
Introduction to VMS System
Services
Order Number: AA-LA688-TE

November 1991

This manual describes how to use the VMS system services.

Revision/Update Information: This manual supersedes the
Introduction to VMS System Services,
Version 5.4.

Software Version: VMS Version 5.5

Digital Equipment Corporation
Maynard, Massachusetts

November 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1991.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DECdtm, DECnet, DECwindows,
Digital, IAS, MicroVAX, RSX-llM, RSX-llM-PLUS, ULTRIX, VAX, VAX Ada, VAX BASIC, VAX C,
VAX COBOL, VAX CORAL 66, VAX DIBOL, VAX FORTRAN, VAX MACRO, VAX Pascal, VAX-11/780,
VAXcluster, VMS, and the DIGITAL logo.

ZK4589

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

Preface . xiii

1 Introduction to System Services

1.1
1.1.1
1.1.2
1.1.3
1.1.3.1
1.1.3.2
1.1.3.3
1.1.3.4
1.1.3.5
1.1.4
1.1.5

Documentation Format for System Service Routines
Format Heading
Returns Heading .. .
Arguments Heading

VMS Usage Entry
fype Entry .. .
Access Entry .. .
Mechanism Entry
Explanatory Text Entry

Condition Values Returned Heading
Condition Values Returned in the I/O Status Block Heading

2 Calling System Services

2.1
2.1.1
2.1.2
2.1.3
2.2
2.3
2.4
2.4.1
2.4.1.1

2.4.1.2
2.4.1.3

2.4.2
2.4.2.1
2.4.2.2
2.4.2.3
2.4.2.4
2.5
2.5.1
2.5.2
2.5.2.1
2.6
2.6.1
2.7
2.7.1

System Services and System Integrity
User Privileges .. .
Resource Quotas .. .
Access Modes

Determining Arguments for System Services
Obtaining Values for Symbolic Codes
Calling System Services from VAX MACRO

Using Macros to Construct Argument Lists
Specifying Arguments with the $name_S Macro and the $name
Macro
Conventions for Specifying Arguments to System Services
Defining Symbolic Names for Argument List Offsets: $name and
$nameDEF

Using Macros to Call System Services
The $name_S Macro
Example of $name_S Macro Call
The $name_ G Macro
Example of $NAME and $name_G Macro Calls

System Service Completion
Synchronous and Asynchronous System Services
Process Execution Modes

Resource Wait Mode
Condition Values Returned from System Services

Information Provided by Condition Values
Testing Return Condition Values

System Messages Generated by Condition Values

1-3
1-4
1-6
1-6
1-6
1-7
1-7
1-8
1-8
1-9

1-10

2-1
2-2
2-2
2-2
2-3
2-4
2-5
2-5

2-6
2-7

2-7
2-8
2-9
2-9
2-9

2-10
2-11
2-11
2-12
2-12
2-13
2-14
2-14
2-14

iii

2.8
2.8.1
2.9

High-Level Language Calls
Testing Return Condition Values in High-Level Languages

Interpreting the Programming Examples

3 Security Services

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4
3.3.2.5
3.3.2.6
3.3.2.7
3.3.3
3.4
3.4.1
3.4.1.1
3.4. 1.2
3.4.1.3
3.4.1.4
3.4.2
3.4.3
3.5
3.6
3.6.1
3.6.2
3.7

Overview of the VMS Protection Scheme
. Identifiers .. .

Identifier Format .. .
Identifier Names .. .
System-Defined Identifiers
General Identifiers
Identifier Attributes

Rights Database .. .
Initializing a Rights Database
Using System Services to Affect a Rights Database

Translating Identifier Names and Binary Values
Adding Identifiers and Holders to Rights Database
Determining Holders of Identifiers
Determining Identifiers Held
Modifying the Identifier Record
Modifying a Holder Record
Removing Identifiers and Holders from the Rights Database

Search Operations .
Creating, Translating, and Maintaining Access Control List Entries

Format of ACE fypes
Alarm ACE
Application-Dependent ACE
Default Protection ACE
Identifier ACE

Translating ACEs .. .
Creating and Maintaining ACEs

Modifying a Rights List
Checking Access Protection

SYS$CHKPRO .. .
SYS$CHECK_ACCESS

Additional Security Services

4 Event Flag Services

iv

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Event Flag Numbers and Event Flag Clusters
Examples of Event Flag Services
Event Flag Waits
Setting and Clearing Event Flags
Creating Common Event Flag Clusters
Disassociating and Deleting Common Event Flag Clusters
Example of Using a Common Event Flag Cluster
Cluster Name .. .
Example of Using Event Flag Services

2-15
2-17
2-17

3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-6
3-6
3-7
3-8
3-9
3-9

3-12
3-12
3-14
3-14
3-17
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-27
3-28
3-28
3-30
3-32

4-2
4-3
4-3
4-4
4-4
4-5
4-5
4-7
4-8

5 AST (Asynchronous System Trap) Services

5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4
5.5
5.6

Access Modes for AST Execution
ASTs and Process Wait States

Event Flag Waits .. .
Hibernation .. .
Resource Waits and Page Faults

How ASTs Are Declared
The AST Service Routine
AST Delivery .. .
Example of Using AST Services

6 Name Services

5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-5
5-5

6.1 Logical Name System Services. 6-1
6.1.1 Logical Names and Equivalence Names. 6-2
6.1.2 Logical Name Tables . 6-2
6.1.2.1 Logical Name Directory Tables . 6-3
6.1.2.2 Default Logical Name Tables . 6-3
6.1.2.3 User-Defined Logical Name Tables. 6-6
6.1.3 Privileges . 5.:...5
6.1.4 Access Modes . 6-7
6.1.5 Attributes. 6-7
6.1 .6 Logical Name Table Quotas . 6-8
6.1.6.1 Directory Table Quotas . 6-9
6.1.6.2 Default Logical Name Table Quotas. 6-9
6.1.6.3 Job Logical Name Table Quotas . 6-9
6.1.6.4 User-Defined Logical Name Table Quotas 6-9
6.1 . 7 Logical Name and Equivalence Name Format Conventions 6-10
6.1.8 Specifying the Logical Name Table Search List 6-11
6.2 Creating a Logical N ame-$CRELNM . 6-11
6.2.1 Duplication of Logical Names. 6-12
6.3 Creating Logical Name Tables-$CRELNT . 6-14
6.3.1 Shareable Logical Name Tables . 6-15
6.3.2 $CRELNT System Service Call . 6-15
6.4 Deleting Logical Names-$DELLNM............................. 6-15
6.5 Translating Logical Names-$TRNLNM . 6-16
6.6 Example of Using the Logical Name System Services 6-17
6.7 The DECdns Clerk System Service . 6-19
6.7.1 Functions Provided by the DECdns System Service and Run-Time

Library Routines . 6-20
6.7.1.1 The $DNS System Service . 6-20
6.7.1.2 The Run-Time Library Routines . 6-21
6.8 Using the $DNS System Service Call. 6-22
6.8.1 Creating Objects . 6-22
6.8.2 Modifying Objects and Their Attributes. 6-24
6.8.3 Requesting Information from DECdns . 6-27
6.8.3.1 Reading Attributes. 6-28
6.8.3.2 Enumerating DECdns Names and Attributes 6-30
6.9 DECdns Logical Names . 6-34

v

7 Input/Output Services

7.1 Quotas, Privileges, and Protection . 7-2
7 .1 .1 Buffered I/O Quota . 7-3
7.1.2 Buffered I/O Byte Count Quota . 7-3
7.1.3 Direct I/O Quota . 7-3
7.1.4 AST Quota.. 7-3
7.1.5 Physical I/O Privilege. 7-4
7.1.6 Logical I/O Privilege. 7-4
7.1.7 Mount Privilege . 7-4
7.1.8 Volume Protection ~ 7-4
7.1.9 Device Protection . 7-5
7 .1 .1 0 System Privilege . 7-6
7.1.11 Bypass Privilege. 7-6
7.2 Summary of VMS QIO Operations............................... 7-6
7.3 Physical, Logical, and Virtual I/O . 7-6
7.3.1 Physical I/O Operations . 7-6
7.3.2 Logical I/O Operations . 7-7
7.3.3 Virtual I/O Operations . 7-7
7.4 I/O Function Encoding , . 7-11
7.4.1 Function Codes . 7-11
7.4.2 Function Modifiers . 7-12
7.5 Assigning Channels . 7-12
7.6 Queuing I/O Requests . 7-13
7.7 Synchronizing Service Completion . 7-13
7.8 Recommended Method for Testing Asynchronous Completion 7-15
7.9 Synchronous Forms oflnput/Output Services . 7-16
7.10 I/O Completion Status . 7-17
7 .11 Deassigning I/O Channels . 7-18
7 .12 Example of Using Complete Terminal I/O . 7-18
7 .13 Canceling I/O Requests . 7-19
7 .14 Device Allocation . 7-20
7.14.1 Implicit Allocation . 7-21
7.14.2 Deallocation... 7-21
7.15 Mounting, Dismounting, and Initializing Volumes................... 7-22
7.15.1 Mounting a Volume . 7-22
7.15.1.1 Calling the $MOUNT System Service . 7-22
7.15.1.2 Calling the $DISMOU System Service . 7-24
7.15.2 Initializing Volumes . 7-24
7.15.2.1 Calling the Initialize Volume System Service. 7-24
7 .16 Logical Names and Physical Device Names . 7-26
7.17 Device Name Defaults . 7-27
7.18 Obtaining Information About Physical Devices . 7-28
7.19 Formatting Output Strings . 7-28
7.20 Mailboxes . 7-30
7.20.1 Mailbox Name . 7-33
7.20.2 System Mailboxes . 7-33
7.20.3 Mailboxes for Process Termination Messages. 7-34
7.21 Example of Using I/O Services. 7-35

vi

8 Process Control Services
8.1
8.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.4
8.4.1
8.4.2
8.4.2.1
8.4.3
8.5
8.5.1
8.5.2
8.5.3
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.7
8.7.1
8.7.2
8.8

Subprocesses and Detached Processes .
The Execution Context of a Process
Process Creation

Defining an Image for a Subprocess to Execute
Input, Output, and Error Devices for Subprocesses
Disk and Directory Defaults for Created Processes
Controlling Resources of Created Processes
Detached Processes

Interprocess Control and Communication
Privileges for Process Creation and Control
Process Identification

Process Naming Within Groups
Techniques for Interprocess Communication

Process Hibernation and Suspension
Process Hibernation
Alternate Methods of Hibernation
Suspension .

Image Exit .. .
Image Rundown Activities
The $EXIT System Service
Exit Handlers
Forced Exit .. .

Process Deletion .
The Delete Process System Service .
Termination Mailboxes

Example of Using Process Control Services

9 Process Information Services
9.1
9.1.1
9.1.2
9.2
9.2.1
9.2.2
9.3
9.3.1
9.3.2

9.3.3

9.3.4

9.3.5
9.3.6
9.3.7
9.3.8

9.4
9.4.1
9.4.2
9.4.3
9.4.4

Overview of $GETJPI and $GETJPI with $PROCESS_SCAN
Using the Process ID to Obtain Information
Using the Process Name to Obtain Information

Using $GET JPI Alone
Requesting Information About a Single Process
Requesting Information About All Processes on the Local System

Using $GETJPI with $PROCESS_SCAN
Using the $PROCESS_SCAN Item List and Item-Specific Flags
Requesting Information About Processes That Match One
Criterion .. .
Requesting Information About Processes That Match Multiple Values
for One Criterion .. .
Requesting Information About Processes That Match Multiple
Criteria
Specifying a Node as Selection Criterion
Scanning All Nodes on the Cluster for Processes
Scanning Specific Nodes on the Cluster for Processes
Conducting Multiple Simultaneous Searches with
$PROCESS_SCAN

Programming Considerations
Using Item Lists Correctly
Improving Performance by Using Buffered $GETJPI Operations
Meeting Remote $GETJPI Quota Requirements
Using $GETJPI Control Flags ~

8-2
8-2
8-2
8-3
8-3
8-5
8-6
8-6
8-7
8~7

8-7
8-9
8-9

8-10
8-11
8-12
8-13
8-13
8-13
8-14
8-14
8-15
8-16
8-18
8-18
8-21

9-1
9-2
9-2
9-2
9-2
9-4
9-6
9-6

9-7

9-9

9-10
9-11
9-11
9-12

9-13
9-13
9-13
9-14
9-15
9-16

vii

10 Timer and Time Conversion Services

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

The System Time Format
Obtaining the Current Date and Time
Obtaining an Absolute Time in System Format
Obtaining a Delta Time in System Format
Timer Requests .. .
Scheduled Wakeups
Numeric and ASCII Time
Setting the System Time
Example of Using the Timer Service

11 Condition-Handling Services

11.1
11.2
11.3
11.4
11.4.1
11.4.2
11.5
11.5.1
11.5.2
11.6
11.7

'I'y'pes of Exception .
Specifying Condition Handlers

The Exception Dispatcher
The Argument List Passed to a Condition Handler

Signal Array Arguments
Mechanism Array Arguments

Courses of Action for the Condition Handler
Example of Condition-Handling Routines
Unwinding the Call Stack

Multiple Exceptions
Example of Using Condition-Handling Services

12 Memory Management Services

12.1 Virtual Address Space
12.2 Increasing and Decreasing Virtual Address Space
12.3 Input Address Arrays and Return Address Arrays
12.4 Page Ownership and Page Protection
12.5 Working Set Paging
12.6 Process Swapping
12.7 Sections .. .
12.7.1 Creating Sections .. .
12.7.2 Opening the Disk File
12. 7 .3 Defining the Section Extents
12. 7.4 Defining the Section Characteristics
12.7.5 Defining Global Section Characteristics
12.7.6 Global Section Name
12.7.7 Mapping Sections .. .
12.7.8 Mapping Global Sections
12.7.9 Global Page-File Sections
12. 7 .10 Section Paging .. .
12. 7 .11 Reading and Writing Data Sections
12.7.12 Releasing and Deleting Sections
12.7.13 Writing Back Sections
12. 7 .14 Image Sections .. .
12.7.15 Page Frame Sections
12.8 Example of Using Memory Management System Services

viii

10-2
10-2
10-3
10-3
10-4
10-6
10-7
10-8

10-10

11-1
11-6
11-6
11-7

11-10
11-10
11-11
11-11
11-12
11-15
11-15

12-2
12-3
12-4
12-5
12-6
12-6
12-7
12-8
12-8
12-9
12-9

12-10
12-11
12-12
12-13
12-14
12-14
12-16
12-17
12-17
12-17
12-18
12-18

13 Lock Management Services
13.1
13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.7
13.2
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.3.5
13.3.6
13.3.7
13.3.8
13.3.9
13.4
13.5
13.5.1
13.5.2
13.5.2.1
13.5.2.2
13.5.3
13.6

Concepts of Resources and Locks
Granularity .. .
Resource Names .. .
Choosing a Lock Mode
Levels of Locking and Compatibility
Lock Management Queues
Lock Conversion Concepts
Deadlock Detection .

Queuing Lock Requests
Advanced Locking Techniques

Synchronizing Locks
Notification of Synchronous Completion
Expediting Lock Requests
Lock Status Block
Blocking ASTs .. .
Lock Conversions .. .
Forced Queuing of Conversions
Parent Locks
Lock Value Blocks

Dequeuing Locks
Local Buffer Caching with the Lock Management Services

Using the Lock Value Block
Using Blocking ASTs

Deferring Buffer Writes
Buffer Caching

Choosing a Buffer Caching Technique
Example of Using Lock Management Services

14 DECdtm Services

14.1
14.1.1
14.1.2
14.1.3
14.1.4
14.1.5
14.1.6

Using Transaction Management System Services
Transaction Processing System Model
Transaction Management
Starting a Transaction .
Completing a Transaction
Calling a Planned Abort
Example of Using Transaction Management System Services

15 Programming Examples

15.1 ORION Program Example
15.2 CYGNUS Program Example
15.3 LYRA Program Example

A User-Written System Services

A.1
A.1.1
A.1.2
A.1.3
A.1.4
A.2
A.2.1

Coding a User-Written System Service
Change-Mode Vector
Entry Point to the User-Written System Service
Kernel-Mode or Executive-Mode Dispatcher
Enabling and Disabling User Privileges

Linking the User-Written System Service
Specifying Protection for the Image or Clusters

13-1
13-2
13-2
13-3
13-3
13-4
13-5
13-5
13-6
13-7
13-7
13-7
13-8
13-8
13-8
13-9

13-10
13-11
13-11
13-12
13-13
13-14
13-14
13-14
13-14
13-15
13-15

14-1
14-1
14-2
14-3
14-4
14-5
14-6

15-1
15-8

15-17

A-2
A-2
A-3
A-3
A-4
A-4
A-4

ix

A.3
A.4
A.5

Installing the User-Written System Service
Using the User-Written System Service
Program Listings

B Using Shared Memory

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.8.1
8.8.2

Preparing Multiport Memory for Use
Privileges Required for Shared Memory Use
Naming Facilities in Shared Memory
Assigning Logical Names and Logical Name Translation
How VMS Finds Facilities in Shared Memory
Using Common Event Flags in Shared Memory
Using Mailboxes in Shared Memory
Using Global Sections in Shared Memory

Removing Shared Memory Global Sections
Create and Map Section System Service

C Implementing Site-Specific Security Policies

C.1
C.1.1
C.1.2
C.2
C.2.1
C.2.2

Index

Examples

2-1
9-1
9-2

x

9-3

9-4

9-5

9-6
9-7
9-8
9-9
9-10

14-1

Creating Loadable Security Services
Preparing and Loading a System Service
Removing an Executive Loaded Image

Installing Site-Specific Password Policy Filters
Creating a Shareable Image
Installing a Shareable Image .

Interpreting MACRO Examples
Using $GETJPI to Obtain Information About the Calling Process
Using $GETJPI and the Process Name to Obtain Information About a
Process .. .
Using $GETJPI to Request Information About All Processes on the
Local System
Using $GETJPI and $PROCESS_SCAN to Select Process Information
by User Name .. .
Using $GETJPI and $PROCESS_SCAN with Multiple Values for One
Criterion .. .
Selecting Processes That Match Multiple Criteria
Searching the Cluster for Process Information
Searching for Process Information on Specific Nodes in the Cluster ..
Using a $GETJPI Buffer to Improve Performance
Using $GETJPI Control Flags to Avoid Swapping a Process into the
Balance Set .
Using Transaction Management Services

A-5
A-5
A-5

8-1
8-2
8-2
8-3
8-4
8-5
8-5
8-6
8-8
8-8

C-1
C-2
C-3
C-4
C-4
C-5

2-18
9-3

9-4

9-5

9-7

9-10
9-10
9-12
9-12
9-15

9-17
14-6

Figures

2-1
3-1
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
8-1
11-1
11-2
11-3
12-1
13-1
13-2
13-3
13-4
14-1

Tables

1-1
1-2
3-1
4-1
6-1
7-1
7-2
8-1
8-2
11-1
12-1
12-2
13-1
13-2
13-3

Procedure Argument Passing Mechanisms
Flowchart of $CHKPRO Operation
Files-11 Volume Protection Fields
Foreign Volume Protection Fields
Mailbox Protection Fields .
Physical I/O Access Checks .
Logical I/O Access Checks .
Physical, Logical, and Virtual I/O
I/O Function Format
Function Modifier Format
I/O Status Block
$MOUNT Item Descriptor
Image Exit and Process Deletion
Search of Stack for Condition Handler
Argument List and Arrays Passed to Condition Handler
Unwinding the Call Stack
Layout of Process Virtual Address Space
Model Database
Three Lock Queues
A Deadlock
The Lock Status Block
Transaction Processing Components

Main Headings in the Routine Template
Language Conventions for Optional Arguments
ACE Type-Independent Information
Summary of Event Flag and Cluster Numbers
Summary of Privileges
Read and Write I/O Functions
Default Device Names for I/O Services
Process Identification
Process Hibernation and Suspension
Summary of Exception Conditions
Sample Virtual Address Arrays
Flag Bits to Set for Specific Section Characteristics
Compatibility of Lock Modes
Legal QUECVT Conversions
Effect of Lock Conversion on Lock Value Block

2-16
3-29
7-5
7-5
7-5
7-8
7-9

7-10
7-11
7-12
7-17
7-22
8-17
11-8
11-9

11-14
12-2
13-2
13-5
13-6
13-8
14-2

1-3
1-5

3-18
4-2
6-6

7-11
7-27
8-8

8-11
11-2
12-5

12-10
13-4

13-10
13-12

xi

Preface

This manual provides guidelines for how to use the system services on a VMS
operating system.

You can use VMS system services only in programs written in languages that
produce native code for the VAX hardware. At present these languages include
VAX MACRO and the following high-level languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAXC
VAX COBOL
VAX COBOL-74
VAX CORAL
VAXDIBOL
VAX FORTRAN
VAX Pascal
VAX PL/1

Intended Audience
This manual is intended for system and application programmers who want to call
system services.

Document Structure
This manual is organized as follows:

• Chapter 1 introduces the system services. It presents overviews of the
categories of system services and explains the documentation format of the
service descriptions used in the VMS System Services Reference Manual.

• Chapter 2 describes how to call system services. It contains detailed
information for the VAX MACRO programmer and general information
for the high-level language programmer. For additional information about a
specific high-level language and programming examples in that language, see
the user's guide for that language.

• Chapters 3 through 14 guide new users in understanding how the system
services work and how to use them. Each category of services has its own
chapter. Examples are provided in VAX MACRO and VAX FORTRAN,
although they are explained in a way meaningful to all high-level language
programmers.

• Chapter 15 contains sample programs that use various system services.

• Appendix A contains information about how you can code your own system
services.

xiii

• Appendix B provides a programmer's guide for using shared memory.

• Appendix C provides instructions for implementing site-specific security
policies.

Associated Documents
For a detailed description of each system service routine, see the VMS System
Services Reference Manual.

The VAX Procedure Calling and Condition Handling Standard, which is
documented in the Introduction to VMS System Routines, contains useful
information for anyone who wants to call system services.

VAX MACRO programmers can find additional information about calling system
services in the VAX MACRO and Instruction Set Reference Manual.

High-level language programmers can find additional information about calling
system services in the language reference manual and language user's guide
provided with the VAX language.

The following documents may also be useful:

• Guide to Using VMS Command Procedures

• Guide to VMS File Applications

• Guide to VMS System Security

• VMS Networking Manual

• VMS Record Management Services Manual

• VMS I I 0 User's Reference Manual: Part I

• VMS I I 0 User's Reference Manual: Part II

For a complete list and description of the manuals in the VMS document set, see
the Overview of VMS Documentation.

Conventions

xiv

The following conventions are used in this manual:

Ctrl/x

PFl x

A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key
or a pointing device button.

A sequence such as PFl x indicates that you must first
press and release the key labeled PFl, then press and
release another key or a pointing device button.

In examples, a horizontal ellipsis indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information
can be entered.

()

[]

{}

red ink

boldface text

italic text

UPPERCASE TEXT

numbers

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the
choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory name
in a file specification or in the syntax of a substring
specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose or
click on.

For online versions of the book, user input is shown in
bold.

Boldface text represents the introduction of a new term
or the name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in online
versions of the book.

Italic text represents information that can vary in
system messages (for example, Internal error number).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for a
system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-binary,
octal, or hexadedmal-are explicitly indicated.

xv

1
Introduction to System Services

System services are procedures that the VMS operating system uses to control
resources available to processes; to provide for communication among processes;
and to perform basic operating system functions, such as the coordination of
input/output operations.

Although most system services are used primarily by the operating system on
behalf of logged-in users, they are also available for general use and provide
mechanisms that you can use in application programs. For example, when you
log in to the operating system, the Create Process ($CREPRC) system service
is called to create a process on your behalf. You may, in turn, write a program
that calls the $CREPRC system service to create a subprocess to perform certain
functions for an application.

System services can be divided into functional groups. The following table lists
each group of system services and its function.

Services Group

Security

Event Flag

AST

Logical Nam es

Function

The security services provide various mechanisms that
you can use to enhance the security of VMS operating
systems.

A process can use event flags to synchronize sequences
· of operations in a program. Event flag services clear,

set, and read event flags, and place a process in a wait
state pending the setting of an event flag or flags.

Process execution can be interrupted by events (such
as I/O completion) for the execution of designated
subroutines. These software interrupts are called
asynchronous system traps (ASTs) because they occur
asynchronously to process execution. System services
are provided so that a process can control the handling
of ASTs.

Logical name services provide a generalized technique
for maintaining and accessing character string logical
name and equivalence name pairs. Logical names
can provide device independence for system and
application program input and output operations.

1-1

Introduction to System Services

Services Group

Input/Output

Process Control

Process Information

Timer and Time Conversion

Condition-Handling

Memory Management

Change Mode

Lock Management

1-2

Function

I/O services perform input and output operations
directly, rather than through the file handling services
of the VMS Record Management Services (RMS). I/O
services do the following:

• Perform logical, physical, and virtual input and
output operations

• Format output lines converting binary numeric
values to ASCII strings and substituting variable
data in ASCII strings

• Perform network operations

• Send messages to system processes

Process control services let you create, delete, and
control the execution of processes.

Process information services let you obtain information
about processes.

Timer services schedule program events for a
particular time of the day or after a specified interval
of time has elapsed. The time conversion services
provide a way to obtain and format binary time values
for use with the timer services.

Condition handlers are procedures that can be
designated to receive control when a hardware or
software exception condition occurs during image
execution. Condition-handling services designate
condition handlers for special purposes.

Memory management services provide ways to use the
virtual address space available to a program. Included
are services that do the following:

• Allow an image to increase or decrease the amount
of virtual memory data available

• Control the paging and swapping of virtual
memory

• Create and access files in memory that contain
shareable code or data

Change mode services alter the access mode of a
process to a more privileged mode to execute particular
routines, or change the stack pointer for a less
privileged mode. These services are used primarily
by the operating system.

Lock management services let cooperating processes
synchronize their access to shared resources.

Services Group

DECdtm

Introduction to System Services

Function

DECdtm services provide for complete and consistent
executions of distributed transactions. DECdtm
services coordinate distributed transactions by using
the two-phase commit protocol, and by implementing
special logging and communication techniques.
DECdtm services do the following:

• Start transactions

• End transactions

• Abort transactions

1.1 Documentation Format for System Service Routines
Each system service routine in the VMS System Services Reference Manual is
documented using a structured format called the routine template. This section
discusses the main headings in the routine template, the information that is
presented under each heading, and the format used to present the information.

The purpose of this section is to explain where to find information and how to
read it correctly, not how to use it. For a substantive discussion of the contents,
meaning, and use of the information provided in the routine template, see the
Introduction to VMS System Routines.

Some main headings in the routine template contain information that requires no
further explanation beyond what is given in Table 1-1. However, the following
main headings contain information that does require additional discussion, and
this discussion takes place in the remaining subsections of this section:

Format heading
Returns heading
Arguments heading
Condition Values Returned heading

Table 1-1 Main Headings in the Routine Template

Main Heading

Routine Name

Routine Overview

Format

Returns

Description

The routine entry point name appears at the top of the
first page. It is usually, though not always, followed by the
English text name of the routine.

The routine overview appears directly below the routine
name; the overview explains, usually in one or two
sentences, what the routine does.

The format heading follows the routine overview. The
format gives the routine entry point name and the routine
argument list.

The returns heading follows the routine format. It explains
what information is returned by the routine.

(continued on next page)

1-3

Introduction to System Services
1.1 Documentation Format for System Service Routines

Table 1-1 (Cont.) Main Headings in the Routine Template

Main Heading

Arguments

Description

Condition Values
Returned

Description

The arguments heading follows the returns heading.
Detailed information about each argument is provided
under the arguments heading. If a routine takes no
arguments, it is indicated by the word "None."

The description heading follows the arguments heading.
The description section contains information about specific
actions taken by the routine: interaction between routine
arguments, if any; operation of the routine within the
context of VMS; user privileges needed to call the routine, if
any; system resources used by the routine; and user quotas
that may affect the operation of the routine.

For some simple routines, a description section is not
necessary because the routine overview provides the needed
information.

Always present. The condition values returned section
follows the description section. It lists the condition values
(typically status or completion codes) returned by the
routine.

1.1.1 Format Heading

1-4

The following two types of information may be present under the Format heading:

• Procedure call format

• Explanatory text

All system service routines have a procedure call format. Use of the procedure
call format results in a routine call conforming to the procedure call mechanism
described in the VAX Procedure Calling and Condition Handling Standard; for
example, an entry mask is created, registers are saved, and so on.

Explanatory text may follow the procedure call format. This text is present only
when needed to clarify the format(s). For example, the call format indicates that
arguments are optional by enclosing them in brackets ([]). However, square
brackets alone cannot convey all the important information that may apply to
optional arguments. For example, in some routines that have many optional
arguments, if you select one optional argument, you must select another optional
argument. In such cases, text following the format clarifies this fact.

A procedure call format is shown under the Format heading. For example:

ENTRY-POINT-NAME arg1 ,arg2 ,[arg3] ,nullarg ,[arg5] ,[arg6]

The format given here, though intended to be generic, is in fact specific to some
extent; it is chosen in order to bring to light some of the syntactical mechanisms
used to handle the more complex routine calls.

The sample format exemplifies the use of the following syntax rules.

Introduction to System Services
1.1 Documentation Format for System Service Routines

Element Syntax Rule

Entry Point Names Entry point names are always shown in uppercase
letters.

Argument Names

Spaces

Brackets ([])

Commas

Null Arguments

Argument names are always shown in lowercase
letters.

You must leave at least one space between the entry
point name and the first argument, and between
arguments.

Brackets enclose optional arguments; arg3, arg5, and
arg6 are optional arguments because they are enclosed
in brackets. See Table 1-2 for a summary of the way
that some languages treat optional arguments.

Between arguments, the comma always follows the
space.

A null argument is a placeholding argument. It is used
to hold a place in the argument list for an argument
Digital has not yet implemented. A null argument
is always given the name "null_arg." When calling a
routine that has a null argument, you must either (1)
supply the value 0 for the null argument or (2) supply
no value but include the comma in the call format to
mark its place.

Languages like VAX MACRO and BLISS allow you to omit trailing arguments
and their placeholders. Optional arguments are handled differently by other
languages. If you are coding in VAX BASIC, VAX C, VAX COBOL, VAX
FORTRAN, or VAX Pascal, you cannot omit trailing arguments; the compilers for
these languages expect all arguments to be present.

For example, if you code a system service call from a C program and replace
the arg5 and arg6 arguments with commas, the program will not compile; if
you omit the arguments and the commas, the program compiles but you get a
run-time error. The C language requires a zero in place of omitted arguments.

Table 1-2 describes how different languages expect optional arguments to be
treated.

Table 1-2 Language Conventions for Optional Arguments

Language

BASIC

BLISS-32

c
COBOL

FORTRAN

MACRO

Pascal

PL/1

How to Omit Optional Arguments

Replace the argument with a comma

Omit the keyword or replace the argument with 0

Replace the argument with 0

Replace the argument with the keyword OMITTED

Replace the argument with a comma

Omit the keyword or replace the argument with 0

Replace the argument with a comma

Replace the argument with a comma

See your language reference manual for a more detailed explanation of how to
handle placeholders for optional arguments.

1-5

Introduction to System Services
1.1 Documentation Format for System Service Routines

1.1.2 Returns Heading
The information under the Returns heading describes what information, if any,
the routine returns to the caller. For system services, the information returned is
always a longword condition value.

This condition value contains various kinds of information, but most importantly
for the caller, it describes (in bits 0 through 3) the completion status of the
operation. Programmers test the condition value to determine if the routine
completed successfully.

Status information is returned by means of a condition value in a VAX register
(RO). This is of little importance to high-level language programmers because the
high-level language programmer receives this status information in the return (or
status) variable he or she uses when making the call. The run-time environment
established for the high-level language program allows the status information in
RO to be moved automatically to the user's return variable.

The Condition Values Returned heading in the routine template describes the
possible condition values that the routine can return.

1.1.3 Arguments Heading
Detailed information about each argument listed in the call format is shown
under the Arguments heading. Arguments are described in the order in which
they appear in the call format. If the routine has no arguments, it is indicated by
the word None.

The following format is used to describe each argument.

argument-name

VMS Usage:
type:
access:
mechanism:

argument-VMS-data-type
argument-data-type
argument-access
argument-passing-mechanism

This is followed by one or more paragraphs of structured text describing how
to use the argument. The argument descriptions are followed by descriptions of
function codes and item codes if the func argument or the itmlst argument is
used.

1.1.3.1 VMS Usage Entry

f-6

The VMS usage entry indicates the VMS data type of the argument, not the VAX
standard data type. Each VMS data type has only one storage representation; for
example, the VMS data type access_mode is an unsigned byte. In addition, a
VMS data type might or might not have a conceptual meaning.

Most VMS data types can be considered conceptual types; that is, they carry
meaning unique to the context of the VMS operating system. For example, the
storage representation of the VMS data type access mode is an unsigned byte,
and the conceptual basis for this unsigned byte is that it designates a hardware
access mode and therefore has only four valid values: 0, designating kernel mode;
1, executive mode; 2, supervisor mode; and 3, user mode. However, some VMS
data types are not conceptual types; that is, they specify a storage representation
but carry no other semantic content from the point of view of VMS. For example,
the VMS data type byte_signed is not a conceptual type.

The Introduction to VMS System Routines describes the VMS data types in more
detail. It also contains language implementation charts, which describe how to
construct each of the VMS data types in a number of high-level languages.

Introduction to System Services
1.1 Documentation Format for System Service Routines

1.1.3.2 Type Entry
When a calling program passes an argument to a system service, the service
expects the argument to be of a particular data type. The service descriptions in
the VMS System Services Reference Manual indicate the expected data types for
each argument.

Properly speaking, an argument does not have a data type; rather, the data
specified by an argument has a data type. The argument is merely the vehicle for
the passing of data to the called routine.

As described in the VAX Procedure Calling Standard in the Introduction to VMS
System Routines, procedure calls result in the construction of an argument list.
This argument list is a vector of longwords. The first longword in the list contains
a count of the number of remaining longwords, and each remaining longword is
one argument. Thus, an argument is one longword in the argument list.

Nevertheless, the phrase "argument data type" is frequently used to describe the
data type of the data specified by the argument. This terminology is used because
it is simpler and more straightforward than the strictly accurate phrase "data
type of the data specified by the argument."

The Introduction to VMS System Routines describes the data types allowed by the
VAX Procedure Calling Standard.

1.1.3.3 Access Entry
The argument-access entry describes the way in which the called routine accesses
the data specified by the argument. The following three methods of access are the
most common:

• Read only. Data upon which a routine operates, or data the routine needs to
perform its operation, must be read by the called routine. Such data is also
called input data. When an argument specifies input data, the "access" entry
shows "read only."

The term "only" indicates that the called routine does not both read and write
(that is, modify) the input data. Thus, input data supplied by a variable is
preserved when the called routine completes execution.

• Write only. Data that the called routine returns to the calling routine must
be written into a location where the calling routine can access it. Such data
is also called output data; When an argument specifies output data, the
"access" entry shows "write only."

The term "only" is present to indicate that the called routine does not read
the contents of the location either before or after it writes into the location.

• Modify. When an argument specifies data that is both read and written
by the called routine, the "access" entry shows "modify." In this case, the
called routine reads the input data, which it uses in its operation, and
then overwrites the input data with the results (the output data) of the
operation. Thus, when the called routine completes execution, the input data
the argument specifies is lost.

Following is a complete list of the access types allowed by the VAX Procedure
Calling Standard:

• Read only

• Write only

• Modify

1-7

Introduction to System Services
1.1 Documentation Format for System Service Routines

• Function call (before return)

• JMP after unwind

• Call after stack unwind

• Call without stack unwind

1.1.3.4 Mechanism Entry
The way in which an argument specifies the actual data to be used by the called
routine is defined in terms of the argument-passing mechanism. There are three
types of argument-passing mechanisms:

• By value. When the longword argument in the argument list contains the
actual data to be used by the routine, the actual data is said to be passed to
the routine by value. In this case, the longword argument contains the actual
data; in other words, the argument is the actual data. Note that because an
argument is only one longword in length, only data that can be represented in
one longword can be passed by value.

• By reference. When the longword argument in the argument list contains the
address of the data to be used by the routine, the data is said to be passed by
reference. In this case, the argument is a pointer to the data.

• By descriptor. When the longword argument in the argument list contains
the address of a descriptor, the data is said to be passed by descriptor. A
descriptor consists of two or more longwords (depending on the type of
descriptor used), which describe the location, length, and data type of the
data to be used by the called routine. In this case, the argument is a pointer
to a descriptor that itself is a pointer to the actual data.

The only descriptor class that system services accept is class S.

The following table contains the passing mechanisms allowed by the VAX
Procedure Calling Standard and the system services.

Passing
Mechanism

By value

By reference

By reference, array
reference

By descriptor,
fixed-length

Descriptor Code

DSC$K_ CLASS_S

1.1.3.5 Explanatory Text Entry

1-8

For each argument, one or more paragraphs of explanatory text follow the type,
access, and mechanism entries. The first paragraph is highly structured and
always contains the following items of information:

• An initial sentence fragment that describes (1) the nature of the data
specified by the argument and (2) the way in which the routine uses this
data. For example, if an argument were supplying a number, which the
routine was to convert to another data type, the initial sentence fragment
would be something like the following: "number that is to be converted to the
such-and-such data type."

Introduction to System Services
1.1 Documentation Format for System Service Routines

• A sentence expressing the relationship between the argument and the data it
specifies. This relationship is the passing mechanism used to pass the data.

If the passing mechanism is by value, this sentence says something like the
following: "the xxx argument contains (or is) the such-and-such data."

If the passing mechanism is by reference, this sentence says something like
the following: "the xxx argument is the address of the such-and-such data."

If the passing mechanism is by descriptor, this sentence says something like
the following: "the xxx argument is the address of a descriptor pointing to the
such-and-such data."

Additional explanatory paragraphs follow each argument, as needed. For
example, some arguments specify complex data consisting of many discrete
fields, each of which has a particular purpose and use. In such cases, additional
paragraphs provide detailed descriptions of each such field, symbolic names for
the fields, if any, and guidance relating to their use.

1.1.4 Condition Values Returned Heading
A condition value is an unsigned longword that has the following uses in the VAX
architecture:

• It indicates the success or failure of a called procedure.

• It describes an exception condition when an exception is signaled.

• It identifies system messages.

• It reports program success or failure to the command language level.

See the illustration in the Introduction to VMS System Routines that depicts the
format and contents of the longword condition value. The Introduction to VMS
System Routines also describes these contents and explains in detail the uses of
the condition value.

Under the Condition Values Returned heading, a two-column list gives the
symbolic code for each condition value that the routine can return and its
accompanying description. This description explains whether the condition value
indicates success or failure and, if failure, what user action may have caused the
failure and what can be done to correct it.

Note that the list of condition values is as complete as possible. However, the
complexity of some internal routines occasionally causes certain rare condition
codes to be returned. If a condition value is not listed, see the VMS System
Messages and Recovery Procedures Reference Manual.

Symbolic codes for condition values are system defined. The symbolic code
defined for each condition value equates to a number that is identical to the
longword condition value when interpreted as a number. In other words, though
the condition value consists of several fields, each of which can be interpreted
individually for specific information, the entire longword condition value itself
can be interpreted as an unsigned longword integer, and this integer has an
equivalent symbolic code.

Note that if a called routine generates an exception condition during execution,
the exception condition is signaled; the exception condition is then handled
by a condition handler (either user-supplied or system-supplied). Depending on
the nature of the exception condition and on the condition handler that handles
the exception condition, the called routine either continues normal execution or
terminates abnormally.

1-9

Introduction to System Services
1.1 Documentation Format for System Service Routines

The Condition Values Returned section describes the condition values returned
by the routine when it completes execution without generating an exception
condition.

1.1.5 Condition Values Returned· in the 1/0 Status Block Heading

1-10

When the called routine returns a condition value in an I/O status block, the
possible condition values that the routine can return are listed under the
Condition Values Returned in the I/O Status Block heading.

Some system services complete asynchronously; that is, they return to the caller
immediately after the call to the service is successfully queued but before the
operation to be performed by the service has completed. This lets the calling
program continue execution while the system service itself is executing. System
services that complete asynchronously all have arguments that specify an 1/0
status block. When the system service operation has completed, a condition value
specifying the completion status of the operation is written to the I/O status
block.

The first word in the 1/0 status block receives the condition value for the final
completion status of an asynchronous system service. Representing a longword
condition value in a word-length field is possible for system services because the
high-order word in system service condition values is 0.

One field in the condition value specifies which facility generated the condition
value; this field is in the high-order word of the longword condition value. For
the system facility, the value of this field is 0. This fact allows condition values
generated by the system facility (which includes all system services) to be
represented in a word, rather than a longword, because bits in the high-order
word are all zeros.

For an explanation of the contents of the fields in the longword condition value,
see the Introduction to VMS System Routines.

2
Calling System Services

System service procedures are called using the standard VAX procedure calling
conventions. The programming languages that generate VAX native mode
instructions provide mechanisms for specifying the procedure calls. These
languages and supporting documentation are listed in the Preface.

When you code a system service call, you must supply whatever arguments the
service requires.

When the service completes execution, it returns control to the calling program
with a return condition value. The caller should analyze the condition value to
determine the success or failure of the service call so that the program can alter
the flow of execution, if necessary.

If you are a VAX MACRO programmer, you should read Section 2.4 for details on
how to write the instructions that generate system service calls.

If you program in either VAX MACRO or a high-level language, you should
read Section 2.2, Section 2.7, and Section 2.9. Section 2.2 provides information
about specifying arguments to system services. Section 2. 7 discusses methods for
checking return status from system services. Section 2.9 provides programming
examples in a number of VAX native languages to aid high-level language
programmers in interpreting the programming examples that appear throughout
Chapters 3 through 15.

If you program in a high-level language, you should read Section 2.8 for
information about how to call system services from high-level languages. For
detailed information and examples, see the user's guide for your programming
language.

System service macros generate argument lists and CALL instructions
to call system services. These macros are located in the system library
SYS$LIBRARY:STARLET.MLB. When you assemble a source program, this
library is searched automatically for unresolved references.

Knowledge of VAX MACRO rules for assembly language programming is required
for understanding the material presented in this section. The VAX MACRO and
Instruction Set Reference Manual contains the necessary prerequisite information.

2.1 System Services and System Integrity
Many system services are available and suitable for application programs, but the
use of some services must be restricted to protect the performance of the system
and the integrity of user processes.

For example, because the creation of permanent mailboxes uses system dynamic
memory, the unrestricted use of permanent mailboxes could decrease the amount
of memory available to other users. Therefore, the ability to create permanent
mailboxes is controlled: a user must be specifically assigned the privilege to use
the Create Mailbox ($CREMBX) system service to create a permanent mailbox.

2-1

Calling System Services
2.1 System Services and System Integrity

The various controls and restrictions applied to system service usage are
described in this chapter. The Description section of each system service in the
VMS System Services Reference Manual lists any privileges and quotas necessary
to use the service.

2.1.1 User Privileges
The system manager, who maintains the user authorization file for the system,
grants privileges to use protected system services. The user authorization file
contains, in addition to profile information about each user, a list of specific user
privileges and resource quotas.

When you log in to the system, the privileges and quotas assigned to you are
associated with the process created on your behalf. These privileges and quotas
are applied to every image the process executes.

When an image issues a call to a system service that is protected by privilege, the
privilege list is checked. If you have the specific privilege required, the image is
allowed to execute the system service; otherwise, a condition value indicating an
error is returned.

For a list of privileges, see the description of the Create Process ($CREPRC)
system service in the VMS System Services Reference Manual.

2.1.2 Resource Quotas
Many system services require certain system resources for execution. These
resources include system dynamic memory and process quotas for I/O operations.
When a system service that uses a resource controlled by a quota is called, the
process's quota for that resource is checked. If the process has exceeded its quota,
or if it has no quota allotment, an error condition value may be returned.

2.1.3 Access Modes

2-2

A process can execute at any one of four access modes: user, supervisor, executive,
or kernel. The access modes determine a process's ability to access pages of
virtual memory. Each page has a protection code associated with it, specifying
the type of access~read, write, or no access-allowed for each mode. The VAX
Architecture Handbook provides additional information about access modes.

For the most part, user-written programs execute in user mode; system programs
executing at the user's request (system services, for example) may execute at one
of the other three, more privileged, access modes.

In some system service calls, the access mode of the caller is checked. For
example, when a process tries to cancel timer requests, it can cancel only those
requests that were issued from the same or less privileged access modes~ For
example, a process executing in user mode cannot cancel a timer request made
from supervisor, executive, or kernel mode.

Note that many system services use access modes to protect system resources,
and thus employ a special convention for interpreting access mode arguments.
You can specify an access mode using a numeric value or a symbolic name.
The following table shows the access modes and their numeric values, symbolic
names, and privilege ranks.

Calling System Services
2.1 System Services and System Integrity

Access Numeric
Mode Value

Kernel 0

Executive 1

Supervisor 2

User 3

Symbolic
Name

PSL$C_KERNEL

PSL$C_EXEC

PSL$C_SUPER

PSL$C_USER

Privilege
Rank

High

Low

The symbolic names are defined by the symbolic definition macro $PSLDEF.

System services that permit an access mode argument allow callers to specify
only an access mode less privileged than, or equal in privilege to, the access mode
from which the service was called. If the access mode specified is more privileged
than the access mode from which the service was called, the less privileged access
mode is always used.

To determine the mode to use, VMS compares the specified access mode with the
access mode from which the service was called. Because this operation results
in an access mode with a higher numeric value (when the access mode of the
caller is different from the specified access mode), the access mode is said to be
maximized.

Because much of the code you write executes in user mode, you can omit the
access mode argument. The argument value defaults to 0 (kernel mode), and
when this value is compared with the value of the current execution mode
(3, user mode), the higher value (3) is used.

2.2 Determining Arguments for System Services
You can determine the arguments required by a system service from each
service's description in the VMS System Services Reference Manual. The Format
section in each system service description indicates the positional dependencies
and keyword names of each argument, as shown in the following sample:

$SERVICE arga ,argb ,argc ,argd

This format indicates that the macro name of the service is $SERVICE and that
it requires four arguments, ordered as shown and with keyword names arga,
argb, argc, and argd. You must use the following format for the argument list
for this service.

31 8 7 0

0 I 4

arga

argb

argc

argd

ZK-0854-GE

2-3

Calling System Services
2.2 Determining Arguments for System Services

All arguments are longwords. The first longword in the list must always contain,
in its low-order byte, the number of arguments in the remainder of the list. The
remaining three bytes must be zeros.

Many arguments to system services are optional; these are indicated by square
brackets in the macro formats. For example, if the second and third arguments of
$SERVICE are optional, the macro format looks like the following:

$SERVICE arga ,[argb] ,[argc] ,argd

If you omit an optional argument in a system service macro, the macro supplies a
default value for the argument.

Arguments that are optional to system services always have default values,
whether they are passed by value, by reference, or by descriptor. In almost
every case, an optional argument defaults to 0. The macros used to call the
system services allow some languages to set default values to values other than
0 (VAX MACRO and VAX BLISS-32 ailow this). The descriptions of the optional
arguments in the VMS System Services Reference Manual specify default values
other than 0.

The description of an optional argument always specifies what action the service
takes when the default value is used.

Arguments that specify a return address may be optional when the system
service returns information; if the program does not require the information, you
can omit the optional argument.

2.3 Obtaining Values for Symbolic Codes

2-4

Individual services have symbolic codes for special return conditions, argument
list offsets, identifiers, and flags associated with these services. For example,
the Create Process ($CREPRC) service (which is used to create a subprocess or a
detached process) has symbolic codes associated with the various privileges and
quotas you can grant to the created process.

The default system macro library, STARLET.MLB, contains the macro definitions
for most system symbols. When you assemble a source program that calls any of
these macros, the assembler automatically searches STARLET.MLB for the macro
definitions. Each symbol name has a numeric value.

If your language has a method of obtaining values for these symbols, this method
is explained in the user's guide.

If your language does not have such a method, you can do the following:

1. Write a short VAX MACRO program containing the desired macro(s).

2. Assemble the program and generate a listing. Using the listing, find the
desired symbols and their hexadecimal values.

3. Define each symbol with its value within your source program.

For example, to use the Get Job/Process Information ($GETJPI) service to find
out the accumulated CPU time (in 10-millisecond ticks) for a specified process,
you must obtain the value associated with the item identifier JPI$_CPUTIM. You
can do this in the following way:

1. Create the following three-line VAX MACRO program (named JPIDEF.MAR
here; you may choose any name you want).

Calling System Services
2.3 Obtaining Values for Symbolic Codes

.TITLE JPIDEF Obtain values for $JPIDEF
$JPIDEF GLOBAL ; These MUST be UPPERCASE
.END

2. Assemble and link the program to create the file JPIDEF.MAP.

$ MACRO JPIDEF
$ LINK/NOEXE/MAP/FULL JPIDEF
%LINK-W-USRTFR, image NL:[] .EXE; has no user transfer address

The file JPIDEF.MAP contains the symbols defined by $JPIDEF listed both
alphabetically and numerically.

3. Find the value of JPI$_CPUTIM and define the symbol in your program.

2.4 Calling System Services from VAX MACRO
System service macros generate argument lists and CALL instructions
to call system services. These macros are located in the system library
SYS$LIBRARY:STARLET.MLB. When you assemble a source program, this
library is searched automatically for unresolved references.

Knowledge of VAX MACRO rules for assembly language programming is required
for understanding the material presented in this section. The VAX MACRO and
Instruction Set Reference Manual contains the necessary prerequisite information.

Each system service has four macros associated with it. These macros allow
you to define symbolic names for argument offsets, construct argument lists for
system services, and call system services. The following table lists the generic
macros and the functions they serve.

Macro

$nameDEF

$name

$name_S

$name_G

Function

Defines symbolic names for the argument list offsets

Defines symbolic names for the argument list offsets and
constructs the argument list

Calls the system service and constructs the argument list

Calls the system service and uses the argument list
constructed by $name macro

2.4.1 Using Macros to Construct Argument Lists
There are two generic macros for constructing argument lists for system services:

$name
$name_S

The macro you use depends on which macro you are going to use to call the
system service. If you use the $name_G macro to call a system service, you
should use the $name macro to construct the argument list. If you use the
$name_S macro to call a system service, you can also use it to construct the
argument list.

2-5

Calling System Services
2.4 Calling System Services from VAX MACRO

2.4.1.1 Specifying Arguments with the $name_S Macro and the $name Macro

2-6

When yoll use the $name_S or the $name macro to construct an argument list for
a system service, you can specify arguments in any of three ways:

• By using keywords to describe the arguments. All keywords must be followed
by an equal sign (=) and then by the value of the argument.

• By using positional order, with omitted arguments indicated by commas in the
argument positions. You can omit commas for optional trailing arguments.

• By using both positional dependence and keyword names (positional
arguments must be listed first).

For example, $SERVICE may have the following format:

$SERVICE arga ,[argb] ,[argc] ,argd

Assume, for the purposes of this example, that arga and argb are arguments
that require you to specify numeric values and that argc and argd require you to
specify addresses.

The following two examples show valid ways of writing the $name_S macro to
call $SERVICE.

$name_S Example 1: Using Keywords

MYARGD: .LONG 100

$SERVICE_S ARGB=#O,ARGC=O,ARGA=#l,ARGD=MYARGD

$name_S Example 2: Specifying Arguments in Positional Order

MYARGD: .LONG 100

$SERVICE_S #1 11 ,MYARGD

The argument list is pushed on the stack, as follows.

PUS HAL
PUSHL
PUSHL
PUSHL

MYARGD
#0
#0
#1

Note that all arguments, whether specified positionally or with keywords, must
be valid assembler expressions because they are used as source operands in
instructions.

The following two examples show valid ways of writing a $name macro to
construct an argument list for a later call to $SERVICE.

$name Example 1: Using Keywords

LIST: $SERVICE -
ARGB=O, -
ARGC=O, -
ARGA=l, -
ARGD=MYARGD

Calling System Services
2.4 Calling System Services from VAX MACRO

$name Example 2: Specifying Arguments in Positional Order

LIST: $SERVICE -
1, I ,MYARGD

The argument list generated in both cases is as follows.

LIST: .LONG 4
.LONG 1
.LONG 0
.LONG 0
.ADDRESS -

MYARGD

Note that all arguments, whether specified in positional order or by keyword,
must be expressions that the assembler can evaluate to generate .LONG or
.ADDRESS data directives. Contrast this with the arguments for the $name_S
macro, which must be valid assembler expressions because they are used as
source operands in instructions.

2.4.1.2 Conventions for Specifying Arguments to System Services
You must specify the arguments according to the VAX MACRO assembler rules
for specifying and addressing operands.

The way to specify a particular argument depends on the following factors:

• Whether the system service requires an address or a value as the argument.
In the VMS System Services Reference Manual, the descriptions of the
arguments following a system service macro format always indicate if the
argument is an address. A Boolean value, number, or mask takes a value as
the argument.

• The system service macro being used. The expansions of the $name and
$name_S macros in the examples in the preceding section showed the code
generated by each macro.

If you are unsure whether you specified a value or an address argument correctly,
you can assemble the program with the .LIST MEB directive to check the macro
expansion. See the VAX MACRO and Instruction Set Reference Manual for
details.

2.4.1.3 Defining Symbolic Names for Argument List Offsets: $name and $nameDEF
You can refer symbolically to arguments in the argument list. Each argument in
an argument list has an offset from the beginning of the list; a symbolic name is
defined for the numeric offset of each argument. If you use the symbolic names to
refer to the arguments in a list, you do not have to remember the numeric offset
(which is based on the position of the argument shown in the macro format).

There are two additional advantages to referring to arguments by their symbolic
names:

• Your program is easier to read.

• If an argument list for a system service changes with a later release of a
system, the symbols remain the same.

You form the offset names for all system service argument lists by concatenating
the service macro name with $_ and the keyword name of the argument. In the
following example, name is the name for the system service macro and keyword is
the keyword argument:

name$_keyword

2-7

Calling System Services
2.4 Calling System Services from VAX MACRO

Similarly, you can define a symbolic name for the number of arguments a
particular macro requires, as follows:

name$_NARGS

You can define symbolic names for argument list offsets automatically whenever
you use the $name macro for a particular system service. You can also define
symbolic names for system service argument lists using the $nameDEF macro.
This macro does not generate any executable code; it merely defines the symbolic
names so they can be used later in the program. For example:

$QIODEF

This macro defines the symbol QIO$_NARGS and the symbolic names for the
$QIO argument list offsets.

You may need to use the $nameDEF macro if you specify an argument list to
a system service without using the $name macro, or if a program refers to an
argument list in a separately assembled module.

For example, the $READEF and $READEFDEF macros define the values listed
in the following table.

Symbolic Name

READEF$_NARGS

READEF$_EFN

READEF$_STATE

Meaning

Number of arguments in the list (2)

Offset of EFN argument (4)

Offset of STATE argument (8)

Thus, you can specify the $READEF macro to build an argument list for a
$READEF system service call, as follows:

READLST: $READEF EFN=l,STATE=TESTl

Later, the program may want to use a different value for the state argument to
call the service. The following lines show how you can do this with a call to the
$name_G macro.

MOVAL TEST2,READLST+READEF$_STATE
$READEF_G READLST

The MOVAL instruction replaces the address TESTl in the $READEF argument
list with the address TEST2; the $READEF _G macro calls the system service
with the modified list.

2.4.2 Using Macros to Call System Services

2-8

There are two generic macros for writing calls to system services:

$name_S
$name_G

Which macro you use depends on how the argument list for the system service is
constructed.

• The $name_S macro requires you to supply the arguments to the system
service in the system service macro. The macro generates code to push the
argument list onto the call stack during program execution. With this macro,
you can use registers to contain or point to arguments so that you can write
reentrant programs.

Calling System Services
2.4 Calling System Services from VAX MACRO

• The $name_ G macro requires you to construct an argument list elsewhere
in the program and specify the address of this list as an argument to the
system service. (A macro is provided to create an argument list for each
system service.) With this macro, you can use the same argument list, with
modifications if necessary, for more than one invocation of the macro.

The $name_S macro generates a CALLS instruction; the $name_G macro
generates a CALLG instruction. The services are called according to the standard
procedure calling conventions. System services save all registers except RO and
Rl, and restore the saved registers before returning control to the caller.

The following sections describe how to code system service calls using each of
these macros.

2.4.2.1 The $name_S Macro
The $name_S macro call has the following format:

$name_S arg1, ... , argn

The macro generates code to push the arguments on the stack in reverse order.
The actual instructions used to place the arguments on the stack are determined
as follows:

• If the system service requires a value for an argument, either a PUSHL
instruction or a MOVZWL to -(SP) instruction is generated.

• If the system service requires an address for an argument, a PUSHAB,
PUSHAW, PUSHAL, or PUSHAQ instruction is generated, depending on the
context.

The macro then generates a call to the system service in the following format:

CALLS #n,@#SYS$name

In this format, n is the number of arguments on the stack.

2.4.2.2 Example of $name_S Macro Call
Because a $name_S macro constructs the argument list at execution time, you
can supply addresses and values using register addressing modes. The following
line can be used to execute the $READEF _S macro:

$READEF_S EFN=#l,STATE=(RlO)

RlO contains the address of the longword to receive the status of the flags.

This macro instruction is expanded as follows.

PUSHAL (RlO)
PUSHL #1
CALLS #2,@#SYS$READEF

2.4.2.3 The $name_G Macro
The $name_G macro requires a single operand:

$name G label

label
Address of the argument list.

2-9

Calling System Services
2.4 Calling System Services from VAX MACRO

The $name Macro
Macros are provided to create argument lists for the $name_G macro. The format
of the macros is as follows:

label: $name arg1 , ... ,argn

label
Symbolic address of the generated argument list. This is the label given as an
argument in the $name_G macro.

$name
The service macro name.

arg1 , ... ,argn
Arguments to be placed in successive longwords in the argument list.

The $name_G macro (used with the $name macro) is especially useful for doing
the following:

• Making calls to system services that have long argument lists

• Calling services repeatedly during the execution of a single program with the
same, or essentially the same, argument list

2.4.2.4 Example of $NAME and $name_G Macro Calls

2-10

The example that follows shows how you can write a call to the Read Event Flags
($READEF) system service using an argument list created by $name.

The $READEF system service has the following macro format:

$READEF efn ,state

The efn argument must specify the number of an event flag cluster, and the state
argument must supply the address of a longword to receive the contents of the
cluster.

You may specify these arguments using the $name macro, as follows.

READLST:
$READEF EFN=l, - i Argument list for $READEF

STATE=TESTFLAG

This $READEF macro generates the following code.

READLST:
.LONG 2
.ADDRESS 1
.ADDRESS -

TESTFLAG

i Argument list for $READEF

Executing the $READEF macro requires only the following line:

$READEF_G READLST

The macro generates the following code to call the Read Event Flags system
service:

CALLG READLST,@#SYS$READEF

SYS$READEF is the name of a vector to the entry point of the Read Event Flags
system service. The linker automatically resolves the entry point addresses for
all system services.

Calling System Services
2.5 System Service Completion

2.5 System Service Completion
When a system service completes, control is returned to your program. You
can specify how and when control is returned to your program by choosing
synchronous or asynchronous forms of system services and by enabling process
execution modes.

The following sections describe:

• When synchronous system services return control to your program

• When asynchronous system services return control to your program

• How you can synchronize the completion of asynchronous system services

• How control is returned to your program when special process execution
modes are enabled

2.5.1 Synchronous and Asynchronous System Services
You can execute a number of system services either synchronously or
asynchronously (for example, SYS$GETJPI and SYS$GETJPIW). The Wat
the end of the system service name indicates the synchronous version of the
system service.

The asynchronous version of a system service queues a request and returns
control to your program. You can perform operations while the system service
executes; however, you should not attempt to access information returned by the
service until you check that the system service has completed.

Typically, you pass an asynchronous system service an event flag and an I/O
status block. When the system service completes, it sets the event flag and
places the final status of the request in the I/O status block. You use the
SYS$SYNCH system service to ensure that the system service has completed.
You pass SYS$SYNCH the event flag and I/O status block that you passed to
the asynchronous system service; SYS$SYNCH waits for the event flag to be
set, then ensures that the system service (rather than some other program) sets
the event flag by checking the I/O status block. If the I/O status block is still 0,
SYS$SYNCH waits until the I/O status block is filled.

The synchronous version of a system service acts exactly as if you had used the
asynchronous version followed immediately by a call to SYS$SYNCH. If you omit
the efn argument, the service uses event flag number 0 whether you use the
synchronous or asynchronous version of a system service.

The following is an example of using the $SYNCH system service to check the
completion status of the asynchronous service $GET JPI.

2-11

Calling System Services
2.5 System Service Completion

Example of $SYNCH System Service in VAX FORTRAN
Data structure for SYS$GETJPI

INTEGER*4 STATUS,
2 FLAG,
2 PID_VALUE

I/0 status block
INTEGER*2 JPISTATUS,
2 LEN
INTEGER*4 ZERO /0/
COMMON /IO_BLOCK/ JPISTATUS,
2 LEN,
2 ZERO

Call SYS$GETJPI and wait for information
STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

STATUS = SYS$GETJPI (%VAL(FLAG) I

2 PID_ VALUE I

2
2
2
2
IF

NAME_BUF_LEN,
JPISTATUS,
I)

(.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

STATUS = SYS$SYNCH (%VAL(FLAG) I

2 JPISTATUS)
IF (.NOT. JPISTATUS) THEN

CALL LIB$SIGNAL (%VAL(JPISTATUS))
END IF

END

2.5.2 Process Execution Modes
When an error occurs during the execution of a system service, two process
execution modes affect how control is returned to the calling program:

• Resource wait mode

• System service failure exception mode

If you change the default setting in a program for either of these modes, the
program must handle the special return conditions that result. The next two
sections discuss considerations for using these modes.

2.5.2.1 Resource Wait Mode

2-12

Normally, when a system service is called and a required resource is not available,
the process is placed in a wait state until the resource becomes available. Then,
the service completes execution. This mode is called resource wait mode.

In a real-time environment, however, it may not be practical or desirable for a
program to wait. In these cases, you can choose to disable resource wait mode
so that, when a required resource is unavailable, control returns immediately to
the calling program with an error condition value. You can disable (and reenable)
resource wait mode with the Set Resource Wait Mode ($SETRWM) system service.

Calling System Services
2.5 System Service Completion

How a program responds to the unavailability of a resource depends very much
on the application and the particular service being called. In some instances,
the program may be able to continue execution and retry the service call later.
In other instances, it may be necessary only to note that the program is being
required to wait.

2.6 Condition Values Returned from System Services
When a system service finishes execution, a numeric status value is always
returned. For VAX MACRO calls, the status value is returned in general
register RO; however, the mechanisms used in high-level languages vary. See the
appropriate user's guide.

Depending on your specific needs, you can test just the low-order bit, the
low-order three bits, or the entire value, as follows:

• The low-order bit indicates successful (1) or unsuccessful (0) completion of the
service.

• The low-order three bits, taken together, represent the severity of the error.
The severity code values are as follows.

Value Meaning Symbolic Name

0 Warning STS$K_ WARNING

1 Success STS$K_SUCCESS

2 Error STS$K_ERROR

3 Informational STS$K_INFO

4 Severe or fatal STS$K_SEVERR
error

5-7 Reserved

The symbolic definition macro $STSDEF defines the symbolic names.

• The remaining bits (bits 3 through 31) classify the particular return condition
and the operating system component that issued the condition value. For
system service return status values, the high-order word (bits 16 through 31)
contains zeros.

Each numeric condition value has a unique symbolic name in the following
format:

SS$_code

where code is a mnemonic describing the return condition.

For example, the following usually indicates a successful return:

SS$_NORMAL

An example of an error return condition value is as follows:

SS$_ACCVIO

This condition value indicates that an access violation occurred because a service
could not read an input field or write an output field.

The symbolic definitions for condition values are included in the default system
library SYS$LIBRARY:STARLET.OLB. You can obtain a listing of these symbolic
codes at assembly time by invoking the system macro $SSDEF. To check return
conditions, use the symbolic names for system condition values.

2-13

Calling System Services
2.6 Condition Values Returned from System Services

VMS does not automatically handle system service failure or warning conditions;
you must test for them and handle them yourself. This contrasts with the
operating system's handling of exception conditions detected by the hardware
or software; the system handles these exceptions by default, although you can
intervene in or override the default handling by declaring a condition handler
(see Chapter 11).

2.6.1 Information Provided by Condition Values
Condition values returned by system services may provide information; that is,
they do not indicate only whether the service completed successfully. The usual
condition value indicating success is SS$_NORMAL, but others are defined.
For example, the condition value SS$_BUFFEROVF, which is returned when
a character string returned by a service is longer than the buffer provided to
receive it, is a success code. This condition value, however, gives the program
additional information.

Warning returns and some error returns indicate that the service may have
performed some, but not all, of the requested function.

The possible condition values that each service can return are described with the
individual service descriptions in the VMS System Services Reference Manual.
When you write calls to system services, read the descriptions of the return
condition values to determine whether you want the program to check for
particular return conditions.

2.7 Testing Return Condition Values
To check for successful completion after a system service call, the program can
test the low-order bit of RO and branch to an error checking routine if this bit is
not set, as follows:

BLBC RO,errlabel ; Error if low bit clear

Programs should not test for success by comparing the return status to SS$_
NORMAL. A future release of VMS may add new alternate success codes to an
existing service, causing programs that test for SS$_NORMAL to fail.

The error checking routine may check for specific values or for specific severity
levels. For example, the following instruction checks for an illegal event flag
number error condition:

CMPL #SS$_ILLEFC,RO ; Is event flag number illegal?

Note that return condition values are always longword values; however, all
system services always return the same value in the high-order word of all
condition values returned in RO.

2.7.1 System Messages Generated by Condition Values

2-14

When you execute a program with the DCL command RUN, the command
interpreter uses the contents of RO to issue a descriptive message if the program
completes with a nonsuccessful status.

The following code fragment shows a simple error".'checking procedure in a main
program.

Calling System Services
2.7 Testing Return Condition Values

$READEF_S -
EFN=#64, -
STATE=TEST

BSBW ERROR

ERROR: BLBC R0,10$
RSB

10$: RET

Check register 0
Success, return
Exit with RO status

After a system service call, the BSBW instruction branches to the subroutine
ERROR. The subroutine checks the low-order bit in register 0 and, if the bit is
clear, branches to a RET instruction that causes the program to exit with the
status of RO preserved. Otherwise, the subroutine issues an RSB instruction to
return to the main program.

If the event flag cluster requested in this call to $READEF is not currently
available to the process, the program exits and the command interpreter displays
the following message:

%SYSTEM-F-UNASEFC, unassociated event flag cluster

The keyword UNASEFC in the message corresponds to the condition value
SS$_UNASEFC.

The following three severe errors generated by the calls, not the services, can be
returned from calls to system services.

Error

SS$_ACCVIO

SS$_INSFARG

SS$_ILLSER

Meaning

The argument list cannot be read by the caller (using the
$name_G macro), and the service is not called.

This meaning of SS$_ACCVIO is different from its meaning
for individual services. When SS$_ACCVIO is returned from
individual services, the service is called, but one or more
arguments to the service cannot be read or written by the
caller.

Not enough arguments were supplied to the service.

An illegal system service was called.

2.8 High-Level Language Calls
Each high-level language supported by VMS provides some mechanism for calling
an external procedure and for passing arguments to that procedure. The specifics
of the mechanism and the terminology used, however, vary from one language
to another. This manual does not describe the ways in which each high-level
language calls system services. For specific information, Digital recommends that
you refer to the appropriate high-level language user's guide.

VMS system services are external procedures that accept arguments. There are
three ways to pass arguments to system services: by value, by reference, and by
descriptor. For more information, see Section 1.1.3.4.

The VMS System Services Reference Manual provides a description of each service
that indicates how each argument is to be passed. Phrases such as "an address"
and "address of a character string descriptor" identify reference and descriptor
arguments, respectively. Words like "Boolean value," "number," "value," or "mask"
indicate an argument passed by value. Figure 2-1 shows how arguments are
passed to the system services.

2-15

Calling System Services
2.8 High-Level Language Calls

Figure 2-1 Procedure Argument Passing Mechanisms

2-16

Argument List

(AP) IN

ARG 1
(a) Argument Passed by Value

ARG2

Actual Value . . .
ARGN

(AP) IN

ARG 1
(b) Argument Pas sed by Reference

ARG2

Pointer to
Actual Value Data J . l Actual Value J-. .

ARGN

N (AP)

ARG 1
(c) Argument Passed by Descriptor

ARG2 Descriptor

Pointer to
Descri tor

Class DType

ARGN

Note: ARG 1, ARG 2, and ARG N
can be passed by value, by
reference, or by descriptor
in any of these examples.

:(AP) = Argument Pointer

N = Number of Arguments

Pointer

Length

Data

B

c
D

E

F

G

H

T
Length

1

ZK-1962-GE

Calling System Services
2.8 High-Level Language Calls

Some services also require service-specific data structures that indicate functions
to be performed or hold information to be returned. The VMS System Services
Reference Manual includes descriptions of these service-specific data structures.
You can use this information and information from your programming language ·
manuals to define such service-specific item lists.

2.8.1 Testing Return Condition Values in High-Level Languages
When a service returns control to your program, it places a return status value in
the general register RO. The value in the low-order word indicates either that the
service completed successfully or some specific error prevented the service from
performing some or all of its functions. After each call to a system service, you
must check whether it completed successfully. You can also test for specific error
conditions. (See Section 2.6 for more information about return status values.)

Each language provides some mechanism for testing the return status. Often
you need only check the low-order bit, such as by a test for TRUE (success or
informational return) or FALSE (error or warning return).

To check the entire value for a specific return condition, each language provides
a way for your program to determine the values associated with specific
symbolically defined codes. You should always use these symbolic names when
you write tests for specific conditions.

For information about how to test for these codes, see the user's guide for your
programming language.

2.9 Interpreting the Programming Examples
Chapters 3 through 15 contain programming examples (using VAX MACRO and
VAX FORTRAN) designed to familiarize you with the system services and their
arguments. The examples do not show complete programming sequences; rather,
they show the code or arguments, or both, pertinent to a particular discussion.

Some of the more complex examples contain numeric symbols that correspond to
a list of explanatory text.

Although the examples are written using VAX MACRO and VAX FORTRAN,
they are designed to be as meaningful as possible to programmers using other
high-level languages. Example 2-1 shows a portion of a VAX MACRO program
and the equivalent code in the following languages:

VAX Ada
VAX BASIC
VAX BLISS-32
VAX COBOL
VAX FORTRAN
VAX Pascal

2-17

Calling System Services
2.9 Interpreting the Programming Examples

2-18

Example 2-1 Interpreting MACRO Examples
MACRO Example

CYGDES: .ASCID /CYGNUS/ tt; Descriptor for CYGNUS string
TBLDES: .ASCID /LNM$FILE_DEV/fD ; Logical name table
NAMBUF: .BLKB 255 8 ; Output buffer
NAMLEN: .BLKW 1 8 Word to receive length
ITEMS: .WORD 255 Output buffer length

.WORD LNM$STRING Item code

.ADDRESS - Output buffer
NAMBUF

.ADDRESS - Return length
NAMLEN

.LONG 0 List terminator

.ENTRY ORION,O CB
G) $TRNLNM_S -

Routine entry point & mask

TABNAM=TBLDES, -
LOGNAM=CYGDES, -
ITMLST=ITEMS

0 BLBC RO,ERROR ; Check for error

.END

MACRO Notes

tt The input character string descriptor argument is defined using the .ASCID
directive.

fD The name of the table to search is defined using the .ASCID directive.

8 Enough bytes to hold the output data are allocated for an output character
string argument.

8 The MACRO directive .BLKW reserves a word to hold the output length.

@ A routine name and entry mask show the beginning of executable code in a
routine or subroutine.

G) A macro name that has the suffix _S or _ G calls the service.

You can specify arguments by keyword (as in this example) or by positional
order. (Keyword names correspond to the names of the arguments shown
in lowercase in the system service format descriptions in the VMS System
Services Reference Manual.) If you omit any optional arguments (that is,
accept the defaults), you can omit them completely if you specify arguments
by keyword. If you specify arguments by positional order, however, you must
specify the comma for each missing argument.

Use the number sign (#)to indicate a literal value for an argument.

0 The BLBC instruction causes a branch to a subroutine named ERROR (not
shown) if the low bit of the condition value returned from the service is clear
(low bit clear= failure or warning). You can use a BSBW instruction to
branch unconditionally to a routine that checks the return status.

(continued on next page)

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

Ada Equivalent

with SYSTEM, TEXT_IO, STARLET, CONDITION_HANDLING; 0
procedure ORION is

-- Declare variables to hold equivalence name and length

EQUIV_NAME: STRING (1 .. 255); 8
pragma VOLATILE (EQUIV_NAME);
NAME_LENGTH: SYSTEM.UNSIGNED_WORD;
pragma VOLATILE (NAME_LENGTH) ;

-- Declare itemlist and fill in entries.

ITEM_LIST: STARLET.ITEM_LIST_3_TYPE (1 .. 2) := 8
(1 =>

(ITEM_CODE => STARLET.LNM_STRING, .,

2 =>

BUF_LEN => EQUIV_NAME'LENGTH,
BUF_ADDRESS => EQUIV_NAME'ADDRESS,
RET_ADDRESS => NAME_LENGTH'ADDRESS) I

(ITEM_CODE => 0,
BUF_LEN => 0,
BUF_ADDRESS => SYSTEM.ADDRESS_ZERO,
RET_ADDRESS => SYSTEM.ADDRESS_ZERO));

STATUS: CONDITION_HANDLING.COND_VALUE_TYPE; @t
begin

-- Translate the logical name

STARLET.TRNLNM ((!)
STATUS => STATUS,
TABNAM => JI LNM$FILE_DEV" I

LOGNAM =>"CYGNUS",
ITMLST => ITEM_LIST);

-- Display name if success, else signal error

if not CONDITION_HANDLING.SUCCESS (STATUS) then fj
CONDITION_HANDLING.SIGNAL (STATUS);

else
TEXT_IO.PUT ("CYGNUS translates to """);
TEXT_IO.PUT (EQUIV_NAME (1 .. INTEGER(NAME_LENGTH))) ;
TEXT_IO. PUT_LINE (II II II JI) ;

end if;
end ORION;

Ada Notes

0 The with clause names the predefined packages of declarations used in this
program. SYSTEM and TEXT_IO are standard Ada packages; STARLET
defines the VMS system service routines, data types, and constants; and
CONDITION_HANDLING defines error handling facilities.

8 Enough space is allocated to EQUIV _NAME to hold the longest possible
logical name. NAME_LENGTH will receive the actual length of the
translated logical name. The VOLATILE pragma is required for variables
which will be modified by means other than an assignment statement or
being an output parameter to a routine call.

8 ITEM_LIST_3_TYPE is a predeclared type in package STARLET which
defines the VMS 3-longword item list structure.

(continued on next page)

2-19

Calling System Services
2.9 Interpreting the Programming Examples

2-20

Example 2-1 (Cont.) Interpreting MACRO Examples

8 The dollar sign character is not valid in Ada identifiers; package STARLET
defines the fac$ names by removing the dollar sign.

0 COND_VALUE_TYPE is a predeclared type in package CONDITION_
HANDLING which is used for return status values.

0 System services are defined in package STARLET using names that omit the
prefix SYS$. The passing mechanisms are specified in the routine declaration
in STARLET so they need not be specified here.

8 In this example, any failure status from the $TRNLNM service is signaled
as an error. Other means of error recovery are possible; see the VAX.. Ada
documentation for more details.

BASIC Equivalent

10 SUB ORION tt
OPTION TYPE=EXPLICIT

Subprogram ORION

Require declaration of all
symbols

EXTERNAL LONG FUNCTION SYS$TRNLNM Declare the system service
EXTERNAL WORD CONSTANT LNM$_STRING ! The request code that

DECLARE WORD NAMLEN, 6)
LONG SYS_STATUS

! we will use
! Word to receive length

! Longword to receive status
COMMON (BUF) STRING NAME_STRING = 255 6)

RECORD ITEM_LIST

WORD BUFFER_LENGTH
WORD ITEM
LONG BUFFER_ADDRESS
LONG RETURN_LENGTH_ADDRESS

LONG TERMINATOR
END RECORD ITEM_LIST

Define item
descriptor structure
The buffer length
The request code
The buffer address
The address of the return len
word
The terminator
End of structure definition

DECLARE ITEM_LIST ITEMS Declare an item list
ITEMS::BUFFER_LENGTH = 255% Initialize the item list
ITEMS::ITEM = LNM$_STRING
ITEMS::BUFFER_ADDRESS = LOC(NAME_STRING)
ITEMS::RETURN_LENGTH_ADDRESS = LOC(NAMLEN
ITEMS::TERMINATOR = 0

SYS_STATUS = SYS$TRNLNM(I 'LNM$FILE_DEV' I 'CYGNUS' I I ITEMS) 0
IF (SYS_STATUS AND 1%) 0% (D
THEN

! Error path
ELSE

! Success path
END IF
END SUB

(continued on next page)

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples
BASIC Notes

0 The SUB statement defines the routine and its entry mask.

8 The DECLARE WORD NAMLEN declaration reserves a 16-bit word for the
output value.

6) The COMMON (BUF) STRING NAME_STRING = 255 declaration allocates
255 bytes for the output data in a static area. The compiler builds the
descriptor.

8 The SYS$ form invokes the system service as a function.

Enclose the arguments in parentheses, and specify them in positional order
only. Specify a comma for each optional argument that you omit (including
trailing arguments).

0 The input character string is specified directly in the system service call; the
compiler builds the descriptor.

0 The IF statement performs a test on the low-order bit of the return status.
This form is recommended for all status returns.

BLISS Equivalent

MODULE ORION=

BEGIN
EXTERNAL ROUTINE

ERROR_PROC: NOVALUE;

LIBRARY 'SYS$LIBRARY:STARLET.L32';

GLOBAL ROUTINE ORION: NOVALUE=

BEGIN
OWN

NAMBUF : VECTOR[255, BYTE],
NAMLEN : WORD,
ITEMS : BLOCK[l6,BYTE]

INITIAL(WORD(255,
LNM$ _STRING) I

NAMBUF,
NAMLEN,

0);

Error processing routine

Library containing VMS
macros (including $TRNLNM).
This declaration
is required.

Output buffer
Translated string length

Output buff er length
Item code
Output buffer
Address of word for
translated
string length
List terminator

LOCAL Return status from
STATUS; system service

STATUS = $TRNLNM(TABNAM = %ASCID'LNM$FILE_DEV' I

LOGNAME = %ASCID'CYGNUS' I

ITMLST =ITEMS); 0
IF NOT .STATUS THEN ERROR_PROC(.STATUS); @
END;

(continued on next page)

2-21

Calling System Services
2.9 Interpreting the Programming Examples

2-22

Example 2-1 {Cont.) Interpreting MACRO Examples
BLISS Notes

0 The macro is invoked by its service name, without a suffix.

Enclose the arguments in parentheses, and specify them by keyword.
(Keyword names correspond to the names of the arguments shown in
lowercase in the system service format descriptions in the VMS System
Services Reference Manual.)

8 The return status, which is assigned to the variable STATUS, is tested for
TRUE or FALSE. FALSE (low bit = 0) indicates failure or warning.

COBOL Equivalent

IDENTIFICATION DIVISION.
PROGRAM-ID. ORION. 0
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TABNAM PIC X(ll) VALUE "LNM$FILE_DEV".
01 CYGDES PIC X(6) VALUE "CYGNUS".
01 NAMDES PIC X(255) VALUE SPACES. f)
01 NAMLEN PIC S9(4) COMP.
01 ITMLIS.

02 BUFLEN PIC S9(4) COMP VALUE 225.
02 ITMCOD PIC S9(4) COMP VALUE 2. 6)
02 BUFADR POINTER VALUE REFERENCE NAMDES.
02 RETLEN POINTER VALUE REFERENCE NAMLEN.
02 FILLER PIC S9(5) COMP VALUE 0.

01 RESULT PIC S9(9) COMP. ~

PROCEDURE DIVISION.
START-ORION.

CALL 11 SYS$TRNLNM 11 0
USING OMITTED

BY DESCRIPTOR TABNAM
BY DESCRIPTOR CYGDES ~
OMITTED
BY REFERENCE ITMLIS

GIVING RESULT.
IF RESULT IS FAILURE fj

GO TO ERROR-CHECK.
DISPLAY "NAMDES: ", NAMDES(l:NAMLEN).
GO TO THE-END.

ERROR-CHECK.
DISPLAY "Returned Error: ", RESULT CONVERSION.

THE-END.
STOP RUN.

COBOL Notes

0 The PROGRAM-ID paragraph identifies the program by specifying the
program name, which is the global symbol associated with the entry point.
The compiler builds the entry mask.

f) Enough bytes are allocated for the alphanumeric output data. The compiler
generates a descriptor when you specify "USING BY DESCRIPTOR" in the
CALL statement.

6) The value of the symbolic code LNM$STRING is 2. Section 2.3 explains how
to obtain values for symbolic codes.

(continued on next page)

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 (Cont.) Interpreting MACRO Examples

8 This definition reserves a signed longword with COMP (binary) usage to
receive the output value.

0 The service is called by the SYS$ form of the service name, and the name is
enclosed in quotation marks.

Specify arguments in positional order only, with USING You cannot omit
arguments; if you are accepting the default for an argument, you must pass
the default value explicitly (OMITTED in this example).

You can specify explicitly how each argument is being passed: by descriptor,
by reference (that is, by address), or by value. You can also implicitly
specify how an argument is being passed: through the default mechanism
(by reference), or through association with the last specified mechanism (thus,
the last two arguments in the example are implicitly passed by value).

0 The input string is defined as alphanumeric (ASCII) data. The compiler
generates a descriptor when you specify USING BY DESCRIPTOR in the
CALL statement.

8 The IF statement tests RESULT for a failure status. In this case, control is
passed to the routine ERROR-CHECK

FORTRAN Equivalent

SUBROUTINE ORION
IMPLICIT NONE ! Require declaration of

! all symbols
INCLUDE '($SYSSRVNAM)' ! Declare system service names «t
INCLUDE '($LNMDEF)' ! Declare $TRNLNM item codes
INCLUDE '(LIB$ROUTINES) '! Declare LIB$ routines

STRUCTURE /ITEM_LIST_3_TYPE/ ! Structure of item list ~
INTEGER*2 BUFLEN Item buffer length
INTEGER*2 ITMCOD Item code
INTEGER*4 BUFADR Item buffer address
INTEGER*4 RETADR Item return length address

END STRUCTURE
RECORD /ITEM_LIST_3_TYPE/ ITEMLIST(2) ! Declare itemlist

CHARACTER*255 EQUIV_NAME ! For returned equivalence name
INTEGER*2 NAMLEN ! For returned name length
VOLATILE EQUIV_NAME,NAMLEN .,

INTEGER*4 STATUS ! For returned service status 8
! Fill in itemlist

ITEMLIST(l) .ITMCOD = LNM$_STRING
ITEMLIST(l) .BUFLEN = LEN(EQUIV_NAME) 0
ITEMLIST(l) .BUFADR = %LOC(EQUIV_NAME)
ITEMLIST(l) .RETADR = %LOC(NAMLEN)
ITEMLIST(2) .ITMCOD = 0 ! For terminator
ITEMLIST(2) .BUFLEN = 0

! Call SYS$TRNLM

STATUS
1
2
3
4

= SYS$TRNLNM (, ! ATTR omitted 6)
'LNM$FILE_DEV' I! TABNAM
I CYGNUS I I ! LOGNAM
, ! ACMODE omitted
ITEMLIST) ! ITMLST

(continued on next page)

2-23

Calling System Services
2.9 Interpreting the Programming Examples

2-24

Example 2-1 {Cont.) Interpreting MACRO Examples

! Check return status, display translation if successful

IF (.NOT. STATUS) THEN fj
CALL LIB$SIGNAL(%VAL(STATUS))

ELSE
WRITE (*,*) 'CYGNUS translates to:

1 EQUIV _NAME (1 : NAMLEN) I I II I

END IF
END

FORTRAN Notes

8 The module $SYSSRVNAM in the FORTRAN system default library
FORSYSDEF.TLB contains INTEGER and EXTERNAL declarations for
each of the system services, so you need not explicitly provide any in your
program. Module $LNMDEF defines constants and data structures used
when calling the logical name services, and module LIB$ROUTINES contains
declarations for the LIB$ Run-Time Library routines.

8 The structure of a VMS 3-longword item list is declared and then used to
define the record variable ITEM_LIST. The second element will be used for
the terminator.

8 The VOLATILE declaration is required for variables which are modified by
means other than a direct assignment or as an argument in a routine call.

8 Return status variables should always be declared as longword integers.

0 The LEN intrinsic function returns the allocated length of EQUIV _NAME.
The %LOC built-in function returns the address of its argument.

G) By default, FORTRAN passes arguments by reference, except for strings
which are passed by CLASS_S descriptor. Arguments are omitted in
FORTRAN by leaving the comma as a placeholder. All arguments must
be specified or explicitly omitted.

fj A condition value can be tested for success or failure by a true/false test.
For more information on testing return statuses, see the VAX FORTRAN
documentation.

Pascal Equivalent

[INHERIT('SYS$LIBRARY:STARLET' I •

'SYS$LIBRARY:PASCAL$LIB_ROUTINES')]
PROGRAM ORION (OUTPUT);

TYPE
Item_List_Cell = RECORD CASE INTEGER OF @)

1: ({ Normal Cell }
Buf fer_Length
Item_ Code
Buffer_Addr
Return_Addr
) i

2: ({ Terminator

[WORD] 0 .. 65535;
[WORD] 0 .. 65535;
UNSIGNED;
UNSIGNED

Terminator UNSIGNED
) i

END;

Item_List_Template(Count:INTEGER) = ARRAY [1 .. Count] OF Item_List_Cell;

(continued on next page)

Calling System Services
2.9 Interpreting the Programming Examples

Example 2-1 {Cont.) Interpreting MACRO Examples

VAR
Item_List Item_List_Template(2);
Translated_Name [VOLATILE] VARYING [255] OF CHAR; CD
Status INTEGER;

BEGIN

{ Specify the buffer to return the translation } 8
Item_List[l] .Buffer_Length := SIZE(Translated_Name.Body);
Item_List[l] .Item_Code := LNM$_String;
Item_List[l] .Buffer_Addr .- IADDRESS(Translated_Name.Body);
Item_List[l] .Return_Addr := IADDRESS(Translated_Name.Length);

{ Terminate the item list }
Item_List[2] .Terminator := O;

{ Translate the CYGNUS logical name }
Status := $trnlnm(Tabnam := 'LNM$FILE_DEV', Lognam .- 'CYGNUS', CB

Itmlst := Item_List);
IF NOT ODD(Status) (i)
THEN

LIB$SIGNAL(Status)
ELSE

WRITELN('CYGNUS is equivalent to ',Translated_Name);

END.

Pascal Notes

0 The Pascal environment file STARLET.PEN defines VMS system services,
data structures and constants. PASCAL$LIB_ROUTINES declares the LIB$
Run-Time Library routines.

8 The structure of an item list entry is defined using a variant record type.

CD The VARYING OF CHAR type is a varying-length character string with
two components; a word-integer length and a character string body, which
in this example is 255 bytes long. The VOLATILE attribute is required for
variables which are modified by means other than a direct assignment or as
an argument in a routine call.

8 The functions SIZE and !ADDRESS are used to obtain the allocated size of
the string body and the address of the string body and length. The returned
length will be stored into the length field of the varying string Translated_
Name, so that it will appear to be the correct size.

CB The definition of the $TRNLNM routine in STARLET.PEN contains
specifications of the passing mechanism to be used for each argument, thus it
is not necessary to specify the mechanism here.

8 The IF statement performs a logical test following the function reference to
see if the service completed successfully. If an error or warning occurs during
the service call, the error is signaled.

2-25

3
Security Services

The VMS security system services provide various mechanisms that you can
use to enhance the security of VMS operating systems. These services include
facilities to do the following:

• Create and maintain a rights database.

• Create and translate access control list (ACL) entries.

• Modify a process rights list.

• Check access protection.

• Provide a security erase pattern for disks.

• Control magnetic tape access.

The following table lists the system services related to system security.

Service Function

Adds a holder record to the rights database

Adds an identifier to the rights database

Translates an identifier name to a binary value

Creates or modifies an ACL

$ADD_HOLDER

$ADD_IDENT

$ASCTOID

$CHANGE_ACL

$CHECK_ACCESS Invokes a system access protection check on behalf of another
user

$CHKPRO

$CREATE_RDB

$ERAPAT

$FIND_HELD

$FIND_HOLDER

$FINISH_RDB

$FORMAT_ACL

$FORMAT_AUDIT

$GRANTID

$HASH_PASSWORD

$IDTOASC

$MOD_HOLDER

$MOD IDENT

Invokes a system access protection check

Initializes the rights database

Generates a security erase pattern

Returns identifier(s) held by a holder in rights database

Returns holder(s) of an identifier in rights database

Deallocates record stream and clears context value when
searching the rights database

Formats an ACE into a text string

Converts a security auditing event message from binary
format to ASCII text

Adds an identifier to the process or the system rights list

Applies the hash algorithm you select to an ASCII password
string and returns a quadword hash value that represents
the encrypted password

Translates an identifier value to its identifier name

Modifies a holder record in rights database

Modifies an identifier record in rights database

3-1

Security Services

Service

$MTACCESS

$PARSE_ACL

$REM_HOLDER

$REM_IDENT

$REVOKID

Function

Controls magnetic tape access

Converts a text ACE into binary format

Deletes a holder record from identifier's list of holders in the
rights database

Deletes an identifier and all holders of that identifier from
rights database

Removes an identifier from process or system rights list

3.1 Overview of the VMS Protection Scheme
The basis of the VMS security scheme is an identifier which is a 32-bit binary
value that represents a process to the system. An identifier can represent an
individual user, a group of users, or some aspect of the environment in which a
user is operating. A process is a holder of an identifier when that identifier can
represent that process to the system.

The system rights database is an indexed file consisting of identifier and holder
records. Those records define the identifiers and the holders of those identifiers
on a system. When a process logs in to the system, LOGINOUT creates a rights
list for the process from the applicable entries in the rights database. Thus, a
process rights list contains all the identifiers that the process holds. A process
can be the holder of a number of identifiers. Each of those identifiers determines
the identity and the access rights of the list holder. The process rights list
becomes part of the process and is propagated to any created processes.

When a process attempts to access an object in the system, VMS uses the rights
list when performing a protection check. The system compares the identifiers in
the rights list to the protection attributes of the object and grants or denies access
to the object based on the comparison. In other words, the entries in the rights
list do not specifically. grant access; instead, the system uses them to perform a
protection check when the process attempts to access an object.

The VMS protection scheme provides security with the mechanism of the access
control list (ACL). An ACL consists of access control list entries (ACEs) that
specify the type of access an identifier has to an object like a file, device, or
mailbox. When a process attempts to access an object with an associated ACL,
the system grants or denies access based on whether an exact match for the
identifier in the ACL exists in the rights database.

The following sections describe each of the components of the security scheme­
identifiers, rights database, process rights list, and ACLs-and the system
services affecting those components.

3.2 ldentif iers

3-2

The basic component of the VMS protection scheme is an identifier. This 32-bit
binary value represents various types of agents using the system. The types of
agents represented include individual users, groups of users, and environments
in which a process is operating.

3.2.1 Identifier Format

Security Services
3.2 Identifiers

Identifiers have two formats in the rights database: UIC format and ID format.
The high-order bits of the identifier value specify the format of the identifier. Two
high-order zero bits identify a UIC format identifier; bit 31, set to 1, identifies an
ID format identifier.

Each UIC identifier is unique and represents a system user. The UIC identifier
contains the two high-order bits that designate format, a member field, and a
group field. Member numbers range from 0 to 65,534; group numbers range from
1 to 16,382.

The following is a diagram of the UIC format.

31 0

00 Group Member

UIC Format

ZK-1905-GE

Bit 31, set to 1, specifies ID format. Bits 30 through 28 are reserved by Digital.
The remaining bits specify the identifier value.

The following is a diagram of the ID format.

31 0

1000 Identifier

ID Format

ZK-1906-GE

3.2.2 Identifier Names
To the system an identifier is a binary value; however, to make identifiers easy
to use, the system translates the binary identifier value into an identifier name.
The binary value and the identifier name are associated in the rights database.

An identifier name consists of 1 to 31 alphanumeric characters and must contain
at least one nonnumeric character. It can include the uppercase letters A through
Z, dollar signs ($), and underscores (_), as well as the numbers 0 through 9. Any
lowercase letters are automatically converted to uppercase.

3.2.3 System-Defined Identifiers
System-defined identifiers, or environmental identifiers, are automatically defined
when the rights database is initialized. The following system-defined identifiers
correspond directly with the login classes and relate to the environment in which
the process operates.

BATCH

NETWORK

All attempts at access made by batch jobs

All attempts at access made across the DECnet-VAX network

3-3

Security Services
3.2 Identifiers

INTERACTIVE

LOCAL

DIAL UP

REMOTE

All attempts at access made by interactive processes

All attempts at access made by users logged in at local terminals

All attempts at access made by users logged in at dialup terminals

All attempts at access made by users logged in on a network

Depending on the environment in which the process is operating, LOGINOUT
includes one or more of these identifiers when creating the process rights list.

3.2.4 General Identifiers
You can define general identifiers to meet the specific needs of your site. You
grant these identifiers to users by establishing holder records in the rights
database. General identifiers can identify a single user, a single UIC group, a
group of users, or a number of groups.

You define identifiers and their holders in the rights database with the Authorize
Utility or with the appropriate system services. You can define an identifier in
the rights database to allow users from different UIC groups to hold an identifier.
Each user can hold multiple identifiers. This allows you to r.reate a different kind
of group designation from the one used with the user's UIC.

The alternative grouping described here permits each user to be a member of
multiple overlapping groups. Access control lists (ACLs) define the access to
system objects based on the identifiers the user holds, rather than on the user's
UIC. See Section 3.4 for information on creating ACLs.

You can also define identifiers to represent particular terminals, times of day, or
other site-specific environmental attributes. These identifiers are not given holder
records in the rights database but may be granted to users by customer-written
privileged software. This feature of the security system allows each site flexibility
and, because the identifiers can be specific to the site, enhanced security. For a
programming example demonstrating this technique, see Section 3.3.2.4. Also, for
more information, see the Guide to VMS System Security.

3.2.5 Identifier Attributes

3-4

An identifier has attributes associated with it in the rights database. Part of
the process rights list includes the attributes of any identifiers that the process
holds. A holder of an identifier can hold an attribute only if the identifier holds
the attribute.

Attributes that may be added to identifiers include the DYNAMIC and
RESOURCE attributes. The DYNAMIC attribute allows unprivileged holders
of an identifier to add or remove the identifier from the process rights list. The
RESOURCE attribute allows the holder of an identifier to charge resources,
like disk blocks, to an identifier. Conversely, a holder who does not have
the RESOURCE attribute cannot charge resources to the identifier, and an
unprivileged holder who does not have the DYNAMIC attribute cannot modify
the identifier.

The following example demonstrates the advantages of defining an identifier and
holder(s) for a project.

The physics department of a school may have a common library with an
associated disk quota on the system. (If disk quotas are in use, you must
establish a quota file entry for the identifier to allow anyone to charge space to
it.) You want to allow the faculty members to charge any disk quota that they use
in conjunction with the library to an identifier, and to prevent the students from
charging resources to that identifier. You could define an identifier PHYSICS in

Security Services
3.2 Identifiers

the rights database with the holders FRED, a faculty member, and GEORGE, a
student. If you can specify the RESOURCE attribute for FRED, that holder can
charge resources to the PHYSICS identifier; if you do not specify the RESOURCE
attribute for GEORGE, that holder cannot charge resources to the PHYSICS
identifier.

3.3 Rights Database
The rights database is an indexed file containing two types of records that define
all identifiers: identifier records and holder records.

One identifier record appears in the rights database for each identifier. The
identifier record associates the identifier name with its 32-bit binary value, and
specifies the attributes of the identifier. The following figure depicts the format of
the identifier record.

Identifier Value

Attributes

0

0

Identifier Name

ZK-1904-GE

One holder record exists in the rights database for each holder of each identifier.
The holder record associates the holder with the identifier, specifies the attributes
of the holder, and identifies the UIC identifier of the holder. A holder record has
the following format.

Identifier Value

Attributes

UIC Identifier of Holder

(Reserved)

ZK-1907-GE

The rights database is an indexed file with three keys. The primary key is the
identifier value, the secondary key is the holder ID, and the third key is the
identifier name. Through the use of the secondary key of the holder ID, all the
rights held by a process can be retrieved quickly when LOGINOUT creates the
process rights list.

3-5

Security Services
3.3 Rights Database

3.3.1 Initializing a Rights Database
The rights database is initialized in one of the following ways:

• When a system is installed or upgraded

• With the Authorize Utility

• With the $CREATE_RDB system service

When you call $CREATE_RDB, you can use the sysid argument to pass the
system identification value associated with the rights database. If you omit
sysid, the system uses the current system time in 64-bit format. If the rights
database already exists, $CREATE_RDB fails with the error code RMS$_FEX. To
create a new rights database when one already exists, you must explicitly delete
or rename the old one.

When a rights database is initialized, it is equated to the logical name
RIGHTSLIST, which you must define as a system logical name at executive
mode. If the logical name does not exist, the rights database is given the default
file specification SYS$SYSTEM:RIGHTSLIST.DAT.

When created, RIGHTSLIST.DAT has the default protection
(S:RWED,O:RWED,G:RWE,W:R). World read access to the directory in which
the database is to be located is required so that all users can read the records
in the database. In order to use $CREATE_RBD, write access to the database
is necessary. If the database is in SYS$SYSTEM, which is the default, you need
SYSPRV privilege to grant write access to the database.

When $CREATE_RDB initializes a rights database, system-defined identifiers,
which describe the environment in which a process can operate, are automatically
created.

To add- any other identifiers to the rights database, you must define them with
the Authorize Utility or with the appropriate system service.

3.3.2 Using System Services to Affect a Rights Database

3-6

The identifier and holder records in the rights database contain the following
elements:

• Identifier binary value

• Identifier name

• Holder(s) of each identifier

• Attribute of each identifier and each holder of each identifier

You can use the Authorize Utility or one of the following system services to add,
delete, display, modify, or translate the various elements of the rights database.

Action Element Service Used

Translate Identifier name to identifier binary value $ASCTOID

Identifier binary value to identifier name $IDTOASC

Add New identifier record $ADD_HOLDER

Identifier to holder record $ADD_IDENT

Find Identifier value held by holder $FIND_HELD

Action

Modify

Delete

Element

Holder(s) of an identifier

All identifiers

Attribute in holder record

Attribute in identifier record

Holder from identifier record

Identifier and all its holders

Security Services
3.3 Rights Database

Service Used

$FIND_HOLDER

$IDTOASC

$MOD_HOLDER

$MOD_IDENT

$REM_HOLDER

$REM_IDENT

The following table shows what access you need with which services.

Service Required Access

$ADD_HOLDER Write

$ADD_IDENT Write

$ASCTOID Read

$CREATE_RDB Write

$FIND_HELD Read

$FIND_HOLDER Read

$FINISH_RDB Read

$IDTOASC Read

$MOD_HOLDER Write

$MOD_IDENT Write

$REM_HOLDER Write

$REM_IDENT Write

3.3.2.1 Translating Identifier Names and Binary Values
To the system an identifier is a 32-bit binary value; however, to make identifiers
easy to use, each binary value has an associated identifier name. The identifier
value and the ASCII identifier name string are associated in the rights database.
You can use the $ASCTOID and $IDTOASC system services to translate from
one format to another. When you pass to $ASCTOID the, address of a string
descriptor pointing to an identifier name, the corresponding identifier binary
value is returned. Conversely, you use the $1DTOASC service to translate a
binary identifier value to an ASCII identifier name string.

You can also use the $1DTOASC service to list the identifier names of all of the
identifiers in the rights database. Specify the id argument as -1, initialize the
context argument to 0, and repeatedly call $IDTOASC until the status code
SS$_NOSUCHID is returned. The $IDTOASC service returns the identifier
names in alphabetical order. When SS$_NOSUCHID is returned, $IDTOASC
clears the context longword and deallocates the record stream. If you complete
your calls to $IDTOASC before SS$_NOSUCHID is returned, use $FINISH_RDB
to clear the context longword and to deallocate the record stream.

The following programming example uses $IDTOASC to identify all identifiers in
a rights database.

3-7

Security Services
3.3 Rights Database

Program ID_LIST

*
* Produce a list of all the identifiers
*

*

integer SYS$IDTOASC
external SS$_NORMAL, SS$_NOSUCHID

character*31 NAME
integer IDENTIFIER, ATTRIBUTES

integer ID/-1/, LENGTH, CONTEXT/0/
integer NAME_DSC(2)/31, 0/

integer STATUS

* Initialization
*

*

NAME_DSC(2) = %loc(NAME)
STATUS = %loc(SS$_NORMAL)

* Scan through the entire RDB ...
*

*

do while (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID)))

STATUS= SYS$IDTOASC(%val(ID), LENGTH, NAME_DSC,
+ IDENTIFIER, ATTRIBUTES, CONTEXT)

if (STATUS .and. (STATUS .ne. %loc(SS$_NOSUCHID))) then

NAME(LENGTH+l:LENGTH+l) = I I I

print 1, NAME, IDENTIFIER, ATTRIBUTES
1 forrnat(lX,'Narne: ',A31,' Id: ',ZS,', Attributes: ',ZS)

end if

end do

* Do we need to finish the RDB ???
*

if (STATUS .ne. %loc(SS$_NOSUCHID)) then
call SYS$FINISH_RDB(CONTEXT)

end if

end

3.3.2.2 Adding Identifiers and Holders to Rights Database

3-8

To add identifiers to the rights database, use the $ADD_IDENT service in a
program. When you call $ADD_IDENT, use the name argument to pass the
identifier name you want to add. You can specify an identifier value with the id
argument; however, if you do not specify a value, the system selects an identifier
value from the general identifier space.

In addition to defining the identifier value and identifier name, you use $ADD_
IDENT to specify attributes in the identifier record. Attributes are valid for a
holder of an identifier only when they are set in both the identifier record and
the holder record. The attrib argument is a longword containing a bit mask
specifying the attributes. The symbol KGB$V _RESOURCE, defined in the system
macro library $KGBDEF, sets the RESOURCE bit in the attribute longword, and
the symbol KGB$V _DYNAMIC sets the DYNAMIC bit. (You can use the prefix
KGB$M rather than KGB$V.)

Security Services
3.3 Rights Database

When $ADD_IDENT successfully completes execution, a new identifier record
containing the identifier value, the identifier name, and the attributes of the
identifier exists in the rights database.

When the identifier record exists in the rights database, you define the holder(s)
of that identifier with the $ADD_HOLDER system service. You pass the binary
identifier value with the id argument; you specify the holder with the holder
argument, which is the address of a quadword data structure in the following
format.

UIC Identifier of Holder

0

ZK-1903-GE

In the rights database, the holder identifier is in UIC format. You specify the
attributes of the holder with the attrib argument in the same manner as with
$ADD_IDENT. Attributes are valid for a holder of an identifier only when they
are set in both the identifier record and the holder record.

After $ADD_HOLDER completes execution, a new holder record containing the
binary value of the identifier that the holder holds, the attributes of the holder,
and the UIC of the holder exists in the rights database.

3.3.2.3 Determining Holders of Identifiers
To determine the holders of a particular identifier, use the $FIND_HOLDER
service in a program. When you call $FIND_HOLDER, use the id argument to
pass the binary value of the identifier whose holder you want to determine. On
successfully completing execution, $FIND_HOLDER returns the holder identifier
with the holder argument and the attributes of the holder with the attrib
argument.

You can identify all of the identifier's holders by initializing the context
argument to 0, and repeatedly calling $FIND_HOLDER as detailed in
Section 3.3.3. Because $FIND_HOLDER identifies the records by the same
key (holder ID), it returns the records in the order in which they were written.

3.3.2.4 Determining Identifiers Held
To determine the identifier(s) held by a holder, use the $FIND_HELD service in a
program. When you call $FIND_HELD, use the holder argument to specify the
holder whose identifier is to be found.

On completing execution, $FIND_HELD returns the identifier's binary identifier
value and attributes.

You can identify all the identifiers held by the specified holder by initializing
the context argument to 0 and repeatedly calling $FIND_HELD as detailed
in Section 3.3.3. Because $FIND_HELD identifies the records by the same key
(identifier), it returns the records in the order in which they were written.

The following programming example uses $FIND_HELD to determine if a user
is the holder of a particular identifier. This example also demonstrates how to
define an identifier to represent particular terminals.

3-9

Security Services
3.3 Rights Database

3-10

.title SECURE_TERMINAL

This module verifies that the user is executing this program
from one of a set of "secure terminals" as outlined in file:
SECURITY$:SECURE_TERMINAL.DATA;l .

. psect SECURE_TERMINAL,LONG

The full names of all "secure terminals" are stored in
file SECURITY$:SECURE_TERMINAL.DATA;l, which is an indexed file
containing only the names of the secure terminals. If a name
is found in that file, it is considered "secure."

.align LONG

XAB: $XABKEY pos = 0, -
siz = 64

.align LONG

FAB: $FAB fnm <SECURITY$:SECURE_TERMINAL.DATA;l>, -
fac <GET>, -
shr <GET, PUT, UPD, DEL>, -
org IDX, -
rfm FIX, -
mrs 64,
xab = XAB

.align LONG

RAB: $RAB fab FAB, -
kbf BUFFER,
ksz 64, -

ubf BUFFER,
usz 64,
rac KEY

Declare the identifier name.

NAME:
LENGTH: .blkl 1

.address
BUFFER: .blkb 64
HOLDER: .blkl 1

.long 0

BUFFER

-

-

ID_NAME: .ascid /SECURE_TERMINAL/
ID: .blkl 1

CONTXT: .long 0
HELD: .blkl 1

In order to get the name of the particular terminal, we need this item list .

. align LONG

ITMLST: .word 64
.word JPI$_TERMINAL
.address BUFFER
.address LENGTH
.long 0

ABORT_: jmp ABORT

Here we go ...

. entry SECURE_TERMINAL,Am<>

First, get the full device name

$GETJPIW_S itmlst = ITMLST
blbc rO, ABORT_

$OPEN f ab = FAB
blbc rO, ABORT_

$CONNECT rab RAB
blbc rO, ABORT_

$GET rab = RAB
blbc rO, ABORT_

If we have gotten here, then our terminal is secure.

$DISCONNECT rab = RAB
$CLOSE f ab FAB

Is this user allowed to use the secure terminals
(a holder of the SECURE_TERMINAL identifier)?

MOVW #JPI$_USERNAME, ITMLST+2
$GETJPIW_S itmlst = ITMLST

pushal LENGTH
pushal NAME
pushal NAME
calls #3, STR$TRIM

$ASCTOID_S
$ASCTOID_S

name = NAME, id = HOLDER
name = ID_NAME, id = ID

Security Services
3.3 Rights Database

$1: $FIND_HELD_S holder = HOLDER, id = HELD, contxt CONTXT
blbc rO, ABORT

crnpl ID, HELD
bneq $1

Now pass control on to the program.

calls #0, @#MAIN_PROGRAM_PROPER
$EXIT_S RO

.weak MAIN_PROGRAM_PROPER

Else kick the user out.

.external
LIB$SIGNAL_:

.address

LIB$SIGNAL

LIB$SIGNAL

3-11

Security Services
3.3 Rights Database

ABORT: pushl #SS$_NOPRIV
pushl #0
pushl rO
calls #3, @LIB$SIGNAL_

$EXIT_S #SS$_NORMAL

.end SECURE_TERMINAL

3.3.2.5 Modifying the Identifier Record
To modify an identifier record by changing the identifier's name, value, or
attributes or all three in the rights database, use the $MOD_IDENT service in a
program. Use the id argument to pass the binary value of the identifier whose
record you want to modify. To enable attributes, use the set_attrib argument,
which is a longword containing a bit mask specifying the attributes. The symbol
KGB$V_RESOURCE, defined in the system macro library $KGBDEF, sets the
RESOURCE bit in the attribute longword, and the symbol KGB$V _DYNAMIC
sets the DYNAMIC bit. (You can use the prefix KGB$M rather than KGB$V.)

If you want to disable the attributes for the identifier, use the clr _attrib
argument, which is a longword containing a bit mask specifying the attributes.
If the same attribute is specified in set_attrib and clr_attrib, the attribute is
enabled.

You can also change the identifier name or value, or both, with the new_name
and new_ value arguments. New _name is the address of a descriptor pointing
to the identifier name string; new_ value is a longword containing the binary
identifier value. If you change the value of an identifier that is the holder of other
identifiers (a UIC, for example), $MOD_IDENT updates all the corresponding
holder records with the new holder identifier value.

When $MOD_IDENT successfully completes execution, a new identifier record
containing the identifier value, the identifier name, and the attributes of the
identifier exists in the rights database.

3.3.2.6 Modifying a Holder Record

3-12

To modify a holder record, use the $MOD_HOLDER service in a program. When
you call $MOD_HOLDER, use the id argument and the holder argument to pass
the binary identifier value and the UIC holder identifier whose holder record you
want to modify.

Use the $MOD_HOLDER service to enable or disable the attributes of an
identifier in the same way as with $MOD_HOLDER.

When $MOD_HOLDER completes execution, a new holder record containing the
identifier value, the identifier name, and the attributes of the identifier exists in
the rights database.

The following programming example uses $MOD_HOLDER to modify holder
records in the rights database.

Program MOD_HOLDER

*
* Modify the attributes of all the holders of identifiers to reflect
* the current attribute setting of the identifiers themselves.
*

external SS$_NOSUCHID
parameter KGB$M_RESOURCE = 1, KGB$M_DYNAMIC = 2
integer SYS$IDTOASC, SYS$FIND_HELD, SYS$MOD_HOLDER

Security Services
3.3 Rights Database

*
* Store information about the holder here.
*

*

integer HOLDER(2)/2*0/
equivalence (HOLDER(l), HOLDER_ID)
integer HOLDER_NAME(2)/31, 0/
integer HOLDER_ID, HOLDER_CTX/0/
character*31 HOLDER_STRING

* Store attributes here.
*

integer OLD_ATTR, NEW_ATTR, ID_ATTR, CONTEXT

*
* Store information about the identifier here.
*

*

integer IDENTIFIER, ID_NAME(2)/31, 0/
character*31 ID_STRING

integer STATUS

* Initialize the descriptors.
*

*

HOLDER_NAME(2) = %loc(HOLDER_STRING)
ID_NAME(2) = %loc(ID_STRING)

* Scan through all the identifiers.
*

do while
+ (SYS$IDTOASC(%val(-l),, HOLDER_NAME, HOLDER_ID,, HOLDER_CTX)
+ .ne. %loc(SS$_NOSUCHID))

*
* Test all the identifiers held by this identifier (our HOLDER) .
*

*

if (HOLDER_ID .le. 0) go to 2

CONTEXT = 0

do while
+ (SYS$FIND_HELD(HOLDER, IDENTIFIER, OLD_ATTR, CONTEXT)
+ .ne. %loc(SS$_NOSUCHID))

* Get name and attributes of held identifier.
*

STATUS= SYS$IDTOASC(%val(IDENTIFIER),, ID_NAME, I ID_ATTR,)

*
* Modify the holder record to reflect the state of the identifier itself.
*

if ((ID_ATTR .and. KGB$M_RESOURCE) .ne. 0) then
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER, %val(KGB$M_RESOURCE) ,)
NEW_ATTR = OLD_ATTR .or. KGB$M_RESOURCE

else
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M_RESOURCE))
NEW_ATTR = OLD_ATTR .and. (.not. KGB$M_RESOURCE)

end if

3-13

Security Services
3.3 Rights Database

*

if ((ID_ATTR .and. KGB$M_DYNAMIC) .ne. 0) then
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER, %val(KGB$M_DYNAMIC),)
NEW_ATTR = OLD_ATTR .or. KGB$M_DYNAMIC

else
STATUS = SYS$MOD_HOLDER

+ (%val(IDENTIFIER), HOLDER,, %val(KGB$M_DYNAMIC))
NEW_ATTR = OLD_ATTR .and. (.not. KGB$M_DYNAMIC)

end if

* Were we successful?
*

*

if (.not. STATUS) then
NEW_ATTR = OLD_ATTR
call LIB$SIGNAL(%val(STATUS))

end if

* Report it all .
*

print 1, HOLDER_STRING, ID_STRING,
+ OLD_ATTR, ID_ATTR, NEW_ATTR

1 format(lX, 'Holder: ', A31, ' Id: ', A31,
+ 'Old: ',ZS, 'Id: ',ZS, 'New:' ZS)

end do

2 continue

end do

end

3.3.2. 7 Removing Identifiers and Holders from the Rights Database
To remove an identifier and all of its holders, use the $REM_IDENT service in a
program. When you call $REM_IDENT, use the id argument to pass the binary
value of the identifier you want to remove. When $REM_IDENT completes
execution, the identifier and all of its associated holder records are removed from
the rights database.

To remove a holder from the list of an identifier's holders, use the $REM_
HOLDER service in a program. When you call $REM_HOLDER, use the id
argument and the holder argument to pass the binary ID value and the UIC
identifier of the holder whose holder record you want to delete.

On successful execution, $REM_HOLDER removes the holder from the list of the
identifier's holders.

3.3.3 Search Operations

3-14

You can search the entire rights database when using the $IDTOASC, $FIND_
HELD, and $FIND_HOLDER services. You initialize the context longword
to 0, and repeatedly call one of the three services until the status code SS$_
NOSUCHID is returned. When SS$_NOSUCHID is returned, the service clears
the context longword and deallocates the record stream. If you complete your
calls to one of these services before SS$_NOSUCHID is returned, you must use
$FINISH_RDB to clear the context longword and to deallocate the record stream.

The structure of the rights database affects the order in which each of these
services returns the records when you search the rights database. The rights
database is an indexed file with three keys. The primary key is the identifier
binary value, the secondary key is the holder UIC identifier, and the third key is
the identifier name.

Security Services
3.3 Rights Database

During a searching operation, the service obtains the first record with an indexed
RMS GET operation. The key used for the GET operation depends on the service.
The $FIND_HOLDER service uses the identifier binary value; $FIND_HELD
uses the holder UIC identifier. After the indexed GET, the service returns the
records with sequential RMS GET operations. Consequently, the file organization,
the key used for the first GET operation, and the order in which the records were
originally written in the database determine how the service returns records in a
searching operation.

The following table summarizes how records are returned by the $IDTOASC,
$FIND_HELD, and $FIND_HOLDER services when used in a searching
operation.

Service Record Order

Identifier name order. $IDTOASC

$FIND_HELD First GET operation-holder key. Subsequent records are returned
in the order in which they were written.

$FIND_HOLDER First GET operation-identifier key. Subsequent records are
returned in the order in which they were written.

The following programming example uses $IDTOASC, $FINISH_RDB, and
$FIND_HOLDER to search the entire rights database for identifiers with holders,
and produces a list of those identifiers and their holders.

Module ID_HOLDER
(main = MAIN,

addressing_mode(external=GENERAL)
begin

Produce a list of all the identifiers, which have holders,
with their respective holders.

Declarations:

library

'SYS$LIBRARY:LIB';

forward routine

MAIN;

external routine

LIB$PUT_OUTPUT,

SYS$FAO,
SYS$IDTOASC,
SYS$FINISH_RDB,
SYS$FIND_HOLDER;

To create static descriptors

3-15

Security Services
3.3 Rights Database

macro S_DESCRIPTOR[NAME, SIZE] =
own

%name(NAME, '_BUFFER'): block[%number(SIZE), byte],
%name(NAME): block[DSC$K_S_BLN, byte]

preset([DSC$B_CLASS] = DSC$K_CLASS_S,
[DSC$W_LENGTH] = %number(SIZE),
[DSC$A_POINTER] = %name(NAME, '_BUFFER')) ; %;

Descriptors for ID, holder NAME, and output LINE

S_DESCRIPTOR('ID_NAME', 31);
S_DESCRIPTOR('NAME' I 31);
S_DESCRIPTOR('LINE' I 76);

own

STATUS,

ID,
ID_LENGTH,
ID_CONTEXT: initial(O),

HOLDER,
LENGTH,
CONTEXT: initial(O),

ATTRIBS,
VALUE,
LINE_: block[DSC$K_S_BLN, byte]

preset([DSC$B_CLASS] = DSC$K_CLASS_S,
[DSC$A_POINTER] = LINE_BUFFER) ;

To check for existence of an ID or HOLDER

macro CHECK(EXPRESSION) =
(STATUS= %remove(EXPRESSION)) and (.STATUS neq SS$_NOSUCHID) %;

List all the identifiers, which have holders, with their holders.

routine MAIN =
begin

3-16

Examine all IDs (-1).

while

do
CHECK(<SYS$IDTOASC(-l, ID_LENGTH, ID_NAME, ID, ATTRIBS, ID_CONTEXT)>)

begin

CONTEXT = O;

Find all holders of ID.

while CHECK(<SYS$FIND_HOLDER(.ID, HOLDER, ATTRIBS, CONTEXT)>) do
begin

Translate the HOLDER to find its NAME.

SYS$IDTOASC(.HOLDER, LENGTH, NAME, VALUE, ATTRIBS, 0);

Print a message reporting ID and HOLDER.

end;

SYS$FAO(%ascid'Id: !AD, Holder: !AD',
LINE_[DSC$W_LENGTH] I LINE,
.ID_LENGTH, .ID_NAME[DSC$A_POINTER] I

.LENGTH, .NAME[DSC$A_POINTER]);

LIB$PUT_OUTPUT(LINE_);

end;

Security Services
3.3 Rights Database

return SS$_NORMAL;

end;

end

eludom

3.4 Creating, Translating, and Maintaining Access Control List
Entries

An access control list (ACL) is a list of entries defining the type of access allowed
to an object in the system like a file, device, or mailbox. When a process attempts
to access an object with an associated ACL, the system allows access based on the
type of access specified by the entries in the ACL.

To the system, access control list entries (ACEs) are in binary form; however,
ACEs are easy to use because they have text string format. You use $FORMAT_
ACL and $PARSE_ACL to translate ACEs from one format to another in the
same way that $IDTOASC and $ASCTOID translate identifiers from binary to
text format and text to binary format.

To create and manipulate ACLs, use the ACL editor, the DCL command SET
ACL, or the $CHANGE_ACL system service in a program.

3.4.1 Format of ACE Types
There are four types of ACEs:

• Alarm

• Application dependent

• Default protection

• Identifier

The alarm ACE defines the types of access to an object that cause a security
alarm to be generated. The application ACE contains application-dependent
or user-defined information. The default protection ACE defines the default
protection for a directory; that protection can be propagated to the files and
subdirectories created in that directory. The identifier ACE controls the type of
access allowed to a particular user or group of users as specified by an identifier.

An ACE's type determines its format. The following sections describe the format
of each of the four types of ACE. Symbols specifying byte offsets and type values
are defined in the system macro library ($ACEDEF).

3-17

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

3.4.1.1 Alarm ACE

3-18

The access alarm ACE sets a security alarm on an object in the system. The
following figure illustrates its format.

flags I type

access

alarm name

Field Symbol Name

Length ACE$B_SIZE

Type ACE$B_TYPE

Flags ACE$W _FLAGS

Access ACE$L_ACCESS

Alarm Name ACE$T_AUDITNAME

I length

ZK-1710-GE

Description

Byte containing the length in bytes of the
ACE buffer

Byte containing the type value ACE$C_
ALARM

Word containing alarm ACE information
and ACE type-independent information

Longword containing a mask indicating
the access modes to be watched

Character string containing the alarm
name

The flags word contains information specific to alarm ACEs and information
applicable to all types of ACEs. In the flags word, the first byte contains flags
specific to each ACE type; the second byte contains flags common to all ACE
types. The following symbols are bit offsets to the alarm ACE information.

Bit

ACE$V _SUCCESS

ACE$V _FAILURE

Meaning When Set

Indicates that the alarm is raised when access is successful

Indicates that the alarm is raised when access fails

The symbols shown in Table 3-1 are bit offsets to ACE information that is
applicable to all types of ACE.

Table 3-1 ACE Type-Independent Information

Bit

ACE$V _DEFAULT

ACE$V _HIDDEN

Meaning When Set

This ACE is added to the ACL of any file created in the
directory whose ACL contains this ACE. This option is
applicable only for an ACE in a directory file's ACL.

This ACE is application dependent. The DCL ACL
commands and the ACL editor cannot be used to change
the setting; the DCL command DIRECTORY/ACL does
not display it.

(continued on next page)

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

Table 3-1 (Cont.) ACE Type-Independent Information

Bit

ACE$V_NOPROPAGATE

ACE$V _PROTECTED

Meaning When Set

This ACE is not propagated among versions of the same
file.

This ACE is not deleted if the entire ACL is deleted;
instead this ACE must be explicitly deleted.

The following symbol values are offsets to bits within the access mask.

Bit Meaning When Set

ACE$V_READ

ACE$V _WRITE

ACE$V _EXECUTE

ACE$V _DELETE

ACE$V _CONTROL

Read access is monitored.

Write access is monitored.

Execute access is monitored.

Delete access is monitored.

Modification of the access field is monitored.

You can also obtain the symbol values as masks with the appropriate bit set using
the prefix ACE$M rather than ACE$V.

3.4.1.2 Application-Dependent ACE
The application ACE contains application-dependent information. The following
figure illustrates its format.

Flags l Type l Length

Application Mask

•
•

Application Information
•
•

ZK-1711-GE

Field Symbol Name Description

Length ACE$B_SIZE Byte containing the length in bytes of the
ACE buffer.

Type ACE$B_TYPE Byte containing the type value ACE$C_
INFO.

Flags ACE$W _FLAGS Word containing application ACE
information and ACE type-independent
information.

Application ACE$L_INFO_FLAGS Longword containing a mask defined and
Mask used by the application.

Application ACE$T_INFO_START Variable-length data structure defined
Information and used by the application. The length

of this data is implied by the length field.

3-19

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

The flags word contains information specific to application ACEs and information
applicable to all types of ACE. In the flags word, the first byte contains flags
specific to each ACE type; the second byte contains flags common to all ACE
types. For details on the ACE type-independent information, see Table 3-1. The
following symbol is a bit offset to the application ACE information.

Bit

ACE$V _INFO_TYPE

Meaning When Set

Four-bit field containing a value indicating whether the
application is a CSS application (ACE$C_CSS), a customer
application (ACE$C_CUST), or a VMS application (ACE$C_
VMS).

3.4.1.3 Default Protection ACE

3-20

The default protection ACE specifies the default protection for all files and
subdirectories created in the directory. This type of ACE can be used only in the
ACL of a directory file. The following figure illustrates its format.

Flags l
Spare

System

Owner

Group

World

Field Symbol Name

Length ACE$B_SIZE

Type ACE$B_TYPE

Flags ACE$W _FLAGS

Spare ACE$L_SPARE1

System ACE$L_SYS_PROT

Owner ACE$L_OWN_PROT

Group ACE$L_GRP _PROT

World ACE$L_ WOR_PROT

Type l Length

ZK-1712-GE

Description

Byte containing the length in bytes of the ACE
buffer.

Byte containing the type value ACE$C_DIRDEF.

Word containing ACE type-independent
information.

Longword reserved for future use and so must
be 0.

Longword containing a mask indicating the
access mode granted to system users. Each bit
represents one type of access.

Longword containing a mask indicating the
access mode granted to the owner. Each bit
represents one type of access.

Longword containing a mask indicating the
access mode granted to group users. Each bit
represents one type of access.

Longword containing a mask indicating the
access mode granted to the world. Each bit
represents one type of access.

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

The flags word contains the ACE type-independent information. In the flags
word, the first byte contains flags specific to each ACE type; the second byte
contains flags common to all ACE types. For details, see Table 3-1.

The system interprets the bits within the access mask as shown in the following
table. The symbol values are offsets to bits within the mask indicating the access
mode granted in the system, owner, group, and world fields.

Bit

ACE$V_READ

ACE$V _WRITE

ACE$V _EXECUTE

ACE$V _DELETE

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.

Delete access is granted.

You can also obtain the symbol values as masks with the appropriate bit set by
using the prefix ACE$M rather than ACE$V.

3.4.1.4 Identifier ACE
The identifier ACE controls the type of access allowed based on identifiers. Access
is controlled by whether an exact match exists in the process rights list for the
identifier(s) in the ACE. The following figure illustrates its format.

Flags l
Access

Reserved

Reserved

•
•
•

Identifier

Identifier

•
• •

Field Symbol Name

Length ACE$B_SIZE

Type ACE$B_TYPE

Type l Length

ZK-1713-GE

Description

Byte containing the length in bytes of the
ACE buffer.

Byte containing the type value ACE$C_
KEYID.

3-21

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

Field Symbol Name

Flags ACE$W _FLAGS

Access ACE$L_ACCESS

Reserved ACE$V _RESERVED

Identifier ACE$L_KEY

Description

Word containing identifier ACE
information and ACE type-independent
information.

Longword containing a mask indicating
the access mode granted to the specified
identifiers.

Longwords containing application-specific
information. The number of reserved
longwords is specified in the flags field.

Longwords containing identifiers. The
number of longwords is implied by
ACE$B_LENGTH. If an accessor holds
all the listed identifiers, the ACE is said
to match the accessor and the access
specified in ACE$L_ACCESS is granted.

The flags word contains information specific to identifier ACEs and information
applicable to all types of ACE. In the flags word, the first byte contains flags
specific to each ACE type; the second byte contains flags common to all ACE
types. For details on the ACE type-independent information, see Table 3-1. The
following symbol is a bit offset to the identifier ACE information.

Bit

ACE$V _RESERVED

Meaning When Set

Four-bit field containing the number of longwords to reserve for
application-dependent data. The number must be between 0
and 15. The reserved longwords, if any, immediately precede the
identifiers.

The following symbol values are offsets to bits within the mask indicating the
access mode granted in the system, owner, group, and world fields.

Bit

ACE$V_READ

ACE$V _WRITE

ACE$V _EXECUTE

ACE$V _DELETE

ACE$V _CONTROL

Meaning When Set

Read access is granted.

Write access is granted.

Execute access is granted.

Delete access is granted.

Modification of the access field is granted.

You can also obtain the symbol values as masks with the appropriate bit set by
using the prefix ACE$M rather than ACE$V.

3.4.2 Translating ACEs

3-22

To translate ACEs from binary format into a text string, use the $FORMAT_ACL
service. The aclent argument is the address of a descriptor pointing to a buffer
containing the description of the ACE. The first byte of the buffer contains the
length of the ACE; the second byte contains the type, which in turn defines the
format of the ACE. The following four values specify ACE type.

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

Value

ACE$C_ALARM

ACE$C_INFO

ACE$C_DIRDEF

ACE$C_KEYID

ACE Type

Alarm ACE

Application-dependent ACE

Default protection ACE

Identifier ACE

The acllen argument specifies the length of the text string written to the buffer
pointed to by aclstr. You use the width, trmdsc, and indent arguments to
specify a particular width, termination character, and number of blank characters
for an ACE. The accnam argument contains the address of an array of 32
quadword descriptors that define the names of the bits in the access mask of the
ACE. If accnam is omitted, the following names are used.

Bit 0 READ
Bit 1 WRITE
Bit 2 EXECUTE
Bit 3 DELETE
Bit 4 CONTROL
Bit 5 BIT_S
Bit 6 BIT_6

Bit 31 BIT_31

The $PARSE_ACL service translates an ACE from text string format to binary
format. The aclstr argument is the address of a string descriptor pointing to the
ACE text string. As with $FORMAT_ACL, the aclent argument is the address
of a descriptor pointing to a buffer containing the description of the ACE. The
first byte of the buffer contains the length of the ACE; the second byte contains
the type, which in turn defines the format of the ACE. If $PARSE_ACL fails,
the errpos argument points to the failing point in the string. The accnam
argument contains the address of an array of 32 quadword descriptors that define
the names of the bits in the access mask of the ACE. If accnam is omitted, the
names specified in the description of $FORMAT_ACL are used.

3.4.3 Creating and Maintaining ACEs
To create or modify an ACL associated with a system object, you use the
$CHANGE_ACL service. You specify the object whose ACL is to be modified
with either the chan argument, which specifies the I/O channel associated with
the object, or the objnam argument, which specifies the object name. If you
specify objnam, chan must be omitted or specified as 0. The objtyp argument
specifies the type of object.

The values specifying object type are as follows.

ACL$C_DEVICE

ACL$C_FILE

ACL$C_GROUP _GLOBAL_SECTION

ACL$C_JOBCTL_QUEUE

ACL$C_LOGICAL_NAME_TABLE

ACL$C_SYSTEM_GLOBAL_SECTION

Object is a device

Object is a Files-11 On-Disk Structure
Level 2 file

Object is a group global section

Object is a batch or print queue

Object is a logical name table

Object is a system global section

3-23

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

3-24

Use the acmode argument to specify the access mode used when checking file
access protection. By default, kernel mode is used, but the system compares
acmode against the caller's access mode and uses the least privileged mode. The
itmlst argument is an item list specifying the changes to be made to the ACL.
Each item code consists of three elements. The following figure illustrates the
format of the item code.

code l buflen

bufadr

unused

ZK-1701-GE

The item list ends with a longword containing the value 0. The bu:ften argument
contains the number of bytes in the buffer containing information passed to or
from $CHANGE_ACL pointed to by bufadr. The third longword of the standard
item descriptor is not used by $CHANGE_ACL and should be 0.

The item code specifies the change to be made to the ACL. The following symbols
for the item codes are defined in the system macro library ($ACLDEF).

Bit

ACL$C_ACLLENGTH

ACL$C_ADDACLENT

ACL$C_DELACLENT

ACL$C_DELETEACL

ACL$C_FNDACETYP

ACL$C_FNDACLENT

ACL$C_RLOCK_ACL

ACL$C_ WLOCK_ACL

ACL$C_MODACLENT

Meaning When Set

Returns the size, in bytes, of the object's ACL. The bufadr
argument points to a longword that contains the size.

Adds an ACE to the beginning of the ACL when contxt is
0, to the end of the ACL when contxt is -1, or at a location
pointed to by a prior ACL$C_FNDACETYP or ACL$C_
FNDACLENT. The bufadr argument points to a variable­
length data structure containing the ACE to be added. You
can add more than one ACE with ACL$C_ADDACLENT;
however, buff.en must contain the total size of all ACEs
contained in the buffer.

Deletes the ACE pointed to by bufadr or, if bufadr is
specified as 0, the ACE pointed to by a prior ACL$C_
FNDACETYP or ACL$C_FNDACLENT.

Deletes the entire ACL with the exception of protected
AC Es.

Locates an ACE of the type pointed to by bufadr.

Locates the ACE pointed to by bufadr.

Obtains a read lock on an object in order to lock out all
writers from the object's ACL. Regardless of the caller's
mode, ACL locks are user-mode locks so that all access
modes interlock ACLs correctly.

Obtains an exclusive lock on an object in order to lock
out all other readers and writers from the object's ACL.
Regardless of the caller's mode, ACL locks are user mode
locks so that all access modes interlock ACLs correctly.

Replaces the ACE pointed to by a prior ACL$C_
FNDACETYP or ACL$C_FNDACLENT with the ACE
pointed to by bufadr.

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

Bit Meaning When Set

ACL$C_READACE Reads the ACE pointed to by ACL$C_FNDACETYP or
ACL$C_FNDACLENT into the buffer pointed to by bufadr.

ACL$C_READACL Reads the object's ACL. The contxt argument should be
initially set to 0. Complete ACEs are read into the buffer
pointed to by bufadr.

ACL$C_UNLOCK_ACL Releases the lock obtained with ACL$C_RLOCK_ACL or
ACL$C_ WLOCK_ACL.

When you add an ACE with ACL$C_ADDACLENT or locate an ACE with
ACL$C_FNDACETYP or ACL$C_FNDACLENT, $CHANGE_ACL searches the
ACL for a match for the ACE in the ACE buffer. The $CHANGE_ACL service
does not always make a match based on the entire ACE buffer; instead, the ACE
type determines how $CHANGE_ACL makes a match. For example:

• A default protection ACE (ACE$C_DIRDEF) matches only on the type field
(ACE$B_TYPE). An ACL can have only one default protection ACE because
$CHANGE_ACL stops searching when it locates a match.

• An identifier ACE (ACE$C_KEYID) matches on the flags (ACE$W _FLAGS)
and identifier (ACE$L_KEY) fields.

• An alarm ACE (ACE$C_ALARM) matches on the flags (ACE$W _FLAGS) and
access mask (ACE$L_ACCESS) fields.

• All other ACE types match on the entire ACE buffer.

Because $CHANGE_ACL uses these matching rules, adding an ACE sometimes
results in the replacement of another ACE. For example, if you add an identifier
ACE with the same flags and identifier fields but with a different access mask,
the new ACE replaces the old ACE. When you add an ACE on the top of an ACL,
$CHANGE_ACL deletes any matching ACE because it is not seen. If you add an
ACE below a matching ACE in an ACL, the added ACE has no effect because it is
not seen.

The following programming example uses $CHANGE_ACL to add an ACE to the
ACL of a terminal. (See Section 3.6 for a related example.)

Module SECURE (main= MAIN, addressing_mode(external=general)) =
begin

Insert a record into the specified terminal's ACL so that
holders of the SECURE_TERMINAL identifier may do confidential
work with that terminal.

To use: $ SECURE tt20:

Confidential applications will, of course, need to use
SYS$CHKPRO to verify that users are authorized to use them.

library

'SYS$LIBRARY:LIB';

forward routine

MAIN;

external routine

3-25

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

3-26

LIB$GET_FOREIGN,
SYS$CHANGE_ACL,
SYS$PARSE_ACL;

To get the name of the terminal
To make the actual changes to the ACL
To translate the ACE from ASCII

compiletime

POSITION = O;

macro

Some of the routines require dynamic string descriptors.

DYNAMIC_DESCRIPTOR =
block[DSC$K_D_BLN, byte]
preset([DSC$B_CLASS] = DSC$K_CLASS_D, [DSC$B_DTYPE] 0,

[DSC$W_LENGTH] = 0, [DSC$A_POINTER] = 0) %,

These two macros are used solely for initializing the access name table.

INITIALIZE[BIT_NUMBER, BIT_NAME] =
[BIT_NUMBER, DSC$W_LENGTH] = %charcount(BIT_NAME),
[BIT_NUMBER, DSC$A_POINTER] = uplit byte(BIT_NAME) %,

own

IGNORE(START, FINISH)[) =
%if START leq FINISH %then

[START, DSC$W_LENGTH] =
%charcount(%string('BIT_', START)),

[START, DSC$A_POINTER] =
uplit byte(%string('BIT_', START))

%if START lss FINISH %then , %f i
%assign(POSITION, START+l)
IGNORE(%number(POSITION), FINISH)

%fi %;

STATUS,

OBJNAM: DYNAMIC_DESCRIPTOR, The name of this terminal
BUFADR: block[ACL$S_ADDACLENT, byte], The new ACE

ACLENT: block[DSC$K_D_BLN, byte]
preset([DSC$W_LENGTH] = ACL$S_ADDACLENT,

[DSC$A_POINTER] = BUFADR) I

ITMLST: $ITMLST_DECL() I

The Access Name Table:

Here we specify the ASCII names of all the access types.

ACCNAM: blockvector[32, DSC$K_S_BLN, byte]
preset(INITIALIZE(0, 'READ',

1, 'WRITE' I

2 I I LOG I CAL I I

3 I I PHYSICAL I I

4 I I CONTROL I I

5, 'CONFIDENTIAL'),

IGNORE(6, 31)) ;

Our hero

Security Services
3.4 Creating, Translating, and Maintaining Access Control List Entries

Prompt the user for the terminal's name.
Create a new ACE.
Add the ACE to the ACL of the terminal.

routine MAIN =
begin

end
eludom

LIB$GET_FOREIGN(OBJNAM, %ascid'Device: ');
SYS$PARSE_ACL(%ascid' (IDENTIFIER=SECURE_TERMINAL,ACCESS=CONFIDENTIAL) ',

ACLENT, 0, ACCNAM);

$ITMLST_INIT(itmlst = ITMLST,

if not

(itmcod = ACL$C_ADDACLENT,
bufsiz = .BUFADR[ACE$B_SIZE],
buf adr = BUFADR)) ;

(STATUS SYS$CHANGE_ACL(O, %ref (ACL$C_DEVICE), OBJNAM, ITMLST, 0,0,0))
then

signal_stop(.STATUS);

return SS$_NORMAL;

3.5 Modifying a Rights List
When a process is created, LOGINOUT builds a rights list for the process
consisting of the identifiers the user holds and any appropriate environmental
identifiers. A system rights list is a default rights list used in addition to any
process rights list. Modifications to the system rights list effectively become
modifications to the rights of each process.

A privileged subsystem can alter the process or system rights list with the
$GRANTID or $REVOKID services. These services are not intended for the
general system user. The $GRANTID service adds an identifier to a rights list or,
if the identifier is already part of the rights list, the $GRANTID service modifies
the attributes of the identifier. The $REVOKID service removes an identifier
from a rights list. If the identifier, specified by either id or name, is the holder of
any other identifiers, the identifier is removed from those holder records.

The $GRANTID and $REVOKID services treat the pidadr and prcnam
arguments the same way all other process control services treat these arguments.
For more details, see the Guide to VMS System Security.

You may also modify the process or system rights list with the DCL command
SET RIGHTS_LIST. Additionally, you can use SET RIGHTS_LIST to modify the
attributes of the identifier if the identifier is already part of the rights list. Note
that you may not use the SET RIGHTS_LIST command to modify the rights
database from which the rights list was created. For more information about
using the SET RIGHTS_LIST command, see the VMS DCL Dictionary.

3-27

Security Services
3.6 Checking Access Protection

3.6 Checking Access Protection
VMS provides two system services that check access to objects on the system:
SYS$CHKPRO and SYS$CHECK_ACCESS. The SYS$CHKPRO service performs
the system access protection check on a user attempting direct access to an object
on the system; SYS$CHECK_ACCESS performs a similar check but on behalf of
a third party attempting access to an object. These services are described in the
following subsections.

3.6.1 SYS$CHKPRO

3-28

The $CHKPRO service invokes the access protection check used by the system.
The service does not grant or deny access; rather, it performs the protection check
on behalf of a layered product, application program, or other similar subsystem
that in turn must specifically grant or deny access.

To pass the input and output information to $CHKPRO, use the itmlst argument,
which iE; the address of an item list of descriptors. The $CHKPRO service
compares the item list of the rights and privileges of the accessor to a list of the
protection attributes of the object to be accessed. If the accessor can access the
object, $CHKPRO returns the status SS$_NORMAL; if the accessor cannot access
the object, $CHKPRO returns the status SS$_NOPRIV. 'rhe $CHKPRO service
does not grant or deny access. The subsystem itself must grant or deny access
based on the output (SS$_NORMAL or SS$_NOPRIV) from $CHKPRO.

The $CHKPRO service also returns an item list of the rights or privileges that
allowed the accessor access to the object, as well as the names of security alarms
raised by the access attempt. For information about the item codes defined
for $CHKPRO, see the description of $CHKPRO in the VMS System Services
Reference Manual.

Figure 3-1 provides a flowchart of the steps that $CHKPRO follows when
performing a protection check.

Security Services
3.6 Checking Access Protection

Figure 3-1 Flowchart of $CHKPRO Operation

Perform Access
Mode Check

No

No

No

No

Access
Granted

ZK-6375.1-GE

(continued on next page)

3-29

Security Services
3.6 Checking Access Protection

Figure 3-1 (Cont.) Flowchart of $CHKPRO Operation

Check
Accessor

for
Privileges

Access
Denied

No

Access
Granted

Access
Granted

Yes

ZK-6375.2-GE

3.6.2 SYS$CHECK_ACCESS

3-30

Whereas SYS$CHKPRO performs the system access protection check on a user
attempting access to an object, SYS$CHECK_ACCESS executes the protection
check on behalf of a third-party accessor. An example of this would be a file
server program that uses SYS$CHECK_ACCESS to ensure that an accessor (the
third party) requesting a file has the required privileges to do so.

You pass the input and output information to $CHECK_ACCESS by using the
itmlst argument, which is the address of an item list of descriptors. You also pass
the name of the accessor and the name and type of the object being accessed by
using the arguments usrnam, objnam, and objtyp, respectively. The $CHECK_
ACCESS service compares the rights and privileges of the accessor to a list of

Security Services
3.6 Checking Access Protection

the protection attributes of the object to be accessed. If the accessor can access
the object, $CHECK_ACCESS returns the status SS$_NORMAL; if the accessor
cannot access the object, $CHECK_ACCESS returns the status SS$_NOPRIV.

The $CHECK_ACCESS service does not grant or deny access. The subsystem
itself must grant or deny access based on the output (SS$_NORMAL or SS$_
NOPRIV) from $CHECK_ACCESS.

The $CHECK_ACCESS service also returns an item list of the rights or privileges
that allowed the accessor access to the object, as well as the names of security
alarms raised by the access attempt. For information about the item codes
defined for $CHECK_ACCESS, see the description of $CHECK_ACCESS in the
VMS System Services Reference Manual.

The following programming example uses $CHKPRO to verify that a user is
authorized to use a terminal for confidential work. The $CHKPRO service does
not explicitly grant access; it only performs the protection check. The application
itself must grant or deny access based on the output from $CHKPRO. See
Section 3.4.3.

Module CHECK (main = MAIN, addressing_mode(external=general)) =
begin

library

'SYS$LIBRARY:LIB';

forward routine

MAIN;

external routine

own

SYS$CHKPRO,
SYS$CHANGE_ACL,
LIB$GET_VM;

STATUS,

ACLLENGTH,
ACL: ref block[, byte],

ITMLSTl: $ITMLST_DECL() I

ITMLST2: $ITMLST_DECL(items=2);

routine MAIN =
begin

Query for the size of the user terminal's ACL.

$ITMLST_INIT(itmlst = ITMLSTl,
(itmcod = ACL$C_ACLLENGTH, bufadr = ACLLENGTH)) ;

SYS$CHANGE_ACL(O, %ref(ACL$C_DEVICE), %ascid'TT:', ITMLSTl, 0,0,0);

Allocate memory to store the ACL.

LIB$GET_VM(%ref (.ACLLENGTH), ACL);

Read the entire ACL into the buffer.

$ITMLST_INIT(itmlst = ITMLSTl,
(itmcod = ACL$C_READACL, bufadr = .ACL, buf siz = .ACLLENGTH)) ;

SYS$CHANGE_ACL(O, %ref(ACL$C_DEVICE), %ascid'TT:', ITMLSTl, 0,0,0);

3-31

Security Services
3.6 Checking Access Protection

Check the object for CONFIDENTIAL (BIT_S) access.

$ITMLST_INIT(itmlst = ITMLST2,
(itmcod = CHP$_ACL, bufadr = .ACL, bufsiz = .ACLLENGTH) ,
(itmcod = CHP$_ACCESS, bufadr = uplit(%b'100000'))) ;

if not (STATUS = SYS$CHKPRO(ITMLST2)) then
signal_stop(.STATUS);

return SS$_NORMAL;

end;

end
eludom

3. 7 Additional Security Services

3-32

The VMS operating system provides four additional system services that affect
system security:

• The $ERAPAT service provides a consistent mechanism by which users can
write a security erase pattern for disks. The security erase patterns can be
custom configured to fit the individual needs of a site.

• The $FORMAT_AUDIT service converts a security auditing event message
from binary format to ASCII text. Event messages can come from either the
audit server listener mailbox or the system security audit log file.

• The $HASH_PASSWORD service applies the hash algorithm you select to an
ASCII password string and returns a quadword hash value that represents
the encrypted password.

• The $MTACCESS service checks the accessibility field in a magnetic tape
label to determine if a volume is protected by VMS.

For more information, see the descriptions of $ERAPAT, $FORMAT_AUDIT,
$HASH_PASSWORD, and $MTACCESS in the VMS System Services Reference
Manual.

4
Event Flag Services

Event flags are status posting bits maintained by VMS for general programming
use. Programs can use event flags to perform a variety of signaling functions.
Event flag services clear, set, and read event flags. They also can place a process
in a wait state pending the setting of an event flag or flags. The following system
services are event flag services:

• Associate Common Event Flag Cluster ($ASCEFC)

• Disassociate Common Event Flag Cluster ($DACEFC)

• Delete Common Event Flag Cluster ($DLCEFC)

• Set Event Flag ($SETEF)

• Clear Event Flag ($CLREF)

• Read Event Flags ($READEF)

• Wait for Single Event Flag ($WAITFR)

• Wait for Logical OR of Event Flags ($WFLOR)

• Wait for Logical AND of Event Flags ($WFLAND)

Some system services set an event flag to indicate the completion or the
occurrence of an event; the calling program can test the flag. The following are
some of the system services that use event flags to signal events to the calling
process:

• Enqueue Lock Request ($ENQ and $ENQW)

• Get DeviceNolume Information ($GETDVI and $GETDVIW)

• Get Job/Process Information ($GETJPI and $GETJPIW)

• Get Systemwide Information ($GETSYI and $GETSYIW)

• Queue I/O Request ($QIO and $QIOW)

• Set Timer ($SETIMR)

• Update Section File on Disk ($UPDSEC)

• Update Section File on Disk and Wait ($UPDSECW)

Event flags can be used by more than one process as long as the cooperating
processes are in the same group. Thus, if you have developed an application that
requires the concurrent execution of several processes, you can use event flags to
establish communication among them and to synchronize their activity.

4-1

Event Flag Services
4.1 Event Flag Numbers and Event Flag Clusters

4.1 Event Flag Numbers and Event Flag Clusters

4-2

Each event flag has a unique decimal number; event flag arguments in system
service calls refer to these numbers. For example, if you specify event flag 1 in
a call to the $QIO system service, then event flag number 1 is set when the I/O
operation completes.

To allow manipulation of groups of event flags, the flags are ordered in clusters,
with 32 flags in each cluster, numbered from right to left, corresponding to bits 0
through 31 in a longword. The clusters are also numbered from 0 to 3. The range
of event flag numbers encompasses the flags in all clusters: event flag 0 is the
first flag in cluster 0, event flag 32 is the first flag in cluster 1, and so on.

There are two types of clusters: local event flag clusters and common event flag
clusters.

• A local event flag cluster can only be used internally by a single process.
Local clusters are automatically available to each process.

• A common event flag cluster can be shared by cooperating processes in the
same group. Before a process can refer to a common event flag cluster,
it must explicitly "associate" with the cluster. Association is described in
Section 4.5.

The ranges of event flag numbers and the clusters to which they belong are
summarized in Table 4-1.

Table 4-1 Summary of Event Flag and Cluster Numbers

Cluster
Number

0
1

2
3

Event Flag
Numbers

0-31
32-63

64-95
96-127

Description

Process-local event
flag clusters for
general use

Assignable common
event flag cluster

Specifying Event Flag and Event Flag Cluster Numbers

Restriction

Event flags 24 through 31
reserved for system use

Must be associated before
use

The same system services manipulate flags in both local and common event flag
clusters. Because the event flag number implies the cluster number, it is not
necessary to specify the cluster number when you call a system service that refers
to an event flag.

When a system service requires an event flag cluster number as an argument,
you need only specify the number of any event flag in the cluster. Thus, to read
the event flags in cluster 1, you could specify any number in the range 32 through
63.

To prevent accidental use of an event flag already in use elsewhere in your
program, you should allocate and deallocate local event flags. The VMS Run-Time
Library Routines Volume describes routines you can use to allocate an arbitrary
event flag (LIB$GET_EF), to allocate a particular event flag (LIB$RESERVE_
EF), or to deallocate an event flag (LIB$FREE_EF) from the process-wide pool of
available local event flags. No similar routines exist for common event flags.

Event Flag Services
4.2 Examples of Event Flag Services

4.2 Examples of Event Flag Services
Local event flags are most commonly used in conjunction with other system
services. For example, you can use the Set Timer ($SETIMR) system service
to request that an event flag be set at a specific time of day or after a specific
interval of time has passed. If you want to place a process in a wait state for a
specified period of time, you could specify an event flag number for the $SETIMR
service and then use the Wait for Single Event Flag ($WAITFR) system service,
as follows.

TIME: .BLKQ 1

$SETIMR_S -
EFN=#3, -
DAYTIM=TIME

$WAITFR_S -
EFN=#3

; Will contain time interval to wait

Set the timer

; Wait until timer expires

In this example, the daytim argument refers to a 64-bit time value. For details
about how to obtain a time value in the proper format for input to this service,
see Chapter 10.

4.3 Event Flag Waits
The following three system services place the process in a wait state until an
event flag, or group of event flags, is set:

• The Wait for Single Event Flag ($WAITFR) system service places the process
in a wait state until a single flag has been set.

• The Wait for Logical OR of Event Flags ($WFLOR) system service places the
process in a wait state until any one of a specified group of event flags has
been set.

• The Wait for Logical AND of Event Flags ($WFLAND) system service places
the process in a wait state until all of a specified group of event flags have
been set.

Another system service that accepts an event flag number as an argument is
the Queue I/O Request ($QIO) system service. The following example shows
a program segment that issues two $QIO system service calls, and uses the
$WFLAND system service to wait until both I/O operations complete before it
continues execution.

$QIO_S EFN=#l, ... 0
BSBW ERROR
$QIO_S EFN=#2, ...
BSBW ERROR
$WFLAND_S - ~

EFN=#l, - @)
MASK=#/\BOllO

BSBW ERROR

Issue first I/0 request
; Check for error
; Issue second I/0 request
; Check for error
Wait until both complete

Check for error

Continue execution

0 The event flag argument is specified in each $QIO request. Both of these
event flags are in cluster 0.

4-3

Event Flag Services
4.3 Event Flag Waits

8 After both I/O requests are successfully queued, the program calls the Wait
for Logical AND of Event Flags ($WFLAND) system service to wait until the
I/O operations complete. In this service call, the efn argument can specify
any event flag number in the cluster containing the event flags to be waited
for. The mask argument specifies that flags 1 and 2 are to be waited for.

@) Note that the $WFLAND system service (and the other wait system services)
waits for the event flag to be set; it does not wait for the I/O operation
to complete. If some other event were to set the required event flags, the
wait for event flag would complete prematurely. Use of event flags must
be carefully coordinated. (See Section 7.3.1 for more information about the
recommended technique for testing I/O completion.)

4.4 Setting and Clearing Event Flags
System services that use event flags clear the event flag specified in the system
service call before they queue the timer or I/O request. This ensures that the
process knows the state of the event flag. If you are using event flags in local
clusters for other purposes, be sure the flag's initial value is what you want before
you use it.

The Set Event Flag ($SETEF) and Clear Event Flag ($CLREF) system services
set and clear specific event flags. For example, the following system service call
clears event flag 32:

$CLREF_S EFN=#32

The $SETEF and $CLREF services return successful status codes that indicate
whether the specified flag was set or clear when the service was called. The
caller can thus determine the previous state of the flag, if necessary. The codes
returned are SS$_ WASSET and SS$_ WASCLR.

All event flags in a common event flag cluster are initially clear when the cluster
is created. The next section describes the creation of common event flag clusters.

4.5 Creating Common Event Flag Clusters

4-4

Common event flags act as a communication link between images executing in
different processes in the same group. Common event flags are often used as a
synchronization tool for other more complicated communication techniques such
as logical names and global sections. For more information about using event
flags to synchronize communication between processes, see Section 2.5.1.

Before any processes can use event flags in a common event flag cluster, the
cluster must be created. The Associate Common Event Flag Cluster ($ASCEFC)
system service creates a common event flag cluster. After a cluster is created,
other processes in the same group can call $ASCEFC to establish their association
with the cluster, so they can access flags in it.

When a common event flag cluster is created, it must be identified by a name
string. (Section 4.8 explains the format of this string.) Each process that
associates with the cluster must use the same name to refer to it; the $ASCEFC
system service establishes correspondence between the cluster name and the
cluster number that a process assigns to the cluster.

Event Flag Services
4.5 Creating Common Event Flag Clusters

The following example shows how a process might create a common event flag
cluster named COMMON_ CLUSTER and assign it a cluster number of 2.

CLUSTER:
.ASCID /COMMON_CLUSTER/

$ASCEFC_S -
EFN=#65, -
NAME=CLUSTER

; Cluster name

Create cluster 2

Subsequently, other processes in the same group may associate with this cluster.
Those processes must use the same character string name to refer to the cluster;
however, the cluster numbers they assign do not have to be the same.

Common event flag clusters are either temporary or permanent. The perm
argument to the $ASCEFC system service defines whether the cluster is
temporary or permanent.

Temporary clusters require an element of the creating process's quota for timer
queue entries (TQELM quota). They are deleted when all processes associated
with the cluster have disassociated. Disassociation can be performed explicitly,
with the Disassociate Common Event Flag Cluster ($DACEFC) system service, or
implicitly, when the image exits.

Permanent clusters require the creating process to have the PRMCEB user
privilege. They continue to exist until they are explicitly marked for deletion with
the Delete Common Event Flag Cluster ($DLCEFC) system service.

If every cooperating process that is going to use a common event flag cluster has
the necessary privilege or quota to create a cluster, the first process to call the
$ASCEFC system service creates the cluster.

4.6 Disassociating and Deleting Common Event Flag Clusters
When a process no longer needs access to a common event flag cluster, it issues
the Disassociate Common Event Flag Cluster ($DACEFC) system service. When
all processes associated with a temporary cluster have issued a $DACEFC system
service, the system deletes the cluster. If a process does not explicitly disassociate
itself from a cluster, the system performs an implicit disassociation when the
image that called $ASCEFC exits.

Permanent clusters, however, must be explicitly marked for deletion with the
Delete Common Event Flag Cluster ($DLCEFC) system service. After the cluster
has been marked for deletion, it is not deleted until all processes associated with
it have been disassociated.

4.7 Example of Using a Common Event Flag Cluster
The following is an example of four cooperating processes that share a common
event flag cluster. The processes named ORION, CYGNUS, LYRA, and PEGASUS
are in the same group.

4-5

Event Flag Services
4.7 Example of Using a Common Event Flag Cluster

4-6

Process ORION

CNAME: .ASCID /TITUS/ ; Descriptor for cluster name

«t $ASCEFC_S - ; Create common cluster
EFN=_#64, -
NAME=CNAME 8

BSBW ERROR ; Check for error

@) $WFLAND_S -
EFN=_#64, -
MASK=_#_ABlllO i Wait for flags 1,2,3

BSBW ERROR Check for error
8 $DACEFC_S -

EFN=_#64 ; Disassociate cluster

Process CYGNUS

ORION_FLAGS: .ASCID /TITUS/ ; Descriptor for

@ $ASCEFC_S -

cluster name

EFN=_#64, -
NAME=ORION_FLAGS

BSBW ERROR ; Check for error
$SETEF_S - ; Set event flag 1

EFN=_#65
BSBW ERROR ; Check for error
$DACEFC_S - ; Disassociate

EFN=_#64

Process LYRA

SHARE: .ASCID /TITUS/ ; Descriptor for cluster name

(!) $ASCEFC_S - ; Associate with cluster 3
EFN=_#96, -
NAME=SHARE

BSBW ERROR i Check for error
$SETEF_S - ; Set flag 3

EFN=_#99
BSBW ERROR ; Check for error
$DACEFC_S - ; Disassociate

EFN=_#96

Process PEGASUS

CLUSTER: .ASCID /TITUS/ ; Descriptor for cluster name

t) $ASCEFC_S - ; Associate with cluster
EFN=_#64, -
NAME=CLUSTER

BSBW ERROR ; Check for error
$WAITFR_S - ; Wait for flag 1

EFN=_#65
BSBW ERROR ; Check for error

; Continue

$SETEF_S - ; Set flag 2
EFN=_#66

BSBW ERROR ; Check for error
$DACEFC_S - ; Disassociate

EFN=_#64

Event Flag Services
4.7 Example of Using a Common Event Flag Cluster

0 Assume for this example that ORION is the first process to issue the
$ASCEFC system service and therefore is the creator of the cluster. Because
this is a newly created cluster, all event flags in it are clear.

8 The argument name in the $ASCEFC system service call is a pointer to
the descriptor CNAME for the name to be assigned to the cluster; in this
example, the cluster is named TITUS. This service call associates this name
with cluster 2 of process ORION, containing event flags 64 through 95.
Cooperating processes CYGNUS, LYRA, and PEGASUS must use the same
character string name to refer to this cluster.

6) The continuation of process ORION depends on work done by processes
CYGNUS, LYRA, and PEGASUS. The Wait for Logical AND of Event Flags
($WFLAND) system service call specifies a mask indicating the event flags
that must be set before process ORION can continue. The mask in this
example ("BlllO) indicates that the second, third, and fourth flags in the
cluster must be set.

0 When all three event flags are set, process ORION continues execution and
calls the $DACEFC system service. Because ORION did not specify the perm
argument when it created the cluster, TITUS is deleted.

0 Process CYGNUS executes, associates with the cluster, sets event flag 65 (flag
1 in the cluster), and disassociates.

0 Process LYRA associates with the cluster, but instead of referring to it as
cluster 2, it refers to it as cluster 3 (with event flags in the range 96 through
127). Thus, when process LYRA sets flag 99, it is setting flag number 3 in
TITUS.

8 Process PEGASUS associates with the cluster, waits for an event flag set by
process CYGNUS, and sets an event flag itself.

4.8 Cluster Name
The name argument to the Associate Common Event Flag Cluster ($ASCEFC)
system service identifies the cluster that the process is creating or associating
with. The name argument specifies a descriptor pointing to a character string.

Translation of the name argument proceeds in the following manner:

1. CEF$ is prefixed to the current name string and the result is subjected to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3. The CEF$ prefix is stripped from the current name string that could not be
translated. This current string is the cluster-name.

For example, assume that you have made the following logical name assignment:

$ DEFINE CEF$CLUS_RT CLUS_RT_OOl

4-7

Event Flag Services
4.8 Cluster Name

Assume also that your program contains the following statements.

NAMEDESC:
.ASCID /CLUS_RT/ ; Descriptor for logical name of cluster

$ASCEFC_S -
... ,NAME=NAMEDESC, ...

The following logical name translation takes place:

1. CEF$ is prefixed to CLUS_RT.

2. CEF$CLUS_RT is translated to CLUS_RT_OOl. (No further translation is
successful. When logical name translation fails, the string is passed to the
service.)

There are two exceptions to the logical name translation method discussed in this
section:

• If the name string starts with an underscore (_), the VMS operating system
strips the underscore and considers the resultant string to be the actual name
(that is, no further translation is performed).

• If the name string is the result of a logical name translation, the name string
is checked to see if it has the "terminal" attribute. If the name string is
marked with the "terminal" attribute, VMS considers the resultant string to
be the actual name (that is, no further translation is performed).

4.9 Example of Using Event Flag Services

4-8

This section contains an example of how to use event flag services.

Common event flags are often used for communicating between a parent
process and a created subprocess. In the following example, REPORT.FOR
creates a subprocess to execute REPORTSUB.FOR, which performs a number of
operations.

After REPORTSUB.FOR performs its first operation, the two processes can
perform in parallel. REPORT.FOR and REPORTSUB.FOR use the common event
flag cluster named JESSIER to communicate.

REPORT.FOR associates the cluster name with a common event flag
cluster, creates a subprocess to execute REPORTSUB.FOR, then waits for
REPORTSUB.FOR to set the first event flag in the cluster. REPORTSUB.FOR
performs its first operation, associates the cluster name JESSIER with a common
event flag cluster, and sets the first flag. From then on, the processes execute
concurrently.

REPORT.FOR

Associate common event flag cluster
STATUS= SYS$ASCEFC (%VAL(64),
2 'JESSIER' I I)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Event Flag Services
4.9 Example of Using Event Flag Services

! Create subprocess to execute concurrently
MASK= IBSET (MASK,0)
STATUS= LIB$SPAWN ('RUN REPORTSUB', Image
2 'INPUT.DAT' I ! SYS$INPUT
2 'OUTPUT.DAT' I ! SYS$0UTPUT
2 MASK
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Wait for response from subprocess.
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

REPORTSUB.FOR

Do operations necessary for
continuation of parent process.

Associate common event flag cluster
STATUS = SYS$ASCEFC (%VAL(64) I

2 'JESSIER' I I)
IF (.NOT. STATUS)
2 CALL LIB$SIGNAL (%VAL(STATUS))

! Set flag for parent process to resume
STATUS= SYS$SETEF (%VAL(64))

4-9

./

5
AST (Asynchronous System Trap) Services

Some system services allow a process to request that it be interrupted when
a particular event occurs. Because the interrupt occurs asynchronously (out of
sequence) with respect to the process's execution, the interrupt mechanism is
called an asynchronous system trap (AST). The trap provides a transfer of control
to a user-specified procedure that handles the event.

The following system services are AST services:

• Set AST Enable ($SETAST)

• Declare AST ($DCLAST)

• Set Power Recovery AST ($SETPRA)

The system services that use the AST mechanism accept as an argument the
address of an AST service routine, that is, a routine to be given control when the
event occurs.

The following are some of the services that use ASTs:

• Declare AST ($DCLAST)

• Enqueue Lock Request ($ENQ)

• Get DeviceNolume Information ($GETDVI)

• Get Job/Process Information ($GETJPI)

• Get Systemwide Information ($GETSYI)

• Queue I/O Request ($QIO)

• Set Timer ($SETIMR)

• Set Power Recovery AST ($SETPRA)

• Update Section File on Disk ($UPDSEC)

For example, if you call the Set Timer ($SETIMR) ·system service, you can specify
the address of a routine to be executed when a time interval expires or at a
particular time of day. The service schedules the execution of the routine and
returns; the program image continues executing. When the requested timer event
occurs, the system "delivers" an AST by interrupting the process and calling the
specified routine.

The following example shows a typical program that calls the $SETIMR system
service with a request for an AST when a timer event occurs.

5-1

AST {Asynchronous System Trap) Services

NOON: .BLKQ 1
. ENTRY LIBRA, 0

0 $SETIMR_S -

BSBW

DAYTIM=NOON, -
ASTADR=TIMEAST
ERROR

Will contain 12:00 system time
Entry mask for LIBRA

Set timer

Check for error

+---------+
<---------------------- ! Timer !

!Interrupt! 8

.ENTRY TIMEAST,AM<>

RET
.END LIBRA

+---------+
; Entry mask for AST routine
Handle timer request

; Done

0 The call to the $SETIMR system service requests an AST at 12:00 noon.

The DAYTIM argument refers to the quadword NOON, which must contain
the time in system time (64-bit) format. For details on how this is done, see
Chapter 10. The ASTADR argument refers to TIMEAST, the address of the
AST service routine.

When the call to the system service completes, the process continues
execution.

8 The timer expires at 12:00 noon and notifies the system. The system
interrupts execution of the process and gives control to the AST service
routine.

0 The user routine TIMEAST handles the interrupt. When the AST routine
completes, it issues a RET instruction to return control to the program. The
program resumes execution at the point at which it was interrupted.

The following sections describe in more detail how ASTs work and how to use
them.

5.1 Access Modes for AST Execution
Each request for an AST is associated with the access mode from which the AST
is requested. Thus, if an image executing in user mode requests notification of an
event by means of an AST, the AST service routine executes in user mode.

Because the ASTs you use almost always execute in user mode, you do not need
to be concerned with access modes. However, you should be aware of some
system considerations for AST delivery. These considerations are described in
Section 5.5.

5.2 ASTs and Process Wait States

5-2

A process in a wait state can be interrupted for the delivery of an AST and the
execution of an AST service routine. When the AST service routine completes
execution, the process is returned to the wait state, if the condition that caused
the wait is still in effect.

With the exception of suspended waits (SUSP) and suspended outswapped waits
(SUSPO), any wait states can be interrupted.

AST (Asynchronous System Trap) Services
5.2 ASTs and Process Wait States

5.2.1 Event Flag Waits
If a process is waiting for an event flag and is interrupted by an AST, the wait
state is restored following execution of the AST service routine. If the flag is set
at completion of the AST service routine (for example, by completion of an I/O
operation), then the process continues execution when the AST service routine
completes.

Event flags are described in detail in Chapter 4.

5.2.2 Hibernation
A process can place itself in a wait state with the Hibernate ($HIBER) system
service. This wait state can be interrupted for the delivery of an AST. When the
AST service routine completes execution, the process continues hibernation. The
process can, however, "wake" itself in the AST service routine or be awakened by
another process or as the result of a timer-scheduled wakeup request. Then, it
continues execution when the AST service routine completes.

Process suspension is another form of wait; however, a suspended process cannot
be interrupted by an AST. Process hibernation and suspension are described in
Chapter 8.

5.2.3 Resource Waits and Page Faults
When a process is executing an image, the system can place the process in a
wait state until a required resource becomes available, or until a page in its
virtual address space is paged into memory. These waits, which are generally
transparent to the process, can also be interrupted for the delivery of an AST.

5.3 How ASTs Are Declared
Most ASTs occur as the result of the completion of an asynchronous event
initiated by a system service (for example, a $QIO or $SETIMR request) when
the process requests notification by means of an AST.

The Declare AST ($DCLAST) system service creates ASTs. With this service, a
process can declare an AST only for the same or for a less privileged access mode.

You may find occasional use for the $DCLAST system service in your
programming applications; you may also find the $DCLAST service useful
when you want to test an AST service routine.

5.4 The AST Service Routine
An AST service routine must be a separate procedure. The system calls the AST
with a CALLG instruction; the routine must return using a RET instruction. If
the service routine modifies any registers other than RO or Rl, it must set the
appropriate bits in the entry mask so that the contents of those registers are
saved.

Because knowing when the AST service routine will begin executing is impossible,
you must take care when you write the AST service routine that it does not
modify any data or instructions used by the main procedure (unless, of course,
that is its function).

On entry to the AST service routine, the Argument Pointer register (AP) points to
an argument list that has the following format.

5-3

AST (Asynchronous System Trap) Services
5.4 The AST Service Routine

5-4

31 8 7 0

0 I 5

AST Parameter

RO

R1

PC

PSL

ZK-0855-GE

The registers RO and Rl, the PC, and the PSL in this list are those that were
saved when the process was interrupted by delivery of the AST.

The AST parameter is an argument passed to the AST service routine so that
it can identify the event that caused the AST. When you call a system service
requesting an AST, or when you call the $DCLAST system service, you can supply
a value for the AST parameter. If you do not specify a value, it defaults to 0.

The following example illustrates an AST service routine. In this example, the
ASTs are queued by the $DCLAST system service; the ASTs are delivered to the
process immediately so that the service routine is called following each $DCLAST
system service call.

.ENTRY CELESTEF,0 ; Entry mask

t» $DCLAST_S -

I

ASTADR=ASTRTN, -
ASTPRM=#l

$DCLAST_S -
ASTADR=ASTRTN, -
ASTPRM=#2

RET

ASTRTN: .WORD 0
~ CMPL #l,4(AP)

10$:

20$:

BEQL 10$
CMPL #2,4(AP)
BEQL 20$

RET

RET

.END CELESTEF

AST with parameter=l

AST with parameter=2

; Return control

; Entry mask
Check if AST parameter=l

If equal, goto 10$
Check if AST parameter=2
If equal, goto 20$

Handle first AST
Return
Handle second AST
Return

AST (Asynchronous System Trap) Services
5.4 The AST Service Routine

0 The program CELESTEF calls the $DCLAST AST system service twice to
queue ASTs. Both ASTs specify the AST service routine, ASTRTN. However,
a different parameter is passed for each call.

8 The first action this AST routine takes is to check the AST parameter so
that it can determine if the AST being delivered is the first or second one
declared. The value of the AST parameter determines the flow of execution.
If a number of different values are determining a number of different paths
of execution, Digital recommends that you use the VAX MACRO instruction
CASE.

5.5 AST Delivery
When a condition causes an AST to be delivered, the system may not be able to
deliver the AST to the process immediately. An AST cannot be delivered under
any of the following conditions:

• An AST service routine is currently executing at the same or at a more
privileged access mode.

Because ASTs are implicitly disabled when an AST service routine executes,
one AST routine cannot be interrupted by another AST routine declared for
the same access mode. It can, however, be interrupted for an AST declared
for a more privileged access mode.

• AST delivery is explicitly disabled for the access mode.

A process can disable the delivery of AST interrupts with the Set AST Enable
($SETAST) system service. This service may be useful when a program is
executing a sequence of instructions that should not be interrupted for the
execution of an AST routine.

• The process is executing or waiting at an access mode more privileged than
that for which the AST is declared.

For example, if a user mode AST is declared as the result of a system service
but the program is currently executing at a higher access mode (because of
another system service call, for example), the AST is not delivered until the
program is once again executing in user mode.

If an AST cannot be delivered when the interrupt occurs, the AST is queued
until the conditions disabling delivery are removed. Queued ASTs are ordered
by the access mode from which they were declared, with those declared from
more privileged access modes at the front of the queue. If more than one AST is
queued for an access mode, the ASTs are delivered in the order in which they are
queued.

5.6 Example of Using AST Services
The following is an example of a VAX FORTRAN program that finds the PID
number of any user working on a particular disk and delivers an AST to notify
the user that the disk is coming down.

5-5

AST (Asynchronous System Trap) Services
5.6 Example of Using AST Services

5-6

PROGRAM DISK_DOWN
! Implicit none
! Status variable
INTEGER STATUS
STRUCTURE /ITMLST/

UNION
MAP

INTEGER*2 BUFLEN,
2 CODE

INTEGER*4 BUFADR,
2 RETLENADR

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE
RECORD /ITMLST/ DVILIST(2),
2 JPILIST(2)
! Information for GETDVI call
INTEGER PID_BUF,
2 PID_LEN
! Information for GETJPI call
CHARACTER*7 TERM_NAME
INTEGER TERM_LEN
EXTERNAL DVI$_PID,
2 JPI$_TERMINAL
! AST routine and flag
INTEGER AST_FLAG
PARAMETER (AST_FLAG = 2)
EXTERNAL NOTIFY_USER

INTEGER SYS$GETDVIW,
2 SYS$GETJPI,
2 SYS$WAITFR

Set up for SYS$GETDVI
DVILIST(l) .BUFLEN = 4
DVILIST(l) .CODE = %LOC(DVI$_PID)
DVILIST(l) .BUFADR = %LOC(PID_BUF)
DVILIST(l) .RETLENADR = %LOC(PID_LEN)
DVILIST(2) .END_LIST = 0
! Find PID number of process using SYS$DRIVEO
STATUS = SYS$GETDVIW (,
2
2
2
2

I

I _MTAO: I I

DVILIST,
111)

! device
! item list

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
! Get terminal name and fire AST
JPILIST(l) .CODE = %LOC(JPI$_TERMINAL)
JPILIST(l) .BUFLEN = 7
JPILIST(l) .BUFADR = %LOC(TERM_NAME)
JPILIST(l) .RETLENADR = %LOC(TERM_LEN)
JPILIST(2) .END_LIST = 0
STATUS = SYS$GETJPI (,
2 PID_BUF, !process id
2
2 JPILIST, ! itemlist
2
2 NOTIFY_USER, !AST
2 TERM_NAME) ! AST arg
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

AST (Asynchronous System Trap) Services
5.6 Example of Using AST Services

! Ensure that AST was executed
STATUS= SYS$WAITFR(%VAL(AST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

SUBROUTINE NOTIFY_USER (TERM_STR)
! AST routine that broadcasts a message to TERMINAL
! Dummy argument
CHARACTER*(*) TERM_STR
CHARACTER*8 TERMINAL
INTEGER LENGTH
! Status variable
INTEGER STATUS
CHARACTER*(*) MESSAGE
PARAMETER (MESSAGE =
2 'SYS$TAPE going down in 10 minutes')
! Flag to indicate AST executed
INTEGER AST_FLAG

! Declare system routines
INTRINSIC LEN
INTEGER SYS$BRDCST,
2 SYS$SETEF
EXTERNAL SYS$BRDCST,
2 SYS$SETEF,
2 LIB$SIGNAL
! Add underscore to device name
LENGTH = LEN (TERM_STR)
TERMINAL(2:LENGTH+l) = TERM_STR
TERMINAL(l:l) = '_'

! Send message
STATUS = SYS$BRDCST(MESSAGE,
2 TERMINAL(l:LENGTH+l))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
l Set event flag
STATUS= SYS$SETEF (%VAL(AST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
END

5-7

6
Name Services

The VMS name services include the logical name services and the distributed
name services.

The VMS logical name services provide a technique for manipulating and
substituting character-string names. Logical names are commonly used to
specify devices or files for input or output operations. You can use logical names
to communicate information between processes by creating a logical name in
one process in a shared logical name table and translating the logical name in
another process. The VMS logical name services are as follows:

• Create Logical Name ($CRELNM)

• Create Logical Name Table ($CRELNT)

• Delete Logical Name ($DELLNM)

• Translate Logical Name ($TRNLNM)

As the names of the logical name system services imply, when you use the logical
name system services, you are concerned with creating, deleting, and translating
logical names and with creating and deleting logical name tables.

The DIGITAL Distributed Naming Service (DECdns) provides applications with
a means of assigning networkwide names to system resources. Applications can
use DECdns to name such resources as printers, files, disks, nodes, servers, and
application databases. Once an application has named a resource using DECdns,
the name is available for all users of the application.

6.1 Logical Name System Services
This section describes how to use system services to establish logical names
for general application purposes. The system performs special logical name
translation procedures for names associated with I/O services and with services
that can deal with facilities located in shared (multiport) memory. For further
information, see the following chapters:

• Mailbox names and device names for I/O services: Chapter 7

• Common event flag cluster names: Chapter 4

• Global section names: Chapter 12

• Shared memory: Appendix B

The following sections describe various concepts you should be aware of when
using the logical name system services. For further discussion of logical names,
see the VMS DCL Dictionary.

6-1

Name Services
6.1 Logical Name System Services

6.1.1 Logical Names and Equivalence Names
A logical name is a user-specified character string that can represent a
file specification, device name, logical name table name, application-specific
information, or another logical name. Typically, for process-private purposes, you
specify logical names that are easy to use and remember. System managers and
privileged users choose mnemonics for files, system devices, and search lists that
are frequently accessed by all users.

An equivalence name is a character string that denotes the actual file
specification, device name, or character string. An equivalence name can also be
a logical name. In this case, further translation is necessary to reveal the actual
equivalence name, if permitted.

A multivalued logical name, commonly called a search list, is a logical name
that has more than one equivalence string. Each equivalence string is assigned
an index number starting at 0.

Logical names and their equivalence strings are contained in logical name tables.

Logical names can have a maximum length of 255 characters. Equivalence
strings can have a maximum of 255 characters. You can establish logical name
and equivalence string pairs as follows ..

• At the command level, with the DCL commands ALLOCATE, ASSIGN,
DEFINE, or MOUNT

• In a program, with the Create Logical Name ($CRELNM), Create Mailbox
and Assign Channel ($CREMBX), or Mount Volume ($MOUNT) system
service

For example, you could use the symbolic name TERMINAL to refer to an output
terminal in a program. For a particular run of the program, you could use the
DEFINE command to establish the equivalence name TTA2.

To perform an assignment in a program, you must define character string
descriptors for the name strings. In addition, you must call the system service
through an external function declaration within your program, depending on the
programming language.

6.1.2 Logical Name Tables

6-2

A logical name table contains logical name and equivalence string pairs. Each
table is an independent name space. Logical name tables are referenced by
logical names.

Logical name tables can be created in process space or in system space. Tables
created in process space are accessible only by that process. Tables created in
system space are potentially shareable among many processes. Certain logical
name tables have predefined logical names that provide the environment for
creating, deleting, and translating user-specified logical names. These predefined
logical names begin with the prefix LNM$. Logical name and equivalence name
pairs are maintained in three types of logical name tables:

• Logical name directory tables

• Default logical name tables

• User-defined logical name tables

When the process is created, the logical name directory tables and the default
logical name tables are created for each new process.

Name Services
6.1 Logical Name System Services

6.1.2.1 Logical Name Directory Tables
Because the names of logical name tables are logical names, table names must
reside in logical name tables. Two special tables called directories exist for this
purpose. Table names are translated from these logical name directory tables.
Logical name and equivalence name pairs for logical name tables are maintained
in the following two directory tables:

• Process Directory Table (LNM$PROCESS_DIRECTORY)

• System Directory Table (LNM$SYSTEM_DIRECTORY)

The process directory table contains the names of all process-private user-defined
logical name tables created through the $CRELNT system service. In addition,
the process directory table contains system-assigned logical name table names,
the name of the process logical name table LNM$PROCESS_TABLE, and the
default logical name table search list.

The system directory table contains the names of potentially shareable logical
name tables and system-assigned logical name table names. You must have the
SYSPRV privilege to create a logical name in the system directory table. For a
discussion on privileges, see Section 6.1.3.

Logical names other than logical name table names may exist within these tables.
The maximum length of logical names created in either of these tables must not
exceed 31 characters. Logical names created in the directory tables must consist
of alphanumeric characters, dollar signs ($), and underscores (_). Equivalence
strings must not exceed 255 characters.

6.1.2.2 Default Logical Name Tables
Certain logical name tables are created for or assigned to a process at process
creation. These tables are called the default logical name tables. The newly
created process is provided with these tables by default. Logical name and
equivalence name pairs are maintained in the default logical name tables.

Each default logical name table has a logical name associated with it. To place
an entry in a logical name table, specify a logical name table name. The default
logical name table names and the common logical names used to refer to them
are as follows.

Table Name Logical Name

Process LNM$PROCESS_TABLE LNM$PROCESS

Job LNM$JOB_xxxxxxxx LNM$JOB

Group LNM$GROUP _gggggg LNM$GROUP

System LNM$SYSTEM_TABLE LNM$SYSTEM

The letter x represents a numeral in an 8-digit hexadecimal number that uniquely
identifies the job logical name table. The letter g represents a numeral in a
6-digit octal number that contains the user's group number.

The maximum length of logical names created in these tables must not exceed
255 characters with no restriction on the types of characters used. Equivalence
strings must not exceed 255 characters.

6-3

Name Services
6.1 Logical Name System Services

6-4

Process Logical Name Table
The process logical name table LNM$PROCESS_TABLE contains names used
exclusively by the process. A process logical name table exists for each process in
the system. Some entries in the process logical name table are made by system
programs executing at more privileged access modes; these entries are qualified
by the access mode from which the entry was made. The process logical name
table contains the following process-permanent logical names.

Logical Name

SYS$INPUT

SYS$0UTPUT

SYS$COMMAND

SYS$ERROR

Meaning

Default input stream

Default output stream

Original first-level (SYS$INPUT) input stream

Default device to which the system writes error messages

SYS$COMMAND is created only for processes that execute LOGINOUT.

Process-Private Logical Name Creation and Image Rundown
Most entries in the process logical name table are made at user and supervisor
mode. The following example shows how process-private logical names can be
created in user mode by an image.

LOGDESC:
.ASCID

EQVNAMl:
.ASCII

EQVLENl=
.-EQVNAMl

EQVNAM2:
.ASCII

EQVLEN2=
. -EQVNAM2

TABDESC:
.ASCID

CRELST:
.WORD
.WORD
.ADDRESS
.LONG
.WORD
.WORD
.ADDRESS
.LONG
.LONG

$CRELNM_S -
LOGNAM = LOGDESC,­
TABNAM = TABDESC,­
ITMLST = CRELST

/ABC/

/XYZ/

/DEF/

/LNM$PROCESS/

EQVLENl
LNM$_STRING
EQVNAMl
0
EQVLEN2
LNM$_STRING
EQVNAM2
0
0

;Length of first equivalence name
;Logical name string
;First equivalence name

;Length of second equivalence name
;Logical name string
;Second equivalence name

;Logical name
;Table name
;Equivalence strings

In the preceding example, a logical name ABC was created and represents
two equivalence strings, XYZ and DEF. Each time the LNM$_STRING item
code of the itmlst argument is invoked, an index value is assigned to the next
equivalence string. The newly created logical name and its equivalence string are
contained in the process logical name table LNM$PROCESS_TABLE.

The following example illustrates logical name creation at supervisor mode
through DCL:

$ DEFINE/SUPERVISOR_MODE/TABLE=LNM$PROCESS ABC XYZ,DEF

Name Services
6.1 Logical Name System Services

Process logical names created in user mode are deleted whenever the creating
process runs an image down. This behavior is illustrated by the following DCL
commands.

$ DEFINE/USER ABC XYZ
$ SHOW TRANSLATION ABC

ABC = XYZ
$ DIRECTORY
$ SHOW LOGICAL ABC

ABC = (undefined)

The DCL command DIRECTORY performs image rundown when it is finished
operating. At that time, all user-mode process-private logical names are deleted,
including the logical name ABC.

Job Logical Name Table
The job logical name table is a shareable table accessible by all processes within
the same job tree. Whenever a detached process is created, a job logical name
table is created for this process and all of its potential subprocesses. At the
same time, the process-private logical name LNM$JOB is created in the process
directory logical name table LNM$PROCESS_DIRECTORY. The logical name
LNM$JOB translates to the name of the job logical name table.

Because the job logical name table already exists for the main process, only the
process-private logical name LNM$JOB is created when a subprocess is created.

The job logical name table contains the following three process-permanent logical
names for processes that execute LOGINOUT.

Logical Names

SYS$LOGIN

SYS$LOGIN_DEVICE

SYS$SCRATCH

Meaning

Original default device and directory

Original default device

Default device and directory to which temporary files are
written

Thus, instead of creating these logical names within the process logical name
table LNM$PROCESS_TABLE for every process within a job tree, LOGINOUT
creates these logical names once when it is executed for the process at the root of
the job tree.

Additionally, the job logical name table contains the following logical names:

• The logical name optionally specified and associated with a newly created
temporary mailbox

• The logical name optionally specified and associated with a privately mounted
volume

You need no privileges to modify the job logical name table. For a discussion on
privileges, see Section 6.1.3.

Group Logical Name Table
The group logical name table contains names that cooperating processes in
the same group can use. You need the GRPNAM privilege to add or delete a
logical name in the group logical name table. For a discussion on privileges, see
Section 6.1.3.

6-5

Name Services
6.1 Logical Name System Services

Group logical name tables are created as needed. However, the logical name
LNM$GROUP exists in each process's process directory LNM$PROCESS_
DIRECTORY. This logical name translates into the name of the group logical
name table.

System Logical Name Table
The system logical name table LNM$SYSTEM_TABLE contains names that all
processes in the system can access. This table includes the default names for all
system-assigned logical names. You need the SYSNAM or SYSPRV privilege to
add or delete a logical name in the system logical name table. For a discussion on
privileges, see Section 6.1.3.

6.1.2.3 User-Defined Logical Name Tables
You can create process-private tables and shareable tables by calling the
$CRELNT system service in a program. However, you must have SYSPRV
privilege to create a shareable table. For a discussion on privileges, see
Section 6.1.3.

Processes other than the creating process cannot use logical names contained in
process-private tables.

Logical name tables are created through the $CRELNT system service either
with the DCL command CREATE/NAME_ TABLE or by calling $CRELNT in a
program. If granted access, processes other than the creating process can use
shareable tables.

The maximum length of logical names created in user-defined logical name
tables must not exceed 255 characters. Equivalence strings must not exceed 255
characters.

6.1.3 Privileges

6-6

Certain functions of the logical name system services are restricted to users with
specific privileges. The system checks the privileges in the User Authorization
File (UAF) granted to you when your system manager sets up your account. The
system also checks for read, write, and delete accessibility. Privileges allow users
to perform the functions shown in Table 6-1.

Table 6-1 Summary of Privileges

Privilege

GRPNAM

GRPPRV
SYSNAM

SYSPRV

Function

Creates or deletes a logical name in your group logical name table.

Creates or deletes a logical name in your group logical name table.

Creates executive or kernel mode logical names. Deletes a logical name
or table at an inner access mode.

Creates or deletes a logical name in your group logical name table.
Creates a shareable table.

All users can create, delete, and translate their own process-private logical names
and process-private logical name tables.

Name Services
6.1 Logical Name System Services

6.1.4 Access Modes
You can specify the access mode of a logical name when you define the logical
name. If you do not specify an access mode, then the access mode defaults to
that of the caller of the $CRELNM system service. If you specify the acmode
argument and the process has SYSNAM privilege, the logical name is created
with the specified access mode. Otherwise, the access mode can be no more
privileged than the caller. For information on access modes, see Section 2.1.3.

A logical name table can contain multiple definitions of the same logical name
with different access modes. If a request to translate such a logical name specifies
the acmode argument, then the $TRNLNM system service ignores all names
defined at a less privileged mode. A request to delete a logical name includes the
access mode of the logical name. Unless the process has SYSNAM privilege, the
mode specified can be no more privileged than the caller.

The command interpreter places entries made from the command stream into the
process-private logical name table; these are supervisor mode entries and are not
deleted at image exit (except for the logical names defined by the DCL commands
ASSIGN/USER and DEFINE/USER). During certain system operations, such
as the activation of an image installed with privilege, only executive and kernel
mode logical names are used.

Logical names or logical name table names, which either an image running
in user mode or the DCL commands ASSIGN/USER and DEFINE/USER have
placed in a process-private logical name table, are automatically deleted at image
exit. Shareable user mode names, however, survive image exit and process
deletion.

6.1.5 Attributes
Generally, attributes specified through the logical name system services perform
two functions: they affect the creation of logical names or govern how the system
service operates, and they affect the translation of logical names and equivalence
strings.

Attributes that affect the creation of the logical names are specified optionally in
the attr argument of a system service call.

You can specify any of the following attributes:

• LNM$M_CONCEALED-Specifies that the equivalence string for the logical
name is an RMS concealed device name.

• LNM$M_CONFINE-Prevents process-private logical names from being
copied to subprocesses. Subprocesses are created by the DCL command
SPAWN or by the LIB$SPAWN Run-Time Library procedure. This attribute
is specified only in a $CRELNM or $CRELNT system service call.

• LNM$M_NO_ALIAS-Prevents creation of a duplicate logical name in the
specified logical name table at an outer access mode. If another logical name
already exists in the table at an outer access mode, it is deleted.

If specified in a $CRELNT system service call, this attribute prevents creation
of a logical name table at an outer access mode in a directory table if the table
name already exists in the directory table.

This attribute is specified only in a $CRELNM or $CRELNT system service
call.

6-7

Name Services
6.1 Logical Name System Services

• LNM$M_CREATE_IF-Prevents creation of a logical name table if the
specified table already exists at the specified access mode in the appropriate
directory table. This attribute is specified only in a $CRELNT system service
call.

• LNM$M_ CASE_BLIND-Governs the translation process and causes
$TRNLNM to ignore uppercase and lowercase differences in letters when
searching for logical names. This attribute is specified only in a $TRNLNM
system service call.

• LNM$M_TERMINAL-Prevents further translation of equivalence strings by
the logical name services.

The translation attributes LNM$M_CONCEALED and LNM$M_TERMINAL
associated with logical names and equivalence strings are specified optionally
through the LNM$_ATTRIBUTES item code in the itmlst argument of the
$CRELNM system service call. When the item code LNM$_ATTRIBUTES
is specified through $TRNLNM, the system returns the current attributes
associated with the logical name and equivalence string at the current index
value.

The following attributes may be returned:

• LNM$M_CONCEALED-Indicates that the equivalence string at the current
index value for the logical name is a VMS RMS concealed device name.

• LNM$M_ CONFINE-Indicates that the logical name cannot be used by
spawned subprocesses. Subprocesses are created by the DCL command
SPAWN or by the Run-Time Library LIB$SPAWN routine.

• LNM$M_CRELOG-Indicates that the logical name was created by the
$CRELOG system service.

• LNM$M_EXISTS-Indicates that the equivalence string at the specified index
value exists.

• LNM$M_NO_ALIAS-Indicates that if the logical name already exists in the
table, it cannot be created in that table at an outer access mode.

• LNM$M_TABLE-Indicates that the logical name is the name of a logical
name table.

• LNM$M_TERMINAL-Indicates that the equivalence strings cannot be
translated further.

The attributes of multiple equivalence strings do not have to be the same. For
more information about attributes, refer to the appropriate system service in the
VMS System Services Reference Manual.

6.1.6 Logical Name Table Quotas

6-8

A logical name table quota is the number of bytes allocated in memory for
logical names contained in a logical name table. Logical name table quotas are
established in the following instances:

• When the system is initialized

• When a process is created

• When logical name tables are created

Name Services
6.1 Logical Name System Services

Each logical name table has a quota associated with it that limits the number of
bytes of memory (either process pool or system paged pool) and can be occupied
by the names defined in the table. The quota for a table is established when the
table is created.

If no quota is specified, the newly created table has unlimited quota. Note that
this table may expand to consume all available process or system memory, and
all users with write access to such a shareable table can cause the unlimited
consumption of system paged pool.

6.1.6.1 Directory Table Quotas
When the system is initialized, unlimited quota is automatically established for
the system directory table LNM$SYSTEM_DIRECTORY.

When you log in to the system, unlimited quota is automatically established for
the process directory table LNM$PROCESS_DIRECTORY.

6.1.6.2 Default Logical Name Table Quotas
The process, group, and system logical name tables have unlimited quotas.

6.1.6.3 Job Logical Name Table Quotas
Because the job logical name table is a shareable table, and you need no special
privileges to create logical names within it, the quota allocated to this logical
name table is constrained at the time the table is created. The following three
mechanisms exist to specify the job logical name table quota at the time of its
creation:

• For all processes that activate LOGINOUT, the quota for the job logical name
is obtained from the system authorization file. This allows the quota for the
job to be specified on a user-by-user basis. You can modify the job logical
name table quota by specifying a value with the AUTHORIZE/JTQUOTA=
command.

• For all processes that do not activate LOGINOUT, the quota for the job logical
name table may be specified as a quota list item PQL$_JTQUOTA in the call
to the Create Process ($CREPRC) system service. If a detached process is
to be created by means of the DCL command RUN/DETACHED, then the
/JOB_TABLE_QUOTA qualifier is used to specify the $CREPRC quota list
item.

• For all processes that do not activate LOGINOUT and do not specify a PQL$_
JTQUOTA quota list item in their call to $CREPRC, the quota for the job
logical name table is taken from the dynamic System Generation Utility
(SYSGEN) parameter PQL$_DJTQUOTA. You may use SYSGEN to display
both PQL$_DJTQUOTA and PQL$_MJTQUOTA, the default and minimum
job logical name table quotas.

6.1.6.4 User-Defined Logical Name Table Quotas
User-defined logical name tables may be created with either an explicit limited
quota or no quota limit.

The presence of user-defined logical name table quotas eliminates the need for a
privilege (for example, SYSNAM or GRPNAM) to control consumption of paged
pool when you create logical names in a shareable table.

6-9

Name Services
6.1 Logical Name System Services

6.1.7 Logical Name and Equivalence Name Format Conventions

6-10

The operating system uses special conventions for assigning logical names
to equivalence names and translating logical names. These conventions are
generally transparent to user programs; however, you should be aware of the
programming considerations involved.

If a logical name string presented in I/O services is preceded by an underscore
(_), the I/O services bypass logical name translation, drop the underscore, and
treat the logical name as a physical device name. ·

When you log in, the system creates default logical name table entries for
process permanent files. The equivalence names for these entries (for example,
SYS$INPUT and SYS$0UTPUT) are preceded by a four-byte header that contains
the following information.

Byte(s)

0

Contents

A XlB (Escape character)

AXOO 1

2-3 VMS RMS Internal File Identifier (IFI)

This header is followed by the equivalence name string. If any of your program
applications must translate system-assigned logical names, you must prepare the
program to check for the existence of this header and then to use only the desired
part of the equivalence string. The following program segment demonstrates how
to do this.

ILST:
.WORD
.WORD
.LONG
.LONG
.LONG

TABDESC:
.ASCID

LOGDESC:

LNM$C_NAMLENGTH
LNM$_STRING
RES STRING
RESDESC
0

/LNM$FILE_DEV/

.ASCID /INPUT_DEVICE/
RESDESC:

.LONG LNM$C_NAMLENGTH

.ADDRESS -

RESSTRING:
.BLKB

RES STRING

LNM$C_NAMLENGTH

$TRNLNM_S -

1$:

BLBC
CMPW
BNEQ
SUBW
ADDL

LOGNAM=LOGDESC, -
TABNAM=TABDESC, -
ITMLST=ILST
RO,ERR
RESSTRING, AXOOlB
1$
#4,RESDESC
#4,RESDESC+4

Device/file table name

Logical name to be translated

Descriptor for result string
Size of result string
Address of result string

Result string destination

Translate logical name

Branch if error
Is first character an escape?
No, continue at 1$
Yes, subtract 4 from length ...
and add 4 to address of string

Name Services
6.1 Logical Name System Services

6.1.8 Specifying the Logical Name Table Search List
Logical names exist as entries within logical name tables. When a logical name is
to be created, deleted, or translated, you must present a name that designates the
containing logical name table. This name possesses one or more of the following
characteristics:

• It is the name of a logical name table.

• It is a logical name that iteratively translates in the process or system
directory table to the name of a logical name table.

• It is a multivalued logical name that iteratively translates to the names of
several logical name tables. A multivalued logical name is also known as a
search list. The tables are used in the order in which they appear.

As mentioned earlier, predefined logical names exist for certain logical name
tables. These predefined names begin with the prefix LNM$. You can redefine
these names to modify the search order or the tables used.

Instead of a fixed set of logical name tables and a rigidly defined order (process,
job, group, system) for searching those tables, you can specify which tables are
to be searched and the order in which they are to be searched. Logical names in
the directory tables are used to specify this searching order. By convention, each
class of logical name (for example, device or file specification) uses a particular
predefined name for this purpose.

For example, LNM$FILE_DEV is the name of the logical name table used
whenever file specifications or device names are translated by VMS RMS or the
1/0 services. This name must translate to a list of one or more logical name table
names specifying the tables to be searched when translating file specifications.

By default, LNM$FILE_DEV specifies that the process, job, group, and system
tables are all searched, in that order, and that the first match found is returned.

Logical name table names are translated from two tables: the process logical
name directory table LNM$PROCESS_DIRECTORY and the system logical name
directory table LNM$SYSTEM_DIRECTORY. The LNM$FILE_DEV logical name
table must be defined in one of these tables.

Thus, if identical logical names exist in the process and group tables, the process
table entry is found first, and the job and group tables are not searched. When
the process logical name table is searched, the entries are searched in order of
access mode, with user-mode entries matched first, supervisor second, and so on.

If you want to change the list of tables used for device and file specifications, you
can redefine LNM$FILE_DEV in the process directory table LNM$PROCESS_
DIRECTORY.

6.2 Creating a Logical Name-$CRELNM
To perform an assignment in a program, you must provide character string
descriptors for the name strings, select the table to contain the logical name, and
use the $CRELNM system service as shown in the following example. In either
case, the result is the same: the logical name DISK is equated to the physical
device name DUA2 in table LNM$JOB.

6-11

Name Services
6.2 Creating a Logical Name-$CRELNM

LOGDESC:
.ASCID

TABDESC:
.ASCID

LNMATTR:

CRELST:

EQVWAM:

EQVLEN=

.LONG

.WORD

.WORD

.ADDRESS

.LONG

.WORD

.WORD

.ADDRESS

.LONG

.LONG

.ASCII

. -EQVNAM

$CRELNM_S -
LOGNAM
TABNAM
ATTR
ITMLST

LOGDESC,­
TABDESC,­
LNMATTR,­
CRELST

/DISK/

/LNM$JOB/

LNM$M_TERMINAL

4
LNM$_ATTRIBUTES
LNMATTR
0
EQVLEN
LNM$_STRING
EQVNAM
0
0

/DUA2:/

Note that the translation attribute is specified as terminal. This attribute
indicates that iterative translation of the logical name DISK ends when the
equivalence string DUA2 is returned. In addition, because the acmode argument
was not specified, the access mode of the logical name DISK is the access mode of
the calling image.

6.2.1 Duplication of Logical Names

6-12

A logical name table can contain entries for the same logical name at different
access modes. Different logical name tables can contain entries for the same
logical name.

In all other cases, only one entry can exist for a particular logical name in a
logical name table.

Any number oflogical names can have the same equivalence name.

Consider the following examples of the logical name TERMINAL defined in
several tables. The logical name TERMINAL translates differently depending on
the table specified.

Process Logical Name Table for Process A
The following process logical name table equates the logical name TERMINAL
to the specific terminal TTA2. The INFILE and OUTFILE logical names are
equated to disk specifications. The logical names were created from supervisor
mode.

Name Services
6.2 Creating a Logical Name-$CRELNM

Logical Name Equivalence Name Access Mode

INFILE

OUTFILE

TERMINAL

-->

-->

-->

DMl:[HIGGINS]TEST.DAT

DMl:[HIGGINSJTEST.OUT

TTA2:

Supervisor

Supervisor

Supervisor

To determine the equivalence string for the logical name TERMINAL in the
preceding table, enter the following command:

$ SHOW LOGICAL TERMINAL

The system returns the equivalence string TTA2.

Job Logical Name Table
The portion of the following job logical name table assigns the logical name
TERMINAL to a virtual terminal VTA14. The logical name SYS$LOGIN is the
device and directory for the process when you log in. The SYS$LOGIN logical
name is defined in executive mode.

Logical Name

SYS$LOGIN

TERMINAL

-->

-->

Equivalence Name

DBA9:[HIGGINS]

VTA14:

Access Mode

Exec

User

To determine the equivalence string of the logical name TERMINAL defined in
the preceding table, enter the following command:

$ SHOW LOGICAL/JOB TERMINAL

The system returns the equivalence string VTA14 as the translation.

User-Defined Logical Name Table
The following user-defined logical name table (called LOG_TBL for the purposes
of this discussion) contains a definition of TERMINAL as the mailbox device
MBA407. The multivalued logical name XYZ has two translations: DISKl and
DISK3.

Logical Name

TERMINAL

XYZ

-->

-->

-->

Equivalence Name

MBA407:

DISKl:

DISK3:

Access Mode

Supervisor

Supervisor

6-13

Name Services
6.2 Creating a Logical Name-$CRELNM

To determine the equivalence string for the logical name TERMINAL in the
preceding user-defined table, enter the following command:

$ SHOW LOGICAL/TABLE=LOG_TBL TERMINAL

The system returns the equivalence string MBA407. In order to use this
definition of TERMINAL as a device or file specification, you must redefine
the logical name table name LNM$FILE_DEV to reference the user-defined table,
as follows:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV LOG_TBL, -
_$ LNM$PROCESS_TABLE,LNM$JOB,LNM$SYSTEM_TABLE

In the preceding example, the DCL command DEFINE is used to redefine the
default search list LNM$FILE_DEV. The /TABLE qualifier specifies the table
LNM$PROCESS_DIRECTORY that is to contain the redefined search list. The
system searches the tables defined by LNM$FILE_DEV in the following order:
LOG_TBL, LNM$PROCESS_TABLE, LNM$JOB, and LNM$SYSTEM_TABLE.

System Logical Name Table
The following system logical table contains system-assigned logical names
accessible to all processes in the system. For example, the logical names
SYS$LIBRARY and SYS$SYSTEM provide logical names that all users can
access to use the device and directory containing system files.

Logical Name

SYS$LIBRARY

SYS$SYSTEM

->

->

Equivalence Name

SYS$SYSROOT:[SYSLIB]

SYS$SYSROOT:[SYSEXE]

The Logical Names section of the VMS DCL Dictionary contains a list of these
system-assigned logical names.

Logical Name Supersession
If the logical name TERMINAL is equated to TTA2 in the process table as shown
in the previous examples, and the process subsequently equates the logical name
TERMINAL to TTA3, the equivalence of TERMINAL TTA2 is replaced by the new
equivalence name. The successful return status code SS$_SUPERSEDE indicates
that a new entry replaced an old one.

The definitions of TERMINAL in the job table and in the user-defined table LOG_
TBL are unaffected.

6.3 Creating Logical Name Tables-$CRELNT

6-14

The Create Logical Name Table ($CRELNT) system service creates logical name
tables. Logical name tables can be created at any access mode depending on
the privileges of the calling process. A user-specified logical name identifying
the newly created logical name table is stored in the process directory table
LNM$PROCESS_DIRECTORY.

Name Services
6.3 Creating Logical Name Tables-$CRELNT

6.3.1 Shareable Logical Name Tables
If you have SYSPRV privilege, you can create shareable logical name tables.
You can assign protection to these tables through the promsk argument of the
$CRELNT system service. The promsk argument allows you to specify the type
of access for system, owner, group, and world users, as follows:

• Read privileges allow access to names in the logical name table.

• Write privileges allow creation and deletion of names within the logical name
table.

• Delete privileges allow deletion of the logical name table.

Note

The "E" protection bit is reserved by Digital Equipment Corporation.

If the promsk argument is omitted, complete access is granted to system and
owner, and no access is granted to group and world.

6.3.2 $CRELNT System Service Call
The following example illustrates a call to the $CRELNT system service.

TABDESC:
.ASCID

PARDESC:
.ASCID

TAB_ATTR:
.LONG

TAB_QUOTA:
.LONG

$CRELNT_S -
TABNAM = TABDESC,­
PARTAB = PARDESC,­
ATTR = TAB_ATTR,­
QUOTA = TAB_QUOTA

/LOG_TABLE/

/LNM$PROCESS_TABLE/

LNM$M_CONFINE

5000

;Table name
;Parent table
;Attributes
;Quota

In this example, a user-defined table LOG_TABLE is created with an explicit
quota of 5000 bytes. The name of the newly created table is an entry in the
process-private directory LNM$PROCESS_DIRECTORY. The quota of 5000
bytes is deducted from the parent table LNM$PROCESS_TABLE. Because the
CONFINE attribute is associated with the logical name table, the table cannot be
copied from the process to its spawned processes.

6.4 Deleting Logical Names-$DELLNM
The Delete Logical Name ($DELLNM) system service deletes entries from a
logical name table. When you write a call to the $DELLNM system service, you
can specify a single logical name to delete, or you can specify that you want to
delete all logical names from a particular table. For example, the following call
deletes the process logical name TERMINAL from the job logical name table.

6-15

Name Services
6.4 Deleting Logical Names-$DELLNM

LOGDESC:
.ASCID

TABDESC:
.ASCID

$DELLNM_S -

/TERMINAL/

/LNM$JOB/

LOGNAM = LOGDESC,­
TABNAM = TABDESC,-

For information about access modes and the deletion of logical names, see
Section 6.1.4.

6.5 Translating Logical Names-$TRNLNM

6-16

The Translate Logical Name ($TRNLNM) system service translates a logical
name to its equivalence string. In addition, $TRNLNM returns information about
the logical name and equivalence string.

The system service call to $TRNLNM specifies the tables to search for the logical
name. The tabnam argument can be either the name of a logical name table or
a logical name that translates to a list of one or more logical name tables.

Because logical names can have many equivalence strings, you can specify which
equivalence string you want to receive.

A number of system services that require a device name accept a logical name and
translate the logical name iteratively until a physical device name is found (or
until the system default number of logical name translations has been performed).
These services implicitly specify the logical name table name LNM$FILE_DEV.
For more information about LNM$FILE_DEV, refer to Section 6.1.8.

The following system services perform iterative logical name translation
automatically:

• Allocate Device ($ALLOC)

• Assign I/O Channel ($ASSIGN)

• Broadcast ($BRDCST)

• Create Mailbox ($CREMBX)

• Deallocate Device ($DALLOC)

• Dismount Volume ($DISMOU)

• Get DeviceNolume Information ($GETDVI)

• Mount Volume ($MOUNT)

In many cases, however, a program must perform the logical name translation
to obtain the equivalence name for a logical name outside the context of a device
name or file specification. In that case, you must supply the name of the table or
tables to be searched. The $TRNLNM system service searches the user-specified
logical name tables for a specified logical name and returns the equivalence
name. In addition, $TRNLNM returns attributes specified optionally for the
logical name and equivalence string.

The following example shows a call to the $TRNLNM system service to translate
the logical name ABC.

LOGDESC:
.ASCID

TABDESC:
.ASCID

EQVBUFl:
.BLKB

EQVDESCl:

EQVBUF2:

.LONG

.ADDRESS

.BLKB
EQVDESC2:

TRNLIST:

TRNATTR:

$TRNLNM_S

.LONG

.ADDRESS

.WORD

.WORD

.ADDRESS

.ADDRESS

.WORD

.WORD

.ADDRESS

.ADDRESS

.LONG

.LONG

LOGNAM = LOGDESC,­
TABNAM = TABDESC,­
ATTR = TRNATTR,­
ITMLST = TRNLIST

Name Services
6.5 Translating Logical Names-$TRNLNM

/ABC/

/LNM$FILE_DEV/

LNM$C_NAMLENGTH

0
EQVBUFl

LNM$C_NAMLENGTH

0
EQVBUF2

LNM$C_NAMLENGTH
LNM$_STRING
EQVBUFl
EQVDESCl
LNM$C_NAMLENGTH
LNM$_STRING
EQVBUF2
EQVDESC2
0

LNM$M_CASE_BLIND

This call to the $TRNLNM system service results in the translation of the logical
name ABC. In addition, LNM$FILE_DEV is specified in the tabnam argument
as the search list that $TRNLNM is to use to find the logical name ABC. The
logical name ABC was assigned two equivalence strings. The LNM$_STRING
item code in the itmlst argument directs $TRNLNM to look for an equivalence
string at the current index value. Note that the LNM$_STRING item code is
invoked twice. The equivalence strings are placed in the two output buffers,
EQVBUFl and EQVBUF2, described by TRNLIST.

The attribute LNM$M_CASE_BLIND governs the translation process. The
$TRNLNM system service searches for the equivalence strings without regard to
uppercase or lowercase letters. The $TRNLNM system service matches any of
the following character strings: ABC, aBC, AbC, abc, and so forth.

The output equivalence name string length is written into the first word of the
character string descriptor. This descriptor can then be used as input to another
system service.

6.6 Example of Using the Logical Name System Services
In the following example, the FORTRAN program CALC.FOR creates a spawned
subprocess to perform an iterative calculation. The logical name REP _NUMBER
specifies the number of times that REPEAT should perform the calculation.
Because the two processes are part of the same job, REP _NUMBER is placed
in the job logical name table LNM$JOB. (Note that logical name table names
are case sensitive. Specifically, LNM$JOB is a system-defined logical name that
refers to the job logical name table; lnm$job is not.)

6-17

Name Services
6.6 Example of Using the Logical Name System Services

6-18

PROGRAM CALC

Status variable and system routines

INCLUDE I ($LNMDEF) I

INCLUDE I ($SYSSRVNAM) I

INTEGER*4 STATUS

INTEGER*2 NAME_LEN,
2 NAME_ CODE

INTEGER*4 NAME_ADDR,
2 RET_ADDR I 0 I I

2 END_LIST /0/

COMMON /LIST/ NAME_LEN,
2 NAME_CODE,
2 NAME_ADDR,
2 RET_ADDR,
2 END_LIST

CHARACTER*3 REPETITIONS_STR
INTEGER REPETITIONS

EXTERNAL CLI$M_NOLOGNAM,
2 CLI$M_NOCLISYM,
2 CLI$M_NOKEYPAD,
2 CLI$M_NOWAIT

NAME_LEN = 3
NAME_CODE = (LNM$_STRING)
NAME_ADDR = %LOC(REPETITIONS_STR)
STATUS = SYS$CRELNM (, 'LNM$JOB' I 'REP_NUMBER' I ,NAME_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

MASK = %LOC (CLI$M_NOLOGNAM) .OR.
2 %LOC (CLI$M_NOCLISYM) .OR.
2 %LOC (CLI$M_NOKEYPAD) .OR.
2 %LOC (CLI$M_NOWAIT)

STATUS = LIB$GET_EF (FLAG)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= LIB$SPAWN ('RUN REPEAT' I ,,MASK, I I ,FLAG)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

PROGRAM REPEAT
INTEGER STATUS,

2 SYS$TRNLNM,SYS$DELLNM
INTEGER*4 REITERATE,

2 REPEAT_STR_LEN
CHARACTER*3 REPEAT_STR

! Item list for SYS$TRNLNM
INTEGER*2 NAME_LEN,

2 NAME_ CODE
INTEGER*4 NAME_ADDR,

2 RET_ADDR,
2. END_LIST I 0 I

COMMON /LIST/ NAME_LEN,
2 NAME_CODE,
2 NAME_ADDR,
2 RET_ADDR,
2 END_LIST

Name Services
6.6 Example of Using the Logical Name System Services

NAME_LEN = 3
NAME_CODE = (LNM$_STRING)
NAME_ADDR = %LOC(REPEAT_STR)
RET_ADDR = %LOC(REPEAT_STR_LEN)
STATUS SYS$TRNLNM (,

2 I LNM$JOB I I

2 I REP _NUMBER I I I

! Logical name table
! Logical name

2 NAME_LEN)
IF (.NOT. STATUS) CALL LIB$SIGNAL

! List requesting equivalence string
(%VAL (STATUS))

READ (UNIT = REPEAT_STR,
2 FMT = I (I3) ') REITERATE

DO I = l, REITERATE
END DO

STATUS= SYS$DELLNM ('LNM$JOB', ! Logical name table
2 'REP_NUMBER' ,) ! Logical name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

6.7 The DECdns Clerk System Service
The DECdns Clerk ($DNS) system service supports two programming interfaces:

• The portable application programming interface

• The VMS system service and run-time library

Application designers should select an interface for their application based on
programming language, application base, and specific requirements of their
application.

The portable interface provides support for applications written in the C
programming language, and it provides a high-level interface with easy-to-use
methods of creating and maintaining DECdns names. Use the portable interface
for applications that must be portable between the VMS and ULTRIX operating
systems.

The portable interface is documented in the Guide to Programming with DECdns.

The VMS system service and run-time library routines can be used by
applications written in the high-level and mid-level languages listed in the
Preface of this document. However, applications that use these interfaces are
limited to the VMS environment. Use the system service when an application
meets any of the following requirements:

• The application needs the full capabilities, :flexibility, and functions of
asynchronous support.

• The application will run as part of a privileged, shareable image on VMS.

• The application is not written in the C programming language.

The $DNS system service is documented in the VMS System Services Reference
Manual. Before using this system service, you must understand the basic
operating principles, terms, and definitions used by DECdns. You can gain a
working knowledge of DECdns by reading about the following topics in the Guide
to Programming with DECdns:

• DECdns component operation

• N amespace directories, objects, soft links, groups, and clearinghouses

• DECdns name syntax

6-19

Name Services
6.7 The DECdns Clerk System Service

• Attributes

• Clerk caching

• Setting confidence and timeouts

• Recommendations for DECdns application programmers

Once you understand the preceding topics, you can continue with this chapter,
which provides an introduction to the DECdns system service and run-time
library routines and discusses the following topics:

• Functions provided by the service and routines

• Using the $DNS system service

6.7.1 Functions Provided by the DECdns System Service and Run-Time
Library Routines

The $DNS system service and run-time library routines can be used together
to assign, maintain, and retrieve DECdns names. This section describes the
capabilities of each interface.

6. 7 .1.1 The $DNS System Service

6-20

DECdns provides a single system service call ($DNS) to create, delete, modify, and
retrieve DECdns names from a namespace. The $DNS system service completes
asynchronously; that is, it returns to the client immediately after making a name
service call. The status returned to the client indicates whether a request was
successfully queued to the name service.

The $DNSW system service is the synchronous equivalent of $DNS. The $DNSW
call is identical to $DNS in every way except that $DNSW returns to the caller
after the operation completes.

The $DNS call has two main parameters:

• A function code identifying the particular service to perform

• An item list specifying all the parameters for the required function

The system service provides the following functions:

• Create and delete DECdns names in the namespace

• Enumerate DECdns names in a particular directory

• Add, read, remove, and test attributes and attribute values

• Add, create, remove, restore, and update directories

• Create, remove, and resolve soft links

• Create and remove groups

• Add, remove, and test members in a group

• Parse names to convert string format names to DECdns opaque format names
and back to string

You specify item codes as either input or output parameters in the item list.
Input parameters modify functions, set context, or describe the information to be
returned. Output parameters return the requested information.

Name Services
6.7 The DECdns Clerk System Service

You can specify the following in input item codes:

• An attribute name and type

• The class of a DECdns name and, optionally, a class filter

• The class version of a DECdns name

• A confidence setting to indicate whether the request should be serviced from
the clerk's cache or from a server

• An indication that the application will repeat a read call, which forces caching
of recently read data

• A name or timestamp that sets the context from which to begin or restart
enumerating or reading

• The name and type of an object, directory, group, member, clearinghouse, or
soft link and the ability to suppress the namespace nickname from the full
name

• A simple or full name in opaque or string format

• A request to search subgroups for a member

• An operation, either adding or deleting an attribute

• A value for an attribute

• A pointer to the address of the next character in a full or simple name

• A timeout period to wait for a call to complete

• An expiration time and extension time for soft links

The output item codes return the following information:

• A creation timestamp for an object

• A set of child directories, soft links, attribute names, attribute values, or
object names

• An opaque simple or full name

• A string name and length

• A resolved soft link

• A name or timestamp context variable that indicates the last directory, object,
soft link, or attribute that was enumerated or read

6.7.1.2 The Run-Time Library Routines
The DECdns run-time library routines can be used to manipulate output from the
$DNS system service. The routines provide the following functions:

• Remove a value from a set returned by an enumeration or read system service
function

• Compare, append, concatenate, and count opaque names that were created
with the system service

• Convert addresses

To read a single attribute value using the system service and run-time library
routines, use the following routines:

• DNS$_ENUMERATE_OBJECTS function code to enumerate objects

6-21

Name Services
6.7 The DECdns Clerk System Service

• DNS$REMOVE_FIRST_SET_ VALUE run-time library routine to remove the
first set value

• DNS$_READ_ATTRIBUTE function code to read the first set value

You can also use the system service and run-time library routines together to add
an opaque simple name to a full name by doing the following:

1. Obtain a string full name from a user.

2. Use the system service DNS$_PARSE_FULLNAME_STRING function code to
convert the string name to opaque format.

3. Use the DNS$_APPEND_SIMPLE_TO_RIGHT run-time library routine to
add an opaque simple name to the end of the full name.

6.8 Using the $DNS System Service Call
The following sections describe how to create and modify an object; then how to
read attributes and enumerate names and attributes in the namespace.

Each section contains a code example. These code examples are all contained
in the sample program that resides on your distribution medium under the file
name SYS$EXAMPLES:SYS$DNS_SAMPLE.C.

6.8.1 Creating Objects

6-22

Applications that use DECdns can create an object in the namespace for each
resource used by the application. You can create objects using either the $DNS or
the $DNSW system service.

A DECdns object consists of a name and its associated attributes. When you
create the object, you must assign a class and class version. You can modify
the object to hold additional attributes, such as class-specific attributes, on an
as-needed basis.

Note that applications can use objects created by other applications.

To create an object with $DNS:

1. Prompt the user for a name.

The name that an application assigns to an object should come from a user,
a configuration file, a system logical, or some other source. The application
never assigns an object's name because the namespace structure is uncertain.
The name the application receives from the user is in string format.

2. Use the $DNS parse function to convert the full name string into an opaque
format. Specify the DNS$_NEXTCHAR_PTR item code to obtain the length
of the opaque name.

3. Optionally, reserve an event flag so you can check for completion of the
service.

4. Build an item list containing the following elements:

• The opaque name for the object (resulting from the translation in step 2)

• The class name given by the application, which should contain the facility
code

• The class version assigned by the application

• An optional timeout value, specifying when the call expires

Name Services
6.8 Using the $DNS System Service Call

5. Optionally, provide the address of the DECdns status block to receive status
information from the name service.

6. Optionally, provide the address of the asynchronous system trap (AST) service
routine. AST routines allow a program to continue execution while waiting
for parts of the program to complete.

7. Optionally, supply a parameter to pass to the AST routine.

8. Call the create object function and provide all the parameters supplied in
steps 1 through 7.

If a clerk call is not complete when timeout occurs, then the call completes with
an error. The error is returned in the DECdns status block.

An application should check errors returned; it is not enough to check the return
of the $DNS call itself. You need to check the DECdns status block to be sure no
errors were returned by the DECdns server.

The following routine, written in C, shows how to create an object in the
namespace with the synchronous service $DNSW. The routine demonstrates
how to construct an item list.

#include <dnsdef .h>
#include <dnsmsg.h>
/*
* Parameters:
* class_name
*
* class_len
* object_name=
*
*
*
*/

object_len =

address of the opaque simple name of the class
to assign to the object
length (in bytes) of the class opaque simple name
address of opaque full name of the object
to create in the namespace.
length (in bytes) of the opaque full name of the
object to create

create_object(class_name, class_len, object_name, object_len)
unsigned char *class_name; /*Format is a DECdns opaque simple name*\
unsigned short class_len;
unsigned char *object_name; /*Format is a DECdns opaque simple name*\
unsigned short object_len;
{

struct $dnsitmdef createitem[4]; /*Item list used by system service*/
struct $dnscversdef version; /* Version assigned to the object */
struct $dnsb iosb; /* Used to determine DECdns server status */
int status; /* Status return from system service */

I*
* Construct the item list that creates the object:
*/

createitem[O] .dns$w_itm_size = class_len; tt
createitem[O] .dns$w_itm_code = dns$_class;
createitem[OJ .dns$a_itm_address = class_name;

createitem[l] .dns$w_itm_size = object_len; fD
createitem[l] .dns$w_itm_code = dns$_objectname;
createitem[l] .dns$a_itm_address = object_name;

version.dns$b_c_major = 1; _,
version.dns$b_c_minor = O;

createitem[2] .dns$w_itm_size = sizeof (struct $dnscversdef); _,
createitem[2] .dns$w_itm_code = dns$_version;
createitem[2] .dns$a_itm_address = &version;

*((int *)&createitem[3]) = O; @)

6-23

Name Services
6.8 Using the $DNS System Service Call

}

status= sys$dnsw(O, dns$_create_object, &createitern, &iosb, 0, 0); CD
if (status == SS$_NORMAL)
{

status = iosb.dns$l_dnsb_status; 8

return (status);

0 The first entry in the item list is the address of the opaque simple name
representing the class of the object.

8 The second entry in the item list is the address of the opaque full name for
the object.

6) The next step is to build a version structure, which will indicate the version
of the object. In this case, the object is version 1.0.

8 The third entry in the item list is the address of the version structure that
was just built.

0 A value of 0 terminates an item list.

CD The next step is to call the system service to create the object.

8 Then, check to see that both the system service and DECdns were able to
perform the operation without error.

If a clerk call is not complete when timeout occurs, then the call completes with
an error. The error is returned in the DECdns status block.

An application should check for errors returned; it is not enough to check the
return of the $DNS call itself. You need to check the DECdns status block to be
sure no errors are returned by the DECdns server.

6.8.2 Modifying Objects and Their Attributes

6-24

After you create objects that identify resources, add or modify attributes that
describe properties of the object. There is no limit imposed on the number of
attributes an object can have.

You modify an object whenever you need to add an attribute or attribute value,
change an attribute value, or delete an attribute or attribute value. When you
modify an attribute, DECdns updates the time stamp contained in the DNS$UTS
attribute for that attribute.

To modify an attribute or attribute value, use the DNS$_MODIFY _ATTRIBUTE
function code. Specify the attribute name in the input item code along with the
following required input item codes:

• DNS$_ATTRIBUTETYPE to specify a set-valued (DNS$K_SET) or single­
valued (DNS$K_SINGLE) attribute

• DNS$_MODOPERATION to specify that the value is being added (DNS$K_
PRESENT) or deleted (DNS$K_ABSENT)

Use the DNS$_MODVALUE item code to specify the value of the attribute. Note
that the DNS$_MODVALUE item code must be specified to add a single-valued
attribute. You can specify a null value for a set-valued attribute. DECdns
modifies attribute values in the following way:

• If the attribute exists and you specify an attribute value, the attribute value
is removed from a set-valued attribute. All other values are unaffected. For a

Name Services
6.8 Using the $DNS System Service Call

single-valued attribute, DECdns removes the attribute and its value from the
name.

• If you do not specify an attribute value, DECdns removes the attribute and
all values of the attribute for both set-valued and single-valued attributes.

To delete an attribute, use the DNS$_MODOPERATION item code.

The following is an example of using the DNS$_MODIFY_ATTRIBUTE function
code to add a new member to a group object. To do this, you add the new member
to the DNS$Members attribute of the group object. Use the following function
codes:

• Specify the group object (DNS$_ENTRY) and type (DNS$_LOOKINGFOR).
The type should be specified as object (DNS$K_OBJECT).

• Use DNS$_MODOPERATION to add a member to the DNS$Members
attribute (DNS$_ATTRIBUTENAME) which is a set-valued attribute (DNS$_
ATTRIBUTETYPE).

• Specify the new member object name in DNS$_MODVALUE.

• Use another DNS$_MODIFY_ATTRIBUTE call to assign access rights for the
new member to the DNS$ACS attribute of the member object.

Perform the following tasks to modify an object with $DNSW:

1. Build an item list containing the following elements:

• The opaque name of the object you are modifying

• The type of object

• The operation to perform

• The type of attribute you are modifying

• The attribute name

• The value being added to the attribute

2. Supply any of the optional parameters described in Section 6.8.1.

3. Call the modify attribute function, supplying the parameters established in
steps 1 and 2.

The following example, written in C, shows how to add a set-valued attribute and
a value to an object.

#include <dnsdef .h>
#include <dnsmsg.h>
/*
* Parameters:
* obj_name = address of opaque full name of object
* obj_len = length of opaque full name of object
* att_name = address of opaque simple name of attribute to create
* att_len = length of opaque simple name of attribute
* att_value= value to associate with the attribute
* val_len = length of added value (in bytes)
*/

6-25.

Name Services
6.8 Using the $DNS System Service Call

6-26

add_attribute(obj_name, obj_len, att_name, att_len, att_value, val_len)
unsigned char *obj_name;
unsigned short obj_len;
unsigned char *att_name;
unsigned short att_len;
unsigned char *att_value;
unsigned short val_len;
{

}

struct $dnsitmdef moditem[7]; /*Item list for $DNSW */
unsigned char objtype = dns$k_object; /* Using objects */
unsigned char opertype = dns$k_present; /* Adding an object */
unsigned char attype = dns$k_set; /*Attribute will be type set */
struct $dnsb iosb; /* Used to determine DECdns status */
int status; I* Status of system service *I

/*
* Construct the item list to add an attribute to an object.
*/

moditem[O] .dns$w_itm_size = obj_len;
moditem[O] .dns$w_itm_code = dns$_entry;
moditem[O] .dns$a_itm_address = obj_name; 0
moditem[l] .dns$w_itm_size = sizeof(char);
moditem[l] .dns$w_itm_code = dns$_lookingfor;
moditem[l] .dns$a_itm_address = &objtype; 8
moditem[2] .dns$w_itm_size = sizeof(char);
moditem[2] .dns$w_itm_code = dns$_modoperation;
moditem[2] .dns$a_itm_address = &opertype; 8
moditem[3] .dns$w_itm_size = sizeof(char);
moditem[3] .dns$w_itm_code = dns$_attributetype;
moditem[3] .dns$a_itm_address = &attype; 8
moditem[4] .dns$w_itm_size = att_len;
moditem[4] .dns$w_itm_code = dns$_attributename;

. moditem [4 J • dns$a_itm_address = att_name; 8
moditem[S] .dns$w_itm_size = val_len;
moditem[S] .dns$w_itm_code = dns$_modvalue;
moditem[5] .dns$a_itm_address = att_value; C)

*((int *)&moditem[6]) = O; ~

!*
* Call $DNSW to add the attribute to the object.
*/

status= sys$dnsw(O, dns$_modify_attribute, &moditem, &iosb, 0, 0);@)

if (status== SS$_NORMAL)
{
status = iosb.dns$l_dnsb_status; CD
} .

return (status) ;

0 The first entry in the item list is the address of the opaque full name of the
object.

8 The second entry in the item list shows that this is an object-not a soft link
or child directory pointer.

8 The third entry in the item list is the operation to perform. The program
adds an attribute with its value to the object.

8 The fourth entry in the item list is the attribute type. The attribute has a set
of values rather than a single value.

Name Services
6.8 Using the $DNS System Service Call

0 The fifth entry in the item list is the opaque simple name of the attribute
being added.

0 The sixth entry in the item list is the value associated with the attribute.

8 A value of 0 terminates the item list.

@) Then, a call is made to the $DNSW system service to perform the operation.
I

0 Finally, a check is made to see that both the system service and DECdns
performed the operation without error.

6.8.3 Requesting Information from DECdns
Once an application adds its objects to the namespace and modifies the names to
contain all necessary attributes, the application is ready to use the namespace.
An application can request that the DECdns clerk read attribute information
stored with an object or list all the application's objects that are stored in a
particular directory. An application might also need to resolve all soft links in a
name in order to identify a target.

To request information from DECdns, use the read or enumerate function codes,
as follows:

• The DNS$_READ_ATTRIBUTE function reads and returns a set whose
members are the values of the specified attribute.

• The DNS$_ENUMERATE functions return a list of names for attributes,
child directories, objects, and soft links.

The VAX Distributed File Service (DFS) uses DECdns for resource naming.
This section gives an example of the DNS$_READ _ATTRIBUTE call as used by
DFS. The DFS application uses DECdns to give VMS users the ability to use
remote VMS disks as if they were attached to their local VMS system. The DFS
application creates DECdns names for VMS directory structures (a directory
and all of its subdirectories). Each DFS object in the namespace references a
particular file access point. DFS creates each object with a class attribute of
DFS$ACCESSPOINT and modifies the address attribute (DNS$Address) of each
object to hold the DECnet node address where the directory structures reside.
As a final step in registering its resources, DFS creates a database that maps
DECdns names to the appropriate VMS directory structures.

Whenever the DFS application receives the following mount request, DFS sends a
request for information to the DECdns clerk:

MOUNT ACCESS_POINT dns-name vms-logical-name

To read the address attribute of the access point object, the DFS application
performs the following procedures:

1. Translates the DECdns name that is supplied through the user to opaque
format using the $DNS parse function.

2. Reads the class attribute of the object with the $DNS read attribute function,
indicating that there is a second call to read other attributes of the object.

3. Makes a second call to the $DNS read attribute function to read the address
attribute of the object.

4. Sends the DECdns name to the DFS server, which looks up the disk where
the access point is located.

5. Verifies that the DECdns name is valid on the DFS server.

6-27

Name Services
6.8 Using the $DNS System Service Call

Then the DFS client and DFS server communicate to complete the mount
function.

6.8.3.1 Reading Attributes
When requesting information from DNS, an application always takes an object
name from the user, translates the name into opaque format, and passes it in an
item list to the DECdns clerk.

Each read request returns a set of attribute values. The DNS$_READ_
ATTRIBUTE service uses a context item code called DNS$_CONTEXTVARTIME
to maintain context when reading the attribute values. The context item code
saves the last member read from the set. When the next read call is issued, the
item code sets the context to the next member in the set, reads it, and returns it.
The context item code treats single-valued attributes as though they were a set of
one.

If an enumeration call returns DNS$_MOREDATA, not all matching names or
attributes have been enumerated. If you receive this message, you should make
further calls, setting DNS$_CONTEXTVARTIME to the last value returned until
the procedure returns SS$_NORMAL.

The following program, written in C, shows how an application reads an object
attribute. The $DNSW service uses an item list to return a set of objects. Then,
the application calls a run-time routine to read each value in the set.

#include <dnsdef .h>
#include <dnsmsg.h>
/*
* Parameters:
* opaque_objname
*
* obj_len
* opaque_attname
*
* attname_len
*/

address of opaque full name for the object
containing the attribute to be read

length of opaque full name of the object
address of the opaque simple name of the

attribute to be read
length of opaque simple name of attribute

read_attribute(opaque_objname, obj_len, opaque_attname, attname_len)
unsigned char *opaque_objname;
unsigned short obj_len;
unsigned char *opaque_attname;
unsigned short attname_len;
{

struct $dnsb iosb;
char objtype = dns$k_object;

/* Used to determine DECdns status */
/* Using objects */

struct $dnsitmdef readitem[6); /* Item list for system service */
struct dsc$descriptor set_dsc, value_dsc, newset_dsc, cts_dsc;

unsigned char attvalbuf[dns$k_maxattribute]; /*To hold the attribute*/
/* values returned from extraction routine. */

unsigned char attsetbuf [dns$k_maxattribute]; /* To hold the set of */
/* attribute values after the return from $DNSW. */

unsigned char ctsbuf[dns$k_cts_length]; /*Needed for context of multiple reads*/

int read_status;
int set_status;
int xx;

/* Status of read attribute routine */
/* Status of remove value routine */
/* General variable used by print routine */

unsigned short setlen; /* Contains current length of set structure */
unsigned short val_len; /* Contains length of value extracted from set */
unsigned short cts_len; /* Contains length of CTS extracted from set */

6-28

Name Services
6.8 Using the $DNS System Service Call

/* Construct an item list to read values of the attribute. */ _,
readitem[O] .dns$w_itm_code = dns$_entry;
readitem[O] .dns$w_itm_size = obj_len;
readitem[O] .dns$a_itm_address = opaque_objname;

readitem[l] .dns$w_itm_code = dns$_lookingfor;
readitem[l] .dns$w_itm_size = sizeof(char);
readitem[l] .dns$a_itm_address = &objtype;

readitem[2] .dns$w_itm_code = dns$_attributename;
readitem[2] .dns$a_itm_address = opaque_attname;
readitem[2] .dns$w_itm_size = attname_len;

readitem[3] .dns$w_itm_code = dns$_outvalset;
readitem[3] .dns$a_itm_ret_length = &setlen;
readitem[3] .dns$w_itm_size = dns$k_maxattribute;
readitem[3] .dns$a_itm_address = attsetbuf;

*((int *)&readitem[4]) = O;

do 8
{

read_status = sys$dnsw(O, dns$_read_attribute, &readitem, &iosb, 0, 0);

if (read_status == SS$_NORMAL)
{

read_status iosb.dns$l_dnsb_status;

if ((read_status
{

SS$_NORMAL) I I (read_status DNS$_MOREDATA))

do
{

set_dsc.dsc$w_length = setlen;
set_dsc.dsc$a_pointer = attsetbuf; /*Address of set */

value_dsc.dsc$w_length = dns$k_simplenamemax;
value_dsc.dsc$a_pointer = attvalbuf; /* Buffer to hold */

/* attribute value */

cts_dsc.dsc$w_length = dns$k_cts_length;
cts_dsc.dsc$a_pointer = ctsbuf; /* Buffer to hold value's CTS*/

newset_dsc.dsc$w_length = dns$k_maxattribute;
newset_dsc.dsc$a_pointer = attsetbuf; /* Same buffer for */

/* each call */

set_status = dns$remove_first_set_value(&set_dsc, &value_dsc,
fD &val_len, &cts_dsc,

if (set_status == SS$_NORMAL)
{ e

&cts_len, &newset_dsc,
&setlen);

readitem[4] .dns$w_itm_code = dns$_contextvartime;
readitem[4] .dns$w_itm_size = cts_len;
readitem[4] .dns$a_itm_address = ctsbuf;

*((int *)&readitem[5]) = O;

6-29

Name Services
6.8 Using the $DNS System Service Call

else
{

}

}

printf("\tValue: "); 8
for(xx = O; xx < val_len; xx++)

printf("%x ", attvalbuf[xx]);
printf ("\n 11

);

else if (set_status != 0)
{

}

printf(11 Error %d returned when removing value from set\n",
set_status);

exit(set_status);

while(set_status == SS$_NORMAL);

printf (11 Error reading attribute %d\n 11
, read_status) ;

exit(read_status);

while(read_status == DNS$_MOREDATA);

8 The item list contains five entries:

• The opaque full name of the object with the attribute the program wants
to read

• The type 'of object to access

• The opaque simple name of the attribute to read

• The address of the buffer containing the set of values returned by the
read operation

• A value of 0 to terminate the item list

8 The loop repeatedly calls the $DNSW service to read the values of the
attribute because the first call might not return all the values. The loop
executes until $DNSW returns something other than DNS$_MOREDATA.

@) The DNS$REMOVE_FIRST_SET_ VALUE routine extracts a value from the
set.

8 This attribute name might be the context the routine uses to read additional
attributes. The attribute's creation timestamp (CTS), not its value, provides
the context.

8 Finally, display the value in hexadecimal format. (You could also take the
attribute name and convert it to a printable format before displaying the
result.)

See the discussion about setting confidence in the Guide to Programming with
DECdns for information about obtaining up-to-date data on read requests.

6.8.3.2 Enumerating DECdns Names and Attributes

6-30

The enumerate functions return DECdns names for objects, child directories, soft
links, groups, or attributes in a specific directory. Use either the asterisk (*) or
question mark (?) wildcard to screen enumerated items. DECdns ·matches any
single character against the specified wildcard.

Enumeration calls return a set of simple names or attributes. If an enumeration
call returns DNS$_MOREDATA, not all matching names or attributes have been
enumerated. If you receive this message, use the context setting conventions that
are described for the DNS$_READ_ATTRIBUTE call. You should make further

Name Services
6.8 Using the $DNS System Service Call

calls, setting DNS$_CONTEXTVARNAME to the last value returned until the
procedure returns SS$_NORMAL.

The following program, written in C, shows how an application can read the
objects in a directory with the $DNS system service. The values DECdns returns
from read and enumerate functions are in different structures. For example, an
enumeration of objects returns different structures than an enumeration of child
directories. To clarify how to use this data, the sample program demonstrates
how to parse any set that the enumerate objects function returns with a run­
time routine in order to remove the first value from the set. The example also
demonstrates how the program takes each value from the set.

#include <dnsdef .h>
#include <dnsmsg.h>
/*
* Parameters:
* fname_p
* fname_len

opaque full name of the directory to enumerate
length of full name of the directory

*/

struct $dnsitmdef enumitem[4];
unsigned char setbuf [100];
struct $dnsb enum_iosb;
int synch_event;
unsigned short setlen;

/* Item list for enumeration */
/* Values from enumeration */

/* DECdns status information */
/*Used for synchronous AST threads */
/* Length of output in setbuf */

enumerate_objects(fname_p, fname_len)
unsigned char *fname_p;
unsigned short fname_len;
{

int enumerate_objects_ast();

int status; /* General routine status */
int enum_status; /* Status of enumeration routine */

/* Set up item list */

enumitem[O] .dns$w_itm_code = dns$_directory; /* Opaque directory name */
enumitem[OJ .dns$w_itm_size = fname_len;
enumitem[O] .dns$a_itm_address = fname_p;

enumitem[l] .dns$w_itm_code = dns$_outobjects; /* output buffer */
enumitem[l] .dns$a_itm_ret_length = &setlen;
enumitem[l] .dns$w_itm_size = 100;
enumitem[l] .dns$a_itm_address = setbuf;

*((int *)&enumitem[2]) = O; /*Zero terminate item list*/

status= lib$get_ef (&synch_event); «t
if (status != SS$_NORMAL)
{

printf ("Could not get event flag to synch AST threads\n");
exit(status);

enum_status = sys$dns(O, dns$_enumerate_objects, &enumitem,
~ &enum_iosb, enumerate_objects_ast, setbuf);

if (enum_status != SS$_NORMAL) 6)
{

}

printf("Error enumerating objects %d\n", enum_status);
exit(enum_status);

status = sys$synch(synch_event, &enum_iosb); .,

6-31

Name Services
6.8 Using the $DNS System Service Call

6-32

}

if (status != SS$_NORMAL)
{

printf("Synchronization with AST threads failed\n");
exit(status);

!* AST routine parameter: */
/* outbuf : address of buffer that contains enumerated names. */

@
unsigned char objnamebuf [dns$k_simplenamemax]; /* Opaque object name */

enumerate_objects_ast(outbuf)
unsigned char *outbuf;
{

struct $dnsitmdef cvtitem[3]; /* Item list for class name */
struct $dnsb iosb; /* Used for name service status information */
struct dsc$descriptor set_dsc, value_dsc, newset_dsc;

unsigned char simplebuf [dns$k_simplestrmax]; /* Object name string */

int enum_status;
int status;

!* The status of the enumeration itself */
/*Used for checking immediate status returns */
!* Status of remove value routine */ int set_status;

unsigned short val_len;
unsigned short sname_len;

/* Length of set value */
/* Length of object name */

enum_status = enum_iosb.dns$l_dnsb_status; /* Check status */
if((enum_status != SS$_NORMAL) && (enum_status != DNS$_MOREDATA))
{

do
{

printf("Error enumerating objects= %d\n", enum_status);
sys$setef (synch_event);
exit(enum_status);

/*
* Extract object names from output buffer one
* value at a time. Set up descriptors for the extraction.
*/

set_dsc.dsc$w_length = setlen;
set_dsc.dsc$a_pointer = setbuf;

/* Contains address of */
/* the set whose values */
/* are to be extracted */

value_dsc.dsc$w_length = dns$k_simplenamemax;
value_dsc.dsc$a_pointer = objnamebuf; /* To contain the */

newset_dsc.dsc$w_length = 100;
newset_dsc.dsc$a_pointer = setbuf;

/* name of an object */
!* after the extraction */

/* To contain a new*/
/* set structure after */
/* the extraction. */

!* Call yRTL routine to extract the value from the set */
set_status = dns$remove_first_set_value(&set_dsc, &value_dsc, &val_len,

0, 0, &newset_dsc, &setlen);

if (set_status == SS$_NORMAL)
{ (!)

cvtitem[O] .dns$w_itm_code dns$_fromsimplename;
cvtitem[O] .dns$w_itm_size val_len;
cvtitem[O] .dns$a_itm_address = objnamebuf;

cvtitem[l] .dns$w_itm_code = dns$_tostringname;
cvtitem[l] .dns$w_itm_size = dns$k_simplestrmax;
cvtitem[l] .dns$a_itm_address = simplebuf;
cvtitem[l] .dns$a_itm_ret_length = &sname_len;

Name Services
6.8 Using the $DNS System Service Call

}

}

*((int *)&cvtitem[2]) = O;

status = sys$dnsw(O, dns$_simple_opaque_to_string, &cvtitem,
&iosb, 0, 0);

if (status == SS$_NORMAL)
status = iosb.dns$l_dnsb_status; /* Check for errors */

if (status != SS$_NORMAL) /* If error, terminate processing */
{

}
else
{

printf ("Converting object name to string returned %d\n",
status);

exit(status);

printf ("%. *s\n", sname_len, simplebuf);

enumitem[2] .dns$w_itm_code = dns$_contextvarname; fj
enumitem[2] .dns$w_itm_size = val_len;
enumitern[2] .dns$a_itm_address = objnamebuf;

*((int *)&enumitem[3]) = O;

else if (set_status != 0)
{

}

printf ("Error %d returned when removing value from set \n",
set_status);

exit(set_status);

while(set_status == SS$_NORMAL);

if (enum_status == DNS$_MOREDATA)
{

}
else
{

enum_status = sys$dns(O, dns$_enumerate_objects, &enumitem,
&enum_iosb, enumerate_objects_ast, setbuf);

if (enum_status != SS$_NORMAL) /* Check status of $DNS */
{

printf("Error enumerating objects= %d\n", enum_status);
sys$setef (synch_event);

sys$setef (synch_event);

0 Get an event flag to synchronize the execution of AST threads.

8 Use the system service to enumerate the object names.

8 Check the status of system service itself before waiting for threads.

8 Use the $SYNCH call to make sure the DECdns clerk has completed and that
all threads have finished executing.

0 After enumerating objects, $DNS calls an AST routine. The routine shows
how DNS$REMOVE_FIRST_SET_VALUE extracts object names from the set
returned by the DNS$_ENUMERATE_OBJECTS function.

(!) Use an item list to convert the opaque simple name to a string name so you
can display it to the user. The item list contains the following entries:

• The address of the opaque simple name to be converted

• The address of the buffer that will hold the string name

6-33

Name Services
6.8 Using the $DNS System Service Call

• A value of 0 to terminate the item list

0 This object name could provide the context for continuing the enumeration.
Append the context variable to the item list so the enumeration can continue
from this name if there is more data.

6) Use the system service to enumerate the object names as long as there is
more data.

0 Set the event flag to indicate that all AST threads have completed and the
program can terminate.

6.9 DECdns Logical Names

6-34

When the DECdns clerk is started on a VMS operating system, the VMS system
creates a unique logical name table for DECdns to use in translating full names.
This logical name table, called DNS$SYSTEM, prevents unintended interaction
with other system logical names.

To define systemwide logical names for DECdns objects, you must have the
appropriate privileges to use the DCL command DEFINE. Use the DEFINE
command to create the logical RESEARCH.PROJECT_DISK shown in the
previous section by entering the following DCL command:

$ DEFINE/TABLE=DNS$SYSTEM RESEARCH "ENG.RESEARCH"

When parsing a name, the $DNS service specifies the logical name
DNS$LOGICAL as the table it uses to translate a simple name into a full name.
This name translates to DNS$SYSTEM (by default) to access the systemwide
DECdns logical name table.

To define process or job logical names for $DNS, you must create a process or job
table and redefine DNS$LOGICAL as a search list, as in the following example
(note that elevated privileges are required to create a job table).

$ CREATE /NAME_TABLE DNS_PROCESS_TABLE
$ DEFINE /TABLE=LNM$PROCESS_DIRECTORY DNS$LOGICAL -
_$ DNS_PROCESS_TABLE,DNS$SYSTEM

Once you have created the process or job table and redefined DNS$LOGICAL,
you can create job-specific logical names for DECdns using the DCL command
DEFINE, as follows:

$ DEFINE /TABLE=DNS_PROCESS_TABLE RESEARCH "ENG. RESEARCH. MYGROUP"

For information about logical names, see VMS Introduction to System Services.

7
Input/Output Services

You can use two basic methods to perform input/output operations under the
VMS operating system:

• VMS Record Management Services (RMS)

• 1/0 system services

VMS RMS provides a set of routines for general-purpose, device-independent
functions such as data storage, retrieval, and modification.

The I/O system services permit you to use the 1/0 resources of the operating
system directly in a device-dependent manner. 1/0 services also provide some
specialized functions not available in VMS RMS. Using 1/0 services requires more
programming knowledge than using VMS RMS, but can result in more efficient
input/output operations.

The following system services are Input/Output services:

• Device Scan ($DEVICE_SCAN)

• Assign I/O Channel ($ASSIGN)

• Deassign I/O Channel ($DASSGN)

• Queue I/O Request ($QIO)

• Queue I/O Request and Wait for Event Flag ($QIOW)

• Formatted ASCII Output ($FAO)

• Formatted ASCII Output with List Parameter ($FAOL)

• Allocate Device ($ALLOC)

• Deallocate Device ($DALLOC)

• Mount Volume ($MOUNT)

• Dismount Volume ($DISMOU)

• Initialize Volume ($INIT_ VOL)

• Get Device and Channel Information ($GETDVI)

• Get Device and Channel Information and Wait ($GETDVIW)

• Cancel I/O on Channel ($CANCEL)

• Create Mailbox and Assign Channel ($CREMBX)

• Delete Mailbox ($DELMBX)

• Breakthrough ($BRKTH)

• Breakthrough and Wait ($BRKTHW)

• Get Queue Information ($GETQUI)

7-1

Input/Output Services

• Get Queue Information and Wait ($GETQUIW)

• Send Message to Job Controller ($SNDJBC)

• Send Message to Job Controller and Wait ($SNDJBCW)

• Send Message to Operator ($SNDOPR)

• Send Message to Error Logger ($SNDERR)

• Get Message ($GETMSG)

• Put Message ($PUTMSG)

• Get Job/Process Information ($GETJPI)

• Get Job/Process Information and Wait ($GETJPIW)

• Get Lock Information ($GETLKI)

• Get Lock Information and Wait ($GETLKIW)

• Get Systemwide Information ($GETSYI)

• Get Systemwide Information and Wait ($GETSYIW)

• Update Section File on Disk ($UPDSEC)

• Scan for Devices ($DEVICE_SCAN)

This chapter includes the following general information about how to use the I/O
services:

• Assigning channels

• Queuing I/O requests

• Allocating devices

• Using mailboxes

Examples are provided to show you how to use the I/O services for simple
functions, such as terminal input and output operations. If you plan to write
device-dependent I/O routines, see the VMS I I 0 User's Reference Volume.

If you want to write your own device driver or connect to a device interrupt
vector, see the VMS Device Support Manual.

7.1 Quotas, Privileges, and Protection

7-2

To preserve the integrity of the operating system, VMS I/O operations are
performed under the constraints of quotas, privileges, and protection.

Quotas establish a limit on the number and type of I/O operations that a process
can perform concurrently, and on the total size of outstanding transfers. They
ensure that all users have an equitable share of system resources and usage.

Privileges are granted to a user to allow the performance of certain I/0-related
operations, for example, creating a mailbox and performing logical I/O to a
file-structured device. Restrictions on user privileges protect the integrity and
performance of both the operating system and the services provided to other
users.

Protection controls access to files and devices. Device protection is provided in
much the same way as file protection: shareable and nonshareable devices are
protected by protection masks.

Input/Output Services
7.1 Quotas, Privileges, and Protection

The Set Resource Wait Mode ($SETRWM) system service allows a process to
select either of two modes when an attempt to exceed a quota occurs. In the
enabled (default) mode, the process waits until the required resource is available
before continuing. In the disabled mode, the process is notified immediately by
a system service status return that an attempt to exceed a quota has occurred.
Waiting for resources is transparent to the process when resource wait mode is
enabled; the process takes no explicit action when a wait is necessary.

The different types of I/0-related quotas, privilege, and protection are described
in the following sections.

7 .1.1 Buffered 1/0 Quota
The buffered I/O quota specifies the maximum number of concurrent buffered
I/O operations a process can have active. In a buffered I/O operation, the user's
data is buffered in system dynamic memory. The driver deals with the system
buffer and not the user buffer. Buffered I/O is used for terminal, line printer,
card reader, network, mailbox, and console medium transfers and file system
operations. For a buffered I/O operation, the system does not have to lock the
user's buffer in memory.

The system manager, or the person who creates the process, establishes the
buffered I/O quota value in the user authorization file. If you use the Set
Resource Wait Mode system service to enable resource wait mode for the process,
the process enters resource wait mode if it attempts to exceed its direct I/O quota.

7.1.2 Buffered 1/0 Byte Count Quota
The buffered I/O byte count quota specifies the maximum amount of buffer space
that can be consumed from system dynamic memory for buffering I/O requests.
All buffered I/O requests require system dynamic memory in which the actual I/O
operation takes place.

The system manager, or the person who creates the process, establishes the
buffered I/O byte count quota in the user authorization file. If you use the Set
Resource Wait Mode system service to enable resource wait mode for the process,
the process enters resource wait mode if it attempts to exceed its direct I/O quota.

7.1.3 Direct 1/0 Quota
The direct I/O quota specifies the maximum number of concurrent direct
(unbuffered) I/O operations that a process can have active. In a direct I/O
operation, data is moved directly to or from the user buffer. Direct I/O is used for
disk, magnetic tape, most DMA real-time devices, and nonnetwork transfers, for
example, DMCll/DMRll write transfers. For direct I/O, the user's buffer must
be locked in memory during the transfer.

The system manager, or the person who creates the process, establishes the direct
I/O quota value in the user authorization file. If you use the Set Resource Wait
Mode system service to enable resource wait mode for the process, the process
enters resource wait mode if it attempts to exceed its direct I/O quota.

7 .1.4 AST Quota
The AST quota specifies the maximum number of outstanding asynchronous
system traps that a process can have. The system manager, or the person who
creates the process, establishes the quota value in the user authorization file.
There is never an implied wait for that resource.

7-3

Input/Output Services
7 .1 Quotas, Privileges, and Protection

7.1.5 Physical 110 Privilege
Physical I/O privilege (PHY_IO) allows a process to perform physical I/O
operations on a device. Physical I/O privilege also allows a process to perform
logical I/O operations on a device. Figure 7-4 and Figure 7-5 show the use of
physical I/O privilege in greater detail.

7.1.6 Logical 1/0 Privilege
Logical I/O privilege (LOG_IO) allows a process to perform logical I/O operations
on a device. A process can also perform physical operations on a device if the
process has logical I/O privilege, the volume is mounted foreign, and the volume
protection mask allows access to the device. (A foreign volume is one volume that
contains no standard file structure understood by any VMS software.) Figure 7-4
and Figure 7-5 show the use of logical I/O privilege in greater detail.

7.1.7 Mount Privilege
Mount privilege (MOUNT) allows a process to use the IO$_MOUNT function to
perform mount operations on disk and magnetic tape devices. The IO$_MOUNT
function is used in ACP interface operations.

7.1.8 Volume Protection

7-4

Volume protection protects the integrity of mailboxes and both foreign and
Files-11 On-Disk Structure Level 2 structured volumes. Volume protection for
a foreign volume is established when the volume is mounted. Volume protection
for a Files-11 structured volume is established when the volume is initialized. (If
the process mounting the volume has the override volume protection privilege,
VOLPRO, protection can be overridden when the volume is mounted.)

The $CREMBX system service protection mask argument establishes mailbox
protection.

Set Protection QIO requests allow you to set volume protection on a mailbox. You
must either be the owner of the mailbox or have BYPASS privilege.

Protection for structured volumes and mailboxes is provided by a volume
protection mask that contains four 4-bit fields. These fields correspond to the
four classes of user permitted to access the volume. (User classes are based on
the volume owner's DIC.)

The 4-bit fields are interpreted differently for volumes that are mounted as
structured (that is, volumes serviced by an ancillary control process [ACP]),
volumes that are mounted as foreign, and mailboxes (both temporary and
permanent).

Figure 7-1 shows the 4-bit protection fields for volumes mounted as structured.
Figure 7-2 shows the 4-bit protection fields for foreign volumes. Figure 7-3
shows the 4-bit protection fields for mailboxes.

Usually, volume protection is meaningful only for read and write operations.

Input/Output Services
7.1 Quotas, Privileges, and Protection

Figure 7-1 Files-11 Volume Protection Fields

15 11 7 3 0

World Group Owner System

10

Delete Execute Write Read

ZK-0622-GE

Figure 7-2 Foreign Volume Protection Fields

11 10 9 8

Logical 1/0 Physical 1/0 * *

*Not Used ZK-0623-GE

Figure 7-3 Mailbox Protection Fields

11 10 9 8

Logical 1/0 * Write Read

*Not Used ZK-0624-GE

7 .1.9 Device Protection
Device protection protects the allocation of nonshareable devices, such as
terminals and card readers.

Protection is provided by a device protection mask similar to that of volume
protection. The difference is that only the bit corresponding to read access is
checked, and that bit determines if the process can allocate or assign a channel to
the device.

You establish device protection with the DCL command SET PROTECTION
/DEVICE. This command sets both the protection mask and the device owner
UIC.

7-5

Input/Output Services
7 .1 Quotas, Privileges, and Protection

7 .1.10 System Privilege
System UIC privilege (SYSPRV) allows a process to be eligible for the volume or
device protection specified for the system protection class, even if the process does
not have a UIC in one of the system groups.

7 .1.11 Bypass Privilege
Bypass privilege (BYPASS) allows a process to bypass volume and device
protection completely.

7.2 Summary of VMS QIO Operations
The VMS operating system provides QIO operations that perform three basic I/O
functions; read, write, and set mode. The read function transfers data from a
device to a user-specified buffer. The write function transfers data in the opposite
direction-from a user-specified buffer to the device. For example, in a read QIO
function to a terminal device, a user-specified buffer is filled with characters
received from the terminal. In a write QIO function to the terminal, the data in a
user-specified buffer is transferred to the terminal where it is displayed.

The set mode QIO function is used to control or describe the characteristics and
operation of a device. For example, a set mode QIO function to a line printer can
specify either uppercase or lowercase character format. Not all QIO functions are
applicable to all types of devices. The line printer, for example, cannot perform a
read QIO function.

7.3 Physical, Logical, and Virtual 1/0
I/O data transfers can occur in any one of three device addressing modes:
physical, logical, or virtual. Any process with device access allowed by the volume
protection mask can perform logical I/O on a device that is mounted foreign;
physical I/O requires privileges. Virtual I/O does not require privileges; however,
intervention by an ACP to control user access may be necessary if the device
is under ACP control. (ACP functions are described in the VMS I I 0 User's
Reference Volume.)

7 .3.1 Physical 1/0 Operations

7-6

In physical I/O operations, data is read from and written to the actual, physically
addressable units accepted by the hardware (for example, sectors on a disk or
binary characters on a terminal in the PASSALL mode). This mode allows direct
access to all device-level I/O operations.

Physical I/O requires that one of the following conditions be met:

• The issuing process has physical I/O privilege (PHY_IO).

• The issuing process has all of the following characteristics:

The issuing process has logical I/O privilege (LOG_IO).

The device is mounted foreign.

The volume protection mask allows physical access to the device.

If neither of these conditions is met, the physical I/O operation is rejected by
the $QIO system service, which returns a condition value of SS$_NOPRIV (no
privilege). Figure 7-4 illustrates the physical I/O access checks in greater detail.

Input/Output Services
7.3 Physical, Logical, and Virtual 1/0

The inhibit error-logging function modifier (I0$M_INHERLOG) can be specified
for all physical I/O functions. The IO$M_INHERLOG function modifier inhibits
the logging of any error that occurs during the I/O operation.

7 .3.2 Logical 110 Operations
In logical I/O operations, data is read from and written to logically addressable
units of the device. Logical operations can be performed on both block­
addressable and record-oriented devices. For block-addressable devices (such
as disks), the addressable units are 512-byte blocks. They are numbered from
0 to n-1, where n is the number of blocks on the device. For record-oriented or
non-block-structured devices (such as terminals), logical addressable units are
not pertinent and are ignored. Logical I/O requires that one of the following
conditions be met:

• The issuing process has physical I/O privilege (PHY_IO).

• The issuing process has logical I/O privilege (LOG_IO).

• The volume is mounted foreign and the volume protection mask allows access
to the device.

If none of these conditions is met, the logical I/O operation is rejected by the $QIO
system service, which returns a condition value of SS$_NOPRIV (no privilege).
Figure 7-5 illustrates the logical I/O access checks in greater detail.

7 .3.3 Virtual 1/0 Operations
You can perform virtual I/O operations on both record-oriented (non-file­
structured) and block-addressable (file-structured) devices. For record-oriented
devices (such as terminals), the virtual function is the same as a logical function;
the virtual addressable units of the devices are ignored.

For block-addressable devices (such as disks), data is read from and written
to open files. The addressable units in the file are 512-byte blocks. They are
numbered starting at 1 and are relative to a file rather than to a device. Block­
addressable devices must be mounted and structured and must contain a file that
was previously accessed on the I/O channel.

Virtual I/O operations also require that the volume protection mask allow
access to the device (a process having either physical or logical I/O privilege can
override the volume protection mask). If these conditions are not met, the virtual
I/O operation is rejected by the QIO system service, which returns one of the
following condition values.

Condition Value

SS$_NOPRIV

SS$_DEVNOTMOUNT

SS$_DEVFOREIGN

Meaning

No privilege

Device not mounted

Volume mounted foreign

Figure 7-6 shows the relationship of physical, logical, and virtual I/O to the
driver.

7-7

Input/Output Services
7.3 Physical, Logical, and Virtual 1/0

Figure 7-4 Physical 1/0 Access Checks

7-8

Start

Yes

No

... •---------------r* Yes

Allow
Access

*Volume protection mask allows access.

No

No

No

No

Deny
Access

ZK-0625-GE

Input/Output Services
7.3 Physical, Logical, and Virtual 1/0

Figure 7-5 Logical 1/0 Access Checks

Allow
Access

Yes

Yes

No

* Volume protection mask allows access.

Start

No

No

No

No

No

Yes

Deny
Access

ZK-0626-GE

7-9

Input/Output Services
7.3 Physical, Logical, and Virtual 1/0

7-10

Figure 7-6 Physical, Logical, and Virtual 1/0

Error

No

QIO
Request

Translate Logical
Block Address

to Physical
Block Address

Map Virtual Block
Address to Logical

Block Address

Yes

Go to
ACP

l
WakeACPto

Change Mapping
Window

*Needed to map virtual address to logical address.

Yes

1/0
Driver

ZK-0627-GE

7.4 1/0 f=unction Encoding

Input/Output Services
7.4 1/0 Function Encoding

I/O functions fall into three groups that correspond to the three I/O device
addressing modes (physical, logical, and virtual) described in Section 7.3.
Depending on the device to which it is directed, an I/O function can be expressed
in one, two, or all three modes.

I/O functions are described by 16-bit, symbolically expressed values that specify
the particular I/O operation to be performed and any optional function modifiers.
Figure 7-7 shows the format of the 16-bit function value.

Symbolic names for I/O function codes are defined by the $IODEF macro.

Figure 7-7 1/0 Function Format

15 6 5 0

Function Modifiers Code

ZK-0628-GE

7.4.1 Function Codes
The low-order six bits of the function value are a code that specifies the particular
operation to be performed. For example, the code for read logical block is
expressed as IO$_READLBLK. Table 7-1 lists the symbolic values for read and
write I/O functions in the three transfer modes.

Table 7-1 Read and Write 1/0 Functions

Physical 1/0

IO$_READPBLK

IO$_ WRITEPBLK

Logical 1/0

I0$_READLBLK

IO$_ WRITELBLK

Virtual 1/0

IO$_READVBLK

IO$_ WRITEVBLK

The set mode I/O function has a symbolic value of I0$_SETMODE.

Function codes are defined for all supported devices. Although some of the
function codes (for example, IO$_READVBLK and IO$_ WRITEVBLK) are used
with several types of devices, most are device dependent; that is, they perform
functions specific to particular types of devices. For example, IO$_CREATE is a
device-dependent function code; it is used only with file-structured devices such
as disks and magnetic tapes. The VMS I I 0 User's Reference Volume provides
complete descriptions of the functions and function codes.

Note ___________ _

You should determine the device class before performing any QIO
function, because the requested function may be incompatible with some
devices. For example, the SYS$INPUT device could be a terminal, a disk,
or some other device. Unless this device is a terminal, an IO$_SETMODE
request that enables a CTRL/C AST is not performed.

7-11

Input/Output Services
7.4 1/0 Function Encoding

7 .4.2 Function Modifiers
The high-order 10 bits of the function value are function modifiers. These are
individual bits that alter the basic operation to be performed. For example,
you can specify the function modifier IO$M_NOECHO with the function IO$_
READLBLK to a terminal. When used together, the two values are written in
VAX MACRO as IO$_READLBLK!I0$M_NOECHO. This causes data typed at
the terminal keyboard to be entered into the user buffer, but not echoed to the
terminal. Figure 7-8 shows the format of function modifiers.

Figure 7-8 Function Modifier Format

....
1s~~~~~~13 __ 1_2~~~~~~~~6_____,l.~J(:Jo Device/Function Device/Function

Independent Dependent

ZK-0629-GE

As shown in Figure 7-8, bits 13 through 15 are device- or function-independent
bits, and bits 6 through 12 are device- or function-dependent bits. Device- or
function-dependent bits have the same meaning, whenever possible, for different
device classes. For example, the function modifier IO$M_ACCESS is used with
both disk and magnetic tape devices to cause a file to be accessed during a create
operation. Device- or function-dependent bits always have the same function
within the same device class.

There are two device- or function-independent modifier bits: IO$M_INHRETRY
and IO$M_DATACHECK (a third bit is reserved). IO$M_INHRETRY is used to
inhibit all error recovery. If any error occurs, and this modifier bit is specified,
the operation is terminated immediately and a failure status is returned in the
I/O status block (see Section 7.10). IO$M_DATACHECK is used to compare the
data in memory with that on a disk or magnetic tape.

7.5 Assigning Channels

7-12

Before any input or output operation can be performed on a physical device, you
must assign a channel to the device to provide a path between the process and
the device. The Assign I/O Channel ($ASSIGN) system service establishes this
path.

When you write a call to the $ASSIGN service, you must supply the name of the
device, which may be a physical device name or a logical name, and the address
of a word to receive the channel number. The service returns a channel number,
and you use this channel number when you write an input or output request.

For example, the following lines assign an I/O channel to the device TTA2. The
channel number is returned in the word at TTCHAN.

TTNAME: .ASCID /TTA2:/
TTCHAN: .BLKW 1

$ASSIGN_S -
DEVNAM=TTNAME, -
CHAN=TTCHAN

Input/Output Services
7.5 Assigning Channels

Terminal descriptor
Terminal channel number

To assign a channel to the current default input or output device, use the logical
name SYS$INPUT or SYS$0UTPUT.

For more details on how $ASSIGN and other I/O services handle logical names,
see Section 7.1.5.

7.6 Queuing 1/0 Requests
All input and output operations in VMS are initiated with the Queue I/O Request
($QIO) system service. The $QIO service queues the request and returns
immediately to the caller. While the operating system processes the request, the
program that issued the request can continue execution.

Required arguments to the $QIO service include the channel number assigned
to the device on which the I/O is to be performed, and a function code (expressed
symbolically) that indicates the specific operation to be performed. Depending on
the function code, one to six additional parameters may be required.

For example, the 10$_ WRITEVBLK and I0$_READVBLK function codes are
device-independent codes used to read and write single records or virtual
blocks. These function codes are suitable for simple terminal I/O. They require
parameters indicating the address of an input or output buffer and the buffer
length. A call to $QIO to write a line to a terminal may look like the following.

$QIO_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=BUFADDR, -
P2=#BUFLEN

Function codes are defined for all supported device types, and most of the codes
are device dependent; that is, they perform functions specific to a particular
device. The $IODEF macro defines symbolic names for these function codes. For
information about how to obtain a listing of these symbolic names, see Section 2.3.
For details on all function codes and an explanation of the parameters required
by each, see the VMS I /0 User's Reference Volume.

7.7 Synchronizing Service Completion
The $QIO system service returns control to the calling program as soon as a
request is queued; the status code returned in RO indicates whether the request
was queued successfully. To ensure proper synchronization of the queuing
operation with respect to the program, the program must do the following:

• Test that the operation was queued successfully.

• Test whether the operation itself completed successfully.

Optional arguments to the $QIO service provide techniques for synchronizing I/O
completion. There are three methods you can use to test for the completion of an
I/O request:

• Specify the number of an event flag to be set when the operation completes.

7-13

Input/Output Services
7. 7 Synchronizing Service Completion

7-14

• Specify the address of an AST routine to be executed when the operation
completes.

• Specify the address of an I/O status block in which the system can place the
return status when the operation completes.

I/O status blocks are explained in Section 7.10.

The use of these three techniques is shown in the three examples that follow.

Example 1 : Event Flags

$QIO_S EFN=#l, .. . 8
BLBC RO,ERROR
$QIO_S EFN=#2, .. . 8
BLBC RO,ERROR
$WFLAND_S - 6)

EFN=#O, - 8
MASK=#l\BllO

Issue 1st I/0 request
; Queued successfully?

; Issue 2nd I/0 request
; Queued successfully?

Wait till both done

8 When you specify an event flag number as an argument, $QIO clears the
event flag when it queues the I/O request. When the I/O completes, the flag
is set.

8 In this example, the program issues two Queue I/O requests. A different
event flag is specified for each request.

6) The Wait for Logical AND of Event Flags ($WFLAND) system service places
the process in a wait state until both I/O operations are complete. The efn
argument indicates that the event flags are both in cluster O; the mask
argument indicates the flags for which the process is to wait.

8 Note that the $WFLAND system service (and the other wait system services)
wait for the event flag to be set; they do not wait for the I/O operation to
complete. If some other event were to set the required event flags, the wait
for event flag would complete too soon. You must coordinate the use of
event flags carefully. (See Section 7 .8 for a discussion of the recommended
technique for testing I/O completion.)

Example 2: An AST Routine

$QIO_S ... ,ASTADR=TTAST, - 8; I/0 with AST
ASTPRM=#l, ...

BLBC RO,ERROR ; Queued successfully?
; Continue

.ENTRY TTAST,l\M<RlO,Rll> 8; AST service routine entry mask
handle I/0 completion

RET ; End of service routine

8 When you specify the astadr argument to the $QIO system service, the
system interrupts the process when the I/O completes and passes control to
the specified AST service routine.

The $QIO system service call specifies the address of the AST routine, TTAST,
and a parameter to pass as an argument to the AST service routine. When
$QIO returns control, the process continues execution.

8 When the I/O completes, the AST routine TTAST is called, and it responds to
the I/O completion. By examining the AST parameter, TTAST can determine
the origin of the I/O request.

Input/Output Services
7.7 Synchronizing Service Completion

When this routine is finished executing, control returns to the process at the
point at which it was interrupted. If you specify the astadr argument in
your call to $QIO, you should also specify the iosb argument so that the AST
routine can evaluate whether the I/O completed successfully.

Example 3: The 1/0 Status Block 0
TTIOSB: .BLKQ 1 8 I/0 status block

@) $QIO_S ... ,IOSB=TTIOSB, ... Issue I/0 request
BLBC RO,ERROR ; Queued successfully?

Continue

10$: TSTW TTIOSB e ; Is I/0 done yet?
BEQL 10$ No, loop till done

0 CMPW TTIOSB,#SS$_NORMAL ; I/0 successful?
BNEQ IO_ERR No, handle the error

0 An I/O status block is a quadword structure that the system uses to post
the status of an I/O operation. You must define the quadword area in your
program.

8 TTIOSB defines the I/O status block for this I/O operation. The iosb
argument in the $QIO system service refers to this quadword.

@) The $QIO system service clears the quadword when it queues the I/O request.
When the request is queued, the program calls a routine to check whether the
request was successfully placed on the queue; if queuing was successful, the
program continues execution.

8 The process polls the I/O status block. If the low-order word still contains 0,
the I/O operation has not yet completed. In this example, the program loops
until the request is complete.

0 After the I/O operation completes, the process compares the low word of the
I/O status block with the success status SS$_NORMAL. If the return status
is not SS$_NORMAL, the program branches to IO_ERR.

Note ___________ _

The technique shown in Example 3 wastes system time, looping until the
request is complete; you should use this technique only when it is the last
possible alternative.

7.8 Recommended Method for Testing Asynchronous Completion
Digital recommends that you use the Synchronize ($SYNCH) system service to
wait for completion of an asynchronous event. The $SYNCH service correctly
waits for the actual completion of an asynchronous event, even if some other
event sets the event flag.

To use the $SYNCH service to wait for the completion of an asynchronous event,
you must specify both an event flag number and the address of an I/O status
block (IOSB) in your call to the asynchronous system service. The asynchronous
service queues the request and returns control to your program. When the

7-15

Input/Output Services
7.8 Recommended Method for Testing Asynchronous Completion

asynchronous service completes, it sets the event flag and places the final status
of the request in the IOSB.

In your call to $SYNCH, you must specify the same efn and I/O status block
that you specified in your call to the asynchronous service. The $SYNCH service
waits for the event flag to be set by means of the $WAITFR system service. When
the specified event flag is set, $SYNCH checks the specified I/O status block. If
the I/O status block is nonzero, the system service has completed and $SYNCH
returns control to your program. If the I/O status block is 0, $SYNCH clears the
event flag by means of the $CLREF service and calls the $WAITFR service to
wait for the event flag to be set.

The $SYNCH service sets the event flag before returning control to your program.
This ensures that the call to $SYNCH does not interfere with testing for
completion of another asynchronous event that completes at approximately the
same time and uses the same event flag to signal completion.

The following call to the Queue I/O Request ($QIO) system service demonstrates
how the $SYNCH service is used.

EVENT_FLAG = 1
,
Q_IOSB: .QUAD 0

$QIO_S EFN=#EVENT_FLAG,
IOSB=Q_IOSB, ...

$SYNCH_S -
EFN=#EVENT_FLAG
IOSB=Q_IOSB

BLBC RO,ERROR

Request I/0

Wait until I/0 completes
Test status

Note ___________ _

The $QIOW service provides a combination of $QIO and $SYNCH. This
program segment provides only an example of how $SYNCH operates.
For a more complete example, see Section 2.5.1.

7.9 Synchronous Forms of Input/Output Services

7-16

You can execute some input/output services either synchronously or
asynchronously. A "W" at the end of a system service name indicates the
synchronous version of the system service.

The synchronous version of a system service combines the functions of
the asynchronous version of the service and the Synchronize ($SYNCH)
system service. The synchronous version acts exactly as if you had used the
asynchronous version of the system service followed immediately by a call to
$SYNCH; it queues the I/O request, and then places the program in a wait
state until the I/O request completes. The synchronous version takes the same
arguments as the asynchronous version.

7.10

Input/Output Services
7.9 Synchronous Forms of Input/Output Services

The asynchronous and synchronous names of input/output services that have
synchronous versions are as follows.

Asynchronous Name

$BRKTHRU

$GETDVI

$GETJPI

$GETLKI

$GETQUI

$GETSYI

$QIO

$SNDJBC

$UPDSEC

1/0 Completion Status

Synchronous Name

$BRKTHRUW

$GETDVIW

$GETJPIW

$GETLKIW

$GETQUIW

$GETSYIW

$QIOW

$SNDJBCW

$UPDSECW

Description

Breakthrough

Get DeviceNolume Information

Get Job/Process Information

Get Lock Information

Get Queue Information

Get Systemwide Information

Queue I/O Request

Send to Job Controller

Update Section File on Disk

When an I/O operation completes, the system posts the completion status in the
I/O status block, if one is specified. The completion status indicates whether the
operation completed successfully, the number of bytes that were transferred, and
additional device-dependent return information.

Figure 7-9 illustrates the format for the $QIO system service of the information
written in the IOSB.

Figure 7-9 1/0 Status Block

31 16 15 0

Count I Condition Value

Device-Dependent Information

ZK-0856-GE

The first word contains a system status code indicating the success or failure of
the operation. The status codes used are the same as for all returns from system
services; for example, SS$_NORMAL indicates successful completion.

The second word contains the number of bytes actually transferred in the I/O
operation. Note that for some devices this word contains only the low-order word
of the count. For information about specific devices, see the VMS I I 0 User's
Reference Volume.

The second longword contains device-dependent return information.

System services other than $QIO use the quadword I/O status block, but the
format is different. See the description of each system service in the VMS System
Services Reference Manual for the format of the information written in the IOSB
for that service.

7-17

Input/Output Services
7.10 1/0 Completion Status

To ensure successful I/O completion and the integrity of data transfers, you
should check the IOSB following I/O requests, particularly for device-dependent
I/O functions. For complete details on how to use the I/O status block, see the
VMS I I 0 User's Reference Volume.

7.11 Deassigning 1/0 Channels
When a process no longer needs access to an I/O device, it should release the
channel assigned to the device by calling the Deassign I/O Channel ($DASSGN)
system service:

$DASSGN_S CHAN=TTCHAN

This service call releases the terminal channel assignment acquired in the
$ASSIGN example shown in Section 7.5. The system automatically deassigns
channels for a process when the image that assigned the channel exits.

7.12 Example of Using Complete Terminal 1/0

7-18

The following example shows a complete sequence of input and output
operations using the $QIOW macro to read and write lines to the current
default SYS$INPUT device. Because the input/output of this program must be to
the current terminal, it functions correctly only if you execute it interactively.

TTNAME: .ASCID /SYS$INPUT:/ tt Descriptor for terminal name

TTCHAN: .BLKW 1

TTIOSB: .BLKW 1 • TTIOLEN:
.BLKW 1
.BLKL 1

OUTLEN: .BLKL 1 • BUFFER: .BLKB 80
LENGTH=.-BUFFER

8$ASSIGN_S -
DEVNAM=TTNAME, -
CHAN=TTCHAN

BSBW ERROR
0 $QIOW_S -

FUNC=#IO$_READVBLK­
CHAN=TTCHAN, -
P2=#LENGTH, -
Pl=BUFFER, -
IOSB=TTIOSB

BSBW ERROR
MOVZWL TTIOSB,RO

G} BSBW ERROR
fj MOVZWL TTIOLEN,OUTLEN

$QIOW_S -
FUNC=#IO$_WRITVBLK­
CHAN=TTCHAN, -
P2=0UTLEN, -
Pl=BUFFER, -
IOSB=TTIOSB

; Receive channel number here

First word of IOSB, status

; Second word, get length
; Second longword of IOSB

Length of string to output
; Buff er to read input

Assign channel
; Logical name translated by $ASSIGN

; Move status code to RO

Get length out of IOSB

Input/Output Services
7.12 Example of Using Complete Terminal 1/0

@) BSBW ERROR
MOVZWL TTIOSB,RO
BSBW ERROR

CD $DASSGN_S -
CHAN=TTCHAN

BSBW ERROR

ERROR: BLBS R0,10$

$EXIT_S RO

10$: RSB

; Move status code to RO

Done, deassign channel

Check for successful
return code

If not successful,
exit and signal

If successful,
return to caller

0 The TTNAME label is a character string descriptor for the logical device
SYS$INPUT, and TTCHAN is a word to receive the channel number assigned
to it.

8 The IOSB for the I/O operations is structured so that the program can easily
check for the completion status (in the first word) and the length of the input
string returned (in the second word).

@) The string will be read into the buffer INBUF; the longword OUTLEN will
contain the length of the string for the output operation.

8 The $ASSIGN service assigns a channel and writes the channel number at
TTCHAN.

CB If the $ASSIGN service completes successfully, the $QIOW macro reads a line
from the terminal, and requests that the completion status be posted in the
I/O status block defined at TTIOSB.

0 The process waits until the I/O is complete, then checks the first word in the
I/O status block for a successful return. If unsuccessful, the program takes an
error path.

8 The length of the string read is moved into the longword at OUTLEN, because
the $QIOW macro requires a longword argument. However, the length field
of the I/O status block is only a word long. The $QIOW macro writes the line
just read to the terminal.

@) The program performs error checks. First, it ensures that the $OUTPUT
macro successfully queued the I/O request; then, when the request is
completed, it ensures that the I/O was successful.

CD When all I/O operations on the channel are finished, the channel is
deassigned.

7.13 Canceling 1/0 Requests
If a process must cancel I/O requests that have been queued but not yet
completed, it can issue the Cancel I/O On Channel ($CANCEL) system service.
All pending I/O requests issued by the process on that channel are canceled; you
cannot specify a particular I/O request.

The $CANCEL system service performs an asynchronous cancel operation. This
means that the application must wait for each I/O operation issued to the driver
to complete prior to checking the status for that operation.

7-19

Input/Output Services
7.13 Canceling 1/0 Requests

For example, you can call the $CANCEL system service as follows.

$QIO_S
$QIO_S

$CANCEL_S
$SYNCH
$SYNCH

CHAN=TTCHAN, EFN=3, IOSB=IOSBl
CHAN=TTCHAN I EFN=4 I IOSB=IOSB2 ...

CHAN=TTCHAN
EFN=3, IOSB=IOSBl
EFN=4, IOSB=IOSB2

In this example, the $CANCEL system service initiates the cancellation of all
pending I/O requests to the channel whose number is located at TTCHAN.

The $CANCEL system service returns after initiating the cancellation of the I/O
requests. If the call to $QIO specified an event flag, AST service routine, or I/O
status block, the system sets the flag, delivers the AST, or posts the I/O status
block as appropriate when the cancellation is actually completed.

7 .14 Device Allocation

7-20

Many I/O devices are shareable; that is, more than one process at a time can
access the device. By calling the Assign I/O Channel ($ASSIGN) system service,
a process is given a channel to the device for I/O operations.

In some cases, a process may need exclusive use of a device so that data is not
affected by other processes. To reserve a device for exclusive use, you must
allocate it.

Device allocation is normally accomplished with the DCL command ALLOCATE.
A process can also allocate a device by calling the Allocate Device ($ALLOC)
system service. When a device has been allocated by a process, only the process
that allocated the device and any subprocesses it creates can assign channels to
the device.

When you call the $ALLOC system service, you must provide a device name. The
device name specified can be any of the following:

• A physical device name; for example, the tape drive MTB3:

• A logical name; for example, TAPE

• A generic device name; for example, MT:

If you specify a physical device name, $ALLOC attempts to allocate the specified
device.

If you specify a logical name, $ALLOC translates the logical name and attempts
to allocate the physical device name equated to the logical name.

If you specify a generic device name (that is, if you specify a device type but do
not specify a controller or unit number, or both), $ALLOC attempts to allocate
any device available of the specified type. For more information about the
allocation of devices by generic names, see Section 7.17.

When you specify generic device names, you must provide fields for the $ALLOC
system service to return the name and the length of the physical device that is
actually allocated so that you can provide this name as input to the $ASSIGN
system service.

Input/Output Services
7.14 Device Allocation

The following example illustrates the allocation of a tape device specified by the
logical name TAPE.

LOGDEV: .ASCID /TAPE/
DEVDESC:

.LONG 64

.ADDRESS -
DEVSTR

DEVSTR: .BLKB 64
TAPECHAN:

.BLKW 1

0 $ALLOC_S -
DEVNAM=LOGDEV, -
PHYLEN=DEVDESC, -
PHYBUF=DEVDESC

BSBW ERROR
@) $ASSIGN_S -

DEVNAM=DEVDESC, -
CHAN=TAPECHAN

BSBW ERROR

@) $DASSGN_S -
CHAN=TAPECHAN

BSBW ERROR
$DALLOC_S -

DEVNAM=DEVDESC

Descriptor for logical name
Descriptor for physical name
Length of buffer
Address of buffer

Get physical name returned

Channel for tape I/0

Assign channel

; Continue with I/0

Deassign channel

; Deallocate tape

0 The $ALLOC system service call requests allocation of a device corresponding
to the logical name TAPE, defined by the character string descriptor
LOGDEV. The argument DEVDESC refers to the buffer provided to receive
the physical device name of the device actually allocated and the length of
the name string. The $ALLOC service translates the logical name TAPE, and
returns the equivalence name string of the device actually allocated into the
buffer at DEVDESC. It writes the length of the string in the first word of
DEVDESC.

8 The $ASSIGN command uses the character string returned by the $ALLOC
system service as the input device name argument, and requests that the
channel number be written into TAPECHAN.

8 When 1/0 operations are completed, the $DASSGN system service deassigns
the channel, and the $DALLOC system service deallocates the device. The
channel must be deassigned before the device can be deallocated.

7.14.1 Implicit Allocation
Devices that cannot be shared by more than one process (for example, terminals
and line printers) do not have to be explicitly allocated. Because they are
nonshareable, they are implicitly allocated by the $ASSIGN system service when
$ASSIGN is called to assign a channel to the device.

7.14.2 Deallocation
When the program has finished using an allocated device, it should release
the device with the Deallocate Device ($DALLOC) system service, to make it
available for other processes, as in this example:

$DALLOC_S DEVNAM=DEVDESC

At image exit, the system automatically deallocates devices allocated by the
image.

7-21

Input/Output Services
7.15 Mounting, Dismounting, and Initializing Volumes

7.15 Mounting, Dismounting, and Initializing Volumes
This section introduces you to using system services to mount, dismount, and
initialize disk and tape volumes.

7.15.1 Mounting a Volume
Mounting a volume establishes a link between a volume, a device, and a process.
A volume, or volume set, must be mounted before I/O operations can be performed
on the volume. You interactively mount or dismount a volume from the DCL
command stream with the MOUNT or DISMOUNT command. A process can
also mount a volume or volume set programmatically using the Mount Volume
($MOUNT) system service or the Dismount Volume ($DISMOU) system service.

Mounting a volume involves two operations:

1. Place the volume on the device and start the device (by pressing the START
or LOAD button).

2. Mount the volume with the $MOUNT system service.

7.15.1.1 Calling the $MOUNT System Service

7-22

The Mount Volume ($MOUNT) system service allows a process to mount a single
volume or a volume set. When you call the $MOUNT system service, you must
specify a device name.

The $MOUNT system service has a single argument which is the address of a
list of item descriptors. The list is terminated by a longword of binary zeros.
Figure 7-10 shows the format of an item descriptor.

Figure 7-1 O $MOUNT Item Descriptor

31 15 0

Item Code l Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

Most item descriptors do not have to be in any order. To mount volume sets,
you must specify one item descriptor per device and one item descriptor per
volume; you must specify the descriptors for the volumes in the same order as the
descriptors for the devices on which the volumes are loaded.

For item descriptors other than device and volume names, if you specify the same
item descriptor more than once, the last occurrence of the descriptor is used.

The following example illustrates a call to $MOUNT. The call is equivalent to the
DCL command that precedes the example.

Input/Output Services
7.15 Mounting, Dismounting, and Initializing Volumes

$ MOUNT/SYSTEM/NOQUOTA DRA4:,DRA5: USER01,USER02 USERD$

$MNTDEF
ITEMS: .WORD 4

i
DEVl:
VOLl:
DEV2:
VOL2:
LOG:
I

.WORD MNT$_FLAGS

.ADDRESS -
FLAGS

.LONG 0

.WORD 5

.WORD MNT$_DEVNAM

.ADDRESS -
DEVl

.LONG 0

.WORD 6

.WORD MNT$_VOLNAM

.ADDRESS -
VOLl

.LONG 0

.WORD 5

.WORD MNT$_DEVNAM

.ADDRESS -
DEV2

.LONG 0

.WORD 6

.WORD MNT$_VOLNAM

.ADDRESS -
VOL2

.LONG 0

.WORD 6

.WORD MNT$_LOGNAM

.ADDRESS -
LOG

.LONG 0

.LONG 0

. ASCII /DRA4: I

.ASCII /USEROl/

. ASCII /DRA5: I

. ASCII /USER02 I

.ASCII /USERD$/

Length of flags
Flag code
Address of flags longword

Unused longword

Length of first device name
Device code
Address of first device name

Unused longword

Length of first volume name
Volume code
Address of first volume name

Unused longword

Length of second device name
Device code
Address of second device name

Unused longword

Length of second volume name
Volume code
Address of second volume name

Unused longword

Length of volume logical name
Logical name code
Address of volume logical name

Unused longword
End of item list

First device
First volume name
Second device
Second volume name
Logical name

FLAGS: .LONG <MNT$M_SYSTEM!MNT$M_NODISKQ>

$MOUNT_S -
ITMLST=ITEMS

Now call $MOUNT

7-23

Input/Output Services
7.15 Mounting, Dismounting, and Initializing Volumes

7 .15.1.2 Calling the $DISMOU System Service
The $DISMOU system service allows a process to dismount a volume or volume
set. When you call $DISMOU, you must specify a device name. If the volume
mounted on the device is part of a fully mounted volume set, and you do not
specify flags, the whole volume set is dismounted.

The following example illustrates a call to $DISMOU. The call dismounts the
volume set mounted in the previous example.

DEVl_DESC:
. ASCID /DRA4: I

$DISMOU_S -
DEVNAM=DEVl_DESC

7.15.2 Initializing Volumes
Initializing a volume writes a label on the volume, sets protection and ownership
for the volume, formats the volume (depending on the device type), and overwrites
data already on the volume.

You interactively initialize a volume from the DCL command stream using the
INITIALIZE command. A process can programmatically initialize a volume using
the Initialize Volume ($INIT_ VOL) system service.

7.15.2.1 Calling the Initialize Volume System Service

7-24

You must specify a device name and a new volume name when you call the
$INIT_ VOL system service. You can also use the itmlst argument of $INIT_ VOL
to specify options for the initialization. For example, you can specify that data
compaction should be performed by specifying the INIT$_COMPACTION item
code. See the VMS System Services Reference Manual for more information on
initialization options.

Before initializing the volume with $INIT_ VOL, be sure you have placed the
volume on the device and started the device (by pressing the START or LOAD
button).

The default format for files on disk volumes is called Files-11 On-Disk Structure
Level 2. Files-11 On-Disk Structure Level 1 format is used by other Digital
operating systems, including RSX-llM, RSX-llM-PLUS, RSX-llD, and IAS.
For more information, see the Guide to VMS Files and Devices.

Here are two examples of calling $INIT_ VOL programmatically: one from a C
program and one from a BASIC program.

Input/Output Services
7.15 Mounting, Dismounting, and Initializing Volumes

Examples
The following example illustrates a call to $INIT_ VOL from VAX C.

1. #include <descrip.h>
#include <initdef .h>

struct item_descrip_3
{

} i

unsigned short buf fer_size;
unsigned short item_code;
void *buffer_address;
unsigned short *return_length;

main ()
{

unsigned long
density_code,
status;

$DESCRIPTOR (dri ve_dsc, "MUAO: ");
$DESCRIPTOR(label_dsc, "USER01") i
struct
{

/*

struct item_descrip_3 density_item;
long terminator;

init_itmlst;

** Initialize the input item list.
*/

density_code = INIT$K_DENSITY_6250_BPI;
init_itrnlst.density_itern.buffer_size = 4;
init_itmlst.density_item.itern_code = INIT$_DENSITY;
init_itrnlst.density_itern.buffer_address = &density_code;

init_itmlst.terrninator = O;

!*
** Initialize the volume.
*!

status = SYS$INIT_VOL (&drive_dsc, &label_dsc, &init_itrnlst);

/*
** Report an error if one occurred.
*!

if ((status & 1) != 1)
LIB$STOP (status);

7-25

Input/Output Services
7.15 Mounting, Dismounting, and Initializing Volumes

The following example illustrates a call to $INIT_ VOL from VAX BASIC.

2. OPTION TYPE = EXPLICIT

%INCLUDE '$INITDEF' %FROM %LIBRARY

EXTERNAL LONG FUNCTION SYS$INIT_VOL

RECORD ITEM_DESC
VARIANT
CASE

CASE

WORD BUFLEN
WORD ITMCOD
LONG BUFADR
LONG LENADR

LONG TERMINATOR
END VARIANT

END RECORD

DECLARE LONG RET_STATUS, &
ITEM_DESC INIT_ITMLST(2)

! Initialize the input item list.

INIT_ITMLST(O): :ITMCOD = INIT$_READCHECK
INIT_ITMLST(l) ::TERMINATOR= 0

! Initialize the volume.

RET_STATUS = SYS$INIT_VOL ("DJA21:" BY DESC, "USERVOLUME" BY DESC,
INIT_ITMLST() BY REF)

7.16 Logical Names and Physical Device Names

7-26

When you specify a device name as input to an I/O system service, it can be a
physical device name or a logical name. If the device name contains a colon, the
colon and the characters after it are ignored. When an underscore character (_)
precedes a device name string, it indicates that the string is a physical device
name string. For example:

TTNAME: .ASCID /_TTB3:/

Any string that does not begin with an underscore is considered a logical name,
even though it may be a physical device name. The following system services
translate a logical name iteratively until a physical device name is returned, or
until the system default number of translations have been performed:

• Allocate Device ($ALLOC)

• Assign I/O Channel ($ASSIGN)

• Broadcast ($BRDCST)

• Deallocate Device ($DALLOC)

• Dismount Volume ($DISMOU)

• Get I/O Device Information ($GETDEV)

• Get DeviceNolume Information ($GETDVI)

• Mount Volume ($MOUNT)

Input/Output Services
7.16 Logical Names and Physical Device Names

In each translation, the logical name tables defined by the logical name
LNM$FILE_DEV are searched in order. These tables, listed in search order,
are normally LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM. If
a physical device name is located, the I/O request is performed for that device.

If the services do not locate an entry for the logical name, the I/O service treats
the name specified as a physical device name. When you specify the name of an
actual physical device in a call to one of these services, include the underscore
character to bypass the logical name translation.

When the $ALLOC system service returns the device name of the physical device
that has been allocated, the device name string returned is prefaced with an
underscore character. When this name is used for the subsequent $ASSIGN
system service, the $ASSIGN service does not attempt to translate the device
name.

If you use logical names in I/O service calls, you must be sure to establish a valid
device name equivalence before program execution. You can do this by issuing
a DEFINE command from the command stream, or by having the program
establish the equivalence name before the I/O service call with the Create Logical
Name ($CRELNM) system service.

For details on how to create and use logical names, see Chapter 6.

7.17 Device Name Defaults
If, after logical name translation, a device name string in an I/O system service
call does not fully specify the device name (that is, device, controller, and unit),
the service either provides default values for nonspecified fields, or provides
values based on device availability.

The following rules apply:

• The $ASSIGN and $DALLOC system services apply default values as shown
in Table 7-2.

• The $ALLOC system service treats the device name as a generic device name
and attempts to find a device that satisfies the components of the device name
specified, as shown in Table 7-2.

Table 7-2 Default Device Names for 1/0 Services

Device

dd:

ddc:

Device Name 1

dd.AO: (unit 0 on controller
A)

ddcO: (unit 0 on controller
specified)

Generic Device

ddxy: (any available device of the
specified type)

ddcy: (any available unit on the specified
controller)

1 A summary of the device names is contained in the VMS DCL Concepts Manual.

Key

dd-Specified device type (capital letters indicate a specific controller; numbers indicate a specific
unit)
c:-Specified controller
x:-Any controller
u:-Specified unit number
y:-Any unit number

(continued on next page)

7-27

Input/Output Services
7.17 Device Name Defaults

Table 7-2 (Cont.) Default Device Names for 1/0 Services

Device

ddu:

ddcu:

Device Name 1

ddAu: (unit specified on
controller A)

ddcu: (unit and controller
specified)

Generic Device

ddxu: (device of specified type and unit
on any available controller)

ddcu: (unit and controller specified)

1 A summary of the device names is contained in the VMS DCL Concepts Manual.

Key

dd-Specified device type (capital letters indicate a specific controller; numbers indicate a specific
unit)
c:-Specified controller
x:-Any controller
u:-Specified unit number
y:-Any unit number

7.18 Obtaining Information About Physical Devices
The Get DeviceNolume Information ($GETDVI) system service returns
information about devices. The information returned is specified by an item
list created before the call to $GETDVI.

When you call the $GETDVI system service, you must provide the address of
an item list that specifies the information to be returned. The format of the
item list is described in the description of $GETDVI in the VMS System Services
Reference Manual. The VMS I I 0 User's Reference Volume contains details on the
device-specific information these services return.

In cases where a generic (that is, nonspecific) device name is used in an I/O
service, a program may need to find out what device has actually been used. To
do this, the program should provide $GETDVI with the number of the channel
to the device and request the name of the device with the DVI$_DEVNAM item
identifier.

VMS also supports a device called the null device for program development. The
mnemonic for the null device is NL. Its characteristics are as follows:

• A read from NL returns an end-of-file error (SS$_ENDOFFILE).

• A write to NL immediately returns a success indication (SS$_NORMAL).

The null device functions as a virtual device to which you can direct output, but
from which the data does not return.

7.19 Formatting Output Strings

7-28

When you are preparing output strings for a program, you may need to insert
variable information into a string prior to output, or you may need to convert a
numeric value to an ASCII string. The Formatted ASCII Output ($FAO) system
service performs these functions.

Input to the $FAO system service consists of the following:

• A control string that contains the fixed text portion of the output and
formatting directives. The directives indicate the position within the string
where substitutions are to be made, and describe the data type and length of
the input values that are to be substituted or converted.

Input/Output Services
7.19 Formatting Output Strings

• An output buffer to contain the string after conversions and substitutions
have been made.

• An optional argument indicating a word to receive the final length of the
formatted output string.

• Parameters that provide arguments for the formatting directives.

The following example shows a call to the $FAO system service to format an
output string for a $QIOW macro. Complete details on how to use $FAO, with
additional examples, are provided in the description of the $FAO system service
in the VMS System Services Reference Manual.

FAOSTR:0 .ASCID /FILE !AS DOES NOT EXIST/ ; Descriptor for

FAODESC: 8
.LONG 80
.ADDRESS -

FAOBUF
FAOBUF: .BLKB 80

FAOLEN: .LONG

FILESPEC: @>

0

; FAO control string
Descriptor for $FAO output

Length of buffer
Address of buff er

Buffer for $FAO output

Receive length of $FAO output

.ASCID /DISK$USER:MYFILE.DAT/ ; Descriptor for FAO parameter

e $FAO_S CTRSTR=FAOSTR, -
OUTLEN=FAOLEN, -

OUTBUF=FAODESC,-
Pl=#FILESPEC Parameter for $FAO

BSBW ERROR
0 $QIOW ... ,BUFFER=FAOBUF, -

LENGTH=FAOLEN
BSBW ERROR

0 FAOSTR provides the FAO control string. !AS is an example of an FAO
directive: it requires an input parameter that specifies the address of a
character string descriptor. When $FAO is called to format this control string,
!AS will be substituted with the string whose descriptor address is specified.

8 FAODESC is a character string descriptor for the output buffer; $FAO
will write the string into the buffer, and will write the length of the final
formatted string in the low-order word of FAOLEN. (A longword is reserved
so that it can be used for an input argument to the $QIOW macro.)

6) FILESPEC is a character string descriptor defining an input string for the
FAO directive !AS.

8 The call to $FAO specifies the control string, the output buffer and length
fields, and the parameter Pl, which is the address of the string descriptor for
the string to be substituted.

0 When $FAO completes successfully, $QIOW writes the following output
string:

FILE DISK$USER:MYFILE.DAT DOES NOT EXIST

7-29

Input/Output Services
7.20 Mailboxes

7.20 Mailboxes

7-30

Mailboxes are virtual devices that can be used for communication among
processes. You accomplish actual data transfer by using VMS RMS or I/O
services. When the Create Mailbox and Assign Channel ($CREMBX) service
creates a mailbox, it also assigns a channel to it for use by the creating process.
Other processes can then assign channels to the mailbox using either the
$CREMBX or $ASSIGN system service.

The $CREMBX system service creates the mailbox. The $CREMBX system
service identifies a mailbox by a user-specified logical name and assigns it an
equivalence name. The equivalence name is a physical device name in the format
MBAn, where n is a unit number. The equivalence name has the terminal
attribute.

When another process assigns a channel to the mailbox with the $CREMBX
or $ASSIGN system service, it can identify the mailbox by its logical name.
The service automatically translates the logical name. The process can obtain
the MBAn name by translating the logical name (with the $TRNLNM system
service), or it can call the Get DeviceNolume Information ($GETDVI) system
service to obtain the unit number and the physical device name.

Channels assigned to mailboxes can be either bidirectional or unidirectional.
Bidirectional channels (read/write) allow both $QIO read and $QIO write
requests to be issued to the channel. Unidirectional channels (read only or
write only) allow only a read request or a write request to the channel. The
unidirectional channels and unidirectional $QIO function modifiers provide for
greater synchronization between users of the mailbox.

The Create Mailbox and Assign Channel ($CREMBX) and Assign I/O channel
($ASSIGN) system services use the flags argument to enable unidirectional
channels. If the flags argument is not specified, or is 0, then the channel
assigned to the mailbox is bidirectional (read/write). For more information, see
the discussion and programming examples in the mailbox driver chapter in the
VMS I I 0 User's Reference Manual: Part I.

Mailboxes are either temporary or permanent. You need the user privileges
TMPMBX and PRMMBX to create temporary and permanent mailboxes.

For a temporary mailbox, the $CREMBX service enters the logical name and
equivalence name in the logical name table LNM$TEMPORARY _MAILBOX. This
logical name table name usually specifies the LNM$JOB logical name table name.
The system deletes a temporary mailbox when no more channels are assigned to
it.

For a permanent mailbox, the $CREMBX service enters the logical name and
equivalence name in the logical name table LNM$PERMANENT_MAILBOX. This
logical name table name usually specifies the LNM$SYSTEM logical name table
name. Permanent mailboxes continue to exist until they are specifically marked
for deletion with the Delete Mailbox ($DELMBX) system service.

The following example shows how processes can communicate by means of a
mailbox.

Process ORION

MBLOGNAM:
.ASCID /GROUPlOO_MAILBOX/

MBUFLEN = 128
MBUFFER:

.BLKB MBUFLEN
MBXCHAN:

.BLKW 1

MBXIOSB:
.BLKW 1

MBLEN: .BLKW 1
.BLKL 1

OUTLEN: .BLKL 1

.ENTRY ORION, AM<R2,R3,R4>

tJ $CREMBX_S -
PRMFLG= #0, -
CHAN=MBXCHAN, -
MAXMSG=#MBUFLEN, -
BUFQUO= #384, -
PROMSK= # Axoooo, -
LOGNAM=MBLOGNAM

BSBW ERROR

~ $QIO_S CHAN=MBXCHAN, -
FUNC= #IO$_READVBLK, -
IOSB=MBXIOSB,­
ASTADR=MBXAST, -
Pl=MBUFFER, -
P2=#MBUFLEN

BSBW ERROR

RET

.ENTRY MBXAST, AM<R2,R3,R4>

CMPW MBXIOSB, #SS$_NORMAL
BNEQ AS TERR
MOVZWL MBLEN,OUTLEN
$QIOW_S ... ,BUFFER=MBUFFER, -

LENGTH=OUTLEN, ...
BSBW ERROR

RET

Process CYGNUS

MAILBOX:
.ASCID /GROUPlOO_MAILBOX/

MAILCHAN:
.BLKW 1

OUTBUF: .BLKB 128
OUTLEN: .BLKL 1

.ENTRY CYGNUS, AM<R2,R3,R4>

Input/Output Services
7.20 Mailboxes

Mailbox logical
Name descriptor

Input buffer for mailbox reads

Mailbox channel number

IOSB first word (status)
IOSB 2nd word (length)
Remainder of IOSB

Longword to get length

Entry mask

AST routine entry mask

I/0 successful?
Branch if not
Make length a longword

Mailbox logical name descriptor

Mailbox channel number

Buff er for output msg data
Will contain length of msg

Entry mask

7-31

Input/Output Services
7.20 Mailboxes

7-32

$ASSIGN_S -
DEVNAM=MAILBOX, -
CHAN=MAILCHAN

BSBW ERROR

$QIOW_S CHAN=MAILCHAN, -
BUFFER=OUTBUF, -
LENGTH=OUTLEN, ...

BSBW ERROR

RET

Assign channel

0 Process ORION creates the mailbox and receives the channel number at
MBXCHAN.

The prmftg argument indicates that the mailbox is a temporary mailbox.
The logical name is entered in the LNM$TEMPORARY _MAILBOX logical
name table.

The maxmsg argument limits the size of messages that the mailbox can
receive. Note that the size indicated in this example is the same size as the
buffer (MBUFFER) provided for the $QIO request. A buffer for mailbox 1/0
must be at least as large as the size specified in the MAXMSG argument.

When a process creates a temporary mailbox, the amount of system memory
allocated for buffering messages is subtracted from the process's buffer quota.
Use the bufquo argument to specify how much of the process quota you want
to be used for mailbox message buffering.

Mailboxes are protected devices. By specifying a protection mask with the
promsk argument, you can restrict access to the mailbox. (In this example,
all bits in the mask are clear, indicating unlimited read and write access.)

8 After creating the mailbox, process ORION calls the $QIO system service,
requesting that it be notified when 1/0 completes (that is, when the mailbox
receives a message) by means of an AST interrupt. The process can continue
executing, but the AST service routine at MBXAST will interrupt and begin
executing when a message is received.

8 When a message is sent to the mailbox (by CYGNUS), the AST is delivered
and ORION responds to the message. Process ORION gets the length of the
message from the first word of the I/O status block at MBXIOSB and places it
in the longword OUTLEN so it can pass the length to $QIOW _S.

8 Process CYGNUS assigns a channel to the mailbox, specifying the logical
name the process ORION gave the mailbox. The $QIOW system service
writes a message from the output buffer provided at OUTBUF.

Note that on a write operation to a mailbox, the 1/0 is not complete until
the message is read, unless you specify the IO$M_NOW function modifier.
Therefore, if $QIOW (without the I0$M_NOW function modifier) is used
to write the message, the process will not continue executing until another
process reads the message.

Input/Output Services
7.20 Mailboxes

7.20.1 Mailbox Name
The lognam argument to the $CREMBX service specifies a descriptor that points
to a character string for the mailbox name.

Translation of the lognam argument proceeds as follows:

1. The current name string is prefixed with MBX$ and the result is subject to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3. The MBX$ prefix is stripped from the current name string that could not be
translated. This current string is made a logical name with an equivalence
name MBAn (n is a number assigned by the system).

For example, assume that you have made the following logical name assignment:

$ DEFINE MBX$CHKPNT CHKPNT_OOl

Assume also that your program contains the following statements.

MBXDESC: .ASCID /CHKPNT/ ; Descriptor for mailbox logical name

$CREMBX_S LOGNAME=MBXDESC, ...

The following logical name translation takes place:

1. MBX$ is prefixed to CHKPNT.

2. MBX$CHKPNT is translated to CHKPNT_OOl.

Because no further translation is successful, the logical name CHKPNT_OOl is
created with the equivalence name MBAn (n is a number assigned by the system).

There are two exceptions to the logical name translation method discussed in this
section: ,

• If the name string starts with an underscore (_), the VMS operating system
strips the underscore and considers the resultant string to be the actual name
(that is, no further translation is performed).

• If the name string is the result of a logical name translation, then the name
string is checked to see if it has the "terminal" attribute. If the name string
is marked with the "terminal" attribute, VMS considers the resultant string
to be the actual name (that is, no further translation is performed).

7.20.2 System Mailboxes
The system uses mailboxes for communication among system processes. All
system mailbox messages contain, in the first word of the message, a constant
that identifies the sender of the message. These constants have symbolic names
(defined in the $MSGDEF macro) in the following format:

MSG$_sender

7-33

Input/Output Services
7 .20 Mailboxes

The symbolic names included in the $MSGDEF macro and their meanings are as
follows.

Symbolic Name

MSG$_TRMUNSOLIC

MSG$_CRUNSOLIC

MSG$_ABORT

MSG$_CONFIRM

MSG$_CONNECT

MSG$_DISCON

MSG$_EXIT

MSG$_INTMSG

MSG$_PATHLOST

MSG$_PROTOCOL

MSG$_REJECT

MSG$_THIRDPARTY

MSG$_TIMEOUT

MSG$_NETSHUT

MSG$_NODEACC

MSG$_NODEINACC

MSG$_EVTAVL

MSG$_EVTRCVCHG

MSG$_INCDAT

MSG$_RESET

MSG$_LINUP

MSG$_LINDWN

MSG$_EVTXMTCHG

Meaning

Unsolicited terminal data

Unsolicited card reader data

Network partner aborted link

Network connect confirm

Network inbound connect initiate

Network partner disconnected

Network partner exited prematurely

Network interrupt message; unsolicited data

Network path lost to partner

Network protocol error

Network connect reject

Network third-party disconnect

Network connect timeout

Network shutting down

Node has become accessible

Node has become inaccessible

Events available to DECnet Event Logger

Event receiver database change

Unsolicited incoming data available

Request to reset the virtual circuit

PVC line up

PVC line down

Event transmitter database change

The remainder of the message contains variable information, depending on the
system component that is sending the message.

The format of the variable information for each message type is documented with
the system function that uses the mailbox.

7.20.3 Mailboxes for Process Termination Messages

7-34

When a process creates another process, it can specify the unit number of a
mailbox as an argument to the Create Process ($CREPRC) system service. When
you delete the created process, the system sends a message to the specified
termination mailbox. Section 8. 7 .2 provides an example of how to create and use
a termination mailbox.

You cannot use a mailbox in memory shared by multiple processors as a process
termination mailbox.

7.21 Example of Using 1/0 Services

Input/Output Services
7.21 Example of Using 1/0 Services

In the following FORTRAN example, the first program, SEND.FOR, creates a
mailbox named MAIL_BOX, writes data to it, and then indicates the end of the
data by writing an end-of-file message.

The second program, RECEIVE.FOR, creates a mailbox with the same logical
name, MAIL_BOX. It reads the messages from the mailbox into an array. It stops
the read operations when a read operation generates an end-of-file message and
the second longword of the I/O status block is nonzero. By checking that the I/O
status block is nonzero, the second program confirms that the writing process
sent the end-of-file message.

The processes use common event flag number 64 to ensure that SEND.FOR
does not exit until RECEIVE.FOR has established a channel to the mailbox. (If
RECEIVE.FOR executes first, an error occurs because SYS$ASSIGN cannot find
the mailbox.)

SEND.FOR
INTEGER STATUS

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN

! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER LEN

CHARACTER*80 MESSAGES (255)
INTEGER MESSAGE_LEN (255)
INTEGER MAX_MESSAGE
PARAMETER (MAX_MESSAGE = 255)

l I/0 function codes and status block
INCLUDE I ($IODEF) I

INTEGER*4 WRITE_CODE
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

System routines
INTEGER SYS$CREMBX,
2 SYS$ASCEFC,
2 SYS$WAITFR,
2 SYS$QIOW

Create the mailbox.
STATUS = SYS$CREMBX (,
2 MBX_CHAN 1

2 1111

2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Fill MESSAGES array

7-35

Input/Output Services
7.21 Example of Using 1/0 Services

7-36

! Write the messages.
DO I = 1, MAX_MESSAGE

WRITE_CODE = IO$_WRITEVBLK .OR. IO$M_NOW
MBX_MESSAGE = MESSAGES(I)
LEN = MESSAGE_LEN(I)
STATUS = SYS$QIOW (,

%VAL (MBX_CHAN) I

%VAL(WRITE_CODE) I

IOSTAT,

Channel
I/0 code
Status block

2
2
2
2
2
2

%REF(MBX_MESSAGE) I Pl
%VAL(LEN) I I,,) P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(STATUS))

END DO

! Write end of file
WRITE_CODE = IO$_WRITEOF .OR. IO$M_NOW
STATUS = SYS$QIOW (,
2 %VAL(MBX_CHAN) I

2 %VAL(WRITE_CODE) I

2 IOSTAT,
2 /I I I I I I)

Channel
End of file code
Status block

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(IOSTAT))

! Make sure cooperating process can read the information
! by waiting for it to assign a channel to the mailbox.

STATUS = SYS$ASCEFC (%VAL(64) I

2 'CLUSTER' I I)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

INTEGER STATUS

INCLUDE I ($IODEF) I

INCLUDE I ($SSDEF) I

RECEIVE.FOR

! Name and channel number for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN

! QIO function code
INTEGER READ_CODE

! Mailbox message
CHARACTER*80 MBX_MESSAGE
INTEGER*4 LEN

! Message arrays
CHARACTER*80 MESSAGES (255)
INTEGER*4 MESSAGE_LEN (255)

! I/0 status block
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

Input/Output Services
7.21 Example of Using 1/0 Services

! System routines
INTEGER SYS$ASSIGN,
2 SYS$ASCEFC,
2 SYS$SETEF,
2 SYS$QIOW

Create the mailbox and let the other process know
STATUS = SYS$ASSIGN (MBX_NAME,
2 MBX_CHAN I'')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$ASCEFC (%VAL(64) I

2 I CLUSTER''')
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$SETEF (%VAL(64))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Read first message
READ_CODE = IO$_READVBLK .OR. IO$M_NOW
LEN = 80

(, STATUS = SYS$QIOW
2
2
2

%VAL (MBX_CHAN) I

%VAL (READ_CODE) I

IOSTAT,

Channel
Function code
Status block

2
2 %REF(MBX_MESSAGE) I Pl
2 %VAL(LEN) I I I I) P2
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.
2 (IOSTAT .NE. SS$_ENDOFFILE)) THEN

CALL LIB$SIGNAL (%VAL(IOSTAT))
ELSE IF (IOSTAT .NE. SS$_ENDOFFILE) THEN

I = 1
MESSAGES(I) = MBX_MESSAGE
MESSAGE_LEN(I) = MSG_LEN

END IF

! Read messages until cooperating process writes end-of-file
DO WHILE (.NOT. ((IOSTAT .EQ. SS$_ENDOFFILE) .AND.
2 (READER_PID .NE. 0)))

2
2
2
2
2
2

STATUS = SYS$QIOW (,
%VAL (MBX_CHAN) I

%VAL (READ_CODE) I

IOSTAT I

%REF(MBX_MESSAGE) I

%VAL(LEN)' I' I)

Channel
Function code
Status block

Pl
P2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF ((.NOT. IOSTAT) .AND.

2 (IOSTAT .NE. SS$_ENDOFFILE)) THEN
CALL LIB$SIGNAL (%VAL(IOSTAT))

ELSE IF (IOSTAT .NE. SS$_ENDOFFILE) THEN
I = I t 1
MESSAGES(I) = MBX_MESSAGE
MESSAGE_LEN(I) = MSG_LEN

END IF

END DO

7-37

8
Process Control Services

When you log in to the system, a process for the execution of program images is
created. You can create another process to execute an image by issuing the RUN
or SPAWN command, using any of the qualifiers that pertain to process creation.
You can also write a program that creates another process to execute a particular
image.

The following services are process control system services:

• Create Process ($CREPRC)

• Delete Process ($DELPRC)

• Suspend Process ($SUSPND)

• Resume Process ($RESUME)

• Hibernate ($HIBER)

• Wake ($WAKE)

• Schedule Wakeup ($SCHDWK)

• Cancel Wakeup ($CANWAK)

• Exit ($EXIT)

• Force Exit ($FORCEX)

• Declare Exit Handler ($DCLEXH)

• Cancel Exit Handler ($CANEXH)

• Set Process Name ($SETPRN)

• Set Priority ($SETPRI)

• Set Privileges ($SETPRV)

• Set Resource Wait Mode ($SETRWM)

Process control services allow you to create processes and to control a process
or group of processes. This chapter describes some aspects of process control
services and includes discussions of the following:

• Subprocesses and detached processes

• Execution context of a process

• Process creation

• Interprocess control and communication

• Process hibernation and suspension

8-1

Process Control Services

• Image exit and exit handlers

• Process deletion and termination messages

8.1 Subprocesses and Detached Processes
A process is either a subprocess or a detached process. A subprocess receives a
portion of its creator's resource quotas and must terminate before the creator. A
detached process is fully independent; for example, the process the system creates
when you log in is a detached process.

The Create Process ($CREPRC) system service creates both subprocesses and
detached processes. The number of subprocesses a process can create is controlled
by its PRCLM quota. The DETACH privilege controls your ability to create a
detached process with a UIC that is different from the UIC of the creating
process.

8.2 The Execution Context of a Process
The execution context of a process defines a process to the system. It includes the
following:

• Image that the process is executing

• Input and output streams for the image executing in the process

• Disk and directory defaults for the process

• System resource quotas and user privileges available to the process

When the system creates a detached process as the result of a login, it uses
the system user authorization file (SYSUAF.DAT) to determine the process's
execution context.

For example, the following occurs when you log in to the system:

1. The process created for you executes the image LOGINOUT.

2. The terminal you are using is established as the input, output, and error
stream device for images that the process executes.

3. Your disk and directory defaults are taken from the user authorization file.

4. The resource quotas and privileges you have been granted by the system
manager are associated with the created process.

5. A command language interpreter is mapped into the created process.

When you call the $CREPRC system service to create a process, you define the
context by specifying arguments to the service.

8.3 Process Creation

8-2

Sections 8.3.1 through 8.3.5 show examples of process creation and describe how
the arguments to the $CREPRC system service define the context of the process.

Process Control Services
8.3 Process Creation

8.3.1 Defining an Image for a Subprocess to Execute
When you call the $CREPRC system service, use the image argument to provide
the process with the name of an image to execute. For example, the following
lines create a subprocess to execute the image named CARRIE.EXE.

PROGNAME:
.ASCID /CARRIE/ ; Descriptor for image to execute

$CREPRC_S -

IMAGE=PROGNAME

Create Process to execute CARRIE

In this example, only a file name is specified; the service uses current disk and
directory defaults, performs logical name translation, uses the default file type
EXE, and locates the most recent version of the image file. When the subprocess
completes execution of the image, the subprocess is deleted. Process deletion is
described in Section 8. 7.

8.3.2 Input, Output, and Error Devices for Subprocesses
When you call the $CREPRC system service, you can provide equivalence names
for the logical names SYS$INPUT, SYS$0UTPUT, and SYS$ERROR. These
logical name/equivalence name pairs are placed in the process logical name table
for the created process.

The following program segment is an example of defining input, output, and error
devices for a subprocess.

INSTREAM: -
.ASCID /SUB_MAIL_BOX/

OUTSTREAM: -
Descriptor for input stream

.ASCID /COMPUTE_OUT/ Descriptor for output
and error stream

PROGNAME: -
.ASCID /COMPUTE.EXE/ Descriptor for image name

$CREPRC_S - ; Create process
IMAGE=PROGNAME, -
INPUT=INSTREAM, - 0
OUTPUT=OUTSTREAM, - 8
ERROR=OUTSTREAM @)

0 The input argument equates the equivalence name SUB_MAIL_BOX to the
logical name SYS$INPUT. This logical name may represent a mailbox that
the calling process previously created with the Create Mailbox and Assign
Channel ($CREMBX) system service. Any input the subprocess reads from
the logical device SYS$INPUT will be read from the mailbox.

8 The output argument equates the equivalence name COMPUTE_OUT to the
logical name SYS$0UTPUT. All messages the program writes to the logical
device SYS$0UTPUT will be written to this file.

8 The error argument equates the equivalence name COMPUTE_OUT to
the logical name SYS$ERROR. All system-generated error messages will be
written into this file. Because this is the same file as that used for program
output, the file effectively contains a complete record of all output produced
during the execution of the program image.

8-3

Process Control Services
8.3 Process Creation

8-4

The $CREPRC system service does not provide default equivalence names for
the logical names SYS$INPUT, SYS$0UTPUT, and SYS$ERROR. If none are
specified, entries in the group or system logical name tables, if any, may provide
equivalences. If, while the subprocess executes, it reads or writes to one of these
logical devices and no equivalence name exists, an error condition results.

In a program that creates a subprocess, you can cause the subprocess to share
the input, output, or error device of the creating process. You must first follow
these steps:

1. Use the Get DeviceNolume Information ($GETDVI) system service to
obtain the device name for the logical name SYS$INPUT, SYS$0UTPUT,
or SYS$ERROR.

2. Specify the address of the descriptor returned by the $GETDVI service when
you specify the input, output, or error argument to the $CREPRC system
service.

This procedure is illustrated in the following example.

$PRCDEF

DVILIST:

I

$DVIDEF

.WORD 64

.WORD DVI$_DEVNAM

.ADDRESS -
TERM

.ADDRESS -
TERMDESC

.LONG 0

TERMDESC:
.WORD 64
.WORD 0

TERMADDR:
.ADDRESS -

TERM
TERM: .BLKB 64
I

LOGNAM: .ASCID /SYS$INPUT/

IMAGENAME:
.ASCID /WRKD$: [ORANGE]MIRROR/

Determine terminal name

I

10$:

$GETDVI_S -
DEVNAM=LOGNAM, -
ITMLST=DVILIST

BLBC RO,SSERR

$CREPRC_S -
IMAGE=IMAGENAME,
INPUT=TERMDESC, -
OUTPUT=TERMDESC, -
ERROR=TERMDESC, -
BASPRI=#4

Begin $GETDVI item list
Maximum of 16 bytes long
Get terminal name

Destination of terminal name

Destination of length of string
End item list

Descriptor for terminal name
Maximum of 16 bytes long

Terminal name is placed here

Image for subprocess

Return information on SYS$INPUT
Address of the item list

If not success, go to error routine

Create subprocess
Running MIRROR
Using creating process's
terminal as the input,
output, and error device
Set base priority to 4

Process Control Services
8.3 Process Creation

When the subprocess executes, the logical names SYS$INPUT, SYS$0UTPUT,
and SYS$ERROR are equated to the device name of the creating proce~s's logical
input device. The subprocess can then do one of the following:

• Use VMS RMS to open the file for reading or writing, or both.

• Use the Assign I/O Channel ($ASSIGN) system service to assign an I/O
channel to the device for input/output operations.

In the following example, the program assigns a channel to the device specified
by the logical name SYS$0UTPUT.

OUTPUT: .ASCID /SYS$0UTPUT/
OUTCHAN:

.BLKW 1

$ASSIGN_S -
DEVNAM=OUTPUT, -
CHAN=OUTCHAN

Logical name descriptor

Channel number of output device

For more information about channel assignment for I/O operations, see Chapter 7.

8.3.3 Disk and Directory Defaults for Created Processes
When you use the $CREPRC system service to create a process to execute an
image, the system locates the image file in the default device and directory of
the created process. Any created process inherits the current default device and
directory of its creator.

If a created process runs an image that is not in its default directory, you must
identify the directory and, if necessary, the device in the file specification of the
image to be run.

There is no way to define a default device or directory (or both) for the created
process that is different from that of the creating process in a call to $CREPRC.
The created process can, however, define an equivalence for the logical device
SYS$DISK by calling the Create Logical Name ($CRELNM) system service.

If the process is a subprocess, you can define an equivalence name in the group
logical name table, job logical name table, or any logical name table shared by
the creating process and the subprocess. The created process can also set its
own default directory by calling the VMS RMS default directory control routine,
SYS$SETDDIR.

A process can create a process with a default directory that is different from its
own by doing the following:

1. The process that is creating a new process makes a call to SYS$SETDIR to
change its own default directory.

2. The creating process makes a call to $CREPRC to create the new process.

3. The creating process makes a call to SYS$SETDIR to change its own
default directory back to the default directory it had before the first call
to SYS$SETDIR.

The creating process now has its original default directory. The new process
has the different default directory that the creating process had when it created
the new process. For details on how to call SYS$SETDIR, see the VMS Record
Management Services Manual.

8-5

Process Control Services
8.3 Process Creation

8.3.4 Controlling Resources of Created Processes
Ordinarily, when you create a subprocess, you need only assign it an image
to execute and, optionally, the SYS$INPUT, SYS$0UTPUT, and SYS$ERROR
devices. The system provides default values for the process's privileges, resource
quotas, execution modes, and priority. In some cases, however, you may want to
define these values specifically. The arguments to the $CREPRC system service
that control these characteristics follow. For details, see the descriptions of
arguments to the $CREPRC system service in the VMS System Services Reference
Manual.

• prvadr-This argument defines the privilege list for the created process. If
you do not specify this argument, the privileges of the calling process are
used. If you specify the prvadr argument, only the privileges specified in
the bit mask are used; the privileges of the calling process are not used. For
example, a creating process has the user privileges GROUP and TMPMBX. It
creates a process, specifying the user privilege TMPMBX. The created process
receives only the user privilege TMPMBX; it does not have the user privilege
GROUP.

If you need to create a process that has a special privilege, you must have the
user privilege SETPRV.

Symbols associated with privileges are defined by the $PRVDEF macro. Each
symbol begins with PRV$V _ and identifies the bit number that must be set to
specify a given privilege. The following example shows the data definition for
a mask specifying the GRPNAM and GROUP privileges.

PRVMSK: .LONG <l@PRV$V_GRPNAM>!<l@PRV$V_GROUP> ; Grpnarn and group
.LONG 0 ; quadword mask required. No bits set in

; high-order longword for these privileges.

• quota-This argument defines the quota list for a subprocess. If you do not
specify this argument, the system defines default quotas for the subprocess.

• stsflg-This argument defines the status flag, a set of bits that control some
execution characteristics of the created process, including resource wait mode
and process swap mode.

• baspri-This argument sets the base execution priority for the created
process. If not specified, it defaults to 2 for VAX MACRO and VAX BLISS-32
and to 0 for all other languages. If you want a subprocess to have a higher
priority than its creator, you must have the user privilege ALTPRI to raise
the priority level.

8.3.5 Detached Processes

8-6

The creation of a detached process is primarily a function performed by VMS
when you log in. The DETACH privilege controls the ability to create a detached
process with a UIC that is different from the UIC of the creating process. The uic
argument to the $CREPRC system service provides one way to define whether a
process is a subprocess or a detached process; it provides the created process with
a user identification code (UIC). If you omit the uic argument, the $CREPRC
system service creates a subprocess that executes under the UIC of the creating
process.

You can also create a detached process with the same UIC as the creating process
by specifying the detach flag in the stsflg argument. You do not need DETACH
privilege to create a detached process with the same UIC as the creating process.

Process Control Services
8.4 Interprocess Control and Communication

8.4 Interprocess Control and Communication
Processes can be either wholly independent or cooperative. The sections that
follow discuss considerations for developing applications that require the
concurrent execution of many programs.

8.4.1 Privileges for Process Creation and Control
There are three levels of process control privilege.

• Processes with the same UIC can always issue process control services for one
another.

• You need GROUP privilege to issue process control services for other processes
executing in the same group.

• You need WORLD privilege to issue process control services for any process in
the system.

You need additional privileges to perform some specific functions; for example,
to set the base priority of a process to a higher level than that of the creating
process.

8.4.2 Process Identification
There are two types of process identification:

• Process identification number (PID).

The system assigns this unique 32-bit number to a process when it is created.
If you provide the pidadr argument to the $CREPRC system service, the
system returns the process identification number at the location specified.
You can then use the process identification number in subsequent process
control services.

• Process name.

There are two types of process names:

Process name.

A process name is a 1- to 15-character name string. Each process name
must be unique within its group (processes in different groups can have
the same name). You can assign a name to a process by specifying the
prcnam argument when you create it. You can then use this name to
refer to the process in other system service calls. Note that you cannot
use a process name to specify a process outside the caller's group; you
must use a process identification number.

Full process name.

The full process name is unique for each process in the cluster. Full
process name strings can be up to 23 characters long and are configured
in the following way:

*
*
*

1-6 characters for the node name

2 characters for the colons(::) that follow the node name

1-15 characters for the local process name

8-7

Process Control Services
8.4 Interprocess Control and Communication

8-8

For example, you could call the $CREPRC system service, as follows.

ORION: .ASCID /ORION/ Descriptor for process name
ORIONID:

.LONG 0 Process ID returned

$CREPRC_S -
PRCNAM=ORION, -
PIDADR=ORIONID, ...

The service returns the process identification in the longword at ORIONID.
You can now use either the process name (ORION) or the process identification
(ORIONID) to refer to this process in other system service calls.

A process can set or change its own name with the Set Process Name ($SETPRN)
system service. For example, a process can set its name to CYGNUS, as follows.

CYGNUS: .ASCID /CYGNUS/ ; Descriptor for process name

$SETPRN_S -
PRCNAM=CYGNUS

Most of the process control services accept either the prcnam or pidadr
argument, or both. However, you should identify a process by its process
identification number for the following reasons:

• The service executes faster because it does not have to search a table of
process names.

• For a process not in your group, you must use the process identification
number (see Section 8.4.2.1).

If you specify neither the process name argument nor the process identification
number argument, the service is performed for the calling process. Table 8-1
provides a summary of the possible combinations of these arguments and an
explanation of how the services interpret them.

Table 8-1 Process Identification

Process Process ID
Name Address
Specified? Specified?

No No

No Yes

No Yes

Contents of
Process ID

0

Process ID

Resultant
Action
by Services

The process identification of the
calling process is used, but is
not returned.

The process identification of
the calling process is used and
returned.

The process identification is
used and returned.

(continued on next page)

Process Control Services
8.4 Interprocess Control and Communication

Table 8-1 (Cont.) Process Identification

Process Process ID
Name Address Contents of
Specified? Specified? Process ID

Yes No

Yes Yes 0

Yes Yes Process ID

8.4.2.1 Process Naming Within Groups

Resultant
Action
by Services

The process name is used. The
process identification is not
returned.

The process name is used and
the process identification is
returned.

The process identification is
used and returned; the process
name is ignored.

Process names are always qualified by their group number. The system maintains
a table of all process names and the UIC associated with each. When you use the
prcnam argument in a process control service, the table is searched for an entry
that contains the specified process name and the group number of the calling
process.

To use process control services on processes within its group, a calling process
must have the user privilege GROUP; this privilege is not required when you
specify a process with the same UIC as the caller.

The search for a process name fails if the specified process name does not have
the same group number as the caller. The search fails even if the calling process
has the user privilege WORLD. To execute a process control service for a process
that is not in the caller's group, the requesting process must use a process
identification and must have the user privilege WORLD.

8.4.3 Techniques for Interprocess Communication
Processes can communicate in the following ways:

• Files

• Common event flag clusters

• Logical name tables

• Mailboxes

• Global sections

• Lock management system services

Each communication technique offers different possibilities in terms of the speed
at which it communicates information and the amount of information it can
communicate. For example, files offer the possibility of sharing an effectively
limitless amount of information; however, the files technique is the slowest
because the disk must be accessed to share information.

Like files, global sections offer the possibility of sharing large amounts of
information. Because sharing information through global sections requires only
memory access, it is the fastest communication technique.

8-9

Process Control Services
8.4 Interprocess Control and Communication

Logical names and mailboxes can communicate moderate amounts of information.
Because each technique operates through a relatively complex system service,
each is faster than files, but slower than the other communication techniques.

The lock management services and common event flag cluster techniques can
communicate relatively small amounts of information. With the exception of
global sections, they are the fastest of the interprocess communication techniques.

Common Event Flag Clusters: Processes executing within the same group
can use common event flag clusters to signal the occurrence or completion of
particular activities. For details on event flags and event flag clusters, and an
example of how cooperating processes in the same group use a common event
flag, see Chapter 4.

Logical Name Tables: Processes executing in the same job can use the jobwide
logical name table to provide member processes with equivalence names for
logical names. Processes executing in the same group can use the group logical
name table. A process must have the user privilege GRPNAM to place names
in the group logical name table. All processes in the system can use the system
logical name table. Processes can also create and use user-defined logical name
tables. For details on logical names and logical name tables, see Chapter 6.

Mailboxes: Mailboxes can be used as virtual input/output devices to pass
information, messages, or data among processes. For details on how to create and
use mailboxes, with an example of how cooperating processes use a mailbox, see
Chapter 7. Mailboxes may also be used to provide a creating process with a way
to determine when and under what condition a created subprocess was deleted.
For an example of a termination mailbox, see Section 8. 7.2.

Global Sections: Global sections can be either disk files or page-file sections
containing shareable code or data. Through the use of memory management
services, these files can be mapped to the virtual address space of more than one
process. In the case of a data file on disk, cooperating processes can synchronize
reading and writing the data in physical memory; as data is updated, system
paging results in the updated data being written directly back into the disk file.
Global page-file sections are useful for temporary storage of common data; they
are not mapped to a disk file. Instead, they only page to the system default page
file. Global sections are described in more detail in Section 12. 7.

Lock Management System Services: Processes can use the lock management
system services to control access to resources (any entity on the system that
the process can read, write, or execute). In addition to controlling access, the
lock management services provide a mechanism for passing information among
processes that have access to a resource (lock value blocks). Blocking ASTs can be
used to notify a process that other processes are waiting for a resource. For more
information about the lock management system services, see Chapter 13.

8.5 Process Hibernation and Suspension

8-10

There are two ways to halt the execution of a process temporarily: hibernation,
performed by the Hibernate ($HIBER) system service, and suspension, performed
by the Suspend Process ($SUSPND) system service. The process can continue
execution normally only after a corresponding Wake from Hibernation ($WAKE)
system service, if it is hibernating, or after a Resume Process ($RESUME) system
service, if it is suspended.

Process Control Services
8.5 Process Hibernation and Suspension

Process hibernation and suspension are compared in Table 8-2.

Table 8-2 Process Hibernation and Suspension

Hibernation Suspension

Can only cause self to hibernate Can suspend self or another process, depending on
privilege

Reversed by $WAKE system
service

Interruptible; can receive ASTs

Can wake self

Can schedule wakeup at an
absolute time or at a fixed time
interval

Requires little system overhead

8.5.1 Process Hibernation

Reversed by $RESUME system service

Noninterruptible; cannot receive ASTs

Cannot cause self to resume

Cannot schedule resumption

Requires system dynamic memory

The hibernate/wake mechanism provides an efficient way to prepare an image for
execution and then place it in a wait state until it is needed. When you issue the
wakeup request, the image is reactivated with little delay or system overhead.

If you create a subprocess that must execute the same function repeatedly and
must execute immediately when it is needed, you could use the $HIBER and
$WAKE system services as shown in the following example.

Process TAURUS

ORION: .ASCID /ORION/
FASTCOMP:

.ASCID /COMPUTE.EXE/

Descriptor for subprocess name

Descriptor for image name

tt $CREPRC_S - ; Create ORION
PRCNAM=ORION, -
IMAGE=FASTCOMP, ...

BSBW ERROR Continue

~ $WAKE_S PRCNAM=ORION Wake ORION
BSBW ERROR

$WAKE_S PRCNAM=ORION Wake ORION again
BSBW ERROR

Process ORION

.ENTRY COMPUTE,AM<> CD; Entry mask
10$: $HIBER_S Sleep

BSBW ERROR
Perform ...

BRW 10$ Back to sleep

«t Process TAURUS creates the process ORION, specifying the descriptor for the
image named COMPUTE.

8-11

Process Control Services
8.5 Process Hibernation and Suspension

8 At an appropriate time, TAURUS issues a $WAKE request for ORION.
ORION continues execution following the $HIBER service call. When it
finishes its job, ORION loops back to repeat the $HIBER call and to wait for
another wakeup.

6) The image COMPUTE is initialized, and ORION issues the $HIBER system
service.

The Schedule Wakeup ($SCHDWK) system service, a variation of the $WAKE
system service, schedules a wakeup for a hibernating process at a fixed time or
at an elapsed (delta) time interval. Using the $SCHDWK service, a process can
schedule a wakeup for itself before issuing a $HIBER call. For an example of how
to use the $SCHDWK system service, see Chapter 10.

Hibernating processes can be interrupted by Asynchronous System Traps (ASTs),
as long as AST delivery is enabled. The process can call $WAKE on its own
behalf in the AST service routine, and continue execution following the execution
of the AST service routine. For a description of ASTs and how to use them, see
Chapter 5.

8.5.2 Alternate Methods of Hibernation

8-12

You can use two additional techniques to cause a process to hibernate:

• Specify the sts:flg argument for the $CREPRC system service, setting the bit
that requests $CREPRC to place the created process in a state of hibernation
as soon as it is initialized.

• Specify the /DELAY, /SCHEDULE, or /INTERVAL qualifier to the RUN
command when you execute the image from the command stream.

When you use the $CREPRC service, the creating process can control when to
wake the created process. When you use the RUN command, its qualifiers control
when the process is to be awakened.

If you use the /INTERVAL qualifier and the image to be executed does not call the
$HIBER system service, the image is placed in a state of hibernation whenever it
issues a RET instruction. Each time the image is reawakened, it begins executing
at its entry point. If the image does call $HIBER, each time it is awakened it
begins executing at either the point following the call to $HIBER or at its entry
point (if it last issued a RET instruction).

If wakeup requests are scheduled at time intervals, the image can be terminated
with the Delete Process ($DELPRC) or Force Exit ($FORCEX) system service, or
from the command level with the STOP command. The $DELPRC and $FORCEX
system services are described in Section 8.6.4 and in Section 8.7. The RUN and
STOP commands are described in the VMS DCL Dictionary.

These techniques allow you to write programs that can be executed once, on
request, or cyclically. If an image is executed more than once in this manner,
normal image activation and termination services are not performed on the
second and subsequent calls to the image. Note that the program must ensure
the integrity of data areas that are modified during its execution, as well as the
status of opened files.

Process Control Services
8.5 Process Hibernation and Suspension

8.5.3 Suspension
Using the Suspend Process ($SUSPND) system service, a process can place
itself or another process into a wait state similar to hibernation. Suspension,
however, is a more pronounced state of hibernation. VMS provides no system
service to force a process to be swapped out, but the $SUSPND system service
can accomplish the task in the following way. Suspended processes are the first
processes to be selected for swapping. A suspended process cannot be interrupted
by ASTs, and can resume execution only after another process issues a Resume
Process ($RESUME) system service for it. If ASTs are queued for the process
while it is suspended, they are delivered when the process resumes execution.
This is an ·effective tool for blocking delivery of all ASTs.

8.6 Image Exit
When image execution completes normally, the operating system performs a
variety of image rundown functions. If the image is executed by the command
interpreter, image rundown prepares the process for the execution of another
image. If the image is not executed by the command interpreter-for example, if
it is executed by a subprocess-the process is deleted.

These exit activities are also initiated when an image completes abnormally as a
result of any of the following conditions:

• Specific error conditions caused by improper specifications when a process
is created. For example, if an invalid device name is specified for the
SYS$INPUT, SYS$0UTPUT, or SYS$ERROR logical name, or if an invalid
or nonexistent image name is specified, the error condition is signaled in the
created process.

• An exception occurring during execution of the image. When an exception
occurs, any user-specified condition handlers receive control to handle the
exception. If there are no user-specified condition handlers, a system-declared
condition handler receives control, and it initiates exit activities for the
image. Condition handling is described in Chapter 11.

• A Force Exit ($FORCEX) system service issued on behalf of the process by
another process.

8.6.1 Image Rundown Activities
The operating system performs image rundown functions that release system
resources obtained by a process while it is executing in user mode. These
activities occur in the following order:

1. Any outstanding I/O requests on the I/O channels are canceled and I/O
channels are deassigned.

2. Memory pages occupied or allocated by the image are deleted and the working
set size limit of the process is readjusted to its default value.

3. All devices allocated to the process at user mode are deallocated (devices
allocated from the command stream in supervisor mode are not deallocated).

4. Timer-scheduled requests, including wakeup requests, are canceled.

5. Common event flag clusters are disassociated.

6. Locks are dequeued as a part of rundown.

7. User mode ASTs that are queued but have not been delivered are deleted,
and ASTs are enabled for user mode.

8-13

Process Control Services
8.6 Image Exit

8. Exception vectors declared in user mode, compatibility mode handlers, and
change mode to user handlers are reset.

9. System service failure exception mode is disabled.

10. All process private logical names and logical name tables created for user
mode are deleted. Deletion of a logical name table causes all names in that
table to be deleted. Note that names entered in shareable logical name tables
such as the job or group table are not deleted at image rundown, regardless
of the access mode for which they were created.

8.6.2 The $EXIT System Service
To initiate the rundown activities described in Section 8.6.1, the system calls the
Exit ($EXIT) system service on behalf of the process. In some cases, a process can
call $EXIT to terminate the image itself (for example, if an unrecoverable error
occurs).

The $EXIT system service accepts a status code as an argument. If you use
$EXIT to terminate image execution, you can use this status code argument to
pass information about the completion of the image. If an image returns without
calling $EXIT, the current value in RO is passed as the status code when the
system calls $EXIT.

This status code is used as follows:

• The command interpreter uses the status code to optionally display an error
message when it receives control following image rundown.

• If the image has declared an exit handler, the status code is written in the
address specified in the exit control block.

• If the process was created by another process, and the creator has specified a
mailbox to receive a termination message, the status code is written into the
termination mailbox when the process is deleted.

8.6.3 Exit Handlers

8-14

Exit handlers are procedures that can perform image-specific cleanup or rundown
operations. For example, if an image uses memory to buffer data, an exit handler
can ensure that the data is not lost when the image exits as the result of an error
condition.

To establish an exit-handling routine, you must set up an exit control block and
specify the address of the control block in the call to the Declare Exit Handler
($DCLEXH) system service. Exit handlers are called using standard calling
conventions; you can provide arguments to the exit handler in the exit control
block. The first argument in the control block argument list must specify the
address of a longword for the system to write the status code from $EXIT.

If an image declares more than one exit handler, the control blocks are linked
together on a last-in, first-out basis. After an exit handler is called and returns
control, the control block is removed from the list. Exit control blocks can also be
removed prior to image exit with the Cancel Exit Handler ($CANEXH) system
service.

Exit handlers can be declared from system routines executing in supervisor or
executive mode. These exit handlers are also linked together in other lists, and
receive control after exit handlers declared from user mode are executed.

Process Control Services
8.6 Image Exit

Exit handlers are called as a part of the $EXIT system service. While a call to
the $EXIT system service often precedes image rundown activities, it is not a part
of image rundown. There is no way to ensure that exit handlers will be called if
an image terminates in a nonstandard way.

8.6.4 Forced Exit
The Force Exit ($FORCEX) system service provides a way for a process to initiate
image rundown for another process. For example, the following call to $FORCEX
causes the image executing in the process CYGNUS to exit.

CYGNUS: .ASCID /CYGNUS/ ; Process name descriptor

$FORCEX_S -
PRCNAM=CYGNUS

Because the $FORCEX system service calls the $EXIT system service, any exit
handlers declared for the image are executed before image rundown. Thus, if the
process is using the command interpreter, the process is not deleted, and can run
another image. Because the $FORCEX system service uses the AST mechanism,
an exit cannot be performed if the process being forced to exit has disabled the
delivery of ASTs. AST delivery, and how it is disabled and reenabled, is described
in Chapter 5.

The following program segment shows an example of an exit-handling routine.

EXITBLOCK: 0 Exit control block
.LONG 0 System uses this for pointer
.ADDRESS -

EX I TR TN
.LONG 1
.ADDRESS -

STATUS
STATUS: .BLKL 1

.ENTRY PEGASUS,AM<R2,R3>
8 $DCLEXH_S -

BSBW

RET

exit handler

DESBLK=EXITBLOCK
ERROR

.ENTRY EXITRTN,AM<R2>
4D BLBS STATUS,10$

10$: RET

Address of exit handler
Number of args for handler

Destination of status code
Status code from $EXIT

; Entry mask for PEGASUS

; Declare exit handler

; End of main routine

Entry mask
Normal exit? yes, finish

No, clean up

; Finished

0 EXITBLOCK is the exit control block for the exit handler EXITRTN. The
third longword indicates the number of arguments to be passed. In this
example, only one argument is passed: the address of a longword for the
system to store the return status code. This argument must be provided in an
exit control block.

8 The $DCLEXH system service call designates the address of the exit control
block, thus declaring EXITRTN as an exit handler.

8-15

Process Control Services
8.6 Image Exit

8 The EXITRTN exit handler checks the status code. If this is a normal exit,
EXITRTN returns control. Otherwise, it handles the error condition.

8. 7 Process Deletion

8-16

Process deletion completely removes a process from the system. A process can be
deleted by any of the following events:

• The Delete Process ($DELPRC) system service is called.

• A process that created a subprocess is deleted.

• An interactive process uses the DCL command LOGOUT.

• A batch job reaches the end of its command file.

• An interactive process uses the DCL command STOP/ID=pid or STOP
username.

• A process that contains a single image calls the Exit ($EXIT) system service.

When the system is called to delete a process as a result of any of these
conditions, it first locates all subprocesses, searching hierarchically. No process
can be deleted until any subprocesses it has created have been deleted.

The lowest subprocess in the hierarchy is a subprocess that has no descendant
subprocesses of its own. When that subprocess is deleted, its parent subprocess
becomes a subprocess that has no descendant subprocesses and it can be deleted.
The topmost process in the hierarchy is the process that is the ultimate parent
process of all the other subprocesses.

Beginning with the lowest process in the hierarchy and ending with the topmost
process, each of the following procedures is performed:

• The image executing in the process is run down. The image rundown that
occurs during process deletion is the same as that described in Section 8.6.1.
When a process is deleted, however, the rundown releases all system
resources, including those acquired from access modes other than user mode.

• Resource quotas are released to the creating process, if the process being
deleted is a subprocess.

• If the creating process specified a termination mailbox, a message indicating
that the process is being deleted is sent to the mailbox. For detached
processes created by the system, the termination message is sent to the
system job controller.

• The control region of the process's virtual address space is deleted. (The
control region consists of memory allocated and used by the system on behalf
of the process.)

• All system-maintained information about the process is deleted.

Figure 8-1 illustrates the flow of events from image exit through process
deletion.

Process Control Services
8. 7 Process Deletion

Figure 8-1 Image Exit and Process Deletion

Image Exit

Call Them, in LIFO Order,
Using Argument List in Exit

Control Block

No Call the Delete Process
'>--------1.i ($DELPRC) System Service

Call the Exit Handler
Declared by the

Command Interpreter*

Return to Command
Interpreter to Execute

the Next Image

to Delete the Process

No

Yes

Send a Termination Message
to the Mailbox Specified by

the Process's Creator

*This exit handler is declared from supervisor mode and is
located during the normal search for exit handlers.

ZK-0857-GE

8-17

Process Control Services
8. 7 Process Deletion

8. 7 .1 The Delete Process System Service
A process can delete itself or another process at any time, depending on the
restrictions outlined in Section 8.4.1. The Delete Process ($DELPRC) system
service deletes a process. For example, if a process has created a subprocess
named CYGNUS, it can delete CYGNUS as follows.

CYGNUS: .ASCID /CYGNUS/ ;Descriptor for process name

$DELPRC_S-
PRCNAM=CYGNUS

Because a subprocess is automatically deleted when the image it is executing
terminates (or when the command stream for the command interpreter reaches
end-of-file), you do not normally need to issue the $DELPRC system service
explicitly.

As an alternative to deleting a process to stop an image, you can use the Force
Exit ($FORCEX) system service to force the exit of the image executing in a
process (see Section 8.6.4).

8.7.2 Termination Mailboxes

8-18

A termination mailbox provides a process with a way of determining when, and
under what conditions, a process that it has created was deleted. The Create
Process ($CREPRC) system service accepts the unit number of a mailbox as
an argument. When the process is deleted, the mailbox receives a termination
message.

The first word of the termination message contains the symbolic constant,
MSG$_DELPROC, which indicates that it is a termination message. The second
longword of the termination message contains the final status value of the image.
The remainder of the message contains system accounting information used by
the job controller, and is identical to the first part of the accounting record sent to
the system accounting log file. The description of the $CREPRC system service in
the VMS System Services Reference Manual provides the complete format of the
termination message.

If necessary, the creating process can determine the process identification of
the process being deleted from the I/O status block posted when the message is
received in the mailbox. The second longword of the IOSB contains the process
identification of the process being deleted.

A termination mailbox cannot be located in memory shared by multiple
processors.

The following example illustrates a complete sequence of process creation, with a
termination mailbox.

Process Control Services
8.7 Process Deletion

EXCHAN:

MBXINFO:
.BLKW 1

.WORD 4 0

.WORD DVI$_UNIT

.ADDRESS -
UNITNUM

.LONG 0

.LONG 0
UNITNUM:

.WORD
i
EXITMSG:

MBXIOSB:

.BLKB ACC$K_TERMLEN

.BLKW 1
MELEN: .BLKW 1
MBPID: .BLKL 1
LYRAPID:

.LONG 0
LYREXE: .ASCID /LYRA.EXE/

To hold channel number of mailbox
Start $GETDVI item list
Length of buff er

Address of buff er
No return length needed
End item list

To receive unit number

Buff er for mailbox message
(see $SNDACC explanation

for ACC$K_TERMLEN)

Quadword I/0 status block
Length of I/0
Receives PID of process deleted

Get PID of subprocess
Name of image for subprocess

$CREMBX_S - Create mailbox
CHAN=EXCHAN, -
MAXMSG=_#84, -
PROMSK=_#O, -
BUFQU0=_#240

BSBW ERROR
6) $GETDVI_S - Get mailbox info

CHAN=EXCHAN, -
ITMLST=MBXINFO

BSBW ERROR
$CREPRC_S - ; Create subprocess

IMAGE=LYREXE, -
PIDADR=LYRAPID, ... , -
MBXUNT=UNITNUM ; Specify termination mailbox

BSBW ERROR
$QIO_S CHAN=EXCHAN, - ; QIO (read) to mailbox

FUNC=_#IO$_READVBLK, -
ASTADR=EXITAST, -
IOSB=MBXIOSB, -
Pl=EXITMSG, -
P2=_#ACC$K_TERMLEN

BSBW ERROR
; Continue execution

RET

AST routine for termination message

8-19

Process Control Services
8. 7 Process Deletion

8-20

10$:
20$:

.ENTRY
CMPW
BNEQ
CMPW

BNEQ
CMPL
BNEQ
CMPL

BEQL

RET

EXITAST,AM<> i Entry mask
MBXIOSB,_#SS$_NORMAL ; I/0 successful?
20$; Branch if not
EXITMSG+ACC$W_MSGTYP,#MSG$_DELPROC

; Is it a termination msg?
20$; No, something else
LYRAPID,MBPID ; Is it LYRA?
20$; No, somebody else
EXITMSG+ACC$L_FINALSTS,#SS$_NORMAL

Deleted normally?
10$ Yes, return

No, respond to error in LYRA

AST routine finished
Handle all other conditions

0 The item list for the Get DeviceNolume Information ($GETDVI) system
service specifies that the unit number of the mailbox is to be returned.

8 The Create Mailbox and Assign Channel ($CREMBX) system service creates
the mailbox, and returns the channel number at EXCHAN.

0 The Create Process ($CREPRC) system service creates a process to execute
the image LYRA.EXE, and returns the process identification at LYRAPID.
The mbxunt argument refers to the unit number of the mailbox, obtained
from the Get DeviceNolume Information ($GETDVI) system service.

8 The Queue I/O Request queues a read request to the mailbox, specifying an
AST service routine to receive control when the mailbox receives a message
and the address of a buffer to receive the message. The information in the
message can be accessed by the symbolic offsets defined in the $ACCDEF
macro. The process continues executing.

0 When a message is received in the mailbox, the AST service routine EXITAST
receives control. Because this mailbox can be used for other interprocess
communication, the AST routine does the following:

• Checks for successful completion of the I/O operation by examining the
first word in the IOSB

• Checks that the message received is a termination message by examining
the message type field in the termination message at the offset ACC$W _
MSG TYPE

• Checks for the process identification of the process that has been deleted
by examining the second longword of the IOSB

• Checks for the completion status of the process by examining the status
field in the termination message at the offset ACC$L_FINALSTS

In this example, the AST service routine performs special action when the
subprocess is deleted. All other messages or error conditions cause a branch
to the label 20$.

The Create Mailbox and Assign Channel ($CREMBX), Get DeviceNolume
Information ($GETDVI), and Queue I/O Request ($QIO) system services are
described in greater detail in Chapter 7.

Process Control Services
8.8 Example of Using Process Control Services

8.8 Example of Using Process Control Services
The following FORTRAN example calculates gross income and taxes, and then
uses the results to calculate net income.

The INCOME.FOR program uses SYS$CREPRC, specifying a termination
mailbox, to create a subprocess to calculate taxes (CALC_TAXES) while the
INCOME program calculates gross income. The INCOME program issues an
asynchronous read to the termination mailbox. The asynchronous read specifies
an event flag to be set when the read completes. (The read completes when
CALC_TAXES completes terminating the created process and causing the system
to write to the termination mailbox.)

After finishing its own gross income calculations, INCOME.FOR waits for the flag
that indicates CALC_TAXES has completed and then figures net income.

The CALC_TAXES.FOR program passes the tax information to INCOME.FOR,
using the installed common block created from INSTALLED.FOR.

INSTALLED.FOR
Installed common to be linked with INCOME.FOR and
CALC_TAXES.FOR.

Unless the shareable image created from this file is
in SYS$SHARE, you must define a group logical name
INSTALLED and equate it to the full file specification
of the shareable image.

INTEGER*4 INCOME (200),
2 TAXES (200) I

2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

END

INCOME.FOR
! Status and system routines
INCLUDE I ($SSDEF) I

INCLUDE I ($IODEF) I

INTEGER STATUS,
2 LIB$GET_LUN,
2 LIB$GET_EF,
2 SYS$CLREF,
2 SYS$CREMBX,
2 SYS$CREPRC,
2 SYS$GETDVIW,
2 SYS$QIO,
2 SYS$WAITFR

Set up for SYS$GETDVI
INTEGER*4 UNIT_BUF,
2 UNIT_LEN
INTEGER*2 UNIT_BUF_LEN,
2 UNIT_BUF_CODE
INTEGER*4 UNIT_BUF_ADDR,
2 UNIT_LEN_ADDR,
2 END_LIST /0/
EXTERNAL DVI$_UNIT
COMMON /GETDVI_LIST/ UNIT_BUF_LEN,
2 UNIT_BUF_CODE,
2 UNIT_BUF_ADDR,
2 UNIT_LEN_ADDR,
2 END_LIST

8-21

Process Control Services
8.8 Example of Using Process Control Services

8-22

! Name and I/0 channel for mailbox
CHARACTER*(*) MBX_NAME
PARAMETER (MBX_NAME = 'MAIL_BOX')
INTEGER*2 MBX_CHAN
! Logical unit number for I/0
INTEGER*4 MBX_LUN
! Mailbox message
CHARACTER*84 MBX_MESSAGE
INTEGER*4 READ_CODE,
2 LENGTH
! I/0 status block
INTEGER*2 IOSTAT,
2 MSG_LEN
INTEGER*4 READER_PID
COMMON /IOBLOCK/ IOSTAT,
2 MSG_LEN,
2 READER_PID

Declare calculation variables in installed common.
INTEGER*4 INCOME (200),
2 TAXES (200),
2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

Flag to indicate taxes calculated
INTEGER*4 TAX_DONE

! Get and clear an event flag.
STATUS = LIB$GET_EF (TAX_DONE)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create the mailbox.
STATUS= SYS$CREMBX (,
2 MBX_CHAN,
2
2 MBX_NAME)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Get unit number of the mailbox.
UNIT_BUF_LEN = 4
UNIT_BUF_CODE = %LOC(DVI$_UNIT)
UNIT_BUF_ADDR = %LOC(UNIT_BUF)
UNIT_LEN_ADDR = %LOC(UNIT_LEN)
STATUS = SYS$GETDVIW (,
2 %VAL (MBX_CHAN) I

2 MBX_NAME,
2 UNIT_BUF _LEN I

2 11 I)

! device
! common

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create subprocess to calculate taxes
STATUS = SYS$CREPRC (,
2 'CALC_TAXES' , ! image
2
2 'CALC_TAXES', !process name
2 %VAL(4), !priority
2 I

2 %VAL (UNIT_BUF) I)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

Process Control Services
8.8 Example of Using Process Control Services

! Asynchronous read to termination mailbox
! sets flag when tax calculations complete.
READ_CODE = IO$_READVBLK
LENGTH = 84
STATUS = SYS$QIO
2

(%VAL(TAX_DONE), indicates read complete

2
2
2

%VAL(MBX_CHAN), channel
%VAL(READ_CODE), function code
IOSTAT,,, status block
%REF(MBX_MESSAGE) I! Pl
%VAL(LENGTH) ,,, ,) ! P2 2

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Calculate incomes.

! Wait until taxes are calculated.
STATUS = SYS$WAITFR (%VAL(TAX_DONE))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
! check mailbox I/0
IF (.NOT. IOSTAT) CALL LIB$SIGNAL (%VAL(IOSTAT))

! Calculate net income after taxes.

END

CALC_TAXES.FOR
! Declare calculation variables in installed common.
INTEGER*4 INCOME (200),
2 TAXES (200) I

2 NET (200)
COMMON /CALC/ INCOME,
2 TAXES,
2 NET

Calculate taxes.

END

8-23

9
Process Information Services

The VMS process information services enable you to gather information about
processes. You can obtain information about one process or a group of processes
on the local system or on remote nodes in a VAXcluster system. DCL commands
such as SHOW SYSTEM and SHOW PROCESS use the process information
services to display information about processes. You can use the process
information services within your programs.

The following are process information system services:

• Get Job/Process Information ($GETJPI)

• Process Scan ($PROCESS_SCAN)

For detailed information about $GETJPI and $PROCESS_SCAN, see the VMS
System Services Reference Manual.

9.1 Overview of $GETJPI and $GETJPI with $PROCESS_SCAN
$GETJPI returns information about processes. $GETJPI uses the PID or the
process name to obtain information about one process and the -1 wildcard to
obtain information about all processes. $GETJPI cannot perform a selective
search-it can only search for one process in the cluster or for all processes on
the local system. If you want to perform a selective search for information or get
information about processes across the cluster, use $GETJPI with $PROCESS_
SCAN.

$PROCESS_SCAN provides a process context that is used by $GETJPI to
return information about processes on the local system or across the cluster.
$PROCESS_SCAN can be used only with $GETJPI; it cannot be used alone. The
process context generated by $PROCESS_SCAN is used like the -1 wildcard
except that it is initialized by calling the $PROCESS_SCAN service instead of by
a simple assignment statement. However, the $PROCESS_SCAN context is more
powerful and more flexible than the -1 wildcard. $PROCESS_SCAN uses an item
list to specify selection criteria to be used in a search for processes and produces
a context longword that describes a selective search for $GETJPI.

Using $GETJPI with $PROCESS_SCAN to perform a selective search is a
more efficient way to locate information because only information about the
processes you have selected is returned. For example, you can specify a search for
processes owned by one user name, and $GETJPI returns only the processes that
match the specified user name. You can specify a search for all batch processes
and $GETJPI returns only information about processes running as batch jobs.
You can specify a search for all batch processes owned by one user name and
$GETJPI returns only information about processes owned by that user name that
are running as batch jobs.

9-1

Process Information Services
9.1 Overview of $GETJPI and $GETJPI with $PROCESS_SCAN

9.1.1 Using the Process ID to Obtain Information
$GETJPI returns information about processes by using the process identification
(PID) or the process name. The PID is a 32-bit number that is unique for each
process in the cluster. Specify the PID by using the pidadr argument. All the
significant digits of a PID must be specified; only leading zeros can be omitted.

9.1.2 Using the Process Name to Obtain Information
To obtain information about a process using the process name, specify the
prcnam argument. Although a PID is unique for each process in the cluster, a
process name is unique (within a UIC group) only for each process on a node.
To locate information about processes on the local node, specify a process nam.e
string of 1 to 15 characters. To locate information about a process on a particular
node, specify the full process name, which can be up to 23 characters long. The
full process name is configured in the following way:

• 1 to 6 characters for the node name

• 2 characters for the colons(::) that follow the node name

• 1 to 15 characters for the local process name

Note that a local process name can look like a remote process name. Therefore,
if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a process
named SMITH.

See the VMS System Services Reference Manual for more information about
process identification, $GETJPI, and $PROCESS_SCAN.

9.2 Using $GET JPI Alone
Using $GETJPI alone limits you to obtaining information about one process at a
time or information about all processes on the local system. To obtain information
about one process (either a local or a remote process), specify the PID or the
process name. To obtain information about all processes on the local system, use
the -1 wildcard as the pidadr. If no PID or process name is specified, $GETJPI
returns information about the calling process.

9.2.1 Requesting Information About a Single Process

9-2

Example 9-1 is a FORTRAN program that displays the process name and the
PID of the calling program.

Process Information Services
9.2 Using $GET JPI Alone

Example 9-1 Using $GET JPI to Obtain Information About the Calling Process

No process name or PID is specified; $GETJPI returns data on the
! calling process.

PROGRAM CALLING_PROCESS

IMPLICIT NONE

INCLUDE '($jpidef) /nolist'

INCLUDE '($ssdef) /nolist'

STRUCTURE /JPIITMLST/
UNION

MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 RETLENADR
END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE
RECORD /JPIITMLST/
2 JPILIST(3)

INTEGER*4 SYS$GETJPIW

INTEGER*4 STATUS,
2 PID

INTEGER*2 IOSB(4)

CHARACTER*16
2 PRCNAM
INTEGER*2 PRCNAM_LEN
! Initialize $GETJPI item list

JPILIST(l) .BUFLEN 4
JPILIST(l) .CODE = JPI$_PID
JPILIST(l) .BUFADR = %LOC(PID)
JPILIST(l) .RETLENADR = 0

Implicit none

Definitions for $GETJPI

! System status codes

Structure declaration for
$GETJPI item lists

A longword of 0 terminates
an item list

Declare the item list for
$GETJPI

System service entry points

Status variable
PID from $GETJPI

I/D Status Block for $GETJPI

Process name from $GETJPI
Process name length

JPILIST(2) .BUFLEN = LEN(PRCNAM)
JPILIST(2) .CODE = JPI$_PRCNAM
JPILIST(2) .BUFADR = %LOC(PRCNAM)
JPILIST(2) .RETLENADR = %LOC(PRCNAM_LEN)
JPILIST(3) .END_LIST = 0
! Call $GETJPI to get data for this process

STATUS
2
2
2
2
2
2
2

SYS$GETJPIW (
%VAL(l),

JPILIST,
IOSB,

Event flag 1
No PID
No process name
Item list
Always use IOSB with $GETJPI!
No AST
No AST arg

(continued on next page)

9-3

Process Information Services
9.2 Using $GET JPI Alone

Example 9-1 (Cont.) Using $GET JPI to Obtain Information About the Calling
Process

! Check the status in both STATUS and the IOSB, if
! STATUS is OK then copy IOSB(l) to STATUS

IF (STATUS) STATUS = IOSB(l)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
TYPE 1010, PID, PRCNAM(l:PRCNAM_LEN)

1010 FORMAT (' I ,Z8.8, I I ,A)
ELSE

END IF

END

CALL LIB$SIGNAL(%VAL(STATUS))

Example 9-2 demonstrates how to use the process name to obtain information
about a process.

Example 9-2 Using $GET JPI and the Process Name to Obtain Information
About a Process

To find information for a particular process by name,
substitute this code, which includes a process name,
to call $GETJPI in Example 9-1

Call $GETJPI to get data for a named process

STATUS
2

SYS$GETJPIW (
%VAL(l), Event flag 1

No PID
Process name
Item list

2
2
2
2
2
2

I

I SMITH_l' I

JPILIST,
IOSB, Always use IOSB with $GETJPI!

No AST
No AST arg

9.2.2 Requesting Information About All Processes on the Local System

9-4

You can use $GET JPI to perform a wildcard search on all processes on the
local system. When the pidadr argument is specified as -1, $GETJPI returns
requested information for each process that the program has privilege to access.
The requested information is returned for one process per call to $GETJPI.

To perform a wildcard search, call $GETJPI in a loop, testing the return status.

When performing wildcard searches, $GETJPI returns an error status for
processes that are inaccessible. When a program that uses a -1 wildcard checks
the status value returned by $GETJPI, it should test for the following status
codes.

Status Explanation

Process Information Services
9.2 Using $GET JPI Alone

SS$_NOMOREPROC

SS$_NOPRIV

All processes have been returned.

The caller lacks sufficient privilege to examine a
process.

SS$_SUSPENDED The target process is being deleted or is suspended
and cannot return the information.

Example 9-3 is a MACRO program that demonstrates how to use the $GETJPI
-1 wildcard to search for all processes on the local system.

Example 9-3 Using $GET JPI to Request Information About All Processes on

IOSB:
PID:

ITEMS:

UNAMEDSC:

the Local System
.TITLE WILDJPI - Wildcard $GETJPI example program

$JPIDEF ; Define $GETJPI item codes

.PSECT DATA RD,WRT,NOEXE

.QUAD

.LONG
0
-1

.WORD 32

.WORD JPI$_USERNAME

.ADDRESS UNAME

.ADDRESS UNAMESIZ

.LONG 0

Completion status
Wildcard PID initialized to -1

Size of user name buffer
User name item code
Address of user name buff er
Address to return user name size
End of list

Length and address form a string

UNAMESIZ: .LONG 0
descriptor for LIB$PUT_OUTPUT

Buffer for size of user name
Address of user name buff er

UNAME:

LOOP:

10$:

.ADDRESS UNAME

.BLKB 32

.PSECT CODE EXE,NOWRT

.ENTRY START, AM<>

$GETJPIW_S -
EFN=#l, -
PIDADR=PID, -
ITMLST=ITEMS, -
IOSB=IOSB

BLBC R0,10$
MOVZWL IOSB,RO

BLBS RO,DISPLAY

CMPW RO,#SS$_NOPRIV
BEQL LOOP
CMPW RO,#SS$_SUSPENDED
BEQL LOOP
CMPW RO,#SS$_NOMOREPROC
BEQL DONE
BRB ERROR

User name buffer

Get information and wait
- use event flag 1
- use wildcard pid
- address of item list
- always use IOSB for status check

If failure in RO, check that status
If success in RO, then move status
from IOSB to RO for checks

If success in both RO and IOSB,
then display this user name

No privilege for this process?
If no privilege, try next process
Process suspended?
If yes, try next process
No more processes?
If yes, finished
Otherwise, exit with error code in RO

(continued on next page)

9-5

Process Information Services
9.2 Using $GET JPI Alone

Example 9-3 (Cont.) Using $GET JPI to Request Information About All
Processes on the Local System

DISPLAY: PUSHAL UNAMEDSC Pass address of the user name descriptor

DONE:
ERROR:

CALLS #1,GALIB$PUT_OUTPUT Display name on SYS$0UTPUT
BRB LOOP Get the next process

MOVL #SS$_NORMAL,RO
$EXIT_S RO

.END START

Put success status into RO
Exit with status in RO

9.3 Using $GET JPI with $PROCESS_ SCAN
Using the $PROCESS_SCAN system service greatly enhances the power of
$GETJPI. With this combination, you can search for selected groups of processes
as well as processes on remote nodes. When you use $GETJPI alone, you specify
the pidadr or the prcnam to locate information about one process. When you
use $GETJPI with $PROCESS_SCAN, the pidctx generated by $PROCESS_
SCAN is used as the pidadr argument to $GETJPI. This process context allows
$GETJPI to use the selection criteria set up in the call to $PROCESS_SCAN.

9.3.1 Using the $PROCESS_SCAN Item List and Item-Specific Flags
$PROCESS_SCAN uses an item list to specify the selection criteria for the
$GETJPI search.

9-6

Each entry in the $PROCESS_SCAN item list contains the following:

• The attribute of the process to be examined

• The value of the attribute or a pointer to the value

• Item-specific flags to control how to interpret the value

Item-specific flags enable you to control selection information. For example,
you can use flags to select only those processes that have attribute values that
compare to the value in the item list in the following ways.

Item-Specific Flag

PSCAN$M_OR

PSCAN$M_EQL

PSCAN$M_NEQ

PSCAN$M_GEQ

PSCAN$M_GTR

PSCAN$M_LEQ

PSCAN$M_LSS

PSCAN$M_CASE_BLIND

PSCAN$M_PREFIX_MATCH

PSCAN$M_WILDCARD

Description

Match this value or the next value

Match value exactly (the default)

Match if value is not equal

Match if value is greater than or equal to

Match if value is greater than

Match if value is less than or equal to

Match if value is less than

Match without regard to case of letters

Match on the leading substring

Match string is a wildcard pattern

The PSCAN$M_OR flag is used to connect entries in an item list. For example, in
a program that searches for processes owned by several specified users, each user
name must be specified in a separate item list entry. The item list entries are
connected with the PSCAN$M_OR flag as in the following FORTRAN example.

Process Information Services
9.3 Using $GET JPI with $PROCESS_SCAN

PSCANLIST(l) .BUFLEN = LEN('SMITH')
PSCANLIST(l) .CODE = PSCAN$_USERNAME
PSCANLIST(l) .BUFADR = %LOC('SMITH')
PSCANLIST(l) .ITMFLAGS = PSCAN$M_OR
PSCANLIST(2) .BUFLEN = LEN('JONES')
PSCANLIST(2) .CODE = PSCAN$_USERNAME
PSCANLIST(2) .BUFADR = %LOC('JONES')
PSCANLIST(2) .ITMFLAGS = PSCAN$M_OR
PSCANLIST(3) .BUFLEN = LEN('JOHNSON')
PSCANLIST(3) .CODE = PSCAN$_USERNAME
PSCANLIST(3) .BUFADR %LOC('JOHNSON')
PSCANLIST(3) .ITMFLAGS = 0
PSCANLIST(4) .END_LIST = 0

Use the PSCAN$M_ WILDCARD flag to specify that a character string is to be
treated as a wildcard. For example, if you want to search for all process names
that begin with the letter A and end with the string ER, use the string A*ER
with the PSCAN$M_ WILDCARD flag. If the PSCAN$M_ WILDCARD flag is not
specified, the search looks for the 4-character process name A* ER.

The PSCAN$M_PREFIX_MATCH defines a wildcard search to match the initial
characters of a string. For example, to find all process names that start with
the letters AB, use the string AB with the PSCAN$M_PREFIX_MATCH flag. If
you do not specify the PSCAN$M_PREFIX_MATCH flag, the search looks for a
process with the 2-character process name AB.

9.3.2 Requesting Information About Processes That Match One Criterion
You can use $GETJPI with $PROCESS_SCAN to search for processes that match
an item list with one criterion. For example, if you specify a search for processes
owned by one user name, $GETJPI returns only those processes that match the
specified user name.

Example 9-4 demonstrates how to perform a $PROCESS_SCAN search on the
local node to select all processes that are owned by user SMITH.

Example 9-4 Using $GET JPI and $PROCESS_SCAN to Select Process
Information by User Name

PROGRAM PROCESS_SCAN

IMPLICIT NONE

INCLUDE '($jpidef) /nolist'
INCLUDE '($pscandef) /nolist'
INCLUDE '($ssdef) /nolist'

STRUCTURE /JPIITMLST/
UNION

MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 RETLENADR
END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE

Implicit none

Definitions for $GETJPI
Definitions for $PROCESS_SCAN
Definitions for SS$_NAMES

Structure declaration for
$GETJPI item lists

A longword of 0 terminates
an item list

(continued on next page)

9-7

Process Information Services
9.3 Using $GET JPI with $PROCESS_SCAN

9-8

Example 9-4 (Cont.) Using $GET JPI and $PROCESS_SCAN to Select Process
Information by User Name

STRUCTURE /PSCANITMLST/ Structure declaration for
UNION $PROCESS_SCAN item lists

MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 ITMFLAGS
END MAP
MAP

INTEGER*4 END_LIST
END MAP

A longword of 0 terminates
an item list

END UNION
END STRUCTURE
RECORD /PSCANITMLST/
2 PSCANLIST(12)

Declare the item list for
$PROCESS_SCAN

RECORD /JPIITMLST/
2 JPILIST(3)

Declare the item list for
$GETJPI

INTEGER*4 SYS$GETJPIW, System service entry points
2 SYS$PROCESS_SCAN

INTEGER*4 STATUS, Status variable
2 CONTEXT,
2 PID

Context from $PROCESS_SCAN
PID f rorn $GETJPI

INTEGER*2 IOSB(4)

CHARACTER*16

I/0 Status Block for $GETJPI

2 PRCNAM
INTEGER*2 PRCNAM_LEN

Process name from $GETJPI
Process name length

LOGICAL*4 DONE Done with data loop

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for processes owned by user SMITH

PSCANLIST(l) .BUFLEN
PSCANLIST(l) .CODE
PSCANLIST(l) .BUFADR
PSCANLIST(l) .ITMFLAGS
PSCANLIST(2) .END_LIST

LEN (I SMITH')
PSCAN$_USERNAME
%LOC (I SMITH I)

0
0

!**
! * End of item list initialization *
!**

STATUS SYS$PROCESS_SCAN (Set up the scan context
2 CONTEXT I

2 PSCANLIST)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Loop calling $GETJPI with the context

DONE = .FALSE.
DO WHILE (.NOT. DONE)

! Initialize $GETJPI item list

(continued on next page)

Process Information Services
9.3 Using $GET JPI with $PROCESS_SCAN

Example 9-4 (Cont.) Using $GET JPI and $PROCESS_SCAN to Select Process

! Call

2
2
2
2
2
2
2

Information by User Name

JPILIST(l) .BUFLEN = 4
JPILIST(l) .CODE = JPI$_PID
JPILIST(l) .BUFADR = %LOC(PID)
JPILIST(l) .RETLENADR = 0
JPILIST(2) .BUFLEN = LEN(PRCNAM)
JPILIST(2) .CODE = JPI$_PRCNAM
JPILIST(2) .BUFADR = %LOC(PRCNAM)
JPILIST(2) .RETLENADR = %LOC(PRCNAM_LEN)
JPILIST(3) .END_LIST = 0

$GETJPI to get the next SMITH process

STATUS = SYS$GETJPIW (
%VAL(l),
CONTEXT,
I

JPILIST,
IOSB,

Event flag 1
Process context
No process name
Item list
Always use IOSB with $GETJPI!
No AST
No AST arg

Check the status in both STATUS and the IOSB, if
STATUS is OK then copy IOSB(l) to STATUS

IF (STATUS) STATUS = IOSB(l)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
TYPE 1010, PID, PRCNAM(l:PRCNAM_LEN)

1010 FORMAT (I I I Z8. 8 I I I I A)

END DO

END

ELSE IF (STATUS .EQ. SS$_NOMOREPROC) THEN
DONE = .TRUE.

ELSE
CALL LIB$SIGNAL(%VAL(STATUS))

END IF

9.3.3 Requesting Information About Processes That Match Multiple Values for
One Criterion

$PROCESS_SCAN can also search for processes that match one of a number of
values for a single criterion, for example, processes owned by several specified
users.

Each value must be specified in a separate item list entry, and the item list
entries must be connected with the PSCAN$M_OR item-specific flag. $GETJPI
selects each process that matches any of the item values.

For example, to look for processes with user names SMITH, JONES, or
JOHNSON, substitute code such as that shown in Example 9-5 to initialize
the item list in Example 9-4.

9-9

Process Information Services
9.3 Using $GET JPI with $PROCESS_SCAN

Example 9-5 Using $GET JPI and $PROCESS_SCAN with Multiple Values for
One Criterion

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for users SMITH, JONES and JOHNSON

PSCANLIST(l) .BUFLEN LEN('SMITH')
PSCANLIST(l) .CODE PSCAN$_USERNAME
PSCANLIST(l) .BUFADR %LOC('SMITH')
PSCANLIST(l) .ITMFLAGS PSCAN$M_OR
PSCANLIST(2) .BUFLEN LEN('JONES')
PSCANLIST(2) .CODE PSCAN$_USERNAME
PSCANLIST(2) .BUFADR %LOC('JONES')
PSCANLIST(2) .ITMFLAGS PSCAN$M_OR
PSCANLIST(3) .BUFLEN LEN('JOHNSON')
PSCANLIST(3) .CODE PSCAN$_USERNAME
PSCANLIST (3) . BUFADR %LOC (I JOHNSON I)

PSCANLIST(3) .ITMFLAGS = 0
PSCANLIST(4) .END_LIST = 0

!**
! * End of item list initialization *
!**

9.3.4 Requesting Information About Processes That Match Multiple Criteria
$PROCESS_SCAN can be used to search for processes that match values for
more than one criterion. When multiple criteria are used, a process must match
at least one value for each specified criterion.

9-10

Example 9-6 demonstrates how to find any batch process owned by either SMITH
or JONES. The program uses syntax like the following logical expression to
initialize the item list.

((username = "SMITH") OR (username = "JONES"))

AND

(MODE JPI$K_BATCH)

Example 9-6 Selecting Processes That Match Multiple Criteria

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for BATCH jobs owned by users SMITH and JONES

PSCANLIST(l) .BUFLEN LEN('SMITH')
PSCANLIST(l) .CODE = PSCAN$_USERNAME
PSCANLIST(l) .BUFADR %LOC('SMITH')
PSCANLIST(l) .ITMFLAGS PSCAN$M_OR
PSCANLIST(2) .BUFLEN LEN('JONES')
PSCANLIST(2) .CODE PSCAN$_USERNAME
PSCANLIST(2) .BUFADR %LOC('JONES')
PSCANLIST(2) .ITMFLAGS = 0
PSCANLIST(3) .BUFLEN 0
PSCANLIST(3) .CODE PSCAN$_MODE
PSCANLIST(3) .BUFADR = JPI$K_BATCH

(continued on next page)

Process Information Services
9.3 Using $GET JPI with $PROCESS_SCAN

Example 9-6 (Cont.) Selecting Processes That Match Multiple Criteria
PSCANLIST(3) .ITMFLAGS = 0
PSCANLIST(4) .END_LIST = 0

!**
!* End of item list initialization *
!**

See the VMS System Services Reference Manual for more information about
$PROCESS_SCAN item codes and flags.

9.3.5 Specifying a Node as Selection Criterion
Several $PROCESS_SCAN item codes do not refer to attributes of a process, but
to the VAXcluster node on which the target process resides. When $PROCESS_
SCAN encounters an item code that refers to a node attribute, it creates an
alphabetized list of node names. $PROCESS_SCAN then directs $GETJPI to
compare the selection criteria against processes on these nodes.

$PROCESS_SCAN ignores a node specification if it is running on a node that is
not part of a VAXcluster system. For example, if you request that $PROCESS_
SCAN select all nodes with the hardware model name VAX 6360, this search
returns information about local processes on a nonclustered system, even if that
system is a MicroVAX.

A remote $GET JPI operation currently requires the system to send a message to
the CLUSTER_SERVER process on the remote node. The CLUSTER_SERVER
process then collects the information and returns it to the requesting node. This
has several implications for clusterwide searches:

• All remote $GETJPI operations are asynchronous, and must be properly
synchronized. Many applications that are not correctly synchronized
might seem to work on a single node because some $GETJPI operations
are actually synchronous; however, these applications fail if they attempt
to examine processes on remote nodes. For more information on how to
synchronize $GETJPI operations, see the section on synchronizing system
service completion in the Introduction to VMS System Services.

• The CLUSTER_SERVER process is always a current process, because it is
executing on behalf of $GETJPI.

• Attempts by $GETJPI to examine a node do not succeed during a brief period
between the time a node joins the cluster and the time that the CLUSTER_
SERVER process is started. Searches that occur during this period skip such
a node. Searches that specify only such a booting node fail with a $GETJPI
status of SS$_UNREACHABLE.

• SS$_NOMOREPROC is returned after all processes on all specified nodes
have been scanned.

9.3.6 Scanning All Nodes on the Cluster for Processes
$PROCESS_SCAN can scan the entire cluster for processes. For example, to scan
the cluster for all processes owned by SMITH, use code like that in Example 9-7
to initialize the item list to find all processes with a nonzero cluster system
identifier (CSID) and a user name of SMITH.

9-11

Process Information Services
9.3 Using $GET JPI with $PROCESS_SCAN

Example 9-7 Searching the Cluster for Process Information

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Search the cluster for jobs owned by SMITH

PSCANLIST(l) .BUFLEN
PSCANLIST(l) .CODE
PSCANLIST(l) .BUFADR
PSCANLIST(l) .ITMFLAGS
PSCANLIST(2) .BUFLEN
PSCANLIST(2) .CODE
PSCANLIST(2) .BUFADR
PSCANLIST(2) .ITMFLAGS
PSCANLIST(3) .END_LIST

0
PSCAN$_NODE_CSID
0
PSCAN$M_NEQ
LEN (I SMITH')
PSCAN$_USERNAME
%LOC (I SMITH I)
0
0

!**
! * End of item list initialization *
!**

9.3.7 Scanning Specific Nodes on the Cluster for Processes

9-12

You can specify a list of nodes as well. Example 9-8 demonstrates how to design
an item list to search for batch processes on the nodes TIGNES, VALTHO, or
2ALPES.

Example 9-8 Searching for Process Information on Specific Nodes in the
Cluster

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Search for BATCH jobs on nodes TIGNES, VALTHO and 2ALPES

PSCANLIST(l) .BUFLEN
PSCANLIST(l) .CODE
PSCANLIST(l) .BUFADR
PSCANLIST(l) .ITMFLAGS
PSCANLIST(2) .BUFLEN
PSCANLIST(2) .CODE
PSCANLIST(2) .BUFADR
PSCANLIST(2) .ITMFLAGS
PSCANLIST(3) .BUFLEN
PSCANLIST(3) .CODE
PSCANLIST(3) .BUFADR
PSCANLIST(3) .ITMFLAGS
PSCANLIST(4) .BUFLEN
PSCANLIST(4) .CODE
PSCANLIST(4) .BUFADR
PSCANLIST(4) .ITMFLAGS
PSCANLIST(5) .END_LIST

LEN (I TIGNES I)

PSCAN$_NODENAME
%LOC (I TIGNES I)
PSCAN$M_OR
LEN (I VALTHO I)

PSCAN$_NODENAME
%LOC (I VALTHO I)

PSCAN$M_OR
LEN (I 2ALPES I)

PSCAN$_NODENAME
%LOC (I 2ALPES I)

0
0
PSCAN$_MODE
JPI$K_BATCH
0
0

!**
! * End of item list initialization *
!**

Process Information Services
9.3 Using $GET JPI with $PROCESS_SCAN

9.3.8 Conducting Multiple Simultaneous Searches with $PROCESS_SCAN
Only one asynchronous remote $GETJPI request per $PROCESS_SCAN context
is permitted at a time. If you issue a second $GETJPI request using a context
before a previous remote request using the same context has completed, your
process stalls in a resource wait until the previous remote $GETJPI request
completes. This stall in the RWAST state prevents your process from executing in
user mode or receiving user-mode ASTs.

If you want to run remote searches in parallel, create multiple contexts by calling
$PROCESS_SCAN once for each context. For example, you can design a program
that calls $GETSYI in a loop to find the nodes in the VA.Xcluster system and
creates a separate $PROCESS_SCAN context for each remote node. Each of
these separate contexts can run in parallel. The DCL command SHOW USERS
uses this technique to obtain user information more quickly.

Only requests to remote nodes must wait until the previous search using the
same context has completed. If the $PROCESS_SCAN context specifies the local
node, any number of $GETJPI requests using that context can be executed in
parallel (within the limits implied by the process quotas for ASTLM and BYTLM).

Note

When you use $GETJPI to reference remote processes, you must properly
synchronize all $GETJPI calls. Before VMS Version 5.2, if you did
not follow these synchronization rules, your programs might have
appeared to run correctly. However, if you attempt to run such improperly
synchronized programs using $GETJPI with $PROCESS_SCAN with
a remote process, your program might attempt to use the data before
$GETJPI has returned it.

To perform a synchronous search, in which the program waits until all requested
information is available, use $GETJPIW with an IOSB argument.

9.4 Programming Considerations
The following sections describe some important considerations for programming
with $GETJPI.

9.4.1 Using Item Lists Correctly
When $GETJPI collects data, it makes multiple passes through the item list. If
the item list is self-modifying-that is, if the addresses for the output buffers
in the item list point back at the item list-$GETJPI replaces the item list
information with the returned data. Therefore, incorrect data might be read or
unexpected errors might occur when $GETJPI reads the item list again.

The number of passes needed by $GETJPI depends on which item codes are
referenced and the state of the target process. A program that appears to
work normally might fail when a system has processes that are swapped out of
memory, or when a process is on a remote node.

The results from $GET JPI are unpredictable when an item list has buffer
pointers that point back at the item list itself. To prevent confusing errors,
Digital recommends that you do not use self-modifying item lists.

9-13

Process Information Services
9.4 Programming Considerations

9.4.2 Improving Performance by Using Buffered $GET JPI Operations

9-14

To request information about a process located on a remote node, $GETJPI must
send a message to the remote node, wait for the response, and then extract the
data from the message received. When you perform a search on a remote system,
the program must repeat this sequence for each process that $GETJPI locates.

To reduce the overhead of such a remote search, use $PROCESS_SCAN with
the PSCAN$_GETJPI_BUFFER_SIZE item code to specify a buffer size for
$GETJPI. When the buffer size is specified by $PROCESS_SCAN, $GETJPI
packs information for several processes into one buffer and transmits them in a
single message. This reduction in the number of messages improves performance.

For example, if the $GETJPI item list requests 100 bytes of information,
you might specify a PSCAN$_GETJPI_BUFFER_SIZE of 1000 bytes so that
the service can place information for at least 10 processes in each message.
($GETJPI does not send fill data in the message buffer; therefore, it is possible
that information for more than 10 processes can be packed into the buffer.)

The $GETJPI buffer must be large enough to hold the data for at least one
process. If the buffer is too small, the error code SS$_IVBUFLEN is returned
from the $GETJPI call.

You do not have to allocate space for the $GET JPI buffer; buffer space is allocated
by $PROCESS_SCAN as part of the search context that it creates. Because
$GETJPI buffering is transparent to the program that calls $GETJPI, you do not
have to modify the loop that calls $GETJPI.

If you use PSCAN$_GETJPI_BUFFER_SIZE with $PROCESS_SCAN, all calls
to $GETJPI using that context must request the same item code information.
Because $GET JPI collects information for more than one process at a time within
its buffers, you cannot change the item codes or the lengths of the buffers in the
$GETJPI item list between calls. $GETJPI returns the error SS$_BADPARAM if
any item code or buffer length changes between $GETJPI calls. However, you can
change the buffer addresses in the $GETJPI item list from call to call.

The $GETJPI buffered operation is not used for searching the local node. When a
search specifies both multiple nodes and $GET JPI buffering, the buffering is used
on remote nodes but is ignored on the local node. Example 9-9 demonstrates how
to use a $GETJPI buffer to improve performance.

Process Information Services
9.4 Programming Considerations

Example 9-9 Using a $GET JPI Buffer to Improve Performance
!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Search for jobs owned by users SMITH and JONES
! across the cluster with $GETJPI buffering

PSCANLIST(l) .BUFLEN 0
PSCANLIST(l) .CODE = PSCAN$_NODE_CSID
PSCANLIST(l) .BUFADR 0
PSCANLIST(l) .ITMFLAGS = PSCAN$M_NEQ
PSCANLIST(2) .BUFLEN LEN('SMITH')
PSCANLIST(2) .CODE PSCAN$_USERNAME
PSCANLIST(2) .BUFADR = %LOC('SMITH')
PSCANLIST(2) .ITMFLAGS = PSCAN$M_OR
PSCANLIST(3) .BUFLEN LEN('JONES')
PSCANLIST(3) .CODE PSCAN$_USERNAME
PSCANLIST(3) .BUFADR %LOC('JONES')
PSCANLIST(3) .ITMFLAGS 0
PSCANLIST(4) .BUFLEN 0
PSCANLIST(4) .CODE PSCAN$_GETJPI_BUFFER_SIZE
PSCANLIST(4) .BUFADR 1000
PSCANLIST(4) .ITMFLAGS 0
PSCANLIST(5) .END_LIST 0

!**
! * End of item list initialization *
!**

9.4.3 Meeting Remote $GET JPI Quota Requirements
A remote $GETJPI request uses system dynamic memory for messages. System
dynamic memory uses the process quota BYTLM. Follow these steps to determine
the number of bytes required by a $GETJPI request:

1. Add the following:

• The size of the $PROCESS_SCAN item list

• The total size of all reference buffers for $PROCESS_SCAN (the sum of
all buffer length fields in the item list)

• The size of the $GETJPI item list

• The size of the $GETJPI buffer

• The size of the calling process RIGHTSLIST

• Approximately 300 bytes for message overhead

2. Double this total.

The total is doubled because the messages consume system dynamic memory on
both the sending node and the receiving node.

This formula for BYTLM quota applies to both buffered and nonbuffered $GETJPI
requests. For buffered requests, use the value specified in the $PROCESS_
SCAN item, PSCAN$_GETJPI_BUFFER_SIZE, as the size of the buffer. For
nonbuffered requests, use the total length of all data buffers specified in the
$GETJPI item list as the size of the buffer.

If the BYTLM quota is insufficient, $GETJPI (not $PROCESS_SCAN) returns the
error SS$_EXBYTLM.

9-15

Process Information Services
9.4 Programming Considerations

9.4.4 Using $GET JPI Control Flags

9-16

The JPI$_GETJPI_CONTROL_FLAGS item code, which is specified in the
$GETJPI item list, provides additional control over $GETJPI. Therefore,
$GETJPI may be unable to retrieve all the data requested in an item list because
JPI$_GETJPI_CONTROL_FLAGS requests that $GETJPI not perform certain
actions that may be necessary to collect the data. For example, a $GETJPI
control flag may instruct the calling program not to retrieve a process that has
been swapped out of the balance set.

If $GETJPI is unable to retrieve any data item because of the restrictions
imposed by the control flags, it returns the data length as 0. To verify that
$GETJPI received a data item, examine the data length to be sure that it is not
0. To make this verification possible, be sure to specify the return length for each
item in the $GETJPI item list when any of the JPI$_GETJPI_CONTROL_FLAGS
flags is used.

Unlike other $GETJPI item codes, the JPI$_GETJPI_CONTROL_FLAGS item is
an input item. The item list entry should specify a longword buffer. The desired
control flags should be set in this buffer.

Because the JPI$_GETJPI_CONTROL_FLAGS item code tells $GETJPI how to
interpret the item list, it must be the first entry in the $GETJPI item list. The
error code SS$_BADPARAM is returned if it is not the first item in the list.

The following are the $GETJPI control flags.

JPl$M_NO_ TARGET _INSWAP
When JPI$M_NO_TARGET_INSWAP is specified, $GETJPI does not retrieve a
process that has been swapped out of the balance set. JPI$M_NO_TARGET_
INSWAP is used to avoid the additional load of swapping processes into a system.
For example, this flag is used with SHOW SYSTEM to avoid bringing processes
into memory to display their accumulated CPU time.

If you specify JPI$M_NO_TARGET_INSWAP and request information from a
process that has been swapped out, the following consequences occur:

• Any data stored in the virtual address space of the process is not accessible.

• Any data stored in the process header (PHD) may not be accessible.

• Any data stored in resident data structures, such as the process control block
(PCB) or the job information block (JIB), is accessible.

You must examine the return length of an item to verify that the item was
retrieved. The information may be located in a different data structure in another
release of VMS.

JP1$M_NO_ TARGET _AST
When JPl$M_NO_TARGET_AST is specified, $GETJPI does not deliver a kernel­
mode AST to the target process. JPl$M_NO_TARGET_AST is used to avoid
executing a target process in order to retrieve information.

If you specify JPI$M_NO_TARGET_AST and cannot deliver an AST to a target
process, the following consequences occur:

• Any data stored in the virtual address space of the process is not accessible.

• Data stored in system data structures, such as the process header (PHD), the
process control block (PCB), or the job information block (JIB), is accessible.

Process Information Services
9.4 Programming Considerations

You must examine the return length of an item to verify that the item was
retrieved. The information may be located in a different data structure in another
release of VMS.

The use of the flag JPI$M_NO_TARGET_AST also implies that $GETJPI does
not swap in a process, because $GETJPI would only bring a process into memory
to deliver an AST to that process.

JPl$M_IGNORE_ TARGET _STATUS
When JPI$M_IGNORE_TARGET_STATUS is specified, $GETJPI attempts to
retrieve as much information as possible, even if the process is suspended or
being deleted. JPI$M_IGNORE_TARGET_STATUS is used to retrieve all possible
information from a process. For example, this flag is used with SHOW SYSTEM
to display processes that are suspended, being deleted, or in miscellaneous wait
states.

Example 9-10 demonstrates how to use $GETJPI control flags to avoid swapping
processes during a $GETJPI call.

Example 9-10 Using $GETJPI Control Flags to Avoid Swapping a Process into
the Balance Set

PROGRAM CONTROL_FLAGS

IMPLICIT NONE

INCLUDE '($jpidef) /nolist'
INCLUDE '($pscandef) /nolist'
INCLUDE '($ssdef) /nolist'

STRUCTURE /JPIITMLST/
UNION

MAP
INTEGER*2 BUFLEN,

2 CODE
INTEGER*4 BUFADR,

2 RETLENADR
END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE
STRUCTURE /PSCANITMLST/

UNION
MAP

INTEGER*2 BUFLEN,
2 CODE

INTEGER*4 BUFADR,
2 ITMFLAGS

END MAP
MAP

INTEGER*4 END_LIST
END MAP

END UNION
END STRUCTURE
RECORD /PSCANITMLST/
2 PSCANLIST(5)

RECORD /JPIITMLST/
2 JPILIST(6)

Implicit none

Definitions for $GETJPI
Definitions for $PROCESS_SCAN
Definitions for SS$_ names

Structure declaration for
$GETJPI item lists

A longword of 0 terminates
an item list

Structure declaration for
$PROCESS_SCAN item lists

A longword of 0 terminates
an item list

Declare the item list for
$PROCESS_SCAN

Declare the item list for
$GETJPI

(continued on next page)

9-17

Process Information Services
9.4 Programming Considerations

9-18

Example 9-10 (Cont.) Using $GETJPI Control Flags to Avoid Swapping a
Process into the Balance Set

INTEGER*4 SYS$GETJPIW, System service entry points
2 SYS$PROCESS_SCAN

INTEGER*4 STATUS, Status variable
2 CONTEXT,
2 PID,

Context from $PROCESS_SCAN
PID from $GETJPI

2 JP I FLAGS Flags for $GETJPI

INTEGER*2 IOSB(4)

CHARACTER*l6

I/0 Status Block for $GETJPI

2 PRCNAM,
2 NODENAME
INTEGER*2 PRCNAM_LEN,

Process name from $GETJPI
Node name from $GETJPI
Process name length

2 NODENAME_LEN

CHARACTER*80
2 IMAGNAME
INTEGER*2 IMAGNAME_LEN

LOGICAL*4 DONE

Node name length

Image name from $GETJPI
Image name length

Done with data loop

!**
!* Initialize item list for $PROCESS_SCAN *
!**

! Look for interactive and batch jobs across
! the cluster with $GETJPI buffering

PSCANLIST(l) .BUFLEN
PSCANLIST(l) .CODE
PSCANLIST(l) .BUFADR
PSCANLIST(l) .ITMFLAGS
PSCANLIST(2) .BUFLEN
PSCANLIST(2) .CODE
PSCANLIST(2) .BUFADR
PSCANLIST(2) .ITMFLAGS
PSCANLIST(3) .BUFLEN
PSCANLIST(3) .CODE
PSCANLIST(3) .BUFADR
PSCANLIST(3) .ITMFLAGS
PSCANLIST(4) .BUFLEN
PSCANLIST(4) .CODE
PSCANLIST(4) .BUFADR
PSCANLIST(4) .ITMFLAGS
PSCANLIST(5) .END_LIST

0
PSCAN$_NODE_CSID
0
PSCAN$M_NEQ
0
PSCAN$_MODE
JPI$K_INTERACTIVE
PSCAN$M_OR
0
PSCAN$_MODE
JPI$K_BATCH
0
0
PSCAN$_GETJPI_BUFFER_SIZE
1000
0
0

!**
! * End of item list initialization *
!**

STATUS
2

SYS$PROCESS_SCAN (Set up the scan context
CONTEXT,

2 PSCANLIST)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Initialize $GETJPI item list

JPILIST(l) .BUFLEN 4
JPILIST(l) .CODE IAND ('FFFF'X, JPI$_GETJPI_CONTROL_FLAGS)
JPILIST(l) .BUFADR %LOC(JPIFLAGS)
JPILIST(l) .RETLENADR = 0

(continued on next page)

Process Information Services
9.4 Programming Considerations

Example 9-10 (Cont.) Using $GET JPI Control Flags to Avoid Swapping a
Process into the Balance Set

JPILIST(2) .BUFLEN = 4
JPILIST(2) .CODE = JPI$_PID
JPILIST(2) .BUFADR = %LOC(PID)
JPILIST(2) .RETLENADR = 0
JPILIST(3) .BUFLEN = LEN(PRCNAM)
JPILIST(3) .CODE = JPI$_PRCNAM
JPILIST(3) .BUFADR = %LOC(PRCNAM)
JPILIST(3) .RETLENADR = %LOC(PRCNAM_LEN)
JPILIST(4) .BUFLEN = LEN(IMAGNAME)
JPILIST(4) .CODE = JPI$_IMAGNAME
JPILIST(4) .BUFADR = %LOC(IMAGNAME)
JPILIST(4) .RETLENADR = %LOC(IMAGNAME_LEN)
JPILIST(S) .BUFLEN = LEN(NODENAME)
JPILIST(S) .CODE = JPI$_NODENAME
JPILIST(S) .BUFADR = %LOC(NODENAME)
JPILIST(S) .RETLENADR = %LOC(NODENAME_LEN)
JPILIST(6) .END_LIST = 0
l Loop calling $GETJPI with the context

DONE = .FALSE.
JPIFLAGS = IOR (JPI$M_NO_TARGET_INSWAP, JPI$M_IGNORE_TARGET_STATUS)
DO WHILE (.NOT. DONE)

2
2
2
2
2
2
2

l Call $GETJPI to get the next process

STATUS SYS$GETJPIW (
%VAL(l),
CONTEXT,

JPILIST,
IOSB,
I

Event flag 1
Process context
No process name
Itemlist
Always use IOSB with $GETJPI!
No AST

) No AST arg
Check the status in both STATUS and the IOSB, if
STATUS is OK then copy IOSB(l) to STATUS

IF (STATUS) STATUS = IOSB(l)

! If $GETJPI worked, display the process, if done then
! prepare to exit, otherwise signal an error

IF (STATUS) THEN
IF (IMAGNAME_LEN .EQ. 0) THEN

2

END DO

ELSE

END IF

TYPE 1010, PID, NODENAME, PRCNAM

TYPE 1020, PID, NODENAME, PRCNAM,
IMAGNAME(l:IMAGNAME_LEN)

ELSE IF (STATUS .EQ. SS$_NOMOREPROC) THEN
DONE = .TRUE.

ELSE
CALL LIB$SIGNAL(%VAL(STATUS))

END IF

1010 FORMAT (' ',Z8.8,' ',A6, ':: ',A,' (no image)')
1020 FORMAT (I I I Z8.8, I ',A6, I:: I ,A, I I ,A)

END

9-19

10
Timer and Time Conversion Services

Many applications require the scheduling of program activities based on clock
time. Under the VMS operating system, an image can schedule events for
a specific time of day or after a specified time interval. The timer and time
conversion services are as follows:

• Get Time ($GETTIM)

• Convert Binary Time to Numeric Time ($NUMTIM)

• Convert Binary Time to ASCII String ($ASCTIM)

• Convert ASCII String to Binary Time ($BINTIM)

• Set Timer ($SETIMR)

• Cancel Timer Request ($CANTIM)

• Schedule Wakeup ($SCHDWK)

• Cancel Wakeup ($CANWAK)

• Set System Time ($SETIME)

You may use timer services to schedule, convert, or cancel events. For example,
you can use the timer services to do the following:

• Schedule the setting of an event flag or the queuing of an asynchronous
system trap (AST) for the current process, or cancel a pending request that
has not yet been processed.

• Schedule a wakeup request for a hibernating process, or cancel a pending
wakeup request that has not yet been processed.

• Set or recalibrate the current system time, if the caller has the proper user
privileges.

The timer services require you to specify the time in a 64-bit format. To work
with the time in different formats, you can use time conversion services to do the
following:

• Obtain the current date and time in an AS.CII string or in system format.

• Convert an ASCII string into the system time format.

• Convert a system time value into an ASCII string.

• Convert the time from system format to integer values.

This chapter describes the system time format and the services that use it, with
examples of how to schedule program activities using the timer services.

10-1

Timer and Time Conversion Services
10.1 The System Time Format

10.1 The System Time Format
The VMS operating system maintains the current date and time in 64-bit
format. The time value is a binary number in 100-nanosecond units offset
from the system base date and time, which is 00:00 o'clock, November 17, 1858
(the Smithsonian base date and time for the astronomical calendar). Time
values must be passed to, or returned from, system services as the address of a
quadword containing the time in 64-bit format. A time value can be expressed as
either of the following:

• An absolute time that is a specific date and time of day. Absolute times are
always positive values (or 0).

• A delta time that is an offset from the current time to a time or date in the
future. Delta times are always expressed as negative values.

If you specify 0 as the address of a time value, VMS supplies the current date
and time.

10.2 Obtaining the Current Date and Time

10-2

You obtain the current time in system format by using the Get Time ($GETTIM)
system service, which places the time into a quadword buffer. For example:

TIME: .BLKQ 1 ; Buffer for time

$GETTIM_S -
TIMADR=TIME ; Get time

This call to $GETTIM returns the current date and time in system format in the
quadword buffer TIME.

The Convert Binary Time to ASCII String ($ASCTIM) system service converts
a time in system format to an ASCII string and returns the string in a 23-byte
buffer. You call the $ASCTIM system service as follows.

ATIMENOW:
.LONG 23
.ADDRESS -

TIMES TR
TIME_ VALUE:

.BLKQ 1
TIMESTR:

.BLKB 23

$ASCTIM_S -
TIMBUF=ATIMENOW, -
TIMADR=TIME_VALUE

Descriptor for ASCII time
Length of buffer

Address of buff er
64-bit time value to be converted

23 bytes returned

Because the address of a 64-bit time value is not supplied, the default value, 0, is
used.

The string the service returns has the following format:

dd-mmm-yyyy hh:mm:ss.cc

Timer and Time Conversion Services
10.2 Obtaining the Current Date and Time

where:

dd

mmm

Is the day of the month.

Is the month (a 3-character alphabetic abbreviation).

Is the year. yyyy

hh:mm:ss.cc Is the time in hours, minutes, seconds, and hundredths of seconds.

10.3 Obtaining an Absolute Time in System Format
The converse of the $ASCTIM system service is the Convert ASCII String to
Binary Time ($BINTIM) system service. You provide the service with the time in
the ASCII format shown in Section 10.2. The service then converts the string to
a time value in 64-bit format. You can use this returned value as input to a timer
scheduling service.

When you specify the ASCII string buffer, you can omit any of the fields, and
the service uses the current date or time value for the field. Thus, if you want a
timer request to be date-independent, you could format the input buffer for the
$BINTIM service as shown in the following example. The two hyphens that are
normally embedded in the date field must be included, and at least one blank
must precede the time field.

ASCII_NOON:
.ASCID /-- 12:00:00.00/

BINARY_NOON:
.BLKQ 1

$BINTIM_S -
TIMBUF=ASCII_NOON, -
TIMADR=BINARY_NOON

Descriptor for ASCII 12 noon

Buffer for binary 12 noon

Convert time

When the $BINTIM service completes, a 64-bit time value representing "noon
today" is returned in the quadword at BINARY_NOON.

10.4 Obtaining a Delta Time in System Format
The $BINTIM system service also converts ASCII strings to delta time values to
be used as input to timer services. The buffer for delta time ASCII strings has
the following format:

dddd hh:mm:ss.cc

The first field, indicating the number of days, must be specified as 0 if you are
specifying a delta time for the current day.

The following example shows how to use the $BINTIM service to obtain a delta
time in system format.

ATENMIN:
.ASCID /0 00:10:00.00/ Descriptor for ASCII ten minutes

BTENMIN:
.BLKQ 1 Buffer for binary ten minutes

$BINTIM_S - ; Convert time
TIMBUF=ATENMIN, -
TIMADR=BTENMIN

10-3

Timer and Time Conversion Services
10.4 Obtaining a Delta Time in System Format

If you are a VAX MACRO programmer, you can also specify approximate delta
time values when you assemble a program, using two MACRO .LONG directives
to represent a time value in terms of 100-nanosecond units. The arithmetic is
based on the following formula:

1 second = 10 million * 100 nanoseconds

For example, the following statement defines a delta time value of 5 seconds:

FIVESEC: .LONG -10*1000*1000*5,-1 ; Five seconds

The value 10 million is expressed as 10* 1000* 1000 for readability. Note that the
delta time value is negative.

If you use this notation, however, you are limited to the maximum number of
100-nanosecond units that can be expressed in a longword. In terms of time
values, this is slightly more than 7 minutes.

10.5 Timer Requests

10-4

Timer requests made with the Set Timer ($SETIMR) system service are queued;
that is, they are ordered for processing according to their expiration times. The
quota for timer queue entries (TQELM quota) controls the number of entries a
process can have pending in this timer queue.

When you call the $SETIMR system service, you can specify either an absolute
time or a delta time value. Depending on how you want the request processed,
you can specify either or both of the following:

• The number of an event flag to be set when the time expires. If you do not
specify an event flag, the system sets event flag 0.

• The address of an AST service routine to be executed when the time expires.

Optionally, you can specify a request identification for the timer request. You
can use this identification to cancel the request, if necessary. The request
identification is also passed as the AST parameter to the AST service routine, if
one is specified, so that the AST service routine can identify the timer request.

Examples 1 and 2 show timer requests using event flags and ASTs. Event flags
and event flag services are described in more detail in Chapter 4. ASTs are
described in more detail in Chapter 5.

Timer and Time Conversion Services
10.5 Timer Requests

Example 1: Setting an Event Flag

A30SEC: .ASCID /0 00:00:30.00/ Descriptor for ASCII 30
seconds, delta time

B30SEC: .BLKQ 1 Quadword to hold converted
(binary) delta time

$BINTIM_S - Convert to binary
TIMBUF=A30SEC, -
TIMADR=B30SEC

BSBW ERROR
0 $SETIMR_S - Set time to wait

EFN=#4, -
DAYTIM=B30SEC

BSBW ERROR ; Call error routine
8 $WAITFR_S - Wait 30 seconds

EFN=#4
BSBW ERROR

0 The call to $SETIMR requests that event flag 4 be set in 30 seconds
(expressed in the quadword B30SEC).

8 The Wait for Single Event Flag ($WAITFR) system service places the process
in a wait state until the event flag is set. When the timer expires, the flag is
set and the process continues execution.

Example 2: Using an AST Service Routine

ANOON: .ASCID /-- 12:00:00.00/ ; Descriptor for ASCII 12 noon
BNOON: .BLKQ 1 ; To hold converted (binary) noon

• $BINTIM_S - ; Convert to binary
TIMBUF=ANOON, -
TIMADR=BNOON

BSBW ERROR
8 $SETIMR_S -

10$:

DAYTIM=BNOON, - ; Set timer for noon,
ASTADR=ASTSERV, - ; Specify AST routine,
REQIDT=#12 ; Request ID of 12 as AST parameter

BSBW ERROR

RET

.ENTRY ASTSERV,AM<>
CMPL #12,4(AP)
BNEQ 10$

RET

RET

Entry mask for AST routine
Is this a "noon" AST request?
If not, handle other type(s)
Handle "noon" AST request

Handle other types of requests

10-5

Timer and Time Conversion Services
10.5 Timer Requests

0 The call to $BINTIM converts the ASCII string representing 12:00 noon to
format. The value returned in BNOON is used as input to the $SETIMR
system service.

8 The AST routine specified in the $SETIMR request will be called when the
timer expires, at 12:00 noon. The reqidt argument identifies the timer
request. (This argument is passed as the AST parameter and is stored
at offset 4 in the argument list. See Chapter 5.) The process continues
execution; when the timer expires, it is interrupted by the delivery of the
AST. Note that if the current time of day is past noon, the timer expires
immediately.

CD This AST service routine checks the parameter passed by the reqidt
argument and checks whether it must service the 12:00 noon timer request
or another type of request (identified by a different reqidt value). When the
AST service routine completes, the process continues execution at the point of
interruption.

Canceling Timer Requests
The Cancel Timer Request ($CANTIM) system service cancels timer requests that
have not been processed. The $CANTIM system service removes the entries from
the timer queue. Cancellation is based on the request identification given in the
timer request. For example, to cancel the request illustrated in Example 2, you
would use the following call to $CANTIM:

$CANTIM_S REQIDT=#12

If you assign the same identification to more than one timer request, all requests
with that identification are canceled. If you do not specify the reqidt argument,
all your requests are canceled.

10.6 Scheduled Wakeups

10-6

Example 1 in Section 10.5 shows a process placing itself in a wait state using
the $SETIMR and $WAITFR services. A process can also make itself inactive by
hibernating. A process hibernates by issuing the Hibernate ($HIBER) system
service; hibernation is reversed by a wakeup request, which can be put into effect
immediately with the $WAKE system service or scheduled with the Schedule
Wakeup ($SCHDWK) system service. For more information about the $HIBER
and $WAKE system services, see Section 8.5.

The following example shows a process scheduling a wakeup for itself prior to
hibernating.

ATENSEC:

BTENSEC:

.ASCID /0 00:00:10.00/ Descriptor for
10-second wait time

.BLKQ 1 To hold binary ten-second value

$BINTIM_S - ; Convert time
TIMBUF=ATENSEC, -
TIMADR=BTENSEC

$SCHDWK_S - Schedule wakeup
DAYTIM=BTENSEC

$HIBER_S Sleep ten seconds

Timer and Time Conversion Services
10.6 Scheduled Wakeups

Note that a suitably privileged process can wake or schedule a wakeup request
for another process; thus, cooperating processes can synchronize activity using
hibernation and scheduled wakeups. Moreover, when you use the $SCHDWK
system service in a program, you can specify that the wakeup request be repeated
at fixed time intervals. See Chapter 8 for more information on hibernation and
wakeup.

Canceling Scheduled Wakeups
You can cancel scheduled wakeup requests that are pending but have not yet
been processed with the Cancel Wakeup ($CANWAK) system service.

The following example shows the scheduling of wakeup requests for a process,
CYGNUS, and the subsequent cancellation of the wakeups. The $SCHDWK
system service in this example specifies a delta time of 1 minute and an interval
time of 1 minute; the wakeup is repeated every minute until the requests are
canceled.

CYGNUS: .ASCID /CYGNUS/ Descriptor for process name
ONE_MIN:

.ASCID /0 00:01:00.00/ Descriptor for 1 min (delta)
INTERVAL:

.BLKQ 1 8 bytes to hold binary 1 min

$BINTIM_S - ; Convert to binary
TIMBUF=ONE_MIN, -
TIMADR=INTERVAL

$SCHDWK_S - ; Wake up every minute
PRCNAM=CYGNUS, -
DAYTIM=INTERVAL, -
REPTIM=INTERVAL

$CANWAK_S -
PRCNAM=CYGNUS

10.7 Numeric and ASCII Time

Cancel wakeups

The Convert Binary Time to Numeric Time ($NUMTIM) system service converts
a time in the system format into binary integer values. The service returns
each of the components of the time (year, month, day, hour, and so on) into a
separate word of a 7-word buffer. The $NUMTIM system service and the format
of the information returned are described in the VMS System Services Reference
Manual.

You use the $ASCTIM system service to format the time in ASCII for inclusion in
an output string. The $ASCTIM service accepts as an argument the address of a
quadword that contains the time in system format and returns the date and time
in ASCII format.

10-7

Timer and Time Conversion Services
10.7 Numeric and ASCII Time

If you want to include the date and time in a character string that contains
additional data, you can format the output string with the Formatted ASCII
Output ($FAO) system service. The $FAO system service converts binary
values to ASCII representations, and substitutes the results in character strings
according to directives supplied in an input control string. Among these directives
are !%T and !%D, which convert a quadword time value to an ASCII string and
substitute the result in an output string. For examples of how to do this, see the
discussion of $FAO in the VMS System Services Reference Manual.

10.8 Setting the System Time

10-8

The Set System Time ($SETIME) system service allows a user with the operator
(OPER) and logical I/O (LOG_IO) privileges to set the current system time.
You can specify a new system time (using the timadr argument), or you can
recalibrate the current system time using the processor's hardware time-of-year
clock (omitting the timadr argument). If you specify a time, it must be an
absolute time value; a delta time (negative) value is invalid.

The system time is set whenever the system is bootstrapped. There is normally
no need to change the system time between system bootstrap operations; however,
in certain circumstances you may want to change the system time without
rebooting. For example, you might specify a new system time to synchronize two
processors, or to adjust for changes between standard time and daylight savings
time. You may also want to recalibrate the time to ensure that the system time
matches the hardware clock time (the hardware clock is more accurate than the
system clock).

The DCL command SET TIME calls the $SETIME system service.

If a process issues a delta time request and then the system time is changed, the
interval remaining for the request does not change; the request executes after the
specified time has elapsed. If a process issues an absolute time request and the
system time is changed, the request executes at the specified time, relative to the
new system time.

The following example shows the effect of changing the system time on an
existing timer request. In this example, two set timer requests are scheduled:
one is to execute after a delta time of 5 minutes; the other specifies an absolute
time of 9:00 .

. TITLE SCORPIO Show scheduled wakeups

.PSECT READ_ONLY_DATA,NOEXE,RD,NOWRT
ABS_TIME:

.ASCID /-- 9:00:00.00/ Absolute time of 9:00 AM
DELTA_TIME:

.ASCID /0 :05:00/ Delta time of 5 minutes

.PSECT WRITEABLE_DATA,NOEXE,RD,WRT
I

ABS_BINARY:
.BLKQ 1

DELTA_BINARY:
.BLKQ 1

Absolute time in 64-bit format

Delta time in 64-bit format

Timer and Time Conversion Services
10.8 Setting the System Time

I

10$:

I

20$:

I

30$:

I

40$:

.PSECT CODE,EXE,PIC,NOSHR,RD,NOWRT

.ENTRY SCORPIO,AM<>
$BINTIM_S -

BLBS
BRW

TIMBUF=ABS_TIME, -
TIMADR=ABS_BINARY
R0,10$
ERR

$SETIMR_S -
DAYTIM=ABS_BINARY, -
ASTADR=GEMINI, -
REQIDT=#l

BLBS R0,20$
BRW ERR

$BINTIM_S -
TIMBUF=DELTA_TIME, -
TIMADR=DELTA_BINARY

BLBS R0,30$
BRW ERR

$SETIMR_S -
DAYTIM=DELTA_BINARY, -
ASTADR=GEMINI, -
REQIDT=#2

BLBS R0,40$
BRW ERR

$HIBER_S

Convert absolute time to
Binary

Check for error
If so, exit

Set timer to wake AST routine
at 9:00 AM
Routine is GEMINI
Request ID number 1
Check for error

Convert delta time to
binary

Check for error
If so, exit

Set timer to wake AST routine
in 15 minutes
Routine is GEMINI
Request ID number 2

Hibernate process

EXIT: $EXIT_S

ERR: PUSHL
CALLS
BRW

RO
#l,GALIB$SIGNAL
EXIT

.PSECT READ_ONLY_DATA,NOEXE,RD,NOWRT
FAO_IN: .ASCID "Request ID !UB answered at JAS."

.PSECT WRITEABLE_DATA,NOEXE,RD,WRT
NOWDESC:

TIMENOW:

.LONG 12

.ADDRESS -
TIMENOW

.BLKB 12
FAO_OUT:

FAO_STR:

.LONG 80

.ADDRESS -
FAO_STR

.BLKB 80

.PSECT CODE,EXE,PIC,NOSHR,RD,NOWRT

.ENTRY GEMINI,AM<R6,R7,R8,R9,Rl0,Rll>
$ASCTIM_S - Find out the current time

TIMBUF=NOWDESC, -
CVTFLG=#l ; Hours, mins, secs, only

BLBS R0,10$
BRW ERR

10-9

Timer and Time Conversion Services
10.8 Setting the System Time

10$: $FAO_S CTRSTR=FAO_IN I - Format string
OUTBUF=FAO_OUT, - Place in FAO_OUT
OUTLEN=FAO_OUT, -
P1=4 (AP) I - Request ID
P2=#NOWDESC Current time

BLBS R0,20$
BRW ERR

;
20$: PUS HAL FAO_OUT

CALLS #l,GALIB$PUT_OUTPUT
RET

.END SCORPIO

The following example shows the output received from the preceding program.
Assume the program starts execution at 8:45. Seconds later, the system time is
set to 9:15. The timer request that specified an absolute time of 9:00 executes
immediately, because 9:00 has passed. The request that specified a delta time of
5 minutes times out at 9:20.

$ SHOW TIME
30-DEC-1990 8:45:04.56 +----------------------+

$ RUN SCORPIO I operator sets system I
<---! time to 9:15
Request ID number 1 executed at 09:15:00.00 +----------------------+
Request ID number 2 executed at 09:20:00.02
$

10.9 Example of Using the Timer Service

10-10

To execute a program at timed intervals, you can use either LIB$SPAWN or
LIB$CREPRC. With LIB$SPAWN, you can create a subprocess that executes
a command procedure containing three commands: the DCL command WAIT,
the command that invokes the desired program, and a GOTO command that
directs control back to the WAIT command. To prevent the parent process from
remaining in hibernation until the subprocess executes, you should execute the
subprocess concurrently.

The following steps describe how to use SYS$CREPRC to execute a program at
timed intervals. To create a detached process, you must use SYS$CREPRC.

1. Use SYS$CREPRC to create a process that executes the desired program. Set
the PRC$V _HIBER bit of the stsftg argument of the SYS$CREPRC system
service to indicate that the created process should hibernate before executing
the program.

2. Use the SYS$SCHDWK system service to specify the time at which the
system should wake the subprocess and a time interval at which the system
should repeat the wakeup call.

The following program creates a subprocess that hibernates immediately. (The
identification number of the created subprocess is returned to the parent process
so that it can be passed to SYS$SCHDWK.) The system wakes the subprocess at
6:00 a.m. the morning of the 23rd (month and year default to system month and
year) and every 10 minutes thereafter.

Timer and Time Conversion Services
10.9 Example of Using the Timer Service

INCLUDE I ($SYSSRVNAM) I

INCLUDE I ($PRCDEF) I

!Declare system services
!Declare process options

! SYS$CREPRC options and values
INTEGER OPTIONS,
2 STATUS

! ID of created subprocess
INTEGER CR_ID

! Binary times
INTEGER TIME(2) I

2 INTERVAL(2)

! Set the PRC$V_HIBER bit in the OPTIONS mask and
! create the process.

STATUS = SYS$CREPRC (CR_ID,
2
2
2
2
2

'CHECK' I

I SLEEP' I

%VAL(4) I

PID of created process
image

Process name
Priority

2 %VAL(OPTIONS)) ! Hibernate
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Translate 6:00 a.m. (absolute time) to binary
STATUS= SYS$BINTIM ('23-- 06:00:00.00', ! 6:00 a.m.
2 TIME)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Translate 10 minutes (delta time) to binary
STATUS= SYS$BINTIM ('0 :10:00.00', ! 10 minutes
2 INTERVAL)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Schedule wakeup calls
STATUS = SYS$SCHDWK (CR_ID, ID of created process
2
2 TIME, Initial wakeup time
2 INTERVAL) Repeat wakeup time
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

10-11

11
Condition-Handling Services

A condition handler is a procedure that is given control when an exception
occurs. An exception is an event that is detected by the hardware or software
and that interrupts the execution of an image. Examples of exceptions include
arithmetic overflow or underflow and reserved opcode or operand faults.

If you determine that a program needs to be informed of particular exceptions so
that it can take corrective action, you can write and specify a condition handler.
This condition handler, which receives control when any exception occurs, can
test for specific exceptions.

If an exception occurs and you have not specified a condition handler, the default
condition handler established by the operating system is given control. If the
exception is a fatal error, the default condition handler issues a descriptive
message and causes the image that incurred the exception to exit.

This section describes how the VMS condition-handling mechanism works and
explains how to write a condition handler. You use the following system services
in writing a condition handler:

• Set Exception Vector ($SETEXV)

• Set System Service Failure Exception Mode ($SETSFM)

• Unwind from Condition Handler Frame ($UNWIND)

• Declare Change Mode or Compatibility Mode Handler ($DCLCMH)

11.1 Types of Exception
Exceptions can be generated by any of the following:

• Hardware

• Software

• System service failures

Hardware-generated exceptions always result in conditions that require special
action if program execution is to continue.

Software-generated exceptions may result in error or warning conditions. These
conditions and their messages are documented in the VMS System Messages and
Recovery Procedures Reference Manual or, for certain software routines, in the
manual associated with that routine. (VAX MACRO error messages appear in the
VAX MACRO User's Guide.)

System service failure exceptions occur when an error or severe error status is
returned from a call to a system service. You can choose to handle error returns
from system services by using the condition-handling mechanism rather than
other error-checking methods. If you want to handle exceptions generated by

11-1

Condition-Handling Services
11.1 Types of Exception

service failures, you must enable system service failure exception mode with the
Set System Service Failure Mode ($SETSFM) system service. For example:

$SETSFM_S ENBFLG=#l

System service failure exception mode is initially disabled, and may be enabled or
disabled at any time during the execution of an image.

Table 11-1 provides a summary of common conditions caused by exceptions.
The condition names are listed in the first column. The second column explains
the condition more fully by giving information about the type, meaning, and
arguments relating to the condition. The condition type is either trap or fault.
Because the explanation of types is complicated, you should refer to the VAX
Architecture Handbook for more detailed information. The meaning of the
exception condition is a short description of each condition. The arguments for
the condition handler are listed, if any apply; they give specific information about
the condition.

Table 11-1 Summary of Exception Conditions

Condition Name Explanation

SS$_ACCVIO Type:

Description:

Arguments:

SS$_ARTRES Type:

Description:

Arguments:

11-2

Fault.

Access violation.

1. Reason for access violation. This is a mask with
the following format:

Bit 0 = type of access violation

0 =page table entry protection code did
not permit intended access

1 = POLR, PlLR, or SLR length violation

Bit 1 = page table entry reference

0 = specified virtual address not
accessible

1 = associated page table entry not
accessible

Bit 2 = intended access

0 =read

1 =modify

2. Virtual address to which access was attempted
or, on some processors, virtual address within the
page to which access was attempted.

Trap.

Reserved arithmetic trap.

None.

(continued on next page)

Condition-Handling Services
11.1 Types of Exception

Table 11-1 (Cont.) Summary of Exception Conditions

Condition Name Explanation

SS$_ASTFLT Type:

Description:

Arguments:

SS$_BREAK Type:

Description:

Arguments:

SS$_CMODSUPR Type:

Description:

Arguments:

SS$_CMODUSER Type:

Description:

Arguments:

SS$_COMPAT Type:

Description:

Arguments:

Trap.

Stack invalid during attempt to deliver an AST.

1. Stack pointer value when fault occurred.

2. AST parameter of failed AST.

3. Program counter (PC) at AST delivery interrupt.

4. Processor status longword (PSL) at AST delivery
interrupt.1

5. Program counter (PC) to which AST would have
been delivered. 1

6. Processor status longword (PSL) to which AST
would have been delivered. 1

Fault.

Breakpoint instruction encountered.

None.

Trap.

Change mode to supervisor instruction encountered. 2

Change mode code. The possible values are -32, 768
through 32,767.

Trap.

Change mode to user instruction encountered. 2

Change mode code. The possible values are -32,768
through 32,767.

Fault.

Compatibility mode exception. This exception
condition can occur only when executing in
compatibility mode. 3

Type of compatibility exception. The possible values
are as follows:

0 = Reserved instruction execution

1 = BPT instruction executed

2 = IOT instruction executed

3 = EMT instruction executed

4 =TRAP instruction executed

5 = Illegal instruction executed

6 = Odd address fault

7 = TBIT trap

1The PC and PSL normally included in the signal array are not included in this argument list. The stack pointer of the
access mode receiving this exception is reset to its initial value.
2If a change mode handler has been declared for user or supervisor modes with the Declare Change Mode or
Compatibility Mode Handler ($DCLCMH) system service, that routine receives control when the associated trap occurs.
3If a compatibility mode handler has been declared with the Declare Change Mode or Compatibility Mode Handler
($DCLCMH) system service, that routine receives control when this fault occurs.

(continued on next page)

11-3

Condition-Handling Services
11.1 Types of Exception

Table 11-1 (Cont.) Summary of Exception Conditions

Condition Name Explanation

SS$_DECOVF Type:

Description:

Arguments:

SS$_FLTDIV Type:

Description:

Arguments:

SS$_FLTDIV _F Type:

Description:

Arguments:

SS$_FLTOVF Type:

Description:

Arguments:

SS$_FLTOVF _F Type:

Description:

Arguments:

SS$_FLTUND Type:

Description:

Arguments:

SS$_FLTUND_F Type:

Description:

Arguments:

SS$_INTDIV Type:

Description:

Arguments:

SS$_INTOVF Type:

Description:

Arguments:

SS$_0PCCUS Type:

Description:

Arguments:

SS$_0PCDEC Type:

Description:

Arguments:

11-4

Trap.

Decimal overflow.

None.

Trap.

Floating/decimal divide by zero.

None.

Fault.

Floating divide by zero fault.

None.

Trap.

Floating overflow.

None.

Fault.

Floating overflow fault.

None.

Trap.

Floating underflow.

None.

Fault.

Floating underflow fault.

None.

Trap.

Integer divide by zero.

None.

Trap.

Integer overflow.

None.

Fault.

Opcode reserved to customer fault.

None.

Fault.

Opcode reserved by Digital fault.

None.

(continued on next page)

Condition-Handling Services
11.1 Types of Exception

Table 11-1 (Cont.) Summary of Exception Conditions

Condition Name Explanation

SS$_PAGRDERR Type: Fault.

SS$_RADRMOD

SS$_ROPRAND

SS$_SSFAIL

SS$_SUBRNG

SS$_TBIT

Description:

Arguments:

Type:

Description:

Arguments:

Type:

Description:

Arguments:

Type:

Description:

Arguments:

Type:

Description:

Arguments:

Type:

Description:

Arguments:

Read error occurred during an attempt to read a
faulted page from disk.

1. Translation not valid reason. This is a mask with
the following format:

Bit 0 = 0

Bit 1 = page table entry reference

0 = specified virtual address not valid

1 = associated page table entry not valid

Bit 2 = intended access

0 =read

1 =modify

2. Virtual address of referenced page.

Fault.

Attempt to use a reserved addressing mode.

None.

Fault.

Attempt to use a reserved operand.

None.

Fault.

System service failure (when system service failure
exception mode is enabled).

Status return from system service (RO). (The same
value is in RO of the mechanism array.)

Trap.

Subscript range trap.

None.

Fault.

Trace bit is pending following an instruction.

None.

Change Mode and Compatibility Mode Handlers
Two types of hardware exception can be handled in a way different from the
normal condition-handling mechanism described in this chapter. The two types of
hardware exception are as follows:

• Traps caused by change mode to user or change mode to supervisor
instructions

• Compatibility mode faults

11-5

Condition-Handling Services
11.1 Types of Exception

You can use the Declare Change Mode or Compatibility Mode Handler
($DCLCMH) system service to establish procedures to receive control when
one of these conditions occurs. The $DCLCMH system service is described in the
VMS System Services Reference Manual.

11.2 Specifying Condition Handlers
You can establish condition handlers to receive control in the event of an
exception in two ways:

• By specifying the address of the entry mask of a condition handler in the first
longword of a procedure call frame

• By establishing exception handlers with the Set Exception Vector ($SETEXV)
system service

The first of these methods is the preferred way to specify a condition handler for
a particular image. The use of call frame handlers is also the most efficient way
in terms of declaration. Vectored handlers should be used for special purposes,
such as writing debuggers. The VAX MACRO programmer can use the following
single move address instruction to place the address of the condition handler in
the longword pointed to by the current frame pointer (FP):

MOVAB HANDLER, (FP)

The high-level language programmer can call the common Run-Time Library
routine LIB$ESTABLISH (see the VMS Run-Time Library Routines Volume);
however, some languages provide access to condition handling as part of the
language.

Each procedure on the call stack can declare a condition handler.

The $SETEXV system service allows you to specify addresses for a primary
exception handler, a secondary exception handler, and a last-chance exception
handler. Handlers may be specified for each access mode. The primary exception
vector is reserved for the debugger. In general, you should avoid using the
vectored handlers unless absolutely necessary. If you use a vectored handler, it
must be prepared for all exceptions occurring in that access mode.

An address of 0 in the first longword of a procedure call frame or in an exception
vector indicates that no condition handler exists for that call frame or vector.

11.3 The Exception Dispatcher

11-6

When an exception occurs, control is passed to the operating system's exception
dispatching routine. The exception dispatcher searches for a condition-handling
routine in the following order:

1. The primary exception vector for the access mode at which the program was
executing when the exception occurred.

2. The secondary exception vector for the access mode at which the program was
executing when the exception occurred.

3. The condition handler address specified in the procedure call stack of
the access mode at which the program was executing when the exception
occurred. The exception dispatcher scans call frames on the stack backwards,
using the saved frame pointer in each call frame to refer to the previous call
frame.

Condition-Handling Services
11.3 The Exception Dispatcher

4. The last-chance exception vector for the access mode at which the program
was executing when the exception occurred.

The search is terminated when the dispatcher finds a condition handler. If the
dispatcher cannot find a user-specified condition handler, it calls the condition
handler whose address is stored in the last-chance exception vector. If the image
was activated by the command interpreter, the last-chance vector points to the
catchall condition handler. The catchall handler issues a message and either
continues program execution or causes the image to exit, depending on whether
the condition was a warning or an error condition, respectively.

You can call the catchall handler in two ways:

• If the last-chance exception vector returns to the dispatcher, or if the last­
chance exception vector is empty, the last chance exception vector calls
the catchall condition handler, and exits with the return status code 88$_
NO HANDLER.

• If the exception dispatcher detects an access violation, it calls the catchall
condition handler and exits with the return status code SS$_ACCVIO.

Figure 11-1 illustrates the exception dispatcher's search of the call stack for a
condition handler.

11.4 The Argument List Passed to a Condition Handler
When the dispatcher finds a condition handler, it passes control to it using
a CALLG instruction. The argument list passed to the condition handler is
constructed on the stack and consists of the addresses of two argument arrays,
as illustrated in Figure 11-2; these arguments are described in detail in Sections
11.4.1 and 11.4.2.

Using the $CHFDEF macro instruction, you can define the following symbolic
names to refer to these arguments.

Symbolic Name

CHF$L_SIGARGLST

CHF$L_MCHARGLST

CHF$L_SIG_ARGS

CHF$L_SIG_NAME

CHF$L_SIG_ARG 1

CHF$L_MCH_ARGS

CHF$L_MCH_FRAME

CHF$L_MCH_DEPTH

CHF$L_MCH_SAVRO

CHF$L_MCH_SAVR1

Related Argument

Address of signal array

Address of mechanism array

Number of signal arguments

Condition name

First signal-specific argument

Number of mechanism arguments

Establisher frame address

Frame depth of establisher

Saved register RO

Saved register Rl

11-7

Condition-Handling Services
11.4 The Argument List Passed to a Condition Handler

11-8

Figure 11-1 Search of Stack for Condition Handler

C Runs d
Incurs C an 1 ondition

0

FP

B CallsC t
0

FP

ites(FP) I
alls B

AWr
andC

HANDLE RA

FP

x CallsA j

1...-

...... ,

•

Condition
.--- Occurs

Condition
.--- Handler Found

The illustration of the call stack indicates the calling sequence:
Procedure A calls Procedure B, and Procedure B calls Procedure C.
Procedure A establishes a condition handler.

2 An exception occurs while Procedure C is executing. The exception
dispatcher searches for a condition handler.

3 After checking for a condition handler declared in the exception vectors
(assume that none has been specified for the process), the dispatcher
looks at the first longword of Procedure C's call frame. A value of O
indicates that no condition handler has been specified. The dispatcher
locates the call frame for Procedure B by using the frame pointer (FP)
in Procedure C's call frame. Again, it finds no condition handler, and
locates Procedure A's call frame.

4 The dispatcher locates and gives control to HANDLERA.

ZK-0858-GE

Condition-Handling Services
11.4 The Argument List Passed to a Condition Handler

Figure 11-2 Argument List and Arrays Passed to Condition Handler

Signal Array
....... ...

I n

Condition Name

~
Arguments for

Condition Handler, ,....
If Any

Argument List PC

I 2 PSL

Address of Signal Array

Address of Mechanism Array

Mechanism Array

,...

I 4

Establisher Frame

Depth

RO

R1

You can define symbolic names to refer to these arguments using the
$CHFDEF macro instruction. The symbolic names are as follows:

Symbolic Offset

CHF$L_SIGARGLST
CHF$L_MCHARGLST

CHF$L_SIG_ARGS
CHF$L_SIG_NAME
CHF$L_SIG_ARG1

CHF$L_MCH_ARGS
CHF$L_MCH_FRAME
CHF$L_MCH_DEPTH
CHF$L_MCH_SAVRO
CHF$L_MCH_SAVR1

Value

Address of Signal Array
Address of Mechanism Array

Number of Signal Arguments
Condition Name
First Signal-Specific Argument

Number of Mechanism Arguments
Establisher Frame Address
Frame Depth of Establisher
Saved Register RO
Saved Register R1

ZK-0859-GE

11-9

Condition-Handling Services
11.4 The Argument List Passed to a Condition Handler

11.4.1 Signal Array Arguments
The signal array contains the following values describing the condition:

• Condition name-The symbolic value assigned to the specific condition. The
possible exception conditions and their symbolic definitions are listed in
Table 11-1.

• Arguments-Specific information relating to the condition (see Table 11-1).

• PC-The program counter at the time of the exception. Depending on the
type of exception (fault or trap), this can be the address of the instruction that
caused the exception (for a fault), or of the following instruction (for a trap).

• PSL-The processor status longword at the time of the exception.

11.4.2 Mechanism Array Arguments

11-10

The mechanism array describes the context in which the exception occurred. The
exception dispatcher supplies the following arguments:

• Establisher frame-The frame pointer (FP) registers contents of the call
frame that established the condition handler. This is the address of the
longword containing the condition handler address. For example, if the call
stack is as shown in Figure 11-1, this argument points to the call frame for
Procedure A.

This value can be used to display local variables in the procedure that
established the condition handler, if the variables are at known offsets from
the FP of the procedure.

• Depth-The frame number of the procedure that established the condition
handler, relative to the frame of the procedure that incurred the exception.
The depth is determined as follows.

Depth

-3

-2

-1

0

1

2

Meaning

Condition handler was established in the last chance exception vector

Condition handler was established in the primary exception vector

Condition handler was established in the secondary exception vector

Condition handler was established by the frame that was active when the
exception occurred

Condition handler was established by the caller of the frame that was
active when the exception occurred

Condition handler was established by the caller of the caller of the frame
that was active when the exception occurred

For example, if the call stack is as shown in Figure 11-1, the depth argument
passed to HANDLERA would have a value of 2.

The condition handler can use this argument to determine whether it wants
to handle the condition. For example, the handler may not want to handle
the condition if the exception that caused the condition did not occur in the
establisher frame.

Condition-Handling Services
11.4 The Argument List Passed to a Condition Handler

• RO-The contents of register 0 when the exception occurred.

• Rl-The contents of register 1 when the exception occurred.

11.5 Courses of Action for the Condition Handler
After the condition-handling routine determines the nature of the exception, it
can take one of the three following courses of action:

• Continue

The condition handler may or may not be able to fix the problem, but the
program can attempt to continue execution. The handler places the return
status value SS$_CONTINUE in RO and issues a RET instruction to return
control to the dispatcher. If the exception was a fault, the instruction that
caused it is reexecuted; if the exception was a trap, control is returned at the
instruction following the one that caused it.

• Resignal

The handler cannot fix the problem, or this condition is one that it does not
handle. It places the return status value SS$_RESIGNAL in RO and issues a
RET instruction to return control to the exception dispatcher. The dispatcher
resumes its search for a condition handler. If it finds another condition
handler, it passes control to that routine.

• Unwind

The condition handler cannot fix the problem, and execution cannot continue
while using the current flow. The handler issues the Unwind Call Stack
($UNWIND) system service to unwind the call stack. Call frames may then
be removed from the stack and the flow of execution modified, depending on
the arguments to the $UNWIND service.

11.5.1 Example of Condition-Handling Routines
The following example shows two procedures, A and B, that have declared
condition handlers. The notes describe the sequence of events that would occur if
a call to a system service failed during the execution of Procedure B.

.ENTRY PGMA,AM<>

0 MOVAB HANDLERA, (FP)
$SETSFM_S -

ENBFLG=#l

"CALLG ARGLIST,PGMB

; Entry mask for
; procedure A

Declare condition handler

; Enable SSFAIL
; exceptions

Call procedure B

@).ENTRY HANDLERA,AM<R2,R3,R4> ; Entry mask of HANDLERA
MOVL CHF$L_SIGARGLST(AP) ,R4 ; Get addr of signal args
CMPL #SS$_SSFAIL,CHF$L_SIG_NAME(R4)

System service failure?
BNEQ 10$ No - resignal

MOVZWL #SS$_CONTINUE,RO
RET

handle SSFAIL exception

Signal to continue
Return to exception
dispatcher

11-11

Condition-Handling Services
11.5 Courses of Action for the Condition Handler

10$: MOVZWL #SS$_RESIGNAL,RO
RET

.ENTRY PGMB,AM<R2,R3,R4>
~MOVAB HANDLERB, (FP)

; Signal to resignal
; Return to dispatcher

; Entry mask of procedure B
Declare condition handler

<-- System service failure occurs <D •
@).ENTRY HANDLERB,AM<R2,R3,R4> ; Entry mask of HANDLERB

MOVL CHF$L_SIGARGLST(AP) ,R4 ; Get addr of signal args
CMPL #SS$_BREAK,CHF$L_SIG_NAME(R4) ; Breakpoint fault?
BNEQ 10$ No, resignal

MOVZWL #SS$_CONTINUE,RO
RET

10$: MOVZWL #SS$_RESIGNAL,RO
RET

Yes, handle exception

Signal to continue
Return to exception
dispatcher
Signal to resignal 0
Return to dispatcher

0 Procedure A executes and establishes condition handler HANDLERA.
HANDLERA is set up to respond to exceptions caused by failures in system
service calls.

8 During its execution, Procedure A calls Procedure B.

8 The exception dispatcher resumes its search for a condition handler and calls
HAND LERA.

8 HANDLERA handles the system service failure exception, corrects the
condition, places the return value SS$_ CONTINUE in RO, and returns control
to the exception dispatcher.

~ Procedure B establishes condition handler HANDLERB. HANDLERB is set
up to respond to breakpoint faults.

<D While Procedure Bis executing, an exception occurs caused by a system
service failure.

8 The dispatcher returns control to Procedure B, and execution of Procedure B
resumes at the instruction following the system service failure.

@) The exception dispatcher searches the exception vectors for a condition
handler (assume there are none defined), and then searches the call stack.
HANDLERB is called with the condition SS$_SSFAIL.

0 Because HANDLERB handles only breakpoint faults, it places the return
value SS$_RESIGNAL in RO and returns control to the exception dispatcher.

11.5.2 Unwinding the Call Stack

11-12

The third course of action a condition handler can take is to unwind the procedure
call stack. The unwind operation is complex, and should be used only when
control must be restored to an earlier procedure in the calling sequence.
Moreover, use of the $UNWIND system service requires the calling condition
handler to be aware of the calling sequence and of the exact point to which
control is to return.

Condition-Handling Services
11.5 Courses of Action for the Condition Handler

The $UNWIND system service accepts two optional arguments:

• The depth to which the unwind is to occur. If the depth is 1, the call stack
is unwound to the caller of the procedure that incurred the exception. If the
depth is 2, the call stack is unwound to the caller's caller, and so on. By
specifying the depth in the mechanism array, the handler can unwind to the
procedure that established the handler.

• The address of a location to receive control when the unwind operation is
complete, that is, a PC to replace the current PC in the call frame of the
procedure that will receive control when all specified frames have been
removed from the stack.

If no argument is supplied to $UNWIND, the unwind is performed to the caller
of the procedure that established the condition handler that is issuing the
$UNWIND service. Control is returned to the address specified in the return PC
for that procedure. Note that this is the default and normal case for unwinding.

Another common case of unwinding is to unwind to the procedure that declared
the handler. This is done by using the depth value from the exception mechanism
array (CHF$L_MCH_DEPTH) as the depth argument to $UNWIND.

It therefore follows that the default unwind (no depth specified) is equivalent to
specifying CHF$L_MCH_DEPTH plus 1. In certain cases of nested exceptions,
however, this is not the case. Digital recommends that you omit the depth
argument when unwinding to the caller of the routine that established the
condition handler.

Figure 11-3 illustrates an unwind situation and describes some of the possible
results.

The unwind operation consists of two parts:

1. In the call to $UNWIND, the return PCs saved in the stack are modified
to point into a routine within the $UNWIND service, but the entire stack
remains present.

2. When the handler returns, control is directed to this routine by the modified
PCs. It proceeds to return to itself, removing the modified stack frames, until
the stack has been unwound to the proper depth.

For this reason, the stack is in an intermediate state directly after calling
$UNWIND. Handlers should in general return immediately after calling
$UNWIND.

During the actual unwinding of the call stack, the unwind routine examines
each frame in the call stack to see if a condition handler has been declared. If a
handler has been declared, the unwind routine calls the handler with the status
value SS$_UNWIND (indicating that the call stack is being unwound) in the
condition name argument of the signal array. When a condition handler is called
with this status value, it can perform any procedure-specific cleanup operations
required. After the handler returns, the call frame is removed from the stack.

Thus, in Figure 11-3, HANDLERB may be called a second time, during the
unwind operation. Note that HANDLERB does not have to be able to interpret
the SS$_UNWIND status value specifically; the RET instruction merely returns
control to the unwind procedure, which does not check any status values.

11-13

Condition-Handling Services
11.5 Courses of Action for the Condition Handler

11-14

Figure 11-3 Unwinding the Call Stack

D Runs and
Incurs Condition

CCallsD

B Writes (FP)
and CallsC

0

FP

0

FP

HANDLE RB

FP

A Calls B

0

FP

XCallsA

The procedure call stack is as shown. Assume that no exception vectors are
declared for the process and that the exception occurs during the execution of
Procedure D.

2 Because neither Procedure D nor Procedure C has established a condition
handler, HANDLERS receives control.

3 If HANDLERS issues the $UNWIND system service with no arguments, the
call frames for B, C, and Dare removed from the stack (along with the call
frame for HANDLERS itself), and control returns to Procedure A. Procedure
A receives control at the point following its call to Procedure B.

4 If HANDLERS issues the $UNWIND system service specitying a depth of 2,
call frames for C and Dare removed, and control returns to Procedure B.

ZK-0860-GE

Condition-Handling Services
11.6 Multiple Exceptions

11.6 Multiple Exceptions
A second exception may occur while a condition handler or a procedure that it
has called is still executing. In this case, when the exception dispatcher searches
for a condition handler, it skips the frames that were searched to locate the first
handler.

The search for a second handler terminates in the same manner as the initial
search, as described in Section 11.3.

If the $UNWIND system service is issued by the second active condition handler,
the depth of the unwind is determined according to the same rules followed in the
exception dispatcher's search of the stack: all frames that were searched for the
first condition handler are skipped.

Primary and secondary vectored handlers, on the other hand, are always entered
when an exception occurs.

If an exception occurs during the execution of a handler established in the
primary or secondary exception vector, that handler must handle the additional
condition. Failure to do so correctly may result in a recursive exception loop in
which the vectored handler is repeatedly called until the user stack is exhausted.

11.7 Example of Using Condition-Handling Services
This section contains an example of how to use condition-handling services.

You should write an exit handler as a subroutine because no function value
can be returned. The dummy arguments of the exit subroutine should agree in
number, order, and data type with the arguments you specified in the call to
SYS$DCLEXH.

Assume that two or more programs are cooperating. To keep track of which
programs are executing, each has been assigned a common event flag (the
common event flag cluster is named ALIVE). When a program begins, it sets its
flag; when the program terminates, it clears its flag. Because each program must
clear its flag before exiting, you create an exit handler to perform the action.
The exit handler accepts two arguments: the final status of the program and the
number of the event flag to be cleared.

Because in the following example the cleanup operation is to be performed
whether the program completes successfully or not, the final status is not
examined in the exit routine.

! Arguments for exit handler
INTEGER*4 EXIT_STATUS Status
INTEGER*4 FLAG /64/
! Setup for exit handler
STRUCTURE /EXIT_DESCRIPTOR/

INTEGER LINK,
2 ADDR,
2 ARGS /2/,
2 STATUS_ADDR,
2 FLAG_ADDR
END STRUCTURE
RECORD /EXIT_DESCRIPTOR/ HANDLER

! Exit handler
EXTERNAL EXIT_HANDLER

11-15

Condition-Handling Services
11.7 Example of Using Condition-Handling Services

11-16

INTEGER*4 STATUS,
2 SYS$ASCEFC,
2 SYS$SETEF

Associate with the common event flag
cluster and set the flag.

STATUS = SYS$ASCEFC (%VAL(FLAG) I

2 I ALIVE I I I)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$SETEF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

Do not exit until cooperating program has a chance to
associate with the common event flag cluster.

Enter the handler and argument addresses
into the exit handler description.

HANDLER.ADDR = %LOC(EXIT_HANDLER)
HANDLER.STATUS_ADDR = %LOC(EXIT_STATUS)
HANDLER.FLAG_ADDR = %LOC(FLAG)
! Establish the exit handler.
CALL SYS$DCLEXH (HANDLER)

Continue with program

END

! Exit Subroutine

SUBROUTINE CLEAR_FLAG (EXIT_STATUS,
2 FLAG)
! Exit handler clears the event flag

! Declare dummy argument
INTEGER EXIT_STATUS,
2 FLAG

! Declare status variable and system routine
INTEGER STATUS,
2 SYS$ASCEFC,
2 SYS$CLREF

Associate with the common event flag
cluster and clear the flag

STATUS = SYS$ASCEFC (%VAL(FLAG) I

2 I ALIVE I I I)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS = SYS$CLREF (%VAL(FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL (STATUS))

12
Memory Management Services

The VMS memory management routines map and control the relationship
between physical memory and the virtual address space of a process. These
activities are, for the most part, transparent to you and your programs. In some
cases, however, you can make a program more efficient by explicitly controlling
its virtual memory usage. Memory management system services are as follows:

• Expand Program/Control Region ($EXPREG)

• Create Virtual Address Space ($CRETVA)

• Delete Virtual Address Space ($DELTVA)

• Create and Map Section ($CRMPSC)

• Map Global Section ($MGBLSC)

• Delete Global Section ($DGBLSC)

• Update Section File on Disk ($UPDSEC)

• Lock Pages in Working Set ($LKWSET)

• Unlock Pages from Working Set ($ULWSET)

• Adjust Working Set Limit ($ADJWSL)

• Purge Working Set ($PURGWS)

• Lock Page in Memory ($LCKPAG)

• Unlock Page in Memory ($ULKPAG)

• Set Protection on Pages ($SETPRT)

• Set Process Swap Mode ($SETSWM)

• Set Stack Limits ($SETSTK)

Memory management services allow you to control the size of virtual and physical
memory address space available to a program. For example, they allow you to do
the following:

• Increase or decrease the virtual address space available in the program or
control region of a process.

• Control the process's working set size and the exchange of pages between
physical memory and the paging device.

• Define disk files containing data or shareable images and map the files into
the virtual address space of a process.

12-1

Memory Management Services

This chapter discusses the services that provide these capabilities. However,
before you use any of these services, you should have an understanding of the
VAX memory structure and memory management routines. Where pertinent,
virtual memory concepts related to the use of particular services are discussed in
this section.

12.1 Virtual Address Space

12-2

The virtual address space of a process is divided into two regions:

• The program region (PO), which contains the image currently being executed.

• The control region (Pl), which contains the information maintained by
the system on behalf of the process. It also contains the user stack, which
expands toward the lower-addressed end of the control region.

Figure 12-1 illustrates the layout of a process's virtual memory. The initial
size of a process's virtual address space depends on the size of the image being
executed.

Figure 12-1 Layout of Process Virtual Address Space

Virtual
Address

00000000
Program Region

(PO)

Control Region
(P1)

:
I
I
I
I

Direction of
Growth

I
I
I
I
I
I
I y

Length ----- ---------------""'

Length - - - - - - - - - - - - ~ - - - - - - - -

I
I
I
I
I
I
I

Direction of
Growth

I
I
I
I

7FFFFFFF .__ ________________ __._!_....._ __ ___,

ZK-0861-GE

Memory Management Services
12.1 Virtual Address Space

To facilitate memory protection and mapping, the virtual address space is
subdivided into 512-byte units called pages. Using memory management
services, a process can add a specified number of pages to the end of either
the program region or the control region. Adding pages to the program region
provides the process with additional space for image execution, for example, for
the dynamic creation of tables or data areas. Adding pages to the control region
increases the size of the user stack. As new pages are referenced, the stack is
automatically expanded. (By using the STACK= option in a linker options file,
you can also expand the user stack when you link the image.)

The maximum size to which a process can increase its address space is controlled
by the SYSGEN parameter VIRTUALPAGECNT.

12.2 Increasing and Decreasing Virtual Address Space
The Expand Program/Control Region ($EXPREG) system service adds pages to
the end of either the program or control region, and optionally returns the range
of virtual addresses of the new pages. For example, if you want to add four pages
to the program region of a process, you can write a call to the $EXPREG system
service, as follows.

BEGSPACE:
.BLKL 2 2 longwords to hold start

and end of new pages

$EXPREG_S - ; Get 4 pages
PAGCNT=#4, -
RETADR=BEGSPACE, -
REGION=#O

The value 0 is passed in the region argument to specify that the pages are to
be added to the program region. To add the same number of pages to the control
region, you would specify REGION=#l.

Note that the region argument to the $EXPREG service is optional; if it is not
specified, the pages are added to or deleted from the program region by default.

The $EXPREG service can add pages only to the end of a particular region. When
you need to add pages that are not at the end of these regions, you can use the
Create Virtual Address Space ($CRETVA) system service. Likewise, when you
need to delete pages created by either $EXPREG or $CRETVA, you can use the
Delete Virtual Address Space ($DELTVA) system service. For example, if you
have used the $EXPREG service twice to add pages to the program region, and
want to delete the first range of pages but not the second, you could use the
$DELTVA system service as shown in the following example.

12-3

Memory Management Services
12.2 Increasing and Decreasing Virtual Address Space

BEGSPACEA:
.BLKL 2

BEGSPACEB:
.BLKL 2

Start and end of 1st area

Start and end of 2nd area

$EXPREG_S - Four pages
PAGCNT=#4, -
RETADR=BEGSPACEA, -
REGION=#O

BSBW ERROR

$EXPREG_S - Three more
PAGCNT=#3, -
RETADR=BEGSPACEB, -
REGION=#O

BSBW ERROR

$DELTVA_S - Delete first 4 pages
INADR=BEGSPACEA

BSBW ERROR

In this example, the first call to $EXPREG adds four pages to the program region;
the virtual addresses of the created pages are returned in the two-longword array
at BEGSPACEA. The second call adds three pages, and returns the addresses at
BEGSPACEB. The call to $DELTVA deletes the first four pages that were added.

12.3 Input Address Arrays and Return Address Arrays

12-4

When the $EXPREG system service adds pages to a region, it adds them in the
normal direction of growth for the region. The return address array, if requested,
indicates the order in which the pages were added. For example:

• If the program region is expanded, the starting virtual address is smaller
than the ending virtual address.

• If the control region is expanded, the starting virtual address is larger than
the ending virtual address.

The addresses returned indicate the first byte in the first page that was added or
deleted and the last byte in the last page that was added or deleted.

When input address arrays are specified for the Create or Delete Virtual Address
Space ($CRETVA and $DELTVA) system service, these services add or delete
pages beginning with the address specified in the first longword and ending with
the address specified in the second longword.

The order in which the pages are added or deleted does not have to be in the
normal direction of growth for the region. Moreover, because these services add
or delete only whole pages, they ignore the low-order nine bits of the specified
virtual address (the low-order nine bits contain the byte offset within the page).
The virtual addresses returned indicate the byte offsets.

Table 12-1 shows some sample virtual addresses that may be specified as input
to $CRETVA or $DELTVA and shows the return address arrays, if all pages are
successfully added or deleted.

Memory Management Services
12.3 Input Address Arrays and Return Address Arrays

Table 12-1 Sample Virtual Address Arrays

Input Array Output Array

Number
of

Start End Region Start End Pages

1010 1670 PO 1000 17FF 4

1450 1451 PO 1400 15FF 1

1200 1000 PO 1000 13FF 2

1450 1450 PO 1400 15FF 1

7FFEC010 7FFEC010 Pl 7FFEC1FF 7FFECOOO 1

7FFEC010 7FFEBCAO Pl 7FFEC1FF 7FFEBCOO 3

Note that if the input virtual addresses are the same, as in the fourth and fifth
items in Table 12-1, a single page is added or deleted. The return address array
indicates that the page was added or deleted in the normal direction of growth for
the region.

12.4 Page Ownership and Page Protection
Each page in the virtual address space of a process is owned by the access
mode that created the page. For example, pages in the program region initially
provided for the execution of an image are owned by user mode. Pages that the
image creates dynamically are also owned by user mode. Pages in the control
region, except for the pages containing the user stack, are normally owned by
more privileged access modes.

Only the owner access mode or a more privileged access mode can delete the
page or otherwise affect it. The owner of a page can also indicate, by means of a
protection code, the type of access that each access mode will be allowed.

The Set Protection on Pages ($SETPRT) system service changes the protection
assigned to a page or group of pages. The protection is expressed as a code that
indicates the specific type of access (none, read-only, or read/write) for each of the
four access modes (kernel, executive, supervisor, user). Only the owner access
mode or a more privileged access mode can change the protection for a page.

When an image attempts to access a page that is protected against the access
attempted, a hardware exception called an access violation occurs. When an
image calls a system service, the service probes the pages to be used to determine
whether an access violation would occur if the image attempts to read or write
one of the pages. If an access violation would occur, the service exits with the
status code SS$_ACCVIO.

Because the memory management services add, delete, or modify a single page at
a time, one or more pages can be successfully changed before an access violation
is detected. If the retadr argument is specified in the service call, the service
returns the addresses of pages changed (added, deleted, or modified) before the
error. If no pages are affected, that is, if an access violation would occur on the
first page specified, the service returns a -1 in both longwords of the return
address array.

If the retadr argument is not specified, no information is returned.

12-5

Memory Management Services
12.5 Working Set Paging

12.5 Working Set Paging
When a process is executing an image, a subset of its pages resides in physical
memory; these pages are called the working set of the process. The working set
includes pages in both the program region and the control region.

When the image refers to a page that is not in memory, a page fault occurs and
the page is brought into memory, replacing an existing page in the working set.
If the page that is going to be replaced is modified during the execution of the
image, that page is written into a paging file on disk. When this page is needed
again, it is brought back into memory, again replacing a current page from the
working set. This exchange of pages between physical memory and secondary
storage is called paging.

The paging of a process's working set is transparent to the process. However, if a
program is very large, or if pages in the program image that are used often are
being paged in and out frequently, the overhead required for paging may decrease
the program's efficiency. The following system services allow a process, within
limits, to counteract these potential problems:

• The Adjust Working Set Limit ($ADJWSL) system service increases or
decreases the maximum number of pages that a process can have in its
working set.

• The Purge Working Set ($PURGWS) system service removes one or more
pages from the working set.

• The Lock Pages in Working Set ($LKWSET) system service makes one or
more pages in the working set ineligible for paging.

The initial size of a process's working set is defined by the process's working set
default (WSDEFAULT) quota. Because some programs may have larger memory
requirements than others, a program can call the $ADJWSL system service to
dynamically increase the process's working set limit. When the additional pages
are no longer needed in the working set, the program can call the $ADJWSL
system service to decrease the working set limit. It can also call the $PURGWS
system service to remove from the working set pages that are no longer in use.
The maximum size of a process's working set is defined by the process's working
set quota (WSQUOTA).

Under some circumstances, an image may not want certain pages to be paged
out at all; in this case, the image can lock these pages in the working set with
the Lock Pages in Working Set ($LKWSET) system service. As long as the
process's working set is in memory, these pages cannot be paged out until they
are explicitly unlocked with the Unlock Pages in Working Set ($ULWSET) system
service.

12.6 Process Swap.ping

12-6

The operating system balances the needs of all the processes currently executing,
providing each with the system resources it requires on an as-needed basis. The
memory management routines balance the memory requirements of the process.
Thus, the sum of the working sets for all processes currently in physical memory
is called the balance set.

When a process whose working set is in memory becomes inactive-for example,
to wait for an I/O request or to hibernate-the entire working set or part of it
may be removed from memory to provide space for another process's working set
to be brought in for execution. This removal from memory is called swapping.

Memory Management Services
12.6 Process Swapping

The working set may be removed in two ways:

• Partially-also called swapper trimming. Pages are removed from the
working set of the target process so that the number of pages in the working
set is fewer, but the working set is not swapped.

• Entirely-called swapping. All pages are swapped out of memory.

When a process is swapped out of the balance set, all the pages (both modified
and unmodified) of its working set are swapped, including any pages that had
been locked in the working set.

A privileged process may lock itself in the balance set. While pages can still be
paged in and out of the working set, the process remains in memory even when
it is inactive. To lock itself in the balance set, the process issues the Set Process
Swap Mode ($SETSWM) system service, as follows:

$SETSWM_S SWPFLG=#l

This call to $SETSWM disables process swap mode. You can also disable swap
mode by setting the appropriate bit in the STSFLG argument to the Create
Process ($CREPRC) system service; however, you need the PSWAPM privilege to
alter process swap mode.

A process can also lock pages in memory with the Lock Pages in Memory
($LCKPAG) system service. When a page is locked in memory with this service,
the page remains in memory even when the remainder of the process's working
set is swapped out of the balance set. This system service can be useful in special
circumstances, for example, for routines that perform I/O operations to devices
without using the VMS I/O system.

You can unlock pages locked in memory with the Unlock Pages in Memory
($ULKPAG) system service. However, you need the PSWAPM privilege to issue
the $LCKPAG or $ULKPAG system service.

12. 7 Sections
A section is a disk file or a portion of a disk file containing data or instructions
that can be brought into memory and made available to a process for
manipulation and execution. A section can also be one or more consecutive
page frames in physical memory or I/O space; such sections, which require you to
specify page frame number mapping, are discussed in Section 12.7.15.

Sections are either private or global (shared).

• Private sections are accessible only by the process that creates them. A
process can define a disk data file as a section, map it into its virtual address
space, and manipulate it.

• Global sections can be shared by more than one process. One copy of the
global section resides in physical memory, and each process sharing it refers
to the same copy. A global section can contain shareable code or data that can
be read, or read and written, by more than one process. Global sections are
either temporary or permanent and can be defined for use within a group or
on a systemwide basis. Global sections can be either mapped to a disk file or
created as a global page-file section.

When modified pages in writable disk file sections are paged out of memory
during image execution, they are written back into the section file, rather than
into the paging file, as is the normal case with files. (However, copy-on-reference
sections are not written back into the section file.)

12-7

Memory Management Services
12. 7 Sections

The use of disk file sections involves these two distinct operations:

1. The creation of a section defines a disk file as a section and informs the
system what portions of the file contain the section.

2. The mapping of a section makes it available to a process and establishes the
correspondence between virtual blocks in the file and specific addresses in the
virtual address space of a process.

The Create and Map Section ($CRMPSC) system service creates and maps a
private section or a global section. Because a private section is used only by a
single process, creation and mapping are simultaneous operations. In the case of
a global section, one process can create a permanent global section and not map
to it; other processes can map to it. A process can also create and map a global
section in one operation.

The following sections describe creating, mapping, and using disk file sections.
In each case, operations and requirements that are common to both private
sections and global sections are described first, followed by additional notes
and requirements for the use of global sections. Section 12. 7 .9 discusses global
page-file sections.

12.7.1 Creating Sections
To create a disk file section, you must follow these steps:

1. Open or create the disk file containing the section.

2. Define which virtual blocks in the file comprise the section.

3. Define the characteristics of the section.

12.7.2 Opening the Disk File

12-8

Before you can use a file as a section, you must open it using VMS RMS. The
following example shows the VMS RMS file access block ($FAB) and $OPEN
macros used to open the file, and the channel specification to the $CRMPSC
system service necessary for reading an existing file.

SECFAB: $FAB FNM=<SECTION.TST>, ; File access block
FOP= UFO
RTV= -1

$OPEN FAB=SECFAB
$CRMPSC_S -

CHAN=SECFAB+FAB$L_STV, ...

The file options parameter (FOP) indicates that the file is to be opened for user
I/O; this option is required so that VMS RMS assigns the channel using the
access mode of the caller. VMS RMS returns the channel number on which the
file is accessed; this channel number is specified as input to the $CRMPSC system
service (chan argument). The same channel number can be used for multiple
create and map section operations.

The option RTV=-1 tells the file system to keep all of the pointers to be mapped
in memory at all times. If this option is omitted, the $CRMPSC service requests
the file system to expand the pointer areas if necessary. Storage for these pointers
is charged to the BYTLM quota, which means that opening a badly fragmented
file can fail with an EXBYTLM failure status. Too many fragmented sections may
cause the byte limit to be exceeded.

Memory Management Services
12.7 Sections

The file may be a new file that is to be created while it is in use as a section. In
this case, you should use the $CREATE macro to open the file. If you are creating
a new file, the file access block (FAB) for the file must specify an allocation
quantity (ALQ parameter).

You can also use $CREATE to open an existing file; if the file does not exist, it
will be created. The following example shows the required fields in the FAB for
the conditional creation of a file.

GBLFAB: $FAB FNM=<GLOBAL.TST>, -
ALQ=4, -
FAC=PUT,­
FOP=<UFO,CIF,CBT>, -
SHR=<PUT,UPI>

$CREATE FAB=GBLFAB

When the $CREATE macro is invoked, it creates the file GLOBAL.TST if the
file does not currently exist. The CBT (contiguous-best-try) option requests that,
if possible, the file be contiguous. Although section files are not required to be
contiguous, better performance can result if they are.

12.7.3 Defining the Section Extents
After the file is opened successfully, the $CRMPSC system service can create
a section from the entire file, or from only certain portions of it. The following
arguments to $CRMPSC define the extents of the file that comprise the section:

• pagcnt (page count). This argument is required; it indicates the number of
virtual blocks that will be mapped. These blocks correspond to pages in the
section.

• vbn (virtual block number). This argument is optional; it defines the number
of the virtual block in the file that is the beginning of the section. If you do
not specify this argument, the value 1 is passed (the first virtual block in
the file is the beginning of the section). If you have specified physical page
frame number mapping, the vbn argument specifies the starting page frame
number.

12.7.4 Defining the Section Characteristics
The flags argument to the $CRMPSC system service defines the following section
characteristics:

• Whether it is a private section or a global section (the default is to create a
private section).

• How the pages of the section are to be treated when they are copied into
physical memory or when a process refers to them. The pages in a section can
be either or both of the following:

Read/write or read-only

Created as demand-zero pages or as copy-on-reference pages, depending
on how the processes are going to use the section and whether the file
contains any data (see Section 12.7.10)

• Whether the section is to be mapped to a disk file or to specific physical page
frames (see Section 12.7.15).

12-9

Memory Management Services
12. 7 Sections

Table 12-2 shows the flag bits that must be set for specific characteristics.

Table 12-2 Flag Bits to Set for Specific Section Characteristics

Section to Be Created

Correct Flag PFN PFN Shared
Combinations Private Global Private Global Memory

SEC$M_GBL 0 1 0 1 1

SEC$M_CRF Optional Optional 0 0 0

SEC$M_DZRO Optional Optional 0 0 Optional

SEC$M_WRT Optional Optional Optional Optional Optional

SEC$M_PERM Not used Optional Optional 1 1

SEC$M_SYSGBL Not used Optional Not used Optional Optional

SEC$M_PFNMAP 0 0 1 1 0

SEC$M_EXPREG Optional Optional Optional Optional Optional

SEC$M_PAGFIL 0 Optional 0 0 0

When you specify section characteristics, the following restrictions apply:

• Global sections cannot be both demand-zero and copy-on-reference.

• Demand-zero sections must be writable.

• Shared memory private sections are not allowed.

12.7.5 Defining Global Section Characteristics

12-10

If the section is a global section, you must assign a character string name
(gsdnam argument) to it so that other processes can identify it when they map
it. The format of this character string name is explained in Section 12. 7.6.

The flags argument specifies the following types of global section:

• Group temporary (the default)

• Group permanent

• System temporary

• System permanent

Group global sections can be shared only by processes executing with the same
group number. The name of a group global section is implicitly qualified by the
group number of the process that created it. When other processes map it, their
group numbers must match.

A temporary global section is automatically deleted when no processes are
mapped to it, but a permanent global section remains in existence even when no
processes are mapped to it. A permanent global section must be explicitly marked
for deletion with the Delete Global Section ($DGBLSC) system service.

You need the user privileges PRMGBL and SYSGBL to create permanent group
global sections or system global sections (temporary or permanent), respectively.

A system global section is available to all processes in the system.

Optionally, a process creating a global section can specify a protection mask (prot
argument) restricting all access or a type of access (read, write, execute, delete) to
other processes.

Memory Management Services
12. 7 Sections

12.7.6 Global Section Name
The gsdnam argument specifies a descriptor that points to a character string.

Translation of the gsdnam argument proceeds in the following manner:

1. The current name string is prefixed with GBL$ and the result is subject to
logical name translation.

2. If the result is a logical name, step 1 is repeated until translation does not
succeed or until the number of translations performed exceeds the number
specified by the SYSGEN parameter LNM$C_MAXDEPTH.

3. The GBL$ prefix is stripped from the current name string that could not be
translated. This current string is the global-section-name.

For example, assume that you have made the following logical name assignment:

$ DEFINE GBL$GSDATA GSDATA_OOl

Your program contains the following statements.

NAMEDESC:
.ASCID /GSDATA/ Descriptor for logical name

of section

$CRMPSC_S -
GSDNAM=NAMEDESC, ...

The following logical name translation takes place:

1. GBL$ is prefixed to GDSDATA.

2. GBL$GSDATA is translated to GSDATA_OOl. (No further translation is
successful. When logical name translation fails, the string is passed to the
service.)

There are three exceptions to the logical name translation method discussed in
this section:

• If the name string starts with an underscore (_), the VMS operating system
strips the underscore and considers the resultant string to be the actual name
(that is, no further translation is performed).

• If the name string is the result of a logical name translation, then the name
string is checked to see if it has the "terminal" attribute. If the name string
is marked with the "terminal" attribute, VMS considers the resultant string
to be the actual name (that is, no further translation is performed).

• If the global section has a name in the format name_nnn, VMS first strips
the underscore and the digits (nnn), then translates the resultant name
according to the sequence discussed in this section, and finally reappends
the underscore and digits. The system uses this method in conjunction with
known images and shared files installed by the system manager.

12-11

Memory Management Services
12. 7 Sections

12. 7. 7 Mapping Sections

12-12

When you call the $CRMPSC system service to create or map a section, or both,
you must provide the service with a range of virtual addresses (inadr argument)
into which the section is to be mapped.

If you know specifically which pages the section should be mapped into, you
provide these addresses in a two-longword array. For example, to map a private
section of 10 pages into virtual pages 10 through 19 of the program region, specify
the input address array as follows.

MAPRANGE:
.LONG /\X1400
.LONG /\X2300

; Address (hex) of page 10
; Address (hex) of page 19

You do not need to know the explicit addresses to provide an input address range.
If you want the section mapped into the first available virtual address range in
the program (PO) or control (Pl) region, you can specify the SEC$M_EXPREG
flag bit in the flags argument. In this case, the addresses specified by the
inadr argument control whether the service finds the first available space in
the program or control region. The value specified or defaulted for the pagcnt
argument determines the number of pages mapped. The following example shows
part of a program used to map a section at the current end of the program region.

MAPRANGE:
.LONG /\X200
.LONG /\X200

RETRANGE:
.BLKL 2

$CRMPSC_S -

Any program (PO) region address
Any PO address (can be same)

Address range returned here

INADR=MAPRANGE, -
RETADR=RETRANGE,­
FLAGS=<SEC$M_EXPREG>, ...

The addresses specified do not have to be currently in the virtual address space of
the process. The $CRMPSC system service creates the required virtual address
space during the mapping of the section. If you specify the retadr argument, the
service returns the range of addresses actually mapped.

After a section is mapped successfully, the image can refer to the pages using one
of the following:

• A base register or pointer and predefined symbolic offset names

• Labels defining offsets of an absolute program section or structure

The following example shows part of a program used to create and map a process
section.

SECFAB: $FAB

MAPRANGE:
.LONG
.LONG

RETRANGE:
.BLKL

ENDRANGE:
.BLKL

$OPEN
BLBS
BSBW

FNM=<SECTION.TST>, -
FOP=UFO, -
FAC=PUT, -
SHR=<GET,PUT,UPI>

1

1

FAB=SECFAB
R0,10$
ERROR

10$: $CRMPSC_S -
INADR=MAPRANGE,­
RETADR=RETRANGE,­
PAGCNT=#4,­
FLAGS=#SEC$M_WRT,-

20$:

BLBS
BSBW
MOVL

CHAN=SECFAB+FAB$L_STV
R0,20$
ERROR
RETRANGE,R6

Notes on Example

Memory Management Services
12. 7 Sections

First page
Last page

First page mapped

Last page mapped

Open section file

Input address array
Output array
Map four pages
Read/write section
Channel number

Point to start of section

1. The OPEN macro opens the section file defined in the file access block
SECFAB. (The FOP parameter to the $FAE macro must specify the UFO
option.)

2. The $CRMPSC system service uses the addresses specified at MAPRANGE
to specify an input range of addresses into which the section will be mapped.
The pagcnt argument requests that only four pages of the file be mapped.

3. The flags argument requests that the pages in the section have read/write
access. The symbolic flag definitions for this argument are defined in the
$SECDEF macro. Note that the file access field (FAC parameter) in the FAB
also indicates that the file is to be opened for writing.

4. When $CRMPSC completes, the addresses of the four pages that were mapped
are returned in the output address array at RETRANGE. The address of the
beginning of the section is placed in general register 6, which serves as a
pointer to the section.

12.7.8 Mapping Global Sections
A process that creates a global section can map that global section. Then, other
processes can map it by calling the Map Global Section ($MGBLSC) system
service.

When a process maps a global section, it must specify the global section name
assigned to the section when it was created, whether it is a group or system
global section, and whether it desires read-only or read/write access. The process
may also specify the following:

• A version identification (indent argument), indicating the version number
of the global section (when multiple versions exist) and whether more recent
versions are acceptable to the process.

12-13

Memory Management Services
12. 7 Sections

• A relative page number (relpag argument), specifying the page number,
relative to the beginning of the section, to begin mapping the section. In this
way, processes can use only portions of a section. Additionally, a process can
map a piece of a section into a particular address range and subsequently
map a different piece of the section into the same virtual address range.

To specify that the global section being mapped is located in physical memory
that is being shared by multiple processors, you can include the shared memory
name in the gsdnam argument character string (see Section 12. 7 .6). A demand­
zero global section in memory shared by multiple processors must be mapped
when it is created.

Cooperating processes can both issue a $CRMPSC system service to create and
map the same global section. The first process to call the service actually creates
the global section; subsequent attempts to create and map the section result only
in mapping the section for the caller. The successful return status code SS$_
CREATED indicates that the section did not already exist when the $CRMPSC
system service was called. If the section did exist, the status code SS$_NORMAL
is returned.

The example in Section 12.7.10 shows one process (ORION) creating a global
section and a second process (CYGNUS) mapping the section.

12.7.9 Global Page-File Sections
Global page-file sections are used to store temporary data in a global section. A
global page-file section is a section of virtual memory that is not mapped to a file.
The section can be deleted when processes have finished with it. (Contrast this
with demand-zero pages where no initialization is necessary, but the pages are
saved in a file.) The SYSGEN parameter GBLPAGFIL controls the total number
of global page-file pages in the system.

To create a global page-file section, you must set the flag bits SEC$M_GBL
and SEC$M_PAGFIL in the flags argument to the Create and Map Section
($CRMPSC) system service. The channel (chan argument) must be~O.

You cannot specify the flag bit SEC$M_CRF with the flag bit SEC$M_PAGFIL.

12.7.10 Section Paging

12-14

The first time an image executing in a process refers to a page that was created
during the mapping of a disk file section, the page is copied into physical memory.
The address of the page in the virtual address space of a process is mapped to
the physical page. During the execution of the image, normal paging can occur;
however, pages in sections are not written into the page file when they are paged
out, as is the normal case. Rather, if they have been modified, they are written
back into the section file on disk. The next time a page fault occurs for the page,
the page is brought back from the section file.

If the pages in a section were defined as demand-zero pages or copy-on-reference
pages when the section was created, the pages are treated differently, as follows:

• If the call to $CRMPSC requested that pages in the section be treated as
demand-zero pages, these pages are initialized to zeros when they are created
in physical memory. If the file is either a new file being created as a section
or a file being completely rewritten, demand-zero pages provide a convenient
way of initializing the pages. The pages are paged back into the section file.

Memory Management Services
12. 7 Sections

• When the virtual address space is deleted, all unreferenced pages are written
back to the file as zeros. This causes the file to be initialized, no matter how
few pages were modified.

• If the call to $CRMPSC requested that pages in the section be copy-on­
reference pages, each process that maps to the section receives its own copy of
the section, on a page-by-page basis from the file, as it refers to them. These
pages are never written back into the section file, but are paged to the paging
file as needed.

In the case of global sections, more than one process can be mapped to the same
physical pages. If these pages need to be paged out or written back to the disk
file defined as the section, these operations are done only when the pages are not
in the working set of any process.

In the following example, process ORION creates a global section, and process
CYGNUS maps to that section.

Process ORION
FLGCLUSTER: ; Descriptor for common event flag cluster name

.ASCID /FLAG_CLUSTER/
GLOBALSEC: Descriptor for global section name

.ASCID /GLOBAL_SECTION/
I

FLGSET = 65 ; Flag number to associate and set

FNM=<GLOBAL.TST>, -GBLFAB: $FAB
FOP=<UFO,CIF,CBT>,-
ALQ=4, -
FAC=PUT

Ct $ASCEFC_S -
EFN=#FLGSET, -
NAME=FLGCLUSTER

BLBS R0,10$
BSBW ERROR

@) $CRMPSC_S - ; Create global section
10$: GSDNAM=GLOBALSEC,-

FLAGS=#SEC$M_WRT!SEC$M_GBL, ...
BLBS R0,20$
BSBW ERROR
$SETEF_S - ; Set common event flag

20$: EFN=#FLGSET

Process CYGNUS

CLUSTER:
.ASCID /FLAG_CLUSTER/ ; Cluster name descriptor

SECTION:
.ASCID /GLOBAL_SECTION/ ; Section name descriptor

FLGSET = 65

12-15

Memory Management Services
12.7 Sections

$ASCEFC_S -
EFN=#FLGSET, -
NAME= CLUSTER

BLBS R0,10$
BSBW ERROR
$WAITFR_S -

10$: EFN=#FLGSET
BLBS R0,20$
BSBW ERROR
$MGBLSC S -

20$: INADR=MAPRANGE, -
RETADR=RETRANGE,­
FLAGS=#SEC$M_GBL,- ; Global section
GSDNAM=SECTION ; Section name

BSBW ERROR

0 The processes ORION and CYGNUS are in the same group. Each process
first associates with a common event flag cluster named FLAG_CLUSTER to
use common event flags to synchronize its use of the section.

8 The process ORION creates the global section named GLOBAL_SECTION,
specifying section flags that indicate that it is a global section (SEC$M_GBL)
and has read/write access. Input and output address arrays, the page count
parameter, and the channel number arguments are not shown; procedures for
specifying them are the same as shown in this example.

8 The process CYGNUS associates with the common event flag cluster and
waits for the flag defined as FLGSET; ORION sets this flag when it has
finished creating the section. To map the section, CYGNUS specifies the input
and output address arrays, the flag indicating that it is a global section, and
the global section name. The number of pages mapped is the same as that
specified by the creator of the section.

12.7.11 Reading and Writing Data Sections

12-16

Read/write sections provide a way for a process or cooperating processes to share
data files in virtual memory.

The sharing of global sections may involve application-dependent synchronization
techniques. For example, one process can create and map to a global section
in read/write fashion; other processes can map to it in read-only fashion and
interpret data written by the first process. Or, two or more processes can write to
the section concurrently. (In this case, the application must provide the necessary
synchronization and protection.)

After a file is updated, the process or processes can release (or unmap) the
section. The modified pages are then written back into the disk file defined as a
section.

When this is done, the revision number of the file is incremented and the version
number of the file remains unchanged. A full directory listing indicates the
revision number of the file and the date and time that the file was last updated.

12.7.12 Releasing and Deleting Sections

Memory Management Services
12. 7 Sections

A process unmaps a section by deleting the virtual addresses in its own virtual
address space to which it has mapped the section. If a return address range was
specified to receive the virtual addresses of the mapped pages, this address range
can be used as input to the Delete Virtual Address Space ($DELTVA) system
service, as follows:

$DELTVA_S INADR=RETRANGE

When a process unmaps a private section, the section is deleted; that is, all
control information maintained by the system is deleted. A temporary global
section is deleted when all processes that have mapped to it have unmapped it.
Permanent global sections are not deleted until they are specifically marked for
deletion with the Delete Global Section ($DGBLSC) system service; they are then
deleted when no more processes are mapped.

Note that deleting the pages occupied by a section does not delete the section
file, but rather cancels the process's association with the file. Moreover, when a
process deletes pages mapped to a read/write section and no other processes are
mapped to it, all modified pages are written back into the section file.

After a section is deleted, the channel assigned to it can be deassigned. The
process that created the section can deassign the channel with the Deassign I/O
Channel system service, as follows:

$DASSGN_S CHAN=GBLFAB+FAB$L_STV

12.7.13 Writing Back Sections
Because read/write sections are not normally updated on disk until the
physical pages they occupy are paged out, or until all processes referring to
the section have unmapped it, a process should ensure that all modified pages are
successfully written back into the section file at regular intervals.

The Update Section File on Disk ($UPDSEC) system service writes the modified
pages in a section into the disk file. The $UPDSEC system service is described in
the VMS System Services Reference Manual.

12. 7.14 Image Sections
Global sections can contain shareable code. The operating system uses global
sections to implement shareable code, as follows:

1. The object module containing code to be shared is linked to produce a
shareable image. The shareable image is not, in itself, executable. It contains
a series of sections, called image sections.

2. You link private object modules with the shareable image to produce an
executable image. No code or data from the shareable image is put into the
executable image.

3. The system manager uses the INSTALL command to create a permanent
global section from the shareable image file, making the image sections
available for sharing.

4. When you run the executable image, the VMS operating system automatically
maps the global sections created by the INSTALL command into the virtual
address space of your process.

12-17

Memory Management Services
12. 7 Sections

For details on how to create and identify shareable images and how to link them
with private object modules, see the VMS Linker Utility Manual. For information
about how to install shareable images and make them available for sharing as
global sections, see the Guide to Maintaining a VMS System.

12. 7 .15 Page Frame Sections
A page frame section is one or more contiguous pages of physical memory or I/O
space that have been mapped as a section. One use of page frame sections is to
map to an I/O page, thus allowing a process to read device registers. A process
mapped to an I/O page can also connect to a device interrupt vector.

A page frame section differs from a disk file section in that it is not associated
with a particular disk file and is not paged. However, it is similar to a disk
file section in most other respects: you create, map, and define the extent and
characteristics of a page frame section in essentially the same manner as you do
a disk file section.

To create a page frame section, you must specify page frame number mapping
by setting the SEC$M_PFNMAP flag bit in the flags argument to the Create
and Map Section ($CRMPSC) system service. The vbn argument is now used to
specify that the first page frame is to be mapped instead of the first virtual block.
You must have the user privilege PFNMAP to create or delete a page frame
section, but not to map to an existing one.

Because a page frame section is not associated with a disk file, you do not use the
relpag, chan, and pfc arguments to the $CRMPSC service to create or map this
type of section. For the same reason, the SEC$M_CRF (copy-on-reference) and
SEC$M_DZRO (demand-zero) bit settings in the flags argument do not apply.
Pages in page frame sections are not written back to any disk file (including the
paging file).

Caution

You must use caution when working with page frame sections. If you
permit write access to the section, each process that writes to it does so
at its own risk. Serious errors can occur if a process writes incorrect data
or writes to the wrong page, especially if the page is also mapped by the
system or by another process. Thus, any user who has the PFNMAP
privilege can damage or violate the security of a system.

12.8 Example of Using Memory Management System Services

12-18

In the following example, two programs are communicating through a global
section. The first program creates and maps a global section (by using the
$CRMPSC system service), and then writes a device name to the section. This
program also defines the device terminal and process names and sets the event
flags that synchronize the processes.

The second program maps the section (by using the $MGBLSC system service),
and then reads the device name and the process that allocated the device and any
terminal allocated to that process. This program also writes the process named
to the terminal global section where the process name can be read by the first
program.

Memory Management Services
12.8 Example of Using Memory Management System Services

The common event cluster is used to synchronize access to the global section. The
first program sets REQ_FLAG to indicate that the device name is in the section.
The second program sets INFO_FLAG to indicate that the process and terminal
names are available.

Data in a section must be page aligned. The following is the option file used
at link time that causes the data in the common area named DATA to be page
aligned:
PSECT_ATTR = DATA, PAGE

Before executing the first program, you need to write a user-open routine that
sets the user open bit (FAB$V _UFO) of the FAB options longword (FAB$L_FOP).
The user-open routine would then read the channel number that the file is opened
on from the status longword (FAB$L_STV) and return that channel number to
the main program by using a common block (CHANNEL in this example).

!This is the program that creates the global section.

! Define global section flags
INCLUDE I ($SECDEF) I

! Mask for section flags
INTEGER SEC_MASK

! Logical unit number for section file
INTEGER INFO_LUN
! Channel number for section file
! (returned from useropen routine)
INTEGER SEC_CHAN
COMMON /CHANNEL/ SEC_CHAN
! Length for the section file
INTEGER SEC_LEN
! Data for the section file
CHARACTER*12 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL
! Location of data
INTEGER PASS_ADDR (2) I

2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

! User-open routines
INTEGER UFO_CREATE
EXTERNAL UFO_CREATE

12-19

Memory Management Services
12.8 Example of Using Memory Management System Services

12-20

! Open the section file
STATUS = LIB$GET_LUN (INFO_LUN)
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
SEC_MASK = SEC$M_WRT .OR. SEC$M_DZRO .OR. SEC$M_GBL
! (Last element - first element+ size of last element+ 511)/512
SEC_LEN = ((%LOC(TERMINAL) - %LOC(DEVICE) + 6 + 511)/512)
OPEN (UNIT=INFO_LUN,
2 FILE='INFO.TMP' I

2 STATUS='NEW' I

2 INITIALSIZE = SEC_LEN,
2 USEROPEN = UFO_CREATE)

Free logical unit number and map section
CLOSE (INFO_LUN)

! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)

STATUS
2
2

= SYS$CRMPSC (PASS_ADDR,
RET_ADDR,
I

! Address of section
! Addresses mapped

2
2

%VAL(SEC_MASK), Section mask
'GLOBAL_SEC', Section name

2
2 %VAL(SEC_CHAN), I/0 channel
2 111)

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Create the subprocess
STATUS = SYS$CREPRC (,
2 'GETDEVINF' , Image
2
2 'GET_DEVICE', Process name
2 %VAL(4),,,) Priority
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! Write data to section
DEVICE = '$FLOPPY1'

! Get common event flag cluster and set flag
STATUS= SYS$ASCEFC (%VAL(REQUEST_FLAG),
2 'CLUSTER' I I)

IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))
STATUS= SYS$SETEF (%VAL(REQUEST_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

! When GETDEVINF has the information, INFO_FLAG is set
STATUS = SYS$WAITFR (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

This is the program that maps to the global section
created by the previous program.

Define section flags
INCLUDE I ($SECDEF) I

! Mask for section flags
INTEGER SEC_MASK
! Data for the section file
CHARACTER*l2 DEVICE,
2 PROCESS
CHARACTER*6 TERMINAL
COMMON /DATA/ DEVICE,
2 PROCESS,
2 TERMINAL

Memory Management Services
12.8 Example of Using Memory Management System Services

Location of data
INTEGER PASS_ADDR (2) I

2 RET_ADDR (2)

! Two common event flags
INTEGER REQUEST_FLAG,
2 INFO_FLAG
DATA REQUEST_FLAG /70/
DATA INFO_FLAG /71/

Get common event flag cluster and wait
for GBLl.FOR to set REQUEST_FLAG

STATUS = SYS$ASCEFC (%VAL(REQUEST_FLAG) I

2 'CLUSTER' I I)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
STATUS= SYS$WAITFR (%VAL(REQUEST_FLAG))
IF· (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

! Get location of data
PASS_ADDR (1) = %LOC (DEVICE)
PASS_ADDR (2) = %LOC (TERMINAL)

! Set write flag
SEC_MASK = SEC$M_WRT

! Map the section
STATUS = SYS$MGBLSC (PASS_ADDR, ! Address of section
2 RET_ADDR, ! Address mapped
2 I

2 %VAL(SEC_MASK), ! Section mask
2 'GLOBAL_SEC' ,,) ! Section name
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

Call GETDVI to get the process ID of the
process that allocated the device, then
call GETJPI to get the process name and terminal
name associated with that process ID.
Set PROCESS equal to the process name and
set TERMINAL equal to the terminal name.

After information is in GLOBAL_SEC
STATUS= SYS$SETEF (%VAL(INFO_FLAG))
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))

END

12-21

13
Lock Management Services

The VMS lock management system services allow cooperating processes to
synchronize their access to shared resources. This synchronization can be
accomplished by providing a common data area in which processes can lock a
specified resource by name. All processes that access the resources must use the
VMS lock management services, or they are not effective.

To synchronize access to resources, the lock management services provide a
mechanism that allows processes to wait in a queue until a particular resource is
available.

The Enqueue Lock Request ($ENQ) system service is used to make lock requests
and the Dequeue Lock Request ($DEQ) system service is used to cancel lock
requests. The Get Lock Information ($GETLKI) system service is used to get
information about existing locks.

13.1 Concepts of Resources and Locks
A resource can be any entity on the VMS operating system (for example, files,
data structures, databases, and executable routines). When two or more processes
access the same resource, you often need to control their access to the resource.
You do not want to have one process reading the resource while another process
writes new data; a writer can quickly invalidate anything being read by a reader.
The lock management system services allow processes to associate a name with
a resource and request access to that resource. Lock modes enable processes to
indicate how they want to share access with other processes.

To use the lock management system services, a process must request access to a
resource (request a lock) using the Enqueue Lock Request ($ENQ) system service.
There are three required arguments to the $ENQ system service for new locks:

• A resource name. The lock management services use the resource name to
look for other lock requests that use the same name.

• The lock mode to be associated with the requested lock. The lock mode
indicates how the process wants to share the resource with other processes.

• The address of a lock status block. The lock status block receives the
completion status for a lock request and the lock identification. The lock
identification is used to refer to a lock request after it has been queued.

The lock management services compare the lock mode of the newly requested
lock to the lock modes of other locks with the same resource name. New locks are
granted in the following instances:

• If no other process has a lock on the resource.

• If another process has a lock on the resource and the mode of the new request
is compatible with the existing lock.

13-1

Lock Management Services
13.1 Concepts of Resources and Locks

• If another process already has a lock on the resource and the mode of the
new request is not compatible with the lock mode of the existing lock, the
new request is placed in a queue, where it waits until the resource becomes
available. When the resource becomes available, the process is notified that it
can access the resource.

Processes can also use the $ENQ system service to change the lock mode of a
lock. This is called a lock conversion.

13.1.1 Granularity
Many resources can be divided into smaller parts. As long as a part of a
resource can be identified by a resource name, the part can be locked. The
term granularity describes the part of the resource being locked.

Figure 13-1 depicts a model of a database. The database is divided into areas,
which in turn are subdivided into records. The records are further divided into
items.

Figure 13-1 Model Database

------Vdume--------
/ Fl~~ /T~

Record Record Record Record Record

II\ I\ I\ I\ II\
Item Item Item Item Item Item Item Item Item Item Item Item

ZK-0373-GE

The processes that request locks on the database shown in Figure 13-1 must lock
the whole database, an area in the database, a record, or a single item. Locking
the entire database is considered locking at a coarse granularity; locking a single
item is considered locking at a fine granularity.

13.1.2 Resource Names

13-2

The lock management system services refer to each resource by a name composed
of the following four parts:

• A name specified by the caller

• The caller's access mode

• The caller's UIC group number (unless the resource is systemwide)

• The identification of the lock's parent (optional)

For two resources to be considered the same, these four parts must be identical
for each resource.

The name specified by the process represents the resource being locked. Other
processes that need to access the resource must refer to it using the same name.
The correlation between the name and the resource is a convention agreed upon
by the cooperating processes.

Lock Management Services
13.1 Concepts of Resources and Locks

The access mode is determined by the caller's access mode, unless a less
privileged mode is specified in the call to the $ENQ system service. Access
modes, their numeric values, and symbolic names are discussed in Section 2.1.3.

Resources can be group-specific or systemwide. The default is for resource names
to be qualified by the group number of the calling process's UIC. You define
systemwide locks by setting a flag bit in the call to the $ENQ system service.
You need the user privilege SYSLCK to request systemwide locks from user or
supervisor mode. No additional privilege is required to request system wide locks
from executive or kernel mode.

When a lock request is queued, it can specify the identification of a parent lock,
at which point it becomes a sublock. However, the parent lock must be granted
or the lock request is not accepted. This enables a process to lock a resource at
different degrees of granularity.

13.1.3 Choosing a Lock Mode
The mode of a lock determines whether the resource can be shared with other
lock requests. The six lock modes are as follows.

Mode Name

LCK$K_NLMODE

LCK$K_CRMODE

LCK$K_CWMODE

LCK$K_PRMODE

LCK$K_PWMODE

LCK$K_EXMODE

Meaning

Null mode. This mode grants no access to the resource; the null
mode is typically used as an indicator of interest in the resource,
or as a placeholder for future lock conversions.

Concurrent read. This mode grants read access to the resource
and allows sharing of the resource with other readers. The
concurrent read mode is generally used when additional locking
is being performed at a finer granularity with sublocks, or to
read data from a resource in an "unprotected" fashion (allowing
simultaneous writes to the resource).

Concurrent write. This mode grants write access to the resource
and allows sharing of the resource with other writers. The
concurrent write mode is typically used to perform additional
locking at a finer granularity, or to write in an "unprotected"
fashion.

Protected read. This mode grants read access to the resource
and allows the resource to be shared with other readers. No
writers are allowed access to the resource. This is the traditional
"share lock."

Protected write. This mode grants write access to the resource
and allows the resource to be shared with concurrent read mode
readers. No other writers are allowed access to the resource.
This is the traditional "update lock."

Exclusive. The exclusive mode grants write access to the
resource and prevents the resource from being shared with
any other readers or writers. This is the traditional "exclusive
lock."

13.1.4 Levels of Locking and Compatibility
Locks that allow the process to share a resource are called low-level locks;
locks that allow the process almost exclusive access to a resource are called
high-level locks. Null and concurrent read mode locks are considered low-level
locks; protected write and exclusive mode locks are considered high-level. The
lock modes from lowest to highest level access modes are null, concurrent read,
concurrent write, protected read, protected write, and exclusive. The concurrent
write and protected read modes are considered to be of equal level.

13-3

Lock Management Services
13.1 Concepts of Resources and Locks

Locks that can be shared with other locks are said to have compatible lock modes.
Higher-level lock modes are less compatible with other lock modes than are
lower-level lock modes. Table 13-1 shows the compatibility of the lock modes.

Table 13-1 Compatibility of Lock Modes

Mode of

Requested
Lock NL

NL Yes

CR Yes

cw Yes

PR Yes

PW Yes

EX Yes

Key to Lock Modes

NL-Null lock
CR-Concurrent read
CW-Concurrent write
PR-Protected read
PW-Protected write
EX-Exclusive lock

CR

Yes

Yes

Yes

Yes

Yes

No

Mode of Currently Granted Locks

cw PR PW

Yes Yes Yes

Yes Yes Yes

Yes No No
No Yes No
No No No
No No No

EX

Yes

No
No
No
No
No

13.1.5 Lock Management Queues

13-4

A lock on a resource can be in one of the following three states.

• GRANTED - The lock request has been granted.

• WAITING - The lock request is waiting to be granted.

• CONVERSION - The lock request has been granted at one mode and is
waiting to be granted a higher lock mode.

A queue is associated with each of the three states (see Figure 13-2).

When you request a new lock, the lock management services first determine if
the resource is currently known (that is, if any other processes have locks on that
resource). If the resource is new (that is, no other locks exist on the resource), the
lock management services create an entry for the new resource and the requested
lock. If the resource is already known, the lock management services determine
if any other locks are waiting in either the conversion or waiting queue. If other
locks are waiting in either queue, the new lock request is queued at the end of
the waiting queue. If both the conversion and waiting queues are empty, the
lock management services determine if the new lock is compatible with the other
granted locks. If the lock request is compatible, the lock is granted; if it is not
compatible, it is placed on the waiting queue. You can use a flag bit to direct the
lock management services not to queue a lock request if one cannot be granted
immediately.

Figure 13-2 Three Lock Queues

New
Lock
Granted

Conversions
Granted

Waiting Locks
Granted

New Lock Queued

13.1.6 Lock Conversion Concepts

Lock Management Services
13.1 Concepts of Resources and Locks

Granted

Conversions

Waiting

Compatible
Conversions

Incompatible
Conversions

ZK-0374-GE

Lock conversions allow processes to change the level of locks. For example, a
process can maintain a low-level lock on a resource until it limits access to the
resource. The process can then request a lock conversion.

You specify lock conversions by using a flag bit (see Section 13.3.6) and a lock
status block. The lock status block must contain the lock identification of the lock
to be converted. If the new lock mode is compatible with the currently granted
locks, the conversion request is granted immediately. If the new lock mode is
incompatible with the existing locks in the granted queue, the request is placed
on the conversion queue. The lock retains its old lock mode and does not receive
its new lock mode until the request is granted.

When a lock is dequeued or converted to a lower lock mode, the lock management
services inspect the first conversion request on the conversion queue. The
conversion request is granted if it is compatible with the locks currently granted.
Any compatible conversion requests immediately following are also granted.
If the conversion queue is empty, the waiting queue is checked. The first lock
request on the waiting queue is granted if it is compatible with the locks currently
granted. Any compatible lock requests immediately following are also granted.

13.1. 7 Deadlock Detection
A deadlock occurs when any group of locks are waiting for each other in a circular
fashion.

In Figure 13-3, three processes have queued requests for resources that cannot
be accessed until the current locks held are dequeued (or converted to a lower
lock mode).

13-5

Lock Management Services
13.1 Concepts of Resources and Locks

Figure 13-3 A Deadlock

A B

Waiting for Waiting for
the Resource the Resource ...
That B Has Thate Has

~~

c

Waiting for
the Resource ..._

1....-

ThatA Has

ZK-0375-GE

If the lock management services determine that a deadlock exists, the services
choose a process to break the deadlock. The chosen process is termed the victim.
If the victim has requested a new lock, the lock is not granted; if the victim has
requested a lock conversion, the lock is returned to its old lock mode. In either
case, the status code SS$_DEADLOCK is placed in the lock status block. Note
that granted locks are never revoked; only waiting lock requests can receive the
status code SS$_DEADLOCK.

Note ___________ _

Programmers must not make assumptions regarding which process is to
be chosen to break a deadlock.

13.2 Queuing Lock Requests

13-6

You use the $ENQ system service to queue lock requests. When you request
new locks, the system service call must specify the lock mode, address of the
lock status block, and resource name. The following example illustrates a call to
$ENQ.

LKSB: .BLKQ 0
RESOURCE:

.ASCID /STRUCTURE_l/

$ENQW_S LKMODE=#LCK$K_PRMODE, -
LKSB=LKSB, -
RESNAM=RESOURCE

To contain lock status block

STRUCTURE_l is the name of
the resource being locked

Protected read mode

Lock Management Services
13.2 Queuing Lock Requests

In this example, a number of processes access the STRUCTURE_l data structure.
Some processes read the data structure; others write to the structure. Readers
must be protected from reading the structure while it is being updated by
writers. The reader in the example queues a request for a protected read mode
lock. Protected read mode is compatible with itself, so all readers can read the
structure at the same time. A writer to the structure uses protected write or
exclusive mode locks. Because protected write mode and exclusive mode are not
compatible with protected read mode, no writers can write the data structure
until the readers have released their locks, and no readers can read the data
structure until the writers have released their locks.

Table 13-1 shows the compatibility oflock modes.

13.3 Advanced Locking Techniques
The previous sections discussed locking techniques and concepts useful to all
applications. The following sections discuss specialized features of the VMS lock
manager.

13.3.1 Synchronizing Locks
The $ENQ system service returns control to the calling program when the lock
request is queued. The status code in RO indicates whether the request was
queued successfully. After the request is queued, the procedure cannot access
the resource until the request is granted. A procedure can use three methods to
check that a request has been granted:

• Specify the number of an event flag to be set when the request is granted and
wait for the event flag.

• Specify the address of an AST routine to be executed when the request is
granted.

• Poll the lock status block for a return status code that indicates that the
request has been granted.

These methods of synchronization are identical to the synchronization techniques
used with the $QIO system services, described in Section 7.7.

The $ENQW macro performs synchronization by combining the functions of
the $ENQ system service and the Synchronize ($SYNCH) system service. The
$ENQW macro has the same arguments as the $ENQ macro. It queues the lock
request, and then places the program in an event flag wait state (LEF) until the
lock request is granted.

13.3.2 Notification of Synchronous Completion
The lock management services provide a mechanism that allows processes to
determine if a lock request is granted synchronously, that is, if the lock is not
placed on the conversion or waiting queue. This feature can be used to improve
performance in applications where most locks are granted synchronously (as is
normally the case).

If the flag bit LCK$M_SYNCSTS is set and a lock is granted synchronously, the
status code SS$_SYNCH is returned in RO; no event flag is set and no AST is
delivered.

If the request is not completed synchronously, the success code SS$_NORMAL is
returned; event flags or AST routines are handled normally (that is, the event
flag is set and the AST is delivered when the lock is granted).

13-7

Lock Management Services
13.3 Advanced Locking Techniques

13.3.3 Expediting Lock Requests
A request can be expedited (granted immediately) if its requested mode (when
granted) would not block any currently queued requests from being granted. The
LCK$M_EXPEDITE flag is specified in the $ENQ operation to expedite a request.
Currently, only NLMODE requests can be expedited. A request to expedite any
other lock mode will fail with SS$_UNSUPPORTED status.

13.3.4 Lock Status Block
The lock status block receives the final completion status and the lock
identification, and optionally contains a lock value block (see Figure 13-4).
When a request is queued, the lock identification is stored in the lock status
block even if the lock has not been granted. This allows a procedure to dequeue
locks that have not been granted. For more information about the Dequeue Lock
Request ($DEQ) system service, see Section 13.4.

Figure 13-4 The Lock Status Block

ReseNed I Condition Value

Lock Identification

16-Byte Lock Value Block

(Used only when LCK$M_VALBLK is set.)

ZK-0376-GE

The status code is placed in the lock status block only when the lock is granted
(or when errors occur in granting the lock).

The uses of the lock value block are described in Section 13.5.1.

13.3.5 Blocking ASTs

13-8

In some applications that use the lock management services, a process must know
if it is preventing another process from locking a resource. The lock management
services inform processes of this through the use of blocking ASTs. To enable
blocking ASTs, the blkast argument of the $ENQ system service must contain
the address of a blocking AST service routine. When the lock prevents another
lock from being granted, a blocking AST is delivered and the blocking AST service
routine is executed. The astprm argument is used to pass a parameter to the
blocking AST. For more information about ASTs and AST service routines, see
Chapter 5. Some uses of blocking ASTs are described in Section 13.5.2.

Lock Management Services
13.3 Advanced Locking Techniques

13.3.6 Lock Conversions
Lock conversions perform three main functions:

• Maintaining a low-level lock and converting it to a higher lock mode when
necessary

• Maintaining values stored in a resource lock value block (described in the
following paragraphs)

• Improving performance in some applications

A procedure normally needs an exclusive (or protected write) mode lock while
writing data. The procedure should not keep the resource exclusively locked all
the time, however, because writing may not always be necessary. Maintaining an
exclusive or protected write mode lock prevents other processes from accessing
the resource. Lock conversions allow a process to request a low-level lock at
first and convert the lock to a higher-level lock mode (protected write mode, for
example) only when it needs to write data.

Some applications of locks require the use of the lock value block. If a version
number or other data is maintained in the lock value block, you need to maintain
at least one lock on the resource so that the value block is not lost. In this case
processes convert their locks to null locks, rather than dequeuing them when they
have finished accessing the resource.

In order to improve performance in some applications, all resources that might be
locked are locked with null locks during initialization. You can convert the null
locks to higher-level locks as needed. Usually a conversion request is faster than
a new lock request because the necessary data structures have already been built.
However, maintaining any lock for the life of a procedure uses system dynamic
memory. Therefore, the technique of creating all necessary locks as null locks
and converting them as needed improves performance at the expense of increased
storage requirements.

Note ~~~~~~~~~~~~­

If you specify the flag bit LCK$M_NOQUEUE on a lock conversion
and the conversion fails, the new blocking AST address and parameter
specified in the conversion request replace the blocking AST address and
parameter specified in the previous $ENQ request.

Queuing Lock Conversions
To perform a lock conversion, a procedure calls the $ENQ system service with
the flag bit LCK$M_ CONVERT. Lock conversions do not use the resnam, parid,
acmode, or prot argument. The lock being converted is identified by the lock
identification contained in the lock status block. The following example shows
a simple lock conversion. Note that the lock must be granted before it can be
converted.

13-9

Lock Management Services
13.3 Advanced Locking Techniques

LKSB: .BLKQ 1
RESOURCE:

.ASCID /STRUCTURE_l/

$ENQW_S LKMODE=#LCK$K_NLMODE, , Null lock
LKSB=LKSB, -
RESNAM=RESOURCE

<---------------------! Lock is I
I granted I

$ENQW_S LKMODE=#LCK$K_PWMODE, -
LKSB=LKSB, -
FLAGS=#LCK$M_CONVERT

Protected write
Lock ID is in LKSB
Conversion

13.3. 7 Forced Queuing of Conversions

13-10

It is possible to force certain conversions to be queued that would otherwise be
granted. A conversion request with the LCK$M_QUECVT flag set is forced to
wait behind any already queued conversions.

The conversion request is granted immediately if there are no conversions already
queued.

The QUECVT behavior is valid only for a subset of all possible conversions.
Table 13-2 defines the legal set of conversion requests for LCK$M_QUECVT.
Illegal conversion requests are failed with SS$_BADPARAM returned.

Table 13-2 Legal QUECVT Conversions

Lock Mode to Which Lock Is Converted

Lock Mode
at Which
Lock Is Held NL CR cw PR PW EX

NL No Yes Yes Yes Yes Yes

CR No No Yes Yes Yes Yes

cw No No No Yes Yes Yes

PR No No Yes No Yes Yes

PW No No No No No Yes

EX No No No No No No

Key to Lock Modes

NL-Null lock
CR-Concurrent read
CW-Concurrent write
PR-Protected read
PW-Protected write
EX-Exclusive lock

Lock Management Services
13.3 Advanced Locking Techniques

13.3.8 Parent Locks
When a lock request is queued, declaring a parent lock for the new lock is
possible. When a lock has a parent, it is called a sublock. To specify a parent
lock, the lock identification of the parent lock is passed in the parid argument
to the $ENQ system service. A parent lock must be granted before the sublocks
belonging to the parent can be granted.

The benefits of specifying parent locks are as follows:

• Low-level locks (concurrent read or concurrent write) can be held at a coarse
granularity (files, for example), while higher-level (protected write or exclusive
mode) sublocks are held on resources of a finer granularity (such as records
or data items).

• Resources names are unique with each parent (parent locks are part of the
resource name).

The following paragraphs describe the use of parent locks.

Assume that a number of processes need to access a database. The database
can be locked at two levels: the file and individual records. When updating all
the records in a file, locking the whole file and updating the records without
additional locking is faster and more efficient. But, when updating selected
records, locking each record as it is needed is preferable.

To use parent locks in this way, all processes request locks on the file. Processes
that need to update all records must request protected write or exclusive mode
locks on the file. Processes that need to update individual records request
concurrent write mode locks on the file, and then use sublocks to lock the
individual records in protected write or exclusive mode.

In this way the processes that need to access all records can do so by locking the
file, while processes that share the file can lock individual records. A number
of processes can share the file-level lock at concurrent write mode, while their
sublocks update selected records.

The number of levels of sublocks is limited by the size of the interrupt stack.
If the limit is exceeded, the error status SS$_EXDEPTH is returned. The size
of the interrupt stack is controlled by the SYSGEN parameter INTSTKPAGES.
The default value for INTSTKPAGES allows 32 levels of sublocks. For more
information on SYSGEN and INTSTKPAGES, see the Guide to Maintaining a
VMS System.

13.3.9 Lock Value Blocks
The lock value block is an optional 16-byte extension of a lock status block. The
first time a process associates a lock value block with a particular resource, the
lock management services create a resource lock value block for that resource.
The lock management services maintain the resource lock value block until there
are no more locks on the resource.

To associate a lock value block with a resource, the process must set the flag bit
LCK$M_ VALBLK in calls to the $ENQ system service. The lock status block lksb
argument must contain the address of the lock status block for the resource.

When a process sets the flag bit LCK$M_ VALBLK in a lock request (or conversion
request) and the lock request (or conversion) is granted, the contents of the
resource lock value block are written to the lock value block of the process.

13-11

Lock Management Services
13.3 Advanced Locking Techniques

When a process sets the flag bit LCK$M_ VALBLK on a conversion from protected
write or exclusive mode to a lower mode, the contents of the process's lock value
block are stored in the resource lock value block.

In this manner, processes can pass the value in the lock value block along with
the ownership of a resource.

Table 13-3 shows how lock conversions affect the contents of the process's and
the resource's lock value block.

Table 13-3 Effect of Lock Conversion on Lock Value Block

Lock Mode
at Which
Lock Is Held NL

NL Return

CR Neither

cw Neither

PR Neither

PW Write

EX Write

Key to Lock Modes

NL-Null lock
CR-Concurrent read
CW-Concurrent write
PR-Protected read
PW-Protected write
EX-Exclusive lock

Key to Effects

Lock Mode to Which Lock Is Converted

CR cw PR PW

Return Return Return Return

Return Return Return Return

Neither Return Return Return

Neither Neither Return Return

Write Write Write Write

Write Write Write Write

EX

Return

Return

Return

Return

Return

Write

Return-The contents of the resource lock value block are returned to the lock value block of the
process.
Neither-The lock value block of the process is not written; the resource lock value block is not
returned.
Write-The contents of the process's lock value block are written to the resource lock value block.

Note that when protected write or exclusive mode locks are dequeued using the
Dequeue Lock Request ($DEQ) system service, and the address of a lock value
block is specified in the valblk argument, the contents of that lock value block
are written to the resource lock value block.

13.4 Dequeuing Locks

13-12

When a process no longer needs a lock on a resource, you can dequeue the lock
by using the Dequeue Lock Request ($DEQ) system service. Dequeuing locks
means that the specified lock request is removed from the queue it is in. Locks
are dequeued from any queue: granted, waiting, or conversion. When the last
lock on a resource is dequeued, the lock management services delete the name of
the resource from its data structures.

The four arguments to the $DEQ macro (lkid, valblk, acmode, and flags) are
optional. The lkid argument allows the process to specify a particular lock to be
dequeued, using the lock identification returned in the lock status block.

Lock Management Services
13.4 Dequeuing Locks

The valblk argument contains the address of a 16-byte value lock block. If the
lock being dequeued is in protected write or exclusive mode, the contents of the
value block are stored in the value block associated with the resource. If the lock
being dequeued is in any other mode, the value block is not used. The lock value
block can be used only if a particular lock is being dequeued.

Three flags are available: LCKM_DEQALL, LCKM_CANCEL, and LCK$M_
INVVALBLK.

The LCK$M_DEQALL flag indicates that all locks of the access mode specified
with the acmode argument and less privileged access modes are to be dequeued.
The access mode is maximized with the access mode of the caller. If the flag
LCK$M_DEQALL is specified, then the lkid argument must be 0 (or not
specified).

When LCK$M_CANCEL is specified, $DEQ attempts to cancel a lock conversion
request that was queued by $ENQ. This attempt can succeed only if the lock
request has not yet been granted, in which case the request is in the conversion
queue. The LCK$M_CANCEL flag is ignored if the LCK$M_DEQALL flag
is specified. For more information about the LCK$M_CANCEL flag, see the
description of the $DEQ service in the VMS System Services Reference Manual.

When LCK$M_INVVALBLK is specified, $DEQ marks the lock value block,
which is maintained for the resource in the lock database, as invalid. See the
descriptions of $DEQ and $ENQ in the VMS System Services Reference Manual
for more information on the LCK$M_INVVALBLK flag.

The following is an example of dequeuing locks.

LKSB: .QUAD 0
RESOURCE: ; Resource is STRUCTURE_l

.ASCID /STRUCTURE_l/

$ENQ_S LKMODE=#LCK$K_CRMODE, - Concurrent read mode
LKSB=LKSB, -
RESNAM=RESOURCE, -
ASTADR=READ_UPDATES

$DEQ_S LKID=LKSB+4 ; LKSB+4 contains the lock ID

User mode locks are automatically dequeued when the image exits.

13.5 Local Buffer Caching with the Lock Management Services
The lock management services provide methods for applications to perform
local buffer caching (also called distributed buffer management). Local buffer
caching allows a number of processes to maintain copies of data (disk blocks,
for example) in buffers local to each process, and to be notified when the buffers
contain invalid data due to modifications by another process. In applications
where modifications are infrequent, substantial 1/0 may be saved by maintaining
local copies of buffers-hence, the names local buffer caching or distributed buffer
management. Either the lock value block or blocking ASTs (or both) can be used
to perform buffer caching.

13-13

Lock Management Services
13.5 Local Buffer Caching with the Lock Management Services

13.5.1 Using the Lock Value Block
To support local buffer caching using the lock value block, each process
maintaining a cache of buffers maintains a null mode lock on a resource that
represents the current contents of each buffer. (For this discussion, assume that
the buffers contain disk blocks.) The value block associated with each resource is
used to contain a disk block "version number." The first time a lock is obtained on
a particular disk block, the current version number of that disk block is returned
in the lock value block of the process. If the contents of the buffer are cached,
this version number is saved along with the buffer. To reuse the contents of the
buffer, the null lock must be converted to protected read mode or exclusive mode,
depending on whether the buffer is to be read or written. This conversion returns
the latest version number of the disk block. The version number of the disk block
is compared with the saved version number. If they are equal, the cached copy is
valid. If they are not equal, a fresh copy of the disk block must be read from disk.

Whenever a procedure modifies a buffer, it writes the modified buffer to disk and
then increments the version number prior to converting the corresponding lock to
null mode. In this way, the next process that attempts to use its local copy of the
same buffer will find a version number mismatch and must read the latest copy
from disk, rather than use its cached (now invalid) buffer.

13.5.2 Using Blocking ASTs
Blocking ASTs are used to notify processes with granted locks that another
process with an incompatible lock mode has been queued to access the same
resource.

Blocking ASTs can be used to support local buffer caching in two ways. One
technique involves deferred buffer writes; the other technique is an alternate
method of local buffer caching without using value blocks.

13.5.2.1 Deferring Buffer Writes
When local buffer caching is being performed, a modified buffer must be written
to disk before the exclusive mode lock can be released. If a large number of
modifications are expected (particularly over a short period of time), you can
reduce disk I/Oby maintaining the exclusive mode lock for the entire time that
the modifications are being made, and writing the buffer once. However, this
prevents other processes from using the same disk block during this interval.
This can be avoided if the process holding the exclusive mode lock has a blocking
AST. The AST will notify the process if another process needs to use the same
disk block. The holder of the exclusive mode lock can then write the buffer to disk
and convert its lock to null mode (thereby allowing the other process to access
the disk block). However, if no other process needs the same disk block, the first
process can modify it many times, but write it only once.

13.5.2.2 Buffer Caching

13-14

To perform local buffer caching using blocking ASTs, processes do not convert
their locks to null mode from protected read or exclusive mode when finished
with the buffer. Instead, they receive blocking ASTs whenever another process
attempts to lock the same resource in an incompatible mode. With this technique,
processes are notified that their cached buffers are invalid as soon as a writer
needs the buffer, rather than the next time the process tries to use the buffer.

Lock Management Services
13.5 Local Buffer Caching with the Lock Management Services

13.5.3 Choosing a Buffer Caching Technique
The choice between using version numbers or blocking ASTs to perform local
buffer caching depends on the characteristics of the application. An application
that uses version numbers performs more lock conversions, while one that uses
blocking ASTs delivers more ASTs. Note that these techniques are compatible;
some processes can use one technique and other processes can use the other
at the same time. Generally speaking, blocking ASTs are preferred in a low­
contention environment, while version numbers are preferred in a high-contention
environment. You may even invent combined or adaptive strategies.

In a combined strategy, the applications use specific techniques. If a process
is expected to reuse the contents of a buffer in a short amount of time, blocking
ASTs are used; if there is no reason to expect a quick reuse, version numbers are
used.

In an adaptive strategy, an application makes evaluations on the rate of blocking
ASTs and conversions. If blocking ASTs arrive frequently, the application changes
to using version numbers; if many conversions take place and the same cached
copy remains valid, the application changes to using blocking ASTs.

For example, consider the case where one process continually displays the state
of a database, while another occasionally updates it. If version numbers are used,
the displaying process must always check to see that its copy of the database is
valid (by performing a lock conversion); if blocking ASTs are used, the display
process is informed every time the database is updated. On the other hand, if
updates occur frequently, the use of version numbers is preferable to continually
delivering blocking ASTs.

13.6 Example of Using Lock Management Services
The following program segment requests a null lock for the resource named
TERMINAL. After the lock is granted, the program requests that the lock be
converted to an exclusive lock. Note that after SYS$ENQW returns, the program
checks both the status of the system service and the condition value returned in
the lock status block to ensure that the request completed successfully.

! Define lock modes
INCLUDE ' ($LCKDEF) '
! Define lock status block
INTEGER*2 LOCK_STATUS,
2 NULL
INTEGER LOCK_ID
COMMON /LOCK_BLOCK/ LOCK_STATUS,
2 NULL,
2 LOCK_ID

! Request a null lock
STATUS = SYS$ENQW (,
2 %VAL (LCK$K_NLMODE),
2 LOCK_STATUS,
2
2 ' TERMINAL ' ,
2 , , , , ,)
IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS))

13-15

Lock Management Services
13.6 Example of Using Lock Management Services

13-16

! Convert the lock to an exclusive lock
STATUS = SYS$ENQW (,
2 %VAL(LCK$K_EXMODE) I

2 LOCK_STATUS,
2 %VAL (LCK$M_CONVERT) I

2 I TERMINAL I I

2 I I I I I)

IF (.NOT. STATUS) CALL LIB$SIGNAL (%VAL(STATUS))
IF (.NOT. LOCK_STATUS) CALL LIB$SIGNAL (%VAL(LOCK_STATUS))

To share a terminal between a parent process and a subprocess, each process
requests a null lock on a shared resource name. Then, each time one of the
processes wants to perform terminal I/O, it requests an exclusive lock, performs
the I/O, and requests a null lock.

Because the lock manager is effective only between cooperating programs,
the program that created the subprocess should not exit until the subprocess
has exited. To ensure that the parent does not exit before the subprocess,
specify an event flag to be set when the subprocess exits (the num argument
of LIB$SPAWN). Before exiting from the parent program, use SYS$WAITFR to
ensure that the event flag has been set. (You can suppress the logout message
from the subprocess by using the SYS$DELPRC system service to delete the
subprocess instead of allowing the subprocess to exit.)

After the parent process exits, a created process cannot synchronize access to
the terminal and should use the SYS$BRKTHRU system service to write to the
terminal.

14
DECdtm Services

DECdtm services provide for complete and consistent execution of distributed
transactions on the VMS operating system. In transaction processing
applications, there can be many users simultaneously making inquiries and
updating a collection of shared data, generally a database. Transactions typically
involve communication between a network of systems distributed at various
geographic locations; therefore, the operations can be collectively referred to as
distributed transaction processing.

The following are DECdtm services:

• Start Transaction ($START_TRANS)

• Start Transaction and Wait ($START_TRANSW)

• End Transaction ($END_TRANS)

• End Transaction and Wait ($END_TRANSW)

• Abort Transaction ($ABORT_TRANS)

• Abort Transaction and Wait ($ABORT_TRANSW)

14.1 Using Transaction Management System Services
Application programs can call the VMS transaction management system services
to delimit the set of operations that make up distributed transaction. These
system services can then guarantee consistent execution of the transaction. See
the VMS System Services Reference Manual for a complete description of DECdtm
services.

You must call these services in your application program according to the syntax
rules for the programming language that you are using. Refer to the appropriate
language reference manual for more information on using system services.

14.1.1 Transaction Processing System Model
In Digital's model for transaction processing, several components work together
to execute atomic transactions.

At the end-user level, user-written application programs (AP) define the
task to be accomplished, such as query, update, and insertion, as well as how
transactions are to be executed. The application programs initiate transaction
execution using calls to VMS system services.

At the system level, the execution of the transaction depends on the interaction of
resource managers (RMs) and transaction managers (TMs).

14-1

DECdtm Services
14.1 Using Transaction Management System Services

The interaction of these components is shown in Figure 14-1.

Figure 14-1 Transaction Processing Components

Node

Database

ZK-1869A-G E

The key function of the DECdtm services is to act as transaction manager. A
transaction manager supports the transaction management system services
that are issued from application programs to delimit transactions. To complete
or abort a transaction, the transaction manager sends instructions to resource
managers and other transaction managers involved in the transaction. In this
way, a transaction manager coordinates the actions of a transaction.

Through calls to system services, application programs communicate directly with
the DECdtm services. Additionally, these programs can use the services provided
by a resource manager.

A resource manager is a software product that manages shared access to a
set of recoverable resources on behalf of application programs. In this context,
recoverable means that all updates to the resources on behalf of the transaction
can be made permanent or can be undone. Recoverable resources typically include
files or databases. The resource manager participates in the two-phase commit
protocol to commit or abort a transaction.

14.1.2 Transaction Management

14-2

The responsibilities of a transaction manager include the following:

• Delimiting transactions

• Tracking participating transaction managers and resource managers

• Ensuring that transactions either commit or abort

• Assisting in recovery of resources after failures

For every transaction that it coordinates, the transaction manager in the DECdtm
services maintains a list of the transaction's participants. Participants can
include:

• Resource managers on a local node, spanning one or more processes

• Transaction managers on other nodes within a network, which might also
have associated resource manager and transaction manager participants

The transaction manager uses this list of participants to execute the two-phase
commit protocol. During the execution of this protocol, each participating
transaction manager writes transaction information to a log file. A log file
contains a permanent record of transaction states. By having access to a log
file, a transaction manager can resume the execution of the two-phase commit

DECdtm Services
14.1 Using Transaction Management System Services

protocol after recovering from a system failure. When executing the two-phase
commit protocol, the transaction manager tells the transaction's participants
whether to commit or abort a transaction.

14.1.3 Starting a Transaction
Transaction management services demarcate transactions. To indicate the start
of transaction operations, an application program calls $START_ TRANS or its
synchronous equivalent, $START_TRANSW.

The application program should make a call to $START_TRANS prior to the
code making up the transaction operations and prior to any code that accesses
recoverable resources or remote nodes. In response to a call to $START_TRANS,
the transaction manager component of the DECdtm services generates a unique
transaction identifier (TID) for the transaction so that it can keep track of
the transaction. The transaction manager uses the TID to identify all actions
performed by resource managers and transaction managers on behalf of the
transaction.

For each process on which they are used, the DECdtm services maintain
the concept of a current transaction. The transaction that is started using
$START_TRANS is considered the process default, or current, transaction.
Alternatively, the NONDEFAULT flag can be set when $START_ TRANS is called
to establish a nondefault transaction.

Thus, when an application program that is using a resource manager such
as RMS Journaling makes a call to $START_TRANS, the TID of the current
transaction is used by default. For RMS Journaling, unless a specific TID is
specified (using the XAB$_TID item code), RMS associates the record stream with
the default, current transaction.

The following FORTRAN code fragment demonstrates the use of
$START_TRANSW. The program first determines the accounts to be credited
and debited and the amount to be transferred. It then calls $START_TRANSW
to indicate to the transaction manager that it is beginning the set of debit and
credit operations that make up the distributed transaction.

14-3

DECdtm Services
14.1 Using Transaction Management System Services

INTEGER*4 STATUS, TID (4)
INTEGER*2 IOSB (4)

INTEGER*4 SYS$START_TRANSW

GET_INPUT('Account to debit', DEBIT_ACCT)
GET_INPUT('Account to credit', CREDIT_ACCT)
GET_INPUT('Amount to transfer', TRANSFER_AMT)

STATUS=SYS$START_TRANSW (%VAL (0) I

1 %VAL (0) I

2 IOSB,
3 %VAL (0) I

4 %VAL (0) I

5 TID)

IF (STATUS) STATUS = IOSB (1)

IF (.NOT.STATUS) GOTO 100

STATUS = DEBIT_ACCOUNT (
1 DEBIT_ACCT, TRANSFER_AMT, %REF(0))

STATUS = CREDIT_ACCOUNT (
1 CREDIT_ACCT, TRANSFER_AMT, %REF(O))

14.1.4 Completing a Transaction

14-4

The processing of a transaction completes when a call is made to the DECdtm
system services to either commit or abort. The system services that end a
transaction and begin commit processing are $END_TRANS and its synchronous
equivalent, $END_TRANSW. The services that abort a transaction are
$ABORT_TRANS and its synchronous equivalent, $ABORT_TRANSW.

In response to an $END_TRANS call, the DECdtm transaction manager initiates
a commit protocol to inform all the transaction's participants to start commit
processing.

$END_TRANS can be called only by the same process that called the
$START_ TRANS service.

Note that a call to $END_TRANS does not guarantee transaction commitment.
A transaction could fail for a number of reasons. For example, if the timout
argument has been specified when calling the $START_TRANS service, then the
transaction will be aborted if the transaction exceeds the time specified.

$END_TRANS returns a failure status (SS$_ABORT) if a condition occurs that
makes it impossible to commit the transaction. In this event an abort reason code
is returned as a second longword in the I/O status block (IOSB).

The following FORTRAN code fragment demonstrates the use of
$END_TRANSW. After the final operation of the program is issued, the program
calls $END_ TRANSW to commit the transaction.

DECdtm Services
14.1 Using Transaction Management System Services

STATUS
1

STATUS
1
2
3
4
5

= CREDIT_ACCOUNT (
CREDIT_ACCT, TRANSFER_AMT,

= SYS$END_TRANSW (%VAL (0) I

%VAL (0) I

IOSB,
%VAL (0) I

%VAL (0) I

TID)

IF (STATUS) STATUS = IOSB (1)

IF (.NOT.STATUS) GOTO 100

END

14.1.5 Calling a Planned Abort

%REF (0))

$ABORT_TRANS and its synchronous equivalent, $ABORT_TRANSW, enable
applications to implement a planned abort. If errors occur during the execution
of the transaction processing, a call can be made to $ABORT_TRANS to end the
transaction so that previous changes do not become permanent in the accessed
database.

When an application calls the $ABORT_TRANS system service to abort a
transaction, it can supply an abort reason code in the reason parameter to
specify the reason why the transaction is to be aborted. Similarly, a resource
manager which casts a "veto" vote may specify an abort reason code. The abort
reason code is returned in the I/O status block (IOSB) for $ABORT_TRANS and
$END_TRANS.

Note that the IOSB is not filled in when a return code of SS$_SYNCH, indicating
successful synchronous completion, is returned. The SS$_SYNCH return code is
returned only if the DDTM$M_SYNC flag is set. Therefore, if you want the abort
reason code to be stored in the IOSB, do not set the DDTM$M_SYNC flag.

The following code fragment is from a COBOL application that calls
$ABORT_TRANSW as part of its error handling:

DISPLAY "Calling subtransaction to FETCH record from database." LINE PLUS 1.

CALL "ERASE_EAST" USING WS-EMP-KEY WS-EMP-RECORD WS-STATUS TID.
IF WS-STATUS IS NOT EQUAL TO "SUCCESS"

PERFORM ABORT-GLOBAL-TRANSACTION
GO TO END-MOVE-EAST-WEST.

ABORT-GLOBAL-TRANSACTION.

*
*

The employee name field contains information about the error
detected in the subprogram.

DISPLAY WS-EMP-NAME LINE PLUS 1.
DISPLAY "Aborting global transaction." LINE PLUS 1.

14-5

DECdtm Services
14.1 Using Transaction Management System Services

abort (rollback) global transaction
CALL "SYS$ABORT_TRANSW" USING

OMITTED
OMITTED
BY REFERENCE IOSB
OMITTED
OMITTED
BY REFERENCE TID

GIVING WS-SYS-STATUS.

14.1.6 Example of Using Transaction Management System Services

14-6

Example 14-1 is a BLISS program that uses the transaction management
services to create two simple transactions. The first transaction is committed,
using $END_TRANS. The second transaction is aborted, using $ABORT_TRANS.

Example 14-1 Using Transaction Management Services
MODULE EXAMPLE (MAIN=EXAMPLE) =
BEGIN

LIBRARY'SYS$LIBRARY:STARLET';

ROUTINE EXAMPLE =
BEGIN

LOCAL
STATUS,

!+

IOSB : VECTOR [4, WORD],
TID : $BBLOCK [DTI$S_TID],
BINARY_TIMEOUT : VECTOR [8, BYTE]

! Convert 10 seconds to a VMS time
!-

«» $BINTIM (TIMBUF = %ASCID '0000 00:00:10.00' I

TIMADR = BINARY_TIMEOUT) ;

IF NOT .STATUS THEN RETURN (.STATUS);

!+
! Start a nondefault process transaction
! -

~ STATUS = $START_TRANSW (EFN = l,
FLAGS (DDTM$M_NONDEFAULT OR

DDTM$M_SYNC) I

IOSB = IOSB,
ASTADR = 0 I
ASTPRM = 0,
TID = TID,
TIMOUT = BINARY_TIMEOUT);

IF .STATUS AND (.STATUS NEQU SS$_SYNCH) THEN

STATUS = .IOSB [OJ;

IF NOT .STATUS THEN RETURN (.STATUS);

!+
! Commit the transaction
! -

(continued on next page)

DECdtm Services
14.1 Using Transaction Management System Services

Example 14-1 (Cont.) Using Transaction Management Services

(S) STATUS = $END_TRANSW (EFN = 1,
FLAGS = DDTM$M_SYNC,
IOSB = IOSB,
ASTADR = 0 I
ASTPRM = 0 I
TID = TID);

IF .STATUS AND (.STATUS NEQU SS$_SYNCH) THEN

STATUS = .IOSB [0];

!+
! If the transaction aborted, extract the abort reason code and
! return that.
! -

Ct IF .STATUS EQLU SS$_ABORT THEN

STATUS= .IOSB<32,32,0> ;

IF NOT .STATUS THEN RETURN (.STATUS);

!+
! Start another nondefault process transaction
!-

CB STATUS = $START_TRANSW (EFN = 1,
FLAGS (DDTM$M_NONDEFAULT OR

DDTM$M_SYNC) I

IOSB = IOSB,
ASTADR = 0 I
ASTPRM = 0 I
TID = TID);

IF .STATUS AND (.STATUS NEQU SS$_SYNCH) THEN

STATUS= .IOSB [0];

IF NOT .STATUS THEN RETURN (.STATUS);

!+
! Abort the transaction
! -

(!) STATUS = $ABORT_TRANSW (EFN = l,
FLAGS = DDTM$M_SYNC,
IOSB = IOSB,
ASTADR = 0,
ASTPRM = 0 I
TID = TID);

IF .STATUS AND (.STATUS NEQU SS$_SYNCH) THEN

STATUS = .IOSB [0];

!+
! If the transaction aborted, extract the abort reason code and
! return that.
!-

(continued on next page)

14-7

DECdtm Services
14.1 Using Transaction Management System Services

14-8

Example 14-1 {Cont.) Using Transaction Management Services
8 IF .STATUS EQLU SS$_NORMAL THEN

STATUS = .IOSB<32,32,0>

RETURN (.STATUS);

END;

END
ELUDOM

0 This code sets the value if BINARY_TIMEOUT at 10 seconds.

8 A call to $START_TRANS to start a transaction and set the transaction time­
out value. The DECdtm transaction manager responds to this call by creating a
transaction identifier.

@)To commit the transaction, the application calls $END_TRANS.

8 For $END_TRANS, a return value of SS$_ABORT indicates that the
transaction aborted during processing. When this value is returned, the abort
reason code is available in the IOSB. This code retrieves the abort reason code
from the IOSB if the transaction is aborted.

0 To start another transaction, the application makes another call to
$START_TRANS.

0 To abort the transaction, the application calls $ABORT_TRANS.

8 For $ABORT_TRANS(W), a return value of SS$_NORMAL indicates that the
service completed successfully, that is, the transaction was aborted. This code
retrieves the abort reason code from the IOSB upon successful completion of
$ABORT_TRANSW. You must not set the DDTM$M_SYNC flag if you want the
abort reason code to be stored in the IOSB.

15
Programming Examples

This chapter presents three VAX MACRO programs: ORION, CYGNUS, and
LYRA. These programs do not perform any practical operations; they are intended
only to illustrate how to call various system services.

Each program is preceded by an introduction identifying the services it uses
and the main functions it performs. The programs themselves contain many
comments related to specific data definitions and portions of code.

15.1 ORION Program Example
The program ORION uses the following system services:

$ASSIGN Assign 1/0 Channel

$QIOW Form of Queue I/O Request and Synchronize

$NUMTIM Convert Binary Time to Numeric Time

$BINTIM Convert ASCII String to Binary Time

$SETIMR Set Timer

$WAITFR Wait for Single Event Flag

$READEF Read Event Flags

$SETPRN Set Process Name

This sample program illustrates the following:

1. Assigning an I/O channel to a terminal and writing messages to the terminal.
The device name is specified by the logical name TERMINAL. Before ORION
is run, the logical name must be assigned an equivalence device name.

2. Using the $NUMTIM system service to determine whether the current time
is before or after noon. A call to $SETIMR is made conditionally if the time is
prior to noon.

3. Obtaining a delta time value in the system format to use as input to the Set
Timer ($SETIMR) system service.

4. Calling the Set Timer system service.

a. Event flag-The $SETIMR call is followed by a wait for the specified
event flag. When the timer expires, the program calls $READEF and
displays the current status of the event flag cluster.

b. AST routine-One AST routine is for a delta time interval. The other
(conditional) is for an absolute time. In either case, the program continues
execution and will be interrupted when the timer requests are processed.

5. An example of terminal input. The program prompts for a character string to
be used as the process name of the current process. Then it uses this name
as input to the $SETPRN system service.

15-1

Programming Examples
15.1 ORION Program Example

15-2

.TITLE ORION SYSTEM SERVICES TEST

.IDENT /01/

Macro library calls

$IODEF
$SSDEF
$READEFDEF

Define I/0 function codes
Define system status values
Define offsets for $READEF

Local macro defined in private macro library

MESSAGE Output messages formatted by FAO

.MACRO MESSAGE
$QIOW_S CHAN=TTCHAN, -

FUNC=#I0$_WRITEVBLK, -
Pl=FAOBUF, -
P2=FAOLEN, -
P4=#32

BSBW ERROR
.ENDM MESSAGE

Read-only data program section

.PSECT RODATA,NOWRT,NOEXE

; Local Read/Write Data

TTNAME: .ASCID /TERMINAL/ ; Terminal logical name

; FAO control strings and data for timer (AST and event flag) tests

ASCNOON:
.ASCID

TENS EC: . ASCID
DISPLAYEFN:

.ASCID
TIMSTR:

.ASCID
NOONMSG:

.ASCIC
SECMSGDESC:

.ASCID
TWENTY: .LONG

/-- 12:00:00.00/ ; Noon in ASCII format
/0 00:00:10/ ; Ten seconds delta time in ASCII format

; Display cluster contents
/CLUSTER 2 CONTENTS: !XL/

; Display message after event flag wait
"!/TIMER ENTRY PROCESSED; CLUSTER 2 = !XL"

; Display message at noon
/I'M YOUR TIME AST ROUTINE; IT'S NOON ... /

; Display message from AST routine
"!/TIME AST ROUTINE; DELTA TIME ! %T 11

-10*1000*1000*20,-1 ; 20 seconds delta time

; Announcement messages

FAOSTR:
.ASCID II! /ORION: !AC II

Master control string
Name, message

Announcement messages and lengths for outputting

Programming Examples
15.1 ORION Program Example

HELLO: .ASCII /HELLO ... MY NAME IS ORION ... /
HELLOLEN:

.LONG HELLOLEN-HELLO

TIMERMSG:
.ASCII /BEGINNING TIMER TESTS ... /

TIMERLEN:
.LONG TIMERLEN-TIMERMSG

I

EFNWAITMSG:
.ASCII /TIMER SET; WAIT TEN SECONDS/

EFNWAITLEN:
.LONG EFNWAITLEN-EFNWAITMSG

ASTWAITMSG:
.ASCII /TIMER SET; AST IN 20 SECONDS/

ASTWAITLEN:
.LONG ASTWAITLEN-ASTWAITMSG

Prompt for terminal input

PROMPT: .ASCII /ENTER 1-15 CHARACTER NAME FOR PROCESS:/
PROMPTLEN:

.LONG PROMPTLEN-PROMPT

Error message control strings

ERRSTR formats error message if a system service fails
IOERRSTR formats error message if I/0 fails
BADASTSTR formats error message if error in AST routine

ERRSTR:
. ASCID " ! I SYSTEM SERVICE ERROR AT APP. ! XL RO=! XL"

IOERRSTR:
.ASCID 11 !/I/0 ERROR; IOSB !XW"

BADASTSTR:
.ASCID /BAD AST PARAMETER !UL/

WAKEUP: .ASCII /AWAKENED ... /
WAKEUPLEN:

.LONG WAKEUPLEN-WAKEUP

Read/write data

.PSECT RWDATA,RD,WRT,NOEXE

FAQ control string and buffer for all announcement messages

FAODESC:
. LONG · 80
.ADDRESS -

FAOBUF
FAOBUF: .BLKB 80
FAOLEN: .WORD 0

.WORD 0

Descriptor for FAO output buff er

Address of buff er
FAO buffer
Length of final string, always
need longword for $QIOW

Buffer to format messages from AST routine; a separate output buffer
ensures that if the AST is delivered while another message is being
written into the FAO output buffer, no data or message will be lost.

15-3

Programming Examples
15.1 ORION Program Example

15-4

FASTDESC:

FASTBUF:

.LONG 80

.ADDRESS -
FASTBUF

.BLKB 80
FASTLEN:

.WORD 0

.WORD 0

Descriptor for FAQ output buff er

Address of buff er

FAQ buff er

Length of final string, always
need longword for $QIOW

Receive channel number assigned to terminal and I/0 status here

TTCHAN: .BLKW 1 Terminal channel

TTIOSB: IOSB for terminal input
.BLKW 1 Return status

TTLEN: .BLKW 1 Length of I/0
.BLKL 1 Device char

Argument list for $NAME_G form of a system service call

READLST:
$READEF EFN=32, -

STATE=EFNTEST

Buffer to obtain numeric values of components of time. Since
the only field of interest is the hours field, the remaining
fields in the buffer are not formatted.

TIMES:
HOURS:

.BLKW

.BLKW

.BLKW

3
1
3

Year, month, day
Current time in hours
Remainder of buffer

Buffer for terminal input (will create input descriptor for
$SETPRN system service)

NAMEDESC:

NAME:

.LONG 15

.ADDRESS -
NAME

.BLKB 15

; Fields for timer tests

NOON: .BLKQ 1
TEN: .BLKQ 1
EFNTEST:

.LONG 0
EFNTEST2:

.LONG 0

Descriptor setup
Initial size of buffer

Address of buff er
Name string here

Will contain 12:00 in system format
Will contain 10 second delta time

Receive status of event flags

Status after timer test

Longword to save PC on entry to error handling subroutine

SAVEPC: .BLKL 1

; Code begins here .

. PSECT TIMER,EXE,NOWRT

.ENTRY ORION,AM<R2,R3,R4,R5,R6> i Entry mask

Assign an I/0 channel to the device specified by the logical name
TERMINAL and issue a message indicating we're off and running.
Do not perform normal error checking here; instead, let the
command interpreter issue a message based on the status in RO
if the channel assignment fails.

Programming Examples
15.1 ORION Program Example

SETUP:

I

$ASSIGN_S -
DEVNAM=TTNAME, -
CHAN=TTCHAN

BLBS R0,10$
RET

All okay, continue
Otherwise exit with status in RO

10$: $QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=HELLO, -
P2=HELLOLEN, -
P4=#32

BSBW ERROR

Call Read Event Flags to get status of event flags before beginning
tests and use FAQ to output the contents of local event flag cluster 2

$READEF_G -
READLST

BSBW ERROR
$FAO_S CTRSTR=DISPLAYEFN, -

OUTBUF=FAODESC, -
OUTLEN=FAOLEN,­
Pl=EFNTEST

BSBW ERROR
MESSAGE

Announce start of timer tests

TIMETEST:
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=TIMERMSG, -
P2=TIMERLEN, -
P4=#32

BSBW ERROR

Use MESSAGE MACRO

Call $NUMTIM to find out if it is currently AM or PM. If
the program is being run in the AM (any time), we'll call
$SETIMR to notify us via an AST when the time rolls over
to afternoon. If it's already PM, skip this setting of
the timer.

$NUMTIM_S -

BSBW
CMPW
BGEQ

TIMBUF=TIMES
ERROR
HOURS,#12
10$

; Before or after noon?
; After or noon, skip setting timer

Fall through here: format ASCII string representing 12 noon
into system quadword time format and call $SETIMR with
the address of AST service routine to handle timer requests.

$BINTIM_S -
TIMBUF=ASCNOON, -
TIMADR=NOON

BSBW ERROR

$SETIMR_S -
DAYTIM=NOON, -
ASTADR=TIMEAST, -
REQIDT=#12

BSBW ERROR

Get binary noon time

Error check

; Error check

Now, get a delta time of 10 seconds formatted into a quadword

15-5

Programming Examples
15.1 ORION Program Example

15-6

10$: $BINTIM_S -
TIMBUF=TENSEC, -
TIMADR=TEN

BSBW ERROR
$SETIMR_S -

EFN=#33, -
DAYTIM=TEN

BSBW ERROR

Get binary delta time

Error check
Set timer (ten seconds)

; Error check

Announce wait for event flag and wait; then read the
event flag cluster and output its contents

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=EFNWAITMSG, -
P2=EFNWAITLEN, -
P4=#32

$WAITFR_S -
EFN=#33

BSBW ERROR
Now wait
Error check

Update argument list for $READEF and then call it with new address
to write the cluster into. When complete, format a message and
display the contents of the cluster.

MOVAL EFNTEST2,READLST+READEF$_STATE
$READEF_G -

READLST
BSBW ERROR ; Error check
$FAO_S CTRSTR=TIMSTR, -

OUTLEN=FAOLEN, -
OUTBUF=FAODESC,-
Pl=EFNTEST2

BSBW ERROR ; Error check
MESSAGE

Announce setting of timer with AST in 20 seconds (using
alternate method of specifying delta time) . Then, set timer
and continue.

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=ASTWAITMSG, -
P2=ASTWAITLEN, -
P4=#32

$SETIMR_S -
DAYTIM=TWENTY, -
ASTADR=TIMEAST, -
REQIDT=#20

BSBW ERROR ; Error check

Issue a prompt for terminal input: request a name for the current
process and then use the character string entered as the process
name.

RDNAME:
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=PROMPT, -
P2=PROMPTLEN, -
P4=#32

BSBW ERROR Error check

Programming Examples
15.1 ORION Program Example

10$:

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_READVBLK, -
IOSB=TTIOSB, -
Pl=NAME, -
P2=NAMEDESC

BSBW ERROR

CMPW
BEQL
$FAO_S

MESSAGE

TTIOSB,#SS$_NORMAL
10$
CTRSTR=IOERRSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,­
Pl=TTIOSB

BRW RDNAME
MOVZWL TTLEN,NAMEDESC
$SETPRN_S -

PRCNAM=NAMEDESC
BSBW ERROR

I/0 successful?
Yes, go on

Go try again
Update descriptor length

Set process name

Hibernate. When ORION is run interactively, the terminal is dormant.
When the AST for the Set Timer service is delivered, ORION
will awaken long enough to execute the AST service routine and
then resume execution.

If ORION is run in a subprocess, wakeups can be scheduled for
delta time intervals. Each time it is awakened, ORION displays a
message and then resumes hibernating.

HIB: $HIBER_S ; Hibernate for now
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=WAKEUP, -
P2=WAKEUPLEN, -
P4=#32

BRB HIB
RET

AST routine to handle timer requests

.ENTRY
CMPL
BEQL
CMPL
BEQL
BRW

TIMEAST,"M<>
#12,4(AP)
10$
#2 0 I 4 (AP)
20$
30$

Format message for noon AST

10$: $FAO_S CTRSTR=FAOSTR, -
OUTBUF=FASTDESC, -
OUTLEN=FASTLEN, -
Pl=#NOONMSG

BSBW ERROR
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF, -
P2=FASTLEN, -
P4=#32

BSBW ERROR
RET

Format message for 20 second AST

Entry mask for timer AST routine
Is it noon AST?
Yes, go do it
Is it delta time AST?
Yes, go do that
Neither, issue error message

Error check

Error check

15-7

Programming Examples
15.1 ORION Program Example

20$: $FAO_S CTRSTR=SECMSGDESC, -
OUTBUF=FASTDESC, -
OUTLEN=FASTLEN,­
Pl=#TWENTY

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF, -
P2=FASTLEN, -
P4=#32

RET

Format message if spurious AST

30$: $FAO_S CTRSTR=BADASTSTR, -
OUTLEN=FASTLEN, -
OUTBUF=FASTDESC,­
P1=4 (AP)

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF, -
P2=FASTLEN, -
P4=#32

RET

Error-handling routine: checks status code in RO.
If low bit set, returns to mainline routine. Otherwise,
displays approximate PC and RO when system service call
encounters an error and issues RET that causes image exit.

ERROR:
BLBC
RSB

R0,10$

; Use FAO to format output error message

10$: MOVL (SP) ,SAVEPC

END:

$FAO_S CTRSTR=ERRSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,­
Pl=SAVEPC, -
P2=R0

BLBC RO,END
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=FAOBUF, -
P2=FAOLEN, -

RET
.END

P4=#32

ORION

If error, branch
Otherwise, continue

15.2 CYGNUS Program Example
The program CYGNUS uses the following system services:

$ASSIGN Assign I/O Channel

$DCLEXH Declare Exit Handler

$CREMBX Create Mailbox

$GETDVI Get DeviceNolume Information

$CREPRC Create Process

$FAQ Formatted ASCII Output

$QI 0 Queue I/O Request

15-8

Programming Examples
15.2 CYGNUS Program Example

$CRELNM

$WAKE

$SETSFM

$WAITFR

$DELLNM

$DASSGN

Create Logical Name

Wake Process

Set System Service Failure Exception Mode

Wait for Single Event Flag

Delete Logical Name

Deassign I/O Channel

This sample program illustrates the following:

1. Assigning a channel to the current output device assigned to the logical name
SYS$0UTPUT.

2. Declaring an exit handler to receive control at image exit. The exit handler
ensures that the image exits efficiently.

3. Creating a mailbox and using the $GETDVI system service to obtain the unit
number.

4. Obtaining the logical name translation of SYS$0UTPUT, and checking for a
concealed device name, by using the $GETDVI system service.

5. Creating a subprocess and using the mailbox created as a termination
mailbox. When the subprocess terminates, an AST service routine interprets
the message.

6. Placing names in the group logical name table.

7. Waking a hibernating subprocess. The subprocess created by this program
places itself in hibernation after starting up. When awakened, it translates
the logical names placed in the group logical name table .

. IDENT /01/

System macro definitions required by CYGNUS

Define status codes for returns
Define I/0 function codes for $QIO
Define names for mailbox messages
Define names for quota list

$SSDEF
$IODEF
$MSGDEF
$PQLDEF
$ACCDEF
$DIBDEF
$DVIDEF
$LNMDEF

Define names for termination message
Define names for device information buffer
Define item codes for device information
Define item codes for logical names

Local macros:

MESSAGE, to output messages formatted by FAO

.MACRO MESSAGE
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=FAOBUF, -
P2=FAOLEN
P4=#32

BSBW ERROR
.ENDM MESSAGE

GRPNAME, to place logical name/equivalence name
pairs in the group logical name table with $CRELOG and
to do error checking.

15-9

Programming Examples
15.2 CYGNUS Program Example

15-10

.MACRO GRPNAME LOGICAL,EQUAL
MOVW EQUAL,CREITM
MOVL EQUAL+4,CREBF
$CRELNM_S -

TABNAM=GRPTBL, -
LOGNAM=LOGICAL,
ITMLST=CREITM

BSBW ERROR
.ENDM GRPNAME

Read-only data program section

.PSECT RODATA,NOWRT,NOEXE

Descriptor for input logical name

OUTPUT: .ASCID /SYS$0UTPUT/

; Descriptor for group logical name table
GRPTBL: .ASCID /LNM$GROUP/

; Buffers for announcement messages and lengths

HELLO: .ASCID /CYGNUS ... HELLO/
HELLOLEN:

.LONG HELLOLEN-HELLO

BYE: .ASCII /CYGNUS EXIT HANDLER ... /
BYELEN: .LONG BYELEN-BYE

; Control strings for output messages formatted by FAO and associated
; counted ASCII strings to insert in messages

PRCSTR:
.ASCID

ASTERRSTR:
.ASCID

IOERR: .ASCIC
IDERR: .ASCIC

/LYRA CREATED, PID !XL/ ; Display PID of subprocess

"!/MAILBOX MESSAGE HAS !AC !XW"
'I/0 ERROR' ; I/0 error in AST routine
/BAD MSG ID/ ; Mailbox message not

termination message
PIDERRSTR:

.ASCID
DONESTR:

.ASCID
BADEXSTR:

.ASCID

"!/SPURIOUS PROCESS ID !XL IN DELETION MAILBOX"

"!/LYRA COMPLETED; STATUS !XL TIME !%T"

"!/EXIT DUE TO ERROR !XL"

; Item list for $GETDVI to find unit number of mailbox

MBX_DVILIST:
.WORD 4
.WORD DVI$_UNIT
.ADDRESS -

UNIT_NUMBER
.LONG 0
.LONG 0

Begin $GETDVI item list
Maximum of 4 bytes long
Item code for unit number

Address of buff er
No return length needed
End item list

; Item list for $GETDVI finding logical name translation of SYS$0UTPUT

TERM_DVILIST: Begin $GETDVI item list
. WORD 64 Maximum of 64 bytes long
.WORD DVI$_DEVNAM Item code for device name
.ADDRESS -

TERM Destination of terminal name
.ADDRESS -

TERM_DESC Destination of length of string
. LONG 0 End item list

Programming Examples
15.2 CYGNUS Program Example

; Descriptor to define name of image for subprocess to execute.

LYRAEXE:
.ASCID /LYRA.EXE/

Quota list for subprocess: defines minimal quotas required
for the subprocess to execute and ensures that the creating
image will have sufficient quotas to continue.

QLIST: .BYTE PQL$_BYTLM Buffer quota
.LONG 1024
.BYTE PQL$_FILLM Open file quota
.LONG 3
.BYTE PQL$_PGFLQUOTA Paging file quota
.LONG 256
.BYTE PQL$_PRCLM Subprocess quota
.LONG 1
.BYTE PQL$_TQELM Timer queue quota
.LONG 3
.BYTE PQL$_LISTEND

Logical name/equivalence name pairs for group table.
Note that one of the names in the table is nested.

ORION: .ASCID /ORION/
HUNTER: .ASCID /HUNTER/
PEGASUS: .ASCID /PEGASUS/
HORSE: .ASCID /HORSE/
LYRA: .ASCID /LYRA/
HARP: .ASCID /HARP/
CYG: .ASCID /CYGNUS/
SWAN: .ASCID /SWAN/
DUCK: .ASCID /UGLY DUCKLING/
TALE: .ASCID /FAIRY TALE!/

Read/write data program section

.PSECT RWDATA,RD,WRT,NOEXE

UNIT_NUMBER:
.LONG 0

TERM_DESC:
.LONG 64

TERM_ADDRESS:
.ADDRESS -

TERM

CONC_TERM:

Destination of unit number

Maximum of 64 bytes

.ASCII /_/
TERM: .BLKB 64

2nd underscore for concealed device
Terminal name is placed here

TTCHAN: .BLKW 1 Channel number of terminal

; $CRELNM item list
; This list is filled in for each invocation of the GRPNAME macro

CREITM: .WORD
.WORD

CREBF: .LONG
.LONG
.LONG

0
LNM$_STRING
0
0
0

Termination control block

Equivalence length
Item code
Equivalence buffer
No return length
List terminator

15-11

Programming Examples
15.2 CYGNUS Program Example

15-12

EXITBLOCK:
.BLKL 1
.ADDRESS -

EX I TR TN
.LONG 2
.ADDRESS -

STATUS
ERRPC: .BLKL 1
STATUS: .BLKL 1

Exit control block
System uses this for pointer

Address of routine
Number of arguments for handler

Address to store status
Store PC (if error)
Status code at exit

; Fields used for termination mailbox creation, message buffering

EXCHAN: .BLKW 1
MBXIOSB:

.BLKW 1
MELEN: .BLKW 1
MBPID: .BLKL 1

EXITMSG:
.BLKB ACC$K_TERMLEN

; Receive PID of subprocess here

LYRAPID:
.BLKL 1

Channel number of mailbox
I/0 status block
Status of I/0 completion
Length of operation.here
PID of process deleted

Buffer for mailbox message

Output buffers for strings formatted by FAO

FAODESC:
.LONG 80
.ADDRESS -

FAOBUF
FAOBUF: .BLKB 80
FAOLEN: .BLKW 1

.BLKW 1

Descriptor for output buffer
80-character buff er

Address
Buffer
Receive length here
Need longword for $QIO

; Need separate FAO buffers for use in AST routine to ensure
; that data doesn't get clobbered asynchronously

FASTDESC:

FASTBUF:

.LONG 80

.ADDRESS -
FASTBUF

.BLKB 80
FASTLEN:

.BLKW 1

.BLKW 1

Program code begins here .

. PSECT CODE,EXE,RD,NOWRT

Length

Address

Buffer

Get length
Need longword for $QIO

.ENTRY CYGNUS,AM<R2,R3,R4,R5,R6,R7,R8,R9,Rl0,Rll>

; Call $ASSIGN to assign an I/0 channel to device assigned to SYS$0UTPUT
; and issue message verifying successful initialization

10$: $ASSIGN_S -
DEVNAM=OUTPUT, -
CHAN=TTCHAN

BSBW ERROR

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=HELLO, -
P2=HELLOLEN, -
P4=#32

BSBW ERROR

Error check

Programming Examples
15.2 CYGNUS Program Example

Declare exit handler to do cleanup operations

$DCLEXH_S -
DESBLK=EXITBLOCK

BSBW ERROR

Create a mailbox for subprocess termination message

MAILBOX:
$CREMBX_S -

CHAN=EXCHAN, -
MAXMSG=#120, -
BUFQU0=#240, -
PROMSK=#O

BSBW ERROR

Use $GETDVI to determine the unit number of the mailbox

$GETDVI_S -
EFN=#2, -
CHAN=EXCHAN, -
ITMLST=MBX_DVILIST

BSBW ERROR

$WAITFR_S -
EFN=#2

BSBW ERROR

Specify event flag
Channel just assigned
List of information

Wait for synchronous completion

Translate the logical name SYS$0UTPUT, using $GETDVI

$GETDVI_S -
EFN=#2, -
DEVNAM=OUTPUT, -
ITMLST=TERM_DVILIST

BSBW ERROR

$WAITFR_S -
EFN=#2

BSBW ERROR

CMPL
BNEQ
INCW
DECL

R0,#SS$_CONCEALED
PROCESS
TERM_DESC
TERM_ADDRESS

Specify event flag
Descriptor for SYS$0UTPUT
List of information

Wait for synchronous completion

Was the device concealed?
No, branch
Yes, add one to length of name ...
and change pointer to CONC_TERM

Create the subprocess. The logical name SYS$0UTPUT will be
equated to the same device as SYS$0UTPUT of the creating process.
The MBXUNT argument specifies the name of the mailbox just
created; the mailbox will receive a message when LYRA exits.

PROCESS:
$CREPRC_S -

IMAGE=LYRAEXE, -
PIDADR=LYRAPID,­
MBXUNT=UNIT_NUMBER,­
OUTPUT=TERM_DESC, -
QUOTA=QLIST

BSBW ERROR

If okay, format an output message showing the process ID.

15-13

Programming Examples
15.2 CYGNUS Program Example

15-14

$FAO_S CTRSTR=PRCSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,­
Pl=LYRAPID

BSBW ERROR
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=FAOBUF, -
P2=FAOLEN, -
P4=#32

BSBW ERROR

Queue an I/0 request to the mailbox with an AST
to receive notification when LYRA completes.

$QIO_S EFN=#4, -
CHAN=EXCHAN, -
FUNC=#IO$_READVBLK,­
ASTADR=EXITAST, -
IOSB=MBXIOSB,­
Pl=EXITMSG, -
P2=#ACC$K_TERMLEN

BSBW ERROR

Place names in the group logical name table using the macro GRPNAME.
It will be LYRA'S task, when awakened, to translate these
names and display the results at the terminal.
Note that translation of the name CYGNUS will require
iterative translation.

PUT_NAMES:
GRPNAME ORION,HUNTER

GRPNAME PEGASUS,HORSE

GRPNAME LYRA,HARP

GRPNAME CYG,SWAN

GRPNAME SWAN,DUCK

GRPNAME DUCK,TALE

After placing names in the table, wake LYRA, which has been hibernating,
to perform the logical name translation.

$WAKE_S PIDADR=LYRAPID
BSBW ERROR
RET ; All finished

AST service routine to read the termination mailbox.
In this example, only one message is actually expected in the mailbox
but the program performs all the following checks:

1. That the I/0 completed successfully.
2. That the message in the mailbox is a process termination message.
3. That the process being deleted is the subprocess created.

This service routine enables system service failure exception
mode as an error-handling device: if a system service
call fails, an exception condition will occur. CYGNUS
does not declare a condition handler, so the image
will be forced to terminate, and the system will display
pertinent information about the exception condition .

. ENTRY EXITAST,AM<R2,R3,R4,R5,R6,R7,R8,R9,Rl0,Rll>
$SETSFM_S -

ENBFLG=#l ; Enable SSFAIL exceptions

Check IOSB to ensure that I/0 completed successfully

Programming Examples
15.2 CYGNUS Program Example

CMPW MBXIOSB,#SS$_NORMAL
BEQL 20$
$FAO_S CTRSTR=ASTERRSTR,­

OUTLEN=FASTLEN, -
OUTBUF=FASTDESC­
Pl=# IOERR, -
P2=MBXIOSB

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF, -
P2=FASTLEN, -
P4=#32

BRW 50$

Check that I/0 was successful
Okay, go on
Otherwise, format error msg

I/0 error
Display IOSB

; Return

Check message type field in mailbox message to ensure that the message
is a process termination message.

20$: CMPW EXITMSG+ACC$W_MSGTYP,#MSG$_DELPROC ; Check message type
BEQL 30$ Okay, go on
$FAO_S CTRSTR=ASTERRSTR,- Otherwise, format error message

OUTLEN=FASTLEN, -
OUTBUF=FASTDESC,-
Pl=#IDERR, - Invalid PID error
P2=EXITMSG+ACC$W_MSGTYP Print message type code

$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF I -

P2=FASTLEN, -

P4=#32
BRW 50$; Return

Compare the second longword in the IOSB with the PID returned
by $CREPRC to ensure that the termination message is for LYRA.

30$: CMPL LYRAPID,MBPID LYRA deletion?

35$:

BNEQ 35$ Yes, go on
BRW 40$

$FAO_S CTRSTR=PIDERRSTR,- Otherwise, format error message
OUTLEN=FASTLEN, -
OUTBUF=FASTDESC,-
Pl=MBPID Display spurious PID

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF, -
P2=FASTLEN, -
P4=#32

BRW 50$; Return

Format an output message indicating LYRA's final exit status
and the time of day at which LYRA terminated.

40$: $FAO_S CTRSTR=DONESTR, - ; Format message telling
OUTLEN=FASTLEN, - ; of LYRA'S demise
OUTBUF=FASTDESC,-
Pl=EXITMSG+ACC$L_FINALSTS, - ; Get status code
P2=#EXITMSG+ACC$Q_TERMTIME ; and time of deletion

$QIOW_S CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FASTBUF, -
P2=FASTLEN, -
P4=#32

50$: $SETSFM_S -
ENBFLG=#O Disable exceptions

RET Return

15-15

Programming Examples
15.2 CYGNUS Program Example

15-16

This is the exit handler for CYGNUS. It receives control
when CYGNUS exits, either normally, or as a result of
an error condition .

. ENTRY EXITRTN,AM<> ; Entry mask
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=BYE, -
P2=BYELEN, -
P4=#32

BSBW ERROR
BLBS STATUS,20$; Normal exit, continue

; If error, format error message using argument list in
; exit control block

10$: $FAO_S

BSBW
$QIOW_S

CTRSTR=BADEXSTR, -
OUTLEN=FAOLEN, -
OUTBUF=FAODESC,­
Pl=STATUS, -
P2=ERRPC
ERROR
CHAN=TTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FAOBUF, -
P2=FAOLEN, -
P4=#32

Common code for both normal and error exit: wait for subprocess
to terminate (if it hasn't already), then delete all names
from the group logical name table.

20$:

30$:

$WAITFR_S -
EFN=#4

BSBW ERROR
$DELLNM_S -

TABNAM=GRPTBL
BSBW ERROR
$DASSGN_S -

CHAN=EXCHAN
BSBW
MOVL
RET

ERROR
STATUS,RO

Wait for termination message

Delete all names

Deassign mailbox channel

Restore saved status code
Exit with status

Common error handling routine. This routine checks the
status code in RO; if success, returns to main
program. If there is an error, the PC is placed in the exit
control block so that exit routine can format and display
an error message.

ERROR:

10$:

BLBC
RSB
MOVL
RET
.END

R0,10$

(SP) I ERRPC

CYGNUS

Check status code
Low bit set, go back
Store PC
RET will cause image exit

Programming Examples
15.3 LYRA Program Example

15.3 LYRA Program Example
The program LYRA uses the following system services:

$TRNLNM Translate Logical Name

$ASSIGN Assign I/O Channel

$HIBER Hibernate

$FAOL Formatted ASCII Output with List Parameter

The program LYRA is a subprocess created by CYGNUS. After assigning a
channel to its current output device, LYRA hibernates. When awakened by
CYGNUS, LYRA translates the logical names placed in the group logical name
table by CYGNUS, and displays the results of the translations on the terminal.

When LYRA exits, a termination message is sent to the mailbox specified by
CYGNUS .

. IDENT /01/

Macro library call

$SSDEF
$LNMDEF

Local macro

Define system status values
Define logical name item codes

MESSAGE, to output messages formatted by FAO

.MACRO MESSAGE
$QIOW_S CHAN=TTCHAN, -

FUNC=#IO$_WRITEVBLK, -
Pl=FAOBUF, -
P2=FAOLEN, -
P4=#32

BSBW ERROR
.ENDM MESSAGE

Local data program section starts here

.PSECT RODATA,NOWRT,NOEXE

Logical name of logical output device

OUTPUT: .ASCID /SYS$0UTPUT/

; Group logical name table

GRPTBL: .ASCID /LNM$GROUP/

; Announcement messages

HELLO: .ASCII /LYRA: INITIALIZING ... AND SO TO SLEEP/
HELLOLEN:

.LONG HELLOLEN-HELLO

WAKEMSG:
.ASCII /LYRA: OKAY, WILL DO LOGICAL NAME TRANSLATION ... /

WAKELEN:
.LONG WAKELEN-WAKEMSG

FAO control string for logical name output message

LOGNAMSTR:
.ASCID II !/LYRA: lAS IS A lAS"

; Error message control string

15-17

Programming Examples
15.3 LYRAProgram Example

15-18

ERRSTR:
.ASCID 11 l /LYRA: SYSTEM SERVICE ERROR AT APP. !XL RO=lXL"

Logical names to be translated

ORIONLOG:
.ASCID /ORION/

CYGNUSLOG:
.ASCID /CYGNUS/

LYRALOG:
.ASCID /LYRA/

PEGASUSLOG:
.ASCID /PEGASUS/

Read/write data program section starts here

.PSECT RWDATA,RD,WRT,NOEXE

; Item list for $TRNLNM

TRNITM: .WORD 255 Buffer length
.WORD LNM$_STRING Item code
.LONG 0 Buffer address
.ADDRESS - Returned string length

LOG LEN
.LONG 0 List terminator

Output buffer for all output formatted by FAO

FAOLEN: .WORD 0
.WORD 0

FAODESC:
.LONG 80
.ADDRESS -

FAOBUF
FAOBUF: .BLKB 80

Length of final string, always
need longword for $OUTPUT

Address of buff er

; Word to receive channel number of terminal

OUTCHAN:
.BLKW 1

Buffers to maintain logical name/equivalence name pairs
in routine that performs logical name translation

LOGBUFA:
.LONG 255
.ADDRESS -

BUFA
BUFA: .BLKB 255
LOGBUFB:

BUFB:

.LONG 255

.ADDRESS -
BUFB

.BLKB 255

LOGLEN: .LONG 0 ; Save length of equivalence name

; Parameter list for call to FAOL (used by translate routine)

TLIST:
TLOGNAM:

.LONG 0
TEQLNAM:

.LONG 0
SAVER3: .LONG 0

Address of logical name descriptor

Address of equivalence descriptor
Save register contents for switch

Programming Examples
15.3 LYRA Program Example

Longword to store the PC when a system service call results in an
error. LYRA checks the low bit of RO following each service call.
If set, LYRA continues; otherwise, it saves the PC and branches
to an error-handling routine that displays the saved PC and the
contents of RO.

ERRPC: .LONG 0

Code begins here .

. PSECT CODE,EXE,RD,NOWRT

.ENABL LSB

; For address of SSFAIL

.ENTRY LYRA,AM<R2,R3,R4,R5,R6> i Entry mask

Assign channel to device ref erred to by logical name
SYS$0UTPUT. This name was placed in the logical name
table by CYGNUS (it is also CYGNUS's logical output device).

20$:

30$:

$ASSIGN_S -
DEVNAM=OUTPUT, -
CHAN=OUTCHAN

BLBS
RET
$QIOW_S

BLBS
MOVAL
BRW

R0,30$

CHAN=OUTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=HELLO, -
P2=HELLOLEN, -
P4=#32
R0,40$
30$,ERRPC
ERROR

40$: $HIBER_S
BLBS R0,50$
MOVAL 40$,ERRPC
BRW ERROR

50$: $QIOW_S CHAN=OUTCHAN, -

60$:

FUNC=#IO$_WRITEVBLK, -
Pl=WAKEMSG, -
P2=WAKELEN, -
P4=#32

BLBS R0,60$
MOVAL 50$,ERRPC
BRW ERROR

Exit with status if ASSIGN fails

When awakened, begin translating logical names. To translate the
names, place address of a logical name descriptor in R2 and then
go to the subroutine that performs the translation. Repeat for
each logical name to translate.

MO VAL ORIONLOG,R2
JSB TRANSLATE
MO VAL CYGNUSLOG,R2
JSB TRANSLATE
MO VAL LYRALOG,R2
JSB TRANSLATE
MO VAL PEGASUSLOG,R2
JSB TRANSLATE

All finished, return

RET

.ENABL LSB

15-19

Programming Examples
15.3 LYRA Program Example

15-20

Subroutine to translate and print logical names:
On entry to this subroutine,
R2 = address of logical name to translate
It uses: R3 to hold address of final result buffer

R4 to hold address of intermediate buff er

TRANSLATE:
MO VAL
MO VAL

LOGBUFA,R3
LOGBUFB,R4

; Get addresses of buffers

Initial translation places resultant equivalence name in buffer pointed
to by R3

10$: MOVL 4(R3) ,TRNITM+4
$TRNLNM_S -

TABNAM=GRPTBL, -
LOGNAM=(R2) I -

ITMLST=TRNITM
BLBS R0,30$
MOVAL 10$,ERRPC
BRW ERROR

Place length of equivalence name in first word of descriptor and use this
descriptor as input for next translation. If SS$_NOLOGNAM is returned,
then there was no nesting of name. If not, update registers to
provide input and output descriptors for translation and repeat
translation until SS$_NOLOGNAM is returned.

30$:

40$:

MOVZWL LOG LEN, (R3)
MOVL 4(R4) ,TRNITM+4
$TRNLNM_S -

BLBS
CMPL
BEQL
MO VAL
BRW

MOVL
MOVL
MOVL
BRB

TABNAM=GRPTBL, -
LOGNAM=(R3) I -

ITMLST=TRNITM
R0,40$
R0,#SS$_NOLOGNAM
50$
30$,ERRPC
ERROR

R3,SAVER3
R4,R3
SAVER3,R4
30$

; Fix length in buff er

Switch

; Try again

Place addresses of logical name and equivalence names in FAO parameter list
and call FAO to format output message, then output the message.

50$: MOVL R2,TLOGNAM

60$:

70$:

MOVL R3,TEQLNAM
$FAOL_S CTRSTR=LOGNAMSTR, -

OUTLEN=FAOLEN, -
OUTBUF=FAODESC,­
PRMLST=TLIST

BLBS R0,60$
MOVAL 50$,ERRPC
BRW ERROR

$QIOW_S

BLBS
MO VAL
BRW
RSB

CHAN=OUTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FAOBUF, -
P2=FAOLEN, -
P4=#32
R0,70$
60$,F.RRPC:
ERROR

To main routine

Error-handling routine:

Programming Examples
15.3 LYRA Program Example

This routine uses the saved PC and RO to format a message describing
the conditions under which a call to a system service failed.

ERROR:
$FAO_S CTRSTR=ERRSTR, -

OUTBUF=FAODESC, -
OUTLEN=FAOLEN,­
Pl=ERRPC, -
P2=R0

$QIOW_S CHAN=OUTCHAN, -
FUNC=#IO$_WRITEVBLK, -
Pl=FAOBUF, -
P2=FAOLEN, -
P4=#32

RET
.END LYRA

15-21

A
User-Written System Services

A user-written system service is a shareable image containing one or more
routines that nonprivileged users can call to perform privileged functions. The
creator of the user-written system service codes, compiles or assembles, links, and
installs the routine; other users can then call this routine in their programs using
the standard CALL interface, provided they have linked their object module or
modules with the user-written system service. User-written system services thus
provide a vehicle for you to write and use your own system services.

Because a user-written system service is installed as a protected image, it is
allowed to execute in kernel or executive mode. For this reason, when you design
your system service, you must carefully define the boundaries between the
protected subsystem and the user who calls the service. A protected image has
privileges to perform tasks on its own behalf. When your image performs tasks
on the behalf of the user, you must ensure that your image only performs tasks
the user could have done on his or her own. Always keep the following coding
principles in mind:

• Keep privileges off and turn them on only when necessary.

• Make sure privileges are off on all exit paths. When you perform a task for
the user, operate in user mode whenever possible and operate at all times
with the user's privileges, identity, and so on. Take care that operating in
an inner mode does not give you any special privileges with respect to the
operation being performed. Only resume a privileged state when you are
about to resume operation on your own behalf.

• If user input can affect an operation executed with privilege, you have to
carefully validate the input. Never pass user parameters directly to an
operation executed in an inner mode or with privilege. When designing your
program, keep in mind that the inner modes implicitly provide a user with
the system privileges SETPRV, CMKRNL, SYSNAM, and SYSLCK. (See the
Guide to VMS System Security for descriptions.)

• As a protected image, your program does not have the entire VMS
programming environment at its disposal. Unless a module has the prefix
SYS$ or EXE$, you must avoid calling it from an inner mode. In particular,
do not call LIB$GET_VM or LIB$RET_VM from an inner mode. You can call
VMS RMS from executive mode but not from kernel mode. On VMS Version
5.4 or later, any VMS RMS files that were opened with privilege from an
inner mode can be left open during user execution, but this is not acceptable
on earlier versions of VMS.

• Never make subroutine calls to other shareable images from kernel or
executive mode.

A-1

User-Written System Services

If the system service is linked with the /PROTECT command qualifier to the
LINK command, the VMS Linker Utility prevents outbound calls. This is not
the case when you select the PROTECT option in a linker options file (see
Section A.2.1). With only selected image sections protected, the operating
system does not prevent outbound calls and the responsibility for evaluating
the trustworthiness of calls belongs to the program and its designer. Your
program is responsible for determining which outbound calls are suspect and
which ones are not.

• When a protected subsystem opens a file on its own behalf, it should specify
executive-mode logical names only by naming executive mode explicitly in the
FAB$V _LNM_MODE subfield of the file access block (FAB). This prevents a
user's logical name from redirecting a file specification.

A.1 Coding a User-Written System Service
Any user-written system service has to satisfy the following coding requirements:

• The system service must contain a special change-mode vector identifying a
kernel-mode or executive-mode dispatcher, or both.

• Its entry point must be followed by a CHMK or CHME instruction with a
negative operand.

• Any kernel-mode or executive-mode dispatcher pointed to in the change-mode
vector must validate the CHMK or CHME operand, and must be followed by
one or more routines that perform the desired function or functions.

• The user-written system service (or each routine in it) must enable any
necessary user privileges and disable them when they are no longer needed.
(You use the Set Privileges ($SETPRV) system service to enable and disable
user privileges.)

The following sections discuss each of these considerations.

A.1.1 Change-Mode Vector

A-2

One of the program sections in a user-written system service must start with
a change-mode vector. The purpose of this vector is to point (by means of self­
relative offsets) to the start of the kernel-mode or executive-mode dispatch routine
within the user-written system service.

The program section containing the change-mode vector must be assigned the
VEC attribute. (See the VAX MACRO and Instruction Set Reference Manual or
the VMS Linker Utility Manual for a discussion of program section attributes.)

The change-mode vector must have the following format. The offsets from the
base of the vector to specific items are expressed by symbols starting with
PLV$L_. The $PLVDEF macro defines these symbols, which are contained in
SYS$LIBRARY:STARLET.MLB.

The symbols defined by the $PLVDEF macro are:

Vector Type Code PLV$L_ TYPE
(PLV$C_ TYP _CMOD)

Kernel Mode Dispatcher Offset PLV$L_KERNEL

Exec Mode Entry Offset PLV$L_EXEC

User Rundown Service Offset PLV$L_USRUNDOWN
Reserved

User-Written System Services
A.1 Coding a User-Written System Service

RMS Dispatcher Offset PLV$L_RMS

Address Check PLV$L_CHECK

The significant offsets in the change-mode vector and their contents are as
follows:

• PLV$L_TYPE-Contains the type code PLV$C_TYP _CMOD, identifying this
as a change-mode vector.

• PLV$L_KERNEL-Contains a self-relative pointer to the user-supplied
kernel-mode dispatcher. (Self-relative means relative to the start of the
longword field.) A value of 0 indicates that no kernel-mode dispatcher exists.

• PLV$L_EXEC-Contains a self-relative pointer to the user-supplied executive­
mode dispatcher. A value of 0 indicates that no executive-mode dispatcher
exists.

• PLV$L_USRUNDWN-Contains a self-relative pointer to the user-supplied
rundown routine. This offset is 9ptional. This routine is intended to be used
for image-specific cleanup and resource deallocation. When the image linked
against the user-written system service is run down by the system, this
run-time routine is invoked. Unlike exit handlers, it is always called when
a process or image exits. (You call this routine with a JSB instruction; it
returns with an RSB instruction in kernel mode, at IPL 0.) For information
about exit handlers, see Section 8.6.3.

• PLV$L_RMS-Contains a self-relative pointer to the dispatcher for VMS RMS
services. A value of 0 indicates that no user-supplied VMS RMS dispatcher
exists. Only one user-written system service should specify the VMS RMS
vector, because only the last value will be used. This field is intended for use
only by Digital.

• PLV$L_CHECK-Contains a value to verify that a user-written system
service that is not position-independent is located at the proper virtual
address. If the image is position-independent, this field should contain a zero.
If the image is not position-independent, this field should contain its own
address.

A.1.2 Entry Point to the User-Written System Service
The entry point to a user-written system service must be an entry mask followed
by a CHMK (Change Mode to Kernel) or CHME (Change Mode to Executive)
instruction, depending on whether you want control transferred to a kernel-mode
or executive-mode dispatcher (specified in the vector). The operand of the CHMK
or CHME instruction must be a negative value, because positive values are
reserved for calling system services supplied by Digital.

A.1.3 Kernel-Mode or Executive-Mode Dispatcher
The kernel-mode or executive-mode code you write must do the following:

• Validate the CHMK or CHME operand, handling any invalid operands.

• Transfer control to the appropriate coding segment if the user-written system
service contains functionally separate coding segments. The CASE instruction
in VAX MACRO or a computed GOTO-type statement in a high-level language
provides a convenient mechanism for determining where to transfer control.

• Precede the coding segments performing the functions the user-written
system service was designed to perform.

A-3

User-Written System Services
A.1 Coding a User-Written System Service

A.1.4 Enabling and Disabling User Privileges
A user-written system service must enable any privileges that it needs but that
the non privileged user of the user-written system service lacks. The user-written
system service must also disable any such privileges before the nonprivileged
user receives control again. To enable or disable a set of privileges, use the Set
Privileges ($SETPRV) system service. The following example shows the operator
(OPER) and physical I/O (PHY_IO) privileges being enabled.

PRVMSK: .LONG <l@PRV$V_OPER>!<l@PRV$V_PHY_IO> ;OFER and PHY_IO
.LONG 0 ;quadword mask required. No bits set in

;high-order longword for these privileges.

$SETPRV_S ENBFLG=#l,­
PRVADR=PRVMSK

;l=enable, O=disable
;Identifies the privileges

Any code executing in executive or kernel mode is granted an implicit SETPRV
privilege, so it can enable any privileges it desires.

A.2 Linking the User-Written System Service
The following conventions apply when you link (create) a user-written system
service:

• Use the /SHAREABLE command qualifier to identify the image to be created
as shareable.

• Use the /PROTECT command qualifier or the PROTECT= option to identify
the entire image or specific clusters, respectively, as protected against
user-mode or supervisor-mode write access.

• Define the user-written system service's entry point as a universal symbol,
using the UNIVERSAL= option.

A.2.1 Specifying Protection for the Image or Clusters

A-4

The VMS Linker allows you to protect all or part of a user-written system service
from write access by code executing in user or supervisor mode. The /PROTECT
command qualifier causes all image sections to be so protected. The PROTECT=
option in a linker options file permits you to specify protection when some clusters
require protection and some do not.

When creating a privileged shareable image, you should protect the clusters
containing code or data that privileged-mode code must access. You should not
protect the clusters that user-mode code must access. Thus, the /PROTECT
command qualifier should only be used when the entire shareable image needs
to be protected. The PROTECT= option allows user-written system services to
contain parts into which the nonprivileged user can write.

Be very careful to segregate user-accessible storage from the privileged parts
of your service. If user-accessible storage is used by privileged code, it must be
validated as carefully as any other user input.

The linker option takes the form PROTECT= YES or PROTECT=NO and precedes
the specifications for clusters that are to be protected or unprotected, respectively.
The following example shows the linker options file entries to designate clusters
A, B, and Das protected, and cluster C as unprotected.

User-Written System Services
A.2 Linking the User-Written System Service

PROTECT= YES
CLUSTER=A, I ,MODULE1,MODULE2
CLUSTER=B, I ,MODULE3,MODULE4,MODULE5
PROTECT=NO
CLUSTER=C, I ,MODULE6,MODULE7
PROTECT= YES
CLUSTER=D, I ,MODULE8,MODULE9

The VMS Linker Utility Manual discusses linker options files and explains each
available option.

A.3 Installing the User-Written System Service
To make a user-written system service usable by nonprivileged programs, you
must install it as a protected permanent global section. The following procedure
is recommended:

1. Move the user-written system service to a protected directory, such as
SYS$SHARE.

2. Run the Install Utility, specifying the /PROTECT, /OPEN, and /SHARED
qualifiers. You can also specify the /HEADER_RESIDENT qualifier. (See the
VMS Install Utility Manual for a description.) The following entry could be
used to install a user-written system service whose image name is USS.

$ INSTALL
ADD SYS$SHARE:USS/PROTECT/OPEN/SHARED/HEADER_RES

Installing the system service as /WRITABLE creates a situation where all users
calling the services can write to a common storage area (provided you define the
program section's attributes as global and shareable). While a common data area
might be desirable in special situations, it is more typical for each process to have
its own writable storage area.

A.4 Using the User-Written System Service
To the nonprivileged user of a user-written system service, there is no difference
between using it and using an ordinary shareable image. To use a user-written
system service, you must do the following:

1. Call the user-written system service.

2. Link the user-written system service into the executable image being created.

A.5 Program Listings
Refer to SYS$EXAMPLES:USSDISP.MAR for listings of modules in a user­
written system service and of a module that calls the user-written system
service.

A-5

B
Using Shared Memory

The MA780 is a multiport memory unit that can be attached to VAX-11/780
processors. Each VAX-11/780 processor can support up to two MA780s. Each
MA780 has four ports, thereby allowing up to four VAX-11/780 processors to be
attached to it.

Using one or more multi port memory units, an application can consist of
multiple processes running on different VAX-11/780 processors. Regardless of
the processor on which they are running, these processes can communicate the
completion of an event, send messages, and share common data and code. by
means of the shared memory.

B.1 Preparing Multiport Memory for Use
Before an application using multiport memory can execute under the VMS
operating system, the system manager must activate VMS in the processors
connected to the multiport memory unit and initialize that memory. See your
operations guide for an explanation of the system management responsibilities
associated with a multiport memory unit; this section summarizes the system
management functions for the benefit of the application programmer.

First, the system manager activates the VMS operating system in a VAX-11/780
processor and initializes the multiport memory unit. These actions cause the
following to occur:

• The uninitialized shared memory is connected to the VMS operating system
running in the processor.

• A name is defined that all processes running in all processors can use to refer
to the shared memory (see Section B.3).

• Limits are set for the following resources in this multiport memory unit:

Common event flag clusters: the total number that can be created, and
the number that can be created by processes running on this processor

Mailboxes: the total number that can be created, and the number that
can be created by processes running on this processor

Global sections: the total number that can be created, and the number
that can be created by processes running on this processor

The system manager activates the VMS operating system in the other processors
connected to the multiport memory unit. The system manager then connects
the initialized shared memory to the VMS operating system running in each of
these processors and sets limits for the number of common event flag clusters,
global sections, and mailboxes that processes on each processor can create in the
multiport memory.

8-1

Using Shared Memory
B.1 Preparing Multiport Memory for Use

The system manager can also install global sections in shared memory just as
they are installed in local memory. The Install Utility can be used to create
shared memory global sections for known files. After the global sections are
installed, a process running in any processor connected to the multiport memory
can map to the section, if the process has the appropriate privilege. The process
can gain access to the global section either by using a logical name defined by the
system manager or by using the section name specified when the global section
was created. In the latter case, the section name must be unique on the processor
running the process attempting to access the global section.

B.2 Privileges Required for Shared Memory Use
To use facilities in memory shared by multiple processors, you must have all
of the user privileges required to use the equivalent facility in local memory.
For example, to create a permanent global section you must have the PRMGBL
privilege, and to create a temporary or permanent mailbox you must have the
TMPMBX or PRMMBX privilege, respectively.

In addition to any other required privileges, you must have the SHMEM privilege
to create or delete a common event flag cluster, mailbox, or global section in
memory shared by multiple processors. However, you do not need the SHMEM
privilege to use an existing cluster, mailbox, or global section in multiport
memory.

B.3 Naming Facilities in Shared Memory

B-2

To allow access to facilities in memory shared by multiple processors, the system
manager and application programmers define names that application programs
use to refer to individual shared memory units. During system installation, the
system manager defines the name that processes on that particular processor use
to refer to the shared memory itself. Application programs define the names that
they use to refer to common event flag clusters, global sections, and mailboxes
located in the shared memory.

By convention, facilities in shared memory have a name string in the following
format:

memory-name:facility-name

where:

memory-name

facility-name

Name assigned by the system manager during system
installation to the shared memory containing the facility. The
VMS operating system requires the memory name when you
specify a common event flag cluster or mailbox. The colon is
recognized as a delimiter separating the two parts of the name
string. The name must contain 43 or fewer characters, and can
consist only of alphabetic characters, numeric characters, the
dollar sign ($), and the underscore (_).

Logical name assigned to the event flag cluster, global section,
or mailbox. The name must contain 43 or fewer characters, and
can consist only of alphabetic characters, numeric characters,
the dollar sign ($), and the underscore (_).

Using Shared Memory
8.3 Naming Facilities in Shared Memory

Following are examples of facility names.

SHRMEM:GS_DATA Identifies the global section GS_DATA in the shared memory
named SHRMEM

SHRMEM:MAILBX Identifies the mailbox MAILBX in the same shared memory

B.4 Assigning Logical Names and Logical Name Translation
You can define a logical name for a shared memory facility with the DEFINE
or ASSIGN command or with the Create Logical Name ($CRELNM) system
service. Application programs can then refer to the facility using the logical
name; for example, a process can invoke the Create Mailbox and Assign Channel
($CREMEX) system service specifying the logical name for an existing mailbox to
which a channel is to be assigned.

When translating a logical name for a shared memory facility, the VMS operating
system uses a slightly different approach from that used for other logical names.
The purpose of this approach is to allow programmers to specify either the
complete name (memory name and facility name) or a logical name that the
system will translate to the complete name. If you define logical names properly,
a program that uses a given facility in local memory can be run without change
to use the facility in shared memory.

Whenever the VMS operating system encounters the name of a common event
flag cluster, mailbox, or global section, it performs the following special logical
name translation sequence:

1. Inserts one of the following prefixes to the name (or to the part of the name
before the colon if a colon is present):

CEF$ for common event flag clusters
MEX$ for mailboxes
GEL$ for global sections

2. Subjects the resultant string to logical name translation. If translation does
not succeed (that is, the original name did not use a logical name), passes the
original name string to the system service. If translation does succeed, goes
to step 3.

3. Appends the part of the original string after the colon (if any) to the
translated name.

4. Repeats steps 1 to 3 (up to a number of times determined by the system, if
necessary) until logical name translation fails. When translation fails, passes
the string to the system service.

For example, assume that you have made the following logical name assignment:

$ DEFINE MBX$CHKPNT SHRMEM$1:CHKPNT

Assume also that your program refers to the mailbox name as CHKPNT in a
system service argument. The following logical name translation takes place:

1. MEX$ is prefixed to CHKPNT.

2. MEX$CHKPNT is translated to SHRMEM$1:CHKPNT.

3. No further translation is successful; therefore, the string
SHRMEM$1:CHKPNT is passed to the system service.

B-3

Using Shared Memory
B.4 Assigning Logical Names and Logical Name Translation

The logical name definition in the preceding example allows a program that used
a mailbox named CHKPNT in local memory to run using the mailbox in shared
memory, without being recompiled or relinked.

Note that if a process creates one or more subprocesses and they use a mailbox
or common event flag cluster in shared memory, the creator should place the
logical name in the job or group logical name table (for example, specify the /JOB
or /GROUP qualifier with the DEFINE command). If the name is defined in
the process logical name table (the default), the subprocesses do not receive the
correct equivalence name, because each subprocess has its own process logical
name table.

There are two exceptions to the logical name translation method discussed in this
section:

• If the facility name starts with an underscore (_), the VMS operating system
strips the underscore and considers the resultant string the actual name (that
is, no further translation is performed).

• If the facility is a global section with a name in the format name_nnn,
VMS first strips the underscore and the digits (nnn), then translates the
resultant name according to the sequence discussed in this section, and
finally reappends the underscore and digits. The system uses this method
with known images and shared files installed by the system manager.

B.5 How VMS Finds Facilities in Shared Memory

B-4

After the VMS operating system performs the logical name translation described
in Section B.4, the final equivalence name must be the name of a facility in the
processor's local memory or in shared memory. If the equivalence name specifies
the name of a shared memory (that is, the name is in the format memory­
name.facility-name), VMS searches for the facility in the appropriate database of
the specified shared memory unit.

If the equivalence name specifies a common event flag cluster or mailbox and
does not specify a memory name, VMS searches through the local memory
common event flag cluster database or mailbox database until it locates the
specified cluster or mailbox. Absence of a memory name as part of a common
event flag cluster name or mailbox name indicates that the facility is located in
local memory.

If the equivalence name specifies a global section and does not specify a memory
name, the VMS operating system looks for the section in the following order:

1. It searches the global section tables for sections in the processor's local
memory.

2. It searches the global section tables for each initialized shared memory
connected to the processor in the order in which they were connected and
recognized by the processor.

The result of searching in this order is that global sections in the processor's
local memory take precedence over those in shared memories. Thus, absence of
a memory name as part of a global section name is not used as an indication of
where the global section is located.

Using Shared Memory
B.6 Using Common Event Flags in Shared Memory

8.6 Using Common Event Flags in Shared Memory
Under the VMS operating system, any process can associate with up to two
common event flag clusters (event flag numbers 64 through 95 and 96 through
127). These clusters can be located in shared memory or in local memory. To
create and associate with a common event flag cluster in shared memory and
manipulate flags in the cluster, you use the same steps as you would to associate
with a common event flag cluster in local memory:

1. Issue the Associate Common Event Flag Cluster ($ASCEFC) system service
to create and name the cluster or to associate with an existing named cluster.

2. Issue any of the services that set, clear, and wait for designated event flags,
as appropriate.

Creation of a shared memory common event flag cluster requires CEF PORT
quota. You can set up this quota by using the SYSGEN command SHARE. This
quota is restored when the common event flag cluster is deleted.

As with local memory clusters, the first process among cooperating processes
to· issue the Associate Common Event Flag Cluster ($ASCEFC) system service
causes the cluster to be created and named. Any other process calling this service
and specifying the same cluster name associates with that existing cluster. The
VMS operating system implicitly qualifies cluster names with the group number
of the creator's UIC; therefore, other cooperating processes must belong to the
same group. All of the event flag system services, with the exception of Associate
Common Event Flag Cluster and Disassociate Common Event Flag Cluster,
function identically whether they are used with local or shared memory clusters.
The only difference with the associate and disassociate system services is that, to
specify a cluster in shared memory, you must provide the memory name as well
as the cluster name. That is, after VMS performs logical name translation of the
name argument, the cluster name must have the following format:

memory-name:cluster-name

Section B.3 describes the name format and Section B.4 explains the logical name
translation performed by the system. Chapter 4 describes all of the event flag
services in detail.

8.7 Using Mailboxes in Shared Memory
The creation of a mailbox in shared memory requires MAILBOX PORT quota.
This quota is acquired by means of the SYSGEN command SHARE and is
returned when the mailbox is deleted.

The first process on each processor must use the Create Mailbox and Assign
Channel ($CREMBX) system service to create a shared memory mailbox and
assign a channel to it. Any $CREMBX system service call referring to a shared
memory mailbox must specify a mailbox name that has or translates to the
following format (Section B.4 explains the logical name translation procedure):

memory-name:mailbox-name

When the mailbox is created, the $CREMBX system service also creates
the mailbox-name portion of the name string as a logical name with an
equivalence name in the format MBn. For example, if the complete name
string is SHMEM:MAILBOX, the system service creates MAILBOX as a logical
name with an equivalence name of, for example, MBB005.

8-5

Using Shared Memory
8.7 Using Mailboxes in Shared Memory

The Assign I/O Channel ($ASSIGN) and Deassign I/O Channel ($DASSGN)
system services require that yo11 specify only the mailbox-name portion of a
shared memory mailbox name string. Likewise, any high-level language program
statements that open, close, read from, or write to a shared memory mailbox
must specify only the mailbox-name portion.

The following code example shows two VAX FORTRAN programs using a shared­
memory mailbox. The memory name in this example is SHMEM. The programs
are running in processes on separate processors.

PROGRAM ONE
INTEGER*4 SYS$CREMBX,STATUS,CHAN

STATUS= SYS$CREMBX(,CHAN,,, I I 'SHMEM:MAILBOX')
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C-- Open the mailbox using the mailbox-name; write a message.

OPEN (UNIT=l,NAME='MAILBOX' ,STATUS='NEW')
WRITE (1,*) MESSAGE

END

PROGRAM TWO
INTEGER*4 SYS$CREMBX,STATUS,CHAN

STATUS= SYS$CREMBX(,CHAN,, I I I 'SHMEM:MAILBOX')
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

C-- Open the mailbox using the mailbox-name; read the message.

OPEN (UNIT=l,NAME='MAILBOX' ,STATUS='OLD')
READ (l,*) MESSAGE

END

You cannot use a mailbox in shared memory as a process termination mailbox.
Note that because the processes run on different processors, each must issue a
$CREMBX system service request.

A mailbox located in memory shared by multiple processors is deleted when all of
the following occur:

• A processor is rebooted.

• The multiport memory is not reinitialized.

• No other processor has any processes with channels assigned to the mailbox.

Section 7 .20 discusses mailboxes and related system services in detail.

B.8 Using Global Sections in Shared Memory

B-6

You need GLOBAL SECTION PORT quota to create a global section in memory
shared by more than one processor. You acquire this quota using the SYSGEN
command SHARE; it is returned when the global section is deleted or when
you reissue the SYSGEN command SHARE after the processor on that port is
rebooted.

Using Shared Memory
B.8 Using Global Sections in Shared Memory

Under the VMS operating system, processes can map global sections located in
local memory or in shared memory. A global section in shared memory can be
mapped to an image file or a data file, just like a global section in local memory.
To create a global section in shared memory, you perform the same steps as you
would to create a global section in local memory:

1. Using VMS RMS, open the file to be mapped.

2. Issue the Create and Map Section ($CRMPSC) system service.

The file to be mapped must reside on a disk device attached to the local processor.
After the section is created, however, processes on all processors attached to
the shared memory can map the section. To map to an existing global section
in shared memory, you issue a Map Global Section ($MGBLSC) system service
specifying the name of the section. After the section is mapped, processes gain
access to shared memory global sections in the same manner as they do to local
memory sections. VMS thus makes use of the shared memory unit transparent to
the process.

The VMS operating system treats the pages of a global section in shared memory
differently from pages in local memory. When a process creates a shared-memory
global section, VMS brings all of the pages of the mapped image or data file into
memory. Any process mapped to that global section can gain access to those
pages without incurring a page fault because the pages are already in physical
memory. Unlike process pages in local memory, global section pages in shared
memory are not included in the working sets of the processes that map the
section.

Because no paging occurs, VMS never writes the contents of shared memory
global section pages back to their disk file. For read/write global sections in
which you want to maintain an updated file while the application executes, you
must issue an Update Section File on Disk ($UPDSEC) system service. The
process issuing the update request must execute on the same processor as the
process that created the global section. You can update the disk file periodically
during execution of the application as a checkpoint precaution. The disk file is
automatically updated when the section is deleted.

Each process that has mapped a global section in shared memory can unmap the
section in either of the following ways:

• Issue a Delete Virtual Address Space ($DELTVA) system service to delete the
process's virtual address space that maps the section.

• Terminate the current image, thereby causing VMS to unmap the process
from the section automatically.

Deleting a global section in shared memory requires an explicit deletion request,
because all global sections in shared memory must be permanent sections. The
deletion request can be either a Delete Global Section ($DGBLSC) system service
issued by the application or a deletion request issued by the system manager
using the Install Utility. In either case, the VMS operating system does not
perform the actual deletion until all processes that have mapped the section
unmap it.

When a process requests deletion of a shared memory global section page, VMS
waits until no direct I/O is outstanding for the process before deleting the page.
This is because no reference count is maintained for shared memory global
section pages. (For example, VMS cannot determine whether outstanding direct
I/O is for the shared memory global section page or not.) Applications using

8-7

Using Shared Memory
8.8 Using Global Sections in Shared Memory

devices that have direct I/O perpetually outstanding, such as the DR32, must
not delete shared memory global section pages because this causes the process
to hang in the MWAIT state (unless the applications cancel the outstanding I/O
request first).

8.8.1 Removing Shared Memory Global Sections
A shared memory global section can be deleted only by the creating processor.

If you re bootstrap a processor and reconnect it to an MA 780 without reinitializing
the MA780, the System Generation Utility (SYSGEN) does cleanup for the
processor. This cleanup causes all global sections created by processes running on
this processor to be marked as having no creating processor. (The data structures
that allow the data in the global section pages to be written back into the disk file
no longer exist.)

Without a creating processor, you must do the following before you attempt to
delete shared memory global sections:

1. Reboot all processors.

2. Reinitialize the MA780.

Section 12. 7 provides information on the use of the VMS system services used
with global sections, that is, memory management system services. Section B.8.2
provides information specifically related to creating and mapping a global section
in shared memory. The $CRMPSC, $MGBLSC, $DGBLSC, and $UPDSEC system
services are the only memory management system services for which the shared
memory has any direct implications.

8.8.2 Create and Map Section System Service

B-8

The Create and Map Section system service has the following general formats
when issued to create or map (or both) a global section in shared memory:

VAX MACRO Format
$CRMPSC [inadr], [retadr], [acmode], [flags], gsdnam

,[ident], [relpag], [chan], [pagcnt], [vbn], [prot]

High-Level Language Format
SYS$CRMPSC [inadr], [retadr], [acmode], [flags], gsdnam

,[ident], [relpag], [chan], [pagcnt], [vbn], [prot]

With the exception of the flags, gsdnam, and pfc arguments, the arguments of
this service are not affected by MA780 considerations.

flags
Mask defining the section type and characteristics. Of the flags defined, you must
set the following two.

Flag

SEC$M_GBL

SEC$M_PERM

Meaning

Global section

Permanent section

That is, sections in shared memory must be permanent global sections.

Using Shared Memory
8.8 Using Global Sections in Shared Memory

If appropriate, you can also set the following flags.

Flag

SEC$M_DZRO

SEC$M_WRT

SEC$M_SYSGBL

SEC$M_EXPREG

Meaning

Pages are demand-zero
pages

Read/write section

System global section

Map section into the
first free range of virtual
addresses large enough to
hold the section

Default

Pages are not zeroed when copied

Read-only

Group global section

Map section according to the inadr
argument

When using the Create and Map Section system service to create global sections
in shared memory, you cannot set either SEC$M_CRF (copy-on-reference) or
SEC$M_PFNMAP (page frame number mapping). If you set SEC$M_CRF, VMS
places the global section in local memory.

gsdnam
Address of a character string descriptor pointing to the text name string for the
global section. This argument is required for creating sections in shared memory.

The string can be either the name of a global section or the logical name of a
global section. The VMS operating system performs logical name translation as
described in Section B.4.

VMS implicitly qualifies global section names with an identification. For group
global sections, the section name is also implicitly qualified by the group number
of the process creating the global section.

pfc
Page fault cluster size for local memory sections. This argument is ignored for
global sections in shared memory, because VMS reads the file into memory when
it creates the section and does not allow paging for sections in shared memory.

B-9

c
Implementing Site-Specific Security Policies

Occasionally, you may need to write routines that implement site-specific policies
or special algorithms. The routines that you write can either replace or augment
built-in VMS policies. This section contains instructions for replacing key
operating system security routines with routines that are specific to your site.
Two types of routines are discussed: loadable system services and shareable
images.

C.1 Creating Loadable Security Services
This section describes how to create a system service image and how to update
the file SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA, which
controls site-specific loading of system images. These procedures update the
loading of system images for all nodes of a cluster.

Currently, you can replace three system services with services specific to your
site:

• $ERAPAT-Generates a security erase pattern

• $MTACCESS-Controls magnetic tape access

• $HASH_PASSWORD-Applies a hash algorithm to an ASCII password

When creating the system service, you code the source module and define the
vector offsets, the entry point, and the program sections for the system service.
At this point, you can assemble and link the module to create a loadable image.

Once you have created the loadable image, you install it. First, you copy the
image into the SYS$LOADABLE_IMAGES directory and add an entry for it in
the VMS system images file using the System Management Utility (SYSMAN).
Next, you invoke the system images command procedure to generate a new
system image data file. Finally, you reboot the system to load in your service.

The following sections describe how to create and load the $ERAPAT system
service. An example of the $ERAPAT system service can be found in
SYS$EXAMPLES:DOD_ERAPAT.MAR on the VMS operating system. What
is described here also applies to the system services $HASH_PASSWORD and
$MTACCESS. An example of how to prepare and load the $HASH_PASSWORD
service can be found in SYS$EXAMPLES:HASH_PASSWORD.MAR.

C-1

Implementing Site-Specific Security Policies
C.1 Creating Loadable Security Services

C.1.1 Preparing and Loading a System Service

C-2

Use the following procedure to prepare and load a system service, in this case
$ERAPAT:

1. Create the source module.

a. Include the following macro to define system service vector offsets:

$SYSVECTORDEF ; Define system service vector offsets

b. Use the following macro to define the system service entry point.

SYSTEM_SERVICE ERAPAT, - Entry point name
<R4>, - Register to save
MODE=KERNEL,- ; Mode of system service
NARG=3 ; Number of arguments

(The code immediately following this macro is the first instruction of the
$ERAPAT system service.)

c. Use the following macros to declare the desired program sections
(PSECT).

DECLARE_PSECT EXEC$PAGED_CODE ; Pageable code PSCET

DECLARE_PSECT EXEC$PAGED_DATA ; Pageable data PSECT

DECLARE_PSECT EXEC$NONPAGED_DATA Nonpageable data PSECT

DECLARE_PSECT EXEC$NONPAGED_CODE ; Nonpageable code PSCET

2. Assemble the source module by using the following command:

$ MACRO DOD_ERAPAT+SYS$LIBRARY:LIB.MLB/LIB

3. Link the module to create a SYS$ERAPAT.EXE executive loaded image. You
can link the module using the command procedure DOD_ERAPAT_LNK.COM
in SYS$EXAMPLES. (A command procedure is also available to link the
$HASH_PASSWORD example.) To link the $ERAPAT module, enter the
following command:

$ @SYS$EXAMPLES:DOD_ERAPAT_LNK.COM

4. Prepare the operating system image to be loaded.

a. Copy the SYS$ERAPAT.EXE image produced by the link command into
the directory SYS$COMMON:[SYS$LDR]. Note that privilege is required
to put files into this directory.

b. Add an entry for the SYS$ERAPAT.EXE image in the
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX data file.

You add an entry by using the SYSMAN command SYS_LOADABLE
ADD. (See the VMS SYSMAN Utility Manual for a description.) For
example, the following commands add an entry in VMS$SYSTEM_
IMAGES.IDX for SYS$ERAPAT.EXE.

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> SYS_LOADABLE ADD _LOCAL_ SYS$ERAPAT -

SYSMAN> /LOAD_STEP = SYSINIT -
_SYSMAN> I SEVERITY = WARNING -

SYSMAN> /MESSAGE = "failure to load SYS$ERAPAT.EXE"

Implementing Site-Specific Security Policies
C.1 Creating Loadable Security Services

This entry specifies that the SYS$ERAPAT.EXE image is to be loaded by
the SYSINIT process during the bootstrap. If there is an error loading the
image, the following messages are printed on the console terminal.

%SYSINIT-E-failure to load SYS$ERAPAT.EXE
-SYSINIT-E-error loading <SYS$LDR>SYS$ERAPAT.EXE, status = "status"

The following table shows other error messages that may be returned.

Message Meaning User Action

NO_PHYSICAL_ Physical memory is not Check SYSGEN
MEMORY available parameters

NO_POOL Not enough nonpaged Check SYSGEN
pool parameters

MULTIPLE_ISDS More than one image Check link options
section of a given type

BAD_GSD An inconsistency was Verify that the image was
detected properly linked

NO_SUCH_IMAGE The requested image Check image name
cannot be located against images in

SYS$LOADABLE_
IMAGES

c. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file. The system bootstrap
uses this image data file to load the appropriate images into the system.

d. Reboot the system, which loads the original SYS$ERAPAT.EXE image
into the system. Subsequent calls to the $ERAPAT system service use the
normal VMS routine.

As the default, the system bootstrap loads all images described in the
system image data file (VMS$SYSTEM_IMAGES.DATA). You can disable
this functionality by setting the special SYSGEN parameter LOAD_SYS_
IMAGES to 0.

C.1.2 Removing an Executive Loaded Image
Use the following procedure to remove an executive loaded image, in this case,
SYS$ERAPAT.EXE:

1. Enter the following SYSMAN command:

SYSMAN> SYS_LOADABLE REMOVE _LOCAL_ SYS$ERAPAT

2. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file. The system bootstrap
uses this image data file to load the appropriate images into the system.

3. Reboot the system, which loads the installation-specific SYS$ERAPAT.EXE
image into the system. Subsequent calls to the $ERAPAT system service use
the installation-specific routine.

As the default, the system bootstrap loads all images described in the
system image data file (VMS$SYSTEM_IMAGES.DATA). You can disable this
functionality by setting the special SYSGEN parameter LOAD_SYS_IMAGES
to 0.

C-3

Implementing Site-Specific Security Policies
C.2 Installing Site-Specific Password Policy Filters

C.2 Installing Site-Specific Password Policy Filters
A site security administrator can screen new passwords to make sure they comply
with a site-specific password policy. (See the Guide to VMS System Security for
more information.) This section describes how a security administrator would
encode the policy, create a shareable image and install it in SYS$LIBRARY, and
enable the policy by setting a SYSGEN parameter.

Installing and enabling a site-specific password policy image requires both
SYSPRV and CMKRNL privileges. In addition, if INSTALL and SYSPRV file
access auditing are enabled, multiple security alarms are generated when the
shareable image is installed and the change to the SYSGEN parameter is noted
on the operator console. The shareable image contains two global routines, which
are called by the VMS Set Password Utility whenever a user changes a password
with the SET PASSWORD command.

Caution ___________ _

The two global routines allow a site security administrator to obtain
both the proposed plaintext password and its equivalent quadword hash
value. Therefore, unauthorized use of the global routines by a malicious
privileged user compromises your system's security.

Digital recommends that you place an alarm access control list entry (ACE) on
the following shareable image and on its parent directory.

$ SET ACL/ACL=(ALARM=SECURITY,ACCESS=WRITE+CONTROL+DELETE+SUCCESS+FAILURE) -
_$ SYS$LIBRARY:VMS$PASSWORD_POLICY. EXE
$ SET ACL/ACL=(ALARM=SECURITY,ACCESS=WRITE+CONTROL+SUCCESS+FAILURE) -
_$ SYS$COMMON: [OOOOOO]SYSLIB.DIR

You must also enable access control list (ACL) alarms using the following
command:

$ SET AUDIT/ALARM/ENABLE=ACL

Once in place, these alarms catch all attempts to replace or to modify the
VMS$PASSWORD_POLICY image.

C.2.1 Creating a Shareable Image

C-4

To compile and link a shareable image that filters passwords for words that are
sensitive to your site, perform the following steps:

1. Create the source module VMS$PASSWORD_POLICY.*. BLISS and
Ada examples of the policy module's interface, called VMS$PASSWORD_
POLICY.*, are located in SYS$EXAMPLES.

Define two routine names in the source module: POLICY_PLAINTEXT and
POLICY_HASH. These routines must be global (see your language reference
for directions on defining a global routine). The Set Password Utility looks for
these routine names and displays the message SYMNOTFOU if the names
are missing or if the routines are not defined as global.

2. Link the source file using the command procedure VMS$PASSWORD_
POLICY_LNK.COM, located in SYS$EXAMPLES.

Implementing Site-Specific Security Policies
C.2 Installing Site-Specific Password Policy Filters

C.2.2 Installing a Shareable Image
To install a shareable image, perform the following steps:

1. Copy the resulting file to SYS$LIBRARY and install it using the following
commands.

$ COPY VMS$PASSWORD_POLICY.EXE SYS$COMMON: [SYSLIB]/PROTECTION=(W:RE)
$ INSTALL ADD SYS$LIBRARY:VMS$PASSWORD_POLICY/OPEN/HEAD/SHARE

2. Set the SYSGEN parameter LOAD_PWD_POLICY to 1.

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> USE ACTIVE
SYSGEN> SET LOAD_PWD_POLICY 1
SYSGEN> WRITE ACTIVE
SYSGEN> WRITE CURRENT

3. To make the changes permanent, add the INSTALL command from step
1 to the file SYS$SYSTEM:SYSTARTUP _ V5.COM and modify the system
parameter file, MODPARAMS.DAT, so the parameter LOAD_PWD_;POLICY
is set to 1. l

4. Run AUTOGEN as follows to ensure that the SYSGEN parameters are set
correctly on subsequent system startups:

$ @SYS$UPDATE:AUTOGEN SAVPARAMS SETPARAMS

C-5

A
Aborting a transaction, 14-2
Abort reason code, 14-4, 14-5
Absolute time, 10-2

in system format, 10-3
Access

physical I/O, 7-7
Access control entry

See ACE
Access control list

See ACL
Access entry, 1-7
Access method, 1-7
Access mode, 2-2

effect on AST delivery, 5-5
specifying, 2-2
types of, 2-2
with AST, 5-2
with logical names, 6-7

Access types, 1-7
ACE (access control entry)

alarm, 3-18
application, 3-19
creating, 3-17, 3-23
default protection, 3-20
identifier, 3-21
maintaining, 3-17, 3-23
translating, 3-17, 3-23
types of, 3-1 7

ACL (access control list), 3-2
Argument

characteristics of, 2-3
passing mechanism, 1-7

mechanism array, 11-10
signal array, 11-10
specifying, 2-7
VMS usage, 1-6

Argument data type, 1-7
Argument list, 2-3

creating, 2-7
for AST service routine, 5-3
for condition handler, 11-7
for system services, 2-3
using macros, 2-5

Argument passing mechanism, 1-8
Arguments heading, 1-6

Index

Array
mechanism, 11-10
signal, 11-10
virtual address, 12-4

ASCII time, 10-7
ASSIGN command, 6-2
AST (asynchronous system trap)

access mode, 5-2
blocking, 13-8, 13-14
declaring, 5-3
delivery, 5-5
example, 5-5
in target process, 9-16
parameter, 5-4
process wait state, 5-2
quota, 7-3
service routine, 5-3
system service, 5-1

Asynchronous system service, 2-11
Asynchronous system trap

See AST

B
Balance set

swapping, 12-6
BIOLM (buffered I/O limit) quota, 7-3
Blocking AST

description, 13-8
using, 13-14

BYPASS privilege, 7-6
BYTELM (buffered I/O byte count) quota, 7-3

c
Caching, 13-13
Call

testing for successful completion of, 2-14
CALLG (Call Procedure with General Argument

List) instruction
example, 2-10
using MACRO, 2-9

CALLS (Call Procedure with Stack Argument List)
instruction

argument, 2-6
example, 2-9
using MACRO, 2-9

lndex-1

Call stack
unwinding, 11-12

Change mode handler, 11-5
Channel

assigning I/O, 7-12
deassigning, 7-18

Clock
setting system, 10-8

Committing a transaction, 14-2
Common event flag cluster, 4-4
Compatibility mode handler, 11-5
Condition

for exception, 11-1
Condition handler

argument list, 11-7
course of action, 11-11
example, 11-11
specifying, 11-6

Condition-handling services, 1-2, 11-1
Condition value, 1-6, 1-9, 2-13

high-level language, 2-17
information provided by, 2-14
testing, 2-14

Control region, 12-2
Create Mailbox and Assign Channel ($CREMBX),

8-3, 8-20

D
Date

getting current system, 10-2
Smithsonian base, 10-2
system format, 10-2

Deadlock detection, 13-5
DECdns call

timeout in, 6-23
DECdns name

defining logicals, 6-34
DECdns naming conventions

logical names, 6-34
DECdns object

reading attributes of, 6-28
DECdtm services, 14-1

aborting a transaction, 14-2
committing a transaction, 14-2
participant in a transaction, 14-2
resource manager, 14-2
starting a transaction, 14-3
system services, 14-1

SYS$START_TRANS, 14-3
SYS$START_TRANSW, 14-3

transaction manager, 14-2
transaction states, 14-2
two-phase commit protocol, 14-4

DECdtm Services, 1-3
Default logical name table

group, 6-5
job, 6-5

lndex-2

Default logical name table (Cont.)
process, 6-4
system, 6-6

Default protection ACE, 3-20
Default system macro library, 2-4
DEFINE command, 6-2
Delta time, 10-2

example, 10-3
in system format, 10-3

Detached process, 8-2, 8-6
Device

allocating, 7-20
deallocating, 7-21
default name, 7-27
getting information about, 7-28
implicit allocation, 7-21
name, 7-26
protection, 7-5

DIOLM (direct I/O limit) quota, 7-3
Directory logical name table

process, 6-3
system, 6-3

Disk
initialize from within a program, 7-24

example, 7-24
Disk file

opening, 12-8
Disk volume

mounting, 7-22
Dispatcher

exception, 11-6
DNS call

timeout in, 6-24
DNS object

creating, 6-22
DYNAMIC attribute, 3-4

E
Equivalence name

defining, 6-2
format convention, 6-10

Error check, 2-14
Error recovery, 7-12
Event flag

clearing, 4-4
for interprocess communication, 8-10
setting, 4-4
specifying, 4-2
wait, 4-3

Event flag cluster, 4-2
deleting, 4-5
disassociating, 4-5
number, 4-2
specifying name for, 4-7

Event flag number, 4-2
Event flag service

example using, 4-8

Exception
dispatcher, 11-6
multiple, 11-15
type, 11-1

Execution context, 8-2
Exit

forced, 8-15
image, 8-13

Exit handler, 8-14
Extent

defining section, 12-9

F
Forced exit, 8-15
Foreign device, 7-6
Foreign volume, 7-4, 7-7
Function code, 7-11
Function modifier, 7-12

G

types of
I0$M_DATACHECK, 7-12
IO$M_INHERLOG, 7-7
I0$M_INHRETRY, 7-12

$GETJPI
item-specific flags, 9-6

Global section, 12-10
characteristic, 12-10
defining, 12-7
for interprocess communication, 8-10
mapping, 12-13
name, 12-11
paging file, 12-14

Granularity
in lock, 13-2

Group logical name table, 6-5

H
Handler

change and compatibility mode, 11-5
Hibernation, 8-10

alternate method, 8-12
and AST, 5-3
compared with suspension, 8-11

High-level language
call from, 2-15

Holder record, 3-5
adding, 3-8
format of, 3-5
modifying, 3-12
removing, 3-14

I/O channel, 7-12
deassigning, 7-18

I/O completion
recommended test, 7-15
status, 7-17
synchronizing, 7-13

I/O function
code, 7-11, 7-13
modifier, 7-12

I/O operation
logical, 7-7
physical, 7-6
quotas, privileges, and protection, 7-2
summary of, 7-6
virtual, 7-7

VO request
canceling, 7-19
queuing, 7-13

VO service
synchronous version, 7-16

I/O status block
in synchronization, 7-13
return condition value field, 7-17

Identifier, 3-2
adding to rights database, 3-8
attributes, 3-4
defining, 3-2
determining holders of, 3-9
format of, 3-2, 3-3
general, 3-4
removing from rights database, 3-14
system-defined, 3-3
UIC format, 3-3

Identifier ACE, 3-21
Identifier name, 3-3

translating, 3-7
Identifier record, 3-5

adding to rights database, 3-8
format of, 3-5
modifying, 3-12
removing from rights database, 3-14

Identifier value
translating, 3-7

IFI (internal file identifier)
removing, 6-10

Image
exit, 8-13
for subprocess, 8-3
loading site-specific, C-1
rundown activity, 8-13

Image rundown
effect on logical names, 6-5

Image section, 12-1 7
Initialize

volume from within a program, 7-24

lndex-3

Initialize
volume from within a program (Cont.)

example, 7-24
$INIT_VOL, 7-24

example, 7-24
Input address array, 12-4
Internal file identifier

See IFI
Interprocess

communication, 8-9
Interprocess communication, 8-7

using event flags for, 8-10
using global sections for, 8-10
using lock management services for, 8-10
using logical names for, 8-10
using mailboxes for, 8-10

Interprocess control, 8-7

J
Job logical name table, 6-5

L
Local buffer caching

with lock management service, 13-13
Lock

choice of mode, 13-3
concept of, 13-1
conversion, 13-5, 13-9
deadlock detection, 13-5
dequeuing, 13-12
level, 13-3
mode, 13-3

Lock management service, 1-2
for interprocess communication, 8-10

Lock request
queuing, 13-4
synchronizing, 13-7

Lock status block, 13-8
Lock value block

description, 13-11
using, 13-14

Logical 1/0
operations, 7-7
privilege, 7-4, 7-6, 7-7

Logical name, 6-34, 7-26
attributes, 6-7
creating, 6-11
defining, 6-2
deleting, 6-15
duplicating, 6-12
for interprocess communication, 8-10
format convention, 6-10
image rundown, 6-5
multivalued, 6-2
supersession, 6-14
translating, 6-16

lndex-4

Logical name system service call
example of

SYS$CRELNM, 6-11
SYS$CRELNT, 6-15
SYS$DELLNM, 6-15
SYS$TRNLNM, 6-16

Logical name table
creating, 6-14
default, 6-3
directory, 6-3
group, 6-5
job, 6-5
predefined logical names, 6-2
process, 6-4
process-private, 6-6
quotas, 6-8
search list, 6-11

modifying, 6-11
shareable, 6-6, 6-15
system, 6-6
types of, 6-2
user-defined, 6-6

Longword condition value, 1-6
Longwords, 2-4

M
MACRO

CALLG (Call Procedure with General Argument
List) instruction, 2-9

calling system services using, 2-8
CALLS (Call Procedure with Stack Argument

List) instruction, 2-9
expansion, 2-7
system services, 2-1, 2-5

Magnetic tape
initialize from within a program, 7-24

example, 7-24
Mailbox, 2-1, 7-30

for interprocess communication, 8-10
name, 7-33
protection, 7-4
system, 7-33

messages, 7-34
termination, 8-18

Mechanism array argument, 11-10
Mechanism entry, 1-8
Memory

locking page into, 12-7
Memory management services, 1-2
Message

system, 2-14
MOUNT privilege, 7-4
Multiple exception, 11-15

N
Name services, 6-1
Namespace

listing information, 6-30
NARGS keyword, 2-8
Null arguments, 1-5
Null device, 7-28
Numeric time, 10-7

0
Object

modifying, 6-24

p
Page, 12-3

copy-on-reference, 12-10
demand-zero, 12-10
locking into memory, 12-7
owner, 12-5
ownership and protection, 12-5

Page frame section, 12-18
Paging file section, 12-14

global, 12-14
Parentlock, 13-11
Participant in a transaction, 14-2
Passing arguments, 1-7
Passing mechanisms, 1-8
Physical I/O

access checks, 7-7
operations, 7-6
privilege, 7-4, 7-6, 7-7

Physical name, 7-26
PID (process identification) number, 8-7, 9-2

defined, 9-1,9-2
using to reference remote processes, 9-1

Predefined logical name
LNM$FILE_DEV, 6-11

Private section
defining, 12-7

Privilege, 6-6
BYPASS, 7-6
defined by access mode, 2-2
I/O operations, 7-2
logical I/O, 7-4, 7-6, 7-7
MOUNT, 7-4
physical I/O, 7-4, 7-6, 7-7
SYSTEM, 7-6
user, 2-2

Privileged shareable image, A-1
Process

See also SYS$GETJPI
See also SYS$PROCESS_SCAN
creating, 8-2
creation restriction, 8-7

Process (Cont.)
deleting, 8-16
detached, 8-2, 8-6
disabling swap mode, 12-7
disallowing swapping, 12-7
hibernating, 8-10
identification, 8-7
name, 8-7
name within group, 8-9
obtaining information about, 9-1

example, 9-2
synchronously, 9-13

obtaining information about one process, 9-2
obtaining information about processes on

specific nodes, 9-11, 9-12
obtaining information about the calling process,

9-2
obtaining information about using PID, 9-1
obtaining information about using process

name, 9-1, 9-2
subprocess, 8-2
suspending, 8-10, 8-13
swapping, 12-6
swapping by suspension, 8-13
termination mailbox, 7-34, 8-18
using $PROCESS_SCAN item list to specify

selection criteria about processes, 9-6, 9-9,
9-10

using $PROCESS_SCAN item list with remote
procedures, 9-13

using $PROCESS_SCAN item-specific flags to
control selection information, 9-6

using $PROCESS_SCAN search for, 9-6
using wildcard search for, 9-4

Process context
using with $GETJPI, 9-1

Process control services, 1-2
Process directory table, 6-3
Process identification

See PID
Process information services, 1-2
Process logical name table, 6-4
Process name

length of for remote processes, 9-2
specifying for local processes, 9-2
specifying for remote processes, 9-2

·using to obtain information about remote
processes, 9-1, 9-2, 9-10
example, 9-4

Process rights list, 3-2
Process search

obtaining information about one process, 9-2
obtaining information about the calling process,

9-2
searching on all nodes, 9-11
searching on specific nodes, 9-11, 9-12
using $PROCESS_SCAN item list to specify

processes

lndex-5

Process search
using $PROCESS_SCAN item list to specify

processes (Cont.)
example, 9-9

using $PROCESS_SCAN item list to specify
selection criteria, 9-6

using.$PROCESS_SCAN item list to specify
selection criteria about processes, 9-7,
9-10

using item list with remote procedures, 9-13
using item-specific flags to control selection

information, 9-6
using wildcard on local system, 9-4

Programming examples
interpreting, 2-17

Program region, 12-2, 12-3
Protected shareable image, A-1
Protection

by access mode, 2-2
device, 7-5
I/O operations, 7-2
mailbox, 7-4
page, 12-5
volume, 7-4

Protection mask, 7-4

Q
Queue

lock management, 13-4
Quota

R

AST, 7-3
buffered I/O, 7-3
buffered I/O byte count, 7-3
direct I/O, 7-3
establishing, 6-8
I/O operations, 7-2
resource, 2-2

Record Management Services
See VMS RMS

Resource
controlling, 8-6
lock management concept, 13-1
name, 13-2
quota, 2-2

RESOURCE attribute, 3-4
Resource manager, 14-2
Resource wait mode, 2-2
Return address array, 12-4
Return condition

special, 2-12
Return condition value, 2-13

high-level language, 2-17
Rights database, 3-2, 3-5, 3-14

adding to, 3-8

lndex-6

Rights database (Cont.)
default protection, 3-6
elements of, 3-6
holder record, 3-5
identifier record, 3-5
initializing, 3-6
keys, 3-5
modifying, 3-12, 3-14

Rights list, 3-27
RMS (Record Management Services)

See VMS RMS

s
Sample program, 15-1
Search list, 6-2
Search operations, 3-14
Section, 12-7

characteristic, 12-9
creating, 12-8
defining extent, 12-9
deleting, 12-17
global paging file, 12-14
image, 12-17
mapping, 12-12
page frame, 12-18
paging, 12-14, 12-15
releasing, 12-17
unmapping, 12-17
using to share data, 12-16
writing back, 12-17

Security
for user-written system services, A-1

Security services, 1-1
Service routine

AST, 5-3
Signal array argument, 11-10
Sublock, 13-11
Subprocess, 8-2

disk and directory default, 8-5
image, 8-3
input, output, and error device, 8-3

Suspension, 8-10, 8-13
compared with hibernation, 8-11

Swapping
by suspension, 8-13

Symbolic definition macro, 2-8
Symbolic names

for argument lists, 2-7
Synchronous system service, 2-11
SYS$ABORT_TRANS, 14-4
SYS$ADD_HOLDER, 3-9
SYS$ADD_IDENT, 3-8
SYS$ADJWSL, 12-6
SYS$ALLOC

example, - 7-21
SYS$ASCTIM

. example, 10-2

SYS$ASCTOID, 3-7
SYS$ASSIGN

example, 7-12
SYS$BINTIM, 10-3
SYS$CANCEL

example, 7-19
SYS$CANTIM

example, 10-6
SYS$CANWAK, 10-7
SYS$CHANGE_ACL, 3-17, 3-23
SYS$CHECK_ACCESS, 3-30
SYS$CHFDEF macro, 11-7
SYS$CHKPRO, 3-28
SYS$CLREF, 4-4
SYS$CREATE_RDB, 3-6
SYS$CREPRC

example, 8-3
SYS$DASSGN

example, 7-18
SYS$DCLAST

example, 5-5
SYS$DCLEXH

example, 8-15
SYS$DELPRC, 8-18
SYS$DEQ

example, 13-13
SYS$DISMOU, 7-24
SYS$END_TRANS, 14-4
SYS$ENQ

example, 13-6, 13-9
SYS$ERAPAT, 3-32
SYS$EXIT, 8-14
SYS$EXPREG

example, 12-3
SYS$FAO

example, 7-29
SYS$FIND_HELD, 3-9, 3-14
SYS$FIND_HOLDER, 3-9, 3-14
SYS$FORCEX

example, 8-15
SYS$FORMAT_ACL, 3-17, 3-23
SYS$GETJPI, 9-1

See also SYS$PROCESS_SCAN
AST in target process, 9-16
buffer, 9-14, 9-15
control flags, 9-16
item list, 9-6, 9-13

specifying criteria to select processes
example, 9-9

obtaining information about all processes on the
local system, 9-2, 9-4

obtaining information about one process, 9-2
obtaining information with wildcard search

example, 9-5
packing information in buffers, 9-14, 9-15
searching for processes on all nodes, 9-11
searching for processes on specific nodes, 9-11,

9-12

SYS$GETJPI (Cont.)
searching for selected processes, 9-6
specifying buffer size, 9-14, 9-15
specifying criteria to select processes

example, 9-10
swapping processes, 9-16
synchronizing calls, 9-11, 9-12, 9-13
using $PROCESS_SCAN item list to specify

selection criteria about processes, 9-6, 9-7,
9-9, 9-10

using $PROCESS_SCAN item-specific flags to
control selection information, 9-6

using $PROCESS_SCAN search, 9-6
using item list with remote procedures, 9-13
using multiple $PROCESS_SCAN contexts,

9-13
using synchronous calls, 9-13
using wildcard

example, 9-5
using wildcard as pidadr, 9-2, 9-4
using wildcard search, 9-4

SYS$GETTIM, 10-2
SYS$HIBER

example, 8-12
SYS$IDTOASC, 3-7, 3-14
SYS$LKWSET, 12-6
SYS$MOD_HOLDER, 3-12
SYS$MOD_IDENT, 3-12
SYS$MOUNT, 7-22
SYS$MTACCESS, 3-32
SYS$NUMTIM, 10-7
SYS$PARSE_ACL, 3-17, 3-23
SYS$PROCESS_SCAN, 9-1

See also SYS$GETJPI
obtaining information about processes on all

nodes, 9-11
obtaining information about processes on

specific nodes, 9-11, 9-12
searching on all nodes, 9-11
searching on specific nodes, 9-11, 9-12
setting up multiple contexts, 9-13
using item list to specify selection criteria about

processes, 9-6, 9-7, 9-10
example, . 9-9

using item list with remote procedures, 9-13
using item-specific flags to control selection

information, 9-6
SYS$QIO

example, 7-13
SYS$REM_HOLDER, 3-14
SYS$REM_IDENT, 3-14
SYS$SCHDWK

canceling, 10-7
example, 10-6
request, 10-6

SYS$SETEF, 4-4
SYS$SETEXV

example, 11-6

lndex-7

SYS$SETIME, 10-8
SYS$SETIMR, 10-4

example with AST, 5-1
SYS$SETRWM, 7-3
SYS$SETSWM

example, 12-7
SYS$START_TRANS, 14-3
SYS$START_TRANSW, 14-3
SYS$UNWIND

example, 11-14
SYS$WAKE

example, 8-12
SYSPRV, 7-6
System

exception dispatcher, 11-6
library, 2-1, 2-5
mailbox, 7-33
message, 2-14

System clock
setting, 10-8

System directory table, 6-3
System logical name table, 6-6
System services

T

executing
asynchronously, 2-11
synchronously, 2-11

Initialize Volume, 7-24
loading site-specific, C-1
MACRO, 2-1, 2-5
obtaining information about processes, 9-1

Tape
initialize from within a program, 7-24

example, 7-24
Tape volume

mounting, 7-22
Terminal I/O

example, 7-18
Termination mailbox, 7-34, 8-18
Time

absolute, 10-2
conversion, 10-1
converting ASCII to binary, 10-3
delta, 10-2
getting current system, 10-2
numeric and ASCII, 10-7
setting system, 10-8
system format, 10-2

Timer request, 10-4
canceling, 10-6

Transaction
aborting, 14-2
committing, 14-2
completing, 14-4
participants, 14-2
states, 14-2

lndex-8

Transaction identifier (TID), 14-3
Transaction management, 14-1
Transaction manager, 14-2
Two-phase commit protocol, 14-4

u
User-defined logical name tables, 6-6
User privilege, 2-2
User-written system service, A-1

v
VAX BLISS-32, 2-4
VAX MACRO, 2-1, 2-4, 2-5
VAX procedure calling conventions, 2-1
Virtual address space, 12-2, 12-3

increasing and decreasing, 12-3
layout, 12-2
mapping section of, 12-12
specifying array, 12-4

Virtual I/O, 7-7
VMS data type, 1-6
VMS RMS (Record Management Services), 7-1

opening file for mapping, 12-8
VMS usage, 1-6
Volume

initialize from within a program, 7-24
example, 7-24

mounting, 7-22
Volume protection, 7-4

w
Wakeup

scheduling, 10-6
Wildcard search

obtaining information about processes
example, 9-5

using $GET JPI, 9-4
Working set

adjusting size, 12-6
locking page into, 12-6
paging, 12-6

Write back section, 12-1 7

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P. 0. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P. 0. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 014 73

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments Introduction to VMS
System Services

AA-LA688-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on· an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Information Products
ZK01-3/J35
110 SPIT BROOK RD
NASHUA, NH 03062-9987

lll11111ll1ll1111ll1111l1ll1l11l1l11l11l1l111l1ll11I

No Postage
Necessary

if Mailed
in the

United States

Do Not Tear -Fold Here ---

Reader's Comments Introduction to VMS
System Services

AA-LA688-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Information Products
ZK01-3/J35
110 SPIT BROOK RD
NASHUA, NH 03062-9987

lll11111ll1ll1111ll1111l1ll1l11l1l11l11l1l111l1ll11I

No Postage
Necessary
if Mailed

in the
United States

Do Not Tear - Fold Here ---

