$_ACCESS
Notes:

e The file identification is copied from FIBSW_FID and returned
in the address pointed to by Pl.

e The directory identification is copied from the file name
block into FIBS$W_DID.

5.11.12

I/0 DRIVERS

The file name étring supplied in the request 1is constructed
from the Radix-50 file name in the file name block.

If the bit NB.WLV is set in N.STAT of the file name block, a
resultant string is constructed from the Radix-50 name and
type. The version number is stored in N.FID+4 of the name
block, and is supplied as input to the IO$_ACCESS call.:

If NB.WLV is not set, a resultant string of zero 1length is
supplied.

The file name string returned is the resultant string returned
by the Queue I/O Request system service. It is converted back
to Radix-50 and returned to the file name block.

Control bits in field N.STAT of the file name block are used
to set bits of FIB$W_NMCTL:

FIBSV_ALLNAM = NB.SNM
FIBSV_ALLTYP = NB.STP
FIB$V ALLVER = NB.SVR

FIB$V:WILD NB.SNM!NB.STP!NB.SVR

The file name block field N.NEXT is used to set FIBSL_WCC.
The resulting value of FIBSL_WCC is returned in N.NEXT.

JO.RNA Function

Equivalent Function Code: IO$_DELETE

Notes:

The file identification is copied from FIB$W_FID and returned
in the address pointed to by Pl.

The directory identification is copied from the file name
block into FIBSW_DID.

If the bit NB.WLV is set in N.STAT of the file name block, a
resultant string is constructed from the Radix-50 name and
type. The version number is stored in N.FID+4 of the name
block, and is supplied as input to the IO$_ACCESS call.

if NB.WLV is not set, a resultant string of zero length |is
supplied.

The file name string supplied in the request is constructed
from the Radix-50 file name in the file name block.-

The file name returned is the resultant string returned by the
Queue I/O Request system service. It is converted back to
Radix-50 and returned to the file name block.

Control bits in field N.STAT of the file name block are used
to set bits of FIB$W_NMCTL:

FIBSV_ALLNAM = NB.SNM
FIBSV_ALLTYP = NB.STP
FIBSV ALLVER = NB.SVR

FIBSV_WILD NB.SNM!NB.STP!NB.SVR

The file name block field N.NEXT is used to set FIBSL_WCC.
The resulting value of FIBSL WCC is returned in N.NEXT.

5-30

5.11.13

I/0 DRIVERS

I0.ENA Function

Equivalent Function Code: IO$_CREATE

Notes:

5.11.14

The file identification is copied from the file name block
into FIB$W_FID.

The directory identification is copied from the file name
block into FIBSW_DID.

The file name string supplied in the request is constructed
from the Radix-50 file name in the file name block.

The file name returned is the resultant string returned by the

Queue I/0 Request system service. It is converted back to
Radix-50 and returned to the file name block.

I0.APC Function

Equivalent Function Code: IO$_ACPCONTROL

Notes:

P3 contains the subfunction identification. The low-order
byte of P3 1is zero-extended and stored at FIBSW_CNTRLFUNC,
which overlays FIBSW_EXCTL. The RSX-11M ACP subfunction codes
have direct equivalents in VAX/VMS, as follows.

RSX-11M Subfunction VAX/VMS Subfunction

FF.NV FIB$SC NEXTVOL
FF.POE FIBSC POSEND
FF.RWD FIBSC REWINDVOL
FF.RWF FIB$C REWINDFIL
FF.SPC FIBSC_SPACE

For the FF.SPC subfunction, P4 is sign-extended and stored at
FIBSL_CNTRLVAL, which overlays FIBSL_EXSZ. A negative value
for P4 specifies the number of blocks to space backward. A
positive value indicates the number of blocks to space
forward.

APPENDIX A
VAX-11/780 COMPATIBILITY MODE INSTRUCTION SET
Table A-1 lists the compatibility mode instruction set on VAX-11/780.

Table A-1
VAX-11/780 Compatibility Mode Instruction Set

Opcode Mnemonic
(octal)

000002 RTI

000006 RTT

0001DD JMP

00020R RTS
000240-000277 Condition codes
0003DD SWAB
000400-003777 Branches
100000-103777 Branches

004RDD JSR

.050DD CLR (B)

.051DD COM (B)

.052DD INC(B)

.053DD DEC (B)

.054DD NEG (B)

.055DD ADC (B)

.056DD SBC(B)

.057DD TST(B)

.060DD RCR(B)

.061DD ROL (B)

.062DD ASR (B)

.063DD ASL (B)

00658S MFPI (See note below.)
0066DD MTPI (See note below.)
1065Ss MFPD (See note below.)
1066DD MTPD (See note below.)
0067DD SXT

070RSS MUL

071RSS DIV

072RSS ASH

073RSS ASHC

074RSS XOR

077RNN SOB

.18SDD MOV (B)

.2S8SDD CMP(B)

.38SDD BIT (B)

.4SSDD BIC (B)

.55SDD BIS(B)

06SSDD ADD

16SSDD SUB

VAX-11/780 COMPATIBILITY MODE INSTRUCTION SET

NOTE

The MFPI, MTPI, MFPD, and MTPD,
instructions execute exactly as they
would on a PDP-11 in wuser mode with
Instruction and Data space overmapped.
More specifically, they ignore the
previous access level and act like PUSH
and POP instructions referring to the
current stack.

VAX/VMS provides emulation of the FPP floating point instructions.

APPENDIX B

PARSE DIRECTIVE

The parse directive allows an RSX-11M image to wuse VAX/VMS file
specifications that are not fully qualified because of the use of
logical names. Use of this directive replaces the operation of the
FCS .PARSE, .PRSDR, and .PRSDV routines and the RMS-11 S$PARSE routine
for RSX-11M images running in VAX/VMS.

An RSX-11M image requests the parsing of a file specification by
issuing a parse directive that supplies the addresses of a file name
block and data structures containing default information. VAX/VMS
uses the information supplied by the image and information contained
in the RSX-11M logical name table and the system logical name table to
build the primary and default strings that VAX-11] RMS requires to
perform the actual parsing. VAX-11] RMS returns the expanded name to
VAX/VMS. VAX/VMS, in turn, uses the expanded name to fill in the
appropriate RSX-11M data structures, for example, returned directory
string and file name block. The result is that the image receives the
information in the normal RSX-11M formats.

The image can request four different types of parsing:
® Parsing of the full file specification (normal mode)
® Parsing of the device name only (device-only mode)

e Parsing of the file name using the default file name block as
the major source of input (dfnb mode)

® RMS-11 mode of parsing

B.1l NORMAL MODE PARSING
When the mode parameter is equal to 0, VAX-11l RMS parses the full file
specification. VAX/VMS builds the primary string required as input to
VAX-11 RMS by concatenating fields of the dataset descriptor, as
follows:

e Device

e Directory

e Filename.type;version

It builds the default string from fields of the default file name
block and from the default directory descriptor, as follows:

e Device from the LUN or default file name block

PARSE DIRECTIVE

e Default directory from ‘the image's default directory
descriptor

e Filename.type;version from the default file name block
VAX-11 RMS returns to the RSX-11M image a filled-in file name block

and directory string descriptor in the file name block. The directory
string is returned at the address specified in the descriptor.

B.2 DEVICE-ONLY PARSING

When the mode parameter is equal to 1, VAX-11l RMS parses only the
device and directory portion of the file specification. It uses the
same sources for the primary and default strings as it does for a
normal parsing operation.

B.3 DEFAULT FILENAME BLOCK PARSING

When the mode parameter is equal to 2, VAX/VMS uses the Radix-50 file
name in the default file name block to build the ASCII file name for
the primary string.

For the default string, VAX/VMS takes the device name from the default
file name block. It takes the directory name from the default
directory descriptor, and the file name, type, and version from the
default file name block.

The DSW return codes for default file name block parsing are the same
as for normal mode parsing.

B.4 RMS-11 MODE OF PARSING
When the mode parameter is equal to 3, VAX-1l1 RMS parses the file
specification using the same method used by RMS-11l. The format for

the DPB is slightly different from that used for modes 0, 1, and 2, as
described below.

B.5 DIRECTIVE CALL AND DPB FORMATS

The parse directive is called using DIR$, as follows:
DIRS $pardpb

The DPB has the following format for modes 0, 1, and 2.

pardpb: .BYTE 145.,7
.WORD mode

.WORD 1lun
.WORD dspt
.WORD dfnb
.WORD dfdd
.WORD fnb
.WORD rtdd

PARSE DIRECTIVE

mode = 0 for normal mode, 1 for parsing device only,

for

parsing using default file name block, or 3 for
RMS-11 mode. See the sections that follow for a

description.

lun = logical unit number.

dspt = address of the data set descriptor.

dfnb = address of the default name block.

dfdd = address of the descriptor for the default directory
string. See the first note below.

fnb = address of the file name block.

rtdd = address of the descriptor for the returned directory

string. See the first note below.
The DPB has the following format for mode 3.

pardpb: .BYTE 145.,7
.WORD mode
.WORD lun
+.WORD pript
.WORD did
.WORD 0 ;this word is ignored.
.WORD fnb
.WORD expnam

The definitions of mode, lun, and fnb are the same as those for

DPB format provided above.

pript address of the primary input descriptor.

did

address of the default input descriptor.

expnam = address of the descriptor for the block in
to return the expanded name.

DSW Return Codes:

IS.SUC ~-- Success

the

which

IE.BAD -- Invalid mode missing or bad parameter (default error)

IE.NSF -- Directory not found (RMS$S_DNF)

IE.BDI -- Bad directory syntax (RMSS$_DIR)

IE.BNM -- Bad file name (RMSS_(SYN,FNM,LNE,TYP,VER))
IE.DNR -- Device not ready (RMS$_DNR)

IE.DUN -- Device not available (RMS$ CHN)

IE.NSF -- File not found (RMS$ FNF)

IE.BDV -- Bad device specification (RMS$_DEV)

lotecs:

® All descriptor input parameters must be a 2-word block

the following format.

.WORD size
.WORD address

® RSX-11M does not support this directive. An RSX-11M

with

image

using this directive can test for an illegal directive DSW
code to determine whether it is executing under RSX-11M or

VAX/VMS and take appropriate action at run time.

A

Abnormal image termination,
2-11

Abnormal termination of RSX-11M
images, 2-11

ABORT TASK directive, 2-3, 4-8

ABRTS$ directive, 4-8

ALLOCATE command, 5-2

Allocate Device system service,
3-4

Allocation, 5-2

implicit, 5-2

ALTER PRIORITY directive, 2-8,
4-9

ALTPS$ directive, 4-9

ALUNS directive, 4-10

Ancillary control processes
(ACPs), 3-4, 5-24

functions, 3-11

Assign I/O Channel system

service, 3-3, 4-10
emulation of ASSIGN LUN

directive, 4-10

ASSIGN LUN directive, 2-14,
3-6, 4-10

Assignment of devices, 3-6

AST SERVICE EXIT directive,
4-11

ASTX$ directive, 4-11

Attach I/O device (IO.ATT),
5-2

ATTACH REGION directive, 4-6

Balance set swapping, 2-7

C

Cancel I/O on Channel system
service, 3-4, 5-3

Cancel I/O request (I0.KIL),
5-3

CANCEL MARK TIME REQUESTS
directive, 4-13

CANCEL TIME BASED INITIATION
REQUESTS directive, 2-3,
4-14

Cancel Timer Request system
service, 4-13

emulation of CANCEL MARK

TIME REQUESTS directive, 4-13

INDEX

Cancel Wakeup system service,
4-14
emulation of CANCEL TIME
BASED INITIATION REQUESTS
directive, 4-14
Channel, 3-3
Characteristics bit handling,
5-8 :
magnetic tape, 5-8
terminal (SF.GMC and SF.SMC),
5-20
CL, 3-6
assignment of, 3-6, 3-8
CLEAR EVENT FLAG directive,
4-12
CLEAR EVENT FLAG system
service, 4-12
emulation of CLEAR EVENT
FLAG directive, 4-12
CLEF$ directive, 4-12
Clock, system, 2-8
CMKTS$ directive, 4-13
Cco,
assignment of, 3-6, 3-8
COMMON, 2-9
Common areas, 2-9
Compatibility mode instruction
set, 1-1, A-1
Condition handling, 2-11
Control region, 1-5
CREATE ADDRESS WINDOW directive,
4-6
Create and Map Section system
service, 2-9
Create Mailbox and Assign I/0O
Channel system service,
3-3
CREATE REGION directive, 4-6
CSRQ$ directive, 4-14

D

DECLS$ directive, 4-15
DECLARE SIGNIFICANT EVENT
directive, 2-8, 4-15
Detach I/O device (IO.DET),
5-2
DETACH REGION directive, 4-6
Device allocation, 3-4
Device assignment, 3-6, 4-10
CL, 3-6, 3-8
co, 3-6, 3-8
TI, 3-6, 3-8
Device attachment, 3-4

Index~1

INDEX (Cont.)

Device name mapping, 3-8

ASSIGN LUN directive, 4-10
GET LUN information directive,
4-25

LB,
ov,
sp,
sY,
WK, 3

Wwww
00 0 O ©

8

Device-independent I/0, 3-1
Devices supported, 5-2
Devices, 5-2

shareable, 5-2

Directives, 4-8

ABORT TASK, 4-8

ALTER PRIORITY, 2-8, 4-9

ASSIGN LUN, 2-14, 3-6, 4-10

AST SERVICE EXIT, 4-11

ATTACH REGION, 4-6

CANCEIL MARK TIME REQUESTS,
4-13

CANCEL TIME BASED INITIATION
REQUESTS, 4-14

CLEAR EVENT FLAG, 4-12

CONNECT TO INTERRUPT VECTOR,
4-6

CREATE ADDRESS WINDOW, 4-6

CREATE REGION, 4-6

DECLARE SIGNIFICANT EVENT,
2-8, 4-15

DETACH REGION, 4-6

DISABLE AST RECOGNITION, 4-16

DISABLE CHECKPOINTING, 2-7,
4-17

ELIMINATE ADDRESS WINDOW,
4-6

emulation of, 1-3

ENABLE AST RECOGNITION, 4-18

ENABLE CHECKPOINTING, 2-7,
4-19

event-associated, summary of,
4-3

EXIT IF, 4-20

EXIT WITH STATUS, 4-22

EXTEND TASK, 4-23

GET LUN INFORMATION, 2-14,
3-4, 4-24, 5-2

GET MAPPING CONTEXT, 4-6

GET MCR COMMAND LINE, 4-26

GET PARTITION PARAMETERS,
2-7, 4-28

GET REGION PARAMETERS, 4-6

GET SENSE SWITCHES, 4-6

GET TASK PARAMETERS, 2-2,
4-30

GET TIME PARAMETERS, 2-8,
4-29

I/0, summary of, 4-5

informational, summary of,
4-2

Directives (Cont.),

INHIBIT AST RECOGNITION,
4-16

interprocess communications,
summary of, 4-5

MAP ADDRESS WINDOW, 4-6

MARK TIME, 2-8, 4-31

QUEUE I/0 REQUEST, 2-14, 3-4,
3-11, 4-33, 5-1, 5-3

QUEUE I/0 REQUEST AND WAIT,
2-14, 4-35

READ ALL EVENT FLAGS, 4-38

RECEIVE DATA, 2-14, 3-9,
4-36

RECEIVE DATA OR EXIT, 2-14,
3-9, 4-37

REQUEST, 2-10, 4-39

RESUME, 2-10, 4-40

RUN, 2-8, 2~-10, 4-41

SEND DATA, 2-14, 3-9, 3-11,
4-43

SET EVENT FLAG, 4-44

SPECIFY FLOATING POINT
PROCESSOR EXCEPTION AST,
4-45

SPECIFY POWER RECOVERY
AST, 4-47

SPECIFY RECEIVE DATA AST,
4-48

SPECIFY RECEIVE-BY-REFERENCE
AST, 4-6

SPECIFY SST VECTOR TABLE
FOR DEBUGGING AID, 4-50

SPECIFY SST VECTOR TABLE
FOR TASK, 4-51

SUSPEND, 4-46

task execution control,
summary of, 4-5

TASK EXIT, 2-10, 4-21

trap-associated, summary of,
4-4

UNMAP ADDRESS WINDOW, 4-6

unsupported, 4-6

use restricted by protection,
2-2

WAIT FOR LOGICAL OR EVENT
FLAGS, 4-53

WAIT FOR SIGNIFICANT EVENT,
2-8, 4-52

WAIT FOR SINGLE EVENT FLAG,
4-54

DISABLE AST RECOGNITION

directive, 4-16

DISABLE CHECKPOINTING directive,

2-7, 4-17

Disk driver, 5-7

I0.ATT, 5-7
I0.DET, 5-7
I0.KIL, 5-7
10.LOV, 5-7

Index-2

INDEX (Cont.)

Disk driver (Cont.),

IO0.RLB, 5-7
I0.RPB, 5-7
I0.RVB, 5-7
I0.WDD, 5-7
IO0.WLB, 5-7
I0.WPB, 5-7
I0.wWVB, 5-7

Drivers, 5-7
card reader, 5-22
disk, 5-7
line printer, 5-10
magnetic tape, 5-10
null device, 5-23
DSARS directive, 4-16
DSCPS$ directive, 4-17
DSW return codes, 2-6, 4-7

E

ELIMINATE ADDRESS WINDOW
directive, 4-6
Emulation of directives, 1-3
Emulation of floating point
instructions, 1-4
ENABLE AST RECOGNITION
directive, 4-18
ENABLE CHECKPOINTING directive,
2-7, 4-19
ENARS directive, 4-18
ENCP$ directive, 4-19
Error codes,
see DSW return codes
Error status returns (IOSB),
5-3
Event flag clusters, 2-4
common, 2-4
local, 2-4
protected by group number,
2-4
Event-associated directives,
4-3
EXSERR (error), 4-22
EX$SEV (severe error), 4-22
EX$SUC (normal), 4-22
EXSWAR (warning), 4-22
EXIF$ directive, 4-20
EXIT IF directive, 4-20
Exit system service, 4-20
emulation of,

EXIT IF directive, 4-20
RECEIVE DATA OR EXIT
directive, 4-37

TASK EXIT directive, 4-21
EXIT WITH STATUS directive, 4-22

EXIT$ directive, 4-21
EXTEND TASK directive, 4-23

F

PCS (file control services),
3-1, 3-6
FCS spooling, 3-11
File identification block,
5-25
format, 5-25
Floating point instructions,
emulation of, 1-4
Force Exit system service,
emulation of ABORT TASK
directive, 4-8
Formula for physical device
name mapping, 3-7
Function codes,
see I/0 function codes
Function~-dependent parameters,
5-1

G

GEN partition, 4-28
GET PARTITION PARAMETERS,
4-28
GET TASK PARAMETERS, 4-30
Get Channel Information system
service, 3-4, 4-25
emulation of GET LUN
INFORMATION directive, 4-25
GET LUN INFORMATION directive,
2-14, 3-4, 4-24
GET MAPPING CONTEXT directive,
4-6
GET MCR COMMAND LINE directive,
4-26
GET PARTITION PARAMETERS
directive, 2-7, 4-28
GET REGION PARAMETERS direc-
tive, 4-6
GET SENSE SWITCHES directive,
4-6
GET TASK PARAMETERS directive,
2-2, 4-30
GET TIME PARAMETERS directive,
2-8, 4-29
Global sections, 2-9
permanent, 2-9
protection by group, 2-9
temporary, 2-9
use for commons and libraries,
2-9
GLUNS directive, 4-24
GMCRS$ directive, 4-26
GPRTS$ directive, 4-28
GTIMS$ directive, 4-29
GTSK$ directive, 4-30

Index-3

INDEX (Cont.)

H

HALT instruction, 1-2
Hibernation, 2~10

I/0 channel, 3-3
I/0 directives, 4-5
I/0 drivers, 3-4, 5-1
I/0 function codes (standard),
5-2
IO.ATT,
IO.DET, 5-2
I0.KIL, 5-3
I/0 status block, 3-4, 3-6,
5-3
I/0 status returns, 5-4
summary of, 5-4
I/0 system, 2-14
I/0 system services, 3-2
Image termination, 2-10
Image, 1-4 -
concept of, 1-4
Implicit device allocation,
5-2
Informational directives, 4-2
INHIBIT AST RECOGNITION, 4-16
Instruction set, 1-1
compatibility mode, A-1l
Interprocess communications
directives, 4-5
summary of, 4-5
I0.ACE (ACP), 5-28
I0.ACR (ACP), 5-27
IO.ACW (ACP), 5-28
IO0.APC (ACP), 5-31
IO.ATA, 5-15
terminal,
IO.ATT, 5-2
disk, 5-7
line printer, 5-10
magnetic tape, 5-8
terminal, 5-15
I0.CCO (terminal), 5-18
IO.CRE (ACP), 5-26
IO.DAC (ACP), 5-28
IO.DEL (ACP), 5-27
IO.DET, 5-2
disk, 5-7
line printer, 5-10
magnetic tape, 5-8
terminal, 5-15
IO.ENA (ACP), 5-31
I0.EOF (magnetic tape), 5-8
IO.FNA, 5-29
I0.GTS (terminal), 5-19

5-2

5-15

I0.KIL, 3-4, 5-3

disk, 5-7

line printer, 5-10

magnetic tape, 5-8
I0.LOV (disk), 5-7
I0.RAL (terminal),
IO.RAT (ACP), 5-29
IO.RLB,

disk, 5-7

magnetic tape, 5-8

terminal, 5-16
IO.RLV (magnetic tape),
IO.RNA (ACP), 5-30
IO.RNE (terminal), 5-17
IO.RPB,

disk, 5-7

terminal, 5-18
IO.RPR (terminal), 5-17
IO.RST (terminal), 5-17
I0.RVB,

disk, 5-7

magnetic tape,

terminal, 5-18
IO.RWD (magnetic
I0.RWU (magnetic
I0.SEC (magnetic
I0.SMO (magnetic
I0.SPB (magnetic
I0.SPF (magnetic tape),
I0.STC (magnetic tape),
IO.WAL (terminal), 5-18
IO.WAT (ACP), 5-29
IO.WBT (terminal),
IO.WDD (disk), 5-7
IO.WLB,

disk, 5-7

line printer, 5-10

magnetic tape, 5-8

terminal, 5-18
I0.WPB (disk), 5-7
I0.WVB,

disk, 5-7

line printer, 5-10

magnetic tape, 5-8

terminal, 5-18
IOSB status returns,

5-16

5-8

tape) ,
tape),
tape) ,
tape) ,
tape) ,

00 00 00 CO 00 0O O

oo um
1

5-18

5-3

L

LIBR, 2-9
Libraries, 2-9
Limits, 2-2
resource use, 2-2
Line printer driver,
Logical devices, 3-3
SYS$COMMAND, 3-3
SYSSERROR, 3-3

Index-4

INDEX (Cont.)

Logical devices (Cont.),
SYSSINPUT, 3-3
SYSSLIBRARY used with
commons and libraries,
2-9
SYSsouTPUT, 3-3
Logical names for mailboxes, 3-10

Magnetic tape, 5-8
characteristics bit
handling, 5-8
driver, 5-8
Mailbox creation, 3-10
Mailbox name for send/receive,
3-9
Mailbox unit numbers, 3-10
Mailboxes, 3-3, 3-9
deleted during TASK EXIT,
4-21
use for RECEIVE DATA
directive, 4-36
use for RECEIVE DATA OR EXIT
directive, 4-37
use for SEND DATA directive,
4-43
MAP ADDRESS WINDOW directive,
4-6
Map Global Section system
service, 2-9
MARK TIME directive, 2-8, 4-31
MCR (DCL) Command, 4-26
GET MCR COMMAND LINE
directive, 4-26
Memory management, 2-7
MRKTS$ directive, 4-31
Multiuser MCR tasks, 2-3
naming of, 2-3
Multiuser task images, 1-4

Names, 2-3
process, 2-3
Native mode considerations,
2-5
commen event £
2-5)
process name, 2-4

o

ON command, 2-11
.ONERR, 2-11
Overlays, 1l-4

P

Paging, 2-7
Parameters,
function-dependent, 5-1
function-independent, 5-1
Parsing file specifications,
2-14
directive for, 2-14, B-1
Partitions,
GEN, 2-7
lack of, 2-7
Physical device name conver-

sion, 3-7
Physical devices supported,
5-2

PLAS (nonsupport), 1-4, 2-7
PRINTS, 3-11
Priorities, 2-8
Privilege, 2-1
use with UIC, 2-1
Privileged instructions, 1-2
HALT, 1-2
RESET, 1-2
Process control directives, 4-1
Process names, 2-3
qualified by UIC, 2-3
Process privileges, 2-1
Process, 1-4
concept of, 1-4
detached, 2-10
subprocess, 2-10
virtual address space of,
1-5
Process~permanent files, 3-3
Protection, 4-8
by group number,
use with SEND DATA, 4-43
use with RECEIVE DATA,

4-36
use with RECEIVE DATA OR
EXIT, 4-37

by group number and privilege,
use with ABORT TASK, 4-8
use with CANCEL TIME BASED
INITIATION REQUESTS, 4-14
use with REQUEST, 4-39
use wiilh RESUME, 4-40
use with RUN, 4-41
by privilege,
use with DISABLE CHECK-
POINTING, 4-17
use with ENABLE CHECK-
POINTING, 4-19
UIC-based, 2-1
PRT... task, 3-11

Index-5

INDEX (Cont.)

Q

QIOS$ directive, 4-33
QIOWS directive, 4-35
QUEUE I/0O REQUEST AND WAIT
directive, 2-14, 4-35
Queue I/O Request and Wait
for Event Flag system
service, 4-35
emulation of QUEUE 1/0
REQUEST AND WAIT, 4-35
QUEUE I/O REQUEST directive,
2-14, 3-4, 3-11, 4-33,
5-1, 5-3
Queue I/0 Request system
service, 4-33
emulation of,
QUEUE I/0 REQUEST
directive, 4-33
RECEIVE DATA, 4-36
RECEIVE DATA OR EXIT
directive, 4-37
SEND DATA directive,
4-43

R

RCVDS$ directive, 4-36
RCVDname mailbox, 3-9
RECEIVE DATA directive, 4-36
RECEIVE DATA OR EXIT
directive, 4-37
SEND DATA directive, 4-43
RCVXS$ directive, 4-37
RDAFS directive, 4-38
READ ALL EVENT FLAGS, 4-38

Read Event Flags system service,

emulation of,
EXIT IF directive, 4-20
READ ALL EVENT FLAGS
directive, 4-38
Reasons for termination, 2-13
RECEIVE BY REFERENCE directive,

4-6
RECEIVE DATA directive, 2-14,
3-9, 4-36

RECEIVE DATA OR EXIT directive,
2-14, 3-9, 4-37

REQUEST directive, 2-3, 2-10,
4-39

RESCOM, 2-9

RESET instruction, 1-2

Resident libraries, 2-9

RESLIB, 2-9

Resource use limits, 2-2

Resource wait mode, 2-3

Restrictions,
hardware, 1-2
software, 1-2
RESUME directive, 2-3, 2-10,
4-40
Resume Process system service,
4-40
emulation of the RESUME
directive, 4-40
Return codes,
see DSW return codes
RMS-11, 3-1, 3-6
RQSTS$ directive, 4-39
RSUMS$ directive, 4-40
RSXCOMEFN event flag cluster,
2-4, 2-6, 4-21
RUN directive, 2-3, 2-8,
2-10, 4-41

S

Schedule Wakeup system
service, 4-41
emulation of RUN directive,
4-41
SDATS directive, 4-43
SEND DATA directive, 2-3,
2-14, 3-9, 3-11, 4-43
Set AST Enable system
service, 4-16
emulation of,
DISABLE AST RECOGNITION
directive, 4-16
ENABLE AST RECOGNITION
directive, 4-18
SPECIFY RECEIVE DATA AST
directive, 4-48
SET EVENT FLAG directive, 4-44
Set Event Flag service, 4-44
emulation of SET EVENT FLAG
directive, 4-44
Set Swap Mode system service,
emulation of,
DISABLE AST RECOGNITION
directive, 4-16
ENABLE CHECKPOINTING
directive, 4-19
Set Timer system service, 4-31
emulation of MARK TIME
directive, 4-31
SETFS$ directive, 4-44
SF.GMC (terminal), 5-20
SF.SMC (terminal), 5-20
Shareable devices, 5-2
Shareable regions, 1-4
Shareable task images, 1-4

Index~-6

INDEX (Cont.)

Significant events, 2-8
Software priorities, 2-8
SPECIFY FLOATING POINT PROCESSOR
EXCEPTION AST, 4-45
SPECIFY POWER RECOVERY AST
directive, 4-47
SPECIFY RECEIVE DATA AST
directive, 4-48
SPECIFY RECEIVE-BY-REFERENCE
directive, 4-6
SPECIFY SST VECTOR TABLE FOR
DEBUGGING AID directive,
4-50
SPECIFY SST VECTOR TABLE FOR
TASK directive, 4-51
SPND$ directive, 4-46
Spooling, 3-11, 5-10, 5-21
SPRAS directive, 4-47
SRDAS directive, 4-48
Standard I/0 function codes,
5-2
Status returns (IOSB), 5-3
terminal read, 5-20
Subfunction modifiers, 5-1
Subprocess, 2-10
SUSPEND directive, 4-46
Suspend Process system service,
4-46
emulation of SUSPEND direc-
tive, 4-46
SVDB$ directive, 4-50
SVTK$ directive, 4-51
Swapping, 2-7
Synchronous system trap (ssT),
2-11
SYS$COMMAND, 3-3, 3-8, 5-21
SYSSDISK, 3-8
SYSSERROR, 3-3, 3-8, 5-21
SYS$INPUT, 3-3, 3-8, 5-21
SYSSLIBRARY, 2-9
SYSSOUTPUT, 3-3, 3-8, 5-21
System clock, 2-8
System events, 2-8
System service, 5-3
Cancel I/O on Channel, 5-3
System status codes, 2-6

mapping to DSW return codes,
2-6, 1-7

T

TASK EXIT directive, 2-10, 4-21
Task image label block, 2-3
Task name,
see Process name
Terminal characteristics bit
handling, 5-20
Terminal driver, 5-12

Terminal read status returns,
5=20
Termination,
abnormal, 2-11
normal, 2-10
Termination code, 2-10
Termination status, 2-10
TI, 3-6
TI, CO, and CL,
assignment of, 3-8
Trap instructions, 2-11
Trap-associated directives, 4-4

U

UIC based protection, 2-1
uIc, 2-1
format for VAX/VMS, 2-1
parsing, 2-2
returned for GET TASK PARAM-
ETERS, 2-2
UNMAP ADDRESS WINDOW directive,
4-6
Unsupported directives, 4-6
User authorization file, 2-~1
resource use limits, 2-2

\'}

VAX-11 RMS, 3-1

VAX-11 RMS, 3-3
use with process-permanent

files, 3-3

VAX/VMS system concepts, 1-4
image, 1-4
process, 1-4

Virtual address space, 1-5
control region, 1-5
lack of PLAS support, 2-7
management of, 2-7
paging, 2-7
program region, 1-5

w

WAIT FOR LOGICAL OR OF EVENT
FLAGS directive, 4-53
Wait for Logical OR of Event
Flags system service, 4-53
emulation of,
WAIT FOR LOGICAL OR OF
EVENT FLAGS, 4-53
WAIT FOR SINGLE EVENT FLAG,
4-54
WAIT FOR SIGNIFICANT EVENT
directive, 2-8, 4-52

Index—?r

INDEX (Cont.)

WAIT FOR SINGLE EVENT FLAG Working set, 2-7
directive, 4-54 WSIGS$ directive, 4-52

Wake system service, 2~10 WTLOS$ directive, 4-53
emulation of REQUEST direc- WTSES directive, 4-54

tive, 2-10, 4-39

Index-8

e,

Please cut along this |

—__.—._..-.__—_——_——.——._—._—_._.._.___—_.__—.-—_.—_—————___.__

VAX-11/RSX-11M Programmer's
Reference Manual
AA-D020A-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

000000

Name Date

Organization

Street

Zip Code
or
Country

City State

- — DoNot Tear - Fold Here and Tape — — — — — — — —

dlilgliltlall

- Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TWwW/A14
DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

No Postage

Necessary
if Mailed in the
United States

Cut Alans NDatted Line

