VAX/VMS
Guide to Writing
a Device Driver
Order No. AA-H499C-TE

May 1982

This document explains how to write device drivers for devices that
are not supported by VAX/VMS, and how to load these drivers into
the VAX/VMS operating system.

REVISION/UPDATE INFORMATION: This document supersedes the
VAX/VMS Guide to Writing a
Device Driver (Order No.
AA-H499B-TE), including
Update Notice No. 1 '
(Order No. AD-H499B-T1).

SOFTWARE VERSION: VAX/VMS Version 3.0

digital equipment corporation - maynard, massachusetts

First Printing, February 1979
Revised, March 1980

Updated, January 1981
Revised, May 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation., Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be wused or copied only in accordance with the terms of such
license. ’

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright @ 1979, 1980, 1981, 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DECnet IAS VAX
DECsystem-10 MASSBUS VMS
DECSYSTEM-20 PDP

vT
DECUS PDT mn@nﬂan
DECwriter RSTS

ZK2140
HOW TO ORDER ADDITIONAL DOCUMENTATION
In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Beifast Road
In Canada call 613-234-7726 (Ottawa-Hulf) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager
DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)
Digital Equipment Corporation Digital Equipment Corporation
P.O. Box CS2008 A&SG Business Manager
Nashua, New Hampshire 03061 c/o Digital’s local subsidiary or
approved distributor
*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)
Internal orders should be placed through the Software Distribution Center (SDC). Digital Equipment
Corporation, Northboro, Massachusetts 01532

PREFACE

CONTENTS

SUMMARY OF TECHNICAL CHANGES

PART

CHAPTER

CHAPTER

el I R R R e e e e el i el T g o S gy Sy S W P STy RO g

I

1

* o o
« o o

. . . * . L] . . .
. . L[] L) . . . L]
B WM N

HHEHOUOWOWWOWWOWWYOWWOWOOOOOIINIIIIIIINOTONDBWN -

O e* o o

o e e s s
* o o 0 .
NV wN -

e o o

o o

¢« o o o o

Y Ul W N

INTRODUCTION TO DEVICE DRIVERS

MACHINE DEPENDENCE AND MACHINE INDEPENDENCE

o

COMPONENTS OF A DEVICE DRIVER . .

ASYNCHRONOUS NATURE OF A DEVICE DRIVER

FORK PROCESSES & ¢« & o o o o o o o &
PROCESS CONTEXT AND INTERRUPT CONTEXT

DEVICE DEPENDENCE AND DEVICE INDEPENDENCE

THE I/0 DATA BASE o o o e o o s
Control Blocks In The I/O Data Base
Device Data Block .+ ¢« « o o o &
Unit Control Block « ¢ ¢ o o« o =
Channel Request Block
Interrupt Dispatch Block
Adapter Control Block
Channel Control Block
I/0 Request Packets . . . « « « .
SYNCHRONIZATION e * o o e o & o s @
Interrupt Priority Levels
Device Interrupts . . « o « o« « .
Fork Queues . & v o & o o o o o o«
Resource Wait Queues . « . « .
FUNCTIONS OF A DEVICE DRIVER
Initialization Routines . . .
FDT Routines . « o« o ¢ o o o« &
Start I/0 Routine . ¢ ¢ o ¢ o «
Interrupt Service Routine
Device Timeout Handler . . .« . .+ .
Cancel I/0 Routine . « + o o o o o«
Error-logging Routine
AN EXAMPLE OF A UNIBUS I/0 REQUEST .
THE UNIBUS e o o

PROGRAMMED I/0 AND DIRECT MEMORY ACCESS I/O

BUFFERED I/0 AND DIRECT I/0
LOADABLE DRIVERS . . . + ¢ o ¢ o o &

. . . .

e o o o

o«

DISCUSSION OF A LINE PRINTER QUEUE I/0O REQUEST

DRIVER CODE FOR THE LP1ll WRITE FUNCTION

A USER PROCESS'S I/0 REQUEST
I/0 PREPROCESSING BY VAX/VMS
I/0 PREPROCESSING BY THE DRIVER . .
QUEUING THE I/O PACKET TO THE DRIVER
DRIVER DEVICE ACTIVATION . . « . .« .

iii

.

" e o o

« o

e s o @

Page

xi

Xxv

I I PHRPPRPPRPRPRFE R e
Ll L R L L |
COWVWWWOOWOWWJININJIJAAAUTS DWN

el el e
|

i
-
N

1-12
1-12
1-12
1-12
1-14
1-16
1-16
1-16

CONTENTS

Page
2.7 WAITING FOR A DEVICE INTERRUPT . ¢« ¢« ¢ &« o« « o o« o 2-6
2.8 INTERRUPT HANDLING &« & & ¢ o o o o o o o o o o« o o« 2-6
2.9 I/0 COMPLETION PROCESSING BY THE DRIVER 2-7
2.10 I/0 COMPLETION PROCESSING BY THE VAX/VMS SYSTEM . 2-7
CHAPTER 3 SYNCHRONIZATION OF I/0 REQUEST PROCESSING
3.1 INTERRUPT PRIORITY LEVELS . 4+ &« & o « o « o« « o o« 3-1
3.1.1 IPLs Defined by VAX/VMS . . o ¢ « o o o« o o o o« 3-1
3.1.2 -IPLs Defined for the Hardware . . « « « « o« o« o 3=2
3.1.3 Interrupt Service Routines . « « ¢« ¢ ¢« &« ¢ o« o o« 3-2
3.1.4 Raising IPL . & o o o o o o o o o o o o o o o o 3-3
3.1.5 Lowering IPL & 4 4 4 o o o o o o o o« o o o o o« « 3-3
3.1.6 Dispatching Device Interrupts . . . « « « « « . 3-4
3.1.7 Transferring Control to the Driver Fork Process 3-5
3.1.8 IPL Use During I/0 Processing . . . « « « « « o« 3-5
3.1.8.1 IPL$ ASTDEL (IPL 2) e e o o o o o o o e o o o 3-7
3.1.8.2 IPLS IOPOST (IPL 4) & v ¢ o o o o o« o o o « » 3-8
3.1.8.3 Driver Fork Processing (IPLs 8 through
1 e
3.1.8.4 Hardware Device Interrupts . . « « « « « o « o 3-8
3.1.8.5 IPLS POWER « ¢« «v & & o o o o o o o o s o o o « 3-8
3.1.9 Additional IPLS + v +¢ o o« o o o« o o o o o o « « 379
3.1.9.1 IPLS SCHED 4w &4 o &« o o o o o o o o o s o o « & 3-9
3.1.9.2 IPLS_QUEUEAST & « ¢ & & o o o o o o o o & o o 379
3.1.9.3 IPLS SYNCH and IPLS TIMER .« « v ¢« o ¢« o « « « 3-9
3.1.9.4 IPLS MAILBOX « « & & o ¢ o o o « o « o« « « « 3-10
3.1.9.5 IPLS XDELTA . & & « o« & o o & o o « « « « « 3-10
3.1.10 Overview of IPL Use . + . ¢ « &« o« & « « o« « « 3-10
3.1.11 Modifying IPL in Driver Code . . . + +« « « « o« 3-11
3.1.11.1 Set Interrupt Priority Level Macro . . . 3-12
3.1.11.2 Disable Interrupts Macro . . « « « o o o o« » 3-12
3.1.11.3 Enable Interrupts Macro « « « « « « 3-13
3.1.11.4 Software Interrupt Macro . « « ¢« + « « &« + o 3-13
3.2 FORK BLOCKS AND FORK DISPATCHING . o ¢ o « & o 3-13
3.2.1 Interrupt Service Routine for Fork Dispatching 3-14
3.3 RESOURCE WAIT QUEUES &« o o o o o o o o s o o o« 3-15
3.3.1 Competing for a Controller Data Channel . . . 3-16
CHAPTER 4 THE UNIBUS ADAPTER
4,1 READING AND WRITING DEVICE REGISTERS « ¢« & ¢ o « . 4-2
4.2 MAPPING UNIBUS AND PHYSICAL ADDRESSES FOR DMA
TRANSFERS © ¢ & o o o o o .5 o o o o « o« o o o o« 4=2
4.2.1 UNIBUS Adapter Data Transfer Paths 4-3
4.2.1.1 Direct Data Path . . « ¢ « & ¢« ¢ ¢ « &« « « . . 4-4
4.2.1.2 Buffered Data Paths . . « ¢ ¢« ¢« ¢« ¢ &« &+ « « . 4-5
4.2.1.3 Byte Offset Data Transfers 4-7
4.2.1.4 Purging a Buffered Data Path . . . « « « « « . 4-7
4.2.1.5 Longword-Aligned 32-Bit Random Access Mode . . 4-8
4.3 THE VAX-11/780 UNIBUS ADAPTER . « ¢« &« « « « « o+ . 4-8
4,4 THE VAX-11/750 UNIBUS ADAPTER =+ ¢ o« o« « « « o« « o« 4-9
4.5 THE VAX-11/730 UNIBUS ADAPTER =« &« & &« o o o o = 4-10
CHAPTER 5 OVERVIEW OF I/0 PROCESSING
5.1 PREPROCESSING AN I/O REQUEST +« + « o & « o s o« « « 5-1
5.1.1 Process I/0 Channel Assignment 5-3
5.1.2 Locating a Device Driver in the I/O Data Base . 5-3
5.1.2.1 Unit Control Block (UCB) . . +« &« ¢« « « « o 5-3
5.1.2.2 Channel Request Block (CRB) . . « + « « « « 5-4
5.1.2.3 Interrupt Dispatch Block " (IDB) « ¢« « « « « « « 5=5

iv

CONTENTS

.
=N

Device Data Block (DDB) e o e s e s e o o e
Validating the I/O Function . . « ¢ « ¢ « + « &
Checking Process I/0O Request Quotas . . « . « &
Validating the I/O Status Block . . . e o o
Allocating and Setting Up an I/0 Request Packet
Function Decision Table Processing . « « « .« &

HANDLING DEVICE ACTIVITY . o o o« o o & . . .
Creating a Driver Fork Process to Start I/O .
Activating a Device and Waiting for an
INEErTUPE ¢ ¢« o o o o o o o o o o o o o o o o
Handling a Device Interrupt « « . . .
Switching from Interrupt to Fork Process
ContexXt & ¢ v ¢ o o o o o o o o o o o o s o o
Activating a Fork Process from a Fork Queue .

COMPLETION OF AN I/O REQUEST . ¢ o o o o o o o o«
I/0 PoStprocesSing « o o o o« o o o o o o o o o«

e o o o o
e o o o o o
Noauds wN
.

[S2NC, RO RO S NV, N, RO, O]
.
N =

.

N NN e

[S20N 0]
.
NN
Y
W

vy,
D)
ww N
.
wn

.
—

PART I1

CHAPTER

o)}

TEMPLATE FOR AN I/O DRIVER

CODING CONVENTIONS e e e o o e
RESTRICTIONS ON DEVICE REGISTER I/O SPACE USE o .

[e)Je)Y
“ .
N =

CHAPTER

~

WRITING DEVICE DRIVER TABLES

WWWNDNDNN -

DRIVER PROLOGUE TABLE (DPT) e o o e o o s e o o
DPTAB MACrO &« o o o o o o o o o o o o o o o o o
DPT STORE MACYo o o ¢ « o s o o o o o o o o o
Example of DPTAB and DPT STORE Macro Use

DRIVER DISPATCH TABLE (DDT) e e o e o o o e o o
DDTAB MACIO « o o o « o o o o o o s o o o o o o
Example of a DDTAB MaCYrO « « s o o o o o o o o o

FUNCTION DECISION TABLE (FDT) & o « o o o o o o o«
Defining Device-Specific Function Codes
Determining Those Functions that are Buffered
I/0 & 6 & o o o o o o o o s s o o o o o o o
FUNCTAB Macro . « « « « & e o o s s e e e o
Example of FUNCTAB Macro Use e s e e & e o o s

« o o
w N =

R R e B e VRN N RN RN
N

o o 0
. o

N =

~N 3
o
. .
S W

w W

CHAPTER

[oe]

WRITING FDT ROUTINES

CONTEXT FOR FDT ROUTINE EXECUTION . . ¢ ¢ ¢ ¢ o &«
REGISTERS PRESET FOR FDT ROUTINE EXECUTION
CONVENTIONS FOLLOWED BY FDT ROUTINES « « .
Register ConventionNS . & o & o o o o o o o o o &
Process Context Conventions . . « & ¢ ¢ o« o o &
TRANSFERRING INTO AND OUT OF AN FDT ROUTINE . . .
FDT ROUTINES FOR DIRECT I/0 ¢ & o o o o o o o o o
FDT ROUTINES FOR BUFFERED I/0 + ¢ & o o o o o o &
Checking the User's Buffer « . . .
Allocating the System Buffer . . . e e e e o
Completion of Buffered I/O in I/0 Postproce551ng
FDT ROUTINES PROVIDED BY VAX/VMS . « & o« & ¢ o o &
EXESONEPARM & &¢ &+ v o o o o o o o o o o o o o
EXESREAD © & v o o ¢ o o o o o o o o o o o » o &
EXE$SENSEMODE
EXESSETCHAR &+ & o o o o o o o o o o o o o o o«
EXESSETMODE &+ v ¢ 4 & o o o o o o o o o o o o
EXESWRITE &« 4o ¢ o o o o o o o o o o o o o o o
EXESZEROPARM . ©+ ¢ o o o o o o o o o o o° s o «
EXIT ROUTINES IN THE VAX/VMS SYSTEM . . < « « &

e o o s
N =

e o 0 ¢« o o
o o & o .
wWN -

o o 0
* e e e e
N O D W N
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

* e

00 0000 0000 0O 00O OO 0O
. . .
I III I JAOANUTD WWWN -

o

Q
Q

@

(SO N N I, N
NO®JIIJIaW,m

Ut n
I

[

[e) o)}
w

NN NN
[eo2EN BN o) W) B G2 IS (O I g

L L L R A Tt T T |
COWWOITANANUTUTWNNN

| CO 00 00 CO COCOCO COCOCO OO

o 0 0 O
[|
e
N =

|
-
N

CHAPTER

CHAPTER

CHAPTER

CHAPTER

0 0 00 00
« o e o
e o o o
S W N

o 00 00 00

e}

O W WOWYY
D)

WwwN -
)
N

WO W WYWWWY WOWW YOO
* e * o o . L
ULl BB WwWwwwww
e e o ¢ e o s e e
w N - [eoJEN Jio) INU, RN UV)

—
o

10.1
10.1.1
10.1.2
10.1.3
10.2
10.2.1
10.2.2
10.3
10.4
10.5
10.6
10.6.1
10.6.2
10.7

11

11.1
11.2
11.3
11.4
11.4.1

12

12.1
12.1.1
12.1.2
12.1.2.1
12.1.2.2

12.1.2.3
12.2
12.2.1

CONTENTS

EXESABORTIO & « o o o o o & e e e s e e o
EXESFINISHIO and EXE$FINISHIOC e e e e e e e
EXESQIODRVPKT . & & o o o o o o o o o o o o
EXESALTQUEPKT . & v ¢ ¢ o o o o o o o o o o

WRITING THE START 1I/0 ROUTINE

TRANSFERRING CONTROL TO START I/O0 .« & ¢ « o « &

CONTEXT OF A DRIVER FORK PROCESS . « . « « & «

ACTIVATING THE DEVICE .« . ¢ o o o o o o o o o o
Obtaining Controller Access . .

Getting the I/0 Function Code and Convertlng the

Code and Modifiers e o e o o o o e o
Computing the Transfer Length e s e e e e o s
Computing the Transfer Start Address
Preparing the Device Activation Bit Mask . . .
Blocking All InterruptS . « ¢ & o o o o « o
Checking for Power Failure . . . « « « ¢« « « .
Activating the Device . . ¢ ¢ ¢ ¢ o ¢ « o o &
WAITING FOR AN INTERRUPT OR TIMEOUT
WFIKPCH and WFIRLCH Macro Formats . . « . . .
Expansion of WFIKPCH MacCro . + « o« « o « o o &
IOCSWFIKPCH Routine ., . e+ s o s e s .
RESPONDING TO AN EXPECTED DEVICE INTERRUPT « . .

WRITING UNIBUS DMA TRANSFERS

REQUESTING A BUFFERED DATA PATH o o .
Requesting a Permanent Buffered Data Path o .
Requesting the Direct Data Path
Mixed Direct and Buffered Data Path Transfers

REQUESTING UNIBUS ADAPTER MAP REGISTERS
Allocation of Map Registers «
Permanent Allocation of Map Registers

LOADING THE UNIBUS ADAPTER MAP REGISTERS

COMPUTING THE STARTING ADDRESS OF A TRANSFER . .

ACTIVATING THE DEVICE . ¢ o o o o o o o o o o @

COMPLETION OF A DMA TRANSFER . & o o o o « o o o«
Purging the Data Path . . « v ¢ o ¢ o o o« o &
Releasing a Buffered Data Path

RELEASING UNIBUS ADAPTER MAP REGISTERS

WRITING INTERRUPT SERVICE ROUTINES

DELIVERING A DEVICE INTERRUPT TO A DRIVER . . .
INTERRUPT CONTEXT . « + o o e o o o o o o o
SERVICING A SOLICITED INTERRUPT e o o s o e e e
SERVICING AN UNSOLICITED INTERRUPT . . « « « « &

Examples of Unsolicited Input Handling

COMPLETING THE I/O REQUEST

I/0 POSTPROCESSING o 4 « o o o o o s o o o o o &
EXESIOFORK e o ¢ e e e o e o o o
Completing an I/0 Request e e e s e e e e e e

Releasing the Controller . . . « « ¢« « .+
Saving Status, Count, and Device~Dependent

Status ¢« & v 4 ¢ 4 s e 4 6 s s e e e e o o
Returning to the Operating System . . .

TIMEOUT HANDLERS . « o o o o o o o o o o o o o o
Retrying the I/0 Operation . « « ¢« o « o « « &

vi

Page

8-12
8~13
8-14
8-16

L
NN

[T I T
NI oo Ut U U s s

O WO WYWWYWWWWOWWWOVWOO LW O WO WYY
1

10-2
10-2
10-3
10-3
10-3
10-4
10-4
10-5
10-6
10-6
10-6
10-7
10-8
10-8

11-1
11-3
11-4
11-5
11-6

12-1
12-1
12-2
12-2

12-3
12-3
12-4
12-5

CHAPTER

CHAPTER

CHAPTER

13.1
13.1.1
13.1.2

13.1.3
13.2

13.2.1
13.2.2
13.2.3
13.2.4
13.3

14

14.1

14.2

14.2.1
14.2.2
14.2.3
14.2.4
14,2.5
14.2.6
14.3

14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7

15.1.2
15.1.3

15.1.4
15.2
15.3
15.4
15.5
15.5.1
15.5.2
15.5.3
15.6
15.7
15.8
15.9
15.10
15.10.1
15.10.2
15.10.3

CONTENTS

Aborting the I/0 Request . . .
Sending a Message to the Operat

OF o o o o o o

WRITING INITIALIZATION, CANCEL I/0, AND ERROR-LOGGING

ROUTINES

INITIALIZATION ROUTINES
Initialization During Driver Lo
Initialization During Recovery
Failure . . & & & ¢ ¢ ¢ o o &
Initialization Context

CANCEL I/0 ROUTINE
Context of a Cancel I/0 Routlne
Drivers that Need No Cancel I/0

ading
from a Power

Routine . . .

Device-Independent Cancel I/0O Routine
Device-Dependent Cancel I/0 Routines

ERROR-LOGGING ROUTINES ,

LOADING A DEVICE DRIVER

PREPARATION FOR LOADING

LOADING THE DRIVER .,
LOAD Command « « o« o o o o o o«
CONNECT Command . « o o « o &
RELOAD Command . . « &« « o « &
SHOW/ADAPTER + &« & o o o o o =«
SHOW/CONFIGURATION . .« & & o &
SHOW/DEVICE . +o & & & & o « &

AUTOCONFIGURATION . . & & o o &
The SYSGEN Autoconfiguration Fa
The SYSGEN Device Table . . .
Device Driver Control of Autoco
Floating Vector Address Calcula
Floating CSR Address Calculatio
Rules for Configuration . . .
Example of a UNIBUS Configurati

DEBUGGING A DEVICE DRIVER

BOOTSTRAPPING THE SYSTEM WITH XDE

cility
nflguratlon . .
tion
N e o o o o o @

. . . . - . .

Ol’l......

LTA ¢« . « « « &

Bootstrapping the System with XDELTA on a

VAX-11/780 « . . .

Bootstrapping the System w1th XDELTA on a

VAX-11/750 e e e e .

. e« o

Bootstrapping the System with XDELTA on a

VAX-11/730« .
Proceeding from the In1t1a1 Bre
LOADING THE DRIVER . . .

akpolnt o« o s .

INSERTING BREAKPOINTS IN THE SOURCE CODE e o e .
CALCULATING THE BASE OF DRIVER CODE« .« .

REQUESTING AN XDELTA SOFTWARE INT
Requesting an XDELTA Interrupt
Requesting an XDELTA Interrupt
Requesting an XDELTA Interrupt

LOOKING AT THE VECTOR JUMP TABLE

SETTING AN XDELTA BASE REGISTER

DESTROYING REGISTER CONTENTS . .

EXAMINING UCB, IRP, AND PSL . .

XDELTA COMMANDS . ¢ ¢ ¢ o & o &
Values and Expressions
Special Symbols
Operators . .« « o« o ¢ o o« o &

vii

ERRUPT .

on a VAX- 11/780
on a VAX-11/750
on a VAX-11/730

13-1
13-1

13-2
13-3
13-4
13-5
13-5
13-6
13-6
13-6

14-1
14-2
14-2
14-3
14-6
14-7
14-8
14-8
14-9
14-10
14-10
14-16
14-17
14-17
14-17
14-18

15-1
15-1
15-2
15-3

15-4
15-4

15.10.4
15.10.5
15.10.6
15.10.7
15.10.8
15.10.9
15.10.10
15.10.11
15.10.12
15.10.13
15.10,14
15.10.15
15.10.16
15.10.17
15.10.18
15.10.19
15.10.20
15.10.21
15.10.22
15.10.23
15.11
15.11.1
15.11.2

15.12

15.12.1
15.12.2
15.12.3
15.12.4

PART III

APPENDIX A

* o o o o o

Hi=Ooo~Joaud WN -

o i i i i B
= O

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

=

F.
F.l.1
F.l.2

CONTENTS

Open and Display Value Command . « « « o « o &
Display Instruction Command . . « ¢ o « o« « &
Close and Display Next Location Command . . .
Display Range Command =« o« « o o o o o o o o o
Indirect Command « « « o o o o o o o o o s o o
Display Previous Location Command
Show Value Command . « « « « o o o o o o o o @
Step Instruction Command « « « o ¢ ¢ o o o o =«
Step Instruction Over Subroutine Command . . .
Setting Breakpoints . . & o ¢« ¢ 4 ¢ & o ¢ o .
Clearing Breakpoints . « & ¢ ¢ ¢ o ¢ o o o o &
Displaying Breakpoint List « « &« o ¢ o o o o o«
Setting Base Registers . . « . ¢ o ¢ « ¢ o o &
Proceeding from Breakpoints . . « « . ¢« o o .
Loading PC and Continuing . . . « ¢« . ¢ ¢ « .
Display Mode Control . . , ., .
The EXECUTE STRING Command . .
Setting Complex Breakpoints .

XDELTA Stored Commands . . .
Stored Base Registers . . .
DELTA +« ¢ ¢ ¢ o o o o o o o o o s s o o o o o =
The EXIT Command « « o« + o o o & e e e o e
Examining and Modifying Locatlons in Process
Space . . . e o o o o e . . e o s e
GUIDELINES FOR DEBUGGING DEVICE DRIVERS e e e e
References to System Addresses . . « « o « o+ &
Opening Device Registers in XDELTA
Incorrect References to Device Registers . . .
XDELTA and System Failures . « « ¢ « o o « o &

e o o o 0
¢ o o o e
¢« o oo
* o o o
* o e 0
« o o ®

THE I/0 DATA BASE

CONFIGURATION CONTROL BLOCK (ACF) © e e o e s .
ADAPTER CONTROL BLOCK (ADP) .+ ¢ ¢ ¢ o o o o o o«
CHANNEL CONTROL BLOCK (CCB) e e s+ 4 e & e e e o
CHANNEL REQUEST BLOCK (CRB) e e e e e o o o o .
DEVICE DATA BLOCK (DDB) e e e 4 s s s e e e o o
DRIVER DISPATCH TABLE (DDT) ¢ ¢ « o o o o o o &
DRIVER PROLOGUE TABLE (DPT) .« ¢ o ¢ o o o o o &
INTERRUPT DISPATCH BLOCK (IDB) « ¢ ¢ o« o ¢ o « &
I/0 REQUEST PACKET (IRP) e e e e e e
I/0 REQUEST PACKET EXTENSION (IRPE) e e s s e
UNIT CONTROL BLOCK (UCB) o o « o o o o o o o o =

VAX/VMS MACROS INVOKED BY DRIVERS

OPERATING SYSTEM ROUTINES

SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER
SAMPLE DRIVER FOR DR11-W DEVICES

MASSBUS ADAPTER

MASSBUS ADAPTER REGISTERS . . ¢« ¢ ¢ o ¢ o o o &«

Loading MASSBUS Adapter Registers . . « . . .
MASSBUS Adapter Registers and Offsets

viii

Page

15-11
15-11
15-12
15-12
15-13
15-13
15-13
15-13
15-14
15-14
15-14
15-15
15-15
15-15
15-16
15-16
15-16
15-17
15-17
15-18
15-18
15-18

15-18
15-19
15-19
15-19
15-19
15-20

L] Lo Bes B ML e e e e ML e B B B e ML I |
® o o o o e e s * e & s e e s »
AT UTUMTUTULT UTUT S BB W N
. * o o o o o o « o .

BWWwwWwwN

o o

[e) W)

APPENDIX G

INDEX

GLOSSARY

FIGURE

WN N e
i
N RS W N

wWwww
|
O W N

(G0N0, JET, I S
[IR I |
WN D WNH

ooty Lot
i
— =0 o0YU

oo}
1 I
N

O
|
-

11-1

w

N~

—

w N

o .

wN -

CONTENTS

Modification of MASSBUS Adapter Registers .
I/0 DATA BASE FOR MASSBUS DEVICES . . « « .« .
MASSBUS ADAPTER OPERATIONS e o e o e
MASSBUS ADAPTER INTERRUPT DISPATCHING o o e e

Checking for MASSBUS Adapter Ownership . . .

Dispatching the Interrupt . « « ¢ « o o o &
SPECIAL MBA CONSIDERATIONS FOR DRIVERS . . .

Considerations for Unit Initialization Rout1nes F- 10

The MASSBUS Adapter and the I/0 Data Base .
Considerations for the Start I/0 Routine . .
Requesting Controller Data Channels . . .
Loading Map Registers . . e e s e s e
Releasing Controller Data Channels o e s
Considerations for the DPTAB Macro
INTERRUPT SERVICE ROUTINES FOR MASSBUS DEVICES
Transferring Control to the Interrupt Service
Routine « o ¢ o o o o o o o o o o o o o o« =
Returning Control to MBASINT . . ¢ « ¢ « o &
Considerations for Interrupt Service Routines

UNIBUS ADDRESSES FOR VAX-11 PROCESSORS

FIGURES

VAX/VMS Calls to Driver Routines . . . « . . .
The I/0 Data BaS€ « ¢ « o « o o o o o o o o
Processing a Sample I/0 Operation
VAX-11 Hardware Configuration « . . .
A Line Printer Write Function « . . .
Locating a Function Decision Table
Interrupt Dispatching of a Nondirect Vector
Interrupt o . ¢ ¢ ¢« ¢« o ¢« ¢ e e e o o e o o
Interrupt Dispatching of a Direct Vector Interr
IPL Conventions During I/0 Processing
IPL Conventions During I/0 Completion
Fork Dispatching Data Structure
UNIBUS to Physical Address Mapping . . .
VAX-11/780 UNIBUS Adapter Registers . .
VAX-11/750 UNIBUS Adapter Registers . .
VAX-11/730 UNIBUS Adapter Map Register .
Sequence of Driver Execution
Locating the Target Device . . « ¢« « « « « .
Data Structures for Three Devices on One
Controller o o e o o o o o o
I/0 Data Base for Two Controllers e e o o o
Driver Function Decision Table
FDT Routines and I/O Preprocessing . . « . . .
Creating a Fork Process After an Interrupt . .
Reactivation of a Driver Fork Process
Driver Operation v ¢« o o o o o o o o o o o o &
Queue I/0 Request Scan of a Function Decision
Table . . . o .

Format of System Buffer for Buffered I/O Read
Operations e o o o s e o e
Driver Insertion 1nto Channel Wait Queue . . .
Interrupt Handling Flow . . ¢ ¢ ¢ o « o o o &

.
* e s o o o

o e o o o o
.

ix

. F-11
. F-12
. F-12
. F-12
. F-13
. F-13
. F-13

. F-14
. F-14
F-15

. » 3-6
upt 3-7
. 3-11
. 3-12

TABLE

11-2

15-1

15-2

—
wn
|
w

IIIIIIL|)'1
1o

[O I O A |
S WN O

o Tes Bt - i i T3>> b i i i
NHBPRHEEFEFHOOIOAUDS WN

b e e]
|
Ul W

| |
N

wn
!
——

| Pt
HEHEERFRHEFEOONNOU S WN -

L B e i B TD#P DD 00 W

CONTENTS

Channel Request Block Containing an Interrupt

Service Routine Address . . « + .+
Bootstrapping the System with XDELTA
VAX-11/780
Bootstrapping the System w1th XDELTA
VAX-11/750 o o . . .
Bootstrapping the System w1th XDELTA
VAX=11/730 ¢ v o o o o o o o o o o o
Loading a Driver . . . o .
Configuration Control Block .
Adapter Control Block
Channel Control Block
Channel Request Block
Contents of CRBSL_INTD o . .
Device Data Block . . . « « « ¢ « .
Driver Dispatch Table . . « «+ .+ « .
Driver Prologue Table
Interrupt Dispatch Block
I/0 Request Packet e o o s
I/0 Request Packet Exten51on e o s e
Unit Control Block . « & & o & o + &
UCB Error Log Extension
UCB Disk Extension . ¢« + ¢ « o o « &
MASSBUS Configuration . . .

s o e o o o
.

e o o o o o

Location of MASSBUS Reglsters 1n Physical Address

SPACE v 4 o o o s+ o o s o s o s o =
I/0 Data Base for MASSBUS Disk Unit

I/0 Data Base for MASSBUS Disk and Tape Unlts
I/0 Data Structures Used in Dispatching an

Interrupt . o & ¢ ¢« ¢ ¢ o o o o o .

TABLES

IPLs Defined by VAX/VMS . . « « « &«
VAX/VMS I/0 Function Codes

Registers Loaded by Queue I/O Request Service

FDT Exit Methods . + « ¢« +v ¢ ¢ o « &
XDELTA Command Summary . « « « « &

Contents of the Configuration Control Block

Contents of Adapter Control Block .
Contents of Channel Control Block .
Contents of Channel Request Block .
Fields of CRBSL INTD e o o o s o
Contents of Device Data Block . . .
Contents of Driver Dispatch Table .
Contents of Driver Prologue Table .
Contents of Interrupt Dispatch Block
Contents of an I/0 Request Packet .

on a

on a

.

.

-

.

Contents of the I/0 Request Packet Extension

Contents of Unit Control Block . . .
UCB Error Log Extension . . « « .
UCB Disk Extension . . . + .« . .« .
Major Offsets Defined by $MBADEF N

.

.

Page

’ Iy
PYITET

.

|
U1 N O 00 N U

PREFACE

The VAX/VMS Guide to Writing a Device Driver provides the information
needed to Wwrite a device driver that runs under VAX/VMS Version 3.0
and to load that driver into the operating system. VAX/VMS makes no
guarantee that drivers written for VAX/VMS Versions 1.0, through 1.6
and 2.0 through 2.5 will execute without modification on subsequent
versions of the operating system. While the intent is to maintain the
existing interface, some unavoidable changes may occur as new features
are added. The use of internal executive interfaces other than those
described in this manual is discouraged.

INTENDED AUDIENCE

This manual 1is 1intended for system programmers who are already
familiar with the VAX-11 processor and the VAX/VMS operating system.
The manual focuses on writing drivers for devices attached to the
UNIBUS; however, Appendix F provides the additional information
needed to write a driver for a device attached to the MASSBUS.

STRUCTURE OF THIS DOCUMENT

This manual is organized into two parts. The first part consists of
the following chapters, which introduce VAX/VMS device drivers and
those aspects of the VAX-1l1l processor and the VAX/VMS system that are
essential to drivers: .

e Chapter 1 introduces the main concepts associated with drivers
on VAX/VMS.

e Chapter 2 describes an example of a 1line printer driver
handling a data transfer.

e Chapter 3 discusses synchronization mechanisms: interrupt
priority 1levels, fork processes and fork queues, and resource
wait queues.

e Chapter 4 discusses UNIBUS considerations for direct memory
access (DMA) transfers.

e Chapter 5 provides an overview of I/0 processing and discusses
the interaction between device drivers and VAX/VMS.

The second part of this document is a series of "how to" chapters that
provide a sample approach to coding a device driver:

e Chapter 6 contains a templaté for writing a device driver.

e Chapter 7 details the macros that drivers invoke to <create
necessary tables.

PREFACE

Chapter 8 describes the writing of function decision routines.
Chapter 9 describes the writing of a start I/O routine.

Chapter 10 describes the UNIBUS considerations for a start I/O
routine.

Chapter 11 describes the writing of an interrupt service
routine.

Chapter 12 describes the writing of I/0 completion and device
timeout routines.

Chapter 13 describes the writing of unit and controller
initialization routines, I/0 cancellation routines, and
error-logging routines.

Chapter 14 describes the loading of a driver into the system.

Chapter 15 describes the debugging tool XDELTA that you can
use to debug a device driver.

Appendix A describes the I/0 data base in detail. This is an
important appendix for the programmer of a device driver.

Appendix B describes the VAX/VMS macros that drivers can
invoke.

Appendix C describes the VAX/VMS routines that device drivers
can call.

Appendix D contains a sample driver for an analog-to-digital
converter. "

Appendix E contains a sample driver for two connected DRlls.

Appendix F contains information needed to write a device
driver for a device attached to the MASSBUS.

Appendix G lists the starting physical addresses for the
UNIBUS memory address space associated with the VAX-11
processors.

The glossary at the end of this manual defines I/O-related and
driver-related terms.

ASSOCIATED DOCUMENTS

This document has the following prerequisites:

VAX Hardware Handbook

VAX/VMS Summary Description and Glossary

I/O-related portions of the VAX/VMS System Services Reference
Manual

The appendix on naming conventions in the VAX-11 Guide to
Creating Modular Library Procedures

VAX/VMS I/0 User's Guide

xii

PREFACE

The following documents are associated with this manual:

e VAX/VMS System Dump Analyzer Reference Manual

e VAX/VMS System Management and Operations Guide

e VAX/VMS Internals and Data Structures

CONVENTIONS USED IN THIS DOCUMENT
This manual describes code transfer operations in three ways:

1. The phrase "issues a system service call" implies the use of
a CALL instruction.

2. The phrase "calls a routine"” implies the use of a JSB or BSB
instruction.

3. The phrase "transfers control to" implies the use of a BRB,
BRW, or JMP instruction.

xiii

SUMMARY OF TECHNICAL CHANGES

This manual applies to Version 3.0 of VAX/VMS. The following 1list
summarizes the major technical changes from the Version 2.2 manual:

1.

DPTAB macro arguments —-- The DPTAB macro has two optional
arguments that allow drivers to control the SYSGEN utility's
automatic configuration of the devices they operate:

e The DEFUNITS argument -- Specifies to AUTOCONFIGURE a
default number of wunits to be configured for a given
controller.

e The DELIVER argument -- Specifies the address of a
driver-specific unit delivery action routine. See Chapter
7 and Chapter 14 for a discussion of these DPTAB
arguments.

DDTAB macro argument -- The DDTAB macro has an optional
argument, MNTVER, that specifies the address of a routine
called at the start and end of a mount verification

operation. See Chapter 7 for details.

SHOW command qualifiers -- The SYSGEN SHOW command has
additional qualifiers that display values within the system
configuration:

e SHOW/ADAPTER —~- Displays adapter nexus values

e SHOW/CONFIGURATION -- Displays device CSR addresses,
vector addresses, and associated adapter nexus values

The SHOW command qualifiers are briefly described in Chapter
14.

Configuration Control Block (ACF) -- The SYSGEN
autoconfiguration facility wuses this data structure to
describe the device it is currently adding to the
configuration. Appendix A contains a description of the
fields within the ACF. :

The VAX-11/730 -- The following chapters describe features
specific to the VAX-11/730:

e Chapter 4 describes the VAX-11/730 UNIBUS adapter.
e Chapter 14 gives VAX-11/730 adapter nexus values.

e Chapter 15 describes how to bootstrap a VAX-11/730 with
XDELTA.

e Appendix G gives starting physical addresses for
VAX-11/730 UNIBUS memory address space.

XV

PART I
Introduction

CHAPTER 1

INTRODUCTION TO DEVICE DRIVERS

Under the VAX/VMS operating system, a device driver is a set of

a particular device type. In order to understand how drivers are used
by the VAX/VMS system, you must become familiar with the following
basic concepts:

e Machine dependence and independence

e Asynchronous nature of a device driver

e Fork processes

® Process and interrupt context

® Device dependence and device independence
e 1I/0 data base

e Synchronization mechanisms

The beginning sections of this chapter describe the concepts 1listed
above. The 1later sections describe the more concrete aspects of
drivers, such as the functions they perform.

1.1 MACHINE DEPENDENCE AND MACHINE INDEPENDENCE

The VAX/VMS operating system can run on any of three VAX-11
processors: the VAX-11/780, VAX-11/750, or VAX-11/730. Although
these processors conform to the VAX-11 architecture, there are some
differences in design among the three machines. To achieve
machine-independence, follow the conventions outlined in this manual
when vyou write a device driver. The driver will then operate on any
processor without modification.

To aid in driver debugging, sections of this manual discuss certain
internal differences among the VAX-11/780, VAX-11/750, and the
VAX-11/730. This section defines several terms that describe the
hardware configuration of each of these processors in a
machine-independent manner:

e Backplane interconnect -- An internal processor bus that
UNIBUS and MASSBUS adapters use to communicate with main
memory and the central processor.

e UNIBUS adapter -- An interface device between the backplane
interconnect and a UNIBUS.

INTRODUCTION TO DEVICE DRIVERS

UNIBUS adapters may be direct vector or nondirect vector
devices. On a direct wvector UNIBUS adapter, UNIBUS device
interrupts cause a direct processor interrupt that Jjumps to
vectors in page two (or three) of the system control block
(SCB). On nondirect vector UNIBUS adapters, UNIBUS device
interrupts cause a UNIBUS adapter interrupt and are dispatched
by the UNIBUS adapter interrupt service routine. Chapters 3
and 4 discuss these adapters in more detail.

MASSBUS adapter -- An interface device between the backplane
interconnect and a MASSBUS.

Interrupt dispatcher -- A combination of hardware and software
that routes UNIBUS and MASSBUS device interrupts to the
appropriate device driver interrupt service routine. The
interrupt dispatcher's routing mechanism works differently
depending upon whether the VAX-11l processor 1in use accepts
direct wvector or nondirect vector UNIBUS interrupts and
whether the adapter in use is a MASSBUS or UNIBUS adapter.

Physical address -- The physical memory that UNIBUS and
MASSBUS adapters address through the backplane interconnect.
The different VAX-11 processors have different amounts of
physical address space. Physical addresses of device
registers also vary with processor type.

1.2 COMPONENTS OF A DEVICE DRIVER

Normally, a device driver module consists of the following routines
and tables:

An I/0 preprocessing routine or routines that validate
device-specific parameters of an I/0 request, format data,
allocate system buffers, and lock pages in memory

A start I/O routine that activates the device

An interrupt service routine that responds to interrupts from
the device unit

An error recovery routine that retries 1I/0 operations and
performs other error handling

An error-logging routine that writes the contents of device
registers and other data into an error buffer for the system

A cancel I/0 routine that prevents further processing of an
I/0 request

An initialization routine that readies a device or controller
for operation when the system 1is bootstrapped or during
recovery from a power failure

A driver prologue table that describes the driver and the
device type to the VAX/VMS procedure that loads drivers into
the system

A driver dispatch table that lists the entry point addresses
of standard driver routines and records the size of diagnostic
and error-logging buffers for the device type

INTRODUCTION TO DEVICE DRIVERS

e A function decision table that lists all valid function codes
for the device and lists the addresses of I/0 preprocessing
routines associated with each valid function

With a few exceptions, which are noted in Chapter 7, the order of the
various routines and tables within the driver module is not important.

1.3 ASYNCHRONOUS NATURE OF A DEVICE DRIVER

Using the driver tables and other information maintained by the driver
and the operating system, the system determines which routines to
activate and when they should be activated, as illustrated in Figure
1-1. For example, when a user process issues a Queue I/O Request
system service, the system service calls various driver routines to
perform preprocessing of the I/O request. Likewise, if a user process

issues a Cancel I/0 on Channel system service, the system service
activates the driver's cancel I/O routine.
1/0
OPERATION
SETUP
START
CONTROLLER 1/0
INITIALIZATION OPERATION
|
DEVICE OPERATING SERVICE
UNIT SYSTEM DEVICE
INITIALIZATION INTERRUPT
LOG CANCEL
DEVICE 1/0
ERRORS OPERATION
ZK-907-82
Figure 1-1: VAX/VMS Calls to Driver Routines
A device driver does not run from start to end. The system calls

resumes them; the central processor
interrupts and reactivates driver routines. Because little sequential
processing of driver code occurs, VAX/VMS must assume the
responsibility for synchronizing the execution of the wvarious driver
routines and synchronizing the execution of all drivers in the system.
The VAX/VMS operating system synchronizes driver execution using fork
processes, interrupt priority levels, fork queues, and resource wait
queues, described in the follewing sections.

driver routines and suspends and

INTRODUCTION TO DEVICE DRIVERS

1.4 FORK PROCESSES

A fork process is a process that is created dynamically and has
minimal context. Fork processes execute entirely within the system
address space. The VAX/VMS operating system creates and schedules a
fork process by constructing a specialized control block called a fork
block, inserting the fork block in a fork queue, and requesting a
software interrupt. Fork queues and fork process dispatching are
described further in Section 1.7.3.

A driver fork process has the following context:
e Three general registers
e Program counter (PC)

e A unit control block in the I/0 data base that describes the
target device of the I/0 request

The unit control block also contains the driver's fork block. Section
1.8 describes the unit control block and other control blocks in the
I/0 data base.

Like other processes, fork processes can be suspended and interrupted.
VAX/VMS places a driver fork process in a wait state when the process
requests an unavailable resource, for example, a <controller data
channel. The processor interrupts a fork process when the processor
receives a request for an interrupt at a higher priority level.

Driver fork processes execute at raised interrupt priority levels to
minimize the number of interruptions. Fork processes can raise the
priority level to 31 to block all other interrupts, if necessary.

The system automatically saves registers for interrupted fork
processes and restores these registers when the ©process 1is
reactivated. The operating system does not swap fork processes
because the fork block and all data about the fork process reside in
nonpaged system memory.

1.5 PROCESS CONTEXT AND INTERRUPT CONTEXT

Because a device driver consists of a number of routines that are
activated by VAX/VMS, the operating system for the most part
determines the context in which the routines execute. As an example,
consider the following write request that occurs without error:

e A user process executing in user mode issues a write Queue I/O
Request system service.

e The Queue I/O Request system service gains control in user
process context but in kernel mode.

e The system service uses the driver's function decision table
to call the appropriate preprocessing routines. These
routines, called FDT routines, execute in full process context
in kernel mode.

e When preprocessing is complete, a VAX/VMS routine creates a
fork process to execute the driver's start I/0 routine in
kernel mode.

INTRODUCTION TO DEVICE DRIVERS

e The start I/0 routine activates the device unit and suspends
itself. At this point, VAX/VMS suspends the fork process
executing the start I/O0 routine and saves sufficient context
to reactivate the start I/0 routine at the point of
suspension.

e When the device completes the data transfer, it 1issues an
interrupt. The 1interrupt causes the system to activate the
driver's interrupt service routine.

e The interrupt service routine executes to handle the device
interrupt. It then causes the start I/O routine to resume in

interrupt context.

e The start I/0 routine regains control in interrupt context but
almost immediately issues a request to the operating system to
transform its context to that of a fork process. This action
dismisses the interrupt.

® When reactivated in fork process context, the start TI/0
routine performs device-specific I/0 completion and passes
control to the system for additional I/O postprocessing.

e VAX/VMS I/0 postprocessing performs processing at a software
interrupt priority 1level and then issues a kernel mode
asynchronous system trap (AST) for the user process requesting
1/0.

e When the kernel mode AST 1is delivered, the AST routine
executes iIn full process context at kernel mode to deliver
data and status to the process. If the original request
specified a user mode AST, the kernel mode AST queues it.

e When the user process gains control, the wuser's AST routine
executes in full process context in user mode.

It is essential, however, that the various driver routines not attempt
to exceed the limitations of the context in which they execute. The
majority of driver routines execute in fork process context.

1.6 DEVICE DEPENDENCE AND DEVICE INDEPENDENCE

The VAX/VMS approach to I/0 is that the operating system should
perform as much of the processing of an I/0 request as possible and
that drivers should restrict themselves to the device-specific aspects
of I/O processing. To accomplish this, the VAX/VMS operating system
provides drivers with the following services:

e The Queue I/0 Request system service preprocesses an I/0
request by performing those functions and checks that are
common to all devices; for example, it wvalidates the
arguments in the 1I/0 request that are not device specific.
This type of preprocessing 1is called device-independent
preprocessing.

e The VAX/VMS operating system includes a number of routines
that drivers can call to perform I/0 preprocessing, allocate
and deallocate resources, and synchronize driver execution.

® VAX/VMS I/0 postprocessing performs the device-independent I/O
postprocessing for all I/0 requests.

INTRODUCTION TO DEVICE DRIVERS

Thus, drivers can leave the device-independent I/0 processing to the
operating system and concentrate on the device-dependent aspects of a
device unit; that is, those aspects that vary from device type to
device type. In addition, drivers can call the VAX/VMS system to
perform many functions that are device specific but common to several
devices.

1.7 THE I/O DATA BASE

Because a driver and the operating system cooperate to process an I/0
request, they must have a common I/0 data base. Under VAX/VMS, the
I/0 data base consists of three main parts:

e Driver tables that allow the system to load drivers, validate
device functions, and call drivers at their entry points

e Control blocks that describe every bus adapter, every device
type, every device unit, every controller, and every logical
path (channel) from a process to a device

® I/0 request packets that define individual requests for I/O
activity

The three driver tables are defined 1in -every driver. Section 1.2
lists these tables. Appendix A describes each of the control blocks
and the I/0 request packet in detail.

Figure 1-2 illustrates some of the relationships among VAX/VMS I/0
routines, the I/0O data base, and a device driver.

PROCESS
CONTROL BLOCK
DESCRIBES
REQUESTING
PROCESS

1/0 REQUEST CCB
PACKET DESCRIBES
DESCRIBES LOGICAL PATH

TO DEVICE

/0 REQUEST
ucBe
DESCRIBES

DEVICE
ADP
CRB
/ SYNCHRONIZES DESSBRAzBEs
DDB FOR CONTROLLER
DEVICE 108
paVAs DESCRIBES
o7 CONTROLLER
LOCATES i DEVICE
DRIVER REGISTERS
I DRIVER DRIVER DRIVER DRIVER 1&
J RoT START 1/0 INTERRUPT CONTROLLER 1
| ROUTINE ROUTINE SERVICE INITIALIZATION |
[ROUTINE ROUTINE |

2K-908-82

Figure 1-2: The I/0 Data Base

1.7.1 Control Blocks In The I/0 Data Base

Control blocks in the I/O data base permit access to and describe
peripheral hardware. The VAX/VMS operating system creates these

INTRODUCTION TO DEVICE DRIVERS

control blocks either at system start-up or at the time a user-written
driver is loaded into the system. Drivers refer to some or all of the
following control blocks:

® Device data block (DDB)

e Unit control block (UCB)

e Channel request block (CRB)

e Interrupt dispatch block (IDB)

e Adapter control block (ADP)

e Channel control block (CCB)

1.7.1.1 Device Data Block - A device data block contains information
common to all devices of the same type that are connected to a

particular controller. It records the generic device name
concatenated with the controller designator, and the driver name and
location for those devices. In addition, the device data block

contains a pointer to the first unit control block for the device
units attached to the controller.

1.7.1.2 Unit Control Block - The system defines a unit control block
for each device attached to the system. A unit control block defines
the characteristics and current state of an individual device unit.
In addition, it contains the fork block used by the unit's device
driver and the listhead for the queue of pending I/O request packets
for the unit. Because drivers execute as fork processes that are
created for each I/0 operation on a unit, the unit control blocks are
the focal point of the I/0 data base. When a driver is suspended or
interrupted, the UCB fork block holds the driver's context.

1.7.1.3 Channel Request Block - The operating system creates a
channel request block for each controller. A channel request block
defines the current state of the controller and 1lists the devices
waiting for the controller's data channel. 1In addition, it contains
the code that dispatches a device interrupt to the interrupt service
routine for that unit's driver.

1.7.1.4 Interrupt Dispatch Block - The system creates an interrupt
dispatch block for each controller. An interrupt dispatch block lists
the device units associated with a controller and points to the unit
control block of the device wunit that the controller is currently
servicing. In addition, an interrupt dispatch block points to device
registers and the controller's UNIBUS adapter.

1.7.1.5 Adapter Control Block - An adapter control block defines the
characteristics and current state of a UNIBUS or MASSBUS adapter. An
adapter control block for the UNIBUS adapter contains the queues and
allocation bit maps necessary to allocate adapter resources. VAX/VMS
provides routines that drivers can call to interface with their UNIBUS

adapter.

INTRODUCTION TO DEVICE DRIVERS

1.7.1.6 Channel Control Block - A channel is a logical path between a
process and the wunit control block of a specific device unit. The
channel control block describes this path. Each process owns a number
of channel control blocks. When a process issues the Assign I/0
Channel system service, the system writes a description of the
assigned device to the channel control block. Unlike the data
structures mentioned earlier, a channel control block is not located
in nonpaged system space, but 1in the process's control region (Pl
space) .

1.7.2 1I/0 Request Packets

The third part of the I/0 data base is a list of I/0 request packets
(IRPs) . When a process requests I/0 activity, the operating system
constructs a packet of data, called an I/0 request packet, that
describes the I/0 request in standard form.

The I/0 request packet contains fields into which the system and
driver 1I/0 preprocessing routines can write information, such as
device-dependent parameters specified in the call to the Queue I/0
Request system service. Later, the system sends the I/0 request
packet to the device driver start I/0 routine. The driver start 1I/O
routine wuses the packet as its source of detailed instructions about
the operation to be performed. The packet includes buffer addresses,
a pointer to the target device, I/O0 function code, and further
pointers to the I/O data base.

1.8 SYNCHRONIZATION

The VAX/VMS operating system uses hardware and software interrupt
priority 1levels (IPLs) with their associated interrupts, fork queues,
and resource wait queues to synchronize the execution of all drivers
within the system and to synchronize execution of various routines
within a driver.

1.8.1 Interrupt Priority Levels

The VAX-11l processor defines 32 interrupt priority levels (0 through
31). The higher numbered IPLs are reserved for hardware interrupts,
for example, device interrupts. The operating system uses the lower
numbered IPLs. A higher IPL always takes precedence over a lower IPL.
The VAX Hardware Handbook describes the VAX-11 processors' use of
IPLs. The following IPLs are of particular interest to drivers:

e Hardware device 1IPLs (20 through 23); driver interrupt
service routines execute at these IPLs.

e Driver fork processing IPLs (8 through 11); driver fork
processes execute at these IPLs.

e TI/0 completion IPL (IPL 4); VAX/VMS gains control to begin
its device-independent I/0 postprocessing at this IPL.

e AST delivery IPL (IPL 2); VAX/VMS uses this IPL to coordinate
the delivery of an AST to a user process. The Queue I/O
Request system service also executes at this IPL.

INTRODUCTION TO DEVICE DRIVERS

1.8.2 Device Interrupts

When the processor grants a device interrupt, the processor and the
VAX/VMS interrupt dispatcher save the current process context. The
processor pushes the PC and PSL at the time of the interrupt onto the
interrupt stack. In addition, the interrupt dispatcher saves RO
through R5 on the stack.

The interrupt service routine activated as a result of the interrupt
follows conventions to preserve all other context of the interrupted
process, as follows:

e Uses only RO through R5

e Cleans up the stack after use

When the interrupt has been serviced, the driver interrupt service
routine restores RO through R5 from the stack. The processor restores
the previous PC and PSL of the interrupted code. The interrupted
process then resumes execution without any awareness of the
interruption.

1.8.3 Fork Queues

When an interrupt service routine completes the handling of a device
interrupt, it transfers control to the driver to complete
device-dependent processing of the I/0 request. When the driver
regains control, it is executing at device IPL. Almost immediately,
the driver should lower IPL to driver fork IPL so that it does not
block other device interrupts. A driver lowers IPL by invoking a
VAX/VMS macro that creates a fork process to execute at driver fork
IPL.

Each driver fork IPL has an associated fork queue. A VAX/VMS macro
queues the driver's fork block in the fork queue that corresponds to
the driver's fork IPL and issues a software interrupt request for that
IPL. When the software interrupt 1is granted, the VAX/VMS fork

dispatcher dequeues fork blocks from the driver fork queues and
reactivates the driver at the point following the macro invocation.

1.8.4 Resource Wait Queues
Drivers compete for the following shared resources:
e Central processor

e UNIBUS adapter mapping registers, if the device 1is a DMA
device

® UNIBUS adapter buffered data paths, if the device 1is a DMA
device

® The controller data channel if the device 1is attached to a
multiunit controller

When a driver fork process needs an unavailable resource, VAX/VMS
resource management routines perform the following steps:

INTRODUCTION TO DEVICE DRIVERS

e Save fork process context in the device's UCB fork block

® Insert the address of the UCB fork block in a resource wait
queue

e Suspend the driver fork process
When another driver fork process frees the necessary resource, the
VAX/VMS resource management routines take the following steps to
reactivate the next driver fork process:

¢ Remove the next UCB fork block from the resource wait queue

® Restore fork process context into the registers

e Reactivate the suspended driver fork process

The VAX/VMS resource management routines allow the driver fork process
to be unaware of its suspension and reactivation.

1.9 FUNCTIONS OF A DEVICE DRIVER

A VAX/VMS device driver controls I/0 operations on a peripheral device
by performing the following functions:

e Defines the peripheral device for the rest of VAX/VMS
e Defines the driver for the system procedure that 1loads the
driver into system virtual address space and that creates the

driver's associated data structures

e Readies the device and/or 1its controller for operation at
system start-up and during recovery from a power failure

e Performs device~dependent I/O preprocessing

e Translates programmed requests for I/0 operations into
device-specific commands

e Activates the device

e Responds to hardware interrupts generated by the device
e Responds to device timeout conditions

® Responds to requests to cancel I/0 on the device

® Reports device errors to an error-logging program

® Returns status from the device to the process that requested
the I/0 operation

The driver prologue table, described 1in Section 7.1, performs the
first two functions 1listed above. Driver routines perform the
remaining functions.

1.9.1 1Initialization Routines

Most device controllers and device units require initialization when
the VAX/VMS driver loading procedure loads the driver into memory and
when the VAX/VMS system recovers from a power failure. The amount and

INTRODUCTION TO DEVICE DRIVERS

type of initialization wvaries from device type to device type.
Section 13.1 provides additional information about device driver
initialization routines.

1.9.2 FDT Routines

Every driver contains a function decision table (FDT) that indicates
the 1I/0 preprocessing routines that are to be executed for various
functions on the device. When a user ©process issues a Queue I/0
Request system service, the system service uses the I/0 function code
specified in the request to select one or more FDT routines for
execution. FDT routines perform such functions as allocating buffers,
locking pages in memory, and validating device-dependent parameters
(Pl through P6) of the I/O request.

The driver contains FDT routines that are device-dependent. VAX/VMS
provides additional FDT routines that perform processing common to
many I/0 functions, as described in Section 8.7. It is advisable for
drivers to use FDT routines supplied by the operating system whenever
possible.

Because FDT routines are called by the Queue I/0O Regquest system
service, they execute in full user process context. As a result, FDT
routines have access to user-specified buffers located in the process
address space; these buffers are not available to driver routines

executing in fork context.

1.9.3 Start I/O Routine

The start I/O routine executes in a driver fork process to perform the
following device-dependent functions:

e Translate the I/0 function code into a device-specific command

e Transfer the details of the request from the I/0 request
packet to the device's unit control block

e Obtain access to the controller if it 1is a multiunit
controller

e Obtain the necessary UNIBUS resources if the transfer is
direct memory access (DMA)

® Modify the device registers to activate the device

e Perform device-dependent I/0 postprocessing after the transfer
occurs

The start I/0 routine may be forced to wait for the controller or
UNIBUS resources to become available. In either case, VAX/VMS
suspends the routine and reactivates it when the resources are free.
Section 1.8.4 describes the context that VAX/VMS saves for the
suspended routine.

After activating the device, the start I/0 routine invokes the VAX/VMS
wait for interrupt macro. The wait for interrupt macro suspends the
driver. The driver remains suspended wuntil the driver's interrupt
service routine handles the 1interrupt and returns control to the
driver. At that point, the driver performs device-dependent 1I/0
postprocessing and then transfers control to VAX/VMS for
device-independent I/0 postprocessing.

INTRODUCTION TO DEVICE DRIVERS

1.9.4 Interrupt Service Routine

When a device interrupt occurs, VAX/VMS transfers control to the
device driver's interrupt service routine in interrupt context. The
interrupt service routine determines whether the interrupt was
expected or not and takes the appropriate action. Then the interrupt

service routine reactivates the driver for I/O postprocessing.

1.9.5 Device Timeout Handler

As the result of an error condition or a device's being offline, it is
possible for a device to fail to complete a transfer in a reasonable
period of time. This condition is called device timeout. When a
start I/0 routine invokes the wait for interrupt macro, it specifies
the time interval in which the device can complete a transfer without
timing out and the name of a timeout handler that the system is to

invoke in the case of a timeout. This information is recorded in the
device's unit control block.
Once every second, the VAX/VMS system timer checks all devices in the

for device timeout. When it locates a device that has timed
it calls the timeout handler.

system
out,

1.9.6 Cancel I/0 Routine

VAX/VMS provides the Cancel I/0 on Channel system service that user
processes can call to cancel I/0 requests, The Cancel I/0O on Channel
system service, in turn, calls the driver's cancel I/0 routine.
VAX/VMS also <calls the driver's cancel I1I/0 routine when the device's
reference count goes to zero; that is, when all users that assigned
channels to the device have deassigned them.

1.9.7 Error-logging Routine

The driver's error-logging routine fills an
information about the error,
time of the error.
to allocate
dump routine.

error log buffer with
for example, the register contentsat the
VAX/VMS provides a routine that drivers can call
an error log buffer and transfer control to the register

1.10 AN EXAMPLE OF A UNIBUS I/O REQUEST

Figure 1-3 illustrates how the VAX/VMS operating system and the device
driver ©process a user process request for a read I/O operation on a
DMA UNIBUS device.

Qo DRIVER DRIVER OPERATING
P:SCEESS SERVICE READ OF;E{F;’;E:\;“G STARTS SYSTEM
Rtquests [~ (FOUTINE [—af FUNCTION el DEVICE |—ef SAVES
s VALIDATES VALIDATES SauLs & WAITS FOR DRIVER
REQUEST REQUEST INTERRUPT STATE
DRIVER OPERATING Usen
DEVICE INTERRUPT DRIVER SYSTEM PR
GENERATES |—s] HANDLER COLLECTS COPIES aohocess
INTERRUPT RESTORES STATUS DATA AND gl
DRIVER STATE STATUS

Figure 1-3:

Processing a Sample

1-12

I/0 Operation

ZK-909-82

INTRODUCTION TO DEVICE DRIVERS

The processing of the sample I/O0 request illustrated in Figure 1-3
occurs in the following steps:

A process requests I/0 operation. A user process requests
data from the device by issuing either of the following:

- A VAX-11 RMS get record function call (which results 1in a
Queue I/0 request)

- A Queue I/0 Request system service

The user process specifies the target device, a read function
code, and the address of a buffer in which the data is to be
read.

The operating system performs I/0 preprocessing. The Queue
I/0 Request system service validates the request and locates
I/0 data base control blocks that describe the device and its
driver. The system service also allocates and initializes an
I/0 packet to contain a description of the I/O request. The
system service then calls a read function routine in the
driver.

The driver performs I/0O preprocessing. The driver function
decision table routine verifies that the user buffer resides
in virtual memory pages that can be modified by the requesting
process, locks the buffer pages in memory, and adds details of
the I/0 operation to the I/O request packet. The read FDT
routine then <calls the operating system to send the I/O
request packet to the driver.

VAX/VMS creates a driver fork process. A VAX/VMS routine
creates a fork process in which the device driver can execute.
The routine activates the driver fork process by transferring
control to the driver's start I/0 routine.

The driver readies the UNIBUS adapter. For DMA transfers, the
driver fork process calls VAX/VMS routines that control the
UNIBUS adapter hardware to map UNIBUS addresses into physical
addresses for the transfer.

The driver activates the device. The fork process activates
the device by setting bits in device registers.

The driver waits for an interrupt. A VAX/VMS routine saves
the context of the driver fork process and relinquishes the
processor until an interrupt occurs.

The device requests an interrupt. When the data transfer is
complete, the device requests a hardware interrupt that causes
the system to dispatch to the driver's interrupt service
routine. ,

The driver services the interrupt. The driver's interrupt
service routine handles the interrupt and reactivates the
driver, which reads device registers to obtain status
information about the transfer.

The operating system inserts the driver in a fork queue. The
driver requests that the ©process be reactivated at a lower

software interrupt priority level.

The fork dispatcher reactivates the driver fork process. When
processor priority permits, the VAX/VMS fork dispatcher
reactivates the driver as a fork process.

INTRODUCTION TO DEVICE DRIVERS

e The driver completes the 1I/0 operation. The driver fork
process completes device-dependent I/0 processing of the I/O
request and returns the I/0 status to VAX/VMS.

e VAX/VMS completes the I/0 operation. The VAX/VMS I/0
postprocessing routines copy the I/O status into process
address space and/or general registers and return control to
the user process. '

Of the thirteen steps listed above, only ‘four describe driver 1I/0
preprocessing and driver fork ©processing. The VAX/VMS I/O support
routines perform all 1I/0 processing common to many or all 1I/0
requests. Even in device driver routines, driver writing is
simplified by the use of VAX/VMS routines that handle
device-independent functions.

The thirteen-step example condenses and simplifies the processing of
an I/0 operation by ignoring such issues as the following:

e Association of a device with a process; that 1is, device
assignment

e Simultaneous I/0 requests for one device
e Hardware interrupt priority levels

e Driver competition for shared system and UNIBUS adapter
resources

e Driver competition for I/O activity through a multiunit
controller

e Driver recovery from device errors or power failure

Later chapters discuss each of these issues in relation to device
drivers.

1.11 THE UNIBUS

On a VAX-11 system, the backplane interconnect connects the central
processor to memory. The backplane interconnect also connects the
UNIBUS adapter and MASSBUS adapter to memory and to the central
processor. Peripheral devices attach to either the UNIBUS, for UNIBUS
devices, or the MASSBUS, for MASSBUS devices, as illustrated in Figure
1-4,

The VAX Hardware Handbook describes the hardware components diagrammed
in Figure 4-1.

VAX/VMS provides device drivers for a number of standard devices
supported by DIGITAL. These devices are connected to either the
MASSBUS or the UNIBUS.

Nonstandard devices, that is, customer-supplied devices, normally are
connected to the UNIBUS, but can also be attached to the MASSBUS or to
the DR32 device interconnect. DIGITAL supplies a device driver and an
application 1library for the DR32 device; see the chapter on the DR32
Interface Driver in the VAX/VMS 1I/0 User's Guide for further
information.

INTRODUCTION TO DEVICE DRIVERS

To activate a direct memory access (DMA) transfer on the UNIBUS, a
driver must first obtain mapping registers, and, optionally, a
buffered data path. The driver calls VAX/VMS routines that interface
with the UNIBUS adapter to allocate these resources on behalf of the
driver.

The direct data path maps each UNIBUS transfer to a backplane
interconnect transfer. For each UNIBUS transfer, there 1is one
backplane interconnect transfer. Each backplane interconnect
operation transfers a single word or byte of data depending on the
device. A buffered data path, on the other hand, allows multiple
UNIBUS transfers to be assembled and transferred in one backplane
interconnect operation.

Drivers performing other than DMA transfers are generally not
concerned with UNIBUS adapter operation.

Instead of creating a complete device driver for a device that does
not perform DMA transfers, you can connect the process to the device
interrupt vector to program the device from a user process. For a
description of how and when to connect to an interrupt vector, consult
the VAX/VMS Real-Time User's Guide.

O\

DEVICE
) 2\
]
[aa]
DEVICE = UNIBUS
=) ADAPTER
E, CPU
DEVICE z
(@]
(@]
&
‘kv)7 & MEMORY
._
Z
w
4
<
A 7 MEMORY
X
O
)
DEVICE §
@ MASSBUS
< ADAPTER
s
DEVICE \7
ZK-910-82

Figure 1-4: VAX-11 Hardware Configuration

INTRODUCTION TO DEVICE DRIVERS

1.12 PROGRAMMED I/0 AND DIRECT MEMORY ACCESS I1I/0
Devices transfer data using one of the following methods:
e Programmed I/O
e Direct memory access (DMA) transfers

Devices that perform programmed I/0 transfer data as single words or
bytes wusing device registers. After each transfer completes, the
device notifies the central processor.

Devices that perform DMA transfers do not require the central
processor so frequently. Once the driver activates the device, the
device can transfer a large amount of data without requesting an
interrupt after each of the smaller amounts. Normally, the driver of
a DMA device allocates a UNIBUS buffered data path and UNIBUS map
registers for I/0 transfers.

1.13 BUFFERED I/O AND DIRECT I/O

Drivers can perform I/O transfers using either of the following
methods:

e Buffered 1I/0
e Direct I/O

Buffered I/0 allows data to be buffered in system address space. When
the transfer 1is complete, the data is transferred to the user
process's buffer. The driver can refer to the buffer in system space
using system virtual addresses. Often, a driver uses buffered I/O for
devices that perform programmed I/O, for example, 1line printers and
card readers.

Direct I/O allows data to be placed directly in the wuser process's
buffer. The driver must 1lock the pages containing the buffer in
physical memory and refer to them using page frame numbers (PFNs),.
Normally, a driver uses direct I/0 and a buffered data path for
devices that perform DMA transfers.

The trade-off between buffered I/0 and direct I/0 is the time required
to move the data into the user's buffer versus the time required to
lock the buffer pages in memory. Chapter 8 provides additional
information.

1.14 LOADABLE DRIVERS

The VAX/VMS operating system provides a procedure that allows a
suitably privileged user to 1load drivers into a running VAX/VMS
system. The System Generation Utility (SYSGEN) described in full in
the VAX-11 Utilities Reference Manual, supports commands that invoke
the driver loading procedure:

e LOAD -- to load a driver into the system

e CONNECT -- to create the I/0 data base for additional devices
of the same type

e RELOAD -- to load a previously loaded driver

INTRODUCTION TO DEVICE DRIVERS

-

The driver loading procedure uses information provided in the LOAD
command and information contained in driver tables to load the driver
into virtual memory and create the associated data base. The driver
prologue table, which must be the first generated code in the driver
module, contains the information that the 1loading procedure needs.
Specifically, the driver prologue table contains the following:

e Address of the end of the driver; the loading procedure uses
this to determine the size of the driver

e Driver loader flags that indicate whether the device needs a
system page table entry and whether the driver can be reloaded

e Size of the unit control block
e Address of a routine to call if the driver is reloaded
e Name of the device driver module

The driver prologue table is followed by two 1lists of fields that
require initialization:

e I/0 data base fields to be initialized the first time the
driver is loaded

e Fields to be initialized every time the driver 1is reloaded,
that is, without an intervening bootstrap of the system

With the information provided in the driver prologue table and the two
lists of fields, the driver loading procedure can both load and reload
drivers and perform the 1I/0 data base 1initialization that is
appropriate to either situation.

CHAPTER 2

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

The LP1l1l is a buffered line printer. A user process can request the
following functions for this printer:

@ Write data to the line printer
e Read the line printer's device characteristics
e Alter the line printer's device characteristics

This chapter describes the following aspects of 1line printer 1I/O
processing:

e The portions of the VAX/VMS device driver for an LP1l1l 1line
printer that are used in servicing a write request

e The VAX/VMS components with which the driver interacts to
process the write request

The LPll was selected for this discussion because it 1is a simple
driver but still illustrates many driver principles. Although the
LP11 is usually spooled, for purposes of this discussion, assume that

it is not spooled.

The first-time reader of this document may not understand all of the
points made in this chapter; however, the chapter should provide some
insight into driver flow and I/0 processing.

Figure 2-1 illustrates the flow of execution through VAX/VMS routines
and the line printer driver to satisfy this I/0 request.

The double-sided boxes in Figure 2-1 indicate processing performed by
driver subroutines. Boxes shown above the dotted 1line indicate
processing in the context of the user process. Boxes below the dotted
line indicate processing in fork or interrupt context.

2.1 DRIVER CODE FOR THE LPll WRITE FUNCTION

The VAX/VMS device driver for an LPl1l line printer implements a write
function using the following parts of the driver:

e An FDT routine that reformats the user-supplied data
e A driver start I/0 routine that writes data to the device

print buffer wuntil the printer enters a busy state to print
the contents of the buffer

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

e Code that modifies a device register to enable interrupts from
the line printer

e A driver interrupt service routine that returns control to the
driver fork process after a hardware interrupt from the line
printer

status to a

e Code that returns I1/0 VAX/VMS I/0 completion

Figure 2-1: A Line Printer Write Function

routine
Qlo
VALIDATION
Y
o “VODE
SUBROUTINE oo!
USER
J [CONTEXT
SYSTEM
CONTEXT
DELIVER
IRP TO
DRIVER
EUE
Dc‘;EgIE%E DRIVER ?:p T0 1/0
WRITE TO > POST-
INTO BUSY DEVICE POST- PROCESSOR
STATE PROCESSOR
SUSPEND DRIVER
DRIVER RETURN
STATUS
OPERATING
DEVICE
GENERATES SYSTEM INTERRUPT
INTERRUPT DISPATCHES HANDLER
INTERRUPT

ZK-911-82

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

2.2 A USER PROCESS'S I/0 REQUEST

A user process writes a line to the printer by 1issuing a Queue 1I/0
Request system service call that specifies the write virtual block
function code, as follows:

$Q10 S CHAN = CHANNEL NUMBER, -
FUNC = $I0$ WRITEVBLK,-
EFN = #6,-

IOSB = STATUS BLOCK, -

Pl = BUFFER_ADDRESS, -
P2 = #BUFFER SIZE,-
P4 = #7X30

The parameters Pl, P2, and P4 are device-dependent parameters.

2.3 1I/0 PREPROCESSING BY VAX/VMS

When called, the Queue I/0 Request system service first validates that
the I/0 request is correctly specified; that is, the I/O request must
meet the following criteria:

e The location CHANNEL NUMBER must contain a channel number that
serves as an index into the process I/0 channel list. The
process must have previously assigned the line printer device
to this process channel using the Assign I/O Channel system
service.

During verification of the <channel number, the Queue TI/O
Request system service obtains the address of the line printer
driver's function decision table (FDT) . Figure 2-2
illustrates the chain of pointers from the channel index
number to the FDT address. As a result of chaining through
the I/0 data base, the Queue I/0 Request system service also
determines what device is the target of the request.

e The line printer FDT must 1list I0$ WRITEVBLK as a wvalid
function for the device.

e The event flag number must be valid.

® The process buffered I/0 request quota must permit the Queue
I/0 Request system service to perform a buffered I/0 request
without exceeding the process's quotas.

e The process must have write access to the user-specified
location to be used as an I/0 status block.

If all of the checks described above succeed, the Queue I/0 Request
system service creates an I/0 request packet in nonpaged system
address space. The service then writes all known details about the
I/0 request into the I/0 request packet.

If the target device for the I/0 request is not file-structured, the
Queue I/O0 Request system service changes any virtual function code to
its logical equivalent when it builds the I/O request packet. Thus,
for a line printer device, I0$ WRITEVBLK 1is translated to
I10$_WRITELBLK. - :

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

CHANNEL
CONTROL
BLOCK
(CCB) UNIT
CONTROL
BLOCK
(UCE) DRIVER
DISPATCH
ISS#E FUNCTION
DECISION
TABLE
(FDT)
ZK-582-81

Figure 2-2: Locating a Function Decision Table

2.4 1I/0 PREPROCESSING BY THE DRIVER

Once it has validated the I/0 request, the Queue I/0O Request system
service scans the function decision table for an entry that associates
the I0$ WRITELBLK function code with an FDT routine,. The system
service <calls the routine, which in the case of the line printer
driver is a device-specific routine located in the line printer device
driver.

The FDT routine confirms that the requesting process has read access
to the buffer starting at BUFFER ADDRESS. Then, the FDT routine
buffers data from the process address space into system address space
in the following steps:

e It calculates the length of the required system space buffer.

e If the process byte count quota for buffered I/0 (BYTCNT)
permits, the routine allocates a buffer from system address
space, stores the address of the buffer in the I/0 request
packet, and decreases the current process byte count quota.

e It then synchronizes with other possible subprocessesl to read
and write fields of the line printer's unit control block.

e It reads the description of the line printer's current line
and page position from the device's unit control block.

e It reformats the data from the process buffer into the system
buffer, adding carriage control characters, as specified in
the I/0 request argument P4, before and after the data.

Formatting includes such functions as the replacement of
horizontal tabs with multiple spaces and the replacement of
lowercase characters with uppercase characters, if necessary.

1. For example, if a process allocates a printer, it is possible for
the process and any of its subprocesses to issue write requests to the
printer concurrently.

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

e It rewrites updated line and page positions into the device's
UCB. This information indicates what the current location on
the page being printed will be where the request completes.

e Finally, the routine transfers control to a VAX/VMS routine
that queues the I/0 packet to the device driver.

All of the I/0 processing described to this point occurs in the
context of the user's process. The user address space is mapped, and
the processor's interrupt priority level (IPL) is still low enough to
permit process scheduling and paging. Subsequent queuing of the
transfer request to the driver and all resulting driver processing
occur at higher interrupt priority 1levels that synchronize driver
handling of the device, as described in Chapter 3.

2.5 QUEUING THE I/O PACKET TO THE DRIVER

Before queuing the I/0 request packet to the ©proper driver, the
VAX/VMS queuing routine raises the interrupt priority level to the
driver fork level (UCB$SB FIPL) stored in the unit control block.
Raising IPL to fork 1level synchronizes driver access to the unit
control block.

If the device is idle, that is, if the busy bit (UCBSV BSY) in the I/O
status word of the unit control block is clear, VAX/VMS can transfer
control to the driver. The driver dispatch table contains the entry
point to the driver's start I/0 routine. To find the proper entry
point, the queuing routine chains through the I/O0 data base to the
driver dispatch table, as follows:

UCB —> DDT —> Entry point to start I/O routine

If the device unit is busy with another transfer, VAX/VMS inserts the
I/0 request packet 1in a queue of packets waiting for the unit. The
unit control block contains the head of the queue. The packet's
position in the queue depends on the scheduling priority of the
process issuing the request.

2.6 DRIVER DEVICE ACTIVATION

The LP1ll line printer controller accepts data into a device data
buffer until the print buffer is full or the driver writes a carriage
control character into the print buffer. When either -event occurs,
the 1line printer sets a busy bit in the device's control/status
register. Then a device driver sets the interrupt enable bit in the
device's control/status register and waits for the printer to
interrupt. When the line printer requests a hardware interrupt, the
driver can resume putting characters in the print buffer.

The line printer driver routine writes to the line printer data buffer
according to the following sequence:

1. The driver locates the LP1ll device registers using a chain of
pointers starting at the device's unit control block (UCB).

UCB —> CRB —> IDB —> CSR address

The CSR address is always the address of the 1line printer
control/status register, and all other device registers are
at fixed offsets from this address. In contrast to many

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

other devices, such as disks, the LP1ll line printer does not
share a controller with other devices; therefore, no
arbitration for ownership of the controller is required.

2. The driver examines the device's control/status register to
see if the device is ready to accept characters.

3. If the device is ready, the driver writes a byte of data into
the line printer data buffer and decreases the count of bytes

to transfer. It then repeats step 2.

4. If the device is not ready, that is, if the device's internal
buffer 1is full, the driver raises IPL to 31 to block out all
interrupts and sets the interrupt enable bit in the device's
control/status register.

After enabling interrupts, the driver invokes a VAX/VMS wait
for interrupt macro to suspend driver processing until the
line printer requests an interrupt or the device times out.

2.7 WAITING FOR A DEVICE INTERRUPT

The VAX/VMS wait for interrupt routine suspends the driver by
performing the following functions:

e Saving driver context (R3, R4, and the address of the next
instruction in the driver) in the device's unit control block

e Calculating the time at which the device will time out

® Setting bits in the device's unit control block to indicate
that the driver expects a device interrupt within a specified
time period

VAX/VMS then drops IPL back to driver fork level and returns control
to the caller of the driver's start I1/0 routine.

The driver remains in a suspended state until one of two events
occurs:

e The line printer requests a hardware interrupt.
® VAX/VMS reports a device timeout because the line printer did
not request a hardware interrupt within a specified period of

time.

Normally, the LP1ll prints the contents of its data buffer and requests
the interrupt.

2.8 INTERRUPT HANDLING

When the LP11 1line printer requests a hardware interrupt, the
interrupt dispatcher passes the interrupt to the LP11l driver interrupt
service routine.

The driver's interrupt service routine restores control to the driver,
as follows:

e Restores the address of the unit control block in R5

e Confirms that the interrupt was expected by examining bits in
the device's unit control block

2-6

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

® Restores the saved registers (R3 and R4) from the device's
unit control block

e Transfers control to the driver PC address stored 1in the
device's unit control block

Rather than execute in interrupt context, the reactivated driver
routine calls a VAX/VMS routine to create a driver fork process.
VAX/VMS again suspends driver processing by performing the following
steps:

® Saving driver context (R3, R4, and the driver PC address) in
the device's unit control block

e Inserting the UCB address in the appropriate fork queue

The driver suspension allows the operating system to reschedule driver
processing .at a lower IPL. A VAX/VMS fork dispatcher reactivates the

driver when IPL drops to driver fork level.

After creating the fork process, the system returns control to the
driver's interrupt service routine. which performs the following
steps:

® Restores registers saved at the time of the device interrupt

e Dismisses the interrupt

2.9 I/O COMPLETION PROCESSING BY THE DRIVER

When the VAX/VMS fork dispatcher reactivates the driver fork process,
the driver <code continues transferring characters into the line
printer data buffer until the transfer is complete. The driver code
performs the following steps to transfer characters:

e It obtains the number of characters left to transfer from the
unit control block.

e It transfers characters until the LP1ll again prints its data
buffer or all characters have been transferred.

e When all characters have been transferred, the driver code
branches to driver I/0 completion code.

The driver's I/0 completion code stores the following information in
RO:

e A success status code
e The number of bytes transferred

Then, the driver code transfers control to VAX/VMS to complete the I/O
request.

2.10 I/0 COMPLETION PROCESSING BY THE VAX/VMS SYSTEM

The operating system inserts the I/0 request packet into an I/0
postprocessing queue. If another I/O request packet is in the wait
queue for the device unit, VAX/VMS dequeues that packet and calls the
driver start I/O routine to process it.

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

When 1IPL drops to IPL$ IOPOST, the processor grants the I/0
postprocessing interrupt request. The I/0O postprocessing dispatcher
dequeues the packet for the line printer I/0 request and performs the
following steps:

e It increases the use count of the process's buffered 1I/0
requests since the 'current operation is complete. The use
count is maintained for accounting purposes.

e It deallocates the system buffer used for the reformatted user
data.

e It increases the process's current byte count quota.

e It sets an event flag to indicate that the I/0 operation is
complete.

e It queues a kernel mode AST routine that will deallocate the
I/0 request packet and stores I/0 status into the user's I/O
status block.

The user process examines the event flag or issues a Wait for Single
Event Flag system service call to determine that the I/O operation is
complete.

CHAPTER 3

SYNCHRONIZATION OF I/0O REQUEST PROCESSING

The VAX/VMS operating system uses three mechanisms to synchronize I/O
processing:

e Hardware interrupt priority levels and interrupt service
routines

e Driver fork processes, fork blocks, and fork queues
® Resource wait queues

When programming a driver, you must observe the VAX/VMS conventions
that govern the use of interrupt priority levels and fork processes.
The VAX/VMS routines that grant resources to drivers enforce the wuse
of resource wait queues.

3.1 INTERRUPT PRIORITY LEVELS

The VAX-11 processor defines 32 levels of hardware priorities, called
interrupt priority levels (IPLs). IPL 0 has the lowest priority, and
IPL 31 has the highest. Interrupts can be requested either by
software (software interrupts) or by the hardware (hardware
interrupts). The system uses the various interrupt priority levels as
follows:

e User mode software runs at IPL 0.

e Operating system routines and driver fork processes request
software interrupts at IPLs 1 through 15.

e Devices and error conditions generate hardware interrupts at
IPLs 16 through 31.

Many IPLs have an interrupt service routine associated with them. The
processor responds to both software and hardware interrupts by
transferring control to the appropriate interrupt service routine.
The interrupt service routine processes the interrupt and, when
finished, dismisses the interrupt with an REI instruction.

3.1.1 1IPLs Defined by VAX/VMS

Table 3-1 describes the uses that VAX/VMS defines for IPLs 0 through
15.

SYNCHRONIZATION OF I/O REQUEST PROCESSING

Table 3-1: IPLs Defined by VAX/VMS

Symbolic
IPL Name Use
0 - User mode software
1 - Reserved
2 IPLS ASTDEL AST delivery interrupt service routine
3 IPL$ SCHED Scheduler interrupt service routine
4 IPLS IOPOST 1/0 postprocessing interrupt service routine
5 IPLS XDELTA XDELTA interrupt service routine
6 IPLS_QUEUEAST Fork level processing for queuing ASTs
7 IPLS_ SYNCH System data base access and software timer
IPLS_ TIMER interrupt service routine
8 - 11 |UCBSB_FIPL Fork level for driver execution
12 - 15 Reserved

3.1.2 IPLs Defined for the Hardware

Hardware interrupt levels are used for device interrupts (IPLs 20
through 23) and urgent conditions including power failure and serious
errors such as a machine check. The VAX Hardware Handbook provides
additional information about hardware iInterrupt levels.

3.1.3 Interrupt Service Routines

The VAX/VMS operating system uses interrupt service routines that gain
control at the ©preset IPLs described above. Using preset IPLs
guarantees that interrupts are processed according to the following
priorities:

e Device interrupts (highest priority)

e Device driver fork processes

e I/0 postprocessing

® Process scheduling

® AST delivery (lowest priority)
For example, VAX/VMS completes the processing of an I/O request by
placing the 1I/0 request packet in the I/O postprocessing queue and
requesting an interrupt at the I/O postprocessing IPL (IPL 4). When
the interrupt priority level drops below 4, the processor grants the

software interrupt by transferring control to the I/O postprocessing
service routine.

SYNCHRONIZATION OF I/0 REQUEST PROCESSING

Interrupt service routines run in a reduced context. The stack is a

special stack wused only during interrupt processing; it is the
interrupt stack. Of the register set, usually only RO through R5 are
saved. The 1interrupt service routine must restore these registers

before it returns from an interrupt. If the service routine uses any
other registers, the routine must save the registers before use and
restore them after use. Using registers other than RO through R5 is
not recommended.

When a hardware interrupt occurs, the system transfers control to the
driver interrupt service routine with IPL set to the hardware device
interrupt level. Since code executing at IPLs 20 through 23 blocks
most other hardware interrupts and all software interrupts, driver
code lowers its IPL as soon as possible.

The operating system allows the creation of a fork process so that a
driver can continue execution without blocking other device
interrupts. Section 3.2 discusses fork processes.

3.1.4 Raising IPL

Code running in kernel mode can raise its IPL to lock out context
switching and block interrupts. VAX/VMS software interrupt service
routines perform some of their processing at IPLs higher than the IPL
at which the routines gain control. For example, the scheduler is an
interrupt service routine that gains control at IPL 3; however, it
raises IPL to 7 to read and modify the system data base. I/0 drivers
typically raise IPL to check for a power failure, send a message to a
mailbox, and sometimes to access device registers. Driver code should
not raise IPL for more than a few instructions because so doing blocks
all interrupts at lower IPLs.

3.1.5 Lowering IPL

Once an interrupt service routine has received the interrupt, it
transfers control to the main flow of driver code. At this point, the
driver is executing in the context of an interrupt service routine and
at device IPL.

When a driver gains control, it may execute a few instructions at the
high 1IPL; however, almost immediately a driver lowers IPL to fork
IPL. A driver lowers IPL by invoking the VAX/VMS macro that creates
fork processes, IOFORK. As a result of invoking IOFORK, VAX/VMS
performs the following functions for the driver:

® Consults the device's unit control block to determine fork IPL
for the driver

o Creates a driver fork process and queues it for execution at
the appropriate IPL

® Requests a software interrupt at that IPL

When the queued driver fork process is reactivated, it executes at the
lower fork IPL. Section 3.2 describes fork process dispatching in
greater detail.

Driver fork processes also can modify IPL by invoking certain VAX/VMS
macros; Section 3.1.11 describes these macros. Normally, a driver

uses these macros to raise IPL before initiating a transfer.

SYNCHRONIZATION OF I/O REQUEST PROCESSING

3.1.6 Dispatching Device Interrupts

VAX-11 peripheral devices request interrupts at IPLs 20 through 23.
When a device requests an interrupt at one of these IPLs and the
processor is executing at a lower IPL, the ©processor performs the
following steps:

e Grants the interrupt

o Transfers control to an interrupt service routine for the
device

If the processor is executing at a higher or equal IPL, the interrupt
remains pending.

The dispatching of UNIBUS device interrupts differs depending upon the
type of processor and UNIBUS adapter in the hardware configuration.

When an interrupt occurs on a configuration that wuses the nondirect
vector UNIBUS adapter, the processor transfers control to an interrupt
service routine for the UNIBUS adapter of the device that requested
the interrupt. The UNIBUS adapter interrupt service routine then
carries out the following steps:

e Saves RO through R5 on the interrupt stack

e Reads a UNIBUS adapter register to determine the vector
address of the device requesting the interrupt

® Uses the vector address as in index into a vector Jjump table
within the UNIBUS adapter control block. The vector jump
table contains a list of channel request block addresses that
point to the interrupt service routines for all the devices
attached to that UNIBUS.

e Transfers control to the channel request block (CRB) address
that corresponds to the vector address.

The CRB address contains a JSB instruction that passes control to the
device's interrupt service routine. Figure 3-1 shows a flowchart that
details interrupt dispatching of a nondirect vector interrupt.

On a configuration that supports direct vector interrupts, the UNIBUS
adapter does not dispatch the interrupt. Instead, the processor
locates the device's interrupt service routine by wusing the system
control block (SCB). The system control block consists of two or
three pages of addresses. Page one 1lists the exception vectors;
pages two and three contain the list of CRB addresses that point to
the interrupt service routines for devices attached to the first
UNIBUS and an optional second UNIBUS, respectively. The SCB base
register (SCBB), an internal processor register, marks the base of the
system control block.

The processor obtains the vector address of the device that requested
the interrupt and uses it as an index into page two (or page three) of
the SCB. When it finds the corresponding CRB address, the processor
transfers control " to the interrupt dispatching code in the device's
channel request block. On direct vector configurations, the interrupt
dispatch <code is a PUSHR instruction of RO through R5 followed by the
JSB to the device's interrupt service routine.

Figure 3-2 shows a flowchart of 1interrupt dispatching on a direct
vector UNIBUS adapter.

SYNCHRONIZATION OF I/O REQUEST PROCESSING

To maintain machine-independent descriptions of interrupt handling,
subsequent chapters in this manual refer to the combination of
hardware and software that transfers device interrupts to the device's
interrupt service routine as the interrupt dispatcher.

3.1.7 Transferring Control to the Driver Fork Process

When a device driver receives an expected interrupt from a device, the
driver interrupt service routine executes in the context of an
interrupt; it is not executing in driver fork process context at that
point. 1Interrupt context has the following characteristics:

e IPL is elevated to the level at which the device requests
hardware interrupts. '

® The stack is the interrupt stack.

o The top of the stack contains a pointer to the address of the
controller's interrupt dispatch block (IDB), which contains
the address of the control/status register.

® The stack also contains saved RO through R5 and the PC and PSL
of the interrupted code.

The interrupt occurs either because the device has completed an I/O
operation or because an error occurred during the I/O operation.
Driver interrupt service routines generally determine whether to
service the ‘interrupt by examining the I/O data base. If the unit
control block for the device that currently owns the controller
indicates that the interrupt is expected, the service routine takes
the following steps to transfer control to the driver's start 1I/0
routine:

e Loads the UCB address into R5

® Restores the contents of two registers (R3 and R4) from the
UCB fork block

e Returns control to the saved PC in that fork block
The driver may need to execute a few instructions in the context of
the interrupt. For example, the driver may copy device status
information from device registers into the device's unit control
block. After executing these instructions at device IPL, the driver

completes the I/0 processing at a lower priority by creating a fork
process, as described in Section 3.2.

3.1.8 1IPL Use During I/O Processing
I/0 processing occurs mainly at the following IPLs:
° IPL$_ASTDEL (IPL 2)
e IPL$ IOPOST (IPL 4)
e Driver fork processing IPLs (IPLs 8 through 11)
e Hardware device IPLs (IPLs 20 through 23)

e IPLS POWER (IPL 31)

SYNCHRONIZATION OF I/0 REQUEST PROCESSING

INTERRUPT

PROCESSOR CHANGES TO INTERRUPT
STACK, IF NECESSARY.

PROCESSOR PUSHES PSL AND PC OF
INTERRUPTED CODE ONTO THE
INTERRUPT STACK.

PROCESSOR TRANSFERS CONTROL TO AN
INTERRUPT DISPATCHING ROUTINE FOR
THE UNIBUS ADAPTER OF THE DEVICE
REQUESTING THE INTERRUPT.

UNIBUS ADAPTER INTERRUPT DISPATCHER
SAVES RO THROUGH R5.

INTERRUPT DISPATCHER
TESTS FOR DEVICE INTERRUPT
OR UBA ERROR CONDITION.

ERROR ERROR
HANDLING

DEVICE INTERRUPT

INTERRUPT DISPATCHER GETS DEVICE
INTERRUPT VECTOR ADDRESS FROM
UNIBUS ADAPTER REGISTER.

|

INTERRUPT DISPATCHER USES VECTOR
ADDRESS AS AN INDEX INTO A TABLE OF
CHANNEL REQUEST BLOCK (CRB) ADDRESSES.

[

INTERRUPT DISPATCHER TRANSFERS CONTROL
TO THE CRB ADDRESS THAT CORRESPONDS TO
THE INTERRUPT VECTOR ADDRESS. THIS
ADDRESS CONTAINS A JSB INSTRUCTION.

THE FOLLOWING JSB INSTRUCTION {S EXECUTED:

JSB ADDRESS OF DRIVER'S INTERRUPT
SERVICE ROUTINE

THE DRIVER’S INTERRUPT SERVICE ROUTINE
GAINS CONTROL AND EITHER SERVICES THE
INTERRUPT OR DISMISSES IT.

4

REI

ZK-912-82

Figure 3-1: Interrupt Dispatching of a Nondirect Vector Interrupt

3-6

SYNCHRONIZATION OF I/O REQUEST PROCESSING

3.1.8.1 IPL$ ASTDEL (IPL 2) - IPL$ ASTDEL blocks the delivery of
asynchronous system traps (ASTs). When a system service for which an
AST was specified completes, the system service queues the AST and
causes a software interrupt to be requested at IPL$S ASTDEL. The AST
delivery interrupt service routine gains control when IPL drops below
IPLS ASTDEL. It delivers the AST to the process that is currently
scheduled.

Any driver routine that allocates or deallocates dynamic system pool
space while running in the context of a process (for example, an FDT
routine) must do so at an IPL of IPLS ASTDEL or higher. The VAX/VMS
allocation routine records the address of the allocated system memory
in a register. If an AST that aborts the process were to occur, the
allocated memory would be 1lost from the pool. To block ASTs, I/O
preprocessing from the time that the Queue I/O Request system service
allocates an I/0 request packet through the execution of the last FDT
routine occurs at IPLs no lower than IPL$ ASTDEL.

A process cannot incur page faults when IPL is above IPL$ ASTDEL. Any
code that executes at a higher IPL must refer only to nonpaged virtual
memory or pages that have been locked in wvirtual memory. A fatal
bugcheck occurs if a page fault is incurred above IPL$ ASTDEL.

INTERRUPT

#

PROCESSOR CHANGES TO INTERRUPT
STACK, IF NECESSARY

PROCESSOR PUSHES PSL AND PC OF INTERRUPTED
CODE ONTO THE INTERRUPT STACK

|

PROCESSOR USES VECTOR ADDRESS AS INDEX
INTO SECOND (OR THIRD) PAGE OF SCB AND
CALCULATES ADDRESS OF INTERRUPT
DISPATCH CODE IN CRB.

PROCESSOR TRANSFERS CONTROL TO

THE CRB ADDRESS THAT CORRESPONDS TO
THE VECTOR ADDRESS. THIS ADDRESS
CONTAINS A PUSHR RO-R5 INSTRUCTION
FOLLOWED BY A JSB INSTRUCTION

|

THE FOLLOWING INSTRUCTIONS ARE EXECUTED:

PUSHR RO-R5
JSB ADDRESS OF DRIVER'S
INTERRUPT SERVICE ROUTINE

THE DRIVER'S INTERRUPT SERVICE
ROUTINE GAINS CONTROL AND EITHER
SERVICES THE INTERRUPT OR DISMISSES IT.

'

REI

ZK-913-82

Figure 3-2: 1Interrupt Dispatching of a Direct Vector Interrupt

SYNCHRONIZATION OF I/0O REQUEST PROCESSING

In addition, some I/0 postprocessing occurs in a kernel mode AST
service routine that also executes at IPLS ASTDEL. Kernel mode ASTs,
running in the context of a process whose I/0 completed, write status
information into 1I/O status blocks, copy buffered input into process
space, and deallocate system buffers.

3.1.8.2 1IPL$ IOPOST (IPL 4) - I/O postprocessing includes all 1I/O
completion processing that can occur without reference to the device's
unit control block and, thus, can occur at an IPL 1lower than driver
fork IPL. To redquest 1I/0 postprocessing, drivers call a VAX/VMS
routine that inserts I/0 request packets in the postprocessing queue
and requests a software interrupt at IPLS_IOPOST.

I/0 postprocessing runs at an IPL higher than IPL$ SCHED so that all
pending I/0 completion processing 1is finished before the scheduler
looks for a new process to schedule. Whether a process 1is awaiting
/0 completion affects its ability to execute. Since 1I/0
postprocessing queues ASTs to processes, the scheduler may
preferentially reschedule a waiting process because of a pending AST
to the process.

The VAX/VMS operating system performs I/O postprocessing in the IPL 4
interrupt service routine. This routine adjusts process quota use,
queues a kernel mode AST to write status and data into the process's
address space, and deallocates system memory.

3.1.8.3 Driver Fork Processing (IPLs 8 through 11) - Driver fork
processing occurs at an IPL in the range 8 through 11 depending on the
contents of the wunit control block £field UCBSB FIPL. UCBSB_FIPL
contains a wvalue that is used as that device's fork IPL., All driver
routines, except for most FDT routines, execute at driver fork IPL or
higher. Usually driver routines should not read or alter fields of
the unit control block unless IPL is at fork level or higher.

A driver must never lower IPL below the 1IPL of the interrupt that
caused the driver to be reentered unless the driver does so by
creating a fork process at the lower IPL.

All devices on a single UNIBUS adapter share the same fork IPL if they
actively compete for shared UNIBUS adapter resources such as map
registers and data paths.

3.1.8.4 Hardware Device Interrupts - The UCBS$B DIPL field in the
device's wunit control block contains an IPL value at which the device
requests hardware interrupts. This IPL is in the range 20 through 23
because device interrupts wusually need to interrupt most user and
VAX/VMS software functions. IPLs 20 through 23 correspond to UNIBUS
bus request (BR) levels 4 through 7. Device drivers sometimes raise
IPL to UCBS$B DIPL or higher before reading and writing certain device
registers.

3.1.8.5 IPL$_POWER - The highest IPL, IPL$_POWER, locks out all other
interrupts. Many VAX/VMS routines and drivers raise IPL to IPLS POWER
to execute code sequences that cannot tolerate interruption. For
example, much of system initialization occurs at IPL$_POWER.

SYNCHRONIZATION OF I/0O REQUEST PROCESSING

When a device driver needs to execute a series of instructions without
interruption, the driver raises IPL to IPLS POWER. The driver never
should remain at IPL$ POWER for more than a "few instructions. The
most common instance of a driver's raising IPL to IPL$ POWER is to
determine whether a power failure has occurred between the time that
the driver writes set-up data into device registers and the time that
the driver starts the device by writing into the device control
register.

3.1.9 Additional IPLs

In addition to the 1IPLs described above, VAX/VMS defines the
following:

e IPLS SCHED (IPL 3); never used by drivers
e IPLS QUEUEAST (IPL 6); very seldom used by drivers

e TIPL$ SYNCH and IPL$ TIMER (IPL 7); very seldom used by
drivers

e IPLS MAILBOX (IPL 11); very seldom used by drivers

For debugging purposes, the VAX/VMS operating system defines the
priority level IPL$ XDELTA (IPL 5); it 1is described in Section

3.1.9.5.

3.1.9.1 IPLS SCHED - When the system wishes to reschedule processes,
a VAX/VMS routine requests a software interrupt at IPL$ SCHED. The
scheduler interrupt service routine gains control at this IPL.

If a process raises IPL to or above IPLS_SCHED, the scheduler cannot
reschedule the processor. The process runs until an interrupt occurs
at a higher IPL or the process reduces IPL below IPL$ SCHED..

3.1.9.2 IPL$ QUEUEAST - IPLS QUEUEAST is a fork level IPL. That Iis,
the interrupt service routine for IPLS$ QUEUEAST is the fork dispatcher
that dequeues fork blocks and restores control to fork processes
needing to execute at IPL$ QUEUEAST.

To queue an AST, a driver creates a fork process at IPL$ QUEUEAST.
When the fork dispatcher restores control to the fork process, the
process can raise IPL to IPL$ SYNCH and queue the AST.

A driver that wishes to gain access to the system data base for any
reason can also create a fork process at IPL$S QUEUEAST. The fork
dispatcher restores control to the driver at IPL$ QUEUEAST, and the
driver can then raise IPL to IPL$ SYNCH (a nonfork IPL) to gain access
to the system data base.

3.1.9.3 IPL$ SYNCH and IPLS TIMER - IPLS$S SYNCH is the system data
base synchronization 1level. When a VAX/VMS subroutine or a driver
needs to modify or read a dynamic portion of the system data base, the
routine always executes at IPLS SYNCH to ensure that the data base
does not change due to some interrupt service routine or process
action. .

SYNCHRONIZATION OF I/0O REQUEST PROCESSING

A timer queue interrupt service routine fields interrupts requested at
IPLS TIMER, which is also IPL 7. The hardware clock interrupt service
routine requests a software timer interrupt at IPL$ TIMER when the
current process has exceeded its processor time quantum or when the
first entry in the timer queue is due. The timer interrupt service
routine dequeues the first timer queue entry and takes appropriate
action.

3.1.9.4 IPLS$ MAILBOX - When a VAX/VMS or driver routine writes into a
mailbox, IPL must be at IPL$ MAILBOX to prevent other writers from
modifying incomplete data in the mailbox, or readers from reading
invalid data.

IPLS MAILBOX is the highest fork level; drivers can raise IPL to
IPLS MAILBOX and write into a mailbox.

3.1.9.5 1IPL$ XDELTA - To stop the operating system for debugging
purposes, vyou can halt the operating system from the console terminal
and request a software interrupt at IPL$ XDELTA. The processor must
be executing below IPL 5 for the interrupt to have an effect. Chapter
15 describes the XDELTA debugging program.

3.1.10 Overview of IPL Use

Figure 3-3 illustrates the normal IPL flow during the processing of an
I/0 request.

The user program, executing at IPL 0, 1issues a Queue I/0 Request
system service call. I/0 processing by the system service and FDT
routines occurs mostly at IPL$ ASTDEL., Very rarely, an FDT routine
raises IPL to driver fork level to read or modify the device's unit
control block.

The start I/O routine executes as a fork process at fork IPL, but may
raise to device interrupt IPL or IPL$ POWER for short periods of time.
After the driver fork process activates the device, the driver calls a
VAX/VMS routine that saves the driver fork context, suspends driver
fork processing, and restores IPL to a previous level.

Figure 3-3 illustrates the completion of the I/0 request from the
point of the device interrupt to the delivery of ASTs to the user
program. The device interrupts at a device IPL (in the range 20
through 23). VAX/VMS transfers control to the appropriate driver
interrupt service routine. The service routine reactivates the driver
fork process with IPL still at hardware device IPL.

The fork process briefly examines or saves the contents of device
registers, but soon requests that VAX/VMS insert a fork block
describing its context into one of the fork queues for driver fork
IPLs (8 through 11). When the driver fork process regains control at
driver fork IPL, the process analyzes the success of the I/0 operation
and writes status 1into RO and Rl. Then, still at driver fork IPL,
VAX/VMS inserts the I/0 request packet into the 1I/0O postprocessing
queue and starts the next I/O request.

The I/O postprocessing routine adjusts process quota usage and
deallocates system buffers for write functions at IPL$ IOPOST. The
routine also calls another VAX/VMS routine that raises 1IPL to
IPLS SYNCH to queue a kernel mode AST to the process that issued the

SYNCHRONIZATION OF I/0 REQUEST PROCESSING

original QIO request. The AST routine executes at TIPL$_ASTDEL, and
may dqueue a user AST routine that eventually executes at an IPL of 0.
I/0 postprocessing continues at IPLS$ IOPOST until all entries 1in the
postprocessing queue have been serviced.

SAVE
START DEVICE DRIVER
CONTEXT
IPLS_POWER
— s e — — — . . o . — — — — — — — — —— o
UCB$B_DIPL r_
MODIFY & REAC SETUP START
ucB DEVICE 1/0
REGISTERS
4
UCB$B_FIPL
'
Qlo
FOT FDT
SERVICE
I ROUTINE
ROUTINE ROUTINE
[
IPL$_ASTDEL
0
y
USER USER
ISSUES PROGRAM
Qto CONTINUES

ZK-583-81

Figure 3-3: IPL Conventions During I/O Processing

3.1.11 Modifying IPL in Driver Code

The interrupt priority level at which driver code executes changes as
a result of either of the following events:

e The driver's calling a VAX/VMS routine that raises or lowers
IPL

e The driver's invoking a VAX/VMS macro to request explicitly a
change in IPL

Subsequent chapters of this manual discuss the VAX/VMS routines that
change IPL; discussions include their expectation of IPL at entry and
their IPL setting at exit. The sections that follow describe the
macros that drivers can call to change IPL:

e SETIPL
e DSBINT
e ENBINT
e SOFTINT

SYNCHRONIZATION OF I/O REQUEST PROCESSING

DEVICE DRIVER
GENERATES ANALYZES
INTERRUPT INTERRUPT
uCB$8_DIPL
. — — — — — — — — D S S RIS T — — — G— — — — — — — — — — e
DRIVER 0O.S. START
RETURNS QUEUES NEXT
STATUS 1/0 POST 1/0.
UCB$B_FIPL
———— e c— e —— — — —— o—— — — —— — — — — — ———— —— — a—— a—
CLEAN UP
Q10 QUEUE
KERNEL AST
TO PROCESS
IPL$_IOPOST
- — — — — — — — — — — — — — — — — ———m — — — — —— — —— -
IPL$_ASTDEL
y
DELIVER
KERNEL
AST TO
PROCESS

DELIVER USER
AST (IF ANY) TO
PROCESS

ZK-914-82

Figure 3-4: IPL Conventions During I/O Completion

3.1.11.1 Set Interrupt Priority Level Macro - The Set Interrupt
Priority Level (SETIPL) macro moves the specified IPL into the IPL
processor register.

Format
SETIPL [ipl]

ipl
The interrupt priority level. If no priority level is specified,
the macro moves the value 31 into the IPL register. Setting IPL
to 31 blocks all interrupts.

3.1.11.2 Disable Interrupts Macro - The Disable Interrupts (DSBINT)
macro saves the current IPL in the specified destination and moves the
specified IPL into the IPL processor register. Procedures invoke this
macro to raise IPL.

Format
DSBINT [ipl] [,dst]

ipl
The interrupt priority level. The macro saves the current IPL on
the top of the stack (default) or in the specified destination
and moves the specified IPL into the IPL register. If IPL is not
specified, the macro moves the value 31 into the IPL processor
register; this blocks all interrupts.

3-12

SYNCHRONIZATION OF I/0 REQUEST PROCESSING

dst
The location in which the current IPL is to be saved. If this
argument is not specified, the current IPL is stored on the top
of the stack by default.

3.1.11.3 Enable Interrupts Macro - The Enable Interrupts (ENBINT)
macro restores an IPL value to the IPL processor register. Procedures
invoke this macro to lower IPL to a previously saved 1level. If an
interrupt 1is pending at an intermediate IPL (that is, one lower than
the current IPL but higher than the specified 1IPL), restoring IPL
causes immediate interruption of the current procedure.

Format
ENBINT [src]

src
The location containing the IPL to be restored. If this argument
is not specified, the macro moves the IPL value contained on the
top of the stack into the IPL register.

3.1.11.4 Software Interrupt Macro - The Software Interrupt (SOFTINT)
macro moves the specified IPL into the software interrupt request
processor register to request a software interrupt. If the processor
is executing at a low IPL (for example, IPL 0) and detects a software
interrupt request at a higher IPL (1 through 15), the processor
immediately transfers control to a software interrupt service routine
for the appropriate IPL. 1If the processor is executing at or above
the specified 1IPL, the ©processor does not transfer control to the
software interrupt service routine until IPL drops below the specified
IPL.

Format

SOFTINT ipl

ipl
The interrupt priority level at which the software interrupt 1is
being requested.

3.2 FORK BLOCKS AND FORK DISPATCHING

Device driver routines that activate a device and complete an I/0
operation after a device interrupt execute for relatively short
periods of time. Execution may be suspended to wait for a device
interrupt or shared resources, To ensure that the resulting context
switching is fast, VAX/VMS forces driver routines to execute in a
minimal fork process context consisting of a device UCB, called a fork
block, and a few registers.

Driver fork processes are created in either of the following
situations:

® Once the preprocessing of an I/0 packet has been performed, a
VAX/VMS routine creates a fork process to execute the driver's
start I/0 routine. If the driver is already busy, the VAX/VMS
routine queues the I/O packet for the driver to process later,

SYNCHRONIZATION OF I/O REQUEST PROCESSING

e Either the driver's interrupt service routine or the driver
postprocessing routine creates a fork ©process to perform
device-dependent I/0 postprocessing.

When the system creates a driver fork process to execute the start I/0
routine, the newly created fork process can execute immediately
because the I/0 packet has been preprocessed by the Queue I/O Request
system service and driver FDT routines, and the device is idle.

When the driver interrupt service routine or the driver postprocessing
routine creates a driver fork process, it does so to lower the IPL of
the driver code. Either the service routine or the driver invokes the
VAX/VMS macro IOFORK. IOFORK saves the context needed for the driver
to execute as a fork process, inserts the driver's UCB fork block in
the fork queue for the driver's IPL, and requests a software interrupt
for that IPL.:

3.2.1 Interrupt Service Routine for Fork Dispatching

One interrupt service routine handles all fork process dispatching.
When the processor grants an interrupt at fork 1IPL, the fork
dispatcher saves RO through R5 on the stack and processes the fork
queue that corresponds to the IPL of the interrupt. To do so, it
removes an entry from the fork queue, restores the fork process
context, and reactivates the suspended fork process. When that fork
process completes, the dispatcher regains control, removes the next
entry, 1if any, from the queue, restores its fork process context, and
reactivates it. This sequence repeats until the fork queue is empty.
When the queue 1is empty, the fork dispatcher restores RO through R5
from the stack and dismisses the interrupt with an REI instruction.

Figure 3-5 illustrates the fork queue structure.

A newly activated driver fork process executes under the following
constraints:

e It cannot refer to the address space of the process initiating
the I/0 request.

e It can use only RO through R5 freely; it must save other
registers before use and restore them after use. Use of
registers other than RO through R5 is strongly discouraged.

e It must clean up the stack after use; the stack must be in
its original state when the fork process relinquishes control
to any VAX/VMS routine.

e It must execute at IPLs between driver fork 1level and
IPLS POWER; it must not 1lower IPL below driver fork level
except by creating a fork process at a lower IPL.

e When it returns control to the fork dispatcher, IPL must be
the same as it was when the driver fork process was activated.
The driver returns control to the fork dispatcher by invoking
the wait for interrupt macro or the request complete macro.

SYNCHRONIZATION OF I/O REQUEST PROCESSING

IPL 15 RESERVED
IPL 14 RESERVED
IPL 11 FORK
IPL 13 RESERVED * FORK QUEUE ™ Brock [
LISTHEAD
IPL 12 RESERVED
IPL 10
IPL 11 FORK LEVEL FORK QUEUE
| LISTHEAD
IPL 10 FORK LEVEL
IPL 9 FORK LEVEL i. PLY
FORK QUEUE
IPL 8 FORK LEVEL LISTHEAD
IPL 7 TIMER
IPL 8
FORK
IPL6 FORK LEVEL FORK QUEUE BLock
LISTHEAD
IPL5 XDELTA
IPL 4 1/0 POSTING IPL 6 FORK
IPL3 PROCESS SCHEDULING LISTHEAD
IPL 2 AST DELIVERY
IPL 1 RESERVED
IPL O PROCESS EXECUTION

ZK-584-81

Figure 3-5: Fork Dispatching Data Structure

3.3 RESOURCE WAIT QUEUES

The processing of an I/0 request often requires shared system
resources such as memory and UNIBUS adapter map registers. The Queue
I/0 Request system service and driver fork processes call VAX/VMS

routines to allocate and deallocate these resources. Since the
resources are limited, I/0 processing may be delayed until unavailable
resources are released by other processes or drivers. Thus,

synchronization of access to these resources can have a substantial
impact on I/O request processing.

For example, the Queue I/O Request system service calls a VAX/VMS
routine to allocate nonpaged system space for an I/0 request packet.
If the nonpaged pool is empty, the routine <c¢alls another VAX/VMS
routine to save the process context and change the process state to
resource wait mode (also <called miscellaneous wait, or MWAIT).
Process states and the resources for which processes can wait are
described in the VAX/VMS Summary Description and Glossary. As a
result of waiting, the process is a candidate to be swapped out of
memory. When nonpaged ©pool becomes available, the scheduler
reschedules the process.

During driver fork process execution at raised IPLs, driver context is
very small. At any point, the driver can obtain all details about an
I/0 request by referring to the I/O data base. The driver needs only
the address of the device unit control block which is the key to the
rest of the data base. Therefore, VAX/VMS routines that control
driver resources, such as UBA map registers, use driver fork blocks

3-15

SYNCHRONIZATION OF I/0 REQUEST PROCESSING

and resource wait queues to save minimal driver context. Each entry
in a queue consists of the following items:

e The address of the UCB, which is also the contents of R5 in
the driver fork process; the UCB also contains the driver
fork block

e R3, and normally R4, from the fork process
e A PC for the waiting fork process

When the awaited resource becomes available, the routine controlling
the resource performs the following steps:

® Restores the UCB address to R5

® Restores the saved registers R3 and R4

e Grants the resource

e Transfers control to the saved driver return PC address

Because the VAX/VMS routine that controls a particular resource places
the driver in a wait state when the driver requests an unavailable
resource, drivers are unaware of being suspended and subsequently
resumed. Drivers must not leave anything on the stack when calling a
routine that may suspend the driver.

3.3.1 Competing for a Controller Data Channel

A controller data channel is a VAX/VMS synchronization mechanism that
guarantees for multiunit controllers that one unit uses the controller
at a time. A device driver fork process can read and write a device's
registers whenever the device unit owns the controller data channel.

Devices that share a multiunit controller, such as disk units, own the
controller data channel only when a VAX/VMS routine assigns the
channel to the unit's driver fork process. In contrast, a single
device wunit on a controller always owns the controller data channel.
Therefore, if VAX/VMS transfers control to such a driver's start 1I/0
routine, the driver can immediately address the device registers
without first obtaining the controller data channel.

An LP1l line printer device, such as the one discussed in Chapter 2,
has a dedicated (single-unit) controller attached to the UNIBUS. When
VAX/VMS finds the device idle and creates a line printer driver fork
process to write data to the line printer data buffer, the controller
data channel is guaranteed not to be busy. Because the controller
data channel 1is not busy, the 1line printer start I/O routine can
execute the following simple sequence of events:

® Retrieve the virtual address of the data to be written and the
number of bytes to transfer from the device's unit control
block

® Retrieve the virtual address of the device's control/status
register from the interrupt dispatch block

e Calculate the address of the 1line printer's data buffer
register by adding a constant offset to the control/status
register address

e Write data one byte at a time to the 1line printer's data
buffer until all bytes of data have been written

3-16

SYNCHRONIZATION OF I/0O REQUEST PROCESSING

In contrast, a device unit on a multiunit controller must compete for
the controller data channel with other devices attached to that
controller.

An RK61l1l controller, for example, controls as many as eight RK06/RKO07
devices. The disk driver fork process must gain control of the
controller data channel before starting an I/0 operation on the unit
associated with the fork process. The disk driver's start I/O0 routine
uses the following sequence to start a seek operation on an RKO7
device:

e The start I/O routine requests the controller data channel by
invoking a VAX/VMS channel arbitration routine.

e The VAX/VMS routine tests the CRB mask field +to determine
whether the controller data channel is available.

e If the channel is available, the VAX/VMS routine allocates the
channel to the driver fork process and returns the address of
the device control/status register to the fork process.

If the channel is busy, the VAX/VMS routine saves the driver
fork context in the UCB fork block and inserts the fork block
address in the controller channel wait queue.

e When the driver fork process resumes execution, the process
owns the controller channel. The fork process can then modify
device registers to activate the device.

e The driver's start 1I/0 routine then requests VAX/VMS to
suspend driver processing in anticipation of an interrupt or
timeout and to release the channel.

e The VAX/VMS channel releasing routine assigns channel
ownership to the next driver fork process in the channel wait
queue, loads the control/status register address into a
general register, and reactivates the suspended driver fork
process.

e The reactivated fork process continues execution as though the
channel had been available in the first place.

The VAX/VMS channel arbitration routines keep track of controller
availability wusing a flag field in the channel request block. The
driver fork process must always request and release the controller
data channel by invoking these routines. Once the driver owns a
controller data channel, the driver is free to read and modify device
registers.

CHAPTER 4

THE UNIBUS ADAPTER

The UNIBUS adapter connects the UNIBUS, an asynchronous bidirectional
bus, to the backplane interconnect. The adapter performs the
following functions:

e Arbitrates priority interrupts from UNIBUS devices
e Delivers interrupts from UNIBUS devices to the processor

e Allows drivers to gain access to UNIBUS device registers using
system virtual addresses

e Translates 18-bit UNIBUS addresses to physical addresses

® Provides a data transfer path to randomly ordered physical
addresses, that is, to discontiguous pages

® Provides buffered data transfer paths to consecutively
increasing physical addresses

e Permits byte-aligned buffers for UNIBUS devices requiring
word-aligned buffer addresses

Together the UNIBUS adapter and the backplane interconnect permit
devices and device drivers to exchange data without much awareness of
the intervening hardware. Because VAX/VMS routines handle the details
of the adapter/backplane interconnect interface, most device drivers
do not need to know the interface protocol.

The critical responsibility of UNIBUS device drivers that actively
compete for shared UNIBUS adapter resources is that they all execute
at the same fork IPL. This IPL convention synchronizes access to the
UNIBUS adapter data structures.

In general, device drivers use the UNIBUS adapter for the following
purposes:

® Reading and writing device registers

e Mapping UNIBUS addresses to physical addresses and vice versa
for direct memory access (DMA) transfers

o Buffering data transfers

Drivers for UNIBUS devices that do not perform DMA transfers are
unaware of the presence of the UNIBUS adapter. The UNIBUS adapter
provides access to device registers using an address mapping scheme
that is 1invisible to the driver. However, drivers that handle DMA
transfers to and from UNIBUS devices must call VAX/VMS routines that
eatahlien *he appropriate mapping.

THE UNIBUS ADAPTER

4.1 READING AND WRITING DEVICE REGISTERS

Each I/0 controller or device directly attached to the UNIBUS has a
set of control/status and data registers. These registers are
assigned addresses in a portion of the physical address space called
the UNIBUS address space. Device drivers obtain device status and
activate devices by reading and writing to these registers.

Generally, a device driver can treat the addresses of device registers
as identical to all other virtual addresses. The driver can read and
write data to the device register as though the device register were a
location in memory. The driver must obey the restrictions on
instructions ‘described in Section 6.2. The UNIBUS adapter performs
the actual mapping of virtual address to UNIBUS addresses that
correspond to device registers.

Before a driver for a multiunit controller can gain access to device
registers, it must first obtain a controller channel, as described in
Section 3:3.1. :

4.2 < MAPPING UNIBUS AND PHYSICAL ADDRESSES FOR DMA TRANSFERS

The UNIBUS address space consists of 256K bytes of memory, of which 8K
bytes are reserved for device control registers. UNIBUS DMA devices
read and write data from and to memory locations using 18-bit "UNIBUS
addresses. The UNIBUS adapter translates the 18-bit UNIBUS addresses
into physical addresses. This translation allows the operating
system, TI/0 drivers, and UNIBUS devices to access the same physical
address space.

The UNIBUS adapter provides 496 map registers to translate UNIBUS
addresses to physical addresses. Each map register represents one
page of the UNIBUS address space. A field in the map register
identifies the page frame number corresponding to the UNIBUS address
that the map register represents.

For example, VAX/VMS routines fill as many map registers with wvalid
page frame addresses as needed for a DMA transfer. A DMA UNIBUS
device puts an address on the UNIBUS. The UNIBUS adapter receives the
address and translates it using the following information:

e The 9-bit UNIBUS page address field (bits 9 through 17 of the
UNIBUS address) identifies the UBA map register.

e The page frame number field in the map register specifies the
high order bits of the physical address.

® UNIBUS address bits 2 through 8 map directly to bits 0 through
6 of the physical address.

The resulting physical address locates the longword that is the target
of the transfer. The UNIBUS adapter identifies the byte addressed
within the longword by interpreting the low-order two bits of the
UNIBUS address.

Figure 4-1 illustrates the UNIBUS to physical address mapping.

Each UNIBUS adapter map register also contains a bit called the map
register wvalid bit. The UNIBUS adapter tests this bit every time the
map register is used. If the bit 1is not set, the UNIBUS adapter
aborts the UNIBUS transfer. The wvalid bit 1is zero whenever the
register is not mapped to a physical address.

THE UNIBUS ADAPTER

18-BIT UNIBUS ADDRESS

LONGWORD
OFFSET

MAP REGISTER NO.

UNIBUS
ADAPTER
MAP
REGISTER
32-BIT MAP REGISTER
—_ PAGE FRAME ADDRESS
] \
LONGWORD
PAGE FRAME ADDRESS OFFSET
PHYSICAL ADDRESS
ZK-915-82

Figure 4-1: UNIBUS to Physical Address Mapping

4.2.1 UNIBUS Adapter Data Transfer Paths

The UNIBUS adapter sends data through one of several data paths for
UNIBUS devices performing DMA transfers. One data path, the direct
data path (DDP), allows UNIBUS transfers to randomly ordered physical
addresses. The direct data path maps each UNIBUS transfer to a
backplane interconnect transfer. Thus, a single word or byte of data
is transferred per backplane interconnect operation.

The remaining data paths, the buffered data paths (BDPs), allow
devices on the UNIBUS to transfer much faster than through the direct
data path. The buffered data paths store UNIBUS data so that multiple
UNIBUS transfers result in a single backplane interconnect transfer.

The UNIBUS adapter hardware of certain processors restricts normal
buffered data paths to referencing only consecutively increasing
addresses. Through a special mode of operation, these UNIBUS adapters
can also reference data in a randomly ordered, longword-aligned
manner, Other processors do not impose this restriction. In order
for a device driver to run on both types of processors, it must
observe two rules:

e Normal buffered data paths must always transfer data to
consecutively increasing addresses.

e To reference random longword aligned data, the longword enable
bit (LWAE) must be set.

When a UNIBUS device begins a DMA transfer by placing an address on
the UNIBUS, the UNIBUS adapter map register not only performs address
mapping but also provides the number of the data path to be wused for
the transfer. Each UNIBUS adapter map register contains a field that
describes the data path. Data path 0 is the direct data path; the
other data paths are the buffered data paths.

4-3

THE UNIBUS ADAPTER

The sequence below describes a UNIBUS device DMA transfer.
e The UNIBUS device puts an address on the UNIBUS.

e The UNIBUS adapter locates the UNIBUS adapter map register
that corresponds to the UNIBUS address.

e The UNIBUS adapter verifies that the map register has the map
register valid bit set.

e The UNIBUS adapter maps the UNIBUS address to a page frame
number.

e The UNIBUS adapter extracts the number of the data path to be
used for the transfer from the map register.

e The data path translates the UNIBUS function to a backplane
interconnect function by reading the UNIBUS control lines.

e Based on the UNIBUS function indicated by the UNIBUS control
lines, (DATI, DATIP, DATO, or DATOB), the UNIBUS adapter
starts appropriate UNIBUS and backplane interconnect
operations to transfer data to or from the UNIBUS device.

4.2.1.1 Direct Data Path - Since the direct data path performs a
backplane interconnect transfer for every UNIBUS transfer, the data
path can be used by more than one UNIBUS device at a time. The UNIBUS
adapter arbitrates among devices that wish to use the direct data path
simultaneously. The device driver 1is unaffected by this UNIBUS
adapter arbitration.

The direct data path is slower than buffered data paths because each
UNIBUS transfer cycle corresponds to a backplane interconnect cycle.
One word or byte is transferred per backplane interconnect cycle. On
some hardware configurations, the direct data path 1is unable to
transfer a word of data to an odd physical address. Therefore, an FDT
routine for a DMA device that uses the direct data path should check
that the specified buffer is on a word boundary.

UNIBUS devices that transfer data through the direct data path do so
in order to perform the following functions:

® Execute an interlock sequence to the backplane interconnect
(DATIP-DATO/DATOB)

e Transfer to randomly ordered addresses instead of
consecutively increasing addresses

e Mix read and write functions

The direct data path is the simplest data path to program. Since the
direct data path can be shared simultaneously by any number of I/0
transfers, the device driver need not allocate that data path. Once
the map registers are loaded, the device driver initiates the transfer
by setting appropriate device control register bits. The programming
sequence is as follows:

e Allocate a set of map registers.

e Load the map registers with physical address mapping data and
the data path number (0 for the direct data path).

THE UNIBUS ADAPTER

e Set the valid bit in every map register. The map register
that follows the 1last map register must have the valid bit
cleared.

e Load the starting address of the transfer in a device
register.

e Load the transfer byte or word count in a device register.

® Set bits in the device control register to initiate the
transfer.

The operating system performs the first three steps above. The driver
fork process simply calls VAX/VMS routines to allocate and load the
map registers.

4.2.1.2 Buffered Data Paths - In contrast to the direct data path,
the buffered data paths transfer data much more efficiently between
the UNIBUS and the backplane interconnect by decoupling the UNIBUS
transfer from the backplane interconnect transfer. Buffered data
paths read or write multiple words of data in a transfer, and buffer
the unrequested portions of the data in UNIBUS adapter buffers. Thus,
several UNIBUS read functions can be accommodated with a single
backplane interconnect transfer.

Advantages that buffered data paths offer to UNIBUS devices include
the following:

e Fast DMA block transfers to or from consecutively increasing
addresses

® Word-oriented block transfers that begin and end on an odd
byte of memory; note, however, that these transfers can be
quite slow since the UNIBUS adapter may need to perform
multiple transfers to complete a l-word transfer

e 32-bit data transfers from random longword-aligned physical
addresses

A buffered data path cannot be assigned to more than one active
transfer at a time. When a driver fork process is preparing to
transfer data to or from a UNIBUS device on a buffered data path, the
driver requests allocation of a free buffered data path and a set of
UNIBUS adapter map registers. A VAX/VMS I/0 routine writes the number
of the data path into each of the assigned map registers.

A UNIBUS device transfer over a buffered data path has the following
restrictions:

e All addresses in a block transfer must be consecutively
increasing addresses.

e All transfers within a block must be of the same function type
(DATI or DATO/DATOB).

A buffered data path stores data from the UNIBUS in a buffer until
multiple words of data have been transferred (except in
longword-aligned transfer mode; see below). Then, the UNIBUS adapter
transfers the contents of the buffer to the appropriate physical
address in a single backplane interconnect operation. The procedure
for a UNIBUS write operation that transfers data to memory is broken
into individual steps as follows:

THE UNIBUS ADAPTER

e The UNIBUS device transfers one word of data to the buffered
data path.

o The buffered data path stores the word of data and completes
the UNIBUS cycle.

e The buffered data path sets its buffer-not-empty flag to
indicate that the buffer contains valid data.

e The UNIBUS device repeats the first three steps until the
buffer is full.

e When the UNIBUS device addresses the last byte or word in the
buffer, the UNIBUS adapter recognizes a complete
data-gathering cycle.

e The buffered data path requests a backplane interconnect write
function to write the data from the buffered data path to

memory.

e When the backplane interconnect transfer 1is complete, the
buffered data path clears its flag to indicate that the buffer
no longer contains valid data.

The procedure for a UNIBUS read function varies according to the type
of UNIBUS adapter. Some adapters can perform a prefetch function,
while others cannot. Device drivers that adhere to the conventions
outlined in this manual will execute properly on either type of UNIBUS
adapter with no difference except that of system throughput.

The following paragraphs discuss the UNIBUS read operation with and
without the prefetch function.

The prefetch automatically fills the buffer after the contents of a
buffered data path are transferred to the UNIBUS. The prefetch speeds
up UNIBUS reads from memory. The steps of a UNIBUS read function are

listed below.

e The UNIBUS device initiates a read operation from a buffered
data path.

e The buffered data path checks to see if 1its buffers contain
valid data.

e If the buffers do not contain valid data, the buffered data
path initiates a read function to fill the buffers with data.
The transfer completes before the UNIBUS adapter begins a
UNIBUS transfer.

e The buffered data path transfers the requested bytes to the
UNIBUS. Bytes of data that were not transferred to the UNIBUS
remain in the buffer.

e The buffered data path sets 1its buffer-not-empty flag to
indicate that the buffers contain valid data.

e When the UNIBUS device empties the buffers of the buffered
data path with a UNIBUS read function that accesses the last
word of data, the buffered data path clears the not empty flag
to indicate that the buffers no longer contain valid data.

e The buffered data path then initiates a read function to
prefetch data from memory.

THE UNIBUS ADAPTER

e When the transfer is complete, the buffered data path sets the
buffer-not-empty flag to indicate that the buffers now contain
valid data.

The prefetch may attempt to read data beyond the address mapped by the
final map register. To avoid a read to memory that does not exist,
the VAX/VMS map register allocate and load routines always allocate
one extra map register and clear the valid bit before initiating the
transfer. When the UNIBUS adapter notices that the map register for
the prefetch is invalid, the UNIBUS adapter simply aborts the prefetch
without reporting an error.

The steps of a UNIBUS read function without prefetch are listed below.

e The UNIBUS device initiates a read operation from a buffered
data path.

e The buffered data path checks to see if 1its buffers contain
valid data.

e If the buffers do not contain valid data, the buffered data
path initiates a read function to fill the buffers with data.
The transfer completes before the UNIBUS adapter begins a
UNIBUS transfer.

e The buffered data path transfers the requested bytes to the
UNIBUS. Bytes of data that were not transferred to the UNIBUS

remain in the buffer.

4.2.1.3 Byte Offset Data Transfers - Some UNIBUS devices are
restricted to transferring integral words of data in word-aligned
UNIBUS addresses. The buffered data paths allow these devices to
perform transfers to memory that begins and ends on an odd-byte
address. A byte-offset bit 1in the map registers indicates
byte-aligned data to the hardware. If the bit is set, the hardware
increments physical addresses. A VAX/VMS subroutine that 1loads map
registers determines whether the data is word- or byte-aligned and
sets the byte offset bit accordingly.

4.2.1.4 Purging a Buffered Data Path - Since prefetches may read more
data from memory than the UNIBUS device wishes to read, driver fork
processes must ask the UNIBUS adapter to purge the buffered data path
when a transfer is complete. 1In addition, a transfer from a device to
the backplane interconnect can complete with some data 1left in the
buffer. The driver must purge the data path to complete the transfer.

The purge guarantees that the data is not transferred to the next user
of the buffered data path. The driver fork process performs the purge
by calling a standard VAX/VMS subroutine that:

e Tells the hardware to purge the buffered data path register
owned by the fork process. For a UNIBUS read function, the
adapter simply clears the buffer-not-empty flag. For a UNIBUS
write function, the adapter transfers any data left in the
data path buffer to VAX-11 memory, then clears the flag.

e Notifies the driver fork process of any error that occurs
during the purge.

The data path must be purged before the driver releases map registers
or the buffered data path register.

THE UNIBUS ADAPTER

4.2.1.5 Longword-Aligned 32-Bit Random Access Mode - Another method
of transferring data over a buffered data path is in longword-aligned
32-bit random access mode. This mode permits a device that reads data
from or writes data to memory 1in 1longword-aligned and longword
multiples to use the buffered data path for random memory access.

To ensure that random access mode works correctly regardless of
processor type, a buffered data path should not repeatedly address the
same longword. For example, on certain processors a UNIBUS device
that polls a single 1longword, waiting for data, will constantly be
returned the same data.

A longword-aligned transfer over a buffered data path is faster than a

direct data path transfer and somewhat slower than a normal buffered
data path transfer.

To transfer data in the longword-aligned 32-bit random access mode,
the driver fork process sets the longword-access-enable bit
(VECSV LWAE) in the channel request block (CRB) prior to 1loading the
map registers. The UNIBUS device can then perform a read (DATI) or
write (DATO) function.

For a UNIBUS read, the function occurs as follows:

e The driver fork process initiates a read function on the
UNIBUS device.

e The UNIBUS adapter clears the buffer-not-empty flag in the
assigned buffered data path.

e The UNIBUS adapter issues a read from memory operation.

e The UNIBUS adapter stores the longword of data in the buffered
data path and sets the buffer-not-empty flag.

e The UNIBUS adapter initiates.two UNIBUS read operations to
transfer two words of data.

For a UNIBUS write, the function occurs as follows:

e The driver fork process initiates a write function on the
UNIBUS device.

e The UNIBUS adapter clears the buffer-not-empty £flag in the
assigned buffered data path.

e The UNIBUS adapter issues two write operations to transfer two
words of data from the UNIBUS device.

e The UNIBUS adapter stores the longword of data in the buffered
data path and sets the buffer-not-empty flag.

e The UNIBUS adapter initiates a backplane interconnect ~write
operation.

e When the backplane interconnect write operation 1is complete,
the UNIBUS adapter clears the buffer-not-empty flag.

4.3 THE VAX-11/780 UNIBUS ADAPTER

The UNIBUS adapter on a VAX-11/780 processor has the following
hardware features:

THE UNIBUS ADAPTER

e One direct data path that does not handle byte offsets.

e Fifteen buffered data paths that handle byte offsets. Each
data path has an eight-byte buffer and supports the prefetch
function and longword random access mode. The UNIBUS adapter
uses extended SBI read or write operations to f£ill a buffered

data path.

e The Synchronous Backplane Interconnect (SBI). The SBI uses a
30-bit physical address.

® 496 map registers.

e Nondirect vector interrupt dispatching.

e Longword aligned random access mode. When a data path is set
to this mode, data prefetch is disabled and only four bytes of

data are buffered.

Figure 4-2 shows the fields within the map register and data path
register for the VAX-11/780 UNIBUS adapter.

Map Register

31 26 25 24 20 0
Data
Unused Path Page Frame Number
Number

‘ “ L Byte offset

Longword access enable (LWAE)

Valid
Data Path Register
3130 29 28 23 17 15 2 0
] T
| UNIBUS Address |
Unused Spare | (17:2) |
1 |
A A { ,
Data path function
Buffer transfer error
Buffer not empty/purge
ZK-916-82

Figure 4-2: VAX-11/780 UNIBUS Adapter Registers

4.4 THE VAX-11/750 UNIBUS ADAPTER

The UNIBUS adapter on a VAX-11/750 processor has the following
hardware features:

e One direct data path that handles byte offsets.

e Three buffered data paths that handle byte offsets. Each data
path has a four-byte buffer. The buffered data paths do not
perform the prefetch function.

e The backplane interconnect. This interconnect uses 24-bit
physical addresses.

THE UNIBUS ADAPTER

512 map registers., The VAX/VMS system uses only 496 of these
registers.

Direct vector interrupt dispatching.

Implied longword aligned random access mode. Buffered data
paths on the VAX-11/750 only buffer four bytes of data. Since
the data paths do not perform a prefetch, they can always
reference longwords at random. However, because of a hardware
restriction, VAX-11/750 buffered data paths do not allow
repeated references to a longword. If a longword is
referenced more than once, bad data may be returned. To
ensure compatibility between processors, device drivers can
set the LWAE bit to indicate longword mode. .

Figure 4-3 shows the fields within the map register and the data path
register for the VAX-11/750 UNIBUS adapter.

Map Register

31

26 25 22 20 14 0

MBZ Undefined Page Frame Number

l A
t Data path number

Byte offset

Longword access enable (for compatibility with
VAX-11/780; unused on VAX-11/750)

Valid bit

Data Path Register

3130 29 28 0

MBZ

X L Uncorrectible error k Purge —J

Nonexistent memory error

Error Summary
ZK-917-82

Figure 4-3: VAX-11/750 UNIBUS Adapter Registers

4.5 THE VAX-11/730 UNIBUS ADAPTER

The UNIBUS adapter on a VAX-11/730 processor has the following
hardware features:

One direct data path that handles byte offsets.
No buffered data paths.

The backplane interconnect. This interconnect uses 24-bit
physical addresses.

512 map registers. The VAX/VMS system wuses 496 of these
registers.

Direct vector interrupt dispatching.

THE UNIBUS ADAPTER

Figure 4-4 shows the fields within the map register for the VAX-11/730
UNIBUS adapter. This adapter does not use a data path register; it
exists for compatibility with the other VAX-11l processors and contains
only zeroes. The adapter ignores any data writen to this longword.

Map Register

31 26 25 22 20 14 0

MBZ Undefined Page Frame Number

‘ A L Byte offset

Longword access enabie (for compatibility with
VAX-11/780; unused on VAX-11/730)

Valid bit

ZK-585-81

Figure 4-4: VAX-11/730 UNIBUS Adapter Map Register

CHAPTER 5

OVERVIEW OF I/O PROCESSING

Under the VAX/VMS operating system, I/0 processing occurs in three
major phases:

e I/0 request preprocessing

e Device activation and subsequent handling of the device
interrupt

e I/0 postprocessing

When a user process issues an I/0 request, the Queue I/0O Request
system service gains control. The system service coordinates the
preprocessing of the I/0 request. The last driver FDT routine called
by the Queue I/O Request system service calls a VAX/VMS routine that
creates a driver fork ©process to execute the driver's start I/0
routine; this 1is the routine that activates the device. When the
transfer completes, the device requests an interrupt that results in
execution of the driver's interrupt service routine. This routine
handles the interrupt and requests creation of a driver fork process
to perform device-dependent I/0 postprocessing. The driver fork
process then transfers control to the system to perform
device-independent I/0 postprocessing. Figure ©5-1 illustrates the
sequence of events.

5.1 PREPROCESSING AN I/O REQUEST

The Queue I/0 Request system service performs device-independent
preprocessing of an I/0 request and calls driver FDT routines to
perform device-dependent preprocessing. To preprocess an I/0 request,
the Queue I/O Request system service takes the following steps:

e Verifies that the requesting process has assigned a process
I/0 channel to the target device

e Locates the device driver in the I/0O data base
e Validates the I/0 function code

® Checks process I/0 request quotas

e Validates the I/0 status block

® Allocates and sets up the I/0 request packet

e Calls driver FDT routines to perform device-dependent
preprocessing

USER PROCESS CONTEXT
USER STACK

USER PROCESS CONTEXT
KERNEL STACK

OVERVIEW OF I/0O PROCESSING

USER PROCESS ISSUES $Q10 J

QUEUE 1/0 REQUEST SYSTEM SERVICE
PERFORMS DEVICE-INDEPENDENT 1/0

PREPROCESSING.

QUEUE 1/0 SYSTEM SERVICE CALLS DRIVER
FDT ROUTINE(S) TO PERFORM DEVICE-
DEPENDENT PREPROCESSING.

1

LAST FDT ROUTINE CALLS VAX/VMS
ROUTINE TO QUEUE 1/0 REQUEST AND
CREATE A DRIVER FORK PROCESS.

FORK PROCESS CONTEXT
KERNEL OR INTERRUPT
STACK

ONCE ACTIVATED THE DRIVER FORK PROCESS
EXECUTES THE START I/0 ROUTINE.

!

START 1/0 ROUTINE OBTAINS NECESSARY
RESOURCES (FOR EXAMPLE, CONTROLLER
CHANNEL, UBA MAP REGISTERS) AND
ACTIVATES THE DEVICE.

!

START 1/0O ROUTINE INVOKES A WAIT FOR
INTERRUPT MACRO THAT SAVES THE FORK
PROCESS CONTEXT AND SUSPENDS THE
START 1/0 ROUTINE.

HARDWARE INTERRUPT OCCURS WHEN

INTERRUPT CONTEXT
INTERRUPT STACK

REQUESTED BY DEVICE

INTERRUPT DISPATCHER ACTIVATES
INTERRUPT SERVICE ROUTINE.

¢

DRIVER’S INTERRUPT SERVICE ROUTINE
HANDLES THE INTERRUPT AND TRANSFERS
CONTROL TO THE DRIVER AT THE
INSTRUCTION FOLLOWING THE WAIT FOR
INTERRUPT INVOCATION.

l

THE DRIVER INVOKES IOFORK TO BE
RESCHEDULED AT FORK IPL AS A FORK PROCESS.

FORK PROCESS CONTEXT
INTERRUPT STACK

ONCE RESCHEDULED AS A FORK PROCESS,
THE DRIVER EXECUTES THE REST OF THE
DRIVER CODE THAT PERFORMS DEVICE-
DEPENDENT 1/0 COMPLETION.

!

THE DRIVER THEN CALLS A VAX/VMS ROUTINE TO
PERFORM DEVICE-INDEPENDENT 1/0 COMPLETION.

I

INTERRUPT CONTEXT
INTERRUPT STACK

1

VAX/VMS QUEUES A KERNEL MODE AST TO
THE PROCESS THAT ORIGINALLY ISSUED
THE 1/0 REQUEST.

USER PROCESS CONTEXT
KERNEL STACK

USER PROCESS CONTEXT
USER STACK

ONCE DELIVERED, THE KERNEL MODE AST
ROUTINE RUNS IN USER PROCESS CONTEXT
TO READ DATA INTO THE USER’S BUFFER
FOR A BUFFERED 1/0 REQUEST,

RETURN FINAL STATUS, AND, IF REQUESTED,
QUEUE A USER MODE AST AND/OR SET AN
EVENT FLAG.

USER MODE AST J

ZK-918-82

Figure 5-1: Sequence of Driver Execution

5-2

OVERVIEW OF I/O PROCESSING

5.1.1 Process I1/0 Channel Assignment

The first step in preprocessing an I/0 request is to verify that the
I/0 request specifies a valid process I/O channel. The process I/0
channel is an entry in a system-maintained process table that
describes a path of reference from a process to a peripheral device
unit. Before a program requests I/0 to a device, the program
identifies the target device wunit by issuing an Assign I/0 Channel
system service call. The Assign I/O Channel system service performs
the following functions:

e Locates an unused entry in the table of process I/0 channels

e Creates a pointer to the device unit in the table entry for
the channel

e Returns a channel index number to the program
When the program issues an I/0 request, the Queue I/O Request system

service verifies that the channel number specified is associated with
a device and locates the portion of the I/O data base that describes

the device. Figure 5-2 illustrates the path from a process channel
number to the device's unit control block.

5.1.2 Locating a Device Driver in the I/O Data Base
Using information in the unit control block, a driver can find other
I1/0 data structures associated with the device, including the
following: -

e Channel request blockl

e Interrupt dispatch block

e Device data block

5.1.2.1 Unit Control Block (UCB) - The process channel number
indirectly points to the wunit control block for the target device.
The unit control block contains the first in a chain of pointers into
the I/0 data base. The pointer chain leads to the addresses of driver
tables and routines in the driver that handles the target device.

A unit control block describing a device unit exists for each device
in the system. The unit control block indicates the current state of
the device unit by specifying such information as the following:

e Whether the device is active

e What I/0 request is being processed

e Where transfer buffers are located

1. Channel request blocks (CRBs) and channel control blocks are two
completely separate data structures. It is sometimes helpful to think
of the channel request block as the "controller" request block because
it describes the hardware controller. The channel control block, on
the other hand, describes a 1logical path from a process to an
associated unit control block.

OVERVIEW OF I/O PROCESSING

Since drivers run as fork processes and cannot use process address
space to store additional context, drivers use the unit control block

for temporary data storage during I/O processing. Chapter 7 describes
how you <can allocate additional UCB space for storing data or
device-dependent driver context.

The unit control block also holds the context of a driver fork process
when VAX/VMS I/0 routines suspend the fork process to wait for an
asynchronous event such as a device interrupt.

PROCESS
CHANNEL
CONTROL

BLOCKS (CCBs)

CHANNEL
NUMBER

ucB

DEVICE'S
UNIT
CONTROL
BLOCK
(UcB)

ZK-919-82
Figure 5-2: Locating the Target Device

5.1.2.2 Channel Request Block (CRB) -~ All unit control blocks
describing device units attached to a particular controller contain a
pointer to a single channel request block. The channel request block
contains the following information:

OVERVIEW OF I/O PROCESSING

e Code that transfers control to a driver interrupt service
routine

e Addresses of driver's unit and controller initialization
routines

e A pointer to the interrupt dispatch block, which £further
describes the controller

Controllers can be either multiunit or dedicated. A dedicated
controller has only one device unit. The VAX/VMS operating system
does not use the channel request block to synchronize 1I/0 operations
for a dedicated controller. The channel request block still is
present and used by drivers and operating system routines.

For multiunit controllers, a VAX/VMS routine uses a field 1in the
channel request block to arbitrate pending driver requests for the
controller. When the system grants ownership of a multiunit
controller data channel to a driver fork process, the fork process can
initiate an I/0 operation on a device attached to that controller.

The unit control blocks for devices attached to a multiunit controller
all contain pointers to the same channel request block; this allows
the operating system to manage the controller data channel. Figure
5-3 illustrates the data structures required to describe three devices
on a multiunit controller,

CRB

ucse ucs ucB

ZK-920-82

Figure 5-3: Data Structures for Three Devices on One Controller

5.1.2.3 _Interrupt Dispatch Block (IDB) - The channel request block
also points to an interrupt dispatch block. The interrupt data base
contains three critical data structure addresses:

o The address of the UCB of the device wunit, 1if any, that
currently owns the controller data channel

e The address of the control/status register (CSR); it 1is the
key to access to device registers

e The address of the adapter control block (ADP) that describes
the UNIBUS adapter to which the controller is attached

5.1.2.4 Device Data Block (DDB) - All unit control blocks describing
device units attached to a single controller contain a pointer to a
single device data block (DDB). The device data block contains the
following fields that identify the device and its driver:

OVERVIEW OF I/O PROCESSING

e The generic device/controller name

e The name of the device's driver as obtained from the driver
prologue table; see Chapters 7 and 14 for the use of the
driver name

Figure 5-4 1illustrates the relationship between the I/0 data
structures that describe a group of equivalent devices-on two separate
controllers.

IDB
|
CRB
ucB ucB
| bevice
DOT ™ DRIVER
4
ucB
|
CRB
Y
IDB
ZK-586-81

Figure 5-4: 1I/0 Data Base for Two Controllers

In Figure 5-4, one controller has a single device unit, and the other
controller has two device units. Devices on both controllers share
the same driver code.

5.1.3 Validating the I/0 Function

q;ing the I/0 data structures described above, the Queue 1I/0 Request
system service locates the address of the driver's function decision

OVERVIEW OF I/O PROCESSING

table by following a chain of pointers beginning in the UCB of the
target device for the I/0 request, as follows:

UCB —> DDT —> FDT

The system service then uses data in the function decision table to
analyze the 1I/0 function. The service confirms that the function
specified in the I/0 request is a valid function for the device.

5.1.4 Checking Process I/O Request Quotas

The Queue I/0 Redquest system service determines whether the 1I/0
request being readied will cause the process to exceed its quota for
outstanding direct or buffered I/0 requests. If the process remains
under quota, the system service allows 1t to continue I/0
preprocessing.

In the case where quota is exceeded, the Queue 1I/O request system
service examines 1its resource wait flag. If the flag is clear, the
system service aborts the I/0 request.

If the flag is set, the process is placed in a wait state until it
drops below quota, at which time the $QIO system service modifies the
process quotas as appropriate for the requested operation.

5.1.5 Validating the I/0 Status Block

If the I/0 request specifies a quadword I/0 status block to receive
final I/0 status information, the Queue I/0 Request system service
determines whether the process issuing the request has write access to
the status block locations specified. If the process has write
access, the system service fills the quadword with =zeros. If the
process does not have write access, the system service terminates the
request with an error status.

5.1.6 Allocating and Setting Up an I/0 Request Packet

If validation of the I/0 request succeeds to this point, the Queue I/0
Request system service allocates a block of nonpaged system memory to
contain an I/0 request packet.

Before the system service allocates an I/0O request packet, it raises
the hardware IPL of the processor to IPL$ ASTDEL to block any other
asynchronous activity in the process. The new IPL prevents possible
termination of the process; process termination would result in the
operating system's losing track of the system memory allocated for the
I/0 request packet. '

The Queue I/0 Request system service attempts to allocate an 1I/0
request packet from a linked list of preallocated I1I/0 request packets.
If no preallocated packets exist, the service calls a VAX/VMS routine
that allocates an I/0 request packet from nonpaged pool. This
allocating routine synchronizes with the rest of the system so that it
can allocate the memory needed.

The Queue I/0 Request system service continues I/O preprocessing by
writing the following description of the I/0 request into the packet:

OVERVIEW OF I/0O PROCESSING

e Size in bytes of the I/0 request packet

e A type field identifying the block as an I/0 request packet
e Access mode of the process at the time of the I/0 request

e Process identification of the requesting process

e If specified in the I/0 request, the address of an AST routine
and its parameter

e If the device is file-structured, the address of a control
block that describes the physical location of part of the file
(window control block)

e Address of the target device's unit control block
e I/0 function code; read/write wvirtual block functions are
reduced to their 1logical equivalents before storing a code

value

e Number of event flag to set when I/O processing 1is complete
for the I/0 request

e Base software priority of the requesting process

e If specified in the I/0 request, the address of an I/O status
block

® Process I/0 channel index number

e A flag indicating whether the I/0 function 1is buffered or
direct I/0

e A flag indicating whether the I/0 request is an input request

e A flag indicating whether the process has privilege to perform
logical or physical I/O functions

e A flag indicating whether the I/0 function is a physical 1I/0
function

e If specified in the I/0 request, the address and size of a
diagnostic buffer and a flag indicating that the buffer is
present

e If an AST routine is specified in the 1I/0 request, a flag
indicating that the process quota for the use of ASTs has been
modified

The Queue I/0 Request system service writes the above fields in the

I/0 request packet because these fields contain device-independent
data. Driver routines or VAX/VMS common FDT routines must f£ill in the
device-dependent portions of the I/0 request packet.

Appendix A illustrates the format of an I/0 request packet.

5.1.7 Function Decision Table Processing

The driver function decision table controls the device-dependent
preprocessing of an I/0 request. Figure 5-5 illustrates the format of
a function decision table.

OVERVIEW OF I/O PROCESSING

FUNCTION DECISION TABLE

VALID 1/O
2 LONGWORDS § }—————————-
FUNCTIONS

BUFFERED 1/O
2 LONGWORDS § p———————————

3 LONGWORDS MASK

3 LONGWORDS MASK

ZK-921-82

Figure 5-5: Driver Function Decision Table

The I/O function code specified in an I/0 request is a 1l6-bit wvalue
consisting of two fields:

e A 6-bit I/0 function code (bits 0 through 5)
e A 10-bit I/0 function modifier (bits 6 through 15)

The 6-bit function code field permits you to define 64 unique 1I/0
function codes for every device type. Chapter 7 describes how you can
define these function codes.

Because each driver can define up to 64 unique I/0 function codes, the
first two entries of a function decision table are two longwords each;
that is, 64 bits each. The first entry is a bit mask of all valid I/0
function codes for the device. Each bit represents a unique function
code. The second entry is a bit mask of those valid codes that are
also buffered 1I/0 functions. The Queue I/0O Request system service
uses these two bit masks to determine whether the I/0 function code is
valid and whether the operation is to be buffered or direct I/0.

The remaining entries of a function decision table are three longwords
each. The first two longwords form a bit mask of I/O function codes.
The third longword is the address of an I/0 preprocessing routine to
be called for the 1/0 function codes whose corresponding bits are set
in the first two longwords.

The Queue I/0 Request system service uses the value of the low-order
six bits of the I/0 function code to determine which bit to check in
each FDT bit mask. That is, if a function code has a value of 22, the
system service checks the 23rd bit (bit 22) of each bit mask.

Some of the preprocessing routines are present in the operating system
because they provide device-independent services. Chapter 8 describes
these routines. Other routines are in the driver because they perform
device-dependent services.

OVERVIEW OF I/O PROCESSING

The Queue I/0 Request system service uses the 3-longword entries in
the function decision table to call I/0 preprocessing routines in the

driver or system, as follows:

e If the bit in the FDT entry corresponding to the value of the
function code is set, the system service calls the associated
preprocessing routine; that is, the routine whose address 1is
in the longword following the bit mask.

e If the bit corresponding to the I/O function code value is not
set, the Queue I/0 Request system service advances to the next
FDT entry bit mask and repeats the step above.

e When the preprocessing routine completes 1its activity, the
routine either returns control to the system service or
transfers control to a VAX/VMS routine that queues the 1I/0
request packet or completes the request.

e If the Queue I/0 Request system service regains control, the
routine advances to the next FDT entry and repeats the first
step above.

e If all preprocessing for the I/O function 1is complete, the
preprocessing routine does not return to the Queue I/O Request
system service. Instead, the routine transfers control to
either a VAX/VMS routine that queues the I/0 request for the
driver's start I/0 routine or a VAX/VMS routine to complete or
abort the request.

Figure 5-6 illustrates the use of FDT routines in I/0 preprocessing.

As illustrated in Figure 5-6, FDT routines are responsible for ending
the Queue 1I/0 Request system service's scan of the function decision
table. For every valid I/0 function code for a device, one FDT entry
must cause I/O preprocessing for the function to end.

FDT routines execute in the full process context of the process that
requested the 1I/0 operation. Thus, FDT routines can gain access to
process virtual address space. Once all FDT preprocessing is
complete, however, the rest of the processing for the I/O request
continues in the limited context of a driver fork process or an
interrupt service routine.

5.2 HANDLING DEVICE ACTIVITY

When I/O preprocessing is complete, but the I/0 operation is not vyet
complete, an FDT routine transfers control to a VAX/VMS I/0 packet
queuing routine that arbitrates device activity. The arbitration
routine ensures that it creates only one driver fork process at a time
for each device unit on the system. One fork process handles one 1I/0
request packet. '

OVERVIEW OF I/O PROCESSING

Q10 DETERMINES
FUNCTION
CODE VALUE

CORRESPONDING
BIT SET IN MASK OF
VALID FUNCTIONS

CHECK FCR
BUFFERED
1/0

NO

TERMINATE
REQUEST AND
RETURN TO
USER

\

ADVANCE
TO
NEXT
ENTRY

IS
CORRESPONDING
BITSET IN FDT
ENTRY

CALL
SUBROUTINE

{

SUBROUTINE PERFORMS
1/0 PREPROCESSING
AND RETURNS OR
CALLS TO QUEUE

PACKET OR TERMINATE

RETURN TO QIO

NO

CALL TO VMS CALL VAX/VMS
ROUTINE TO ROUTINE TO
QUEUE PACKET COMPLETE OR
FOR DRIVER ABORT 1/0

Figure 5-6:

5-11

ZK-922-82

FDT Routines and I/0 Preprocessing

OVERVIEW OF I/O PROCESSING

5.2.1 Creating a Driver Fork Process to Start 1I/0

The I/0 packet gqueuing routine determines whether a driver fork
process exists for the target device, as follows:

e If the device is idle, no driver fork process exists for the
device; 1in this case, the queuing routine immediately creates
a driver fork process to execute the start I/0O routine and
transfers control to it.

e If the device is busy, a driver fork process already exists
for the device; 1in this case, the queuing routine inserts the
I/0 request packet into a queue of I/O request packets waiting
for the device unit. The routine queues the packet according
to the base priority of the caller. Within each priority,
packets are in first-in/first-out order.

In the latter case, by the time the driver's start I/O routine gains
control to dequeue the I/0 packet, the originating user's process
context is no longer available. The driver must execute 1in the
reduced context of a driver fork process. Because the context of the
process initiating the I/0 request is not guaranteed to a driver's
start I/0 routine, the VAX/VMS 1/0 packet gqueuing routine always
initiates the driver's start I/0 routine with a context that is
appropriate for a fork process. The driver fork process consists of
three registers (or fewer) and a PC. The I/O packet queuing routine
establishes this context in the following steps:

e It raises IPL to driver fork IPL.
e It loads the address of the I/0 request packet into R3.

e It loads the address of the device's unit control block 1into
R5.

e It transfers control to the driver's start I/0 routine entry
point using a JMP instruction.

The newly activated driver fork process executes under the following
constraints:

e It cannot refer to the address space of the process initiating
the I/0 request.

e It can use only RO through R5 freely. It must save other
registers before use and restore them after use.

e It must clean up the stack after use. The stack must be 1in
its original state when the fork process relinquishes control
to any VAX/VMS routine.

e It must execute at IPLs between driver fork 1level and
IPLS POWER. It must not lower IPL below device fork except by
creating a fork process at a lower IPL.

Each driver fork process executes until one of the following events
occurs:

e Device-dependent processing of the I/0 request is complete.

o A shared resource needed by the driver 1is unavailable, as
described in Section 3.3.

e Device activity requires the fork process to wait for a device
interrupt.

OVERVIEW OF I/O PROCESSING

5.2.2 Activating a Device and Waiting for an Interrupt

A device driver's start I/0 routine examines the I/0 request packet to

determine the type of 1I/0 operation to perform and the I/0 request
specification. Depending on the device type supported by the driver,
the start I/0 routine performs some or all of the following steps:

® Analyzes the I/0 function and branches to driver code that
prepares the unit control block and the device for that I/O
operation

e Copies I/O request packet fields into the unit control block

e Tests fields in the unit control block to determine whether
the device and/or volume mounted on the device are valid

e If the device is attached to a multiunit controller, obtains
the controller data channel

e If the I/O operation is a DMA transfer, obtains a UNIBUS
adapter data path and loads UNIBUS adapter map registers

e Loads all necessary device registers except for the device's
control/status register

e Raises IPL to IPLS POWER and confirms that a power failure
that would invalidate the device operation has not occurred

e Loads the device's control/status register to activate the
device

e Invokes a VAX/VMS routine to suspend the driver fork process
until a device interrupt or timeout occurs

While the driver is suspended, the context saved for it consists of
the unit control block. The context contains the following
information:

@ A description of the I/0 request and the state of the device

e The contents of R3 and R4

e The implicit contents of R5 as the address of the unit control
block

e A driver return address
e The address of a device timeout handler
e The time at which the device will time out

By convention, R4 often contains the address of the control/status
register (CSR); it permits the driver to examine device registers.
When the driver fork ©process regains control after interrupt
processing, R5 contains the UCB address; it is the key to the rest of
the I/0 data base that is relevant to the current I/0 operation.

5.2.3 Handling a Device Interrupt

Once the driver's start I/0 routine initiates the transfer, the driver
invokes a VAX/VMS routine to wait for an interrupt. When the device
requests an interrupt, the interrupt dispatcher transfers control to
the driver interrupt service routine. The driver's interrupt service

OVERVIEW OF I/O PROCESSING

routine runs at a high interrupt priority level so that the routine
can service interrupts quickly. A driver interrupt service routine
usually performs the following processing:

e For multiunit device controllers, determines which device unit
generated the interrupt

e Examines the unit control block for the device to confirm that
the driver fork process expects the interrupt

® Saves device registers
® Reactivates the suspended driver fork process

If necessary, the reactivated driver fork pfocess executes at the high

IPL of the interrupt service routine for a few instructions. Very
soon, however, the driver lowers its execution priority so that it
does not block subsequent interrupts for other devices in the system.

5.2.4 Switching from Interrupt to Fork Process Context

To lower its priority, the driver calls a VAX/VMS fork process queuing
routine (IOFORK) that performs the following steps:

e Disables the timeout that was specified in the wait for
interrupt routine

e Saves R3 and R4 (these are the registers needed to execute as
a fork process)

e Saves the address of the instruction following the IOFORK
request in the UCB fork block

e Places the address of the UCB fork block from R5 in a fork
queue for the driver's fork level

e Returns to the driver's interrupt service routine

The interrupt service routine then <cleans up the stack, restores
registers, and dismisses the interrupt. Figure 5-7 illustrates the
flow of a driver to create a fork process after a device interrupt.

DEVICE DRIVER
GENERATES [ppr| NTERRUPT | IS8t priver
INTERRUPT SERVICE
ROUTINE
)
JSB
y
RSB IOFORK

ZK-923-82
Figure 5-7: Creating a Fork Process After an Interrupt

5.2.5 Activating a Fork Process from a Fork Queue

When no hardware interrupts are pending, the software interrupt
priority arbitration logic of the processor transfers control to the

5-14

OVERVIEW OF I/O PROCESSING

software interrupt fork dispatcher. When the processor grants an
interrupt at a fork IPL, the fork dispatcher processes the fork queue
that corresponds to the IPL of the interrupt. To do so, the
dispatcher performs the following steps:

e Removes a driver fork block from the fork queue
e Restores fork context
e Transfers control back to the fork process

Thus, the driver code calls VAX/VMS code that coordinates suspension
and restoration of ‘a driver fork process. This convention allows
VAX/VMS to service hardware device interrupts in a timely manner and
reactivate driver fork processes as soon as no device requires
attention.

When a given fork process completes, the fork dispatcher removes the
next entry, if any, from the fork queue, restores its fork process
context, and reactivates it. This sequence repeats until the fork
queue is empty. When the queue is empty, the fork dispatcher restores
RO through R5 from the stack and dismisses the interrupt with an REI
instruction.

Figure 5-8 illustrates the reactivation of a driver fork process.

DEVICE
GENERATES
INTERRUPT
DRIVER SOFTWARE
SERVICES INTERRUPT
INTERRUPT OCCURS
y
FORK
DF'S'F;/IESR | IPLTOFORKLEVEL I pispATCHER
CALLS DRIVER
y
DRIVER DRIVER
DISMISSES COMPLETES
INTERRUPT REQUEST
\
FORK
DISPATCHER
DISMISSES
INTERRUPT
ZK-924-82

Figure 5-8: Reactivation of a Driver Fork Process

OVERVIEW OF I/0 PROCESSING

5.3 COMPLETION OF AN I/O REQUEST

Once reactivated, a driver fork process completes the I/0 request as
follows:

e Releases shared driver resources such as UNIBUS adapter and
map registers and ownership of the controller

e Returns status to the VAX/VMS I/0 completion routine

The I/0 completion routine performs the following steps to start
postprocessing of the I/0 request and to start processing the next I/O
request in the device's queue:

e Writes return status from the driver into the 1I/0 request
packet

e Inserts the finished 1I/0 request packet in the 1/0
postprocessing fork queue and requests an interrupt at
IPL$ IOPOST

e Creates a new fork process for the next I/O request packet in
the device's I/0 request packet wait queue

e Activates the new driver fork process

5.3.1 I/0 Postprocessing

When processor priority drops below the I/0 postprocessing IPL, the
processor dispatches to the I/0 postprocessing interrupt service
routine. This VAX/VMS routine completes device-independent processing
of the I/0 request.

Using the I/O request packet as a source of information, the 1I/0
postprocessing dispatcher executes the sequence below for each I/0
request packet in the postprocessing queue:

e Removes the I/0 request packet from the queue

e If the I/O function was a direct I/0 function, adjusts the

recorded use of the 1issuing process's direct I/O quota and
unlocks the pages involved in the I/0O transfer

e If the I/O function was a buffered I/0 function, adjusts the
recorded use of the issuing process's buffered I/0 quota and,
if the I/0 was a write function, deallocates the system
buffers used in the transfer

® Posts the event flag associated with the I/O regquest

e Queues a kernel mode AST routine to the process that 1issued
the Queue I/0 Request system service call

The queuing of a kernel mode AST routine allows I/O postprocessing to
execute in the context of the user process but in a privileged access
mode. Process context is needed to return the results of the I/0
operation to the process's address space. The kernel mode AST routine
writes the following data into the process's address space:

OVERVIEW OF I/O PROCESSING

e Data read in a buffered I/0 operation

e If specified in the 1I/0 request, the contents of the
diagnostic buffer

e If specified in the I/0 request, the two 1longwords of 1I/0
status

If the I/0 request specifies a user AST routine, the kernel mode AST
routine queues the user mode AST for the process. When VAX/VMS
delivers the wuser mode AST, the system AST delivery routine
deallocates the I/0 request packet. The first part of an I/0 request
packet is the AST control block for user requested ASTs.

PART II

OVERVIEW

Device drivers consist of static tables, routines that perform 1I/0
preprocessing, and routines that handle the device and controller.
The chapters that follow describe how to write the following sections
of a driver:

e Static tables

e Routines that use the device driver's function decision table
(FDT)

e Routines that start an I/0 operation on the device and
complete the I/0 operation

® Routines that handle interrupts

e Routines that request allocation of UNIBUS adapter map
registers and data paths

e Routines that initialize devices and controllers
e Routines that cancel an I/0O operation
e Routines that log errors
The "how to" chapters are preceded by a chapter that contains a driver
template. The template illustrates the general organization and
writing of a driver.
NOTE
The "how to" chapters describe a common
approach to the design of various driver
routines; they are examples. They do

not present the only approach that can
be taken to writing a driver.

CHAPTER 6

TEMPLATE FOR AN I/0 DRIVER

The pages that follow describe conventions to be wused by device
drivers and provide a template for a device driver. Drivers do not
necessarily need all of the routines indicated by the template, nor do
driver routines and -tables need to follow the exact order of the
template. However, the VAX/VMS operating system does place a few
restrictions on the order and content of driver routines and tables.

Figure 6-1 illustrates the organization of a device driver. The first
item in a device driver is the driver prologue table. This table must
be the first generated code in a driver. The order of the remaining
tables and routines varies from driver to driver. However, the last
statement in every driver, except for the .END assembly directive,
must be a label marking the end of the driver. The address of this
label is stored in the driver prologue table. The driver 1loading
procedure uses this address to calculate the size of the driver.
Chapter 14 describes the driver loading procedure.

Some drivers contain no device-dependent function decision table

routines. Other drivers need only minimal initialization procedures.
However, every driver normally contains static driver tables and a

start I/0 routine or an interrupt service routine.

6.1 CODING CONVENTIONS

The driver loading procedure loads a device driver into a block of
nonpaged system memory whose 1location 1is chosen by the operating
system memory allocation routines. Therefore, the driver must consist
of position-independent code only.

In addition, the system may call a device driver repeatedly to process
I/0 requests and interrupts. The driver often does not complete one
I/0 operation before the system transfers control to the driver to
begin another on a different unit. For this reason, the code must be
reentrant.

The rules of position-independent and reentrant code are listed below.

e Instructions can branch only to relative addresses within the

driver and to global addresses listed in the VAX/VMS symbol
table (SYS$SYSTEM:SYS.STB).

e Static tables can list only relative addresses within the
driver and global addresses.

e The driver cannot store temporary data in local driver tables

for dynamic driver context. All dynamic temporary storage

- must be contained within the unit control block corresponding
to an I/0 request or the current I/0 request block.

TEMPLATE FOR AN I/O DRIVER

e The driver must refer to the I/0O data base by 1loading the
address of a data structure into a general register and using
displacement addressing to the fields of the data structure.

Refer to the VAX-11 MACRO User's Guide for additional information
about position-independent and reentrant code.

DRIVER ORGANIZATION

DRIVER
PROLOGUE
TABLE

DRIVER
DISPATCH
TABLE

FUNCTION

DECISION
TABLE

FDT
ROUTINES

DEVICE HANDLING
ROUTINES

END MARK

ZK-925-82

Figure 6-1: Driver Operation

Device drivers must also restrict their use of general registers and
the stack:

e FDT routines can use RO through R2 and R9 through R1l1 as
available registers. The routines can use other registers by
saving the registers before use and restoring them before
exiting from the FDT routine.

e All other driver routines can use RO through R5 as available
registers. The routines can use other registers, if
necessary, by saving and restoring them but wusing other
registers in this way is discouraged.

TEMPLATE FOR AN I/0O DRIVER

All driver routines can use the stack for temporary storage
only 1if the routines restore the stack to its previous state

before calling any VAX/VMS routines or executing RSB
instructions.

6.2 RESTRICTIONS ON DEVICE REGISTER I/O SPACE USE

The programmer of a device driver for a UNIBUS device must observe the
following restrictions on the use of a device registers:

Drivers should always store the address of a device control
register in a general register and then gain access to the
device register indirectly through the general register. The
example below defines symbolic word offsets for each device
register and gains access to them wusing displacement mode
addressing from R4.

Device register offsets

e S wo

LP_CSR
LP_DBR

CSR offset
Buffer address offset

]
N

1]
o
~ ~

.

.

Get address of CRB
Get the address of
the device's CSR

MOVL UCBSL_CRB(R5) ,R4
MOVL CRBSL INTD+VECSL_IDB(R4),R4

~. we o

TSTW LP_CSR(R4) ; Is printer online?

Floating, double, field, queue, or quadword operands are not
allowed in I/0 address space, nor can an instruction obtain
the position, size, length, or base of an operand from I/O
space. For example, a driver cannot use a field instruction
to test a bit in a device register.

Drivers cannot use string instructions.

Drivers can use only those instructions with a maximum of one

modify or write destination. The destination must be the last
operand.

Registers of devices connected to the backplane interconnect
(for example, UNIBUS adapter device registers and MASSBUS
device registers) are longwords. Registers of devices
connected to the UNIBUS are words. Instructions that refer to
UNIBUS adapter registers must use longword context. All
driver instructions that affect UNIBUS device registers must

use word context, for example, BISW, MOVW, and ADDW3, unless
the register is byte-addressable.

An instruction that refers to I/0 space must not generate an
exception or be interrupted. 1If the instruction is allowed to
restart, it will re-read the device register, which causes
undesirable device side-effects or data loss.

TEMPLATE FOR AN I/O DRIVER

e To access I/0 space, use the instructions listed below. These
instructions are not interruptible unless they use
autoincrement deferred addressing mode or any of the

‘displacement deferred modes when specifying an operand.

ADAWI MCOM (B, W,L)
ADD(B,W,L)2 MFPR
ADD(B,W,L)3 MNEG (B, W, L)
ADWC MOV (B, W, L)
BIC(B,W,L)2 MOVA (B,W,L)
BIC(B,W,L)3 MOVAQ
BICPSW MOVPSL
BIS(B,W,L)2 MOVZ (BW,BL,WL)
BIS(B,W,L)3 MTPR
BISPSL PROBE (R, W)
BISPSW PUSHA (B,W,L)
BIT(B,W,L) PUSHAQ
CASE (B,W,L) PUSHL
CHM(K,E,S,U) SBWC
CLR(B,W,L) SUB(B,W,L)2
CMP(B,W, L) SUB(B,W,L)3
CVT (BW,BL,WB, TST(B,W,L)
WL, LB, LW) XOR (B,W,L)2
DEC(B,W,L) XOR (B, W,L)3
INC(B,W,L)

template driver. A
Its file specification is:

The following pages list the VAX/VMS
machine~readable copy is also available.

SYSSEXAMPLES : TDRIVER.MAR

WO N Me NE NS N N Ne N N NG W N N N Ne e N W %o we e

O N NE N6 me N NS NS NG NE NE NS NE N NS We N Ne w6 NS NS NE N N Ne Ne N we

~e wo

TEMPLATE FOR AN I/O DRIVER

.TITLE TDRIVER - VAX/VMS TEMPLATE DRIVER
.IDENT 'V03-002"'

Copyright (c) 1978,1979,1980, 1982
by DIGITAL Equipment Corporation, Maynard, Massachusetts

This software is furnished under a license and may be used and copied
only 1in accordance with the terms of such 1license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software 1is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by DIGITAL Equipment
Corporation.

DIGITAL assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by DIGITAL.

++

FACILITY:
VAX/VMS Template driver
ABSTRACT:
This module contains the outline of a driver:
Models of driver tables
Controller and unit initialization routines
An FDT routine
The start I/0 routine
The interrupt service routine
The cancel I/0 routine
The device register dump routine
AUTHOR:

S. Programmer 11-NOV-1979
REVISION HISTORY:

Vo2 JHPOO1 J. Programmer 2-Aug-1979 11:27
Remove -BLBC instruction from CANCEL routine.

V02-001 JHP001 J. Programmer 11-Feb-1981 13:10
Add description of reason argument to CANCEL
routine. Correct references to channel index
number.

.o we we

Local

~e we we

~e we w

P2
P3
P4
P5
P6

Other

~e wo e

TD DEF BUFSIZ
TD_TIMEOUT SEC
TD_NUM_REGS

~e Ne ~

$SDEF
SDEF
SDEF
SDEF
$DEF

SDEF

TEMPLATE FOR AN I/0 DRIVER

.SBTTL External and local symbol definitions

External symbols

$SCANDEF
$CRBDEF
$DCDEF

$DDBDEF
SDEVDEF
$IDBDEF
SIODEF

SIPLDEF
$IRPDEF
$SSDEF

$UCBDEF
SVECDEF

symbols

Q0 > O

[R

-
o N

N
o

constants

1024

wonou
o
o

$DEFINI UCB
.=UCB$K_LENGTH
UCBSW_TD_WORD
UCB$W_TD_ STATUS
UCBSW_TD WRDCNT
UCBSW_TD BUFADR
UCBSW_TD DATBUF

UCBSK_TD UCBLEN

«BLKW

«BLKW

«BLKW

.BLKW

+«BLKW

MO Mo We e Mo N Ne Ne e Ne We W

~e Ne we we we wo

~ e we

~

~

~. No o~

Cancel reason codes
Channel request block
Device classes and types
Device data block

Device characteristics
Interrupt dispatch block
I/0 function codes
Hardware IPL definitions
I1/0 request packet
System status codes

Unit control block
Interrupt vector block

Argument list (AP) offsets for device-dependent QIO parameters

First QIO parameter
Second QIO parameter
Third QIO parameter
Fourth QIO parameter
Fifth QIO parameter
Sixth QIO parameter

Default buffer size
10 second device timeout
Device has 4 registers

Definitions that follow the standard UCB fields

Start of UCB definitions
Position at end of UCB

A sample word

Device's CSR register
Device's word count register
Device's buffer address
register

Device's data buffer register

Length of extended UCB

~e wo we

~e we we

SDEF

~. we

$DEF
SDEF

SDEF

TEMPLATE FOR AN I/O DRIVER

S$VIELD UCB,0,<-

<BIT ZERO, ,M>,-
<BIT ONE,,M>,-

>

SDEFEND UCB

SDEFINI TD

TD_STATUS

_VIELD

>

. BLKW

TD STS,0,<-
<GO, M>,-

<BIT1, ,M>,-
<BIT2, ,M>,-
<BIT3, ,M>,-
<XBA,2,M>,~

<INTEN, ,M>,-
<READY, ,M>, -

<BIT8, ,M>,~-
<BIT9,,M>,-

<BIT10, ,M>,-
<BIT11, ,M>,-

<, 1>,-
KATTN, ,M>, -
<NEX, ,M>, -

<ERROR, ,M>, -

TD_WRDCNT

TD_BUFADR

TD_DATBUF

SDEFEND TD

.BLKW

.BLKW

.BLKW

~e we wo

~

Device register offsets from CSR address

~

Bit positions for device control/status

NO NE M Ne We N We Ne W Ne Ne N Ne we we we

-~ ~

~

~ ~e

Bit positions for device-dependent status field in UCB

Device status
First bit
Second bit

End of UCB definitions

Start of status definitions

Control/status

register

Control/status register
Start device

Bit one

Bit two

Bit three

Extended address bits
Enable interrupts

Device ready for command
Bit eight

Bit nine

Bit ten

Bit eleven

Disregarded bit
Attention bit
Nonexistent memory flag
Error or external interrupt

Word count
Buffer address
Data buffer

End of device register
definitions.

~ we W

~ Ne we

~e we N

TEMPLATE FOR AN I/0 DRIVER

.SBTTL Standard tables
Driver prologue table

DPTAB -
END=TD END, -
ADAPTER=UBA, -
UCBSIZE=<UCBS$K TD UCBLEN>,-

NAME=TDDRIVER
DPT STORE INIT

DPT STORE UCB,UCB$B FIPL,B,8
DPT STORE UCB,UCBS$B DIPL,B,22
DPT STORE UCB,UCBSL DEVCHAR,L,<-

- DEVSM IDV!-—

DEVSM ODV>

DPT STORE UCB,UCB$B DEVCLASS,B,DCS SCOM
DPT STORE UCB,UCBSW DEVBUFSIZ,W,-

B TD DEF BUFSIZ

DPT STORE REINIT

DPT STORE DDB,DDBS$L DDT,D,TDSDDT
DPT STORE CRB,CRBSL INTD+4,D,-
- TD INTERRUPT
DPT STORE CRB, -
- CRBSL INTD+VECSL INITIAL,-
D,TD CONTROL INIT
DPT STORE CRB, - -
- CRBSL INTD+VECSL UNITINIT,-
D,TD UNIT INIT

DPT STORE END

Driver dispatch table

DDTAB -
DEVNAM=TD, -
START=TD START, -
FUNCTB=TD FUNCTABLE, -
CANCEL=TD CANCEL, -
REGDMP=TD_REG_DUMP

Function decision table

WO N4 N NS Ne N Ne we we we we we we N

e Ne we WO Ny N N

~e wo ~

~. ~

DYSE TR YHR THR TINENY

DPT-creation macro

End of driver label

Adapter type

Length of UCB

Driver name

Start of load

initialization table

Device fork IPL

Device interrupt IPL

Device characteristics
input device
output device

Sample device class

Default buffer size

Start of reload
initialization table
Address of DDT

Address of interrupt
service routine
Address of controller
initialization routine

Address of device
unit initialization
routine

End of initialization
tables

DDT-creation macro
Name of device

Start I/0 routine

FDT address

Cancel I/0 routine
Register dump routine

TD FUNCTABLE:
- FUNCTAB

FUNCTAB
FUNCTAB

FUNCTAB

FUNCTAB

TEMPLATE FOR AN I/O DRIVER

14
<READVBLK, -
READLBLK, -
READPBLK, -
WRITEVBLK, —
WRITELBLK, -
WRITEPBLK, -
SETMODE, -
SETCHAR>

’
+EXESREAD, -
<READVBLK, -
READLBLK, -
READPBLK>
+EXESWRITE, -
<WRITEVBLK, -
WRITELBLK, -
WRITEPBLK>
+EXE$SETMODE, -
<SETCHAR, -
SETMODE>

MO NG N NE NS NE NE NE Ne NS NE Ne Ne Ne Ne NI e Ne Ne Ne we W

FDT for driver

valid I/0 functions
Read virtual

Read logical

Read physical

Write virtual

Write logical

Write physical

Set device mode

Set device chars.

No buffered functions
FDT read routine for
read virtual,

read logical,

and read physical.
FDT write routine for
write virtual,

write logical,

and write physical.
FDT set mode routine
for set chars. and
set mode.

«SBTTL

+
+

Inputs:

R4
R5
R6
R8

Outputs:

Ne Ne Ne Ne N Ne Ne NE N Ne e We NE N N Ne we Ne Wg we we W wo

TD_CONTROL INIT:
RSB

TEMPLATE FOR AN I/O DRIVER

TD_CONTROL_INIT, Controller initialization routine

Functional description:

at system startup

TD CONTROL_INIT, Readies controller for I/O operations

The operating system calls this routine in 3 places:

during driver loading and reloading
during recovery from a power failure

- address

- address
— address
- address

of the CSR (controller status register)

IDB (interrupt dispatch block)
DDB (device data block)
CRB (channel request block)

of the
of the
of the

.
’
.
7

The routine must preserve all registers except RO-R3.

Initialize controller
Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD UNIT INIT, Unit initialization routine

+
+

TD UNIT INIT, Readies unit for I/O operations
Functional description:

The operating system calls this routine after calling the
controller initialization routine:

at system startup
during driver loading
during recovery from a power failure

Inputs:
R4 - address of the CSR (controller status register)
RS - address of the UCB (unit control block)
Outputs:

e N N NE Ne Mo NE N N Ne Ne e Ne Ne Ne we we e we

The routine must preserve all registers except RO-R3.

~e wo we

TD UNIT INIT: ; Initialize unit
TBISW #UCBSM ONLINE, -
UCBSW STS(R5) ; Set unit online
RSB - ; Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD FDT ROUTINE, Sample FDT routine

+
+

TD_FDT ROUTINE, Sample FDT routine
Functional description:

SUPPLIED BY USER

Inputs:
RO-R2 - scratch registers
R3 — address of the IRP (I1/0 request packet)
R4 - address of the PCB (process control block)
R5 — address of the UCB (unit control block)
R6 — address of the CCB (channel control block)
R7 - bit number of the I/O function code

R8 - address of the FDT table entry for this routine

R9-R11 - scratch registers
AP - address of the 1lst function dependent QIO parameter
Outputs:

The routine must preserve all registers except R0O-R2, and
R9-R11.

MO Ne VO Ne N N NE e ME N e N WE M Ne NS s N6 Mg WO N N Ne Ne o

TD_FDT ROUTINE: ;
i

RSB

Sample FDT routine
Return

TEMPLATE FOR AN I/0 DRIVER

.SBTTL TD START, Start I/0 routine

+
+

Inputs:

R3 -
R5 -

Outputs:
RO -

R1 -

e MO MO NE WS NE NE NE NE NE NE Ne Ne SE N Ne Ne Ne W N we

TD_START:

Functional description:

SUPPLIED BY USER

TD START - Start a transmit, receive, or set mode operation

address of the IRP (I/O request packet)
address of the UCB (unit control block)

1st longword of
number of bytes
2nd longword of

The routine must preserve

I/0 status: contains status code and
transferred
I1/0 status: device-dependent

all registers except RO-R2 and R4.

; Process an I/0 packet

WFIKPCH TD TIMEOUT,#TD TIMEOUT SEC

~ Ne we

After a transfer completes successfully, return the number of bytes
transferred and a success status code.

IOFORK

INSV UCBSW BCNT(R5) ,#16,— ; Load number of bytes trans-
#16,R0 ; ferred into high word of RO.

MOVW #S5S NORMAL,RO ; Load a success code into RO.

~s we N

COMPLETE IO:
REQCOM

~e No N

TD_TIMEOUT:

Call I/0 postprocessing.

SETIPL UCB$B_FIPL(RS5)
MOVZWL #SS$ TIMEOUT,RO
BRB COMPLETE_IO

; Driver processing is finished.
; Complete I/O.

Device timeout handling. Return an error status code.

Timeout handling

Lower to driver fork IPL
Return error status.
Call I/0 postprocessing.

~s we we ~s

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_INTERRUPT, Interrupt service routine

+
+

TD INTERRUPT, Analyzes interrupts, processes solicited interrupts
Functional description:
The sample code assumes either

that the driver is for a single-unit controller, and
that the unit initialization code has stored the
address of the UCB in the IDB; or

that the driver's start I1/0 routine acquired the
controller's channel with a REQPCHANL macro call, and
then invoked the WFIKPCH macro to keep the channel
while waiting for an interrupt.

Inputs:
0(SP) - pointer to the address of the IDB (interrupt dispatch
block)

4(SP) - saved RO

8(SP) -~ saved Rl
12(SP) - saved R2
16 (SP) - saved R3
20(SP) - saved R4
24 (SP) - saved R5
28 (SP) - saved PSL (program status longword)
32(SP) - saved PC

The IDB contains the CSR address and the UCB address.
Outputs:

The routine must preserve all registers except RO-R5.

WO Ne e We N NG NP e NE N NE NE NE NG N NE M W We NE Mo Ve N we WE Ne N e % Ne N e we g W W

TD _INTERRUPT: Service device interrupt

MOVL @(SP)+,R4 ; Get address of IDB and remove
; pointer from stack.

MOVL IDBSL_ OWNER(R4),R5 ; Get address of device owner's
; UCB.

MOVL IDBSL_CSR(R4) ,R4 ; Get address of device's CSR.,

BBCC #UCBSV INT, - ; If device does not expect
i

UCBSW_STS(R5) ,-
UNSOL INTERRUPT

interrupt, dismiss it.

This is a solicited interrupt. Save
the contents of the device registers in the UCB.

~e e wo e

MOVW TD STATUS (R4) ,- ; Otherwise, save all device
UC§$W_TD_STATUS(R5) ; registers. First the CSR.

MOVW TD WRDCNT (R4) , - ; Save the word count register.
UCBSW TD WRDCNT (R5)

MOVW TD BUFADR (R4) , - ; Save the buffer address
UCBSW TD BUFADR(R5) ; register.

MOVW TD DATBUF (R4) ,- ; Save the data buffer register.

UCBSW_TD_DATBUF (R5)

TEMPLATE FOR AN I/O DRIVER

Restore control to the main driver.

~ we we

RESTORE DRIVER: Jump to main driver code.

H
“MOVL UCBS$L FR3(R5),R3 ; Restore driver's R3 (use a
; MOVQ to restore R3-R4).
JSB @UCBSL FPC(R5) ; Call driver at interrupt
H

wait address.

Dismiss the interrupt.

~. we W

Dismiss unsolicited interrupt.
Restore RO-R5
Return from interrupt.

UNSOL INTERRUPT:
POPR #"M<RO,R1,R2,R3,R4,R5>
REI

~e we o

.SBTTL

<+
+

Inputs:

R2
R3
R4

R5
R8

WO Ne N NE Ne NS Ne N NS N Ne N Ne Ne Ne %o Ne ws we we we Ve W

Outputs:
The

The

e me we N we Ne e we

TD_CANCEL:
JsB
BBC

~s we wo

~e “e e

—
(o]
wr
.

RSB

TEMPLATE FOR AN I/O DRIVER

Functional description:

TD_CANCEL,

Cancel I/0 routine

TD CANCEL, Cancels an I/0 operation in progress

This routine calls IOCSCANCELIO to set the cancel bit in the
UCB status word if:

the device is busy,

the IRP's

process ID matches the cancel process ID,

the IRP channel matches the cancel channel.

- channel
- address
- address

process
- address

If IOCSCANCELIO sets the cancel bit, then this driver routine
does device-dependent cancel I/0 fixups.

index number

of the current IRP (I/O request packet)

of the PCB (process control block) for the
canceling I/0

of the UCB (unit control block)

- cancel reason code, one of:
CAN$C_CANCEL if called through $CANCEL or

SDALLOC system service

CANSC_DASSGN if called through $DASSGN

system service

routine must preserve all registers except RO-R3.

routine may set the UCBSM CANCEL bit in UCB$W_STS.

G"IOC$CANCELIO
#UCBSV_CANCEL, -
UCB$W_STS (R5),10$

Finally, the return.

Cancel an I/O operation

Set cancel bit if appropriate.
If the cancel bit is not set,
just return.

e Ne No e

Device-dependent cancel operations go next.

; Return

TEMPLATE FOR AN I/0 DRIVER

.SBTTL TD REG DUMP, Device register dump routine

;+H+
TD_REG_DUMP, Dumps the contents of device registers to a buffer

Functional description:

Writes the number of device registers, and their current
contents into a diagnostic or error buffer.

Inputs:
RO - address of the output buffer
R4 - address of the CSR (controller status register)
R5 , - address of the UCB (unit control block)
Outputs:

The routine must preserve all registers except R1-R3.

The output buffer contains the current contents of the device
registers. RO contains the address of the next empty longword in
the output buffer.

WO N NG N N N N N NE N Ne N Ne e Ne Ne N N % N we v

Dump device registers
Store device register count.
Store device status register.

TD REG DUMP:
T 7 MOVZBL #TD NUM REGS, (RO)+

MOVZWL UCBSW_TD STATUS (RS),-
(RO) +

MOVZWL UCBSW TD WRDCNT (R5) ,-
(ROY+

MOVZWL UCBS$W TD BUFADR(R5),-
(ROY+

MOVZWL UCBS$W TD DATBUF(R5),-
(ROY+

~e So we

Store word count register.

-

Store buffer address register.

-~

Store data buffer register.

~

RSB Return

~e

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD END, End of driver

+

+

Label that marks the end of the driver

~. we =

TD _END: ; Last location in driver
. END

CHAPTER 7

WRITING DEVICE DRIVER TABLES

Every device driver declares three static tables that describe the
device and driver:

e Driver prologue table that describes the device type, driver
name, and fields in the I/0 data base to be initialized during
driver loading and reloading

e Driver dispatch table that lists some of the driver entry
points to which VAX/VMS transfers control; the channel
request block and function decision table 1list other entry
points

e Function decision table that 1lists wvalid functions of the
driver and entry points to routines that perform I/0
preprocessing for each function

The VAX/VMS operating system provides macros that drivers can invoke
to create the tables listed above. Descriptions of individual tables
in the sections that follow also describe the macros invoked to create
the tables. All of the macros described in this chapter are keyword
macros; that is, parameter values can be expressed in the following
format:

KEYWORD=parameter-value
The VAX-11 MACRO Language Reference Manual describes the syntax rules

for keyword macros in detail. The sections that follow provide
examples of macro usage.

7.1 DRIVER PROLOGUE TABLE (DPT)

The driver prologue table is the first generated code in every device
driver. This table, along with parameters to the SYSGEN command that
request driver loading, describes the driver to the driver 1loading
procedure. In turn, the driver loading procedure computes the size of
the driver, loads it into nonpaged system memory, and creates control
blocks for the new device(s) 1in the 1I/0 data base. Chapter 14
describes how the driver 1loading procedure decides which control
blocks to build for a given device.

Device drivers can pass control block initialization information to
the driver 1loading procedure through values stored in the driver
prologue table. 1In addition, the driver loading procedure initializes
some fields within the device control blocks using information from
its own tables. Drivers must treat many of the fields initialized by
the driver 1loading procedure as read-only fields. These fields are
marked with an asterisk (*) in Appendix A.

WRITING DEVICE DRIVER TABLES

To create a driver prologue table, the driver invokes the DPTAB macro,
described in Section 7.1.1.

When the DPTAB macro expands, it creates a control block that the

driver loading procedure uses to 1load the driver. The loading
procedure loads the driver prologue table and the driver together in
virtual memory. The 1loading procedure also 1links the new driver

prologue table into a list of all driver prologue tables known to the
system.

Most device drivers need to initialize certain fields of the I/0 data
base with driver-specific wvalues. The DPT STORE macro provides the
driver with a means of communicating its initialization needs to the
driver 1loading .procedure. When invoked, the DPT STORE macro places
information in the driver prologue table that the driver 1loading
procedure uses to load specified values into specified fields. The
DPT_STORE macro accepts two lists of fields:

e Fields to be initialized when the control blocks are built
using the SYSGEN command CONNECT and when the driver is
reloaded

e PFields to be initialized only when the driver 1is reloaded
using the SYSGEN command RELOAD

The DPTAB macro stores the relative addresses of these two 1lists,
called initialization and reinitialization data, in the driver
prologue table. The list of one or more invocations of the DPT STORE
macro must appear after the DPTAB macro. Section 7.1.2 describes the
format of the DPT STORE macro.

Drivers must use the DPT STORE macro to supply initialization data for
the following fields: -

UCBSB_FIPL Driver fork IPL
UCBSB DIPL Hardware device IPL
UCBSL DEVCHAR Device characteristics (see

Appendix A)

The driver also must provide reinitialization data for the device data

block field DDBSL DDT and for any of the following routine addresses
in the channel request block:

DDB$L_DDT Address of the driver dispatch
table

CRBSL INTD+4 Entry point to the driver interrupt
service routine, if one exists

CRBSL INTD+VECSL INITIAL Address of a controller
initialization routine, if one
exists

CRB$L_INTD+VEC$L_UNITINIT Address of a device unit
initialization routine, if one

exists. This entry point 1is wused
by UNIBUS devices.

7.1.1 DPTAB Macro

The DPTAB macro creates a driver prologue table.

WRITING DEVICE DRIVER TABLES

Format

DPTAB end,adapter,[flags],ucbsize,{unload],[maxunits],[defunits],
[deliver], [vector] ,name

end
The address of the end of the driver module.

adapter
The adapter type.

UBA = UNIBUS adapter

MBA = MASSBUS adapter

DR DR device

NULL No actual device for driver

(||

flags
The driver loader flags.

DPTS$SM SVP Indicates, when set, that the device requires a
- permanently allocated system page. This flag
causes the driver loading procedure to allocate
a permanent system page table entry for the
device. The virtual address of the system page
table entry 1is written into the system page
field of the UCB (UCBSL SVPN) during creation
of the UCB. Disk drivers use this page table
entry during ECC error correction.

DPTSM NOUNLOAD Indicates, when set, that the driver cannot be
reloaded. A system bootstrap must occur before
drivers with this bit set can be reloaded.

ucbsize

The size of each device unit control block in bytes. This
argument is required. This field allows drivers to extend the
unit control block to store device-dependent data describing an
I/0 operation. Appendix A provides examples. Driver routines
and VAX/VMS ECC routines interpret fields in the extended part of
the wunit control block. The amount that the unit control block
is extended is variable for each driver type.

unload R
The address of a routine to call before the driver 1is reloaded.
The driver loading procedure calls this routine before
reinitializing all controllers and device units associated with
the driver.

maxunits
The maximum number of units on a controller that this driver
supports. This field affects the size of the interrupt dispatch
block created the SYSGEN CONNECT command. If this field is
omitted, the default is 8 units. You can override the maxunits
field by appending the /MAXUNITS qualifier to the CONNECT
command.

defunits

The number of units created by default for each controller that
the AUTOCONFIGURE command to SYSGEN processes on behalf of this
driver. The unit numbers created are zero through defunits minus
one. If the deliver argument to the DPTAB macro is omitted,
AUTOCONFIGURE creates the number of units specified by defunits.
If the deliver argument is present, it names an action routine
that AUTOCONFIGURE calls to determine whether or not to create
each unit automatically.

WRITING DEVICE DRIVER TABLES

deliver
The address of a unit delivery action routine that AUTOCONFIGURE
calls to determine which units to configure automatically for the
device supported by this driver.

vector
The address of a driver-specific transfer vector. Use of this
argument is reserved to DIGITAL.

name
The name of the device driver module. The driver 1loading
procedure will permit only one copy of the driver associated with
the name given in this field to be 1loaded. By convention, a

driver name 1is formed by appending the string DRIVER to the 2-
alphabetic character generic device name, for example, DBDRIVER.

7.1.2 DPT STORE Macro

The DPT STORE macro either declares an assembly language label or
describes a field to be initialized. When the macro declares a label,
the macro has format 1. When the DPT STORE macro describes a field to
be initialized, the macro has format 2.

Format 1

DPT STORE label-name

label-name

The name of the label to be declared. It can be one of the
following:

INIT Indicates the start of fields to 1initialize
when the driver is loaded.

REINIT Indicates the start of additional fields to
initialize when the driver 1is 1loaded or
reloaded.

END Indicates the end of the two lists.
Format 2
DPT STORE struc-type,struc-offset,operation,expression,
[position],[size]
struc-type

The type of I/0 data base control block that contains the field
to be initialized. The type can be one of the following:

DDB device data block

UCB unit control block

CRB channel request block
I1DB interrupt dispatch block

struc-offset
The unsigned offset into the control block. The driver 1loading
procedure can initialize only the first 256 bytes of each data
structure. Unit and controller 1initialization routines can
initialize additional data fields.

WRITING DEVICE DRIVER TABLES

operation
The type of operation to be performed. The type can be one of
the following:

write a byte wvalue

write a word value

write a longword value

write an address relative to the driver
write a bit field

<Oz w

The V operation takes the following longword of data and the
position and size arguments as operands of an INSV instruction.

An at sign (@) preceding the operation parameter indicates that
the expression parameter that follows is the address of the
initialization data.

expression
An expression to be stored in the control block or, if an at sign
(@) 1is specified preceding the operation parameter, the address
of an expression. For example, the following macro 1indicates
that DEVICE CHARS 1is the address of the data to write into the
DEVCHAR field of the UCB.

DPT STORE UCB,UCBSL_DEVCHAR,@L,DEVICE_CHARS

position
The starting bit position within the specified field. This
parameter is specified only for V operations.

size
The number of bits in the field. This parameter 1is specified
only for V operations.

7.1.3 Example of DPTAB and DPT STORE Macro Use

The following example invokes the DPTAB macro and DPT STORE macros to
describe a device driver and its data base.

Define DPT

End of driver

Adapter type

Size of UCB

Name of driver module
Start of control block
initialization values
Driver fork IPL

Device characteristics:
record-oriented
available

output device

Device class

DPTAB -
END=XX END, -
ADAPTER=UBA, -
UCBSIZE=UCBS$K XX LENGTH, -
NAME=XXDRIVER

DPT STORE INIT

DPT STORE UCB,UCB$B FIPL,B,S8
DPT STORE UCB,UCBS$L DEVCHAR,L,-
- <DEVS$M REC-
IDEVSM AVL-
IDEVSM ODV> :
DPT STORE UCB,UCB$EB DEVCLASS,B,-

e N Ne Ne Ne N We Ne N Ne N Ne N

DC$ XX

DPT STORE UCB,UCB$B DEVTYPE,B,- ; Device type
XX$ XL78

DPT_STORE UCB,UCBSW DEVBUFSIZ,W,- ; Default buffer size
132

DPT_STORE UCB,UCB$B DIPL,B,22 ; Device IPL

WRITING DEVICE DRIVER TABLES

DPT STORE REINIT ; Start of control block
- reinitialization values
DPT STORE CRB,CRBSL INTD+4,D,- Interrupt service

- XX INTERRUPT ; routine address
DPT STORE CRB,ERB$L INTD+VECSL UNITINIT, -

- D,XX XL78 INIT - Unit initialization
- - routine address
Address of driver
dispatch table
End of field
initialization

o we we

DPT STORE DDB,DDBSL DDT,D,XXSDDT

DPT STORE END

e Ne N N S e

7.2 DRIVER DISPATCH TABLE (DDT)

The driver dispatch table lists some of the entry points for driver
routines to be called by VAX/VMS for I/O processing. Every driver
must create a driver dispatch table. The routines listed can reside
in the driver module or in a VAX/VMS module. Appendix A describes the
VAX/VMS device-independent routines that can be specified.
Device-dependent routines are normally located in the driver module.
The driver dispatch table contains relative addresses for routines
located 1in the driver module and absolute addresses for routines
located in the operating system. At load time, the driver 1loading
procedure changes the relative addresses of driver routines to
absolute addresses.

The driver creates the driver dispatch table by 1invoking the macro
DDTAB. The driver loading procedure writes the address of the driver
dispatch table, as specified in a DPT STORE macro, 1into the device
data block. -

7.2.1 DDTAB Macro

The DDTAB macro creates a driver dispatch table. The table has a
label of devnam$DDT. Just preceding the table, DDTAB generates the
driver code program section with the following statement:

-PSECT $$$115 DRIVER
Format

DDTAB devnam,start,[unsolic],functb,[cancel],[regdmp],{diagbf],
[erlgbf] ,[unitinit],[altstart], [mntver]

devnam
The generic name of the device driven by this device driver.

start
The address of the driver's start I/0 routine.

unsolic
The address of the routine that services unsolicited interrupts
from the device. This field is used only by MASSBUS devices.

functb
The address of the function decision table for this driver.

cancel
The address of the cancel I/0 operation routine.

WRITING DEVICE DRIVER TABLES

regdmp
The address of the routine that dumps the device registers to an
error log buffer or to a diagnostic buffer.

diagbf
The length in bytes of the diagnostic buffer wused for this
device.

erlgbf
The length in bytes of the error log buffer used for this device.

unitinit
The address of the device initialization routine, if one exists.
MASSBUS drivers should wuse this field rather than CRBSL INTD +
VECSL UNITINIT. UNIBUS drivers may use either one.

altstart
The address of the alternate start I/O routine. To initiate this
routine, use the VAX/VMS routine EXESALTQUEPKT instead of
EXESQIODRVPKT.

mntver
The address of a VAX/VMS routine that is called at the beginning
and end of a mount verification operation. If no routine is
specified, the routine IOCSMNTVER is called. Use of this field
to call any routine other than IOCSMNTVER is reserved to DIGITAL.

The DDTAB macro writes the address of the VAX/VMS routine IOCSRETURN
into routine address fields of the driver dispatch table that are not
supplied in the macro invocation (with the exception of the mntver

argument) . IOCSRETURN executes an RSB instruction; for further
information, refer to Appendix C.

In the example below, notice that a plus sign (+) precedes the address
of the entry point to the cancel I/0 routine. The plus sign indicates
that the routine is part of VAX/VMS. No plus sign precedes the
address of the start 1I/0 routine because it is part of the driver
module. Omitting a required plus sign is a common error in device
drivers.

7.2.2 Example of a DDTAB Macro
A sample invocation of the DDTAB macro follows.

Driver dispatch table
Start I/0 operation

Function decision table
Cancel I/0

DDTAB DEVNAM=XX, -
START=STARTIO, -

FUNCTB=FUNCTABLE, -
CANCEL=+I0CS$CANCELIO

~e we we we

7.3 FUNCTION DECISION TABLE (FDT)

The function decision table lists codes for I/0 functions that are
valid for the device; indicates whether the functions are buffered

I/0 functions; and specifies routines to perform preprocessing for
particular functions. Every device driver must create a function
decision table containing three or more entries:

e The list of valid I/O function codes

e¢ The list of buffered 1/0 function codes

WRITING DEVICE DRIVER TABLES

e One or more entries, each of which specifies all or a subset
of 1I/0 function codes and the address of a routine that
performs I/0 preprocessing for those function codes

If no buffered I/0 functions are defined for the device, the second
entry contains an empty list.

Taken together, the third through last entries in the function
decision table specify one or more FDT routines for each valid I/0
function code for the device. It is the responsibility of the FDT
routines to terminate the I/O preprocessing for each type of function
by transferring control out of the Queue I/O Request system service
and into a routine that queues the I/0 request to a driver, inserts
the I/0 request in the postprocessing queue, or aborts the 1I/O
request.

Refer to Chapter 8 for information on the writing of FDT routines.

Table 7-1 lists the physical, logical, and virtual I/O0 function codes
that a function decision table most commonly uses. A complete list of
function codes is contained in the macro SIODEF in
SYSSLIBRARY:STARLET.MLB.

7.3.1 Defining Device-Specific Function Codes

You can also define device-specific function <codes by equating the
name of a device-specific function with the name of a function that is
irrelevant to the device. The selected codes should, however, have a
type (logical, physical, or wvirtual) that 1is appropriate for the
function they represent. For example, the assembly code that follows
defines three device-specific physical I/0 function codes.

I0$_STARTCLOCK=I0$ ERASETAPE ; Start hardware clock
I0S_STOPCLOCK=I0$ OFFSET ; Stop hardware clock
IO$_STARTDATA=IO$_SPACEFILE ; Start data acquisition

The device driver creates a function decision table by invoking the
FUNCTAB macro. Each invocation of the FUNCTAB macro creates a 2- or
3-longword entry in the function decision table. The first two
invocations create 2-longword entries because they specify only
function codes; they do not specify an accompanying action routine.

All subsequent invocations of the FUNCTAB macro must specify both
function codes and the address of an action routine that is to perform
preprocessing for those function codes. These 1invocations create
3-longword entries.

The Queue I/0 Request system service processes entries in the order in
which they appear in the function decision table. When a function
code is present in more than one 3-longword entry, the system service
sequentially calls every action routine specified for the function
code until an action routine stops the scan by aborting, completing,
or queuing an I/0 request.

WRITING DEVICE DRIVER TABLES

Table 7-1: VAX/VMS 1/0 Function Codes

Type of Function Codes Defined
Physical codes I0$ DIAGNOSE Diagnose
10$ DRVCLR Drive clear
I10$_ERASETAPE Erase tape
I0$ NOP No operation
10$ OFFSET Offset read heads
10$ PACKACK Pack acknowledge
10$ READHEAD Read header and data
I0$ READPBLK Read physical block
I0$ READPRESET Read in preset
I10$ READTRACKD Read track data
I0$ RECAL Recalibrate drive
I0S$ RELEASE Release port
I10$ RETCENTER Return to center line
I0S$ SEARCH Search for sector
I0$ SEEK Seek cylinder
I10$ SENSECHAR Sense device characteristics
I0$ SETCHAR Set device characteristics
I0$ SPACEFILE Space files
I0$ SPACERECORD Space records
I0$ STARTSPNDL Start spindle
103 UNLOAD Unload drive
10$ WRITECHECK Write check data v
I0$ WRITECHECKH Write check header and data
I0$ WRITEHEAD Write header and data
10$ WRITEMARK Write tape mark
I0$ WRITEPBLK Write physical block
IO$:WRITETRACKD Write track data
Logical codes I0S READLBLK Read logical block
I0$ REWIND Rewind tape
10$ REWINDOFF Rewind and set offline
I0$ SENSEMODE Sense device mode
10$_SETMODE Set mode
I0$ SKIPFILE Skip files
10$ SKIPRECORD Skip records
I0$_WRITELBLK Write logical block
IO$_WRITEOF Write end of file
Virtual codes IO$_ACCESS Access file
I0$ ACPCONTROL Miscellaneous ACP control
I10$ CREATE Create file
I10$ DEACCESS Deaccess file
10$ DELETE Delete file
10$ MODIFY Modify file
I10$ MOUNT Mount volume
I0$ READPROMPT Read terminal with prompt message
I0$ READVBLK Read virtual block
10$_WRITEVBLK Write virtual block

WRITING DEVICE DRIVER TABLES

7.3.2 Determining Those Functions that are Buffered I/0

The second entry in a function decision table indicates those
functions that are handled as buffered I/0 operations. 1In selecting
the functions that are to be buffered, you should take the following
information into consideration:

e Direct I/0 is intended only for devices whose 1I/0 operations
always complete quickly. For example, although terminal I/O
is fast, users can prevent the I/0 operation from completing
by using CTRL/S to halt the operation indefinitely;
therefore, terminal I/0 operations are buffered I/O.

e Use of direct I/0 requires that the process pages containing

the buffer be locked in memory. Locking pages in memory
increases the overhead of swapping the process that contains
the pages.

e Use of buffered I/0 requires that the data be moved from the
system buffer to the user buffer. Moving data requires
additional time.

e Routines that manipulate data before delivering it to the user
(for example, a terminal 1interrupt service routine) cannot
gain access to the data if direct I/0 1is |used. Therefore,
transfers that require data manipulation must be buffered I/O.

e VAX/VMS handles the quotas differently for direct 1I/0 and
_ buffered 1I/0, as described in the VAX/VMS System Management
and Operations Guide.

® Generally, DMA devices use direct I/0, while programmed I/O
devices use buffered I/0.

Section 7.3.4 provides an example of the functions handled as buffered
I/0 operations.

7.3.3 FUNCTAB Macro
The FUNCTAB macro creates the function decision table for a driver.
Format

FUNCTAB [action] ,codes

action
The address of an action routine to call during I/O preprocessing
of the specified action code or codes. An action routine is
specified only for the third through last entries of the table.
The 1list of wvalid 1I/0 functions and the list of buffered I/0
functions have no associated action routine.

codes

The list of I/0 function codes. The macro expansion prefixes
each code specified with the string I0$; for example, READVBLK
expands to IO$ READVBLK.

7.3.4 Example of FUNCTAB Macro Use

In the example below, the routine (named XX READ) called for a read
function is a driver routine. It appears later in the driver module.

WRITING DEVICE DRIVER TABLES

The routines EXE$SETMODE and EXE$SENSEMODE, preceded by plus signs (+)

in the
requests
functions.

XX FUNCTABLE:

FUNCTAB

FUNCTAB

FUNCTAB

FUNCTAB

FUNCTAB

macro
for

argument,
the device's

,-

<READLBLK, -
READPBLK, -
READVBLK, —
SENSEMODE, -
SENSECHAR, -
SETMODE, -
SETCHAR, -

>

i
<READLBLK, -
READPBLK, -
READVBLK, -
SENSEMODE, -
SENSECHAR, -
SETMODE, —
SETCHAR, -

>

XX READ, -
<READLBLK, -
READPBLK, -
READVBLK, -

>

+EXES$SETMODE, -
<SETCHAR, -
SETMODE, -

>

+EXE$SENSEMODE, -

<SENSECHAR, -
SENSEMODE, -
>

are

VAX/VMS

7-11

~

we Ne Mo Ne W we we =

Ne Ne we Ne N we Ne =

~e e we ~e

~e we we

~e wo o

routines
characteristics

that preprocess I1I/0
and sense mode

Function decision table

valid functions

Read logical block

Read physical block

Read virtual block

Sense reader mode

Sense reader characteristics
Set reader mode

Set reader characteristics

Buffered I1/0 functions
Read logical block
Read physical block
Read virtual block
Sense reader mode
Sense reader characteristics
Set reader mode
Set reader characteristics

Read functions
Read logical block
Read physical block
Read virtual block

Set mode/characteristics
Set reader characteristics
Set reader mode

Sense mode/characteristics
Sense reader characteristics
Sense reader mode

CHAPTER 8

WRITING FDT ROUTINES

The Queue I/O Request system service wuses the driver's function
decision table to determine which FDT routines to call. These FDT
routines validate wuser-specified arguments in the 1I/0 request.
VAX/VMS contains many device-independent FDT routines. Device drivers
contain device-dependent FDT routines.

A driver should call the VAX/VMS device-independent FDT routines
whenever possible. This practice encourages the use of well-debugged
routines and minimizes driver size.

8.1 CONTEXT FOR FDT ROUTINE EXECUTION

The Queue I/O Request system service calls all FDT routines 1in the
context of the process that requested the 1I/0 operation.
Characteristics of process context at the time of a call to an FDT
routine are as follows:

e Virtual addresses are mapped according to the process page
tables. This mapping allows FDT routines access to
user—specified virtual addresses.

e The process is executing in kernel mode because the Queue I/0
Request system service call executes a Change Mode to Kernel
instruction.

e The process privileges remain unchanged.

e Interrupt priority level is set to IPL$ ASTDEL. Therefore,
the process can be rescheduled but cannot receive ASTs.
Paging can occur.

e FDT routines cannot call system services or VAX-11 RMS
services,

8.2 REGISTERS PRESET FOR FDT ROUTINE EXECUTION

The Queue I/0 Request system service also sets up a series of
registers for the FDT routines before calling them. Table 8-1 lists
the registers.

WRITING FDT ROUTINES

Table 8-1: Registers Loaded by Queue I/O Request Service

Register Content

RO Address of the FDT routine being called

R3 Address of the I/0 request packet for the current
I/0 request

R4 Address of the process control block (PCB) of the
current process

R5 Address of the unit control block of the device
assigned to the user-specified process I/0 channel

R6 Address of the channel control block that describes
the user-specified process I/0 channel

R7 Bit number of the user-specified I/O function code

R8 Address of the current entry 1in the function

decision table

AP Address of the first function-dependent parameter
specified in the user's request

8.3 CONVENTIONS FOLLOWED BY FDT ROUTINES

Because FDT routines are called by the Queue I/0O Request system
service and return to it or, in turn, call another VAX/VMS routine,
they must follow certain conventions to preserve register content and
the expected process context.

8.3.1 Register Conventions

FDT routines are responsible for preserving the contents of R3 through
R8 across subroutine calls. FDT routines can use RO through R2 and R9
through R11 without saving their previous contents. If an FDT routine
needs to use R3 through R8, the routine can use the push and pop
register instructions to save registers on the stack and later restore
them. The following is an example.

PUSHR #"M<R3,R4,R5> ; Save R3-R5 on the stack

POPR #"M<R3,R4,R5> ; Restore R3-R5 from the stack

8.3.2 Process Context Conventions

The Queue I/0 Request system service executes in the context of the
process that 1issues the 1I/0 request, but in kernel mode and at
IPLS ASTDEL. The Queue I/0 Request system service expects FDT

routines to preserve this context. Therefore, an FDT routine observes
the following conventions:

WRITING FDT ROUTINES

e It does not lower IPL below IPL$ ASTDEL.

e If a routine raises IPL, it must lower IPL to IPL$S ASTDEL
before exiting.

e It does not alter the stack without restoring its original
state before exiting.

e It must observe the register conventions described in the
previous section.

e It exits either by an RSB instruction to return control to the
system service, or it issues a JMP instruction to one of the
VAX/VMS routines described in Section 8.4.

8.4 TRANSFERRING INTO AND OUT OF AN FDT ROUTINE
To transfer control to an FDT routine, the Queue I/0 Request system
service loads the address of the FDT routine into a register and
executes a jump to subroutine instruction, as follows:

JSB (RO)

Each FDT routine chooses an exit path based on the following factors:

e Whether another FDT routine needs to be <called to perform
additional function-specific processing

® Whether an error is found in the I/0 request
e Whether the operation is complete

e Whether the I/O operation requires and 1is ready for device
activity

Figure 8-1 illustrates the FDT processing 1loop in the Queue 1I/0
Request system service.

READ
> NEXT
FDT ENTRY

FUNCTION
CODE
MATCH?

FDT ROUTINE
CALL
RETURN
FDT S
ROUTINE

FDT ROUTINE EXITS

y

QUEUE IRP,
FINISH 1/0,
OR ABORT I/0

ZK-926-82

Figure 8-1: Queue I/0 Request Scan of a Function Decision Table

8-3

WRITING FDT ROUTINES

As illustrated in Figure 8-1, the FDT routines are responsible for
transferring control out of the FDT processing loop and into a VAX/VMS
routine that queues an I/0 request packet or completes an I/0 request.
The Queue I/0 Request system service does not know when to stop
scanning the function decision table. Therefore, you should ensure
that all wvalid function codes in a driver's function decision table
eventually call an FDT routine that does not return to the Queue 1I/0
Request system service.

An FDT routine can exit using any of the methods summarized in Table
8-2. The first method returns to the Queue I/0 Request system
service. All other methods jump to VAX/VMS routines that take the
appropriate action. See Section 8.8 for detailed descriptions of
these routines.

Table 8-2: FDT Exit Methods

Exit Method Result

RSB Returns to the Queue I/0 Request system
service. The FDT routine returns to the
system service because the routine knows
that the function decision table
contains a subsequent entry with the
same function code bit set. As a
result, the system service calls another
FDT routine.

JMP G "EXESQIODRVPKT Transfers control to a VAX/VMS routine
that queues an I/0 packet to a driver.

or The FDT routine uses this exit method if

all preprocessing 1is complete, 1if no

JSB G"EXESALTQUEPKT fatal errors are found in the

specification of an I/0 request, and if
device activity is required to complete
the I/0 request.

Once an FDT routine transfers control to
either of these routines, no driver code
that further processes the 1I/0 request
can refer to the process virtual address
space.

EXESQIODRVPKT 1is the standard method
used to queue an I/0 request for device
activity. This routine initiates driver
action only if the device unit is
currently idle; that is, there 1is no
I/0 request being processed. If the
device wunit is busy, EXESQIODRVPKT
queues the request to the unit so that
the driver will process it when the unit
becomes available.

In contrast, EXESALTQUEPKT initiates
driver action at a special driver entry
point without regard for the device
unit's activity status. This routine is
called by drivers that can handle two or
more I/0 requests simultaneously.

(continued on next page)

WRITING FDT ROUTINES

Table 8-2 (Cont.): FDT Exit Methods

Exit Method Result

JMP G EXESFINISHIO Transfers control to a VAX/VMS routine
that writes a quadword of final I/O
status from RO and Rl 1into the 1I/0
status field of the I/0 request packet
(IRP$SL MEDIA and IRPS$L MEDIA+4). The
routine then inserts the I/0 request
packet in the I/O postprocessing queue.

An FDT routine that discovers a
device-dependent error should always
return status using EXESFINISHIO or
EXESFINISHIOC. The routine returns to
the Queue I/0 Request system service the
two longwords of status contained in the
1/0 status block (if any) specified in
the Queue I1I/0 Request.

JMP G"EXES$FINISHIOC Transfers control to a routine that
performs the same functions as
EXESFINISHIO except that this routine
always clears the second longword of the
final I/0 status.

JMP G "EXESABORTIO Transfers control to a VAX/VMS routine
that aborts an 1I/0 request. An FDT
routine that discovers a
device-independent error in an 1I/0
request should always use this method of
exit. The routine stores a longword of
status in RO and returns this to the
system service. Inability to gain

access to a data buffer is an example of
a device-independent error.

8.5 FDT ROUTINES FOR DIRECT I/O

The VAX/VMS operating system provides two standard FDT routines that
are applicable for direct I/0 operations: EXESREAD and EXESWRITE.

When called by the driver, these routines completely prepare a direct
I/0 read or write request. Thus, a driver that uses these routines
eliminates the need for its own device-specific FDT routines.

EXESREAD and EXESWRITE are described in 8.7.

8.6 FDT ROUTINES FOR BUFFERED I/O

Device drivers for buffered I/0 operations must contain their own
device-specific FDT routines. An FDT routine for buffered I/0 must
perform the following steps:

e Confirm either read or write access to the user's buffer

e Allocate a buffer in system space

WRITING FDT ROUTINES

8.6.1 Checking the User's Buffer

First the FDT routine calls EXESREADCHK or EXESWRITECHK to confirm
write or read access, respectively, to the user's buffer. Both of
these routines write the transfer byte count into IRPSW BCNT.
EXESREADCHK also sets IRP$V FUNC in IRPSW STS to indicate that the
function is a read. - -

8.6.2 Allocating the System Buffer

Next, the FDT routine allocates a system buffer. First, it adds 12
bytes for a buffer header to the byte count passed in the P2 parameter
of the user's I/O request. This is the total system buffer size. The
FDT routine then <calls EXESBUFFRQUOTA to ensure that the user has
sufficient remaining resources. If EXESBUFFRQUOTA returns with a
success code, the FDT routine calls EXESALLOCBUF which allocates the
buffer and writes the buffer's size and type into its third longword.

Once the buffer is allocated, the FDT routine takes the following
steps:

e Loads the address of the system buffer into IRPSL SVAPTE.
e Loads the total size of the system buffer into IRPSW BOFF.

e Subtracts the system buffer size £from JIBSL BYTCNT. A

longword in the PCB (PCBS$L JIB) points to the location of the
job information block (JIB).

e Stores the starting address of the system buffer data area 1in
the first longword of the buffer header.

® ©Stores the user's buffer address in the second longword of the
header.

e Copies data from the user buffer to the system buffer if the
I/0 request is a write operation.

At this point, buffers are ready for the transfer. Figure 8-2
illustrates the format of the system buffer.

SYSTEM BUFFER -

ADDRESS OF DATA AREA
USER BUFFER ADDRESS |— ; HEADER
TYPE SIZE

BUFFER
DATA
AREA

USER
BUFFER

ZK-927-82
Figure 8-2: Format of System Buffer for Buffered I/0 Read Operations

8-6

WRITING FDT ROUTINES

Appendix C provides additional information about EXESREADCHK,
EXESWRITECHK, EXES$BUFFRQUOTA, and EXES$ALLOCBUF,

8.6.3 Completion of Buffered I/O in I/0 Postprocessing

When the transfer finishes, the driver returns control to VAX/VMS for
completion of the I/0 request. The driver writes the final count of
bytes transferred into the high-order word of RO and the final request
status in the low order words of RO and Rl. The driver must leave the
buffer header intact; I/0 postprocessing relies on the header's
accuracy. When VAX/VMS I/0 postprocessing gains control, it performs
the following steps:

e Adds the value in IRPSW BOFF to JIBSL BYTCNT to update the
user's byte count quota

o If IRPSL_SVAPTE is nonzero, assumes a system buffer was
allocated and checks to see whether 1IRPSV FUNC is set in
IRP$W _STS -

e If IRPSV FUNC is clear, deallocates the system buffer used for
the write operation; if IRPSV FUNC is set, the kernel mode
AST copies the data to the user's buffer and then deallocates
the buffer 1in addition to performing other kernel mode AST
functions

The kernel mode AST performs the following steps to complete a
buffered read operation:

e Obtains the address of the system buffer from IRPSL SVAPTE

e Obtains the number of bytes to write to the user's buffer from
IRPSW BCNT (for a read operation)

e Obtains the address of the wuser's buffer from the second
longword of the system buffer header

e Checks for write accessibility on all pages of the user's
buffer (for a read operation)

e Copies the data from the system buffer to the process's buffer
(for a read operation)

e Deallocates the system buffer. Note that the system uses the
size listed in the buffer's header to deallocate the buffer.

8.7 FDT ROUTINES PROVIDED BY VAX/VMS
The VAX/VMS FDT routines perform I/0 request validation that is common
to many devices. Whenever possible, drivers should take advantage of
these routines. Normally, if a VAX/VMS FDT routine 1is <called, no
additional FDT processing is required. All of the VAX/VMS FDT
routines described here exit by transferring control to one of the
following VAX/VMS routines:

e EXESQIODRVPKT

e EXESFINISHIO

e EXESFINISHIOC

e EXESABORTIO

WRITING FDT ROUTINES

Once a VAX/VMS FDT routine is called, no subsequent FDT processing
occurs.

For information about additional FDT routines, see Appendix C.

8.7.1 EXESONEPARM

EXESONEPARM processes an I1/0 function code that has one parameter
associated with it.

Exit Method
Queues the I/0 request packet to the driver.
Description

Processes an I/0 function code that requires only one parameter
that needs no checking; for example, the parameter does not have
to be checked for read or write accessibility. EXESONEPARM
stores the parameter, found at 0(AP), in IRPSL MEDIA of the I/O
request packet. Then, it queues the I/0 request packet to the
driver.

8.7.2 EXESREAD

EXESREAD processes a logical or physical read function code for a
direct 1I/0 operation. EXESREAD cannot be used for buffered I/0O
operations.

Exit Method

Aborts the I/0 request if an error occurs, or dismisses and
resubmits the 1I/0 request if the wuser I/0 buffers cannot be
locked in memory; otherwise, queues the I/0 request packet to a
driver.

Description

Sets the I/0 function bit in the status field (IRPSV_FUNC in
IRPSW STS) of the 1I/0 request packet. This bit indicates that
the function is a read.

EXESREAD writes the fourth parameter, located at 12(AP) into the
carriage control field (IRP$B_CARCON).

The routine replaces the logical function code IO$ READLBLK with
the physical function code 1I0$ READPBLK in the function code
field (IRPSW_FUNC) of the I/O request packet.

If the second parameter (the transfer byte count) 1is zero,
EXESREAD queues the I/0 request packet to a device driver. The
second parameter is found at 4(AP). If the byte count 1is not
zero, EXESREAD uses the starting address of the transfer, found
at 0(AP), and the transfer byte count as arguments to the routine
EXESREADLOCK.

The routine EXESREADLOCK calls EXESREADLOCKR, which immediately
calls EXESREADCHKR. This last subroutine determines whether the
caller's buffer permits write access.

WRITING FDT ROUTINES

If EXESREADCHKR finds that the buffer is accessible, it wupdates
the 1I/0 request packet by writing the size in bytes of the

transfer to IRPSW BCNT and setting the read status bit in
IRPSW _STS (IRPSV_FUNC) . The maximum number of bytes that
EXESREAD can transfer is 65535 (128 pages minus one byte).

If the buffer does not allow write access, EXESREADCHKR returns
access violation status to its caller, EXESREADLOCKR, which
summons its caller (EXESREADLOCK) as a coroutine.

When EXES$READLOCK is called as a coroutine, it does not take any
error action. Instead, it passes control to EXESREADLOCKR, which
aborts the queue I/0 request with access violation status.
EXESREADLOCK 1is called as a coroutine for the convenience of
drivers that call EXESREADLOCKR directly. See Appendix C for
more details.

After EXESREADCHKR confirms the buffer's write accessibility,
EXESREADLOCKR calls the routine MMGS$SIOLOCK to lock into memory
those pages that contain the buffer. MMGSIOLOCK, can return
success, page fault, or error status to EXESREADLOCKR.

If MMGSIOLOCK succeeds, EXESREADLOCKR stores the address of the
process page table entry (PTE) 1in the field IRPSL SVAPTE and
returns success status to EXESREADLOCK.

However, if MMGSIOLOCK reports a page fault, EXESREADLOCKR
adjusts direct I/0 count and AST count to the values they held
before the I/0 request, deallocates the I/0 request packet and
restarts the request procedure at the Queue I/O Request system
service. This procedure is carried out so that the user process
can receive asynchronous system traps while it waits for the page
fault to complete. Once the page is faulted 1into memory, the
system service will resubmit the queue I/0 request.

MMGSIOLOCK can report either of two -errors: access violation
(SS$ ACCVIO) and 1insufficient working set limit (SS$ INSFWSL).
When EXESREADLOCKR receives an error, it aborts the request with
error status.

After EXESREADLOCK returns to EXESREAD, the routine passes
control to the exit routine EXESQIODRVPKT so that the request is
queued to the driver.

8.7.3 EXES$SENSEMODE

EXE$SENSEMODE processes the sense device mode and characteristics
functions by reading fields of the unit control block. No device
activity occurs.

Exit Method
Transfers control to EXESFINISHIO.

Description
Loads the device-dependent characteristics field
(UCBSL DEVDEPEND) of the unit control block into R1.
EXE$SENSEMODE then loads a normal completion status (SS$ NORMAL)

into RO. Finally, it transfers control to EXES$FINISHIO to insert
the I/0 request packet in the I/O postprocessing queue.

WRITING FDT ROUTINES

8.7.4 EXESSETCHAR

EXE$SSETCHAR processes the set device mode and characteristics
functions. If setting device characteristics requires no device
activity or requires no synchronization with fork processing, the
driver's FDT entry can specify EXESSETCHAR; otherwise, it must
specify EXESSETMODE.

Exit Method

Aborts the I/O request on error; otherwise, transfers control to
EXESFINISHIO.

Description

Determines whether the process has read access to the quadword
that describes the new characteristics for the device. The first
parameter, found at 0(AP), specifies the address of the quadword.

If the process does not have read access to the quadword,
EXESSETCHAR aborts the request.

If the process has read access, EXES$SSETCHAR stores the new
characteristics in fields of the device's unit control block. If
the function is I0$ SETCHAR, the device type and <class fields
(UCBSB DEVCLASS and UCBSB DEVTYPE, respectively) of the unit
control block receive the first word of data addressed by the
parameter.

For both the I0$ SETCHAR and I0$ SETMODE functions, the routine
writes the second word of data into the UCB default buffer size
field (UCBSW DEVBUFSIZ) and the third and fourth words of data
into the device-dependent characteristics field
(UCBSL DEVDEPEND).

Finally, EXESSETCHAR stores the normal completion status
(SSS_NORMAL) in RO and transfers control to EXESFINISHIO to
insert the I/O request packet in the I/0 postprocessing queue.

8.7.5 EXES$SETMODE

EXE$SSETMODE processes the set device mode and characteristics
functions by activating the device.

Exit Method

Aborts the I/O request if an error occurs; otherwise, queues the
I/0 request packet to the device driver.

Description

Determines whether the process has read access to the quadword
that describes the new characteristics for the device. The first
parameter, found at 0(AP), specifies the address of the quadword.
If the process does not have read access to the quadword,
EXESSETMODE aborts the request.

If the process has read access, EXESSETMODE stores the new
characteristics in the media field (IRPSL MEDIA and
IRP$L MEDIA+4) of the 1I/0 request packet. The routine then
transfers control to the exit routine EXES$QIODRVPKT, which queues
the request to the appropriate device driver.

WRITING FDT ROUTINES

8.7.6 EXESWRITE

EXESWRITE processes a logical or physical write function code for a
direct I/0 operation. EXESWRITE cannot be used for buffered I/O0
operations.

Exit Method

Aborts the I/0 request if an error occurs, or dismisses the 1I/0
request if the wuser I/0 buffers cannot be locked in memory;
otherwise, queues the I/0 request packet to a driver.

Description

Writes the fourth parameter, found at 12(AP) into the I/0 request
packet's carriage control field (IRPSB_CARCON).

EXESWRITE replaces the logical function code I0$ WRITELBLK with
the physical function code I0$ WRITEPBLK in the function code
field of the I/0 request packet (IRP$W_FUNC).

If the second parameter (the transfer byte count) 1is =zero,
EXESWRITE queues the I/0 request packet to the driver. The
second parameter is found at 4(AP). 1If the byte count 1is not
zero, EXESWRITE uses the starting address of the transfer, found
at 0(AP), and the transfer byte count as arguments to the routine
EXESWRITELOCK.

The routine EXESWRITELOCK calls EXESWRITELOCKR, which immediately
calls EXESWRITECHKR. This last subroutine determines whether the
caller's buffer permits read access.

If EXESWRITECHKR finds that the buffer is accessible, it wupdates
the 1I/0 request packet by writing the size in bytes of the
transfer to IRPSW BCNT. EXESWRITE can transfer a maximum of
65535 bytes (128 pages minus one byte).

If the buffer does not allow read access, EXESWRITECHKR returns
access violation status to its <caller, EXESWRITELOCKR, which
summons its caller (EXESWRITELOCK) as a coroutine.

When EXESWRITELOCK is called as a coroutine, it does not take any
error action. Instead, it passes control to EXESWRITELOCKR,
which aborts the queue I/0 request with access violation status.
EXESWRITELOCK 1is called as a coroutine for the convenience of
drivers that call EXESWRITELOCKR directly. See Appendix C for
more details. :

After EXESWRITECHKR confirms the buffer's read accessibility,
EXESWRITELOCKR <calls the routine MMGS$SIOLOCK to lock into memory
those pages that contain the buffer. MMGSIOLOCK can return
success, page fault, or error status to EXESWRITELOCKR.

If MMGSIOLOCK succeeds, EXESWRITELOCKR stores the address of the

process page table entry (PTE) in IRPSL SVAPTE and returns
success status to EXESWRITELOCK. -

However, if MMGSIOLOCK reports a page fault, EXESWRITELOCKR
adjusts direct I/0 count and AST count to the values they held
before the I/0 request packet and restarts the request procedure
at the Queue 1I/0 system service. The routine carries out this
procedure so that the user process can receive ASTs while it
waits for the page fault to complete. Once the page is faulted
into memory, the system service will resubmit the queue I/0
request.

WRITING FDT ROUTINES

MMGSIOLOCK can report either of two errors: access violation
(SS$ ACCVIO) and insufficient working set 1limit (SS$ INSFWSL).
When EXESWRITELOCKR receives an error, it aborts the request with
error status.

After EXESWRITELOCK returns to EXESWRITE, the routine passes
control to the exit routine EXESQIODRVPKT so that the request is
queued to the driver.

8.7.7 EXE$SZEROPARM

EXE$SZEROPARM processes an I/0 function code that has no associated
parameters.

Exit Method
Queues the I/0 request packet to the driver.
Description

Processes an I/0 function code that describes an 1I/0 operation
completely without any additional function-specific parameters.
The only FDT processing necessary for a zero-parameter function
code is to zero-fill the field of the I/O request packet that
normally contains a user-specified parameter (IRPSL MEDIA). Then
EXESZEROPARM queues the I/0 request packet to a device driver.

8.8 EXIT ROUTINES IN THE VAX/VMS SYSTEM

Ultimately, FDT processing must terminate by transferring control to
one of the following VAX/VMS routines: EXESABORTIO, EXESFINISHIO,
EXE$SFINISHIOC, EXESALTQUEPKT, or EXESQIODRVPKT. Each of these
routines returns the system service status code to the user.

8.8.1 EXES$ABORTIO

When an FDT routine determines that an I/0 request cannot be completed
because of an error in the specification of the request or in FDT
processing, the FDT routine transfers control to the VAX/VMS routine
EXE$ABORTIO to abort the request. EXESABORTIO gains control without
any change in the process context. Interrupt priority 1level 1is at
IPLS ASTDEL; the process virtual space is mapped; and the process is
executing in kernel mode.

Required Register Contents

RO Queue I/0 Request system service final status code

R3 Address of the current I/0 request packet

R4 Address of the process control block of the current
process

R5 Address of the unit control block of the device unit

assigned to the process I/0 channel

R3 through R5 always contain the I/O request packet, PCB, and UCB
addresses at the entry to an FDT routine. The FDT routine should
be careful not to destroy these values.

WRITING FDT ROUTINES

Description

EXESABORTIO clears the address of the I/0 status block in the I/0
request packet (IRPSL I0OSB) so that no status will be returned
during I/0 postprocessing. EXESABORTIO also clears the bit in
the 1I/0 request packet (ACBSV QUOTA in the field IRPSB RMOD).
When set, this bit indicates ~that the requesting process
specified an AST routine. 1If necessary, the routine readjusts
the process's use of its AST quota.

Then EXESABORTIO inserts the I/0 request packet in the I/O
postprocessing queue. If no other entries are in the queue,
EXESABORTIO requests a software interrupt at IPL$ IOPOST. This
interrupt causes postprocessing to occur before any other
instructions in the EXES$SABORTIO routine are executed.

When all 1/0 postprocessing has been completed, EXESABORTIO
regains control and finishes the I/O operation as follows:

e Lowers IPL to zero, which is the normal IPL for a process
e Changes mode back to the original processor access mode

e Returns from the system service to the code of the image that

originally requested the I/O operation. EXESABORTIO returns
RO, which contains the final status code saved when the exit
routine was called, to its caller.

As a result of this exit method, any ASTs specified when the
I/0 request was issued will not be delivered, and any event
flags requested will not be set.

8.8.2 EXESFINISHIO and EXE$FINISHIOC

Many I/0 requests need no device activity to be completed. The FDT
routine(s) can complete the entire I/0 request and immediately return
status concerning the operation to the process. However, the VAX/VMS
operating system provides two VAX/VMS 1I/0 completion routines:
EXESFINISHIO and EXESFINISHIOC. EXESFINISHIO returns a quadword of
I/0 status. EXESFINISHIOC returns a quadword of I/O status with the
second longword containing zero.

These routines gain control without any change 1in process context.
Interrupt priority 1level is at IPL$ ASTDEL; the process page tables
are mapped; and the process is executing in kernel mode.

Required Register Content

RO Value to be placed in the first 1longword of final I/0
status when the Queue I/0 Request system service returns
final status

R1 Value to be placed in the second 1longword of final 1I/0
status (EXESFINISHIO only)

R3 Address of the current I/0 request packet

R4 Address of the ©process control block of the current
process

R5 Address of the unit control block of the device unit

assigned to the process I/O channel

R3 through R5 always contain the I/O request packet, PCB, and UCB
addresses at the entry to an FDT routine. The FDT routine should
be careful not to destroy these values.

WRITING FDT ROUTINES

Description

EXESFINISHIO and EXESFINISHIOC modify fields in the I/O data base
and then complete the I/O request in the following steps:

e Increase the number of I/0 operations completed on the current
device 1in the operation count field of the unit control block
(UCBSL_OPCNT)

e Store the contents of RO and Rl in the media fields of the I/0
request packet (IRPSL MEDIA and IRPSL_MEDIA+4)

e Insert the I/O0 request packet in the I/0 postprocessing queue
and, 1f the queue is empty, request a software interrupt at
IPL$_IOPOST

EXESFINISHIO and EXESFINISHIOC lose control to I/O postprocessing
because postprocessing executes at the higher IPL of IPL$ IOPOST.
When EXESFINISHIO and EXESFINISHIOC regain control, they complete
processing in the following steps:

e Lower IPL to zero, which is the normal IPL for a process
e Change mode back to the original processor access mode

e Return from the system service to the image that originally
requested the I/0 operation. The image receives status
SS$ NORMAL in RO, indicating that the queue I/0O request has
completed without device-independent error.

8.8.3 EXE$SQIODRVPKT

Some I/0 functions require device activity, or at least access to
device registers, for the I/0 operation to be completed. Common
examples are read and write functions. While FDT routines can perform
extensive preprocessing, such as determining whether user buffers are
accessible and reformatting data into buffers in the system address
space, they should not access device registers because the device
might be active. Furthermore, FDT routines should exercise restraint
when modifying the wunit control block. Routines usually access the
UCB at driver fork IPL to synchronize modifications, and FDT routines
do not operate at this interrupt priority level. Drivers containing
FDT routines that access device registers or carelessly modify the
unit control block risk unpredictable operation or a system failure.

For this type of I/O function, the associated FDT routines perform all
preprocessing and then transfer control to the VAX/VMS routine
EXESQIODRVPKT. It queues the I/0 packet to a device driver and
attempts to transfer control to the device driver's start I/0 routine.
If the device unit is busy, EXESQIODRVPKT inserts the I/O request
packet in a priority-ordered queue of packets waiting for the unit.

Required Register Contents

R3 Address of the I/0 request packet
R4 Address of the process control block of the current process
R5 Address of the unit control block for the device unit

assigned to the process I/0 channel

WRITING FDT ROUTINES

Description

EXE$SQIODRVPKT calls EXESINSIOQ, which first raises the interrupt
priority level of the process to the fork level of the driver
(UCBSB FIPL). Driver fork level is, by convention, the interrupt
priority level at which device drivers and VAX/VMS read and alter
critical portions of the device's wunit control block. By
executing at fork 1level, EXES$INSIOQ ensures that, while it is
running, a driver fork process for the device unit cannot also be
running.

EXESINSIOQ tests the UCB status word to see if the unit is busy.

If the device unit is not busy, EXESINSIOQ calls the VAX/VMS
routine IOCSINITIATE to create a fork process context in which
the driver can process the 1I/0 request. IOCSINITIATE creates
this context and activates the driver in the following steps:

e Sets the busy bit of the device's unit control block
(UCB$V_BSY in UCBSW STS)

e Stores the address of the current I/0 request packet in the
UCB field UCBSL IRP

e Copies the transfer parameters contained in the 1I/0 request
packet into the unit control block:

- Copies the starting address from IRPSL SVAPTE to
UCBS$L SVAPTE

- Copies the byte offset within the page from IRPSW BOFF to
UCB$W_BOFF

- Copies the low order word of the byte count from IRPSW BCNT
to UCB$W BCNT -

e Clears the cancel I/0O and timeout bits in the UCB status word
(UCB$V_CANCEL and UCB$V_TIMOUT in UCB$W_STS)

e If the I/O request specifies a diagnostic buffer, as indicated
by the bit IRPSV DIAGBUF in IRPSW STS, stores the system time
in the buffer (IRPSL DIAGBUF) (the Queue I/0 Request system
service having already allocated the buffer)

e Finds the entry point of the device driver's start I/0 routine
using the following chain of pointers:

UCB —> DDT —> start I/O entry point

e Transfers control to the driver start I/0 routine using a JMP
instruction

If, on the other hand, EXES$INSIOQ finds that the device is busy,
it inserts the I/O0 packet in the device unit's I/0 request packet
wait queue for processing later by calling EXESINESRTIRP. The
I/0 request packet wait queue is ordered by two factors:

e The time that the entry is queued; that is, within any given
priority the queue is first-in/first-out

e The priority of the I/O request packet, which is derived from
the requesting process's base priority and stored in the field
IRP$B_PRI

WRITING FDT ROUTINES

After completing one of the two operations described above,
EXE$SINSIOQ reduces the interrupt priority level to the level at
the beginning of 1its execution; that 1is, to IPL$ ASTDEL.
EXESINSIOQ returns control to EXESQIODRVPKT. Finally,
EXE$QIODRVPKT returns from the Queue I/0 Request system service
in the following steps:

e Loads a success status code (SS$ _NORMAL) into RO
o Reduces the interrupt priority level to O

e Changes mode to the access mode of the process at the time of
the I/0 request by issuing an REI instruction

e Returns from the system service call

The system sets and clears the busy bit in the UCB status word for the
device unit. This bit prevents the driver from being called to
service a device unit that is already engaged in another I/0O request.

When a device driver's start I/O routine gains control, the process
that queued the 1I/0 request may no longer be the mapped process.
Therefore, the driver must assume that all information regarding the
I/0 request is in the unit control block or the I/0 request packet and
that all buffer addresses in the unit control block are either system
addresses or page frame numbers that can be interpreted in any process
context. For direct I/0 operations, FDT routines also must have
locked all wuser buffer pages in physical memory since paging cannot
occur at driver fork level and higher interrupt priority levels. The
process virtual address space is not guaranteed to be mapped again
until VAX/VMS delivers a kernel mode AST to the requesting process as
part of I/0O postprocessing.

8.8.4 EXESALTQUEPKT

Special purpose drivers may want to use their own internal I/0 queues
as well as the device wunit I/0 queue (UCBSL IOQFL) provided by
VAX/VMS. These internal queues allow the driver to handle 1I/0
requests even if the device is busy with another I/0 operation.

EXESALTQUEPKT permits the driver to ignore unit 1/0 queue
synchronization. When called by an FDT routine, EXESALTQUEPKT gains
access to the driver at the alternate start I/0 entry point specified
in the driver dispatch table (offset DDTSL ALTSTART). This entry
point bypasses the unit I/0 queue and the device busy flag; thus, the
driver is activated regardless of whether the device unit is busy.

A driver that uses EXES$SALTQUEPKT becomes responsible not only for its
internal queues but also for any synchronization between those queues
and the unit I/O queue maintained by the operating system.

Drivers complete I/0 request packets obtained from EXESALTQUEPKT by
calling the routine COMS$SPOST. This routine places the I/O request
packet in a postprocessing queue and returns control to the driver.
The driver may then fetch another packet from an internal queue. For
further information about COM$SPOST, see Appendix C.

If a driver processes more than one I/0 request packet at the same
time, separate fork blocks must be used.

Be aware that programming a device driver to process simultaneous 1I/0
requests requires detailed knowledge of VAX/VMS internal design.

WRITING FDT ROUTINES

Required Register Contents

R3 Address of the I/O request packet
R5 Address of the unit control block

You must assume that the contents of RO through R5 are destroyed
upon return to the FDT routine.

Description
EXESALTQUEPKT performs the following steps:
e Saves the current interrupt priority level on the stack

e Raises interrupt priority 1level to driver fork level
(UCB$B_FIPL)

e Finds the entry point of the alternate start I/O routine using
the following chain of pointers:

UCB —> DDT —> alternate start I/0 address
e Calls the driver at alternate start I/0 address

When the alternate start I/0 routine finishes, it returns control to
EXESALTQUEPKT by executing an RSB instruction. Unlike the other FDT
exit routines, EXESALTQUEPKT is called with a JSB instruction rather
than a JMP instruction. EXESALTQUEPKT restores interrupt priority
level to that which existed when it was called, then returns control
to the FDT routine that called 1it. The FDT routine performs any
postprocessing and transfers control to the routine EXESQIORETURN.

When EXES$QIORETURN gains control, it performs the following steps:
e Sets the success status code 555 NORMAL in RO
e Lowers the interrupt priority level to zero

e Returns (with the RET instruction) to the system service
dispatcher

8-17

CHAPTER 9

WRITING THE START I/0O ROUTINE

A driver start I/0 routine activates a device and then waits for a
device interrupt or timeout. This chapter describes the start I/0
routine. Chapter 12 describes the reactivation of the driver routine
that performs device-dependent I/0O postprocessing. With a few
exceptions, the start I/0 routine discussed in the following sections
describes a DMA transfer using a single-unit controller.

9.1 TRANSFERRING CONTROL TO START I/O

The start I/O routine of a device driver gains control from either of
two VAX/VMS routines: EXESQIODRVPKT or IOCSREQCOM.

When FDT processing is complete for an I/O packet, the FDT routine
transfers control to EXES$SQIODRVPKT. If the designated device is idle,
IOCSINITIATE is called to <create a driver fork process. (This
procedure is detailed in Section 8.8.3.) The driver fork process then
gains control in the start I/O routine of the appropriate driver. 1f
the device 1is busy, EXESQIODRVPKT calls EXESINSIOQ, which queues the
packet to the device unit's I/0 request packet wait queue.

After a device completes an I/0 operation, the driver fork process
exits by transferring control to IOCSREQCOM. IOCSREQCOM inserts the
finished I/0 packet in the postprocessing queue. It then dequeues the
next I/0 request packet from the device unit's I/0 request packet wait
queue and calls IOCSINITIATE to create a new driver fork process that
gains control at the entry point of the driver's start 1/0 routine.

9.2 CONTEXT OF A DRIVER FORK PROCESS

A start 1/0 routine does not run in the context of a user process.
Rather, it has the following context:

System mapping Only system page tables are mapped.
Therefore, driver code cannot refer to
virtual addresses in process address space.

Kernel mode Execution occurs in the most privileged
access mode and can, therefore, change IPL.

High IPL The VAX/VMS routine that creates a driver
fork process raises IPL to driver fork level
before activating the driver. The driver can
raise and lower IPL between driver fork level
and IPL$ POWER.

WRITING THE START I/0O ROUTINE

Kernel or Execution occurs on the kernel or interrupt
interrupt stack stack. The driver must not alter the state
of the stack without restoring it to its
previous state before relinquishing control.
The stack used depends upon whether the I/O
startup is the result of a new I/O request or

because a previous I/O request has completed.
The choice of stacks must not affect start
I/0 routine operation.

In addition to the context described, the VAX/VMS packet queuing
routines set up R3 and R5 for a driver start I/O routine, as follows:

e R3 contains the address of the I/0 request packet.

® R5 contains the address of the unit control block for the
device.

All registers must be preserved except for RO, R1l, R2 .and R4.

Before the packet queuing routines call the start I/0 routine, they

copy the following I/0 request packet fields into their corresponding
slots in the device's unit control block:

e IRPSW BCNT —_—> UCBSW_BCNT
e IRPSW BOFF —> UCB$W_BOFF

e IRPSL SVAPTE —> UCBSL SVAPTE

9.3 ACTIVATING THE DEVICE

The processing performed by a start I/0 routine is device-specific. A
start 1I/0 routine normally contains elements to perform the following
functions:

e Analyze the I/0 function

e Transfer the details of a transfer from the I/0 request packet
into the unit control block

e Obtain and initialize the controller and, for DMA transfers,
UNIBUS adapter resources

e Modify device registers to activate the device

The start I/0 routine elements listed above execute a series of steps
to activate the device. The sections that follow describe those steps
as performed for a sample DMA device such as a parallel communications
link; the details of processing, however, are specific to the
particular device. UNIBUS-related details of DMA transfers are
described in Chapter 10.

9.3.1 Obtaining Controller Access

If the device is attached to a multiunit controller, the start 1I/0
routine invokes the VAX/VMS macro REQPCHAN to assign the controller
data channel to the device unit. Single-unit controllers do not
require arbitration for the controller data channel. REQPCHAN calls
the VAX/VMS routine TIOCSREQPCHANL that acquires ownership of the
controller data channel.

WRITING THE START I/0 ROUTINE

The transfer being controlled by the start I/O routine discussed here
requires no seek preceding the transfer. Disk I/0 is an example of a

transfer that requires a seek first. To permit seeks to be overlapped
with transfers, invoke REQPCHAN with the argument PRI=HIGH.
Specifying PRI=HIGH inserts a request for a channel at the head of the
channel wait queue.

If the <channel 1is not available, IOCSREQPCHANL suspends driver
processing by saving the driver's context in the UCB fork block and
inserting the fork block address 1in the channel wait dueue.
IOCSREQPCHANL then returns control to the caller of the driver, that
is, to IOCSINSIOQ, as illustrated in Figure 9-1.

The UCB fork block now represents the entire context of the suspended
driver:

e Saved R3 containing the address of the I/0 request packet
e Implicit saved R5 containing the UCB address
e A return address in the driver

IOCSREQPCHANL does not save R4 since it writes R4 before returning
control to the driver.

CALLS JsB
Qlo FDT
JMP
E IS8 JSB
USER QIODRVPKT | Reg INSIOQ INITIATE
PROGRAM
A
Jmp Jmp
: A CHANNEL
RET WAIT
QIORETURN DRIVER QUEUE
JSB
]
RSB ucB
REQCHAN [~ —— | o2t o

ZK-928-82

Figure 9-1: Driver Insertion into Channel Wait Queue

If the channel 1is available, IOCSREQPCHANL 1locates the interrupt

dispatch block for the channel with a pointer in the unit control
block:

uCB —> CRB —> 1IDB

The interrupt dispatch block contains the address of the
control/status register for the channel (IDBSL CSR). TIOCSREQPCHANL
returns the control/status register address in R4. The driver for a
unit attached to a single-unit controller must contain the code needed
to load the control/status address into R4.

WRITING THE START I/0 ROUTINE

IOCSREQPCHANL also writes the UCB address of the new channel owner in
the owner field of the interrupt dispatch block (IDBSL OWNER). The
driver interrupt service routine later reads this 1IDB field to
determine which device unit owns the controller data channel. A
driver for a single-unit controller must £ill the IDBSL OWNER field in
its controller or unit initialization routine. -

The driver must maintain the stack in a known and consistent state for
the resource wait queue mechanism to work. When IOCSREQPCHANL gains
control, the top two items on the stack must be two return addresses:

e 0(SP) -- Address of the next instruction to be executed in
the driver fork process

® 4(SP) —-- Address of the next instruction to be executed in the
routine that called the driver start I/0 routine

9.3.2 Getting the I/O Function Code and Converting the Code and
Modifiers

The start I/0 routine extracts the 1I/0 function code and function
modifiers from the field 1IRPSW FUNC and translates them into
device-specific function codes to be 1loaded into the device's
control/status register or other control registers. The I/O0 routine
being described in this chapter sets up a bit mask that 1is to be
modified <further in subsequent instructions and 1loaded into the
control/status register when the driver actually starts the device.
That is, the start I/0 routine converts the function modifiers
contained in IRPSW FUNC into device-specific bit settings in the
general register.

At this point, the device driver follows procedures to obtain UNIBUS
resources. These procedures are detailed in Chapter 10.

9.3.3 Computing the Transfer Length

Because the device driven by this particular driver expects the
transfer as a word count, the start I/0 routine computes the length of
the transfer in words by dividing the byte count field of the unit
control block (UCBSW BCNT) by 2. The routine loads the computed value
into the word count device register. One of the FDT routines that
processes the 1I/0 request must ensure that the byte count for the
transfer is even. An odd byte count results in the user's not
receiving the last byte of data.

9.3.4 Computing the Transfer Start Address

The start I/O routine calculates the address of the transfer using the
byte offset field of the unit control block (UCBSW BOFF) and the
number of the starting map register (CRB$L INTD+VEC$W MAPREG) . The
result is an 18-bit value representing an address in UNIBUS address
space. Section 10.4 details the calculation of the starting address
for a UNIBUS transfer.

The start I/0 routine stores the low-order 16 bits of the computed
value in the buffer address device register. It stores the two
high-order bits of the computed value in the memory extension bits of
the bit mask (described in Section 9.3.2) to contain the device
control/status register data.

WRITING THE START I/0 ROUTINE

9.3.5 Preparing the Device Activation Bit Mask

The start I/O0 routine prepares the device activation bit mask by
setting the interrupt enable and go bits in the general register used
previously. The general register contains a complete command to start
the transfer at this point. When the start I/0 routine copies the
contents of the register into the device's control/status register,
the device starts the transfer. However, before activating the
device, the start I/0 routine should perform the steps described in
Sections 9.3.6 and 9.3.7.

9.3.6 Blocking All Interrupts

The start I/0 routine invokes the VAX/VMS macro DSBINT to block all

interrupts. DSBINT raises IPL to IPLS POWER and saves the previous
IPL setting on the top of the stack.

9.3.7 Checking for Power Failure

The start I/0 routine examines the powerfail bits in the UCB status
word (UCBSV POWER in UCBSW STS) to determine whether a power failure
has occurred since the start I/O routine gained control. If the bit
is not set, the transfer can proceed.

If the bit is set, a power failure may have occurred between the time
that the start I/0 routine wrote the first device register and the
time that the start I/0 routine is ready to activate the device. Such
a power failure could modify the already written device registers and
cause unpredictable device behavior if the device were to be started.

If the bit UCBSV_POWER is set, the start I/O routine branches to an
error handler in the driver. The driver is responsible for clearing
UCBSV_POWER before recovery or error procedures can be initiated.
Many drivers clear this field and transfer to the beginning of the
start I/0 routine, which restarts processing of the I/O request.

9.3.8 Activating the Device

If no power failure has occurred, the start I/0 routine copies the
contents of the control mask into the device control/status register.
When the device notices the new contents of the device register, the
actual transfer begins.

9.4 WAITING FOR AN INTERRUPT OR TIMEOUT

Once the start I/O routine activates the device, the driver fork
process cannot proceed until one of two external events occurs:

e The device generates a hardware interrupt.

e The device does not generate a hardware interrupt within an
expected time limit; that is, a device timeout occurs.

Still executing at IPLS POWER, the driver's start I/0 routine asks
VAX/VMS to suspend the driver fork process by invoking one of the
following VAX/VMS macros:

WRITING THE START I/0 ROUTINE

WFIKPCH -- Wait for an interrupt or timeout and keep the
controller data channel

WFIRLCH -- Wait for an interrupt or timeout and release the
controller data channel

Both of these macros invoke routines that return IPL to the previous
level when they exit. These routines expect to find the return IPL on
the stack. This IPL is saved on the stack by the DSBINT macro as
described in Section 9.3.7.

Drivers generally keep the controller data channel while waiting for
the interrupt or timeout. Drivers for single unit controllers always
keep the channel because there are no other wunits present that may
need it. On multiunit controllers, some operations, such as disk
seeks, do not require the controller once the operation has begun. 1In
this case, the driver may want to release the controller data channel
while waiting for interrupt or timeout so that other wunits on the
controller can start their operations.

9.4.1 WFIKPCH and WFIRLCH Macro Formats

A start I/0 routine invokes either the WFIKPCH or WFIRLCH macro to
wailt for device interrupt.

Formats
WFIKPCH excpt,{time]
WFIRLCH excpt,[time]
excpt

The address of the timeout routine for this device.

time
The number of seconds to wait before signaling a device timeout.
The number must be greater than or equal to 2. A minimum value
of 2 is required because the timeout mechanism is accurate only
to within one second. If no number is specified, the macro uses
the value 65536 by default.

9.4.2 Expansion of WFIKPCH Macro

Because the WFIKPCH and WFIRLCH macros are similar, the description
that follows analyzes the expansion of WFIKPCH only.

If the driver specifies the time argument in the macro call, the macro
pushes the value of the argument into the stack. If the time argument
is not specified, the macro pushes the value 65536 onto the stack.

The VAX/VMS timer routine uses the time value to calculate the 1length

of time to wait before transferring control to a device timeout
handler.

WFIKPCH completes its expansion with the following two lines of code:

JSB G"IOCSWFIKPCH
.WORD EXCPT-.

The execution of the JSB instruction pushes the address following the

JSB onto the stack as the address to which the called routine would
normally return with an RSB instruction.

9-6

WRITING THE START I/O ROUTINE

9.4.3 TIOCSWFIKPCH Routine

The VAX/VMS routine IOCSWFIKPCH invoked by the macro WFIKPCH performs
the functions necessary for the driver fork process to wait for a
device interrupt or timeout. TIOCSWFIKPCH first adds 2 to the address
on the top of the stack so that the top of the stack contains the
address of the next instruction in the driver after the macro
invocation. This address 1is where the driver processing actually
resumes as a result of an interrupt service routine JSB instruction.

IOCSWFIKPCH then saves the contents of R3, R4, and the driver return
address from the top of the stack 1in the first part of the unit
control block; that is, in the UCB fork block. The interrupt service
routine must restore R5 to contain the address of the unit control
block after an interrupt. The interrupt service routine normally
obtains the address of the unit control block from the field
IDBSL OWNER of the interrupt dispatch block.

The VAX/VMS routine that detects a device timeout calculates the
address of the driver timeout routine by subtracting 2 from the saved
PC in the UCB fork block and calling indirectly through the result,
for example:

MOVL UCBSL FPC(R5),R2 ; Get saved PC
CVTWL -(R2),-(SP) ; Get offset to timeout
; handler
ADDL (SP)+,R2 ; Add to relative driver
' ; address to obtain relative
; handler address
JSB (R2) ; Call timeout handler

IOCSWFIKPCH sets bits in the wunit control block (UCBSV_INT and
UCB$V TIM in UCBSW STS) to indicate that interrupts and timeouts are
expected from the device. IOCSWFIKPCH also writes the device timeout
absolute time 1in the £field UCBSL DUETIM. The absolute time is the
number of seconds since the operating system was bootstrapped plus the
number of seconds specified in the time argument to the macro.

Finally, IOCSWFIKPCH reenables interrupts by 1lowering IPL to its
previous 1level in the driver, that 1is, to driver fork level, and
returns control to the caller of the driver.

9.5 RESPONDING TO AN EXPECTED DEVICE INTERRUPT

The only context saved for the driver is now 1in the wunit control
block. It contains the following information:

® A description of the I/O request and the state of the device
e The contents of R3 and R4

e¢ The implicit contents of R5, that is, the address of the UCB
fork block

e A driver return address
e The implicit address of a device timeout routine

By convention, R4 often contains the address of the control/status
register; it permits the driver to examine device registers. When
the driver fork process regains control after an interrupt processing,
R5 contains the UCB address. It is the key to the I/0 data base that
is relevant to the current I/O operation.

WRITING THE START I/O ROUTINE

When a device interrupts, the driver interrupt service routine
analyzes the interrupt, as detailed in Chapter 11 and summarized
below:

e Identifies the UCB address of the device that generated the
interrupt

e Obtains device or controller status from the device registers,
if necessary, and stores the status in the unit control block

® Restores the driver fork process registers from the UCB fork
block, restores R5 with the UCB address, and reactivates the
suspended driver at the PC stored in the UCB fork block

If, instead of requesting an interrupt, the device times out, a
VAX/VMS timer routine reactivates the suspended driver fork process at
the address of the timeout routine. Section 12.2 discusses device
timeout handling in detail.

CHAPTER 10

WRITING UNIBUS DMA TRANSFERS

A driver performing DMA transfers over the UNIBUS must take UNIBUS
operation into consideration. The VAX/VMS operating system and the
I/0 data base handle most UNIBUS map register and data path resource
management for the device drivers. You must choose the type of data
path (either direct or buffered) appropriate to the device and ensure
that UCB fields are written to describe the virtual memory locations
to be read or written. Once these actions have been taken, the driver
fork process calls VAX/VMS routines to take care of the detailed
operation of the UNIBUS adapter.

The I/0 data base contains an adapter control block (ADP) that
describes the UNIBUS adapter. This block contains allocation
information for the UNIBUS adapter data paths and map registers.
The adapter control block also contains the wvirtual address of the
UNIBUS adapter configuration register. All other adapter registers
are located at fixed offsets from the configuration register. The
VAX/VMS UNIBUS adapter-handling routines modify the UNIBUS adapter
data path and map registers according to requests from driver fork
processes.
In general, driver fork processes do not access the UNIBUS adapter
control blocks. Instead, drivers call VAX/VMS routines that perform
adapter-related services, such as the following:

e Allocate a buffered data path

e Allocate map registers

e Load map registers

e Deallocate map registers

e Purge a buffered data path

e Deallocate a buffered data path
The system creates a driver fork process by calling the start 1I/0
routine in a device driver. The fork process takes some or all the

following steps to initiate an I/O transfer on a UNIBUS device:

e Requests buffered data path
e Requests map registers
e Loads map registers

e Calculates starting UNIBUS address

10-1

WRITING UNIBUS DMA TRANSFERS

® Activates device
e Waits for interrupt

When a hardware interrupt indicates that the I/0 transfer is complete,
the driver fork process checks the success or failure of the transfer.
The driver then concludes with the following steps:

e DPurges the buffered data path
o Releases the data path
e Releases the map registers

All of the steps above involve the UNIBUS adapter. VAX/VMS, however,
hides most of the UNIBUS interfacing from the driver.

10.1 REQUESTING A BUFFERED DATA PATH

The system allows a driver to request temporary or permanent
allocation of a buffered data path. After the driver fork process
gains access to the controller (see Section 9.3.1), it requests a
buffered data path by invoking the VAX/VMS macro REQDPR. REQDPR calls
a VAX/VMS routine named IOCSREQDATAP that locates the UNIBUS adapter
control block. To do this, IOCSREQDATAP uses a series of pointers
that begin in the current unit control block, as follows:

uCB —>» CRB —> ADP

The ADP data path allocation information indicates the buffered data
paths that are available. IOCSREQDATAP allocates a data path to the
driver by storing the data path number in the channel request block
and indicating in the adapter control block (ADP) that the data path
is in use. Then, control returns to the driver fork process.

Appendix A describes the adapter control block.

If no data path is available, IOC$SREQDATAP saves driver context (R3,
R4, and PC) in the UCB fork block and inserts the address of the fork
block, which is also the address of the unit control block and the
content of R5, in the ADP data path wait queue. The driver fork block
remains in the queue until both of the following conditions are met:

e A data path is available

e The driver fork block is the next entry in the data path wait
queue

Then, the VAX/VMS routine IOCSRELDATAP allocates the data path to the
suspended driver and reactivates the driver fork process.

10.1.1 Requesting a Permanent Buffered Data Path

A device driver can permanently allocate a buffered data path with

code in a unit initialization routine. The following steps
permanently allocate a buffered data path:

e Test the path lock bit (VEC$V_PATHLOCK) in the data path

number field of the channel request block
(CRBSL INTD+VECSB DATAPATH) to ensure that a data path is not

already allocated for this device.

10-~-2

WRITING UNIBUS DMA TRANSFERS

e Call the subroutine IOCSREQDATAPNW to allocate the data path
as shown below:

JSB G"IOCSREQDATAPNW

If IOCSREQDATAPNW successfully allocates the data path, it
stores the number of the data path it obtained in the channel
request block at VECSB DATAPATH and returns with the low-order
bit set in RO. If IOCSREQDATAPNW cannot allocate a data path,
it returns with the low-order bit clear in RO.

e Set the path lock bit (VEC$V_PATHLOCK) in the channel request
block at VEC$B_DATAPATH

The driver loading procedure calls the unit initialization routine for
each unit that the driver serves. A unit initialization routine that
contains the code described above will permanently allocate one
buffered data path for each CRB associated with the driver; that is,
one path for each device controller that the driver serves.

Some VAX-11 processors have a small number of buffered data paths. If
device drivers running on these processors do not limit permanent
allocation of buffered data paths, the system may not have any paths
left for its own use. For example, the VAX-11/750 has three buffered
data paths. 1If device drivers 1loaded on this machine permanently
allocate all three data paths, the operating system will have no
buffered data paths left for normal operations. In this case, 1/0
transfers that require a buffered data path will wait forever.

10.1.2 Requesting the Direct Data Path

Because the UNIBUS adapter arbitrates among devices that wish to use
the direct data path and because the CRB is initialized to 0
(0 = direct data path), drivers are not required to invoke the REQDPR
macro to request the direct data path.

Some VAX-11 processors, such as the VAX-11/780, do not permit
byte-offset transfers on the direct data path. On these processors,
drivers for word-aligned devices must ensure that the data buffer Iis
word-aligned.

10.1.3 Mixed Direct and Buffered Data Path Transfers

A device driver can use the buffered data path for certain operations,
then use the direct data path for other operations. To accomplish
this task, the driver should allocate a buffered data path for
buffered 1I/0. When the operation completes, the driver should then
purge and release the data path. The release automatically resets the
data path number to zero, which signifies a direct data path.
However, the driver should not release the direct data path, although
it should purge the path. (A purge of the direct data path is a NOP
and always vields success.)

10.2 REQUESTING UNIBUS ADAPTER MAP REGISTERS

The operating system allows a driver to allocate map registers as
needed or to allocate them permanently.

10-3

WRITING UNIBUS DMA TRANSFERS

10.2.1 Allocation of Map Registers

After the driver fork process gains access to the controller (see
Section 9.3.1), it requests a set of UNIBUS adapter map registers by
invoking the VAX/VMS macro REQMPR. This macro <calls the routine
IOCSREQMAPREG. IOCSREQMAPREG calculates the number of map registers
needed for a transfer. The calculation is based on the transfer byte
count field and the byte offset fields of the device's unit control
block (UCB$W BCNT and UCBSW BOFF).

The procedure for allocating map registers is similar to that used to
allocate a buffered data path. First, TIOCSREQMAPREG locates the
adapter control block from a series of pointers that begin with the
current unit control block, as follows:

uCB —> CRB —> ADP

Then, the routine examines the map register allocation information to
locate the required number of contiguous map registers. If the
registers are not currently available, IOCSREQMAPREG saves the driver
-context (R3, R4, and PC) in the UCB fork block and inserts the fork
block address (same as UCB address and the contents of R5) in the map
register wait queue.

When the map registers are available, IOCSREQMAPREG allocates them and
adjusts the appropriate map register allocation information in the
adapter control block. IOCSREQMAPREG then writes the number of the
starting map register and the number of map registers allocated into
the channel request block and returns control to the driver fork
process.

10.2.2 Permanent Allocation of Map Registers

A device driver can permanently allocate a set of map registers with
code in the unit initialization routine. The number of map registers
permanently allocated must be sufficient for the longest possible
transfer. The following steps permanently allocate a set of map
registers:

e Test the map lock bit (VEC$V_MAPLOCK) in the channel request
block (CRBSL_ INTD+VECSW MAPREG) .

e Load the number of map registers required into R3.

e Call the VAX/VMS routine IOCSALOUBAMAPN with a JSB
instruction:

JSB G"IOCSALOUBAMAPN

If IOCSALOUBAMAPN successfully allocates the map registers, it
stores the number of map registers allocated and the starting
map register's number in the channel request block at
CRBSL INTD+VECSB NUMREG and CRBSL INTD+VECSW MAPREG,
respectively, and returns with the low-order bit set in RO.

Otherwise, it returns with the low-order bit of RO clear.

e Set the map lock bit in the channel request block
(VEC$V_MAPLOCK in CRB$L_INTD+VEC$W_MAPREG).

The driver loading procedure calls the unit initialization routine

once for each wunit associated with the driver. If the unit
initialization routines contains the <code described above, it

10-4

WRITING UNIBUS DMA TRANSFERS

permanently allocates one set of map registers for each CRB associated
with the driver; that 1is, one set of registers for each device
controller that the driver serves.

10.3 LOADING THE UNIBUS ADAPTER MAP REGISTERS

Once a driver fork process has assigned a data path and allocated a
set of map registers, it can request VAX/VMS to load the map registers
with physical page frame numbers by 1invoking the VAX/VMS macro
LOADUBA. LOADUBA calls a VAX/VMS routine IOCSLOADUBAMAP that loads

each allocated map register with five data items:
e A bit setting to indicate whether the map register is valid.

e A bit setting to indicate whether the transfer is to start on
the odd or even byte within a word; this bit is set if the
low-order bit of UCBSW BOFF is a 1.

e The number of the data path to use for the transfer.

e The page frame number of a page in memory.

e A bit setting to indicate that the transfer operates in
longword-aligned random access mode; This bit is set when
VECSV_LWAE is set in VEC$B_DATAPATH.

IOCSLOADUBAMAP loads the page frame number of the first page of the
transfer into the first allocated map register, the page frame number
of the second page of the transfer into the second map register, and
so forth.

IOCSLOADUBAMAP sets the valid bit in every allocated map register
except the last. It clears the valid bit in the final map register to
stop a prefetch from an invalid page frame number.

To calculate the page frame number wused in the 1I/0 transfer,
IOCSLOADUBAMAP uses three fields that VAX/VMS has written into the
unit control block:

e UCBSW BOFF -- byte offset in the first page of the transfer

e UCBS$W BCNT -- number of bytes to transfer

e UCBSL SVAPTE -- virtual address of the page table entry that
contains the page frame number of the first page of the
transfer

IOCSLOADUBAMAP determines the data path number, the number of the
first map register, the address of the first map register, and the
number of map registers from the channel request block and the UNIBUS
adapter control block, as follows:

UCB —> CRB —> data path number

UCB —> CRB —> number of first map register

UCB —> CRB —> ADP —> virtual address of first map register

UCB —> CRB —> number of map registers

Drivers that handle byte-addressable UNIBUS devices call the routine
IOCSLOADUBAMAPA. This routine performs the same function as

10-5

WRITING UNIBUS DMA TRANSFERS

IOCSLOADUBAMAP, with one exception. When IOCSLOADUBAMAPA 1loads map
registers, it clears the byte offset bit even if the transfer begins
on an odd-byte address.

When IOCSLOADUBAMAP has loaded all the map registers and marked the
last map register invalid, it returns control to the driver fork
process.

10.4 COMPUTING THE STARTING ADDRESS OF A TRANSFER

The driver fork process must calculate the starting address of a
UNIBUS transfer and 1load this address into the appropriate device
register. The driver takes the following steps to make the
calculation:

e Writes the byte-offset-in-page field of the UCB (UCBSW BOFF)
into bits 0 through 8 of a register

e Gets the number of the starting map register for the transfer
from the channel request block; the number is a 9-bit value

e Writes bits 0 through 6 of the map register number into bits 9
through 15 of the register containing the byte offset field

e Writes bits 0 through 15 of the register 1into the buffer
address register for the device

e Writes bits 7 and 8 of the map register number into the
extended memory bits of the appropriate device register
(usually the control/status register)

10.5 ACTIVATING THE DEVICE

Because a driver fork process can address device registers as though
they were any other virtual address, the loading of the UNIBUS buffer
address register and control/status register both are simple
procedures. The driver locates the CSR address of the device in the
interrupt data block, as follows:

UuCB —> CRB —> IDB —> CSR address

The CSR address is the virtual address of a device register. All
other device registers are located at constant offsets from the CSR
address. If, for example, the control/status register 1is the first
device register and the device word count 1is the third device
register, the device driver can load the word count register with the
following sequence of instructions:

e Move the CSR address into R4,

e Move the number of words to transfer with a MOVW instruction
that addresses 4(R4).

10.6 COMPLETION OF A DMA TRANSFER

After a driver fork process activates a DMA UNIBUS device, the driver
waits for a device interrupt by invoking a VAX/VMS macro that suspends
the driver. When the UNIBUS device requests a hardware interrupt, the
interrupt dispatcher gains control. The dispatcher saves R0 through

10-6

WRITING UNIBUS DMA TRANSFERS

R5 and transfers control to the driver interrupt service routine. If
the service routine can match the interrupt with a suspended driver
fork process, the interrupt service routine reactivates the driver
fork ©process at the point that execution was suspended. The driver
almost immediately invokes the VAX/VMS macro IOFORK.

IOFORK calls the VAX/VMS routine EXES$IOFORK. EXESIOFORK saves the
driver context (R3, R4, and PC) in the UCB fork block and inserts the
address of the fork block (R5) in the device's fork queue. EXESIOFORK
then returns control to the driver's interrupt service routine, which
dismisses the interrupt.

When the fork dispatcher reactivates the driver fork process, the
driver performs any necessary UNIBUS adapter clean-up operations, such
as data path purging and deallocation of UNIBUS adapter resources used

in the DMA transfer.

10.6.1 Purging the Data Path
Driver fork processes that use buffered data paths must purge the data
path after the DMA transfer is complete. The driver invokes the macro
PURDPR, which in turn calls the VAX/VMS routine IOC$SPURGEDATAP. This
routine takes the following steps to purge the data path:

e Saves the contents of R4 on the stack.

@ Locates the channel request block as follows:

R5 —> UCB —> CRB

e Obtains the starting address of UNIBUS adapter register space
and stores it in R2.

e Extracts the number of the data path to be purged from the
channel request block and loads it into Rl.

e Stores the address of the data path in RA4.

e Instructs the UNIBUS adapter to purge the data path. The
routine then modifies RO through R2 to contain the following
information:

RO Success/failure status. If the- purge completes

without error, the routine sets SS$S NORMAL in this
register. If a data path error does occur, RO 1is
clear and the hardware is reset.

R1 Contents of the data path register.

R2 Address of the first UNIBUS adapter map register.

The address of the channel request block remains in R3. This
address, along with the information in R1 and R2, is used as
input to the error-logging routine in the event of a data

path error.

e Restores the information stored on the stack to R4 and
returns to PURDPR.

If a data path error occurs during a data path purge, the driver
should retry the entire DMA transfer.

10-7

WRITING UNIBUS DMA TRANSFERS

10.6.2 Releasing a Buffered Data Path

A driver fork process releases a buffered data path by invoking the
VAX/VMS macro RELDPR. RELDPR calls a VAX/VMS routine IOCSRELDATAP
that determines which data path was assigned to the driver fork
process and releases the data path to a waiting driver. The driver
must be executing at fork IPL.

The data path number 1is stored in the channel request block.
IOCSRELDATAP locates it as follows:

UCB ~—> CRB —> data path number

If the data path is permanently assigned to a device, IOCSRELDATAP
does not release the data path. Otherwise, the data path number in
the channel request block (CRBSL INTD + VECS$B DATAP) is zeroed. The
IOC$RELDATAP routine attempts to dequeue a walting driver fork process
from the data path wait queue stored in the adapter control block as

follows:
UCB —> CRB —> ADP —> data path wait queue

If another driver is waiting for a buffered data path, TIOCSRELDATAP
grants that driver fork process the data path, restores its driver
context from its UCB fork block, and transfers control to the saved
driver PC. When IOCSRELDATAP can allocate no more data paths, the
routine returns to the driver that released the data path. This
diversion of driver processing 1is transparent to the driver fork
process.

If the data path wait queue is empty, IOCSRELDATAP marks the data path
as available 1in the adapter control block and returns control to the
driver.

10.7 RELEASING UNIBUS ADAPTER MAP REGISTERS

A driver fork process releases a set of UNIBUS adapter map registers
by invoking the VAX/VMS macro RELMPR. RELMPR calls the VAX/VMS
routine IOCSRELMAPREG that releases map registers in a manner similar
to that 1in which data paths are released. The channel request block
records the map register numbers assigned to the device. The number
of the first map register and the number of map registers are located
as follows. The driver must be executing at fork IPL.

UCB —> CRB —> number of the first map register
UCB —> CRB —> number of map registers allocated

IOCSRELMAPREG releases the map registers by adjusting the map register
allocation information in the adapter control block.

Then, IOCSRELMAPREG attempts to dequeue a driver fork process from the
map register wait queue. If a suspended driver 1is found,
IOCSRELMAPREG takes the following steps:

e Dequeues the fork block and restores driver context

e Fills the map register request, if possible

e Reactivates the driver fork ©process at the instruction
following the driver's request for map registers

e Returns to the driver fork process

10-8

WRITING UNIBUS DMA TRANSFERS

If the map register wait queue is empty or if IOCSRELMAPREG still does
not have enough contiguous map registers for any of the waiting fork
processes, it returns control to the driver fork process that released

the map registers.

10-9

CHAPTER 11

WRITING INTERRUPT SERVICE ROUTINES

The driver prologue table of most device drivers contains, 1in the
reinitialization section established wusing the DPT STORE macro, the
address of one or more interrupt service routines. =~ Each interrupt
service routine corresponds to an interrupt vector on the UNIBUS. You
specify the UNIBUS vector address using the SYSGEN command CONNECT, as
described in Chapter 14.

Most interrupt service routines in device drivers perform the
following functions:

e Locate the device's unit control block

e Determine whether the interrupt was solicited

e Reject or process unsolicited interrupts

e Activate the suspended driver to process solicited interrupts

Figure 11-1 illustrates the general flow of interrupt handling. The
remaining sections of this chapter describe the handling of solicited
and unsolicited interrupts in further detail.

11.1 DELIVERING A DEVICE INTERRUPT TO A DRIVER

When a UNIBUS device generates a hardware interrupt, the device
requests the interrupt at its device IPL. The UNIBUS adapter then
requests a processor interrupt at that device IPL. When the processor
executes at an interrupt priority 1level below the device 1IPL,
interrupt dispatching begins.

On a configuration that uses nondirect vector interrupts, the
following sequence occurs:

e The processor saves the PC and PSL of the currently executing
code on the interrupt stack and transfers control to the
VAX/VMS UNIBUS adapter interrupt service routine.

e The UNIBUS adapter interrupt service routine reads the vector
register within the UNIBUS adapter that corresponds to the
interrupt 1level of the device. The UNIBUS adapter
acknowledges the interrupt and the interrupting device
supplies its vector address to the UNIBUS adapter interrupt
service routine.

e The UNIBUS adapter service routine then saves RO through R5 on
the stack and, using a JMP instruction, transfers control to
an interrupt dispatching field within the channel request
block.

11-1

WRITING INTERRUPT SERVICE ROUTINES

INTERRUPT

|

INTERRUPT
DISPATCHER
ACTIVATES THE
DEVICE UNIT'S
INTERRUPT
SERVICE ROUTINE

INTERRUPT SERVICE
ROUTINE LOCATES
DEVICE'S UCB
USING IDB POINTER
ON INTERRUPT
STACK

IS
INTERRUPT
SOLICITED

REACTIVATE
SUSPENDED
DRIVER
SERI\?I)IER;‘(;JJ;INE INTERRUPT DRIVER
ETERMINES SERVICE ROUTINE INVOKES
CAUSE OF REJECTS INTERRUPT : IOFORK
INTERRUPT AS SPURIOUS MACRO
TAKES IOFORK
APPROPRIATE OALLS
ACTION EXE$IOFORK
EXESIOFORK
QUEUES DRIVER
FORK BLOCK
AND RETURNS
TO INTERRUPT
SERVICE ROUTINE

INTERRUPT
SERVICE ROUTINE
REMOVES IDB
POINTER FROM
STACK AND RESTORES
RO THROUGH R5

1

INTERRUPT
SERVICE ROUTINE
DISMISSES
INTERRUPT
WITH REI

ZK-929-82

Figure 11-1: Interrupt Handling Flow

11-2

WRITING INTERRUPT SERVICE ROUTINES

e The CRB interrupt dispatching field (CRBSL INTD+2) contains
executable code that the driver 1loading procedure has
associated with the interrupting vector. Interrupt
dispatching fields for nondirect vectors contain the following
executable instruction:

JSB @#address-of-driver-isr

On a configuration that uses direct vector interrupts, the following
sequence occurs:

e The processor saves the PC and PSL of the currently executing
code on the interrupt stack and acknowledges the device
interrupt.

e The UNIBUS device supplies 1its vector address, which the
processor uses as an index into a table of addresses in the
second (or third) page of the system control block (see
Section 3.1.6).

e When the processor locates the address 1in the SCB that
corresponds to the vector address, it transfers control to an
interrupt dispatching field in the channel request block.

e The CRB interrupt dispatching field (CRBSL INTD) contains
executable code that the driver 1loading procedure has
associated with the interrupting vector. Interrupt
dispatching fields of direct vectors contain the following
executable instructions:

PUSHR <R0O,R1,R2,R3,R4,R5>
JSB @#address-of-driver-isr

The driver loading procedure determines how many interrupt dispatching
fields to build within the CRB from the number of vectors specified in
the /NUMVEC qualifier to the SYSGEN command CONNECT (see Section
14.2.2). The driver loading procedure obtains the interrupt service
routine address for each interrupt dispatching field from the
reinitialization portion of the driver prologue table. This section
of the DPT contains one or more DPT STORE macros that identify the
interrupt service routine addresses. The number of DPT STORE macros
that identify interrupt service routines must equal the number of
vectors given in the /NUMVEC qualifier to avoid errors in device
initialization or interrupt handling.

Immediately following the JSB instruction in the channel request block
is the address of the interrupt dispatch block associated with the
CRB. When the JSB instruction executes, a pointer to the address of
the 1interrupt dispatch block is pushed onto the top of the stack as
though it were a return address. The driver interrupt service routine
can use this IDB address as a pointer into the I/O data base. Figure
11-2 illustrates the portion of a channel request block that contains
the interrupt service routine address.

11.2 INTERRUPT CONTEXT

When the interrupt dispatcher <calls a driver interrupt service
routine, execution context is as follows:

e RO through R5 are saved on the stack.

e System address space is mapped. The service routine can gain
access to appropriate control blocks in the I/0 data base.

11-3

WRITING INTERRUPT SERVICE ROUTINES

e IPL is at hardware device interrupt level.
e The processor is running in kernel mode.
e The processor is running on the interrupt stack.

The stack contains the following information:

Stack Location Content
0 (SP) Pointer to the address of the
interrupt dispatch block
4 (SP) through 24(SP) Saved RO through R5
28 (SP) PC at the time of the interrupt
32(SP) PSL at the time of the interrupt
CHANNEL REQUEST BLOCK: .
[]
JSB @# |

INTERRUPT SERVICE ROUTINE ADDRESS
INTERRUPT DISPATCH BLOCK ADDRESS

ZK-930-82

Figure 11-2: Channel Request Block
Containing an Interrupt Service Routine Address

11.3 SERVICING A SOLICITED INTERRUPT

When a driver fork process activates a device and expects to service a
device interrupt as a result, the driver suspends fork processing and
waits for an interrupt to occur. The suspended driver is represented
only by the contents of the device's unit control block, which
contains a description of the 1/0 request and the driver fork process.
When the driver regains control from the interrupt service routine,
only R3, R4, R5, and the PC address are restored to their previous
state by the interrupt service routine.

In the sequence below, a driver interrupt service routine returns
control to the waiting driver:

e First, the interrupt service routine obtains the address of
the device's unit control block from the interrupt data block,
as follows:

0(sP) —> CRB —> IDB —> IDBSL OWNER —> UCB for the device

o The service routine then tests the software interrupt expected
bit in the UCB status word (UCBSV. INT in UCBSW STS). If the
bit is set, the driver is waiting for an interrupt from this
device. The interrupt service routine then clears UCBSV_INT
in UCBSW STS to indicate that it has received the expected
interrupt.

11-4

WRITING INTERRUPT SERVICE ROUTINES

e The interrupt service routine restores R5 of the driver fork
process with the address of the UCB fork block. It restores
R3 and R4 of the driver process using two fields from the UCB
fork block, UCBSL FR3 and UCBSL FR4, respectively.

e Finally, the interrupt service routine transfers control to
the driver PC address saved in the UCB fork block at UCBSL FPC
by issuing a JSB instruction. -

The restored driver can execute a few instructions in the context of
the interrupt, such as copying device status information from the
device registers into the device's UCB. Before completing the 1I/0
operation, however, the driver routine creates a fork process to lower
its execution IPL to driver fork level instead of continuing execution
at hardware device interrupt IPL. The driver routine creates a fork
process by invoking the VAX/VMS macro IOFORK, as described in Section
12.1.1.

IOFORK calls the VAX/VMS routine EXESIOFORK. EXESIOFORK inserts the
UCB fork block describing the driver process in the appropriate fork
queue and returns control to the driver interrupt service routine.
The interrupt service routine then performs the following steps:

® Removes the IDB pointer from the stack
® Restores RO through R5

o Dismisses the interrupt with an REI instruction

11.4 SERVICING AN UNSOLICITED INTERRUPT

Devices request interrupts to indicate to a driver interrupt service
routine that the device has changed status. If a driver fork process
starts an I/0 operation on a device, the driver expects to receive an
interrupt from the device when the I/O operation completes or an error
occurs.

Other changes of device status occur when the device has not been
activated by a device driver. The device reports these changes by
requesting unsolicited interrupts. For example, when a user types on
a terminal that is not attached to a process, the terminal requests an
interrupt that is fielded by the terminal driver. As a result of the
interrupt, the terminal driver causes the 1login procedure to be
invoked for the user at the terminal.

Another example of an unsolicited interrupt 1is one that the unit
requests when an operator changes the volume on a disk drive. The
disk driver services the interrupt by altering volume and unit status
bits in the disk device's unit control block.

Devices request unsolicited interrupts because some external event has
changed the status of the device. A device driver can handle these
interrupts in two ways:

e Ignore the interrupt as spurious

e Examine the device registers and take action according to
their indications of changed status, and then poll for any
other changes in device status

The driver interrupt service routine decides whether an interrupt is
solicited or not by examining the software interrupt expected bit in
the UCB status word (UCBSV_INT in UCB$W_STS). All UNIBUS device

11-5

WRITING INTERRUPT SERVICE ROUTINES

drivers must use this method to determine whether or not an interrupt
is solicited; the unsolicited interrupt routine address specified in
the driver dispatch table is used only by MASSBUS drivers.

If the interrupt is unsolicited, the driver can reject the interrupt
with the following code sequence:

e Remove the IDB pointer from the stack
e Restore RO through R5
e Dismiss the interrupt with an REI instruction

Rather than rejecting the interrupt, the driver may wish to handle it.

For example, the driver can send a message to the operator or the job
controller mailbox when an unsolicited interrupt occurs.

Drivers should use extreme caution when creating a fork process to
handle unsolicited interrupts from busy devices. The unit control
block of a busy device may contain the active fork block of a
previously created driver fork process. If an unsolicited interrupt
service routine should create a fork process to handle its request, it
may destroy the driver fork context currently stored there. Drivers
should always handle this type of unsolicited interrupt at hardware
device IPL.

11.4.1 Examples of Unsolicited Input Handling

A card reader device requests an unsolicited interrupt if any user
turns the reader online. Once the card reader driver interrupt
service routine determines that the interrupt 1is wunsolicited, the

routine analyzes the interrupt, as in the following example:

e It obtains the address of the control/status register using
the interrupt dispatch block pointed to by the address on the
top of the interrupt stack, as follows:

0(SP) —> CRB —> IDB ——> IDBSL CSR —> CSR for the device

Since the card reader controller is a single-unit controller,

the IDBSL OWNER field always points to the single UCB for the
card reader:

0(SP) —> CRB —> IDB —> IDBSL OWNER —> UCB for the device

e It confirms that the interrupt is unsolicited by testing the

interrupt enable bit in the UCB status word (UCBS$V INT in
UCB$W_STS). -

e Since the interrupt is unsolicited, the routine clears all

control/ status register bits except for the interrupt enable
bit.

e It confirms that the reader was Jjust placed online by
examining a saved copy of the control/status register.

e It examines the reference count field of the device's unit
control block (UCBSW REFC) to determine whether a process has
allocated the device or assigned a channel to it.

o If the reference count is zero, the interrupt service routine

tests the Jjob-attached bit 1in the device-dependent status
field (UCBSV_JOB in UCBSW DEVSTS) to make sure it -has not

11-6

WRITING INTERRUPT SERVICE ROUTINES

already sent the job controller a message about the card
reader being placed online. By using the job-attached bit to
synchronize message sending, the interrupt service routine
protects the send-message-to-job-controller function from the
adverse effects of frequent online interrupts.

e If the job-attached bit is not set, the routine sets the bit
and creates a fork process to send the message to the job
controller saying the reader has come online. Only one
sequence of instructions can wuse the UCB as a fork block.
Therefore, the interrupt service must perform the following
steps before it can create the fork process:

-- Ensure that no one is using the card reader and that no
one desires to use it by determining that the reference count
(UCBSW REFCNT) is zero.

-— Ensure that it is not already using the UCB to fork to a

lower IPL and send a message to the job controller by testing
the job-attached bit (UCB$V_JOB in UCBSW_DEVSTS).

The VAX/VMS routine that creates the fork process (once the
above conditions are satisfied) returns control to the
interrupt service routine.

e When the interrupt service routine regains control, it
restores RO through R5 and dismisses the interrupt with an REI
instruction. (The interrupt service routine removed the 1IDB

pointer from the stack earlier in its execution in order to
obtain CSR and UCB addresses.) If a fork process was created,
it executes after 1IPL drops below UCBSB FIPL. The fork
process writes the message about the card reader's coming
online to the job controller's mailbox. The fork process
cannot send the message at device IPL or any IPL greater than
IPL$ MAILBOX.

If the send message request fails, the fork process clears the
job-attached bit so that the job controller will receive a
message if any change in the card reader's state occurs. If
the fork process successfully sends the message, it leaves the
job-attached bit set to prevent the job controller from
receiving any further messages about the card reader's state.
(The driver cancel I/0 routine later clears the bit.)

Another example of unsolicited interrupt processing occurs in a device
driver for a multiunit controller. When the operator removes a disk
volume, the disk drive requests an interrupt. The driver interrupt
service routine must determine what drive unit requested the
interrupt, obtain drive status from. the drive's control/status
register, and then decide whether the interrupt was solicited. If the
interrupt 1is unsolicited, the driver service routine calls its
unsolicited interrupt routine. The routine checks the status of the
volume, as described in the following steps:

e It sets a bit in the unit control block to indicate that the
unit is online (UCB$V_ONLINE in UCBSW_STS).

e If the UCB volume valid bit is set (UCBSV VALID in UCBS$W STS),
the routine tests the volume .valid status bit in a device
register to determine whether the volume status has changed.
If the volume is no longer valid, the routine clears the UCB
volume valid bit.

e Finally, the routine returns to the normal driver interrupt
service routine.

11-7

WRITING INTERRUPT SERVICE ROUTINES

The driver interrupt service routine then polls the other device units
on the controller to determine whether any other units requested
interrupts while the first interrupt was being processed. When no
unit requires interrupt servicing, the routine removes the IDB pointer
from the stack, restores registers RO through R5, and dismisses the
interrupt with an REI instruction.

11-8

CHAPTER 12

COMPLETING THE I/0 REQUEST

Once a driver has activated the device and invoked the wait for
interrupt macro, the driver remains suspended until one of the
following events occurs:

e The device requests an interrupt.
e The device times out.

If the device requests an interrupt, the driver interrupt service
routine handles the interrupt and then reactivates the driver at the
instruction following the wait for interrupt macro. The reactivated
driver performs device-dependent I/0 postprocessing.

If the device does not request an interrupt within the designated time
interval, the system transfers control to the driver's timeout
handler. The address of the timeout handler 1is specified as an
argument to the wait for interrupt macro invocation.

12.1 1I/0 POSTPROCESSING

Once the driver interrupt service routine has handled an interrupt, it
transfers control to the driver by issuing a JSB instruction. At this
point, the driver is executing in interrupt context. If the driver
were to continue executing 1in interrupt context, it would lock out
most other processing on the processor 1including the handling of
hardware interrupts. To restore the driver to the context of a driver
fork process, the driver invokes the VAX/VMS macro IOFORK. Once the
fork process has been created and dispatched for execution, it
executes the driver code that completes the processing of the 1I/0O
request.

12.1.1 EXES$SIOFORK

IOFORK is a macro that generates a call to the VAX/VMS routine
EXESIOFORK. EXESIOFORK converts the driver context from that of an

interrupt service routine to the context of a driver fork ©process 1in
the following steps:

e It disables software timeouts by clearing the timeout enable
bit in the UCB status word (UCBSV_TIM in UCBSW_STS).

e It saves R3 and R4 of the current driver context in the UCB
fork block (UCBSL FR3 and UCBSL FR4).

12-1

COMPLETING THE I/0 REQUEST

e EXESIOFORK then saves the current driver PC in the UCB fork
block (UCBSL FPC). The driver PC is the first longword on the
stack upon entry to EXE$IOFORK as a result of the JSB
instruction.

e It obtains the fork IPL of the device from the ucB
(UCB$B_FIPL).

e It inserts the address of the UCB fork block (R5) into the
fork queue corresponding to the driver fork IPL.

e Finally, if the fork block is the first entry 1in the fork
queue, EXESIOFORK requests a software interrupt at driver fork
IPL.

The steps listed above move the critical driver fork process context
into the UCB fork block; that is, they save R3 through R5 and the
driver PC address. The driver fork process resumes processing when
the VAX/VMS fork dispatcher dequeues the UCB fork block from the fork
queue and reactivates the driver at driver fork IPL.

12.1.2 Completing an I/O Request

When VAX/VMS reactivates a driver fork process by dequeuing the fork
block, the driver resumes processing of the I/O operation. If the
device has completed the I/0 operation without errors, the driver fork
process for a DMA device proceeds as follows:

e Purges the buffered data path

® Releases the buffered data path
e Releases map registers

® Releases the controller

e Saves the status code, transfer count, and device-dependent
status that 1is to be returned to the user process in an I/O
status block

e Returns control to the operating system

Chapter 10 discusses the first three steps listed above because they

relate to UNIBUS DMA transfers. The sections that follow describe the
remaining three steps.

12.1.2.1 Releasing the Controller - To release the controller
channel, the driver code invokes the VAX/VMS macro RELCHAN. RELCHAN
calls the VAX/VMS routine IOCSRELCHAN. If another driver 1is waiting
for the controller channel, TIOCSRELCHAN grants that driver fork
process the channel, restores its driver fork context from its UCB
fork block, and transfers control to the saved PC. When no more
drivers are awaiting the channel, IOCSRELCHAN returns control to the
driver fork process that released the channel.

Drivers for single-unit controllers need not release the controller
data channel (as discussed in Sections 9.3.1 and 13.1). Through code
in the unit initialization routine, these drivers set up the device's
unit control block to own the controller permanently.

Drivers must be executing at driver fork IPL when they invoke RELCHAN
or call IOCSRELCHAN.

COMPLETING THE I/O REQUEST

12.1.2.2 Saving Status, Count, and Device-Dependent Status - To save
the status code, transfer count, and device-dependent status, the
driver performs the following steps:

e It loads a success status code (SS$ NORMAL) into bits 0
through 15 of RO.

e If the I/O operation performed by the device 1is a transfer
function, the driver 1loads the number of bytes transferred
into the high-order 16 bits of RO, that 1is, into bits 16
through 31.

e The driver then loads device-dependent status information, 1if
any, 1into RI1. RO and Rl are the status values that VAX/VMS
returns to the user process in the I/0 status block specified
in the original Queue I/0 Request system service. If the user
specifies no I/0 status block, VAX/VMS does not use RO and Rl.

12.1.2.3 Returning to the Operating System - Finally, the driver
returns to the system by invoking the VAX/VMS macro REQCOM to complete
the I/0 request. REQCOM calls the VAX/VMS routine IOCSREQCOM.
IOCSREQCOM locates the address of the I/0 request packet corresponding
to the I/0 operation in the device's UCB (UCBSL IRP). It then writes
the two longwords of completion status contained in RO and R1 into the
media field of the I/0 request packet (IRP$L_MEDIA and IRP$L_MEDIA+4).

IOCSREQCOM then inserts the I/0 request packet in the I/0
postprocessing queue. If the packet 1is the only entry 1in the
postprocessing queue, IOCSREQCOM requests a software interrupt at
IPLS IOPOST so the postprocessing begins when IPL drops below
IPL$ IOPOST.

If the error logging bit is set in the device's unit control block
(UCBSV_ERLOGIP in UCBS$W STS), IOCSREQCOM obtains the address of the
error message buffer from the unit control block (UCBSL EMB). It then
writes the following information into the error buffer:

e Final device status (UCBSW DEVSTS)
e Final error count (UCBSB_ERTCNT)
e Two longwords of completion status (RO and R1)

To release the error message buffer, IOCSREQCOM calls ERLSRELEASEMB.
Section 13.3 describes error logging in more detail.

If any I/0 request packets are awaiting driver processing, IOC$REQCOM
performs the following steps:

e Dequeues a packet

e Creates a new driver fork process

e Activates the driver at the driver's start I/0 routine
Otherwise, IOCSREQCOM clears the unit busy bit in the device's UCB
status word (UCBSV_BSY in UCBSW STS) and transfers control to
IOCSRELCHAN to release the <controller channel in case the driver

failed to do so.

The remaining steps in processing the I/0 request are performed by
VAX/VMS I/0 postprocessing.

12-3

COMPLETING THE I/0 REQUEST

12.2 TIMEOUT HANDLERS

VAX/VMS transfers control to the driver's timeout handler if a device
unit does not request an interrupt within the time limit specified in
the wait for interrupt macro. The VAX/VMS timer routine scans device
unit control blocks once every second to determine whether a device

has timed out.
When the timer routine locates a device that has timed out, the
routine calls the driver's timeout handler by performing the following
steps:
e It disables expected interrupt and timeout on the device by
clearing bits in the device's UCB status field (UCBSV_INT and
UCBSV_TIM in UCB$W STS).

e It sets the device timeout bit in the UCB status field
(UCB$V_TIMOUT in UCB$W_STS).

e It sets IPL to hardware device interrupt IPL (UCBSB DIPL).

e It restores the saved R3 and R4 of the driver fork process
from the UCB fork block (UCBSL_FR3 and UCBSL_FR4).

e It restores R5 (address of the UCB fork block).

e It computes the address of the driver's timeout handler from
the saved PC in the UCB fork block (UCBSL_FPC).

e It calls the driver's timeout handler with a JSB instruction.
The driver's timeout handler executes in following context:

e RO through R5 are saved on the stack.

e R5 contains the address of the UCB for the device that timed
out.

® System address space is mapped.

e The processor is running in kernel mode.

e The processor is running on the interrupt stack.
e IPL is at hardware device interrupt level.

VAX/VMS invoked the timeout handler through an interrupt at
IPL$_TIMER. Thus, the driver can lower from device IPL to driver fork
IPL to process the timeout. (The driver should lower IPL with SETIPL
to preserve the contents of the stack.)

When the driver fork process regains control, R3 and R4 are restored
to their previous state from UCBSL FR3 and UCBSL FR4 respectively.

During power failure recovery, VAX/VMS forces a device timeout by
altering the timeout field (UCBSL DUETIM) of a unit control block if
that device's UCB records that the unit is waiting for an interrupt or
timeout (UCBS$V INT and UCBS$V TIM set in UCBSW STS). The timeout
handler can perceive that a power failure recovery 1is occurring by
examining the power bit (UCB$V_POWER in UCB$W STS) in the unit control
block.

12-4

COMPLETING THE I/O REQUEST

A timeout handler usually performs either of three functions:

e Retries the I/0 operation unless a retry count is exhausted

e Aborts the I/0 request

® Sends a message to an operator mailbox and resumes waiting for
a subsequent interrupt or timeout

12.2.1 Retrying the I/O Operation

Some devices may retry an I/0O operation after a timeout. For example,
a disk driver might take the following steps after a transfer timeout:

e Invoke the following VAX/VMS macro to lower IPL to driver fork
level:

SETIPL UCB$B_FIPL(R5)
The resulting IPL must not drop below IPL$ TIMER.
® Release map registers, data path, and controller data channel.

e If a power failure occurred, 1load the I/O request packet
address into R3 and reload the following I/0 request packet
fields into the corresponding UCB fields and branch to the
start I/0 routine:

UCBSW BCNT
UCBSW BOFF
UCBSL_SVAPTE

The above steps result in a total retry of the transfer.

¢ If no power failure has occurred and the device driver
supports error 1logging, call ERLS$DEVICTMO to log the device
timeout.

e If the retry count is not exhausted, decrease the count, clear
the UCB timeout bit in UCBSW STS, and retry the operation.

e If the retry count is exhausted, set the error code, perform a
normal abort I/0 clean-up operation, and invoke REQCOM.

12.2.2 Aborting the I/O Request

A driver's timeout handler aborts the I/0 request when it exhausts its
retry count, or when it determines, upon timeout, that a cancel I/0
was requested. If the cancel 1I/0 bit in the UCB status word
(UCB$V CANCEL in UCBSW STS) is set, a cancel I/0 was requested and the
timeout handler can abort the request.

. To abort an I/O request, a device driver timeout handler can perform
the following sequence of steps:

e If appropriate to the device and controller, the handler
clears the device control/status register.

12-5

COMPLETING THE I/O REQUEST
e The handler then invokes the following VAX/VMS macro to lower
IPL to driver fork level:
SETIPL UCB$B_FIPL(R5)
The resulting IPL must not drop below IPL$ TIMER.

e The handler releases UNIBUS adapter resources and the
controller data channel, if necessary.

e It loads abort status code (SS$_ABORT) into the 1low word of
RO.

e It clears bits 16 through 31 in RO to indicate that no data
was transferred.

e It invokes the VAX/VMS macro REQCOM, described in Section
12.1.2.3, to complete the I/O request processing.

Since the device can interrupt driver timeout processing at fork IPL,
the interrupt service routine should check the interrupt expected bit
(UCBSV INT) before handling the interrupt. The operating system
clears this bit before it calls the driver's timeout handler.

12.2.3 ©Sending a Message to the Operator

The following sequence describes a timeout handler that sends a
message to the operator mailbox and then goes back into a wait for
interrupt or timeout state:

e It invokes the following VAX/VMS macro to lower IPL to driver
fork level:

SETIPL UCB$B FIPL(R5)
The resulting IPL must not drop below IPL$ TIMER.
e It checks the <cancel 1I/0 bit in the UCB status word
(UCB$V_CANCEL in UCB$W STS). If UCB$V_CANCEL is not set, the
timeout handler performs the following:

—-—- Saves R3 and R4 on the stack

-- Loads an OPCOM message code, such as MSG$_DEVOFFLIN, into
R4

—- Loads the address of the operator mailbox (SYSSGL OPRMBX)
into R3 -

-- Calls a VAX/VMS routine to ©place the message in the
operator mailbox, as follows:

JSB G "EXES$SNDEVMSG
—— Restores R3 and R4

(If the cancel I/O bit is set, the timeout handler <can abort
the request.)

e The timeout handler then invokes the VAX/VMS macro DSBINT to

raise IPL to IPL$ POWER, thereby locking out all interrupts
from software and hardware.

12-6

COMPLETING THE I/O REQUEST

e Finally, the timeout handler invokes the VAX/VMS macro WFIKPCH
to wait for another interrupt or timeout.

When the OPCOM process reads the message in its mailbox, it sends the
requested message, 1in this case "device-offline", to all operator
terminals,

CHAPTER 13

WRITING INITIALIZATION, CANCEL I/0, AND ERROR-LOGGING ROUTINES

Drivers normally contain initialization, cancel I/0, and error-logging
routines., The driver prologue table and the driver dispatch table
specify the addresses of initialization routines. The driver dispatch
table contains the addresses of the cancel I/0 and error-logging
routines. Whether these routines are required depends on the type of
device.

13.1 INITIALIZATION ROUTINES

Most device controllers and device units require initialization under
the following circumstances:

e When the driver loading procedure loads a device driver for
the controller and device units

e During recovery from a power failure

Initialization routines ready controllers and device units for
operation. Depending on the device characteristics, initialization
routines perform any of the actions listed below:

e Enable controller interrupts
e Clear error status bits in device registers

e Initiate a device operation such as <clearing a drive or
acknowledging a pack

e Store values in UCB fields that cannot be addressed with a
DPT STORE macro; that is, fields more than 256 bytes from the
start of the unit control block

e Permanently allocate UNIBUS adapter resources, as described in
Chapter 10

e Set the online bit (UCB$V_ONLINE in UCB$W STS) in the unit
control block

e Fill in IDBSL OWNER for single-unit devices such as a 1line
printer

13.1.1 1Initialization During Driver Loading

The 1initialization performed during driver 1loading depends upon
whether the driver is being loaded for the first time or replacing a
driver that was previously loaded.

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

The SYSGEN commands AUTOCONFIGURE, CONNECT, and LOAD add new drivers
to the configuration. The LOAD command loads the driver into nonpaged
system memory but does not call any driver-specific routines or
execute any 1initialization requests specified in DPT STORE macro
invocations. AUTOCONFIGURE and CONNECT create the I/0 data structures

associated with the device driver, call driver-specific initialization
routines, and perform requests specified in DPT_STORE macro
invocations.

For each new device they add to the system, AUTOCONFIGURE and CONNECT
carry out the following steps:

e Create a unit control block for the device. If this 1is the
first occurrence of device-name and controller, the commands
create a device data block, a channel request block, and an
interrupt dispatch block.

e Perform the 1initialization operations specified by the
DPT STORE macros within the initialization and
reinitialization portions of the driver prologue table.

® Relocate all addresses in the driver dispatch table and
function decision table to system virtual addresses.

e Call the controller initialization routine specified in the
channel request block, if the CRB was created.

e Call the unit initialization routine (if any) specified in the
driver dispatch table. If no routine exists in the DDT, call
the unit initialization routine (if any) specified in the CRB.

The AUTOCONFIGURE and CONNECT command operations raise IPL to
IPLS POWER to prevent interruption of the initialization routines.

The RELOAD command replaces an existing driver with a new driver. The
command loads the new driver code into nonpaged system memory. Unlike
the other SYSGEN commands for driver loading, RELOAD assumes that the
I/0 data structures associated with the driver already exist, and thus
updates the data base to reflect the modified code and 1its different
location in system virtual address space.

The RELOAD command performs the following functions:

e Executes requests specified by DPT STORE macro invocations in
only the reinitialization section of the driver prologue table

® Relocates all addresses in the function decision table and
driver dispatch table to system virtual addresses

e Calls the controller initialization routine

Chapter 14 contains detailed descriptions of all SYSGEN commands
related to device drivers.

13.1.2 1Initialization During Recovery from a Power Failure

During powerfail recovery procedures, the operating system locates
every unit control block in the I/0 data base. Each unit control
block points to a channel request block for the device's controller.
The channel request block contains the address of the controller

13-2

WRITING INITIALIZATION, CANCEL I/0, AND ERROR-LOGGING ROUTINES

initialization routine, if one was specified. The system uses the
following chain of pointers to locate the address of the
initialization routine:

DDB —> UCB —> CRB —> controller initialization routine

The operating system <calls the initialization routine for each
controller if one was specified in a DPT_STORE macro for the
CRBSL_INTD+VEC$L_INITIAL of the channel request block.

Next, the system checks for a device unit 1initialization routine.
First, the system examines the unit initialization field in the driver
dispatch table (DDTSL UNITINIT). If the field does not contain an
address, the system™ checks the <channel request block using the
following chain of pointers:

DDB —> UCB -—> CRB —> device unit initialization routine

MASSBUS drivers store unit initialization routines addresses only 1in
the driver dispatch table.

If either the channel request block or the driver dispatch table
contains a nonzero address for such a routine, the system calls the
routine to initialize the device unit. The system calls only one
routine; if the driver dispatch table contains an address, the CRB
address is ignored.

13.1.3 1Initialization Context

The VAX/VMS operating system always calls controller and unit
initialization routines with IPL raised to IPL$ POWER. The high IPL
prevents any interrupts from reaching the processor while
initialization 1is occurring. The initialization routines must not
lower IPL. The system calls initialization routines with a JSB
instruction; the routines return by executing an RSB instruction. '

Controller initialization routines are device-dependent. For example,

a card reader controller 1initialization routine might enable
interrupts from the device by setting the interrupt enable bit in the
device's control/status register. A disk controller initialization

routine, on the other hand, might enable interrupts and initialize all
unit status registers.

At the time of a call to a controller initialization routine, the
registers contain the following values:

Register Value

R4 Address of the control/status register

RS Address of the interrupt data block that describes
the controller

R6 Address of the device data block associated with
the controller

R8 Address of the channel request block for the
controller

Device unit initialization routines are wuseful for initializing
device-dependent fields in the unit control block. For example, disk
initialization routines can also set disk drive parameters (such as

13-3

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

number of cylinders) in the unit control block and wait for online
units to spin up to speed. Unit initialization routines must set the
online bit in the unit control block (UCBS$V ONLINE) to declare the
unit to be online. - ’

If a device needs permanently allocated UNIBUS adapter resources, a
unit initialization routine can call VAX/VMS UNIBUS adapter resource

management routines to allocate the resources. Then, the
initialization routine can set bits in the CRB UNIBUS adapter resource
description fields, for example, VECSV_PATHLOCK in

CRB$L_INTD+VEC$B_DATAPATH.

At the time of a call to a device wunit initialization routine, the
registers contain the following values:

Register Value
R3 Address of the primary control/status register
R4 Address of the secondary control/status register;

R4 is equal to R3 if there is no secondary CSR
R5 Address of the device's unit control block

If driver initialization routines modify R4 through R1l1l, the routines
must save the «contents of the registers before use and restore them
before returning control to the operating system.

13.2 CANCEL I/O ROUTINE

VAX/VMS routines call the cancel I/O routine in a device driver under
the following circumstances:

e When a process issues a Cancel I/0 on Channel system service

e When a process deallocates a device and no process I/0
channels are assigned to the device

e When a process deassigns a channel from a device
e When the command interpreter performs cleanup operations as
part of image termination by canceling all pending 1I/0
requests for the image and closing all image-related files
open on process I1/0 channels
The VAX/VMS routine EXESCANCEL locates the unit control block for the
device associated with a process I/0 channel from a pointer in the
channel request block, as follows:
channel index number —> CCB —> UCB address
EXESCANCEL takes the following steps:

e Raises IPL to fork level

® Removes all I/0 request packets associated with the process
from the device's I/0 request packet wait queue

e Sets the status code SS$ CANCEL in IRPSL_MEDIA

e For buffered I/0 read operation, clears the buffered read
function bit (IRP$V_FUNC) in IRPSW STS

13-4

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

e Inserts the I/0 packets removed from the packet wait Qqueue
into the I/0 postprocessing queue

e If the I/O postprocessing queue is empty, requests a software
interrupt

Then, EXESCANCEL calls the cancel I/0 routine specified in the driver
dispatch table of the associated device driver. EXESCANCEL locates
the routine using the following chain of pointers:

UCB —> DDT —> address of the cancel I/0 routine

The cancel I/0 routine gives the driver an opportunity to prevent
further device-specific processing of the I/0 request currently being
processed on the device. ’

13.2.1 Context of a Cancel I/0 Routine

When EXESCANCEL calls the cancel I/0 routine, IPL is at driver fork
IPL so that the routine can read and modify the device's unit control
block. Registers at the time of the <call contain the following
values:

Register vValue
R2 Channel index number
R3 Address of the current I/0 request packet
R4 Address of the process control block of the

process for which the Cancel I/0 on Channel system
service is being performed

R5 Address of the device's unit control block
R8 Reason for the call to cancel the I/0 request.

Reason codes are defined by the $CANDEF macro.
Possible values for R8 include:

CAN$C_CANCEL Called by S$CANCEL or $DALLOC
system services

CAN$C_DASSGN Called by $DASSGN system
service

If a cancel I/0 routine uses registers other than RO through " R3, it
must save the registers and restore them before exiting.

Device drivers may want to base their cancel I/0 operation on whether
the cancel 1I/0 request 1is the result of a channel deassignment
(CANS DASSGN). For example, the terminal driver cancels out-of-band
AST requests only if the call to its cancel I/O routine results from a
Deassign I/0 Channel ($DASSGN) system service call.

13.2.2 Drivers that Need No Cancel I/0 Routine

Some devices do not need any device-dependent processing performed for
an I/0 request; you can omit the CANCEL argument from the DDTAB

13-5

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

macro. In this case, the DDTAB macro expansion loads the address of
the VAX/VMS routine IOCSRETURN into the appropriate position in the
driver dispatch table. The routine IOCSRETURN executes a single RSB
instruction.

13.2.3 Device-Independent Cancel I/0O Routine

Drivers can specify the VAX/VMS routine IOCSCANCELIO as the value of
the CANCEL argument in the DDTAB macro invocation. IOC$CANCELIO
cancels I/O to a device in the following device-independent manner:

e It confirms that the device is busy by examining the device
busy bit in the UCB status word (UCB$V_BSY in UCBSW STS).

e It locates the process identification field in the I/0 packet
currently being processed on the device using the following
chain of pointers:

UCB —> IRP —> process identification field

IOCSCANCELIO confirms that the field (IRPSL_PID) contains the
same value as the corresponding field in the process control
block (PCB$L_PID).

e It confirms that the specified channel index number is the
same as the wvalue stored in the I/0O request packet channel
index field (IRP$W_CHAN).

e It sets the cancel I/0 bit 1in the UCB status wo rd
(UCB$V_CANCEL in UCB$W_STS).

Other driver routines, such as the device timeout routine, <check the
cancel I/O0 bit to determine whether to retry the I/0 operation or
abort it.

13.2.4 Device-Dependent Cancel I/0 Routines

Drivers that include their own cancel I/0 routines must perform the

first three steps of IOCSCANCELIO 1listed in Section 13.2.3 to
determine whether the I/0 request being processed originates from the
process canceling I/0 on a channel., If the three checks succeed, the
cancel routine can proceed in a device-specific manner.

13.3 ERROR-LOGGING ROUTINES
The operating system supplies two routines that drivers c¢an call to
allocate and £fill error-logging buffers after a device error or
timeout occurs:

e ERLSDEVICERR

e ERLSDEVICTMO
Both routines expect to find the address of the device unit control

block in RS5. Drivers must call them at fork IPL. Each routine
performs the following steps:

13-6

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

e It allocates an error log buffer of the 1length specified in
the device's driver dispatch table. It uses the following
chain of pointers to locate the buffer length:

UCB —> DDT —> length of error log buffer

e It loads into the buffer fields from the unit control block,
the I/0 request packet, and the device data block.

e It loads the address of the error message buffer 1location
where device register contents are to be stored.

o It calls a register dump routine in the device driver. It
locates the routine using the following chain of pointers:

UCB —> DDT —> register dump routine address

Specify the address of a register dump routine with the value of the
REGDMP argument to the DDTAB macro invocation.

The register dump routine can expect the following registers to be
loaded:

Register Content
RO Address of the buffer
R4 Address of the control/status register if the

driver used the WFIKPCH macro to wait for an
interrupt or timeout

R5 Address of the device's unit control block

The dump routine should save and restore R3 through R11l if the routine
requires their use.

The driver register dump routine should £fill the buffer as follows:

e Write a longword value representing the number of device
registers to be written into the buffer

® Move device register longword values into the buffer following
the register count longword

The routine must store the contents of each device register to be
logged in a 1longword in the buffer. For example, the following
instruction stores the contents of the device register:

MOVZWL TD_STATUS (R4),(RO)+

A driver that supports error 1logging must satisfy the following
prerequisites:

e It must use the error log extension to the unit control block.

e It must ensure that DDT$SW _ERRORBUF is large enough to
accommodate EMBSL DV REGSAV+4 plus one longword for each
register to be dumped

e Its driver prologue table must set the device characteristic
DEV$V_ELG in UCB$ DEVCHAR.

13-7

CHAPTER 14

LOADING A DEVICE DRIVER

You can load a user-written device driver any time after the system is
bootstrapped. If the driver contains an error and the error does not
crash or corrupt the operating system, you can correct the error and
reload a new version of the driver.

14.1 PREPARATION FOR LOADING

To prepare a device driver for loading, take the following steps:

Write the device driver in one or more source files. If the
driver comprises multiple source files, vyou must insert a
.PSECT directive before any generated code in all files except
the file that contains the DPTAB and DDTAB macro invocations.
The following .PSECT must be used:

.PSECT $$$115 DRIVER

If a single source file contains the driver, you must not
specify any .PSECT directives. The declaration of the DPTAB
and DDTAB macros establish driver program sections correctly.

Assemble the source file(s) with the system macro 1library
(SYSSLIBRARY:LIB.MLB). For example:

$ MACRO MYDRIVER.MAR+SYSSLIBRARY:LIB.MLB/LIBRARY

Link the object file with the VAX/VMS global symbol table,
which 1is 1located in SYS$SYSTEM and called SYS.STB. If the
driver consists of multiple source files, you must specify the
file that contains the driver prologue table as the first file
in the list. The linker options file must contain a BASE
statement specifying a zero base for the executable image.
The following is an example of the creation of the options
file and the LINK command used to link a driver:

$ CREATE MYDRIVER.OPT

BASE=0

D)

$ LINK /NOTRACE MYDRIVER1[,MYDRIVER2,...],-
MYDRIVER.OPT/OPTIONS, -
SYS$SYSTEM:SYS.STB/SELECTIVE SEARCH

The resulting image must consist of a single image section.
The linker will report that the.image has no transfer address.

14-1

LOADING A DEVICE DRIVER

14.2 LOADING THE DRIVER

Once the driver has linked correctly, it is ready to be 1loaded. To
load the driver into system virtual memory, run the System Generation
Utility (SYSGEN) from the system manager's account or from an account
having Change Mode to Kernel privilege using the following command:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN responds with a prompt and waits for further input:
SYSGEN>

The VAX-11 Utilities Reference Manual describes the full set of SYSGEN
commands. The sections that follow describe those commands SYSGEN
uses to load drivers:

e LOAD (requires Change Mode to Kernel (CMKRNL) privilege)
e CONNECT (requires CMKRNL privilege)

e RELOAD (requires CMKRNL privilege)

e SHOW/ADAPTER " (requires CMEXEC privilege)

e SHOW/CONFIGURATION (requires CMEXEC privilege)

e SHOW/DEVICE (requires CMEXEC privilege)

In addition, you should understand SYSGEN's automatic configuration
feature, as described in Section 14.3.

14.2.1 LOAD Command

To load a device driver, issue the LOAD command. If the controller
has only a single unit attached to it, issue the CONNECT command.

Format
LOAD driver-file-spec

driver-file-spec
The file specification of the image file containing the 1I/0

driver to be 1loaded. The LOAD command obtains the driver name
from the DPTST_NAME field in the driver prologue table. If the
name of the driver being loaded matches the name of any driver
already in the configuration, the LOAD command will not load the
driver.

SYS$SYSTEM is the default device and directory name. EXE is the
default file type.

Description

The driver loading procedure compares the name field 1in the
driver ©prologue table of the driver being loaded with the name
field in the driver prologue tables of the drivers already loaded
into system memory. If no match is found, the procedure loads
the new driver into contiguous locations in nonpaged pool and
links the driver prologue table into the DPT linked list. If the
procedure finds a match, it takes no further action.

14-2

LOADING A DEVICE DRIVER

Example
SYSGEN> LOAD CRDRIVER

This command loads the driver found in SYSS$SYSTEM:CRDRIVER.EXE
(the card reader driver).

14.2.2 CONNECT Command

The CONNECT command creates I/0O data base control blocks for devices.
The CONNECT command can also 1load the driver if it has not been
previously loaded into system memory.

Format
CONNECT device-name required-quals [optional-quals]
Command Qualifiers

/INO]JADAPTER=nexus
/CSR=csr—-address
/VECTOR=vector-address
/DRIVERNAME=driver-name (optional)
/NUMVEC=number (optional)
/ADPUNIT=unit-number (optional)
/MAXUNITS=number (optional)

Parameter
device-name

The name of the device for which control blocks are to be added
to the I/0 data base. Specify the device name in the following

format:
ddcu
dd = device code (up to 9 alphabetic characters)
c = controller designation (alphabetic)
u = unit number

For example, LPAQO specifies the line printer (dev) on controller
A (¢) at unit 0 (u). When specifying the device name, do not
follow it with a colon (:).

The device code and controller specification must be a unique and
accurate device name and controller combination. If control
blocks for the specified device/controller already exist, the
driver loading procedure does not create any control blocks or
perform any initialization operations. If the device/controller
name does not accurately name a device, the procedure will create
spurious control blocks.

Required Qualifiers

/ [INO]ADAPTER=nexus
The nexus value of the UNIBUS adapter, MASSBUS adapter, or other
controller to which the device unit is attached. The nexus can
be a number or a generic name listed by the /ADAPTER qualifier to
the SYSGEN command SHOW. See Section 14.2.4 for a discussion of
SHOW/ADAPTER.

14-3

LOADING A DEVICE DRIVER

Specify a nexus number in the range 0 through 15. All numeric
values are interpreted as decimal unless they are preceded by a
radix descriptor (%0 or %X).

Nexus values for VAX-11l processors are listed below:

VAX-11/730 VAX-11/750 VAX-11/780

UNIBUS
adapter

wNe— O
i
|
AU W

MASSBUS
adapter 8
9
10

11

WO
|
I YO

Issue the CONNECT command with the /NOADAPTER qualifier to
connect drivers associated with software devices. The mailbox
driver is an example of this type of driver.

/CSR=csr-address
The UNIBUS address of the control/status register for the device.
All numeric values are interpreted as decimal unless they are
preceded by a radix descriptor (%0 or %X).

/VECTOR=vector—-address
The UNIBUS address of the interrupt vector for the device. All
numeric values are interpreted as decimal unless they are
preceded by a radix descriptor (%0 or %X). Section 14.3 provides
additional information on vector and CSR assignments.

Optional Qualifiers

/NUMVEC=number
The number of interrupt vectors for the device. If this
qualifier 1is omitted, the number of vectors defaults to 1. The
number specified by the /VECTOR qualifier is the address of the
lowest vector. Vectors must be contiguous.

/DRIVERNAME=driver-name
The name of the driver that handles the device being connected.
If this qualifier 1is omitted, CONNECT follows one of two
procedures to supply a default name. If the device to be
connected is the first wunit on the controller, CONNECT
concatenates the first two characters of the device code with
"DRIVER", for example, LPDRIVER. Otherwise, CONNECT obtains the
driver name from the DDB$T DRVNAME field 1in the controller's
device data block.

Consult the SYSGEN device table in Section 14.3.2 for the driver
names of the devices supported by VAX/VMS.

/ADPUNIT=unit-number
The unit number of a device on the MASSBUS adapter. The unit
number for a disk drive is the number of the plug on the drive.
For magnetic tape drives, the unit number corresponds to the tape
controller number.

/MAXUNITS=number
The maximum number of units attached to the controller. This
number determines the size of the UCB 1list appended to the

14-4

LOADING A DEVICE DRIVER

interrupt dispatch block. 1If specified, this value overrides the
maximum number of units designated in the driver prologue table.
The maximum number of wunits is stored 1in the 1IDB field
IDB$W UNITS.

Description

The I/O data base contains a 1linked 1list of driver prologue
tables. The CONNECT command looks for a device driver by
scanning the driver prologue tables and comparing the DPTST NAME
field in each DPT with the specified or defaulted driver name.
If no match is found, the driver 1loading procedure 1loads the
driver image SYS$SYSTEM:drivername.EXE; see Section 14.2.1.

Then the loading procedure examines the I/0 data base for control
blocks that support the specified device. The procedure creates
the following control blocks if they do not exist:

e Device data block -- the procedure creates a device data block
for the generic device name/controller string specified if
such a device data block does not exist.

When the procedure creates a device data block for a UNIBUS
device, it also <creates a channel request block and an
interrupt dispatch block.

e Unit control block -- the procedure c¢reates a unit control
block 1if it has just created a device data block or if a unit
control block for the specified device does not exist. If a

unit control block already exists, the procedure continues to
execute but makes no more modifications to the I/0 data base.

After creating the control blocks, the driver 1loading procedure
performs the following initialization operations:

e Performs the initialization operations specified by the
DPT STORE macros in the initialization and reinitialization
portions of the driver prologue table.

® Relocates all addresses in the driver dispatch table and
function decision table to absolute system virtual addresses.

e Raises IPL to IPL$S POWER so that 1initialization 1is not
interrupted.

e If a new channel request block was created, the procedure
calls the <controller initialization routine (if one exists)
specified by CRBSL INTD+VECSL INITIAL.

e Calls the wunit 1initialization routine (if one exists)
specified by DDTS$L UNITINIT. If the DDT contains no unit
initialization routine, the procedure calls the unit
initialization routine (if any) specified by
CRB$L_INTD+VEC$L_UNITINIT.

You should specify CONNECT commands with extreme caution. The
driver and data base 1loading procedure does 1little error
checking. If you specify a vector that has already been defined,
the procedure rejects the CONNECT command. However, if the
CONNECT command specifies an incorrect CSR address, the I/0 data
base is apt to become corrupted. The result is a system failure.

14-5

LOADING A DEVICE DRIVER

If the CONNECT command specifies an existing controller and a new
device wunit, the procedure creates a unit control block for the
new unit and calls a unit initialization routine for the unit.

A CONNECT command that specifies a device name with a new
controller causes the driver loading procedure to create a device
data block, channel request block, interrupt dispatch block, and
unit control block and to call controller and unit initialization
routines.,

Example

SYSGEN> CONNECT LPAO /ADAPTER=UBQ/CSR=%0777514/VECTOR=%0200

This command loads the driver LPDRIVER, if it is not already
loaded, and creates the device data base (DDB, CRB, IDB, and UCB)
needed to describe LPAO.

14.2.3 RELOAD Command

The RELOAD command loads a driver and removes a previously-loaded
version of that driver. The RELOAD command provides all of the
functions of LOAD, except that it 1loads the driver regardless of
whether it is already loaded.

If any of the units associated with the driver are busy, the driver
cannot be reloaded; SYSGEN issues an error message.

Format
RELOAD driver-file-spec

driver-file-spec
The file specification of the image file containing the driver to
be loaded.

Description

To reload the driver, the driver loading procedure compares the
name field in the driver prologue table of the driver being
loaded with the name field in the driver ©prologue tables of
drivers already loaded into system memory. If no match is found,
RELOAD loads the driver as described in Section 14.2.1.

If the procedure finds a match, it first confirms that the
current driver can be replaced by the new driver in the following
steps:

e Confirms that the DPTSM NOUNLOAD flag in the driver prologue
table of the current driver is not set

e Calls the current driver's unload routine, if one exists, and
confirms that the returned status is a success code

e Ensures that no devices that use the current driver are busy,
as indicated by the UCB$V BSY bit set in UCBS$W_STS

If these checks succeed, the ©procedure replaces the current
driver with the new driver. The procedure loads the new driver
into contiguous locations in nonpaged system memory and searches
the I/0 data base for references to the driver. 1If any device
data block refers to the driver being reloaded, the procedure

LOADING A DEVICE DRIVER

reinitializes fields of the device and controller control blocks
according to the reinitialization instructions in the new
driver's ©prologue table; Chapter 7 describes the DPT
reinitialization fields.

Fields that must be reinitialized when a driver 1is reloaded
include those that contain relative addresses within the driver:

e Addresses of driver interrupt service routines

e Addresses of device wunit and controller initialization
routines

e Address of the driver dispatch table

Once the loading procedure has reinitialized fields, it calls the
driver controller initialization routine. (It does not call the
unit initialization routine.) The procedure then removes the
newly replaced driver from the DPT 1list and deallocates the
nonpaged system space the old driver occupied. Finally, the
loading procedure 1links the address of the new driver prologue
table to the DPT list.

Use the RELOAD command only when all devices supported by the
driver are inactive. The activity checks made by the RELOAD
command may not detect all device activity, and changing a driver

while an I/O0 request 1is being processed will cause a system
failure.

14.2.4 SHOW/ADAPTER
The SHOW/ADAPTER command displays a list of nexus values of adapters
in the system configuration. Use of the SHOW/ADAPTER command requires
Change Mode to Executive (CMEXEC) privilege.
Format

SHOW/ADAPTER
Description
The SHOW/ADAPTER command displays nexus numbers and generic names of
UNIBUS and MASSBUS adapters, memory controllers, and device
interconnects such as the DR32.
Example

SYSGEN> SHOW/ADAPTER

CPU Type: 11/780
Hardware Revision #96

Nexus Generic Name or Description

1 16K memory, non-interleaved
4 UBO
5 UB1l
8 MBO
9 MB1

This example shows a VAX-11780 that uses one memory controller
composed of 16K-bit chips, two UNIBUS adapters, and two MASSBUS
adapters.

14-7

LOADING A DEVICE DRIVER

14.2.5 SHOW/CONFIGURATION

The SHOW/CONFIGURATION command displays information about

configuration.

Format

SHOW/CONFIGURATION

nexus

-,

%

[/ADAPTER=nexus]

[/COMMAND FILE]
[/OUTPUT=file-spec]

the

system

The nexus value of the UNIBUS adapter, MASSBUS adapter, or other
interconnect to be displayed.

file-spec

The file specification of an optional output file.

Descripton

The SHOW/CONFIGURATION command displays the

devices connected or autoconfigured to the system.
display to an output file with the /OUTPUT qualifier.
the /OUTPUT and /COMMAND FILE qualifiers,

device

name,

number of
units, nexus number and type and shows the CSR and vector addresses of

SYSGEN formats

You can direct the
If you combine
all the

device data into CONNECT commands and copies them to the output file
you specify. In this way, you

address space without

addresses of the

remaining

completely

can remove a

devices.

Reference Manual for more details.

Example

SYSGEN> SHOW/CONFIGURATION/ADAPTER=UB1

System CSR and

Name: LPA Units:
Name: DYA Units:
Name: XMA Units:
Name: XMB Units:
Name: XMC Units:
Name: TTA Units:
Name: TTB Units:
Name: TTC Units:
Name: TTD Units:
Name: TTE Units:

0 00 000N

14.2.6 SHOW/DEVICE

Vectors on

Nexus:4
Nexus:4
Nexus:4
Nexus:4
Nexus:4
Nexus:4
Nexus:4
Nexus:4
Nexus:4
Nexus:4

rejumpering

See

4-JAN-1982 14:58:26.08

(UBA) CSR:
(UBA) CSR:
(UBA) CSR:
(UBA) CSR:
(UBA) CSR:
(UBA) CSR:
(UBA) CSR:
(UBA) CSR:
(UBA) CSR:
(UBA) CSR:

777514
777170
760070
760100
760110
760130
760140
760150
760160
760170

device from floating
the CSR and vector
the VAX-11 Utilities
Vectorl: 200 Vector2:
Vectorl: 264 Vector2:
Vectorl: 300 Vector2:
Vectorl: 310 Vector2:
Vectorl: 320 Vector2:
Vectorl: 330 Vector2:
Vectorl: 340 Vector2:
Vectorl: 350 Vector2:
Vectorl: 360 Vector2:
Vectorl: 370 Vector2:

The SHOW/DEVICE command displays the location of a driver and the 1I/O
system virtual memory. This
command requires Change Mode to Executive (CMEXEC) privilege.

data base describing its devices

Format

SHOW/DEVICE [=driver-name]

driver-name :

Name of the driver for which the information is to be
command displays

If a driver

name 1is

in

not specified,
information about all drivers and devices known to the system.

14-8

the

displayed.

000
000
304
314
324
334
344
354
364
374

LOADING A DEVICE DRIVER

Description
The SHOW/DEVICE command displays the following information:
e Name of the driver

e The driver's starting and ending wvirtual addresses; the
starting address is the address of the driver prologue table

e The generic device/controller name associated with the driver

e The addresses of the device data block, channel request block,
and interrupt data block for the generic device/controller
supported by the driver

e The unit numbers and UCB addresses for each device unit
associated with the driver

Example
SYSGEN> SHOW/DEVICE=TMDRIVER

__DRIVER START END DEV DDB CRB IDB UNIT UCB

TMDRIVER 8009DF00 8009F020
MTA 800BA660 800BA6CO 800BA360
0 8009F020
1 8009F0CO

14.3 AUTOCONFIGURATION

The standard VAX/VMS system start-up file runs SYSGEN to <create and
initialize an 1I/0 data base that describes all supported DIGITAL
peripherals in the configuration. The following command requests
SYSGEN to prepare a data base for all supported DIGITAL devices
attached to every UNIBUS and MASSBUS:

SYSGEN> AUTOCONFIGURE ALL

To configure devices attached to the UNIBUS, SYSGEN goes through the
steps described in subsequent sections of this chapter.

DIGITAL-supported devices are attached to the UNIBUS according to a
table found in Appendix A of the PDP-11 Peripherals Handbook. The
basic rules follow:

e A device of type A is always at a fixed and predefined CSR
address; the device always interrupts at a fixed and
predefined vector address; only one example of device A can
be configured in each system.

o A device of type B is 1identical to type A except that 1
through n examples can be configured in a single system.
Examples 2 through n are also located at fixed and predefined
CSRs and vector addresses.

e Devices of type C (1 through n of them) are always at fixed
and predefined CSR addresses; however, the interrupt vector
addresses vary according to what other devices are present on
the system.

e Devices of type D (1 through n of them) are at CSR addresses

and vector addresses that vary according to what other devices
are present on the system.

14-9

LOADING A DEVICE DRIVER

The CSR and vector addresses that vary are called floating addresses.
The devices must be located in floating CSR and vector space according
to the order in which the devices appear in the SYSGEN device table.
This table, shown in Section 14.3.2, lists all the type A and type B
devices supported by VAX/VMS. It also lists the type C and type D
devices that are recognized by SYSGEN's autoconfiguration procedure.

The base of floating vector space 1is 300 (octal) . The base of
floating CSR space is 760010 (octal).

14.3.1 The SYSGEN Autoconfiguration Facility

The SYSGEN wutility automatically configures a UNIBUS adapter as
follows:

e It initializes the base of floating space to 300 (octal) and
760010 (octal) for vectors and CSRs, respectively.

e It tests fixed and floating CSR address space for all known
DIGITAL devices.

e When a device is found at a CSR, SYSGEN reserves floating CSR
and vector space for that device, if necessary.

e It searches for the name of the driver associated with the
device by checking the SYSGEN device table (shown in Section
14.3.2) and the directory SYS$SYSTEM. If the driver has
already been loaded or exists as an image file in SYS$SYSTEM,
SYSGEN creates and initializes the 1I/0 data base for that
device and loads the driver image if necessary. If the device
at the CSR is supported by VAX/VMS and SYSGEN cannot locate
its associated driver image, it generates an error message.
If the device is unsupported and has no corresponding driver
image, SYSGEN ignores the condition.

14.3.2 The SYSGEN Device Table
The SYSGEN device table 1lists the <characteristics of all DIGITAL
devices. This table indicates the following information for each
device type:
e The device controller name
° TES_Egme/;f the device driver, and whether it is supported
e The name of the device recognized by VAX/VMS
e The interrupt vector
e The number of interrupt vectors per controller
e The address of the first device register for each controller
recognized by SYSGEN (the first register is usually, but not
always, the CSR)

e The number of registers per controller

14-10

LOADING A DEVICE DRIVER

Currently, the SYSGEN device table lists the following devices:

Device Name Vector #vVectors Alignment CSR/Rank #Registers Driver Support
CRA CR11 230 777160 CRDRIVER yes
DMA RK611 210 777440 DMDRIVER yes
LPA LP11 200 777514 LPDRIVER yes
170 . 764004
174 764014
270 764024
274 764034
DLA RL11 160 774400 DLDRIVER yes
MSA TS11 224 772520 TSDRIVER yes
Dya RX211 264 777170 DYDRIVER yes
DQA RB730 250 775606 DQDRIVER no
PUA ubDA 154 772150 PUDRIVER yes
OoMA DC11 float 2 8 774000 OMDRIVER no
774010
774020
774030

.

(m;ximum of
32 units)

DDA TUS8 float 2 8 776500 DDDRIVER yes
776510
776520
776530

(maximum of
16 units)

14-11

Device

oBA

YMA

OAA

PRA

Name

DN11

DM11B

DR11C

PR611

Vector

float

float

float

float

LOADING A DEVICE DRIVER

#Vectors

Alignment

14-12

CSR/Rank

775200
775210
775220
775230

(maximum of
16 units)

770500
770510
770520
770530

(maximum of
16 units)

767600
767570
767560
767550

(maximum of
16 units)

772600
772604
772610
772614

(maximum of
8 units)

$Registers

Driver

OBDRIVER

YMDRIVER

OADRIVER

PRDRIVER

Support

no

no

no

no

LOADING A DEVICE DRIVER

Device Name Vector #Vectors Alignment CSR/Rank $Registers Driver Support
PPA PP611 float 1 8 772700 PPDRIVER no
772704
772710
772714

(maximum of
8 units)

oca DT11 float 2 8 777420 OCDRIVER no
777422
777424
777426

(maximum of
8 units)

ODA DX11 float 2 8 776200 ODDRIVER no
776240

YLA DL11C float 2 8 775610 YLDRIVER no
775620
775630
775640

.

.
(maximum of

31 units)
YJA DJ11 float 2 8 float 4 YJDRIVER no
YHA DH11 float 2 8 float 8 YHDRIVER no
OEA GT40 float 4 8 772000 OEDRIVER no
772010

14-13

LOADING A DEVICE DRIVER

Device Name Vector $Vectors Alignment CSR/Rank #Registers Driver Support
LSA LPS11 float 6 8 770400 LSDRIVER no
XQA DQ1l1 float 2 8 float 4 XQDRIVER no
OFA KW11W float 2 8 772400 OFDRIVER no
Xua DU1l1l float 2 8 float 4 XUDRIVER no
XWA DUP1l1 float 2 8 float 4 no driverl no
XVA DV11 float 3 8 775000 XVDRIVER no

775040

775100

775140
0GA LK1l float 2 8 float 4 OGDRIVER no
XMA DMC11 float 2 8 float 4 XMDRIVER yes
TTA DZ11 float 2 8 float 4 DZDRIVER yes
XKA KMC11 float 2 8 float 4 XKDRIVER no
OHA LPP11 float 2 8 float 4 OHDRIVER no
OIA VMV21 float 2 8 float 4 OIDRIVER no
oJa VMV31 float 2 8 float 8 OJDRIVER no
OKA DWR70 float 2 8 float 4 OKDRIVER no
DLB RL11 float 1 4 float 4 DLDRIVER yes
MSB TS11 float 1 4 772524 TSDRIVER yes

772530

772534

1. Because there are multiple drivers for this device, AUTOCONFIGURE does not load any driver.
These devices must be connected.

LOADING A DEVICE DRIVER

Device Name Vector #Vectors Alignment CSR/Rank #Registers Driver Support
LAA LPAll float 2 8 770460 LADRIVER yes
LAB LPAll float 2 8 float 8 LADRIVER yes
OLA KW1l1lcC float 2 8 float 4 OLDRIVER no
RSVA RSV float 1 8 float 4 RSVDRIVER no
DYB RX211 float 1 ‘4 float 4 DYDRIVER yes
XAA DR11W float 1 4 float 4 XADRIVER yes
XBA DR11B 124 772410 XBDRIVER no
XBB DR11B float 1 4 772430 4 XBDRIVER no
XBC DR11B ’float 1 4 float 4 XBDRIVER no
XDA DMP11 float 2 8 float 4 XDDRIVER yes
ONA DPV11 float 2 8 float 4 ONDRIVER no
ISA ISB1l1 float 2 8 float 4 ISDRIVER no
00A DMV11 float 2 8 float 8 OODRIVER no
UNA UNA float 1 4 float 4 XEDRIVER no
PUB UDA float 1 4 float 2 PUDRIVER yes
TXA DMF32 float 8 4 float 16 YCDRIVER yes
XGA XGDRIVER yes
LCA LCDRIVER yes
XIA XIDRIVER no
XSA KMS11 float 3 8 float 8 XSDRIVER no
XPA PCL11 float 2 8 764200 XPDRIVER no

764240

764300

764340

14-15

LOADING A DEVICE DRIVER

Devices not listed in the SYSGEN device table include:

e Non-DIGITAL-supplied devices with £fixed CSR and vector
addresses. These devices have no effect on
autoconfiguration. Customer-built devices should be assigned
CSR and vector addresses beyond the floating address space
reserved for DIGITAL-supplied devices.

e Those DIGITAL-supplied, floating vector devices that the
AUTOCONFIGURE command does not recognize. Use the CONNECT
command to attach these devices to the system.

14.3.3 Device Driver Control of Autoconfiguration

The SYSGEN autoconfiguration facility provides two features that
drivers «can use to control the automatic configuration of the devices
they operate. These features are invoked through the DEFUNITS and
DELIVER arguments to the DPTAB macro.

The DEFUNITS argument to the DPTAB macro specifies a default number of
units to be configured into the system. The DPTAB macro copies this
value to the DPT$W DEFUNITS field in the driver prologue table. The
SYSGEN autoconfiguration facility reads this field and creates unit
control blocks numbered zero through the default wunit number minus
one. The default value of DEFUNITS is one.

The DELIVER argument to the DPTAB macro specifies the address of a
driver-specific unit delivery action routine. An offset to this
routine is stored in the DPTS$W DELIVER field within the driver
prologue table. When the DELIVER argument is present, the SYSGEN
autoconfiguration facility calls the action routine once for each unit
for the number of units specified in the DEFUNITS argument. If the
action routine returns a true status in RO, the wunit 1is configured.
If the status in RO is false, the autoconfiguration facility does not
configure the device. If the DELIVER argument is not used, the unit
delivery feature is disabled.

SYSGEN calls the unit delivery action routine with a JSB instruction
in the following context:
e Interrupt priority level is at IPL$S POWER (31).
e RO through R2 are available for use.
e R3 contains the address of the interrupt dispatch block, of
one exists. If none exists, the value contained in R3 is

zZero.

e R4 contains the address of the control/status register for
the controller.

® R5 contains the number of the wunit that the routine must
decide whether or not to configure.

e R6 contains the base address of UNIBUS adapter I/0 space.

® R7 contains the address of the configuration control block
(ACF) .

® R8 contains the address of the UNIBUS adapter control block.

14-16

LOADING A DEVICE DRIVER

The configuration control block is described in Appendix A,

The VAX/VMS DZ1ll device driver specifies a default wunit number of
eight and no action routine to <configure eight terminal units
automatically for each DZ1ll CSR. The RK61ll device driver gives eight
as the default number of units and also spcifies the address of a unit
delivery action routine that is called once for each of the eight
possible devices on the controller. The unit delivery routine
prevents the creation of unit control blocks for devices that do not
respond to a request that tests for their presence.

14.3.4 Floating Vector Address Calculation

To calculate the floating vector address of a device, the SYSGEN
utility rounds the current floating vector base (CFVB) up to the next
valid vector address boundary for the next device in the table.

If a device is present, SYSGEN reserves floating vector space for the
device by computing a new CFVB:

CFVB + (4 * number_ of vectors) — CEyB

14.3.5 Floating CSR Address Calculation

To calculate the floating CSR address of a device, SYSGEN rounds the
current floating CSR base (CFCB) up to the next valid floating CSR
address. Floating CSR addresses must fall on an 8-byte boundary.

SYSGEN tests the CSR address (CFCB) for the next device in the device
table by executing a test word (TSTW) instruction on the address and
noting whether there is a response at that address.

If the device is present, SYSGEN reserves floating CSR address space
for the device by computing a new CFCB:

CFCB + bytes_in register set —= CFCB
When all devices of a particular type have been 1located and their
floating CSR space reserved, SYSGEN reserves an extra block of CSR
space to indicate a change to a new device type:

CFCB + 8 —» CFCB
If the device is not present, SYSGEN reserves an extra block of CSR
space to indicate a change to a new device type by adding eight to the
rounded CFCB:

CFCB + 8 — CFCB

14.3.6 Rules for Configuration

The formulas described in Sections 14.3.4 and 14.3.5 reduce to the
following maxims:

e Devices with fixed CSR addresses and fixed vector addresses

must be attached according to the SYSGEN device table
settings.

14-17

LOADING A DEVICE DRIVER

e Devices with floating CSR or vector addresses must be attached
in the order in which they are listed in the SYSGEN device
table.

® An 8-byte gap must be reserved between each different type of
device that is located in floating CSR address space.

e An 8-byte gap must be reserved in floating CSR address space
for each device type that has no «controller 1in its
configuration.

e An extra 8-byte gap must be reserved between the KW1l1lC and the
RX11 in floating CSR address space.

14.3.7 Example of a UNIBUS Configuration

This example shows the correct configuration for UNIBUS devices with
floating CSR and vector addresses. Controllers flagged with an
asterisk (*) are not supported by DIGITAL.

Controller Vector (s) CSR (first register)
1 DN11%* 300 775200
1 DUll* 310 760040
1 DV11+* 320 775000
1 DMC11 340 760100
2 DZ1lls 350 760120
360 760130
2 TSlls 224 772520
370 772524
3 DR11Bs* 124 772410 (CSR is third register)
400 772430
410 760300
1 customer 420 760320
device (or higher) (or higher)

When assigning floating vector addresses and registers to devices not
supplied by DIGITAL, be sure to leave a generous gap between these
addresses and those of DIGITAL devices, since subsequent VAX/VMS
maintenance updates may add new devices to the SYSGEN device table.

14-18

CHAPTER 15

DEBUGGING A DEVICE DRIVER

DELTA and XDELTA are debugging tools that can be used to monitor the
execution of user programs and the VAX/VMS operating system. When you
link DELTA with a user image that runs in a nonprivileged process,
DELTA is a wuser-mode debugging tool. When run 1in a privileged
process, however, DELTA acts as a multimode debugger; it allows you
to debug in wuser mode or to change to kernel mode for debugging.
DELTA does not support debugging at elevated IPLs.

XDELTA is syntactically identical to DELTA but also allows you to
debug code that executes at an elevated IPL. XDELTA is used for
stand-alone debugging of driver code and the executive.

In the command syntaxes and dialogues contained in this chapter, red
ink indicates the commands typed by the user and black ink indicates
the system prompts and responses.

15.1 BOOTSTRAPPING THE SYSTEM WITH XDELTA

Under VAX/VMS, drivers are part of the operating system. You normally
bootstrap the system with two boot flags set to allow you to debug
with XDELTA, One flag causes the bootstrapping procedure to include
XDELTA in the system. The other boot flag indicates a stop at a
breakpoint in VAX/VMS initialization. Execution of the breakpoint
instruction causes control to transfer to a fault handler located in
XDELTA. The procedures for bootstrapping the system with XDELTA
differ depending on which processor the operating system is running.

15.1.1 Bootstrapping the System with XDELTA on a VAX-11/780
In addition to the normal system bootstrap command files, the VAX/VMS
console floppy diskette for a VAX-11/780 contains two command files
that bootstrap the system with XDELTA:

e DMAXDT

e DBAXDT

To bootstrap the system with XDELTA, follow the ©procedures 1in the
VAX-11/780 Software Installation Guide with two exceptions:

e Deposit the unit number of the device in R3.

e Specify one of the command files listed above instead of the
command files listed in the installation guide.

15-1

DEBUGGING A DEVICE DRIVER

The dialogue in Figure 15-1 is an example of bootstrapping the system
with XDELTA on a VAX-11/780.

>>>DEPOSIT R3 0 Deposit the unit number 0 in R3,

>>>@DMAXDT Boot the system from DMAOQ. The

procedure boots the processor and
prompts the user from SYSBOOT:

SYSBOOT> Enter any SYSBOOT command. If you
did not set or load system parameters
with the USE command, the system uses
the parameters stored in the system
image. To prevent the system from
automatically rebooting after a
bugcheck, you can set the system
parameter BUGREBOOT to zero.

SYSBOOT> CONTINUE Continue with the bootstrapping
operation.

Figure 15-1: Bootstrapping the System with XDELTA on a VAX-11/780

15.1.2 Bootstrapping the System with XDELTA on a VAX-11/750

If the VAX/VMS operating system is running on a VAX-11/750, you must
issue the following command in order to bootstrap the system with
XDELTA:

A

>>>B[/f] device-name
Command Parameters and Qualifiers

B

The console BOOT command. See the VAX-11/750 Software
Installation Guide for further details on this command.

/£
The 32-bit hexadecimal integer value loaded into R5 as an input
value to VMB.EXE, the primary bootstrap program. The /£

qualifier may have the following values:

Value Meaning

£=0 Normal nonstop bootstrap (default)

f=1 Stop in SYSBOOT (equivalent to @DxyGEN on the
VAX-11/780)

£f=2 Include XDELTA with the system but do not take the
initial breakpoint

f=6 Include XDELTA with the system and take the initial
breakpoint

£=7 Include XDELTA with the system, stop 1in SYSBOOT and

take the 1initial breakpoint at system initialization
(equivalent to @DxyXDT on the VAX-11/780)

15-2

DEBUGGING A DEVICE DRIVER

device-name
Indicates the name of the device that contains the volume to be
bootstrapped. Specify the device name using the format ddcu
(refer to the VAX-11/750 Software Installation Guide for a
complete description of device name format). Both controller and

unit identifiers must be specified; there are no defaults. If
you do not use the device-name parameter, the /f qualifier is
ignored.

The dialogue in Figure 15-2 1is an example of bootstrapping the
operating system with XDELTA on a VAX-11/750.

>>>B/7 DMAQ Bootstrap the system from DMAO. The
command boots the processor and
prompts the user from SYSBOOT.

SYSBOOT> Enter any SYSBOOT commands. If vyou
did not set or load system
parameters with the USE command, the
system uses the parameters stored in
the system image. To prevent the
system from automatically rebooting
after a bugcheck, you can set the
system parameter BUGREBOOT to zero.

SYSBOOT> CONTINUE Continue with the boostrapping
operation.

Figure 15-2: Bootstrapping the System with XDELTA on a VAX-11/750

To bootstrap the system from the console TU58, see the VAX-11/750

Software 1Installation Guide. The console TU58 contains the command
fiTes DMAXDT and DBAXDT which are analogous to the files on the
VAX-11/780 console floppy diskette.

15.1.3 Bootstrapping the System with XDELTA on a VAX-11/730

In addition to the normal system bootstrap command files, the VAX/VMS
console DECtape for a VAX-11/730 contains two command files that
bootstrap the system with XDELTA:

e DQAXDT
e DQOXDT

To bootstrap a VAX-11/730 with XDELTA, follow the procedures outlined
in the VAX-11/730 Software Installation Guide and specify one of the
command files listed above. The dialogue in Figure 15-3 is a general
example of boostrapping the system with XDELTA on a VAX-11/730.

When the boot device is DQAO, you can omit the first step in Figure
15-3 and execute the command procedure DQOXDT:

>>> @DQOXDT

15-3

DEBUGGING A DEVICE DRIVER

>>>D/G/L 3 1 Deposit the unit number 1 in R3

>>>@DQAXDT Boot the system from DQAl. The
: procedure boots the processor and
prompts the user from SYSBOOT:

SYSBOOT> Enter any SYSBOOT command. If you

did not set or 1load any system
parameters with the USE command, the

system uses the system parameters

stored in the system image. To
prevent the system from
automatically rebooting after a

bugcheck, you can set the system
parameter BUGREBOOT to zero.

SYSBOOT> CONTINUE Continue with the bootstrapping

operation.

Figure 15-3: Bootstrapping the System with XDELTA on a VAX-11/730

15.1.4 Proceeding from the Initial Breakpoint

After being bootstrapped, the system displays 1its welcoming message
and halts in XDELTA, as follows:

1 BRK AT nnnnnnnn
address/NOP

XDELTA is waiting for input. (XDELTA never issues explicit prompts.)
Usually, you proceed from this point with the following command:

PR
All of the XDELTA commands are described in Section 15.10.
If the operating system halts with a fatal bugcheck, the system prints
the bugcheck information on the console terminal. Then, because the
system parameter BUGREBOOT was set to zero, XDELTA prompts. Bugcheck
information consists of the following:

e Type of bugcheck

® Register values

e Dump of one or more stacks
PC and stack content indicate how an experimental driver crashed the

system. You can then examine the system state further by issuing
XDELTA commands.

-15.2 LOADING THE DRIVER

Once the system is running, you can log in to the system as the system
manager and load the experimental driver.

To load the driver, run SYSGEN and 1issue the appropriate LOAD and
CONNECT commands. Figure 15-4 provides a sample dialogue-

15-4

DEBUGGING A DEVICE DRIVER

The first SHOW command in Figure 15-4 causes SYSGEN to display the
location of the device driver in system memory. You then define the
device to the operating system. The second SHOW command causes SYSGEN

to display the driver's location and the addresses of the device's
DDB, CRB, IDB, and UCB.

$ RUN SYSSSYSTEM:SYSGEN
SYSGEN> LOAD DMAO: [YOUR.DIRECTORY]YRDRIVER.EXE

SYSGEN> SHOW /DEVICE=YRDRIVER

Driver Start End Dev DDB CRB IDB Unit UCB
YRDRIVER BU0060ES50 80061070 -

SYSGEN> CONNECT YR /ADAP=3/VEC=%0274/CSR=%30776240

SYSGEN> SHOW /DEVICE=YRDRIVER

Driver Start End Dev DDB CRB IDB Unit UCB
YRDRIVER ~ B80060E50 80061070 - T

YRA 8005FDCO 80060B70 8005FEO00
0 80060BBO

SYSGEN> EXIT
Figure 15-4: Loading a Driver

15.3 INSERTING BREAKPOINTS IN THE SOURCE CODE

The SYSGEN command CONNECT calls controller initialization and unit
initialization routines. To begin debugging the driver, you should
ensure that the kernel mode debugging utility XDELTA gains control of

the driver before these routines execute. This is accomplished by
placing calls to the special system routine INIS$BRK within the source

code of either the controller or unit initialization routines. To
call INISBRK, give the following instruction:

JSB G INISBRK
The INIS$BRK routine contains two instructions:

BPT
RSB

When the processor executes the BPT inétruction, XDELTA gains control
and reports the address of the breakpoint:

1 BRK AT nnnnnnnn

You can use INISBRK as a debugging tool and place calls to it within
any part of the driver source code.

To determine the last driver PC before the breakpoint, examine the
kernel stack. The stack register is register RE (hexadecimal format):

RE/address /address
Display RE to find the address of the current top of stack. Another

display command (/) reveals the contents of the stack top, that is,
the return address to the driver that called INIS$BRK.

15-5

DEBUGGING A DEVICE DRIVER

15.4 CALCULATING THE BASE OF DRIVER CODE

Before you debug the driver, it is a good idea to calculate the base
address of driver code, as follows:

e Run SYSGEN and issue the SHOW/DEVICE command. The resulting
display 1lists the 1location in nonpaged pool at which SYSGEN
loaded the driver.

e Consult the load map for the driver (obtained at driver 1link
time). The driver resides in two program sections (PSECTs):

$$$105 PROLOGUE driver prologue table
$$$115 DRIVER driver code

The locations given in the driver <code 1listing are offsets
from $$$115 DRIVER. Thus, you can calculate the base address
of the driver by adding the address at which the driver was
loaded to the offset associated with the PSECT $5$115 DRIVER
shown in the map. -

If you do not have the load map, consult the driver prologue table in
the driver 1listing. Look for the address of DPT STORE END, which
generates a 2-byte entry that terminates the DPT. To get the base
address of driver code, add the address of DPT STORE END + 2 to the
address at which the driver was loaded. You can set an XDELTA base
register to the base of driver code; Section 15.7 describes this
procedure.

15.5 REQUESTING AN XDELTA SOFTWARE INTERRUPT

Once the controller and wunit initialization routines complete
execution, you will need to set breakpoints in order to debug the
driver. You can set a breakpoint in the driver source code by
inserting calls to INIS$BRK, as described in Section 15.3. You can
also invoke XDELTA to set breakpoints interactively by requesting an
XDELTA software interrupt.

The procedures described in the following sections will issue a
software interrupt to the ©processor at IPL 5. The IPL 5 interrupt
service routine handles the interru