
VAX/VMS
Guide to Writing
a Device Driver
Order No. AA-H499C-TE

May 1982

This document explains how to write device drivers for devices that
are not supported by VAX/VMS, and how to load these drivers into
the VAX/VMS operating system.

REVISION/UPDATE INFORMATION: This document supersedes the
VAX/VMS Guide to Writing a
Device Driver (Order No.
AA-H499B-TE), including

Update Notice No. 1
(Order No. AD-H499B-T1).

SOFTWARE VERSION: VAX/VMS Version 3.0

digital equipment corporation · maynard, massachusetts

First Printing, February 1979
Revised, March 1980

Updated, January 1981
Revised, May 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright @ 1979, 1980, 1981, 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DECnet IAS VAX
DECsystem-lo MASS BUS VMS
DECSYS'l'EM-20 PDP VT
DEC US PDT

~n~nomn DECwriter RSTS

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710

In New Hampshire. Alaska. and Hawaii call 603-884-6660

In Canada call 613-234-7726 (Ottawa-Hull)
800-267-6146 (all other Canadian)

DIRECT MAIL ORDERS (USA & PUERTO RICO)*

Digital Equipment Corporation
P.O. Box CS2008
Nashua. New Hampshire 03061

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

DIRECT MAIL ORDERS (CANADA)

Digital Equipment of Canada Ltd.
940 Beifast Road
Ottawa. Ontario K1G 4C2
Attn: A&SG Business Manager

DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation
A&SG Business Manager
clo Dig1tal's local subsidiary or
approved distributor

Internal orders should be placed through the Software Distribution Center (SOC). Digital Equipment
Corporation. Northboro. Massachusetts 01532

ZK2140

CONTENTS

Page

PREFACE xi

SUMMARY OF TECHNICAL CHANGES xv

PART I

CHAPTER 1

1.1
1. 2
1. 3
1. 4
1. 5
1. 6
1. 7
1. 7. 1
1.7.1.1
1.7.1.2
1.7.1.3
1.7.1.4
1.7.1.5
1.7.1.6
1. 7. 2
1. 8
1. 8. 1
1. 8. 2
1. 8. 3
1. 8. 4
1. 9
1. 9. 1
1. 9. 2
1. 9. 3
1. 9. 4
1. 9. 5
1. 9. 6
1. 9. 7
1.10
1.11
1. 12
1.13
1. 14

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6

INTRODUCTION TO DEVICE DRIVERS

MACHINE DEPENDENCE AND MACHINE INDEPENDENCE J. • • 1-1
• • 1-2
• • 1-3

• • • 1-4

COMPONENTS OF A DEVICE DRIVER • • • • ~ •
ASYNCHRONOUS NATURE OF A DEVICE DRIVER .~.
FORK PROCESSES • • • • • • • • • • • •
PROCESS CONTEXT AND INTERRUPT CONTEXT
DEVICE DEPENDENCE AND DEVICE INDEPENDENCE

•.J • • • 1-4
• 1-5

THE I/O DATA BASE • • • • • • •
Control Blocks In The I/O Data

Device Data Block

• • • • 1-6
Base • • • • • • 1-6

• 1-7
Unit Control Block ••••• • • • • 1-7
Channel Request Block
Interrupt Dispatch Block •
Adapter Control Block
Channel Control Block

• • • • . • • 1-7
••••• 1-7

• • • • 1-7

I/O Request Packets
SYNCHRONIZATION

Interrupt Priority Levels ••••••••
Device Interrupts

•• 1-8
• 1-8

•• 1-8
• 1-8

• • 1-9
Fork Queues ••••••••
Resource Wait Queues ••••

• • • • • • 1-9

FUNCTIONS OF A DEVICE DRIVER • • • • ~ • •
• 1-9
1-10

Initialization Routines • • • • • • 1-10
FDT Routines ••••••••
Start I/O Routine • • • • •
Interrupt Service Routine • • • • •

1-11
• • • • 1-11

1-12
Device Timeout Handler ••••• • • • • 1-12
Cancel I/O Routine • • •
Error-logging Routine

AN EXAMPLE OF A UNIBUS I/O REQUEST •
THE UNIBUS • • • • • • • • • • • • • •
PROGRAMMED I/O AND DIRECT MEMORY ACCESS I/O
BUFFERED I/O AND DIRECT I/O
LOADABLE DRIVERS • • • • • • • • • • • • • •

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

DRIVER CODE FOR THE LPll WRITE FUNCTION
A USER PROCESS'S I/O REQUEST •
I/O PREPROCESSING BY VAX/VMS •
I/O PREPROCESSING BY THE DRIVER
QUEUING THE I/O PACKET TO THE DRIVER
DRIVER DEVICE ACTIVATION • • • • • •

iii

1-12
1-12
1-12
1-14
1-16
1-16
1-16

• 2-1
• 2-3
• 2-3
• 2-4
• 2-5
• 2-5

2.7
2.8
2.9
2.10

CHAPTER 3

3.1
3.1.1
3 .1. 2
3. 1. 3
3.1. 4
3. 1. 5
3 .1. 6
3. 1. 7
3. 1. 8
3.1.8.1
3.1.8.2
3.1.8.3

CONTENTS

WAITING FOR A DEVICE INTERRUPT • • • • • •
INTERRUPT HANDLING • • • • • • • • • •
I/O COMPLETION PROCESSING BY THE DRIVER
I/O COMPLETION PROCESSING BY THE VAX/VMS SYSTEM

SYNCHRONIZATION OF I/O REQUEST PROCESSING

Page

• 2-6
• 2-6

2-7
• 2-7

INTERRUPT PRIORITY LEVELS
IPLs Defined by VAX/VMS

• • 3-1

IPLs Defined for the Hardware
Interrupt Service Routines ••
Raising IPL •••••••
Lowering IPL •••••••••
Dispatching Device Interrupts
Transferring Control to the Driver
IPL Use During I/O Processing

• 3-1
• 3-2
• 3-2
• 3-3
• 3-3
• 3-4

Fork Process 3-5
3-5

IPL$ ASTDEL (IPL 2) •••••••••• • 3-7
IPL$-IOPOST (IPL 4) • • • • • • • . •. • 3-8
Driver Fork Processing (IPLs 8 through
11) • • • • • • • • • • • • • • • • • 3-8

3.1.8.4 Hardware Device Interrupts • • 3-8
3.1.8.5 IPL$ POWER • • • • • • • . • 3-8
3.1.9 Additional IPLs • 3-9
3.1.9.1 IPL$ SCHED • • • • • • • • • • • • • 3-9
3.1.9.2 IPL$-QUEUEAST • • • • 3-9
3.1.9.3 IPL$-SYNCH and IPL$ TIMER • • • • • • 3-9
3.1.9.4 IPL$-MAILBOX • • • • • 3-10
3.1.9.5 IPL$-XDELTA • • • • • • • • • • • • 3-10
3.1.10 Overview of IPL Use • • • • • • • • • • 3-10
3.1.11 Modifying IPL in Driver Code • 3-11
3.1.11.1 Set Interrupt Priority Level Macro • 3-12
3.1.11.2 Disable Interrupts Macro • • • • 3-12
3.1.11.3 Enable Interrupts Macro 3-13
3.1.11.4 Software Interrupt Macro • • • • 3-13
3.2 FORK BLOCKS AND FORK DISPATCHING 3-13
3.2.1 Interrupt Service Routine for Fork Dispatching 3-14
3.3 RESOURCE WAIT QUEUES • • • • • • • • 3-15
3.3.1 Competing for a Controller Data Channel 3-16

CHAPTER 4

4.1
4.2

4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.1.5
4.3
4.4
4.5

CHAPTER 5

5.1
5.1.1
5. 1. 2
5.1.2.1
5.1.2.2
5.1.2.3

THE UNIBUS ADAPTER

READING AND WRITING DEVICE REGISTERS • • • • • • . 4-2
MAPPING UNIBUS AND PHYSICAL ADDRESSES FOR DMA
TRANSFERS • • • • • • • • • • • • • • 4-2

4-3 UNIBUS Adapter Data Transfer Paths •
Direct Data Path •••••••• • • 4-4
Buffered Data Paths • • • • • • • • 4-5
Byte Offset Data Transfers • • 4-7
Purging a Buffered Data Path ••
Longword-Aligned 32-Bit Random Access Mode •

• 4-7
• 4-8

4-8 THE VAX-11/780 UNIBUS ADAPTER
THE VAX-11/750 UNIBUS ADAPTER
THE VAX-11/730 UNIBUS ADAPTER

OVERVIEW OF I/O PROCESSING

PREPROCESSING AN I/O REQUEST • • • • • • •
Process I/O Channel Assignment •••••
Locating a Device Driver in the I/O Data

Unit Control Block (UCB)
Channe 1 Request Block (CRB) • • • •
Interrupt Dispatch Block (IDB)

iv

• 4-9
4-10

• 5-1
• 5-3

Base • 5-3
• • 5-3

• 5-4
5-5

5.1.2.4
5. 1. 3
5. 1. 4
5.1. 5
5.1. 6
5. 1. 7
5.2
5.2.1
5.2.2

5.2.3
5.2.4

5.2.5
5.3
5.3.1

PART II

CHAPTER 6

6.1
6.2

CHAPTER 7

7.1
7. 1. 1
7 .1. 2
7 .1. 3
7.2
7.2.1
7. 2. 2
7.3
7.3.1
7.3.2

7.3.3
7.3.4

CHAPTER 8

8.1
8.2
8.3
8.3.1
8.3.2
8.4
8.5
8.6
8.6.1
8.6.2
8.6.3
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7
8.8

CONTENTS
Page

Device Data Block (DDB) ••••••
Validating the I/O Function ••••
Checking Process I/O Request Quotas

• • • • • 5-5
• 5-6

• • • • • • 5-7
Validating the I/O Status Block
Allocating and Setting Up an I/O Request
Function Decision Table Processing •••

• • • • 5-7
Packet 5-7

HANDLING DEVICE ACTIVITY • • • • • • • • •
Creating a Driver Fork Process to Start I/O
Activating a Device and Waiting for an
Interrupt •••••••••••••••
Handling a Device Interrupt ••••
Switching from Interrupt to Fork Process
Context • • • • • • • • • • • • • • • • •
Activating a Fork Process from a Fork Queue

COMPLETION OF AN I/O REQUEST • • • • •

• • 5-8
5-10
5-12

5-13
5-13

I/O Postprocessing • • • • • • • • • • • • • •

5-14
5-14
5-16
5-16

TEMPLATE FOR AN I/O DRIVER

CODING CONVENTIONS • • • • 6-1
RESTRICTIONS ON DEVICE REGISTER I/O SPACE USE • • 6-3

WRITING DEVICE DRIVER TABLES

DRIVER PROLOGUE TABLE (DPT) • • • • • • 7-1
DPTAB Macro • • • • 7-2
DPT STORE Macro • • • • • • • 7-4
Example of DPTAB and DPT_STORE Macro Use • • 7-5

DRIVER DISPATCH TABLE (DDT) • • • • • • • • • • • 7-6
DDTAB Macro • • • • • • • • • • 7-6
Example of a DDTAB Macro • • • • •• 7-7

FUNCTION DECISION TABLE (FDT) • • • • • • 7-7
Defining Device-Specific Function Codes •••• 7-8
Determining Those Functions that are Buffered
I/O • • • • • • • • • • • 7-10
FUNCTAB Macro • • • • • • • • 7-10
Example of FUNCTAB Macro Use • 7-10

WRITING FDT ROUTINES

CONTEXT FOR FDT ROUTINE EXECUTION • • • • . • 8-1
REGISTERS PRESET FOR FDT ROUTINE EXECUTION • • • • 8-1
CONVENTIONS FOLLOWED BY FDT ROUTINES • 8-2

Register Conventions • • • . • • • • • • • • 8-2
Process Context Conventions • • • • • • • 8-2

TRANSFERRING INTO AND OUT OF AN FDT ROUTINE • 8-3
FDT ROUTINES FOR DIRECT I/O • • • • • 8-5
FDT ROUTINES FOR BUFFERED I/O • • 8-5

Checking the User's Buffer • 8-6
Allocating the System Buffer • • • • •• 8-6
Completion of Buffered I/O in I/O Postprocessing 8-7

FDT ROUTINES PROVIDED BY VAX/VMS • • • 8-7
EXE$0NEPARM • • • • • • • 8-8
EXE$READ • • • • • • • • • • • 8-8
EXE$SENSEMODE • • • • • • • • 8-9
EXE$SETCHAR • • • • • • • • • • 8-10
EXE$SETMODE • • • • • • • • 8-10
EXE$WRITE • • • • • • • • • • • 8-11
EXE$ZEROPARM • 8-12

EXIT ROUTINES IN THE VAX/VMS SYSTEM 8-12

v

CHAPTER

CHAPTER

CHAPTER

CHAPTER

8.8.1
8.8.2
8.8.3
8.8.4

9

9.1
9.2
9.3
9.3.1
9.3.2

9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.8
9.4
9.4.1
9.4.2
9.4.3
9.5

10

10.1
10.1.1
10.1.2
10.1.3
10.2
10.2.1
10.2.2
10.3
10.4
10.5
10.6
10.6.1
10.6.2
10.7

11

11. 1
11. 2
11. 3
11. 4
11.4.1

12

CONTENTS

EXE$ABORTIO •••••••
EXE$FINISHIO and EXE$FINISHIOC ••
EXE$QIODRVPKT •••••
EXE$ALTQUEPKT • • ••••••

WRITING THE START I/O ROUTINE

Page

8-12
8-13
8-14
8-16

TRANSFERRING CONTROL TO START I/O 9-1
CONTEXT OF A DRIVER FORK PROCESS • • • 9-1
ACTIVATING THE DEVICE • • • • • • • • • • • • 9-2

Obtaining Controller Access ••••• 9-2
Getting the I/O Function Code and Converting the
Code and Modifiers • • • • • • • • • • • • 9-4
Computing the Transfer Length ••••••• ~ • 9-4
Computing the Transfer Start Address • • • • 9-4
Preparing the Device Activation Bit Mask • 9-5
Blocking All Interrupts •••• 9-5
Checking for Power Failure • • • • • • 9-5
Activating the Device • • • • • • • 9-5

WAITING FOR AN INTERRUPT OR TIMEOUT • • 9-5
WFIKPCH and WFIRLCH Macro Formats • • • • • 9-6
Expansion of WFIKPCH Macro • • • 9-6
IOC$WFIKPCH Routine • • • • • • •• 9-7

RESPONDING TO AN EXPECTED DEVICE INTERRUPT • 9-7

WRITING UNIBUS DMA TRANSFERS

REQUESTING A BUFFERED DATA PATH 10-2
Requesting a Permanent Buffered Data Path 10-2
Requesting the Direct Data Path 10-3
Mixed Direct and Buffered Data Path Transfers 10-3

REQUESTING UNIBUS ADAPTER MAP REGISTERS • • • • 10-3
Allocation of Map Registers • • • • • 10-4
Permanent Allocation of Map Registers • • • • 10-4

LOADING THE UNIBUS ADAPTER MAP REGISTERS • 10-5
COMPUTING THE STARTING ADDRESS OF A TRANSFER • • 10-6
ACTIVATING THE DEVICE • • • • 10-6
COMPLETION OF A DMA TRANSFER • • 10-6

Purging the Data Path • • • • • • • • 10-7
Releasing a Buffered Data Path • 10-8

RELEASING UNIBUS ADAPTER MAP REGISTERS • 10-8

WRITING INTERRUPT SERVICE ROUTINES

DELIVERING A DEVICE INTERRUPT TO A DRIVER 11-1
INTERRUPT CONTEXT • • • • • • • 11-3
SERVICING A SOL IC !TED INTERRUPT • • • • • • • • 11-4
SERVICING AN UNSOLICITED INTERRUPT 11-5

Examples of Unsolicited Input Handling • 11-6

COMPLETING THE I/O REQUEST

12.1 I/O POSTPROCESSING • • • • • • • • 12-1
12.1.1 EXE$IOFORK • • • • • • • • • • • • • • 12-1
12.1.2 Completing an I/O Request • • • • • • 12-2
12.1.2.1 Releasing the Controller • • • • • 12-2
12.1.2.2 Saving Status, Count, and Device-Dependent

Status • • • • • • • • • • • • • • 12-3
12.1.2.3 Returning to the Operating System 12-3
12.2 TIMEOUT HANDLERS • • • • • • • • • • • • • • 12-4
12.2.1 Retrying the I/O Operation • • • • • 12-5

vi

12.2.2
12.2.3

CHAPTER 13

13.1
13.1.1
13.1.2

13.1.3
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.3

CHAPTER 14

14.1
14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.2.6
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7

CHAPTER 15

15.1
15.1.1

15.1.2

15.1.3

15. 1. 4
15.2
15.3
15.4
15.5
15.5.1
15.5.2
15.5.3
15.6
15.7
15.8
15.9
15.10
15.10.1
15.10.2
15.10.3

CONTENTS

Aborting the I/O Request • • • • • •
Sending a Message to the Operator ••••

Page

12-5
12-6

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING
ROUTINES

INITIALIZATION ROUTINES
Initialization During Driver Loading •••••
Initialization During Recovery from a Power
Failure • • • • • • • • • •••
Initialization Context • • • • • ••••

CANCEL I/O ROUTINE • • • • • • • •
Context of a Cancel I/O Routine ••••
Drivers that Need No Cancel I/O Routine
Device-Independent Cancel I/O Routine ••••
Device-Dependent Cancel I/O Routines ••

ERROR-LOGGING ROUTINES • • • • • • • • • •

LOADING A DEVICE DRIVER

13-1
13-1

13-2
13-3
13-4
13-5
13-5
13-6
13-6
13-6

PREPARATION FOR LOADING • • • • • • • • • • • • 14-1
LOADING THE DRIVER • • • • 14-2

LOAD Command • • • • • • • • • 14-2
CONNECT Command • • • • • • • 14-3
RELOAD Command • • • • • • • • • 14-6
SHOW/ADAPTER • • • 14-7
SHOW/CONFIGURATION • • • • • 14-8
SHOW/DEVICE 14-8

AUTOCONFIGURATION • • • • 14-9
The SYSGEN Autoconfiguration Facility • 14-10
The SYSGEN Device Table • • • • • • • • • 14-10
Device Driver Control of Autoconfiguration •• 14-16
Floating Vector Address Calculation ••••• 14-17
Floating CSR Address Calculation • • ••• 14-17
Rules for Configuration • • • • • • • 14-17
Example of a UNIBUS Configuration • 14-18

DEBUGGING A DEVICE DRIVER

BOOTSTRAPPING THE SYSTEM WITH XDELTA • 15-1
Bootstrapping the System with XDELTA on a
VA x -11I7 8 0 • • • • • • • • • • • • • • • • • • 1 5-1
Bootstrapping the System with XDELTA on a
VA x -11I7 5 0 • • • • • • • • • • • • • 15-2
Bootstrapping the System with XDELTA on a
VAX-11/730 • • • • • • • • • • • • • • 15-3
Proceeding from the Initial Breakpoint • 15-4

LOADING THE DRIVER • • • • • • • • • • • • 15-4
INSERTING BREAKPOINTS IN THE SOURCE CODE • 15-5
CALCULATING THE BASE OF DRIVER CODE • • • • 15-6
REQUESTING AN XDELTA SOFTWARE INTERRUPT • • • • 15-6

Requesting an XDELTA Interrupt on a VAX-11/780 15-6
Requesting an XDELTA Interrupt on a VAX-11/750 15-7
Requesting an XDELTA Interrupt on a VAX-11/730 15-7

LOOKING AT THE VECTOR JUMP TABLE • • • • • • • • 15-7
SETTING AN XDELTA BASE REGISTER • • • • • • • • 15-8
DESTROYING REGISTER CONTENTS • • • • • • • • • • 15-8
EXAMINING UCB, IRP, AND PSL • • • • 15-9
XDELTA COMMANDS • • • • • • • • 15-9

Values and Expressions • • ••••• 15-10
Special Symbols •••••••••• 15-10
Operators ••• 15-11

vii

15.10.4
15.10.5
15.10.6
15.10.7
15.10.8
15.10.9
15.10.10
15.10.11
15.10.12
15.10.13
15.10.14
15.10.15
15.10.16
15.10.17
15.10.18
15.10.19
15.10.20
15.10.21
15.10.22
15.10.23
15.11
15.11.1
15.11.2

15.12
15.12.1
15.!l.2.2
15.12.3
15.12.4

PART III

APPENDIX A

A.l
A.2
A.3
A.4
A.5
A.6
A.7
A.8
A.9
A.10
A.11

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

F.l
F .1.1
F .1. 2

CONTENTS
Page

Open and Display Value Command •••••••• 15-11
Display Instruction Command ••••••••• 15-11
Close and Display Next Location Command • • • 15-12
Display Range Command • • • • • • • • • 15-12
Indirect Command • • • • • • • • • • • • 15-13
Display Previous Location Command ••• 15-13
Show Value Command • • • • • • • • • 15-13
Step Instruction Command ••••••••••• 15-13
Step Instruction Over Subroutine Command • 15-14
Setting Breakpoints ••••••• 15-14
Clearing Breakpoints • • • • • • 15-14
Displaying Breakpoint List • • • • • • • 15-15
Setting Base Registers • • • • • • • • • • 15-15
Proceeding from Breakpoints • 15-15
Loading PC and Continuing • • 15-16
Display Mode Control • • • • • ••• 15-16
The EXECUTE STRING Command • • 15-16
Setting Complex Breakpoints • • • • • • 15-17
XDELTA Stored Commands •••• 15-17
Stored Base Registers •••• 15-18

DELTA • • • • • • • • • • • •••••••• 15-18
The EXIT Command • • • • • • • ••• 15-18
Examining and Modifying Locations in Process
Space • 15-18

GUIDELINES FOR DEBUGGING DEVICE DRIVERS • 15-19
• 15-19
• 15-19

References to System Addresses •••••
Opening Device Registers in XDELTA ••
Incorrect References to Device Registers •
XDELTA and System Failures •••••••

• • 15-19
• 15-20

THE I/O DATA BASE

CONFIGURATION CONTROL BLOCK (ACF) • • • • • •
ADAPTER CONTROL BLOCK (ADP) • • • • • • • • •
CHANNEL CONTROL BLOCK (CCB)
CHANNEL REQUEST BLOCK (CRB) • • • • • •
DEVICE DATA BLOCK (DDB)

• • A-1
•• A-3
• • A-8
•• A-9

A-15
A-16 DRIVER DISPATCH TABLE (DDT)

DRIVER PROLOGUE TABLE (DPT)
INTERRUPT DISPATCH BLOCK (IDB)
I/O REQUEST PACKET (!RP) • • •

• • • • • • • • A-19
• • • • • A-22

I/O REQUEST PACKET EXTENSION (IRPE)
UNIT CONTROL BLOCK (UCB) • • • • • •

VAX/VMS MACROS INVOKED BY DRIVERS

OPERATING SYSTEM ROUTINES

• • • • • • A-24
A-31
A-33

SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER

SAMPLE DRIVER FOR DRll-W DEVICES

MASSBUS ADAPTER

MASSBUS ADAPTER REGISTERS • • • • • • • • • • F-2
Loading MASSBUS Adapter Registers •• F-3
MASSBUS Adapter Registers and Offsets ••••• F-4

viii

F .1. 3
F.2
F.3
F.4
F.4.1
F.4.2
F.5
F.5.1
F.5.2
F.5.3
F.5.3.1
F.5.3.2
F.5.3.3
F.5.4
F.6
F.6.1

F.6.2
F.6.3

APPENDIX G

INDEX

GLOSSARY

FIGURE 1-1
1-2
1-3
1-4
2-1
2-2
3-1

3-2
3-3
3-4
3-5
4-1
4-2
4-3
4-4
5-1
5-2
5-3

5-4
5-5
5-6
5-7
5-8
6-1
8-1

8-2

9-1
11-1

CONTENTS
Page

Modification of MASSBUS Adapter Registers • • • F-5
I/O DATA BASE FOR MASSBUS DEVICES • F-6
MASSBUS ADAPTER OPERATIONS • • • • • • • • • • F-8
MASSBUS ADAPTER INTERRUPT DISPATCHING • • F-9

Checking for MASSBUS Adapter Ownership ••
Dispatching the Interrupt ••••••••••

SPECIAL MBA CONSIDERATIONS FOR DRIVERS •••••

• F-9
F-10
F-10
F-10 Considerations for Unit Initialization Routines

The MASSBUS Adapter and the I/O Data Base
Considerations for the Start I/O Routine •

F-11
F-12
F-12
F-12
F-13
F-13

Requesting Controller Data Channels
Loading Map Registers ••••••
Releasing Controller Data Channels •

Considerations for the DPTAB Macro •
INTERRUPT SERVICE ROUTINES FOR MASSBUS DEVICES •

Transferring Control to the Interrupt Service
F-13

Routine ..•.•....•......... F-14
F-14
F-15

Returning Control to MBA$INT • • • • • • • • •
Considerations for Interrupt Service Routines

UNIBUS ADDRESSES FOR VAX-11 PROCESSORS

FIGURES

VAX/VMS Calls to Driver Routines ••
The I/O Data Base • • • • • • • •
Processing a Sample I/O Operation
VAX-11 Hardware Configuration
A Line Printer Write Function
Locating a Function Decision Table
Interrupt Dispatching of a Nondirect Vector

• 1-3
• • 1-6

1-12
1-15

2-2
• • 2-4

Interrupt • • • • • • • • • • • • • • •• 3-6
Interrupt Dispatching of a Direct Vector Interrupt 3-7
IPL Conventions During I/O Processing 3-11
IPL Conventions During I/O Completion 3-12
Fork Dispatching Data Structure 3-15
UNIBUS to Physical Address Mapping • • • • • 4-3
VAX-11/780 UNIBUS Adapter Registers • • • • • • 4-9
VAX-11/750 UNIBUS Adapter Registers • • • • • • 4-10
VAX-11/730 UNIBUS Adapter Map Register 4-11
Sequence of Driver Execution • • • • • 5-2
Locating the Target Device • • • • • • • 5-4
Data Structures for Three Devices on One
Controller •••••••••••••••••••• 5-5
I/O Data Base for Two Controllers ••••• 5-6
Driver Function Decision Table • • • • 5-9
FDT Routines and I/O Preprocessing • • • • • 5-11
Creating a Fork Process After an Interrupt • 5-14
Reactivation of a Driver Fork Process 5-15
Driver Operation • • • • • • • • • • • • • • • 6-2
Queue I/O Request Scan of a Function Decision
Table • • • • • • • • • • . • • • • • • • • • 8-3
Format of System Buffer for Buffered I/O Read
Operations •••••••••••••
Driver Insertion into Channel Wait Queue
Interrupt Handling Flow •••••

ix

8-6
• • 9-3

11-2

TABLE

11-2

15-1

15-2

15-3

15-4
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
F-1
F-2

F-3
F-4
F-5

3-1
7-1
8-1
8-2
15-1
A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
F-1

CONTENTS

Channel Request Block Containing an Interrupt
Service Routine Address ••••••••••
Bootstrapping the System with XDELTA on a
VAX-11/780 •••••••••••••••••
Bootstrapping the System with XDELTA on a
VAX-11/750 •••••••••••••
Bootstrapping the System with XDELTA on a

Page

11-4

15-2

15-3

VAX-11/730 ••••••••••••••••••• 15-4
15-5 Loading a Driver • • • • • •••

Configuration Control Block
Adapter Control Block • • • • • • • •
Channel Control Block • • • •
Channel Request Block
Contents of CRB$L INTD
Device Data Block-
Driver Dispatch Table ••••
Driver Prologue Table ••••
Interrupt Dispatch Block •

• A-2
• A-4

•• A-8
A-9

• • • • A-12
A-15
A-17
A-19

I/O Request Packet • • • • • • • •
A-23
A-25
A-32
A-34
A-43
A-44

I/O Request Packet Extension • • • • •
Unit Control Block •••••••••
UCB Error Log Extension •••••••••
UCB Disk Extension ••••••••••••
MASSBUS Configuration • • ••••
Location of MASSBUS Registers in Physical Address

F-2

Space . F-5
I/O Data Base for MASSBUS Disk Unit ••••••• F-6
I/O Data Base for MASSBUS Disk and Tape Units F-7
I/O Data Structures Used in Dispatching an
Interrupt ••••••••••••••••••

TABLES

IPLs Defined by VAX/VMS • • • • • • • • • • •
VAX/VMS I/O Function Codes ••••••••••
Registers Loaded by Queue I/O Request Service
FDT Exit Methods •••••••••••••••
XDELTA Command Summary ••••••••••••
Contents of the Configuration Control Block

F-8

3-2
7-9

• • 8-2
8-4

• 15-10
A-2

•• A-4 Contents of Adapter Control Block
Contents of Channel Control Block
Contents of Channel Request Block
Fields of CRB$L INTD • • ••••

• • • • • A-8
A-10

• • • • • • • A-12
Contents of DevTce Data Block •••••
Contents of Driver Dispatch Table ••••
Contents of Driver Prologue Table •••••
Contents of Interrupt Dispatch Block
Contents of an I/O Request Packet • • • • •
Contents of the I/O Request Packet Extension ••
Contents of Unit Control Block •
UCB Error Log Extension • • • • • •

A-15
A-17
A-20
A-23
A-25
A-32
A-35
A-43
A-44 UCB Disk Extension •••••••

Major Offsets Defined by $MBADEF • F-4

x

PREFACE

The VAX/VMS Guide to Writing a Device Driver provides the information
needed to write -a device driver that runs under VAX/VMS Version 3.0
and to load that driver into the operating system. VAX/VMS makes no
guarantee that drivers written for VAX/VMS Versions 1.0, through 1.6
and 2.0 through 2.5 will execute without modification on. subsequent
versions of the operating system. While the intent is to maintain the
existing interface, some unavoidable changes may occur as new features
are added. The use of internal executive interfaces other than those
described in this manual is discouraged.

INTENDED AUDIENCE

This manual is intended for system programmers who are already
familiar with the VAX-11 processor and the VAX/VMS operating system.
The manual focuses on writing drivers for devices attached to the
UNIBUS; however, Appendix F provides the additional information
needed to write a driver for a device attached to the MASSBUS.

STRUCTURE OF THIS DOCUMENT

This manual is organized into two parts. The first part consists of
the following chapters, which introduce VAX/VMS device drivers and
those aspects of the VAX-11 processor and the VAX/VMS system that are
essential to drivers:

• Chapter 1 introduces the main concepts associated with drivers
on VAX/VMS.

• Chapter 2 describes an example of a line printer driver
handling a data transfer.

• Chapter 3 discusses synchronization mechanisms: interrupt
priority levels, fork processes and fork queues, and resource
wait queues.

• Chapter 4 discusses UNIBUS considerations for direct memory
access (DMA) transfers.

• Chapter 5 provides an overview of I/O processing and discusses
the interaction between device drivers and VAX/VMS.

The second part of this document is a series of "how to" chapters that
provide a sample approach to coding a device driver:

• Chapter 6 contains a template for writing a device driver.

• Chapter 7 details the macros that drivers invoke to create
necessary tables.

xi

PREFACE

• Chapter 8 describes the writing of function decision routines.

• Chapter 9 describes the writing of a start I/O routine.

• Chapter 10 describes the UNIBUS considerations for a start I/O
routine.

• Chapter 11 describes the writing of an interrupt service
routine.

• Chapter 12 describes the writing of I/O completion and device
timeout routines.

• Chapter 13 describes the
initialization routines,
error-logging routines.

writing of unit
I/O cancellation

and controller
routines, and

• Chapter 14 describes the loading of a driver into the system.

• Chapter 15 describes the debugging tool XDELTA that you can
use to debug a device driver.

• Appendix A describes the I/O data base in detail. This is an
important appendix for the programmer of a device driver.

• Appendix B describes the VAX/VMS macros that drivers can
invoke.

• Appendix C describes the VAX/VMS routines that device drivers
can call.

• Appendix D contains a sample driver for an analog-to-digital
converter.

• Appendix E contains a sample driver for two connected DRlls.

• Appendix F contains information needed to write a device
driver for a device attached to the MASSBUS.

• Appendix G lists
UNIBUS memory
processors.

the starting
address space

physical addresses for the
associated with the VAX-11

• The glossary at the end of this manual defines I/0-related and
driver-related terms.

ASSOCIATED DOCUMENTS

This document has the following prerequisites:

• VAX Hardware Handbook

• VAX/VMS Summary Description and Glossary

• I/0-related portions of the VAX/VMS System Services Reference
Manual

• The appendix on naming conventions in
Creating Modular Library Procedures

• VAX/VMS I/O User's Guide

xii

the VAX-11 Guide to

PREFACE

The following documents are associated with this manual:

• VAX/VMS System Dump Analyzer Reference Manual

• VAX/VMS System Management and Operations Guide

• VAX/VMS Internals and Data Structures

CONVENTIONS USED IN THIS DOCUMENT

This manual describes code transfer operations in three ways:

1. The phrase "issues a system service call" implies the use of
a CALL instruction.

2. The phrase "calls a routine" implies the use of a JSB or BSB
instruction.

3. The phrase "transfers control to" implies the use of a BRB,
BRW, or JMP instruction.

xiii

SUMMARY OF TECHNICAL CHANGES

This manual applies to Version 3.0 of VAX/VMS. The following list
summarizes the major technical changes from the Version 2.2 manual:

1. DPTAB macro arguments -- The DPTAB macro has two optional
arguments that allow drivers to control the SYSGEN utility's
automatic configuration of the devices they operate:

• The DEFUNITS argument
default number of units
controller.

Specifies to AUTOCONFIGURE a
to be configured for a given

• The DELIVER argument -- Specifies the address of a
driver-specific unit delivery action routine. See Chapter
7 and Chapter 14 for a discussion of these DPTAB
arguments.

2. DDTAB macro argument -- The DDTAB macro has an optional
argument, MNTVER, that specifies the address of a routine
called at the start and end of a mount verification
operation. See Chapter 7 for details.

3. SHOW command qualifiers The SYSGEN SHOW command has
additional qualifiers that display values within the system
configuration:

• SHOW/ADAPTER -- Displays adapter nexus values

• SHOW/CONFIGURATION -- Displays device CSR addresses,
vector addresses, and associated adapter nexus values

The SHOW command qualifiers are briefly described in Chapter
14.

4. Configuration Control Block (ACF) -- The SYSGEN
autoconfiguration facility uses this data structure to
describe the device it is currently adding to the
configuration. Appendix A contains a description of the
fields within the ACF.

5. The VAX-11/730 -- The following chapters describe features
specific to the VAX-11/730:

• Chapter 4 describes the VAX-11/730 UNIBUS adapter.

• Chapter 14 gives VAX-11/730 adapter nexus values.

• Chapter 15 describes how to bootstrap a VAX-11/7 30 with
XDELTA.

• Appendix G gives starting physical addresses for
VAX-11/7 30 UNIBUS memory address space.

xv

PART I
Introduction

CHAPTER 1

INTRODUCTION TO DEVICE DRIVERS

Under the VAX/VMS operating system,
routines gnd table§ that the system
a particular device type. In order
by the VAX/VMS system, you must
basic concepts:

a device driver is a set of
uses to process an I/O request for
to understand how drivers are used
become familiar with the following

• Machine dependence and independence

• Asynchronous nature of a device driver

• Fork processes

• Process and interrupt context

• Device dependence and device independence

• I/O data base

• Synchronization mechanisms

The beginning sections of this chapter describe the concepts listed
above. The later sections describe the more concrete aspects of
drivers, such as the functions they perform.

1.1 MACHINE DEPENDENCE AND MACHINE INDEPENDENCE

The VAX/VMS operating system can run on any of three VAX-11
processors: the VAX-11/780, VAX-11/750, or VAX-11/730. Although
these processors conform to the VAX-11 architecture, there are some
differences in design among the three machines. To achieve
machine-independence, follow the conventions outlined in this manual
when you write a device driver. The driver will then operate on any
processor without modification.

To aid in driver debugging, sections of this manual discuss certain
internal differences among the VAX-11/780, VAX-11/750, and the
VAX-11/730. This section defines several terms that describe the
hardware configuration of each of these processors in a
machine-independent manner:

• Backplane interconnect -- An internal
UNIBUS and MASSBUS adapters use to
memory and the central processor.

processor bus that
communicate with main

• UNIBUS adapter -- An interface device between the backplane
interconnect and a UNIBUS.

1-1

INTRODUCTION TO DEVICE DRIVERS

UNIBUS adapters may be direct vector or nondirect vector
devices. On a direct vector UNIBUS adapter, UNIBUS device
interrupts cause a direct processor interrupt that jumps to
vectors in page two (or three) of the system control block
(SCB). On nondirect vector UNIBUS adapters, UNIBUS device
interrupts cause a UNIBUS adapter interrupt and are dispatched
by the UNIBUS adapter interrupt service routine. Chapters 3
and 4 discuss these adapters in more detail.

• MASSBUS adapter -- An interface device between the backplane
interconnect and a MASSBUS.

• Interrupt dispatcher -- A combination of hardware and software
that routes UNIBUS and MASSBUS device interrupts to the
appropriate device driver interrupt service routine. The
interrupt dispatcher's routing mechanism works differently
depending upon whether the VAX-11 processor in use accepts
direct vector or nondirect vector UNIBUS interrupts and
whether the adapter in use is a MASSBUS or UNIBUS adapter.

• Physical address -- The physical memory that UNIBUS and
MASSBUS adapters address through the backplane interconnect.
The different VAX-11 processors have different amounts of
physical address space. Physical addresses of device
registers also vary with processor type.

1.2 COMPONENTS OF A DEVICE DRIVER

Normally, a device driver module consists of the following routines
and tables:

• An I/O preprocessing routine or routines that validate
device-specific parameters of an I/O request, format data,
allocate system buffers, and lock pages in memory

• A start I/O routine that activates the device

• An interrupt service routine that responds to interrupts from
the device unit

• An error recovery routine that retries I/O operations and
performs other error handling

• An error-logging routine that writes the contents of device
registers and other data into an error buffer for the system

• A cancel I/O routine that prevents further processing of an
I/O request

• An initialization routine that readies a device or
for operation when the system is bootstrapped
recovery from a power failure

controller
or during

• A driver prologue table that describes the driver and the
device type to the VAX/VMS procedure that loads drivers into
the system

• A driver dispatch table that lists the entry point addresses
of standard driver routines and records the size of diagnostic
and error-logging buffers for the device type

1-2

INTRODUCTION TO DEVICE DRIVERS

• A function decision table that lists all valid function codes
for the device and lists the addresses of I/O preprocessing
routines associated with each valid function

With a few exceptions, which are noted in Chapter 7, the order of the
various routines and tables within the driver module is not important.

1.3 ASYNCHRONOUS NATURE OF A DEVICE DRIVER

Using the driver tables and other information maintained by the driver
and the operating system, the system determines which routines to
activate and when they should be activated, as illustrated in Figure
1-1. For example, when a user process issues a Queue I/O Request
system service, the system service calls various driver routines to
perform preprocessing of the I/O request. Likewise, if a user process
issues a Cancel I/O on Channel system service, the system service
activates the driver's cancel I/O routine.

CONTROLLER
INITIALIZATION

DEVICE
UNIT

INITIALIZATION

LOG
DEVICE

ERRORS

1/0
OPERATION

SETUP

START
1/0

OPERATION

SERVICE
DEVICE

INTERRUPT

CANCEL
1/0

OPERATION

ZK-907-82

Figure 1-1: VAX/VMS Calls to Driver Routines

A device driver does not run from start to end. The system calls
driver routines and suspends and resumes them; the central processor
interrupts and reactivates driver routines. Because little sequential
processing of driver code occurs, VAX/VMS must assume the
responsibility for synchronizing the execution of the various driver
routines and synchronizing the execution of all drivers in the -system.
The VAX/VMS operating system synchronizes driver execution using fork
processes, interrupt priority levels, fork queues, and resource wait
queues, described in the following sections.

1-3

INTRODUCTION TO DEVICE DRIVERS

1.4 FORK PROCESSES

A fork process is a process that is created dynamically and has
minimal context. Fork processes execute entirely within the system
address space. The VAX/VMS operating system creates and schedules a
fork process by constructing a specialized control block called a fork
block, inserting the fork block in a· fork queue, and requesting a
software interrupt. Fork queues and fork process dispatching are
described further in Section 1.7.3.

A driver fork process has the following context:

• Three general registers

• Program counter (PC)

• A unit control block in the I/O data base that describes the
target device of the I/O request

The unit control block also contains the driver's fork block. Section
1.8 describes the unit control block and other control blocks in the
I/O data base.

Like other processes, fork processes can be suspended and interrupted.
VAX/VMS places a driver fork process in a wait state when the process
requests an unavailable resource, for example, a controller data
channel. The processor interrupts a fork process when the processor
receives a request for an interrupt at a higher priority level.

Driver fork processes execute at raised interrupt priority levels to
minimize the number of interruptions. Fork processes can raise the
priority level to 31 to block all other interrupts, if necessary.

The system automatically
processes and restores
reactivated. The operating
because the fork block and
nonpaged system memory.

saves registers for interrupted fork
these registers when the process is
system does not swap fork processes

all data about the fork process reside in

1.5 PROCESS CONTEXT AND INTERRUPT CONTEXT

Because a device driver consists of a number of routines that are
activated by VAX/VMS, the operating system for the most part
determines the context in which the routines execute. As an example,
consider the following write request that occurs without error:

• A user process executing in user mode issues a write Queue I/O
Request system service.

• The Queue I/O Request system service gains control in user
process context but in kernel mode.

• The system service uses the driver's function decision table
to call the appropriate preprocessing routines. These
routines, called FDT routines, execute in full process context
in kernel mode.

• When preprocessing is complete, a VAX/VMS routine creates a
fork process to execute the driver's start I/O routine in
kernel mode.

1-4

INTRODUCTION TO DEVICE DRIVERS

• The start I/O routine activates the device unit and suspends
itself. At this point, VAX/VMS suspends the fork process
executing the start I/O routine and saves sufficient context
to reactivate the start I/O routine at the point of
suspension.

• When the device completes the data transfer, it issues an
interrupt. The interrupt causes the system to activate the
driver's interrupt service routine.

• The interrupt service routine executes to handle the device
interrupt. It then causes the start I/O routine to resume in
interrupt context.

• The start I/O routine regains control in interrupt context but
almost immediately issues a request to the operating system to
transform its context to that of a fork process. This action
dismisses the interrupt.

• When reactivated in fork process context, the start I/O
routine performs device-specific I/O completion and passes
control to the system for additional I/O postprocessing.

• VAX/VMS I/O postprocessing performs processing at a software
interrupt priority level and then issues a kernel mode
asynchronous system trap (AST) for the user process requesting
I/O.

• When the kernel mode AST is delivered, the AST routine
executes in full process context at kernel mode to deliver
data and status to the process. If the original request
specified a user mode AST, the kernel mode AST queues it.

• When the user process gains control, the user's AST routine
executes in full process context in user mode.

It is essential, however, that the various driver routines not attempt
to exceed the limitations of the context in which they execute. The
majority of driver routines execute in fork process context.

1.6 DEVICE DEPENDENCE AND DEVICE INDEPENDENCE

The VAX/VMS approach to I/O is that the operating system should
perform as much of the processing of an I/O request as possible and
that drivers should restrict themselves to the device-specific aspects
of I/O processing. To accomplish this, the VAX/VMS operating system
provides drivers with the following services:

• The Queue I/O Request system service preprocesses an I/O
request by performing those functions and checks that are
common to all devices; for example, it validates the
arguments in the I/O request that are not device specific.
This type of preprocessing is called device-independent
preprocessing.

• The VAX/VMS operating system includes a number of routines
that drivers can call to perform I/O preprocessing, allocate
and deallocate resources, and synchronize driver execution.

• VAX/VMS I/O postprocessing performs the device-independent I/O
postprocessing for all I/O requests.

1-5

INTRODUCTION TO DEVICE DRIVERS

Thus, drivers can leave the device-independent I/O processing to the
operating system and concentrate on the device-dependent aspects of a
device unit; that is, those aspects that vary from device type to
device type. In addition, drivers can call the VAX/VMS system to
perform many functions that are device specific but common to several
devices.

1.7 THE I/O DATA BASE

Because a driver and the operating system cooperate to process an I/O
request, they must have a common I/O data base. Under VAX/VMS, the
I/O data base consists of three main parts:

• Driver tables that allow the system to load drivers, validate
device functions, and call drivers at their entry points

• Control blocks that describe every bus adapter, every device
type, every device unit, every controller, and every logical
path (channel) from a process to a device

• I/O request packets that define individual requests for I/O
activity

The three driver tables are defined in every driver. Section 1.2
lists these tables. Appendix A describes each of the control blocks
and the I/0 request packet in detail.

Figure 1-2 illustrates some of the relationships among VAX/VMS I/O
routines, the I/O data base, and a device driver.

1/0 REQUEST
PACKET

DESCRIBES
1/0 REQUEST

DDB FOR
DEVICE
TYPE

DRIVER
FDT

ROUTINE

PROCESS
CONTROL BLOCK

DESCRIBES
REQUESTING

PROCESS

UCB
DESCRIBES

DEVICE

DDT
LOCATES
DRIVER

DRIVER
START 1/0
ROUTINE

CCB
DESCRIBES

LOGICAL PATH
TO DEVICE

CRB
SYNCHRONIZES
CONTROLLER

DRIVER
INTERRUPT

SERVICE
ROUTINE

IDB
DESCRIBES

CONTROLLER

DRIVER
CONTROLLER

INITIALIZATION
ROUTINE

Figure 1-2: The I/O Data Base

1.7.1 Control Blocks In The I/O Data Base

Control blocks in the I/O data base
peripheral hardware. The VAX/VMS

1-6

permit access to
operating system

ADP
DESCRIBES

UBA

DEVICE
REGISTERS

and describe
creates these

INTRODUCTION TO DEVICE DRIVERS

control blocks either at system start-up or at the time a user-written
driver is loaded into the system. Drivers refer to some or all of the
following control blocks:

• Device data block (DDB)

• Unit control block (UCB)

• Channel request block (CRB)

• Interrupt dispatch block (IDB)

• Adapter control block (ADP)

• Channel control block (CCB)

1.7.1.1 Device Data Block - A device data block contains information
common to all devices of the same type that are connected to a
particular controller. It records the generic device name
concatenated with the controller designator, and the driver name and
location for those devices. In addition, the device data block
contains a pointer to the first unit control block for the device
units attached to the controller.

1.7.1.2 Unit Control Block - The system defines a unit control block
for each device a~tached to the system. A unit control block defines
the characteristics and current state of an individual device unit.
In addition, it contains the fork block used by the unit's device
driver and the listhead for the queue of pending I/O request packets
for the unit. Because drivers execute as fork processes that are
created for each I/O operation on a unit, the unit control blocks are
the focal point of the I/O data base. When a driver is suspended or
interrupted, the UCB fork block holds the driver's context.

1.7.1.3 Channel Request Block - The operating system creates a
channel request block for each controller. A channel request block
defines the current state of the controller and lists the devices
waiting for the controller's data channel. In addition, it contains
the code that dispatches a device interrupt to the interrupt service
routine for that unit's driver.

1.7.1.4 Interrupt Dispatch Block - The system creates an interrupt
dispatch block for each controller. An interrupt dispatch block lists
the device units associated with a controller and points to the unit
control block of the device unit that the controller is currently
serv1c1ng. In addition, an interrupt dispatch block points to device
registers and the controller's UNIBUS adapter.

1.7.1.5 Adapter Control Block - An adapter control block defines the
characteristics and current state of a UNIBUS or MASSBUS adapter. An
adapter control block for the UNIBUS adapter contains the queues and
allocation bit maps necessary to allocate adapter resources. VAX/VMS
provides routines that drivers can call to interface with their UNIBUS
adapter.

1-7

INTRODUCTION TO DeVICE DRIVERS

1.7.1.6 Channel Control Block - A channel is a logical path between a
process and the unit control block of a specific device unit. The
channel control block describes this path. Each process owns a number
of channel control blocks. When a process issues the Assign I/O
Channel system service, the system writes a description of the
assigned device to the channel control block. Unlike the data
structures mentioned earlier, a channel control block is not located
in nonpaged system space, but in the process's control region (Pl
space) •

1.7.2 I/O Request Packets

The third part of the I/O data base is a list of I/O request packets
(IRPs). When a process requests I/O activity, the operating system
constructs a packet of data, called an I/O request packet, that
describes the I/O request in standard form.

The I/O request packet contains fields into which the system and
driver I/O preprocessing routines can write information, such as
device-dependent parameters specified in the call to the Queue I/O
Request system service. Later, the system sends the I/O request
packet to the device driver start I/O routine. The driver start I/O
routine uses the packet as its source of detailed instructions about
the operation to be performed. The packet includes buffer addresses,
a pointer to the target device, I/O function code, and further
pointers to the I/O data base.

1.8 SYNCHRONIZATION

The VAX/VMS operating system uses hardware and software interrupt
priority levels (IPLs} with their associated interrupts, fork queues,
and resource wait queues to synchronize the execution of all drivers
within the system and to synchronize execution of various routines
within a driver.

1.8.1 Interrupt Priority Levels

The VAX-11 processor defines 32 interrupt priority levels (0 through
31). The higher numbered IPLs are reserved for hardware interrupts,
for example, device interrupts. The operating system uses the lower
numbered IPLs. A higher IPL always takes precedence over a lower IPL.
The VAX Hardware Handbook describes the VAX-11 processors' use of
IPLs-.~The following IPLs are of particular interest to drivers:

• Hardware device IPLs (20 through 23);
service routines execute at these IPLs.

driver interrupt

• Driver fork processing IPLs (8 through 11);
processes execute at these IPLs.

driver fork

• I/O completion IPL (IPL 4); VAX/VMS gains control to begin
its device-independent I/O postprocessing at this IPL.

• AST delivery IPL (IPL 2); VAX/VMS uses this IPL to coordinate
the delivery of an AST to a user process. The Queue I/O
Request system service also executes at this IPL.

1-8

INTRODUCTION TO DEVICE DRIVERS

1.8.2 Device Interrupts

When the processor grants a device interrupt, the processor and the
VAX/VMS interrupt dispatcher save the current process context. The
processor pushes the PC and PSL at the time of the interrupt onto the
interrupt stack. In addition, the interrupt dispatcher saves RO
through RS on the stack.

The interrupt service routine activated as a result of the interrupt
follows conventions to preserve all other context of the interrupted
process, as follows:

• Uses only RO through RS

• Cleans up the stack after use

When the interrupt has been
routine restores RO through
the previous PC and PSL of
process then resumes
interruption.

1.8.3 Fork Queues

serviced, the driver interrupt service
RS from the stack. The processor restores
the interrupted code. The interrupted

execution without any awareness of the

When an interrupt service routine completes the handling of a device
interrupt, it transfers control to the driver to complete
device-dependent processing of the I/O request. When the driver
regains control, it is executing at device IPL. Almost immediately,
the driver should lower IPL to driver fork IPL so that it does not
block other device interrupts. A driver lowers IPL by invoking a
VAX/VMS macro that creates a fork process to execute at driver fork
IPL.

Each driver fork IPL has an associated fork queue. A VAX/VMS macro
queues the driver's fork block in the fork queue that corresponds to
the driver's fork IPL and issues a software interrupt request for that
IPL. When the software interrupt is granted, the VAX/VMS fork
dispatcher dequeues fork blocks from the driver fork queues and
reactivates the driver at the point following the macro invocation.

1.8.4 Resource Wait Queues

Drivers compete for the following shared resources:

• Central processor

• UNIBUS adapter mapping registers, if the device is a DMA
device

• UNIBUS adapter buffered data paths, if the device is a DMA
device

• The controller data channel if the device is attached to a
multiunit controller

When a driver fork process needs an unavailable resource, VAX/VMS
resource management routines perform the following steps:

1-9

INTRODUCTION TO DEVICE DRIVERS

• Save fork process context in the device's UCB fork block

• Insert the address of the UCB fork block in a resource wait
queue

• Suspend the driver fork process

When another driver fork process frees
VAX/VMS resource management routines
reactivate the next driver fork process:

the necessary resource, the
take the following steps to

• Remove the next UCB fork block from the resource wait queue

• Restore fork process context into the registers

• Reactivate the suspended driver fork process

The VAX/VMS resource management routines allow the driver fork process
to be unaware of its suspension and reactivation.

1.9 FUNCTIONS OF A DEVICE DRIVER

A VAX/VMS device driver controls I/O operations on a peripheral device
by performing the following functions:

• Defines the peripheral device for the rest of VAX/VMS

• Defines the driver for the system procedure that loads the
driver into system virtual address space and that creates the
driver's associated data structures

• Readies the device and/or its controller for operation at
system start-up and during recovery from a power failure

• Performs device-dependent I/O preprocessing

• Translates programmed requests for I/O
device-specific commands

• Activates the device

operations

• Responds to hardware interrupts generated by the device

• Responds to device timeout conditions

• Responds to requests to cancel I/O on the device

• Reports device errors to an error-logging program

into

• Returns status from the device to the process that requested
the I/O operation

The driver prologue table, described
first two functions listed above.
remaining functions.

1.9.1 Initialization Routines

in Section 7.1,
Driver routines

performs
perform

the
the

Most device controllers and device units require initialization when
the VAX/VMS driver loading procedure loads the driver into memory and
when the VAX/VMS system recovers from a power failure. The amount an.d

1-10

INTRODUCTION TO DEVICE DRIVERS

type of initialization
Section 13.1 provides
initialization routines.

varies from device type to
additional information about

device type.
device driver

1.9.2 FDT Routines

Every driver contains a function decision table (FDT) that indicates
the I/O preprocessing routines that are to be executed for various
functions on the device. When a user process issues a Queue I/O
Request system service, the system service uses the I/O function code
specified in the request to select one or more FDT routines for
execution. FDT routines perform such functions as allocating buffers,
locking pages in memory, and validating device-dependent parameters
(Pl through P6) of the I/O request.

The driver contains FDT routines that are device-dependent. VAX/VMS
provides additional FDT routines that perform processing common to
many I/O functions, as described in Section 8.7. It is advisable for
drivers to use FDT routines supplied by the operating system whenever
possible.

Because FDT routines are called by the Queue I/O Request system
service, they execute in full user process context. As a result, FDT
routines have access to user-specified buffers located in the process
address space; these buffers are not available to driver routines
executing in fork context.

1.9.3 Start I/O Routine

The start I/O routine executes in a driver fork process to perform the
following device-dependent functions:

• Translate the I/O function code into a device-specific command

• Transfer the details of the request from the I/O request
packet to the device's unit control block

• Obtain access to the controller if it is a
controller

• Obtain the necessary UNIBUS resources if the
direct memory access (DMA)

• Modify the device registers to activate the device

• Perform device-dependent I/O postprocessing after
occurs

multi unit

transfer is

the transfer

The start I/O routine may be forced to wait for the controller or
UNIBUS resources to become available. In either case, VAX/VMS
suspends the routine and reactivates it when the resources are free.
Section 1.8.4 describes the context that VAX/VMS saves for the
suspended routine.

After activating the device, the start I/O routine invokes the VAX/VMS
wait for interrupt macro. The wait for interrupt macro suspends the
driver. The driver remains suspended until the driver's interrupt
service routine handles the interrupt and returns control to the
driver. At that point, the driver performs device-dependent I/O
postprocessing and then transfers control to VAX/VMS for
device-independent I/O postprocessing.

1-11

INTRODUCTION TO DEVICE DRIVERS

1.9.4 Interrupt Service Routine

When a device interrupt occurs, VAX/VMS transfers control to the
device driver's interrupt service routine in interrupt context. The
interrupt service routine determines whether the interrupt was
ex-pected or not and takes the appropriate action. Then the interrupt
service routine reactivates the driver for I/O postprocessing.

1.9.5 Device Timeout Handler

As the result of an error condition or a device's being offline, it is
possible for a device to fail to complete a transfer in a reasonable
period of time. This condition is called device timeout. When a
start I/O routine invokes the wait for interrupt macro, it specifies
the time interval in which the device can complete a transfer without
timing out and the name of a timeout handler that the system is to
invoke in the case of a timeout. This information is recorded in the
device's unit control block.

Once every second, the VAX/VMS system timer checks all devices in the
system for device timeout. When it locates a device that has timed
out, it calls the timeout handler.

1.9.6 Cancel I/O Routine

VAX/VMS provides the Cancel I/O on Channel system service that user
processes can call to cancel I/O requests. The Cancel I/O on Channel
system service, in turn, calls the driver's cancel I/O routine.
VAX/VMS also calls the driver's cancel I/O routine when the device's
reference count goes to zero; that is, when all users that assigned
channels to the device have deassigned them.

1.9.7 Error-logging Routine

The driver's error-logging routine fills an error log buffer with
information about the error, for example, the register contentsat the
time of the error. VAX/VMS provides a routine that drivers can call
to allocate an error log buffer and transfer control to the register
d ump r o u t i n e •

1.10 AN EXAMPLE OF A UNIBUS I/O REQUEST

Figure 1-3 illustrates how the VAX/VMS operating system and the device
driver process a user process request for a read I/O operation on a
DMA UNIBUS device.

QIO DRIVER
OPERATING DRIVER OPERATING

USER
SERVICE READ

SYSTEM STARTS SYSTEM
PROCESS

t--+I ROUTINE ~ FUNCTION ~ ~ DEVICE ~ SAVES
REQUESTS

VALIDATES VALIDATES
CALLS

& WAITS FOR DRIVER
1/0

REQUEST REQUEST
DRIVER

INTERRUPT STATE

DRIVER OPERATING
USER

DEVICE INTERRUPT DRIVER SYSTEM
GENERATES ~ HANDLER ~ COLLECTS ~ COPIES ~

PROCESS
READS DATA

INTERRUPT RESTORES STATUS DATA AND
& STATUS

DRIVER STATE STATUS

ZK-909-82

Figure 1-3: Processing a Sample I/O Operation

1-12

INTRODUCTION TO DEVICE DRIVERS

The processing of the sample I/O request illustrated in Figure 1-3
occurs in the following steps:

• A process requests I/O operation. A user process requests
data from the device by issuing either of the following:

A VAX-11 RMS get record function call (which results in a
Queue I/O request)

A Queue I/O Request system service

The user process specifies the target device, a read function
code, and the address of a buffer in which the data is to be
read.

• The operating system performs I/O preprocessing. The Queue
I/O Request system service validates the request and locates
I/O data base control blocks that describe the device and its
driver. The system service also allocates and initializes an
I/O packet to contain a description of the I/O request. The
system service then calls a read function routine in the
driver.

• The driver performs I/O preprocessing. The driver function
decision table routine verifies that the user buffer resides
in virtual memory pages that can be modified by the requesting
process, locks the buffer pages in memory, and adds details of
the I/O operation to the I/O request packet. The read FDT
routine then calls the operating system to send the I/O
request packet to the driver.

• VAX/VMS creates a driver fork process. A VAX/VMS routine
creates a fork process in which the device driver can execute.
The routine activates the driver fork process by transferring
control to the driver's start I/O routine.

• The driver readies the UNIBUS adapter. For DMA transfers, the
driver fork process calls VAX/VMS routines that control the
UNIBUS adapter hardware to map UNIBUS addresses into physical
addresses for the transfer.

• The driver activates the device. The fork process activates
the device by setting bits in device registers.

• The driver waits for an interrupt. A VAX/VMS routine saves
the context of the driver fork process and relinquishes the
processor until an interrupt occurs.

• The device requests an interrupt. When the data transfer is
complete, the device requests a hardware interrupt that causes
the system to dispatch to the driver's interrupt service
routine.

• The driver services the interrupt. The
service routine handles the interrupt
driver, which reads device registers
information about the transfer.

driver's interrupt
and reactivates the

to obtain status

• The operating system inserts the driver in a fork queue. The
driver requests that the process be reactivated at a lower
software interrupt priority level.

• The fork dispatcher reactivates the driver fork process. When
processor priority permits, the VAX/VMS fork dispatcher
reactivates the driver as a fork process.

1-13

INTRODUCTION TO DEVICE DRIVERS

• The driver completes the I/O operation. The driver fork
process completes device-dependent I/O processing of the I/O
request and returns the I/O status to VAX/VMS.

• VAX/VMS completes the I/O operation. The
postprocessing routines copy the I/O status
address space and/or general registers and return
the user process.

VAX/VMS I/O
into process
control to

Of the thirteen steps listed above, only ~our describe driver I/O
preprocessing and driver fork processing. The VAX/VMS I/O support
routines perform all I/O processing common to many or all I/O
requests. Even in device driver routines, driver writing is
simplified by the use of VAX/VMS routines that handle
device-independent functions.

The thirteen-step example condenses and simplifies the processing of
an I/O operation by ignoring such issues as the following:

• Association of a device with a process;
assignment

• Simultaneous I/O requests for one device

• Hardware interrupt priority levels

that is, device

• Driver competition for shared system and UNIBUS adapter
resources

• Driver competition for I/O activity through a multiunit
controller

• Driver recovery from device errors or power failure

Later chapters discuss each of these issues in relation to device
drivers.

1.11 THE UNIBUS

On a VAX-11 system, the backplane interconnect connects the central
processor to memory. The backplane interconnect also connects the
UNIBUS adapter and MASSBUS adapter to memory and to the central
processor. Peripheral devices attach to either the UNIBUS, for UNIBUS
devices, or the MASSBUS, for MASSBUS devices, as illustrated in Figure
1-4.

The VAX Hardware Handbook describes the hardware components diagrammed
in Figure 4-1.

VAX/VMS provides device drivers
supported by DIGITAL. These
MASSBUS or the UNIBUS.

for a
devices

number of standard devices
are connected to either the

Nonstandard devices, that is, customer-supplied devices, normally are
connected to the UNIBUS, but can also be attached to the MASSBUS or to
the DR32 device interconnect. DIGITAL supplies a device driver and an
application library for the DR32 device; see the chapter on the DR32
Interface Driver in the VAX/VMS I/O User's Guide for further
information.

1-14

INTRODUCTION TO DEVICE DRIVERS

To activate a direct memory access {DMA) transfer on the UNIBUS, a
driver must first obtain mapping registers, and, optionally, a
buffered data path. The driver calls VAX/VMS routines that interface
with the UNIBUS adapter to allocate these resources on behalf of the
driver.

The direct data path maps each UNIBUS transfer to a backplane
interconnect transfer. For each UNIBUS transfer, there is one
backplane interconnect transfer. Each backplane interconnect
operation transfers a single word or byte of data depending on the
device. A buffered data path, on the other hand, allows multiple
UNIBUS transfers to be assembled and transferred in one backplane
interconnect operation.

Drivers performing other than DMA transfers are generally not
concerned with UNIBUS adapter operation.

Instead of creating a complete device driver for a device that does
not perform DMA transfers, you can connect the process to the device
interrupt vector to program the device from a user process. For a
description of how and when to connect to an interrupt vector, consult
the VAX/VMS Real-Time User's Guide.

DEVICE

C/)

:::>
DEVICE

co
z UNIBUS
:::> ADAPTER

I- CPU ()
UJ

DEVICE z
z
0
()
a:
a: MEMORY
UJ
I-
~
UJ
z
<(
....J MEMORY a..
~
()
<(

DEVICE
m

C/)

:::>
co
C/) MASS BUS
C/)

<1'. ADAPTER
~

DEVICE

ZK-910-82

Figure 1-4: VAX-11 Hardware Configuration

1-15

INTRODUCTION TO DEVICE DRIVERS

1.12 PROGRAMMED I/O AND DIRECT MEMORY ACCESS I/O

Devices transfer data using one of the following methods:

• Programmed I/O

• Direct memory access (DMA) transfers

Devices that perform programmed I/O transfer data as single words or
bytes using device registers. After each transfer completes, the
device notifies the central processor.

Devices that perform DMA transfers do not require the central
processor so frequently. Once the driver activates the device, the
device can transfer a large amount of data without requesting an
interrupt after each of the smaller amounts. Normally, the driver of
a DMA device allocates a UNIBUS buffered data path and UNIBUS map
registers f~r I/O transfers.

1.13 BUFFERED I/O AND DIRECT I/O

Drivers can perform I/O transfers using either of the following
methods:

• Buffered I/O

• Direct I/O

Buffered I/O allows data to be buffered in system address space. When
the transfer is complete, the data is transferred to the user
process's buffer. The driver can refer to the buffer in system space
using system virtual addresses. Often, a driver uses buffered I/O for
devices that perform programmed I/O, for example, line printers and
card readers.

Direct I/O allows data to be placed directly in the user process's
buffer. The driver must lock the pages containing the buffer in
physical memory and refer to them using page frame numbers (PFNs) •
Normally, a driver uses direct I/O and a buffered data path for
devices that perform DMA transfers.

The trade-off between buffered I/O and direct I/O is the time required
to move the data into the user's buffer versus the time required to
lock the buffer pages in memory. Chapter 8 provides additional
information.

1.14 LOADABLE DRIVERS

The VAX/VMS operating system provides a procedure that allows a
suitably privileged user to load drivers into a running VAX/VMS
system. The System Generation Utility (SYSGEN) described in full in
the VAX-11 Utilities Reference Manual, supports commands that invoke
the driver loading procedure:

• LOAD -- to load a driver into the system

• CONNECT to create the I/O data base for additional devices
of the same type

• RELOAD -- to load a previously loaded driver

1-16

INTRODUCTION TO DEVICE DRIVERS

The driver loading procedure uses information provided in the LOAD
command and information contained in driver tables to load the driver
into virtual memory and create the associated data base. The driver
prologue table, which must be the first generated code in the driver
module, contains the information that the loading procedure needs.
Specifically, the driver prologue table contains the following:

• Address of the end of the driver; the loading procedure uses
this to determine the size of the driver

• Driver loader flags that indicate whether the device needs a
system page table entry and whether the driver can be reloaded

• Size of the unit control block

• Address of a routine to call if the driver is reloaded

• Name of the device driver module

The driver prologue table is followed by two lists of fields that
require initialization:

• I/O data base fields to be initialized the first time the
driver is loaded

• Fields to be initialized every time the driver is reloaded,
that is, without an intervening bootstrap of the system

With the information provided in the driver prologue table and the two
lists of fields, the driver loading procedure can both load and reload
drivers and perform the I/O data base initialization that is
appropriate to either situation.

1-17

CHAPTER 2

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

The LPll is a buffered line printer. A user process can request the
following functions for this printer:

• Write data to the line printer

• Read the line printer's device characteristics

• Alter the line printer's device characteristics

This chapter describes the following aspects of line printer I/O
processing:

• The portions of the VAX/VMS device driver for an LPll line
printer that are used in servicing a write request

• The VAX/VMS components with which the driver interacts to
process the write request

The LPll was selected for this discussion because it is a simple
driver but still illustrates many driver principles. Although the
LPll is usually spooled, for purposes of this discussion, assume that
it is not spooled.

The first-time reader of this document may not understand all of the
points made in this chapter; however, the chapter should provide some
insight into driver flow and I/O processing.

Figure 2-1 illustrates the flow of execution through VAX/VMS routines
and the line printer driver to satisfy this I/O request.

The double-sided boxes in Figure 2-1 indicate processing performed by
driver subroutines. Boxes shown above the dotted line indicate
processing in the context of the user process. Boxes below the dotted
line indicate processing in fork or interrupt context.

2.1 DRIVER CODE FOR THE LPll WRITE FUNCTION

The VAX/VMS device driver for an LPll line printer implements a write
function using the following parts of the driver:

• An FDT routine that reformats the user-supplied data

• A driver start I/O routine that writes data to the device
print buffer until the printer enters a busy state to print
the contents of the buff er

2-1

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

• Code that modifies a device register to enable interrupts from
the line printer

• A driver interrupt service routine that returns control to the
driver fork process after a hardware interrupt from the line
printer

• Code that returns I/O status to a VAX/VMS I/O completion
routine

010
VALIDATION

FDT
SUBROUTINE

KERNEL
MODE

AST

USER

------1:---- ~ CONTEXT -----+-----
SYSTEM
CONTEXT

DEVICE
GOES

INTO BUSY
STATE

l
SUSPEND
DRIVER

DEVICE
GENERATES
INTERRUPT

DELIVER
IRPTO

DRIVER

•
DRIVER

WRITE TO
DEVICE

OPERATING
SYSTEM

DISPATCHES
INTERRUPT

QUEUE
IRPTO

~ POST-
PROCESSOR

1
DRIVER
RETURN
STATUS

1
INTERRUPT
HANDLER

1/0
..__ _ _,.._ POST-

PROCESSOR

Figure 2-1: A Line Printer Write Function

2-2

ZK-911-82

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

2.2 A USER PROCESS'S I/O REQUEST

A user process writes a line to the printer by issuing a Queue I/O
Request system service call that specifies the write virtual block
function code, as follows:

$QIO S CHAN = CHANNEL NUMBER,­
FUNC = #IO$ WRITEVBLK,­
EFN = #6,- -
IOSB = STATUS BLOCK,­
Pl BUFFER ADDRESS,­
P2 #BUFFER SIZE,­
P4 i~X30 -

The parameters Pl, P2, and P4 are device-dependent parameters.

2.3 I/O PREPROCESSING BY VAX/VMS

When called, the Queue I/O Request system service first validates that
the I/O request is correctly specified; that is, the I/O request must
meet the following criteria:

• The location CHANNEL NUMBER must contain a channel number that
serves as an index into the process I/O channel list. The
process must have previously assigned the line printer device
to this process channel using the Assign I/O Channel system
service.

During verification of the channel number, the Queue I/O
Request system service obtains the address of the line printer
driver's function decision table (FDT). Figure 2-2
illustrates the chain of pointers from the channel index
number to the FDT address. As a result of chaining through
the I/O data base, the Queue I/O Request system service also
determines what device is the target of the request.

• The line printer FDT must list IO$ WRITEVBLK as a valid
function for the device.

• The event flag number must be valid.

• The process buffered I/O request quota must permit the Queue
I/O Request system service to perform a buffered I/O request
without exceeding the process's quotas.

• The process must have write access to the user-specified
location to be used as an I/O status block.

If all of the checks described above succeed, the
system service creates an I/O request packet
address space. The service then writes all known
I/O request into the I/O request packet.

Queue I/O Request
in nonpaged system

details about the

If the target device for the I/O request is not file-structured, the
Queue I/O Request system service changes any virtual function code to
its logical equivalent when it builds the I/O request packet. Thus,
for a line printer device, IO$ WRITEVBLK is translated to
IO$ WRITELBLK.

2-3

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

CHANNEL
CONTROL _..,

BLOCK --
(CCB) UNIT

CONTROL _..,
BLOCK -
(UCB) DRIVER

DISPATCH -TABLE
(DDT) FUNCTION

DECISION
TABLE
(FDT)

ZK-582-81

Figure 2-2: Locating a Function Decision Table

2.4 I/O PREPROCESSING BY THE DRIVER

Once it has validated the I/O request, the Queue I/O Request system
service scans the function decision table for an entry that associates
the IO$ WRITELBLK function code with an FDT routine. The system
service calls the routine, which in the case of the line printer
driver is a device-specific routine located in the line printer device
driver.

The FDT routine confirms that the requesting process has read access
to the buffer starting at BUFFER ADDRESS. Then, the FDT routine
buffers data from the process address-space into system address space
in the following steps:

• It calculates the length of the required system space buffer.

• If the process byte count quota for buffered I/O (BYTCNT)
permits, the routine allocates a buffer from system address
space, stores the address of the buffer in the I/O request
packet, and decreases the current process byte count quota.

• It then synchronizes with other possible subprocessesl to read
and write fields of the line printer's unit control block.

• It reads the description of the line printer's current line
and page position from the device's unit control block.

• It reformats the data from the process buffer into the system
buffer, adding carriage control characters, as specified in
the I/O request argument P4, before and after the data.

Formatting includes such functions as the replacement of
horizontal tabs with multiple spaces and the replacement of
lowercase characters with uppercase characters, if necessary.

1. For example, if a process allocates a printer, it is possible for
the process and any of its subprocesses to issue write requests to the
printer concurrently.

2-4

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

• It rewrites updated line and page positions into the device's
UCB. This information indicates what the current location on
the page being printed will be where the request completes.

• Finally, the routine transfers control to a VAX/VMS routine
that queues the I/O packet to the device driver.

All of the I/O processing described to this point occurs in the
context of the user~s process. The user address space is mapped, and
the processor's interrupt priority level (IPL) is still low enough to
permit process scheduling and paging. Subsequent queuing of the
transfer request to the driver and all resulting driver processing
occur at higher interrupt priority levels that synchronize driver
handling of the device, as described in Chapter 3.

2.5 QUEUING THE I/O PACKET TO THE DRIVER

Before queuing the I/O request packet to the proper driver, the
VAX/VMS queuing routine raises the interrupt priority level to the
driver fork level (UCB$B FIPL) stored in the unit control block.
Raising IPL to fork level synchronizes driver access to the unit
control block.

If the device is idle, that is, if the busy bit (UCB$V BSY) in the I/O
status word of the unit control block is clear, VAX/VMS can transfer
control to the driver. The driver dispatch table contains the entry
point to the driver's start I/O routine. To find the proper entry
point, the queuing routine chains through the I/O data base to the
driver dispatch table, as follows:

UCB ~ DDT ~ Entry point to start I/O routine

If the device unit is busy with another transfer, VAX/VMS inserts the
I/O request packet in a queue of packets waiting for the unit. The
unit control block contains the head of the queue. The packet's
position in the queue depends on the scheduling priority of the
process issuing the request.

2.6 DRIVER DEVICE ACTIVATION

The LPll line printer controller accepts data into a device data
buffer until the print buffer is full or the driver writes a carriage
control character into the print buffer. When either event occurs,
the line printer sets a busy bit in the device's control/status
register. Then a device driver sets the interrupt enable bit in the
device's control/status register and waits for the printer to
interrupt. When the line printer requests a hardware interrupt, the
driver can resume putting characters in the print buffer.

The line printer driver routine writes to the line printer data buffer
according to the following sequence:

1. The driver locates the LPll device registers using a chain of
pointers starting at the device's unit control block (UCB).

UCB ~ CRB ~ IDB ~ CSR address

The CSR address is always the address of the line printer
control/status register, and all other device registers are
at fixed offsets from this address. In contrast to many

2-5

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

other devices, such as disks, the LPll line printer does not
share a controller with other devices; therefore, no
arbitration for ownership of the controller is required.

2. The driver examines the device's control/status register to
see if the device is ready to accept characters.

3. If the device is ready, the driver writes a byte of data into
the line printer data buffer and decreases the count of bytes
to transfer. It then repeats step 2.

4. If the device is not ready, that is, if the device's internal
buffer is full, the driver raises IPL to 31 to block out all
interrupts and sets the interrupt enable bit in the device's
control/status register.

After enabling interrupts, the driver invokes a VAX/VMS wait
for interrupt macro to suspend driver processing until the
line printer requests an interrupt or the device times out.

2.7 WAITING FOR A DEVICE INTERRUPT

The VAX/VMS wait for interrupt routine suspends the driver by
performing the following functions:

• Saving driver context (R3, R4, and the address of the next
instruction in the driver) in the device's unit control block

• Calculating the time at which the device will time out

• Setting bits in the device's unit control block to indicate
that the driver expects a device interrupt within a specified
time period

VAX/VMS then drops IPL back to driver fork level and returns control
to the caller of the driver's start I/O routine.

The driver remains in a suspended state until one of two events
occurs:

• The line printer requests a hardware interrupt.

• VAX/VMS reports a device timeout because the line printer did
not request a hardware interrupt within a specified period of
time.

Normally, the LPll prints the contents of its data buffer and requests
the interrupt.

2.8 INTERRUPT HANDLING

When the LPll line printer requests a hardware interrupt, the
interrupt dispatcher passes the interrupt to the LPll driver interrupt
service routine.

The driver's interrupt service routine restores control to the driver,
as follows:

• Restores the address of the unit control block in RS

• Confirms that the interrupt was expected by examining bits in
the device's unit control block

2-6

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

• Restores the saved registers (R3 and R4) from the device's
unit control block

• Transfers control to the driver PC address stored in the
device's unit control block

Rather than execute in interrupt context, the reactivated driver
routine calls a VAX/VMS routine to create a driver fork process.
VAX/VMS again suspends driver processing by performing the following
steps:

• Saving driver context (R3, R4, and the driver PC address) in
the device's unit control block

• Inserting the UCB address in the appropriate fork queue

The driver suspension allows the operating system to reschedule driver
processing at a lower IPL. A VAX/VMS fork dispatcher reactivates the
driver when IPL drops to driver fork level.

After creating the fork process, the system returns control to the
driver's interrupt service routine. which performs the following
steps:

• Restores registers saved at the time of the device interrupt

• Dismisses the interrupt

2.9 I/O COMPLETION PROCESSING BY THE DRIVER

When the VAX/VMS fork dispatcher reactivates the driver fork process,
the driver code continues transferring characters into the line
printer data buffer until the transfer is complete. The driver code
performs the following steps to transfer characters:

• It obtains the number of characters left to transfer from the
unit control block.

• It transfers characters until the LPll again prints its data
buffer or all characters have been transferred.

• When all characters have been transferred, the driver code
branches to driver I/O completion code.

The driver's I/O completion code stores the following information in
RO:

• A success status code

• The number of bytes transferred

Then, the driver code transfers control to VAX/VMS to complete the I/O
request.

2.10 I/O COMPLETION PROCESSING BY THE VAX/VMS SYSTEM

The operating system inserts the I/O request packet into an I/O
postprocessing queue. If another I/O request packet is in the wait
queue for the device unit, VAX/VMS dequeues that packet and calls the
driver start I/O routine to process it.

2-7

DISCUSSION OF A LINE PRINTER QUEUE I/O REQUEST

When IPL drops to IPL$ IOPOST, the processor grants the I/O
postprocessing interrupt -request. The I/O postprocessing dispatcher
dequeues the packet for the line printer I/O request and performs the
following steps:

• It increases the use count of the process's buffered I/O
requests since the current operation is complete. The use
count is maintained for accounting purposes.

• It deallocates the system buffer used for the reformatted user
data.

• It increases the process's current byte count quota.

• It sets an event flag to indicate that the I/O operation is
complete.

• It queues a kernel mode AST routine that will deallocate the
I/O request packet and stores I/O status into the user's I/O
status block.

The user process examines the event flag or issues a Wait for Single
Event Flag system service call to determine that the I/O operation is
complete.

2-8

CHAPTER 3

SYNCHRONIZATION OF I/O REQUEST PROCESSING

The VAX/VMS operating system uses three mechanisms to synchronize I/O
processing:

• Hardware interrupt priority levels and interrupt service
routines

• Driver fork processes, fork blocks, and fork queues

• Resource wait queues

When programming a driver, you must observe the VAX/VMS conventions
that govern the use of interrupt priority levels and fork processes.
The VAX/VMS routines that grant resources to drivers enforce the use
of resource wait queues.

3.1 INTERRUPT PRIORITY LEVELS

The VAX-11 processor defines 32 levels of hardware priorities, called
interrupt priority levels (IPLs). IPL 0 has the lowest priority, and
IPL 31 has the highest. Interrupts can be requested either by
software (software interrupts) or by the hardware (hardware
interrupts). The system uses the various interrupt priority levels as
follows:

• User mode software runs at IPL O.

• Operating system routines and driver fork processes request
software interrupts at IPLs 1 through 15.

• Devices and error conditions generate hardware interrupts at
IPLs 16 through 31.

Many IPLs have an interrupt service routine associated with them. The
processor responds to both software and hardware interrupts by
transferring control to the appropriate interrupt service routine.
The interrupt service routine processes the interrupt and, when
finished, dismisses the interrupt with an REI instruction.

3.1.1 IPLs Defined by VAX/VMS

Table 3-1 describes the uses that VAX/VMS defines for IPLs O through
15.

3-1

IPL

0

1

2

3

4

5

6

7

SYNCHRONIZATION OF I/O REQUEST PROCESSING

Table 3-1: IPLs Defined by VAX/VMS

Symbolic
Name

--

--

IPL$ ASTDEL
-

IPL$ SCHED

IPL$ IOPOST
-

IPL$ XDELTA

IPL$_QUEUEAST

IPL$ SYNCH
IPL$-TIMER

Use

User mode software

Reserved

AST delivery interrupt service routine

Scheduler interrupt service routine

I/O postprocessing interrupt service routine

XDELTA interrupt service routine

Fork level processing for queuing ASTs

System data base access and software timer
interrupt service routine

8 - 11 UCB$B FIPL Fork level for driver execution
-

12 - 15 Reserved

3.1.2 IPLs Defined for the Hardware

Hardware interrupt levels are used for device interrupts {IPLs 20
through 23) and urgent conditions including power failure and serious
errors such as a machine check. The VAX Hardware Handbook provides
additional information about hardware-rr1terrupt levels.

3.1.3 Interrupt Service Routines

The VAX/VMS operating system uses interrupt service routines that gain
control at the preset IPLs described above. Using preset IPLs
guarantees that interrupts are processed according to the following
priorities:

• Device interrupts {highest priority)

• Device driver fork processes

• I/O postprocessing

• Process scheduling

• AST delivery {lowest priority)

For example, VAX/VMS completes the processing of an I/O request by
placing the I/0 request packet in the I/O postprocessing queue and
requesting an interrupt at the I/O postprocessing IPL {IPL 4). When
the interrupt priority level drops below 4, the processor grants the
software interrupt by transferring control to the I/O postprocessing
service routine.

3-2

SYNCHRONIZATION OF I/O REQUEST PROCESSING

Interrupt service routines run in a reduced context. The stack is a
special stack used only during interrupt processing; it is the
interrupt stack. Of the register set, usually only RO through RS are
saved. The interrupt service routine must restore these registers
before it returns from an interrupt. If the service routine uses any
other registers, the routine must save the registers before use and
restore them after use. Using registers other than RO through RS is
not recommended.

When a hardware interrupt occurs, the system transfers control to the
driver interrupt service routine with IPL set to the hardware device
interrupt level. Since code executing at IPLs 20 through 23 blocks
most other hardware interrupts and all software interrupts, driver
code lowers its IPL as soon as possible.

The operating system allows the creation of a fork process so
driver can continue execution without blocking other
interrupts. Section 3.2 discusses fork processes.

3.1.4 Raising IPL

that a
device

Code running in kernel mode can raise its IPL to lock out context
switching and block interrupts. VAX/VMS software interrupt service
routines perform some of their processing at IPLs higher than the IPL
at which the routines gain control. For example, the scheduler is an
interrupt service routine that gains control at IPL 3; however, it
raises IPL to 7 to read and modify the system data base. I/O drivers
typically raise IPL to check for a power failure, send a message to a
mailbox, and sometimes to access device registers. Driver code should
not raise IPL for more than a few instructions because so doing blocks
all interrupts at lower IPLs.

3.1.5 Lowering IPL

Once an interrupt service routine has received the interrupt, it
transfers control to the main flow of driver code. At this point, the
driver is executing in the context of an interrupt service routine and
at device IPL.

When a driver gains control, it may execute a few instructions at the
high IPL; however, almost immediately a driver lowers IPL to fork
IPL. A driver lowers IPL by invoking the VAX/VMS macro that creates
fork processes, IOFORK. As a result of invoking IOFORK, VAX/VMS
performs the following functions for the driver:

• Consults the device's unit control block to determine fork IPL
for the driver

• Creates a driver fork process and queues it for execution at
the appropriate IPL

• Requests a software interrupt at that IPL

When the queued driver fork process is reactivated, it executes at the
lower fork IPL. Section 3.2 describes fork process dispatching in
greater detail.

Driver fork processes also can modify IPL by invoking certain VAX/VMS
macros; Section 3.1.11 describes these macros. Normally, a driver
uses these macros to raise IPL before initiating a transfer.

3-3

SYNCHRONIZATION OF I/O REQUEST PROCESSING

3.1.6 Dispatching Device Interrupts

VAX-11 peripheral devices request interrupts at IPLs 20 through 23.
When a device requests an interrupt at one of these IPLs and the
processor is executing at a lower IPL, the processor performs the
following steps:

• Grants the interrupt

• Transfers control to an interrupt service routine for the
device

If the processor is executing at a higher or equal IPL, the interrupt
remains pending.

The dispatching of UNIBUS device interrupts differs depending upon the
type of processor and UNIBUS adapter in the hardware configuration.

When an interrupt occurs on a configuration that uses the nondirect
vector UNIBUS adapter, the processor transfers control to an inter.rupt
service routine for the UNIBUS adapter of the device that requested
the interrupt. The UNIBUS adapter interrupt service routine then
carries out the following steps:

• Saves RO through RS on the interrupt stack

• Reads a UNIBUS adapter register to determine the vector
address of the device requesting the interrupt

• Uses the vector address as in index into a vector jump table
within the UNIBUS adapter control block. The vector jump
table contains a list of channel request block addresses that
point to the interrupt service routines for all the devices
attached to that UNIBUS.

• Transfers control to the channel request block (CRB) address
that corresponds to the vector address.

The CRB address contains a JSB instruction that passes control to the
device's interrupt service routine. Figure 3-1 shows a flowchart that
details interrupt dispatching of a nondirect vector interrupt.

On a configuration that supports direct vector interrupts, the UNIBUS
adapter does not dispatch the interrupt. Instead, the processor
locates the device's interrupt service routine by using the system
control block (SCB). The system control block consists of two or
three pages of addresses. Page one lists the exception vectors;
pages two and three contain the list of CRB addresses that point to
the interrupt service routines for devices attached to the first
UNIBUS and an optional second UNIBUS, respectively. The SCB base
register (SCBB), an internal processor register, marks the base of the
system control block.

The processor obtains the vector address of the device that requested
the interrupt and uses it as an index into page two (or page three) of
the SCB. When it finds the corresponding CRB address, the processor
transfers control to the interrupt dispatching code in the device's
channel request block. On direct vector configurations, the interrupt
dispatch code is a PUSHR instruction of RO through RS followed by the
JSB to the device's interrupt service routine.

Figure 3-2 shows a flowchart of interrupt dispatching on a direct
vector UNIBUS adapter.

3-4

SYNCHRONIZATION OF I/O REQUEST PROCESSING

To maintain machine-independent descriptions of interrupt handling,
subsequent chapters in this manual refer to the combination of
hardware an~ software that transfers device interrupts to the device's
interrupt service routine as the interrupt dispatcher.

3.1.7 Transferring Control to the Driver Fork Process

When a device driver receives an expected interrupt from a device, the
driver interrupt service routine executes in the context of an
interrupt; it is not executing in driver fork process context at that
point. Interrupt context has the following characteristics:

• IPL is elevated to the level at which the device requests
hardware interrupts.

• The stack is the interrupt stack.

• The top of the stack contains a pointer to the address of the
controller's interrupt dispatch block (IDB), which contains
the address of the control/status register.

• The stack al so con ta ins saved RO through RS and the PC and PSL
of the interrupted code.

The interrupt occurs either because the device has completed an I/O
operation or because an error occurred during the I/O operation.
Driver interrupt service routines generally determine whether to
service the interrupt by examining the I/O data base. If the unit
control block for the device that currently owns the controller
indicates that the interrupt is expected, the service routine takes
the following steps to transfer control to the driver's start I/O
routine:

• Loads the UCB address into RS

• Restores the contents of two registers (R3 and R4) from the
UCB fork block

• Returns control to the saved PC in that fork block

The driver may need to execute a few instructions in the context of
the interrupt. For example, the driver may copy device status
information from device registers into the device's unit control
block. After executing these instructions at device IPL, the driver
completes the I/O processing at a lower priority by creating a fork
process, as described in Section 3.2.

3.1.8 IPL Use During I/O Processing

I/O processing occurs mainly at the following IPLs:

• IPL$ ASTDEL (I PL 2)

• IPL$ IOPOST (IPL 4)

• Driver fork processing IPLs (I PLs 8 through 11)

• Hardware device IPLs (IPLs 20 through 23)

• IPL$ POWER (IPL 31)

3-S

SYNCHRONIZATION OF I/O REQUEST PROCESSING

ERROR
HANDLING

ERROR

INTERRUPT

PROCESSOR CHANGES TO INTERRUPT
STACK, IF NECESSARY.

PROCESSOR PUSHES PSL AND PC OF
INTERRUPTED CODE ONTO THE
INTERRUPT STACK.

PROCESSOR TRANSFERS CONTROL TO AN
INTERRUPT DISPATCHING ROUTINE FOR
THE UNIBUS ADAPTER OF THE DEVICE
REQUESTING THE INTERRUPT.

UNIBUS ADAPTER INTERRUPT DISPATCHER
SAVES RO THROUGH R5.

INTERRUPT DISPATCHER GETS DEVICE
INTERRUPT VECTOR ADDRESS FROM
UNIBUS ADAPTER REGISTER.

INTERRUPT DISPATCHER USES VECTOR
ADDRESS AS AN INDEX INTO A TABLE OF
CHANNEL REQUEST BLOCK (CRB) ADDRESSES.

INTERRUPT DISPATCHER TRANSFERS CONTROL
TO THE CRB ADDRESS THAT CORRESPONDS TO
THE INTERRUPT VECTOR ADDRESS. THIS
ADDRESS CONTAINS A JSB INSTRUCTION.

THE FOLLOWING JSB INSTRUCTION IS EXECUTED:

JSB ADDRESS OF DRIVER'S INTERRUPT
SERVICE ROUTINE

THE DRIVER'S INTERRUPT SERVICE ROUTINE
GAINS CONTROL AND EITHER SERVICES THE
INTERRUPT OR DISMISSES IT.

REI
ZK-912-82

Figure 3-1: Interrupt Dispatching of a Nondirect Vector Interrupt

3-6

SYNCHRONIZATION OF I/O REQUEST PROCESSING

3.1.8.1 IPL$ ASTDEL (IPL 2) - IPL$ ASTDEL blocks the delivery of
asynchronous -system traps (ASTs). -When a system service for which an
AST was specified completes, the system service queues the AST and
causes a software interrupt to be requested at IPL$ ASTDEL. The AST
delivery interrupt service routine gains control when-IPL drops below
IPL$ ASTDEL. It delivers the AST to the process that is currently
scheduled.

Any driver routine that allocates or deallocates dynamic system pool
space while running in the context of a process (for example, an FDT
routine) must do so at an IPL of IPL$ ASTDEL or higher. The VAX/VMS
allocation routine records the address of the allocated system memory
in a register. If an AST that aborts the process were to occur, the
allocated memory would be lost from the pool. To block ASTs, I/O
preprocessing from the time that the Queue I/O Request system service
allocates an I/O request packet through the execution of the last FDT
routine occurs at IPLs no lower than IPL$ ASTDEL.

A process cannot incur page faults when IPL is above IPL$ ASTDEL. Any
code that executes at a higher IPL must refer only to non~aged virtual
memory or pages that have been locked in virtual memory. A fatal
bugcheck occurs if a page fault is incurred above IPL$_ASTDEL.

INTERRUPT

PROCESSOR CHANGES TO INTERRUPT
STACK, IF NECESSARY

PROCESSOR PUSHES PSL AND PC OF INTERRUPTED
CODE ONTO THE INTERRUPT STACK

PROCESSOR USES VECTOR ADDRESS AS INDEX
INTO SECOND (OR THIRD) PAGE OF SCB AND
CALCULATES ADDRESS OF INTERRUPT
DISPATCH CODE IN CRB.

PROCESSOR TRANSFERS CONTROL TO
THE CRB ADDRESS THAT CORRESPONDS TO
THE VECTOR ADDRESS. THIS ADDRESS
CONTAINS A PUSHR RO-R5 INSTRUCTION
FOLLOWED BY A JSB INSTRUCTION

THE FOLLOWING INSTRUCTIONS ARE EXECUTED:

PUSHR RO-R5
JSB ADDRESS OF DRIVER'S

INTERRUPT SERVICE ROUTINE

THE DRIVER'S INTERRUPT SERVICE
ROUTINE GAINS CONTROL AND EITHER
SERVICES THE INTERRUPT OR DISMISSES IT.

REI
ZK-913-82

Figure 3-2: Interrupt Dispatching of a Direct Vector Interrupt

3-7

SYNCHRONIZATION OF I/O REQUEST PROCESSING

In addition, some I/O postprocessing occurs in a kernel mode AST
service routine that also executes at IPL$ ASTDEL. Kernel mode ASTs,
running in the context of a process whose I/O completed, write status
information into I/O status blocks, copy buffered input into process
space, and deallocate system buffers.

3.1.8.2 IPL$ IOPOST (IPL 4) - I/O postprocessing includes all I/O
completion processing that can occur without reference to the device's
unit control block and, thus, can occur at an IPL lower than driver
fork IPL. To request I/O postprocessing, drivers call a VAX/VMS
routine that inserts I/O request packets in the postprocessing queue
and requests a software interrupt at IPL$_IOPOST.

I/O postprocessing runs at an IPL higher than IPL$ SCHED so that all
pending I/O completion processing is finished before the scheduler
looks for a new process to schedule. Whether a process is awaiting
I/O completion affects its ability to execute. Since I/O
postprocessing queues ASTs to processes, the scheduler may
preferentially reschedule a waiting process because of a pending AST
to the process.

The VAX/VMS operating system performs I/O postprocessing in the IPL 4
interrupt service routine. This routine adjusts process quota use,
queues a kernel mode AST to write status and data into the process's
address space, and deallocates system memory.

3.1.8.3 Driver Fork Processing (IPLs 8 through 11) - Driver fork
processing occurs at an IPL in the range 8 through 11 depending on the
contents of the unit control block field UCB$B FIPL. UCB$B FIPL
contains a value that is used as that device's fo~k IPL. All driver
routines, except for most FDT routines, execute at driver fork IPL or
higher. Usually driver routines should not read or alter fields of
the unit control block unless IPL is at fork level or higher.

A driver must never lower IPL below the IPL of
caused the driver to be reentered unless
creating a fork process at the lower IPL.

the interrupt that
the driver does so by

All devices on a single UNIBUS adapter share the same fork IPL if they
actively compete for shared UNIBUS adapter resources such as map
registers and data paths.

3.1.8.4 Hardware Device Interrupts - The UCB$B DIPL field in the
device's unit control block contains an IPL value at which the device
requests hardware interrupts. This IPL is in the range 20 through 23
because device interrupts usually need to interrupt most user and
VAX/VMS software functions. IPLs 20 through 23 correspond to UNIBUS
bus request (BR) levels 4 through 7. Device drivers sometimes raise
IPL to UCB$B DIPL or higher before reading and writing certain device
registers. -

3.1.8.5 IPL$ POWER - The highest IPL, IPL$ POWER, locks out all other
interrupts. Many VAX/VMS routines and drivers raise IPL to IPL$ POWER
to execute code sequences that cannot tolerate interruption.- For
example, much of system initialization occµrs at IPL$ POWER.

3-8

SYNCHRONIZATION OF I/O REQUEST PROCESSING

When a device driver needs to execute a series of instructions without
interruption, the driver raises IPL to IPL$ POWER. The driver never
should remain at IPL$ POWER for more than a -few instructions. The
most common instance of a driver's raising IPL to IPL$ POWER is to
determine whether a power failure has occurred between the- time that
the driver writes set-up data into device registers and the time that
the driver starts the device by writing into the device control
register.

3.1.9 Additional IPLs

In addition to the IPLs described above, VAX/VMS defines the
following:

• IPL$_SCHED (IPL 3); never used by drivers

• IPL$_QUEUEAST .(IPL 6); very seldom used by drivers

• IPL$ SYNCH and IPL$ TIMER (IPL 7);
drivers

very seldom used by

• IPL$ MAILBOX (IPL 11); very seldom used by drivers

For debugging purposes, the
priority level IPL$ XDELTA
3.1.9.5. -

VAX/VMS operating
(I PL 5) ; i t i s

system defines the
described in Section

3.1.9.1 IPL$ SCHED - When the system wishes to reschedule processes,
a VAX/VMS routine requests a software interrupt at IPL$ SCHED. The
scheduler interrupt service routine gains control at this IPL.

If a process raises IPL to or above IPL$_SCHED, the scheduler cannot
reschedule the processor. The process runs until an interrupt occurs
at a higher IPL or the process reduces IPL below IPL$ SCHED.

3.1.9.2 IPL$ QUEUEAST - IPL$ QUEUEAST is a fork level IPL. That is,
the interrupt-service routine-for IPL$ QUEUEAST is the fork dispatcher
that dequeues fork blocks and restores control to fork processes
needing to execute at IPL$_QUEUEAST.

To queue an AST, a driver creates a fork process at IPL$ QUEUEAST.
When the fork dispatcher restores control to the fork process, the
process can raise IPL to IPL$_SYNCH and queue the AST.

A driver that wishes to gain access to the system data base for any
reason can also create a fork process at IPL$ QUEUEAST. The fork
dispatcher restores control to the driver at IPL$-QUEUEAST, and the
driver can then raise IPL to IPL$ SYNCH (a nonfork-IPL) to gain access
to the system data base. -

3.1.9.3 IPL$ SYNCH and IPL$ TIMER - IPL$ SYNCH is the system data
base synchronization level~ When a VAX/VMS subroutine or a driver
needs to modify or read a dynamic portion of the system data base, the
routine always executes at IPL$ SYNCH to ensure that the data base
does not change due to some interrupt service routine or process
action.

3-9

SYNCHRONIZATION OF I/O REQUEST PROCESSING

A timer queue interrupt service routine fields interrupts requested at
IPL$ TIMER, which is also IPL 7. The hardware clock interrupt service
routTne requests a software timer interrupt at IPL$ TIMER when the
current process has exceeded its processor time quantum or when the
first entry in the timer queue is due. The timer interrupt service
routine dequeues the first timer queue entry and takes appropriate
action.

3.1.9.4 IPL$ MAILBOX - When a VAX/VMS or driver routine writes into a
mailbox, IPL- must be at IPL$ MAILBOX to prevent other writers from
modifying incomplete data in the- mailbox, or readers from reading
invalid data.

IPL$ MAILBOX is the highest fork level;
IPL$-MAILBOX and write into a mailbox.

drivers can raise IPL to

3.1.9.5 IPL$ XDELTA - To stop the operating system for debugging
purposes, you can halt the operating system from the console terminal
and request a software interrupt at IPL$ XDELTA. The processor must
be executing below IPL 5 for the interrupt to have an effect. Chapter
15 describes the XDELTA debugging program.

3.1.10 Overview of IPL Use

Figure 3-3 illustrates the normal IPL flow during the processing of an
I/O request.

The user program, executing at IPL O, issues a Queue I/O Request
system service call. I/O processing by the system service and FDT
routines occurs mostly at IPL$ ASTDEL. Very rarely, an FDT routine
raises IPL to driver fork level to read or modify the device's unit
control block.

The start I/O routine executes as a fork process at fork IPL, but may
raise to device interrupt IPL or IPL$ POWER for short periods of time.
After the driver fork process activates the device, the driver calls a
VAX/VMS routine that saves the driver fork context, suspends driver
fork processing, and restores IPL to a previous level.

Figure 3-3 illustrates the completion of the I/O request from the
point of the device interrupt to the delivery of ASTs to the user
program. The device interrupts at a device IPL (in the range 20
through 23). VAX/VMS transfers control to the appropriate driver
interrupt service routine. The service routine reactivates the driver
fork process with IPL still at hardware device IPL.

The fork process briefly examines or saves the contents of device
registers, but soon requests that VAX/VMS insert a fork block
describing its context into one of the fork queues for driver fork
IPLs (8 through 11). When the driver fork process regains control at
driver fork IPL, the process analyzes the success of the I/O operation
and writes status into RO and Rl. Then, still at driver fork IPL,
VAX/VMS inserts the I/O request packet into the I/O postprocessing
queue and starts the next I/O request.

The I/O postprocessing routine adjusts process quota usage and
deallocates system buffers for write functions at IPL$ IOPOST. The
routine also calls another VAX/VMS routine that raises IPL to
IPL$ SYNCH to queue a kernel mode AST to the process that issued the

3-10

SYNCHRONIZATION OF I/O REQUEST PROCESSING

original QIO request. The AST routine executes at IPL$_ASTDEL, and
may queue a user AST routine that eventually executes at an IPL of O.
I/O postprocessing continues at IPL$ IOPOST until all entries in the
postprocessing queue have been serviced.

.....-----~~~ START DEVICE t----.. -

IPL$_POWER

SAVE
DRIVER

CONTEXT

-------------+--------- ----~-

UCB$B_DIPL -------------1--- ---- ---- - - --+--

UCB$B_FIPL

MODIFY & REAC
UCB

SETUP
DEVICE

REGISTERS

START
1/0

-- ---·+--!-- -- - -- - - - -- -- - -+- -

IPL$_ASTDEL

FDT .,.14-"------1 010
SERVICE

t----+- ROUTINE
ROUTINE

FDT
ROUTINE

----------1--------------+--
0

USER
ISSUES

010

USER
PROGRAM

CONTINUES

ZK-583-81

Figure 3-3: IPL Conventions During I/O Processing

3.1.11 Modifying IPL in Driver Code

The interrupt priority level at which driver code executes changes as
a result of either of the following events:

• The driver's calling a VAX/VMS routine that raises or lowers
IPL

• The driver's invoking a VAX/VMS macro to request explicitly a
change in IPL

Subsequent chapters of this manual discuss the VAX/VMS routines that
change IPL; discussions include their expectation of IPL at entry and
their IPL setting at exit. The sections that follow describe the
macros that drivers can call to change IPL:

e SETIPL

e DSBINT

e ENBINT

e SOFTINT

3-11

UCB$B_DIPL

SYNCHRONIZATION OF I/O REQUEST PROCESSING

DEVICE
GENERATES
INTERRUPT

DRIVER
t----+.. ANALYZES

INTERRUPT

------------+-----------..-.---

UCB$B_FIPL

DRIVER
RETURNS
STATUS

o.s.
QUEUES
1/0 POST

START
NEXT

1/0

- - - - - - - ---------- - --+- - --------

•
CLEAN UP

QIO QUEUE
KERNEL AST
TO PROCESS

IPL$_10POST ----- ------------ ~-- --------
IPL$_ASTDEL

DELIVER
KERNEL
AST TO

PROCESS

----------------~-- ---- -0

DELIVER USER
AST (IF ANY) TO

PROCESS

Figure 3-4: IPL Conventions During I/O Completion

ZK-914-82

3.1.11.1 Set Interrupt
Priority Level (SETIPL)
processor register.

Priority Level Macro - The Set Interrupt
macro moves the specified IPL into the IPL

Format

ipl

SETIPL [ipl]

The interrupt priority level. If no priority level is specified,
the macro moves the value 31 into the IPL register. Setting IPL
to 31 blocks all interrupts.

3.1.11.2 Disable Interrupts Macro - The Disable Interrupts (DSBINT)
macro saves the current IPL in the specified destination and moves the
specified IPL into the IPL processor register. Procedures invoke this
macro to raise IPL.

Format

ipl

DSBINT [ipl] [,dst]

The interrupt priority level. The macro saves the current IPL on
the top of the stack (default) or in the specified destination
and moves the specified IPL into the IPL register. If IPL is not
specified, the macro moves the value 31 into the IPL processor
register; this blocks all interrupts.

3-12

dst

SYNCHRONIZATION OF I/O REQUEST PROCESSING

The location in which the current IPL is to be saved. If this
argument is not specified, the current IPL is stored on the top
of the stack by default.

3.1.11.3 Enable Interrupts Macro - The Enable Interrupts (ENBINT)
macro restores an IPL value to the IPL processor register. Procedures
invoke this macro to lower IPL to a previously saved level. If an
interrupt is pending at an intermediate IPL (that is, one lower than
.the cu~rent IPL but higher than the specified IPL), restoring IPL
causes immediate interruption of the current procedure.

Format

src

ENBINT [src]

The location containing the IPL to be restored. If this argument
is not specified, the macro moves the IPL value contained on the
top of the stack into the IPL register.

3.1.11.4 Software Interrupt Macro - The Software Interrupt (SOFTINT)
macro moves the specified IPL into the software interrupt request
processor register to request a software interrupt. If the processor
is executing at a low IPL (for example, IPL 0) and detects a software
interrupt request at a higher IPL (1 through 15), the processor
immediately transfers control to a software interrupt service routine
for the appropriate IPL. If the processor is executing at or above
the specified IPL, the processor does not transfer control to the
software interrupt service routine until IPL drops below the specified
IPL.

Format

ipl

SOFTINT ipl

The interrupt priority level at which the software interrupt is
being requested.

3.2 FORK BLOCKS AND FORK DISPATCHING

Device driver routines that activate a device and complete an I/O
operation after a device interrupt execute for relatively short
periods of time. Execution may be suspended to wait for a device
interrupt or shared resources. To ensure that the resulting context
switching is fast, VAX/VMS forces driver routines to execute in a
minimal fork process context consisting of a device UCB, called a fork
block, and a few registers.

Driver fork processes are created in either of the
situations:

following

• Once the preprocessing of an I/O packet has been performed, a
VAX/VMS routine creates a fork process to execute the driver's
start I/O routine. If the driver is already busy, the VAX/VMS
routine queues the I/O packet for the driver to process later.

3-13

•

SYNCHRONIZATION OF I/O REQUEST PROCESSING

Either the driver's interrupt service routine or
postprocessing routine creates a fork process
device-dependent I/O postprocessing.

the driver
to perform

When the system creates a driver fork process to execute the start I/O
routine, the newly created fork process can execute immediately
because the I/O packet has been preprocessed by the Queue I/O Request
system service and driver FDT routines, and the device is idle.

When the driver interrupt service routine or the driver postprocessing
routine creates a driver fork process, it does so to lower the IPL of
the driver code. Either the service routine or the driver invokes the
VAX/VMS macro IOFORK. IOFORK saves the context needed for the driver
to execute as a fork process, inserts the driver's UCB fork block in
the fork queue for the driver's IPL, and requests a software interrupt
for that IPL.

3.2.1 Interrupt Service Routine for Fork Dispatching

One interrupt service routine handles all fork process dispatching.
When the processor grants an interrupt at fork IPL, the fork
dispatcher saves RO through RS on the stack and processes the fork
queue that corresponds to the IPL of the interrupt. To do so, it
removes an entry from the fork queue, restores the fork process
context, and reactivates the suspended fork process. When that fork
process completes, the dispatcher regains control, removes the next
entry, if any, from the queue, restores its fork process context, and
reactivates it. This sequence repeats until the fork queue is empty.
When the queue is empty, the fork dispatcher restores RO through RS
from the stack and dismisses the interrupt with an REI instruction.

Figure 3-S illustrates the fork queue structure.

A newly activated driver fork process executes under the following
constraints:

• It cannot refer to the address space of the process initiating
the I/O request.

• It can use only RO through RS freely; it must save other
registers before use and restore them after use. Use of
registers other than RO through RS is strongly discouraged.

• It must clean up the stack after use; the stack must be in
its original state when the fork process relinquishes control
to any VAX/VMS routine.

• It mu~t execute at IPLs between driver fork level and
IPL$ POWER; it must not lower IPL below driver fork level
except by creating a fork process at a lower IPL.

• When it returns control to the fork dispatcher, IPL must be
the same as it was when the driver fork process was activated.
The driver returns control to the fork dispatcher by invoking
the wait for interrupt macro or the request complete macro.

3-14

SYNCHRONIZATION OF I/O REQUEST PROCESSING

IPL 15 RESERVED

IPL 14 RESERVED
IPL 11 FORK

t------ ~ RESERVED FORK QUEUE BLOCK IPL 13
LISTHEAD

IPL 12 RESERVED

FORK LEVEL
IPL 10

~
FORK QUEUE

LISTHEAD
FORK LEVEL

IPL 11

IPL 10

IPL 9 FORK LEVEL n-J IPL 9
FORK QUEUE

IPL 8 FORK LEVEL t--i LISTHEAD

IPL 7 TIMER
IPL 8

FORK
FORK LEVEL t-- . FORK QUEUE ~ BLOCK ~

LISTHEAD
IPL 6

IPL 5 XDELTA

1/0 POSTING IPL 6 FORK
~- FORK QUEUE r---..- BLOCK ~

IPL4

IPL3 PROCESS SCHEDULING LISTHEAD

IPL 2 AST DELIVERY

IPL 1 RESERVED

IPL 0 PROCESS EXECUTION

ZK-584-81

Figure 3-5: Fork Dispatching Data Structure

3.3 RESOURCE WAIT QUEUES

The processing of an I/O request often requires shared system
resources such as memory and UNIBUS adapter map registers. The Queue
I/O Request system service and driver fork processes call VAX/VMS
routines to allocate and deallocate these resources. Since the
resources are limited, I/O processing may be delayed until unavailable
resources are released by other processes or drivers. Thus,
synchronization of access to these resources can have a substantial
impact on I/O request processing.

For example, the Queue I/O Request system service calls a VAX/VMS
routine to allocate nonpaged system space for an I/O request packet.
If the nonpaged pool is empty, the routine calls another VAX/VMS
routine to save the process context and change the process state to
resource wait mode (also called miscellaneous wait, or MWAIT).
Process states and the resources for which processes can wait are
described in the VAX/VMS Summary Description and Glossary. As a
result of waiting, the process is a candidate-to be swapped out of
memory. When nonpaged pool becomes available, the scheduler
reschedules the process.

During driver fork process execution at raised IPLs, driver context is
very small. At any point, the driver can obtain all details about an
I/O request by referring to the I/O data base. The driver needs only
the address of the device unit control block which is the key to the
rest of the data base. Therefore, VAX/VMS routines that control
driver resources, such as UBA map registers, use driver fork blocks

3-15

SYNCHRONIZATION OF I/O REQUEST PROCESSING

and resource wait queues to save minimal driver context.
in a queue consists of the following items:

Each entry

• The address of the UCB, which is also the contents of RS in
the driver fork process; the UCB also contains the driver
fork block

• R3, and normally R4, from the fork process

• A PC for the waiting fork process

When the awaited resource becomes available, the routine controlling
the resource performs the following steps:

• Restores the UCB address to RS

• Restores the saved registers R3 and R4

• Grants the resource

• Transfers control to the saved driver return PC address

Because the VAX/VMS routine that controls a particular resource places
the driver in a wait state when the driver requests an unavailable
resource, drivers are unaware of being suspended and subsequently
resumed. Drivers must not leave anything on the stack when calling a
routine that may suspend the driver.

3.3.1 Competing for a Controller Data Channel

A controller data channel is a VAX/VMS synchronization mechanism that
guarantees for multiunit controllers that one unit uses the controller
at a time. A device driver fork process can read and write a device's
registers whenever the device unit owns the controller data channel.

Devices that share a multiunit controller, such as disk units, own the
controller data channel only when a VAX/VMS routine assigns the
channel to the unit's driver fork process. In contrast, a single
device unit on a controller always owns the controller data channel.
Therefore, if VAX/VMS transfers control to such a driver's start I/O
routine, the driver can immediately address the device registers
without first obtaining the controller data channel.

An LPll line printer device, such as the one discussed in Chapter 2,
has a dedicated {single-unit) controller attached to the UNIBUS. When
VAX/VMS finds the device idle and creates a line printer driver fork
process to write data to the line printer data buffer, the controller
data channel is guaranteed not to be busy. Because the controller
data channel is not busy, the line printer start I/O routine can
execute the following simple sequence of events:

• Retrieve the virtual address of the data to be written and the
number of bytes to transfer from the device's unit control
block

• Retrieve the virtual address of the device's control/status
register from the interrupt dispatch block

• Calculate the address
register by adding a
register address

of the line printer's data buffer
constant offset to the control/status

• Write data one byte at a time to the line printer's data
buffer until all bytes of data have been written

3-16

SYNCHRONIZATION OF I/O REQUEST PROCESSING

In contrast, a device unit on a multiunit controller must compete for
the controller data channel with other devices attached to that
controller.

An RK611 controller, for example, controls as many as eight RK06/RK07
devices. The disk driver fork process must gain control of the
controller data channel before starting an I/O operation on the unit
associated with the fork process. The disk driver's start I/O routine
uses the following sequence to start a seek operation on an RK07
device:

• The start I/O routine requests the controller data channel by
invoking a VAX/VMS channel arbitration routine.

• The VAX/VMS routine tests the CRB mask field to determine
whether the controller data channel is available.

• If the channel is available, the VAX/VMS routine allocates the
channel to the driver fork process and returns the address of
the device control/status register to the fork process.

If the channel is busy, the VAX/VMS routine saves the driver
fork context in the UCB fork block and inserts the fork block
address in the controller channel wait queue.

• When the driver fork process resumes execution, the process
owns the controller channel. The fork process can then modify
device registers to activate the device.

• The driver's start I/O routine then requests VAX/VMS to
suspend driver processing in anticipation of an interrupt or
timeout and to release the channel.

• The VAX/VMS channel releasing routine assigns channel
ownership to the next driver fork process in the channel wait
queue, loads the control/status register address into a
general register, and reactivates the suspended driver fork
process.

• The reactivated fork process continues execution as though the
channel had been available in the first place.

The VAX/VMS channel arbitration routines keep track of controller
availability using a flag field in the channel request block. The
driver fork process must always request and release the controller
data channel by invoking these routines. Once the driver owns a
controller data channel, the driver is free to read and modify device
registers.

3-17

CHAPTER 4

THE UNIBUS ADAPTER

The UNIBUS adapter connects the UNIBUS, an asynchronous
bus, to the backplane interconnect. The adapter
following functions:

bidirectional
performs the

• Arbitrates priority interrupts from UNIBUS devices

• Delivers interrupts from UNIBUS devices to the processor

• Allows drivers to gain access to UNIBUS device registers using
system virtual addresses

• Translates 18-bit UNIBUS addresses to physical addresses

• Provides a data transfer path to randomly ordered physical
addresses, that is, to discontiguous pages

• Provides buffered data transfer paths
increasing physical addresses

to consecutively

• Permits byte-aligned buffers for UNIBUS devices requiring
word-aligned buffer addresses

Together the UNIBUS adapter and the backplane interconnect permit
devices and device drivers to exchange data without much awareness of
the intervening hardware. Because VAX/VMS routines handle the details
of the adapter/backplane interconnect interface, most device drivers
do not need to know the interface protocol.

The critical responsibility of UNIBUS device drivers that actively
compete for shared UNIBUS adapter resources is that they all execute
at the same fork IPL. This IPL convention synchronizes access to the
UNIBUS adapter data structures.

In general, device drivers use the UNIBUS adapter for the following
purposes:

• Reading and writing device registers

• Mapping UNIBUS addresses to physical addresses and vice versa
for direct memory access (DMA) transfers

• Buffering data transfers

Drivers for UNIBUS devices that do not perform DMA transfers are
unaware of the presence of the UNIBUS adapter. The UNIBUS adapter
provides access to device registers using an address mapping scheme
that is invisible to the driver. However, drivers that handle DMA
transfers to and from UNIBUS devices must call VAX/VMS routines that
Q..S-to<l.bl i~'lr1 't..'l'.<c appropriate mapping.

4-1

THE UNIBUS ADAPTER

4.1 READING AND WRITING DEVICE REGISTERS

Each I/O controller or device directly attached to the UNIBUS has a
set of control/status and data registers. These registers are
assigned addresses in a portion of the physical address space called
the UNIBUS address space. Device drivers obtain device status and
activate devices by reading and writing to these registers.

Generally, a device driver can treat the addresses of device registers
as identical to al.I other virtual addresses. The driver can read and
write .data to the device register as though the device register were a
location in memory. The driver must obey the restrictions on
instructions d~scribed in Section 6.2. The UNIBUS adapter performs
the actual mapping of virtual address to UNIBUS addresses that
correspond ~o devi~e registers.

Before a driver for a multiunit controller can gain access to device
registers, it must first obtain a controller channel, as described in
Sect i on 3 ; 3 • I.

4.2 MAPPING UNIBUS AND PHYSICAL ADDRESSES FOR OMA TRANSFERS

The UNIBUS address space consists of 256K bytes of memory, of which 8K
bytes are reserved for device control registers. UNIBUS DMA devices
read and write data from and to memory locations using 18-bit UNIBUS
addresses. The UNIBUS adapter translates the 18-bit UNIBUS addresses
into physical addresses. This translation allows the operating
system, I/O drivers, and UNIBUS devices to access the same physical
address space.

The UNIBUS adapter provides 496 map registers to translate UNIBUS
addresses to physical addresses. Each map register represents one
page of the UNIBUS address space. A field in the map register
identifies the page frame number corresponding to the UNIBUS address
that the map register represents.

For example, VAX/VMS routines fill as many map registers with valid
page frame addresses as needed for a OMA transfer. A OMA UNIBUS
device puts an address on the UNIBUS. The UNIBUS adapter receives the
address and translates it using the following information:

• The 9-bit UNIBUS page address field (bits 9 through 17 of the
UNIBUS address) identifies the UBA map register.

• The page frame number field in the map register specifies the
high order bits of the physical address.

• UNIBUS address bits 2 through 8 map directly to bits 0 through
6 of the physical address.

The resulting physical address locates the longword that is the target
of the transfer. The UNIBUS adapter identifies the byte addressed
within the longword by interpreting the low-order two bits of the
UNIBUS address.

Figure 4-1 illustrates the UNIBUS to physical address mapping.

Each UNIBUS adapter map register also contains a bit called the map
register valid bit. The UNIBUS adapter tests this bit every time the
map register is used. If the bit is not set, the UNIBUS adapter
aborts the UNIBUS transfer. The valid bit is zero whenever the
register is not mapped to a physical address.

4-2

UNIBUS
ADAPTER

MAP
REGISTER

THE UNIBUS ADAPTER

18-BIT UNIBUS ADDRESS

MAP REGISTER NO.
LONGWORD

OFFSET

32-BIT MAP REGISTER

PAGE FRAME ADDRESS

PAGE FRAME ADDRESS

PHYSICAL ADDRESS

LONGWORD
OFFSET

ZK-915-82

Figure 4-1: UNIBUS to Physical Address Mapping

4.2.1 UNIBUS Adapter Data Transfer Paths

The UNIBUS adapter sends data through one of several data paths for
UNIBUS devices performing DMA transfers. One data path, the direct
data path (DDP), allows UNIBUS transfers to randomly ordered physical
addresses. The direct data path maps each UNIBUS transfer to a
backplane interconnect transfer. Thus, a single word or byte of data
is transferred per backplane interconnect operation.

The remaining data paths, the buffered data paths (BDPs), allow
devices on the UNIBUS to transfer much faster than through the direct
data path. The buffered data paths store UNIBUS data so that multiple
UNIBUS transfers result in a single backplane interconnect transfer.

The UNIBUS adapter hardware of certain processors restricts normal
buffered data paths to referencing only consecutively increasing
addresses. Through a special mode of operation, these UNIBUS adapters
can also reference data in a randomly ordered, longword-aligned
manner. Other processors do not impose this restriction. In order
for a device driver to run on both types of processors, it must
observe two rules:

• Normal buffered data paths must always transfer data to
consecutively increasing addresses.

• To reference random longword aligned data, the longword enable
bit (LWAE) must be set.

When a UNIBUS device begins a DMA transfer by placing an address on
the UNIBUS, the UNIBUS adapter map register not only performs address
mapping but also provides the number of the data path to be used for
the transfer. Each UNIBUS adapter map register contains a field that
describes the data path. Data path 0 is the direct data path; the
other data paths are the buffered data paths.

4-3

THE UNIBUS ADAPTER

The sequence below describes a UNIBUS device DMA transfer.

• The UNIBUS device puts an address on the UNIBUS.

• The UNIBUS adapter locates the UNIBUS adapter map register
that corresponds to the UNIBUS address.

• The UNIBUS adapter verifies that the map register has the map
register valid bit set.

• The UNIBUS adapter maps the UNIBUS address to a page frame
number.

• The UNIBUS adapter extracts the number of the data path to be
used for the transfer from the map register.

• The data path translates the UNIBUS function to a backplane
interconnect function by reading the UNIBUS control lines.

• Based on the UNIBUS function indicated by the UNIBUS control
lines, (DATI, DATIP, DATO, or DATOB), the UNIBUS adapter
starts appropriate UNIBUS and backplane interconnect
operations to transfer data to or from the UNIBUS device.

4.2.1.1 Direct Data Path - Since the direct data path performs a
backplane interconnect transfer for every UNIBUS transfer, the data
path can be used by more than one UNIBUS device at a time. The UNIBUS
adapter arbitrates among devices that wish to use the direct data path
simultaneously. The device driver is unaffected by this UNIBUS
adapter arbitration.

The direct data path is slower than buffered data paths because each
UNIBUS transfer cycle corresponds to a backplane interconnect cycle.
One word or byte is transferred per backplane interconnect cycle. On
some hardware configurations, the direct data path is unable to
transfer a word of data to an odd physical address. Therefore, an FDT
routine for a DMA device that uses the direct data path should check
that the specified buffer is on a word boundary.

UNIBUS devices that transfer data through the direct data path do so
in order to perform the following functions:

• Execute an interlock sequence to the backplane interconnect
(DATIP-DATO/DATOB)

• Transfer to randomly ordered
consecutively increasing addresses

• Mix read and write functions

addresses instead of

The direct data path is the simplest data path to program. Since the
direct data path can be shared simultaneously by any number of I/O
transfers, the device driver need not allocate that data path. Once
the map registers are loaded, the device driver initiates the transfer
by setting appropriate device control register bits. The programming
sequence is as follows:

• Allocate a set of map registers.

• Load the map registers with physical address mapping data and
the data path number (0 for the direct data path).

4-4

THE UNIBUS ADAPTER

• Set the valid bit in every map register. The map register
that follows the last map register must have the valid bit
cleared.

• Load the starting address of the transfer in a device
register.

• Load the transfer byte or word count in a device register.

• Set bits in the device control register to initiate the
transfer.

The operating system performs the first three steps above. The driver
fork process simply calls VAX/VMS routines to allocate and load the
map registers.

4.2.1.2 Buffered Data Paths - In contrast to the direct data path,
the buffered data paths transfer data much more efficiently between
the UNIBUS and the backplane interconnect by decoupling the UNIBUS
transfer from the backplane interconnect transfer. Buffered data
paths read or write multiple words of data in a transfer, and buffer
the unrequested portions of the data in UNIBUS adapter buffers. Thus,
several UNIBUS read functions can be accommodated with a single
backplane interconnect transfer.

Advantages that buffered data paths offer to UNIBUS devices include
the following:

• Fast DMA block transfers to or from consecutively increasing
addresses

• Word-oriented block transfers that begin and end on an odd
byte of memory; note, however, that these transfers can be
quite slow since the UNIBUS adapter may need to perform
multiple transfers to complete a 1-word transfer

• 32-bit data transfers from random longword-aligned physical
addresses

A buffered data path cannot be assigned to more than one active
transfer at a time. When a driver fork process is preparing to
transfer data to or from a UNIBUS device on a buffered data path, the
driver requests allocation of a free buffered data path and a set of
UNIBUS adapter map registers. A VAX/VMS I/O routine writes the number
of the data path into each of the assigned map registers.

A UNIBUS device transfer over a buffered data path has the following
restrictions:

• All addresses in a block transfer must be consecutively
increasing addresses.

• All transfers within a block must be of the same function type
(DATI or DATO/DATOB).

A buffered data path stores data from the UNIBUS in a buffer until
multiple words of data have been transferred (except in
longword-aligned transfer mode; see below). Then, the UNIBUS adapter
transfers the contents of the buffer to the appropriate physical
address in a single backplane interconnect operation. The procedure
for a UNIBUS write operation that transfers data to memory is broken
into individual steps as follows:

4-5

THE UNIBUS ADAPTER

• The UNIBUS device transfers one word of data to the buffered
data path.

• The buffered data path stores the word of data and completes
the UNIBUS cycle.

• The buffered data path sets its buffer-not-empty flag to
indicate that the buffer contains valid data.

• The UNIBUS device repeats the first three steps until the
buffer is full.

• When the UNIBUS device addresses the last byte or word in the
buffer, the UNIBUS adapter recognizes a complete
data-gathering cycle.

• The buffered data path requests a backplane interconnect write
function to write the data from the buffered data path to
memory.

• When the backplane interconnect transfer is complete, the
buffered data path clears its flag to indicate that the buffer
no longer contains valid data.

The procedure for a UNIBUS read function varies according to the type
of UNIBUS adapter. Some adapters can perform a prefetch function,
while others cannot. Device drivers that adhere to the conventions
outlined in this manual will execute properly on either type of UNIBUS
adapter with no difference except that of system throughput.

The following paragraphs discuss the UNIBUS read operation with and
without the prefetch function.

The prefetch automatically fills the buffer after the contents of a
buffered data path are transferred to the UNIBUS. The prefetch speeds
up UNIBUS reads from memory. The steps of a UNIBUS read function are
listed below.

• The UNIBUS device initiates a read operation from a buffered
data path.

• The buffered data path checks to see if its buffers contain
valid data.

• If the buffers do not contain valid data, the buffered data
path initiates a read function to fill the buffers with data.
The transfer completes before the UNIBUS adapter begins a
UNIBUS transfer.

• The buffered data path transfers the requested bytes to the
UNIBUS. Bytes of data that were not transferred to the UNIBUS
remain in the buffer.

• The buffered data path sets its buffer-not-empty flag to
indicate that the buffers contain valid data.

• When the UNIBUS device empties the buffers of the buffered
data path with a UNIBUS read function that accesses the last
word of data, the buffered data path clears the not empty flag
to indicate that the buffers no longer contain valid data.

• The buffered data path then initiates a read function to
prefetch data from memory.

4-6

THE UNIBUS ADAPTER

• When the transfer is complete, the buffered data path sets the
buffer-not-empty flag to indicate that the buffers now contain
valid data.

The prefetch may attempt to read data beyond the address mapped by the
final map register. To avoid a read to memory that does not exist,
the VAX/VMS map register allocate and load routines always allocate
one extra map register and clear the valid bit before initiating the
transfer. When the UNIBUS adapter notices that the map register for
the prefetch is invalid, the UNIBUS adapter simply aborts the prefetch
without reporting an error.

The steps of a UNIBUS read function without prefetch are listed below.

• The UNIBUS device initiates a read operation from a buffered
data path.

• The buffered data path checks to see if its buffers contain
valid data.

• If the buffers do not contain valid data, the buffered data
path initiates a read function to fill the buffers with data.
The transfer completes before the UNIBUS adapter begins a
UNIBUS transfer.

• The buffered data path transfers the requested bytes to the
UNIBUS. Bytes of data that were not transferred to the UNIBUS
remain in the buffer.

4.2.1.3 Byte Offset Data Transfers - Some UNIBUS devices are
restricted to transferring integral words of data in word-aligned
UNIBUS addresses. The buffered data paths allow these devices to
perform transfers to memory that begins and ends on an odd-byte
address. A byte-offset bit in the map registers indicates
byte-aligned data to the hardware. If the bit is set, the hardware
increments physical addresses. A VAX/VMS subroutine that loads map
registers determines whether the data is word- or byte-aligned and
sets the byte offset bit accordingly.

4.2.1.4 Purging a Buffered Data Path - Since prefetches may read more
data from memory than the UNIBUS device wishes to read, driver fork
processes must ask the UNIBUS adapter to purge the buffered data path
when a transfer is complete. In addition, a transfer from a device to
the backplane interconnect can complete with some data left in the
buffer. The driver must purge the data path to complete the transfer.

The purge guarantees that the data is not transferred to the next user
of the buffered data path. The driver fork process performs the purge
by calling a standard VAX/VMS subroutine that:

• Tells the hardware to purge the buffered data path register
owned by the fork process. For a UNIBUS read function, the
adapter simply clears the buffer-not-empty flag. For a UNIBUS
write function, the adapter transfers any data left in the
data path buffer to VAX-11 memory, then clears the flag.

• Notifies the driver fork process of any error that occurs
during the purge.

The data path must be purged before the driver releases map registers
or the buffered data path register.

4-7

THE UNIBUS ADAPTER

4.2.1.5 Longword-Aligned 32-Bit Random Access Mode - Another method
of transferring data over a buffered data path is in longword-aligned
32-bit random access mode. This mode permits a device that reads data
from or writes data to memory in longword-aligned and longword
multiples to use the buffered data path for random memory access.

To ensure that random access mode works correctly regardless of
processor type, a buffered data path should not repeatedly address the
same longword. For example, on certain processors a UNIBUS device
that polls a single longword, waiting for data, will constantly be
returned the same data.

A longword-aligned transfer over a buffered data path is faster than a
direct data path transfer and somewhat slower than a normal buffered
data path transfer.

To transfer data in the longword-aligned 32-bit random access mode,
the driver fork process sets the longword-access-enable bit
(VEC$V LWAE) ih the channel request block (CRB) prior to loading the
map registers. The UNIBUS device can then perform a read (DATI) or
write (DATO) function.

For a UNIBUS read, the function occurs as follows:

• The driver fork process initiates a read function on the
UNIBUS device.

• The UNIBUS adapter clears the buffer-not-empty flag in the
assigned buffered data path.

• The UNIBUS adapter issues a read from memory operation.

• The UNIBUS adapter stores the longword of data in the buffered
data path and sets the buffer-not-empty flag.

• The UNIBUS adapter initiates two UNIBUS read operations to
transfer two words of data.

For a UNIBUS write, the function occurs as follows:

• The driver fork process initiates a write function on the
UNIBUS device.

• The UNIBUS adapter clears the buffer-not-empty flag in the
assigned buffered data path.

• The UNIBUS adapter issues two write operations to transfer two
words of data from the UNIBUS device.

• The UNIBUS adapter stores the longword of data in the buffered
data path and sets the buffer-not-empty flag.

• The UNIBUS adapter initiates a backplane interconnect write
operation.

• When the backplane interconnect write operation is complete,
the UNIBUS adapter clears the buffer-not-empty flag.

4.3 THE VAX-11/780 UNIBUS ADAPTER

The UNIBUS adapter on a VAX-11/780 processor has the following
hardware features:

4-8

THE UNIBUS ADAPTER

• One direct data path that does not handle byte offsets.

• Fifteen buffered data paths that handle byte offsets. Each
data path has an eight-byte buffer and supports the prefetch
function and longword random access mode. The UNIBUS adapter
uses extended SBI read or write operations to fill a buffered
data path.

• The Synchronous Backplane Interconnect (SBI). The SBI uses a
30-bit physical address.

• 496 map registers.

• Nondirect vector interrupt dispatching.

• Longword aligned random access mode. When a data path is set
to this mode, data prefetch is disabled and only four bytes of
data are buffered.

Figure 4-2 shows the fields within the map register and data path
register for the VAX-11/780 UNIBUS adapter.

Map Register

31 26 25 24 20

Data
Unused Path Page Frame Number

Number

'P ~ L Byte offset

....__ Longword access enable (LWAE)

Data Path Register

3130 29 28

Valid

23

Unused Spare

·~ l ~ [___ Data path function

....____ Buffer transfer error

r n m I r Buffe ot e pty pu ge

17 15
T

I UNIBUS Address
I (17:2)
l

2
I
I
I
l

Figure 4-2: VAX-11/780 UNIBUS Adapter Registers

4.4 THE VAX-11/750 UNIBUS ADAPTER

0

0

ZK-916-82

The UNIBUS adapter on a VAX-11/750 processor has the following
hardware features:

• One direct data path that handles byte offsets.

• Three buffered data paths that handle byte offsets. Each data
path has a four-byte buffer. The buffered data paths do not
perform the prefetch function.

• The backplane interconnect.
physical addresses.

4-9

This interconnect uses 24-bit

THE UNIBUS ADAPTER

• 512 map registers. The VAX/VMS system uses only 496 of these
registers.

• Direct vector interrupt dispatching.

• Implied longword aligned random access mode. Buffered data
paths on the VAX-11/750 only buffer four bytes of data. Since
the data paths do not perform a prefetch, they can always
reference longwords at random. However, because of a hardware
restriction, VAX-11/750 buffered data paths do not allow
repeated references to a longword. If a longword is
referenced more than once, bad data may be returned. To
ensure compatibility between processors, device drivers can
set the LWAE bit to indicate longword mode.

Figure 4-3 shows the fields within the map register and the data path
register for the VAX-11/750 UNIBUS adapter.

Map Register

31 26 25 22 20 14

MBZ Undefined Page Frame Number

·~ ,, ·~ L Data path number

Byte offset

Longword access enable (for compatibility with
VAX-11 /780; unused

ali i v d b t

Data Path Register

31 30 29 28

U ncorrecti ble error

Nonexistent memory error

Error Summary

MBZ

on VAX-11/750)

Purge

0

0

ZK-917-82

Figure 4-3: VAX-11/750 UNIBUS Adapter Registers

4.5 THE VAX-11/730 UNIBUS ADAPTER

The UNIBUS adapter on a VAX-11/730 processor has the following
hardware features:

• One direct data path that handles byte offsets.

• No buffered data paths.

• The backplane interconnect. This interconnect uses 24-bit
physical addresses.

• 512 map registers. The VAX/VMS system uses 496 of these
registers.

• Direct vector interrupt dispatching.

4-10

THE UNIBUS ADAPTER

Figure 4-4 shows the fields within the map register for the VAX-11/730
UNIBUS adapter. This adapter does not use a data path register; it
exists for compatibility with the other VAX-11 processors and contains
only zeroes. The adapter ignores any data writen to this longword.

Map Register

31 26 25 22 20 14 0

MBZ Undefined Page Frame Number

·~ ~ C Byte offset
,____

Longword access enable (for compatibility with
VAX-111780; unused on VAX-111730)

Valrd brt
ZK-585-81

Figure 4-4: VAX-11/730 UNIBUS Adapter Map Register

4-11

CHAPTER 5

OVERVIEW OF I/O PROCESSING

Under the VAX/VMS operating system, I/O processing occurs in three
major phases:

• I/O request preprocessing

• Device activation and subsequent handling of the device
interrupt

• I/O postprocessing

When a user process issues an I/O request, the Queue I/O Request
system service gains control. The system service coordinates the
preprocessing of the I/O request. The last driver FDT routine called
by the Queue I/O Request system service calls a VAX/VMS routine that
creates a driver fork process to execute the driver's start I/O
routine; this is the routine that activates the device. When the
transfer completes, the device requests an interrupt that results in
execution of the driver's interrupt service routine. This routine
handles the interrupt and requests creation of a driver fork process
to perform device-dependent I/O postprocessing. The driver fork
process then transfers control to the system to perform
device-independent I/O postprocessing. Figure 5-1 illustrates the
sequence of events.

5.1 PREPROCESSING AN I/O REQUEST

The Queue I/O Request system service performs device-independent
preprocessing of an I/O request and calls driver FDT routines to
perform device-dependent preprocessing. To preprocess an I/O request,
the Queue I/O Request system service takes the following steps:

• Verifies that the requesting process has assigned a process
I/O channel to the target device

• Locates the device driver in the I/O data base

• Validates the I/O function code

• Checks process I/O request quotas

• Validates the I/O status block

• Allocates and sets up the I/O request packet

• Calls driver FDT routines
preprocessing

5-1

to perform device-dependent

USER PROCESS CONTEXT
USER STACK

USER PROCESS CONTEXT
KERNEL STACK

FORK PROCESS CONTEXT
KERNEL OR INTERRUPT
STACK

OVERVIEW OF I/O PROCESSING

USER PROCESS ISSUES $QIO

QUEUE 1/0 REQUEST SYSTEM SERVICE
PERFORMS DEVICE-INDEPENDENT 1/0
PREPROCESSING.

QUEUE 1/0 SYSTEM SERVICE CALLS DRIVER
FDT ROUTINE(S) TO PERFORM DEVICE­
DEPENDENT PREPROCESSING.

LAST FDT ROUTINE CALLS VAX/VMS
ROUTINE TO QUEUE 1/0 REQUEST AND
CREATE A DRIVER FORK PROCESS.

ONCE ACTIVATED THE DRIVER FORK PROCESS
EXECUTES THE START 1/0 ROUTINE.

I
START 1/0 ROUTINE OBTAINS NECESSARY
RESOURCES (FOR EXAMPLE, CONTROLLER
CHANNEL, UBA MAP REGISTERS) AND
ACTIVATES THE DEVICE.

l
START 1/0 ROUTINE INVOKES A WAIT FOR
INTERRUPT MACRO THAT SAVES THE FORK
PROCESS CONTEXT AND SUSPENDS THE
START 1/0 ROUTINE.

HARDWARE INTERRUPT OCCURS WHEN
-------------REQUESTED BY DEVICE -------------

INTERRUPT CONTEXT
INTERRUPT STACK

FORK PROCESS CONTEXT
INTERRUPT STACK

INTERRUPT CONTEXT
INTERRUPT STACK

USER PROCESS CONTEXT
KERNEL STACK

USER PROCESS CONTEXT
USER STACK

INTERRUPT DISPATCHER ACTIVATES
INTERRUPT SERVICE ROUTINE.

DRIVER'S INTERRUPT SERVICE ROUTINE
HANDLES THE INTERRUPT AND TRANSFERS
CONTROL TO THE DRIVER AT THE
INSTRUCTION FOLLOWING THE WAIT FOR
INTERRUPT INVOCATION.

THE DRIVER INVOKES IOFORK TO BE
RESCHEDULED AT FORK IPL AS A FORK PROCESS.

ONCE RESCHEDULED AS A FORK PROCESS,
THE DRIVER EXECUTES THE REST OF THE
DRIVER CODE THAT PERFORMS DEVICE­
DEPENDENT 1/0 COMPLETION.

I
THE DRIVER THEN CALLS A VAX/VMS ROUTINE TO
PERFORM DEVICE-INDEPENDENT 1/0 COMPLETION .

.l

l
VAX/VMS QUEUES A KERNEL MODE AST TO
THE PROCESS THAT ORIGINALLY ISSUED
THE 1/0 REQUEST.

ONCE DELIVERED, THE KERNEL MODE AST
ROUTINE RUNS IN USER PROCESS CONTEXT
TO READ DATA INTO THE USER'S BUFFER
FOR A BUFFERED 1/0 REQUEST,
RETURN FINAL STATUS, AND, IF REQUESTED,
QUEUE A USER MODE AST AND/OR SET AN
EVENT FLAG.

USER MODE AST

ZK-918-82

Figure 5-1: Sequence of Driver Execution

5-2

OVERVIEW OF I/O PROCESSING

5.1.1 Process I/O Channel Assignment

The first step in preprocessing an I/O request is to verify that the
I/O request specifies a valid process I/O channel. The process I/O
channel is an entry in a system-maintained process table that
describes a path of reference from a process to a peripheral device
unit. Before a program requests I/O to a device, the program
identifies the target device unit by issuing an Assign I/O Channel
system service call. The Assign I/O Channel system service performs
the following functions:

• Locates an unused entry in the table of process I/O channels

• Creates a pointer to the device unit in the table entry for
the channel

• Returns a channel index number to the program

When the program issues an I/O request, the Queue I/O
service verifies that the channel number specified is
a device and locates the portion of the I/O data base
the device. Figure 5-2 illustrates the path from a
number to the device's unit control block.

5.1.2 Locating a Device Driver in the I/O Data Base

Request system
associated with
that describes
process channel

Using information in the unit control block, a driver can find other
I/O data structures associated with the device, including the
following:·

• Channel request blockl

• Interrupt dispatch block

• Device data block

5.1.2.1 Unit Control Block (UCB) - The process channel number
indirectly points to the unit control block for the target device.
The unit control block contains the first in a chain of pointers into
the I/O data base. The pointer chain leads to the addresses of driver
tables and routines in the driver that handles the target device.

A unit control block describing a device unit exists for each device
in the system. The unit control block indicates the current state of
the device unit by specifying such information as the following:

• Whether the device is active

• What I/O request is being processed

• Where transfer buffers are located

1. Channel request blocks (CRBs) and channel control blocks are two
completely separate data structures. It is sometimes helpful to think
of th~ channel request block as the "controller" request block because
it describes the hardware controller. The channel control block, on
the other hand, describes a logical path from a process to an
associated unit control block.

5-3

OVERVIEW OF I/O PROCESSING

Since drivers run as fork processes and cannot use process address
space to store additional context, drivers use the unit control block
for temporary data storage during I/O processing. Chapter. 7 describes
how you can allocate additional UCB space for storing data or
device-dependent driver context.

The unit control block also holds the context of a driver fork process
when VAX/VMS I/O routines suspend the fork process to wait for an
asynchronous event such as a device interrupt.

CHANNEL
NUMBER

PROCESS
CHANNEL
CONTROL

BLOCKS (CCBs)

_.... --
UCB ----

DEVICE'S
UNIT

CONTROL
BLOCK
(UCB)

ZK-919-82

Figure 5-2: Locating the Target Device

5.1.2.2 Channel Request Block (CRB) - All unit control blocks
describing device units attached to a particular controller contain a
pointer to a single channel request block. The channel request block
contains the following information:

5-4

OVERVIEW OF I/O PROCESSING

• Code that transfers control to a driver interrupt service
routine

• Addresses of driver's unit and controller initialization
routines

• A pointer to the interrupt dispatch block, which further
describes the controller

Controllers can be either multiunit or dedicated. A dedicated
controller has only one device unit. The VAX/VMS operating system
does not use the channel request block to synchronize I/O operations
for a dedicated controller. The channel request block still is
present and used by drivers and operating system routines.

For multiunit controllers, a VAX/VMS routine uses a field in the
channel request block to arbitrate pending driver requests for the
controller. When the system grants ownership of a multiunit
controller data channel to a driver fork process, the fork process can
initiate an I/O operation on a device attached to that controller.

The unit control blocks for devices attached to a multiunit controller
all contain pointers to the same channel request block; this allows
the operating system to manage the controller data channel. Figure
5-3 illustrates the data structures required to describe three devices
on a multiunit controller.

CRB

UCB UCB UCB

ZK-920-82

Figure 5-3: Data Structures for Three Devices on One Controller

5.1.2.3 Interrupt Dispatch Block (IDB) - The channel request block
also points to an interrupt dispatch block. The interrupt data base
contains three critical data structure addresses:

• The address of the UCB of the device unit, if any, that
currently owns the controller data channel

• The address of the control/status register (CSR); it is the
key to access to device registers

• The address of the adapter control block (ADP) that describes
the UNIBUS adapter to which the controller is attached

5.1.2.4 Device Data Block (DOB) - All unit control blocks describing
device units attached to a single controller contain a pointer to a
single device data block (DDB). The device data block contains the
following fields that identify the device and its driver:

5-5

OVERVIEW OF I/O PROCESSING

• The generic device/controll~r name

• The name of the device's driver as obtained from the driver
prologue table; see Chapters 7 and 14 for the use of the
driver name

Figure 5-4 illustrates the relationship between the I/O data
structures that describe a group of equivalent devices on two separate
controllers.

IDB

CRB

UCB UCB

DDT

UCB

CRB

IDB

ZK-586-81

Figure 5-4: I/O Data Base for Two Controllers

In Figure 5-4, one controller has a single device unit, and the other
controller has two device units. Devices on both controllers share
the same driver code.

5.1.3 Validating the I/O Function

Using the I/O data structures described above, the Queue I/O Request
s·ystem service locates the address of the driver's function decision

5-6

OVERVIEW OF I/O PROCESSING

table by following a chain of pointers beginning in the UCB of the
target device for the I/O request, as follows:

UCB --7 DDT --7 FDT

The system service then uses data in the function decision table to
analyze the I/O function. The service confirms that the function
specified in the I/O request is a valid function for the device.

5.1.4 Checking Process I/O Request Quotas

The Queue I/O Request system service determines whether the I/O
request being readied will cause the process to exceed its quota for
outstanding direct or buffered I/O ·requests. If the process remains
under quota, the system service allows it to continue I/O
preprocessing.

In the case where quota is exceeded, the Queue I/O request system
service examines its resource wait flag. If the flag is clear, the
system service aborts the I/O request.

If the flag is set, the process is placed in a wait state until it
drops below quota, at which time the $QIO system service modifies the
process quotas as appropriate for the requested operation.

5.1.5 Validating the I/O Status Block

If the I/O request specifies a quadword I/O status block to receive
final I/O status information, the Queue I/O Request system service
determines whether the process issuing the request has write access to
the status block locations specified. If the process has write
access, the system service fills the quadword with zeros. If the
process does not have write access, the system service terminates the
request with an error status.

5.1.6 Allocating and Setting Up an I/O Request Packet

If validation of the I/O request succeeds to this point, the Queue I/O
Request system service allocates a block of nonpaged system memory to
contain an I/O request packet.

Before the system service allocates an I/O r~quest packet, it raises
the hardware IPL of the processor to IPL$ ASTDEL to block any other
asynchronous activity in the process. The new IPL prevents possible
termination of the process; process termination would result in the
operating system's losing track of the system memory allocated for the
I/O request packet.

The Queue I/O Request system service attempts to allocate an I/O
request packet from a linked list of preallocated I/O request packets.
If no preallocated packets exist, the service calls a VAX/VMS routine
that allocates an I/O request packet from nonpaged pool. This
allocating routine synchronizes with the rest of the system so that it
can allocate the memory needed.

The Queue I/O Request system service continues I/O preprocessing by
writing the following description of the I/O request into the packet:

5-7

OVERVIEW OF I/O PROCESSING

• Size in bytes of the I/O request packet

• A type field identifying the block as an I/O request packet

• Access mode of the process at the time of the I/O request

• Process identification of the requesting process

• If specified in the I/O request, the address of an AST routine
and its parameter

• If the device is file-structured, the address of a control
block that describes the physical location of part of the file
(window control block)

• Address of the target device's unit control block

• I/O function code;
reduced to their
value

read/write virtual block functions are
logical equivalents before storing a code

• Number of event flag to set when I/O processing is complete
for the I/O request

• Base software priority of the requesting process

• If specified in the I/O request, the address of an I/O status
block

• Process I/O channel index number

• A flag indicating whether the I/O function is buffered or
direct I/O

• A flag indicating whether the I/O request is an input request

• A flag indicating whether the process has privilege to perform
logical or physical I/O functions

• A flag indicating whether the I/O function is a physical I/O
function

• If specified in the I/O request, the address and size of a
diagnostic buffer and a flag indicating that the buffer is
present

• If an AST routine is specified in the I/O request, a flag
indicating that the process quota for the use of ASTs has been
modified

The Queue I/O Request system service writes the above fields in the
I/O request packet because these fields contain device-independent
data. Driver routines or VAX/VMS common FDT routines must fill in the
device-dependent portions of the I/O request packet.

Appendix A illustrates the format of an I/O request packet.

5.1.7 Function Decision Table Processing

The driver function decision table controls the device-dependent
preprocessing of an I/O request. Figure 5-5 illustrates the format of
a function decision table.

5-8

OVERVIEW OF I/O PROCESSING

FUNCTION DECISION TABLE

2 LONGWORDS { VALID 1/0 1-----------
FUNCTIONS

2 LONGWORDS { BUFFERED 1/0
r-----------

FUNCTIONS

3 LONGWORDS { 64-BIT
~-----------

MASK
r------------

ROUTINE ADDRESS

3 LONGWORDS { 64-BIT
~----------

MASK
t------------

ROUTINE ADDRESS

•
•
•
•
•

ZK-921-82

Figure 5-5: Driver Function Decision Table

The I/O function code specified in an I/O request is a 16-bit value
consisting of two fields:

• A 6-bit I/O function code (bits 0 through 5)

• A 10-bit I/O function modifier (bits 6 through 15)

The 6-bit function code field permits you to define 64 unique I/O
function codes for every device type. Chapter 7 describes how you can
define these function codes.

Because each driver can define up to 64 unique I/O function codes, the
first two entries of a function decision table are two longwords each;
that is, 64 bits each. The first entry is a bit mask of all valid I/O
function codes for the device. Each bit represents a unique function
code. The second entry is a bit mask of those valid codes that are
also buffered I/O functions. The Queue I/O Request system service
uses these two bit masks to determine whether the I/O function code is
valid and whether the operation is to be buffered or direct I/O.

The remaining entries of a function decision table are three longwords
each. The first two longwords form a bit mask of I/O function codes.
The third longword is the address of an I/O preprocessing routine to
be called for the I/O function codes whose corresponding bits are set
in the first two longwords.

The Queue I/O Request system service uses the value of the low-order
six bits of the I/O function code to determine which bit to check in
each FDT bit mask. That is, if a function code has a value of 22, the
system service checks the 23rd bit (bit 22) of each bit mask.

Some of the preprocessing routines are present in the operating system
because they provide device-independent services. Chapter 8 describes
these routines. Other routines are in the driver because they perform
device-dependent services.

5-9

OVERVIEW OF I/O PROCESSING

The Queue I/O Request system service uses the 3-longword entries in
the function decision table to call I/O preprocessing routines in the
driver or system, as follows:

• If the bit in the FDT entry corresponding to the value of' the
function code is set, the system service calls the associated
preprocessing routine; that is, the routine whose address is
in the longword following the bit mask.

• If the bit corresponding to the I/O function code value is not
set, the Queue I/O Request system service advances to the next
FDT entry bit mask and repeats the step above.

• When the preprocessing routine completes its activity, the
routine either returns control to the system service or
transfers control to a VAX/VMS routine that queues the I/O
request packet or completes the request.

• If the Queue I/O Request system service regains control, the
routine advances to the next FDT entry and repeats the first
step above.

• If all preprocessing for the I/O function is complete, the
preprocessing routine does not return to the Queue I/O Request
system service. Instead, the routine transfers control to
either a VAX/VMS routine that queues the I/O request for the
driver's start I/O routine or a VAX/VMS routine to complete or
abort the request.

Figure 5-6 illustrates the use of FDT routines in I/O preprocessing.

As illustrated in Figure 5-6, FDT routines are responsible for ending
the Queue I/O Request system service's scan of the function decision
table. For every valid I/O function code for a device, one FDT entry
must cause I/0 preprocessing for the function to end.

FDT routines execute in the full process context of the process that
requested the I/O operation. Thus, FDT routines can gain access to
process virtual address space. Once all FDT preprocessing is
complete, however, the rest of the processing for the I/O request
continues in the limited context of a driver fork process or an
interrupt service routine.

5.2 HANDLING DEVICE ACTIVITY

When I/O preprocessing is complete, but the I/O operation is not yet
complete, an FDT routine transfers control to a VAX/VMS I/O packet
queuing routine that arbitrates device activity. The arbitration
routine ensures that it creates only one driver fork process at a time
for each device unit on the system. One fork process handles one I/O
request packet.

5-10

OVERVIEW OF I/O PROCESSING

QIO DETERMINES
FUNCTION

CODE VALUE

CHECK FOR
BUFFERED

1/0

ADVANCE
TO

NEXT
ENTRY

CALL
SUBROUTINE

SUBROUTINE PERFORMS
1/0 PREPROCESSING
AND RETURNS OR
CALLS TO QUEUE

PACKET OR TERMINATE

RETURN TO QIO

NO

NO

CALL TO VMS
ROUTINE TO

QUEUE PACKET
FOR DRIVER

CALL VAX/VMS
ROUTINE TO

COMPLETE OR
ABORT 1/0

TERMINATE
REQUEST AND

RETURN TO
USER

ZK-922-82

Figure 5-6: FDT Routines and I/O Preprocessing

5-11

OVERVIEW OF I/O PROCESSING

5.2.1 Creating a Driver Fork Process to Start I/O

The I/O packet queuing routine determines whether a driver fork
process exists for the target device, as follows:

• If the device is idle, no driver fork process exists for the
device; in this case, the queuing routine immediately creates
a driver fork process to execute the start I/O routine and
transfers control to it.

• If the device is busy, a driver fork process already exists
for the device; in this case, the queuing routine inserts the
I/O request packet into a queue of I/O request packets waiting
for the device unit. The routine queues the packet according
to the base priority of the caller. Within each priority,
packets are in first-in/first-out order.

In the latter case, by the time the driver's start I/O routine gains
control to dequeue the I/O packet, the originating user's process
context is no longer available. The driver must execute in the
reduced context of a driver fork process. Because the context of the
process initiating the I/O request is not guaranteed to a driver's
start I/O routine, the VAX/VMS I/O packet queuing routine always
initiates the driver's start I/O routine with a context that is
appropriate for a fork process. The driver fork process consists of
three registers (or fewer) and a PC. The I/O packet queuing routine
establishes this context in the following steps:

• It raiies IPL to driver fork IPL.

• It loads the address of the I/O request packet into R3.

• It loads the address of the device's unit control block into
RS.

• It transfers control to the driver's start I/O routine entry
point using a JMP instruction.

The newly activated driver fork process executes under the following
constraints:

• It cannot refer to the address space of the process initiating
the I/O request.

• It can use only RO through RS freely. It must save other
registers before use and restore them after use.

• It must clean up the stack after use. The stack must be in
its original state when the fork process relinquishes control
to any VAX/VMS routine.

• It must execute at IPLs between driver fork level and
IPL$ POWER. It must not lower IPL below device fork except by
creating a fork process at a lower IPL.

Each driver fork process executes until one of the following events
occurs:

• Device-dependent processing of the I/O request is complete.

• A shared resource needed by the driver is unavailable, as
described in Section 3.3.

• Device activity requires the fork process to wait for a device
interrupt.

5-12

OVERVIEW OF I/O PROCESSING

5.2.2 Activating a Device and Waiting for an Interrupt

A device driver's start I/O routine examines the I/O request packet to
determine the type of I/O operation to perform and the I/O request
specification. Depending on the device type supported by the driver,
the start I/O routine performs some or all of the following steps:

• Analyzes the I/O function and branches to driver code that
prepares the unit control block and the device for that I/O
operation

• Copies I/O request packet fields into the unit control block

• Tests fields in the unit control block to determine whether
the device and/or volume mounted on the device are valid

• If the device is attached to a multiunit controller, obtains
the controller data channel

• If the I/O operation is a DMA transfer, obtains a UNIBUS
adapter data path and loads UNIBUS adapter map registers

• Loads all necessary device registers except for the device's
control/status register

• Raises IPL to IPL$ POWER and confirms that a power failure
that would invalidate the device operation has not occurred

• Loads the device's control/status register to activate the
device

• Invokes a VAX/VMS routine to suspend the driver fork process
until a device interrupt or timeout occurs

While the driver is suspended, the context saved for it consists of
the unit control block. The context contains the following
information:

• A description of the I/O request and the state of the device

• The contents of R3 and R4

• The implicit contents of R5 as the address of the unit control
block

• A driver return address

• The address of a device timeout handler

• The time at which the device will time out

By convention, R4 often contains the address of the control/status
register (CSR); it permits the driver to examine device registers.
When the driver fork process regains control after interrupt
processing, R5 contains the UCB address; it is the key to the rest of
the I/O data base that is relevant to the current I/O operation.

5.2.3 Handling a Device Interrupt

Once the driver's start I/O routine initiates the transfer, the driver
invokes a VAX/VMS routine to wait for an interrupt. When the device
requests an interrupt, the interrupt dispatcher transfers control to
the driver interrupt service routine. The driver's interrupt service

5-13

OVERVIEW OF I/O PROCESSING

routine runs at a high interrupt priority level so that the routine
can service interrupts quickly. A driver interrupt service routine
usually performs the following processing:

• For multiunit device controllers, determines which device unit
generated the interrupt

• Examines the unit control block for the device to confirm that
the driver fork process expects the interrupt

• Saves device registers

• Reactivates the suspended driver fork process

If necessary, the reactivated driver fork process executes at the high
IPL of the interrupt service routine for a few instructions. Very
soon, however, the driver lowers its execution priority so that it
does not block subsequent interrupts for other devices in the system.

5.2.4 Switching from Interrupt to Fork Process Context

To lower its priority, the driver calls a VAX/VMS fork process queuing
routine (IOFORK) that performs the following steps:

• Disables the timeout that was specified in the wait for
interrupt routine

• Saves R3 and R4 (these are the registers needed to execute as
a fork process)

• Saves the address of the instruction following the IOFORK
request in the UCB fork block

• Places the address of the UCB fork block from RS in a fork
queue for the driver's fork level

• Returns to the driver's interrupt service routine

The interrupt service routine then cleans up the stack, restores
registers, and dismisses the interrupt. Figure 5-7 illustrates the
flow of a driver to create a fork process after a device interrupt.

DEVICE DRIVER -- INTERRUPT JSB
GENERATES - DRIVER

~REI --SERVICE -
INTERRUPT -- ROUTINE

~~

JSB
,~

RSB
IOFORK

ZK-923-82

Figure 5-7: Creating a Fork Process After an Interrupt

5.2.5 Activating a Fork Process from a Fork Queue

When no
priority

hardware interrupts are pending, the software interrupt
arbitration logic of the processor transfers control to the

5-14

OVERVIEW OF I/O PROCESSING

software interrupt fork dispatcher. When the processor grants an
interrupt at a fork IPL, the fork dispatcher processes the fork queue
that corresponds to the IPL of the interrupt. To do so, the
dispatcher performs the following steps:

• Removes a driver fork block from the fork queue

• Restores fork context

• Transfers control back to the fork process

Thus, the driver code calls VAX/VMS code that coordinates suspension
and restoration of a driver fork process. This convention allows
VAX/VMS to service hardware device interrupts in a timely manner and
reactivate driver fork processes as soon as no device requires
attention.

When a given fork process completes, the fork dispatcher removes the
next entry, if any, from the fork queue, restores its fork process
context, and reactivates it. This sequence repeats until the fork
queue is empty. When the queue is empty, the fork dispatcher restores
RO through RS from the stack and dismisses the interrupt with an REI
instruction.

Figure 5-8 illustrates the reactivation of a driver fork process.

DEVICE
GENERATES
INTERRUPT

l
DRIVER

SERVICES
INTERRUPT

l
DRIVER
FORKS

I
DRIVER

DISMISSES
INTERRUPT

IPL TO FORK LEVEL
t--

SOFTWARE
INTERRUPT

OCCURS

FORK
DISPATCHER

CALLS DRIVER

DRIVER
COMPLETES

REQUEST

FORK
DISPATCHER

DISMISSES
INTERRUPT

ZK-924-82

Figure 5-8: Reactivation of a Driver Fork Process

5-15

OVERVIEW OF I/O PROCESSING

5.3 COMPLETION OF AN I/O REQUEST

Once reactivated, a driver fork process completes the I/O request as
follows:

• Releases shared driver resources such as UNIBUS adapter and
map registers and ownership of the controller

• Returns status to the VAX/VMS I/O completion routine

The I/O completion routine performs the following steps to start
postprocessing of the I/O request and to start processing the next I/O
request in the device's queue:

• Writes return status from the driver into the I/O request
packet

• Inserts the finished I/O
postprocessing fork queue
IPL$ IOPOST

request packet
and requests an

in the
interrupt

I/O
at

• Creates a new fork process for the next I/O request packet in
the device's I/O request packet wait queue

• Activates the new driver fork process

5.3.1 I/O Postprocessing

When processor priority drops below the I/O postprocessing IPL, the
processor dispatches to the I/O postprocessing interrupt service
routine. This VAX/VMS routine completes device-independent processing
of the I/O request.

Using the I/O request packet as a source of information, the I/O
postprocessing dispatcher executes the sequence below for each I/O
request packet in the postprocessing queue:

• Removes the I/O request packet from the queue

• If the I/O function was a direct I/O function, adjusts the
recorded use of the issuing process's direct I/O quota and
unlocks the pages involved in the I/O transfer

• If the I/O function was a buffered I/O function, adjusts the
recorded use of the issuing process's buffered I/O quota and,
if the I/O was a write function, deallocates the system
buffers used in the transfer

• Posts the event flag associated with the I/O request

• Queues a kernel mode AST routine to the process that issued
the Queue I/O Request system service call

The queuing of a kernel mode AST routine allows I/O postprocessing to
execute in the context of the user process but in a privileged access
mode. Process context is needed to return the results of the I/O
operation to the process's address space. The kernel mode AST routine
writes the following data into the process's address space:

5-16

OVERVIEW OF I/O PROCESSING

• Data read in a buffered I/O operation

• If specified in the I/O request, the contents of the
diagnostic buffer

• If specified in the I/O request, the two longwords of I/O
status

If the I/O request specifies a user AST routine, the kernel mode AST
routine queues the user mode AST for the process. When VAX/VMS
delivers the user mode AST, the system AST delivery routine
deallocates the I/O request packet. The first part of an I/O request
packet is the AST control block for user requested ASTs.

5-17

PART II

OVERVIEW

Device drivers consist of static tables, routines that perform I/O
preprocessing, and routines that handle the device and controller.
The chapters that follow describe how to write the following sections
of a driver:

• Static tables

• Routines that use the device driver's function decision table
(FDT)

• Routines that start an I/O operation on the device and
complete the I/O operation

• Routines that handle interrupts

• Routines that request allocation of UNIBUS adapter map
registers and data paths

• Routines that initialize devices and controllers

• Routines that cancel an I/O operation

• Routines that log errors

The "how to" chapters are preceded by a chapter that contains a driver
template. The template illustrates the general organization and
writing of a driver.

NOTE

The "how to" chapters describe a common
approach to the design of various driver
routines; they are examples. They do
not present the only approach that can
be taken to writing a driver.

CHAPTER 6

TEMPLATE FOR AN I/O DRIVER

The pages that follow describe conventions to be used by device
drivers and provide a template for a device driver. Drivers do not
necessarily need all of the routines indicated by the template, nor do
driver routines and tables need to follow the exact order of the
template. However, the VAX/VMS operating system does place a few
restrictions on the order and content of driver routines and tables.

Figure 6-1 illustrates the organization of a device driver. The first
item in a device driver is the driver prologue table. This table must
be the first generated code in a driver. The order of the remaining
tables and routines varies from driver to driver. However, the last
statement in every driver, except for the .END assembly directive,
must be a label marking the end of the driver. The address of this
label is stored in the driver prologue table. The driver loading
procedure uses this address to calculate the size of the driver.
Chapter 14 describes the driver loading procedure.

Some drivers contain no device-dependent function decision table
routines. Other drivers need only minimal initialization procedures.
However, every driver normally contains static driver tables and a
start I/O routine or an interrupt service routine.

6.1 CODING CONVENTIONS

The driver loading procedure loads a device driver into a block of
nonpaged system memory whose location is chosen by the operating
system memory allocation routines. Therefore, the driver must consist
of position-independent code only.

In addition, the system may call a device driver repeatedly to process
I/O requests and interrupts. The driver often does not complete one
I/O operation before the system transfers control to the driver to
begin another on a different unit. For this reason, the code must be
reentrant.

The rules of position-independent and reentrant code are listed below.

• Instructions can branch only to relative addresses within the
driver and to global addresses listed in the VAX/VMS symbol
table (SYS$SYSTEM:SYS.STB).

• Static tables can list only relative addresses within the
driver and global addresses.

• The driver cannot store temporary data in local driver tables
for dynamic driver context. All dynamic temporary storage
must be contained within the unit control block corresponding
to an I/O request or the current I/O request block.

6-1

TEMPLATE FOR AN I/O DRIVER

• The driver must refer to the I/O data base by loading the
address of a data structure into a general register and using
displacement addressing to the fields of the data structure.

Refer to the VAX-11 MACRO User's Guide for additional information
about position-independent and reentrant code.

DRIVER ORGANIZATION

DRIVER
PROLOGUE

TABLE

DRIVER
DISPATCH

TABLE

FUNCTION
DECISION

TABLE

FDT
ROUTINES

DEVICE HANDLING
ROUTINES

END MARK

ZK-925-82

Figure 6-1: Driver Operation

Device drivers must also restrict their use of general registers and
the stack:

• FDT routines can use RO through R2 and R9 through Rll as
available registers. The routines can use other registers by
saving the registers before use and restoring them before
exiting from the FDT routine.

• All other driver routines can use RO through R5 as available
registers. The routines can use other registers, if
necessary, by saving and restoring them but using other
registers in this way is discouraged.

6-2

TEMPLATE FOR AN I/O DRIVER

• All driver routines can use the stack for temporary storage
only if the routines restore the stack to its previous state
before calling any VAX/VMS routines or executing RSB
instructions.

6.2 RESTRICTIONS ON DEVICE REGISTER I/O SPACE USE

The programmer of a device driver for a UNIBUS device must observe the
following restrictions on the use of a device registers:

• Drivers should always store the address of a device control
register in a general register and then gain access to the
device register indirectly through the general register. The
example below defines symbolic word offsets for each device
register and gains access to them using displacement mode
addressing from R4.

Device register offsets

LP CSR 0
LP DBR 2

MOVL UCB$L CRB(RS) ,R4
MOVL CRB$L-INTD+VEC$L IDB(R4) ,R4

TSTW LP_CSR(R4)

CSR offset
Buffer address offset

Get address of CRB
Get the address of
the device's CSR

; Is printer online?

• Floating, double, field, queue, or quadword operands are not
allowed in I/O address space, nor can an instruction obtain
the position, size, length, or base of an operand from I/O
space. For example, a driver cannot use a field instruction
to test a bit in a device register.

• Drivers cannot use string instructions.

• Drivers can use only those instructions with a maximum of one
modify or write destination. The destination must be the last
operand.

• Registers of devices connected to the backplane interconnect
(for example, UNIBUS adapter device registers and MASSBUS
device registers) are longwords. Registers of devices
connected to the UNIBUS are words. Instructions that refer to
UNIBUS adapter registers must use longword context. All
driver instructions that affect UNIBUS device registers must
use word context, for example, BISW, MOVW, and ADDW3, unless
the register is byte-addressable.

• An instruction that refers to I/O space must not generate an
exception or be interrupted. If the instruction is allowed to
restart, it will re-read the device register, which causes
undesirable device side-effects or data loss.

6-3

TEMPLATE FOR AN I/O DRIVER

• To access I/O space, use the instructions listed below. These
instructions are not interruptible unless they use
autoincrement deferred addressing mode or any of the
displacement deferred modes when specifying an operand.

AD AW I
ADD(B,W,L)2
ADD(B,W,L)3
ADWC
BIC(B,W,L)2
BIC(B,W,L)3
BICPSW
BIS(B,W,L)2
BIS(B,W,L)3
BISPSL
BISPSW
BIT(B,W,L)
CASE(B,W,L)
CHM(K,E,S,U)
CLR (B, W, L)
CMP (B, W, L)
CVT(BW,BL,WB,

WL, LB, LW)
DEC(B,W,L)
INC(B,W,L)

MC OM (B , W, L)
MFPR
MNEG(B,W,L)
MOV(B,W,L)
MOVA (B , W, L)
MOVAQ
MOVPSL
MOVZ(BW,BL,WL)
MTPR
PROBE (R, W)
PUSHA(B,W,L)
PUS HAQ
PUSHL
SBWC
SUB(B,W,L)2
SUB(B,W,L)3
TST(B,W,L)
XOR(B,W,L)2
XOR(B,W,L)3

The following pages list the VAX/VMS template driver. A
machine-readable copy is also available. Its file specification is:

SYS$EXAMPLES:TDRIVER.MAR

6-4

;++

TEMPLATE FOR AN I/O DRIVER

.TITLE TDRIVER - VAX/VMS TEMPLATE DRIVER

.!DENT 'V03-002'

Copyright (c) 1978,1979,1980, 1982
by DIGITAL Equipment Corporation, Maynard, Massachusetts

This software is furnished under a license and may be used and copied
only in accordance with the terms of such license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software is hereby
transferred.

The information in this software is subject to change without notice
and should not be construed as a commitment by DIGITAL Equipment
Corporation.

DIGITAL assumes no responsibility for the use or reliability of its
software on equipment which is not supplied by DIGITAL.

FACILITY:

VAX/VMS Template driver

ABSTRACT:

This module contains the outline of a driver:

Models of driver tables
Controller and unit initialization routines
An FDT routine
The start I/O routine
The interrupt service routine
The cancel I/O routine
The device register dump routine

AUTHOR:

S. Programmer ll-NOV-1979

REVISION HISTORY:

;--

V02 JHPOOl J. Programmer 2-Aug-1979 11:27
Remove BLBC instruction from CANCEL routine.

V02-001 JHPOOl J. Programmer ll-Feb-1981 13:10
Add description of reason argument to CANCEL
routine. Correct references to channel index
number.

6-5

TEMPLATE FOR AN I/O DRIVER

.SBTTL External and local symbol definitions

External symbols

$CANDEF
$CRBDEF
$DCDEF
$DDBDEF
$DEVDEF
$IDBDEF
$IODEF
$IPLDEF
$IRPDEF
$SSDEF
$UCBDEF
$VECDEF

Local symbols

Cancel reason codes
Channel request block
Device classes and types
Device data block
Device characteristics
Interrupt dispatch block
I/O function codes
Hardware IPL definitions
I/O request packet
System status codes
Unit control block
Interrupt vector block

Argument list (AP) offsets for device-dependent QIO parameters

Pl
P2
P3
P4
PS
P6

0
4
8
12
16
20

Other constants

TD DEF BUFSIZ
TD-TIMEOUT SEC
TD-NUM REGS

1024
10
4

First QIO parameter
Second QIO parameter
Third QIO parameter
Fourth QIO parameter
Fifth QIO parameter
Sixth QIO parameter

Default buffer size
10 second device timeout
Device has 4 registers

Definitions that follow the standard UCB fields

$DE FINI UCB Start of UCB definitions

.=UCB$K LENGTH Position at end of UCB

$DEF UCB$W TD WORD A sample word
.BLKW 1

$DEF UCB$W TD STATUS Device's CSR reg i st e r
.BLKW 1

$DEF UCB$W TD WRDCNT Device's word count register
.BLKW 1

$DEF UCB$W TD BUFADR Device's buffer address
.BLKW 1 register

$DEF UCB$W TD DATBUF Device's data buffer register
.BLKW 1

$DEF UCB$K TD UCBLEN Length of extended UCB

6-6

TEMPLATE FOR AN I/O DRIVER

Bit positions for device-dependent status field in UCB

$VIELD UCB,O,<-
<BIT ZERO,,M>,­
<BIT=ONE,,M>,­
>

$DEFEND UCB

Device status
First bit
Second bit

End of UCB definitions

Device register offsets from CSR address

$DEFINI TD Start of status definitions

$DEF TD STATUS Control/status
.BLKW 1

Bit positions for device control/status register

$DEF

$DEF

$DEF

>

VIELD TD_STS,O,<­
<GO, ,M>,­
<BITl, ,M>,­
<BIT2,,M>,­
<BIT3,,M>,­
<XBA,2,M>,­
< I NTEN I IM> I -
<READY,,M>,­
<BIT8,,M>,­
<BIT9,,M>,­
<BIT10, ,M>,­
<BITll,,M>,­
<,l>,-
<ATTN I ,M> I -

<NEX,,M>,­
<ERROR,,M>,-

TD WRDCNT
.BLKW 1

TD BUFADR
.BLKW 1

TD DATBUF
.BLKW 1

$DEFEND TD

6-7

Control/status register
Start device
Bit one
Bit two
Bit three
Extended address bits
Enable interrupts
Device ready for command
Bit eight
Bit nine
Bit ten
Bit eleven
Disregarded bit
Attention bit
Nonexistent memory flag
Error or external interrupt

Word count

Buff er address

Data buffer

End of device register
definitions.

TEMPLATE FOR AN I/O DRIVER

.SBTTL Standard tables

Driver prologue table

DPT AB
END=TD END,-
ADAPTER=UBA,­
UCBSIZE=<UCB$K TD UCBLEN>,­
NAME=TDDRIVER -

DPT STORE INIT

DPT STORE UCB,UCB$B FIPL,B,8
DPT-STORE UCB,UCB$B-DIPL,B,22
DPT STORE UCB,UCB$L-DEVCHAR,L,<-

DEV$M IDV!-­
DEV$M-ODV>

DPT STORE UCB~UCB$B DEVCLASS,B,DC$ SCOM
DPT-STORE UCB,UCB$W-DEVBUFSIZ,W,- -

- TD DEF BUFSIZ

DPT STORE REINIT

DPT STORE DDB,DDB$L DDT,D,TD$DDT
DPT STORE CRB,CRB$L-INTD+4,D,­

TD INTERRUPT
DPT STORE CRB,-

- CRB$L INTD+VEC$L INITIAL,­
D,TD CONTROL INIT

DPT STORE CRB,- -
- CRB$L INTD+VEC$L UNITINIT,­

D,TD_UNIT_INIT -

DPT STORE END

Driver dispatch table

DDT AB
DEVNAM=TD,-
START=TD START,­
FUNCTB=TD FUNCTABLE,­
CANCEL=TD-CANCEL,­
REGDMP=TD-REG DUMP

Function decision table

6-8

DPT-creation macro
End of driver label
Adapter type
Leng th of UCB
Driver name
Start of load
initialization table
Device fork IPL
Device interrupt IPL
Device characteristics

input device
output device

Sample device class
Default buffer size

Start of reload
initialization table
Address of DDT
Address of interrupt
service routine
Address of controller
initialization routine

Address of device
unit initialization
routine

End of initialization
tables

DDT-creation macro
Name of device
Start I/O routine
FDT address
Cancel I/O routine
Register dump routine

TD FUNCTABLE:
FUNCTAB

FUNCTAB
FUNCTAB

FUNCTAB

FUNCTAB

TEMPLATE FOR AN I/O DRIVER

<READVBLK,­
READLBLK,­
READPBLK,­
WRITEVBLK,­
WRITELBLK,­
WRITEPBLK,­
SETMODE,­
SETCHAR>
,
+EXE$READ,­
<READVBLK,­
READLBLK,­
READPBLK>
+EXE$WRITE,­
<WRITEVBLK,­
WRITELBLK,­
WRITEPBLK>
+EXE$SETMODE,­
<SETCHAR,­
SETMODE>

6-9

FDT for driver
Valid I/O functions
Read virtual
Read logical
Read physical
Write virtual
Write logical
Write physical
Set device mode
Set device chars.
No buffered functions
FDT read routine for
read virtual,
read logical,
and read physical.
FDT write routine for
write virtual,
write logical,
and write physical.
FDT set mode routine
for set chars. and
set mode.

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_CONTROL_INIT, Controller initialization routine

;++
TD CONTROL_INIT, Readies controller for I/O operations

Functional description:

The operating system calls this routine in 3 places:

at system startup
during driver loading and reloading
during recovery from a power failure

Inputs:

R4 - address of the CSR (controller status register)
RS - address of the IDB (interrupt dispatch block)
R6 - address of the DDB (device data block)
R8 - address of the CRB (channel request block)

Outputs:

The routine must preserve all registers except RO-R3.

;--

TD CONTROL INIT:
RSB

6-10

Initialize controller
Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_UNIT_INIT, Unit initialization routine

;++
TD_UNIT_INIT, Readies unit for I/O operations

Functional description:

The operating system calls this routine after calling the
controller initialization routine:

at system startup
during driver loading
during recovery from a power failure

Inputs:

R4 - address of the CSR (controller status register)
RS - address of the UCB (unit control block)

Outputs:

The routine must preserve all registers except RO-R3.

;--

TD UNIT INIT:
-BISW

RSB

#UCB$M ONLINE, -
UCB$W _STS (RS)

6-11

Initialize unit

Set unit online
Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_FDT_ROUTINE, Sample FDT routine

;++
TD_FDT_ROUTINE, Sample FDT routine

Functional description:

SUPPLIED BY USER

Inputs:

RO-R2
R3
R4
RS
R6
R7
R8
R9-Rll
AP

Outputs:

- scratch registers
- address of the IRP (I/O request packet)
- address of the PCB (process control block)
- address of the UCB (unit control block)
- address of the CCB (channel control block)
- bit number of the I/O function code
- address of the FDT table entry for this routine
- scratch registers
- address of the 1st function dependent QIO parameter

The routine must preserve all registers except RO-R2, and
R9-Rll.

;--

TD FDT ROUTINE:
RSB

6-12

Sample FDT routine
Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_START, Start I/O routine

;++
TD START - Start a transmit, receive, or set mode operation

Functional description:

SUPPLIED BY USER

Inputs:

R3 - address of the !RP (I/O request packet)
RS - address of the UCB (unit control block)

Outputs:

RO - 1st longword of I/O status: contains status code and
number of bytes transferred

Rl - 2nd longword of I/O status: device-dependent

The routine must preserve all registers except RO-R2 and R4.

;--

TD START: ; Process an I/O packet

WFIKPCH TD_TIMEOUT,#TD_TIMEOUT_SEC

After a transfer completes successfully, return the number of bytes
transferred and a success status code.

IOFORK
INSV

MOV'V'l

UCB$W BCNT(RS),#16,­
#16,RO
#SS$ NORMAL,RO

Call I/O postprocessing.

COMPLETE IO:
REQCOM

Load number of bytes trans­
ferred into high word of RO.
Load a success code into RO.

Driver processing is finished.
Complete I/O.

Device timeout handling. Return an error status code.

TD TIMEOUT:
SETI PL
MOVZWL
BRB

UCB$B FIPL(R5)
#SS$ TIMEOUT,RO
COMPLETE IO

6-13

Timeout handling
Lower to driver fork IPL
Return error status.
Call I/O postprocessing.

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_INTERRUPT, Interrupt service routine

;++
TD INTERRUPT, Analyzes interrupts, processes solicited interrupts

Functional description:

The sample code assumes either

Inputs:

0 (SP)

4 (SP)
8 (SP)

12 (SP)
16 (SP)
20 (SP)
24(SP)
28 (SP)
32 (SP)

that the driver is for a single-unit controller, and
that the unit initialization code has stored the
address of the UCB in the IDB; or

that the driver's start I/O routine acquired the
controller's channel with a REQPCHANL macro call, and
then invoked the WFIKPCH macro to keep the channel
while waiting for an interrupt.

- pointer to the address of the IDB (interrupt dispatch
block)

- saved RO
- saved Rl
- saved R2
- saved R3
- saved R4
- saved RS
- saved PSL (program status longword)
- saved PC

The IDB contains the CSR address and the UCB address.

Outputs:

The routine must preserve all registers except RO-RS.

;--

TD INTERRUPT:
MOVL

MOVL

MOVL
BBCC

@(SP)+,R4

IDB$L_OWNER(R4) ,RS

IDB$L CSR(R4) ,R4
#UCB$V INT,-
UCB$W STS(RS) ,­
UNSOL-INTERRUPT

This is a solicited interrupt. Save

Service device interrupt
Get address of IDB and remove
pointer from stack.
Get address of device owner's
UCB.
Get address of device's CSR.
If device does not expect
interrupt, dismiss it.

the contents of the device registers in the UCB.

MOVW

MOVW

MOVW

MOVW

TD STATUS(R4) ,­
UCB$W TD STATUS(RS)
TD WRDCNT(R4) ,­
UCB$W TD WRDCNT(RS)
TD BUFADR (R4) ,­
UCB$W TD BUFADR(RS)
TD DATBUF(R4) ,­
UCB$W_TD_DATBUF(RS)

6-14

Otherwise, save all device
registers. First the CSR.
Save the word count register.

Save the buffer address
register.
Save the data buffer register.

TEMPLATE FOR AN I/O DRIVER

Restore control to the main driver.

RESTORE DRIVER:
-MOVL UCB$L_FR3(R5),R3

JSB @UCB$L_FPC(R5)

Dismiss the interrupt.

UNSOL INTERRUPT:
POPR #AM<RO,Rl,R2,R3,R4,R5>
REI

6-15

Jump to main driver code.
Restore driver's R3 (use a
MOVQ to restore R3-R4).
Call driver at interrupt
wait address.

Dismiss unsolicited interrupt.
Restore RO-RS
Return from interrupt.

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_CANCEL, Cancel I/O routine

;++
TD_CANCEL, Cancels an I/O operation in progress

Functional description:

This routine calls IOC$CANCELIO to set the cancel bit in the
UCB status word if:

the device is busy,
th~ IRP's process ID matches the cancel process ID,
the IRP channel matches the cancel channel.

If IOC$CANCELIO sets the cancel bit, then this driver routine
does device-dependent cancel I/O fixups.

Inputs:

R2 - channel index number
R3 - address of the current IRP (I/O request packet)
R4 - address of the PCB (process control block) for the

process canceling I/O
RS - address of the UCB (unit control block)
R8 - cancel reason code, one of:

CAN$C CANCEL if called through $CANCEL or
$DALLOC system service

CAN$C DASSGN if called through $DASSGN
system service

Outputs:

The routine must preserve all registers except RO-R3.

The routine may set the UCB$M CANCEL bit in UCB$W STS.

;--

TD CANCEL:
JSB
BBC

GAIOC$CANCELIO
#UCB$V CANCEL,­
UCB$W_STS (R5) ,10$

Cancel an I/O operation
Set cancel bit if appropriate.
If the cancel bit is not set,
just return.

Device-dependent cancel operations go next.

Finally, the return.

10$:
RSB Return

6-16

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_REG_DUMP, Device register dump routine

;++
TD_REG_DUMP, Dumps the contents of device registers to a buffer

Functional description:

Writes the number of device registers, and their current
contents into a diagnostic or error buffer.

Inputs:

RO - address of the output buffer
R4 - address of the CSR (controller status register)
RS - address of the UCB (unit control block)

Outputs:

;--

The routine must preserve all registers except Rl-R3.

The output buffer contains the current contents of the device
registers. RO contains the address of the next empty longword in
the output buffer.

TD REG DUMP: Dump device registers
MOVZBL
MOVZWL

MOVZWL

MOVZWL

MOVZWL

RSB

#TD NUM REGS,(RO)+
UCBSW TD STATUS(R5),­
(RO)+- -
UCB$W TD WRDCNT(RS) ,­
(RO)+- -
UCB$W TD BUFADR(RS) ,­
(RO)+- -
UCB$W TD DATBUF(RS) ,­
(RO)+- -

6-17

Store device register count.
Store device status register.

Store word count register.

Store buffer address register.

Store data buffer register.

Return

TEMPLATE FOR AN I/O DRIVER

.SBTTL TD_END, End of driver

;++
; Label that marks the end of the driver
;--

TD END: Last location in driver
.END

6-18

CHAPTER 7

WRITING DEVICE DRIVER TABLES

Every device driver declares three static tables that describe the
device and driver:

• Driver prologue table that describes the device type, driver
name, and fields in the I/O data base to be initialized during
driver loading and reloading

• Driver dispatch table that lists some of the
points to which VAX/VMS transfers control;
request block and function decision table list
points

driver entry
the channel
other entry

• Function decision table that lists valid
driver and entry points to routines
preprocessing for each function

functions of
that perform

the
I/O

The VAX/VMS operating system provides macros that drivers can invoke
to create the tables listed above. Descriptions of individual tables
in the sections that follow also describe the macros invoked to create
the tables. All of the mac~os described in this chapter are keyword
macros; that is, parameter values can be expressed in the following
format:

KEYWORD=parameter-value

The VAX-11 MACRO Language Reference Manual describes the syntax rules
for keyword macros in detail. The sections that follow provide
examples of macro usage.

7.1 DRIVER PROLOGUE TABLE (DPT)

The driver prologue table is the first generated code in every device
driver. This table, along with parameters to the SYSGEN command that
request driver loading, describes the driver to the driver loading
procedure. In turn, the driver loading procedure computes the size of
the driver, loads it into nonpaged system memory, and creates control
blocks for the new device(s) in the I/O data base. Chapter 14
describes how the driver loading procedure decides which control
blocks to build for a given device.

Device drivers can pass control block initialization information to
the driver loading procedure through values stored in the driver
prologue table. In addition, the driver loading procedure initializes
some fields within the device control blocks using information from
its own tables. Drivers must treat many of the fields initialized by
the driver loading procedure as read-only fields. These fields are
marked with an asterisk (*) in Appendix A.

7-1

WRITING DEVICE DRIVER TABLES

To create a driver prologue table, the driver invokes the DPTAB macro,
described in Section 7.1.1.

When the DPTAB macro expands, it creates a control block that the
driver loading procedure uses to load the driver. The loading
procedure loads the driver prologue table and the driver together in
virtual memory. The loading procedure also links the new driver
prologue table into a list of all driver prologue tables known to the
system.

Most device drivers need to initialize certain fields of the I/O data
base with driver-specific values. The DPT STORE macro provides the
driver with a means of communicating its initTalization needs to the
driver loading procedure. When invoked, the DPT STORE macro places
information in the driver prologue table that tne driver loading
procedure uses to load specified values into specified fields. The
DPT_STORE macro accepts two lists of fields:

• Fields to be initialized when the control
using the SYSGEN command CONNECT and
reloaded

blocks are built
when the driver is

• Fields to be initialized only when the driver is reloaded
using the SYSGEN command RELOAD

The DPTAB macro stores the relative addresses of these two lists,
called initialization and reinitialization data, in the driver
prologue table. The list of one or more invocations of the DPT STORE
macro must appear after the DPTAB macro. Section 7.1.2 describes the
format of the DPT STORE macro.

Drivers must use the DPT STORE macro to supply initialization data for
the following fields:

UCB$B FIPL Driver fork IPL

UCB$B DIPL Hardware device IPL

UCB$L DEVCHAR Device characteristics (see
Appendix A)

The driver also must provide reinitialization data for the device data
block field DDB$L DDT and for any of the following routine addresses
in the channel requ~st block:

DDB$L DDT

CRB$L INTD+4

CRB$L INTD+VEC$L INITIAL

CRB$L INTD+VEC$L UNITINIT - -

7.1.1 DPTAB Macro

Address of the driver
table

dispatch

Entry point to the driver interrupt
service routine, if one exists

Address of
initialization
exists

a controller
routine, if one

Address of a device . unit
initialization routine, if one
exists. This entry point is used
by UNIBUS devices.

The DPTAB macro creates a driver prologue table.

7-2

WRITING DEVICE DRIVER TABLES

Format

end

DPTAB end,adapter,[flags] ,ucbsize,[unload] ,[maxunits] ,[defunits],
[deliver], [vector] ,name

The address of the end of the driver module.

adapter

flags

The adapter type.

UBA
MBA
DR
NULL

UNIBUS adapter
MASSBUS adapter
DR device
No actual device for driver

The driver loader flags.

DPT$M SVP Indicates, when set, that the device requires a
permanently allocated system page. This flag
causes the driver loading procedure to allocate
a permanent system page table entry for the
device. The virtual address of the system page
table entry is written into the system page
field of the UCB (UCB$L SVPN) during creation
of the UCB. Disk drivers use this page table
entry during ECC error correction.

DPT$M NOUNLOAD Indicates, when set, that the driver cannot be
reloaded. A system bootstrap must occur before
drivers with this bit set can be reloaded.

ucbsize
The size of each device unit control block in bytes. This
argument is required. This field allows drivers to extend the
unit control block to store device-dependent data describing an
I/O operation. Appendix A provides examples. Driver routines
and VAX/VMS ECC routines interpret fields in the extended part of
the unit control block. The amount that the unit control block
is extended is variable for each driver type.

unload
The address of a routine to call before the driver is reloaded.
The driver loading procedure calls this routine before
reinitializing all controllers and device units associated with
the driver.

maxunits
The maximum number of units on a controller that this driver
supports. This field affects the size of the interrupt dispatch
block created the SYSGEN CONNECT command. If this field is
omitted, the default is 8 units. You can override the maxunits
field by appending the /MAXUNITS qualifier to the CONNECT
command.

def units
The number of units created by default for each controller that
the AUTOCONFIGURE command to SYSGEN processes on behalf of this
driver. The unit numbers created are zero through defunits minus
one. If the deliver argument to the DPTAB macro is omitted,
AUTOCONFIGURE creates the number of units specified by defunits.
If the deliver argument is present, it names an action routine
that AUTOCONFIGURE calls to determine whether or not to create
each unit automatically.

7-3

WRITING DEVICE DRIVER TABLES

deliver
The address of a unit delivery action routine that AUTOCONFIGURE
calls to determine which units to configure automatically for the
device supported by this driver.

vector

name

The address of a driver-specific transfer vector.
argument is reserved to DIGITAL.

Use of this

The name of the device driver module. The driver loading
procedure will permit only one copy of the driver associated with
the name given in this field to be loaded. By convention, a
driver name is formed by appending the string DRIVER to the 2-
alphabetic character generic device name, for example, DBDRIVER.

7.1.2 DPT STORE Macro

The DPT STORE macro either declares an assembly language label or
describes a field to be initialized. When the macro declares a label,
the macro has format 1. When the DPT STORE macro describes a field to
be initialized, the macro has format 2.

Format 1

DPT STORE label-name

label-name
The name of the label to be declared.
following:

It can be one of the

INIT

REINIT

END

Format 2

DPT STORE

struc-type

Indicates the start of fields to initialize
when the driver is loaded.

Indicates the start
initialize when
reloaded.

of
the

additional
driver is

Indicates the end of the two lists.

fields
loaded

struc-type,struc-offset,operation,expression,
[position] ,[size]

to
or

The type of I/O data base control block that contains the field
to be initialized. The type can be one of the following:

DDB
UCB
CRB
IDB

struc-of f set

device data block
unit control block
channel request block
interrupt dispatch block

The unsigned offset into the control block. The driver loading
procedure can initialize only the first 256 bytes of each data
structure. Unit and controller initialization routines can
initialize additional data fields.

7-4

WRITING DEVICE DRIVER TABLES

operation
The type of operation to be performed. The type can be one of
the following:

B
w
L
D
v

write a byte value
write a word value
write a longword value
write an address relative to the driver
write a bit field

The V operation takes the following longword of data and the
position and size arguments as operands of an INSV instruction.

An at sign (@) preceding the operation parameter indicates that
the expression parameter that follows is the address of the
initialization data.

expression
An expression to be stored in the control block or, if an at sign
(@) is specified preceding the operation parameter, the address
of an expression. For example, the following macro indicates
that DEVICE CHARS is the address of the data to write into the
DEVCHAR f iela of the UCB.

DPT STORE UCB,UCB$L_DEVCHAR,@L,DEVICE_CHARS

position

size

The starting bit position within the specified field.
parameter is specified only for V operations.

This

The number of bits in the field.
only for V operations.

This parameter is specified

7.1.3 Example of DPTAB and DPT_STORE Macro Use

The following example invokes the DPTAB macro and DPT STORE macros to
describe a device driver and its data base.

DPTAB -
END=XX END-,-
ADAPTER=UBA,­
UCBSIZE=UCB$K XX LENGTH, -
NAME=XXDRIVER

DPT STORE !NIT

DPT STORE UCB,UCB$B FIPL,B,8
DPT-STORE UCB,UCB$L-DEVCHAR,L,­

<DEV$M REC-
! DEV$M-AVL­
!DEV$M-ODV>

DPT STORE UCB,UCB$B DEVCLASS,B,­
DC$ XX -

DPT STORE UCB,UCB$B DEVTYPE,B,­
XX$ XL78

DPT STORE UCB,UCB$W DEVBUFSIZ,W,-
132 -

DPT STORE UCB,UCB$B_DIPL,B,22

7-5

Define DPT
End of driver
Adapter type
Size of UCB
Name of driver module
Start of control block
initialization values
Driver fork IPL
Device characteristics:
r eco rd-oriented
available
output device
Device class

Device type

Default buffer size

Device IPL

WRITING DEVICE DRIVER TABLES

DPT STORE REINIT Start of control block
reinitialization values

DPT STORE CRB,CRB$L INTD+4,D,- Interrupt service
XX INTERRUPT routine address

DPT STORE CRB,CRB$L INTD+VEC$L UNITINIT,-
D,XX_XL78_INIT - Unit initialization

DPT STORE DDB,DDBL_DDT,D,XXDDT

DPT STORE END

routine address
Address of driver
dispatch table
End of field
initialization

7.2 DRIVER DISPATCH TABLE (DDT)

The driver dispatch table lists some of the entry points for driver
routines to be called by VAX/VMS for I/O processing. Every driver
must create a driver dispatch table. The routines listed can reside
in the driver module or in a VAX/VMS module. Appendix A describes the
VAX/VMS device-independent routines that can be specified.
Device-dependent routines are normally located in the driver module.
The driver dispatch table contains relative addresses for routines
located in the driver module and absolute addresses for routines
located in the operating system. At load time, the driver loading
procedure changes the relative addresses of driver routines to
absolute addresses.

The driver creates the driver dispatch table by invoking the macro
DDTAB. The driver loading procedure writes the address of the driver
dispatch table, as specified in a DPT STORE macro, into the device
data block.

7.2.1 DDTAB Macro

The DDTAB macro creates a driver dispatch table. The table has a
label of devnam$DDT. Just preceding the table, DDTAB generates the
driver code program section with the following statement:

.PSECT $$$115 DRIVER

Format

DDTAB devnam,start, [unsolic] ,functb, [cancel], [regdmp], [diagbf],
(erlgbf], (unitinit], (altstart], (mntver]

devnam
The generic name of the device driven by this device driver.

start
The address of the driver's start I/O routine.

unsolic
The address of the routine that services unsolicited interrupts
from the device. This field is used only by MASSBUS devices.

f unctb
The address of the function decision table for this driver.

cancel
The address of the cancel I/O operation routine.

7-6

WRITING DEVICE DRIVER TABLES

regdmp
The address of the routine that dumps the device registers to an
error log buffer or to a diagnostic buffer.

diagbf
The length in bytes of the diagnostic buffer used for this
device.

erlgbf
The length in bytes of the error log buffer used for this device.

unitinit
The address of the device initialization routine, if one exists.
MASSBUS drivers should use this field rather than CRB$L INTO +
VEC$L UNITINIT. UNIBUS drivers may use either one.

altstart
The address of the alternate start I/O routine. To initiate this
routine, use the VAX/VMS routine EXE$ALTQUEPKT instead of
EXE$QIODRVPKT.

mntver
The address of a VAX/VMS routine that is called at the beginning
and end of a mount verification operation. If no routine is
specified, the routine IOC$MNTVER is called. Use of this field
to call any routine other than IOC$MNTVER is reserved to DIGITAL.

The DDTAB macro writes the address of the VAX/VMS routine IOC$RETURN
into routine address fields of the driver dispatch table that are not
supplied in the macro invocation (with the exception of the mntver
argument) • IOC$RETURN executes an RSB instruction; for further
information, refer to Appendix C.

In the example below, notice that a plus sign (+) precedes the address
of the entry point to the cancel I/O routine. The plus sign indicates
that the routine is part of VAX/VMS. No plus sign precedes the
address of the start I/O routine because it is part of the driver
module. Omitting a required plus sign is a common error in device
drivers.

7.2.2 Example of a DDTAB Macro

A sample invocation of the DDTAB macro follows.

DDT AB DEVNAM=XX,­
START=STARTIO,­
FUNCTB=FUNCTABLE,­
CANCEL=+IOC$CANCELIO

7.3 FUNCTION DECISION TABLE (FDT)

Driver dispatch table
Start I/O operation
Function decision table
Cancel I/O

The function decision table lists codes for I/O functions that are
valid for the device; indicates whether the functions are buffered
I/O functions; and specifies routines to perform preprocessing for
particular functions. Every device driver must create a function
decision table containing three or more entries:

• The list of valid I/O function codes

• The list of buffered I/O function codes

7-7

WRITING DEVICE DRIVER TABLES

• One or more entries, each of which specifies all or a subset
of I/O function codes and the address of a routine that
performs I/O preprocessing for those function codes

If no buffered I/O functions are defined for the device, the second
entry contains an empty list.

Taken together, the third through last entries in the function
decision table specify one or more FDT routines for each valid I/O
function code for the device. It is the responsibility of the FDT
routines to terminate the I/O preprocessing for each type of function
by transferring control out of the Queue I/O Request system service
and into a routine that queues the I/O request to a driver, inserts
the I/O request in the postprocessing queue, or aborts the I/O
request.

Refer to Chapter 8 for information on the writing of FDT routines.

Table 7-1 lists the physical, logical, and virtual I/O function codes
that a function decision table most commonly uses. A complete list of
function codes is contained in the macro $IODEF in
SYS$LIBRARY:STARLET.MLB.

7.3.1 Defining Device-Specific Function Codes

You can also define device-specific function codes by equating the
name of a device-specific function with the name of a function that is
irrelevant to the device. The selected codes should, however, have a
type (logical, physical, or virtual) that is appropriate for the
function they represent. For example, the assembly code that follows
defines three device-specific physical I/O function codes.

IO$ STARTCLOCK=IO$ ERASETAPE
IO$-STOPCLOCK=IO$ OFFSET
IO$=STARTDATA=IO$=SPACEFILE

Start hardware clock
Stop hardware clock
Start data acquisition

The device driver creates a function decision table by invoking the
FUNCTAB macro. Each invocation of the FUNCTAB macro creates a 2- or
3-longword entry in the function decision table. The first two
invocations create 2-longword entries because they specify only
function codes; they do not specify an accompanying action routine.

All subsequent invocations of the FUNCTAB macro must specify both
function codes and the address of an action routine that is to perform
preprocessing f9r those function codes. These invocations create
3-longword entries.

The Queue I/O Request system service processes entries in the order in
which they appear in the function decision table. When a function
code is present in more than one 3-longword entry, the system service
sequentially calls every action routine specified for the function
code until an action routine stops the scan by aborting, completing,
or queuing an I/O request.

7-8

WRITING DEVICE DRIVER TABLES

Table 7-1: VAX/VMS I/O Function Codes

Type of Function Codes Defined

Physical codes IO$ DIAGNOSE
IO$-DRVCLR
IO$ ERASETAPE
IO$-NOP
IO$ OFFSET
IO$-PACKACK
IO$-READHEAD
IO$-READPBLK
IO$-READPRESET
IO$-READTRACKD
IO$-RECAL
IO$-RELEASE
IO$-RETCENTER
IO$-SEARCH
IO$-SEEK
IO$ SENSECHAR
IO$-SETCHAR
IO$-SPACEFILE
IO$ SPACERECORD
IO$-STARTSPNDL
IO$-UNLOAD
IO$-WRITECHECK
IO$-WRITECHECKH
IO$-WRITEHEAD
IO$-WRITEMARK
IO$-WRITEPBLK
IO$-WRITETRACKD

Logical codes IO$ READLBLK
10$-REWIND

Virtual codes

I 0$-REWINDOFF
IO$ SENSEMODE
IO$-SETMODE
IO$ SKIPFILE
IO$-SKIPRECORD
IO$-WRITELBLK
IO$-WRITEOF

IO$ ACCESS
IO$-ACPCONTROL
IO$-CREATE
IO$-DEACCESS
IO$-DELETE
IO$-MODIFY
IO$-MOUNT
IO$-READPROMPT
IO$-READVBLK
IO$-WRITEVBLK

7-9

Diagnose
Drive clear
Erase tape
No operation
Offset read heads
Pack acknowledge
Read header and data
Read physical block
Read in preset
Read track data
Recalibrate drive
Release port
Return to center line
Search for sector
Seek cylinder
Sense device characteristics
Set device characteristics
Space files
Space records
Start spindle
Unload drive
Write check data
Write check header and data
Write header and data
Write tape mark
Write physical block
Write track data

Read logical block
Rewind tape
Rewind and set offline
Sense device mode
Set mode
Skip files
Skip records
Write logical block
Write end of file

Access file
Miscellaneous ACP control
Create file
Deaccess file
Delete file
Modify file
Mount volume
Read terminal with prompt message
Read virtual block
Write virtual block

WRITING DEVICE DRIVER TABLES

7.3.2 Determining Those Functions that are Buffered I/O

The second entry in a function decision table indicates those
functions that are handled as buffered I/O operations. In selecting
the functions that are to be buffered, you should take the following
information into consideration:

• Direct I/O is intended only for devices whose I/O operations
always complete quickly. For example, although terminal I/O
is fast, users can prevent the I/O operation from completing
by using CTRL/S to halt the operation indefinitely;
therefore, terminal I/O operations are buffered I/O.

• Use of direct I/O requires that the process pages containing
the buffer be locked in memory. Locking pages in memory
increases the overhead of swapping the process that contains
the pages.

• Use of buffered I/O requires that the data be moved from the
system buffer to the user buffer. Moving data requires
additional time.

• Routines that manipulate data before delivering it to the user
(for example, a terminal interrupt service routine) cannot
gain access to the data if direct I/O is used. Therefore,
transfers that require data manipulation must be buffered I/O.

• VAX/VMS handles the quotas differently for direct I/O and
buffered I/O, as described in the VAX/VMS System Management
and Operations Guide.

• Generally, DMA devices use direct I/O, while programmed I/O
devices use buffered I/O.

Section 7.3.4 provides an example of the (unctions handled as buffered
I/O operations.

7.3.3 FUNCTAB Macro

The FUNCTAB macro creates the function decision table for a driver.

Format

FUNCTAB [action] ,codes

action

codes

The address of an action routine to call during I/O preprocessing
of the specified action code or codes. An action routine is
specified only for the third through last entries of the table.
The list of valid I/O functions and the list of buffered I/O
functions have no associated action routine.

The list of I/O function codes. The macro expansion prefixes
each code specified with the string IO$_; for example, READVBLK
expands to IO$_READVBLK.

7.3.4 Example of FUNCTAB Macro Use

In the example below, the routine (named XX READ) called for a read
function is a driver routine. It appears later in the driver module.

7-10

WRITING DEVICE DRIVER TABLES

The routines EXE$SETMODE and EXE$SENSEMODE, preceded by plus signs (+)
in the macro argument, are VAX/VMS routines that preprocess I/O
requests for the device's set characteristics and sense mode
functions.

XX FUNCTABLE:

FUNCTAB

FUNCTAB

FUNCTAB

FUNCTAB

FUNCTAB

,
<READLBLK,­

READPBLK,­
READVBLK,­
SENSEMODE,­
SENSECHAR,­
SETMODE,­
SETCHAR,-

>
' <READLBLK,-

>

READPBLK,­
READVBLK,­
SENSEMODE,­
SENSECHAR,­
SETMODE,­
SETCHAR,-

XX READ,-
<READLBLK,-

READPBLK,­
READVBLK,-

>
+EXE$SETMODE,­
<SETCHAR,-

SETMODE,-
>
+EXE$SENSEMODE,­
<SENSECHAR,-

SENSEMODE,­
>

7-11

Function decision table

Valid functions
Read logical block
Read physical block
Read virtual block
Sense reader mode
Sense reader characteristics
Set reader mode
Set reader characteristics

Buffered I/O functions
Read logical block
Read physical block
Read virtual block
Sense reader mode
Sense reader characteristics
Set reader mode
Set reader characteristics

Read functions
Read logical block
Read physical block
Read virtual block

Set mode/characteristics
Set reader characteristics
Set reader mode

Sense mode/characteristics
Sense reader characteristics
Sense reader mode

CHAPTER 8

WRITING FDT ROUTINES

The Queue I/O Request system service uses the driver's function
decision table to determine which FDT routines to call. These FDT
routines validate user-specified arguments in the I/O request.
VAX/VMS contains many device-independent FDT routines. Device drivers
contain device-dependent FDT routines.

A driver should call the VAX/VMS device-independent FDT routines
whenever possible. This practice encourages the use of well-debugged
routines and minimizes driver size.

8.1 CONTEXT FOR FDT ROUTINE EXECUTION

The Queue I/O Request system service calls all FDT routines in the
context of the process that requested the I/O operation.
Characteristics of process context at the time of a call to an FDT
routine are as follows:

• Virtual addresses are mapped according to the process page
tables. This mapping allows FDT routines access to
user-specified virtual addresses.

• The process is executing in kernel mod~ because the Queue I/O
Request system service call executes a Change Mode to Kernel
instruction.

• The process privileges remain unchanged.

• Interrupt priority level is set to
the process can be rescheduled
Paging can occur.

IPL$ ASTDEL.
but cannot

Therefore,
receive ASTs.

• FDT routines cannot call system services or VAX-11 RMS
services.

8.2 REGISTERS PRESET FOR FDT ROUTINE EXECUTION

The Queue I/O
registers for
the registers.

Request system service also sets up a series of
the FDT routines before calling them. Table 8-1 lists

8-1

WRITING FDT ROUTINES

Table 8-1: Registers Loaded by Queue I/O Request Service

Register Content

RO Address of the FDT routine being called

R3

R4

RS

R6

R7

RS

AP

Address of the I/0 request packet for the current
I/O request

Address of the process control block (PCB) of the
current process

Address of the unit control block of the device
assigned to the user-specified process I/O channel

Address of the channel control block that describes
the user~specified process I/O channel

Bit number of the user-specified I/O function code

Address of the current entry in the function
decision table

Address of the first function-dependent parameter
specified in the user's request

S.3 CONVENTIONS FOLLOWED BY FDT ROUTINES

Because FDT routines are called by the Queue I/O Request system
service and return to it or, in turn, call another VAX/VMS routine,
they must follow certain conventions to preserve register content and
the expected process context.

8.3.1 Register Conventions

FDT routines are responsible for preserving the contents of R3 through
RS across subroutine calls. FDT routines can use RO through R2 and R9
through Rll without saving their previous contents. If an FDT routine
needs to use R3 through RS, the routine can use the push and pop
register instructions to save registers on the stack and later restore
them. The following is an example.

PUS HR #~M<R3,R4,R5> Save R3-R5 on the stack

POPR Restore R3-R5 from the stack

8.3.2 Process Context Conventions

The Queue I/O Request system service executes in the context of the
process that issues the I/O request, but in kernel mode and at
IPL$ ASTDEL. The Queue I/O Request system service expects FDT
routTnes to preserve this context. Therefore, an FDT routine observes
the following conventions:

S-2

WRITING FDT ROUTINES

e It does not lower IPL below IPL$ ASTDEL.

• If a routine raises IPL, it must lower IPL to IPL$ ASTDEL
before exiting.

• It does not alter the stack without restoring its original
state before exiting.

• It must observe the register conventions described in the
previous section.

• It exits either by an RSB instruction to return control to the
system service, or it issues a JMP instruction to one of the
VAX/VMS routines described in Section 8.4.

8.4 TRANSFERRING INTO AND OUT OF AN FDT ROUTINE

To transfer control to an FDT routine, the Queue I/O Request system
service loads the address of the FDT routine into a register and
executes a jump to subroutine instruction, as follows:

JSB (RO)

Each FDT routine chooses an exit path based on the following factors:

• Whether another FDT routine needs to be called to perform
additional function-specific processing

• Whether an error is found in the I/O request

• Whether the operation is complete

• Whether the I/O operation requires and is ready for device
activity

Figure 8-1 illustrates the FDT processing loop in the Queue I/O
Request system service.

READ
NEXT

FDT ENTRY

CALL
FDT

ROUTINE

FDT ROUTINE
RETURNS

FDT ROUTINE EXITS

QUEUE IRP,
FINISH 1/0,

OR ABORT 1/0

ZK-926-82

Figure 8-1: Queue I/O Request Scan of a Function Decision Table

8-3

WRITING FDT ROUTINES

As illustrated in Figure 8-1, the FDT routines are responsible for
transferring control out of the FDT processing loop and into a VAX/VMS
routine that queues an I/O request packet or completes an I/O request.
The Queue I/O Request system service does not know when to stop
scanning the function decision table. Therefore, you should ensure
that all valid function codes in a driver's function decision table
eventually call an FDT routine that does not return to the Queue I/O
Request system service.

An FDT routine can exit using any of the methods summarized in Table
8-2. The first method returns to the Queue I/O Request system
service. All other methods jump to VAX/VMS routines that take the
appropriate action. See Section 8.8 for detailed descriptions of
these routines.

Table 8-2: FDT Exit Methods

Exit Method Result

RSB

JMP GAEXE$QIODRVPKT

or

JSB GAEXE$ALTQUEPKT

Returns to the Queue I/O Request system
service. The FDT routine returns to the
system service because the routine knows
that the function decision table
contains a subsequent entry with the
same function code bit set. As a
result, the system service calls another
FDT routine.

Transfers control to a VAX/VMS routine
that queues an I/O packet to a driver.
The FDT routine uses this exit method if
all preprocessing is complete, if no
fatal errors are found in the
specification of an I/O request, and if
device activity is required to complete
the I/O request.

Once an FDT routine transfers control to
either of these routines, no driver code
that further processes the I/O request
can refer to the process virtual address
space.

EXE$QIODRVPKT is the standard method
used to queue an I/O request for device
activity. This routine initiates driver
action only if the device unit is
currently idle; that is, there is no
I/O request being processed. If the
device unit is busy, EXE$QIODRVPKT
queues the request to the unit so that
the driver will process it when the unit
becomes available.

In contrast, EXE$ALTQUEPKT initiates
driver action at a special driver entry
point without regard for the device
unit's activity status. This routine is
called by drivers that can handle two or
more I/O requests simultaneously.

(continued on next page)

8-4

WRITING FDT ROUTINES

Table 8-2 (Cont.): FDT Exit Methods

Exit Method Result

JMP GAEXE$FINISHIO

JMP GAEXE$FINISHIOC

JMP

Transfers control to a VAX/VMS routine
that writes a quadword of final I/O
status from RO and Rl into the I/O
status field of the I/O request packet
(IRP$L MEDIA and IRP$L MEDIA+4). The
routine then inserts the I/O request
packet in the I/O postprocessing queue.

An FDT routine that discovers a
device-dependent error should always
return status using EXE$FINISHIO or
EXE$FINISHIOC. The routine returns to
the Queue I/O Request system service the
two longwords of status contained in the
I/O status block (if any) specified in
the Queue I/O Request.

Transfers control to a routine that
performs the same functions as
EXE$FINISHIO except that this routine
always clears the second longword of the
final I/O status.

Transfers control to a VAX/VMS routine
that aborts an I/O request. An FDT
routine that discovers a
device-independent error in an I/O
request should always use this method of
exit. The routine stores a longword of
status in RO and returns this to the
system service. Inability to gain
access to a data buffer is an example of
a device-independent error.

8.5 FDT ROUTINES FOR DIRECT I/O

The VAX/VMS operating system provides two standard FDT routines that
are applicable for direct I/O operations: EXE$READ and EXE$WRITE.

When called by the driver, these routines completely prepare a direct
I/O read or write request. Thus, a driver that uses these routines
eliminates the need for its own device-specific FDT routines.

EXE$READ and EXE$WRITE are described in 8.7.

8.6 FDT ROUTINES FOR BUFFERED I/O

Device drivers for buffered I/O
device-specific FDT routines.
perform the following steps:

operations must contain their own
An FDT routine for buffered I/O must

• Confirm either read or write access to the user's buffer

• Allocate a buffer in system space

8-5

WRITING FDT ROUTINES

8.6.1 Checking the User's Buffer

First the FDT routine calls EXE$READCHK or EXE$WRITECHK to confirm
write or read access, respectively, to the user's buffer. Both of
these routines write the transfer byte count into IRP$W BCNT.
EXE$READCHK also sets IRP$V FUNC in IRP$W STS to indicate that the
function is a read.

8.6.2 Allocating the System Buffer

Next, the FDT routine allocates a system buffer. First, it adds 12
bytes for a buffer header to the byte count passed in the P2 parameter
of the user's I/O request. This is the total system buffer size. The
FDT routine then calls EXE$BUFFRQUOTA to ensure that the user has
sufficient remaining resources. If EXE$BUFFRQUOTA returns with a
success code, the FDT routine calls EXE$ALLOCBUF which allocates the
buffer and writes the buffer's size and type into its third longword.

Once the buffer is allocated, the FDT routine takes the following
steps:

• Loads the address of the system buffer into IRP$L_SVAPTE.

• Loads the total size of the system buffer into IRP$W_BOFF.

• Subtracts the system buffer size from JIB$L BYTCNT. A
longword in the PCB (PCB$L JIB) points to the location of the
job information block (JIB)~

• Stores the starting address of the system buffer data area in
the first longword of the buffer header.

• Stores the user's buffer address in the second longword of the
header.

• Copies data from the user buffer to the system buffer if the
I/O request is a write operation.

At this point, buffers are ready for the transfer.
illustrates the format of the system buffer.

SYSTEM BUFFER ~ADDRESS OF DATA AREA l
USER BUFFER ADDRESS t-- HEADER

TYPE I SIZE

BUFFER
DATA
AREA

USER
BUFFER

Figure 8-2

ZK-927-82

Figure 8-2: Format of System Buffer for Buffered I/O Read Operations

8-6

WRITING FDT ROUTINES

Appendix C provides additional information
EXE$WRITECHK, EXE$BUFFRQUOTA, and EXE$ALLOCBUF.

about EXE$READCHK,

8.6.3 Completion of Buffered I/O in I/O Postprocessing

When the transfer finishes, the driver returns control to VAX/VMS for
completion of the I/O request. The driver writes the final count of
bytes transferred into the high-order word of RO and the final request
status in the low order words of RO and Rl. The driver must leave the
buffer header intact; I/O postprocessing relies on the header's
accuracy. When VAX/VMS I/O postprocessing gains control, it performs
the following steps:

e Adds the value in IRP$W BOFF to JIB$L BYTCNT to update the
user's byte count quota-

• If IRP$L SVAPTE
allocated and
IRP$W STS

is nonzero, assumes a
checks to see whether

system buffer was
IRP$V FUNC is set in

• If IRP$V FUNC is clear, deallocates the system buffer used for
the write operation; if IRP$V FUNC is set, the kernel mode
AST copies the data to the user's-buffer and then deallocates
the buffer in addition to performing other kernel mode AST
functions

The kernel mode AST performs the following steps to complete a
buffered read operation:

• Obtains the address of the system buffer from IRP$L_SVAPTE

• Obtains the number of bytes to write to the user's buffer from
IRP$W_BCNT (for a read operation)

• Obtains the address of the user's buffer from the second
longword of the system buffer header

• Checks for write accessibility on all pages of the user's
buffer (for a read operation)

• Copies the data from the system buffer to the process's buffer
(for a read operation)

• Deallocates the system buffer. Note that the system uses the
size listed in the buffer's header to deallocate the buffer.

8.7 FDT ROUTINES PROVIDED BY VAX/VMS

The VAX/VMS FDT routines perform I/O request validation that is common
to many devices. Whenever possible, drivers should take advantage of
these routines. Normally, if a VAX/VMS FDT routine is called, no
additional FDT processing is required. All of the VAX/VMS FDT
routines described here exit by transferring control to one of the
following VAX/VMS routines:

e EXE$QIODRVPKT

e EXE$FINISHIO

e EXE$FINISHIOC

e EXE$ABORTIO

8-7

WRITING FDT ROUTINES

Once a VAX/VMS FDT routine is called, no subsequent FDT processing
occurs.

For information about additional FDT routines, see Appendix C.

8.7.1 EXE$0NEPARM

EXE$0NEPARM processes an I/O function code that has one parameter
associated with it.

Exit Method

Queues the I/O request packet to the driver.

Description

Processes an I/O function code that requires only one parameter
that needs no checking; for example, the parameter does not have
to be checked for read or write accessibility. EXE$0NEPARM
stores the parameter, found at O(AP}, in IRP$L MEDIA of the I/O
request packet. Then, it queues the I/O request- packet to the
driver.

8.7.2 EXE$READ

EXE$READ processes a logical or physical
direct I/O operation. EXE$READ cannot
operations.

Exit Method

read
be

function code for a
used for buffered I/O

Aborts the I/O request if an error occurs, or dismisses and
resubmits the I/O request if the user I/O buffers cannot be
locked in memory; otherwise, queues the I/O request packet to a
driver.

Description

Sets the I/O function bit in the status
IRP$W STS) of the I/O request packet.
the function is a read.

field (IRP$V FUNC in
This bit indicates that

EXE$READ writes the fourth parameter, located at 12(AP) into the
carriage control field (IRP$B_CARCON).

The routine replaces the logical function code IO$ READLBLK with
the physical function code IO$ READPBLK in the function code
field (IRP$W_FUNC) of the I/O request packet.

If the second parameter (the transfer byte count) is zero,
EXE$READ queues the I/O request packet to a device driver. The
second parameter is found at 4(AP). If the byte count is not
zero, EXE$READ uses the starting address of the transfer, found
at O(AP), and the transfer byte count as arguments to the routine
EXE$READLOCK.

The routine EXE$READLOCK calls EXE$READLOCKR, which immediately
calls EXE$READCHKR. This last subroutine determines whether the
caller's buffer permits write access.

8-8

WRITING FDT ROUTINES

If EXE$READCHKR finds that the buffer is accessible, it updates
the I/O request packet by writing the size in bytes of the
transfer to IRP$W BCNT and setting the read status bit in
IRP$W STS (IRP$V-FUNC). The maximum number of bytes that
EXE$READ can transfer is 65535 (128 pages minus one byte).

If the buffer does not allow write access, EXE$READCHKR returns
access violation status to its caller, EXE$READLOCKR, which
summons its caller (EXE$READLOCK) as a coroutine.

When EXE$READLOCK is called as a coroutine, it does not take any
error action. Instead, it passes control to EXE$READLOCKR, which
aborts the queue I/O request with access violation status.
EXE$READLOCK is called as a coroutine for the convenience of
drivers that call EXE$READLOCKR directly. See Appendix C for
more details.

After EXE$READCHKR confirms the buffer's write accessibility,
EXE$READLOCKR calls the routine MMG$IOLOCK to lock into memory
those pages that contain the buffer. MMG$IOLOCK, can return
success, page fault, or error status to EXE$READLOCKR.

If MMG$IOLOCK succeeds, EXE$READLOCKR stores the address of the
process page table entry (PTE) in the field IRP$L SVAPTE and
returns success status to EXE$READLOCK.

However, if MMG$IOLOCK reports a page fault, EXE$READLOCKR
adjusts direct I/O count and AST count to the values they held
before the I/O request, deallocates the I/O request packet and
restarts the request procedure at the Queue I/O Request system
service. This procedure is carried out so that the user process
can receive asynchronous system traps while it waits for the page
fault to complete. Once the page is faulted into memory, the
system service will resubmit the queue I/O request.

MMG$IOLOCK can report either of two errors: access violation
(SS$ ACCVIO) and insufficient working set limit (SS$ INSFWSL).
When-EXE$READLOCKR receives an error, it aborts the request with
error status.

After EXE$READLOCK returns to EXE$READ, the routine passes
control to the exit routine EXE$QIODRVPKT so that the request is
queued to the driver.

8.7.3 EXE$SENSEMODE

EXE$SENSEMODE processes the sense
functions by reading fields of
activity occurs.

Exit Method

device mode and characteristics
the unit control block. No device

Transfers control to EXE$FINISHIO.

Description

Loads the device-dependent characteristics field
(UCB$L DEVDEPEND) of the unit control block into Rl.
EXE$SENSEMODE then loads a normal completion status (SS$ NORMAL)
into RO. Finally, it transfers control to EXE$FINISHIO to insert
the I/O request packet in the I/O postprocessing queue.

8-9

WRITING FDT ROUTINES

8.7.4 EXE$SETCHAR

EXE$SETCHAR processes the set device mode and characteristics
functions. If setting device characteristics requires no device
activity or requires no synchronization with fork processing, the
driver's FDT entry can specify EXE$SETCHAR; otherwise, it must
specify EXE$SETMODE.

Exit Method

Aborts the I/O request on error; otherwise, transfers control to
EXE$FINISHIO.

Description

Determines whether the process has read access to the quadword
that describes the new characteristics for the device. The first
parameter, found at O(AP), specifies the address of the quadword.
If the process does not have read access to the quadword,
EXE$SETCHAR aborts the request.

If the process has read access, EXE$SETCHAR stores the new
characteristics in fields of the device's unit control block. If
the function is IO$ SETCHAR, the device type and class fields
(UCB$B DEVCLASS and UCB$B DEVTYPE, respectively) of the unit
control block receive the fTrst word of data addressed by the
parameter.

For both the IO$ SETCHAR and IO$ SETMODE functions, the routine
writes the second word of data into the UCB default buffer size
field (UCB$W DEVBUFSIZ) and the third and fourth words of data
into the device-dependent characteristics field
(UCB$L_DEVDEPEND).

Finally, EXE$SETCHAR stores the normal completion status
(SS$ NORMAL) in RO and transfers control to EXE$FINISHIO to
insert the I/O request packet in the I/O postprocessing queue.

8.7.5 EXE$SETMODE

EXE$SETMODE processes the set device mode
functions by activating the device.

Exit Method

and characteristics

Aborts the I/O request if an error occurs; otherwise, queues the
I/O request packet to the device driver.

Description

Determines whether the process has read access to the quadword
that describes the new characteristics for the device. The first
parameter, found at O(AP), specifies the address of the quadword.
If the process does not have read access to the quadword,
EXE$SETMODE aborts the request.

If the process has read access, EXE$SETMODE stores the new
characteristics in the media field (IRP$L MEDIA and
IRP$L MEDIA+4) of the I/O request packet. The routine then
transTers control to the exit routine EXE$QIODRVPKT, which queues
the request to the appropriate device driver.

8-10

WRITING FDT ROUTINES

8.7.6 EXE$WRITE

EXE$WRITE processes a logical or physical write function code for a
direct I/O operation. EXE$WRITE cannot be used for buffered I/O
operations.

Exit Method

Aborts the I/O request if an error occurs, or dismisses the I/O
request if the user I/O buffers cannot be locked in memory;
otherwise, queues the I/O request packet to a driver.

Description

Writes the fourth parameter, found at 12(AP) into the I/O request
packet's carriage control field (IRP$B_CARCON).

EXE$WRITE replaces the logical function code IO$ WRITELBLK with
the physical function code IO$ WRITEPBLK in the function code
field of the I/O request packet (IRP$W_FUNC).

If the second parameter (the transfer byte count) is zero,
EXE$WRITE queues the I/O request packet to the driver. The
second parameter is found at 4(AP). If the byte count is not
zero, EXE$WRITE uses the starting address of the transfer, found
at O(AP), and the transfer byte count as arguments to the routine
EXE$WRITELOCK.

The routine EXE$WRITELOCK calls EXE$WRITELOCKR, which immediately
calls EXE$WRITECHKR. This last subroutine determines whether the
caller's buffer permits read access.

If EXE$WRITECHKR finds that the buffer is accessible, it updates
the I/O request packet by writing the size in bytes of the
transfer to IRP$W BCNT. EXE$WRITE can transfer a maximum of
65535 bytes (128 pages minus one byte).

If the buffer does not allow read access, EXE$WRITECHKR returns
access violation status to its caller, EXE$WRITELOCKR, which
summons its caller (EXE$WRITELOCK) as a coroutine.

When EXE$WRITELOCK is called as a coroutine, it does not take any
error action. Instead, it passes control to EXE$WRITELOCKR,
which aborts the queue I/O request with access violation status.
EXE$WRITELOCK is called as a coroutine for the convenience of
drivers that call EXE$WRITELOCKR directly. See Appendix C for
more details.

After EXE$WRITECHKR confirms the buffer's read accessibility,
EXE$WRITELOCKR calls the routine MMG$IOLOCK to lock into memory
those pages that contain the buffer. MMG$IOLOCK can return
success, page fault, or error status to EXE$WRITELOCKR.

If MMG$IOLOCK succeeds, EXE$WRITELOCKR stores the address of the
process page table entry (PTE) in IRP$L SVAPTE and returns
success status to EXE$WRITELOCK.

However, if MMG$IOLOCK reports a page fault, EXE$WRITELOCKR
adjusts direct I/O count and AST count to the values they held
before the I/O request packet and restarts the request procedure
at the Queue I/O system service. The routine carries out this
procedure so that the user process can receive ASTs while it
waits for the page fault to complete. Once the page is faulted
into memory, the system service will resubmit the queue I/O
request.

8-11

WRITING FDT ROUTINES

MMG$IOLOCK can report either of two errors: access violation
(SS$ ACCVIO) and insufficient working set limit (SS$ INSFWSL).
When-EXE$WRITELOCKR receives an error, it aborts the request with
error status.

After EXE$WRITELOCK returns to EXE$WRITE, the routine passes
control to the exit routine EXE$QIODRVPKT so that the request is
queued to the driver.

8.7.7 EXE$ZEROPARM

EXE$ZEROPARM processes an I/O function code that has no associated
parameters.

Exit Method

Queues the I/O request packet to the driver.

Description

Processes an I/O function code that describes an I/O operation
completely without any additional function-specific parameters.
The only FDT processing necessary for a zero-parameter function
code is to zero-fill the field of the I/O request packet that
normally contains a user-specified parameter (IRP$L MEDIA). Then
EXE$ZEROPARM queues the I/O request packet to a devTce driver.

8.8 EXIT ROUTINES IN THE VAX/VMS SYSTEM

Ultimately, FDT processing must terminate by transferring control to
one of the following VAX/VMS routines: EXE$ABORTIO, EXE$FINISHIO,
EXE$FINISHIOC, EXE$ALTQUEPKT, or EXE$QIODRVPKT. Each of these
routines returns the system service status code to the user.

8.8.1 EXE$ABORTIO

When an FDT routine determines that an I/O request cannot be completed
because of an error in the specification of the request or in FDT
processing, the FDT routine transfers control to the VAX/VMS routine
EXE$ABORTIO to abort the request. EXE$ABORTIO gains control without
any change in the process context. Interrupt priority level is at
IPL$ ASTDEL; the process virtual space is mapped; and the process is
executing in kernel mode.

Required Register Contents

RO Queue I/O Request system service final status code
R3 Address of the current I/O request packet
R4 Address of the process control block of the current

process
RS Address of the unit control block of the device unit

assigned to the process I/O channel

R3 through RS always contain the I/O request packet, PCB, and UCB
addresses at the entry to an FDT routine. The FDT routine should
be careful not to destroy these values.

8-12

WRITING FDT ROUTINES

Description

EXE$ABORTIO clears the address of the I/O status block in the I/O
request packet (IRP$L IOSB) so that no status will be returned
during I/O postprocessing. EXE$ABORTIO also clears the bit in
the I/O request packet (ACB$V QUOTA in the field IRP$B RMOD).
When set, this bit indicates that the requesting process
specified an AST routine. If necessary, the routine readjusts
the process's use of its AST quota.

Then EXE$ABORTIO inserts the I/O request packet in the I/O
postprocessing queue. If no other entries are in the queue,
EXE$ABORTIO requests a software interrupt at IPL$ IOPOST. This
interrupt causes postprocessing to occur before any other
instructions in the EXE$ABORTIO routine are executed.

When all I/O postprocessing has been completed, EXE$ABORTIO
regains control and finishes the I/O operation as follows:

• Lowers IPL to zero, which is the normal IPL for a process

• Changes mode back to the original processor access mode

• Returns from the system service to the code of the image that
originally requested the I/O operation. EXE$ABORTIO returns
RO, which contains the final status code saved when the exit
routine was called, to its caller.

As a result of this exit method, any ASTs specified when the
I/O request was issued will not be delivered, and any event
flags requested will not be set.

8.8.2 EXE$FINISHIO and EXE$FINISHIOC

Many I/O requests need no device activity to be completed. The FDT
routine(s) can complete the entire I/O request and immediately return
status concerning the operation to the process. However, the VAX/VMS
operating system provides two VAX/VMS I/O completion routines:
EXE$FINISHIO and EXE$FINISHIOC. EXE$FINISHIO returns a quadword of
I/O status. EXE$FINISHIOC returns a quadword of I/O status with the
second longword containing zero.

These routines gain control without any change in process context.
Interrupt priority level is at IPL$ ASTDEL; the process page tables
are mapped; and the process is executing in kernel mode.

Required Register Content

RO Value to be placed in the first longword of final I/O
status when the Queue I/O Request system service returns
final status

Rl Value to be placed in the second longword of final I/O
status (EXE$FINISHIO only)

R3 Address of the current I/O request packet
R4 Address of the process control block of the current

process
R5 Address of the unit control block of the device unit

assigned to the process I/O channel

R3 through R5 always contain the I/O request packet, PCB, and UCB
addresses at the entry to an FDT routine. The FDT routine should
be careful not to destroy these values.

8-13

WRITING FDT ROUTINES

Description

EXE$FINISHIO and EXE$FINISHIOC modify fields in the I/O data base
and then complete the I/O request in the following steps:

• Increase the number of I/O operations completed on the current
device in the operation count field of the unit control block
(UCB$L_OPCNT)

• Store the contents of RO and Rl in the media fields of the I/O
request P,acke t (IRP$L _MEDIA and IRP$L _ MEDIA+4)

• Insert the I/O request packet in the I/O postprocessing queue
and, if the queue is empty, request a software interrupt at
IPL$ IOPOST

EXE$FINISHIO and EXE$FINISHIOC lose control to I/O postprocessing
because postprocessing executes at the higher IPL of IPL$ IOPOST.
When EXE$FINISHIO and EXE$FINISHIOC regain control, they complete
processing in the following steps:

• Lower IPL to zero, which is the normal IPL for a process

• Change mode back to the original processor access mode

• Return from the system service to the image
requested the I/O operation. The image
SS$ NORMAL in RO, indicating that the queue
completed without device-independent error.

8.8.3 EXE$QIODRVPKT

that originally
receives status

I/O request has

Some I/O functions require device activity, or at least access to
device registers, for the I/O operation to be completed. Common
examples are read and write functions. While FDT routines can perform
extensive preprocessing, such as determining whether user buffers are
accessible and reformatting data into buffers in the system address
space, they should not access device registers because the device
might be active. Furthermore, FDT routines should exercise restraint
when modifying the unit control block. Routines usually access the
UCB at driver fork IPL to synchronize modifications, and FDT routines
do not operate at this interrupt priority level. Drivers containing
FDT routines that access device registers or carelessly modify the
unit control block risk unpredictable operation or a system failure.

For this type of I/O function, the associated FDT routines perform all
preprocessing and then transfer control to the VAX/VMS routine
EXE$QIODRVPKT. It queues the IjO packet to a device driver and
attempts to transfer control to the device driver's start I/O routine.
If the device unit is busy, EXE$QIODRVPKT inserts the I/O request
packet in a priority-ordered queue of packets waiting for the unit.

Required Register Contents

R3 Address of the I/O request packet
R4 Address of the process control block of the current process
RS Address of the unit control block for the device unit

assigned to the process I/O channel

8-14

WRITING FDT ROUTINES

Description

EXE$QIODRVPKT calls EXE$INSIOQ, which first raises the interrupt
priority level of the process to the fork level of the driver
(UCB$B FIPL). Driver fork level is, by convention, the interrupt
priority level at which device drivers and VAX/VMS read and alter
critical portions of the device's unit control block. By
executing at fork level, EXE$INSIOQ ensures that, while it is
running, a driver fork process for the device unit cannot also be
running.

EXE$INSIOQ tests the UCB status word to see if the unit is busy.

If the device unit is not busy, EXE$INSIOQ calls the VAX/VMS
routine IOC$INITIATE to create a fork process context in which
the driver can process the I/O request. IOC$INITIATE creates
this context and activates the driver in the following steps:

• Sets the busy bit of the device's unit control
(UCB$V_BSY in UCB$W_STS)

block

• Stores the address of the current I/O request packet in the
UCB field UCB$L IRP

• Copies the transfer parameters contained in the I/O request
packet into the unit control block:

- Copies the
UCB$L SVAPTE

starting address from IRP$L SVAPTE to

- Copies the byte offset within the page from IRP$W BOFF to
UCB$W BOFF

- Copies the low order word of the byte count from IRP$W BCNT
to UCB$W BCNT

• Clears the cancel I/O and timeout bits in the UCB status word
(UCB$V_CANCEL and UCB$V TIMOUT in UCB$W_STS)

• If the I/O request specifies a diagnostic buffer, as indicated
by the bit IRP$V DIAGBUF in IRP$W STS, stores the system time
in the buffer (IRP$L DIAGBUF) (the-Queue I/O Request system
service having already allocated the buffer)

• Finds the entry point of the device driver's start I/O routine
using the following chain of pointers:

UCB ~ DDT ~ start I/O entry point

• Transfers control to the driver start I/O routine using a JMP
instruction

If, on the other hand, EXE$INSIOQ finds that the device is busy,
it inserts the I/O packet in the device unit's I/O request packet
wait queue for processing later by calling EXE$INESRTIRP. The
I/O request packet wait queue is ordered by two factors:

• The time that the entry is queued; that is, within any given
priority the queue is first-in/first-out

• The priority of the I/O request packet, which is derived from
the requesting process's base priority and stored in the field
IRP$B PRI

8-15

WRITING FDT ROUTINES

After completing one of the two operations described above,
EXE$INSIOQ reduces the interrupt priority level to the level at
the beginning of its execution; that is, to IPL$ ASTDEL.
EXE$INSIOQ returns control to EXE$QIODRVPKT. Finally,
EXE$QIODRVPKT returns from the Queue I/O Request system service
in the following steps:

• Loads a success status code (SS$_NORMAL) into RO

• Reduces the interrupt priority level to 0

• Changes mode to the access mode of the process at the time of
the I/O request by issuing an REI instruction

• Returns from the system service call

The system sets and clears the busy bit in the UCB status word for the
device unit. This bit prevents the driver from being called to
service a device unit that is already engaged in another I/O request.

When a device driver's start I/O routine gains control, the process
that queued the I/O request may no longer be the mapped process.
Therefore, the driver must assume that all information regarding the
I/O request is in the unit control block or the I/O request packet and
that all buffer addresses in the unit control block are either system
addresses or page frame numbers that can be interpreted in any process
context. For direct I/O operations, FDT routines also must have
locked all user buffer pages in physical memory since paging cannot
occur at driver fork level and higher interrupt priority levels. The
process virtual address space is not guaranteed to be mapped again
until VAX/VMS delivers a kernel mode AST to the requesting process as
part of I/O postprocessing.

8.8.4 EXE$ALTQUEPKT

Special purpose drivers may want to use their own internal I/O queues
as well as the device unit I/O queue (UCB$L_IOQFL) provided by
VAX/VMS. These internal queues allow the driver to handle I/O
requests even if the device is busy with another I/O operation.

EXE$ALTQUEPKT permits the driver to ignore unit I/O queue
synchronization. When called by an FDT routine, EXE$ALTQUEPKT gains
access to the driver at the alternate start I/O entry point specified
in the driver dispatch table (offset DDT$L ALTSTART). This entry
point bypasses the unit I/O queue and the device busy flag; thus, the
driver is activated regardless of whether the device unit is busy.

A driver that uses EXE$ALTQUEPKT becomes responsible not only for its
internal queues but also for any synchronization between those queues
and the unit I/O queue maintained by the operating system.

Drivers complete I/O request packets obtained from EXE$ALTQUEPKT by
calling the routine COM$POST. This routine places the I/O request
packet in a postprocessing queue and returns control to the driver.
The driver may then fetch another packet from an internal queue. For
further information about COM$POST, see Appendix C.

If a driver processes more than one I/O request packet at the same
time, separate fork blocks must be used.

Be aware that programming a device driver to process simultaneous I/O
requests requires detailed knowledge of VAX/VMS internal design.

8-16

WRITING FDT ROUTINES

Required Register Contents

R3 Address of the I/O request packet
RS Address of the unit control block

You must assume that the contents of RO through RS are destroyed
upon return to the FDT routine.

Description

EXE$ALTQUEPKT performs the following steps:

• Saves the current interrupt priority level on the stack

• Raises interrupt priority level to
(UCB$B_FIPL)

driver fork level

• Finds the entry point of the alternate start I/O routine using
the following chain of pointers:

UCB ~ DDT ~ alternate start I/O address

• Calls the driver at alternate start I/O address

When the alternate start I/O routine finishes, it returns control to
EXE$ALTQUEPKT by executing an RSB instruction. Unlike the other FDT
exit routines, EXE$ALTQUEPKT is called with a JSB instruction rather
than a JMP instruction. EXE$ALTQUEPKT restores interrupt priority
level to that which existed when it was called, then returns control
to the FDT routine that called it. The FDT routine performs any
postprocessing and transfers control to the routine EXE$QIORETURN.

When EXE$QIORETURN gains control, it performs the following steps:

• Sets the success status code SS$ NORMAL in RO

• Lowers the interrupt priority level to zero

• Returns (with the RET instruction)
dispatcher

8-17

to the system service

CHAPTER 9

WRITING THE START I/O ROUTINE

A driver start I/O routine activates a device and then waits for a
device interrupt or timeout. This chapter describes the start I/O
routine. Chapter 12 describes the reactivation of the driver routine
that performs device-dependent I/O postprocessing. With a few
exceptions, the start I/O routine discussed in the following sections
describes a DMA transfer using a single-unit controller.

9.1 TRANSFERRING CONTROL TO START I/O

The start I/O routine of a device driver gains control from either of
two VAX/VMS routines: EXE$QIODRVPKT or IOC$REQCOM.

When FDT processing is complete for an I/O packet, the FDT routine
transfers control to EXE$QIODRVPKT. If the designated device is idle,
IOC$INITIATE is called to create a driver fork process. (This
procedure is detailed in Section 8.8.3.) The driver fork process then
gains control in the start I/O routine of the appropriate driver. If
the device is busy, EXE$QIODRVPKT calls EXE$INSIOQ, which queues the
packet to the device unit's I/O request packet wait queue.

After a device completes an I/O operation, the driver fork process
exits by transferring control to IOC$REQCOM. IOC$REQCOM inserts the
finished I/O packet in the postprocessing queue. It then dequeues the
next I/O request packet from the device unit's I/O request packet wait
queue and calls IOC$INITIATE to create a new driver fork process that
gains control at the entry point of the driver's start I/O routine.

9.2 CONTEXT OF A DRIVER FORK PROCESS

A start I/O routine does not run in the context of a user process.
Rather, it has the following context:

System mapping

Kernel mode

High IPL

Only system page tables are mapped.
Therefore, driver code cannot refer to
virtual addresses in process address space.

Execution occurs in the most privileged
access mode and can, therefore, change IPL.

The VAX/VMS routine that creates a driver
fork process raises IPL to driver fork level
before activating the driver. The driver can
raise and lower IPL between driver fork level
and IPL$ POWER.

9-1

WRITING THE START I/O ROUTINE

Kernel or
interrupt stack

Execution occurs on the kernel or interrupt
stack. The driver must not alter the state
of the stack without restoring it to its
previous state before relinquishing control.
The stack used depends upon whether the I/O
startup is the result of a new I/O request or
because a previous I/O request has completed.
The choice of stacks must not affect start
I/O routine operation.

In addition to the context described, the VAX/VMS packet queuing
routines set up R3 and RS for a driver start I/O routine, as follows:

• R3 contains the address of the I/O request packet.

• RS contains the address of the unit control block for the
device.

All registers must be preserved except for RO, Rl, R2 ~nd R4.

Before the packet queuing routines call the start I/O routine, they
copy the following I/O request packet fields into their corresponding
slots in the device's unit control block:

e IRP$W BCNT ~ UCB$W BCNT

e IRP$W BOFF ~ UCB$W BOFF

• IRP$L SVAPTE ~ UCB$L SVAPTE

9.3 ACTIVATING THE DEVICE

The processing performed by a start I/O routine is device-specific. A
start I/O routine normally contains elements to perform the following
functions:

• Analyze the I/O function

• Transfer the details of a transfer from the I/O request packet
into the unit control block

• Obtain and initialize the controller and, for DMA transfers,
UNIBUS adapter resources

• Modify device registers to activate the device

The start I/O routine elements listed above execute a series of steps
to activate the device. The sections that follow describe those steps
as performed for a sample DMA device such as a parallel communications
link; the details of processing, however, are specific to the
particular device. UNIBUS-related details of DMA transfers are
described in Chapter 10.

9.3.1 Obtaining Controller Access

If the device is attached to a multiunit controller, the start I/O
routine invokes the VAX/VMS macro REQPCHAN to assign the controller
data channel to the device unit. Single-unit controllers do not
require arbitration for the controller data channel. REQPCHAN calls
the VAX/VMS routine IOC$REQPCHANL that acquires ownership of the
controller data channel.

9-2

WRITING THE START I/O ROUTINE

The transfer being controlled by the start I/O routine discussed here
requires no seek preceding the transfer. Disk I/O is an example of a
transfer that requires a seek first. To permit seeks to be overlapped
with transfers, invoke REQPCHAN with the argument PRI=HIGH.
Specifying PRI=HIGH inserts a request for a channel at the head of the
channel wait queue.

If the channel is not available, IOC$REQPCHANL suspends driver
processing by saving the driver's context in the UCB fork block and
inserting the fork block address in the channel wait queue.
IOC$REQPCHANL then returns control to the caller of the driver, that
is, to IOC$INSIOQ, as illustrated in Figure 9-1.

The UCB fork block now represents the entire context of the suspended
driver:

• Saved R3 containing the address of the I/O request packet

• Implicit saved RS containing the UCB address

• A return address in the driver

IOC$REQPCHANL does not save R4 since it writes R4 before returning
control to the driver.

CALLS
010 FDT

JMP

USER
INSIOQ INITIATE

PROGRAM

JMP JMP

CHANNEL
RET

OIORETURN
WAIT

QUEUE

JSB

UCB - ADDRESS
...__R_s_s __ , R EOCHAN ~

ZK-928-82

Figure 9-1: Driver Insertion into Channel Wait Queue

If the channel
dispatch block
block:

is available, IOC$REQPCHANL locates the interrupt
for the channel with a pointer in the unit control

UCB ~ CRB ~ IDB

The interrupt dispatch block contains the address of the
control/status register for the channel (IDB$L CSR). IOC$REQPCHANL
returns the control/status register address in R4~ The driver for a
unit attached to a single-unit controller must contain the code needed
to load the control/status address into R4.

9-3

WRITING THE START I/O ROUTINE

IOC$REQPCHANL also writes the UCB address of the new channel owner
the owner field of the interrupt dispatch block (IDB$L OWNER).
driver interrupt service routine later reads this IDB field
determine which device unit owns the controller data channel.
driver for a single-unit controller must fill the IDB$L OWNER field in
its controller or unit initialization routine.

in
The

to
A

The driver must maintain the stack in a known and consistent state for
the resource wait queue mechanism to work. When IOC$REQPCHANL gains
control, the top two items on the stack must be two return addresses:

• O(SP) -- Address of the next instruction to be executed in
the driver fork process

• 4(SP) -- Address of the next instruction to be executed in the
routine that called the driver start I/O routine

9.3.2 Getting the I/O Function Code and Converting the Code and
Modifiers

The start I/O routine extracts the I/O function code and function
modifiers from the field IRP$W FUNC and translates them into
device-specific function codes to- be loaded into the device's
control/status register or other control registers. The I/O routine
being described in this chapter sets up a bit mask that is to be
modified further in subsequent instructions and loaded into the
control/status register when the driver actually starts the device.
That is, the start I/O routine converts the function modifiers
contained in IRP$W FUNC into device-specific bit settings in the
general register. -

At this point, the device driver follows procedures to obtain UNIBUS
resources. These procedures are detailed in Chapter 10.

9.3.3 Computing the Transfer Length

Because the device driven by this particular driver expects the
transfer as a word count, the start I/O routine computes the length of
the transfer in words by dividing the byte count field of the unit
control block (UCB$W BCNT) by 2. The routine loads the computed value
into the word count device register. One of the FDT routines that
processes the I/O request must ensure that the byte count for the
transfer is even. An odd byte count results in the user's not
receiving the last byte of data.

9.3.4 Computing the Transfer Start Address

The start I/O routine calculates the address of the transfer using the
byte offset field of the unit control block (UCB$W BOFF) and the
number of the starting map register (CRB$L INTD+VEC$W MAPREG). The
result is an 18-bit value representing an-address in-UNIBUS address
space. Section 10.4 details the calculation of the starting address
for a UNIBUS transfer.

The start I/O routine stores the low-order 16 bits of the computed
value in the buffer address device register. It stores the two
high-order bits of the computed value in the memory extension bits of
the bit mask (described in Section 9.3.2) to contain the device
control/status register data.

9-4

WRITING THE START I/O ROUTINE

9.3.5 Preparing the Device Activation Bit Mask

The start I/O routine prepares the device activation bit mask by
setting the interrupt enable and go bits in the general register used
previously. The general register contains a complete command to start
the transfer at this point. When the start I/O routine copies the
contents of the register into the device's control/status register,
the device starts the transfer. However, before activating the
device, the start I/O routine should perform the steps described in
Sections 9.3.6 and 9.3.7.

9.3.6 Blocking All Interrupts

The start I/O routine invokes the VAX/VMS macro DSBINT to block all
interrupts. DSBINT raises IPL to IPL$ POWER and saves the previous
IPL setting on the top of the stack.

9.3.7 Checking for Power Failure

The start I/O routine examines the powerfail bits in the UCB status
word (UCB$V POWER in UCB$W STS) to determine whether a power failure
has occurred-since the start-I/O routine gained control. If the bit
is not set, the transfer can proceed.

If the bit is set, a power failure may have occurred between the time
that the start I/O routine wrote the first device register and the
time that the start I/O routine is ready to activate the device. Such
a power failure could modify the already written device registers and
cause unpredictable device behavior if the device were to be started.

If the bit UCB$V POWER is set, the start I/O routine branches to an
error handler In the driver. The driver is responsible for clearing
UCB$V_POWER before recovery or error procedures can be initiated.
Many drivers clear this field and transfer to the beginning of the
start I/O routine, which restarts processing of the I/O request.

9.3.8 Activating the Device

If no power failure has occurred, the start I/O routine copies the
contents of the control mask into the device control/status register.
When the device notices the new contents of the device register, the
actual transfer begins.

9.4 WAITING FOR AN INTERRUPT OR TIMEOUT

Once the start I/O routine activates the device, the driver fork
process cannot proceed until one of two external events occurs:

• The device generates a hardware interrupt.

• The device does not generate a hardware interrupt within an
expected time limit; that is, a device timeout occurs.

Still executing at IPL$ POWER, the driver's start I/O routine asks
VAX/VMS to suspend the driver fork process by invoking one of the
following VAX/VMS macros:

9-5

WRITING THE START I/O ROUTINE

WFIKPCH -- Wait for an interrupt or timeout and keep the
controller data channel

WFIRLCH -- Wait for an interrupt or timeout and release the
controller data channel

Both of these macros invoke routines that return IPL to the previous
level when they exit. These routines expect to find the return IPL on
the stack. This IPL is saved on the stack by the DSBINT macro as
described in Section 9.3.7.

Drivers generally keep the controller data channel while waiting for
the interrupt or timeout. Drivers for single unit controllers always
keep the channel because there are no other units present that may
need it. On multiunit controllers, some operations, such as disk
seeks, do not require the controller once the operation has begun. In
this case, the driver may want to release the controller data channel
while waiting for interrupt or timeout so that other units on the
controller can start their operations.

9.4.1 WFIKPCH and WFIRLCH Macro Formats

A start I/O routine invokes either the WFIKPCH or WFIRLCH macro to
wait for device interrupt.

Formats

excpt

time

WFIKPCH excpt,[time]

WFIRLCH excpt,[time]

The address of the timeout routine for this device.

The number of seconds to wait before signaling a device timeout.
The number must be greater than or equal to 2. A minimum value
of 2 is required because the timeout mechanism is accurate only
to within one second. If no number is specified, the macro uses
the value 65536 by default.

9.4.2 Expansion of WFIKPCH Macro

Because the WFIKPCH and WFIRLCH macros are similar, the description
that follows analyzes the expansion of WFIKPCH only.

If the driver specifies the time argument in the macro call, the macro
pushes the value of the argument into the stack. If the time argument
is not specified, the macro pushes the value 65536 onto the stack.

The VAX/VMS timer routine uses the time value to calculate the length
of time to wait before transferring control to a device timeout
handler.

WFIKPCH completes its expansion with the following two lines of code:

JSB
.WORD

GAIOC$WFIKPCH
EXCPT-.

The execution of the JSB instruction pushes the address following the
JSB onto the stack as the address to which the called routine would
normally return with an RSB instruction.

9-6

WRITING THE START I/O ROUTINE

9.4.3 IOC$WFIKPCH Routine

The VAX/VMS routine IOC$WFIKPCH invoked by the macro WFIKPCH performs
the functions necessary for the driver fork process to wait for a
device interrupt or timeout. IOC$WFIKPCH first adds 2 to the address
on the top of the stack so that the top of the stack contains the
address of the next instruction in the driver after the macro
invocation. This address is where the driver processing actually
resumes as a result of an interrupt service routine JSB instruction.

IOC$WFIKPCH then saves the contents of R3, R4, and the driver return
address from the top of the stack in the first part of the unit
control block; that is, in the UCB fork block. The interrupt service
routine must restore RS to contain the address of the unit control
block after an interrupt. The interrupt service routine normally
obtains the address of the unit control block from the field
IDB$L OWNER of the interrupt dispatch block.

The VAX/VMS routine that detects a device timeout calculates the
address of the driver timeout routine by subtracting 2 from the saved
PC in the UCB fork block and calling indirectly through the result,
for example:

MOVL
CVTWL

ADDL

JSB

UCB$L FPC(R5),R2
-(R2)~-(SP)

(SP)+,R2

(R2)

Get saved PC
Get offset to timeout
handler
Add to relative driver
address to obtain relative
handler address
Call timeout handler

IOC$WFIKPCH sets bits in the unit control block (UCB$V INT and
UCB$V TIM in UCB$W STS) to indicate that interrupts and timeouts are
expected from the device. IOC$WFIKPCH also writes the device timeout
absolute time in the field UCB$L DUETIM. The absolute time is the
number of seconds since the operating system was bootstrapped plus the
number of seconds specified in the time argument to the macro.

Finally, IOC$WFIKPCH reenables interrupts by lowering IPL to its
previous level in the driver, that is, to driver fork level, and
returns control to the caller of the driver.

9.5 RESPONDING TO AN EXPECTED DEVICE INTERRUPT

The only context saved for the driver is now in the unit control
block. It contains the following information:

• A description of the I/O request and the state of the device

• The contents of R3 and R4

• The implicit contents of RS, that is, the address of the UCB
fork block

• A driver return address

• The implicit address of a device timeout routine

By convention, R4 often contains the address of the control/status
register; it permits the driver to examine device registers. When
the driver fork process regains control after an interrupt processing,
RS contains the UCB address. It is the key to the I/O data base that
is relevant to the current I/O operation.

9-7

When a
analyzes
below:

WRITING THE START I/O ROUTINE

device interrupts,
the interrupt, as

the driver
detailed

interrupt service routine
in Chapter 11 and summarized

• Identifies the UCB address of the device that generated the
interrupt

• Obtains device or controller status from the device registers,
if necessary, and stores the status in the unit control block

• Restores the driver fork process registers from the UCB fork
block, restores RS with the UCB address, and reactivates the
suspended driver at the PC stored in the UCB fork block

If, instead of requesting an interrupt, the device times out, a
VAX/VMS timer routine reactivates the suspended driver fork process at
the address of the timeout routine. Section 12.2 discusses device
timeout handling in detail.

9-8

CHAPTER 10

WRITING UNIBUS OMA TRANSFERS

A driver performing DMA transfers over the UNIBUS must take UNIBUS
operation into consideration. The VAX/VMS operating system and the
I/O data base handle most UNIBUS map register and data path resource
management for the device drivers. You must choose the type of data
path (either direct or buffered) appropriate to the device and ensure
that UCB fields are written to describe the virtual memory locations
to be read or written. Once these actions have been taken, the driver
fork process calls VAX/VMS routines to take care of the detailed
operation of the UNIBUS adapter.

The I/O data base contains an adapter control block (ADP) that
describes the UNIBUS adapter. This block contains allocation
information for the UNIBUS adapter data paths and map registers.

The adapter control block also contains the virtual address of the
UNIBUS adapter configuration register. All other adapter registers
are located at fixed offsets from the configuration register. The
VAX/VMS UNIBUS adapter-handling routines modify the UNIBUS adapter
data path and map registers according to requests from driver fork
processes.

In general, driver fork processes do not access the UNIBUS adapter
control blocks. Instead, drivers call VAX/VMS routines that perform
adapter-related services, such as the following:

• Allocate a buffered data path

• Allocate map registers

• Load map registers

• Deallocate map registers

• Purge a buffered data path

• Deallocate a buffered data path

The system creates a driver fork process by calling the start I/O
routine in a device driver. The fork process takes some or all the
following steps to initiate an I/O transfer on a UNIBUS device:

• Requests buffered data path

• Requests map registers

• Loads map registers

• Calculates starting UNIBUS address

10-1

WRITING UNIBUS OMA TRANSFERS

• Activates device

• Waits for interrupt

When a hardware interrupt indicates that the I/O transfer is complete,
the driver fork process checks the success or failure of the transfer.
The driver then concludes with the following steps:

• Purges the buffered data path

• Releases the data path

• Releases the map registers

All of the steps above involve the UNIBUS adapter. VAX/VMS, however,
hides most of the UNIBUS interfacing from the driver.

10.1 REQUESTING A BUFFERED DATA PATH

The system allows a driver to request temporary or permanent
allocation of a buffered data path. After the driver fork process
gains access to the controller (see Section 9.3.1), it requests a
buffered data path by invoking the VAX/VMS macro REQDPR. REQDPR calls
a VAX/VMS routine named IOC$REQDATAP that locates the UNIBUS adapter
control block. To do this, IOC$REQDATAP uses a series of pointers
that begin in the current unit control block, as follows:

UCB ~ CRB ~ ADP

The ADP data path allocation information indicates the buffered data
paths that are available. IOC$REQDATAP allocates a data path to the
driver by storing th? data path number in the channel request block
and indicating in the adapter control block (ADP) that the data path
is in use. Then, control returns to the driver fork process.
Appendix A describes the adapter control block.

If no data path is available, IOC$REQDATAP saves driver context (R3,
R4, and PC) in the UCB fork block and inserts the address of the fork
block, which is also the address of the unit control block and the
content of RS, in the ADP data path wait queue. The driver fork block
remains in the queue until both of the following conditions are met:

• A data path is available

• The driver fork block is the next entry in the data path wait
queue

Then, the VAX/VMS routine IOC$RELDATAP allocates the data path to the
suspended driver and reactivates the driver fork process.

10.1.1 Requesting a Permanent Buffered Data Path

A device driver can permanently allocate a buffered
code in a unit initialization routine. The
permanently allocate a buffered data path:

data path with
following steps

e Test the path lock bit (VEC$V_PATHLOCK) in the data path
number field of the channel request block
(CRB$L INTD+VEC$B DATAPATH) to ensure that a data path is not
already allocated-for this device.

10-2

WRITING UNIBUS OMA TRANSFERS

• Call the subroutine IOC$REQDATAPNW to allocate the data path
as shown below:

JSB G~IOC$REQDATAPNW

If IOC$REQDATAPNW successfully allocates the data path, it
stores the number of the data path it obtained in the channel
request block at VEC$B DATAPATH and returns with the low-order
bit set in RO. If IOC$REQDATAPNW cannot allocate a data path,
it returns with the low-order bit clear in RO.

• Set the path lock bit (VEC$V PATHLOCK) in the channel request
block at VEC$B DATAPATH -

The driver loading procedure calls the unit initialization routine for
each unit that the driver serves. A unit initialization routine that
contains the code described above will permanently allocate one
buffered data path for each CRB associated with the driver; that is,
one path for each device controller that the driver serves.

Some VAX-11 processors have a small number of buffered data paths. If
device drivers running on these processors do not limit permanent
allocation of buffered data paths, the system may not have any paths
left for its own use. For example, the VAX-11/750 has three buffered
data paths. If device drivers loaded on this machine permanently
allocate all three data paths, the operating system will have no
buffered data paths left for normal operations. In this case, I/O
transfers that require a buffered data path will wait forever.

10.1.2 Requesting the Direct Data Path

Because the UNIBUS adapter arbitrates among devices that wish to use
the direct data path and because the CRB is initialized to O
(0 = direct data path), drivers are not required to invoke the REQDPR

macro to request the direct data path.

Some VAX-11 processors, such as the VAX-11/780, do not permit
byte-offset transfers on the direct data path. On these processors,
drivers for word-aligned devices must ensure that the data buffer is
word-aligned.

10.1.3 Mixed Direct and Buffered Data Path Transfers

A device driver can use the buffered data path for certain operations,
then use the direct data path for other operations. To accomplish
this task, the driver should allocate a buffered data path for
buffered I/O. When the operation completes, the driver should then
purge and release the data path. The release automatically resets the
data path number to zero, which signifies a direct data path.
However, the driver should not release the direct data path, although
it should purge the path. (A purge of the direct data path is a NOP
and always yields success.)

10.2 REQUESTING UNIBUS ADAPTER MAP REGISTERS

The operating system allows a driver to allocate map registers as
needed or to allocate them permanently.

10-3

WRITING UNIBUS DMA TRANSFERS

10.2.1 Allocation of Map Registers

After the driver fork process gains access to the controller (see
Section 9.3.1), it requests a set of UNIBUS adapter map registers by
invoking the VAX/VMS macro REQMPR. This macro calls the routine
IOC$REQMAPREG. IOC$REQMAPREG calculates the number of map registers
needed for a transfer. The calculation is based on the transfer byte
count field and the byte offset fields of the device's unit control
block (UCB$W_BCNT and UCB$W_BOFF).

The procedure for allocating map registers is similar to that used to
allocate a buffered data path. First, IOC$REQMAPREG locates the
adapter control block from a series of pointers that begin with the
current unit control block, as follows:

UCB ~ CRB ~ ADP

Then, the routine examines the map register allocation information to
locate the required number of contiguous map registers. If the
registers are not currently available, IOC$REQMAPREG saves the driver

-context (R3, R4, and PC) in the UCB fork block and inserts the fork
block address (same as UCB address and the contents of RS) in the map
register wait queue.

When the map registers are available, IOC$REQMAPREG allocates them
adjusts the appropriate map register allocation information in
adapter control block. IOC$REQMAPREG then writes the number of
starting map register and the number of map registers allocated
the channel request block and returns control to the driver
process.

10.2.2 Permanent Allocation of Map Registers

and
the
the

into
fork

A device driver can permanently allocate a set of map registers with
code in the unit initialization routine. The number of map registers
permanently allocated must be sufficient for the longest possible
transfer. The following steps permanently allocate a set of map
registers:

• Test the map lock bit (VEC$V MAPLOCK) in the channel request
block (CRB$L INTD+VEC$W_MAPREG).

• Load the number of map registers required into R3.

• Call the VAX/VMS
instruction:

routine

JSB GAIOC$ALOUBAMAPN

IOC$ALOUBAMAPN with a JSB

If IOC$ALOUBAMAPN successfully allocates the map registers, it
stores the number of map registers allocated and the starting
map register's number in the channel request block at
CRB$L INTD+VEC$B NUMREG and CRB$L INTD+VEC$W MAPREG,
respectively, and returns with the low-order bit set in RO.

Otherwise, it returns with the low-order bit of RO clear.

• Set the map lock bit in the channel
(VEC$V_MAPLOCK in CRB$L INTD+VEC$W_MAPREG).

request block

The driver loading procedure calls
once for each unit associated
initialization routines contains

the
with
the

10-4

unit
the

code

initialization routine
driver. If the unit
described above, it

WRITING UNIBUS OMA TRANSFERS

permanently allocates one set of map registers for each CRB associated
with the driver; that is, one set of registers for each device
controller that the driver serves.

10.3 LOADING THE UNIBUS ADAPTER MAP REGISTERS

Once a driver fork process has assigned a data path and allocated a
set of map registers, it can request VAX/VMS to load the map registers
with physical page frame numbers by invoking the VAX/VMS macro
LOADUBA. LOADUBA calls a VAX/VMS routine IOC$LOADUBAMAP that loads
each allocated map register with five data items:

• A bit setting to indicate whether the map register is valid.

• A bit setting to indicate whether the transfer is to start on
the odd or even byte within a word; this bit is set if the
low-order bit of UCB$W BOFF is a 1.

• The number of the data path to use for the transfer.

• The page frame number of a page in memory.

• A bit setting to indicate that the
longword-aligned random access mode;
VEC$V LWAE is set in VEC$B DATAPATH.

transfer operates in
This bit is set when

IOC$LOADUBAMAP loads the page frame number of the first page of the
transfer into the first allocated map register, the page frame number
of the second page of the transfer into the second map register, and
so forth.

IOC$LOADUBAMAP sets the valid bit in every allocated map register
except the last. It clears the valid bit in the final map register to
stop a prefetch from an invalid page frame number.

To calculate the page frame number used in the I/O transfer,
IOC$LOADUBAMAP uses three fields that VAX/VMS has written into the
unit control block:

• UCB$W BOFF byte offset in the first page of the transfer

• UCB$W BCNT number of bytes to transfer

• UCB$L SVAPTE -- virtual address of the page table entry that
contaTns the page frame number of the first page of the
transfer

IOC$LOADUBAMAP determines the data path number, the number of the
first map register, the address of the first map register, and the
number of map registers from the channel request block and the UNIBUS
adapter control block, as follows:

UCB ~ CRB ~ data path number

UCB ~ CRB ~ number of first map register

UCB ~ CRB ~ ADP ~ virtual address of first map register

UCB ~ CRB ~ number of map registers

Drivers that handle byte-addressable UNIBUS devices call
IOC$LOADUBAMAPA. This routine performs the same

10-5

the routine
function as

WRITING UNIBUS DMA TRANSFERS

IOC$LOADUBAMAP, with one exception. When IOC$LOADUBAMAPA loads map
registers, it clears the byte offset bit even if the transfer begins
on an odd-byte address.

When IOC$LOADUBAMAP has loaded all the map registers and marked the
last map register invalid, it returns control to the driver fork
process.

10.4 COMPUTING THE STARTING ADDRESS OF A TRANSFER

The driver fork process must calculate the starting address of a
UNIBUS transfer and load this address into the appropriate device
register. The driver takes the following steps to make the
calculation:

• Writes the byte-offset-in-page field of the UCB (UCB$W_BOFF)
into bits O through 8 of a register

• Gets the number of the starting map register for the transfer
from the channel request block; the number is a 9-bit value

• Writes bits O through 6 of the map register number into bits 9
through 15 of the register containing the byte offset field

• Writes bits O through 15 of the register into the buffer
address register for the device

• Writes bits 7 and 8 of the map register
extended memory bits of the appropriate
(usually the control/status register)

10.5 ACTIVATING THE DEVICE

number
device

into the
register

Because a driver fork process can address device registers as though
they were any other virtual address, the loading of the UNIBUS buffer
address register and control/status register both are simple
procedures. The driver locates the CSR address of the device in the
interrupt data block, as follows:

UCB --? CRB --? IDB ~ CSR address

The CSR address is the virtual address of a device register. All
other device registers are located at constant offsets from the CSR
address. If, for example, the control/status register is the first
device register and the device word count is the third device
register, the device driver can load the word count register with the
following sequence of instructions:

• Move the CSR address into R4.

• Move the number of words to transfer with a MOVW instruction
that addresses 4(R4).

10.6 COMPLETION OF A DMA TRANSFER

After a driver fork process activates a OMA UNIBUS device, the driver
waits for a device interrupt by invoking a VAX/VMS macro that suspends
the driver. When the UNIBUS device requests a hardware interrupt, the
interrupt dispatcher gains control. The dispatcher saves RO through

10-6

WRITING UNIBUS OMA TRANSFERS

R5 and transfers control to the driver interrupt service routine. If
the service routine can match the interrupt with a suspended driver
fork process, the interrupt service routine reactivates the driver
fork process at the point that execution was suspended. The driver
almost immediately invokes the VAX/VMS macro IOFORK.

IOFORK calls the VAX/VMS routine EXE$IOFORK. EXE$IOFORK saves the
driver context (R3, R4, and PC) in the UCB fork block and inserts the
address of the fork block (R5) in the device's fork queue. EXE$IOFORK
then returns control to the driver's interrupt service routine, which
dismisses the interrupt.

When the fork dispatcher reactivates the driver fork process, the
driver performs any necessary UNIBUS adapter clean-up operations, such
as data path purging and deallocation of UNIBUS adapter resources used
in the DMA transfer.

10.6.1 Purging the Data Path

Driver fork processes that use buffered data paths must purge the data
path after the DMA transfer is complete. The driver invokes the macro
PURDPR, which in turn calls the VAX/VMS routine IOC$PURGEDATAP. This
routine takes the following steps to purge the data path:

• Saves the contents of R4 on the stack.

• Locates the channel request block as follows:

R5 ~ UCB ~ CRB

• Obtains the starting address of UNIBUS adapter register space
and stores it in R2.

• Extracts the number of the data path to be purged from the
channel request block and loads it into Rl.

• Stores the address of the data path in R4.

• Instructs the UNIBUS adapter to purge the data path. The
routine then modifies RO through R2 to contain the following
information:

RO Success/failure status. If the- purge completes
without error, the routine sets SS$ NORMAL in this
register. If a data path error does occur, RO is
clear and the hardware is reset.

Rl Contents of the data path register.

R2 Address of the first UNIBUS adapter map register.

The address of the channel request block remains in R3. This
address, along with the information in Rl and R2, is used as
input to the error-logging routine in the event of a data
path error.

• Restores the information stored on the stack to R4 and
returns to PURDPR.

If a data path error occurs during a data path purge, the driver
should retry the entire DMA transfer.

10-7

WRITING UNIBUS OMA TRANSFERS

10.6.2 Releasing a Buffered Data Path

A driver fork process releases a
VAX/VMS macro RELDPR. RELDPR
that determines which data path
process and releases the data
must be executing at fork IPL.

buffered data path by invoking the
calls a VAX/VMS routine IOC$RELDATAP
was assigned to the driver fork

path to a waiting driver. The driver

The data path number is stored in the channel request block.
IOC$RELDATAP locates it as follows:

UCB ~ CRB --7 data path number

If the data path is permanently assigned to a device, IOC$RELDATAP
does not release the data path. Otherwise, the data path number in
the channel request block (CRB$L INTD + VEC$B DATAP) is zeroed. The
IOC$RELDATAP routine attempts to-dequeue a waTting driver fork process
from the data path wait queue stored in the adapter control block as
follows:

UCB ~ CRB --7 ADP ~ data path wait queue

If another driver is waiting for a buffered data path, IOC$RELDATAP
grants that driver fork process the data path, restores its driver
context from its UCB fork block, and transfers control to the saved
driver PC. When IOC$RELDATAP can allocate no more data paths, the
routine returns to the driver that released the data path. This
diversion of driver processing is transparent to the driver fork
process.

If the data path wait queue is empty, IOC$RELDATAP marks the data path
as available in the adapter control block and returns control to the
driver.

10.7 RELEASING UNIBUS ADAPTER MAP REGISTERS

A driver fork process releases a set of UNIBUS adapter map registers
by invoking the VAX/VMS macro RELMPR. RELMPR calls the VAX/VMS
routine IOC$RELMAPREG that releases map registers in a manner similar
to that in which data paths are released. The channel request block
records the map register numbers assigned to the device. The number
of the first map register and the number of map registers are located
as follows. The driver must be executing at fork IPL.

UCB --7 CRB --7 number of the first map register

UCB --7 CRB --7 number of map registers allocated

IOC$RELMAPREG releases the map registers by adjusting the map register
allocation information in the adapter control block.

Then, IOC$RELMAPREG attempts to dequeue a driver fork process from the
map register wait queue. If a suspended driver is found,
IOC$RELMAPREG takes the following steps:

• Dequeues the fork block and restores driver context

• Fills the map register request, if possible

• Reactivates the driver fork process at the
following the driver's request for map registers

• Returns to the driver fork process

10-8

instruction

WRITING UNIBUS DMA TRANSFERS

If the map register wait queue is empty or if IOC$RELMAPREG still does
not have enough contiguous map registers for any of the waiting fork
processes, it returns control to the driver fork process that released
the map registers.

10-9

CHAPTER 11

WRITING INTERRUPT SERVICE ROUTINES

The driver prologue table of most device drivers contains, in the
reinitialization section established using the DPT STORE macro, the
address of one or more interrupt service routines. - Each interrupt
service routine corresponds to an interrupt vector on the UNIBUS. You
specify the UNIBUS vector address using the SYSGEN command CONNECT, as
described in Chapter 14.

Most interrupt service routines in device drivers perform the
following functions:

• Locate the device's unit control block

• Determine whether the interrupt was solicited

• Reject or process unsolicited interrupts

• Activate the suspended driver to process solicited interrupts

Figure 11-1 illustrates the general flow of interrupt handling. The
remaining sections of this chapter describe the handling of solicited
and unsolicited interrupts in further detail.

11.1 DELIVERING A DEVICE INTERRUPT TO A DRIVER

When a UNIBUS device generates a hardware interrupt, the device
requests the interrupt at its device IPL. The UNIBUS adapter then
requests a processor interrupt at that device IPL. When the processor
executes at an interrupt priority level below the device IPL,
interrupt dispatching begins.

On a configuration that uses nondirect vector interrupts, the
following sequence occurs:

• The processor saves the PC and PSL of the currently executing
code on the interrupt stack and transfers control to the
VAX/VMS UNIBUS adapter interrupt service routine.

• The UNIBUS adapter interrupt service routine reads the vector
register within the UNIBUS adapter that corresponds to the
interrupt level of the device. The UNIBUS adapter
acknowledges the interrupt and the interrupting device
supplies its vector address to the UNIBUS adapter interrupt
service routine.

• The UNIBUS adapter service routine then saves RO through R5 on
the stack and, using a JMP instruction, transfers control to
an interrupt dispatching field within the channel request
block.

11-1

WRITING INTERRUPT SERVICE ROUTINES

INTERRUPT
SERVICE ROUTINE

DETERMINES
CAUSE OF

INTERRUPT

TAKES
APPROPRIATE

ACTION

NO

INTERRUPT

INTERRUPT
DISPATCHER

ACTIVATES THE
DEVICE UNIT'S

INTERRUPT
SERVICE ROUTINE

INTERRUPT SERVICE
ROUTINE LOCATES

DEVICE'S UCB
USING IDB POINTER

ON INTERRUPT
STACK

INTERRUPT
SERVICE ROUTINE

REJECTS INTERRUPT
AS SPURIOUS

YES

REACTIVATE
SUSPENDED

DRIVER

DRIVER
INVOKES
IOFORK
MACRO

IOFORK
CALLS

EXE$10FORK

EXE$10FORK
QUEUES DRIVER

FORK BLOCK
AND RETURNS
TO INTERRUPT

SERVICE ROUTINE

INTERRUPT
SERVICE ROUTINE

REMOVES IDB
POINTER FROM

STACK AND RESTORES
RO THROUGH R5

INTERRUPT
SERVICE ROUTINE

DISMISSES
INTERRUPT

WITH REI

ZK-929-82

Figure 11-1: Interrupt Handling Flow

11-2

WRITING INTERRUPT SERVICE ROUTINES

• The CRB interrupt dispatching field (CRB$L INTD+2) contains
executable code that the driver loading procedure has
associated with the interrupting vector. Interrupt
dispatching fields for nondirect vectors contain the following
executable instruction:

JSB @#address-of-driver-isr

On a configuration that uses direct vector interrupts, the following
sequence occurs:

•

•

The processor saves the PC and PSL of the currently
code on the interrupt stack and acknowledges
interrupt.

executing
the device

The UNIBUS device
processor uses
second (or third)
Section 3.1.6).

supplies its vector address, which the
as an index into a table of addresses in the

page of the system control block (see

• When the processor locates the address in the SCB that
corresponds to the vector address, it transfers control to an
interrupt dispatching field in the channel request block.

• The CRB interrupt dispatching field (CRB$L INTD) contains
executable code that the driver loading- procedure has
associated with the interrupting vector. Interrupt
dispatching fields of direct vectors contain the following
executable instructions:

PUSHR <RO,Rl,R2,R3,R4,R5>

JSB @#address-of-driver-isr

The driver loading procedure determines how many interrupt dispatching
fields to build within the CRB from the number of vectors specified in
the /NUMVEC qualifier to the SYSGEN command CONNECT (see Section
14.2.2). The driver loading procedure obtains the interrupt service
routine address for each interrupt dispatching field from the
reinitialization portion of the driver prologue table. This section
of the DPT contains one or more DPT STORE macros that identify the
interrupt service routine addresses. The number of DPT STORE macros
that identify interrupt service routines must equal the number of
vectors given in the /NUMVEC qualifier to avoid errors in device
initialization or interrupt handling.

Immediately following the JSB instruction in the channel request block
is the address of the interrupt dispatch block associated with the
CRB. When the JSB instruction executes, a pointer to the address of
the interrupt dispatch block is pushed onto the top of the stack as
though it were a return address. The driver interrupt service routine
can use this IDB address as a pointer into the I/O data base. Figure
11-2 illustrates the portion of a channel request block that contains
the interrupt service routine address.

11.2 INTERRUPT CONTEXT

When the interrupt dispatcher calls a driver interrupt service
routine, execution context is as follows:

• RO through RS are saved on the stack.

• System address space is mapped. The service routine can gain
access to appropriate control blocks in the I/O data base.

11-3

WRITING INTERRUPT SERVICE ROUTINES

• IPL is at hardware device interrupt level.

• The processor is running in kernel mode.

• The processor is running on the interrupt stack.

The stack contains the following information:

Stack Location Content

0 (SP) Pointer to the address of the
interrupt dispatch block

4 (SP) through 24(SP) Saved RO through RS

28 (SP) PC at the time of the interrupt

32 (SP) PSL at the time of the interrupt

CHANNEL REQUEST BLOCK: •
•

JSB @# I
INTERRUPT SERVICE ROUTINE ADDRESS

INTERRUPT DISPATCH BLOCK ADDRESS

•
ZK-930-82

Figure 11-2: Channel Request Block
Containing an Interrupt Service Routine Address

11.3 SERVICING A SOLICITED INTERRUPT

When a driver fork process activates a device and expects to service a
device interrupt as a result, the driver suspends fork processing and
waits for an interrupt to occur. The suspended driver is represented
only by the contents of the device's unit control block, which
contains a description of the I/O request and the driver fork process.
When the driver regains control from the interrupt service routine,
only R3, R4, RS, and the PC address are restored to their previous
state by the interrupt service routine.

In the sequence below, a driver interrupt service routine returns
control to the waiting driver:

• First, the interrupt service routine obtains the address of
the device's unit control block from the interrupt data block,
as follows:

O(SP) ~ CRB ~ IDB~ IDB$L OWNER~ UCB for the device

• The service routine then tests the software interrupt expected
bit in the UCB status word (UCB$V INT in UCB$W STS}. If the
bit is set, the driver is waiting for an interrupt from this
device. The interrupt service routine then clears UCB$V INT
in UCB$W STS to indicate that it has received the expected
interrupt.

11-4

WRITING INTERRUPT SERVICE ROUTINES

• The interrupt service routine restores RS of the driver fork
process with the address of the UCB fork block. It restores
R3 and R4 of the driver process using two fields from the UCB
fork block, UCB$L_FR3 and UCB$L_FR4, respectively.

• Finally, the interrupt service routine transfers control to
the driver PC address saved in the UCB fork block at UCB$L FPC
by issuing a JSB instruction.

The restored driver can execute a few instructions in the context of
the interrupt, such as copying device status information from the
device registers into the device's UCB. Before completing the I/O
operation, however, the driver routine creates a fork process to lower
its execution IPL to driver fork level instead of continuing execution
at hardware device interrupt IPL. The driver routine creates a fork
process by invoking the VAX/VMS macro IOFORK, as described in Section
12.1.1.

IOFORK calls the VAX/VMS routine EXE$IOFORK. EXE$IOFORK inserts the
UCB fork block describing the driver process in the appropriate fork
queue and returns control to the driver interrupt service routine.
The interrupt service routine then performs the following steps:

• Removes the IDB pointer from the stack

• Restores RO through RS

• Dismisses the interrupt with an REI instruction

11.4 SERVICING AN UNSOLICITED INTERRUPT

Devices request interrupts to indicate to a driver interrupt service
routine that the device has changed status. If a driver fork process
starts an I/O operation on a device, the driver expects to receive an
interrupt from the device when the I/O operation completes or an error
occurs.

Other changes of device status occur when the device has not been
activated by a device driver. The device reports these changes by
requesting unsolicited interrupts. For example, when a user types on
a terminal that is not attached to a process, the terminal requests an
interrupt that is fielded by the terminal driver. As a result of the
interrupt, the terminal driver causes the login procedure to be
invoked for the user at the terminal.

Another example of an unsolicited interrupt is one that the unit
requests when an operator changes the volume on a disk drive. The
disk driver services the interrupt by altering volume and unit status
bits in the disk device's unit control block.

Devices request unsolicited interrupts because some external event has
changed the status of the device. A device driver can handle these
interrupts in two ways:

• Ignore the interrupt as spurious

• Examine the device registers and take action according to
their indications of changed status, and then poll for any
other changes in device status

The driver interrupt service routine decides whether an interrupt is
solicited or not by examining the software interrupt expected bit in
the UCB status word (UCB$V_INT in UCB$W_STS}. All UNIBUS device

11-S

WRITING INTERRUPT SERVICE ROUTINES

drivers must use this method to determine whether or not an interrupt
is solicited; the unsolicited interrupt routine address specified in
the driver dispatch table is used only by MASSBUS drivers.

If the interrupt is unsolicited, the driver can reject the interrupt
with the following code sequence:

• Remove the IDB pointer from the stack

• Restore RO through RS

• Dismiss the interrupt with an REI instruction

Rather than rejecting the interrupt, the driver may wish to handle it.
For example, the driver can send a message to the operator or the job
controller mailbox when an unsolicited interrupt occurs.

Drivers should use extreme caution when creating a fork process to
handle unsolicited interrupts from busy devices. The unit control
block of a busy device may contain the active fork block of a
previously created driver fork process. If an unsolicited interrupt
service routine should create a fork process to handle its request, it
may destroy the driver fork context currently stored there. Drivers
should always handle this type of unsolicited interrupt at hardware
device IPL.

11.4.1 Examples of Unsolicited Input Handling

A card reader device requests an unsolicited interrupt if any user
turns the reader online. Once the card reader driver interrupt
service routine determines that the interrupt is unsolicited, the
routine analyzes the interrupt, as in the following example:

• It obtains the address of the control/status register using
the interrupt dispatch block pointed to by the address on the
top of the interrupt stack, as follows:

O(SP) --7 CRB --7 IDB --7 IDB$L CSR --7 CSR for the device

Since the card reader controller is a single-unit controller,
the IDB$L OWNER field always points to the single UCB for the
card reader:

O(SP) --7 CRB ~IDB --7 IDB$L OWNER --7 UCB for the device

• It confirms that the interrupt is unsolicited by testing the
interrupt enable bit in the UCB status word (UCB$V_INT in
UCB$W_STS).

• Since the interrupt is unsolicited, the routine clears all
control/ status register bits except for the interrupt enable
bit.

• It confirms that the reader was just placed online by
examining a saved copy of the control/status register.

• It examines the reference count field of the device's unit
control block (UCB$W REFC) to determine whether a process has
allocated the device or assigned a channel to it.

• If the reference count is zero, the interrupt service routine
tests the job-attached bit in the device-dependent status
field (UCB$V_JOB in UCB$W_DEVSTS) to make sure it has not

11-6

WRITING INTERRUPT SERVICE ROUTINES

already sent the job controller a message about the card
reader being placed online. By using the job-attached bit to
synchronize message sending, the interrupt service routine
protects the send-message-to-job-controller function from the
adverse effects of frequent online interrupts.

• If the job-attached bit is not set, the routine sets the bit
and creates a fork process to send the message to the job
controller saying the reader has come online. Only one
sequence of instructions can use the UCB as a fork block.
Therefore, the interrupt service must perform the following
steps before it can create the fork process:

Ensure that no one is using the card reader and that no
one desires to use it by determining that the reference count
(UCB$W_REFCNT) is zero.

Ensure that it is not already using the UCB to fork to a
lower IPL and send a message to the job controller by testing
the job-attached bit (UCB$V_JOB in UCB$W_DEVSTS).

The VAX/VMS routine that creates the fork process (once the
above conditions are satisfied) returns control to the
interrupt service routine.

• When the interrupt service routine regains control, it
restores RO through RS and dismisses the interrupt with an REI
instruction. (The interrupt service routine removed the IDB
pointer from the stack earlier in its execution in order to
obtain CSR and UCB addresses.) If a fork process was created,
it executes after IPL drops below UCB$B FIPL. The fork
process writes the message about the card reader's coming
online to the job controller's mailbox. The fork process
cannot send the message at device IPL or any IPL greater than
IPL$ MAILBOX.

If the send message request fails, the fork process clears the
job-attached bit so that the job controller will receive a
message if any change in the card reader's state occurs. If
the fork process successfully sends the message, it leaves the
job-attached bit set to prevent the job controller from
receiving any further messages about the card reader's state.
(The driver cancel I/O routine later clears the bit.)

Another example of unsolicited interrupt processing occurs in a device
driver for a multiunit controller. When the operator removes a disk
volume, the disk drive requests an interrupt. The driver interrupt
service routine must determine what drive unit requested the
interrupt, obtain drive status from the drive's control/status
register, and then decide whether the interrupt was solicited. If the
interrupt is unsolicited, the driver service routine calls its
unsolicited interrupt routine. The routine checks the status of the
volume, as described in the following steps:

• It sets a bit in the unit control block to indicate that the
unit is online (UCB$V_ONLINE in UCB$W_STS).

• If the UCB volume valid bit is set (UCB$V VALID in UCB$W STS),
the routine tests the volume valid status bit in a device
register to determine whether the volume status has changed.
If the volume is no longer valid, the routine clears the UCB
volume valid bit.

• Finally, the routine returns to the normal driver interrupt
service routine.

11-7

WRITING INTERRUPT SERVICE ROUTINES

The driver interrupt service routine then polls the other device units
on the controller to determine whether any other units requested
interrupts while the first interrupt was being processed. When no
unit requires interrupt servicing, the routine removes the IDB po~nter
from the stack, restores registers RO through R5, and dismisses the
interrupt with an REI instruction.

11-8

CHAPTER 12

COMPLETING THE I/O REQUEST

Once a driver has activated the
interrupt macro, the driver
following events occurs:

device
remains

• The device requests an interrupt.

• The device times out.

and invoked the
suspended until

wait for
one of the

If the device requests an interrupt, the driver interrupt service
routine handles the interrupt and then reactivates the driver at the
instruction following the wait for interrupt macro. The reactivated
driver performs device-dependent I/O postprocessing.

If the device does not request an interrupt within the designated time
interval, the system transfers control to the driver's timeout
handler. The address of the timeout handler is specified as an
argument to the wait for interrupt macro invocation.

12.1 I/O POSTPROCESSING

Once the driver interrupt service routine has handled an interrupt, it
transfers control to the driver by issuing a JSB instruction. At this
point, the driver is executing in interrupt context. If the driver
were to continue executing in interrupt context, it would lock out
most other processing on the processor including the handling of
hardware interrupts. To restore the driver to the context of a driver
fork process, the driver invokes the VAX/VMS macro IOFORK. Once the
fork process has been created and dispatched for execution, it
executes the driver code that completes the processing of the I/O
request.

12.1.1 EXE$IOFORK

IOFORK is a macro that generates a call to the VAX/VMS routine
EXE$IOFORK. EXE$IOFORK converts the driver context from that of an
interrupt service routine to the context of a driver fork process in
the following steps:

• It disables software timeouts by clearing the timeout enable
bit in the UCB status word (UCB$V_TIM in UCB$W_STS).

• It saves R3 and R4 of the current driver context in the UCB
fork block (UCB$L FR3 and UCB$L_FR4).

12-1

COMPLETING THE 1/0 REQUEST

• EXE$IOFORK then saves the current driver PC in the UCB fork
block (UCB$L FPC). The driver PC is the first longword on the
stack upon entry to EXE$IOFORK as a result of the JSB
instruction.

• It obtains the fork IPL of the device from
(UCB$B_FIPL).

the UCB

• It inserts the address of the UCB fork block (RS) into the
fork queue corresponding to the driver fork IPL.

• Finally, if the fork block is the first entry in the fork
queue, EXE$IOFORK requests a software interrupt at driver fork
IPL.

The steps listed above move the critical driver fork process context
into the UCB fork block; that is, they save R3 through RS and the
driver PC address. The driver fork process resumes processing when
the VAX/VMS fork dispatcher dequeues the UCB fork block from the fork
queue and reactivates the driver at driver fork IPL.

12.1.2 Completing an 1/0 Request

When VAX/VMS reactivates a driver fork process by dequeuing the fork
block, the driver resumes processing of the I/O operation. If the
device has completed the I/O operation without errors, the driver fork
process for a OMA device proceeds as follows:

• Purges the buffered data path

• Releases the buffered data path

• Releases map registers

• Releases the controller

• Saves the status code, transfer count, and device-dependent
status that is to be returned to the user process in an I/O
status block

• Returns control to the operating system

Chapter 10 discusses the first three steps listed above because they
relate to UNIBUS DMA transfers. The sections that follow describe the
remaining three steps.

12.1.2.1 Releasing the Controller - To release the controller
channel, the driver code invokes the VAX/VMS macro RELCHAN. RELCHAN
calls the VAX/VMS routine IOC$RELCHAN. If another driver is waiting
for the controller channel, IOC$RELCHAN grants that driver fork
process the channel, restores its driver fork context from its UCB
fork block, and transfers control to the saved PC. When no more
drivers are awaiting the channel, IOC$RELCHAN returns control to the
driver fork process that released the channel.

Drivers for single-unit controllers need not release the controller
data channel (as discussed in Sections 9.3.1 and 13.1). Through code
in the unit initialization routine, these drivers set up the device's
unit control block to own the controller permanently.

Drivers must be executing at driver fork IPL when they invoke RELCHAN
or call IOC$RELCHAN.

12-2

COMPLETING THE I/O REQUEST

12.1.2.2 Saving Status, Count, and Device-Dependent Status - To save
the status code, transfer count, and device-dependent status, the
driver performs the following steps:

• It loads a success status code (SS$_NORMAL)
through 15 of RO.

into bits 0

• If the I/O operation performed by the device is a transfer
function, the driver loads the number of bytes transferred
into the high-order 16 bits of RO, that is, into bits 16
through 31.

• The driver then loads device-dependent status information, if
any, into Rl. RO and Rl are the status values that VAX/VMS
returns to the user process in the I/O status block specified
in the original Queue I/O Request system service. If the user
specifies no I/O status block, VAX/VMS does not use RO and Rl.

12.1.2.3 Returning to the Operating System - Finally, the driver
returns to the system by invoking the VAX/VMS macro REQCOM to complete
the I/O request. REQCOM calls the VAX/VMS routine IOC$REQCOM.
IOC$REQCOM locates the address of the I/O request packet corresponding
to the I/O operation in the device's UCB (UCB$L IRP). It then writes
the two longwords of completion status contained in RO and Rl into the
media field of the I/O request packet (IRP$L_MEDIA and IRP$L_MEDIA+4).

IOC$REQCOM then inserts the I/O request
postprocessing queue. If the packet is
postprocessing queue, IOC$REQCOM requests a
IPL$ IOPOST so the postprocessing begins
IPL$-IOPOST.

packet
the only
software
when IPL

in the I/O
entry in the
interrupt at
drops below

If the error logging bit is set in the device's unit control block
(UCB$V ERLOGIP in UCB$W STS), IOC$REQCOM obtains the address of the
error message buffer from-the unit control block (UCB$L EMB). It then
writes the following information into the error buffer:-

• Final device status (UCB$W_DEVSTS)

• Final error count (UCB$B_ERTCNT)

• Two longwords of completion status (RO and Rl)

To release the error message buffer, IOC$REQCOM calls ERL$RELEASEMB.
Section 13.3 describes error logging in more detail.

If any I/O request packets are a~aiting driver processing, IOC$REQCOM
performs the following steps:

• Dequeues a packet

• Creates a new driver fork process

• Activates the driver at the driver's start I/O routine

Otherwise, IOC$REQCOM clears the unit busy bit
status word (UCB$V BSY in UCB$W STS) and
IOC$RELCHAN to release the controller channel
failed to do so.

in the device's UCB
transfers control to

in case the driver

The remaining steps in processing the I/O request are performed by
VAX/VMS I/O postprocessing.

12-3

COMPLETING THE I/O REQUEST

12.2 TIMEOUT HANDLERS

VAX/VMS transfers control to the driver's timeout handler if a device
unit does not request an interrupt within the time limit specified in
the wait for interrupt macro. The VAX/VMS timer routine scans device
unit control blocks once every second to determine whether a device
has timed out.

When the timer routine locates a device that has timed out, the
routine calls the driver's timeout handler by performing the following
steps:

• It disables expected interrupt and timeout on the device by
clearing bits in the device's UCB status field (UCB$V_INT and
UCB$V TIM in UCB$W_STS).

• It sets the device timeout bit in the UCB status field
(UCB$V_TIMOUT in UCB$W_STS).

• It sets IPL to hardware device interrupt IPL (UCB$B_DIPL).

• It restores the saved R3 and R4 of the driver fork process
from the UCB fork block (UCB$L_FR3 and UCB$L_FR4).

• It restores RS (address of the UCB fork block) •

• It computes the address of the driver's timeout handler from
the saved PC in the UCB fork block (UCB$L_FPC).

• It calls the driver's timeout handler with a JSB instruction.

The driver's timeout handler executes in following context:

• RO through RS are saved on the stack.

• RS contains the address of the UCB for the device that timed
out.

• System address space is mapped.

• The processor is running in kernel mode.

• The processor is running on the interrupt stack.

• IPL is at hardware device interrupt level.

VAX/VMS invoked the timeout handler through an interrupt at
IPL$ TIMER. Thus, the driver can lower from device IPL to driver fork
IPL to process the timeout. (The driver should lower IPL with SETIPL
to preserve the contents of the stack.)

When the driver fork process regains control, R3 and R4 are restored
to their previous state from UCB$L FR3 and UCB$L FR4 respectively.

During power failure recovery, VAX/VMS forces a device timeout by
altering the timeout field (UCB$L DUETIM) of a unit control block if
that device's UCB records that the unit is waiting for an interrupt or
timeout (UCB$V INT and UCB$V TIM set in UCB$W STS). The timeout
handler can perceive that a power failure recovery- is occurring by
examining the power bit (UCB$V_POWER in UCB$W_STS) in the unit control
block.

12-4

COMPLETING THE I/O REQUEST

A timeout handler usually performs either of three functions:

• Retries the I/O operation unless a retry count is exhausted

• Aborts the I/O request

• Sends a message to an operator mailbox and resumes waiting for
a subsequent interrupt or timeout

12.2.1 Retrying the I/O Operation

Some devices may retry an I/O operation after a timeout. For example,
a disk driver might take the following steps after a transfer timeout:

• Invoke the following VAX/VMS macro to lower IPL to driver fork
level:

SETIPL UCB$B_FIPL(R5)

The resulting IPL must not drop below IPL$ TIMER.

• Release map registers, data path, and controller data channel.

• If a power failure occurred, load the I/O request packet
address into R3 and reload the following I/O request packet
fields into the corresponding UCB fields and branch to the
start I/O routine:

•

UCB$W BCNT
UCB$W-BOFF
UCB$L-SVAPTE

The above steps result in a total retry of the transfer.

If no power failure has
supports error logging,
timeout.

occurred and the device driver
call ERL$DEVICTMO to log the device

• If the retry count is not exhausted, decrease the count, clear
the UCB timeout bit in UCB$W_STS, and retry the operation.

• If the retry count is exhausted, set the error code, perform a
normal abort I/O clean-up operation, and invoke REQCOM.

12.2.2 Aborting the I/O Request

A driver's timeout handler aborts the I/O request when it exhausts its
retry count, or when it determines, upon timeout, that a cancel I/O
was requested. If the cancel I/O bit in the UCB status word
(UCB$V CANCEL in UCB$W STS} is set, a cancel I/O was requested and the
timeout handler can abort the request.

To abort an I/O request, a device driver timeout handler can perform
the following sequence of steps:

• If appropriate to the device and controller, the handler
clears the device control/status register.

12-5

COMPLETING THE I/O REQUEST

• The handler then invokes the following VAX/VMS macro to lower
IPL to driver fork level:

SETIPL UCB$B_FIPL(R5)

The resulting IPL must not drop below IPL$ TIMER.

• The handler releases UNIBUS adapter resources
controller data channel, if necessary.

and the

• It loads abort status code (SS$_ABORT) into the low word of
RO.

• It clears bits 16 through 31 in RO to indicate that no data
was transferred.

• It invokes the VAX/VMS macro REQCOM, described in Section
12.1.2.3, to complete the I/O request processing.

Since the device can interrupt driver timeout processing at fork IPL,
the interrupt service routine should check the interrupt expected bit
(UCB$V INT) before handling the interrupt. The operating system
clears-this bit before it calls the driver's timeout handler.

12.2.3 Sending a Message to the Operator

The following sequence describes a timeout handler that sends a
message to the operator mailbox and then goes back into a wait for
interrupt or timeout state:

• It invokes the following VAX/VMS macro to lower IPL to driver
fork level:

SETIPL UCB$B_FIPL(R5)

The resulting IPL must not drop below IPL$ TIMER.

• It checks the cancel I/O bit in the UCB status word
(UCB$V CANCEL in UCB$W STS). If UCB$V CANCEL is not set, the
timeout handler performs the following:

Saves R3 and R4 on the stack

Loads an OPCOM message code, such as MSG$_DEVOFFLIN, into
R4

Loads the address of the operator mailbox (SYS$GL_OPRMBX)
into R3

Calls a VAX/VMS routine to place the message in the
operator mailbox, as follows:

JSB GAEXE$SNDEVMSG

Restores R3 and R4

(If the cancel I/O bit is set, the timeout handler can abort
the request.)

• The timeout handler then invokes the VAX/VMS macro DSBINT to
raise IPL to IPL$ POWER, thereby locking out all interrupts
from software and hardware.

12-6

COMPLETING THE I/O REQUEST

• Finally, the timeout handler invokes the VAX/VMS macro WFIKPCH
to wait for another interrupt or timeout.

When the OPCOM process reads the message in its mailbox, it sends the
requested message, in this case "device-offline", to all operator
terminals.

12-7

CHAPTER 13

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

Drivers normally contain initialization, cancel I/O, and error-logging
routines. The driver prologue table and the driver dispatch table
specify the addresses of initialization routines. The driver dispatch
table contains the addresses of the cancel I/O and error-logging
routines. Whether these routines are required depends on the type of
device.

13.1 INITIALIZATION ROUTINES

Most device controllers and device units require initialization under
the following circumstances:

• When the driver loading procedure loads a device driver for
the controller and device units

• During recovery from a power failure

Initialization routines ready controllers and device units for
operation. Depending on the device characteristics, initialization
routines perform any of the actions listed below:

• Enable controller interrupts

• Clear error status bits in device registers

• Initiate a device operation such as clearing a drive or
acknowledging a pack

• Store values in UCB fields that cannot be addressed with a
DPT STORE macro; that is, fields more than 256 bytes from the
start of the unit control block

• Permanently allocate UNIBUS adapter resources, as described in
Chapter 10

• Set the online bit (UCB$V_ONLINE in UCB$W_STS)
control block

in the unit

• Fill in IDB$L OWNER for single-unit devices such as a line
printer

13.1.1 Initialization During Driver Loading

The initialization performed during driver loading depends upon
whether the driver is being loaded for the first time or replacing a
driver that was previously loaded.

13-1

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

The SYSGEN commands AUTOCONFIGURE, CONNECT, and LOAD add new drivers
to the configuration. The LOAD command loads the driver into nonpaged
system memory but does not call any driver-specific routines or
execute any initialization requests specified in DPT STORE macro
invocations. AUTOCONFIGURE and CONNECT create the I/O data structures
associated with the device driver, call driver-specific initialization
routines, and perform requests specified in DPT STORE macro
invocations.

For each new device they add to the system, AUTOCONFIGURE and CONNECT
carry out the following steps:

• Create a unit control block for the device. If this is the
first occurrence of device-name and controller, the commands
create a device data block, a channel request block, and an
interrupt dispatch block.

• Perform the initialization operations specified by the
DPT STORE macros within the initialization and
reinitialization portions of the driver prologue table.

• Relocate all addresses in the driver dispatch table and
function decision table to system virtual addresses.

• Call the controller initialization routine specified in the
channel request block, if the CRB was created.

• Call the unit initialization routine (if any) specified in the
driver dispatch table. If no routine exists in the DDT, call
the unit initialization routine (if any) specified in the CRB.

The AUTOCONFIGURE and CONNECT command operations raise IPL to
IPL$_POWER to prevent interruption of the initialization routines.

The RELOAD command replaces an existing driver with a new driver. The
command loads the new driver code into nonpaged system memory. Unlike
the other SYSGEN commands for driver loading, RELOAD assumes that the
I/O data structures associated with the driver already exist, and thus
updates the data base to reflect the modified code and its different
location in system virtual address space.

The RELOAD command performs the following functions:

• Executes requests specified by DPT STORE macro invocations in
only the reinitialization section of the driver prologue table

• Relocates all addresses in the function decision table and
driver dispatch table to system virtual addresses

• Calls the controller initialization routine

Chapter 14 contains detailed descriptions of all SYSGEN commands
related to device drivers.

13.1.2 Initialization During Recovery from a Power Failure

During powerfail recovery procedures, the operating system locates
every unit control block in the I/O data base. Each unit control
block points to a channel request block for the device's controller.
The channel request block contains the address of the controller

13-2

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

initialization routine, if one was specified.
following chain of pointers to locate
initialization routine:

The
the

system uses
address of

DOB ~ UCB ~ CRB ~ controller initialization routine

The operating system calls the initialization routine
controller if one was specified in a DPT STORE macro
CRB$L_INTD+VEC$L_INITIAL of the channel request-block.

for
for

the
the

each
the

Next, the system checks for a device unit initialization routine.
First, the system examines the unit initialization field in the driver
dispatch table (DDT$L UNITINIT). If the field does not contain an
address, the system- checks the channel request block using the
following chain of pointers:

DOB ~ UCB ~ CRB ~ device unit initialization routine

MASSBUS drivers store unit initialization routines addresses only in
the driver dispatch table.

If either the channel request block or the driver dispatch table
contains a nonzero address for such a routine, the system calls the
routine to initialize the device unit. The system calls only one
routine; if the driver dispatch table contains an address, the CRB
address is ignored.

13.1.3 Initialization Context

The VAX/VMS operating system always calls controller and unit
initialization routines with IPL raised to IPL$ POWER. The high IPL
prevents any interrupts from reaching the processor while
initialization is occurring. The initialization routines must not
lower IPL. The system calls initialization routines with a JSB
instruction; the routines return by executing an RSB instruction.

Controller initialization routines are device-dependent. For example,
a card reader controller initialization routine might enable
interrupts from the device by setting the interrupt enable bit in the
device's control/status register. A disk controller initialization
routine, on the other hand, might enable interrupts and initialize all
unit status registers.

At the time of a call to a controller initialization routine, the
registers contain the following values:

Register

R4

RS

R6

R8

Value

Address of the control/status register

Address of the interrupt data block that describes
the controller

Address of the device data block associated with
the controller

Address of the channel request block for the
controller

Device unit initialization routines are useful for initializing
device-dependent fields in the unit control block. For example, disk
initialization routines can also set disk drive parameters (such as

13-3

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

number of cylinders) in the unit control block and wait for online
units to spin up to speed. Unit initialization routines must set the
online bit in the unit control block (UCB$V_ONLINE) to declare the
unit to be online.

If a device needs permanently allocated UNIBUS adapter resources, a
unit initialization routine can call VAX/VMS UNIBUS adapter resource
management routines to allocate the resources. Then, the
initialization routine can set bits in the CRB UNIBUS adapter resource
description fields, for example, VEC$V PATHLOCK in
CRB$L INTD+VEC$B DATAPATH.

- -

At the time of a call to a device unit initialization routine, the
registers contain the following values:

Register

R3

R4

RS

Value

Address of the primary control/status register

Address of the secondary control/status register;
R4 is equal to R3 if there is no secondary CSR

Address of the device's unit control block

If driver initialization routines modify R4 through Rll, the routines
must save the contents of the registers before use and restore them
before returning control to the operating system.

13.2 CANCEL I/O ROUTINE

VAX/VMS routines call the cancel I/O routine in a device driver under
the following circumstances:

• When a process issues a Cancel I/O on Channel system service

• When a process deallocates a device and no process I/O
channels are assigned to the device

• When a process deassigns a channel from a device

• When the command interpreter performs cleanup operations as
part of image termination by canceling all pending I/O
requests for the image and closing all image-related files
open on process I/O channels

The VAX/VMS routine EXE$CANCEL locates the unit control block for the
device associated with a process I/O channel from a pointer in the
channel request block, as follows:

channel index number ~ CCB ~ UCB address

EXE$CANCEL takes the following steps:

• Raises IPL to fork level

• Removes all I/O request packets associated with the process
from the device's I/O request packet wait queue

• Sets the status code SS$ CANCEL in IRP$L MEDIA

• For buffered I/O read operation, clears the buffered read
function bit (IRP$V_FUNC) in IRP$W_STS

13-4

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

• Inserts the I/O packets removed from the packet wait queue
into the I/O postprocessing queue

• If the I/O postprocessing queue is empty, requests a software
interrupt

Then, EXE$CANCEL calls the cancel I/O routine specified in the driver
dispatch table of the associated device driver. EXE$CANCEL locates
the routine using the following chain of pointers:

UCB ~ DDT ~ address of the cancel I/O routine

The cancel I/O routine gives the driver an opportunity to prevent
further device-specific processing of the I/O request currently being
processed on the device.

13.2.1 Context of a Cancel I/O Routine

When EXE$CANCEL calls the cancel I/O routine, IPL is at driver fork
IPL so that the routine can read and modify the device's unit control
block. Registers at the time of the call contain the following
values:

Register

R2

R3

R4

RS

R8

Value

Channel index number

Address of the current I/O request packet

Address of the process control block of the
process for which the Cancel I/O on Channel system
service is being performed

Address of the device's unit control block

Reason for the call to cancel the I/O request.
Reason codes are defined by the $CANDEF macro.
Possible values for R8 include:

CAN$C CANCEL

CAN$C DASSGN

Called by $CANCEL or $DALLOC
system services

Called by $DASSGN
service

system

If a cancel I/O routine uses registers other than RO through R3, it
must save the registers and restore them before exiting.

Device drivers may want to base their cancel I/O operation on whether
the cancel I/O request is the result of a channel deassignment
(CAN$ DASSGN). For example, the terminal driver cancels out-of-band
AST requests only if the call to its cancel I/O routine results from a
Deassign I/O Channel ($DASSGN) system service call.

13.2.2 Drivers that Need No Cancel I/O Routine

Some devices do not need any device-dependent processing performed for
an I/O request; you can omit the CANCEL argument from the DDTAB

13-5

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

macro. In this case, the DDTAB macro expansion loads the address of
the VAX/VMS routine IOC$RETURN into the appropriate position in the
driver dispatch table. The routine IOC$RETURN executes a single RSB
instruction.

13.2.3 Device-Independent Cancel I/O Routine

Drivers can specify the VAX/VMS routine IOC$CANCELIO as the value of
the CANCEL argument in the DDTAB macro invocation. IOC$CANCELIO
cancels I/O to a device in the following device-independent manner:

• It confirms that the device is busy by exam1n1ng the device
busy bit in the UCB status word (UCB$V_BSY in UCB$W_STS).

• It locates the process identification field in the I/O packet
currently being processed on the device using the following
chain of pointers:

UCB ~ IRP ~ process identification field

IOC$CANCELIO confirms that the field (IRP$L PID) contains the
same value as the corresponding field in the process control
block (PCB$L_PID).

• It confirms that the specified channel index number is the
same as the value stored in the I/O request packet channel
index field (IRP$W_CHAN).

• It sets the cancel I/O bit in the
(UCB$V_CANCEL in UCB$W_STS).

UCB status word

Other driver routines, such as the device timeout routine, check the
cancel I/O bit to determine whether to retry the I/O operation or
abort it.

13.2.4 Device-Dependent Cancel I/O Routines

Drivers that include their own cancel I/O routines must perform the
first three steps of IOC$CANCELIO listed in Section 13.2.3 to
determine whether the I/O request being processed originates from the
process canceling I/O on a channel. If the three checks succeed, the
cancel routine can proceed in a device-specific manner.

13.3 ERROR-LOGGING ROUTINES

The operating system supplies two routines that drivers can call to
allocate and fill error-logging buffers after a device error or
timeout occurs:

e ERL$DEVICERR

• ERL$DEVICTMO

Both routines expect to find the address of the device
block in RS. Drivers must call them at fork IPL.
performs the following steps:

13-6

unit control
Each routine

WRITING INITIALIZATION, CANCEL I/O, AND ERROR-LOGGING ROUTINES

• It allocates an error log buffer of the length specified in
the device's driver dispatch table. It uses the following
chain of pointers to locate the buffer length:

UCB ~ DDT ~ length of error log buffer

• It loads into the buffer fields from the unit control block,
the I/O request packet, and the device data block.

• It loads the address of the error message buffer location
where device register contents are to be stored.

• It calls a register dump routine in the device driver. It
locates the routine using the following chain of pointers:

UCB ~ DDT ~ register dump routine address

Specify the address of a register dump routine with the value of the
REGDMP argument to the DDTAB macro invocation.

The register dump routine can expect the following registers to be
loaded:

Register Content

RO

R4

RS

Address of the buffer

Address of the control/status register if the
driver used the WFIKPCH macro to wait for an
interrupt or timeout

Address of the device's unit control block

The dump routine should save and restore R3 through Rll if the routine
requires their use.

The driver register dump routine should fill the buffer as follows:

• Write a longword value representing the number of device
registers to be written into the buffer

• Move device register longword values into the buffer following
the register count longword

The routine must store the contents of each device register to be
logged in a longword in the buffer. For example, the following
instruction stores the contents of the device register:

MOVZWL TD_STATUS(R4) ,(RO)+

A driver that supports error logging must satisfy the following
prerequisites:

• It must use the error log extension to the unit control block.

• It must ensure that DDT$W ERRORBUF is
accommodate EMB$L DV REGSAV+4 plus one
register to be dumped-

large enough to
longword for each

• Its driver prologue table must set the device characteristic
DEV$V ELG in UCB$ DEVCHAR. - -

13-7

CHAPTER 14

LOADING A DEVICE DRIVER

You can load a user-written device driver any time after the system is
bootstrapped. If the driver contains an error and the error does not
crash or corrupt the operating system, you can correct the error and
reload a new version of the driver.

14.1 PREPARATION FOR LOADING

To prepare a device driver for loading, take the following steps:

• Write the device driver in one or more source files. If the
driver comprises multiple source files, you must insert a
.PSECT directive before any generated code in all files except
the file that contains the DPTAB and DDTAB macro invocations.
The following .PSECT must be used:

.PSECT $$$ll 5 DRIVER

If a single source file contains the driver, you must not
specify any .PSECT directives. The declaration of the DPTAB
and DDTAB macros establish driver program sections correctly.

• Assemble the source file(s) with the system macro library
(SYS$LIBRARY:LIB.MLB). For example:

$ MACRO MYDRIVER.MAR+SYS$LIBRARY:LIB.MLB/LIBRARY

• Link the object file with the VAX/VMS global symbol table,
which is located in SYS$SYSTEM and called SYS.STB. If the
driver consists of multiple source files, you must specify the
file that contains the driver prologue table as the first file
in the list. The linker options file must contain a BASE
statement specifying a zero base for the executable image.
The following is an example of the creation of the options
file and the LINK command used to link a driver:

$ CREATE MYDRIVER.OPT
BASE=O
(CTRL/Z)

$LINK /NOTRACE MYDRIVER1[,MYDRIVER2, •••],­
MYDRIVER.OPT/OPTIONS,­
SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH

The resulting image must consist of a single image section.
The linker will report that the image has no transfer address.

14-1

LOADING A DEVICE DRIVER

14.2 LOADING THE DRIVER

Once the driver has linked correctly, it is ready to be loaded. To
load the driver into system virtual memory, run the System Generation
Utility (SYSGEN) from the system manager's account or from an account
having Change Mode to Kernel privilege using the following command:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN responds with a prompt and waits for further input:

SYSGEN>

The VAX-11 Utilities Reference Manual describes the full set of SYSGEN
commands. The sections that follow describe those commands SYSGEN
uses to load drivers:

• LOAD (requires Change Mode to Kernel (CMKRNL) privilege)

e CONNECT (requires CMKRNL privilege)

e RELOAD (requires CMKRNL privilege)

e SHOW/ADAPTER '(requires CMEXEC privilege)

e SHOW/CONFIGURATION (requires CMEXEC privilege)

e SHOW/DEVICE (requires CMEXEC privilege)

In addition, you should understand SYSGEN's automatic configuration
feature, as described in Section 14.3.

14.2.1 LOAD Command

To load a device driver, issue the LOAD command. If the controller
has only a single unit attached to it, issue the CONNECT command.

Format

LOAD driver-file-spec

driver-file-spec
The file specification of the image file containing the I/O
driver to be loaded. The LOAD command obtains the driver name
from the DPT$T NAME field in the driver prologue table. If the
name of the -driver being loaded matches the name of any driver
already in the configuration, the LOAD command will not load the
driver.

SYS$SYSTEM is the default device and directory name. EXE is the
default file type.

Description

The driver loading procedure compares the name field in the
driver prologue table of the driver being loaded with the name
field in the driver prologue tables of the drivers already loaded
into system memory. If no match is found, the procedure loads
the new driver into contiguous locations in nonpaged pool and
links the driver prologue table into the DPT linked list. If the
procedure finds a match, it takes no further action.

14-2

LOADING A DEVICE DRIVER

Example

SYSGEN> LOAD CRDRIVER

This command loads the driver found in SYS$SYSTEM:CRDRIVER.EXE
(the card reader driver).

14.2.2 CONNECT Command

The CONNECT command creates I/O data base control blocks for devices.
The CONNECT command can also load the driver if it has not been
previously loaded into system memory.

Format

CONNECT device-name required-quals [optional-quals]

Command Qualifiers

/[NO]ADAPTER=nexus
/CSR=csr-address
/VECTOR=vector-address
/DRIVERNAME=driver-name (optional)
/NUMVEC=number (optional)
/ADPUNIT=unit-number (optional)
/MAXUNITS=number (optional)

Parameter

device-name
The name of the device for which control blocks are to be added
to the I/O data base. Specify the device name in the following
format:

ddcu

dd device code (up to 9 alphabetic characters)
c controller designation (alphabetic)
u unit number

For example, LPAO specifies the line printer (dev) on controller
A (c) at unit O (u). When specifying the device name, do not
follow it with a colon (:).

The device code and controller specification must be a unique and
accurate device name and controller combination. If control
blocks for the specified device/controller already exist, the
driver loading procedure does not create any control blocks or
perform any initialization operations. If the device/controller
name does not accurately name a device, the procedure will create
spurious control blocks.

Required Qualifiers

/[NO]ADAPTER=nexus
The nexus value of the UNIBUS adapter, MASSBUS adapter, or other
controller to which the device unit is attached. The nexus can
be a number or a generic name listed by the /ADAPTER qualifier to
the SYSGEN command SHOW. See Section 14.2.4 for a discussion of
SHOW/ADAPTER.

14-3

LOADING A DEVICE DRIVER

Specify a nexus number in the range 0 through 15. All numeric
values are interpreted as decimal unless they are preceded by a
radix descriptor (%0 or %X).

Nexus values for VAX-11 processors are listed below:

VAX-11/730 VAX-11/750 VAX-11/780

UNIBUS
adapter 0 3 8 3

1 - 9 4
2 - - 5
3 - - 6

MASS BUS
adapter 0 - 4 8

1 - 5 9
2 - 6 10
3 - - 11

Issue the CONNECT command with the /NOADAPTER qualifier to
connect drivers associated with software devices. The mailbox
driver is an example of this type of driver.

/CSR=csr-address
The UNIBUS address of the control/status register for the device.
All numeric values are interpreted as decimal unless they are
preceded by a radix descriptor (%0 or %X).

/VECTOR=vector-address
The UNIBUS address of the interrupt vector for the device. All
numeric values are interpreted as decimal unless they are
preceded by a radix descriptor (%0 or %X). Section 14.3 provides
additional information on vector and CSR assignments.

Optional Qualifiers

/NUMVEC=number
The number of interrupt vectors for the device. If
qualifier is omitted, the number of vectors defaults to 1.
number specified by the /VECTOR qualifier is the address of
lowest vector. Vectors must be contiguous.

/DRIVERNAME=driver-name

this
The
the

The name of the driver that handles the device being connected.
If this qualifier is omitted, CONNECT follows one of two
procedures to supply a default name. If the device to be
connected is the first unit on the controller, CONNECT
concatenates the first two characters of the device code with
"DRIVER", for example, LPDRIVER. Otherwise, CONNECT obtains the
driver name from the DDB$T DRVNAME field 1n the controller's
device data block. -

Consult the SYSGEN device table in Section 14.3.2 for the driver
names of the devices supported by VAX/VMS.

/ADPUNIT=unit-number
The unit number of a device on the MASSBUS adapter. The unit
number for a disk drive is the number of the plug on the drive.
For magnetic tape drives, the unit number corresponds to the tape
controller number.

/MAXUNITS=number
The maximum number of units attached to the controller. This
number determines the size of the UCB list appended to the

14-4

LOADING A DEVICE DRIVER

interrupt dispatch block. If specified, this value overrides the
maximum number of units designated in the driver prologue table.
The maximum number of units is stored in the IDB field
IDB$W UNITS.

Description

The I/O data base contains a linked list of driver prologue
tables. The CONNECT command looks for a device driver by
scanning the driver prologue tables and comparing the DPT$T NAME
field in each DPT with the specified or defaulted driver name.
If no match is found, the driver loading procedure loads the
driver image SYS$SYSTEM:drivername.EXE; see Section 14.2.1.

Then the loading procedure examines the I/O data base for control
blocks that support the specified device. The procedure creates
the following control blocks if they do not exist:

• Device data block -- the procedure creates a device data block
for the generic device name/controller string specified if
such a device data block does not exist.

When the procedure creates a device data block
device, it also creates a channel request
interrupt dispatch block.

for a
block

UNIBUS
and an

• Unit control block the procedure creates a unit control
block if it has just created a device data block or if a unit
control block for the specified device does not exist. If a
unit control block already exists, the procedure continues to
execute but makes no more modifications to the I/O data base.

After creating the control blocks, the driver loading procedure
performs the following initialization operations:

• Performs the initialization operations specified by the
DPT STORE macros in the initialization and reinitialization
portions of the driver prologue table.

• Relocates all addresses in the driver dispatch table and
function decision table to absolute system virtual addresses.

• Raises IPL to IPL$ POWER so that initialization is not
interrupted.

• If a new channel request block was created, the procedure
calls the controller initialization routine (if one exists)
specified by CRB$L_INTD+VEC$L_INITIAL.

• Calls the unit initialization routine (if one exists)
specified by DDT$L UNITINIT. If the DDT contains no unit
initialization routTne, the procedure calls the unit
initialization routine (if any) specified by
CRB$L INTD+VEC$L UNITINIT.

You should specify CONNECT commands with extreme caution. The
driver and data base loading procedure doe$ little error
checking. If you specify a vector that has already been defined,
the procedure rejects the CONNECT command. However, if the
CONNECT command specifies an incorrect CSR address, the I/O data
base is apt to become corrupted. The result is a system failure.

14-5

LOADING A DEVICE DRIVER

If the CONNECT command specifies an existing controller and a new
device unit, the procedure creates a unit control block for the
new unit and calls a unit initialization routine for the unit.

A CONNECT command that specifies a device name with a new
controller causes the driver loading procedure to create a device
data block, channel request block, interrupt dispatch block, and
unit control block and to call controller and unit initialization
routines.

Example

SYSGEN> CONNECT LPAO /ADAPTER=UBO/CSR=%0777514/VECTOR=%0200

This command '1oads the driver LPDRIVER, if it is not already
loaded, and creates the device data base (DOB, CRB, IDB, an~ UCB)
needed to describe LPAO.

14.2.3 RELOAD Command

The RELOAD command loads a driver and
version of that driver. The RELOAD
functions of LOAD, except that it loads
whether it is already loaded.

removes a previously-loaded
command provides all of the

the driver regardless of

If any of the units associated with the driver are busy, the driver
cannot be reloaded; SYSGEN issues an error message.

Format

RELOAD driver-file-spec

d ri ver-f i1 e-spec
The file specification of the image file containing the driver to
be loaded.

Description

To reload the driver, the driver loading procedure compares the
name field in the driver prologue table of the driver being
loaded with the name field in the driver prologue tables of
drivers already loaded into system memory. If no match is found,
RELOAD loads the driver as described in Section 14.2.1.

If the procedure finds a match, it first confirms that the
current driver can be replaced by the new driver in the following
steps:

• Confirms that the DPT$M_NOUNLOAD flag in the driver prologue
table of the current driver is not set

• Calls the current driver's unload routine, if one exists, and
confirms that the returned status is a success code

• Ensures that no devices that use the current driver are busy,
as indicated by the UCB$V_BSY bit set in UCB$W_STS

If these checks succeed, the procedure replaces the current
driver with the new driver. The procedure loads the new driver
into contiguous locations in nonpaged system memory and searches
the I/O data base for references to the driver. If any device
data block refers to the driver being reloaded, the procedure

14-6

LOADING A DEVICE DRIVER

reinitializes fields of the device and controller control blocks
according to the reinitialization instructions in the new
driver's prologue table; Chapter 7 describes the DPT
reinitialization fields.

Fields that must be reinitialized when a driver is reloaded
include those that contain relative addresses within the driver:

• Addresses of driver interrupt service routines

• Addresses of device unit and
routines

controller

• Address of the driver dispatch table

initialization

Once the loading procedure has reinitialized fields, it calls the
driver controller initialization routine. (It does not call the
unit initialization routine.) The procedure then removes the
newly replaced driver from the DPT list and deallocates the
nonpaged system space the old driver occupied. Finally, the
loading procedure links the address of the new driver prologue
table to the DPT list.

Use the RELOAD command only when all devices supported by the
driver are inactive. The activity checks made by the RELOAD
command may not detect all device activity, and changing a driver
while an I/O request is being processed will cause a system
failure.

14.2.4 SHOW/ADAPTER

The SHOW/ADAPTER command displays a list of nexus values of adapters
in the system configuration. Use of the SHOW/ADAPTER command requires
Change Mode to Executive (CMEXEC) privilege.

Format

SHOW/ADAPTER

Description

The SHOW/ADAPTER command displays nexus numbers and generic names of
UNIBUS and MASSBUS adapters, memory controllers, and device
interconnects such as the DR32.

Example

SYSGEN> SHOW/ADAPTER

CPU Type: 11/780
Hardware Revision #96

Nexus Generic Name or Description

1
4
5
8
9

16K memory, non-interleaved
UBO
UBl
MBO
MBl

This example
composed of
adapters.

shows a VAX-11780
16K-bit chips, two

that uses one memory controller
UNIBUS adapters, and two MASSBUS

14-7

LOADING A DEVICE DRIVER

14.2.5 SHOW/CONFIGURATION

The SHOW/CONFIGURATION command displays information about the system
configuration.)

Format

SHOW/CONFIGURATION [/ADAPTER=nexus]

nexus

[/COMMAND FILE]
[/OUTPUT=file-spec]

The nexus value of the UNIBUS adapter, MASSBUS adapter, or other
interconnect to be displayed.

file-spec
The file specification of an optional output file.

D~scripton

The SHOW/CONFIGURATION command displays the device name, number of
units, nexus number and type and shows the CSR and vector addresses of
devices connected or autoconfigured to the system. You can direct the
display to an output file with the /OUTPUT qualifier. If you combine
the /OUTPUT and /COMMAND FILE qualifiers, SYSGEN formats all the
device data into CONNECT commands and copies them to the output file
you specify. In this way, you can remove a device from floating
address space without completely rejumpering the CSR and vector
addresses of the rema1n1ng devices. See the VAX-11 Utilities
Reference Manual for more details.

Example

SYSGEN> SHOW/CONFIGURATION/ADAPTER=UBl

System CSR and Vectors on 4-JAN-1982 14:58:26.08

Name: LPA Units: 1 Nexus:4 (UBA) CSR: 777514 Vectorl: 200 Vector2:
Name: OYA Units: 2 Nexus:4 (UBA) CSR: 7771 70 Vectorl: 264 Vector2:
Name: XMA Units: 1 Nexus:4 (UBA) CSR: 760070 Vectorl: 300 Vector2:
Name: XMB Units: 1 Nexus:4 (UBA) CSR: 760100 Vectorl: 310 Vector2:
Name: XMC Units: 1 Nexus:4 (UBA) CSR: 760110 Vectorl: 320 Vector2:
Name: TTA Units: 8 Nexus:4 (UBA) CSR: 760130 Vectorl: 330 Vector2:
Name: TTB Units: 8 Nexus:4 (UBA) CSR: 760140 Vectorl: 340 Vector2:
Name: TTC Units: 8 Nexus:4 (UBA) CSR: 760150 Vectorl: 350 Vector2:
Name: TTD Units: 8 Nexus:4 (UBA) CSR: 760160 Vectorl: 360 Vecto r2:
Name: TTE Units: 8 Nexus:4 (UBA) CSR: 760170 Vectorl: 370 Vector2:

14.2.6 SHOW/DEVICE

The SHOW/DEVICE command displays the location of a driver and the I/O
data base describing its devices in system virtual memory. This
command requires Change Mode to Executive (CMEXEC) privilege.

Format

SHOW/DEVICE [=driver-name]

driver-name
Name of the driver for which the information is to be displayed.
If a driver name is not specified, the command displays
information about all drivers and devices known to the system.

14-8

000
000
304
314
324
334
344
354
364
374

LOADING A DEVICE DRIVER

Description

The SHOW/DEVICE command displays the following information:

• Name of the driver

• The driver's starting and ending virtual addresses; the
starting address is the address of the driver prologue table

• The generic device/controller name associated with the driver

• The addresses of the device data block, channel request block,
and interrupt data block for the generic device/controller
supported by the driver

• The unit numbers and UCB addresses for each device unit
associated with the driver

Example

SYSGEN> SHOW/DEVICE=TMDRIVER

DRIVER START END DEV DDB CRB IOO

TMDRIVER 8009DFOO 8009F020
MTA 800BA660 800BA6CO 800BA360

14.3 AUTOCONFIGURATION

UNIT UCB

0 8009F020
1 8009FOCO

The standard VAX/VMS system start-up file runs SYSGEN to create and
initialize an I/O data base that describes all supported DIGITAL
peripherals in the configuration. The following command requests
SYSGEN to prepare a data base for all supported DIGITAL devices
attached to every UNIBUS and MASSBUS:

SYSGEN> AUTOCONFIGURE ALL

To configure devices attached to the UNIBUS, SYSGEN goes through the
steps described in subsequent sections of this chapter.

DIGITAL-supported devices are attached to the UNIBUS according to a
table found in Appendix A of the PDP-11 Peripherals Handbook. The
basic rules follow:

• A device of type A is always at a fixed and predefined CSR
address; the device always interrupts at a fixed and
predefined vector address; only one example of device A can
be configured in each system.

• A device of type B is identical to type A except that 1
through n examples can be configured in a single system.
Examples 2 through n are also located at fixed and predefined
CSRs and vector addresses.

• Devices of type C (1 through n of them) are always at fixed
and predefined CSR addresses; however, the interrupt vector
addresses vary according to what other devices are present on
the system.

• Devices of type D (1 through n of them) are at CSR addresses
and vector addresses that vary according to what other devices
are present on the system.

14-9

LOADING A DEVICE DRIVER

The CSR and vector addresses that vary are called floating addresses.
The devices must be located in floating CSR and vector space according
to the order in which the devices appear in the SYSGEN device table.
This table, shown in Section 14.3.2, lists all the type A and type B
devices supported by VAX/VMS. It also lists the type C and type D
devices that are recognized by SYSGEN's autoconfiguration procedure.

The base of floating vector space is 300 (octal).
floating CSR space is 760010 (octal).

14.3.1 The SYSGEN Autoconfiguration Facility

The base of

The SYSGEN utility automatically configures a UNIBUS adapter as
follows:

• It initializes the base of floating space to 300 (octal) and
760010 (octal) for vectors and CSRs, respectively.

• It tests fixed and floating CSR address space for all known
DIGITAL devices.

• When a device is found at a CSR, SYSGEN reserves floating CSR
and vector space for that device, if necessary.

• It searches for the name of the driver associated with the
device by checking the SYSGEN device table (shown in Section
14.3.2) and the directory SYS$SYSTEM. If the driver has
already been loaded or exists as an image file in SYS$SYSTEM,
SYSGEN creates and initializes the I/O data base for that
device and loads the driver image if necessary. If the device
at the CSR is supported by VAX/VMS and SYSGEN cannot locate
its associated driver image, it generates an error message.
If the device is unsupported and has no corresponding driver
image, SYSGEN ignores the condition.

14.3.2 The SYSGEN Device Table

The SYSGEN device table
devices. This table
device type:

lists the characteristics of all DIGITAL
indicates the following information for each

• The device controller name

• Th~t,h device driver, and whether it is supported
~~~ 

• The name of the device recognized by VAX/VMS 

• The interrupt vector 

• The number of interrupt vectors per controller 

• The address of the first device register for each controller 
recognized by SYSGEN (the first register is usually, but not 
always, the CSR) 

• The number of registers per controller 

14-10 



LOADING A DEVICE DRIVER 

Currently, the SYS GEN device table lists the following devices: 

Device Name Vector #Vectors Alignment CSR/Rank #Registers Driver Support 

CRA CRll 230 777160 CRDRIVER yes 

DMA RK611 210 777440 DMDRIVER yes 

LPA LPll 200 777514 LPDRIVER yes 
170 764004 
174 764014 
270 764024 
274 764034 

DLA RLll 160 774400 DLDRIVER yes 

MSA TSll 224 772520 TSDRIVER yes 

OYA RX211 264 777170 DYDRIVER yes 

DQA RB730 250 775606 DQDRIVER no 

PUA UDA 154 772150 PUDRIVER yes 

OMA DCll float 2 8 774000 OMDRIVER no 
774010 
774020 
774030 

(maximum of 
32 units) 

DDA TU58 float 2 8 776500 DDDRIVER yes 
776510 
776520 
776530 

(maximum of 
16 units) 

14-11 



LOADING A DEVICE DRIVER 

Device Name Vector #Vectors Alignment CSR/Rank tRegisters Driver Support 

OBA DNll float l 4 775200 OB DRIVER no 
775210 
775220 
775230 

(maximum of 
16 units) 

YMA DMllB float l 4 770500 YMDRIVER no 
770510 
770520 
770530 

(maximum of 
16 units) 

OAA DRllC float 2 8 767600 OADRIVER no 
767570 
767560 
767550 

(maximum of 
16 units) 

PRA PR6ll float l 8 772600 PRDRIVER no 
772604 
772610 
772614 

(maximum of 
8 units) 

14-12 



LOADING A DEVICE DRIVER 

Device Name Vector fVectors Alignment CSR/Rank tRegisters Driver Support 

PPA PP611 float 1 8 772700 PPDRIVER no 
772704 
772710 
772714 

(maximum of 
8 units) 

OCA DTll float 2 8 777420 OCDRIVER no 
777422 
777424 
777426 

(maximum of 
8 uni ts) 

ODA DXll float 2 8 776200 ODDRIVER no 
776240 

YLA DLllC float 2 8 775610 YLDRIVER no 
775620 
775630 
775640 

(maximum of 
31 units) 

YJA DJll float 2 8 float 4 YJDRIVER no 

YHA DHll float 2 8 float 8 YHDRIVER no 

OEA GT40 float 4 8 772000 OEDRIVER no 
772010 

14-13 



LOADING A DEVICE DRIVER 

Device Name Vector IVectors Alignment CSR/Rank #Registers Driver Support 

LSA LPSll float 6 8 770400 LS DRIVER no 

XQA DQll float 2 8 float 4 XQDRIVER no 

OFA KWllW float 2 8 772400 OFDRIVER no 

XUA DUll float 2 8 float 4 XUDRIVER no 

XWA DUPll float 2 8 float 4 no driverl no 

XVA DVll float 3 8 775000 XVDRIVER no 
775040 
775100 
775140 

OGA LKll float 2 8 float 4 OGDRIVER no 

XMA DMCll float 2 8 float 4 XMDRIVER yes 

TTA DZll float 2 8 float 4 DZ DRIVER yes 

XKA KMCll float 2 8 float 4 XKDRIVER no 

OHA LPPll float 2 8 float 4 OHDRIVER no 

OIA VMV21 float 2 8 float 4 OIDRIVER no 

OJA VMV31 float 2 8 float 8 OJDRIVER no 

OKA DWR70 float 2 8 float 4 OKDRIVER no 

DLB RLll float 1 4 float 4 DLDRIVER yes 

MSB TSll float 1 4 772524 TSDRIVER yes 
772530 
772534 

1. Because there are multiple drivers for this device, AUTOCONFIGURE does not load any driver. 
These devices must be connected. 



LOADING A DEVICE DRIVER 

Device Name Vector tVectors Alignment CSR/Rank tRegisters Driver Support 

LAA LPAll float 2 8 770460 LADRIVER yes 

LAB LPAll float 2 8 float 8 LADRIVER yes 

OLA KWllC float 2 8 float 4 OLDRIVER no 

RSVA RSV float 1 8 float 4 RSVDRIVER no 

DYB RX211 float 1 4 float 4 DYDRIVER yes 

XAA DRllW float 1 4 float 4 XADRIVER yes 

XBA DRllB 124 772410 XBDRIVER no 

XBB DRllB float 1 4 772430 4 XBDRIVER no 

XBC DRllB float 1 4 float 4 XBDRIVER no 

XDA DM.Pll float 2 8 float 4 XDDRIVER yes 

ONA DPVll float 2 8 float 4 ONDRIVER no 

ISA ISBll float 2 8 float 4 ISDRIVER no 

OOA DMVll float 2 8 float 8 OODRIVER no 

UNA UNA float 1 4 float 4 XE DRIVER no 

PUB UDA float 1 4 float 2 PUDRIVER yes 

TXA DMF32 float 8 4 float 16 YCDRIVER yes 

XGA XGDRIVER yes 

LCA LC DRIVER yes 

XIA XI DRIVER no 

XSA KMSll float 3 8 float 8 XS DRIVER no 

XPA PCLll float 2 8 764200 XPDRIVER no 
764240 
764300 
764340 

14-15 



LOADING A DEVICE DRIVER 

Devices not listed in the SYSGEN device table include: 

• No~-DIGITAL-supplied devices with fixed CSR and vector 
addresses. These devices have no effect on 
autoconfiguration. Customer-built devices should be assigned 
CSR and vector addresses beyond the floating address space 
reserved for DIGITAL-supplied devices. 

• Those DIGITAL-supplied, floating vector devices that the 
AUTOCONFIGURE command does not recognize. Use the CONNECT 
command to attach these devices to the system. 

14.3.3 Device Driver Control of Autoconfiguration 

The SYSGEN autoconfiguration facility provides two features that 
drivers can use to control the automatic configuration of the devices 
they operate. These features are invoked through the DEFUNITS and 
DELIVER arguments to the DPTAB macro. 

The DEFUNITS argument to the DPTAB macro specifies a default number of 
units to be configured into the system. The DPTAB macro copies this 
value to the DPT$W DEFUNITS field in the driver prologue table. The 
SYSGEN autoconfiguration facility reads this field and creates unit 
control blocks numbered zero through the default unit number minus 
one. The default value of DEFUNITS is one. 

The DELIVER argument to the DPTAB macro specifies the address of a 
driver-specific unit delivery action routine. An offset to this 
routine is stored in the DPT$W DELIVER field within the driver 
prologue table. When the DELIVER argument is present, the SYSGEN 
autoconfiguration facility calls the action routine once for each unit 
for the number of units specified in the DEFUNITS argument. If the 
action routine returns a true status in RO, the unit is configured. 
If the status in RO is false, the autoconfiguration facility does not 
configure the device. If the DELIVER argument is not used, the unit 
delivery feature is disabled. 

SYSGEN calls the unit delivery action routine with a JSB instruction 
in the following context: 

• Interrupt priority level is at IPL$ POWER (31). 

• RO through R2 are available for use. 

• R3 contains the address of the interrupt dispatch block, of 
one exists. If none exists, the value contained in R3 is 
zero. 

• R4 contains the address of the control/status register for 
the controller. 

• RS contains the number of the unit that the routine must 
decide whether or not to configure. 

• R6 contains the base address of UNIBUS adapter I/O space. 

• R7 contains the address of the configuration control block 
(ACF) • 

• R8 contains the address of the UNIBUS adapter control block. 

14-16 



LOADING A DEVICE DRIVER 

The configuration control block is described in Appendix A. 

The VAX/VMS DZll device driver specifies a default unit number of 
eight and no action routine to configure eight terminal units 
automatically for each DZll CSR. The RK611 device driver gives eight 
as the default number of units and also spcifies the address of a unit 
delivery action routine that is called once for each of the eight 
possible devices on the controller. The unit delivery routine 
prevents the creation of unit control blocks for devices that do not 
respond to a request that tests for their presence. 

14.3.4 Floating Vector Address Calculation 

To calculate the floating vector address of a device, the SYSGEN 
utility rounds the current, floating vector base (CFVB) up to the next 
valid vector address boundary for the next device in the table. 

If a device is present, SYSGEN reserves floating vector space for the 
device by computing a new CFVB: 

CFVB + (4 * number_of_vectors) --.. CfYI? 

14.3.S Floating CSR Address Calculation 

To calculate the floating CSR address of a device, SYSGEN rounds the 
current floating CSR base (CFCB) up to the next valid floating CSR 
address. Floating CSR addresses must fall on an 8-byte boundary. 

SYSGEN tests the CSR address (CFCB) for the next device in the device 
table by executing a test word (TSTW) instruction on the address and 
noting whether there is a response at that address. 

If the device is present, SYSGEN reserves floating CSR address space 
for the device by computing a new ,CFCB: 

CFCB + bytes_in_register_set---.... CFCB 

When all devices of a particular type have been located and their 
floating CSR space reserved, SYSGEN reserves an extra block of CSR 
space to indicate a change to a new device type: 

CFCB + 8 ____.. CFCB 

If the device is not present, SYSGEN reserves an extra block of CSR 
space to indicate a change to a new device type by adding eight to the 
rounded CFCB: 

CFCB + 8 _____.. CFCB 

14.3.6 Rules for Configuration 

The formulas described in Sections 14.3.4 and 14.3.5 reduce to the 
following maxims: 

• Devices with fixed CSR addresses and 
must be attached according to 
settings. 

14-17 

fixed vector addresses 
the SYSGEN device table 



LOADING A DEVICE DRIVER 

• Devices with floating CSR or vector addresses must be attached 
in the order in which they are listed in the SYSGEN device 
table. 

• An 8-byte gap must be reserved between each different type of 
device that is located in floating CSR address space. 

• An 8-byte gap must be reserved in floating CSR address space 
for each device type that has no controller in its 
configuration. 

• An extra 8-byte gap must be reserved between the KWllC and the 
RXll in floating CSR address space. 

14.3.7 Example of a UNIBUS Configuration 

This example shows the correct configuration for UNIBUS devices with 
floating CSR and vector addresses. Controllers flagged with an 
asterisk (*) are not supported by DIGITAL. 

Controller 

1 DNll* 

1 DUll* 

1 DVll* 

1 DMCll 

2 DZlls 

2 TSlls 

3 DRllBs* 

1 customer 
device 

Vector{s) 

300 

310 

320 

340 

350 
360 

224 
370 

124 
400 
410 

420 
(or higher) 

CSR {first register) 

775200 

760040 

775000 

760100 

760120" 
760130 

772520 
772524 

772410 (CSR is third register) 
772430 
760300 

760320 
(or higher) 

When assigning floating vector addresses and registers to devices not 
supplied by DIGITAL, be sure to leave a generous gap between these 
addresses and those of DIGITAL devices, since subsequent VAX/VMS 
maintenance updates may add new devices to the SYSGEN device table. 

14-18 



CHAPTER 15 

DEBUGGING A DEVICE DRIVER 

DELTA and XDELTA are debugging tools that can be used to monitor the 
execution of user programs and the VAX/VMS operating system. When you 
link DELTA with a user image that runs in a nonprivileged process, 
DELTA is a user-mode debugging tool. When run in a privileged 
process, however, DELTA acts as a multimode debugger; it allows you 
to debug in user mode or to change to kernel mode for debugging. 
DELTA does not support debugging at elevated IPLs. 

XDELTA is syntactically identical to DELTA but also allows you to 
debug code that executes at an elevated IPL. XDELTA is used for 
stand-alone debugging of driver code and the executive. 

In the command syntaxes and dialogues contained in this chapter, red 
ink indicates the commands typed by the user and black ink indicates 
the system prompts and responses. 

15.1 BOOTSTRAPPING THE SYSTEM WITH XDELTA 

Under VAX/VMS, drivers are part of the operating system. You normally 
bootstrap the system with two boot flags set to allow you to debug 
with XDELTA. One flag causes the bootstrapping procedure to include 
XDELTA in the system. The other boot flag indicates a stop at a 
breakpoint in VAX/VMS initialization. Execution of the breakpoint 
instruction causes control to transfer to a fault handler located in 
XDELTA. The procedures for bootstrapping the system with XDELTA 
differ depending on which processor the operating system is running. 

15.1.1 Bootstrapping the System with XDELTA on a VAX-11/780 

In addition to the normal system bootstrap command files, the VAX/VMS 
console floppy diskette for a VAX-11/780 contains two command files 
that bootstrap the system with XDELTA: 

e DMAXDT 

e DBAXDT 

To bootstrap the system with XDELTA, follow the procedures in the 
VAX-11/780 Software Installation Guide with two exceptions: 

• Deposit the unit number of the device in R3. 

• Specify one of the command files listed above instead of the 
command files listed in the installation guide. 

15-1 



DEBUGGING A DEVICE DRIVER 

The dialogue in Figure 15-1 is an example of bootstrapping the system 
with XDELTA on a VAX-11/780. 

>»DEPOSIT R3 0 

>>>@DMAXDT 

SYSBOOT> 

SYSBOOT> CONTINUE 

Deposit the unit number 0. in R3. 

Boot the system from DMAO. The 
procedure boots the processor and 
prompts the user from SYSBOOT: 

Enter any SYSBOOT command. If you 
did not set or load system parameters 
with the USE command, the system uses 
the parameters stored in the system 
image. To prevent the system from 
automatically rebooting after a 
bugcheck, you can set the system 
parameter BUGREBOOT to zero. 

Continue with 
operation. 

the bootstrapping 

Figure 15-1: Bootstrapping the System with XDELTA on a VAX-11/780 

15.1.2 Bootstrapping the System with XDELTA on a VAX-11/750 

If the VAX/VMS operating system is running on a VAX-11/750, you must 
issue the following command in order to bootstrap the system with 
XDELTA: 

>>>B[/f] device-name 

Command Parameters and Qualifiers 

B 

/f 

The console BOOT command. See the VAX-11/750 Software 
Installation Guide for further details on this command. 

The 32-bit hexadecimal integer value loaded into RS as 
value to VMB.EXE, the primary bootstrap program. 
qualifier may have the following values: 

Value 

f=O 

f=l 

Meaning 

Normal nonstop bootstrap (default) 

Stop in SYSBOOT (equivalent to 
VAX-11/780) 

@DxyGEN 

an input 
The /f 

on the 

f=2 Include XDELTA with the system but do not take the 
initial breakpoint 

f=6 Include XDELTA with the system and take the initial 
breakpoint 

f=7 Include XDELTA with the system, stop in SYSBOOT and 
take the initial breakpoint at system initialization 
(equivalent to @DxyXDT on the VAX-11/780) 

15-2 



DEBUGGING A DEVICE DRIVER 

device-name 
Indicates the name of the device that contains the volume to be 
bootstrapped. Specify the device name using the format ddcu 
(refer to the VAX-11/750 Software Installation Guide for a 
complete description of device name format). Both controller and 
unit identifiers must be specified; there are no defaults. If 
you do not use the device-name parameter, the /f qualifier is 
ignored. 

The dialogue in Figure 15-2 is an example of bootstrapping the 
operating system with XDELTA on a VAX-11/750. 

>»B/7 DMAO 

SYS BOOT> 

SYSBOOT> CONTINUE 

Bootstrap the system from DMAO. The 
command boots the processor and 
prompts the user from SYSBOOT. 

Enter any SYSBOOT commands. If you 
did not set or load system 
parameters with the USE command, the 
system uses the parameters stored in 
the system image. To prevent the 
system from automatically rebooting 
after a bugcheck, you can set the 
system parameter BUGREBOOT to zero. 

Continue with 
operation. 

the boo strapping 

Figure 15-2: Bootstrapping the System with XDELTA on a VAX-11/750 

To bootstrap the system from the console TU58, see the VAX-11/750 
Software Installation Guide. The console TU58 contains the command 
f 1les DMAXDT and DBAXDT WfiTCfi are analogous to the files on the 
VAX-11/780 console floppy diskette. 

15.1.3 Bootstrapping the System with XDELTA on a VAX-11/730 

In addition to the normal system bootstrap command files, the VAX/VMS 
console DECtape for a VAX-11/730 contains two command files that 
bootstrap the system with XDELTA: 

e DQAXDT 

e DQOXDT 

To bootstrap a VAX-11/730 with XDELTA, follow the procedures outlined 
in the VAX-11/730 Software Installation Guide and specify one of the 
command files listed above. The dialogue in Figure 15-3 is a general 
example of boostrapping the system with XDELTA on a VAX-11/730. 

When the boot device is DQAO, you can omit the first step in Figure 
15-3 and execute the command procedure DQOXDT: 

»> @DQOXDT 

15-3 



DEBUGGING A DEVICE DRIVER 

>>>D/G/L 3 1 

>>>@DQAXDT 

SYSBOOT> 

SYSBOOT> CONTINUE 

Deposit the unit number 1 in R3 

Boot the system from DQAl. The 
procedure boots the processor and 
prompts the user from SYSBOO~: 

Enter any SYSBOOT command. If you 
did not set or load any system 
parameters with the USE command, the 
system uses the system parameters 
stored in the system image. To 
prevent the system from 
automatically ~ebooting after a 
bugcheck, you can set the system 
parameter BUGREBOOT to zero. 

Continue with 
operation. 

the bootstrapping 

Figure 15-3: Bootstrapping the System with XDELTA on a VAX-11/730 

15.1.4 Proceeding from the Initial Breakpoint 

After being bootstrapped, the system displays its welcoming message 
and halts in XDELTA, as follows: 

1 BRK AT nnnnnnnn 
address/NOP 

XDELTA is waiting for input. (XDELTA never issues explicit prompts.) 
Usually, you proceed from this point with the following command: 

;P ~ 

All of the XDELTA commands are described in Section 15.10. 

If the operating system halts with a fatal bugcheck, the system prints 
the bugcheck information on the console terminal. Then, because the 
system parameter BUGREBOOT was set to zero, XDELTA prompts. Bugcheck 
information consists of the following: 

• Type of bugcheck 

• Register values 

• Dump of one or more stacks 

PC and stack content indicate how an experimental driver crashed the 
system. You can then examine the system state further by issuing 
XDELTA commands. 

15.2 LOADING THE DRIVER 

Once the system is running, you can log in to the system as the system 
manager and load the experimental driver. 

To load the driver, run SYSGEN and issue the appropriate LOAD and 
CONNECT commands. Figure 15-4 provides a sample dialogue~ 

15-4 



DEBUGGING A DEVICE DRIVER 

The first SHOW command in Figure 15-4 causes SYSGEN to display the 
location of the device driver in system memory. You then define the 
device to the operating system. The second SHOW command causes SYSGEN 
to display the driver's location and the addresses of the device's 
DOB, CRB, IDB, and UCB. 

$ RUN SYS$SYSTEM:SYSGEN 
SYSGEN> LOAD DMAO: [YOUR.DIRECTORY]YRDRIVER.EXE 

SYSGEN> SHOW /DEVICE=YRDRIVER 
Driver Start End Dev DOO CRB IDB Unit UCB 

YRDRIVER 80060ESU-SU061~ 

SYSGEN> CONNECT YR /ADAP=3/VEC=%0274/CSR=%0776240 

SYSGEN> SHOW /DEVICE=YRDRIVER 
Driver Start End Dev DOB CRB IDB Unit UCB 

YR'DRIVER 80060E51J1f0"061~ 
YRA 8005FDCO 80060B70 8005FEOO 

0 80060BBO 

SYSGEN> EXIT 

Figure 15-4: Loading a Driver 

15.3 INSERTING BREAKPOINTS IN THE SOURCE CODE 

The SYSGEN command CONNECT calls controller initialization and unit 
initialization routines. To begin debugging the driver, you should 
ensure that the kernel mode debugging utility XDELTA gains control of 
the driver before these routines execute. This is accomplished by 
placing calls to the special system routine INI$BRK within the source 
code of either the controller or unit initialization routines. To 
call INI$BRK, give the following instruction: 

The INI$BRK routine contains two instructions: 

BPT 
RSB 

When the processor executes the BPT instruction, XDELTA gains control 
and reports the address of the breakpoint: 

1 BRK AT nnnnnnnn 

You can use INI$BRK as a debugging tool and place calls to it within 
any part of the driver source code. 

To determine the last driver PC before the breakpoint, examine the 
kernel stack. The stack register is register RE (hexadecimal format): 

RE/address /address 

Display RE to find the address of the current top of stack. Another 
display command (/) reveals the contents of the stack top, that is, 
the return address to the driver that called INI$BRK. 

15-5 



DEBUGGING A DEVICE DRIVER 

15.4 CALCULATING THE BASE OF DRIVER CODE 

Before you debug the driver, it is a good idea to calculate the base 
address of driver code, as follows: 

• Run SYSGEN and issue the SHOW/DEVICE command. The resulting 
display lists the location in nonpaged pool at which SYSGEN 
loaded the driver. 

• Consult the load map for the driver (obtained at driver link 
time). The driver resides in two program sections (PSECTs}: 

$$$105 PROLOGUE 

$$$ll5 DRIVER 

driver prologue table 

driver code 

The locations given in the driver code listing are offsets 
from $$$115 DRIVER. Thus, you can calculate the base address 
of the driver by adding the address at which the driver was 
loaded to the offset associated with the PSECT $$$115 DRIVER 
shown in the map. -

If you do not have the load map, consult the driver prologue table in 
the driver listing. Look for the address of DPT STORE END, which 
generates a 2-byte entry that terminates the DPT. To get- the base 
address of driver code, add the address of DPT STORE END + 2 to the 
address at which the driver was loaded. You can set an XDELTA base 
register to the base of driver code; Section 15.7 describes this 
procedure. 

15.5 REQUESTING AN XDELTA SOFTWARE INTERRUPT 

Once the controller and unit initialization routines complete 
execution, you will need to set breakpoints in order to debug the 
driver. You can set a breakpoint in the driver source code by 
inserting calls to INI$BRK, as described in Section 15.3. You can 
also invoke XDELTA to set breakpoints interactively by requesting an 
XDELTA software interrupt. 

The procedures described in the following sections will issue a 
software interrupt to the processor at IPL 5. The IPL 5 interrupt 
service routine handles the interrupt by calling the routine INI$BRK, 
which in turn executes the first XDELTA breakpoint. XDELTA then 
issues the message: 

1 BRK AT nnnnnnnn 
address/NOP 

15.5.1 Requesting an XDELTA Interrupt on a VAX-11/780 

To request an XDELTA software interrupt on a VAX-11/780, issue the 
following commands at the console terminal: 

$ (CTRL/P) 

>»HALT 
>>>DEPOSIT/I 14 5 
»>CONTINUE 

15-6 



DEBUGGING A DEVICE DRIVER 

15.5.2 Requesting an XDELTA Interrupt on a VAX-11/750 

To request an XDELTA- software interrupt on a VAX-ll/7SO, issue the 
following commands at the console terminal: 

$ (CTRL/P) 

>»D/I 14 5 
»>C 

The VAX-ll/7SO accepts only one-character commands. 

15.5.3 Requesting an XDELTA Interrupt on a VAX-11/730 

To request an XDELTA interrupt on a VAX-11/730, issue the following 
commands at the console terminal: 

$ (CTRL/P) 

»>D/I 14 S 
>»C 

The VAX-11/730 accepts only one-character commands. 

15.6 LOOKING AT THE VECTOR JUMP TABLE 

To gain familiarity with the I/O data base, you may wish to look for 
the address of the location in the channel request block that contains 
a JSB instruction to the driver's interrupt service routine. You can 
do this at a controller initialization breakpoint because one of the 
inputs is the IDB address. The procedures for locating the driver 
interrupt service routine on nondirect and direct vector UNIBUS 
adapters are shown below. 

Nondirect Vector Procedure 

RS/IDB-address Q+lO/ADP-address 
Q+lO;vector-table-address 
Q+vector-address-in-hex/address-of-JSB-instruction-in-CRB 
Q!JSB-instruction 

Direct Vector Procedure 

RS/IDB-address Q+lO/ADP-address 
Q+lO/vector-table-address 
Q+vector-address-in-hex+2/address-of-JSB-instruction-in-CRB 
Q!JSB-instruction 

Finding the driver interrupt service routine address at the expected 
vector does not guarantee that an interrupt from the device will 
dispatch to the driver's interrupt service routine. If the device's 
physical vector is set to some other address, an interrupt from the 
device may dispatch to some other interrupt service routine, or 
dispatch to an unassigned vector. 

See the SYSGEN device table shown in Chapter 14 for a list of vectors. 
Consult DIGITAL field service for help with any problem similar to the 
one described above. 

lS-7 



DEBUGGING A DEVICE DRIVER 

15.7 SETTING AN XDELTA BASE REGISTER 

During a driver debugging session, you can use an XDELTA relocation 
register as a base from which to examine driver code and set 
breakpoints within the driver. Use one of the methods outlin~d in 
Section 15.4.2 to determine the base address of driver code, then set 
a relocation register by issuing the following command: 

driver-base-address,O;X filil 

This command sets relocation register XO to the base of driver code. 
Now you can examine offsets into the code using XO as a base: 

XO + offset/nnnnnnnn 

or 

XO + offset! instruction 

XDELTA also uses the base register to display address values in the 
base register plus offset format. Suppose, for example, that your 
driver contains the code shown below: 

50 81 90 OOD3 132 10$: MOVB ( Rl) +,RO 
10 13 OOD6 133 BEQL 20$ 

20 50 91 OOD8 134 CMPB RO, #"A/ I 
F6 19 OODB 135 BLSS 10$ 

7A SF 50 91 OODD 136 CMPB RO, #"A/Z/ 
FO 14 OOEl 137 BGTR 10$ 

82 50 90 OOE3 138 MOVB RO,(R2)+ 
EB 11 OOE6 139 BRB 10$ 

If base register 0 contains the base address of your driver, the 
following XDELTA dialogue i s po s s i b 1 e : 

XO+D3,XO+E6!XO+D3/MOVB (Rl)+,RO 
XO+D6/BEQL XO+E8 
XO+D8/CMPB R0,#20 
XO+DB/BLSS XO+D3 
XO+DD/CMPB R0,#7A 
XO+El/BGTR XO+D3 
XO+E3/MOVB RO,(R2)+ 
XO+E6/BRB XO+D3 

To set breakpoints in driver code, give the command: 

XO + offset;B ~ 

To display a driver instruction and set a breakpoint, add the 
instruction's offset to the base register, for example: 

xo+1c1instruction • ;B ~ 

The last XDELTA command sets a breakpoint at the displayed location. 
See Section 15.10 for a detailed discussion of XDELTA commands. 

15.8 DESTROYING REGISTER CONTENTS 

Since the driver frequently calls VAX/VMS I/O routines, you must be 
careful to anticipate the register usage of these routines. Most 
VAX/VMS common I/O support routines use RO through R3 freely. A 
frequent driver bug is to load a value into R3 and expect to find it 
intact after a call to allocate or load UNIBUS adapter resources. 

15-8 



DEBUGGING A DEVICE DRIVER 

Other VAX/VMS I/O routines write into R4. In some cases, the use of 
R4 is obvious; for example, IOC$REQSCHANL writes the device's CRB 
address into R4. In other cases, you might not anticipate the use of 
R4. 

For example, EXE$IOFORK saves the calling code's R4 in a fork block, 
and then writes the device's IPL into R4. Since the normal flow of 
events is that an interrupt service routine restores a driver with a 
JSB instruction and the driver then calls EXE$IOFORK which returns to 
the interrupt service routine, the instructions following the JSB in 
the interrupt service routine can only assume R5 is still untouched. 
The coding sequence is as follows: 

MOVQ 
JSB 

UCB$L FR3(R5) ,R3 
@UCB$L_FPC(R5) 

Restore R3-R4. 
Restore the driver process. 

Between these instructions, the interrupt service routine can make no 
assumptions about the contents of RO through R4 

POPR 
REI 

#MA<RO,Rl,R2,R3,R4,R5> 

15.9 EXAMINING UCB, !RP, AND PSL 

Restore interrupt registers. 
Return from the interrupt. 

In addition to using XDELTA to debug drivers, you also can examine the 
contents of the unit control block and the associated I/O request 
packet. 

It also is useful to examine the contents of the PSL at the time of a 
system failure. The PSL, for example, indicates the IPL at the time. 
When the system fails it prints the PSL and other register contents on 
the console terminal. 

While the system is running, the following command can be used to 
examine the PSL in XDELTA: 

RF+4/ 

That is, the PSL location is stored in the longword following the PC. 

15.10 XDELTA COMMANDS 

Table 15-1 summarizes XDELTA commands. 
detail the commands. 

15-9 

The sections that follow 



DEBUGGING A DEVICE DRIVER 

Table 15-1: XDELTA Command Summary 

Command Function 

I 

<RET> 
<LF> 
<TAB> 
<ESC> 

+ 

space 
* 
@ 

% 

' Q 
Rn 
Xn 
Pn 
G 
H 

s 
0 

;P 
;B 
;E 
;G 
;X 
[B 
[W 
[L 
[I 
II 

'string' 

Open location {display contents in current mode) 
Open location {display contents as instructions) 
Close current location 
Close current location; open next 
Open location specified by current value 
Display previous location 
Display value of expression; set Q 
Add 
Subtract 
Add 
Multiply 
Shift 
Divide 
Field separator 
Last quantity displayed 
Register n 
Base register n 
Processor register n 
Add AX80000000 to subsequent or preceding value 
Add AX7FFEOOOO to subsequent or preceding value 
Current location 
Execute one instruction, step into subroutine call 
Execute one instruction, step over subroutine call 
{on CALLx, JSB, or BSBx) 
Proceed from breakpoint 
Set/clear/display breakpoint 
Execute command string 
Go to location and proceed 
Set base register 
Set byte mode 
Set word mode 
Set longword mode 
Set instruction mode 
Set ASCII mode 
Deposit string at current dot, autoincrementing dot. 
A single quote terminates a string; every <RET> and 
<LF> typed will be stored. 

15.10.1 Values and Expressions 

All numeric values are interpreted in hexadecimal radix. Expressions 
are strings of alternating values and binary operators, where the 
first and last items in the string are always values, as in the 
following example: 

G4A32 + 24 - • 

Trailing operators are ignored. 

15.10.2 Special Symbols 

XDELTA defines the following special symbols: 

Current location; set by slash {/), exclamation 
point{!) and TAB operations 

15-10 



Q 

XO~XF 

RO~RF 

PO~Pnn 

RF+4 

G 

H 

15.10.3 Operators 

DEBUGGING A DEVICE DRIVER 

Last quantity displayed 

Base registers; used for remembering values 

General register names 

Internal processor registers 

PSL 

AX80000000; prefix for system space addresses; 
for example, G2E is equivalent to AX8000002E 

AX7FFEOOOO; prefix for control region prefix; for 
example, H2E is equivalent to AX7FFE002E 

XDELTA recognizes the following operators: 

+ or space add 

negate, subtract 

* multiply 

% divide 

@ shift (arithmetic) 

Evaluation of expressions is left to right with no precedence. 

15.10.4 Open and Display Value Command 

Syntax 

address-expression/old-value [new-value-expression] 

Type an address expression followed by a slash (/) character. XDELTA 
displays the contents of the location (old-value above) followed by a 
space character. You can change the value at the location by typing a 
new value and then pressing RETURN. If you press RETURN without 
preceding it with a value, the old contents remain unchanged. 

The display and the value deposited default to longword hexadecimal 
values. The length can be changed to byte or word with the set mode 
commands. 

A slash preceded by a null address expression uses the displayed value 
(Q) as the address value. This feature is convenient for following 
address linked chains. 

address-expression/old-value /old-value /old-value 

15.10.5 Display Instruction Command 

Syntax 

address-expression!decoded-instruction 

15-11 



DEBUGGING A DEVICE DRIVER 

Type an address-expression followed by an exclamation point (!). 
XDELTA displays the contents of memory as a VAX-11 MACRO instruction 
starting with the address you specify. 

XDELTA does not make any distinction between reasonable • and 
unreasonable instructions or instruction streams; the decoding always 
begins at the specified address. The display instruction command does 
not allow you to modify the displayed location. The command sets a 
flag that causes subsequent close and display next or indirect 
location commands to perform instruction decoding. You can reset the 
flag with the open and display value command. 

Whenever an address appears as an instruction operand, XDELTA sets the 
last quantity displayed (Q) to that address. XDELTA changes Q only 
for operands that use program counter or branch displacement 
addressing modes; Q is not altered for literal and register 
addressing modes. This feature is useful for following branches, as 
shown below. 

address-expression!BRW address-2 !instruction-at-address-2 

15.10.6 Close and Display Next Location Command 

Syntax 

address/old-value 

Press LINE FEED. XDELTA closes the current open location, then opens 
and displays the value in the next location according to the current 
display mode. 

If instruction display is the current mode, XDELTA does not deposit a 
value in the open location. The next location is the first location 
after the instruction currently displayed. If value display is the 
current mode, you can deposit a value into the open location. In this 
case, the next location is the current location incremented by the 
current data width (byte, word, or longword). 

15.10.7 Display Range Command 

Syntax 

start-addr-expression,end-addr-expression/contents-of-start 

or 

start-addr-expression,end-addr-expression!contents-of-start 

Type two address expressions separated by a comma and followed by a 
slash (/) or exclamation point (!) character. XDELTA displays the 
range of addresses using the specified display mode (value or 
instruction). If you specify instruction display, XDELTA decodes one 
more more instructions. Otherwise, XDELTA displays the contents of 
each location in the current data type (byte, word, or longword). 

15-12 



DEBUGGING A DEVICE DRIVER 

15.10.8 Indirect Command 

Syntax 

@) 
address/old-value 

Press TAB. XDELTA uses the last quantity displayed (Q) as an address 
and displays that address and its contents using the current display 
mode. This command opens locations in the same way as the slash (/) 
and exclamation point (!) commands, but prints the information on a 
new line and displays the address value before showing the address's 
contents. 

15.10.9 Display Previous Location Command 

Syntax 

(@ 

address/old-value 

Press ESC. Unless the current display mode is instruction, XDELTA 
decreases the location counter by the current data width, and displays 
the contents of the resulting location using the current data width 
and type. This command is ignored in instruction display mode. · 

15~10.10 Show Value Command 

Syntax 

expression=value-of-expression 

Type an expression followed by an equal sign (=). The expression can 
be composed of a series of values and operators from the set of 
operators listed in the command summary. XDELTA shows the value of 
the expression according to the current display data type. The last 
quantity (Q) is set to the value of the computed expression. 

15.10.11 Step Instruction Command 

Syntax 

s 

Type an s. 
displays the 
instruction. 

XDELTA causes 
address of 

one 
the 

instruction to 
next instruction 

be executed, 
and decodes 

then 
that 

This command also sets a flag that causes subsequent close and display 
next or indirect location commands to perform instruction decoding. 
The open and display value command resets the flag. 

If the next instruction is BSBB, BSBW, JSB, CALLG, or CALLS, this 
command steps into the subroutine and displays the first instruction 
within the routine. 

15-13 



DEBUGGING A DEVICE DRIVER 

15.10.12 Step Instruction Over Subroutine Command 

Syntax 

0 

Type an o. 
displays the 
instruction. 

XDELTA causes 
address of 

one 
the 

instruction to 
next instruction 

be executed, 
and decodes 

then 
that 

This command also sets a flag that causes subsequent close and display 
next or indirect location commands to perform instruction decoding. 
The open and display value command resets the flag. 

If the next instruction is BSBB, BSBW, JSB, CALLG or CALLS, XDELTA 
executes the entire subroutine and displays the instruction that 
immediately follows the subroutine call; that is, this command steps 
over subroutines. 

15.10.13 Setting Breakpoints 

Syntax 

address-expression;B ~ 

Type an address followed by a semicolon (;) the letter B, then press 
RETURN. XDELTA sets a breakpoint at the specified location and 
assigns it the first available breakpoint number. 

Alternate syntax: 

address-expression,n;B ~ 

Type an address, followed by a comma, a single digit between 2 and 8, 
a semicolon (;), the letter B, and then press RETURN. XDELTA sets a 
breakpoint at the specified location and assigns it the specifi~d 
breakpoint number. Breakpoint 1 is reserved for INI$BRK. 

Before XDELTA executes the instruction as a breakpoint, it suspends 
normal instruction processing, sets a flag that causes subsequent 
close and display next or indirect location commands to perform 
instruction decoding, and displays the following message: 

n BRK at address 
address/decoded-instruction 

You may now enter XDELTA commands. 
controls instruction display mode 
value command. 

15.10.14 Clearing Breakpoints 

Syntax 

O,n;B ~ 

You 
by 

can reset the flag that 
issuing the open and display 

Type zero (0), followed by a comma, a single digit between 2 and 8, a 
semicolon (;), the letter B, and then press RETURN. XDELTA clears the 
specified breakpoint. Never clear breakpoint 1. 

15-14 



DEBUGGING A DEVICE DRIVER 

15.10.15 Displaying Breakpoint List 

Syntax 

;B ~ 

Type a semicolon (;) followed by the letter 
current setting of all breakpoints. For 
displays the following information: 

B. XDELTA shows the 
each breakpoint, XDELTA 

• Breakpoint number 

• Address at which the breakpoint is set 

• Display address (for complex breakpoints; 
15.10.19) 

• Command string address (for complex breakpoints) 

15~10.16 Setting Base Registers 

Syntax 

address-expression,n;X ~ 

see Section 

Type an expression followed by a comma (,),a single digit between 0 
and D (hexadecimal), a semicolon (;), and the letter X. XDELTA 
assigns the specified expression to the base register selected by n. 
XDELTA confirms that the base register is set by displaying the value 
deposited in the base register. 

Whenever XDELTA displays an address closely located to an address 
stored in a base register, XDELTA displays the base register 
identifier (Xn) followed by an offset that gives the address's 
location in relation to the address stored in the base register. For 
example, if base register 2 contains 800D046A and the address XDELTA 
needs to display is 800D052E, XDELTA displays X2+C4. XDELTA computes 
relative addresses for opened or displayed locations and addresses 
that are instruction operands. 

XDELTA displays an address in base register plus offset format to a 
distance of 800 (hex) from the base register. If the address falls 
outside this range, XDELTA displays it as a hexadecimal value. 
Sections 15.10.22 and 15.10.23 describe several predefined base 
registers. 

15.10.17 Proceeding from Breakpoints 

Syntax 

;P ~ 

Type a semicolon (;) followed by the letter P and then press RETURN. 
XDELTA continues executing at the current PC. 

15-15 



DEBUGGING A DEVICE DRIVER 

15.10.18 Loading PC and Continuing 

Syntax 

address-expression;G ~ 

Type an address, a semicolon, and G, then press RETURN. XDELTA loads 
the address into PC and continues executing at the new PC. 

15.10.19 Display Mode Control 

Syntax 

[B 
[W 
[L 
[I 

" 

Byte width 
Word width 
Longword width 
Instruction display (using longword width) 
ASCII display (using current width) 

Type a left square bracket ([) followed by one of the letters B, W, or 
L to change the current display width to byte, word, or longword 
respectively. The default value is longword. The setting remains in 
effect until another display mode control command is given. For 
example, the following command displays the least significant byte 
contained at the specified address and deposits the new value to that 
byte only. 

address-expression [B/ old-value new-value 

Type a left square bracket ([) followed by the letter I to change the 
current display mode to instruction format. This command is 
equivalent to the exclamation point (!) command and, similarly, is 
canceled by typing a slash (/) or a double quotation mark ("). 
Instruction mode sets display mode storage units to longword values. 
For an example of instruction display, see Section 15.10.5. 

You can display contents of memory locations in ASCII characters by 
typing an address expression followed by a double quotation mark ("). 

address-expression" old-value-in-ASCII 

Pressing LINE FEED displays the next location in ASCII. 

The display mode remains set to ASCII until the next slash (/) or 
exclamation point (!) command. At this point, the display mode 
reverts to hexadecimal. Width remains unchanged. 

15.10.20 The EXECUTE STRING Command 

Syntax 

address-expression;E ~ 

Type an address expression followed by a semicolon, the letter E, then 
press RETURN. This command executes the ASCII commands found at the 
specified address expression. If you terminate the ASCII commands 
with a semicolon followed by the letter P, XDELTA will proceed with 
program execution. If you terminate the string with null (1 byte of 
0), XDELTA waits for a new command. 

15-16 



DEBUGGING A DEVICE DRIVER 

To create command strings, open the address of the start of the string 
and deposit ASCII text as follows: 

address/old-contents 'XDELTA-command' ~ 

You can use any XDELTA command, including RETURN, LINE FEED, and TAB. 

To terminate the string with a null, follow the above command with: 

./old-contents O ~ 

You can deposit command strings into nonpaged system patch space. To 
determine the size of patch space and its starting address, locate the 
symbol PAT$A NONPGD in the system map file (SYS$SYSTEM:SYS.MAP). This 
symbol contains a descriptor of the address and size of patch space 
remaining in the system, as shown below: 

PAT$A NONPGD:: 

.LONG 

.LONG 
size-in-bytes 
patch-space-start-address 

You can also preassemble command strings with your experimental 
driver. Locate the addresses of these strings as you would any other 
address within your driver. 

15.10.21 Setting Complex Breakpoints 

Syntax 

address-expression,n,display-addr-expression,command-string-address;B ~ 

Type an address expression, followed by a comma, a single digit 
between 2 and 8, another address expression, and the address of a 
command string. The first address is the breakpoint address; the 
digit equals the breakpoint number. XDELTA shows the contents of the 
display address in the current display mode when the breakpoint is 
reached. The command string address specified in the last command 
parameter executes after automatic display. 

15.10.22 XDELTA Stored Commands 

XDELTA contains two predefined command strings whose addresses are 
contained in base registers XE and XF. You can use these commands 
during general system debugging as well as driver debugging; they 
perform the following functions: 

XE Use the value of base register XO as a page frame number 
and display the PFN data base for that page. 

XF Set base register XO to the value (PFN) in RO and perform 
the same function as XE. 

You must initialize the 
registers they use (X6-XD). 

XE;E ~ 
XF;E ~ 

stored commands to set the 
Issue the following commands: 

15-17 

relocation 



DEBUGGING A DEVICE DRIVER 

Now you can use the stored commands to obtain the 
information about a page frame number: 

• Specified physical page number (PFN) 

• PFN state 

• PFN type 

• PFN reference count 

• PFN backward link/working set list index 

• PFN forward link/share count 

• Page table entry (PTE) pointer to PFN 

• PFN backing store address 

• Virtual block number in process swap image 

15.10.23 Stored Base Registers 

following 

XDELTA defines two base registers useful in system debugging: X4 and 
XS. Base register X4 corresponds to the global symbol SCH$GL CURPCB. 
This symbol contains the address of the current process's software 
process control block (PCB). Base register XS corresponds to the 
global symbol SCH$GL PCBVEC, which contains the starting address of 
the list of PCB slots. 

15.11 DELTA 

DELTA is a debugging tool that can be linked with a user program to 
examine that program's execution. To link and run DELTA, issue the 
following commands: 

$ LINK program-name 
$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA 
$ RUN/DEBUG program-name 

DELTA accepts all the XDELTA commands, plus two additional commands 
described in the following sections. 

15.11.1 The EXIT Command 

Syntax 

EXIT ~ 

Typing EXIT causes DELTA to return control to the command interpreter. 

15.11.2 Examining and Modifying Locations in Process Space 

Syntax 

process_id:address_expression/old_contents 

15-18 



DEBUGGING A DEVICE DRIVER 

DELTA displays the current contents at the specified address 
expression within the specified process. The modify flag controls the 
ability to modify locations opened by this command. To examine the 
flag, type: 

;M ~ 

Modify access is inhibited by default (M=O}. 

To open, examine and change a location, type the commands: 

l;M ~ 
process_id:address_expression/old_contents new contents 

15.12 GUIDELINES FOR DEBUGGING DEVICE DRIVERS 

The following sections discuss errors commonly made during debugging 
sessions and describe additional debugging techniques. 

15.12.1 References to System Addresses 

References by drivers to system addresses within the executive must 
use general addressing (G~) mode. For example, use 

15.12.2 Opening Device Registers in XDELTA 

References to 16-bit device registers must be word instructions; 
references to 8-bit device registers must be byte instructions. These 
restrictions apply to the XDELTA EXAMINE command; therefore, be sure 
to set the correct mode control before examining device registers. 
For example, if the address of the device CSR is in R4, give the 
following command: 

R4/csr_address [W/csr_contents 

15.12.3 Incorrect References to Device Registers 

A common driver error is to access a nonexistent device register or to 
access the correct register with an instruction of incorrect word 
length. On VAX-11 processors that use direct vector interrupts, these 
references cause a fatal machine check exception. On VAX-11 
processors using nondirect vector interrupts, these references cause a 
UNIBUS adapter error interrupt. The system logs the adapter error and 
continues. When debugging a device driver, it is a good idea to catch 
this type of driver error as early as possible. Set an XDELTA 
breakpoint at the place in the system where it detected a UNIBUS 
adapter error interrupt. Follow the steps outlined below: 

• Consult the system map file. Read the value of EXE$DW780 INT. 

• Enter XDELTA and set a breakpoint at the address of 
EXE$DW780 INT. When a UNIBUS adapter error interrupt occurs, 
XDELTA executes the breakpoint at EXE$DW780_INT. 

15-19 



DEBUGGING A DEVICE DRIVER 

• Examine the stack as follows: 

RE/current stack pointer/saved R2 @ 
- - saved-R3 @ 

saved-R4 @ 
saved-RS @ 
saved-PC (i] 

saved-PSL 

In many cases, the saved PC on the stack is the address of the 
instruction that caused the error. In other cases (for example, when 
the offending instruction is executed at IPL 31), the saved PC is not 
the address of this instruction but an address some number of 
instructions later, when the system actually services the interrupt. 

15.12.4 XDELTA and System Failures 

Driver errors can cause the operating system to 
such a way that you cannot invoke XDELTA. 
recourse is to induce a system failure. 
described in the VAX/VMS System Dump Analyzer 
system will signal a fatal bugchecX-:--

suspend activity in 
In this case, the only 
Follow the procedure 
Reference Manual; the 

To gain control in XDELTA following a fatal bugcheck, stop in SYSBOOT 
while initializing the system and set the BUGREBOOT parameter to zero. 
The system will stop in XDELTA, thereby allowing you to examine the 
device unit control block and other driver data to determine the 
driver error. 

Another, more thorough, way to determine the cause of a system failure 
is to leave the BUGREBOOT parameter set to 1, allow the system to 
reboot, and then invoke the System Dump Analyzer (SDA) to examine the 
condition of the I/O data structures at the time of the fatal 
bugcheck. The VAX/VMS System Dump Analyzer Reference Manual provides 
detailed information on fatal bugcheck stack format and how SDA can 
help debug a device driver. 

15-20 



PART III 
APPENDIXES 





The I/O data base 
nonpaged system 
information: 

APPENDIX A 

THE I/O DATA BASE 

is a collection of 
memory. This data 

control blocks 
base provides 

allocated in 
the following 

• I/O request packets describing in-progress I/O requests 

• Device characteristics of each device type 

• Number and type of each device unit 

• Current activity on each device unit 

• External entry points to all device drivers 

• Entry points for controller and device unit initialization 
routines 

• Interrupt vector dispatch code 

• Addresses of device registers 

• UNIBUS adapter data path bit map 

Much of this I/O data base is created and used only by VAX/VMS 
routines. Other parts are the primary source of data for the device 
drivers. The sections that follow identify all I/O data base control 
blocks and describe their fields. Field descriptions are in the order 
in which they appear in the control blocks. Driver code must consider 
fields flagged with asterisks (*) as read-only fields. Fields marked 
by "spare" or "unused" are reserved for future use by DIGITAL unless 
otherwise specified. 

A.l CONFIGURATION CONTROL BLOCK (ACF) 

The configuration control block is used by the SYSGEN 
autoconfiguration facility to describe the device it is adding to the 
system. Device drivers may gain access to this data structure only if 
they have specified a unit-delivery routine in the driver prologue 
table and only when that routine is executing. Under certain 
conditions, the information stored in the configuration control block 
may be useful to a unit-delivery routine. 

The fields described in the configuration control 
illustrated in Figure A-1 and described in Table A-1. 

A-1 

block are 



THE I/O DATA BASE 

ACF$L_ADAPTER* 

ACF$L_CONFIGREG* 

ACF$B_AFLAG* I ACF$B_UNIT* l ACF$W_AVECTOR* 

ACF$L_CONTRLREG* 

ACF$B_NUMUNIT* I ACF$B_CUNIT* I ACF$W_CVECTOR* 

ACF$L_DEVNAM E* 

ACF$L_DRVNAM E* 

unused I ACF$B_CNUMVEC* l ACF$W_MAXUNITS* 

ACF$L_DLVR_SCRH 

ZK-592-81 

Figure A-1: Configuration Control Block 

Table A-1: Contents of the Configuration Control Block 

Field Name Contents 

ACF$L ADAPTER* 

ACF$L CONFIGREG* 

ACF$W AVECTOR* 

ACF$B AUNIT* 

ACF$B AFLAG* 

Address of the adapter control block 
adapter currently being configured. 

for the 

Address of the configuration register 
adapter currently being configured. 

for the 

Offset from the base of the system control block 
(SCB) to the interrupt vector of the adapter 
currently being configured. 

Adapter unit number of the device or controller 
currently being configured. 

Flags associated with the automatic 
configuration operation. Flags defined in this 
field include the following: 

ACF$V RELOAD 

ACF$V CRBBLT 

ACF$V SCBVEC 

Reloading driver code 

CRB and IDB for this 
device already built 

CVECTOR is an offset into 
the SCB 

ACF$V_NOLOAD_DB Do not load I/O data base, 
only load driver 

ACF$V SUPPORT VAX/VMS supported device 

(continued on next page) 

A-2 



THE I/O DATA BASE 

Table A-1 (Cont.): Contents of the Configuration Control Block 

Field Name Contents 

ACF$L_CONTROLREG* Address of control/status for the controller 
currently being configured 

ACF$W CVECTOR* 

ACF$B CUNIT* 

ACF$B NUMUNIT* 

ACF$L DEVNAME* 

ACF$L DRVNAME* 

ACF$W MAXUNITS* 

ACF$BCNUMVEC* 

ACF$L DLVR SCRH - -

Offset in the adapter control block vector table 
to the longword that contains the transfer 
address of the interrupt vector used by the 
controller currently being configured (if 
ACF$V SCBVEC is not set). If ACF$V SCBVEC is 
set, -this field is the offset from tne SCB base 
to the interrupt vector of the controller 
currently being configured. 

Unit number of the device currently being 
configured. 

Number of units to be configured for the 
controller currently being configured. 

Address of a counted ASCII string that gives the 
name of the controller currently being 
configured. 

Address of a counted ASCII string that gives the 
driver name for the controller currently being 
configured. 

Maximum number of units that can be connected to 
the controller currently being configured. 

Number of interrupt vectors to configure for the 
controller currently being configured. 

Field available for use by the unit delivery 
routine. SYSGEN never alters this field. 

A.2 ADAPTER CONTROL BLOCK (ADP) 

Each MASSBUS and UNIBUS adapter configured in the system is 
represented to VAX/VMS and driver routines by an adapter control 
block. The adapter control block stores adapter-specific static and 
dynamic data such as the adapter CSR address and map register wait 
queues. 

The fields of the ADP for a UNIBUS adapter are illustrated in Figure 
A-2 and described in Table A-2. 

A-3 



THE I/O DATA BASE 

ADP$L_CSR* 

ADP$L_LINK* 

ADP$B_N-UMBER* I ADP$8_ TYPE* ADP$W_SIZE* 

ADP$W_ADPTYPE* ADP$W_TR* 

ADP$L_VECTOR* 

ADP$L_DPQFL * 

ADP$L_DPQBL * 

ADP$L_MRQFL * 

ADP$L_MRQBL * 

v 
* 

v 
ADP$L_INTD (3 longwords) 

ADP$L_UBASCB* (4 longwords) 

ADP$L_UBASPTE* (2 longwords) 

ADP$L_M RAC TM DRS* 

ADP$W_MRNFENCE* 1 ADP$W_DPBITMAP* 

ADP$W_MRNREGARY* (124 words) 

ADP$W_MRFREGARY* ADP$W_MRFFENCE* 

124 words 

ADP$W_UMR_DIS* 

ZK-931-82 

Figure A-2: Adapter Control Block 

Table A-2: Contents of Adapter Control Block 

Field Name Contents 

ADP$L CSR* 

ADP$L LINK* 

ADP$W SIZE* 

Virtual address 
register • The 
field. 

of 
CPU 

the adapter configuration 
initialization sets this 

The configuration register marks the base of 
adapter register space, an area that contains 
data path registers, map registers, or any other 
registers appropriate to the implementation of 
the adapter. 

Address of next ADP. The CPU initialization 
routine writes this field. A value of 0 
indicates that this is the last ADP. 

Size of the ADP control block. The CPU 
initialization routine writes this field when 
the routine creates the ADP. For the UNIBUS 
adapter, this includes the UNIBUS interrupt 
service code and device vector table. 

(continued on next page) 

A-4 



THE I/O DATA BASE 

Table A-2 (Cont.): Contents of Adapter Control Block 

Field Name Contents 

ADP$B TYPE* 

ADP$B NUMBER* 

ADP$W TR* 

ADP$W ADPTYPE* 

ADP$L VECTOR* 

Type of control block. The CPU initialization 
routine writes the symbolic constant DYN$C ADP 
into this field when the routine creates -the 
ADP. 

Number of this type of adapter (for example, the 
number for a third MASSBUS adapter is 2). The 
CPU initialization routine writes this field 
when the routine creates the ADP. 

Nexus number of the adapter. The CPU 
initialization routine writes this field when 
the routine creates the ADP. The driver loading 
procedure compares the nexus number specified in 
a CONNECT command with this field of each ADP in 
the system to determine to which adapter a 
device is attached. 

Type of adapter. The CPU initialization routine 
writes. the symbolic constant AT$ UBA into this 
field when the routine creates an ADP for a 
UNIBUS adapter. AT$_MBA is the type code for a 
MASSBUS adapter. 

Address of vector table. The table is 512 bytes 
of longword vectors that correspond to UNIBUS 
device interrupt vectors (0-%0777). 

On VAX-11 processors that handle direct vector 
interrupts, ADP$L VECTOR points to the second 
(or third) page of the system control block 
(SCB). The CPU uses this page when it 
dispatches the device interrupt to the driver 
interrupt service routine. Each vector entry 
that corresponds to a vector in use contains the 
address of the controller's interrupt dispatcher 
(CRB$L_INTD}. 

On VAX-11 processors that handle nondirect 
vector interrupts, ADP$L VECTOR points to a page 
allocated from nonpaged pool. Each longword in 
the page that corresponds to a vector in use 
contains the address of the controller's 
interrupt dispatcher (CRB$L INTD+2). When the 
UNIBUS adapter interrupts on behalf of a UNIBUS 
device, the UNIBUS adapter interrupt service 
routine saves RO through RS, determines the 
vector address of the interrupting device, 
indexes into the vector table, and executes the 
instruction at CRB$L INTD+2. 

For both types of VAX-11 processor, vector table 
entries that correspond to unused vectors 
contain the address of a UNIBUS adapter 
unexpected interrupt service routine. 

(continued on next page) 

A-5 



THE I/O DATA BASE 

Table A-2 (Cont.): Contents of Adapter Control Block 

Field Name Contents 

ADP$L_DPQFL* 

ADP$L_DPQBL* 

ADP$L_MRQFL* 

ADP$L_MRQBL* 

ADP$L INTO* 

ADP$L UBASCB* 

Data path wait queue forward link. IOC$REQDATAP 
and IOC$RELDATAP read and write this field. 
When a driver fork process requests a buffered 
data path and none is currently available, 
IOC$REQDATAP saves driver context in the 
device's UCB fork block, inserts the fork block 
address in the data path wait queue, and 
suspends the driver fork process. 

When another driver calls IOC$RELDATAP to 
release a buffered data path, the routine 
dequeues a UCB fork block address from the data 
path wait queue, allocates a data path to the 
driver, and reactivates that driver fork 
process. 

Data path 
IOC$REQDATAP 
this field. 

wait 
and 

queue backward link. 
IOC$RELDATAP read and write 

Map register wait queue forward link. 
IOC$REQMAPREG and IOC$RELMAPREG read and write 
these fields. When a driver fork process 
requests a set of map registers and the set is 
not currently available, IOC$REQMAPREG saves 
driver fork context in the device's UCB fork 
block, inserts the fork block address in the map 
register wait queue, and suspends the driver 
fork process. 

When another driver calls IOC$RELMAPREG to 
release a set of map registers, the routine 
dequeues a UCB fork block address from the map 
register wait queue, allocates the requested set 
of map registers to the driver, and reactivates 
that driver fork process. 

Map register 
IOC$REQMAPREG 
this field. 

wait queue backward link. 
and IOC$RELMAPREG read and write 

Interrupt transfer vector. When a device 
attached to the UNIBUS adapter requests a 
hardware interrupt, the processor transfers 
control to the ADP$L INTO field of the UNIBUS 
adapter's control block. The field contains 
code that dispatches the interrupt to the proper 
driver interrupt service routine. The interrupt 
transfer vector is only used for UNIBUS adapters 
that directly generate interrupts. 

Series of four longwords that contain system 
control block entry values, one for each bus 
request (BR) level or interrupt vector. The 
UNIBUS adapter power failure recovery procedure 
uses these values. 

(continued on next page) 

A-6 



THE I/O DATA BASE 

Table A-2 (Cont.): Contents of Adapter Control Block 

Field Name Contents 

ADP$L UCBSPTE* 

ADP$L MRACTMDRS* 

ADP$W DPBITMAP* 

ADP$W MRNFENCE* 

Page table entry values for the base of UNIBUS 
adapter register space and the base of UNIBUS 
I/O register space. These values are used 
during UNIBUS adapter power failure recovery. 

The number of active map register descriptors in 
the arrays pointed to by ADP$L MRNREARY and 
ADP$L MRFREGARY. IOC$REQMAPREG and 
IOC$RELMAPREG use these fields when allocating 
and deallocating UNIBUS map registers. 

Data path allocation bit map. IOC$REQDATAP and 
IOC$RELDATAP read and write this field. The CPU 
initialization routine sets the bit map to show 
as available all the buffered data paths 
supported by the UNIBUS adapter. 

The state of each of the available buffered data 
paths (whether in use or available) is recorded 
in the data path allocation bit map. One data 
path corresponds to each bit in the field. If a 
bit is clear, the related data path is currently 
allocated to a driver fork process. 

Contains negative one. 
boundary marker for 
ADP$L MRNREGARY. 

This field 
the array 

acts as 
specified 

a 
by 

ADP$W MRNREGARY* Map register "number of registers" array of 124 
words. The number of words, or cells, that are 
active in this array is contained in 
ADP$L MRACTMDRS. Each active cell gives a 
number of free map registers. For each active 
cell in this array, there is a corresponding 
first free map register number in the array 
specified by ADP$W MRFREGARY. Together, these 
values give the base-map register and number of 
free map registers for a block of free map 
registers. This information is used to allocate 
and deallocate UNIBUS map registers. 

ADP$W MRFFENCE* Word that contains negative one. 
acts as a boundary marker for 
specified by ADP$W_MRFREGARY. 

This 
the 

field 
array 

ADP$W MRFREGARY* Map register "first register" array of 124 
words. The number of currently active cells in 
this array is contained in ADP$L MRACTMDRS. 
Each active cell gives a number of the first 
free map register within a block of free map 
registers. For each active cell in this array, 
there is a corresponding cell in the number of 
registers array that gives a number of free map 
registers. Together, these values give the base 
map register and number of free map registers 
f o r a b 1 o c k o f fr e e map r eg i st er s • Th i s 
information is used to allocate and deallocate 
UNIBUS map registers. 

(continued on next page) 

A-7 



THE I/O DATA BASE 

Table A-2 (Cont.): Contents of Adapter Control Block 

Field Name Contents 

ADP$W UMR DIS* The number of disabled map registers. During 
- system initialization, some map registers may be 

disabled so that their corresponding UNIBUS 
addresses can be accessed directly through 
backplane interconnect physical addresses. 

A.3 CHANNEL CONTROL BLOCK (CCB) 

When a process assigns an I/O channel to a device unit with the Assign 
I/O Channel system service, EXE$ASSIGN locates a free block among the 
process's preallocated channel control blocks. EXE$ASSIGN then writes 
a description of the device attached to the channel in the CCB. 

The fields of a channel control block are illustrated in Figure A-3 
and described in Table A-3. 

CCB$L_UCB* 

CCB$L_WIND* 

CCB$W_IOC* I CCB$B_AMOD* l CCB$B_STS* 

CCB$L_DIRP 

ZK-932-82 

Figure A-3: Channel Control Block 

Table A-3: Contents of Channel Control Block 

Field Name Contents 

CCB$L UCB* 

CCB$L WIND* 

CCB$B STS* 

Address of the unit control block of the 
assigned device unit. EXE$ASSIGN writes a value 
into this field. EXE$QIO reads this field to 
determine that the I/O request specifies a 
process I/O channel assigned to a device and to 
obtain the device's UCB address. 

Address of a window control block (WCB) for a 
file-structured device assignment. This field 
is written by an ACP and read by EXE$QIO. 

A file-structured device's ACP creates a window 
control block when a process accesses a file on 
a device assigned to a process channel. The 
window control block maps the virtual block 
numbers of the file to a series of physical 
locations on the device. 

Channel status. 

(continued on next page) 

A-8 



THE I/O DATA BASE 

Table A-3 (Cont.): Contents of Channel Control Block 

Field Name Contents 

CCB$B AMOD* 

CCB$W IOC* 

CCB$L DIRP* 

Access mode plus 1 of the process at the time of 
the channel assignment. EXE$ASSIGN writes the 
process access mode value into this field. 

Number of outstanding I/O requests on the 
channel. EXE$QIO increases this field when it 
begins to process an I/O request that specifies 
the channel. During I/O postprocessing, the 
kernel mode AST routine decrements this field. 
Some FDT routines and EXE$DEASSIGN read this 
field. 

Address of deaccess I/O request packet. A 
number of outstanding I/O requests can be 
pending on the same process I/O channel at one 
time. If the process that owns the channel 
issues an I/O request to deaccess the device, 
EXE$QIO holds the deaccess request until all 
other outstanding I/O requests are processed. 

A.4 CHANNEL REQUEST BLOCK {CRB) 

The activity of each controller in a configuration is described in a 
channel request block. This control block contains pointers to the 
wait queue of drivers ready to gain access to a device through the 
controller. It also stores the entry points to the driver's interrupt 
service routines and device/controller initialization routines. 

The fields of the channel request block are illustrated in Figure A-4 
and described in Table A-4. 

CRB$L_WQFL * 

CRB$L_WQBL* -

unused CRB$8_ TYPE* CR8$W_SIZE* 

unused CR8$8_MASK* CRB$W_REFC* 

CRB$L_AUXSTRUC* 

CR8$L_ TIMELINK* 

CRB$L_DUETIME* 

CRB$L_ TOUTROUT* 

CR8$L_LINK* 

CR8$L_INTD* (nine longwords) 

CR8$L_INTD2* (nine longwords) 

• • • 
ZK-589-81 

Figure A-4: Channel Request Block 

A-9 



THE I/O DATA BASE 

Table A-4: Contents of Channel Request Block 

Field Name Contents 

CRB$L WQFL* 

CRB$L WQBL* 

CRB$W SIZE* 

CRB$B TYPE* 

CRB$W REFC* 

CRB$B MASK* 

CRB$L AUXSTRUC* 

Controller data channel wait queue forward link. 
_ IOC$REQxCHANx and IOC$RELxCHAN insert and remove 
driver fork block addresses in this field. 

A channel wait queue contains addresses of 
driver fork blocks that record the context of 
suspended drivers waiting to gain control of a 
controller data channel. If a channel is busy 
when a driver requests access to the channel, 
IOC$REQxCHANx suspends the driver by saving the 
driver's context in the device's UCB fork block 
and inserting the fork block address in the 
channel wait queue. 

When a driver releases a channel because an I/O 
operation no longer needs the channel, 
IOC$RELxCHAN dequeues a driver fork block, 
allocates the channel to the driver, and 
reactivates the suspended driver fork process. 
If no drivers are awaiting the channel, 
IOC$RELxCHAN clears the channel busy bit. 

Controller channel 
IOC$REQxCHANx and 
this field. 

wait queue 
IOC$RELxCHAN 

backward link. 
read and write 

Size of the CRB. The driver loading procedure 
writes this field when the procedure creates the 
CRB. 

Type of control block. The driver loading 
procedure writes the symbolic constant DYN$C CRB 
into this field when the procedure creates -the 
CRB. 

Unit control block reference count. The driver 
loading procedure increases the value in this 
field each time the procedure creates a UCB for 
a device attached to the controller. 

Mask that describes the status of the 
controller. At present, only one bit, 
CRB$V BSY, is defined in this field. 
IOC$REQxCHANx reads the busy bit to determine 
whether the controller is free and sets this bit 
when it allocates the controller data channel to 
a driver. IOC$RELxCHAN clears the busy bit if 
no driver is waiting to acquire the channel. 

Address of an auxiliary data structure that the 
device driver uses to store special controller 
information. A device driver that wishes to use 
this field can contain a controller 
initialization routine that allocates a block of 
nonpaged dynamic memory and sets this field to 
point to it. Use of this field is reserved to 
DIGITAL. 

(continued on next page) 

A-10 



THE I/O DATA BASE 

Table A-4 (Cont.): Contents of Channel Request Block 

Field Name Contents 

CRB$L TIMELINK* 

CRB$L DUETIME* 

CRB$L TOUTROUT* 

CRB$L LINK* 

CRB$L INTD* 

Forward link in a queue of channel request 
blocks waiting for periodic wakeups. This field 
points to the CRB$L TIMELINK field of the next 
CRB in the list. The CRB$L TIMELINK field of 
the last CRB in the list contains zero. The 
listhead for this queue is IOC$GL CRBTMOUT. Use 
of this field is reserved to DIGITAL. 

The time in seconds, relative to EXE$GL ABSTIM, 
that the next periodic wakeup associated with 
this channel request block is to be delivered. 
Compute this value by raising IPL to IPL$ POWER, 
adding the desired number of seconds to the 
contents of EXE$GL ABSTIM, and storing the 
result in this field.- Use of this field is 
reserved to DIGITAL. 

The address of a routine to be called when the 
periodic wakeup associated with this CRB becomes 
due. The routine must compute and reset the 
value in CRB$L DUETIME if another periodic 
wakeup request is-desired. Use of this field is 
reserved to DIGITAL. 

Address of secondary CRB (for MASSBUS devices 
only). This field is written by the driver 
loading procedure and read by IOC$REQSCHANx and 
IOC$RELSCHAN. 

Interrupt transfer vector. The driver prologue 
table in every driver for an interrupting device 
specifies the address of a driver interrupt 
service routine. The driver loading procedure 
writes two instructions in this field: 

PUS HR 
JSB 

#~M<RO,Rl,R2,R3,R4,RS> 
@#~driver isr address 

- -
Direct vector UNIBUS adapters transfer control 
to CRB$L INTD, which causes the processor to 
execute tlie PUSHR instruction to save RO through 
RS on the stack. Next, the processor executes 
the JSB instruction to transfer control to the 
driver interrupt service routine. 

On nondirect vector UNIBUS adapters, the UNIBUS 
adapter interrupt service routine transfers 
control to CRB$L INTD+2, which contains the JSB 
instruction to -the driver interrupt service 
routine. Since the UNIBUS adapter service 
routine has already saved RO through RS, the 
PUSHR instruction is bypassed. 

The CRB$L INTD field is nine longwords long. 
Figure A=s and Table A-S describe the contents 
of the rest of block. 

(continued on next page) 

A-11 



THE I/O DATA BASE 

Table A-4 (Cont.): Contents of Channel Request Block 

Field Name Contents 

CRB$L INTD2* Second interrupt transfer vector for devices 
with multiple interrupt vectors. If the driver 
prologue table in a device driver specifies the 
address of a second driver interrupt service 
routine, the driver loading procedure creates a 
CRB long enough to contain two INTDx fields of 
nine longwords each. 

The first two longwords of the CRB$L INTD2 field 
contain a PUSHR and JSB instruction to the 
second driver interrupt service routine. There 
are as many interrupt transfer vector blocks as 
there are device vectors. The number of device 
vectors is determined by the value specified in 
the /NUMVEC= qualifier to the SYSGEN command 
CONNECT. 

The interrupt transfer vector blocks contained in the CRB store 
executable code, driver entry points, and UNIBUS adapter 
information. The fields of the CRB$L INTD block are illustrated in 
Figure A-5 and described in Table A-5~ 

VEC$Q_OISPATCH* 

VEC$L_fOB* 

VEC$L_INITIAL * 

VEC$B_DATAPAT~ VEC$B_NUMREG l VEC$W_MAPREG 

VEC$L_ADP* 

VEC$L_UNITINIT* 

spare longword 

spare longword 

ZK-933-82 

Figure A-5: Contents of CRB$L INTO 

Table A-5: Fields of CRB$L INTO 

Field Name Contents 

VEC$Q DISPATCH* Contains the two interrupt dispatching 
instructions described above in the CRB$L INTD 
field. This field is written by the driver 
loading procedure. 

(continued on next page) 

A-12 



THE I/O DATA BASE 

Table A-5 (Cont.): Fields of CRB$L INTO 

Field Name Contents 

VEC$L IDB* 

VEC$L INITIAL* 

VEC$W MAPREG 

VEC$B NUMREG 

VEC$B DATAPATH 

Address of the interrupt dispatch block for the 
controller. The driver loading procedure 
creates an IDB for each CRB and loads the 
address of the IDB in this field. Device 
drivers use the IDB address to obtain the 
virtual addresses of device registers. 

When a driver interrupt service routine ~ains 
control, the top of the stack contains a pointer 
to this field. 

Address of the controller initialization 
routine. If a device controller requires 
initialization at driver loading time and during 
recovery from a power failure, the driver 
specifies a value for this field in the driver 
prologue table. 

The driver loading procedure calls this routine 
each time the procedure loads the driver. The 
VAX/VMS powerfail recovery procedure also calls 
this routine to initialize a controller after a 
power f ai 1 ure. 

Number of the first UNIBUS adapter map register 
allocated to the driver that owns the controller 
data channel. IOC$REQMAPREG writes this field 
when the routine allocates a set of map 
registers to a driver fork process for a DMA 
transfer. IOC$RELMAPREG reads the field to 
deallocate a set of map registers. If the high 
bit (VEC$V MAPLOCK) of this field is set, the 
map register set is permanently allocated. 

Device drivers read this field to calculate the 
starting address of a UNIBUS transfer. 

Number of UNIBUS adapter map registers allocated 
to a driver. IOC$REQMAPREG writes this field 
when the routine allocates a set of map 
registers. IOC$RELMAPREG reads this field to 
deallocate a set of map registers. 

The data path specifier. The bits that make up 
this field are used as follows: 

0 ~ 4 The number of the data path 
used in a DMA transfer. 
The routine IOC$REQDATAP 
sets this field when a 
buffered data path is 
allocated and clears the 
field when the data path is 
released. 

(continued on next page) 

A-13 



THE I/O DATA BASE 

Table A-5 (Cont.): Fields of CRB$L INTD 

Field Name Contents 

VEC$B DATAPATH 
(Cont~) 

VEC$L ADP* 

VEC$L UNITINIT* 

0 ~ 4 
(Cont.) 

VEC$V LWAE 

6 

VEC$V PATHLOCK 

The routine IOC$LOADUBAMAP 
copies the contents of this 
field into the UNIBUS 
adapter map registers. 
These bits also serve as 
implicit input to the 
IOC$PURGDATAP routine. 

Longword access enable 
(LWAE) bit. Drivers set 
this bit when they wish to 
limit the data path to 
longword-aligned random 
access mode. The routine 
IOC$LOADUBAMAP copies the 
value in this field to the 
UNIBUS adapter map 
registers. 

Reserv~d to DIGITAL. 

Buffered data path 
indicator. 

this bit to 
the buffered 
permanently 

allocation 
Drivers set 
specify that 
data path is 
allocated. 

Address of the UNIBUS adapter control block 
(ADP). The SYSGEN command CONNECT must specify 
the nexus number of the UNIBUS adapter used by a 
controller. The driver loading procedure writes 
the address of the ADP for the specified UBA 
into the VEC$L ADP field. 

IOC$REQMAPREG and IOC$RELMAPREG read and write 
fields in the ADP to allocate and deallocate 
UNIBUS adapter map registers. 

Address of the device unit initialization 
routine. If a device unit requires 
initialization at driver loading time and during 
recovery from a power failure, the driver 
specifies a value for this field in the driver 
prologue table. 

The driver loading procedure calls this routine 
for each device unit each time the procedure 
loads the driver. The VAX/VMS powerfail 
recovery procedure also calls this routine to 
initialize device units after a power failure. 

MASSBUS drivers that support mixed device types 
must not use this field. Instead, they should 
specify unit initialization in the 
(DDT$L UNITINIT) unit initialization field of 
the drTver dispatch table. Other drivers may 
use either field. 

A-14 



THE I/O DATA BASE 

A.5 DEVICE DATA BLOCK (DOB) 

The device data block is a variable-length block that identifies the 
generic device/controller name and driver name for a set of devices 
attached to a single controller. The driver loading procedure creates 
a device data block for each controller during autoconfiguration at 
system startup and dynamically creates additional device data blocks 
for new controllers as they are added to the system using the SYSGEN 
command CONNECT. The procedure initializes all fields in the device 
data block. All the device data blocks in the I/O data base are 
linked together in a single-linked list. The contents of 
IOC$GL_DEVLIST points to the first entry in the list. 

VAX/VMS routines and device drivers refer to the device data block. 

Fields of the device data block are illustrated in Figure A-6 and 
described in Table A-6. 

008$L_LINK * 

008$L_UC8* 

unused 1 008$8_ TYPE* J 008$W_SIZE * 

008$L_OOT 

008$L_ACPO 

/' v 
008$T_NAME (up to 15characters)* 

008$T _ORVNAME (up to 15 characters)* 1 
ZK-934-82 

Figure A-6: Device Data Block 

Table A-6: Contents of Device Data Block 

Field Name Contents 

DDB$L LINK* Address of the next DDB. A zero indicates that 
-

this is the last DDB in the DDB chain. 

DDB$L UCB* Address of the unit control block for the first 
-

unit attached to the controller. 

DDB$W SIZE* Size of the DDB. 

DDB$B TYPE* Type of control block. The driver loading 
- procedure writes the constant DYN$C DDB into 

this field when the procedure creates the DDB. 

DDB$L DDT Address of the driver dispatch table. VAX/VMS 
-

can transfer control to a device driver only 
through addresses listed in the DDT, the CRB, 
and the UCB fork block. The driver prologue 
table of every device driver must specify a 
value for this field. 

(continued on next page) 

A-15 



THE I/O DATA BASE 

Table A-6 (Cont.): Contents of Device Data Block 

Field Name Contents 

DDB$L ACPD 

DDB$T NAME* 

DDB$T DRVNAME* 

Name of the default ACP for the controller. 
ACPs that control access to file-structured 
devices use the high-order byte of this field, 
DDB$B ACPCLASS, to indicate the class of the 
file-structured device. If the SYSGEN parameter 
ACP MULT is set to one, the initialization 
procedure creates a unique ACP for each class of 
file-structured device. 

Drivers initialize DDB$B ACPCLASS by invoking a 
DPT STORE macro. Values-for DDB$B ACPCLASS are: 

DDB$K CART 

DDB$K PACK 

DDB$K SLOW 

DDB$K TAPE 

cartridge disk pack 

standard disk pack 

floppy disk 

magnetic tape that simulates 
a file-structured device 

Generic name of the devices attached to the 
controller. The first byte of this field is the 
number of characters in the generic name. The 
remainder of the field consists of a string of 
up to 15 characters in length that, suffixed by 
a device unit number, identifies devices on the 
controller. 

Name of the device driver for the controller. 
The first byte of this field is the number of 
characters in the driver name. The remainder of 
the field contains a string of up to 15 
characters in length taken from the driver 
prologue table in the driver. 

A.6 DRIVER DISPATCH TABLE (DDT) 

Each device driver contains a driver dispatch table. The table lists 
entry points in the driver that various VAX/VMS routines call. An 
example is the entry point for the driver routine that starts an I/O 
operation on a device. 

A device driver creates a driver dispatch table by invoking the 
VAX/VMS macro DDTAB. The fields in the driver dispatch table are 
illustrated in Figure A-7 and described in Table A-7. 

A-16 



THE I/O DATA BASE 

DDT$L_ST ART 

DDT$L_UNSOLINT 

DDT$L_FDT 

DDT$L_CANCEL 

DDT$L_REGDUMP 

DDT$W_ERRORBUF 1 DDT$W_DIAGBUF 

DDT$L_UNITINIT 

DDT$L_AL TST ART 

DDT$L_MNTVER 

1 DDT$W_FDTSIZE * 

ZK-935-82 

Figure A-7: Driver Dispatch Table 

Table A-7: Contents of Driver Dispatch Table 

Field Name Contents 

DDT$L START 

DDT$L UNSOLINT 

DDT$L FDT 

Entry point to the driver start I/O routine. 
Every driver must specify this field with the 
value of the START argument in the DDTAB macro 
invocation. 

When a device unit is idle and an I/O request is 
pending for that unit, IOC$INITIATE transfers 
control to the address contained in this field. 

Entry point to the MASSBUS driver's unsolicited 
interrupt service routine. The driver specifies 
this field with the value of the UNSOLIC 
argument in the DDTAB macro invocation. 

This field contains the address of a routine 
that analyzes unexpected interrupts from a 
device. The standard driver interrupt service 
routine, the address of which is stored in the 
CRB, determines whether an interrupt was 
solicited by a driver. If the interrupt is 
unsolicited, the service routine may call the 
unsolicited interrupt service routine. 

Address of the driver's function decision table. 
Every driver must specify this field with the 
value of the FUNCTB argument in the DDTAB macro 
invocation. 

(continued on next page) 

A-17 



THE I/O DATA BASE 

Table A-7 (Cont.): Contents of Driver Dispatch Table 

Field Name Contents 

DDT$L FDT 
(Cont~) 

DDT$L CANCEL 

DDT$L REGDUMP 

DDT$W DIAGBUF 

DDT$W ERRORBUF 

EXE$QIO refers to the FDT to validate I/O 
function codes, decide which functions are 
buffered, and call FDT action routines 
associated with function codes. 

Entry point to the driver cancel I/O routine. 
The driver specifies this field with the value 
of the CANCEL argument in the DDTAB macro 
invocation. 

Some devices require special clean-up processing 
when a process or a VAX/VMS routine cancels an 
I/O request before the I/O operation completes 
or when the last channel is deassigned. The 
$DASSGN, $DALLOC, and $CANCEL system services 
cancel I/O requests. 

Entry point to the driver register dump routine. 
The driver specifies this field with the value 
of the REGDMP argument in the DDTAB macro 
invocation. 

IOC$DIAGBUFILL, ERL$DEVICERR, and ERL$DEVICTMO 
call the address contained in this field to 
write device register contents into a diagnostic 
or error-logging buffer. 

Size of the diagnostic buffer. The driver 
specifes this field with the value of the DIAGBF 
argument in the DDTAB macro invocation. The 
value is the size in bytes of a diagnostic 
buffer for the device. 

When EXE$QIO preprocesses an I/O request, the 
routine allocates a system buffer of the size 
recorded in this field if the user process has 
diagnostic privileges, specifies a diagnostic 
buffer in the I/O request, and this field of the 
DDT contains a nonzero value. IOC$DIAGBUFILL 
fills the buffer after the I/O operation 
completes. 

Size of the error log buffer. The driver 
specifies this field as the value of the ERLGBF 
argument in the DDTAB macro invocation. The 
value is the size in bytes of an error-logging 
buffer for the device. 

If error logging is enabled and an error occurs 
during an I/O operation, the driver calls 
ERL$DEVICERR or ERL$DEVICTMO to allocate and 
write error-logging data into the error message 
buffer. IOC$INITIATE and IOC$REQCOM write 
values into the error message buffer if an error 
has occurred. 

(continued on next page) 

A-18 



THE I/O DATA BASE 

Table A-7 (Cont.): Contents of Driver Dispatch Table 

Field Name Contents 

DDT$L UNITINIT 

DDT$L ALTSTART 

DDT$L MNTVER 

DDT$W FDTSIZE* 

Address of the device unit initialization 
routine, if one exists. Drivers for MASSBUS 
devices use this field rather than 
CRB$L INTD+VEC$L UNITINIT. Drivers for UNIBUS 
devices may use either field. 

Address of the alternate start I/O routine. 
VAX/VMS routine EXE$ALTQUEPKT initiates 
alternate start I/O routine at this address. 

The 
the 

Address of the VAX/VMS routine IOC$MNTVER called 
at the beginning and end of a mount verification 
operation. The MNTVER argument to the DPTAB 
macro defaults to this routine. Use of the 
MNTVER argument to call any routine other than 
IOC$MNTVER is reserved to DIGITAL. 

The number of bytes in the function decision 
table. The driver loading procedure uses this 
field to relocate addresses in the FDT to system 
virtual addresses. 

A.7 DRIVER PROLOGUE TABLE (DPT) 

When loading a device driver and its data base into virtual memory, 
the driver loading procedure finds the basic description of the driver 
and its device in a driver prologue table. This table provides the 
length, name, adapter type, and loading and reloading specifications 
for the driver. 

A device driver creates a driver prologue table by invoking the 
VAX/VMS macros DPTAB and DPT STORE. The fields of the DPT are 
illustrated in Figure A-8 and described in Table A-8. 

DPT$L_FLINK* 

DPT$L_BLINK* 

DPT$B_REFC* I DPT$B_ TYPE* DPT$W_SIZE 

DPT$W_UCBSIZE DPT$B_FLAGS l DPT$B_ 
ADPTYPE 

DPT$W_REINITTAB DPT$W_INITTAB 

DPT$W_MAXUNITS DPT$W_UNLOAD 

DPT$W_DEFUNITS DPT$W_VERSION* 

DPT$W_VECTOR DPT$W_DELIVER 

~ DPT$T_NAME ~ 
(up to 15 characters) 

unused 

ZK-591-81 

Figure A-8: Driver Prologue Table 

A-19 



THE I/O DATA BASE 

Table A-8: Contents of Driver Prologue Table 

Field Name Contents 

DPT$L FLINK* 

DPT$L BLINK* 

DPT$W SIZE 

DPT$B TYPE* 

DPT$B REFC* 

DPT$B ADPTYPE 

DPT$B FLAGS 

DPT$W UCBSIZE 

Forward link to the next DPT. 
loading procedure writes this 
procedure links all driver prologue 
the system in a doubly linked list. 

The driver 
field. The 

tables in 

Backward link to the previous DPT. The driver 
loading procedure writes this field. 

Size in bytes of the device driver. The DPTAB 
macro writes this field by subtracting the 
address of the beginning of the DPT from the 
address specified as the END argument in the 
invocation of the DPTAB macro. The driver 
loading procedure uses this value to determine 
the space needed in nonpaged system memory to 
load the driver. 

Type of control block. 
writes the symbolic 
this field. 

The DPTAB macro always 
constant, DYN$C_DPT, into 

Number of device data blocks that refer to this 
driver. The driver loading procedure increments 
the value in this field each time the procedure 
creates another DDB that points to the driver's 
DDT. 

Type of adapter used by devices driven by this 
driver. Every driver must specify the string 
"UBA" or "MBA" as value of the argument ADAPTER 
in the invocation of the DPTAB macro. The macro 
writes the value AT$ UBA or AT$ MBA in this 

- -field. 

Driver loader flags. The driver can specify any 
of a set of flags as the value of the argument 
FLAGS in the invocation of the DPTAB macro. The 
driver loading procedure modifies the loading 
and reloading algorithm followed based on the 
settings of these flags. 

Flags defined in the flag field include the 
following: 

DPT$M SUBCNTRL 

DPT$M SVP 

DPT$M NOUNLOAD 

Device is a subcontroller 

Device requires permanent 
system page; allocated 
during driver loading 

Driver cannot be reloaded 

Size in bytes of unit control blocks created for 
device units driven by this driver. Every 
driver must specify a value for this field as 
the value of the argument UCBSIZE in the 
invocation of the DPTAB macro. 

(continued on next page) 

A-20 



THE I/O DATA BASE 

Table A-8 (Cont.): Contents of Driver Prologue Table 

Field Name Contents 

DPT$W UCBSIZE 
(Cont.) 

DPT$W INITTAB 

DPT$W REINITTAB 

DPT$W UNLOAD 

The driver loading procedure allocates blocks of 
nonpaged system memory of the specified size 
when creating UCBs for devices associated with 
the driver. 

Offset to driver initialization table. Every 
driver must specify a list of control block 
fields and values to be written into the fields 
at the time that the driver loading procedure 
creates the control blocks. 

The driver invokes the VAX/VMS macro DPT STORE 
to specify these fields and their values. -Every 
driver must specify the following fields: 

UCB$B FIPL 

UCB$B DIPL 

Fork interrupt 
level 

priority 

Device interrupt priority 
level 

Other commonly initialized fields are: 

UCB$L DEVCHAR 
UCB$B-DEVC LASS 
UCB$B_D-EVTYPE 
UCB$W-DEVBUFSIZ 
UCB$L-DEVDEPEND 

Device characteristics 
Class of device 
Type of device 
Default buffer size 
Device-dependent 
parameters 

Offset to driver reinitialization table. Every 
driver must specify a list of control block 
fields and values to be written into fields at 
the time that the driver loading procedure 
creates the control blocks or loads the driver. 

The driver invokes the VAX/VMS macro DPT STORE 
to specify these fields and their values. -Every 
driver must specify the following field: 

DDB$L DDT Driver dispatch table 

Other commonly initialized fields are: 

CRB$L INTD+4 
CRB$L-INTD2+4 

VEC$L INITIAL 

VEC$L UNITINIT 

Interrupt service routine 
Second interrupt service 
routine 
Controller initialization 
routine 
Unit initialization 
routine 

Relative address of a driver action routine to 
be called when a driver is reloaded. The driver 
specifes this field with the value of the UNLOAD 
argument in the invocation of the macro DPTAB. 

(continued on next page) 

A-21 



THE I/O DATA BASE 

Table A-8 (Cont.): Contents of Driver Prologue Table 

Field Name Contents 

DPT$W UNLOAD 
(Cont.) 

DPT$W MAXUNITS 

DPT$W VERSION* 

DPT$W DEFUNITS 

DPT$W DELIVER 

DPT$W VECTOR 

DPT$T NAME 

If the driver requires special clean-up 
processing such as buffer or map register 
deallocation before the driver can be reloaded, 
the driver must specify this field. The driver 
loading procedure calls the driver unloading 
routine before reinitializing all device units 
associated with the driver. 

Maximum number of units on a controller that 
this driver supports. Specify this value in the 
MAXUNITS argument to the DPTAB macro. If no 
value is specified, the default is 8 units. 

The version number that identifies the format of 
the driver prologue table. The DPTAB macro 
automatically inserts a value in this field. 
SYSGEN checks its copy of the version number 
against the value stored in this field. If the 
values do not match, an error is generated. To 
correct the error, reassemble and relink the 
driver. 

The number of unit control blocks that the 
autoconfigure facility will automatically 
create. Drivers specify this number with the 
DEFUNITS arugment to the DPTAB macro. If the 
driver also gives a value to DPT$W DELIVER, this 
field is also the number of times that the 
autoconfiguration facility calls the unit 
delivery action routine. 

Relative address of the device driver unit 
delivery routine that the autoconfiguration 
facility calls once for the number of unit 
control blocks specified in DPT$W DEFUNITS. The 
driver gives the relative address in the DELIVER 
argument to the DPTAB macro. 

Relative address of a driver-specific vector. 
Use of this field is reserved to DIGITAL. 

Name of the device driver. Field is 12 bytes in 
length. One byte records the length of the name 
string; the name string can be up to 11 
characters in length. Drivers specify this 
field as the value of the NAME argument in the 
invocation of the DPTAB macro. 

The driver loading procedure compares the name 
of a driver to be loaded with the values in this 
field in all DPTs already loaded into system 
memory to ensure that it loads only one copy of 
a driver at a time. 

A.8 INTERRUPT DISPATCH BLOCK (IDB) 

The interrupt dispatch block records controller characteristics. The 
driver loading procedure creates and initializes this block when the 

A-22 



THE I/O DATA BASE 

procedure creates a channel request block. The interrupt dispatch 
block points to the physical controller by storing the virtual address 
of the control/status register. This register is the indirect pointer 
to all device unit registers. 

The fields of the interrupt dispatch block are illustrated in Fig~re 

A-9 and detailed in Table A-9. 

IDB$L_CSR* 

IDB$L_OWNER 

IDB$B_VECTOR*l IDB$B_ TYPE* IDB$W_SJZE* 

unused I DB$W_UN ITS 

IDB$L_ADP* 

.Y IDB$L_UCBLST* i.-

(max units longwords) 

ZK-590-81 

Figure A-9: Interrupt Dispatch Block 

Table A-9: Contents of Interrupt Dispatch Block 

Field Name Contents 

IDB$L CSR* 

IDB$L OWNER 

Address of the control/status register (CSR). 
The SYSGEN command CONNECT must specify the 
address of a device's control/status register. 
The driver loading procedure writes the system 
virtual equivalent of this address into the 
IDB$L CSR field. 

Device drivers set and clear bits in device 
registers by referencing all device registers at 
fixed offsets from the CSR address. 

Address of the unit control block of the device 
that owns the controller data channel. 
IOC$REQxCHANx writes a UCB address into this 
field when the routine allocates a controller 
data channel to a driver. IOC$RELxCHAN confirms 
that the proper driver fork proce~s is releasing 
a channel by comparing the driver's UCB with the 
UCB stored in the IDB$L OWNER field. If the UCB 
addresses are the same,- IOC$RELxCHAN allocates 
the channel to a waiting driver by writing a new 
UCB address into the field. If no driver fork 
processes are waiting for the channel, 
IOC$RELxCHAN clears the field. 

If the controller is a single-unit controller, 
the unit or controller initialization routine 
should write the UCB address of the single 
device into this field. 

(continued on next page) 

A-23 



THE I/O DATA BASE 

Table A-9 {Cont.): Contents of Interrupt Dispatch Block 

Field Name Contents 

IDB$W SIZE* 

IDB$B TYPE* 

IDB$B VECTOR* 

IDB$W UNITS* 

IDB$L ADP* 

IDB$L UCBLST* 

Size of the IDB. The driver loading procedure 
writes the constant IDB$K LENGTH into this field 
when the procedure creates the IDB. 

Type of control block. The driver loading 
procedure writes the symbolic constant DYN$C IDB 
into this field when the procedure creates -the 
IDB. 

For UNIBUS devices, the interrupt vector number 
of the device right-shifted by 2 bits. SYSGEN 
writes a value to this field using either the 
autoconfiguration data base or the value 
specified in the /VECTOR qualifier to the 
CONNECT command. Drivers for devices that 
define the interrupt vector address through a 
device register must use this field to load that 
register during unit initialization and 
reinitialization after a power failure. 

Maximum number of units connected 
controller. The maximum number of 
specified in the driver prologue table 
be overridden at driver loading time. 

to the 
units is 
and may 

Address of the UNIBUS adapter control block 
(ADP). The SYSGEN command CONNECT must specify 
the nexus number of the UNIBUS .adapter used by a 
device. The driver loading procedure writes the 
address of the ADP for the specified UNIBUS 
adapter into the IDP$L ADP field. 

List of UCB addresses. The size of this field 
is the maximum number of units supported by the 
controller, as defined in the driver prologue 
table. The maximum specified in the DPT can be 
overridden at driver load time. The driver 
loading procedure writes a UCB address into this 
field every time the routine creates a new UCB 
associated with the controller. 

A.9 I/O REQUEST PACKET (!RP) 

When a user process queues a valid I/O request by issuing a Queue I/O 
Request or Queue I/O Request and Wait system service, the service 
(EXE$QIO) creates an I/O request packet. This packet contains a 
description of the request and receives the status of the I/O 
processing as it proceeds. 

The fields of an I/O request packet are illustrated in Figure A-10 and 
detailed in Table A-10. 

A-24 



THE I/O DATA BASE 

IRP$L_IOQFL 

IRP$L_IOQBL 

IRP$B_RMOD* l IRP$8_ TYPE* IRP$W_SIZE* 

IRP$L_PID* 

IRP$L_AST* 

IRP$L_ASTPRM 

IRP$L_WIND 

IRP$L_UCB* 

IRP$8_PRI* l IRP$8_EFN* IRP$W_FUNC 

IRP$L_IOSB 

IRP$W_STS IRP$W_CHAN* 

IRP$L_SVAPTE 

IRP$L_BCNT or IRP$W_BCNT 
IRP$W_BOFF (low-order word) 

unused IRP$L_BCNT (high-order word) 

IRP$L_IOST1 or IRP$L_MEDIA 

IRP$L_IOST2 or IRP$L_MEDIA+4 or IRP$B_CARCON 

IRP$L_ABCNT or IRP$W_ABCNT 

IRP$L_OBCNT or IRP$W_OBCNT 

IRP$L_SEGVBN 

IRP$L_DIAGBUF* 

IRP$L_SEQNUM* 

IRP$L_EXTEND 

IRP$L_ARB* 

ZK-587-81 

Figure A-10: I/O Request Packet 

Table A-10: Contents of an I/O Request Packet 

Field Name Contents 

IRP$L IOQFL I/O queue forward link. EXE$INSERTIRP reads and 
-

writes this field when the routine inserts I/O 
packets into an I/O request packet wait queue. 
IOC$REQCOM reads and writes this field when the 

(continued on next page) 

A-25 



THE I/O DATA BASE 

Table A-10 (Cont.): Contents of an I/O Request Packet 

Field Name Contents 

IRP$L IOQFL 
(Cont:-) 

IRP$L_IOQBL 

IRP$W SIZE* 

IRP$B TYPE* 

IRP$B RMOD* 

IRP$L PID* 

IRP$L AST* 

IRP$L ASTPRM 

IRP$L WIND 

routine dequeues I/O packets from an I/O request 
packet wait queue in order to send the packet to 
a device driver. 

I/O queue backward link. EXE$INSERTIRP and 
IOC$REQCOM read and write these fields. 

Size of the I/O request packet. EXE$QIO writes 
the symbolic constant, IRP$C LENGTH, into this 
field when the routine allocates and fills an 
I/O packet. 

Type of control block. EXE$QIO writes the 
symbolic constant DYN$C IRP into this field when 
the routine allocates and fills an I/O packet. 

Access mode of the process at the time of the 
I/O request. EXE$QIO obtains the processor 
access mode from the PSL and writes the value 
into this field. 

Process identification of the process that 
issued the I/O request. EXE$QIO obtains the 
process identification from the process control 
block and writes the value into this field. 

Address of the AST routine specified by the user 
in the I/O request. If the process specifies an 
AST routine address in the QIO call, EXE$QIO 
writes the address in this field. 

During I/O postprocessing, the kernel mode AST 
routine queues a user mode AST to the requesting 
process if this field contains the address of an 
AST routine. 

Address of a parameter to be sent as an argument 
to the AST routine specified by the user in the 
I/O request. If the process specifies an AST 
routine and a parameter to that AST routine in 
the QIO call, EXE$QIO writes the parameter in 
this field. 

During I/O postprocessing, the kernel mode AST 
routine queues a user mode AST if the IRP$L AST 
field contains an address, and passes the value 
in IRP$L ASTPRM to the AST routine as an 
argument. 

Address of a window control block (WCB) 
describes the file being accessed in an 
request. EXE$QIO writes this field if the 
request refers to a file-structured device. 
ACP reads this field. 

that 
I/O 
I/O 
The 

(continued on next page) 

A-26 



THE I/O DATA BASE 

Table A-10 (Cont.): Contents of an I/O Request Packet 

Field Name Contents 

IRP$L WIND 
(Cont~) 

IRP$L UCB* 

IRP$W FUNC 

IRP$B EFN* 

IRP$B PRI* 

IRP$L IOSB 

When a process gains access to a file on a 
file-structured device or creates a logical link 
between a file and a process I/O channel, the 
device ACP creates a window control block that 
describes the virtual-to-logical mapping of the 
file data on the disk. EXE$QIO stores the 
address of this WCB in the IRP$L WIND field. 

Address of the unit control block for the device 
assigned to the process I/O channel. EXE$QIO 
copies this value from the channel control 
block. 

I/O function code that identifies the function 
to be performed for the I/O request. The I/O 
request call specifies an I/O function code; 
EXE$QIO and driver FDT routines map the code 
value to its most basic level (virtual ~ 
logical ~ physical) and copy the reduced value 
into this field. 

Based on this function code, EXE$QIO calls FDT 
action routines to preprocess an I/O request. 
Six bits of the function code describe the basic 
function. The remaining 10 bits modify the 
function. 

Event flag number and group specified in the I/O 
request. If the I/O request call does not 
specify an event flag number, EXE$QIO uses event 
flag O by default. EXE$QIO writes this field. 
The I/O postprocessing routine calls SCH$POSTEF 
to set this event flag when the I/O operation is 
complete. 

Base priority of the process when the I/O 
request was issued. EXE$QIO obtains a value for 
this field from the process control block. 
EXE$INSERTIRP reads this field to insert an I/O 
request packet into a priority-ordered I/O 
request packet wait queue. 

Virtual address of the process I/O status block 
that receives the final status of the I/O 
request at I/O completion. EXE$QIO writes a 
value into this field if the I/O request call 
specifies an IOSB address. The I/O 
postprocessing kernel mode AST routine writes 
two longwords of I/O status into the IOSB block 
after the I/O operation is complete. 

When an FDT routine aborts an I/O request by 
calling EXE$ABORTIO, EXE$ABORTIO zeroes the 
IRP$L IOSB field so that I/O postprocessing does 
not write status into the block. 

(continued on next page) 

A-27 



THE I/O DATA BASE 

Table A-10 (Cont.): Contents of an I/O Request Packet 

Field Name Contents 

IRP$W CHAN* 

IRP$W_STS 

IRP$L SVAPTE 

Index number of the process I/O channel for the 
request. EXE$QIO writes this field. 

Status of the I/O request. EXE$QIO initializes 
this field to o. EXE$QIO, FDT routines, and 
driver fork processes modify this field 
according to the current status of the I/O 
request. I/O postprocessing reads this field to 
determine what sort of postprocessing is 
necessary (for example, deallocate system 
buffers and adjust quota usage). 

Bits in the IRP$W STS field describe the type of 
I/O function, as follows: 

IRP$V BUFIO 
IRP$V-FUNC 
IRP$V-PAGIO 
IRP$V-COMPLX 

IRP$V VIRTUAL 
IRP$V-CHAINED 

IRP$V SWAPIO 
IRP$V-DIAGBUF 
IRP$V-PHYS IO 
IRP$V-TERMIO 

IRP$V MBXIO 
IRP$V-EXTEND 

IRP$V FILACP 
IRP$V-MVIRP 

Buffered I/O function 
Read function 
Paging I/O function 
Complex buffered I/O 
function 
Virtual I/O function 
Chained buffered I/O 
function 
Swapping I/O funtion 
Diagnostic buffer is present 
Physical I/O function 
Terminal I/O (for priority 
increment calculation) 
Mailbox I/O function 
An extended IRP is linked to 
this IRP 
File ACP I/O 
Mount verification I/O 
function 

For a direct I/O operation, specifies the 
virtual address of the first page table entry 
(PTE) of the I/O transfer buffer. FDT routines 
that lock pages in memory for a direct I/O 
transfer write the PTE address in this field. 

For a buffered I/O operation, specifies the 
address of the buffer in system address space. 
FDT routines that allocate system buffers for a 
buffered I/0 transfer write this field. 

IOC$INITIATE copies the field into the device 
unit control block field UCB$L SVAPTE before 
transferring control to a device -driver start 
I/O routine. 

I/O postprocessing uses this field to deallocate 
the system buffer for a buffered I/O operation 
or to unlock pages locked for a direct I/O 
operation. 

(continued on next page) 

A-28 



THE I/O DATA BASE 

Table A-10 (Cont.): Contents of an I/O Request Packet 

Field Name Contents 

IRP$W BOFF 

IRP$L BCNT 
or 

IRP$W BCNT 

IRP$L IOSTl 
(also-called 
IRP$L_MEDIA) 

IRP$L IOST2 
(also-called 
IRP$L MEDIA+4 
or IRP$B_CARCON) 

Byte offset into first page of a direct I/O 
transfer. FDT routines calculate this offset 
and write the field. 

For buffered I/O operations, FDT routines must 
write the number of bytes to be charged to the 
process in this field because these bytes are 
being used for a system buffer. 

IOC$INITIATE copies the field into the device 
unit control block field UCB$W BOFF before 
calling a device driver start I/O routine. 

I/O postprocessing uses IRP$W BOFF in 
conjunction with IRP$W BCNT and IRP$L SVAPTE to 
unlock pages locked for direct I/O. For 
buffered I/O, I/O postprocessing adds the value 
of IRP$W BOFF to the process byte count quota. 

Byte count of I/O transfer. FDT routines 
calculate the count value and write the field. 
IOC$INITIATE copies the low-order word of this 
field into the device unit control block field 
UCB$W BCNT before calling a device driver start 
I/O routine. 

For a buffered 
postprocessing uses 
many bytes of data 
buffer. 

I/O read function, I/O 
IRP$L BCNT to determine how 
to write to the user's 

The field UCB$W BCNT points to the low-order 
word of this field to provide compatibility with 
previous versions of VAX/VMS. 

First I/O status longword. IOC$REQCOM and 
EXE$FINISHIO(C) write the contents of RO 
into this field. The I/O postprocessing routine 
copies the contents of this field into the user 
I/O status block. 

EXE$ZEROPARM copies a 0 and EXE$0NEPARM copies 
Pl into this field. This field is a good place 
to put a Queue I/O Request argument (Pl through 
P6) or a computed value. 

Second I/O status longword. IOC$REQCOM and 
EXE$FINISHIO(C) write the contents of Rl into 
this field. The I/O postprocessing routine 
copies the contents of this field into the user 
I/O status block. 

IRP$B CARCON contains carriage control 
instructions to the driver. EXE$READ and 
EXE$WRITE copy the contents of P4 of the user's 
I/O request into this field. 

(continued on next page) 

A-29 



THE I/O DATA BASE 

Table A-10 (Cont.): Contents of an I/O Request Packet 

Field Name Contents 

IRP$L ABCNT 
or 

IRP$W ABCNT 

IRP$L OBCNT 
or 

IRP$W OBCNT 

IRP$L SEGVBN 

IRP$L DIAGBUF* 

IRP$L SEQNUM* 

IRP$L EXTEND 

IRP$L ARB* 

Accumulated bytes transferred in a virtual I/O 
transfer. Read and written by IOC$IOPOST after 
a partial virtual transfer. 

The field UCB$W ABCNT points to the low-order 
word of this field to provide compatibility with 
previous versions of VAX/VMS. 

Original transfer byte count in a virtual I/O 
transfer. Read by IOC$IOPOST to determine 
whether a virtual transfer is complete, or 
whether another I/O request is necessary to 
transfer the remaining bytes. 

The field UCB$W OBCNT points to the low-order 
word of this field to provide compatibility with 
previous versions of VAX/VMS. 

Virtual block number of the current segment of a 
virtual I/O transfer. Written by IOC$IOPOST 
after a partial virtual transfer. 

Address of a diagnostic buffer in system address 
space. If the I/O request call specifies this 
address, and if a diagnostic buffer length is 
specified in the driver dispatch table, and if 
the process has diagnostic privilege, EXE$QIO 
copies the buffer address into this field. 

EXE$QIO allocates a diagnostic buffer in system 
address space to be filled by IOC$DIAGBUFILL 
during I/O processing. During I/O 
postprocessing, the kernel mode AST routine 
copies diagnostic data from the system buffer 
into the process diagnostic buffer. 

I/O transaction sequence number. If an error is 
logged for the request, this field contains the 
universal error log sequence number. 

Address of the I/O request packet extension 
linked to this packet. FDT routines write an 
extension address to this field when a device 
requires more context than the I/O request 
packet can accommodate. This field is read by 
IOC$POST. IRP$V EXTEND in IRP$W STS is set if 
this extension address is used. -

Address of the access rights block. This block 
is located in the process control block and 
contains the process privilege mask and UIC, 
which are set up as follows: 

ARB$Q_PRIV 

A-30 

Quadword containing process 
privilege mask 

(continued on next page) 



THE I/O DATA BASE 

Table A-10 {Cont.): Contents of an I/O Request Packet 

Field Name Contents 

IRP$L ARB* SPARE$L Unused longword 
(Cont~) 

ARB$L UIC Longword containing process 
-

UIC 

A.10 I/O REQUEST PACKET EXTENSION {IRPE) 

I/O request packet extensions hold additional I/O request information 
for devices that require more context than the standard I/O request 
packet can accommodate. IRP extensions are also used when more than 
one buffer (region) must be locked into memory for a direct I/O 
operation, or when a transfer requires a buffer that is larger than 
64K bytes. An IRPE provides space for two buffer regions, each with a 
32-bit byte count. 

FDT routines allocate IRPEs by calling EXE$ALLOCIRP. Driver routines 
link the IRP extension to the I/O request packet, store the 
extension's address in IRP$L EXTEND and set the bit field IRP$V EXTEND 
in IRP$W STS to show that an-extension exists for the packet. The FDT 
routine Tnitializes the contents of the IRPE. Any fields within the 
extension not described in Table A-11 can store driver-dependent 
information. 

If the IRP extension specifies additional buffer regions, the FDT 
routine must use those buffer locking routines that perform coroutine 
calls back to the driver if the locking procedure fails 
(EXE$READLOCKR, EXE$WRITELOCKR, and EXE$MODIFYLOCKR). If an error 
occurs during the locking procedure, the driver must unlock all 
previously locked regions and deallocate the I/O request packet 
extension before returning to the buffer locking routine. 

IOC$IOPOST automatically unlocks the pages in region 1 (if defined) 
and region 2 (if defined) for all the IRP extensions linked to the 
packet being completed. IOC$IOPOST also deallocates all the IRPEs. 

The fields of the I/O request packet extension are illustrated in 
Figure A-11 and described in Table A-11. 

A-31 



THE I/O DATA BASE 

spare longword 

spare longword 

spare byte I I RP$8_ TYPE I IRP$W_SIZE 

spare longword 

spare longword 

spare longword 

spare longword 

spare longword 

spare longword 

spare longword 

IRP$W_STS I spare word 

IRP$L_SVAPTE1 

spare word I IRP$W_BOFF 1 

I RP$L_BCNT1 

I RP$L_SVAPTE2 

spare word 1 IRP$W_BOFF2 

I RP$L_BCNT2 

spare longword 

spare longword 

IRP$L_EXTEND 

ZK-936-82 

Figure A-11: Request Packet Extension 

Table A-11: Contents of the I/O Request Packet Extension 

Field Name Contents 

IRPE$W SIZE Size of the I/O request packet extension. - EXE$ALLOCIRP writes the constant IRP$C LENGTH to -this field. 

IRPE$B TYPE Type of control block. EXE $ALLOC IRP writes the 
-

constant DYN$C IRP to this field. 
-

(continued on next page) 

A-32 



THE I/O DATA BASE 

Table A-11 {Cont.): Contents of the I/O Request Packet Extension 

Field Name Contents 

IRPE$W STS 

IRPE$L SVAPTEl 

IRPE$W BOFFl 

IRPE$L BCNTl 

IRPE$L SVAPTE2 

IRPE$W BOFF2 

IRPE$L BCNT2 

IRP extension status field. Bits in the status 
field describe the following conditions: 

IRPE$V EXTEND Another IRPE is linked 
to this one 

System virtual address of the page table entry 
mapping the start of region 1. FDT routines 
write this field. If the region is not defined, 
this field is zero. 

Byte offset of region 1. 
this field. 

FDT routines write 

Size in bytes of region 1. FDT routines write 
this field. 

System virtual address of the page table entry 
mapping the start of region 2. Set by FDT 
routines. This field contains a value of zero 
if region 2 is not defined. 

Byte offset of region 2. This field is set by 
FDT routines. 

Size in bytes of region 2. FDT routines write 
this field. 

A.11 UNIT CONTROL BLOCK {UCB) 

The unit control block is a variable-length block that describes a 
single device unit. Each device unit on the system has its own unit 
control block. The block describes or provides pointers to the device 
type, controller, driver, device status, and current I/O activity. 

During autoconfiguration, the driver loading procedure creates one 
unit control block for each device unit in the system. A privileged 
system user can request the driver loading procedure to create unit 
control blocks for additional devices with the SYSGEN command CONNECT 
as described in Chapter 14. The procedure creates unit control blocks 
of the length specified in the driver prologue table of the device's 
driver. The driver uses UCB storage located beyond the standard UCB 
fields for device-specific data and temporary driver storage. 

The driver loading procedure initializes some static unit control 
block fields when it creates the block. VAX/VMS and device drivers 
can read and modify all nonstatic fields of the unit control block. 

The fields of the unit control block that are present for all devices 
are illustrated in Figure A-12 and described in Table A-12. 

A-33 



THE I/O DATA BASE 

UCB$L_FQFL* 

UCB$L_FQBL * 

UCB$B_FIPL * I UCB$B_ TYPE* UCB$W_SIZE* 

UCB$L_FPC 

UCB$L_FR3 

UCB$L_FR4 

UCB$W_ VPROT* UCB$W_BUFQUO 

UCB$L_OWNUIC* 

UCB$L_CRB* 

UCB$L_DDB* 

UCB$L_PID* 

UCB$L_LINK* 

UCB$L_VCB* 

UCB$L_DEVCHAR 

UCB$W_DEVBUFSIZ UCB$B_DEVTYPE l UCB$B_DEVCLASS 

UCB$L_DEVDEPEND 

UCB$L_IQQFL 

UCB$L_IQQBL 

UCB$W __ CHARG E UCB$W_UN IT* 

UCB$L_IRP 

UCB$B_AMOD* I UCB$B_DIPL * UCB$W_REFC* 

UCB$L_AMB* 

UCB$W_DEVSTS UCB$W_STS 

UCB$L_DUETIM* 

UCB$L_OPCNT* 

UCB$L_SVPN* 

UCB$L_sv APTE * 

UCB$W_BCNT UCB$W_BOFF 

UCB$W_ERRCNT UCB$8-ERTMAX I UCB$B_ERTCNT 

UCB$L_PDT* 

UC8$L_DDT* 

unused 

UCB$L._DEVDEPND2 

ZK-588-81 

Figure A-12: Unit Control Block 

A-34 



THE I/O DATA BASE 

Table A-12: Contents of Unit Control Block 

Field Name Contents 

UCB$L FQFL* 

UCB$L FQBL* 

UCB$W SIZE* 

UCB$B TYPE* 

UCB$B FIPL* 

UCB$L FPC 

Fork queue forward link. The link points to the 
next entry in the fork queue. EXE$IOFORK and 
VAX/VMS resource management routines write this 
field. The queue contains addresses of UCBs 
that contain driver fork process context of 
drivers waiting to continue I/O processing. 

Fork queue backward link. The link points to 
the previous entry in the fork queue. 
EXE$IOFORK and VAX/VMS resource management 
routines write this field. 

Size of the UCB. The driver prologue table of 
every driver must specify a value for this 
field. The driver loading procedure uses the 
value to allocate space for a UCB and stores the 
value in each UCB created. Extra space beyond 
the standard bytes in a UCB (UCB$K LENGTH) is 
for device-specific data and temporary storage. 

Type of the control block. The driver loading 
procedure writes the constant DYN$C UCB into 
this field when the procedure creates the UCB. 

Fork interrupt priority level (IPL) at which the 
driver of the device usually executes. The 
driver prologue table of every driver must 
specify a value for this field. The driver 
loading procedure writes the value in the UCB 
when the procedure creates the UCB. 

VAX/VMS creates a driver fork process that gains 
control in a driver start I/O routine at this 
IPL. When the driver creates a fork process 
after an interrupt, VAX/VMS inserts the fork 
block into a fork queue based on this IPL. A 
VAX/VMS fork dispatcher executing at UCB$B FIPL 
dequeues the fork block and restores control to 
the suspended driver fork process. 

All devices that are attached to one UNIBUS 
adapter and actively compete for shared UNIBUS 
adapter resources and/or a controller data 
channel must specify the same value for the fork 
IPL field. 

Fork process driver PC address. When a VAX/VMS 
routine saves driver fork context in order to 
suspend driver execution, the routine stores the 
address of the next driver instruction to be 
executed in this field. A VAX/VMS routine that 
reactivates a suspended driver transfers control 
to the saved PC address. 

VAX/VMS routines that suspend driver processing 
include EXE$IOFORK, IOC$REQxCHANx IOC$REQMAPREG, 

(continued on next page) 

A-35 



THE I/O DATA BASE 

Table A-12 (Cont.): Contents of Unit Control Block 

Field Name Contents 

UCB$L FPC 
(Cont~) 

UCB$L FR3 

UCB$L FR4 

UCB$W_BUFQUO* 

UCB$W VPROT* 

UCB$L OWNUIC* 

UCB$L CRB* 

UCB$L DDB* 

IOC$REQDATAP, 
reactivate 
IOC$RELCHAN, 
EXE$FORKDSPTH, 
routines. 

and IOC$WFIKPCH. Routines that 
suspended drivers include 

IOC$RELMAPREG, IOC$RELDATAP, 
and driver interrupt service 

When a driver interrupt service routine 
determines that a device is expecting an 
interrupt, the routine restores control to the 
saved PC address in the device's UCB. 

Value of R3 at the time that a VAX/VMS routine 
suspends a driver fork process. The value of R3 
is restored just before a suspended driver 
regains control. 

Value of R4 at the time that an operating system 
routine suspends a driver fork process. The 
value of R4 is restored just before a suspended 
driver regains control. 

Buffered I/O quota if this UCB represents a 
mailbox. 

Description of the volume protection if a volume 
is mounted on this device. This field is 
written by the MOUNT command when a volume is 
mounted. It is read by EXE$QIO to check logical 
or physical access to a device and by the 
device's ACP. It is written by the SET 
PROTECTION/DEVICE command. 

User identification code of volume owner. This 
field is written by the MOUNT command when a 
volume is mounted. It is read by EXE$QIO to 
check logical or physical access to a device and 
by the device's ACP. It is also written by the 
SET PROTECTION/DEVICE command. 

Address of the primary channel request block 
associated with the device. The driver loading 
procedure writes this field after it creates the 
associated CRB. Driver fork processes read this 
field to gain access to device registers. 
VAX/VMS routines use UCB$L_CRB to locate 
interrupt dispatching code and initialization 
routine addresses. 

Address of the device data block associated with 
the device. The driver loading procedure writes 
this field when the procedure creates the 
associated UCB. VAX/VMS routines generally read 
the DDB field in order to locate device driver 
entry points, the address of a driver function 
decision table, or the ACP associated with a 
given device. 

(continued on next page) 

A-36 



THE I/O DATA BASE 

Table A-12 (Cont.): Contents of Unit Control Block 

Field Name Contents 

UCB$L PID* 

UCB$L LINK* 

UCB$L VCB* 

UCB$L DEVCHAR 

Process identification code of the process that 
has allocated the device. Written by $ALLOC. 

Address of the next UCB in the chain of UCBs 
attached to a single controller and associated 
with a device data block. The driver loading 
procedure writes this field when the procedure 
adds the next UCB. Any VAX/VMS routines that 
examine the status of all devices on the system 
read this field. Such routines include 
EXE$TIMEOUT, IOC$SEARCHDEV, and power failure 
recovery routines. 

Address of the volume control block (VCB) that 
describes the volume mounted on the device. 
This field is written by the device's ACP and 
read by EXE$QIOACPPKT and ACPs. 

Device characteristics bits. The driver 
prologue table of every driver should specify 
symbolic constant values (defined by the $DEVDEF 
macro) for this field. The driver loading 
procedure writes the field when the procedure 
creates the UCB. The Queue I/O Request system 
service reads the field to determine whether a 
device is spooled, file-structured, shared, has 
a volume mounted, and so on. 

The system defines 
characteristics: 

the following device 

DEV$V REC 
DEV$V-CCL 
DEV$V-TRM 
DEV$V-DIR 
DEV$V-SDI 

DEV$V SQD 

DEV$V SPL 
DEV$V-NET 
DEV$V-FOD 

DEV$V SHR 

DEV$V GEN 
DEV$V-AVL 
DEV$V-MNT 
DEV$V-MBX 
DEV$V-DMT 
DEV$V-ELG 

DEV$V ALL 
DEV$V FOR 

A-37 

Record-oriented device 
Carriage control device 
Terminal device 
Directory-structured device 
Single directory-structured 
device 
Sequential block-oriented 
device (e.g., mag tape) 
Device is being spooled 
Network device 
Files-oriented device (e.g., 
disk and magtape) 
Shareable device (used by more 
than one program 
s imul taneousl y) 
Generic device 
Device is available for use 
Device is mounted 
Mail box device 
Device is marked for dismount 
Error-logging is enabled on 
device 
Device is allocated 
Device is mounted foreign 
(i.e., non-file-structured) 

(continued on next page) 



THE I/O DATA BASE 

Table A-12 (Cont.): Contents of Unit Control Block 

Field Name Contents 

UCB$L DEVCHAR 
(Cont:-) 

UCB$B DEVCLASS 

UCB$B DEVTYPE 

UCB$W DEVBUFSIZ 

DEV$V SWL 

DEV$V IDV 

DEV$V ODV 

DEV$V RND 
DEV$V-RTM 
DEV$V-RCK 

DEV$V WCK 

Device is software write-locked 

Device is capable of providing 
input 
Device is capable of providing 
output 
Device allows random access 
Real time device 
Read-checking is enabled on 
device 
Write-checking is enabled on 
device 

Device class. The driver prologue table of 
every driver should specify a symbolic constant 
(defined by the $DCDEF macro) for this field. 
The driver loading prdcedure writes this field 
when the UCB is created. 

Drivers with set mode and device characteristics 
functions rewrite the value in this field with 
data supplied in an I/O request. 

The VAX/VMS system defines the following device 
classes: 

DC$ DISK 
DC$ TAPE 
DC$-SCOM 

DC$ CARD 
DC$-TERM 
DC$-LP 
DC$ REALTIME 
DC$-MAILBOX 

Disk device 
Tape device 
Synchronous communications 
device 
Card reader device 
Terminal device 
Line printer device 
Real time device 
Mailbox device 

Note that the definition of a device as a 
real-time device is somewhat subjective; it 
implies no special treatment by VAX/VMS. 

Device type. The driver prologue table of every 
driver should specify a symbolic constant 
(defined by the $DCDEF macro) for this field. 
The driver loading procedure writes the field 
when the procedure creates the UCB. 

Drivers with set mode and device characteristics 
functions rewrite the value in this field with 
data supplied in an I/O request. 

Default buffer size. The driver prologue table 
can specify a value for this field if relevant. 
The driver loading procedure writes the field 
when the procedure creates the UCB. 

Drivers with set mode and device characteristics 
functions rewrite the value in this field with 

(continued on next page) 

A-38 



THE I/O DATA BASE 

Table A-12 (Cont.): Contents of Unit Control Block 

Field Name Contents 

UCB$W DEVBUFSIZ 
(Cont~) 

UCB$L DEVDEPEND 

UCB$L IOQFL* 

UCB$L IOQBL* 

UCB$W UNIT* 

UCB$W CHARGE* 

UCB$L IRP 

data supplied in an I/O request. This field is 
used by VAX-11 RMS for record I/O on 
non-file-oriented devices. 

Device-dependent 
descriptive data 
interpret. The 
specify a value 
loading procedure 
procedure creates 

data. Contains device-
that only the device driver can 
driver prologue table can 

for this field. The driver 
writes this field when the 
the UCB. 

Drivers with set mode and device characteristics 
functions rewrite the value in this field with 
data supplied in an I/O request. 

I/O queue listhead forward link. The queue 
contains the addresses of I/O request packets 
waiting for processing on a device. 
EXE$INSERTIRP inserts I/O request packets into 
the I/O request packet wait queue when a device 
is busy. IOC$REQCOM dequeues I/O request 
packets when the device is idle. 

The queue is a priority queue that has the 
highest priority packets at the front of the 
queue. Priority is determined by the base 
priority of the requesting process. Packets 
with the same priority are processed 
first-in/first-out. 

I/O queue listhead backward link. EXE$INSERTIRP 
and IOC$REQCOM modify the I/O request packet 
wait queue. 

Number of the physical device unit. Stored as a 
binary value. The driver loading procedure 
writes a value into this field when the UCB is 
created. Drivers for multiunit controllers read 
this field during unit initialization to 
identify a unit to the controller. 

Mailbox byte count quota charge, if the device 
is a mailbox. 

Address of the I/O request packet currently 
being processed on the device unit by a driver 
fork process. IOC$INITIATE writes an I/O 
request packet address into this field before 
the routine creates a driver fork process to 
handle an I/O request. A driver fork process 
obtains the address of the I/O request packet 
being processed from this field. 

The value contained in this field is 
the UCB$V BSY bit in UCB$W STS is set. 

valid if 

(continued on next page) 

A-39 



THE I/O DATA BASE 

Table A-12 (Cont.): Contents of Unit Control Block 

Field Name Contents 

UCB$W REFC* 

UCB$B DIPL 

UCB$B AMOD* 

UCB$L AMB* 

UCB$W STS 

Reference count of processes that currently have 
process I/O channels assigned to the device. 
Incremented by the $ASSIGN and $ALLOC system 
services. Decremented by the $DASSGN and 
$DALLOC system services. 

Device interrupt priority level at which the 
device requests hardware interrupts. The driver 
prologue table of every driver must specify a 
value for this field. The driver loading 
procedure writes the field when the procedure 
creates the UCB. 

Some device drivers raise IPL to this value 
before reading or writing device registers. 

If the device unit is allocated, the access mode 
at which the allocation occurred. Written by 
the $ALLOC and $DALLOC system services. 

Associated mailbox UCB pointer. This field is 
used for spooled devices and mailboxes. 

Device unit 
IOC$REQCOM, 
IOC$WFIKPCH, 
EXE$TIMEOUT. 
Queue I/O 
IOC$REQCOM, 

status. Written by drivers, 
IOC$CANCELIO, IOC$INITIATE, 

IOC$WFIRLCH, EXE$INSIOQ, and 
This field is read by drivers, the 

Request system service routines, 
IOC$INITIATE, and EXE$TIMEOUT. 

This status word includes the following bits: 

UCB$V TIM 
UCB$V-INT 
UCB$V-ERLOGIP 
UCB$V-CANCEL 
UCB$V-ONLINE 
UCB$V-POWER 

UCB$V TIMOUT 
UCB $V-INTTYPE 
UCB$V-BSY 
UCB$V-MOUNTING 
UCB$V-MNTVERIP 

UCB$V WRONGVOL 

UCB$V DEADMO 

UCB$V VALID 

UCB$V UNLOAD 
UCB$V-TEMPLATE 

A-40 

Timeout enabled 
Interrupts expected 
Error log in progress 
Cancel I/O on unit 
Device is online 
Power has failed while 
unit was busy 
Unit is timed out 
Receiver interrupt 
Unit is busy 
Device is being mounted 
Mount verification in 
progress 
Volume name does not match 
name in volume control 
block 
Deallocate device at 
dismount 
Software believes volume 
is valid 
Unload volume at dismount 
Template unit control 
block from which other 
UCBs for this device are 

(continued on next page) 



THE I/O DATA BASE 

Table A-12 (Cont.): Contents of Unit Control Block 

Field Name Contents 

UCB$W STS 
(Cont~) 

UCB$W DEVSTS 

UCB$L DUETIM* 

UCB$L OPCNT* 

UCB$L SVPN* 

UCB$L SVAPTE 

UCB$V TEMPLATE 
(Cont~) 

made. The $ASSIGN system 
service checks this bit in 
the requested UCB and, if 
the bit is set, creates a 
UCB from the template. 
The new UCB is assigned 
instead. 

Device-dependent status. Read and written by 
device drivers. 

Due time for I/O completion. Stored as the 
low-order 32-bit absolute time (time in seconds 
since the operating system was booted) at which 
the device will timeout. IOC$WFIKPCH and 
IOC$WFIRLCH write this value when they suspend a 
driver to wait for an interrupt or timeout. 

EXE$TIMEOUT examines this field in each UCB in 
the I/O data base once per second. If the 
timeout has occurred and timeouts are enabled 
for the device, EXE$TIMEOUT calls the device 
driver timeout handler. 

Count of operations completed on the device unit 
since VAX/VMS was booted. IOC$REQCOM writes 
this field every time the routine inserts an 1/0 
request packet in the I/O postprocessing queue. 

Index to a virtual address of a system page 
table entry permanently allocated to the device 
by the driver loading procedure. The system 
virtual address of the page described by this 
index can be calculated by the formula 

(index * 200) + 80000000 (hex) 

If a driver prologue table specifies DPT$M SVP 
in the flags argument to the DPTAB macro, the 
driver loading procedure allocates a page of 
nonpaged system memory to the device. The 
procedure writes the system page table entry 
index into UCB$L SVPN when the procedure creates 
the UCB. -

This field is used for ECC error correction by 
disk drivers. 

For a direct I/O operation, the virtual address 
of the system page table entry (PTE) for the 
first page that is to be used in an I/O 
transfer. For a buffered I/O operation, the 
address of the system buffer used in the 
transfer. This field is used only in transfer 
operations. 

(continued on next page) 

A-41 



THE I/O DATA BASE 

Table A-12 (Cont.): Contents of Unit Control Block 

Field Name Contents 

UCB$L SVAPTE 
(Cont:-) 

UCB$W BOFF 

UCB$W_BCNT 

UCB$B ERTCNT 

UCB$B ERTMAX 

UCB$W ERRCNT 

UCB$L DDT* 

UCB$L PDT* 

IOC$INITIATE writes this field from IRP$L SVAPTE 
before calling a driver start I/O routine. 
Drivers read this value to compute the starting 
address of a transfer. 

For direct I/O operations, byte offset in first 
page of the transfer buffer. For buffered I/O 
operations, the number of bytes charged to a 
process for a transfer. IOC$INITIATE copies 
this field from the I/O request packet. 

Drivers read the field in calculating the 
starting address of a DMA transfer. If only 
part of a DMA transfer succeeds, the driver 
adjusts the value in this field to be the byte 
offset in the first page of the data that was 
not transferred. 

Count of bytes in I/O transfer. IOC$INITIATE 
copies this field from the I/O request packet. 
Drivers read this field to determine how many 
bytes to transfer in an I/O operation. 

Error retry count of current I/O transfer. The 
driver sets this field to the maximum retry 
count each time it begins I/O processing. 
Before each retry, the driver decreases the 
value in this field. If error-logging is 
occurring, IOC$REQCOM copies the value into the 
error message buffer. 

Maximum error retry count allowed for a single 
I/O transfer. The driver prologue table of some 
drivers specifies a value for this field. The 
driver loading procedure writes the field when 
the procedure creates the UCB. If error-logging 
is occurring, IOC$REQCOM copies the value into 
the error message buffer. 

Number of errors that have occurred on the 
device since the system was bootstrapped. The 
driver loading procedure initializes the field 
to 0 when the procedure creates the UCB. 
ERL$DEVICERR and ERL$DEVICTMO increment the 
value in the field and copy the value into an 
error message buffer. The DCL command SHOW 
DEVICE displays in its error count column the 
value contained in this field. 

Address of the driver dispatch table for this 
unit. The driver load procedure writes the 
contents of DDB$L DDT for the device controller 
to this field when it creates the UCB. 

Address of the port descriptor table. This 
field is reserved for VAX/VMS port drivers. 

(continued on next page) 

A-42 



THE I/O DATA BASE 

Table A-12 (Cont.): Contents of Unit Control Block 

Field Name Contents 

UCB$L DEVDEPND2 Second longword for device-dependent status. 
- This field is an extension of UCB$L DEVDEPEND. 

Unit control blocks are variable length depending on the type of 
device and whether the driver performs error-logging for the device. 
The error log UCB extension, if present, appears directly after the 
UCB$W ERRCNT field of the standard UCB. 

The fields in the UCB error log extension are illustrated in Figure 
A-13 and described in Table A-13. 

UCB$B_CEX 1 UCB$B_FEX I UCB$B_SPR l UCB$B_SLAVE 

UCB$L_EMB* 

UCB$W_FUNC I unused 

UCB$L_DPC 

ZK-937-82 

Figure A-13: UCB Error Log Extension 

Table A-13: UCB Error Log Extension 

Field Name Contents 

UCB$B SLAVE* 

UCB$B SPR 

UCB$B FEX 

UCB$B CEX 

UCB$L EMB* 

UCB$W FUNC 

Unit number of slave controller. 

Spare byte. This field is reserved for driver 
use. MASSBUS adapter drivers use this field to 
store a fixed offset to the MASSBUS adapter 
registers for the unit. 

Device-specific field. This field is reserved 
for driver use. 

Device-specific field. This field is reserved 
for driver use. 

Address of the error message buffer. If error 
logging is enabled and a device/controller error 
or timeout occurs, the driver calls ERL$DEVICERR 
or ERL$DEVICTMO to allocate an error message 
buffer and copy the buffer address into this 
field. IOC$REQCOM writes final device status, 
error counters, and I/O request status into the 
buffer specified by this field. 

I/O function modifiers. This field is read and 
written by drivers that log errors. 

(continued on next page) 

A-43 



THE I/O DATA BASE 

Table A-13 {Cont.): UCB Error Log Extension 

Field Name Contents 

UCB$L DPC Device-specific field. This field is reserved 
-

for driver use. 

Another extension of the unit control block is the disk extension 
block. This UCB extension is present for all disk devices. It 
follows the error log extension. A driver that supports a disk must 
allow space in the UCB for both the error log and disk extensions. 

Disk drivers use three bits in UCB$W DEVSTS as follows: 

UCB$V ECC 
UCB$V-DIAGBUF 
UCB$V-NOCNVRT 

ECC correction made 
Diagnostic buffer specifed 
No logical block number to 
media address conversion 

The fields are illustrated in Figure A-14 and described in Table A-14. 

UCB$L_MAXBLOCK 

UCB$W_OFFSET UCB$W_DIRSEO 

UCB$L_MEDIA 

UCB$W_EC2 UCB$W_EC1 

UCB$W_BCR UCB$B_OFF RTCJ UCB$B_OFFNDX 

ZK-938-82 

Figure A-14: UCB Disk Extension 

Table A-14: UCB Disk Extension 

Field Name Contents 

UCB$L MAXBLOCK 

UCB$W_DIRSEQ 

UCB$W OFFSET 

UCB$L MEDIA 

UCB$W ECl 

Maximum number of logical blocks on a random 
access device. This field is written by a disk 
driver during unit initialization and power 
recovery. 

Directory sequence number. 

Current offset register contents. 

Media address. 

ECC position register. This field records the 
starting bit number of an error burst. Disk 
driver register dump routines copy the contents 
of this field into an error-logging or 

_diagnostic buffer. 

(continued on next page) 

A-44 



THE I/O DATA BASE 

Table A-14 (Cont.}: UCB Disk Extension 

Field Name Contents 

UCB$W ECl 
(Cont-:-) 

UCB$W EC2 

UCB$B OFFNDX 

UCB$B OFFRTC 

UCB$W BCR 

The VAX/VMS correction routine IOC$APPLYECC 
reads the contents of this field to locate the 
beginning of an error burst in a disk block. 

ECC position register. Records the exclusive OR 
correction pattern. Disk driver register dump 
routines copy the contents of this field into an 
error-logging or diagnostic buffer. 

The VAX/VMS ECC correction routine IOC$APPLYECC 
reads the contents of this field to correct disk 
data. 

Current offset table index. When a disk driver 
transfer ends in an error, the disk driver can 
retry the error a number of times with different 
offsets of the disk head from the centerline. 
This field is an index into a driver table of 
offset positions. 

Current offset retry count. This field records 
the number of times to try a particular offset 
setting in a disk transfer retry. 

Byte count register. Some disk drivers use this 
field as an internal count of the number of 
bytes left to be transferred in an I/O request. 

A-45 





APPENDIX B 

VAX/VMS MACROS INVOKED BY DRIVERS 

This appendix contains an alphabetical listing of macros that drivers 
invoke. Default values are provided where applicable. 

$DEF 

SYM 
[ALLOC] 

[SIZ] 

$DEFEND 

STRUC 

$DEF IN I 

STRUC 

GBL=LOCAL 

DOT=O 

$EQULST 

PREFIX 
GBL=LOCAL 

INIT 
INCR=l 
LIST 

Defines a field within the structure 
delineated by the $DEFINI and $DEFEND macros 

Name of symbol used to access the field 
Block storage allocation directives. 
Possible directives are .BLKB, .BLKW, .BLKL, 
.BLKQ, .BLKO. You can define multiple 
symbols for the same field by leaving this 
parameter blank. 
Number of block storage units to allocate 

Declares the end of a structure definition 

Name of structure 

Declares the start of a structure definition 

Name of structure (for example, CRB, UCB, and 
so on) 
Specifies that symbols within the structure 
are local (LOCAL value) or global (GLOBAL 
v a 1 u e) • LOCAL i s the d e fa u 1 t • 
Declares offset from base of structure 

Defines symbol names and values 

Prefix for all symbols generated 
Defines symbols within structure as local 
(default) or global 
Default value for first symbol generated 
Default increment for symbol values 
List of elements. Each element takes the 
form 

<SYM,VALUE> 
SYM is concatenated with PREFIX to form the 
symbol name. If specified, VALUE is the 
value assigned to the symbol. 

B-1 



VAX/VMS MACROS INVOKED BY DRIVERS 

$VIELD 

MOD 
INIBIT 

FIELDS 

VI ELD 

CASE 

DDT AB 

SRC 
DISPLIST 

TYPE=W 
LIMIT=#O 
NMODE=S"'# 

DEVNAM 
START=IOC$RETURN 
UNSOLIC=IOC$RETURN 

FUNCTB 
CANCEL=IOC$RETURN 
REGDMP=IOC$RETURN 

DIAGBF=O 
ERLGBF=O 
UNITINIT=IOC$RETURN 
ALTSTART=IOC$RETURN 
MNTVER=IOC$MNTVER 

Generates symbols whose values are bits 
within major fields defined by $DEF macros. 
Symbols take the form: 

MOD$V SYM 
MOD$S-SYM 
MOD$M-SYM 

Prefix for symbols generated by this macro 
Initial bit offset within subfield from which 
subfield definitions are based 
One or more subfields of the form: 

< S YM , [ S I Z ] , [MS K] > 

SYM Suffix of each symbol defined for 
this subfield 
Width of subfield in bits SIZ=l 

MSK Generates a symbol whose value is a 
mask 

Generates subfields within major fields 
defined by $DEF macros. This macro uses the 
same syntax as $VIELD, but symbols take the 
form: 

MOD V SYM 
MOD-S-SYM 
MOD-M-SYM 

Generates a CASE instruction and CASE table 

Source of CASE index value 
List of destinations for each case 
dest2, dest3) 

(destl, 

Data type (B, W, L) 
Lower limit of CASE value 
Address mode for number of table 
the short literal default is good 
63 entries 

entries; 
for up to 

Generates a driver dispatch table 
devnam$DDT 

device name 
of start I/O routine 

named 

Generic 
Address 
Address 
routine 
Address 
Address 
Address 
routine 

of unsolicited interrupt 
for MASSBUS drivers 

service 

of function decision table 
of cancel I/O routine 
of error-logging register 

Length in bytes of diagnostic buffer 
Length in bytes of error logging buffer 
Device unit initialization routine 
Alternate start I/O routine 
Address of mount verification routine 

B-2 

dump 



DPT AB 

END 
ADAPTER 
FLAGS=O 

UCBSIZE 
[UNLOAD] 

MAXUNITS=8 
DEFUNITS=l 
[DELIVER] 

[VECTOR] 

NAME 

DPT STORE 

STR TYPE 

STR OFF 
OPER 

EXP 

POS 
SIZE 

DSBINT 

[IPL] 

[DST] 

ENBINT 

[SRC] 

FORK 

FUNCTAB 

[ACTION] 

CODES 

VAX/VMS MACROS INVOKED BY DRIVERS 

Generates a driver prologue table in PSECT 
$$$105 PROLOGUE 

Address of the end of the driver 
Type of adapter (UBA, MBA, DR or NULL) 
Driver loading flags (DPT$M SVP and 
DPT$M NOUNLOAD) -
Size Tn bytes of each device UCB 
Optional address of a routine to call if the 
driver is to be unloaded 
Maximum number of units that can be connected 
Number of UCBs to be created by AUTOCONFIGURE 
Address of action routine that determines 
whether a unit is automatically configured 
Address of a driver-specific transfer vector 
(use of this field is reserved to DIGITAL) 
Driver name 

Generates a table containing initialization 
values for fields in the I/O data base 

Type of control block (DDB, UCB, CRB, IDB); 
or table marker (!NIT, REINIT, END) 
Offset into control block 
Type of initialization operation {B=byte, 
W=word, L=long, D=address relative to driver, 
V=bit field); if an at sign(@) precedes the 
OPERATION, then the EXPRESSION argument is 
the address of the initialization data 
Initialization value to be stored in control 
block 
Bit position for OPERATION=V 
Field size for OPERATION=V 

Disables interrupts by raising IPL 

IPL value to be loaded into the IPL processor 
register PR$ IPL (defaults to 31) 
Location for-old-IPL value (defaults to top 
of stack) 

Enables interrupts by restoring a saved IPL 

Location in which an IPL is saved (defaults 
to top of stack) 

Calls EXE$FORK to create a fork process 

Generates a function decision table 
consisting. of two 64-bit entries of function 
codes, and n 96-bit entries of function codes 
and action routine addresses 

Address of an FDT routine to call for the 
function codes listed 
A list of I/O function codes 

B-3 



IFNORD 

SIZ 
ADR 
DEST 

MODE=#O 

IFNOWRT 

IFRD 

SIZ 
ADR 
DEST 

MODE=#O 

SIZ 
ADR 
DEST 

MODE=#O 

IOFORK 

LOA DUBA 

PURDPR 

RE LC HAN 

RELDPR 

RELMPR 

RELSCHAN 

RE QC OM 

VAX/VMS MACROS INVOKED BY DRIVERS 

Branches if a range of addresses is not 
readable 

Number of bytes in range (0 - 512) 
Address of first byte in range 
Location to branch to if the range of 
addresses is not readable 
Access mode at which to probe {defaults to 
USER) 

Branches if a range of addresses is not 
writeable 

Number of bytes in range (0 - 512) 
Address of first byte in range 
Location to branch to if the range of 
addresses is not writeable 
Access mode at which to probe {defaults to 
USER) 

Branches if a range of addresses is readable 

Number of bytes in range (0 - 512) 
Address of first byte in range 
Location to branch to if the range 
addresses is readable 

of 

Access mode at which to probe {defaults to 
USER) 

Calls EXE$IOFORK to create a device driver 
fork process 

Calls IOC$LOADUBAMAP to load a preallocated 
set of UNIBUS adapter map registers 

Calls IOC$PURGDATAP to purge a data path 

Calls IOC$RELCHAN to release all controller 
data channels that are allocated by the 
driver 

Calls IOC$RELDATAP to release a preallocated 
UNIBUS adapter data path 

Calls IOC$RELMAPREG to release a preallocated 
set of UNIBUS adapter map registers 

Calls IOC$RELSCHAN to release all secondary 
controller data channels that are allocated 
by the driver 

Calls IOC$REQCOM to complete an I/O request 
after driver processing is finished 

B-4 



REQDPR 

RE QM PR 

REQPCHAN 

[PRI] 

REQSCHAN 

[PRI] 

SAVI PL 

DST=- (SP) 

SETI PL 

[I PL] 

SOFTINT 

IPL 

TIMEWAIT 

TIME 

BITVAL 
SOURCE 
CONTEXT 
SENSE=.TRUE. 

WFIKPCH 

EXCPT 

[TIME] 

VAX/VMS MACROS INVOKED BY DRIVERS 

Calls IOC$REQDATAP to request 
adapter data path 

a UNIBUS 

Calls IOC$REQMAPREG to request a set of 
UNIBUS map registers 

Calls IOC$REQPCHANH or IOC$REQPCHANL to 
request a primary controller data channel 

Priority of request; if PRI=HIGH, calls 
IOC$REQPCHANH; otherwise calls IOC$REQPCHANL 

Calls IOC$REQSCHANH or IOC$REQSCHANL to 
request a secondary controller data channel 

Priority of request; if PRI=HIGH calls 
IOC$REQSCHANH; otherwise calls IOC$REQSCHANL 

Saves the current IPL value as recorded in 
the processor register PR$_IPL 

Location in which to save the current IPL 
(defaults to a new top of stack) 

Sets IPL to a new value 

New IPL value (defaults to 31) 

Initiates a software interrupt 

IPL value of the interrupt; loads IPL into 
the processor register PR$_SIRR 

Checks for specific state by 
for a given length of time. 
or failure status in RO. 

testing bit ( s) 
Returns success 

Number of 10 microsecond intervals to wait 
for state 
Mask for bit(s) to test 
Address of bit(s) to test 
Bit test context: B, W, or L 
If .TRUE., test for one or more bits set; 
otherwise, test for all bits clear 

Calls an executive subroutine to wait for an 
interrupt or a device timeout and keep the 
controller data channel 

Relative address of a device timeout handling 
routine; writes the address into the two 
bytes following the call to the executive 
routine. 
Number of seconds to allow before a device 
timeout (defaults to 65536 seconds) 

B-5 



WFIRLCH 

EXCPT 

[TIME] 

VAX/VMS MACROS INVOKED BY DRIVERS 

Calls an executive subroutine to wait for an 
interrupt or a device timeout and release the 
controller data channel 

Relative address of a device timeout handling 
routine; writes the address into the two 
bytes following the call to the executive 
routine. 
Number of seconds to allow before a device 
timeout (defaults to 65536 seconds) 

B-6 



APPENDIX C 

OPERATING SYSTEM ROUTINES 

This appendix describes the VAX/VMS operating system routines that are 
used by device drivers. The information given in this section follows 
the conventions listed below: 

• Fields used for both input and output are not specified. 

• Registers are assumed preserved unless otherwise specified. 

• IPL at execution refers to the interrupt priority level at 
which the routine executes, not the IPL at which it is called. 

COM$DELATTNAST 

module: COMDRVSUB 

Driver fork processes call this routine to deliver all the AST control 
blocks linked to the specified AST list. 

INPUT TO ROUTINE 

Registers Contents 

R4 Address of specified listhead 

RS Address of the unit control block 

Fields Contents 

IPL at execution: caller's IPL 

This routine removes all AST blocks from the specified list and 
schedules an IPL$_QUEUEAST level fork process to queue each AST to its 
process. 

OUTPUT FROM ROUTINE 

Registers Contents 

C-1 



OPERATING SYSTEM ROUTINES 

Fields Contents 

Specified listhead 0 

IPL at exit: caller's IPL 

COM$DRVDEALMEM 

module: COMDRVSUB 

Drivers use this routine to deallocate system dynamic memory. 
COM$DRVDEALMEM can be called from any interrupt priority level. 

INPUT TO ROUTINE 

Registers Contents 

RO Address of the block to be deallocated 

Fields Contents 

IRP$W SIZE Size of the block in bytes 

IPL at execution: caller's IPL and IPL$ QUEUEAST 

If the block size is smaller than 24 bytes 
properly aligned, a system bugcheck occurs. 
SCH$RAVAIL to mark the resource free. 

IPL at exit: caller's IPL 

COM$FLUSHATTNS 

module: COMDRVSUB 

or the block is not 
This routine also calls 

Driver FDT and fork routines call this routine to flush an attention 
AST list. Drivers use this routine during cancel I/O operations. 

INPUT TO ROUTINE 

Registers Contents 

R4 Address of the current PCB 

RS Address of the UCB 

R6 Number of the assigned channel 

R7 Address of the AST control block listhead 

C-2 



OPERATING SYSTEM ROUTINES 

Fields Contents 

UCB$B DIPL Device IPL 

PCB$L PID Process's ID 

PCB$W ASTCNT ASTs remaining in quota 

IPL at execution: device IPL (UCB$B_DIPL) 

COM$FLUSHATTNS locates all the control blocks whose channel number and 
process identification match those specified as input to the routine, 
removes them from the specified list and deallocates them. This 
routine exits by returning to its caller. 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl 

R2 

R7 

Fields 

PCB$W ASTCNT 

Specified listhead 

Contents 

SS$ NORMAL 

Destroyed 

Destroyed 

Destroyed 

Contents 

Number of ACBs flushed (added to previous 
contents) 

Updated 

IPL at exit: caller's IPL 

COM$POST 

module: COMDRVSUB 

Drivers call this routine after they have completed all 
device-dependent I/O postprocessing for an I/O request. This routine 
inserts the I/O request packet into the I/O postprocessing queue and 
returns to the driver fork process. COM$POST operates independently 
of the device unit; it does not attempt to dequeue another packet nor 
does it change the busy status of the device. 

Drivers can use this routine to complete I/O request packets initiated 
by the routine EXE$ALTQUEPKT. 

INPUT TO ROUTINE 

Registers Contents 

R3 Address of the I/O request packet 

RS Address of the unit control block 

C-3 



OPERATING SYSTEM ROUTINES 

Fields Contents 

IRP$L MEDIA Data to be copied into the I/O status block 

IRP$L MEDIA+4 Data to be copied to the I/O status block 

IPL at execution: caller's IPL (driver fork level or above) 

This routine places the I/O request packet into the queue headed by 
IOC$GL PSBL. 

OUTPUT FROM ROUTINE 

Registers Contents 

RO - Rl Destroyed 

Fields Contents 

UCB$L OPCNT Incremented by 1 

I PL at exit: caller's IPL 

COM$SETATTNAST 

module: COMDRVSUB 

Driver FDT routines call this routine to enable or disable attention 
ASTs, depending upon the contents of the queue I/O parameter Pl. To 
enable an AST, Pl contains the address of an AST routine. The routine 
allocates a control block that can double as an AST control block when 
the AST is delivered. 

This control block contains the following information: 

• The address of the specified AST routine 

• The specified AST parameter 

• The specified access mode 

• The channel number 

• The process identification of the requesting process 

COM$SETATTNAST links the control block to the start of the specified 
linked list of AST control blocks located in the unit control block 
extension area. 

If Pl is clear, the routine disables ASTs by searching through the 
linked list, extracting each entry, and deallocating it. 

C-4 



INPUT TO ROUTINE 

Registers 

R3 

R4 

RS 

R6 

R7 

OPERATING SYSTEM ROUTINES 

Contents 

Address of the IRP 

Address of the current PCB 

Address of the UCB 

Address of the assigned channel control block 

Address of the specified AST control block 
listhead 

AP Address of the QIO parameter list 

Fields Contents 

IRP$W CHAN I/O request channel number 

UCB$B DIPL Device IPL 

PCB$W ASTCNT Number of ASTs remaining in process quota 

PCB$L PID Process identification 

O(AP) Process AST address 

4(AP) AST parameter 

8(AP) Access mode for AST 

IPL at execution: caller's IPL and device IPL 

If the process exceeds buffered I/O or AST quotas, or if there is no 
memory available to allocate an AST control block, this routine 
transfers control to EXE$ABORTIO with error status. 

If Pl is clear, the routine transfers control to COM$FLUSHATTNS to 
remove the identified AST control block. 

This routine exits to its caller. 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl - R2 

R3 

RS 

R6 - R8 

Contents 

SS$ NORMAL (success) 
SS$-EXQUOTA 
SS$-INSFMEM 

Destroyed 

Address of the IRP 

Address of the UCB 

Destroyed 

C-S 



OPERATING SYSTEM ROUTINES 

Fields Contents 

PCB$W ASTCNT Decreased by 1 

Specified listhead Updated 

IPL at exit: caller's IPL 

ERL$DEVICERR 

module: ERRORLOG 

Logs a controller and/or device error. This routine allocates an 
error message buffer and writes data from the I/O request packet and 
unit control block. It also calls the driver register dump routine 
for device registers. 

INPUT TO ROUTINE 

Registers Contents 

RS Address of unit control block 

ERL$DEVICERR sets the error type code to device error. This routine 
uses fields in the UCB, DDB, DDT, and I/O request packet. It also 
assumes that the driver contains a register dump routine. It uses the 
DDT to calculate the address of the register dump routine and then 
calls it. 

If you do not specify a dump routine in the 
DDTAB supplies the address of IOC$RETURN. 
it is a NOP. 

OUTPUT FROM ROUTINE 

Registers Contents 

Fields Contents 

DDTAB macro invocation, 
IOC$RETURN simply returns; 

UCB$L EMB Address of the error message buffer 

UCB$W STS Shows error log in progress 

ERL$DEVICTMO 

module: ERRORLOG 

Logs a device timeout. This routine performs the same functions and 
uses the same input and output as ERL$DEVICERR with one exception: 
the error type code is device timeout. 

C-6 



OPERATING SYSTEM ROUTINES 

ERL$RELEASEMB 

module: ERRORLOG 

Wakes the error log process to write the contents of an error message 
buffer into the error logging file. 

INPUT TO ROUTINE 

Registers Contents 

R2 Address of error message buffer 

Fields Contents 

ERL$V TIMER 
(in ERL$GB_BUFFLAG) 

Determines whether a timer is running on the 
buffer 

IPL at execution: caller's IPL 

OUTPUT FROM ROUTINE 

Registers Contents 

RO Destroyed 

Fields Contents 

Busy message count Decreased by 1 
(in ERL$B _BUSY) 

Complete message Incremented by 1 
count (in error message 
buffer header) 

If ERL$B MSGCNT is greater than the maximum message count, this 
routine wakes the error logger. 

IPL at exit: caller's IPL 

EXE$ABORTIO 

module: SYSQIOREQ 

FDT routines jump to this routine to finish an I/O operation without 
returning final I/O status in the IOSB. This routine zeroes the IOSB 
field of the I/O request packet, clears a bit to prevent a user mode 
AST, and inserts the I/O request packet in the I/O postprocessing 
queue. 

C-7 



OPERATING SYSTEM ROUTINES 

INPUT TO ROUT !NE 

Registers Contents 

RO First longword of status for I/O status block 

R3 Address of I/O request packet 

R4 Address of current PCB 

RS Address of UCB 

Fields Contents 

ACB$V QUOTA Set to 1 (when an AST is specified) 
(in IRP$B _ RMOD) 

IPL at execution: IPL$ ASTDEL 

OUTPUT FROM ROUTINE 

Registers Contents 

None written 

Fields Contents 

ACB$V QUOTA Cleared to zero (if field previously set) 
(in IRP$B_RMOD) 

IRP$L IOSB Zero 

PCB$W ASTCNT Incremented if ACB$V QUOTA was set 

EXE$ABORTIO places the I/O request packet into the I/O postprocessing 
queue headed by IOC$GL_PSBL. 

I PL a t ex i t : 0 (no rm a 1 process I PL) 

EXE$ALLOCBUF 

module: MEMORYALC 

FDT routines call this routine to allocate a buffer for a buffered I/O 
operation from the nonpaged system pool. This routine can place the 
process in a resource wait state if sufficient memory is not 
available, and the process has resource wait mode enabled. The caller 
must adjust process quotas. 

INPUT TO ROUTINE 

Registers Contents 

Rl Size of requested buffer in bytes 

R4 Address of current PCB 

C-8 



OPERATING SYSTEM ROUTINES 

Fields Contents 

PCB$V SSRWAIT One or zero. Determines whether process 
should wait, if no memory available for 
requested buffer. If this field is set, 
resource wait mode is disabled. 

IPL at execution: caller's IPL, IPL 11, and IPL$ SYNCH 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl 

R2 

R3 

Fields 

IRP$W SIZE 
(in allocated buffer) 

IRP$B TYPE 
(in allocated buffer) 

IPL at exit: IPL$ ASTDEL 

Contents 

SS$ NORMAL (success) 
SS$-INSFMEM 

Size of allocated buffer (requested size is 
rounded up to next 16-byte multiple) 

Address of allocated buffer 

Destroyed 

Contents 

Buffer size in bytes 

DYN$C BUFIO 

EXE$ALLOCIRP EXE$ALLOCIRP 

module: MEMORYALC 

This routine allocates an I/O request packet from nonpaged dynamic 
memory. It performs the same functions and has the same input and 
output as EXE$ALLOCBUF, with the following exceptions: 

• The caller does not specify a buffer size 

• The allocated buffer is IRP$C LENGTH bytes long 

• The buffer size is set to IRP$C LENGTH 

• The buffer type is set to DYN$C IRP 

C-9 



OPERATING SYSTEM ROUTINES 

EXE$ALONONPAGED 

module: MEMORYALC 

Driver fork processes use this routine to allocate a block of memory 
from the nonpaged system pool. 

The block header is not initialized. 

INPUT TO ROUTINE 

Registers Contents 

Rl Requested block size in bytes 

Fields Contents 

none 

IPL at execution: caller's IPL (must not fall below IPLll) and IPL 11 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl 

Contents 

Status code (0 or 1) 

Size of allocated buffer (requested size 
rounded up to next 16-byte multiple) 

R2 Address of allocated block 

R3 Destroyed 

Fields Contents 

IPL at exit: caller's IPL 

EXE$ALTQUEPKT 

module: S~SQIOREQ 

Driver FDT routines and fork processes call this routine to send an 
I/O request packet to a driver's alternate start I/O routine so that 
it bypasses the I/O request queue for the device's unit control block. 
EXE$ALTQUEPKT passes the address of the I/O request packet to the 
driver without regard for the status of the device unit. 

C-10 



OPERATING SYSTEM ROUTINES 

INPUT TO ROUTINE 

Registers Contents 

R3 Address of the I/O request packet 

RS Address of the unit control block 

Fields Contents 

DDT$L ALTSTART Address of the alternate start I/O routine 

UCB$B FIPL Driver fork IPL 

UCB$L DDB Address of unit's DDB 

DDB$L DDT Address of the driver dispatch table 

IPL at execution: UCB$L FIPL 

EXE$ALTQUEPKT calls the alternate start I/O routine and returns to its 
caller. 

OUTPUT FROM ROUTINE 

Registers Contents 

RO - RS Destroyed 

Fields Contents 

IPL at exit: caller's IPL 

EXE$BUFFRQUOTA EXE$BUFFRQUOTA 

module: EXSUBROUT 

FDT routines call this routine to determine whether a process's 
buffered byte count quota usage permits the process to be granted 
additional buffered I/O. This routine may place the process in a 
resource wait state if quota usage is too large, and the process has 
resource wait mode enabled. 

INPUT TO ROUTINE 

Registers Contents 

Rl Number of requested bytes 

R4 Address of PCB 

C-11 



OPERATING SYSTEM ROUTINES 

Fields 

PCB$V SSRWAIT 

IOC$GW MAXBUF 

Contents 

When process exceeds quota, determines 
whether process should wait. If this field 
is set, resource wait mode is disabled. 

Maximum number of buffered I/O bytes that 
system allows to any process 

JIB$L BYTLM Process's byte count limit 

JIB$L BYTCNT Process's byte count usage quota 

IPL at execution: caller's IPL and IPL$ SYNCH 

OUTPUT FROM ROUTINE 

Registers Contents 

RO SS$ NORMAL (success) 
SS$-EXQUOTA 

R2 - R3 Destroyed 

Fields Contents 

IPL at exit: IPL$ ASTDEL 

EXE$BUFQUOPRC 

module: EXSUBROUT 

EXE$BUFQUOPRC performs the same function and has the same input and 
output as EXE$BUFFRQUOTA with the following exception: EXE$BUFQUOPRC 
does not check the field IOC$GW MAXBUF. 

EXE$DEANONPAGED 

module: MEMORYALC 

Deallocates a block of memory to the nonpaged system pool. 

This routine performs the same functions and has the same input and 
output as the routine COM$DRVDEALMEM, with the following exceptions: 

• R3 is destroyed 

• The caller's IPL must be at IPL$ QUEUEAST or lower 

C-12 



OPERATING SYSTEM ROUTINES 

EXE$FINISHIO 

module: SYSQIOREQ 

FDT routines transfer control to this routine to finish an I/O 
operation and return a quadword of final I/O status to the requesting 
process. This routine writes final I/O status into the I/O request 
packet and inserts the I/O request packet in the I/O postprocessing 
queue. 

INPUT TO ROUTINE 

Registers 

RO 

Rl 

R3 

R4 

RS 

OUTPUT FROM ROUTINE 

Registers 

RO 

Fields 

IRP$L MEDIA 

IRP$L MEDIA+4 

UCB$L OPCNT 

Contents 

First longword of status for the I/O status 
block 

Second longword of status for the I/O status 
block 

Address of the I/O request packet 

Address of the current process control block 

Address of the UCB 

Contents 

SS$ NORMAL 

Contents 

First longword of I/O status (RO) 

Second longword of I/O status (Rl) 

Incremented by 1 

This routine places the I/O request packet into the I/O postprocessing 
queue headed by IOC$GL_PSBL. 

EXE$FINISHIOC 

module: SYSQIOREQ 

This routine performs the same functions and has the same input and 
output as EXE$FINISHIO with the following exception: EXE$FINISHIOC 
clears the contents of Rl before storing RO and Rl in the I/O request 
packet. 

C-13 



OPERATING SYSTEM ROUTINES 

EXE$FORK 

module: FORKCNTRL 

This routine performs the same functions as EXE$IOFORK except that 
this routine does not disable timeouts by clearing UCB$V TIM in the 
UCB$W STS field of the unit control block. 

EXE$FORKDSPTH 

module: FORKCNTRL 

The interrupt service routine that dispatches fork processes in a fork 
queue. This routine gains control when the processor grants a 
software interrupt at IPLs 6 and 8 through 11. When EXE$FORKDSPTH 
gains control the stack contains the following information: 

• O(SP) contains the PC at the time of the interrupt 

• 4(SP) contains the PSL at the time of the interrupt 

RO through RS at the time of the interrupt are also saved by 
EXE$FORKDSPTH. 

SWI$GL FQFL indexed by the current IPL contains the address of the 
head of the fork queue for this IPL. Each entry in the fork queue is 
the address of a fork block that contains R3, R4, a PC, and implicitly 
RS; RS is the address of the fork block. 

If the queue is empty when the interrupt occurs, EXE$FORKDSPTH 
dismisses the interrupt without error. 

EXE$FORKDSPTH empties the fork queue corresponding to the IPL of the 
interrupt. For each queue entry, it restores R3 and R4 from the fork 
block, saves the dispatch address and IPL on the stack, and executes a 
JSB to the saved PC address. When the queue is empty, it dismisses 
the interrupt. 

The IPL on return from each fork process must equal the IPL at which 
the process was called. If IPL does not match, EXE$FORKDSPTH signals 
the fatal bugcheck BADFORKIPL. 

EXE$1NSERTIRP 

module: SYSQIOREQ 

Inserts an I/O request packet according to the base priority of the 
I/O request packet's originating process into the I/O request packet 
wait queue of a unit control block. 

C-14 



OPERATING SYSTEM ROUTINES 

INPUT TO ROUTINE 

Registers Contents 

R2 Address of the I/O queue list head for the 
device 

R3 Address of the I/O request packet 

Fields Contents 

IPL at execution: caller's IPL (fork level or higher) 

OUTPUT FROM ROUTINE 

Registers Contents 

Rl Destroyed 

This routine places the I/O request packet in the queue and sets the Z 
condition code in the PSL as follows: 

1 indicates that the entry is first in the queue. 

0 indicates that at least one entry was already in the queue. 

IPL at exit: caller's IPL 

EXE$1NSIOQ 

module: SYSQIOREQ 

Examines the unit control block. If the device is idl~, this routine 
calls IOC$INITIATE; if the device is busy, it calls EXE$INSERTIRP. 

IN PUT TO ROUTINE 

Registers Contents 

R3 Address of the I/O request packet 

RS Address of the UCB 

Fields Contents 

UCB$B FIPL Driver fork IPL 

UCB$V BSY Determines whether device is busy 
(in UCB$W_STS) 

UCB$L IOQFL Address of device I/O queue listhead 

IPL at execution: driver fork level 

C-15 



OPERATING SYSTEM ROUTINES 

OUTPUT FROM ROUTINE 

Registers Contents 

RO - R2 Destroyed 

Additional registers used by the driver start I/O routine will be 
destroyed if the start I/O routine is called. 

Fields Contents 

UCB$V BSY Set to 1 
{in UCB$W_STS) 

IPL at exit: original IPL 

EXE$1NSTIMQ 

module: EXESUBROUT 

Inserts a timer queue element into the timer queue. Elements are 
ordered according to expiration time with those elements closest to 
due time taking priority. 

INPUT TO ROUTINE 

Registers Contents 

RO, Rl Quadword expiration time for new element 

RS Address of timer element to be queued 

IPL at execution: IPL$ TIMER 

OUTPUT FROM ROUTINE 

Registers Contents 

R2 - R3 Destroyed 

IPL at exit: IPL$ TIMER 

EXE$10FORK 

module: FORKCNTRL 

Saves the contents of R3 and R4 in the fork block specified by RS. 
This routine pops the return PC off the top of stack and saves the PC 
value in the fork block. It inserts the fork block address into the 
fork queue corresponding to the IPL stored in the fork block. 

C-16 



OPERATING SYSTEM ROUTINES 

INPUT TO ROUTINE 

Registers Contents 

RS Address of the fork block (usually the UCB) 

O(SP) Return address of caller 

4(SP) Return address of caller's caller 

Fields Contents 

FKB$B FIPL Fork IPL 
(in fork block) 

IPL at execution: caller's IPL 

OUTPUT FROM ROUTINE 

Registers Contents 

R3 Destroyed 

R4 FKB$B FIPL 

Fields Contents 

UCB$V TIM Zero 
(in UCB$W _STS) 

FKB$L FR3 R3 
(in UCB) 

FKB$L FR4 R4 
(in UCB) 

FKB$L FPC 0 (SP) 
(in UCB) 

The routine queues the UCB address to the list headed by SWI$GL FQFL. 
If the queue is empty, requests a software interrupt at fork IPL~ 

IPL at exit: caller's IPL 

EXE$MODIFY 

module: SYSQIOFDT 

FDT routines transfer control to this device-independent routine that 
validates and readies a user buffer for a DMA read/write operation. 
Use EXE$MODIFY instead of EXE$READ when you wish your driver to read 
and write to .a buffer. EXE$MODIFY disables a paging mechansim used 
during write-only operations. 

This routine performs the following functions: 

• Translates read logical functions to read physical functions 

• Transfers queue I/O parameters to the I/O request packet 

C-17 



OPERATING SYSTEM ROUTINES 

• Verifies that the caller has access to the specified buffer 

• Locks the buffer's pages into physical memory. If a page 
fault occurs during this step, the routine returns control to 
the Queue I/O Request system service, which repeats the 
request. 

INPUT TO ROUTINE 

Registers 

R3 

R4 

RS 

R6 

R7 

R8 

AP 

Contents 

Address of the I/O request packet 

Address of the current PCB 

Address of the UCB assigned to the device 
unit 

Address of the CCB for the channel assigned 
to the device unit 

Bit number of the I/O function code 

FDT entry address 

Address of the first function-dependent QIO 
parameter {Pl) 

Fields Contents 

O(AP) Virtual address of buffer (Pl) 

4(AP) Number of bytes in transfer {P2) 

12 (AP) Carriage control byte (P4) 

IRP$W FUNC I/O function code 

IPL at execution: caller's IPL (IPL$_ASTDEL) 

If this routine 
EXE$QIODRVPKT. 
EXE$ABORTIO. 

completes successfully, 
If EXE$MODIFY fails, 

it 
it 

transfers control 
transfers control 

to 
to 

EXE$MODIFY does not check for zero length transfers and will queue an 
IRP that specifies a zero length buffer to the UCB. The driver start 
I/O routine should check for zero length buffers to avoid mapping them 
to UNIBUS or MASSBUS space, because the attempted mapping causes a 
system failure. 

OUTPUT FROM ROUTINE 

Registers 

RO - R2 

Fields 

IRP$B CARCON 

IRP$V FUNC 
(in IRP$W_STS) 

IRP$L SVAPTE 

Contents 

Destroyed 

Contents 

P4 

Set to 1 (indicates a read function) 

Address of page table entry that maps the 
first page of the buffer 

C-18 



OPERATING SYSTEM ROUTINES 

Fields Contents 

IRP$W BCNT Size of the transfer in bytes 

IPL at exit: caller's IPL 

EXE$MODIFYLOCK 

module: SYSQIOFDT 

FDT routines call EXE$MODIFYLOCK to perform buffer processing on a DMA 
transfer. This routine: 

• Determines whether the caller has write access to the buffer 

• Locks the buffer's pages into memory. If a page fault occurs 
during this process, the routine returns control to the Queue 
I/O Request system service, which resubmits the request. 

Use EXE$MODIFYLOCK instead of EXE$READLOCK when you expect your driver 
to read and write to a buffer. EXE$MODIFYLOCK disables a paging 
mechanism used in write-only operations. 

INPUT TO ROUTINE 

Registers Contents 

RO Starting address of buffer 

Rl Size of transfer in bytes 

R3 Address of the I/O request packet 

R4 Address of current PCB 

R6 Address of the CCB 

Fields Contents 

IPL at execution: caller's IPL (IPL$_ASTDEL) 

If EXE$MODIFYLOCK fails, it transfers control to EXE$ABORTIO. If the 
routine completes successfully, control is returned to its caller. 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl 

R2 

R3 

Contents 

SS$ NORMAL 

Address of the PTE that maps the first page 
of the buffer 

Destroyed 

Address of the IRP 

C-19 



Fields 

IRP$L SVAPTE 

OPERATING SYSTEM ROUTINES 

Contents 

Address of the PTE that maps the first page 
of the buffer 

IRP$W BCNT Size of the transfer in bytes 

IRP$V FUNC A value of 1 (indicating a read function) 
(in IRP$W_STS) 

IPL at exit: caller's IPL 

EXE$MODIFYLOCKR 

module: SYSQIOFDT 

This routine determines whether a process has write access to the 
buffer pages it requested, then, if access is permitted, it locks the 
pages into memory. If the access check or page locking procedure 
fails, the routine calls the driver to clean up QIO bookkeeping. 
Drivers typically use EXE$MODIFYLOCKR when they must lock multiple 
areas into memory for one I/O request, and then need to unlock 
previously locked areas after an I/O request is aborted. 

INPUT TO ROUTINE 

Registers Contents 

RO Starting address of buffer 

Rl Length of the buffer in bytes 

R3 Address of the IRP 

R4 Address of the current process's PCB 

R6 Address of the channel control block 

Fields Contents 

EXE$MODIFYLOCKR may fail for a number of reasons: 

• The buffer access check fails. In this case, the routine 
returns SS$ ACCVIO to the driver in RO. 

• The caller process has an insufficient working set limit to 
lock all the buffer pages into memory. The routine returns 
SS$ INSFWSL in RO. 

• A page fault occurs while the routine is locking pages into 
memory. The status returned in RO in this case is zero. 

If any of the above errors occur, the routine calls back the driver as 
a coroutine with error status in RO and all other registers preserved. 

C-20 



OPERATING SYSTEM ROUTINES 

The driver performs necessary queue I/O cleanup, that is, it carries 
out any procedures that the system does not perform as part of the 
normal queue I/O request abort processing. 

The driver must preserve all registers, including RO and Rl. 

When the driver returns by executing an RSB instruction, 
EXE$MODIFYLOCKR aborts the I/O request if RO contains an error status, 
then performs processing that results in the I/O request's being 
resubmitted to the driver. For example: 

JSB 
BLBS 

BUF LOCK FAIL: 

BUF LOCK OK: 

GAEXE$MODIFYLOCKR 
BUF LOCK OK 

<clean up this QIO bookkeeping> 
RSB 

<continue this QIO> 

If the subroutine is successful, it returns control to its caller. 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl 

R2 

R3 

Fields 

IRP$L SVAPTE 

IRP$W BCNT 

IRP$M FUNC 
(in IRP$W _FUNC) 

Contents 

SS$ NORMAL ( 1) 

Address of the PTE that maps the first page 
of the buffer 

Function indicator (set to 1) 

Address of the IRP 

Contents 

Address of the PTE that maps the first page 
of the buffer 

Size of the transfer in bytes 

Set to 1 

IPL at exit: caller's IPL 

EXE$0NEPARM 

module: SYSQIOFDT 

Device-independent FDT routine that copies a single QIO parameter into 
the I/O request packet and calls EXE$QIODRVPKT. 

C-21 



INPUT TO ROUTINE 

Registers 

R3 

R4 

RS 

R6 

R7 

RS 

AP 

Fields 

OUTPUT FROM ~OUTINE 

OPERATING SYSTEM ROUTINES 

Contents 

Address of the I/O request packet for the 
current I/O request 

Address of the process control block of the 
current process 

Address of the unit control block of the 
device assigned to the user-specified process 
I/O channel 

Address of the 
describes the 
channel 

channel control 
user-specified 

block 
process 

that 
I/O 

Bit number of the user-specified I/O function 
code 

Address of FDT entry 

Address of the first function-dependent 
parameter specified in the user's request 

Contents 

Registers Contents 

Fields Contents 

IRP$L MEDIA Pl 
(of IRP) 

IPL at exit: caller's IPL 

This routine exits to EXE$QIODRVPKT. 

Chapter 8 provides more information about this routine. 

EXE$QIODRVPKT 

module: SYSQIOREQ 

FDT routines call this routine to send an IRP to a driver start I/O 
routine. This routine calls EXE$INSIOQ and then transfers control to 
EXE$QIORETURN. 

C-22 



OPERATING SYSTEM ROUTINES 

INPUT TO ROUTINE 

Registers Contents 

R3 Address of the I/O request packet 

R4 Address of the process control block 

RS Address of the unit control block 

Fields Contents 

UCB$B FIPL Driver fork IPL 

UCB$V BSY Unit busy flag 
(in UCB$W _STS) 

UCB$L _ IOQFL Address of unit I/O queue listhead 

EXE$QIORETURN 

module: SYSQIOREQ 

Sets a success status code in RO, lowers IPL to O, and returns to the 
system service dispatcher. 

OUTPUT FROM ROUTINE 

Registers Contents 

RO SS$ NORMAL 

I PL at exit : 0 

This routine returns by issuing a RET instruction. 

EXE$READ 

module: SYSQIOFDT 

Device-independent FDT routine that validates and readies a user 
buffer for a DMA read operation. This routine performs the same 
functions and has the same input and output as EXE$MODIFY, with a 
single exception noted in the description of EXE$MODIFY. 

C-23 



OPERATING SYSTEM ROUTINES 

EXE$READCHK 

module: SYSQIOFDT 

Checks pages for write accessibility by a process. This routine 
writes the total byte count of a transfer into the I/O request packet. 

If pages do not allow write access, the routine transfers control to 
EXE$ABORTIO, which terminates the request with access violation 
status. If EXE$READCHK completes successfully, control returns to its 
caller. 

INPUT TO ROUTINE 

Registers Contents 

RO Address of buffer 

Rl Size of the transfer in bytes 

R3 Address of the I/O request packet 

Fields Contents 

IPL at execution: caller's IPL 

OUTPUT FROM ROUTINE 

Registers Contents 

RO Address of buffer (success) 

Rl Size of transfer in bytes 

R2 Value of 1 (to indicate a read) 

R3 Address of IRP 

Fields Contents 

IRP$W BCNT Size of transfer in bytes 

IRP$V FUNC Value of 1 (indicates a read function) 
(in IRP$W_STS) 

IPL at exit: caller's IPL 

C-24 



OPERATING SYSTEM ROUTINES 

EXE$READCHKR 

module: SYSQIOFDT 

This routine performs the same function as EXE$READCHK, except that, 
upon error, it calls the driver FDT routine back as a coroutine to 
clean up QIO bookkeeping. See the description of error procedures in 
EXE$MODIFYLOCKR for further information. 

EXE$READLOCK 

module: SYSQIOFDT 

FDT routines call this routine to check buffer accessibility and lock 
the user buffer in memory for a DMA read transfer. This routine 
performs the same functions and has the same input and output as 
EXE$MODIFYLOCK, except that it is used when the driver performs only a 
read I/O function. 

EXE$READLOCKR 

module: SYSQIOFDT 

This subroutine determines whether a process has write access to 
requested buffer pages and, if access is permitted, it locks those 
pages into memory. EXE$READLOCKR performs the same functions and has 
the same input and output as EXE$MODIFYLOCKR. 

EXE$SENSEMODE 

module: SYSQIOFDT 

Device-independent FDT routine that copies device-dependent 
characteristics from the device's UCB into Rl. This routine writes a 
success code into RO and transfers control to EXE$FINISHIO. 

C-25 



INPUT TO ROUTINE 

Registers 

R3 

R4 

RS 

R6 

R7 

OPERATING SYSTEM ROUTINES 

Contents 

Address of the I/O request packet for the 
current I/O request 

Address of the PCB of the current process 

Address of the UCB of the device assigned to 
the user-specified process I/O channel 

Address of the CCB that describes the 
user-specified process I/O channel 

Bit number of the user-specified I/O function 
code 

RS Address of function decision table dispatch 

AP Address of the first function-dependent 
parameter specified in the user's request 

Fields Contents 

UCB$L DEVDEPEND Device-dependent status 

IPL at execution: caller's IPL 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl 

Contents 

SS$ NORMAL 

Device-dependent characteristics copied from 
UCB$L DEVDEPEND 

Fields Contents 

IPL at exit: caller's IPL 

This routine exits to EXE$FINISHIO. 

For additional information, refer to Chapter 8. 

EXE$SETCHAR 

module: SYSQIOFDT 

Device-independent FDT routine that writes a quadword whose address is 
QIO parameter Pl into the device's unit control block. Writes a 
success code into RO and transfers control to EXE$FINISHIO. 

C-26 



OPERATING SYSTEM ROUTINES 

INPUT TO ROUTINE 

Registers Contents 

R3 Address of the IRP for the current I/O 
request 

R4 Address of the current PCB 

RS Address of the UCB of the assigned device 
unit 

R6 Address of the CCB that describes the 
specified process I/O channel 

R7 Bit number of the I/O function code 

R8 Address of the FDT dispatcher 

AP Address of the first function-dependent QIO 
parameter 

Fields Contents 

O(AP) Address of new device characteristics (Pl) 

IPL at execution: caller's IPL 

If this routine fails because the user lacks read access to the 
characteristics quadword, control transfers to EXE$ABORTIO with access 
violation status. 

If EXE$SETCHAR completes successfully, it transfers control to 
EXE $FINISHIO. 

OUTPUT FROM ROUTINE 

Registers 

RO 

Fields 

UCB$B DEVCLASS 

UCB$B DEVTYPE 

UCB$W DEVBUFSIZ 

UCB$L DEVDEPEND 

Contents 

SS$ NORMAL (success) 
SS$-ACCVIO (failure) 

Contents 

Byte O of quadword 

Byte 1 of quadword 

Bytes 2 and 3 of quadword 

Bytes 4 through 7 of quadword 

IPL at exit: caller's IPL 

Refer to Chapter 8 for additional information on this routine. 

C-27 



OPERATING SYSTEM ROUTINES 

EXE$SETMODE 

module: SYSQIOFDT 

Device-independent FDT routine that writes a quadword whose address is 
a QIO parameter into the I/O request packet and calls EXE$QIODRVPKT. 

INPUT TO ROUTINE 

Registers 

R3 

R4 

RS 

R6 

R7 

R8 

AP 

Fields 

PO (AP) 

Contents 

Address of the I/O request packet for the 
current I/O request 

Address of the PCB of the current process 

Address of the UCB of the device assigned to 
the user-specified process I/O channel 

Address of the CCB that describes the 
user-specified process I/O channel 

Bit number of the I/O function code 

Address of the FDT entry 

Address of the first function-dependent QIO 
parameter 

Contents 

Address of a quadword of device 
characteristics 

IPL at execution: caller's IPL 

If the user lacks read access to the device characteristics quadword, 
the routine transfers control to EXE$ABORTIO with access violation 
status. If EXE$SETMODE completes successfully, it normally exits to 
EXE$QIODRVPKT. 

OUTPUT FROM ROUTINE 

Registers 

RO 

Fields 

IRP$L MEDIA 

IRP$L MEDIA+4 

Contents 

SS$ NORMAL (success) 
SS$-ACCVIO 

Contents 

First longword of device characteristics 
quadword 

Second longword of device characteristics 
quadword 

IPL at exit: caller's IPL 

For more information about this routine, refer to Chapter 8. 

C-28 



OPERATING SYSTEM ROUTINES 

EXE$SNDEVMSG 

module: MBDRIVER 

Driver fork processes call this routine to send messages to system 
processes such as OPCOM. This routine constructs a message on the 
stack and calls EXE$WRTMAILBOX to send the message to a mailbox. 

INPUT TO ROUTINE 

Registers 

R3 

R4 

RS 

Fields 

UCB$W INIT 

UCB$L DDB 

DDB$T NAME 

Mailbox UCB fields 

Contents 

Address of the mailbox UCB 

Message type 

Address of the UCB 

Contents 

Device unit number 

Address of device DDB 

Device controller name 

IPL at execution: caller's IPL (must be at or below IPL$_MAILBOX) 

This routine can fail for one of the following reasons: 

• The message is too large for the mailbox 

• The message mailbox is full of messages 

• The system is unable to allocate memory for the message 

• The caller lacks privilege to write to the mailbox 

If any of the above conditions occur, EXE$SNDEVMSG returns error 
status to the caller. 

If EXE$SNDEVMSG completes successfully, it exits with 
instruction. 

an RSB 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl-R4 

Contents 

SS$ NORMAL (success) 
SS$-MBTOOSML (message too large for mailbox) 
SS$-MBFULL (mailbox full of messages) 
SS$-INSFMEM (memory allocation problem) 
SS$=NOPRIV (no owner write access) 

Destroyed 

C-29 



OPERATING SYSTEM ROUTINES 

Fields Contents 

IPL at exit: caller's IPL 

EXE$WRITE 

module: SYSQIOFDT 

Device-independent FDT routine that validates and readies a user 
buffer ·for a DMA write operation. This routine performs the same 
steps as EXE$MODIFY, and has the same input and output. 

EXE$WRITECHK 

module: SYSQIOFDT 

Checks pages for read accessibility by a process and writes the total 
byte count of a transfer into the I/O request packet. If pages do not 
allow read access, the routine transfers control to EXE$ABORTIO, which 
terminates the request with access violation status. If EXE$WRITECHK 
completes successfully, it returns to its caller. 

INPUT TO ROUTINE 

Registers Contents 

RO Address of buffer 

Rl Size of the transfer in bytes 

R3 Address of the I/O request packet 

IPL at execution: caller's IPL 

OUTPUT FROM ROUTINE 

Registers Contents 

RO Buffer address (success) 

Rl Size of the transfer in bytes 

R2 Cleared (indicates a write function) 

R3 Address of the I/O request packet 

C-30 



OPERATING SYSTEM ROUTINES 

Fields Contents 

IRP$W BCNT Contains transfer size in bytes 

IPL at exit: caller's IPL 

EXE$WRITECHKR 

module: SYSQIOFDT 

This routine performs the same functions as EXE$WRITECHK, except that, 
upon error, it calls the driver FDT routine back as a coroutine to 
clean up QIO bookkeeping. 

See the description of error procedures in EXE$MODIFYLOCKR for more 
information about coroutine cleanup. 

EXE$WRITELOCK 

module: SYSQIOFDT 

FDT routines call this routine to determine whether the caller has 
read access to the buffer and to lock the buffer in memory for a DMA 
write transfer. 

INPUT TO ROUTINE 

Registers Contents 

RO Starting address of I/O buffer 

Rl Length of transfer in bytes 

R3 Address of the I/O request packet 

R4 Address of the PCB 

R6 Address of the CCB 

Fields Contents 

IPL at execution: caller's IPL (IPL$_ASTDEL) 

This routine calls EXE$WRITECHK and MMG$IOLOCK. _MMG$IOLOCK locks 
pages in memory. If EXE$WRITELOCK fails because a page fault occurs 
during the locking procedure, it transfers control to the Queue I/O 
Request system service, which repeats the I/O request. It exits to 
EXE$ABORTIO if it cannot complete successfully. If the routine does 
complete without error, it returns control to its caller. 

C-31 



OPERATING SYSTEM ROUTINES 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl 

R2 

R3 

Fields 

IRP$L SVAPTE 

Contents 

SS$ NORMAL 

Address of the PTE that maps the first page 
of the buffer 

Destroyed 

Address of the IRP 

Contents 

Address of the PTE that maps the first page 
of the buffer 

IRP$W BCNT Size of the transfer in bytes 

IRP$V FUNC A value of O (indicating a write function) 
(in IRP$W_ STS) 

IPL at exit: caller's IPL 

EXE$WRITELOCKR 

module: SYSQIOFDT 

This routine determines whether the process has read access to the 
requested buffer pages, and, if access is permitted, it locks those 
pages into memory. EXE$WRITELOCKR performs the same functions as 
EXE$MODIFYLOCKR, with the following exceptions: 

• R2, on output, contains a zero to indicate a write function 

• IRP$M FUNC (in IRP$W_FUNC) is clear (zero) to indicate a write 
f unctTon) 

EXE$WRTMAILBOX 

module: MBDRIVER 

Driver fork processes call this routine to send messages to mailboxes. 

INPUT TO ROUTINE 

Registers Contents 

R3 Size of message 

R4 Message address 

R5 Address of mailbox UCB 

C-32 



OPERATING SYSTEM ROUTINES 

Fields 

Mailbox UCB fields 

IPL at execution: caller's IPL (must be at or below IPL$_MAILBOX) 

This routine can fail for one of the following reasons: 

• The message is too large for the mailbox 

• The message mailbox is full of messages 

• The system is unable to allocate memory for the message 

• The caller lacks privilege to write to the mailbox 

If any of the above conditions occur, EXE$WRTMAILBOX returns an error 
status to its caller. 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl - R2 

module: SYSQIOFDT 

Contents 

SS$ NORMAL (success) 
SS$-MBTOOSML (message too large for mailbox) 
SS$-MBFULL (mailbox full of messages) 
SS$-INSFMEM (memory allocation problem) 
SS$=NOPRIV (no owner write access) 

Destroyed 

EXE$ZEROPARM 

Device-independent FDT routine that clears the parameter field of the 
IRP and calls EXE$QIODRVPKT. 

INPUT TO ROUTINE 

Registers 

R3 

R4 

RS 

R6 

Contents 

Address of the I/O request packet for the 
current I/O request 

Address of the process control block of the 
current process 

Address of the unit control block of the 
device assigned to the user-specified process 
I/O channel 

Address of the 
describes the 
channel 

C-33 

channel control 
user-specified 

block that 
process I/O 



OPERATING SYSTEM ROUTINES 

Registers Contents 

R7 Bit number of the user-specified I/O function 
code 

R8 Address of FDT entry 

AP Address of the first function-dependent 
parameter specified in the user's request 

Fields Contents 

IPL at execution: caller's IPL 

This routine exits by transferring control to EXE$QIODRVPKT. 

OUTPUT FROM ROUTINE 

Registers Contents 

Fields Contents 

IRP$L MEDIA Zero 

IPL at exit: caller's IPL 

For additional information, refer to Chapter 8. 

IOC$ALOUBAMAP(N) 

module: IOSUBNPAG 

This routine searches the map register bit map in the adapter control 
block to allocate a set of contiguous map registers to a driver fork 
process. 

INPUT TO ROUTINE 

Registers 

R3 

RS 

Fields 

UCB$W BCNT 

UCB$W BOFF 

UCB$L CRB 

Contents 

Number of map registers to allocate (if entry 
is IOC$ALOUBAMAPN) 

Address of the UCB 

Contents 

Transfer byte 
IOC$ALOUBAMAP) 

Byte offset in 
IOC$ALOUBAMAP) 

Address of the CRB 

C-34 

count 

page 

(if entry is 

(if entry is 



OPERATING SYSTEM ROUTINES 

Fields Contents 

CRB$L INTD+ 
VEC$L-ADP 

Address of the device's adapter control block 

VEC$V MAPLOCK 
(in CRB$L INTD 
+VEC$W_MAPREG) 

Bit that indicates whether map registers are 
permanently allocated to this controller 

ADP$W MRBITMAP Determines which map registers are available 

IPL at execution: caller's IPL 

If map registers are already permanently allocated to the controller, 
this routine exits successfully without allocating any map registers. 
Otherwise, the routine searches the map register bit map for the 
required number of contiguous map registers, calls IOC$ALTUBAMAP, and 
exits by issuing an RSB instruction. 

OUTPUT FROM ROUTINE 

Registers Contents 

RO 1 (success) 
O ( insufficient cont ig uo us map registers) 

Rl - R2 Destroyed 

Fields Contents 

CRB$L INTD+ Number of map registers allocated 
VEC$B-NUMREG 

CRB$L INTD+ Starting map register number 
VEC$W-MAPREG 

ADP$W MRBITMAP Bits for allocated map registers set to zero. 

IPL at exit: caller's IPL 

IOC$AL TUBAMAP 

module: IOSUBNPAG 

Clears or sets a field of bits in the UNIBUS adapter map register 
allocation bit map. 

Registers Contents 

RO Alternation bit mask (zeros to clear bits, 
ones to set bi ts) 

Rl Address of the channel request block 

R2 Address of the adapter control block 

R4 Number of the starting map register 

C-35 



OPERATING SYSTEM ROUTINES 

Fields Contents 

CRB$L INTD+ Number of map registers needed 
VEC$B-NUMREG 

IPL at execution: caller's IPL 

OUTPUT FROM ROUTINE 

Registers Contents 

R3 - R4 Destroyed 

Fields Contents 

ADP$W MRBITMAP Bits describing available map registers 

IPL at exit: caller's IPL 

IOC$APPLYECC 

module: IOSUBRAMS 

Disk drivers call this routine to apply an ECC correction to data 
transferred from a device into memory. This routine corrects the data 
by exclusive ORing a correction pattern from the unit control block. 
It also sets a UCB bit to indicate that an ECC correction has been 
made. 

Input from Routine 

Registers 

RO 

RS 

Fields 

UCB$W BCNT 

UCB$W ECl 

UCB$W EC2 

UCB$L SVPN 

UCB$L SVAPTE 

Contents 

Number of bytes of data that have been 
transferred, not including the block to be 
corrected; this must be a multiple of 512 
bytes 

Address of the unit control block 

Contents 

Length of transfer in bytes 

Starting bit number of the error burst 

Exclusive OR correction pattern 

Address of the system page table entry of a 
page that is available for use by driver 

System virtual address of the page table 
entry that maps the transfer 

IPL at execution: caller's IPL 

C-36 



OUTPUT FROM ROUTINE 

Registers 

RO - R2 

Fields 

UCB$V ECC 
(in UCB$W_DEVSTS) 

OPERATING SYSTEM ROUTINES 

Contents 

Destroyed 

Contents 

Set to 1 to show that an ECC correction 
was made 

IPL at exit: caller's IPL 

IOC$CANCELIO 

module: IOSUBNPAG 

Device-independent cancel I/O routine that sets a cancel I/O bit in 
the unit control block if the I/O request packet being currently 
processed on the device originates from the current process on the 
specified channel and the unit is busy. 

INPUT TO ROUTINE 

Registers 

R2 

R3 

R4 

RS 

Fields 

IRP$L PID 

IRP$W CHAN 

PCB$L PID 

Contents 

channel index number 

Address of the I/O request packet 

Address of the current PCB 

Address of the unit control block 

Contents 

Process identification of the process that 
queued the I/O request 

Channel index number 

Process identification of the process that 
requested cancellation 

UCB$V BSY Device busy flag 
(in UCB$W_STS) 

IPL at execution: caller's IPL 

OUTPUT FROM ROUTINE 

Registers Contents 

C-37 



OPERATING SYSTEM ROUTINES 

Fields Contents 

UCB$V CANCEL Set if I/O request should be cancelled 
(in UCB$W _STS) 

IPL at exit: callet's IPL 

IOC$DIAGBUFILL 

module: IOSUBNPAG 

Driver fork processes call this routine to fill a diagnostic buffer, 
if the QIO specifies such a buffer. This routine writes completion 
time and final error counters into buffer. It also calls the driver 
register dump routine to fill the remainder of buffer. 

INPUT TO ROUTINE 

Registers 

R4 

RS 

Field 

UCB$L IRP 

IRP$V DIAGBUF 
(in IRP$W _STS) 

IRP$L DIAGBUF 

UCB$B ERTCNT 

UCB$L DDB 

DDB$L DDT 

DDT$L REGDUMP 

EXE$GQ SYSTIME 

Contents 

Address of 
register 

the device's control/status 

Address of the unit control block 

Contents 

Address of the current IRP 

Determines whether diagnostic buffer is 
present. If set, one exists. 

Address of the diagnostic buffer, if one is 
present 

Final error retry count 

Address of the device data block 

Address of the driver dispatch table 

Address of the driver register dump routine 

Current system time (time at I/O request 
completion) 

DDT$L REGDUMP Address of the driver register dump routine 

IPL at execution: caller's IPL 

This routine saves the system time and final error count in the 
diagnostic buffer. It then calls the driver register dump routine, 
and exits with an RSB instruction. 

C-38 



OPERATING SYSTEM ROUTINES 

OUTPUT FROM ROUTINE 

Registers Contents 

RO - Rl Destroyed 

R2 Address of the DDT 

R3 Address of the I/O request packet 

R4 Device CSR register 

R5 Address of the unit control block 

Fields Contents 

IPL at exit: caller's IPL 

IOC$1NITIATE 

module: IOSUBNPAG 

Starts a driver fork process to process an I/O request packet. This 
routine writes the I/O request packet address and I/O request packet 
transfer parameters into the unit control block. It also clears 
device status bits. If the QIO specifies a diagnostic buffer, this 
routine writes system time into the buffer. It also executes a JMP 
instruction to transfer control to the driver start I/O routine. 

INPUT TO ROUTINE 

Registers 

R3 

RS 

Fields 

IRP$L SVAPTE 

IRP$W BOFF 

IRP$W SIZE 

IRP$V DIAGBUF 
(in IRP$W _STS) 

IRP$L DIAGB UF 

EXE$GQ_SYSTIME 

Contents 

Address of the I/O request packet 

Address of the unit control block 

Contents 

Address of system buffer (buffered 
address of PTE that maps process 
(direct I/O). 

Byte offset of start of buffer 

Size in bytes of transfer 

I/O) or 
buffer 

Determines whether a diagnostic buffer is 
present. This field is set if one exists. 

Address of the diagnostic buffer, if one is 
present 

Current system time (when I/O processing 
began) 

C-39 



OPERATING SYSTEM ROUTINES 

Fields Contents 

UCB$L DDB Address of DDB 

UCB$L DDT Address of DDT 

DDT$L START Address of driver start I/O routine -

IPL at execution: caller's IPL 

IOC$INITIATE exits by jumping to the driver start entry specified in 
the driver dispatch table. 

OUTPUT FROM ROUTINE 

Registers 

RO - Rl 

Fields 

UCB$L IRP 

UCB$L SVAPTE 

UCB$W BOFF 

UCB$W BCNT 

UCB$V CANCEL 
(in UCB$W_STS) 

UCB$V TIMOUT 
(in UCB$W _STS) 

diagnostic buffer 

Contents 

Destroyed 

Contents 

Address of the start of the I/O request 
packet 

IRP$L SVAPTE 

IRP$W BOFF 

IRP$W BCNT 

Zero 

Zero 

Current system time (first quadword) 

IPL at exit: caller's IPL 

IOC$10POST 

module: IOCIOPOST 

Interrupt service routine that processes I/O request packets in an I/O 
postprocessing queue. This routine gains control when the processor 
grants a software interrupt at IPL$ IOPOST. For each queue entry, it 
adjusts quota use and unlocks pages or deallocates write buffers. It 
queues a kernel mode AST to copy final I/O status to the IOSB, to copy 
buffered read data, and to deallocate read buffers. The AST kernel 
mode routine code is located in module IOCIOPOST. The kernel mode AST 
routine queues a user mode AST if specified in the QIO. When the 
postprocessing queue is empty, IOC$IOPOST dismisses the interrupt. 

INPUT TO ROUTINE 

Registers Contents 

C-40 



OPERATING SYSTEM ROUTINES 

Fields Contents 

IOC$GL PSFL Head of the I/O postprocessing queue. This 
routine uses this field to locate fields in 
the IRP. 

IRP$L PID Process identification of the process that 
initiated the I/O request. This routine uses 
this field to locate the PCB. 

IPL at execution: IPL$_IOPOST, IPL$ ASTDEL 

IOC$IOPOST generates different results for direct and buffered I/O. 
For direct I/O, the routine unlocks the pages locked for the I/O 
request and sets the Queue I/O event flag. The pages unlocked include 
any pages defined in the IRP extension area descriptors (if an IRPE 
exists). For buffered I/O read functions, the routine copies the data 
from the system buffer to the process buffer, then releases the system 
buffer. It also sets a Queue I/O event flag, if one was requested. 

For both direct and buffered I/O, IOC$IOPOST performs the following 
functions: 

• Copies the diagnostic buffer from system to process space and 
releases the system buffer 

• Copies I/O completion status (if requested) from the I/O 
request packet to the process's I/O status block 

• Queues an AST to the process, if one was requested 

• Deallocates the IRP and any IRP extensions 

Note that kernel mode ASTs handle much of the processing described 
above. 

IOC$LOADUBAMAP(A) 

module: LOADMREG 

Driver fork processes for DMA transfers call this routine to load the 
UNIBUS map registers required by the current transfer with a page 
frame number, the data path number, possibly the byte offset bit, and 
possibly the longword access enable bit. This routine confirms that 
enough map registers have been allocated and sets the last map 
register invalid to stop a wild transfer. 

INPUT TO ROUTINE 

Registers Contents 

R5 Address of unit control block 

The data path and map registers are already allocated. 

C-41 



OPERATING SYSTEM ROUTINES 

Field 

UCB$W BOFF 

UCB$W BCNT 

UCB$L CRB 

CRB$L INTO+ 
VEC$B-DATAPATH 

VEC$V LWAE 
(in CRB$L INTO+ 
VEC$B _DATAPATH) 

CRB$L INTD+VEC$L NUMREG 

CRB$L INTD+VEC$L ADP - -

UBA$L MAP 

UCB$L SVAPTE 

OUTPUT FROM ROUTINE 

Contents 

Offset to the first byte in the first page of 
the transfer 

Number of bytes in the transfer 

Address of the controller's channel request 
block 

Number of the data path to be allocated 

Determines length of buffering. 
Set if longword buffering used (instead of 
quadword buffering) 

Number of map registers allocated 

Address of the adapter control block 

Address of the first UNIBUS map register 

Address of the page table entry for the first 
page of the transfer 

Registers Contents 

RO - R2 Destroyed 

Fields Contents 

Allocated map registers Byte offset is set for entry IOC$LOADUBAMAP 
(never set for IOC$LOADUBAMAPA) 

IPL at exit: caller's IPL 

IOC$PURGDATAP 

module: LIOSUB 

Device drivers using buffered data paths call this subroutine after a 
data transfer. IOC$PURGDATAP purges the UNIBUS adapter buffered data 
path as well as checking for and clearing purge errors. 

INPUT TO ROUTINE 

Registers Contents 

RS Address of the UCB 

Fields Contents 

IPL at execution: caller's IPL 

C-42 



OPERATING SYSTEM ROUTINES 

This routine obtains the start of UNIBUS adapter register space using 
the following chain of pointers: 

UCB$L CRB ~ CRB$L INTD+VEC$L ADP ~ ADP$L CSR 
- - -

This routine extracts the caller's data path number (buffered or 
direct) from the channel request block. The routine then purges the 
data path and stores the contents of the data path register in Rl. 
IOC$PURGDATAP clears any purge errors in the data path register. It 
also sets the appropriate status in RO, computes the base of UNIBUS 
map registers, and writes the base into R2. 

A purge of data path 0 is legal and aJways results in success status. 

IOC$PURGDATAP alters RO through R3 but preserves all other registers. 

OUTPUT FROM ROUTINE 

Registers 

RO 

Rl 

R2 

Contents 

Low bit set (success) 
Low bit clear (failure) 

Contents of data path after purge 
register dump routine) 

(for 

Address of the start of UNIBUS map registers 
(for the register dump routine) 

R3 Address of the CRB 

Fields Contents 

IPL at exit: caller's IPL 

IOC$RELCHAN 

module: IOSUBNPAG 

Driver fork processes call this routine to release controller data 
channels assigned to a device. If the channel wait queue contains 
waiting fork processes, this routine dequeues a process, assigns the 
channel to that process, restores R3 through RS, and reactivates the 
suspended process. 

INPUT TO ROUTINE 

Registers Contents 

RS Address of the unit control block 

Fields Contents 

UCB$L CRB Address of the channel request block 

CRB$L LINK Address of the secondary CRB 

C-43 



Fields 

CRB$V BSY 
(in CRB$B _MASK) 

CRB$L INTD+VEC$L IDB 

IDB$L OWNER 

CRB$L_WQFL 

OPERATING SYSTEM ROUTINES 

Contents 

Set if the channel is busy 

Address of the interrupt data block 

Channel's owner UCB address 

Head of the queue of waiting UCBs 

IPL at execution: caller's IPL 

OUTPUT FROM ROUTINE 

Registers Contents 

RO - R2 Destroyed 

Fields Contents 

IDB$L OWNER Clear (if no driver is waiting 
channel) 

CRB$V BSY Clear (if no driver is waiting 
channel) 

IPL at exit: caller's IPL 

IOC$RELDATAP 

module: IOSUBNPAG 

for the 

for the 

Driver fork processes call this routine to release a UNIBUS adapter 
buffered data path. This routine performs no operation if a data path 
is permanently allocated to the controller. If the data path wait 
queue contains waiting fork processes, it dequeues a process, 
allocates the data path to that process, restores R3 through RS, and 
reactivates the suspended process. This routine should not be called 
unless the driver owns a buffered data path. 

INPUT TO ROUTINE 

Registers 

RS 

Fields 

UCB$L CRB 

CRB$L INTD+VEC$L ADP 

CRB$L INTD+ 
VEC$B-DATAPATH 

Contents 

Address of unit control block 

Contents 

Address of the channel request block 

Address of the adapter control block 

Data path specifier 

C-44 



Fields 

VEC$V PATHLOCK 

OPERATING SYSTEM ROUTINES 

Contents 

Set to 1 to indicate that the data path is 
permanently allocated to the controller 

ADP$L_DPQFL Head of the adapter data path wait queue 

IPL at execution: caller's IPL 

If the bit map is corrupted, this routine signals a bugcheck with 
message code INCONSTATE. After IOC$RELDATAP completes successfully, 
it exits with an RSB instruction. 

OUTPUT FROM ROUTINE 

Registers 

RO - R2 

Fields 

ADP$W DPBITMAP 

bi ts 0 through 4 
(in CRB$L INTD+ 
VEC$B _DATAPATH) 

Contents 

Destroyed 

Contents 

Data path is set to free if not allocated to 
another driver fork process 

Clear 

IPL at exit: caller's IPL 

IOC$RELMAPREG 

module: IOSUBNPAG 

Driver fork processes call this routine to release a set of UNIBUS 
adapter map registers. This routine performs no operation if map 
registers are permanently allocated to the controller. If the map 
register wait queue contains waiting fork processes, it dequeues a 
process and attempts to allocate the required set of map registers. 
If successful, it restores R3 through RS and reactivates the suspended 
process. If not successful, it reinserts the fork process in the map 
register wait queue and dequeues the next process. This routine 
assumes that the caller is the current owner of the controller data 
channel. 

INPUT TO ROUTINE 

Registers 

RS 

Fields 

UCB$L CRB 

VEC$V MAPLOCK 
(in CRB$L INTD+ 
VEC$W_MAPR"EG) 

Contents 

Address of unit control block 

Contents 

Address of the CRB 

If set, indicates that map registers are 
permanently allocated to the controller 

C-4S 



Fields 

CRB$L INTD+VEC$L ADP 

CRB$L INTD+ 
VEC$W-MAPREG 

CRB$L INTD+ 
VEC$B-NUMREG 

ADP$L_MRQFL 

OPERATING SYSTEM ROUTINES 

Contents 

Address of the adapter control block 

Number of the starting map register 

Number of map registers to release 

Head of the queue of waiting drivers 

IPL at execution: caller's IPL 

IOC$RELMAPREG calls IOC$ALTUBAMAP and IOC$ALOUBAMAP. It exits with an 
RSB instruction. 

OUTPUT FROM ROUTINE 

Registers Contents 

RO - R2 Destroyed 

Fields Contents 

ADP$W MRBITMAP Map registers set to free 

IPL at exit: caller's IPL 

IOC$RELSCHAN 

module: IOSUBNPAG 

This routine releases a secondary controller's data channel; that is, 
the MASSBUS adapter controller data channel. For more information, 
refer to Appendix F. 

This routine has the same inputs and outputs as IOC$RELCHAN. 

IOC$REQCOM 

module: IOSUBNPAG 

Driver fork processes call this routine after a device I/O operation 
and all device-dependent processing of an I/O request are complete. 
This routine writes RO and Rl into the I/O request packet status 
field. It then inserts the I/O request packet into the I/O 
postprocessing queue. If error logging is occurring, it writes final 
status into the error message buffer and calls ERL$RELEASEMB. If the 
I/O request packet wait queue contains entries, it dequeues an I/O 
request packet and calls IOC$INITIATE. Otherwise, it clears a unit 
control block busy status bit to indicate that the device is idle. 

C-46 



INPUT TO ROUTINE 

Registers 

RO 

Rl 

RS 

Fields 

UCB$V ERLOGIP 
(in UCB$W_STS) 

UCB$W STS 

UCB$B ERTCNT 

UCB$L EMB 

UCB$L IRP 

IPL at execution: 

OPERATING SYSTEM ROUTINES 

Contents 

First longword of I/O status 

Second longword of I/O status 

Address of unit control block 

Contents 

Set or clear. Determines whether error 
logging should be performed 

Final device status 

Final error counters 

Address of the error log message buffer 

Address of the !RP 

caller's IPL 

This routine places the I/O request packet in the queue headed by 
IOC$GL PSBL. If UCB$L IOQEL has a packet queued to it, IOC$REQCOM 
sends the packet to IOC$INITIATE. This routine exits by branching to 
IOC$RELCHAN. 

OUTPUT FROM ROUTINE 

Registers Contents 

R2 - R3 Destroyed 

If IOC$INITIATE is called, other registers will be destroyed. 

Fields Contents 

IRP$L MEDIA I/O status (RO) 

IRP$L MEDIA+4 I/O status (Rl) 

EMB$Q IOSB I/O status (RO and Rl) 

UCB$L OPCNT Incremented by 1 

EMB$B ERTCNT UCB$B ERTCNT 

EMB$B ERTCNT+l UCB$B ERRCNT 

EMB$W DV STS UCB$W STS 

UCB$V BSY Clear (if no more packets in queue) 
{in UCB$W _STS) 

IPL at exit: caller's IPL 

C-47 



OPERATING SYSTEM ROUTINES 

IOC$REQDATAP(NW) 

module: IOSUBNPAG 

Driver fork processes call this routine to request a UNIBUS adapter 
buffered data path for a DMA transfer. This routine performs no 
operation if a data path is permanently allocated to the controller. 
This routine locates a free data path and writes the data path number 
in the CRB. If no data paths are free, it saves R3 and R4 in the UCB 
fork block, inserts the fork block address in a data path wait queue, 
and suspends the driver fork process. 

IN PUT TO ROUTINE 

Registers 

RS 

0 (SP) 

4 (SP) 

Fields 

UCB$L CRB 

VEC$V PATHLOCK 
(in CRB$L INTD+ 
VEC$B_DATAPATH) 

CRB$L INTD+VEC$L ADP 
- -

ADP$W_DPBITMAP 

Contents 

Address of unit control block 

Caller's return address 

Return address of the caller's caller 

Contents 

Address of the channel request block 

If set, indicates that the data path already 
is allocated 

Address of the adapter control block 

Indicates what data paths are available 

IPL at execution: caller's IPL 

If IOC$REQDATAP cannot allocate a data path, and NW is not specified, 
the routine saves process context by placing the contents of R3, R4 
and the PC in the UCB fork block and placing RS in the data path wait 
queue (ADP$L DPQBL). If, however, NW is specified, the routine does 
not suspend the process to wait for the data path. 

OUTPUT FROM ROUTINE 

Registers Contents 

RO SS$ NORMAL (success) 
0 (failure) 

Fields Contents 

CRB$L INTD+ Data path number 
VEC$B-DATAPATH 

ADP$W DPBITMAP Bit for allocated data path clear 

IPL at exit: caller's IPL 

C-48 



OPERATING SYSTEM ROUTINES 

If the channel is busy, this routine saves driver context by storing 
the contents of R3 and R4 in UCB$L FR3 and UCB$L FR4, respectively, 
storing O(SP) in UCB$L FPC and placing the contents-of R5 in the CRB 
wait queue (CRB$W_WQFL). 

IOC$REQPCHANH exits by issuing an RSB instruction. 

OUTPUT FROM ROUTINE 

Registers Contents 

RO - R2 Destroyed 

R4 IDB$L CSR 

Fields Contents 

IDB$L OWNER R5 

IPL at exit: caller's IPL 

IOC$REQPCHANL 

module: IOSUBNPAG 

Driver fork processes call this routine to request a channel on the 
primary controller with low priority. This routine performs in the 
same manner as IOC$REQPCHANH, except that, should driver have to wait 
for the channel, IOC$REQPCHANL places the UCB at the end of the 
channel wait queue. 

IOC$REQSCHANH 

module: IOSUBNPAG 

Driver fork processes call this routine to request a channel on the 
secondary controller with high priority. 

The input to and output from this routine are the same as for 
IOC$REQPCHANH, except that the sepondary controller data channel is 
assigned. 

C-51 



OPERATING SYSTEM ROUTINES 

IOC$REQSCHANL 

module: IOSUBNPAG 

Driver fork processes call this routine to request a channel on the 
secondary controller with low priority. 

The input to and output from this routine are the same as for 
IOC$REQPCHANH, except that the secondary controller data channel is 
assigned. 

IOC$RETURN 

module: IOSUBNPAG 

This routine merely returns by issuing an RSB instruction. It has no 
input requirements and produces no output. 

IOC$VERIFYCHAN 

module: IOSUBPAGD 

Drivers call this routine to validate a user-supplied channel number, 
contruct a channel index, and obtain the address of the channel 
control block to which the channel number points. 

INPUT TO ROUTINE 

Registers 

RO 

Fields 

CTL$G L CCBASE 

Contents 

Channel number 

Contents 

Base address of the process channel control 
block table 

IPL at execution: IPL$ ASTDEL or below 

Since this routine gains access to information ~tored in user process 
virtual address space, it should only be called when the user process 
is mapped. 

C-52 



OPERATING SYSTEM ROUTINES 

IOC$REQMAPREG 

module: IOSUBNPAG 

Driver fork processes call this routine to request a set of UNIBUS 
adapter map registers for a DMA transfer. This routine performs no 
operation if map registers are permanently allocated to the 
controller. This routine locates the required number of map registers 
and writes the number of registers and the number of the first 
register into the CRB. If sufficient map registers are not available, 
it saves R3 and R4 in the UCB fork block, inserts the fork block 
address in a map register wait queue, and suspends the driver fork 
process. 

INPUT TO ROUTINE 

Registers Contents 

RS Address of unit control block 

O(SP) Return address of caller 

4(SP) Return address of the caller's caller 

Fields Contents 

UCB$W BCNT Transfer byte count 

UCB$W BOFF Byte offset into page of start of buffer 

UCB$L CRB Address of CRB 

CRB$L INTD+ Address of the adapter control block 
VEC$L-ADP 

VEC$V MAPLOCK Determines status of map lock bit 
(in CRB$L INTD+ 
VEC$W_MAPREG) 

ADP$W MRBITMAP Adapter map register allocation bit map 

IPL at execution: caller's IPL 

If registers are not available, this routine suspends the process by 
saving the following context: 

• R3 and R4 are saved in UCB$L FR3 and UCB$L FR4, respectively. 

e PC is saved in UCB$L FPC. 

• RS is saved in ADP$L MRQBL, which is the adapter's map 
register wait queue. 

C-49 



OUTPUT FROM ROUTINE 

Registers 

RO 

Rl - R2 

Fields 

CRB$L INTD+ 
VEC$W-MAPREG 

CRB$L INTD+ 
VEC$B-NUMREG 

ADP$W MRBITMAP 

IPL after execution: 

IOC$REQPCHANH 

module: IOSUBNPAG 

OPERATING SYSTEM ROUTINES 

Contents 

SS$ NORMAL (success) 

Destroyed 

Contents 

Starting map register number of those 
allocated 

Number of map registers allocated 

Allocated map registers 

caller's IPL 

Driver fork processes call this routine to request a channel on the 
primary controller with high priority. If the controller data channel 
is idle, this routine writes the UCB address in the interrupt data 
block and returns the CSR address in R4. Otherwise, it saves R3 in 
the UCB fork block, inserts the fork block address at the front of the 
channel wait queue, and suspends the driver fork process. 

INPUT TO ROUTINE 

Registers 

RS 

0 (SP) 

4 (SP) 

Fields 

UCB$L CRB 

CRB$L LINK 

CRB$L INTD+VEC$L IDB 

CRB$V BSY 
in CRB$B MASK 

Contents 

Address of unit control block 

Return address of the caller 

Return address of the caller's caller 

Contents 

Address of the channel request block 

Address of the secondary channel request 
block 

Interrupt data block address 

Set or clear. If set, indicates that the 
channel is busy 

IDB$L CSR Address of device CSR 

IPL at execution: caller's IPL 

C-50 



OPERATING SYSTEM ROUTINES 

OUTPUT FROM ROUTINE 

Registers Contents 

RO SS$ NORMAL (success) 
SS$-IVCHAN (invalid channel number) 
SS$-NOPRIV (no privilege to access 

specified channel) 

Rl Address of channel control block 

R2 Channel index number 

Fields Contents 

IPL at exit: caller's IPL 

IOC$WFIKPCH 

module: IOSUBNPAG 

Driver fork processes call this routine to suspend driver processing 
to wait for an interrupt or device timeout and still retain the 
controller data channel. This routine saves R3, R4, and the driver's 
return PC from top of stack in the UCB fork block. It sets UCB bits 
to indicate that an interrupt or a timeout is expected and sets the 
timeout time in the unit control block. It clears the UCB bit that 
indicates that the unit is timed out and lowers IPL back to the IPL 
saved on top of stack. Then, it returns to the caller of the driver 
fork process. 

The two bytes following the JSB to IOC$WFIKPCH contain the relative 
offset to the timeout routine. 

INPUT TO ROUTINE 

Registers 

RS 

0 (SP) 

4 (SP) 

8 (SP) 

12 (SP) 

Field 

EXE$GL ABSTIM 

Contents 

Address of unit control block 

Address following the JSB to IOC$WFIKPCH 

Timeout value in seconds 

IPL to which to lower before returning to the 
caller's caller 

Return address of the caller's caller 

Contents 

Absolute time. Used to compute time at which 
device times out 

IPL at execution: Fork a device IPL (caller's IPL) 

C-53 



OPERATING SYSTEM ROUTINES 

This routine removes O(SP) through ll(SP) from the stack explicitly 
and 12(SP) through 15(SP) implicitly by exiting with an RSB 
instruction, which returns to the caller's caller. 

OUTPUT FROM ROUTINE 

Registers 

Fields 

UCB$L DUETIM 

UCB$V INT 

UCB$V TIM 

UCB$V TIMOUT 

Contents 

Contents 

Sum of timeout value and EXE$GL ABSTIM 

Set to indicate that interrupts are expected 
on the device 

Set to indicate that timeouts are expected on 
the device 

Cleared to indicate that unit is not timed 
out 

UCB$L FR3 R3 

UCB$L FR4 R4 

UCB$FPC O(SP)+2 

IPL at exit: IPL specified in 8 (SP) 

IOC$WFIRLCH 

module: IOSUBNPAG 

Driver fork processes call this routine to suspend 
to wait for an interrupt or device timeout 
controller data channel. 

driver processing 
first releasing the 

The input to and output from this routine are the same as IOC$WFIKPCH 
except that IOC$WFIRLCH exits to IOC$RELCHAN, which releases the 
controller dates channel. 

C-54 



APPENDIX D 

SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

This appendix contains the source listing of a driver for an 
analog-to-digital converter. 

A machine-readable copy of this driver is also available. 
specification is: 

SYS$EXAMPLES:ADDRIVER.MAR 

D-1 

Its file 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.TITLE ADDRIVER - VAX/VMS ADll-K DRIVER 

.IDENT 'V03-002' 
; 
·************************************************************************** I 

. * I 

. * I 

. * I 

. * I 

. * I 

. * I 

. * I 

. * I 

. * I 

. * I 

. * , 

. * , 

. * , 

. * , 

. * I 

. * , 

. * I 

. * , 

COPYRIGHT ( c) 1978, 1979, 1980, 1982 
BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS 

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED 
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE 
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER 
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY 
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY 
TRANSFERRED. 

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE 
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT 
CORPORATION. 

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY 
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. 

OF ITS 

·************************************************************************** , 

; ++ 

FACILITY: 

VAX/VMS ADll-K I/O DRIVER 

ABSTRACT: 

DEVICE TABLES AND DRIVER CODE FOR THE ADll-K ANALOGUE 
TO DIGITAL CONVERTER WITH OPTIONAL AMll-K MULTIPLEXER. 

AUTHOR: 

S. PROGRAMMER, SEPTEMBER 1978. 

MODIFIED BY: 

;--

D-2 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL FUNCTIONAL DESCRIPTION OF DRIVER 
;+ 

;-

THE DRIVER SUPPORTS A/D SAMPLING ON GROUPS OF CHANNELS VIA QIO 
READ REQUESTS. NO EXTERNALLY TRIGGERED SAMPLING (I.E., CLOCK 
OVERFLOW OR SCHMITT TRIGGER) IS SUPPORTED. THE AMll-K MULTIPLEXER 
MAY BE PRESENT, BUT NO AUTOMATIC RANGING AMPLIFICATION IS 
DONE AT DRIVER LEVEL. THE BUILT-IN DAC MAY BE USED FOR TESTING VIA 
A LOOPBACK QIO FUNCTION DEFINED ESPECIALLY FOR THIS DEVICE. 

THE QIO FUNCTIONS AVAILABLE ARE: 

IO$ READVBLK 
IO$-READLBLK 
IO$-READPBLK 
IO$-LOOPBACK 

-READ VIRTUAL BLOCK 
-READ LOGICAL BLOCK 
-READ PHYSICAL BLOCK=IO$ LOOPBACK 
-WRITE DAC, READ RESULTST REQUIRES 

PHYSICAL I/O PRIVILEGE 

THE STANDARD QIO PARAMETERS ARE: 

Pl=BUFFER ADDRESS 
P2=BUFFER BYTE COUNT 
P3=SPECIFIER OF CHANNELS TO SAMPLE: 

BIT 0-7/INITIAL CHANNEL # (0-63) 
BIT 8-15/TOTAL # OF CHANNELS TO SAMPLE (1-64) 
BIT 16-23/CHANNEL INCREMENT (0-63) 
BIT 24-31/IGNORED 

P4=DAC VALUE, USED FOR LOOPBACK ONLY: 
BIT 0-7/8 BIT DAC VALUE 
BIT 8-31/IGNORED 

P5,P6 ARE NOT USED 

IN ADDITION TO THE STANDARD STATUS CODES THAT CAN BE RETURNED FOR 
A QIO, THE FOLLOWING DEVICE-SPECIFIC I/O STATUS VALUES ARE DEFINED: 

SS$ DATAOVERUN 

SS$ BADPARAM 
SS$-BUFFEROVF 

-ERROR BIT SET IN CSR; SAMPLING ABORTED 
WITH LAST GOOD SAMPLE IN BUFFER 

-INVALID CHANNEL SPECIFIER; NO SAMPLES TAKEN 
-USER BUFFER OVERRUN; AS MANY CHANNELS AS WILL 

FIT ARE SAMPLED 

THE SAMPLES ARE RETURNED IN THE CALLER'S BUFFER PACKED ONE SAMPLE 
PER WORD, BITS 0-11. THE BYTE COUNT RETURNED IN THE SECOND WORD OF 
THE I/O STATUS BLOCK ALWAYS REFLECTS THE # OF BYTES ACTUALLY FILLED 
WITH SAMPLE DATA. THE NUMBER OF SAMPLES IS ONE HALF THE RETURNED 
BYTE COUNT. 

EXAMPLE: SWEEP THROUGH 32 INPUTS CONNECTED IN DIFFERENTIAL MODE 
(ADll-K AND AMll-K): 

SWEEPBUF: 
NUMINPUT: 
CHANSPEC: 

.BLKW 

.LONG 

.BYTE 

$QIO S 

32 
32 
0,32,2 ;START WITH CHANNEL O; 

; SAMPLE CHANNELS 0,2,4, ••• ,62 

CHAN=X,FUNC=IO$ READVBLK,­
Pl=SWEEPBUF ,P2=NUMINPUT,P3=CHANSPEC 

D-3 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL MACRO LIBRARY CALLS 

EXTERNAL SYMBOLS (LIB/LIB) : 

$CRBDEF 
$DDBDEF 
$IDBDEF 
$IODEF 
$IPLDEF 
$IRPDEF 
$UCBDEF 
$VECDEF 
$JIBDEF 

;CHANNEL REQUEST BLOCK 
;DEVICE DATA BLOCK 
;INTERRUPT DATA BLOCK 
;I/O FUNCTION CODES 
;HARDWARE IP DEFINITIONS 
;I/O REQUEST PACKET 
;UNIT CONTROL BLOCK 
;INTERRUPT VECTOR BLOCK 
;JOB INFORMATION BLOCK 

USER DEFINED EXTERNAL SYMBOLS ARE CONTAINED IN A USER LIBRARY 
THE CONTENTS OF THIS LIBRARY CAN BE MERGED WITH THE SYSTEM LIBRARY 
TO ALLOW USER PROGRAMS TO USE EXTENDED FUNCTION CODES WITHOUT HAVING 
TO DEFINE THEM LOCALLY. 
THIS DRIVER MUST BE ASSEMBLED WITH A USER LIBRARY TO DEFINE $XIODEF. 

$XIODEF 

D-4 

;EXTENDED QIO FUNCTIONS.THIS MACRO 
;CONTAINS THE DEFINITIONS FOR 
;IO$_LOOPBACK 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL LOCAL DEFINITIONS 

LOCAL DEFINITIONS: 

QIO ARGUMENT LIST OFFSETS: 

Pl=O 
P2=4 
P3=8 
P4=12 
P5=16 
P6=20 

DEVICE PARAMETERS: 

DAC TIMER=20 
MAX-INLCHN=6 3 
MAX-NUMCHN=64 
MAX-INCCHN=63 
ADC-TIMER=2 

DEVICE REGISTER DEFINITIONS: 

$DEF 

$DEF 
.=.-2 
$DEF 

$DEFINI AD 

AD CSR • BLKW 1 

VIELD AD_CSR,O,<­
<GO, ,M>, -
<,3>,-
<EXT, ,M>,-
<COV, ,M>,­
<IE,,M>,-
<DON, , M>, -
<MUX,6,M>,-
<,l>,-
<ERR,,M>,-
> 
AD DBR .BLKW 1 

AD DAC .BLKW 1 

$DEFEND AD 

D-5 

;FIRST, 
SECOND, 
THIRD, 
FOURTH, 
FIFTH, 
AND SIXTH PARAMETERS 

;20 USEC TIMER FOR DAC SETTLE 
;MAXIMUM INITIAL CHANNEL #, 
; NUMBER OF CHANNELS, 
; AND CHANNEL INCREME~T 
;A/D CONVERSION TIMEOUT=2 SEC 

;CONTROL/STATUS REGISTER 

;DEFINE CSR FIELDS: AD CSR M XXX 
START A/D CONVERSION- - -
--3 UNUSED BITS 
EXTERNAL START ENABLE 
CLOCK OVERFLOW ENABLE 
INTERRUPT ENABLE 
CONVERSION DONE FLAG 
6 BIT MUX CHANNEL # 
BIT 14 IS UNUSED 

; ERROR FLAG 
;END OF CSR FIELDS 
;A/D DATA BUFFER REGISTER 
;DATA BUFF REG=DAC BUFF REG 
;DAC DATA BUFFER REF 

;END OF A/D REGISTER DEFNS 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

DEVICE DEPENDENT UCB EXTENSIONS: 

$DEFINI UCB 

.=UCB$K LENGTH 

$DEF UCB$B AD CURCHN .BLKB 
$DEF UCB$B-AD-NUMCHN .BLKB 
$DEF UCB$B-AD-INCCHN .BLKB 

.BLKB 
$DEF UCB$W AD CSR .BLKW 

VIELD UCB$W CSR,l,<­
(BFO,,M>,- -
> 

UCB$K ADLENGTH=. 

$DEFEND UCB 

1 
1 
1 
1 
1 

;STEP TO END OF STANDARD UCB 
;NOTE: NEXT 4 BYTES ASSUMED 
; ADJACENT 
;CURRENT MUX CHANNEL # 
;#CHANNELS LEFT TO SAMPLE 
;CHANNEL INCREMENT 
; SPARE BYTE 
; SAVED CSR 
;BORROW UNUSED CSR BIT 
; FOR USER BUFFER OVERRUN 

;LENGTH OF A/D UCB 

;END OF UCB EXTENSIONS 

A/D DRIVER USE OF TEMPORARY IRP STORAGE: 
; 
IRP$L CHSPEC=IRP$L MEDIA 
IRP$L-DACVAL=IRP$L-MEDIA+4 

- -

D-6 

;CHANNEL SPECIFIER(P3) 
;OPTIONAL DAC VALUE(P4) 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL DRIVER PROLOGUE AND DISPATCH TABLES 

DRIVER PROLOGUE TABLE: 

DPT AB ;DEFINE DRIVER PROLOGUE TABLE: 
END=AD END,- END OF DRIVER, 
ADAPTER=UBA,- ; UNIBUS ADAPTER, 
UCBSIZE=UCB$K ADLENGTH,-; SIZE OF A/D UCB, 
NAME=ADDRIVER- DRIVER NAME 

DPT STORE 
DPT-STORE 
DPT-STORE 
DPT-STORE 

DPT STORE 
DPT-STORE 

DPT STORE 

DPT STORE 

DPT STORE 

DPT STORE 

DRIVER DISPATCH TABLE: 

DDTAB 

!NIT 
UC~,UCB$B FIPL,B,8 
UCB,UCB$B-DIPL,B,22 
UCB,UCB$L-DEVCHAR,L,­
<DEV$M AVL-
! DEV$M-IDV­
!DEV$M-RTM> 

REIN IT 
CRB,CRB$L_INTD+4,D,­
AD INTERRUPT 

; 
;VALUES TO BE SET ON LOAD 
;DEVICE FORK IPL 
;ADll HARDWARE IPL 
;ADll DEVICE CHARACTERISTICS 
; AVA! LABLE, 
; INPUT DEVICE, 
; REALTIME DEVICE 
; 
;VALUES TO SET ON RELOAD 
;INTERRUPT SERVICE ADDR 

CRB,- ;ADDR OF CONTROLLER 
CRB$L INTD+VEC$L INITIAL,- ; INITIALIZATION 
D,AD CTLINIT -
CRB,~ ;ADDR OF UNIT 
CRB$L INTD+VEC$L UNITINIT,- ; INITIALIZATION - -D,AD UNITINIT 
DDB,DDB$L DDT,D,­
AD$DDT -

END 

;ADDR OF DRIVER 
; DISPATCH TABLE 
; 
;END DRIVER PROLOGUE 

DEVNAM=AD,­
START=AD STARTIO,­
FUNCTB=AD FUNCTABLE 

;DDT CREATION MACRO 
;NAME OF DEVICE 
;ADDR OF START I/O ROUTINE 
;ADDR OF FDT 

D-7 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL ADll-K FUNCTION DECISION TABLE 

ADll FUNCTION DECISION TABLE: 

AD FUNCTABLE: 
FUNCTAB 

FUN CT AB 

' <LOOPBACK,-
READPBLK,­
READLBLK,­
READVBLK> 

<LOOPBACK,­
READPBLK,­
READLBLK,­
READVBLK> 

FUNCTAB -
AD READ,­
<LOOPBACK,­
READPBLK,­
READLBLK,­
READVBLK> 

D-8 

;FUNCTION DECISION TABLE START 
;LEGAL FUNCTIONS: 
; LOOPBACK READ FROM DAC 
; READ PHYSICAL BLOCK 
; READ LOGICAL BLOCK 
; READ VIRTUAL BLOCK 
;BUFFERED I/O FUNCTIONS: 
; LOOPBACK READ FROM DAC 
; READ PHYSICAL BLOCK 
; READ LOGICAL BLOCK 
; READ VIRTUAL BLOCK 
;PREPROCESSING ROUTINES: 
;CALL SINGLE PREPROCESSOR FOR: 

LOOPBACK READ FROM DAC 
READ PHYSICAL BLOCK 
READ LOGICAL BLOCK 
AND READ VIRTUAL BLOCK 



;+ 

;-

SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL AD READ: READ FUNCTION PROCESSING 

AD READ - READ FUNCTION PREPROCESSING 

THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER 
TO PROCESS A READ PHYSICAL, READ LOGICAL, READ VIRTUAL, OR LOOPBACK 
I/O FUNCTION. 

AD READ FIRST VERIFIES THE CALLER'S PARAMETERS, TERMINATING THE 
REQUEST WITH IMMEDIATE SUCCESS OR ERROR IF NECESSARY. P3 AND 
P4 ARE STORED IN THE !RP. A SYSTEM BUFFER IS ALLOCATED AND 
ITS ADDRESS IS SAVED IN THE IRP. THE CALLER'S QUOTA IS UPDATED, 
AND THE READ REQUEST IS QUEUED TO THE DRIVER FOR STARTUP. 

INPUTS: 

RO,Rl,R2 = SCRATCH 
R3 IRP ADDRESS 
R4 ADDR OF PCB FOR CURRENT PROCESS 
RS DEVICE UCB ADDRESS 
R6 ADDRESS OF CCB 
R7 I/O FUNCTION CODE 
R8 FDT DISPATCH ADDR 
R9-Rll = SCRATCH 
AP = ADDR OF FUNCTION PARAMETER LIST 

OUTPUTS: 

RO,Rl,R2 = DESTROYED 
R3-Rll,AP = PRESERVED 
IRP$L CHSPEC(R3) CHANNEL SPECIFIER (P3) 
IRP$L-DACVAL(R3) = OPTIONAL DAC VALUE (P4) 
IRP$L-SVAPTE(R3) = ADDR OF ALLOCATED SYSTEM BUFFER 
IRP$W=BOFF(R3) REQUESTED BYTE COUNT 

SYSTEM BUFFER: 
LONGWD O/ADDR OF START OF DATA=BUFF ADDR+l2 
LONGWD l/ADDR OF USER BUFFER 
LONGWD 2/DATA STRUCTURE BOOKKEEPING 

.ENABL LSB 

AD READ: ;READ FUNCTION PREPROCESSING 
;GET USER BYTE COUNT MOVZWL 

BEQL 

MOVZWL 
MOVAL 
CMPB 
BGTRU 
TSTB 
BEQL 
CMPB 
BGTRU 
CMPB 
BGTRU 
MOVQ 

P2(AP) ,Rl 
10$ 

#SS$ BADPARAM,RO 
P3(AP) ,R2 
(R2)+,#MAX INLCHN 
20$ -
( R2) 
10$ 
(R2)+,#MAX NUMCHN 
20$ -
(R2) ,#MAX INCCHN 
20$ -
P3(AP) ,IRP$L_CHSPEC(R3) 

D-9 

;BRANCH IF READ OF 0 BYTES 
; {=INSTANT SUCCESS) 
;ASSUME CHANNEL SPEC ERROR 
;GET ADDR OF CHANNEL SPEC 
;INITIAL CHAN # TOO LARGE? 
; BRANCH IF SO 
;#CHANNELS = O? 
;BRANCH IF SO (SUCCESS) 
;# CHANNELS TO SAMPLE TOO LARGE? 
; BRANCH IF SO 
;CHANNEL INCREMENT TOO LARGE? 
; BRANCH IF SO 
;STORE P3 AND P4 (OPTIONAL DAC) 
; IN !RP UNTIL REQUEST EXECUTION 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

MOVL 
JSB 

PUS HR 
ADDL 

JSB 

BLBC 
JSB 
BLBC 
POPR 
MOVL 
MOVW 
MOVZWL 
MOVL 
SUBL 

MOVAB 

MOVL 

JMP 

Pl (AP) ,RO 
G"EXE$READCHK 

rM<RO, R3> 
U2,Rl 

G"EXE$BUFFRQUOTA 

R0,30$ 
G"EXE$ALLOCBUF 
R0,30$ 
rM<RO, R3> 
R2,IRP$L SVAPTE(R3) 
Rl,IRP$W-BOFF(R3) 
Rl,Rl -
PCB$L JIB(R4) ,R4 
Rl,JIB$L_BYTCNT(R4) 

12(R2), (R2)+ 

RO,(R2) 

G"EXE$QIODRVPKT 

;GET ADDR OF USER BUFFER 
;VERIFY THAT CALLER HAS 
; WRITE ACCESS TO BUFFER 
;SAVE USER BUFF ADDR, IRP.ADDR 
;ADD 12 BYTES TO REQUESTED BUFF 
; SIZE FOR BUFF HEADER 
;VERIFY BUFFER SPACE LEFT 
; IN CALLER'S QUOTA 
;BRANCH IF INSUFFICIENT QUOTA 
;ALLOCATE A SYSTEM BUFFER 
;BRANCH IF NONE AVAILABLE 
;RESTORE USER BUFFER, !RP ADDR 
;SAVE ADDR OF SYSTEM BUFFER 
; AND REQUESTED BYTE COUNT 
;CONVERT TO LONGWORD 
;GET JOB INFORMATION BLOCK ADDRESS 
;DEDUCT REQUESTED BYTE COUNT 
; FROM PROCESS' QUOTA 
;SAVE ADDR OF START OF USER DATA 
; IN lST LONGWD OF SYSTEM BUFFER 
;SAVE USER BUFFER ADDR IN 
; 2ND LONGWD 
;QUEUE I/O PKT TO DRIVER 

COME HERE IF USER REQUESTED READ OF 0 BYTES OR 0 CHANNELS. 
THIS IS ALWAYS SUCCESSFUL AND DOES NO DEVICE I/O: 

10$: 
20 $: 

MOVZWL #SS$ NORMAL,RO 
JMP G"EXE$FINISHIOC 

;SET NORMAL COMPLETION STATUS 
;COMPLETE I/O REQUEST 

; COME HERE TO ABORT I/O REQUEST WITH EXCEPTION STATUS IN RO: 

30$: POPR 

JMP 

#"M<~2,R3> 

G"EXE$ABORTIO 

.DSABL LSB 

D-10 

;CLEAR BUFFER ADDR; RESTORE !RP 
; ADDR 
;COMPLETE I/O REQUEST 



;+ 

;-

SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL AD STARTIO: PERFORM A/D CONVERSIONS 

AD STARTIO - START I/O OPERATION ON ADll-K A/D CONVERTER. 

THIS ROUTINE IS ENTERED WHEN THE ASSOCIATED UNIT IS IDLE AND A 
PACKET IS AVAILABLE FOR PROCESSING. 

TO PREPARE FOR SAMPLING, AD_STARTIO PERFORMS THESE STEPS: 

1. SET UP UCB WITH CHANNEL SPECIFIER AND ADDRESS IN SYSTEM 
BUFFER TO HOLD FIRST SAMPLE. 

2. IF LOOPBACK WAS SPECIFIED, THE DAC IS SET WITH THE CALLER­
SPECIFIED VALUE. 

THE DRIVER THEN LOOPS FROM AD NXTSAMPLE TO AD ENDSAMPLE 
COLLECTING SAMPLES UNTIL ALL SAMPLES HAVE BEEN COLLECTED, 
OR AN ERROR OCCURS. AN INTERRUPT IS RECEIVED FOR EACH SAMPLE, 
BUT, TO SAVE TIME, THE DRIVER NEVER FORKS UNTIL TIME TO 
COMPLETE THE I/O REQUEST. 

INPUTS: 

R3 ADDR OF IRP 
RS ADDR OF DEVICE UNIT UCB 

OUTPUTS: 

RO,Rl,R2 = DESTROYED 
OTHER REGISTERS ARE PRESERVED 

.ENABL LSB 

AD STARTIO: ; START NEXT QIO 
MOVL 

MOVL 

MOVL 
MOVL 
BICB3 

CMPB 
BNEQ 
MOVZBW 

MFPR 
ADDL 
BLSS 

MOVAW 

10$: MFPR 
CMPL 
BLSS 

IRP$L CHSPEC(R3) ,- ;COPY CHANNEL SPEC FROM 
UCB$B-AD CURCHN (RS) ; IRP TO UCB 
@IRP$L SVAPTE(R3) ,- ;SET ADDR OF START DATA 
UCB$L SVAPTE(RS) ; IN UCB 
UCB$L=CRB(RS) ,R4 ;GET CRB ADDRESS, 
@CRB$L INTD+VEC$L IDB(R4) ,R4 ; THEN CSR ADDRESS 
#AC<IO$M FCODE>,-- ;GET THE I/O 
IRP$W FUNC(R3) ,RO ; FUNCTION CODE 
RO,#I0$ LOOPBACK ;LOOPBACK? 
AD NXTSAMPLE ;BRANCH IF NOT 
IRP$L DACVAL(R3) ,- ;SET DAC VALUE IN 
AD DAC(R4) ; DAC BUFFER REGISTER 
SAfPR$ ICR,Rl ;GET CURRENT INTERVAL COUNTER (USEC) 
#DAC TTMER,Rl ; +DAC SETTLE TIME IN USEC 
10$ - ;BRANCH IF COUNTER DOESN'T 

-10000 (Rl) , Rl 

SA#PR$ ICR,RO 
RO,Rl -
10$ 

D-11 

; OVERFLOW 
;ELSE CALCULATE COUNTER 
; FOR NEXT INTERVAL 
;READ INTERVAL COUNTER NOW 
;REACHED SETTLE TIME YET? 
;BRANCH IF NOT 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

AD NXTSAMPLE: 
MOVZBW 

INSV 

DSBINT 
BBSC 

MOVW 
WFIKPCH 
MOVW 
BLSS 
MOVW 

ADDL 
SUBL 
DECB 
BEQL 
CMPW 
BLSSU 
BICW 

ADDB 

BICB 

AD ENDSAMPLE: 
BRB 

;START NEXT SAMPLE 
#AD CSR M IE!AD CSR M GO,RO ;SET INTERRUPT ENABLE AND 

- - ; START A/D CONVERSION 
UCB$B AD CURCHN(RS) ,- ;SET MUX CHAN # 
#8,#6~RO- ; FOR CSR 

;DISABLE INTERRUPTS (IPL=IPL$POWER) 
#UCB$V POWER,- ;BRANCH IF POWER FAILURE 
UCB$W STS(RS) ,AD POWERFAIL ; AND CLEAR POWER FAIL SIGNAL 
RO,AD=CSR(R4) - ;SET CSR 
AD TIMEOUT,#ADC TIMER ;WAIT FOR INTERRUPT, OR TIMEOUT 
AD-CSR(R4) ,UCB$W AD CSR(RS) ;SAVE CSR IN UCB 
AD-CSRERROR - - ;BRANCH IF ERROR 
AD-DBR(R4) ,@UCB$L SVAPTE(RS) ;COPY A/D VALUE INTO 

- - ; SYSTEM BUFFER 
#2,UCB$L SVAPTE(RS) ;STEP BUFFER POINTER 
#2,UCB$W-BCNT(R5) ;DECREASE # BYTES LEFT IN REQUEST 
UCB$B AD-NUMCHN(RS) ;DECR # CHANNELS LEFT TO SAMPLE 
AD DONE - ;BRANCH IF NONE 
UCB$W BCNT(RS) ,#2 ;AT LEAST 2 BYTES LEFT IN BUFFER? 
AD BUFFEROVF ;BRANCH IF NOT 
#UCB$W CSR M BFO,- ;ELSE CLEAR BUFFER OVERRUN 
UCB$W AD CSR(RS) ; BIT IN CSR COPY 
UCB$B-AD-INCCHN(R5) ,- ;NEXT CHANNEL # = 
UCB$B-AD-CURCHN(R5) CURRENT CHANNEL+INCREMENT 
#AC<MAX NUMCHN-1>,- ; MODULO MAXIMUM 
UCB$B_AD_CURCHN(R5) ; CHANNEL # 

AD NXTSAMPLE 
;THIS SAMPLE COMPLETE 
;GO START NEXT SAMPLE 

.DSABL LSB 

D-12 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL I/0 REQUEST COMPLETION 

COME HERE TO COMPLETE I/O REQUEST WITH NORMAL OR ERROR STATUS. 

USER BUFFER OVERRUN, I.E., NO MORE SAMPLES CAN BE COLLECTED: 

.ENABL LSB 

AD BUFFEROVF: ; 

AD 

BISW #UCB$W CSR M BFO,- ;SET BUFFER OVERRUN BIT 
UCB$W_ AD_ CSR(RS) ; IN CSR COPY 

CSR ERROR BIT WAS SET: 

CSRERROR: ; 
TSTW AD DBR (R4) ;CLEAR ERROR 
BRB AD-DONE ;JOIN COMMON I/O COMPLETION 

DEVICE TIMED OUT DUE TO EITHER A REAL TIMEOUT OR TO A 
POWER FAILURE. BOTH CAUSES ARE HANDLED THE SAME. 

AD TIMEOUT: 
CLRW 
TSTW 
SETI PL 
BRB 

AD CSR (R4) 
AD-DBR (R4) 
UCB$B FIPL(RS) 
10$ -

;CLEAR INTERRUPT ENABLE, 
; PENDING CONVERSION, INT, OR ERROR 
;LOWER PRIORITY TO DEVICE LEVEL 
;JOIN COMMON CODE TO 

TERMINATE REQUEST 

POWER FAILURE DETECTED WHILE ATTEMPTING TO INITIATE A READ OR 
LOOPBACK REQUEST. TERMINATE REQUEST THE SAME AS IF IT OCCURRED 
DURING THE QIO. 

AD POWERFAIL: 
ENBINT 

10$: MOVZWL 
BRB 

#SS$ TIMEOUT,RO 
20$ -

D-13 

i 
;LOWER IPL BACK TO FORK IPL 
;SET STATUS TO TIMED OUT 
;JOIN COMMON CODE TO TERMINATE 
; REQUEST 



SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

NORMAL STATUS, CANCEL I/O, AND GENERAL I/O REQUEST COMPLETION: 

AD DONE: 

20$: 

CLRW 
IO FORK 
MOVZWL 
BBS 

MOVZWL 
BBS 

MOVZWL 

SUBW3 

INSV 
CLRL 
RE QC OM 

AD _CSR (R4) 

#SS$ DATAOVERUN,RO 
#AD CSR V ERR, -
UCB$W AD CSR(RS) ,20$ 
#SS$ BUFFEROVF,RO 
#UCB$W CSR V BFO,­
UCB$W AD CSR(RS) ,20$ 
#SS$_NORMAL, RO 

UCB$W BCNT(RS) ,­
IRP$W-BCNT (R3) ,Rl 
Rl,#16,#16,RO 
Rl 

.DSABL LSB 

D-14 

; 
;CLEAR INTERRUPT ENABLE 
;REQUEST RESUMPTION AS FORK PROCESS 
;ASSUME CSR ERROR 
; BRANCH IF SO 
; 
;ASSUME BUFFER OVERRUN 
; BRANCH IF SO 
; 
;ELSE, STATUS IS NORMAL 
; 
;GET # BYTES REQUESTED 
; -# BYTES NOT XFERRED 
; =# BYTES XFERRED 
;CLEAR SECOND I/O STATUS LONGWD 
;REQUEST I/O COMPLETION 



;+ 

;-

SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL AD INTERRUPT: ADll-K A/D CONVERTER INTERRUPT SERVICE 

AD INTERRUPT - A/D CONVERTER INTERRUPT SERVICE 

THIS ROUTINE IS ENTERED VIA A JSB INSTRUCTION WHEN AN 
INTERRUPT OCCURS ON AN ADll A/D CONVERTER. INTERRUPT SERVICE 
GETS THE ADDRESS OF THE UCB OF THE INTERRUPTING DEVICE, RESTORES 
THE REMAINING CONTEXT OF THE DRIVER FORK PROCESS WHICH INITIATED 
THE DEVICE ACTIVITY, AND CALLS THE DRIVER FORK PROCESS. 

INPUTS: 

ALL GENERAL REGISTERS = RANDOM 
SP/ INTERRUPT STACK 
O(SP) = ADDR OF IDB ADDR 
4(SP) = SAVED RO 
8(SP) = SAVED Rl 
12(SP) SAVED R2 
16(SP) SAVED R3 
20(SP) SAVED R4 
24(SP) SAVED RS 
28(SP) SAVED PC 
32(SP) SAVED PSL 
IPL/ HARDWARE DEVICE LEVEL 

OUTPUTS AT CALL TO DRIVER FORK: 

R3 = RESTORED FROM DRIVER FORK PROCESS (IRP ADDR) 
R4 = RESTORED FROM DRIVER FORK PROCESS (CSR ADDR) 
R5 = UCB ADDR 
STACK IS SAME AS ABOVE, BUT IDB POINTER POPPED 
IPL/ HARDWARE DEVICE LEVEL 

.ENABL LSB 

AD INTERRUPT: ;A/D CONVERTER INTERRUPT SERVICE 
;GET IDB ADDR MOVL 

MOVQ 
BBCC 

MOVL 

JSB 

10$: MOVQ 
MOVQ 
MOVQ 
REI 

AD UNSOL: 
CLRW 
TSTW 
BRB 

@(SP)+,R3 
IDB$L CSR(R3),R4 
#UCB$V INT,-
UCB$W STS(R5) ,AD UNSOL 
UCB$L=FR3(R5) ,R3-

@ UCB$ L _ F PC ( R 5 ) 

(SP)+, RO 
(SP)+, R2 
(SP)+,R4 

AD CSR (R4) 
AD-DBR (R4) 
10$ 

.DSABL LSB 

D-15 

;GET DEVICE CSR AND UCB ADDR 
;BRANCH IF INT UNEXPECTED, 
; AND CLEAR EXPECTED BIT 
;RESTORE REMAINING DRIVER 
; CONTEXT: R3; (R4 ALREADY SET) 
;CALL DRIVER FORK PROCESS 
; 
;RESTORE REGISTERS 

;HANDLE UNSOLICITED INTERRUPT 
;DISMISS SPURIOUS INTERRUPT 
;READ DATA BUFFER TO CLEAR ERROR 
;JOIN INTERRUPT RESTORE 



;+ 

;-

AD 

SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL AD CTLINIT: ADll-K CONTROLLER INITIALIZATION 

AD CTLINIT - ADll-K CONTROLLER INITIALIZATION 

THIS ROUTINE IS CALLED AT SYSTEM STARTUP AND AFTER A POWER 
FAILURE. 

THE CSR IS CLEARED TO DISABLE INTERRUPTS. THIS WILL FORCE THE 
LAST SAMPLE (IF ONE IS IN PROGRESS) TO TIME OUT IN CASE INITIALIZATION 
IS THE RESULT OF A POWER FAILURE. THE TIMEOUT WILL OCCUR IN 0-1 
SECONDS. 

THE DATA BUFFER REGISTER IS READ TO CLEAR A PENDING CONVERSION, 
INTERRUPT, OR ERROR FOR DEVICE INITIALIZATION. 

INPUTS: 

R4 
RS 
R6 
RS 

OUTPUTS: 

ALL 

CTLINIT: 
CLRW 
TSTW 

RSB 

ADll CSR ADDRESS 
IDB ADDRESS OF DEVICE UNIT 
ADDR OF DDB 
ADDR OF CRB 

REGISTERS PRESERVED 

AD CSR(R4) 
AD=DBR (R4) 

D-16 

i 
;CLEAR CSR (IE IN PARTICULAR) 
;CLEAR ANY PENDING CONVERSION, 

INTERRUPT, OR ERROR 



;+ 

;-

SAMPLE DRIVER FOR AN ANALOG TO DIGITAL CONVERTER 

.SBTTL AD UNITINIT: ADll-K UNIT INITIALIZATION 

AD UNITINIT - ADll-K UNIT INITIALIZATION 

THIS ROUTINE IS CALLED AT SYSTEM STARTUP AND AFTER A POWER 
FAILURE. THE UCB AND IDB ARE INITIALIZED. 

INPUTS: 

RS ADDRESS OF DEVICE UCB 

OUTPUTS: 

RO = IDB ADDRESS 
OTHER REGISTERS ARE PRESERVED 
UCB$W STS(RS), ONLINE BIT IS SET 
IDB$L=OWNER(RO) = ADDRESS OF OWNING UCB 

AD UNITINIT: ; 

AD END: 

BISW 

MOVL 
MOVL 
MOVL 
RSB 

.END 

#UCB$M ONLINE,- ;SET UNIT ONLINE 
UCB$W STS(RS) ; 
UCB$L-CRB(R5) ,RO ;GET CRB ADDRESS 
CRB$L-INTD+VEC$L IDB(RO) ,RO ;GET IDB ADDR 
R5,IDB$L_OWNER(RO) ;SET UCB ADDR OF OWNING UNIT 

; 
;END OF DRIVER LABEL 

D-17 





APPENDIX E 

SAMPLE DRIVER FOR DRll-W DEVICES 

This appendix contains the source listing of a driver for two 
connected DRll-W devices. 

A machine-readable copy is also available. Its file specification is: 

SYS$EXAMPLES:XADRIVER.MAR 

E-1 



SAMPLE DRIVER FOR DRll-W DEVICES 

.TITLE XADRIVER - VAX/VMS DRll-W DRIVER 

.IDENT 'V03-002' 

; 
;**************************************************************************** 
;* * 
;* COPYRIGHT (c) 1978, 1980, 1982 BY * 
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. * 
;* ALL RIGHTS RESERVED. * 
. * * ' . * ' . * ' . * ' . * ' ; * 
; * 
. * ' 

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED 
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE 
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER 
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY 
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY 
TRANSFERRED. 

;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE 
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT 
;* CORPORATION. 
; * 
. * ' . * ' . * ' 

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS 
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

; * * 
;**************************************************************************** 

; ++ 

FACILITY: 

VAX/VMS Executive, I/O Drivers 

ABSTRACT: 

This module contains the DRll-W driver: 

ENVIRONMENT: 

Tables for loading and dispatching 
Controller initialization routine 
FDT routine 
The start I/O routine 
The interrupt service routine 
Device specific Cancel I/O 
Error logging register dump routine 

Kernel Mode, Nonpaged 

AUTHOR: 

J. R. Programmer 10-JAN-79 

E-2 



SAMPLE DRIVER FOR DRll-W DEVICES 

MODIFIED BY: 

V03-002 JRP0195 J. Programmer 17-MAR-1982 
Correct definition of XA$K FNCT3. 

V03-001 SSP0070 S. Programmer 15-MAR-1982 
Correct use of DSBINT and SETIPL in WORD MODE READ section so 
that IPL saved on stack when WFIKPCH is executed is fork IPL 
not device IPL. If there were several IRPs queued to the 
device, the starting of a waiting IRP would cause this code 
segment to be entered under the supervision of the fork 
dispatcher. The IPL upon return to the dispatcher will be 
that saved on the stack before the WFIKPCH. If that IPL is 
not fork IPL, the fork dispatcher will bugcheck. Lower IPL to 
fork IPL in cancel I/O routine before purging UBA data path. 
The UBA routines, particularly the release UBA resources 
routines, must be called at fork IPL to synchronize access to 
the UBA I/O data base and to ensure that any I/O threads 
resumed as a result of the newly available resources are 
resumed at fork IPL (presumably the IPL in effect when they 
we re suspended) • Discontinued clearing of the UCB$V BSY bit 
before executing REQCOM in the cancel I/O routine since 
clearing the bit can only serve to confuse REQCOM. 

V02-006 JRP0034 J. R. Programmer 27-July-1981 
Fixed bug loading CSR values in START IO. 

E-3 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL External and local symbol definitions 

External symbols 

$ACBDEF 
$CRBDEF 
$DDBDEF 
$DPTDEF 
$EMBDEF 
$IDBDEF 
$IODEF 
$IPLDEF 
$IRPDEF 
$PRDEF 
$PRIDEF 
$UCBDEF 
$VECDEF 
$XADEF 

Lo ca 1 s ym bo 1 s 

AST control block 
Channel request block 
Device data block 
Driver prolog table 
EMB offsets 
interrupt dispatch block 
I/O function codes 
Hardware IPL definitions 
I/O request packet 
Internal processor registers 
Scheduler priority increments 
Unit control block 
Interrupt vector block 
Define device specific characteristics 

Argument list (AP) offsets for device-dependent QIO parameters 

Pl 
P2 
P3 
P4 
PS 
P6 

0 
4 
8 
12 
16 
20 

; Other constants 

XA DEF TIMEOUT 
XA-DEF-BUFSIZ 
XA-RESET DELAY 

10 
65535 
2 

First QIO parameter 
Second QIO parameter 
Third QIO parameter 
Fourth QIO parameter 
Fifth QIO parameter 
Sixth QIO parameter 

10 second default device timeout 
Default buffer size 
Delay N microseconds after RESET 

DRll-W definitions that follow the standard UCB fields 
*** N 0 T E *** ORDER OF THESE UCB FIELDS IS ASSUMED 

$DEFINI UCB 
.=UCB$L DPC+4 

$DEF UCB$L XA ATTN Attention AST listhead 
- :-sLKL 1 

$DEF UCB$W XA CSRTMP Temporary storage of CSR image 
- -:-sLKW 1 

$DEF UCB$W_XA BARTMP Temporary storage of BAR image 
-:-BLKW 1 

$DEF UCB$W XA CSR Saved CSR on interrupt 
- :-BLKW 1 

$DEF UCB$W XA EIR Saved EIR on interrupt 
- -:-BLKW 1 

$DEF UCB$W XA !DR Saved !DR on interrupt 
- -:-BLKW 1 

$DEF UCB$W XA BAR Saved BAR register on interrupt 
- :-BLKW 1 

$DEF UCB$W XA WCR Saved WCR register on interrupt 
- -:-BLKW 1 

$DEF UCB$W XA ERROR Saved device status flag 
- -:-BLKW 1 

E-4 



SAMPLE DRIVER FOR DRll-W DEVICES 

$DEF UCB$L XA DPR Data Path Register contents 
- -:-BLKL 1 

$DEF UCB$L XA FMPR Final Map Register contents 
- -:-BLKL 1 

$DEF UCB$L XA PMPR Previous Map Register contents 
- :-BLKL 1 

$DEF UCB$W XA DPRN Saved Datapath Register Number 
- :-BLKW 1 And Data path Parity error flag 

Bit positions for device-dependent status field in UCB 

$VIELD UCB,O,<­
<ATTNAST, ,M>,­
<UNEXPT,,M>,­
> 

UCB$K SIZE=. 
- $DEFEND UCB 

Device register offsets from CSR address 

$DEFINI XA 
$DEF XA WCR 

.BLKW 1 
$DEF XA BAR 

.BLKW 1 
$DEF XA CSR 

UCB device specific bit definitions 
ATTN AST requested 
Unexpected interrupt received 

Start of DRll-W definitions 
Word count 

Buff er address 

Control/status 

Bit positions for device control/status register 

$EQULST XA$K ,,O,l,<­
<FNCTl,2>­
<FNCT2,4>­
<FNCT3,8>­
<STATUSA,2048>­
<STATUSB,1024>­
<STATUSC,512>-

> 

$VIELD XA CSR,O,<­
<GO, ,M>,­
<FNCT, 3,M>,­
<XBA,2,M>,­
<IE, ,M>,­
<RDY,,M>,­
<CYCLE, ,M>,­
<STATUS,3,M>,­
<MAINT,,M>,~ 

<ATTN, ,M>,­
<NEX, ,M>,­
<ERROR,,M>,-

> 

Define CSR FNCT bit values 

Define CSR STATUS bit values 

Control/status register 
Start device 
CSR FNCT bits 
Extended address bits 
Enable interrupts 
Device ready for command 
Starts slave transmit 
CSR STATUS bits 
Maintenance bit 
Status from other processor 
Nonexistent memory flag 
Error or external interrupt 

E-5 



SAMPLE DRIVER FOR DRll-W DEVICES 

$DEF XA EIR ; Error information register 

; Bit positions for error information register 

$DEF 
$DEF 

$VIELD XA EIR,O,<­
<REGFLG,, M>, -
<SPARE,7,M>,­
<BURST, ,M>,­
<DLT, ,M>,­
<PAR, ,M>,­
<ACLO, ,M>,­
<MULTI,,M>,­
<ATTN, ,M>,­
<NEX, ,M>,­
<ERROR,,M>,-

> 

XA IDR 
XA ODR 

.BLKW l 

.BLKW 1 

$DEFEND XA 

Error information register 
Flags whether EIR or CSR is accessed 
Unused - spare 
Burst mode transfer occured 
timeout for successive burst xfer 
Parity error during DATI/P 
Power fail on this processor 
Multi-cycle request error 
ATTN - same as in CSR 
NEX - same as in CSR 
ERROR - same as in CSR 

Input Data Buffer register 
Output Data Buffer register 

End of DRll-W definitions 

E-6 



, 

SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL Device Driver Tables 

Driver prologue table 

DPT AB 
END=XA END,­
ADAPTER=UBA,­
FLAGS=DPT$M SVP,­
UCBSIZE=UCB~K SIZE,­
NAME=XADRIVER-

DPT STORE INIT 

DPT-creation macro 
End of driver label 
Adapter type 
Allocate system page table 
UCB size 
Driver name 
Start of load 
initialization table 

DPT STORE UCB,UCB$B FIPL,B,8 Device fork IPL 
DPT-STORE UCB,UCB$B-DIPL,B,22 Device interrupt IPL 
DPT STORE UCB,UCB$L-DEVCHAR,L,<- Device characteristics 

DEV$M RTM!-- Real Time device 
DEV$M-ELG!- Error Logging enabled 
DEV$M-IDV!- input device 
DEV$M-ODV> output device 

DPT STORE UCB~UCB$B DEVCLASS,B,DC$ REALTIME ; Device class 
DPT-STORE UCB,UCB$B-DEVTYPE,B,DT$ DRllW Device Type 
DPT-STORE UCB,UCB$W-DEVBUFSIZ,W,-- Default buffer size 

- XA DEF BUFSIZ 
DPT STORE REINIT 

DPT STORE DDB,DDB$L DDT,D,XA$DDT 
DPT STORE CRB,CRB$L-INTD+4,D,­

XA INTERRUPT 
DPT STORE CRB,CRB$L INTD+VEC$L INITIAL,-; 

- D,XA CONTROL INIT -
DPT STORE END -

Driver dispatch table 

DDT AB 

Start of reload 
initialization table 
Address of DDT 
Address of interrupt 
service routine 
Address of controller 
initialization routine 
End of initialization 
tables 

DDT-creation macro 
DEVNAM=XA,- Name of device 
START=XA START,- Start I/O routine 
FUNCTB=XA FUNCTABLE,- FDT address 
CANCEL=XA-CANCEL,- Cancel I/O routine 
REGDMP=XA-REGDUMP,- Register dump routine 
DIAGBF=<<l3*4>+<<3+5+1>*4>>,- Diagnostic buffer size 
ERLGBF=<<l3*4>+<1*4>+<EMB$L DV REGSAV>> ; Error log buffer size 

Function decision table 

XA FUNCTABLE: ; FDT for driver 
FUNCTAB , ; Valid I/O functions 

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK,­
SETMODE,SETCHAR,SENSEMODE,SENSECHAR> 

FUNCTAB , ; No buffered functions 
FUNCTAB XA READ WRITE,- ; Device-specific FDT 

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK> 
FUNCTAB +EXE$READ,<READPBLK,READLBLK,READVBLK> 
FUNCTAB +EXE$WRITE,<WRITEPBLK,WRITELBLK,WRITEVBLK> 
FUNCTAB XA SETMODE,<SETMODE,SETCHAR> 
FUNCTAB +EXE$SENSEMODE,<SENSEMODE,SENSECHAR> 

E-7 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL XA_CONTROL_INIT, Controller initialization 

;++ 
XA CONTROL !NIT, Called when driver is loaded, system is booted, or 
power failure recovery. 

Functional Description: 

1) Allocates the direct data path permanently 
2) Assigns the controller data channel permanently 
3) Clears the Control and Status Register 
4) If power recovery, requests device timeout 

Inputs: 

R4 address of CSR 
RS address ~f IDB 
R6 address of DDB 
R8 address of CRB 

Outputs: 

VEC$V PATHLOCK bit set in CRB$L INTD+VEC$B DATAPATH 
UCB aadress placed into IDB$L OWNER -

XA CONTROL !NIT: 

MOVL 
MOVL 
BISW 

IDB$L UCBLST(RS),RO ; Address of UCB 
RO,IDB$L OWNER(RS) ; Make permanent controller owner 
#UCB$M_ONLINE,UCB$W_STS{RO) 

; Set device status "on-line" 

If powerfail has occured and device was active, force device timeout. 
The user can set his own timeout interval for each request. Time­
out is forced so a very long timeout period will be short circuited. 

10$: 

BBS 

BISB 

BSBW 
RSB 

#UCB$V POWER,UCB$W STS{RO) ,10$ 
- - ; Branch if powerfail 

#VEC$M PATHLOCK,CRB$L INTD+VEC$B DATAPATH(R8) 
- - Permanently allocate direct datapath 

XA DEV RESET Reset DRllW 
Done 

E-8 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL XA_READ_WRITE, FDT for device data transfers 

;++ 
XA_READ_WRITE, FDT for READLBLK,READVBLK,READPBLK,WRITELBLK,WRITEVBLK, 

WRITEPBLK 

Functional description: 

1) Rejects QUEUE I/O's with odd transfer count 
2) Rejects QUEUE I/O's for BLOCK MODE request to UBA Direct Data 

PATH on odd byte boundary 
3) Stores request timeout count specified in P3 into !RP 
4) Stores FNCT bits specified in P4 into !RP 
S) Stores word to write into ODR from PS into !RP 
6) Checks block mode transfers for memory modify access 

Inputs: 

R3 
R4 
RS 
R6 
RS 
AP 

Address 
Address 
Address 
Address 
Address 
Address 

Pl 
P2 
P3 
P4 
PS 
P6 

of !RP 
of PCB 
of UCB 
of CCB 
of FDT routine 
of Pl 
Buffer Address 
Buffer size in bytes 
Request timeout period (conditional on IO$M TIMED) 
Value for CSR FNCT bits (conditional on IO$M SETFNCT) 
Value for ODR (conditional on IO$M SETFNCT) -
Address of Diagnostic Buffer -

Outputs: 

;--

RO = Error status if odd transfer count 
IRP$L MEDIA = tirneout count for this request 
IRP$L-SEGVBN = FNCT bits for DRll-W CSR and ODR image 

XA READ WRITE: 

2$: 
s $: 
10$: 

-BLBC 
MOVZWL 
JMP 
MOVZWL 
MOVL 
BBS 
MOVL 

1S$: BBC 

20$: 

EXTZV 
CMPB 

BEQL 
CMPB 
BEQL 
MOVZWL 
BRB 
EXTZV 
ASHL 
MOVW 

P2(AP) ,10$ Branch if transfer count even 
#SS$ BADPARAM,RO Set error status code 
GAEXE$ABORTIO Abort request 
IRP$W FUNC(R3) ,Rl Fetch I/O Function code 
P3 (AP), IRP$L MEDIA(R3) Set request specific timeout count 
#IO$V TIMED,Rl,15$ ; Branch if timeout specified 
#XA DEF TIMEOUT,IRP$L MEDIA(R3) 

- - - ; Else set default timeout value 
#I0$V DIAGNOSTIC,Rl,20$ ; Branch if not maintenance reqeust 
#I0$V-FCODE,#I0$S FCODE,Rl,Rl ; AND out all function modifiers 
#IO$ READPBLK,Rl - ; If maintenance function, must be 

- ; physical I/O read or write 
20$ 
#10$ WRITEPBLK,Rl 
20$ -
#SS$ NOPRIV,RO ; ~o privilege for operation 
5$ - ; Abort request 
#0,#3,P4(AP) ,RO ; Get value for FNCT bits 
#XA CSR$V FNCT,RO,IRP$L SEGVBN(R3) ; Shift into position for CSR 
P5(AP) ,IRP$L_SEGVBN+2(R~) ; Store ODR value for later 

E-9 



SAMPLE DRIVER FOR DRll-W DEVICES 

If this is a block mode transfer, check buffer for modify access 
whether or not the function is read or write. The DRll-W does 
not decide whether to read or write, the user's device does. 
For word mode requests, return to read check or write check. 

If this is a BLOCK MODE request and the UBA Direct Data Path is 
in use, check the data buffer address for word alignment. If buffer 
is not word aligned, reject the request. 

25$: 
30$: 

BBS #I0$V WORD,IRP$W FUNC(R3),30$ 
- - ; Branch if word mode transfer 

BBS #XA$V DATAPATH,UCB$L DEVDEPEND(R5) ,25$ 

BLBS 
JMP 
RSB 

- - Branch if Buffered Data Path in use 
Pl (AP), 2$ 
GAEXE$MODIFY 

DDP, branch on bad alignment 
Checke buffer for modify access 
Return 

E-10 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL XA_SETMODE, Set Mode, Set characteristics FDT 

i ++ 
XA_SETMODE, FDT routine to process SET MODE and SET CHARACTERISTICS 

Functional description: 

If IO$M ATTNAST modifier is set, queue attention AST for device 
If I0$M-DATAPATH modifier is set, queue packet. 
Else, fTnish I/O. 

Inputs: 

R3 I/O packet address 
R4 PCB address 
RS UCB address 
R6 CCB address 
R7 Function code 
AP QIO Paramater list address 

Outputs: 

If IO$M ATTNAST is specified, queue AST on UCB attention AST list. 
If IO$M-DATAPATH is specified, queue packet to driver. 
Else, use exec routine to update device characteristics 

XA SETMODE: 
MOVZWL 
BBC 

IRP$W FUNC(R3) ,RO 
#I0$V=ATTNAST,R0,20$ 

Get entire function code 
Branch if not an ATTN AST 

Attention AST request 

10 $: 

PUS HR 
MOVAB 
JSB 
POPR 
BLBC 
BISW 

BBC 

BSBW 
JMP 

rM<R4, R7> 
UCB$L XA ATTN(RS) ,R7 
GACOM$SETATTNAST 
rM<R4, R7> 

Address of ATTN AST control block list 
Set up attention AST 

R0,50$ Branch if error 
#UCB$M_ATTNAST,UCB$W_DEVSTS(R5) 

; Flag ATTN AST expected. 
#UCB$V UNEXPT,UCB$W DEVSTS(R5) ,10$ 

- - Deliver AST if unsolicited interrupt 
DEL ATTNAST 
GAEXE$FINISHIO That's all for now 

If modifier IO$M DATAPATH is set, 
queue packet. Tne data path is changed at driver level to preserve 
order with other requests. 

20$: BBS 

JMP 

SA#I0$V_DATAPATH,R0,30$ 

GAEXE$SETCHAR 

If BDP modifier set, queue packet 

Set device characteristics 

; This is a request to change data path usage, queue packet 

30$: CMPL 
BNEQ 
JMP 

#IO$ SETCHAR, R7 
45$ 
GAEXE$SETMODE 

Error, abort I/O 

45$: 
50 $: 

MOVZWL 
CLRL 
JMP 

#SS$_NOPRIV, RO 
Rl 
GA EXE $ABORTIO 

Set characteristics? 
No, must have the privelege 
Queue packet to start I/O 

No priv for operation 

Abort I/O on error 

E-11 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL XA_START, Start I/O routines 
;++ 

XA START - Start a data transfer, set characteristics, enable ATTN AST. 

Functional Description: 

This routine has two major functions: 

1) Start an I/O transfer. This transfer can be in either word 
or block mode. The FNCTN bits in the DRll-W CSR are set. If 
the transfer count is zero, the STATUS bits in the DRll-W CSR 
are read and the request completed. 

2) Set Characteristics. If the function is change data path, the 
new data path flag is set in the UCB. 

Inputs: 

R3 Address of the I/O request packet 
RS Address of the UCB 

Outputs: 

RO = final status and number of bytes transferred 
Rl = value of CSR STATUS bits and value of input data buffer register 
Device errors are logged 
Diagnostic buffer is filled 

.ENABL LSB 

XA START: 

Retrieve the address of the device CSR 

ASSUME 
MOVL 
MOVL 

IDB$L CSR EQ 0 
UCB$L-CRB(R5) ,R4 ; Address of CRB 
@CRB$L INTD+VEC$L IDB(R4) ,R4 

; Address of CSR 

Fetch the I/O function code 

MOVZWL 
MOVW 
EXTZV 

IRP$W FUNC(R3) ,Rl ; Get entire function code 
Rl,UCB$W FUNC(R5) ; Save FUNC in UCB for Error Logging 
#I0$V_FCODE,#I0$S_FCODE,Rl,R2 ; Extract function field 

Dispatch on function code. If this is SET CHARACTERISTICS, we will 
select a data path for future use. 
If this is a transfer function, it will either be processed in word 
or block mode. 

CMPB 
BNEQ 

#IO$_SETCHAR,R2 
3$ 

Set characteristics? 

E-12 



SAMPLE DRIVER FOR DRll-W DEVICES 

;++ 
SET CHARACTERISTICS - Process Set Characteristics QIO function 

INPUTS: 

XA DATAPATH bit in Device Characteristics specifies which data path 
to-use. If bit is a one, use buffered data path. If zero, use 
direct datapath. 

OUTPUTS: 

;--

2$: 

CRB is flagged as to which datapath to use. 
DEVDEPEND bits in device characteristics is updated 

XA DATAPATH 1 -> buffered data path in use 
XA-DATAPATH = O -> direct data path in use 

MOVL 
MOVQ 
BISS 

BBC 
BICB 

CLRL 
MOVZWL 
RE QC OM 

UCB$L CRB(R5) ,RO ; Get CRB address 
IRP$L-MEDIA(R3),UCB$B DEVCLASS(R5) ; Set device characteristics 
#VEC$M PATHLOCK,CRB$L-INTD+VEC$B DATAPATH(RO) 

- - ; Assume direct datapath 
#XA$V DATAPATH,UCB$L DEVDEPEND(R5) ,2$ ; Were we right? 
#VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(RO) ; Set buffered datapath 

Rl 
#SS$_NORMAL, RO 

; Return Success 

; If subfunction modifier for device reset is set, do one here 

3$: BBC 
BSBW 

SA#I0$V RESET,Rl,4$ 
XA DEV RESET 

Branch if not device reset 
; Re set DRl 1-W 

This must be a data transfer function - i.e. READ OR WRITE 
Check to see if this is a zero length transfer. 
If so, only set CSR FNCT bits and return STATUS from CSR 

4$: 

5 $: 

6$: 

7 $: 

TSTW 
BNEQ 
BBC 
DSBINT 
MOVW 

MOVZWL 
BICW 
BISW 
MOVW 
BBC 
BICW3 

ENBINT 

BSBW 
BLBS 
JSB 
JSB 
MOVL 
MOVZWL 
BISB 
RE QC OM 

UCB$W BCNT(R5) 
10$ -
SA#I0$V_SETFNCT,Rl,6$ 

Is transfer count zero? 
No, continue with data transfer 
Set CSR FNCT specified? 

IRP$L_SEGVBN+2(R3) ,XA_ODR(R4) 
; Store word in ODR 

XA CSR(R4) ,RO 
#<XA CSR$M FNCT!XA CSR$M ERROR>,RO 
IRP$L SEGVBN(R3),RO 
RO, XA-CSR (R4) 
#XA$V-LINK,UCB$L DEVDEPEND(R5) ,5$ 
#XA$K=FNCT2,RO,XA_CSR(R4) 

; Link mode? 
Make FNCT bit 2 a pulse 

XA REGISTER 
R0-;-7$ 
GAERL$DEVICERR 
GAIOC$DIAGBUFILL 
UCB$W XA CSR(R5) ,Rl 
UCB$W-XA-ERROR(R5) ,RO 
#XA_CSR$M_IE,XA_CSR(R4) 

Fetch DRll-W registers 
If error, then log it 
Log a device error 
Fill diagnostic buffer if specified 
Return CSR and EIR in Rl 
Return status in RO 
Enable device interrupts 
Request done 

E-13 



SAMPLE DRIVER FOR DRll-W DEVICES 

; Build CSR image in RO for later use in starting transfers 

10$: 

20$: 

DIVW3 

MOVZWL 
BICW 
BISW 
BBC 
BICW 
BISS 
BBC 
BISW 

#2,UCB$W BCNT(R5) ,UCB$L XA DPR(R5) 
- - Make byte count into word count 

XA CSR(R4),RO 
#AC<XA CSR$M FNCT>,RO 
#XA CSR$M I E-;Ro 
SA#I0$V SETFNCT,Rl,20$ 
#<XA CSR$M FNCT>,RO 
IRP$L SEGVBN(R3) ,RO ; 
SA#IO$V DIAGNOSTIC,Rl,23$ 
#XA_CSR$M_MAINT,RO 

Set Interrupt Enable 
Set FNCT bits in CSR? 
Yes, Clear previous FNCT bits 
OR in new value 

; Check for maintenance function 
Set maintenance bit in CSR image 

; Is this a word mode or block mode request? 

23$: MOVW 
BBC 
BRW 

RO, UCB$W XA CSRTMP (RS) ; Save CSR image in UCB 
SA#I0$V WORU,Rl,BLOCK MODE ; Check if word or block mode 
WORD MODE - ; Branch to handle word mode 

E-14 



SAMPLE DRIVER FOR DRll-W DEVICES 

;++ 
BLOCK MODE -- Process a Block Mode (DMA) transfer request 

FUNCTIONAL DESCRIPTION: 

This routine takes the buffer address, buffer size, fucntion code, 
and function modifier fields from the IRP. It calculates the UNIBUS 
address, allocates the UBA map registers, loads the DRll-W device 
registers and starts the request. 

; Set up UBA 
; Start transfer 

BLOCK MODE: 

; If IO$M CYCLE subfunction is specified, set CYCLE bit in CSR image 

BBC 
BISW 

#I0$V CYCLE,Rl,25$ ; Set CYCLE bit in CSR? 
#XA_CSR$M_CYCLE,UCB$W_XA CSRTMP(R5) ; If yes, or into CSR image 

Allocate UBA data path and map registers 

25$: 
REQDPR 
RE QM PR 
LOADUBA 

Request UBA data path 
Request UBA map registers 
Load UBA map registers 

Calculate the UNIBUS transfer address for the DRll-W from the UBA 
map register address and byte offset. 

MOVZWL 
MOVL 
INSV 

EXTZV 
ASHL 
BISW 
BISW 
BICW3 

BICW3 
MOVW 

UCB$W BOFF(RS),Rl ; Byte offset in first page of xfer 
UCB$L-CRB(R5) ,R2 ; Address of CRB 
CRB$L-INTD+VEC$W MAPREG(R2) ,#9,#9,Rl 

- - Insert page number 
#16,#2,Rl,R2 Extract bits 17:16 of bus address 
#XA CSR$V XBA,R2,R2 Shift extended memeroy bits for CSR 
#XA-CSR$M-GO,R2 Set "GO" bit into CSR image 
R2,UCB$W XA CSRTMP(R5) ; Set into CSR image we are building 
#<XA CSRSM GO!XA CSR$M CYCLE>,UCB$W XA CSRTMP(R5) ,RO 

- ; CSR image-less "GO" and "CYCLE" 
#XA$K FNCT2,UCB$W XA CSRTMP(R5),R2; CSR image less FNCT bit 2 
Rl,UCB$W_XA_BARTMP(RS) ; Save BAR for error logging 

At this juncture: 
RO = CSR image less "GO" and "CYCLE" 
Rl = low 16 bits of transfer bus address 
R2 = CSR image less FNCT bit 2 
UCB$L XA DPR(R5) = transfer count in words 
UCB$W=XA=CSRTMP(R5) = CSR image to start transfer with 

Set DRll-W registers and start transfer 
Note that read-modify-write cycles are NOT performed to the DRll-W CSR. 
The CSR is always written directly into. This prevents inadvertently setting 
the EIR select flag (writing bit 15) if error happens to become true. 

DSBINT 
MNEGW 

MOVW 
MOVW 
BBC 
MOVW 
BRB 

; Disable interrupts (powerfail) 
UCB$L XA DPR(R5) ,XA WCR(R4) 

- ; Load negative of transfer count 
Rl,XA BAR(R4) ; Load low 16 bits of bus address 
RO, XA-CSR (R4) ; Load CSR image 1 ess "GO" and II CYCLE" 
#XA$V-LINK,UCB$L DEVDEPEND(R5) ,26$ ; Link mode? 
R2,XA-CSR(R4) - ; Yes, load CSR image les.s "FNCT" bit 2 
126$ - ; Only if link mode in dev characteristics 

E-15 



SAMPLE DRIVER FOR DRll-W DEVICES 

26$: 
MOVW UCB$W_XA_CSRTMP(R5),XA_CSR(R4) ; Move all bits to CSR 

; Wait for transfer complete interrupt, powerfail, or device timeout 

126$: 
WFIKPCH XA_TIME_OUT,IRP$L_MEDIA(R3) Wait for interrupt 

Device has interrupted, FORK 

I OF ORK ; FORK to lower IPL 

Handle request completion, release UBA resources, check for errors 

27$: 

28$: 

MOVZWL 
CLRW 
PURDPR 
BLBS 
MOVZWL 
INCB 
MOVL 
EXTZV 

MOVB 
EXTZV 
EXTZV 
INSV 
CMPW 
BGTR 
MOVL 
CLRL 
DECL 
CMPV 

BGTR 
MOVL 
RELMPR 
RELDPR 

#SS$ NORMAL,-(SP) 
UCB$W_XA_DPRN(R5) 

Assume success, store code on stack 
Clear DPR number and DPR error flag 
Purge UBA buffered data path 

R0,27$ Branch if no datapath error 
#SS$ PARITY,(SP) Flag parity error on device 
UCB$W XA DPRN+l(R5) Flag PDR error for log 
Rl,UC~$L-XA DPR(R5) Save data path register in UCB 
#VEC$V_DATAPATH,- Get Datapath register no. 
#VEC$S DATAPATH,- ; For Error Log 
CRB$L INTD+VEC$8 DATAPATH(R3) ,RO 
RO,UCB$W XA DPRN(R5) Save for later in UCB 
#9,#7,UCB$W-XA BAR(R5) ,RO ; Low bits, final map register no. 
#4,#2,UCB$W-XA-CSR(R5),Rl; Hi bits of map register no. 
Rl,#7,#2,RO- - Entire map register number 
R0,#496 Is map register number in range? 
28$ ; No, forget it - compound error 
(R2) [ROj,UCB$L XA FMPR(R5) ; Save map register contents 
UCB$L XA PMPR{R5)- ; Assume no previous map register 
RO - - ; Was there a previous map register? 
#VEC$V MAPREG,#VEC$S MAPREG,-
CRB$L INTD+VEC$W MAPREG(R3) ,RO 
28$ - - ; No if gtr 
(R2) [RO],UCB$L XA FMPR(R5) ; Save previous map register contents 

- - ; Release UBA resources 

Check for errors and return status 

30$: 

35$: 

40$: 

TSTW 
BEQL 
MOVZWL 
BBC 
MOVZWL 
BSBW 
BLBS 
JSB 
BSBW 
JSB 
MOVL 
MULW3 
ADDW 
INSV 
MOVL 
BISB 
RE QC OM 
.DSABL 

UCB$W XA WCR(R5) ; All words transferred? 
30$ - - ; Yes 
#SS$ OPINCOMPL,(SP) ; No, flag operation not complete 
#XA CSR$V ERROR,UCB$W XA CSR(R5) ,35$ ; Branch on CSR error bit 
UCB$W XA ERROR(R5) ,(SP) Flag for controller/drive error status 
XA DEV RESET Reset DRll-W 
(SP) ,40$ Any errors after all this? 
GAERL$DEVICERR Yes, log them 
DEL ATTNAST Deliver outstanding ATTN AST's 
GAIOC$DIAGBUFILL Fill diagnostic buffer 
(SP)+,RO Get final device status 
#2,UCB$W XA WCR(R5) ,Rl Calculate final transfer count 
UCB$W BCNT{R5) ,Rl 
Rl,#lG,#16,RO Insert into high byte of IOSB 
UCB$W XA CSR(R5) ,Rl Return CSR and EIR in IOSB 
#XA_CSR$M_IE,XA_CSR(R4) Enable interrupts 

Finish request in exec 
LSB 

E-16 



SAMPLE DRIVER FOR DRll-W DEVICES 

;++ 
WORD MODE -- Process word mode (interrupt per word) transfer 

FUNCTIONAL DESCRIPTION: 

Data is transferred one word at a time with an interrupt for each word. 
The request is handled separately for a write (from memory to DRll-W 
and a read (from DRll-W to memory). 
For a write, data is fetched from memory, loaded into the ODR of the 
DRll-W and the system waits for an interrupt. For a read, the system 
waits for a DRll-W interrupt and the IDR is transferred into memory. 
If the unsolicited interrupt flag is set, the first word is transferred 
directly into memory withou waiting for an interrupt • 

• ENABL LSB 
WORD MODE: 

Dispatch to separate loops on READ or WRITE 

;++ 

CMPB 
BEQL 

#IO$ READPBLK,R2 
30$ -

; Check for read function 

WORD MODE WRITE -- Write (output) in word mode 

FUNCTIONAL DESCRIPTION: 

10$: 

15$: 

Transfer the requested number of words from user memory to 
the DRll-W ODR one word at a time, wait for interrupt for each 
word. 

BSBW 
DSBINT 

MOVW 
MOVW 
BBC 
BICW3 

MOVFRUSER Get two bytes from user buffer 
Lock out interrupts 
Flag interrupt expected 

Rl,XA_ODR(R4) ; Move data to DRll-W 
UCB$W XA CSRTMP(R5) ,XA CSR(R4) ; Set DRll-W CSR 
#XA$V-LINK,UCB$L DEVDEPEND(R5) ,15$ ; Link mode? 
#XA$K-FNCT2,UCB$W XA CSRTMP(R5),XA CSR(R4) ; Clear interrupt FNCT bit 2 

- - - ; Only if link mode specified 

; Wait for interrupt, powerfail, or device timeout 

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3) 

Check for errors, decrement transfer count, and loop until complete 

20$: 

I OF ORK 
BITW 

BEQL 
B~ 

DECW 
BNEQ 

#XA EIR$M NEX!­
XA ~IR$M ~ULTI!­
XA-EIR$M-ACLO!­
XA-EIR$M-PAR!-

; Fork to lower IPL 

XA-EIR$M-DLT,UCB$W XA EIR(R5) ; Any errors? 
20$ - - - No, continue 
40$ Yes, abort transfer. 
UCB$L XA DPR(R5) All words transferred? 
10$ - - No, loop until finished. 

Transfer is done, clear interrupt expected flag and FORK 
All words read or written in WORD MODE. Finish I/O. 

E-17 



SAMPLE DRIVER FOR DRll-W DEVICES 

RETURN STATUS: 

22$: 

;++ 

JSB 
BSBW 
MOVZWL 
MULW3 
SUBW3 
INSV 
MOVL 
BISS 
RE QC OM 

GAIOC$DIAGBUFILL 
DEL ATTNAST 
#SS$ NORMAL, RO 
#2,UCB$L XA DPR(R5) ,Rl 
Rl,UCB$W-BCNT(R5),Rl 
R 1, #16, #l 6, RO 
UCB$W XA CSR(R5) ,Rl 
#XA_CSR$M_IE,XA_CSR(R4) 

Fill diagnostic buffer if present 
Deliver outstanding ATTN AST's 
Complete success status 
Calculate actual bytes xfered 
From requested number of bytes 
And place in high word of RO 
Return CSR and EIR status 
Enable device interrupts 
Finish request in exec 

WORD MODE READ -- Read (input) in word mode 

FUNCTIONAL DESCRIPTION: 

30$: 

Transfer the requested number of wrods from the DRll-W !DR into 
user memory one word at a time, wait for interrupt for each word. 
If the unexpected (unsolicited) interrupt bit is set, transfer the 
first (last received) word to memory without waiting for an 
interrupt. 

DSBINT UCB$B_DIPL(R5) ; Lock out interrupts 

If an unexpected (unsolicited) interrupt has occured, assume it 
is for this READ request and return value to user buffer without 
waiting for an interrupt. 

BBSC #UCB$V_UNEXPT,UCB$W_DEVSTS(R5) ,37$ 
; Branch if unexpected interrupt 

35$: 
SETIPL #IPL$_POWER 

; Wait for interrupt, powerfail, or device timeout 

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3) 

Check for errors, decrement transfer count and loop until done 

37$: 
IOFORK 

BITW 

BNEQ 
BSBW 

#XA EIR$M NEX!­
XA EIR$M MULTI!­
XA-EIR$M-ACLO!­
XA-EIR$M-PAR!-

; Fork to lower IPL 

XA-EIR$M-DLT, UCB$W XA EIR(R5) ; Any errors? 
40$ - - ; Yes, abort transfer. 
MOVTOUSER ; Store two bytes into user buffer 

Send interrupt back to sender. Acknowledge we got last word. 

38$: 

DSBINT 
MOVW 
BBC 
BICW3 

DECW 
BNEQ 
ENBINT 
BRB 

UCB$W XA CSRTMP(R5),XA CSR(R4) 
#XA$V-LINK,UCB$L DEVDEPEND(R5) ,38$ ; Link mode? 
#XA$K=FNCT2,UCB$W_XA_CSRTMP(R5) ,XA_CSR(R4) ; Yes, clear FNCT 2 

UCB$L XA DPR (RS) 
35$ - -

RETURN STATUS 

; Decrement transfer count 
Loop until all words transferred 

Finish request in common code 

E-18 



SAMPLE DRIVER FOR DRll-W DEVICES 

; Error detected in word mode transfer 

40$: 
BSBW 
BSBW 
JSB 
JSB 
MOVZWL 
BRW 

DEL ATTNAST 
XA DEV RESET 
GATOC$UIAGBUFILL 
GAERL$DEVICERR 
UCB$W XA ERROR(RS) ,RO 
22$ - -

.DSABL LSB 

Deliver ATTN AST's 
Error, reset DRll-W 
Fill diagnostic buffer if present 
Log device error 
Set controller/drive status in RO 

MOVFRUSER - Routine to fetch two bytes from user buffer. 

INPUTS: 

RS UCB address 

OUTPUTS: 

Rl =Two bytes of data from user's buffer 
Buffer descriptor in UCB is updated • 

• ENABL LSB 
MOVFRUSER: 

MOVAL 
MOVZBL 
JSB 
MOVL 
BRB 

-(SP),Rl 
#2,R2 
GAIOC$MOVFRUSER 
(SP)+,Rl 
20$ 

Address of temporary stack lac 
Fetch two bytes 
Call exec routine to do the deed 
Retrieve the bytes 
Update UCB buffer pointers 

MOVTOUSER - Routine to store two bytes into user's buffer. 

INPUTS: 

RS = UCB address 
UCB$W_XA_IDR(RS) Location where two bytes are saved 

OUTPUTS: 

Two bytes are stored in user buffer and buffer descriptor in 
UCB is updated. 

MOVTOUSER: 

20 $: 

30$: 

MOVAB 
MOVZBL 
JSB 

ADDW 
BICW 
BNEQ 
ADDL 

RSB 

UCB$W XA IDR(RS) ,Rl 
#2,R2- -
GAIOC$MOVTOUSER 

Address of internal buffer 

Call exec 
Update buffer pointers in UCB 

#2,UCB$W BOFF(RS) ; Add two to buffer descriptor 
#AC<AX01FF>,UCB$W BOFF(RS) ; Modulo the page size 
30$ - ; If NEQ, no page boundary crossed 
#4,UCB$L_SVAPTE(RS) ; Point to next page 

.DSABL LSB 

.PAGE 

E-19 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL DRll-W DEVICE timeout 
;++ 

DRll-W device timeout 
If a DMA transfer was in progress, release UBA resources. 
For DMA or WORD mode, deliver ATTN AST's, log a device timeout error, 
and do a hard reset on the controller. 

Clear DRll-W CSR 
Return error status 

Power failure will appear as a device timeout 
;--

.ENABL LSB 
XA TIME OUT: timeout for DMA transfer 

SETI PL UCB$B _FIPL (R5) Lower to FORK IPL 
PURDPR Purge buffered data path in 
RELMPR Release UBA map registers 
RELDPR Release UBA data path 

UBA 

XA TIME OUTW: timeout for WORD mode transfer 

MOVL 
MOVL 
BSBW 
JSB 
JSB 
BSBW 
BSBW 
MOVZWL 
CLRL 
CLRW 
BICW 

RE QC OM 
.DSABL 
.PAGE 

UCB$L CRB(R5),R4 Fetch address of CSR 
@CRB$L INTD+VEC$L IDB(R4) ,R4 
XA REGISTER - Read DRll-W registers 
GAIOC$DIAGBUFILL Fill diagnostic buffer 
GAERL$DEVICTMO Log device timeout 
DEL ATTNAST And deliver the AST's 
XA DEV RESET Reset controller 
#SS$ TIMEOUT,RO Error status 
Rl -
UCB$W DEVSTS(R5) Clear ATTN AST flags 
#<UCBSM TIM!UCB$M INT!UCB$M TIMOUT!UCB$M CANCEL!UCB$M POWER>,-
UCB$W_STS(R5) - ; Clear unit status flags -

; Complete I/O in exec 
LSB 

E-20 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL XA_INTERRUPT, Interrupt service routine for DRll-W 
++ 

XA INTERRUPT, Handles interrupts generated by DRll-W 

Functional description: 

This routine is entered whenever an interrupt is generated 
by the DRll-W. It checks that an interrupt was expected. 
If not, it sets the unexpected (unsolicited) interrupt flag. 
All device registers are read and stored into the UCB. 
If an interrupt was expected, it calls the driver back at its Wait 
For Interrupt point. 
Deliver ATTN AST's if unexpected interrupt. 

Inputs: 

OO(SP) 
04 (SP) 
08(SP) 
12(SP) 
16 (SP) 
20 (SP) 
24 (SP) 
28 (SP) 
32(SP) 

Pointer to address of the device IDB 
saved RO 
saved Rl 
saved R2 
saved R3 
saved R4 
saved RS 
saved PSL 
saved PC 

Outputs: 

;--

The driver is called at its Wait For Interrupt point if an 
interrupt was expected. 
The current value of the DRll-W CSR's are stored in the UCB. 

XA INTERRUPT: Interrupt service for DRll-W 
Address of IDB and pop SP 
CSR and UCB address from IDB 

MOVL 
MOVQ 

@(SP)+,R4 
(R4) ,R4 

Read the DRll-W device registers (WCR, BAR, CSR, EIR, !DR) and store 
into UCB. 

BSBW XA REGISTER ; Read device registers 

Check to see if device transfer request active or not 
If so, call driver back at Wait for Interrupt point and 
Clear unexpected interrupt flag. 

20$: BBCC #UCB$V INT,UCB$W STS(RS) ,25$ 
- - ; If clear, no interrupt expected 

Interrupt expected, clear unexpected interrupt flag and call driver 
back. 

BICW 

MOVL 
JSB 
BRB 

#UCB$M UNEXPT,UCB$W DEVSTS(R5) 
- - Clear unexpected interrupt flag 

UCB$L FR3(R5) ,R3 Restore drivers R3 
@UCB$L FPC(RS) Call driver back 
30$ -

E-21 



SAMPLE DRIVER FOR DRll,.-W DEVICES 

Deliver ATTN AST's if no interr~pt expected and set unexpected 
interrupt flag. 

25$: 
BISW 
BSBW 
BISB 

#UCB$M UNEXPT,UCB$W DEVSTS(RS) ; Set unexpected interrupt flag 
DEL AT"TNAST - ; Deliver ATTN AST's 
#XA=CSR$M_IE,.XA_CSR(R4) ; Enable device interrupts 

Restore registers and return from interrupt 

30$: 
POPR 
REI 
.PAGE 

#AM<RO,Rl,R2,R3,R4,R5> Restore registers 
Return from interrupt 

E-22 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL XA REGISTER - Handle DRll-W CSR transfers 
;++ 

XA REGISTER - Routine to handle DRll-W register transfers 

INPUTS: 

R4 - DRll-W CSR address 
RS - UCB address of unit 

OUTPUTS: 

CSR, EIR, WCR, BAR, IDR, and status are read and stored into UCB. 
The DRll-W is pl aced in its initial state with interrupts enabled• 
RO - .true. if no hard error 

.false. if hard error (cannot clear ATTN) 

If the CSR ERROR bit is set and the associated condition can be cle~red, then 
the error is transient and recoverable. The status returned is SS$ DRVERR. 
If the CSR ERROR bit is set and cannot be cleared by clearing the CSR, theri 
this is a hard error and cannot be recovered. The returned status is 
SS$ CTRLERR. 

RO,Rl - destroyed, all other registers preserved. 
;--

XA REGISTER: 

55$: 

60$: 

MOVZWL 
MOVZWL 
MOVW 
BBC 
MOVZWL 
BICW 
BISB 
MOVW 
MOVW 
MOVW 
BBC 
MOVZWL 
MOVW 
MOVW 
MOVW 
MOVW 
RSB 

#SS$ NORMAL,RO Assume success 
XA CSR(R4) ,Rl Read CSR 
R1-;ucB$W XA CSR(R5) Save CSR in UCB 
#XA CSR$V ERROR;Rl,55$ Branch if no error 
#SS$ DRVERR,RO Assume "drive" error 
#AC<XA CSR$M FNCT>,Rl ; Clear all uninteresting bits for later 
#<XA CSR$M ERROR/256>,XA CSR+l(R4) ; Set EIR flag 
XA EIR(R4)~UCB$W XA EIR(R5) ; Save EIR in UCB 
Rl-;xA CSR(R4) - - Clear EIR flag and errors 
XA CSR(R4) ,Rl Read CSR back 
#XX CSR$V ATTN,Rl,60$ If attention still set, hard error 
#SSS CTRLERR,RO ; Flag hard controller error 
XA IDR(R4) ,UCB$W XA IDR(R5) ; Save IDR in UCB 
XA-BAR{R4) ,UCB$W-XA-BAR(R5) 
XA-WCR(R4) ,UCB$W-XA-WCR(R5) 
Ro-;ucB$W_XA~ERROR(RS) ; Save status in UCB 

E-23 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL XA_CANCEL, Cancel I/0 routine 
;++ 

XA_CANCEL, Cancels an I/O operation in progress 

Functional description: 

Flushes Attention AST queue for the user. 
If transfer in progress, do a device reset to DRll-W and finish the 
request. 
Clear interrupt expected flag. 

Inputs: 

R2 channel index number 
R3 address of current IRP 
R4 address of the PCB requesting the cancel 
RS address of the device's UCB 

Outputs: 

XA CANCEL: ; Cancel I/O 

BBCC #UCB$V_ATTNAST,UCB$W_DEVSTS(RS) ,20$ 

Finish all ATTN AST's for this process. 

PUS HR 
MOVL 
MOVAB 
JSB 
POPR 

#"'M<R2,R6,R7> 
R2, R6 
UCB$L XA ATTN(RS) ,R7 
G"'COM$FLUSHATTNS 
#"'M<R2,R6,R7> 

; ATTN AST enabled? 

Set up channel number 
Address of listhead 
Flush ATTN AST's for process 

Check to see if a data transfer request is in progress 
for this process on this channel 

20$: 
SETI PL 
JSB 
BBC 

UCB$B DIPL (RS) 
G"'IOC$CANCELIO 
#UCB$V_CANCEL,UCB$W_STS(RS) ,30$ 

Lock out device interrupts 
Check if transfer going 
Branch if not for this guy 

If BLOCK mode DMA request in progress, release UBA resources 
If transfer is in progress, do a device reset to DRll-W 

BBC 
BBS 
PUS HR 
MOVL 
MOVL 
BSBW 
SETI PL 

PURDPR 
RELMPR 
RELDPR 
POPR 

#UCB$V INT,UCB$W STS(RS) ,2S$ 
#I0$V WORD,IRP$W-FUNC(R3) ,2S$ 
#"'M<R2,R3,R4> -
UCB$L CRB(RS),R4 
@CRB$L INTD+8(R4) ,R4 
XA DEV-RESET 
UCB$B _FIPL (RS) 

#"'M<R2,R3,R4> 

E-24 

Branch if transfer not in progress 
Branch if not BLOCK mode xfer 
Save some registers 

; Get CRB address 
;·Get pointer to CSR in IDB 

Re set DRl 1-W 
Lower IPL to release UBA 
resources. 
Purge UBA buffered data path 
Release UBA map registers 
Release UBA data path register 



25$: 

30$: 

MOVZWL 
CLRL 
CLRW 
BICW 

REQCOM 

SAMPLE DRIVER FOR DRll-W DEVICES 

#SS$ CANCEL,RO 
Rl -

; Status is request canceled 

UCB$W DEVSTS(RS) Clear unexpected interrupt flag 
#<UCB$M TIM!UCB$M CANCEL UCB$M INT!UCB$M TIMOUT>,-
UCB$W_STS(R5) - Clear unit status flags 

Jump to exec to finish I/O 

SETIPL UCB$B_FIPL(R5) 
RSB 

Lower to FORK IPL 
Return 

.PAGE 

E-25 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL DEL_ATTNAST, Deliver ATTN AST's 
;++ 

DEL_ATTNAST, Deliver all outstanding ATTN AST's 

Functional description: 

This routine is used by the DRll-W driver to deliver all of the 
outstanding attention AST's. It is copied from COM$DELATTNAST in 
the exec. In addition, it places the saved value of the DRll-W CSR 
and Input Data Buffer Register in the AST paramater. 

Inputs: 

RS UCB of DRll-W unit 

Outputs: 

RO,Rl,R2 Destroyed 
R3,R4,RS Preserved 

;--
DEL ATTNAST: 

BBCC 

PUS HR 
10$: MOVL 

MOVAB 
MOVL 
BEQL 
BICW 
MOVL 
MOVW 

MOVW 

PUSHAB 
FORK 

#UCB$V ATTNAST,UCB$W DEVSTS(RS),30$ 
- - Any ATTN AST's expected? 

#AM<R3,R4,R5> Save R3,R4,R5 
8 (SP) ,Rl Get address of UCB 
UCB$L XA ATTN(Rl) ,R2 Address of ATTN AST listhead 
(R2) ,RS - Address of next entry on list 
20 $ ; No next entry, end of loop 
#UCB$M UNEXPT,UCB$W DEVSTS(Rl) ; Clear unexpected interrupt flag 
(RS), (R2) - ; Close 1 ist 
UCB$W XA IDR(Rl) ,ACB$L KAST+6(R5) 

- - - ; Store !DR in AST paramater 
UCB$W XA CSR(Rl),ACB$L KAST+4(R5) 

- - - Store CSR in AST paramater 
BA10$ ; Set return address for FORK 

; FORK for this AST 

AST fork procedure 

20$: 
30$: 

MOVQ 

MOVB 
MOVL 
CLRL 
MOVZBL 
JMP 

POPR 
RSB 

.PAGE 

ACB$L_KAST(R5),ACB$L AST(R5) 
; Re-arrange 

ACB$L KAST+8(R5) ,ACB$B RMOD(RS) 
ACB$L-KAST+l2(RS) ,ACB$L PID(R5) 
ACB$L-KAST(R5) -

entries 

#PRI$-IOCOM,R2 
GASCH$QAST 

Set up priority increment 
Queue the AST 

rM<R3,R4,R5> Restore registers 
Return 

E-26 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL XA REGDUMP - DRll-W register dump routine 
;++ 

XA REGDUMP - DRll-W Register dump routine. 

This routine is called to save the controller registers in a specified 
buffer. It is called from the device error-logging routine and from the 
diagnostic buffer fill routine. 

Inputs: 

RO - Address of register save buffer 
R4 - Address of Control and Status Register 
RS - Address of UCB 

Outputs: 

The controller registers are saved in the specified buffer. 

CSRTMP - The last command written to the DRll-W CSR by 
by the driver. 

BARTMP - The last value written into the DRll-W BAR by 
the driver during a block mode transfer. 

CSR - The CSR image at the last interrupt 
EIR - The EIR image at the last interrupt 
IDR - The IDR image at the last interrupt 
BAR - The BAR image at the last interrupt 
WCR - Word count register 
ERROR - The system status at request completion 
PORN - UBA Datapath Register number 
DPR - The contents of the UBA Data Path register 
FMPR - The contents of the last UBA Map register 
PMRP - The contents of the previous UBA Map register 
DPRF - Flag for purge datapath error 

O = no purger datapath error 
1 = parity error when datapath was purged 

Note that the values stored are from the last completed transfer 
operation. If a zero transfer count is specified, then the 
values are from the last operation with a nonzero transfer count. 

XA REGDUMP: 

10$: 

20$: 

MOVZBL 
MOVAB 
MOVZBL 
MOVZWL 
SOBGTR 
MOVZBL 
MOVZBL 
MOVL 
SOBGTR 
MOVZBL 
RSB 

.PAGE 

#11, (RO)+ 
UCB$W XA CSRTMP(R5) ,Rl 
#8,R2- -
(Rl)+, (RO)+ 
R2,10$ 
UCB$W XA DPRN(R5),(RO)+ 
#3, R2- -
(Rl)+, (RO)+ 
R2,20$ 
UCB$W_XA_DPRN+l(R5) ,(RO)+ 

Eleven registers are stored. 
Get address of saved register images 
Return 8 registers here 

Move them all 
Save Datapath Register number 
And 3 more here 
Move UBA register contents 

; Save Datapath Parity Error Flag 

E-27 



SAMPLE DRIVER FOR DRll-W DEVICES 

.SBTTL XA DEV RESET - Device reset DRll-W 
;++ 

XA DEV RESET - DRll-W Device reset routine 

This routine raises IPL to device IPL, performs a device reset to 
the required controler, and re-enables device interrupts. 

Inputs: 

R4 - Address of Control and Status Register 
RS - Address of UCB 

Outputs: 

Controller is reset, controller interrupts are enabled 

XA DEV RESET: 

PUS HR 
DSBINT 
MOVB 
CLRB 

#AM<RO,Rl,R2> ; Save some registers 
; Raise IPL to lock all interrupts 

#<XA CSR$M MAINT/256>,XA CSR+l(R4) 
XA_CSR+l(R4) -

*** Must delay here depending on reset interval 

MOVZBL 
5 $: MFPR 
10$: MFPR 

CMPL 
BEQL 
SOBGTR 

MOVB 
ENBINT 
POPR 

RSB 

XA END: 
.END 

#XA RESET DELAY,R2 
#PRS ICR,RO 
#PR$-ICR,Rl 
RO,RT 
10$ 
R2,5$ 

#XA_CSR$M_ IE,XA_CSR(R4) 

rM<RO, Rl, R2> 

No. of rnicrosecs to wait 
Read interval clock 
Read it again 
Compare both clock readings 
Repeate until they differ 
Do this the specified no. of times 

Re-enable device interrupts 
Restore IPL 
Restore registers 

End of driver label 

E-28 



APPENDIX F 

MASSBUS ADAPTER 

This appendix describes the data structures and macros used by DIGITAL 
for its standard magnetic tape and disk products. Customers using the 
DR32 should use equivalent techniques. 

The MASSBUS adapter (MBA) is the hardware interface between the 
backplane interconnect and the high speed MASSBUS storage devices. 
The MASSBUS is the communication path linking the MASSBUS adapter to 
the mass storage device drives. 

The MASSBUS adapter performs the following functions that allow 
communication between devices and memory: 

• Mapping of virtual address to physical page frame numbers 

• Buffering of data for transfers from main memory to the 
MASSBUS and vice versa 

• Transfer of interrupts from MASSBUS devices to the backplane 
interconnect 

A MASSBUS adapter supports any combination of up to eight device 
controllers. Typical MASSBUS controllers include the TM03 tape 
controller, the RP06, RM03, and RM80 disk controllers, and the DR32, 
which is a general purpose interface that acts as a controller for one 
or more nonstandard devices. Only one controller can transfer data 
over the MASSBUS at a time. 

eight tape drives. In 
a one-to-one relationship 

each controller supports 
interprets and maintains the 
whether the controller is 

The TM03 tape controller supports up to 
contrast to tape controllers, there is 
between a disk controller and its device; 
only one disk drive. The VAX/VMS system 
I/O data base differently depending upon 
single or multiunit. 

Each MASSBUS controller connected to a MASSBUS adapter is assigned a 
unit number in the range 0 to 7. The method of unit number assignment 
is controller-specific, but you can obtain the number from either unit 
plugs or switch packs. In the case of multiunit controllers, the unit 
number is distinct from the subunit numbers assigned to the individual 
drives connected to the controller. 

Figure F-1 illustrates a possible MASSBUS configuration. 

F-1 



MASSBUS ADAPTER 

MASS BUS --! -......-------.-----------------.----------, 

TAPE 
CONTROLLER 

(TM03} 

A 
(UNIT 0) 

SUB-UNIT 
0 

SUB-UNIT 
1 

SUB-UNIT 
2 

B 

UNIT 1 

SUB-UNIT 
3 

c 

UNIT 2 

Figure F~l: MASSBUS Configuration 

F.l MASSBUS ADAPTER REGISTERS 

The MASSBUS adapter has three sets of registers: 

DR 
device 

NON-DIGITAL 
DEVICE 

ZK-939-82 

• Internal registers for the MASSBUS adapter; 
registers 

that is, MBA 

• External 
MASSBUS; 

registers for each device 
that is, device registers 

• 256 map registers 

(controller) on the 

To allow competing devices to share these resources, access to and 
modification of all MASSBUS adapter registers (internal, external, and 
map registers) are governed by certain rules and conventions. In 
particular, access to registers may, at times, require ownership of 
either the device controller or the MASSBUS adapter itself, or both. 
Subsequent sections in this appendix discuss the methods of obtaining 
such ownership of these shared resources. 

MASSBUS adapter external registers are device-dependent and accessible 
whether or not the driver owns the MASSBUS adapter. However, in the 
case of multiunit MASSBUS adapter controllers, the driver may need to 
own the controller before it can gain access to a register. 

MASSBUS adapter external registers are each 16 bits wide, but they 
must be accessed as longwords. When a driver reads an external 
register, the MASSBUS adapter concatenates the high order 16 bits of 
the MBA status register (one of the MBA internal registers) to the 
contents of the specified external register. A diagram of the 
resulting longword is shown below. 

31 

MBA status register 
Bits 31-16 

16 15 

External register 
contents 

F-2 

0 



MASSBUS ADAPTER 

On a write to an external register, the MASSBUS adapter uses the low 
order 16 bits of the longword source operand to update the external 
register. 

MASSBUS adapter internal and map registers are 32 bits in length. 
They must be accessed as longwords or the processor will signal a 
machine check exception. The driver for a MASSBUS device must obtain 
exclusive ownership of the MASSBUS adapter before modifying any of the 
MBA internal or map registers. 

Bits 21 through 30 of each MBA map register are reserved; they cannot 
be written. Use of MBA map registers is analogous to use of UNIBUS 
adapter map registers with the following exceptions: 

• Since the MASSBUS can handle only one transfer at a time~ 
ownership of the MASSBUS adapter implies ownership of all its 
map registers. Thus, the driver need not independently 
request map registers. 

• MBA map registers do not contain a byte offset field. The 
driver loads the full MASSBUS adapter virtual address, 
including the byte alignment, into the MASSBUS adapter virtual 
address register (VAR; one of the MBA internal registers) at 
the start of a data transfer. Use of the VAR register is 
described below. 

• MBA map registers do not contain a data path field; the 
MASSBUS adapter has a single data path, and ownership of the 
adapter implies ownership of the path. Thus, the driver need 
not independently allocate the data path. 

F.1.1 Loading MASSBUS Adapter Registers 

To prepare for a data transfer over the MASSBUS, the driver that owns 
the MASSBUS adapter uses the LOADMBA macro to load the MBA map 
registers and associated MBA internal registers. The LOADMBA macro 
invokes the subroutine IOC$LOADMBAMAP, which performs the following 
steps: 

• Determines the number of map registers needed to map the data 
area by adding the contents of UCB$W BCNT to UCB$W BOFF, 
adjusting the sum to the next even multiple of 512~ and 
dividing the result by 512. 

• Loads the specified number of map registers, beg inning with 
MBA map register o, with the contents of the page table 
entries pointed to by UCB$L SVAPTE. This step maps the data 
area for the transfer into the low portion of MBA virtual 
address space. The routine also loads the next map register 
beyond the number used to map the data area with zeros (an 
invalid map entry) • This procedure stops the transfer should 
a hardware failure occur. 

• Loads the VAR register with the zero extended contents of 
UCB$W BOFF. Since the first byte of the data area is located 
at offset UCB$W BOFF within the page of memory mapped by MBA 
map register rr, then UCB$W BOFF contains the virtual address 
of the start of the data area in MASSBUS adapter virtual 
address space. 

• Loads the complement (negative) of UCB$W BCNT into the MBA 
byte count register (BCR). 

F-3 



MASSBUS ADAPTER 

Note that if a driver wishes to perform a data transfer in the reverse 
direction (for example, read reverse on a tape) it must modify the 
contents of the VAR, as established by IOC$LOADMBAMAP, so that it 
points to the last byte of the data area. This is done by adding one 
less than the contents of UCB$W BCNT to the contents of the VAR 
register. -

During the progress of a data transfer over the MASSBUS, the VAR 
register is continuously updated so that it points to the current 
position in the data area. The VAX Hardware Handbook illustrates the 
mapping of the contents of the VAR register into physical memory. 

F.1.2 MASSBUS Adapter Registers and Offsets 

During system initialization, VAX/VMS builds an adapter control block 
(ADP) a channel request block (CRB), and an interrupt dispatch block 
(IDB) for each MASSBUS adapter. The system also allocates 4K bytes of 
system virtual address space for the adapter's regis~er I/O spac~. 
The base of this I/O register virtual address space is placed in 
IDB$L CSR. Thus, you can access MASSBUS adapter registers using the 
base register virtual address plus some offset. The $MBADEF macro 
defines the offsets for MASSBUS adapter registers. The major symbols 
defined by this macro are shown in Table F-1. 

Table F-1: Major Offsets Defined by $MBADEF 

Symbol 

MBA$L CSR 
MBA$L-CR 
MBA$L-SR 
MBA$L-VAR 
MBA$L-BCR 
MBA$L-DR 
MBA$L-SMR 
MBA$L-CAR 

MBA$L ERB 
MBA$L-AS 
MBA$L-MAP 

MBA Register Name 

Configuration Reg. 
Control Reg. 
Status Reg. 
Virtual Address Reg. 
Byte Count Reg. 
Diagnostic Reg. 
Selected Map Reg. 
Command Address Reg. 

External Register Base 
Attention Summary Reg. 
Base of MAP Registers 

Hex Offset 

0 
4 
8 
c 

10 
14 
18 
lC 

400 
414 
800 

The MASSBUS adapter internal registers occupy the low order 1024 bytes 
of addressable space even though there are only eight MBA internal 
registers. Beyond the internal registers, there are eight blocks of 
32 longwords (128 bytes), one block for each of the eight device 
controllers that can be connected to a single MASSBUS adapter. Each 
of these blocks provides space for the device registers of each device 
controller. Beyond the device register space is tthe area reserved 
for the 256 MASSBUS adapter map registers. 

Figure F-2 illustrates the relative positions of MASSBUS adapter 
registers and the values device drivers use to gain access to them. 
The base address of MASSBUS adapter address space, stored in 
IDB$L_CSR, is the address of the first MASSBUS adapter internal 
register. IDB$L CSR represents the internal register's virtual 
location, while -the MBA$L symbols represent register values as 
defined by $MBADEF. Note that the MASSBUS adapter register space 
occupies only the first 3K bytes out of the 8K bytes allotted to I/O 
physical addresses but that by convention, VAX/VMS allocates 4K bytes 
of virtual addresses to each MASSBUS adapter. 

F-4 



IDB$L_CSR 

IDB$L_CSR 
+MBA$L_ERB 
+(X'80*Q) 

IDB$L_CSR 
+MBA$L_ERB 
+(X'80*1) 

IDB$L_CSR 
+MBA$L_ERB 
+(X'80-*2) 

IDB$L_CSR 
+MBA$L_ERB 
+(X' 80*7) 

IDB$L_CSR 
+MBA$L_MAP 

' ...,.. 

MASSBUS ADAPTER 

MASS BUS 

INTERNAL REGISTERS 

UNIT 0 
DEVICE REGISTERS 

UNIT 1 
DEVICE REGISTERS 

UNIT 2 
DEVICE REGISTERS 

4K BYTES • 
• ...v 

/ • 
UNIT 7 

DEVICE REGISTERS 

MAP REGISTERS 

1024 UNUSED BYTES 

ZK-940-82 

Figure F-2: Location of MASSBUS Registers in Physical Address Space 

To address a map register in the MASSBUS adapter, the driver 
constructs the following address: 

IDB$L CSR + MAP$L_MAP + map register index 

To address a device register, the driver constructs the following 
address: 

IDB$L_CSR + MAP$L_ERB + (unit number * XA80) + register displacement 

An individual driver should define offsets for the registers of its 
device. During execution, the driver computes a register address by 
summing the MBA starting virtual address (the contents of IDB$L CSR), 
MBA$L ERB, the unit number of the device controller multiplied-by 80 
(hex)~ and the offset of the specified register. 

The Attention Summary register, as shown in Table F-1, appears to 
reside within the external register space reserved for MASSBUS adapter 
controller O. Actually, the Attention Summary register is a composite 
register. Each MASSBUS adapter controller connected to the MASSBUS 
adapter contributes one bit of information to the register. This 
composite register appears in each of the eight device register spaces 
at offset 10 (hex) from the base of the device registers for that 
device. Thus, MBA$L AS can be defined as either 410, 490, 510, 590 
and so on. For convience, it has been defined as 410 (hex). 

F.1.3 Modification of MASSBUS Adapter Registers 

The driver for a MASSBUS device must obtain ownership of the MBA 
before modifying any of the MBA internal registers or the MBA map 
registers. A driver obtains ownership of the MBA by invoking either 
the REQPCHAN macro or the REQSCHAN macro, depending on whether the 
device is connected to a single unit MASSBUS controller or a multiunit 

F-5 



MASSBUS ADAPTER 

MASSBUS controller. For single unit controllers, invoke the REQPCHAN 
macro. Since the controller is dedicated to its single device, there 
is never any contention for the controller. 

For multiunit devices, however, invoke the REQSCHAN macro to obtain 
MBA ownership because several devices may share the controller, and so 
must contend for its use. The multiunit controller relegates the 
MASSBUS adapter to a secondary position. Thus, for multiunit 
controllers, invoke REQPCHAN to gain ownership of the controller, and 
invoke REQSCHAN to obtain the MASSBUS adapter. 

F.2 I/O DATA BASE FOR MASSBUS DEVICES 

During initialization, the system creates an adapter control block, a 
channel request block, and an interrupt data block for each MASSBUS 
adapter included in the configuration. The driver loading procedure 
subsequently builds additional data structures for each device 
controller connected to a MASSBUS adapter. The type of structure 
created depends upon whether the device controller is a single or 
multiunit controller. 

The system builds a unit control block for each single unit 
controller. Figure F-3 illustrates the I/O data base for a MASSBUS 
adapter with one single unit controller attached to it. Note that the 
ADP, CRB, and IDB all correspond to the MASSBUS adapter and can 
logically be considered a single extended data block. The UCB 
corresponds to the device/controller pair. Because of the one-to-one 
correspondence between a single unit controller and its device, the 
system does not need to distinguish between the two and thus does not 
maintain separate data blocks for each piece of hardware. 

HARDWARE 
CONFIGURATION 

MBA ~ 

RP06 I-

I 
I 

-1-
1 

I 
I 
I 

......... 
......... 

~ 

.......... 

ASSOCIATED 
DATA BASE 

.......... 
......... 

' UCB 
_., 

ADP 

' 
CRB 

' 
IDB 

ZK-941-82 

Figure F-3: I/O Data Base for MASSBUS Disk Unit 

F-6 



MASSBUS ADAPTER 

Multiunit controllers, however, require separate data structures for 
the controller and each of its subunits (devices). The driver loading 
procedure builds a CRB/IDB pair for the controller, as well as a UCB 
for each subunit. Figure F-4 shows the I/O data base created for a 
MASSBUS adapter with one disk unit and two tape units. 

MBA 

HARDWARE 
CONFIGURATION 

UNIT 
0 

UNIT 
1 

UCB 

UCB 

UCB 

ASSOCIATED 
DATA BASE 

ADP 

CRB 

CRB 

Figure F-4: I/O Data Base for MASSBUS Disk and Tape Units 

IDB 

IDB 

ZK-942-82 

Figure F-4 does not include several pointers used in interrupt 
dispatching. In particular, the IDB associated with the MASSBUS 
adapter maintains an array of up to eight longwords that point to the 
data structures associated with the eight possible MASSBUS controllers 
attached to the MASSBUS. 

For single unit controllers, the IDB longword points to the device's 
UCB, whereas for multiunit controllers, the longword (or longwords) 
points to a field within the CRB associated with the multiunit 
controller. The low bit of this longword, when set, indicates a 
multiunit vector. The software checks this bit to determine whether 
the longword points to a single UCB or a multiunit CRB. 

Also not pictured in Figure F-4 is the fact that multiunit interrupt 
data blocks also maintain an array of longwords. Each longword points 
to the individual unit control blocks of the subunits attached to the 
controller. Figure F-5 illustrates in more detail the set of I/O data 
structures for the MASSBUS adapter and its devices. 

F-7 



MASSBUS ADAPTER 

ADP 

r-1 L DISK 
CRB FOR MBA IDB FOR MBA UCB 0 

MBA CONFIG. REG ,..- ~ 

MBA UNIT 0 (DISK) CRB .......... 
CRB I---' IDB t---' .--- MBA UNIT 1 (TAPE) 

• • • 

TAPE 
CRB FOR TM03 IDB FOR TM03 UCB 0 

ADP CSR r--1 
.____ 

LINK 
......_ ADP 

INTD+1 ~ CRB ........... 
-. ADP 

IDB UCB 0 ~ 

t----, UCB 1 t--

TAPE 
UCB 1 

~ 

CRB t-1 

ZK-943-82 

Figure F-5: I/O Data Structures Used in Dispatching an Interrupt 

F.3 MASSBUS ADAPTER OPERATIONS 

The MASSBUS accepts two kinds of operations: data transfer operations 
and nondata transfer operations. Data transfer operations require the 
use of MASSBUS adapter shared resources, while nondata transfers do 
not. 

Before a driver can activate a data transfer operation on the MASSBUS, 
the driver must request and receive ownership of the MASSBUS adapter 
on behalf of the device unit. However, drivers must not initiate 
nondata transfer operations while they have control of the MASSBUS 
adapter. Section F.4.1 explains this statement further. 

The MASSBUS adapter generates interrupts when data transfers terminate 
and when attention conditions arise on devices. When an interrupt 
occurs on the MASSBUS adapter, the MASSBUS adapter interrupt 
dispatcher determines whether the interrupt is a data transfer or an 
attention interrupt. 

Data transfer interrupts occur when a data transfer either completes 
or aborts. When the interrupt occurs, the MBA Status Register (SR) 
contains information about the condition that caused the interrupt. 

Attention interrupts occur when nondata transfers on MASSBUS devices 
terminate, or when the device undergoes an exceptional condition, such 
as becoming on-line. 

F-8 



MASSBUS ADAPTER 

The MASSBUS adapter's Attention Summary register controls attention 
interrupt handling. This register contains eight bits of data, one 
for each of the eight possible controllers that may be connected to 
the MASSBUS adapter. When a device incurs an attention condition, the 
hardware sets the corresponding bit in the Attention Summary register 
and generates a MASSBUS adapter interrupt. 

If the attention condition occurs while a data transfer operation for 
another device is in progress, the hardware sets the bit in the 
summary register but suppresses the attention interrupt. The 
interrupt generated when the data transfer completes allows the 
MASSBUS adapter interrupt dispatcher to gain control, handle the data 
transfer interrupt, check the attention summary bit and then invoke 
the proper driver to handle the interrupt. 

F.4 MASSBUS ADAPTER INTERRUPT DISPATCHING 

When interrupts occur on the MASSBUS adapter, the MASSBUS adapter 
interrupt dispatcher gains control. This routine first determines 
whether the interrupt is the result of a data transfer or an attention 
condition. The routine checks to see if the MASSBUS adapter is owned, 
and if so, by whom. 

F.4.1 Checking for MASSBUS Adapter Ownership 

There are two conditions by which the interrupt dispatcher can 
determine that the interrupt is an attention interrupt: 

• If the MASSBUS adapter is not owned 

• If the MASSBUS adapter is owned, but the owner is not 
expecting an interrupt (UCB$M_INT in UCB$W STS is clear) 

When the MASSBUS adapter is owned and the owner expects an interrupt, 
the interrupt is assumed to be the result of a data transfer 
operation. 

As mentioned earlier, a driver must not initiate nondata transfers on 
the MASSBUS adapter while it owns the adapter. For example, consider 
a MASSBUS adapter attached to two disk units, A and B. Disk A is 
performing an IO$ SEEK (a nondata transfer operation that completes 
fairly quickly), wh1le at the same time, disk B is performing an 
IO$ RECAL operation (a nondata transfer operation that takes about .5 
seconds to complete). 

The driver for disk A correctly initiates its operation without 
obtaining possession of the MASSBUS adapter channel, but the disk B 
driver initiates its operation while it owns the MASSBUS adapter. 
Both of these operations, upon completion, set the bit in the 
Attention Summary register that corresponds to their respective drive 
units and interrupt. We will assume that disk A's IO$ SEEK completes 
first. The operation sets disk A's bit in the Attention Summary 
register and generates the MASSBUS adapter interrupt. 

The MASSBUS adapter interrupt dispatcher finds that the adapter is 
owned, and that the owner is expecting an interrupt. Therefore, the 
interrupt dispatcher incorrectly assumes that it is handling a data 
transfer interrupt, and, moreover, that this interrupt is the one for 
which the owner of the MBA is waiting. 

So, the MASSBUS adapter interrupt dispatcher returns control, through 
the fork block in the MASSBUS adapter owner's UCB, to the driver for 

F-9 



MASSBUS ADAPTER 

disk B, even though disk B's operation has not completed. The disk B 
driver will now incorrectly assume that the device has completed its 
operation, which can cause serious problems. 

F.4.2 Dispatching the Interrupt 

Once the MASSBUS adapter interrupt dispatcher determines the type of 
interrupt, it dispatches the interrupt to the driver. The interrupt 
dispatcher handles attention interrupts and data transfer interrupts 
in the same way, with one exception: on an attention interrupt, the 
interrupt dispatcher clears the MASSBUS adapter Status Register before 
dispatching the interrupt to the driver. The status register contains 
information used only in data transfer interrupt dispatching. 

Interrupt dispatching to the driver differs depending on the type of 
controller. 

The MASSBUS adapter interrupt dispatcher handles a solicited interrupt 
on a single unit controller by transferring control to the driver 
through the fork block in the UCB. On unsolicited interrupts on 
single-unit controllers, the interrupt dispatcher calls the driver 
unsolicited interrupt service routine. 

On single unit controllers, the MASSBUS adapter interrupt dispatcher 
always clears the attention bit in the Attention Summary register 
before it calls back the driver after an interrupt. 

Interrupt dispatching to the driver on multiunit controllers differs 
from single unit dispatching in two ways. 

First, the interrupt dispatcher never clears the attention 
task is left to the driver because some multiunit 
synchronize on this bit and guarantee the integrity 
registers only while the bit is set. If the interrupt 
clears the bit before return to the driver, the driver can 
rely on the contents of the device registers. 

bit. This 
controllers 
of device 
dispatcher 
no longer 

Second, a multiunit controller needs another interrupt dispatcher to 
handle simultaneous requests from its several subunits. This second 
level interrupt dispatcher resides in the driver for a multiunit 
controller. After an interrupt on a multiunit controller, the MASSBUS 
adapter interrupt dispatcher indirectly calls this driver interrupt 
dispatcher using code in the multiunit controller's channel request 
block. The driver loading procedure installs this code when it 
establishes the I/O data base. 

F.5 SPECIAL MBA CONSIDERATIONS FOR DRIVERS 

MASSBUS adapter considerations affect a driver's device unit 
initialization routine, start I/O routines and, for multiunit 
controllers only, the driver's DPTAB macro. MBA considerations also 
affect interrupt handling, as described in Section F.4.2. The next 
sections in this appendix discuss programming details for writing a 
MASSBUS device driver. 

F.5.1 Considerations for Unit Initialization Routines 

All drivers for MASSBUS adapter devices initialize two fields in the 
UCB (as well as initializing device-specific fields): UCB$B SLAVE and 
UCB$B SLAVE+l. The first of these fields should contain the 

F-10 



MASSBUS ADAPTER 

controller's MASSBUS adapter unit number. This unit number marks the 
controller's position on the MASSBUS adapter. The second of these 
contains the offset, in longwords, from the start of the MASSBUS 
adapter external registers of this controller's device registers. The 
value of this longword offset is always 32 times the MASSBUS adapter 
unit number of the controller. 

Initialization of a device attached to a single unit controller is 
simple because the device unit number and the controller position 
number on the MASSBUS adapter are always equal. To initialize the 
field UCB$B SLAVE, copy to it the contents of UCB$W UNIT. To 
initialize UCB$B SLAVE+l, multiply its contents by 32. The driver 
later uses this information to compute a pointer to this device's 
registers. By convention, R4 points to the MASSBUS adapter 
configuration register, and RS points to the UCB of this device. 

Thus, the following two instructions cause R3 to point to the device 
registers during normal system operation: 

MOVZBL 
MOVAL 

UCB$B SLAVE+l(RS) ,R3 
MBA$L =ERB ( R4) [R3] , R3 

For devices connected to a multiunit controller, determination of 
controller's MBA position is more complex. When the 
initialization routine is invoked, the following values are in 
following registers: 

R3 Address of multiunit controller device registers 
R4 Address of the MBA configuration register 
RS Address of device UCB 

the 
unit 
the 

The driver computes the MBA position of the controller by using R3 and 
R4 to determine the number of bytes from the start of the MBA external 
registers to the start of the device's device registers. The 
difference, when divided by 128, is the controller's MBA position 
number. 

F.5.2 The MASSBUS Adapter and the I/O Data Base 

The unit control block of a device connected to a single unit 
controller, at offset UCB$L CRB, contains the address of the MASSBUS 
adapter's channel request block. This CRB in turn contains, at offset 
CRB$L INTD+VEC$L IDB, the address of the MASSBUS interrupt dispatch 
block~ This IDB-points to the base address of the MASSBUS adapter 
registers at offset IDB$L_CSR. 

Multiunit controllers maintain a more complicated I/O data base. The 
device UCB, at offset UCB$L CRB, points to the multiunit controller's 
channel request block, and tnis structure points to the CRB for the 
MASSBUS adapter at offset CRB$L LINK. Also, the multiunit 
controller's CRB points to its own IDB at offset CRB$L INTD+VEC$L IDB. 
This IDB points to the multiunit controller's devTce registeFs at 
offset IDB$L CSR. 

Thus, the unit control block for a device always points to that 
device's primary channel request block, whether it is the MAS SB US 
adapter's CRB or the multiunit controller's CRB. The primary channel 
request block points to the secondary CRB, if one exists for the 
device. 

Figure F-S shows these relationships among I/O data structures. 

F-11 



MASSBUS ADAPTER 

F.5.3 Considerations for the Start I/O Routine 

Depending on the function being executed, the start I/O routine for a 
MASSBUS device performs all or some of the following tasks: 

• Requests controller data channel(s) as described in Section 
F.5.3.1 

• Clears errors on the MASSBUS adapter by setting the value -1 
into the MBA Status Register; this is a write-ones-to-clear 
register (MASSBUS device registers and MBA registers are all 
longwords) 

• Invokes the LOADMBA macro to load MBA map registers as 
described in Section F.5.3.2 

• Loads device registers to start the function 

• Waits for a device interrupt or timeout 

• Releases controller data channel(s) as described in Section 
F.5.3.3 

• Finishes the request like other drivers 

F.S.3.1 Requesting Controller Data Channels - Device drivers for 
MASSBUS devices must request and receive ownership of the MASSBUS 
adapter channel before loading MBA internal registers or MBA map 
registers. In addition, drivers for devices connected to multiunit 
controllers must obtain ownership of the controller channel before 
modifying the contents of controller registers that may be shared 
among the units connected to the controller. 

Drivers for single unit controllers must request ownership of the 
MASSBUS adapter channel by invoking the macro REQPCHAN. 

Device drivers for multiunit controllers invoke the REQPCHAN macro 
when the operation requires ownership of only the primary channel (the 
multiunit controller channel). However, if the operation requires 
ownership of both primary and secondary channels (a data transfer 
operation), the driver must first obtain the controller channel and 
then request the MASSBUS adapter channel by invoking the REQSCHAN 
macro. 

Again, the driver needs ownership of both channels only when 
·performing a data transfer, and must release the channels before 
initiating a nondata transfer. Thus, a driver must obtain ownership 
of the MASSBUS adapter channel sometime before initiating a data 
transfer and must either not own the channel or release such ownership 
before it invokes the WFIKPCH macro following the start of a nondata 
transfer operation. 

F.5.3.2 Loading Map Registers - MASSBUS device drivers 
LOADMBA macro before they initiate a data transfer to load 
registers, the MBA Virtual Address Register, and the MBA 
Register. Drivers cannot modify these registers during 
The LOADMBA macro expects the following register contents: 

• The address of the MBA Configuration Register in R4 

• The address of the device UCB in RS 

F-12 

invoke the 
the MBA map 
Byte Count 
a transfer. 



MASSBUS ADAPTER 

LOADMBA preserves the contents of R3 but modifies RO through R2. The 
macro performs the following steps: 

• Uses the contents of UCB$W BCNT and UCB$W BOFF to determine 
the number of pages that contain pieces of-the I/O buffer 

• Beginning with the page table entry pointed to by UCB$L SVAPTE 
and continuing for the number of page table entries determined 
in the step above, copies the page frame numbers from the page 
table entries to the corresponding map registers, starting at 
Map Register 0 

• Deposits an invalid value into the map register that 
immediately follows the last map register loaded with a PFN so 
that a hardware fault does not modify memory 

• Moves the negative value of the transfer 
(UCB$W_BCNT) into the MBA Byte Count Register 

byte count 

• Moves the byte offset in the first page of the transfer 
(UCB$W_BOFF) into the MBA Virtual Address Register 

• Returns to the start I/O routine that invoked it 

If the I/O operation about to be initiated by the driver is a reverse 
(that is, a read reverse on tape) operation, the driver must modify 
the contents of the MBA Virtual Address Register set up by LOADMBA. 
Since reverse operations access the I/O buffer from its highest 
address through its lowest address, the value to be loaded into the 
MBA Virtual Address Register must be the virtual address, in MBA 
virtual memory, of the last byte of the buffer. This value is 
numerically equal to one less than the sum of the contents of 
UCB$W_BOFF and UCB$W_BCNT. 

F.5.3.3 Releasing Controller Data Channels - The driver releases the 
controller data channels by invoking the RELCHAN macro. RELCHAN 
releases all controller channels (both primary and secondary) 
currently owned by the device. To release only the secondary channel 
and retain ownership of the primary channel, a driver can invoke the 
RELSCHAN macro. 

F.5.4 Considerations for the DPTAB Macro 

The device driver for a MASSBUS device attached to a multiunit 
controller must set the DPT$M SUBCNTRL bit in the FLAGS argument of 
the DPTAB macro. Setting this bTt causes the driver loading procedure 
to create a second channel request block and an interrupt data block 
for the multiunit controller. 

F.6 INTERRUPT SERVICE ROUTINES FOR MASSBUS DEVICES 

The VAX/VMS MASSBUS interrupt dispatcher (MBA$INT) gains control when 
it receives an interrupt from the MASSBUS adapter. Because data 
transfers in progress suppress attention interrupts on the MASSBUS 
adapter, and because several devices may request attention 
simultaneously, certain device drivers may need to be informed of the 
interrupt. MBA$INT determines which drivers should be invoked as a 
result of the interrupt and then passes control to these drivers. For 
data transfer interrupts, MBA$INT preserves the value contained in the 

F-13 



MASSBUS ADAPTER 

MBA Status Register at the time of the interrupt so that the driver 
can have access to this value. For nondata transfers, MBA$INT clears 
this register befo~e invoking the driver following receipt of an 
interrupt~ MBA$INT only preserves the contents of registers R2 
through RS. Drivers wishing to use other registers must save and 
restore them themselves. 

F.6.1 Transferring Control to the Interrupt Service Routine 

The method by which MBA$INT invokes a driver depends upon whether the 
driver services a device connected to a single unit controller or a 
device connected to a multiunit controller. Furthermore, if the 
device is connected to a single unit controller, the method of 
transfer from MBA$INT to the driver depends upon whether or not the 
interrupt is expected. 

For single unit controller devices expecting interrupts, MBA$INT 
restores the driver context saved in the UCB fork block and transfers 
control (using a JSB instruction) to the instruction that follows the 
wait for interrupt. 

For single unit controller devices not expecting interrupts, MBA$INT 
obtains the address of the driver's unsolicited interrupt routine from 
the driver dispatch table and calls the routine at the specified 
address. 

For multiunit controller devices, MBA$INT transfers control to the 
driver's interrupt service routine by simulating a direct transfer, 
through an interrupt vector, to the multiunit controller's CRB. The 
CRB contains code that transfers control to the interrupt service 
routine. MBA$INT first pushes the processor status longword (PSL} 
onto the stack. The routine then calls (with a JSB instruction that 
leaves a PC within MBA$INT on the stack) the code within the CRB. 
This code contains the following sequence of instructions: 

PUS HR 
JSB 
.LONG 

#M<R2,R3,R4,RS> 
XX$INT 
XX$IDB 

where XX$INT is the address of the interrupt service routine and 
XX$IDB is the address of the multiunit controller's IDB. 

The execution of the above sequence of instructions, plus the 
instructions executed by MBA$INT (the pushing of the PSL onto the 
stack and the JSB) places a simulated interrupt frame onto the stack, 
including a saved PSL, a saved PC, saved registers and pointer to a 
pointer to the IDB. 

F.6.2 Returning Control to MBA$INT 

The way in which a driver returns control to MBA$INT depends ·on the 
way in which MBA$INT invoked it. Drivers for single unit controller 
devices return to MBA$INT through an RSB instruction, although the RSB 
may execute as a result of the driver's invoking the IOFORK macro. 

Drivers for multiunit controller devices return control to MBA$INT by 
removing the indirect pointer to the IDB from the top of the stack, 
restoring registers R2 through RS, and executing an REI instruction. 
This sequence, executed within the driver's interrupt service routine, 
eliminates the simulated interrupt frame from the stack before 
returning to MBA$INT. 

F-14 



MASSBUS ADAPTER 

F.6.3 Considerations for Interrupt Service Routines 

Drivers for single unit controller devices attached to the MASSBUS do 
not have interrupt services routines. Instead, MBA$INT handles all 
the functions that a driver interrupt service routine normally 
provides. 

Drivers for multiunit controller devices on the MASSBUS must have 
their own interrupt services routines. In general, these routines 
perform the same functions as the interrupt service routines for 
UNIBUS devices (discussed in Chapter 11). However, UNIBUS and MASSBUS 
drivers diverge in two areas. 

One difference between UNIBUS and MASSBUS drivers concerns the number 
of registers saved by the interrupt service routine. When the 
interrupt dispatcher transfers control to a MASSBUS driver interrupt 
service routine, registers R2 through RS are pushed onto the stack. 
UNIBUS drivers save RO through RS. 

After handling an interrupt, both MASSBUS and UNIBUS driver interrupt 
service routines execute an REI instruction. For UNIBUS devices, the 
REI dismisses a real interrupt, whereas the MASSBUS driver's REI 
returns control to MBA$INT. 

F-lS 





APPENDIX G 

UNIBUS ADDRESSES FOR VAX-11 PROCESSORS 

This appendix lists the starting physical addresses for VAX-11/780, 
VAX-11/750, and VAX-11/730 UNIBUS memory address space. The values in 
the table below are given in hexadecimal format. 

UNIBUS 
adapter 
number 

VAX-11/730 VAX-11/750 VAX-11/780 

0 OOFCOOOO OOFCOOOO 20100000 
1 -- OOF80000 20140000 
2 -- -- 20180000 
3 -- -- 201COOOO 

NOTE 

The macros $I0730DEF, $I0750DEF and 
$I0780DEF define symbolic constants for 
the base address of UNIBUS space O. 

G-1 





GLOSSARY 





GLOSSARY 

ACP 

See Ancillary Control Process. 

adapter control block (ADP) 

ADP 

A structure in the I/O data base that describes either a UNIBUS 
or MASSBUS adapter. 

See adapter control block. 

allocate a device 

To reserve a particular device unit for exclusive use. A user 
process can allocate a device only when that device is not 
allocated by any other process. 

Ancillary Control Process (ACP) 

A process that acts as an interface between user software and an 
I/O driver. An ACP provides functions supplemental to those 
performed in the driver, such as file and directory management. 
Three examples of ACPs are: the Files-11 ACP (FllACP), the 
magnetic tape ACP (MTAACP) , and the networks ACP (NETACP) • 

assign a channel 

AST 

To establish the necessary software linkage between a user 
process and a device unit before a user process can communicate 
with that device. A user process requests the system to assign a 
channel and the system returns a channel number. 

See Asynchronous System Trap. 

ASTLVL 

See Asynchronous System Trap Level. 

Gloss-1 



GLOSSARY 

Asynchronous System Trap (AST) 

A software-simulated interrupt to a user-defined service routine. 
ASTs enable a user process to be notified asynchronously with 
respect to its execution of the occurrence of a specific event. 
If a user process has defined an AST routine for an event, the 
system interrupts the process and executes the AST routine when 
that event occurs. When the AST routine exits, the system 
resumes the process at the point where it was interrupted. 

Asynchronous System Trap Level (ASTLVL) 

A value kept in an internal processor register that is the 
highest access mode for which an AST is pending. The AST does 
not occur until the current access mode drops in privilege (rises 
in numeric value) to a value greater than or equal to ASTLVL. 
Thus, an AST for an access mode will not be serviced while the 
processor is executing in a more privileged access mode. 

backplane interconnect 

An internal processor bus that UNIBUS and MASSBUS adapters use to 
communicate with main memory and the central processor. The 
backplane interconnect is called the synchronous backplane 
interconnect (SBI) on the VAX-11/780 processor, and is called the 
memory interconnect on the VAX-11/750 processor. 

base register 

A general register used to contain the address of the first entry 
in a list, table, array, or other data structure. 

buffered data path 

A UNIBUS adapter data path that transfers multiple bytes of data 
in a single backplane interconnect transfer. 

buffered I/O 

See system buffered I/O. 

bug check 

The operating system's internal diagnostic check. 
logs the failure and crashes the system. 

The system 

call instructions 

CCB 

The processor instructions CALLG (Call Procedure with General 
Argument List) and CALLS (Call Procedure with Stack Argument 
Li st) • 

See channel control block. 

Gloss-2 



GLOSSARY 

channel 

A logical path connecting a user process to a physical device 
unit. A user process requests the operating system to assign a 
channel to a device so the process can communicate with that 
device. See also controller data channel. 

channel control block (CCB) 

A structure in the I/O data base maintained by the Assign I/O 
channel system service to describe the device unit to which a 
channel is assigned. 

channel request block (CRB) 

A structure in the I/O data base that describes the activity on a 
particular controller. The channel request block for a 
controller contains pointers to the wait queue of drivers ready 
to access a device through the controller. 

configuration register 

A control/status register for an adapter, for example a UNIBUS 
adapter. It resides in the adapter's I/O space. 

connect-to-interrupt 

A function by which a process connects to a device interrupt 
vector. To perform a connect-to-interrupt, the process must map 
to the program I/O space containing the vector. 

console 

The manual control unit integrated into the central processor. 
The console includes a serial line interface connected to a 
hard-copy terminal. This enables the operator to start and stop 
the system, monitor system operation, and run diagnostics. 

console terminal 

The hard-copy terminal connected to the central 
console. 

processor 

context 

The environment of an activity. See also process context, 
hardware context, and software context. 

controller data channel 

A logical path to which a driver for 
controller must be granted access 
device. 

Gloss-3 

a device on a multiunit 
before it can activate a 



GLOSSARY 

control/status register (CSR) 

CRB 

CSR 

A control/status register for a device or controller. It resides 
in the processor's I/O space. 

See channel request block. 

See control/status register. 

data base 

(1) All the occurrences of data described by a data base management 
system. 

(2) A collection of related data structures. 

DDB 

DDT 

data structure 

Any table, list, array, queue, or tree whose format and access 
conventions are well-defined for reference by one or more images. 

See device data block. 

See driver dispatch table. 

device data block {DDB) 

A structure in the I/O data base that identifies the generic 
device/controller name and driver name for a set of devices 
attached to the same controller. 

device interrupt 

An interrupt received on interrupt priority levels 20 through 23. 
Device interrupts can be requested only by devices, controllers, 
and memories. 

device register 

A location in device controller logic used to request device 
functions (such as I/O transfers) and/or report status. 

device unit 

One drive and its controlling logic, for example, a disk drive or 
terminal. Some controllers can have several device units 
connected to a single controller; for example, mass storage 
controllers. 

Gloss-4 



GLOSSARY 

diagnostic 

A program that tests hardware, firmware, peripheral operation, 
logic, or memory and reports any faults it detects. 

direct data path 

A UNIBUS adapter data path that transfers multiple bytes of data 
in a single backplane interconnect transfer. 

direct I/O 

DPT 

drive 

An I/O operation in which VAX/VMS locks the pages containing the 
associated buffer in physical memory for the duration of the I/O 
operation. The I/O transfer takes place directly from the 
process buffer. Contrast with system buffered I/O. 

See driver prologue table. 

The electromechanical unit of a mass storage device system on 
which a recording medium (disk cartridge, disk pack, or magnetic 
tape reel) is mounted. 

driver 

The set of code and tables that handles physical I/O operations 
to a device. 

driver dispatch table {DDT) 

A table in the I/O driver that lists the entry point addresses of 
standard driver routines and the sizes of diagnostic and error 
logging buffers for the device type. 

driver fork level 

The interrupt priority levels at which a driver fork process 
executes, that is, IPLs 8 through 11. Every unit control block 
indicates the driver fork level for its unit. 

driver prologue table {DPT) 

A table in the driver that describes the driver and the device 
type to the VAX/VMS procedure that loads drivers into the system. 

driver start I/O routine 

See start I/O routine. 

ECC 

Error Correction Code. 

Gloss-5 



GLOSSARY 

error logger 

A system process that empties the error log buffers and writes 
the error messages into the error file. Errors logged by the 
system include memory system errors, device errors and timeouts, 
and interrupts with invalid vector addresses. 

exception 

An event detected by the hardware or software (other than an 
interrupt or jump, branch, case, or call instruction) that 
changes the normal flow of instruction execution. An exception 
is always caused by the execution of an instruction or set of 
instructions (whereas an interrupt is caused by an activity in 
the system independent of the current instruction). There are 
three types of hardware exceptions: traps, faults, and aborts. 
Examples are: attempts to execute a privileged or reserved 
instruction, trace traps, compatibility mode faults, breakpoint 
instruction execution, and arithmetic traps. 

executive 

FDT 

The generic name for the collection of procedures included in the 
operating system software that provide the basic control and 
monitoring functions of the operating system. 

See function decision table. 

FDT routines 

Driver routines called by the Queue I/O Request system service to 
perform device-dependent preprocessing of an I/O request. 

fork block 

That portion of a unit control block that contains a driver's 
context while the driver is waiting for a resource. A driver 
awaiting the processor resource has its fork block linked into 
the fork queue. 

fork dispatcher 

A VAX/VMS interrupt service routine that is activated by a 
software interrupt at a fork interrupt priority level. Once 
activated, it dispatches driver fork processes from a driver fork 
queue until no processes remain in the queue for that IPL. 

fork process 

A fork process is a minimal context process that executes code 
under a series of constraints: it executes at raised interrupt 
priority levels; it uses RO through R5 only (other registers 
must be saved and restored); it executes in system virtual 
address space; it is only allowed to refer to and modify static 
storage that is never modified by higher interrupt priority level 
code. VAX/VMS uses software interrupts and fork processes to 
synchronize executive operations. 

Gloss-6 



GLOSSARY 

fork queue 

A queue of driver fork blocks that are awaiting activation at a 
particular IPL by the VAX/VMS fork dispatcher. 

function code 

See I/O function code. 

function decision table {FDT) 

A table in the driver that lists all valid function codes for the 
device and lists the addresses of I/O preprocessing routines 
associated with each valid function. 

function modifier 

See I/O function modifier. 

generic device name 

A device name that identifies the type of device but not a 
particular unit; a device name in which the specific controller 
and/or unit number is omitted. When discussing device drivers, 
the generic device name contains neither the controller 
designation nor the unit number, for example, DB. 

hardware context 

The values contained in the following registers while a process 
is executing: the PC; the PSL; the 14 general registers (RO 
through Rl3); the four processor registers (POBR, POLR, PlBR and 
PlLR) that describe the process virtual address space; the SP 
for the current access mode in which the processor is executing; 
plus the contents to be loaded in the SP for every access mode 
other than the current access mode. While a process is 
executing, its hardware context is continually being updated by 
the processor. While a process is not executing, its hardware 
context is stored in its hardware PCB. 

hardware process control block {hardware PCB) 

IDB 

A data structure known to the processor that contains the 
hardware context when a process is not executing. A process's 
hardware PCB resides in its process header (PHD). 

See interrupt dispatch block. 

interrupt 

An event other than an exception or branch, jump, case, or call 
instruction that changes the normal flow of instruction 
execution. Interrupts are generally external to the process 
executing when the interrupt occurs. See also device interrupt, 
software interrupt, and urgent interrupt. 

Gloss-7 



GLOSSARY 

interrupt dispatch block (IDB) 

A structure in the I/O data base that describes the 
characteristics of a particular controller and points to devices 
attached to that controller. 

interrupt priority level (IPL) 

The interrupt level at which a software or hardware interrupt is 
generated. There are 32 possible interrupt priority levels: IPL 
0 is lowest, 31 is highest. The levels arbitrate contention for 
processor service. For example, a device cannot interrupt the 
processor if the processor is currently executing at an interrupt 
priority level greater than the interrupt priority level of the 
device's interrupt service routine. 

interrupt service routine (ISR) 

A routine executed when a device interrupt occurs. 

interrupt stack (IS) 

The system-wide stack used when executing in interrupt service 
context. At any time, the processor is either in a process 
context executing in user, supervisor, executive, or kernel mode, 
or in system-wide interrupt service context operating in kernel 
mode, as indicated by the interrupt stack and current mode bits 
in the PSL. The interrupt stack is not context switched. 

interrupt stack pointer (ISP) 

The stack pointer for the interrupt stack. Unlike the stack 
pointers for process context stacks, which are stored in the 
hardware PCB, the interrupt stack pointer is stored in an 
internal processor register. 

interrupt vector 

See vector. 

I/O data base 

A collection of data structures that describes I/O requests, 
controllers, device units, volumes, and device drivers in a 
VAX/VMS system. Examples are the driver dispatch table, driver 
prologue table, device data table, unit control block, channel 
request block, I/O request packet, and interrupt data block. 

I/O driver 

See driver. 

I/O function 

An I/O operation interpreted by the operating system and 
typically resulting in one or more physical I/O operations. 

Gloss-8 



GLOSSARY 

I/O function code 

A 6-bit value specified in a Queue I/O Request system service 
that describes the particular I/O operation to be performed (such 
as, read, write, rewind). 

I/O function modifier 

A 10-bit value specified in a Queue I/O Request system service 
that modifies an I/O function code (for example, read terminal 
input no echo) • 

I/O lockdown 

The state of a page such that it cannot be paged or swapped out 
of memory. 

I/O request packet (!RP) 

A structure in the I/O data base that describes an individual I/O 
request. The Queue I/O Request system service creates an I/O 
request packet for each I/O request. VAX/VMS and the driver of 
the target device use information in the I/O request packet to 
process the request. 

I/O rundown 

An operating system function in which the system cleans up any 
I/O in progress when an image exits. 

I/O space 

The regions of physical address space that contain the 
configuration registers, and device control/status and data 
registers. These regions are physically discontiguous. 

I/O status block (IOSB) 

IPL 

!RP 

ISP 

A data structure associated with the Queue I/O Request system 
service. This service optionally returns a status code, number 
of bytes transferred, and device/function-dependent information 
in an I/O status block. The information returned is not returned 
from the service call, but filled in by VAX/VMS when the I/O 
request completes. 

See interrupt priority level. 

See I/O request packet. 

See interrupt stack pointer. 

Gloss-9 



GLOSSARY 

!SR 

See interrupt service routine. 

limit 

The size or number of given items requiring system resources 
(such as mailboxes, locked pages, I/O requests, or open files} 
that a job is allowed to have at any one time during execution, 
as specified by the system manager in the user authorization 
file. See also quota. 

locking a page in memory 

-Making a page in an image ineligible for either paging or 
swapping. A page stays locked in physical memory until VAX/VMS 
specifically unlocks it. 

logical I/O function 

A set of I/O operations (for example, read and write logical 
block} that allow restricted direct access to device level I/O 
operations using logical block numbers. 

mailbox 

A software data structure that is treated as a record-oriented 
device for general interprocess communication. Communication 
using a mailbox is similar to other forms of device-independent 
I/O. Senders write to a mailbox; the receiver reads from that 
mailbox. Some system-wide mailboxes are defined: the error 
logger and OPCOM read from system-wide mailboxes. 

MASSBUS adapter (MBA) 

An interface device between the backplane interconnect and the 
MASSBUS. 

memory interconnect 

The internal processor bus for the VAX-11/750. 

offset 

A fixed displacement from the beginning of a data structure. 
System offsets for items within a data structure normally have an 
associated symbolic name used instead of the numeric 
displacement. Where symbols are defined, programmers always 
reference the symbolic names for items in a data structure 
instead of using the numeric displacement. 

page frame number (PFN) 

The high-order 21 bits of the physical address of a page in 
physical memory. 

Gloss-10 



GLOSSARY 

page table entry {PTE) 

PCB 

PFN 

The data structure that identifies the physical location and 
status of a page of virtual address space. When a virtual page 
is in memory, the PTE contains the page frame number needed to 
map the virtual page to a physical page. When it is not in 
memory, the page table entry contains the information needed to 
locate the page on secondary storage (disk). 

See Process Control Block. 

See page frame number. 

physical address 

The address used by hardware to identify a location in physical 
memory or on directly-addressable secondary storage devices such 
as a disk. A physical memory address consists of a page frame 
number and the number of a byte within the page. A physical disk 
block address consists of a cylinder or track and sector number. 

physical address space 

The set of all possible physical addresses that can be used to 
refer to locations in memory (memory space) or device registers 
( I/O space) • 

physical I/O functions 

PIO 

A set of I/O functions that allows access to all device level I/O 
operations except maintenance mode. 

See process identification. 

process 

The basic entity scheduled by the system software that provides 
the context in which an image executes. A process consists of an 
address space and both hardware and software context. 

process context 

The hardware and software contexts of a process. 

process control block {PCB) 

A data structure used to contain process context. The hardware 
PCB contains the hardware context. The software PCB contains the 
software context, which includes a pointer to the hardware PCB. 

Gloss-11 



GLOSSARY 

process identification (PID) 

A 32-bit binary value that uniquely identifies a process. 
process has a process identification and a process name. 

Each 

process I/O channel 

See channel. 

process page tables 

The page tables used to describe process virtual memory. 

process priority 

The priority assigned to a process for scheduling purposes. The 
operating system recognizes 32 levels of process priority, where 
0 is low and 31 high. Levels 16 through 31 are used for 
real-time processes. The system does not modify the priority of 
a real-time process (although the system manager or process 
itself may). Levels 0 through 15 are used for normal processes. 
The system may temporarily increase the priority of a normal 
process based on the activity of the process. 

program section (psect) 

PTE 

QIO 

quota 

A portion of a program with a given protection and set of storage 
management attributes. Program sections that have the same 
attributes are gathered together by the linker to form an image 
section. 

See page table entry. 

Queue I/O Request system service. The VAX/VMS system service 
that services $QIO and $QIOW requests. The Queue I/O Request 
system service prepares an I/O request for processing by the 
driver and performs device-independent preprocessing of the 
request. This system service also calls driver FDT routines. 

The total amount of a system resource, such as CPU time, that a 
job is allowed to use in an accounting period, as specified by 
the system manager in the user authorization file. See also 
limit. 

return status code 

See status code. 

SBI 

See Synchronous Backplane Interconnect. 

Gloss-12 



GLOSSARY 

small process 

A system process that has no control region in its virtual 
address space and has an abbreviated context. Examples are the 
working set swapper and the null process. A small process is 
scheduled in the same manner as user processes, but must remain 
resident until it completes execution; that is, it cannot be 
swapped. 

software context 

The context maintained by VAX/VMS to describe a process. See 
software process control block (PCB). 

software interrupt 

An interrupt generated on interrupt priority level 1 through 15, 
which can be requested by software. 

software process control block (software PCB} 

The data structure used to contain a process's software context. 
The operating system defines a software PCB for every process 
when the process is created. The software PCB includes the 
following kinds of information about the process: current state; 
storage address if it is swapped out of memory; unique 
identification of the process; and address of the process header 
(which contains the hardware PCB). The software PCB resides in 
system region of virtual address space. It is not swapped with a 
process. 

start I/O routine 

SVA 

The routine in a device driver that is responsible for obtaining 
necessary resources, for example, the controller data channel, 
and activating the device unit. status code 

A longword value that indicates the success or failure of a 
specific function. For example, system services always return a 
status code in RO upon completion. 

See system virtual address. 

Synchronous Backplane Interconnect (SBI) 

The part of the 
processor, memory 
adapter. 

system buffered I/O 

VAX-11/780 hardware that interconnects the 
controllers, MASSBUS adapters, the UNIBUS 

An I/O operation, such as terminal or mailbox I/O, in which an 
intermediate buffer from the system buffer pool is used instead 
of a process-specified buffer. Contrast with direct I/O. 

Gloss-13 



GLOSSARY 

System Page Table (SPT) 

The data structure that maps the system virtual addresses, 
including the addresses used to refer to the process page tables. 
The SPT contains one PTE for each page of system virtual memory. 
The physical base address of the SPT is contained in a processor 
register called SBR. 

system virtual address (SVA) 

A virtual address identifying a location mapped to an address in 
system space. 

timeout 

timer 

UCB 

The expiration of the time limit in which a device is to complete 
an I/O transfer. The driver's wait for interrupt request 
specifies the timeout limit. 

A system process that maintains the time of day and the date. It 
also scans for device timeouts and performs time-dependent 
scheduling upon request. The timer interrupt service routine 
creates the timer process. 

See unit control block. 

UNIBUS adapter 

An interface device between the backplane interconnect and the 
UNIBUS. On the VAX-11/780, this device is called the UBA. On 
the VAX-11/750, it is called the UBI. 

unit control block (UCB) 

A structure in the I/O data base that describes the 
characteristics of and current activity on a device unit. The 
unit control block also holds the fork block for its unit's 
device driver; the fork block is a critical part of a driver 
fork process. The UCB also provides a static storage area for 
the driver. 

unit initialization routine 

The routine that readies controllers and device units for 
operation. Controllers and device units require initialization 
~fter a power fail and during the driver loading procedure. 

urgent interrupt 

An interrupt received on interrupt priority levels 24 through 31. 
These can be generated only by the processor for the interval 
clock, serious errors, and power fail. 

Gloss-14 



GLOSSARY 

vector 

(1) An interrupt or exception vector is a storage location known to 
the system that contains the starting address of a routine to be 
executed when a given interrupt or exception occurs. The system 
defines separate vectors for each interrupting adapter and for 
classes of exceptions. Each system vector is a longword. 

(2) For the purpose of exception handling, users can declare up to 
two software exception vectors (primary and secondary) for each 
of the four access modes. Each vector contains the address of a 
condition handler. 

(3) A one-dimensional array. 

virtual I/O functions 

A set of I/O functions that must be interpreted by an ancillary 
control process. 

wait for interrupt request 

A request made by a driver's start I/O routine after it activates 
a device. The request causes the driver fork process to be 
suspended until the device requests an interrupt or the device 
times out. 

XDELTA 

A tool for debugging operating systems and drivers. 

Gloss-15 





ACF (configuration control 
block) , A-1 

Adapter control block (ADP), 
See ADP 

ADP (adapter control block) , 
1-7, A-3 

Allocation, of !RP, 5-7 
Autoconf iguration, 14-9 

driver control of, 14-17 

Backplane interconnect, 1-1 
Base register, stored in 

XDELTA, 15-18 
Breakpoint, 

initial, proceed from, 15-4 
insertion into driver code, 

15-5 
to clear, 15-14 
to disply list, 15-15 
to proceed from, 15-15 
to set, 15-14 
to set complex, 15-17 

Buffered data path, 4-5 
release of, 10-8 
request for permanent, 10-2 
request for temporary, 10-2 

Buffered data path, purge of, 
4-7 

Buffered I/O, 1-16 
completion, 8-7 

INDEX 

Buffered I/O function, 
determination of, 7-10 

Byte offset data transfer, 4-7 

Cancel I/O routine, 1-12, 13-4 
context, 13-5 
device-dependent, 13-6 
device-independent, 13-6 
replacement by IOC$RETURN, 

13-5 
CASE macro, B-2 
CCB (channel control block), 

1-8, A-8 
Channel control block, 

See CCB 
Channel request block (CRB), 

See CRB 
Check of process I/O request 

quota, 5-7 
Close and display next 

location command, 15-12 
COM$DELATTNAST, C-1 

Index-1 

COM$DRVDEALMEM, C-2 
COM$FLUSHATTNS, C-2 
COM$POST, C-3 
COM$SETATTNAST, C-4 
Configuration, 

example of UNIBUS, 14-19 
rules for device, 14-18 

Configuration control block 
(ACF) , 

See ACF 
CONNECT command, 14-3 
Context, 

cancel I/O, 13-5 
FDT routine, 8-1 
fork process, 1-4 
interrupt, 1-4, 3-5, 11-3 
process, 1-4 
start I/O routine, 9-1 
switch from interrupt to 

fork process, 5-14 
Control/status register 

address, 
See CSR address 

Controller data channel, 
competition for, 3-16 
release of, 12-2 
request for, 9-2 
request for MASSBUS device, 

F-12 
Controller initialization 

routine, 13-3 
Convention, 

coding, 6-1 
followed by FDT routine, 8-2 
for device register usage, 

6-3 
process context, 8-2 
terminology, iii 

CRB (Channel request block) , 
1-7, 5-4, A-9 

CSR address, 
calculation of floating, 

14-18 
fixed, 14-9 
floating, 14-11 

Data path, 
buffered, 4-5 
byte offset transfer, 4-7 
direct, 4-4 
longword aligned, 4-8 
mix of direct and buffered, 

10-3 
purge, 10-7 



Data path (Cont.) 
purge of buffered, 4-7 

DDB (device data block), 1-7, 
5-5, A-15 

DDT (driver dispatch table), 
7-6, A-16 

DDTAB macro, 7-6, B-2 
$DEF macro, B-1 
$DEFEND macro, B-1 
$DEFINI macro, B-1 
DELTA, 

commands, 15-18 
to link with user program, 

15-18 
Device activation, 

after power failure, 9-5 
bit mask, 9-5 
by driver, 2-5 
by start I/O routine, 5-13, 

9-2 
for DMA transfer, 10-6 

Device activity, control of, 
5-10 

Device data block (DDB) , 
See DDB 

Device dependence, 1-5 
Device driver, 

components of, 1-2 
debugging, 14-19 
destruction of register 

content, 15-8 
for analog-to-digital 

converter, C-54 
for DRW-11 device, D-17 
functions of, 1-10 
guidelines for debugging, 

15-19 
response to expected 

interrupt, 9-7 
template, 6-5 

Device independence, 1-5 
Device interrupt, 1-9 

delivery to driver, 11-1 
expected, 9-7 
how driver handles, 5-13 

Device register, 
how driver reads, 4-2 
how driver writes, 4-2 
incorrect reference to, 

15-19 
restriction for use, 6-3 
to open with XDELTA, 15-19 

Device timeout handler, 1-12 
Device unit initialization 

routine, 13-3 
Device-dependent cancel I/O 

routine, 13-6 
Device-independent cancel I/O 

routine, 13-6 

INDEX 

Device-specific function code, 
definition of, 7-8 

Direct data path, 4-4 
request for, 10-3 

Direct I/O, 1-16 
Direct memory access (DMA) 

I/O, 1-16 
Display instruction command, 

15-11 
Display mode control, in 

XDELTA, 15-16 
Display previous location 

command, 15-13 
Display range command, 15-12 
DMA transfer, 

completion, 10-6 
computation of starting 

address, 10-6 
device activation for, 10-6 
map register allocation for, 

10-3 
map register load for, 10-5 
purge of data path after 

completion, 10-7 
DPT (driver prologue table), 

7-1, A-19 
DPT STORE macro, 7-4, B-3 
DPTAB macro, 7-2, B-3 
Driver code, calculation of 

base, 15-6 
Driver dispatch table (DDT), 

See DDT 
Driver fork IPL, 3-8 
Driver fork process, 

creation to start I/O, 5-12 
Driver load procedure, 1-16, 

14-2 
and XDELTA, 15-4 
preparation for, 14-1 

Driver prologue table (DPT), 
See DPT 

Driver routine, 
cancel I/O, 1-12, 13-4 
error log, 1-12, 13-6 
FDT (function decision 

table), 1-11, 7-11 
initialization, 1-10, 13-1 
interrupt service, 1-12, 

10-9 
start I/O, 1-11, 8-18 
timeout handler, 1-12 

DSBINT macro, 3-12, B-3 

ENBINT macro, 3-13, B-3 
$EQULST macro, B-1 
ERL$DEVICERR, C-6 
ERL$DEVICTMO, C-6 

Index-2 



INDEX 

ERL$RELEASEMB, C-7 
Error-logging routine, 1-12, 

13-6 
EXE$ABORTIO, 8-13, C-7 
EXE$ALLOCBUF, C-8 
EXE$ALLOCIRP, C-9 
EXE$ALONONPAGED, C-10 
EXE$ALTQUEPKT, 8-17, C-10 
EXE$BUFFRQUOTA, C-11 
EXE$BUFQUOPRC, C-12 
EXE$DEANONPAGED, C-12 
EXE$FINISHIO, 8-14, C-13 
EXE$FINISHIOC, 8-14, C-13 
EXE$FORK, C-14 
EXE$FORKDSPTH, C-14 
EXE$INSERTIRP, C-14 
EXE$INSIOQ, C-15 
EXE$INSTIMQ, C-16 
EXE$IOFORK, 12-1, C-16 
EXE$MODIFY, C-17 
EXE$MODIFYLOCK, C-19 
EXE$MODIFYLOCKR, C-20 
EXE$0NEPARM, 8-8, C-21 
EXE$QIODRVPKT, 8-15, C-22 
EXE$QIORETURN, C-23 
EXE$READ, 8-8, C-23 
EXE$READCHK, C-24 
EXE$READCHKR, C-25 
EXE$READLOCK, C-25 
EXE$READLOCKR, C-25 
EXE$SENSEMODE, 8-9, C-25 
EXE$S~TCHAR, 8-10, C-26 
EXE$SETMODE, 8-10, C-28 
EXE$SNDEVMSG, C-29 
EXE$WRITE, C-30 
EXE$WRITECHK, C-30 
EXE$WRITECHKR, C-31 
EXE$WRITELOCK, C-31 
EXE$WRITELOCKR, C-32 
EXE$WRTMAILBOX, C-32 
EXE$ZEROPARM, 8-13, C-33 
EXECUTE STRING command, 15-16 
Exit routine, 

EXE$ABORTIO, 8-13 
EXE$ALTQUEPKT, 8-17 
EXE$FINISHIO, 8-14 
EXE$FINISHIOC, 8-14 
EXE$QIODRVPKT, 8-15 

Expansion of WFIPKCH macro, 
9-6 

FDT (Function decision table), 
7-7 

processing, 5-8 
FDT routine, 1-11 

check of user buffer, 8-6 
EXE$0NEPARM, 8-8 

Index-3 

FDT routine (Cont.) 
EXE$READ, 8-8 
EXE$SENSEMODE, 8-9 
EXE$SETCHAR, 8-10 
EXE$SETMODE, 8-10 
EXE$WRITE, 8-11 
EXE$ZEROPARM, 8-13 
execution context, 8-1 
exit methods, 8-4 
for buffered I/O, 8-5 
for direct I/O, 8-5 
process context conventions, 

8-2 
register conventions for, 

8-2 
system buff er allocation, 

8-6 
transfer of control to, 8-3 
transfer to start I/O 

routine, 9-1 
Floating CSR address 

calcuation, 14-18 
Floating vector address 

calculation, 14-18 
Fork block, 3-13 
Fork dispatching, 3-13 
FORK macro, B-3 
Fork process, 

activation from fork queue, 
5-14 

context, 1-4 
creation after interrupt, 

5-14 
definition, 1-4 

Fork queue, 1-9 
FUNCTAB macro, 7-10, B-3 
Function decision table, 

See FDT routine 
Function decision table (FDT), 

See FDT 

Hardware device interrupt, 3-8 

I/O data base, 1-6, 15-20 
control blocks, 1-6 
examination with XDELTA, 

15-9 
for MASSBUS device, F-6 
how driver locates, 5-3 

I/O function, 
determination of buffered, 

7-10 
I/O function code, 

definition of device­
specific, 7-8 



I/O function code (Cont.) 
retrieval and conversion by 

start I/O, 9-4 
I/O function validation, 5-6 
I/O postprocessing, 5-16, 12-1 

by driver, 2-7 
by VAX/VMS, 2-7 

I/O preprocessing, 
by driver, 2-4 
by VAX/VMS, 2-3, 5-1 

I/O request, 
abortion of, 12-5 
completion, 5-15 

I/O request completion, 11-8 
by driver, 12-2 
by VAX/VMS, 12-3 

I/O request packet, 
extension, 

See IRPE 
I/O request packet (IRP), 

See IRP 
I/O status block validation, 

5-7 
IDB {interrupt dispatch 

block) , 1-7, 5-5, A-2 2 
IFNORD macro, B-4 
IFNOWRT macro, B-4 
IFRD macro, B-4 
Incorrect reference to device 

register, 15-19 
Indirect command, 15-13 
Initial breakpoint, proceed 

from, 15-4 
Initialization, 

context, 13-3 
during driver load 

procedure, 13-1 
during recovery from power 

failure, 13-2 
Initialization routine, 1-10 

controller, 13-3 
device unit, 13-3 

Interrupt, 
request of XDELTA, 15-6 
solicited, 11-4 
unsolicited, 11-5 

Interrupt context, 3-5, 11-3 
Interrupt dispatch, 

direct vector, 3-4 
nondirect vector, 3-4 

Interrupt dispatch block 
(IDB) , 

See IDB 
Interrupt dispatcher, 1-2, 3-5 
Interrupt handling, 2-6 
Interrupt priority level (IPL, 

See IPL 
Interrupt service routine, 

1-12, 3-2, 10-9 

INDEX 

Interrupt service routine 
(Cont.) 
MASSBUS, F-14 

IOC$ALOUBAMAP(N), C-34 
IOC$ALTUBAMAP, C-35 
IOC$APPLYECC, C-36 
IOC$CANCELIO, C-37 
IOC$DIAGBUFILL, C-38 
IOC$INITIATE, C-39 
IOC$IOPOST, C-40 
IOC$LOADUBAMAP(A), C-41 
IOC$PURGDATAP, C-42 
IOC$RELCHAN, C~43 
IOC$RELDATAP, C-44 
IOC$RELMAPREG, C-45 
IOC$RELSCHAN, C-46 
IOC$REQCOM, C-46 
IOC$REQDATAP(NW), C-48 
IOC$REQMAPREG, C-49 
IOC$REQPCHANH, C-50 
IOC$REQPCHANL, C-51 
IOC$REQSCHANH, C-51 
IOC$REQSCHANL, C-52 
IOC$RETURN, C-52 
IOC$VERIFYCHAN, C-52 
IOC$WFIKPCH, 9-7, C-53 
IOC$WFIRLCH, C-54 
IOFORK macro, B-4 
IPL, 1-8 

and interrupt service 
routine, 3-2 

conventions during I/O 
completion, .3-12 

conventions during I/O 
processing, 3-11 

defined by VAX/VMS, 3-1 
defined for hardware, 3-2 
definition, 3-1 
driver fork, 3-8 
hardware device, 3-8 
how routines lower, 3-3 
how routines raise, 3-3 
IPL$ ASTDEL, 3-7 
IPL$-IOPOST, 3-8 
IPL$-MAILBOX, 3-10 
IPL$-POWER, 3-8 
IPL$-QUEUEAST, 3-9 
IPL$-SCHED, 3-9 
IPL$-SYNCH, 3-9 
IPL$-TIMER, 3-9 
IPL$-XDELTA, 3-10 
modification in driver code, 

3-11 
overview of use, 3-10 
used during I/O processing, 

3-5 
IPL$ ASTDEL, 3-7 
IPL$-IOPOST, 3-8 
IPL$=MAILBOX, 3-10 

Index-4 



INDEX 

IPL$ POWER, 3-8 
IPL$-QUEUEAST, 3-9 
IPL$-SCHED, 3-9 
IPL$-SYNCH, 3-9 
IPL$-TIMER, 3-9 
IPL$-XDELTA, 3-10 
IRP,-1-8, A-24 

allocation by Queue I/O 
Request system service, 
5-7 

queue to driver, 2-5 
setup by Queue I/O Request 

system service, 5-7 
IRPE (I/O request packet 

extension) , A-31 

LOAD command, 14-2 
LOADUBA macro, B-4 
Longword-aligned data path, 

4-8 

Machine dependence, 1-1 
Machine independence, 1-1 
Macro, 

CASE, B-2 
DDTAB, 7-6, B-2 
$DEF, B-1 
$DEFEND, B-1 
$DEFINI, B-1 
DPT STORE; 7-4, B-3 
DPTAB, 7-2, B-3 
DSBINT, 3-12, B-3 
ENBINT, 3-13, B-3 
$EQULST, B-1 
FORK, B-3 
FUNCTAB, 7-10, B-3 
IFNORD, B-4 
IFNOWRT, B-4 
IFRD, B-4 
IOFORK, B-4 
LOADUBA, B-4 
PURDPR, B-4 
RELCHAN, B-4 
RELDPR, B-4 
RELMPR, B-4 
RELSCHAN, B-4 
REQCOM, B-4 
REQDPR, B-5 
REQMPR, B-5 
REQPCHAN, B-5 
REQSCHAN, B-5 
SAVIPL, B-5 
SETIPL, 3-12, B-5 
SOFTINT, 3-13, B-5 
TIMEWAIT, B-5 

Index-5 

Macro (Cont.) 
VIELD, B-2 

"'S°VIELD, B-2 
WFIKPCH, 9-6, B-5 
WFIRLCH, 9-6, B-6 

Map register, 
MASSBUS adapter, F-2 
to load on MASSBUS, F-12 

MASSBUS adapter, 1-2, E-28 
and I/O data base, F-11 
check for ownership, F-9 
consideration for driver, 

F-10 
interrupt dispatch, F-9 to 

F-10 
operation, F-8 

MASSBUS adapter register, F-2 
external, F-2 
internal, F-3 
location in physical address 

space, F-5 
map, F-3 
modification of, F-5 
offset, F-4 
to load, F-3 

MASSBUS interrupt dispatcher 
(MBA$INT) I 

See MBA$INT 
MASSBUS interrupt service 

routine, F-14 
MBA$INT (MASSBUS interrupt 

dispatcher) , F-14 
Mixed direct and buffered data 

path transfer, 10-3 
Modification of MASSBUS 

adapter register, F-5 

Nexus value for VAX-11 
processor, 14-4 

Open and display value 
command, 15-11 

Overview, IPL use, 3-10 

Physical address, 
definition, 1-2 

Power failure, and device 
activation, 9-5 

Process I/O channel 
assignment, 5-3 

Process I/O quota, check of, 
5-7 



Program counter load and 
continue, in XDELTA, 15-16 

Programmed I/O, 1-16 
PURDPR macro, B-4 

Reference to system address, 
15-19 

Register content, 
desctruction by driver, 15-8 

RELCHAN macro, B-4 
RELDPR macro, B-4 
Release, 

of controller data channel, 
12-2 

RELMPR macro, B-4 
RELOAD command, 14-6 
RELSCHAN macro, B-4 
REQCOM macro, B-4 
REQDPR macro, B-5 
REQMPR macro, B-5 
REQPCHAN macro, B-5 
REQSCHAN macro, B-5 
Resource wait queue, 1-9, 3-15 
Retry, of I/O operation, 12-5 

SAVIPL macro, B-5 
Send message to operator, 12-6 
SETIPL macro, 3-12, B-5 
Show value command, 15-13 
SHOW/ADAPTER command, 14-7 
SHOW/CONFIGURATION command, 

14-8 
SHOW/DEVICE command, 14-8 
SOFTINT macro, 3-13, B-5 
Solicited interrupt, driver 

service o1, 11-4 
Start I/O routine, 1-11, 8-18 

and power failure, 9-5 
computation of transfer 

length, 9-4 
computation of transfer 

start address, 9-4 
consideration for MASSBUS, 

F-12 
device activation, 9-2 
device activation by, 5-13 
execution context, 9-1 
function code retrieval and 

conversion, 9-4 
interrupt block by, 9-5 
preparation of device 

activation bit mask, 9-5 
request for controller data 

channel, 9-2 
transfer of control to, 9-1 

INDEX 

Status, preservation by 
driver, 12-3 

Step instruction command, 
15-13 

Step instruction over 
subroutine command, 15-14 

Synchronization, 1-8 
fork queue, 1-9 
IPL (interrupt priority 

level), 1-8 
resource wait queue, 1-9 

SYSGEN autoconfiguration 
facility, 14-11 

SYSGEN command, 
CONNECT, 14-3 
LOAD, 14-2 
RELOAD, 14-6 
SHOW/ADAPTER, 14-7 
SHOW/CONFIGURATION, 14-8 
SHOW/DEVICE, 14-8 

SYSGEN device table, 14-11 
SYSGEN (System Generation 

Utility), 14-2 
System bootstrap with XDELTA, 

on a VAX-11/730, 15-3 
on a VAX-11/750, 15-2 
on a VAX-11/780, 15-1 

System buffer allocation, by 
FDT routine, 8-6 

System Generation Utility 
(SYSGEN) , 

See SYSGEN 

Template device driver, 6-5 
Timeout handler, 12-4 
TIMEWAIT macro, B-5 
Transfer length, computation 

of, 9-4 
Transfer start address, 

computation of, 9-4 

UCB (unit control block), 1-7, 
5-3, A-33 

disk extension, A-44 
error log extension, A-43 

UNIBUS, 1-14 
_UNIBUS adapter, 

data path, 4-3 
definition, 1-1 
direct vector, 1-2 
functions, 3-17 
nondirect vector, 1-2 
VAX-11/730, 4-10 
VAX-11/750, 4-9 
VAX-11/780, 4-8 

Index-6 



UNIBUS adapter map register, 
allocation, 10-3 
loading, 10-5 
permanent allocation, 10-4 
release of, 10-8 

UNIBUS address, map to 
physical address, 4-2 

UNIBUS DMA transfer, driver 
code for, 9-8 

UNIBUS I/O request, example, 
1-12 

Unit control block (UCB), 
See UCB 

Unsolicited interrupt, 
driver service of, 11-5 
example of driver handling, 

11-6 
User buffer, check by FDT 

routine, 8-6 

Validation, 
of I/O function, 5-6 
of I/O status block, 5-7 

VAX/VMS exit routines, 8-13 
VAX/VMS macros invoked by 

driver, A-45 
VAX/VMS routine, 

COM$DELATTNAST, C-1 
COM$DRVDEALMEM, C-2 
COM$FLUSHATTNS, C-2 
COM$POST, C-3 
COM$SETATTNAST, C-4 
ERL$DEVICERR, C-6 
ERL$DEVICTMO, C-6 
ERL$RELEASEMB, C-7 
EXE$ABORTIO, C-7 
EXE$ALLOCBUF, C-8 
EXE$ALLOCIRP, C-9 
EXE$ALONONPAGED, C-10 
EXE$ALTQUEPKT, C-10 
EXE$BUFFRQUOTA, C-11 
EXE$BUFQUOPRC, C-12 
EXE$DEANONPAGED, C-12 
EXE$FINISHIO, C-13 
EXE$FINISHIOC, C-13 
EXE$FORK, C-14 
EXE$FORKDSPTH, C-14 
EXE$INSERTIRP, C-14 
EXE$INSIOQ, C-15 
EXE$INSTIMQ, C-16 
EXE$IOFORK, 12-1, C-16 
EXE$MODIFY, C-17 
EXE$MODIFYLOCK, C-19 
EXE$MODIFYLOCKR, C-20 
EXE$0NEPARM, C-21 
EXE$QIODRVPKT, C-22 
EXE$QIORETURN, C-23 

INDEX 

VAX/VMS routine (Cont.) 
EXE$READ, C-23 
EXE$READCHK, C-24 
EXE$READCHKR, C-25 
EXE$READLOCK, C-25 
EXE$READLOCKR, C-25 
EXE$SENSEMODE, C-25 
EXE$SETCHAR, C-26 
EXE$SETMODE, C-28 
EXE$SNDEVMSG, C-29 
EXE$WRITE, C-30 
EXE$WRITECHK, C-30 
EXE$WRITECHKR, C-31 
EXE$WRITELOCK, C-31 
EXE$WRITELOCKR, C-32 
EXE$WRTMAILBOX, C-32 
EXE$ZEROPARM, C-33 
IOC$ALOUBAMAP(N), C-34 
IOC$ALTUBAMAP, C-35 
IOC$APPLYECC, C-36 
IOC$CANCELIO, C-37 
IOC$DIAGBUFILL, C-38 
IOC$INITIATE, C-39 
IOC$IOPOST, C-40 
IOC$LOADUBAMAP(A), C-41 
IOC$PURGDATAP, C-42 
IOC$RELCHAN, C-43 
IOC$RELMAPREG, C-45 
IOC$RELSCHAN, C-46 
IOC$REQCOM, C-46 
IOC$REQDATAP(NW), C-48 
IOC$REQMAPREG, C-49 
IOC$REQPCHANH, C-50 
IOC$REQPCHANL, C-51 
IOC$REQSCHANH, C-51 
IOC$REQSCHANL, C-52 
IOC$RETURN, C-52 
IOC$VERIFYCHAN, C-52 
IOC$WFIKPCH, 9-7, C-53 
IOC$WFIRLCH, C-54 

Vector, 
direct, 1-2 
nondirect, 1-2 

Vector jump table, 15-7 
$VIELD macro, B-2 
VIELD macro, B-2 

Wait for interrupt, 2-6, 5-13 
Wait for interrupt or timeout, 

9-5 
WFIKPCH macro, 9-6, B-5 

format, 9-6 
WFIPKCH macro, 

expansion of, 9-6 
WFIRLCH macro, 9-6, B-6 

format, 9-6 

Index-7 



XDELTA, 
See XDELTA command 
and driver load procedure, 

15-4 
and system failure, 15-20 
operator, 15-11 
special symbol, 15-10 
stored base registers in, 

15-18 
system bootstrap with, 15-1 
values and expressions, 

15-10 
XDELTA command, 

close and display next 
location, 15-12 

display instruction, 15-11 
display previous location, 

15-13 
display range, 15-12 
EXECUTE STRING, 15-16 
indirect, 15-13 
open and display value, 

15-11 
show value, 15-13 
step instruction, 15-13 
step instruction over 
subroutine, 15-14 

INDEX 

XDELTA command (Cont.) 
stored, 15-17 
summary, 15-10 
to clear breakpoint, 15-14 
to control display mode, 

15-16 
to disply breakpoint list, 

15-15 
to examine I/O data base, 

15-9 
to load PC and continue, 

15-16 
to open device register, 

15-19 
to proceed from breakpoint, 

15-15 
to set a base register, 15-8 
to set base register, 15-15 
to set breakpoint, 15-14 
to set complex breakpoint, 

15-17 
XDELTA interrupt, 

request on VAX-11/730, 15-7 
request on VAX-11/750, 15-7 
request on VAX-11/780, 15-6 

Index-8 



READER'S COMMENTS 

VAX/VMS 
Guide to Writing 

a Device Driver 
AA-H499C-TE 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are eligible to receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent. 

D Assembly language programmer 
[] Higher-level language programmer 
D Occasional programmer (experienced) 
D User with little programming experience 
[] Student programmer 
[] Other (please specify) 

Name------------------------- Date 

Organization 

Street 

City ________________________ _ State ______ Zip Code _____ _ 

or Country 



· - - Do Not Tear - Fold Here and Tape - - - - - - - - - -

~nmnomo 111111 

BUSINESS REPL V MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE ~AID BY ADDRESSEE 

BSSG PUBLICATIONS ZK1-3/J35 
DIGITAL EQUIPMENT CORPORATION 
110 SPIT BROOK ROAD 
NASHUA, NEW HAMPSHIRE 03061 

No Postage 
Necessary 

if Mailed in the 
United States 

- - Do Not Tear - Fold Here - - - - - - - - - - - - - - - - - - - - - -


