

VMS DECwindows
Guide to Xlib Programming:
MIT C Binding

Order Number: AA-MG24A-TE

December 1988

This manual is a guide to programming Xlib routines.

Revision/Update Information: This is a new manual.
Software Version: VMS Version 5.1

digital equipment corporation
maynard, massachusetts

December 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1988.
All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASSBUS VAX RMS
DDIF PrintServer 40 VAXstation
DEC Q-bus VMS
DECnet ReGIS VT
DECUS ULTRIX XUl
DECwindows UNIBUS

DIGITAL VAX

LNO3 VAXcluster ﬂﬂﬂﬂan

The following are third-party trademarks:
PostScript is a registered trademark of Adobe Systems, Inc.

X Window System, Version 11 and its derivations (X, X11, X Version 11, X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK4733

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use DIGITAL-supported devices, such as the LNO3 laser
printer and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter),
to produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xvii
CHAPTER 1 PROGRAMMING OVERVIEW OF XLIB 1-1

1.1 OVERVIEW OF XLIB 1-1

1.2 SAMPLE XLIB PROGRAM 1-2

1.2.1 Sample Initialization Routine 1-2

1.2.1.1 Creating Windows + 1-3

1.2.1.2 Defining Colors « 1-3

1.2.1.3 Working with the Window Manager « 1-3

1.2.1.4 Making Windows Visible on the Screen « 14

1.2.2 Sample Event-Handling Routine 1-4

1.3 HANDLING ERROR CONDITIONS 1-9

1.4 DEBUGGING XLIB PROGRAMS 1-10
CHAPTER 2 MANAGING THE CLIENT-SERVER CONNECTION 2-1

2.1 OVERVIEW OF THE CLIENT-SERVER CONNECTION 2-1

22 ESTABLISHING THE CLIENT-SERVER CONNECTION 2-3

2.3 CLOSING THE CLIENT-SERVER CONNECTION 2-4

24 GETTING INFORMATION ABOUT THE CLIENT-SERVER

CONNECTION 2-5

25 MANAGING REQUESTS TO THE SERVER 2-8

Contents

CHAPTER 3 WORKING WITH WINDOWS 3-1
3.1 WINDOW FUNDAMENTALS 3-1
3.1.1 Window Hierarchy 3-2
3.1.2 Window Position 34
3.1.3 Window Visibility and Occlusion 3-5
3.2 CREATING WINDOWS 3-6
3.2.1 Using Attributes of the Parent Window 3-6
3.2.2 Defining Window Attributes 37
3.3 DESTROYING WINDOWS 3-14
34 MAPPING AND UNMAPPING WINDOWS 3-14
35 ASSOCIATING PROPERTIES WITH WINDOWS 3-16
3.5.1 Using Properties to Communicate with the Window Manager _ 3-22
3.5.1.1 Defining Properties Using the SET WM HINTS Routine « 3—23
3.5.1.2 Defining Individual Properties « 3-24
3.5.1.3 Providing Size Hints « 3-25
3.5.2 Exchanging Properties Between Clients 3-27
3.6 CHANGING WINDOW CHARACTERISTICS 3-28
3.6.1 Reconfiguring Windows 3-28
3.6.2 Effects of Reconfiguring Windows 3-32
3.6.3 Changing Stacking Order 3-35
3.6.4 Changing Window Attributes 3-36
37 GETTING INFORMATION ABOUT WINDOWS 3-38

CHAPTER 4 DEFINING GRAPHICS CHARACTERISTICS 4-1
4.1 THE GRAPHICS CONTEXT 4-1
42 DEFINING MULTIPLE GRAPHICS CHARACTERISTICS IN ONE

vi

CALL 4-2

Contents

4.3 DEFINING INDIVIDUAL GRAPHICS CHARACTERISTICS 4-18
4.4 COPYING, CHANGING, AND FREEING GRAPHICS CONTEXTS 4-21
4.5 USING GRAPHICS CHARACTERISTICS EFFICIENTLY 4-22
CHAPTER 5 USING COLOR 5-1
5.1 PIXELS AND COLOR MAPS 5-1
5.2 MATCHING COLOR REQUIREMENTS TO SCREEN TYPES 5-4
5.3 SHARING COLOR RESOURCES 5-6
5.3.1 Using Named VMS DECwindows Colors 5-7
5.3.2 Specifying Exact Color Values 5-8
5.4 ALLOCATING COLORS FOR EXCLUSIVE USE 5-10
5.4.1 Specifying a Color Map 5-10
5.4.2 Allocating Color Cells 5-11
5.4.3 Storing Color Values 5-19
5.5 FREEING COLOR RESOURCES 5-19
5.6 QUERYING COLOR MAP ENTRIES 5-21
CHAPTER 6 DRAWING GRAPHICS 6-1
6.1 GRAPHICS COORDINATES 6-1
6.2 USING GRAPHICS ROUTINES EFFICIENTLY 6-1
6.3 DRAWING POINTS AND LINES 6-2
6.3.1 Drawing Points 6-2
6.3.2 Drawing Lines and Line Segments 6-5

vii

Contents

6.4 DRAWING RECTANGLES AND ARCS 6-9
6.4.1 Drawing Rectangles 6-9
6.4.2 Drawing Arcs 6-14
6.5 FILLING AREAS 6-19
6.5.1 Filling Rectangles and Arcs 6-19
6.5.2 Filling a Polygon 6-20
6.6 CLEARING AND COPYING AREAS 6-23
6.6.1 Clearing Window Areas 6-24
6.6.2 Copying Areas of Windows and Pixmaps 6-25
6.7 DEFINING REGIONS 6-25
6.7.1 Creating Regions 6-25
6.7.2 Managing Regions 6-28
6.8 DEFINING CURSORS 6-33
6.8.1 Creating Cursors 6-34
6.8.2 Managing Cursors 6-40
6.8.3 Destroying Cursors 6-40
CHAPTER 7 USING PIXMAPS AND IMAGES 7-1
7.1 CREATING AND FREEING PIXMAPS 7-1
7.2 CREATING AND MANAGING BITMAPS 7-4
7.3 WORKING WITH IMAGES 7-5
CHAPTER 8 WRITING TEXT 8-1
8.1 CHARACTERS AND FONTS 8-1
8.2 SPECIFYING A FONT 8-13

vili

Contents

8.3 GETTING INFORMATION ABOUT A FONT 8-15
8.4 COMPUTING THE SIZE OF TEXT 8-17
8.5 DRAWING TEXT 8-17
CHAPTER 9 HANDLING EVENTS 9-1
9.1 EVENT PROCESSING 9-1
9.2 SELECTING EVENT TYPES 9-5
9.2.1 Using the SELECT INPUT Routine 9-5
9.2.2 Specifying Event Types When Creating a Window 9-7
9.2.3 Specifying Event Types When Changing Window Attributes 9-7
9.3 POINTER EVENTS 9-8
9.3.1 Handling Button Presses and Releases 9-8
9.3.2 Handling Pointer Motion 9-11
9.4 KEY EVENTS 9-14
9.5 WINDOW ENTRIES AND EXITS 9-15
9.5.1 Normal Window Entries and Exits 9-17
9.5.2 Pseudomotion Window Entries and Exits 9-20
9.6 INPUT FOCUS EVENTS 9-21
9.6.1 Normal Keyboard Input Focus 9-22
9.6.2 Keyboard Input Focus Changes Caused by Grabs 9-26
9.7 KEY MAP STATE EVENTS 9-26
9.8 EXPOSURE EVENTS 9-26
9.8.1 Handling Window Exposures 9-27
9.8.2 Handling Graphics Exposures 9-28

Contents

9.9 WINDOW STATE NOTIFICATION EVENTS 9-33
9.9.1 Handling Window Circulation 9-34
9.9.2 Handling Changes in Window Configuration 9-35
9.9.3 Handling Window Creations 9-36
9.9.4 Handling Window Destructions 9-37
9.9.5 Handling Changes in Window Position 9-38
9.9.6 Handling Window Mappings 9-39
9.9.7 Handling Key, Keyboard, and Pointer Mappings 9-39
9.9.8 Handling Window Reparenting 9-40
9.9.9 Handling Window Unmappings 9-41
9.9.10 Handling Changes in Window Visibility 9-42
9.10 COLOR MAP STATE EVENTS 9-43
9.11 CLIENT COMMUNICATION EVENTS 9-44
9.11.1 Handling Event Notification from Other Clients 9-44
9.11.2 Handling Changes in Properties 9-45
9.11.3 Handling Changes in Selection Ownership 9-46
9.114 Handling Requests to Convert a Selection 9-47
9.115 Handling Requests to Notify of a Selection 9-48
9.12 EVENT QUEUE MANAGEMENT 9-49
9.12.1 Checking the Contents of the Event Queue 9-50
9.12.2 Returning the Next Event on the Queue 9-50
9.12.3 Selecting Events That Match User-Defined Routines 9-50
9.12.4 Selecting Events Using an Event Mask 9-51
9.12.5 Putting an Event Back on Top of the Queue 9-52
9.12.6 Sending Events to Other Clients 9-52
9.13 ERROR HANDLING 9-52
9.13.1 Enabling Synchronous Operation 9-52
9.13.2 Using the Default Error Handlers 9-53
APPENDIX A COMPILING FONTS A-1

Contents

APPENDIX B ROUTINES REQUIRING PROTOCOL REQUESTS B-1
APPENDIX C VMS DECWINDOWS NAMED COLORS C-1
APPENDIX D VMS DECWINDOWS FONTS D-1
INDEX
EXAMPLES
1-1 Sample Xlib Program 1-5
3-1 Creating a Simple Window 3-7
3-2 Defining Attributes When Creating Windows 3-13
3-3 Mapping and Raising Windows 3-15
34 Exchanging Window Properties 3-19
3-5 Reconfiguring a Window Using the CONFIGURE WINDOW
Routine 3-31
3-6 Changing Window Attributes 3-37
4-1 Defining Graphics Characteristics Using the CREATE GC
Routine 4-16
4-2 Using Individual Routines to Define Graphics
Characteristics 4-20
5-1 Using Named VMS DECwindows Colors 5-7
5-2 Specifying Exact Color Values 5-9
5-3 Allocating Colors for Exclusive Use 5-11
6-1 Drawing Multiple Points 6-3
6-2 Drawing Multiple Lines 6-6
6-3 Drawing Multiple Rectangles 6-12
64 Drawing Multiple Arcs 6-17
6-5 Filling a Polygon 6-21
6-6 Clearing a Window 6-24
6-7 Defining a Region Using the POLYGON REGION Routine ___ 6-26
6-8 Defining the Intersection of Two Regions 6--30
6-9 Creating a Pixmap Cursor 6-39
7-1 Creating a Pixmap 7-2
7-2 Creating a Bitmap Data File 7-4

7-3 Creating a Pixmap from Bitmap Data) 7-5

xi

Contents

8-1 Drawing Text Using the DRAW TEXT Routine 8-19
8-2 Drawing Text Using the DRAW STRING Routine 8-20
9-1 Selecting Event Types Using the CREATE WINDOW Routine 9-7
9-2 Handling Button Presses 9-11
9-3 Handling Pointer Motion 9-13
94 Handling Window Entries and Exits 9-19
9-5 Handling Graphics Exposures 9-31
FIGURES
1-1 Client, Xlib, and Server 1-2
2-1 Graphics Output to Instructor VAXstation 2-2
2-2 Graphics Output to Student VAXstations 2-3
3-1 Root Window and One Child 3-2
3-2 Relationship Between Second-Level Windows 3+3
3-3 Relationship Between Third-Level Windows 3-4
3-4 Coordinate System 3-5
3-5 Window Before Restacking 3-16
3-6 Restacked Window 3-17
3-7 Reconfigured Window 3-32
3-8 East Bit Gravity 3-34
3-9 Northwest Window Gravity 3-35
4-1 Bounding Box 4-11
4-2 Line Styles 4-11
4-3 Butt, Round, and Projecting Cap Styles 4-11
4-4 Cap Not Last Style 4-12
4-5 Join Styles 4-12
4-6 Fill Rules 4-13
4-7 Pixel Boundary Cases 4-14
4-8 Styles for Filling Arcs 4-14
49 Dashed Line Offset 4-15
4-10 Dashed Line 4-18
411 Line Defined Using GC Routines 4-21
5-1 Pixel Values and Planes 5-2
5-2 Color Map, Cell, and Index 5-3
5-3 Visual Types and Color Map Characteristics 5-5
5-4 Polygons That Define the Color Wheel 5-18
6-1 Circles of Points Created Using the DRAW POINTS Routine 6-5
6-2 Star Created Using the DRAW LINES Routine 6-8

Xii

Contents

6-3 Rectangle Coordinates and Dimensions 6-10
6-4 Rectangle Drawing 6-10
6-5 Rectangles Drawn Using the DRAW RECTANGLES Routine _ 6-13
66 Specifying an Arc 6-15
6-7 Multiple Arcs Drawn Using the DRAW ARCS Routine 6-19
6-8 Filled Star Created Using the FILL POLYGON Routine 6-23
6-9 Arcs Drawn Within a Region 6-28
6-10 Intersection of Two Regions 6-33
6-11 Cursor Shape and Cursor Mask 6-38
7-1 XY Bitmap Format 7-9
7-2 XY Pixmap Format 7-9
7-3 Z Format 7-10
8-1 Composition of a Character 8-2
8-2 Composition of a Back Slash 8-3
8-3 Single-Row Font 8-5
84 Multiple-Row Font 8-5
8-5 Indexing Single-Row Font Character Metrics 8-8
8-6 Indexing Multiple-Row Font Character Metrics 8-10
8-7 Atoms and Font Properties 8-12
9-1 Window Entries and Exits 9-20
9-2 Window Scrolling 9-33
TABLES
2-1 Client-Server Connection Routines 2-5
2-2 Screen Routines 2-7
2-3 Image Format Routines 2-7
2-4 Output Buffer Routines 2-8
3-1 Set Window Attributes Data Structure Members 3-9
3-2 Default Values of the Set Window Attributes Data Structure _ 3-11
3-3 Set Window Attributes Data Structure Flags 3-12
34 Predefined Atoms 3-18
3-5 Routines for Managing Properties 3-21
3-6 Atom Names of Window Manager Properties 3-22
3-7 WM Hints Data Structure Members 3-24
3-8 Class Hint Data Structure Members 3-25
3-9 Set Window Attributes Data Structure Flags 3-25
3-10 Size Hints Data Structure Members 3-26
3-11 Window Changes Data Structure Members 3-29

xiii

Contents

Xiv

3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19

Stacking Values

Window Changes Data Structure Flags
Window Configuration Routines

Gravity Definitions

Routines for Changing Window Attributes

Effects of Window Attribute Changes
Window Information Routines

Window Attributes Data Structure Members

GC Data Structure Default Values

GC Values Data Structure Members

GC Values Data Structure Flags

Routines That Define Individual or Functional Groups of

Graphics Characteristics

VAXstation Visual Types

Color Data Structure Members

Point Data Structure Members

Segment Data Structure Members

Rectangle Data Structure Members

Arc Data Structure Members

Routines for Managing Regions

Predefined Xlib Cursors

Predefined VMS DECwindows Cursors
Image Data Structure Members

Routines That Change Images
Char Struct Data Structure Members

Char 2B Data Structure Members

Font Struct Data Structure Members

Font Prop Data Structure Members

Atom Names of Font Properties

Text ltem Data Structure Members

Text Item 16 Data Structure Members
Event Types

Any Event Data Structure Members
Event Masks

Values Used for Grabbing Buttons

Button Event Data Structure Members
Motion Event Data Structure Members
Key Event Data Structure Members

Crossing Event Data Structure Members
Normal Window Entry and Exit Event Reporting

3-30
3-30
3-31
3-33
3-37
3-38
3-39
3-40

4-2

4-4
4-15

4-19
5-6
5-8
6-2
6-9

6-11

6-16

6-29

6-34

6-35
7-6

7-10
8-4
8-6
8-6

8-13

8-15

8-18

8-18
9-2
94
9-5

9-9
9-12
9-15
9-16
9-18

9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
9-26
9-27
9-28
9-29
9-30
9-31
9-32
9-33
9-34
9-35
9-36
9-37
9-38
B~1

D-1
D-2

Focus Change Event Data Structure Members

Effect of Focus Changes: Windows on Same Screen

Focus Changes Caused by Pointer Movement

Effect of Focus Changes: Windows on Different Screens

Pointer Window and No Focus Changes
Keymap Event Data Structure Members

Expose Event Data Structure Members

Graphics Expose Event Data Structure Members
No Expose Event Data Structure Members

Circulate Event Data Structure Members

Configure Event Data Structure Members

Create Window Event Data Structure Members
Destroy Window Event Data Structure Members
Gravity Event Data Structure Members

Map Event Data Structure Members

Mapping Event Data Structure Members

Reparent Event Data Structure Members

Unmap Event Data Structure Members

Visibility Event Data Structure Members
Color Map Event Data Structure Members

Client Message Event Data Structure Members

Property Event Data Structure Members
Selection Clear Event Data Structure Members

Selection Request Event Data Structure Members
Selection Event Data Structure Members

Selecting Events Using a Predicate Procedure
Routines to Select Events Using a Mask

Error Event Data Structure Members

Event Error Codes

Routines Requiring Protocol Requests

VMS DECwindows Named Colors

VMS DECwindows 75 DPI Fonts

VMS DECwindows 100 DPI Fonts

Contents

Xv

Preface

This manual describes how to program Xlib routines using the MIT
C binding. VMS DECwindows includes the MIT binding for Xlib
programmers using the C programming language and other languages
that support pointers.

The manual includes an overview of Xlib and tutorials that show how to
use Xlib routines.

Intended Audience

This manual is intended for experienced programmers who need to learn
graphics programming using Xlib routines. Readers should be familiar
with a high-level language. The manual requires minimal knowledge of
graphics programming.

Document Structure
This manual is organized as follows:

* Chapter 1 provides an overview of Xlib, a sample Xlib program, and a
guide to debugging Xlib programs.

¢ Chapters 2 through 9 provide tutorials that show how to use Xlib
routines and include descriptions of predefined Xlib data structures
and code examples that illustrate the concepts described.

This manual also includes the following appendixes:
e Appendix A is a guide to using the VMS DECwindows font compiler.

* Appendix B lists routines that require Xlib to issue protocol requests
to the server.

* Appendix C lists the VMS DECwindows named colors.
¢ Appendix D lists VMS DECwindows fonts.

Associated Documents
The following documents contain additional information:

* VMS DECwindows Guide to Application Programming—Provides an
overview of programming in the VMS DECwindows environment and
a guide to programming the XUI Toolkit

o VMS DECwindows Xlib Routines Reference Manual—Provides detailed
descriptions of each Xlib routine

¢ XUI Style Guide—Describes the standard XUI user interface

xvii

Preface

Conventions

xviii

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

boldface text

italic text

UPPERCASE TEXT

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one or
all of the choices.

Boldface text represents the introduction of a new
term or the name of an argument, a constant, or a
flag.

Italic text represents a variable or a client-defined
routine.

Uppercase letters indicate the name of a routine or a
system service call.

1 Programming Overview of Xlib

The VMS DECwindows programming environment includes Xlib, a library
of low-level routines that enable the VMS DECwindows programmer to
perform windowing and graphics operations.

This chapter provides the following:

* An overview of the library

¢ A description of error handling conditions

¢ Xlib debugging techniques

Additionally, the chapter includes an introductory Xlib program. The

program includes annotations that are explained more completely in the
programming descriptions in later chapters of this guide.

1.1 Overview of Xlib

The VMS DECwindows programming environment enables application
programs, called clients, to interact with workstations using the

X Window System, Version 11 protocol. The program that controls
workstation devices such as screens and pointing devices is the server.
Xlib is a library of routines that enables a client to communicate with the
server to create and manage the following:

* Connections between clients and the server

¢ Windows

¢ Colors

* Graphics characteristics such as line width and line style

® Graphics

¢ Cursors

¢ Fonts and text

* Pixmaps and offscreen images

* Windowing and sending graphics between clients

¢ (lient notification of windowing and graphics operations

Xlib processes some client requests, such as requests to measure the width
of a character string, within the Xlib library. It sends other client requests,

such as those pertaining to putting graphics on a screen or receiving device
input, to the server.

The server returns information to clients through either replies or events.
Replies and events both return information to clients; the server returns
replies synchronously and events asynchronously.

1.2

1.2.1

Programming Overview of Xlib
1.1 Overview of Xlib

Appendix B lists routines that cause Xlib to send requests to the server.

Figure 1-1 illustrates the relationships among client, Xlib, and server.
The client calls Xlib routines, which always reside on the client system.
If possible, Xlib processes calls internally and returns information to

the client when appropriate. When an Xlib function requires server
intervention, Xlib generates a request and sends the request to the server.

The server may or may not reside on the same system as the client
and Xlib. In either case, Xlib communicates with the server through a
transport protocol, which can be either local shared memory or DECnet.

Figure 1—1 Client, Xlib, and Server

Routine

Calls Requests |

Client Xlib Server
» ry——— S Emm——
Xlib/Server Replies and
Messages Events
ZK-0003A-GE

Sample Xlib Program

The introductory Xlib program described in Example 11 illustrates the
structure of a typical client program that uses Xlib windowing and graphic
operations. The program creates two windows, draws text in one of them,
and exits if the user clicks any mouse button while the cursor is in the
window containing text.

The main loop of the program comprises two client-defined routines:
dolnitialize and doHandleEvents.

This section describes these routines and introduces fundamental concepts
about Xlib resources, windowing, and event-handling.

Sample Initialization Routine

The sample program begins by calling a client-defined routine, dolnitialize.
The routine creates the resources the client needs to perform tasks. Xlib
resources include windows, fonts, pixmaps, cursors, color maps, and data
structures that define the characteristics of graphics objects. The sample
program uses a default font, default cursor, default color map, client-
defined windows, and a client-defined data structure that specifies the
characteristics of the text displayed.

Programming Overview of Xlib
1.2 Sample Xlib Program

The dolnitialize routine makes a connection between the client and

the server. The client-server connection is called the display. After
making the connection, or opening the display, the client can get display
information from the server. For example, immediately after opening the
display, the program calls the DEFAULT SCREEN OF DISPLAY routine
to get the identifier of the default screen. The program uses the identifier
as an argument in a variety of routines it calls later.

A window is an area of the screen that either receives input or both
receives input and displays graphics.

Windows in the X Window System are hierarchically related. At the base
of the hierarchy is the root window. All windows that a client creates
after opening a display are inferiors of the root window. The sample
program includes two inferiors of the root window. First generation
inferiors of a window are its children. The root window has one child,
identified in the sample as windowl. The window named window? is an
inferior of the root window and a child of window1.

To complete the window genealogy, all windows created before a specified
window and hierarchically related to it are its ancestors. In the sample
program, windowl has one ancestor (the root window); window2 has two
ancestors (the root window and window1).

Defining background and foreground colors is part of the process of
creating windows in the sample program. The doDefineColor routine
allocates named VMS DECwindows colors for client use in a way that
permits other clients to share the same color resource. For example,

the routine specifies the VMS DECwindows color named “light grey”

as the background color of window2. If other clients were using VMS
DECwindows color resources, they too could access the VMS DECwindows
data structure that defines “light grey.” Sharing enables clients to use

The sample program calls the doDefineColor routine again in the next
step of initialization, creating the graphics context that defines the
characteristics of a graphics object. In this case, the program defines
foreground and background colors used when writing text.

1.2.1.1 Creating Windows
1.2.1.2 Defining Colors

color resources efficiently.
1.2.1.3

Working with the Window Manager

Most clients run on systems that have a window manager, which is an
Xlib application that controls conflicts between clients. Clients provide
the window manager with information about how it should treat client
resources, although the manager can ignore the information. The sample
program provides the window manager with information about the size
and placement of window1. Additionally, the program assigns a name that
the window manager displays in the title bar of window1.

Programming Overview of Xlib
1.2 Sample Xlib Program

1214 Making Windows Visible on the Screen
Creating windows does not make them visible on the screen. To make
its windows visible, a client must map them, painting the windows on a
specified screen. The last step of initializing the sample program is to map
windowl and window?2.

1.2.2 Sample Event-Handling Routine

The core of an Xlib program is a loop in which the client waits for the
server to notify it of an event, which is a report of either a change in
the state of a device or the execution of a routine call by another client.
The server can report 30 types of events associated with the following
occurrences:

¢ Key presses and releases

¢ Pointer motion

* Window entries and exits

¢ Changes of keyboards receiving input

¢ Changes in keyboard configuration

¢ Window and graphics exposures

¢ Changes in window hierarchy and configuration

* Requests by other clients to change windows

* Changes in available color resources

¢ Communication from other clients

When an event occurs, the server sends information about the event to
Xlib. Xlib stores the information in a data structure. If the client has

specified an interest in that kind of event, Xlib puts the data structure
on an event queue. The doHandleEvents routine polls the event queue
to determine if it contains an event of interest to the client. When the

routine finds an event that is of interest to the client, the doHandleEvents
routine calls one or more other routines.

Because Xlib clients do their essential work in response to events, they are
considered event driven.

The sample program continually checks its event queue to determine if
a window has been made visible or a button has been clicked. When the
server informs it of either kind of event, the program performs its real
work, as follows.

If the event is a window exposure, the program calls the doExpose routine.
This routine checks to determine whether or not the window exposed

is window2 and the event is the first instance of the exposure. If both
conditions are true, the program writes a message into the window.

1-4

Programming Overview of Xlib
1.2 Sample Xlib Program

If the event is a button press, the program calls the doButtonPress routine.
This routine checks to make certain the cursor was in window2 when the
user clicked the mouse button. If the user clicked the mouse button when
the cursor was on the root window or windowl, the program reminds the
user to click on window?2. Otherwise, the program initiates a series of
shutdown routines.

The shutdown routines unmap windowl and window?2, free resources
allocated for the windows, break the connection between the sample
program and its server, and exit the system. On the VMS operating
system, clients only need to call SYS$EXIT. Exiting the system causes
the other shutdown operations to occur. The call to SYS$EXIT breaks the
connection between client and server, which frees resources allocated for
client windows, and so forth.

See Example 1-1 for the sample Xlib program.

Example 1-1 Sample Xlib Program

finclude <decw$include/Xlib.h>
#include <decwSinclude/Xutil.h>

#define FontName "-ADOBE-NEW CENTURY SCHOOLBOOK-MEDIUM-R-NORMAL-—-*-140-*—-*%-P-*x"
fdefine WindowName "Sample X1lib Program"

Display *dpy:
Window windowl,window2;

GC gc;

Screen *screen;

int n,

state

= 0;

char *message[]= ({
"Click here to exit",
"Click HERE to exit!"

2

static
static
static
static
static
static
static
static
static
static

void doInitialize();

int doDefineColor();
doCreateWindows () ;
doCreateGraphicsContext () ;
doLoadFont ();

void
void
void
void
void
void
void
void

doExpose (

)i

doWMHints ()
doMapWindows () ;
doHandleEvents();
doButtonPress();

[REFKKXKK KKK KX KKK AKX X%% The main program **xkkkkkkxkkkkkkkkkkkkxkkkkkk %%/

static int main()

{

doInitialize();
doHandleEvents ()

(continued on next page)

1-5

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1-1 (Cont.) Sample Xlib Program

JHREEIKKRKIKRKHRKKRR JoTnitialize HAXFXKKRKERAAKKRKKKK XK KKK KK /

static void doInitialize()
{
" dpy = XOpenDisplay (0);
if (!dpy){
printf ("Display not opened!\n");
exit (-1);
}
screen = XDefaultScreenOfDisplay (dpy) ;

(2] XSynchronize (dpy, 1) ;
doCreateWindows ()
doCreateGraphicsContext ();
doLoadFont ()
doWMHints () ;

doMapWindows () ;
}

/******* doCreateWindows *********/
Ostatic void doCreateWindows ()
{
int windowlW = 400;
int windowlH = 300;
int windowlX = (XWidthOfScreen (screen)-windowlW)>>1;
int windowlY = (XHeightOfScreen (screen)-windowlH)>>1;
int window2X = 50;
int window2Y = 75;
int window2W = 300;
int window2H = 150;
XSetWindowAttributes xswa;

/* Create the windowl window */

xswa.event mask = ExposureMask | ButtonPressMask;
xswa.background pixel = doDefineColor(l);

windowl = XCreateWindow (dpy, XRootWindowOfScreen (screen),

windowlX, windowlY, windowlW, windowlH, O,
XDefaultDepthOfScreen (screen), InputOutput,

XDefaultVisualOfScreen(screen), CWEventMask | CWBackPixel,

/* Create the window2 */

xswa.event_mask = ExposureMask | ButtonPressMask;
xswa.background pixel = doDefineColor(2);

xswa) ;

window2 = XCreateWindow (dpy, windowl, window2X, window2Y, window2W,

window2H, 4, XDefaultDepthOfScreen(screen), InputOutput,
XDefaultVisualOfScreen (screen), CWEventMask | CWBackPixel,

}

/***x*x%kk*x* Create the graphics context **¥k*xxkxx/

Ostatic void doCreateGraphicsContext ()

{
XGCValues xgcv;

/* Create graphics context. */

xswa) ;

(continued on next page)

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1-1 (Cont.) Sample Xlib Program

doDefineColor(3);
doDefineColoxr(2);

xgev. foreground
xgcv.background =

XCreateGC (dpy, window2, GCForeground | GCBackground,

gc =
}
/*****x%% TLoad the font for text writing ***xx%/
Gastatic void doLoadFont ()

{
Font font;

font =
XSetFont (dpy,

XLoadFont (dpy, FontName);
gc, font);
}
/*kkkkkk* Create color ***kxkkkkkkkkkhkkkhkkhkkkkx /
@static int doDefineColor (n)
{
int pixel;
XColor exact_color, screen_color;
char *colors([] = {
"dark slate blue",
"light grey",
"firebrick"

}i

((XDefaultVisualOfScreen (screen))->class == PseudoColor
|} (XDefaultVisualOfScreen (screen))->class == DirectColor)
if (XAllocNamedColor (dpy, XDefaultColormapOfScreen (screen),
colors[n-1], &screen_color, &exact_color))
return screen_color.pixel;

if

else
switch (n) {
case 1:
case 2:
case 3:

return
return
return

XBlackPixelOfScreen (screen) ;
XWhitePixelOfScreen (screen) ;
XBlackPixelOfScreen (screen) ;

}

J**KxKkxKkkk do WMHints **kkkkkkkkkkk/
‘astatic void doWMHints ()
{

XSizeHints xsh;

/* Define the size and name of the window windowl */

xsh.x = 362;
xsh.y = 282;
xsh.width =
xsh.height =
xsh.flags =

400;
300;

PPosition | PSize;

XSetNormalHints (dpy, windowl, &xsh);

XStoreName (dpy, windowl, WindowName) ;

xgev) ;

break;
break;
break;

(continued on next page)

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1-1 (Cont.) Sample Xlib Program

[xxxxxxx% doMapWindows *****kkkkx%k/
Ostatic void doMapWindows ()
{
XMapWindow (dpy, windowl) ;
XMapWindow (dpy, window2);
}

/***************k*‘k* doHandleEvents ***********************/

@static void doHandleEvents{)
{
XEvent event;
for (; ;) {
XNextEvent (dpy, &event);
switch (event.type) {
case Expose: doExpose (&event); break;
case ButtonPress: doButtonPress (&event); break;

}

/*****x Write the message in the window **%%%/
static void doExpose (eventP)
XEvent *eventP;

{

/* If this is an expose event on our child window, then write the text.

if (eventP->xexpose.window != window2) return;

XClearWindow (dpy, window2);

XDrawImageString (dpy, window2, gc, 75, 75, message[state],
strlen(message[statel));

}

[REKKKK KKK KK KK Ah KKk JOSHULAOWN FAXKAEKKAKKAK KKKk R AKX KK KKKk /

static void doButtonPress (eventP)
XEvent *eventP;

{

if (eventP->xexpose.window != window2) {
state = 1;
XDrawImageString (dpy, window2, gc, 75, 75, messagelstate],
strlen (message[state]));
return;

}
/* Unmap and destroy windows */

@® XUnmapWindow (dpy, windowl);
XDestroyWindow (dpy, windowl);

XCloseDisplay (dpy) ;
sys$exit (1);

*/

© For information about connecting client and server, see Chapter 2.

® Xlib buffers client requests and sends them to the server
asynchronously. This causes clients to receive errors after they have
occurred. When debugging a program, call the SYNCHRONIZE
routine to enable synchronous error reporting. Using the

Programming Overview of Xlib
1.2 Sample Xlib Program

SYNCHRONIZE routine has a serious negative effect on performance.
Clients should call the routine only when debugging. For more
information about debugging, see Section 1.4.

® For information about creating windows, see Chapter 3.

O Before drawing a graphics object on the screen, clients must define
the characteristics of the object. The doCreateGraphicsContext routine
defines the foreground and background values for writing text. For
information about defining graphics characteristics, see Chapter 4.

© The sample program loads a VMS DECwindows font, New Century
Schoolbook Roman 14, which the program uses to write the text in
window2. For information about loading fonts, see Chapter 8.

® VMS DECwindows includes named colors for the convenience of
clients. The sample program uses the named colors “dark slate blue,”
“light grey,” and “firebrick.” It shares the named colors it uses with
other clients. For information about sharing colors, whether named or
client-defined, see Chapter 5. For information about defining colors for
exclusive use, see Section 5.4. For a list of named VMS DECwindows
colors, see Appendix C.

For more information about window management, see Section 3.5.1.

Mapping windows makes them visible on the screen. For information
about window mapping, see Chapter 3

For more information about event handling, see Chapter 9.

When a client exits a VMS DECwindows program on the VMS
operating system, the series of calls to unmap and destroy windows
and close the display occurs automatically.

®0o o9

1.3 Handling Error Conditions

Xlib differs from most VMS programming libraries in the way it handles
error conditions. In particular, Xlib does not perform any validation of
input arguments when an Xlib routine is called.

If the input arguments are incorrect, the server usually generates an error
event when it receives the Xlib request. Unless the client has specified
an error handler, the server invokes the default Xlib error handler, which
prints out a diagnostic message and exits. For more information about the
Xlib error handler, refer to Section 9.13.2.

In some cases, Xlib signals a fatal access violation (SYS-F-ACCVIO) when
passed incorrect arguments. This occurs when arguments are missing or
are passed using the wrong addressing mode (passed by value instead of
passed by reference).

14

Programming Overview of Xlib
1.4 Debugging Xlib Programs

Debugging Xlib Programs

1-10

As noted in Section 1.1, Xlib handles client requests asynchronously.
Instead of dispatching requests as it receives them, Xlib buffers requests
to increase communication efficiency.

Buffering contributes to delays in error reporting. Asynchronous reporting
enables Xlib and the server to continue processing client requests despite
the occurrence of errors. However, buffering contributes to the delay
between the occurrence and client notification of an error.

As a result, programmers who want to step through routines to

locate errors must override the buffering that causes asynchronous
communication between client and server. To override buffering, use
the SYNCHRONIZE routine. Example 1-1 includes a SYNCHRONIZE
call as a debugging tool. Use the SYNC routine if you are interested in a
specific call. The SYNC routine flushes the output buffer and then waits
until all requests have been processed.

2 Managing the Client-Server Connection

A client requires one or more servers to process requests and return
keyboard and mouse input. The server can be located either on the same
system as the client or at a remote location where it is accessed across a
network.

This chapter describes the following topics related to managing the client-
server connection:

¢ Qverview of the client-server connection
* Opening and closing a display
* Getting information about a display

¢ Managing sending requests to the server

2.1 Overview of the Client-Server Connection

A client using Xlib makes its first call to open a display. After opening a
display, the client can get display information from and send requests to
the server. To increase the efficiency of the client-server connection, Xlib
buffers client requests.

To understand the relationship between a display and hardware, consider
the classroom illustrated in Figure 2-1. The server and an instructor
client program are running on the instructor VAXstation, which includes a
screen, a keyboard, and a mouse. When the instructor opens a display,
Xlib establishes a connection between the instructor client program

and the server. The instructor can output graphics on the instructor
VAXstation screen.

2-1

Managing the Client-Server Connection
2.1 Overview of the Client-Server Connection

Figure 2-1 Graphics Output to Instructor VAXstation

Instructor VAXstation Student VAXstations

e, [e o,

gginsgég?\c__' Drive rsJ
i Server
C' Xlib
C' Client

ZK-0001A-GE

If the instructor wants to output graphics to student screens, each student
VAXSstation must be running a server, and the client program must be
connected to each server, as Figure 2-2 illustrates. Unlike the prior
example, where the client program opened one display by making an
internal connection with the server running on the VAXstation, here the
client program establishes connections with multiple servers.

Xlib also enables multiple clients to establish connections with one server.
For example, to output student work on the instructor screen, each
student must open a display with the server running on the instructor
VAXSstation.

2-2

2.2

Managing the Client-Server Connection
2.1 Overview of the Client-Server Connection

Figure 2-2 Graphics Output to Student VAXstations

Instructor VAXstation Student VAXstations

A

AV

] |
Drivers Drivers Dri\:/ers
Server f
C Xib Server Se|='ver
Client :
Transport
Connection
ZK-0002A-GE

Establishing the Client-Server Connection

The OPEN DISPLAY routine establishes a connection between the client
and the server. The OPEN DISPLAY routine call has the following format:

display=XOpenDisplay (display_ name)

In this call, display_name is a string that specifies the node on which
the server is running and the transport mechanism used to make the
connection between the client and the server. If the transport mechanism
is local shared memory, users should use the DCL command SET DISPLAY
to define which display to open and pass a null argument to the OPEN
DISPLAY routine. The null argument causes the server to search for

the definition of the display. If the transport mechanism is DECnet, the
display_name argument has the following format:

hostname: :number.screen

The elements of the argument are as follows:

2-3

Managing the Client-Server Connection
2.2 Establishing the Client-Server Connection

Elements Description

hostname The host on which the server is running. The double colons indicate
that the transport mechanism is DECnet.

number The number of the display on the host machine. If the client and

server are physically running in the same CPU, clients can specify a
display number of zero, which causes the transport to use a version
of DECnet that optimizes local performance.

screen The screen on which client input and output is handled.

See Example 1-1 for an example of defining a display.
If successful, OPEN DISPLAY returns a unique identifier of the display.

Refer to the VMS DECwindows User’s Guide for more information about
specifying a display.

2.3 Closing the Client-Server Connection

2-4

Although Xlib automatically destroys windows and resources related to

a process when the process exits the server, clients should close their
connection with a server explicitly. Clients can close the connection using
the CLOSE DISPLAY routine. CLOSE DISPLAY destroys all windows
associated with the display and all resources the client has allocated. The
CLOSE DISPLAY routine call has the following format:

XCloseDisplay (display)
For an example of closing a display, see Example 1-1.

After closing a display, clients should not refer to windows, identifiers, and
other resources associated with that display.

When a display is closed automatically or by an explicit call to CLOSE
DISPLAY, the server does the following:

* Discards all input events selected by the client. For information about
input events, see Chapter 9.

* Ifthe client has marked the keyboard, specific keys, the pointer button,
the pointer, or the server for its exclusive use, the server releases them
for use by other clients.

* Determines what happens to client resources after the display is
closed.

If the server is to destroy all client resources, it destroys them as follows:

¢ Examines each window in the client save set. The save set is a list of
windows that other clients are using. If a window is a member of the
save set, the server reparents the window to an ancestor not created
by the client.

¢ Maps the save set window, if it is unmapped. The server does this
even if the save set window was not a subwindow of a window created
by the client.

* Destroys all windows created by the client after examining each in the
client save set.

Managing the Client-Server Connection
2.3 Closing the Client-Server Connection

* Frees each nonwindow resource (font, pixmap, cursor, color map, and
graphics context) created by the client.

* Frees all colors and color map entries allocated by the client.

When the last connection to the server closes and the server is to destroy
all client resources, the server performs the following additional steps:

* Resets its state as if it had just been started

¢ Deletes all identifiers except predefined names of window
characteristics

¢ Deletes all information associated with the root window

* Resets all device maps and attributes (key click, bell volume,
acceleration) and the server access control list, a list of hosts
that can run client programs

* Restores the standard cursors and root tile, which is a pixmap
replicated to create a window background

* Restores the default font path

* Restores input focus to the root window

The server does not perform reset operations if a client requests the server
to retain its resources.

Refer to the VMS DECwindows Xlib Routines Reference Manual for
information about the SET CLOSE DOWN MODE routine.

2.4 Getting Information About the Client-Server Connection

After opening a display, clients can get information about the client-server
connection using routines listed in Table 2—-1. Clients can get information
about client screens using routines listed in Table 2-2. Clients can get
information about images created on screens using routines listed and
described in Table 2-3.

These routines are useful for supplying arguments to other routines.
See the VMS DECwindows Xlib Routines Reference Manual for the
syntax of information routines. Programming examples throughout
this programming guide provide examples and descriptions of the use
of information routines.

Table 2-1 Client-Server Connection Routines

Routine Value returned

ALL PLANES All bits set on. Used as a plane argument to a
routine.

BLACK PIXEL Pixel value that yields black on the specified
screen.

(continued on next page)

2-5

Managing the Client-Server Connection

2.4 Getting Information About the Client-Server Connection

2-6

Table 2-1 (Cont.) Client-Server Connection Routines

Routine

Value returned

CONNECTION NUMBER

DEFAULT COLORMAP

DEFAULT DEPTH

DEFAULT GC

DEFAULT ROOT WINDOW

DEFAULT SCREEN

DEFAULT VISUAL

DISPLAY CELLS

DISPLAY PLANES
DISPLAY STRING

IMAGE BYTE ORDER

PROTOCOL REVISION

PROTOCOL VERSION

Q LENGTH

ROOT WINDOW

SCREEN COUNT
SERVER VENDOR

VENDOR RELEASE

WHITE PIXEL

Connection number of the specified display.

Identifier of the default color map for allocation
on the specified screen.

Depth in planes of the default root window for
the specified screen.

Default graphics context for the root window of
the specified screen.

Default root window for the specified screen.

Default screen referred to by the OPEN
DISPLAY routine.

Default visual data structure for the specified
screen.

Number of color map entries on the specified
screen.

Number of planes on the specified screen.

String passed when the display was opened.
The string takes the form 0::NAME.

Byte order for images for each scanline
unit in XY format (bitmap) or for each pixel
value in Z format. If byte order is least most
significant bit first, the server returns the
constant LSBFirst. If the byte order is most
significant bit first, the server returns the
constant MSBFirst.

Minor protocol revision number that the server
is using.

Version number of the protocol associated with
the display.

Length of the event queue for the display.
There may be events that the server has not
put on the queue.

Identifier of the root window.
Number of available screens.

Identifier of the owner of the server
implementation.

Release number of the server, which is
assigned by the vendor.

Pixel value that yields white on the specified
screen.

Managing the Client-Server Connection
2.4 Getting Information About the Client-Server Connection

Table 2-2 Screen Routines

Routine

Value Returned

BLACK PIXEL OF SCREEN
CELLS OF SCREEN

DEFAULT COLORMAP OF SCREEN

DEFAULT DEPTH OF SCREEN
DEFAULT GC OF SCREEN

DEFAULT SCREEN OF DISPLAY
DEFAULT VISUAL OF DISPLAY
DOES BACKING STORE

DOES SAVE UNDERS

DISPLAY OF SCREEN
EVENT MASK OF SCREEN
HEIGHT OF SCREEN
HEIGHT MM OF SCREEN
MAX CMAPS OF SCREEN

MIN CMAPS OF SCREEN

PLANES OF SCREEN

ROOT WINDOW OF SCREEN
SCREEN OF DISPLAY
WHITE PIXEL OF SCREEN
WIDTH OF SCREEN

WIDTH MM OF SCREEN

Black pixel value of the specified screen.

Number of color map entries for the specified
screen.

Identifier of the default color map of the
specified screen.

Depth in planes of the specified screen.

Default graphics context of the specified
screen.

Default screen of display.
Default visual type of display.
Backing store is not supported in this release.

Either true or false. True indicates the server
saves the contents of windows that the client
window obscures.

Display of the screen.

Root event mask of the screen.
Height of screen in pixels.
Height of screen in millimeters.

Maximum number of color maps supported by
the screen.

Minimum number of color maps supported by
the screen.

Number of planes on the screen.

Root window on the screen.

Identifier of the specified screen.

White pixel value of the specified screen.
Width of the screen in pixels.

Width of the screen in millimeters.

Table 2-3

Image Format Routines

Routine

Value Returned

BITMAP BIT ORDER

BITMAP PAD
BITMAP UNIT
DISPLAY HEIGHT

The leftmost bit in a bitmap can be either
the least or most significant bit. This routine
returns either the constant LSBFirst or the
constant MSBFirst.

Number of bits by which scanlines are padded.
Size in bits of a bitmap unit.
Height of the screen in pixels.

(continued on next page)

Managing the Client-Server Connection
2.4 Getting Information About the Client-Server Connection

Table 2-3 (Cont.) Image Format Routines

Routine Value Returned

DISPLAY HEIGHT MM Height of the screen in millimeters.

DISPLAY WIDTH Widih of the display in pixels.

DISPLAY WIDTH MM Width of the display in millimeters.
2.5 Managing Requests to the Server

Instead of sending each request to the server as the client specifies the
request, Xlib buffers requests and sends them as a block to increase
the efficiency of client-to-server communication. The routines listed in
Table 24 control how requests are output from the buffer.

Table 2-4 Output Buffer Routines

Routine Description
FLUSH Flushes the buffer.
SET AFTER FUNCTION Specifies the function the client calls after

processing each protocol request.

SYNC Flushes the buffer and waits until the server
has received and processed all events,
including errors. Use SYNC to isolate one call
when debugging.

SYNCHRONIZE Causes the server to process requests in the
buffer synchronously. SYNCHRONIZE causes
Xlib to generate a return after each Xlib routine
completes. Use it to debug an entire client or
block.

Most clients do not need to call the FLUSH routine because the output
buffer is automatically flushed by calls to event management routines.
Refer to Chapter 9 for more information about event handling.

2-8

3 Working with Windows

Windows receive information from users; they display graphics, text, and
messages. Xlib enables a client to create multiple windows and define
window size, location, and visual appearance on one or more screens.

Conflicts between clients about displaying windows are handled by a
window manager, which controls the size and placement of windows and,
in some cases, window characteristics such as title bars and borders. The
window manager also keeps clients informed about what it is doing with
their windows. For example, the window manager might tell a client
that one of its windows has been resized so that the client can reformat
information displayed in the window.

This chapter describes the following topics related to windows and the
window manager:

* Window fundamentals—A discussion of window type, hierarchy,
position, and visibility

¢ Creating and destroying windows—How to create and destroy windows

¢ Working with the window manager—How to work with the window
manager to define user information concerning window management

¢ Mapping and unmapping windows—How to make windows visible on
the screen

* Changing window characteristics—How to change the size, position,
stacking order, and attributes of windows

* Getting information about windows—How to get information about
window hierarchies, attributes, and geometry

3.1 Window Fundamentals

A window is an area of the screen that either receives input or receives
input and displays graphics.

One type of window only receives input. Because an input-only window
does not display text or graphics, it is not visible on the screen. Clients
can use input-only windows to control cursors, manage input, and define
regions in which the pointer is used exclusively by one client.

A second type of window both receives input and displays text and
graphics.

Clients can make input-output windows visible on the screen. To make

a window visible, a client first creates the window and then maps it.
Mapping a window allows it to become visible on the screen. When more
than one window is mapped, the windows may overlap. Window hierarchy
and position on the screen determine whether or not one window hides the
contents of another window.

3-1

3.1.1

Working with Windows
3.1 Window Fundamentals

Window Hierarchy

Windows that clients create are part of a window hierarchy. The hierarchy
determines how windows are seen. At the base of the hierarchy is the root
window, which covers the entire screen when the client opens a display.
All windows created after opening a display are subwindows of the root
window.

When a client creates one or more subwindows of the root window, the root
window becomes a parent. Children of the root window become parents
when clients create subwindows of the children.

The hierarchy is structured like a stack of papers. At the bottom of the
stack is the root window. Windows that clients create after opening a
display are stacked on top of the root window, overlapping parts of it.
For example, the window named child-of-root overlaps parts of the root
window in Figure 3-1. The child-of-root window always touches the root
window. Xlib always stacks children on top of the parents.

Figure 3-1 Root Window and One Child

Child-of-root

Root ——\

ZK-0004A-GE

3-2

If a window has more than one child and if their borders intersect, Xlib
stacks siblings in the order the client creates them, with the last sibling on
top. For example, the second-level window named 2nd-child-of-root, which
was created last, overlaps the second-level window named Ist-child-of-root
in Figure 3-2.

Working with Windows
3.1 Window Fundamentals

Figure 3-2 Relationship Between Second-Level Windows

1st—child-of-root

2nd-child-of-root ————\

Root \

ZK-0005A-GE

Third-level windows maintain the hierarchical relationships of their
parents. The child-of-1st-child window overlaps child-of-2nd-child in
Figure 3-3.

3-3

Working with Windows
3.1 Window Fundamentals

Figure 3-3 Relationship Between Third-Level Windows

Child-of-1st—child

Child—of-2nd—child

Root ——\

ZK-0006A-GE

Windows created before a specified window and hierarchically related to
it are ancestors of that window. For example, the root window and the
window named Ist-child-of-root are ancestors of child-of-1st-child-of-root.

3.1.2 Window Position

Xlib coordinates define window position on a screen and place graphics
within windows. Coordinates that specify the position of a window

are relative to the origin, the upper left corner of the parent window.
Coordinates that specify the position of a graphic object within a window

are relative to the origin of the window in which the graphic object is
displayed.

Xlib measures length along the x axis from the origin to the right; it
measures length along the y axis from the origin down. Xlib specifies
coordinates in units of pixels, the smallest unit the server can display on
a screen. Figure 3—4 illustrates the Xlib coordinate system.

Working with Windows
3.1 Window Fundamentals

Figure 3-4 Coordinate System

Parent —\
Origin

Child
Origin

ZK-0007A-GE

For more information about positioning windows, see Section 3.2. For
more information about positioning graphics, see Chapter 6.

3.1.3 Window Visibility and Occlusion

A window is visible if one can see it on the screen. To be visible, a window
must be an input-output window, it must be mapped, its ancestors must

be mapped, and it must not be totally hidden by another window. When a
window and its ancestors are mapped, the window is considered viewable.
A viewable window that is totally hidden by another window is not visible.

Even though input-only windows are never visible, they can overlap
other windows. An input-only window that overlaps another window
is considered to occlude that window. Specifically, window A occludes
window B if both are mapped, if A is higher in the stacking order than
B, and if the rectangle defined by the outside edges of A intersects the
rectangle defined by the outside edges of B.

A viewable input-output window that overlaps another window is
considered to obscure that window. Specifically, window A obscures
window B if A is a viewable input-output window, if A is higher in the
stacking order than B, and if the rectangle defined by the outside edges of
A intersects the rectangle defined by the outside edges of B.

3-5

3.2

3.2.1

Working with Windows
3.2 Creating Windows

Creating Windows

After opening a display, clients can create windows. As noted in the
description of window fundamentals (Section 3.1), creating a window does
not make it visible on a screen. To be visible, the window must meet the
conditions described in Section 3.1.3.

Clients can either create windows that inherit most characteristics not
relating to size or shape from their parents or define all characteristics
when creating windows.

Using Attributes of the Parent Window

An attribute is a characteristic of a window not relating to size or shape,
such as the window background color. The CREATE SIMPLE WINDOW
routine creates an input-output subwindow that inherits the following
attributes from its parent:

* Method of moving the contents of a window when the parent is moved
or resized

* Instructions for saving window contents when the window obscures or
is obscured by another window

¢ Instructions to the server regarding information that ancestors should
know when a window change occurs

* Instructions to the window manager concerning map requests
* Color

¢ Cursor

For more information about these attributes, see Section 3.2.2.

If the parent is a root window, the new window created with the CREATE
SIMPLE WINDOW routine has the following attributes:

¢ The server discards window contents if the window is reconfigured.
¢ The server discards the contents of obscured portions of the window.

* The server discards the contents of any window that the new window
obscures.

* No events are specified as being of interest to the window ancestors.
¢ No restrictions are placed on the window manager.
¢ The color is identical to the parent color.

* No cursor is specified.

In addition to creating a window with attributes inherited from the parent
window, the CREATE SIMPLE WINDOW routine enables clients to define
the border and background attributes of the window and its position and
size.

Working with Windows
3.2 Creating Windows

Example 3-1 illustrates creating a simple window. To make the window
visible, the example includes mapping and event handling functions, which
are described in Section 3.4 and Chapter 9.

Example 3-1 Creating a Simple Window

Window winl;

static void doCreateWindows()

{

" int winlw
int winlH

O int winlx
int winly

600;
600;

(XWidthOfScreen (screen) ~windowlW) >>1;
(XHeightOfScreen (screen) —-windowlH) >>1;

/* Create the window */

® win1 = XCreateSimpleWindow (dpy, XRootWindowOfScreen (screen),

winlX, winlY, winlW, winlH, 10, XBlackPixelOfScreen (screen),
XWhitePixelOfScreen (screen);

@ Assign window width and height the value of 600 (pixels) each.

@ The client specifies the position of the window using two display

information routines, WIDTH OF SCREEN and HEIGHT OF
SCREEN. The x and y coordinates define the top left outside corner of
the window borders relative to the inside of the parent border. In this
case, the parent is the root window, which does not have a border.

The CREATE SIMPLE WINDOW routine call has the following format:

window_id = XCreateSimpleWindow(display, parent_id,
x_coord, y_coord, width, height, border_ width,
border_ id, background_id)

The client specifies a black border ten pixels wide, a white background,
and a size of 600 by 600 pixels.

The window manager overrides border width and color.

CREATE SIMPLE WINDOW returns a unique identifier, winl, used in
subsequent calls related to the window.

3.2.2 Defining Window Attributes

To create a window whose attributes are different from the parent window,
use the CREATE WINDOW routine. The CREATE WINDOW routine

enables clients to specify the following window attributes when creating
an input-output window:

Default contents of an input-output window
Border of an input-output window
Treatment of the window when it or its relative is obscured

Treatment of the window when it or its relative is moved

3-7

Working with Windows

3.2 Creating Windows

3-8

Information the window receives about operations associated with
other windows

Color

Cursor

Clients creating input-only windows can define the following attributes:

Treatment of the window when it or its relative is moved

Information the window receives about operations associated with
other windows

Cursor

Specifying other attributes for an input-only window causes the server to
generate an error. Input-only windows cannot have input-output windows
as children.

Use the following method to define window attributes:

1

Assign values to the relevant members of a set window attributes data
structure.

Indicate the defined attribute by specifying the appropriate flag in the
value_mask argument of the CREATE WINDOW routine. If more
than one attribute is to be defined, indicate the attributes by doing a
bitwise OR on the appropriate flags.

The following illustrates the set window attributes data structure:

typedef struct {

Pixmap background pixmap;
unsigned long background pixel;
Pixmap border pixmap;
unsigned long border pixel;
int bit_gravity;

int win_gravity;

int backing store;

unsigned long backing planes;
unsigned long backing pixel;
Bool save_under;

long event mask;

long do_not_propagate_mask;
Bool override_redirect;
Colormap colormap;

Cursor cursor;

} XSetWindowAttributes;

Table 3—1 describes the members of the data structure.

Working with Windows
3.2 Creating Windows

Table 3-1 Set Window Attributes Data Structure Members

Member Name

Contents

background_pixmap

background_pixel

Defines the window background. The background_pixmap member can assume
one of three possible values: pixmap identifier, the constant None (default), or the
constant ParentRelative.

If the client specifies a pixmap identifier, a pixmap defines the window background.
The pixmap must have the same root and number of bits per pixel as the window,
but can be any size. For more information about creating pixmaps, see Chapter 7.

If the client specifies the constant None (default), the window has no defined
background. If the parent has no defined background, neither does the window
being created.

if the client specifies the constant ParentRelative, the background of the window
is identical to the background of its parent. In this case, the window must have
the same number of bits per pixel as the parent. If the background value of

the window is ParentRelative and the parent background is None, the window
being created has no defined background. The server does not copy the

parent background; instead, it reexamines the parent background each time

the client needs the window background. For a background that is identical to the
parent background, the origin of the pixmap used to paint the background, the
background tile, always aligns with the origin of the parent background tile origin.
Otherwise, the background tile origin is always the window origin.

If the client alters the pixmap after using it for the background, the results are
unpredictable because the server might either make a copy of the pixmap used to
draw the background, or it might refer to the pixmap directly. Free the background
pixmap when the client no longer needs to refer to it. In particular, free the pixmap
after setting it into the window but before destroying the window.

When regions of the window are exposed and the server has not retained their
contents, the server automatically tiles the regions with the background pixmap if
the client specified a pixmap identifier or the constant ParentRelative. If the client
specified the constant None, the server leaves the previous screen contents in
place, provided the window and its parent have the same number of bits per pixel.
Otherwise, the initial contents of the exposed region are undefined.

Specifying a value for the background_pixel member causes the server to override
the background_pixmap member. This is equivalent to specifying a pixmap of any
size filled with the background pixel and used to paint the window background.

(continued on next page)

3-9

Working with Windows

3.2 Creating Windows

Table 3-1 (Cont.) Set Window Attributes Data Structure Members

Member Name

Contents

border_pixmap

border_pixel

bit_gravity

win_gravity

backing_store

backing_planes

backing_pixel

save_under

Defines the window border. The following conditions apply:

+ The border tile origin is always the same as the background tile origin.

= The border pixmap and the window must have the same root and the same
number of bits per pixel. Otherwise, the server issues an error.

+ Clients can specify a pixmap of any size. Using some sizes, however,
increases performance.

» The default copies the border pixmap from the parent. If the client specifies
the constant CopyFromParent, the parent border pixmap is copied. The
window must have the same number of bits per pixel as the parent, or the
server issues an error. Subsequent changes to the parent do not affect the
child.

If the client alters the pixmap after using it for the border, the results are
unpredictable because the server may either make a copy of the pixmap used to
draw the border, or it may refer to the pixmap directly.

Because output to a window is always limited or clipped to the inside of the
window, graphics operations are never affected by the window border.

Specifying a value for border_pixel causes the server to override the border_
pixmap member. This is equivalent to specifying a pixmap of any size filled with
the border pixel and used to paint the window border.

Defines how the contents of the window should be moved when the window
is resized. By default, the server does not retain window contents. For more
information about bit gravity, see Section 3.6.

Defines how the server should reposition the newly created window when its
parent window is resized. By default, the server does not move the newly created
window. For more information about window gravity, see Section 3.6.

Provides a hint fo the server about how the client wants it to manage obscured
portions of the window. In this release, clients must maintain window contents.

Indicates (with bits set to one) which bit planes of the window hold dynamic data
that must be preserved if the window obscures or is obscured by another window.
In this release, clients must maintain data to be preserved.

Defines what values to use in planes not specified by the backing_planes member.
The server is free to save only specified bit planes and to regenerate the
remaining planes with the specified pixel value. Bits that extend beyond the
number per pixel of the window are ignored. In this release, clients must maintain
values.

Setting the save_under member to true informs the server that the client wouid
like the contents of the screen saved when the window obscures them. Saving
the contents of obscured portions of the screen is not guaranteed.

3-10

(continued on next page)

Working with Windows
3.2 Creating Windows

Table 3—-1 (Cont.) Set Window Attributes Data Structure Members

Member Name

Contents

event_mask

do_not_propagate_mask

override_redirect

color map

cursor

Defines which types of events associated with the window the server should report
to the client. For more information about defining event types, see Chapter 9.
Following are events about which the client can state an interest:

Event Type Description

Button Motion, button press and release, exclusive input
Color Change in color map

Window Entry into and exit from a window

Exposure Exposure of a previously obscured window

Input focus Change in window that receives keyboard input
Keyboard and keys Change in keyboard state, and key press or release
Pointer Motion

Property Change in window characteristics

Structure Notification and control of requests from clients

Defines which kinds of events should not be propagated to ancestors. For more
information about managing events, see Chapter 9.

Specifies whether calls to map and configure the window should override a request
by another client to redirect those calls. For more information about redirecting
calls, see Chapter 9. Typically, this is used to inform a window manager not to
tamper with the window, for example when the client is creating and mapping a
menu.

Specifies the color map, if any, that best reflects the colors of the window. The
color map must have the same visual type as the window. If it does not, the server
issues an error. For more information about the color map and visual types, see
Chapter 5.

Specifying a value for the cursor member causes the server to use a particular
cursor when the pointer is in the window.

Table 3-2 lists default values for the set window attributes data
structure.

Table 3—-2 Default Values of the Set Window Attributes Data Structure

Member Default Value
background_pixmap None

background_pixel Undefined

border_pixmap Copied from the parent window
border_pixel Undefined

bit_gravity Window contents not retained
win_gravity Window not moved

(continued on next page)

3-11

Working with Windows
3.2 Creating Windows

3-12

Table 3-2 (Cont.) Default Values of the Set Window Attributes Data
Structure

Member

Default Value

backing_store
backing_planes
backing_pixel
save_under

event_mask
do_not_propagate_mask
override_redirect
colormap

cursor

Window contents not retained
All 1s

0

False

Empty set

Empty set

False

Copied from parent

None

Xlib assigns a flag for each member of the set window attributes data
structure to facilitate referring to the members, as listed in Table 3-3.

Table 3-3 Set Window Attributes Data Structure Flags

Flag Name Set Window Attributes Member
CWBackPixmap background_pixmap
CWBackPixel background_pixel
CWBorderPixmap border_pixmap
CWBorderPixel border_pixel
CWBitGravity bit_gravity
CWWinGravity win_gravity
CWBackingStore backing_store
CWBackingPlanes backing_planes
CWBackingPixel backing_pixel
CWOverrideRedirect override_redirect
CWSaveUnder save_under
CWEventMask event_mask
CWDontPropagate do_not_propagate
CWColormap colormap
CWCursor cursor

Example 3-2 illustrates how clients can define window attributes while
creating input-output windows with the CREATE WINDOW routine.

The program creates a parent window and two children windows. The
hierarchy of the subwindows is determined by the order in which the
program creates them. In this case, subwinl is superior to subwin2, which

is created last.

Working with Windows
3.2 Creating Windows

Example 3-2 Defining Attributes When Creating Windows

Window window, subwindowl, subwindow2;
int n;

static void doCreateWindows ()
{
int windowW = 600;

int windowH = 600;
int windowX = (WidthOfScreen (screen)-windowW)>>1;
int windowY = (HeightOfScreen (screen)-windowH)>>1;

int subwindowlX = 150;
int subwindowlY = 100;
int subwindowlW = 300;
int subwindowlH = 400;
int subwindow2X = 275;
int subwindow2Y = 125;
int subwindow2W = 50;
int subwindow2H = 150;
" XSetWindowAttributes xswa;

/* Create the window window */

(2] xswa.event_mask = ExposureMask | ButtonPressMask;
xswa.background_pixel = doDefineColor(1l);

@’ window = XCreateWindow (dpy, XRootWindowOfScreen (screen),
windowX, windowY, windowW, windowH, 0,
XDefaultDepthOfScreen (screen), InputOutput,
XDefaultVisualOfScreen (screen), CWEventMask | CWBackPixel, &xswa);

/* Create the window subwindowl */
xswa.background pixel = doDefineColoxr(3);

subwindowl = XCreateWindow (dpy, window, subwindowlX, subwindowlY, subwindowlW,
subwindowlH, 4, XDefaultDepthOfScreen (screen), InputOutput,
XDefaultVisualOfScreen (screen), CWEventMask | CWBackPixel, &xswa):;

/* Create the window subwindow2 */
xswa.background pixel = doDefineColor(3);

subwindow2 = XCreateWindow (dpy, window, subwindow2X, subwindow2Y, subwindow2W,
subwindow2H, 4, XDefaultDepthOfScreen (screen), InputOutput,
XDefaultVisualOfScreen (screen), CWEventMask | CWBackPixel, &xswa);

static int doDefineColor (n)

{

@ Allocate storage for a set window attributes data structure used to
define window attributes.

3-13

Working with Windows
3.2 Creating Windows

® Set the attributes of the parent window. The client indicates an
interest in window exposure and button press events. For more
information about events, see Chapter 9.

The client defines the window background by calling the client-defined
doDefineColor routine. For more information about defining colors, see
Chapter 5.

® The CREATE WINDOW routine call has the following format:

window_id return=XCreateWindow(display, parent_id,
x_coord, y_coord, width, height, border_ width,
depth, class, visual_ struc, attributes_mask,
attributes)

The depth of a window is its number of bits per pixel. The call passes
a display information routine to indicate that the client wants the
parent window depth to be identical to the display depth.

The window class can be either input only or input-output, specified by
the following constants:

¢ InputOnly
¢ InputOutput

If the window is the same class as the parent, pass the constant
CopyFromParent.

The visual type indicates how the window displays color values. For
more information about visual types, see Chapter 5.

3.3 Destroying Windows

When a client no longer needs a window, the client should destroy it using
either the DESTROY WINDOW or the DESTROY SUBWINDOWS routine.
DESTROY WINDOW destroys a specified window and all its subwindows.
DESTROY SUBWINDOWS destroys all subwindows of a specified window
in bottom to top stacking order.

Destroying a window frees all storage allocated for that window. If the
window is mapped to the screen, the server notifies applications using the
window that it has been destroyed.

3.4 Mapping and Unmapping Windows

3-14

After creating a window, the client can map it to a screen using the MAP
WINDOW or MAP SUBWINDOWS routine. Mapping generally makes a
window visible at the location the client specified when creating it. Part or
all of the window is not visible when the following conditions occur:

* One or more windows higher in the stacking order obscures it
* One or more window ancestors is not mapped

* The new window extends beyond the boundary of its parent

Working with Windows
3.4 Mapping and Unmapping Windows

MAP WINDOW maps a window. If the window is an inferior, and one
or more of its ancestors has not been mapped, the server considers the
window to be mapped after the call, even though the window is not visible
on the screen. The window becomes visible when its ancestors are mapped.

To map all subwindows of a specified window in top to bottom order, use
MAP SUBWINDOWS. Using the MAP SUBWINDOWS routine to map
several windows may be more efficient than calling the MAP WINDOW
routine to map each window. The MAP SUBWINDOWS routine enables
the server to map all of the windows at one time instead of mapping a
single window with the MAP WINDOW routine.

To ensure that the window is completely visible, use the MAP RAISED
routine. MAP RAISED reorders the stack with the window on top and
then maps the window. Example 3-3 illustrates how a window is mapped
and raised to the top of the stack.

Example 3-3 Mapping and Raising Windows

Window window, subwindowl, subwindow2;

/* Create windows in the following order: window, subwindow2, subwindowl */

static void doMapWindows ()
{
XMapWindow (dpy, window) ;
XMapWindow (dpy, subwindow2) ;
(2] XMapRaised (dpy, subwindowl):;
}

© In this example, the client created subwindowl after subwindow?2,
putting subwindowl at the top of the stack.

Consequently, whether subwindow2 were to be mapped before or after
subwindowl, subwindowl would obscure subwindow?2.

The effect is illustrated in Figure 3-5.

® Mapping and raising subwindow?2 moves it to the top of the stack. It
is now visible, as Figure 3-6 illustrates.

When the client no longer needs a window mapped to the screen, call
UNMAP WINDOW. If the window is a parent, its children are no longer
visible after the call, although they are still mapped. The children become
visible when the parent is mapped again.

To unmap all subwindows of a specified window, use UNMAP
SUBWINDOWS. UNMAP SUBWINDOWS results in an UNMAP
WINDOW call on all subwindows of the parent, from bottom to top
stacking order.

3-15

Working with Windows
3.5 Associating Properties with Windows

Figure 3-5 Window Before Restacking

subwindow1 subwindow2

Window Before Restacking

ZK-0082A-GE

3.5 Associating Properties with Windows

Xlib enables clients to associate data with a window. This data is
considered a property of the window. For example, a client could store
text as a window property. Although a property must be data of only one
type, it can be stored in 8-bit, 16-bit, and 32-bit formats.

Xlib uses atoms to uniquely identify properties. An atom is a string
paired with an identifier. For example, a client could use the atom
XA_WM_ICON_NAME to name a window icon stored for later use. The
atom XA_WM_ICON_NAME pairs the string XA_WM_ICON_NAME
with a value, 37, that uniquely identifies a property.

3-16

Working with Windows
3.5 Associating Properties with Windows

Figure 3-6 Restacked Window

subwindow1 subwindow?2

Restacked Window

ZK-0080A-GE

In DECWS$INCLUDE:XATOMS.H, VMS DECwindows includes predefined
atoms such as XA_WM_ICON_NAME for commonly used properties.
Table 3—4 lists by function all predefined atoms except those used to
identify font properties and atoms used to communicate with the window
manager. See Table 3-6 for a list of atoms related to window management.
See Chapter 8 for a list of atoms related to fonts.

3-17

Working with Windows
3.5 Associating Properties with Windows

Table 3-4 Predefined Atoms

For Global Selection

XA_PRIMARY

XA_SECONDARY

For Cut Buffers

XA_CUT_BUFFERO
XA_CUT_BUFFER2
XA_CUT_BUFFER4
XA_CUT_BUFFERS6

XA_CUT_BUFFER1
XA_CUT_BUFFER3
XA_CUT_BUFFER5
XA_CUT_BUFFER7

For Color Maps

XA_RGB_COLOR_MAP
XA_RGB_BLUE_MAP
XA_RGB_GREEN_MAP
XA_RGB_DEFAULT_MAP

XA_RGB_BEST_MAP
XA_RGB_RED_MAP
XA_RGB_GRAY_MAP

For Resources

XA_RESOURCE_MANAGER
XA_ATOM

XA_CARDINAL
XA_CURSOR

XA_FONT

XA_PIXMAP
XA_RECTANGLE
XA_VISUALID

XA_ARC
XA_BITMAP
XA_COLORMAP
XA_DRAWABLE
XA_INTEGER
XA_POINT
XA_STRING
XA_WINDOW

In addition to providing predefined atoms, Xlib enables clients to create
atom names of their own. To create an atom name, use the INTERN
ATOM routine, as in the following example:

Atom atom_id;

char *name = "MY_ ATOM";

Bool if exists;

atom id =

XInternAtom(dpy, name, if exists);

The routine returns an identifier associated with the string MY_ATOM.
Xlib also returns the value of false to if_exists if the atom does not exist in

the atom table.

Working with Windows
3.5 Associating Properties with Windows

To get the name of an atom, use the GET ATOM NAME routine, as in the
following example:

char name;
Atom atom _id = 39;

name = XGetAtomName (dpy, atom_id);

The routine returns a string associated with the atom identifier.

Xlib enables clients to change, obtain, update, and interchange properties.
Example 34 illustrates exchanging properties between two subwindows.

The example uses the CHANGE PROPERTY routine to set a property on
the parent window and the GET PROPERTY routine to get the data from
the parent window.

Example 3-4 Exchanging Window Properties

#define
#define
#define
#define
#define

windowWidth
windowHeight

600
600

subwindowWidth 300
subwindowHeight 150

true 1

static void doCreateWindows()

{
int
int
int
int
int
int
int
int

winW

windowWidth;

winH = windowHeight;

winX = 100;
winY = 100;

subwindowlX =

subwindowlY
subwindow2X

subwindow2Y =
XSetWindowAttributes xswa;

150;
100;
150;
350;

/* Create the win window */

xswa.event_mask
xswa.background pixel = doDefineColor(l);

win

ExposureMask | ButtonPressMask | PropertyChangeMask;

= XCreateWindow (dpy, RootWindowOfScreen (screen),

winW, winH, 0,

DefaultDepthOfScreen(screen), InputOutput,

DefaultVisualOfScreen (screen), CWEventMask | CWBackPixel, &xswa);

winX, winY,

/* Create the subwindows */
Xswa.event_mask
xswa.background_pixel = doDefineColor(2);

ExposureMask| ButtonPressMask;

(continued on next page)

3-19

Working with Windows
3.5 Associating Properties with Windows

Example 3—4 (Cont.) Exchanging Window Properties

subwinl = XCreateWindow (dpy, win, subwindowlX, subwindowlY, subwindowWidth,
subwindowHeight, 0, DefaultDepthOfScreen (screen), InputOutput,
DefaultVisualOfScreen (screen), CWEventMask | CWBackPixel, &xswa);

subwin2 = XCreateWindow (dpy, win, subwindow2X, subwindow2Y, subwindowWidth,
subwindowHeight, 0, DefaultDepthOfScreen (screen), InputOutput,
DefaultVisualOfScreen (screen), CWEventMask | CWBackPixel, &xswa);

.

[xEKRFRK KKK KRk * Kk k%% dJoHandleEvents **#xxkkkkkkkkkkkkkkxkkkx /
static void doHandleEvents()

{

XEvent event;

for (; ;) {
XNextEvent (dpy, &event);
switch (event.type) {

case Expose: doExpose (&event); break;
case ButtonPress: doButtonPress (&event) ;break;
case PropertyNotify: doPropertyNotify (¢event) ;break;

/****x* Handle button presses X*xxkxxx/
static void doButtonPress (eventP)
XEvent *eventP;

{

char *property data = "You clicked MB1";
if (eventP->xbutton.button == Button2) sysSexit(1l);
if (eventP->xbutton.window == subwinl && eventP->xbutton.button == Buttonl)

XChangeProperty (dpy, win, XA CUT_ BUFFER0, XA STRING, 16,
PropModeReplace, property data, 15);

return;
}
/***%*% Get the property and draw text into the subwindow **¥Xxxxx/
static void doPropertyNotify (eventP)
XEvent *eventP;
{

long offset = 0;

long length = 1000;

Atom type_returned;

int format returned;

unsigned long num items_returned, bytes remaining;

unsigned char *property returned;

if (eventP->xproperty.atom == XA CUT BUFFERO) {

&) XGetWindowProperty (dpy, win, XA CUT BUFFERO, offset, length,
true, XA STRING, &type returned, &format_ returned,
&num_items_returned, &bytes_remaining, &property returned);

(continued on next page)

3-20

Working with Windows
3.5 Associating Properties with Windows

Example 3—4 (Cont.) Exchanging Window Properties

(3] XDrawString (dpy, subwin2, gc, 75, 75, property returned,
num_items_returned);

}

return;

@ When the user clicks MB1 in subwindow subwinl, the client calls
the CHANGE PROPERTY routine. CHANGE PROPERTY causes
the server to change the property identified by the atom XA _CUT_
BUFFERO to the value specified by property_data. The property is
associated with the parent window, win.

When changing properties, clients can specify how the server

should treat the property. If the client specifies the constant
PropModeReplace, the server discards the previous property. If

the client specifies the constant PropModePrepend, the server
inserts the new data at the beginning of the existing property data. If
the client specifies the constant PropModeAppend, the server inserts
the new data at the end of the existing property data.

Changing the property causes the server to send a property notify
event to win. For information about event handling, see Chapter 9.

@ After checking to ensure that the changed property is the one to
obtain, the client calls the GET WINDOW PROPERTY routine.

© After getting the string data from the parent window, the client uses
it to write text in subwin2. For information about writing text, see
Chapter 8.

In addition to the GET WINDOW PROPERTY routine, Xlib includes the
property-management routines described in Table 3-5.

Table 3-5 Routines for Managing Properties

Routine Description

LIST PROPERTIES Returns a list of properties defined for a specified
window.

ROTATE WINDOW Rotates the properties of a specified window and

PROPERTIES generates a property notify event. For more information
about property notify events, see Chapter 9.

DELETE PROPERTY Deletes a specified property.

3-21

Working with Windows
3.5 Associating Properties with Windows

3.5.1 Using Properties to Communicate with the Window Manager

Xlib provides predefined atoms to enable clients to communicate hints to
the window manager about the following:

¢ Window names

¢ Jcon names

¢ Pixmaps used to define window icons

e Commands used to start the application

* Position and size of windows in their startup state
¢ Initial state of windows

* Input that windows accept

¢ Names used to retrieve application resources

Table 3-6 describes the atom names, data types, and formats of these
properties.

Table 3-6 Atom Names of Window Manager Properties

Atom Data Type Format Description

XA_WM_NAME STRING 8 Application name

XA_WM_ICON_NAME STRING 8 Icon name

XA_WM_NORMAL_HINTS WM_SIZE_HINTS 32 Size hints for a window in its normal
state

XA_WM_ZOOM_HINTS WM_SIZE_HINTS 32 Size hints for a zoomed window

XA_WM_HINTS WM_HINTS 32 Hints about keyboard input, initial

state, icon pixmap, icon window, icon
position, and icon mask

XA_WM_COMMAND STRING 8 Command used to start the client

XA_WM_ICON_SIZE WM_ICON_SIZE 32 Specifies the icon size supported by
the window manager

XA_WM_CLASS STRING 32 Allows window manager to obtain

the application resources from the
resource database

XA_WM_TRANSIENT_FOR WINDOW 32 Indicates that a window, such as a
dialog box, is transient

Xlib provides the following methods for using the properties described in
Table 3—6 to communicate with the window manager:

* Defining properties with the SET WM HINTS routine—SET WM
HINTS uses the WM hints data structure to define hints about
keyboard input, initial state of the window, icon pixmap, icon window,
icon position, icon mask, and window group.

3-22

Working with Windows
3.5 Associating Properties with Windows

¢ Using convenience routines to communicate with the window
manager—Xlib includes routines that enable clients to communicate
individual hints about window names, window icon names, and
window classes.

¢ Providing and obtaining hints about the size and position of windows—
Xlib routines communicate information about the size and position of
windows.

¢ Changing the values of a property—Xlib includes a routine to change
the value of an existing property.

Note that it is not guaranteed that the window manager will apply window
manager hints.

This section describes how to use properties to communicate with the
window manager.

3.5.1.1

Defining Properties Using the SET WM HINTS Routine

Use the SET WM HINTS routine to provide the window manager with
hints about keyboard input, initial window state, icon pixmap, icon
window, icon position, icon mask, and window group. A window manager
can use the window group property to treat a set of windows as a group.
For example, if a client manipulates multiple children of the root window,
SET WM HINTS enables the client to provide enough information so that
a window manager can make all windows into icons, rather than just one
window.

Xlib provides a WM hints data structure to enable clients to specify these
hints easily. The following illustrates the WM hints data structure:

typedef struct {
long flags:;
Bool input;
int initial_state;
Pixmap icon_pixmap;
Window icon_window;
int icon_x, icon y;
Pixmap icon_mask;
XID window_group;

} XWMHints;

Table 3—7 defines the members of the data structure.

3-23

Working with Windows
3.5 Associating Properties with Windows

Table 3-7 WM Hints Data Structure Members

Member Name

Contents

flags
input

initial_state

icon_pixmap
icon_window
icon_x

icon_y
icon_mask
window_group

Specifies the members of the data structure that are defined.

Indicates whether or not the client relies on the window manager to get keyboard
input.

Defines how the window should appear in its initial configuration. Possible initial
states are as follows:

Constant
Name Description

DontCareState Client is not interested in the initial state

NormalState Initial state used most often
ZoomState Window starts zoomed
IconicState Window starts as an icon

InactiveState Window is seldom used

Identifies the pixmap used to create the window icon.
Specifies the window to be used as an icon.

Specifies the initial x-coordinate of the icon position.

Specifies the initial y-coordinate of the icon position.

Specifies the pixels of the icon pixmap used to create the icon.
Specifies that a window belongs to a group of other windows.

3.5.1.2

3-24

Defining Individual Properties

Xlib includes routines to enable clients to define individual properties
for communicating with the window manager about window names, icon
names, and window classes.

To define a window name, use the STORE NAME routine. The sample
program in Chapter 1 uses the STORE NAME routine to define the name
of its parent window, as follows:

XStoreName (dpy, windowl, "A Sample Xlib Program") ;

To get the name of a window, use the FETCH NAME routine. The routine
either returns the name of the specified window or sets the value of the
XA_WM_NAME property to null.

The SET ICON NAME and GET ICON NAME routines define and get the
name of a window icon.

To define and get the class of a specified window, use the SET CLASS
HINT and GET' CLASS HINT routines. The routines refer to the class
hint data structure, which has the following form:

typedef struct {
char *res_name;
char *res class;
} XClassHint;

Working with Windows
3.5 Associating Properties with Windows

Table 3-8 defines the members of the data structure.

Table 3-8 Class Hint Data Structure Members

Member
Name Contents

res_name Defines the name of the window. The name defined in this data
structure may differ from the name defined by the XA_WM_NAME
property. The XA_WM_NAME property specifies what should be
displayed in the title bar. Consequently, it may contain a temporary
name, as in the name of a file a client currently has in a buffer.
In contrast to XA_WM_NAME, the res_name member defines
the formal window name that clients should use when retrieving
resources from the resource database.

res_class Defines the class of the window.

At times, clients may need to indicate to the window manager that a
top-level window is really only a transient window. For instance, a client
may communicate to the window manager that the window is a dialog box
mapped on behalf of another window. To communciate this, a client calls
the SET TRANSIENT FOR HINT routine. The routine sets the
XA_WM_TRANSIENT_FOR property of the transient window and
associates the transient window with a main window. To obtain the
XA_WM_TRANSIENT_FOR property for a specified window, call the GET
TRANSIENT FOR HINT routine.

To define the command that invokes an application in a specified window,
use the SET COMMAND routine.

3513

Providing Size Hints

Xlib provides routines to communicate with the window manager about the
size and position of windows in their normal and zoomed startup states.
Use the following method to specify the size and position of a window in
its usual startup state:

1 Assign values to the relevant members of the size hints data structure,
including the flags member, which specifies the members of the data
structure that are defined. Table 3-9 lists the flags.

2 Call the SET NORMAL HINTS routine

Table 3-9 Set Window Attributes Data Structure Flags

Flag Name Size Hints Member

USPosition User-specified position of the window
USSize User-specified size of the window
PPosition Client-specified position

PSize Client-specified size

(continued on next page)

3-25

Working with Windows
3.5 Associating Properties with Windows

Table 3-9 (Cont.) Set Window Attributes Data Structure Flags

Flag Name

Size Hints Member

PMinSize Client-specified minimum size of the window

PMaxSize Client-specified maximum size of the window

PResizelnc Client-specified increments for resizing the window
PAspect Client-specified minimum and maximum aspect ratios
PAllHints The bitwise OR of PPasition, PSize, PMinSize, PMaxSize,

PResizelnc, and PAspect

The following illustrates the size hints data structure:

typedef struct {
long flags;
int x, y;
int width, height;
int min_width, min_height;
int max width, max height;
int width_inc, height_inc;
struct {
int x;
int y;
min_aspect, max_aspect;
}

XSizeHints;

Table 3—10 describes its contents.

Table 3—-10 Size Hints Data Structure Members

Member Name

Contents

flags

X

y

width
height
min_width
min_height
max_width
max_height
width_inc
height_inc
min_aspect_x

Defines which members the client is assigning values to.

Specifies the x-coordinate that defines window position.

Specifies the y-coordinate that defines window position.

Defines the width of the window.

Defines the height of the window.

Specifies the minimum useful width of the window.

Specifies the minimum useful height of the window.

Specifies the maximum useful width of the window.

Specifies the maximum useful height of the window.

Defines the increments by which the width of the window can be resized.
Defines the increments by which the height of the window can be resized.
With the min_aspect y member, specifies the minimum aspect ratio of the window.

3-26

(continued on next page)

Working with Windows
3.5 Associating Properties with Windows

Table 3-10 (Cont.) Size Hints Data Structure Members

Member Name Contents

min_aspect_y With the min_aspect x member, specifies the minimum aspect ratio of the window.
max_aspect_x With the max_aspect y member, specifies the maximum aspect ratio of the window.
max_aspect y With the max_aspect_x member, specifies the maximum aspect ratio of the window.

Setting the minimum and maximum aspects indicates the preferred range of the size of a
window. An aspect is expressed in terms of a ratio between x and y.

For example, if the minimum aspect of x is 1 and y is 2, and the maximum aspect of x is
2 and y is 5, then the minimum window size is a ratio of 1/2, and the maximum is a ratio
of 2/5. In this case, a window could have a width of 300 pixels and a height of 600 pixels
minimally, and maximally a width of 600 pixels and a height of 1500 pixels.

The following illustrates using the size hints data structure to set the
normal window manager hints for a window:

static void doWMHints()
{
XSizeHints xsh;

/* Define the size and name of the window windowl */

xsh.x 362;

xsh.y 282;

xsh.width = 400;

xsh.height = 300;

xsh.flags = PPosition | PSize;

XSetNormalHints (dpy, windowl, &xsh);

The example sets hints about the size and location of window window]I.

3.5.2 Exchanging Properties Between Clients

Xlib provides routines that enable clients to exchange properties. The
properties, which are global to the server, are called selections. Text cut
from one window and pasted into another window exemplifies the global
exchange of properties. The text cut in window A is a property owned by
client A. Ownership of the property transfers to client B, who then pastes
the text into window B.

Properties are exchanged between clients by a series of calls to routines
that manage the selected text. When a user drags the pointer cursor,
client A responds by calling the SET SELECTION OWNER routine. SET
SELECTION OWNER identifies client A as the owner of the selected
text. The routine also identifies the window of the selection, associates
an atom with the text, and puts a timestamp on the selection. The atom,
XA_PRIMARY, names the selection. The timestamp enables any clients
competing for the selection to determine selection ownership.

3-27

Working with Windows
3.5 Associating Properties with Windows

Clients can determine the owner of a selection by calling the GET
SELECTION OWNER routine.

When a user decides to paste the selected text in window B, client B, who
owns window B, sends client A a selection request. The request identifies
the window requesting the cut text and the format in which the client
would like the property transferred.

In response to the request, client A first checks to ensure that the time of
the request corresponds to the time in which client A owns the selection.
If the time coincides, and if the selection is in the data type required by
client B, client A notifies client B that the text is stored and available. The
text is then moved to client B.

After receiving the text, client B informs client A that client B is the
current owner of the selection.

In addition to requesting a selection in its current format, clients can

call the CONVERT SELECTION routine. CONVERT SELECTION

asks the owner of a selection to convert it to a particular data type. If
conversion is possible, the client converting the selection notifies the client
requesting the conversion that the selection is available. The property is
then exchanged as previously described.

Clients request and notify other clients of selections by using events. For
information about using events to request, convert, and notify clients of

selections, see Chapter 9. For style guidelines about using selections, see
the XUI Style Guide.

3.6 Changing Window Characteristics

Xlib provides routines that enable clients to change window position, size,
border width, stacking order, and attributes.

This section describes how to use Xlib routines to do the following:
¢ Change multiple window characteristics in one call

* Change position, size, or border width

* Change stacking order

* Change window attributes

3.6.1 Reconfiguring Windows

3-28

Xlib enables clients either to change window characteristics using one
call or to use individual routines to reposition, resize, or to change border
width.

The CONFIGURE WINDOW routine enables clients to change window
position, size, border width, and place in the hierarchy. To change these
window characteristics in one call, use the CONFIGURE WINDOW
routine, as follows:

1 Set values of relevant members of a window changes data structure.

Working with Windows
3.6 Changing Window Characteristics

2 Indicate what is to be reconfigured by specifying the appropriate flag
in the CONFIGURE WINDOW value_mask argument.

The window changes data structure enables clients to specify one or more
values for reconfiguring a window. The following illustrates the window
changes data structure:

typedef struct {
int x, y;
int width, height;
int border width;
Window sibling;
int stack_mode;

} XWindowChanges;

Table 3—11 describes the members of the data structure.

Table 3-11 Window Changes Data Structure Members

Member

Name Contents

X Defines, with the y member, the new location of the window relative
to the origin of its parent.

y Defines, with the x member, the new location of the window relative
to the origin of its parent.

width Defines the new width of the window, excluding the border.

height Defines the new height of the window, excluding the border.

border_width Specifies the new window border in pixels.

sibling Specifies the sibling window for stacking order.

stack_mode Defines how the window is restacked. Table 3—-12 lists constants and

definitions for restacking windows.

The client can change the hierarchical position of a window in relation to
all windows in the stack or to a specified sibling. If the client changes the
size, position, and stacking order of the window by calling CONFIGURE
WINDOW, the server restacks the window based on its final, not initial,
size and position. Table 3-12 lists constants and definitions for restacking
windows.

3-29

Working with Windows
3.6 Changing Window Characteristics

Table 3—-12 Stacking Values

Constants Relative to All Windows Relative to Siblings

Above Top of stack. Just above the sibling.

Below Bottom of stack. Just below the sibling.

Toplf If any sibling obscures a window, the server If the specified sibling obscures a window, the
places the obscured window on top of the server places the obscured window at the top of
stack. the stack.

Bottomlf If a window obscures any sibling, the server If a window obscures the specified sibling, the
places the obscuring window at the bottom server places the obscuring window at the bottom
of the stack. of the stack.

Opposite If any sibling obscures a window, the server if the specified sibling obscures a window, the

places the obscured window on top of the
stack. If a window obscures any window,
the server places the obscuring window at
the bottom of the stack.

server places the obscuring window on top of the
stack. If a window obscures the specified sibling,
the server places the obscuring window on the
bottom of the stack.

3-30

Xlib assigns a symbol to the flag associated with each member of the data

structure (Table 3—-13).

Table 3-13 Window Changes Data Structure Flags

Flag Name Window Changes Member
CWX X

CWYy y

CwWwidth width

CWHeight height

CWBorderWidth border_width

CWSibling sibling

CWStackMode stack_mode

Example 3-5 illustrates using CONFIGURE WINDOW to change the
position, size, and stacking order of a window when the user presses a

button.

Working with Windows
3.6 Changing Window Characteristics

Example 3-5 Reconfiguring a Window Using the CONFIGURE WINDOW Routine

/* This program changes the position, size, and stacking

order of subwindowl */

static void doButtonPress (eventP)
XEvent *eventP
{

XWindowChanges xwc;

" xwc.x = 200;
xwe.y = 350;
xwc.width =
xwc.height =
xwc.sibling =
XWC

200;
50;
subwindow2;

.stack _mode = Above;

XConfigureWindow (dpy, subwindowl, CWX | CWY | CWWidth | CWHeight | CWSibling

| CWStackMode, &xwc);

@ Assign values to relevant members of the window changes data
structure. Because the client identifies a sibling (subwindow1), it
must also choose a mode for stacking operations.

@ The call to reconfigure subwindowl. The CONFIGURE WINDOW
routine call has the following format:

XConfigureWindow (display, window_id, change_mask, values)

Create a mask by performing a bitwise OR operation on relevant flags
that indicate which members of WINDOW CHANGES the client has
defined.

v

Figure 3-7 illustrates how the windows look after being reconfigured.

Table 3-14 lists routines to change individual window characteristics.

Table 3-14 Window Configuration Routines

Routine Description
MOVE WINDOW Moves a window without changing its size.
RESIZE WINDOW Changes the size of a window without moving it. The

upper left window coordinate does not change after
resizing.
MOVE RESIZE WINDOW

SET WINDOW BORDER
WIDTH

Moves and changes the size of a window.
Changes the border width of a window.

Working with Windows
3.6 Changing Window Characteristics

Figure 3-7 Reconfigured Window

subwindow1 subwindow?2

Reconfigured Window

ZK-0083A-GE

3.6.2 Effects of Reconfiguring Windows

It is important to know how reconfiguring windows affects graphics and
text drawn in them by the client. (See Chapter 6 for a description of
working with graphics and Chapter 8 for a description of writing text.)
When a client resizes a window, window contents are either moved or lost,
depending on the bit gravity of the window. Bit gravity indicates that a
designated region of the window should be relocated when the window is
resized. Resizing also causes the server to resize children of the changed
window.

3-32

Working with Windows

3.6 Changing Window Characteristics

To control how the server moves children when a parent is resized, set the
window gravity attribute. Table 3-15 lists choices for retaining window
contents and controlling how the server relocates children.

Table 3—15 Gravity Definitions

Constant Name

Movement of Window Contents and
Subwindows

ForgetGravity

NorthWestGravity
NorthGravity
NorthEastGravity

WestGravity
CenterGravity

EastGravity

SouthWestGravity
SouthGravity

SouthEastGravity

StaticGravity

UnmapGravity

The server always discards window contents and
tiles the window with its selected background. [f
the client has not specified a background, existing
screen contents remain the same.

Not moved.
Moved to the right half the window width.

Moved to the right the distance of the window
width.

Moved down half the window height.

Moved to the right half the window width and down
half the window height.

Moved to the right the distance of the window width
and down half the window height.

Moved down the distance of the window height.

Moved to the right half the window width and down
the distance of the window height.

Moved to the right the distance of the window width
and down the distance of the window height.

Contents or origin not moved relative to the origin
of the root window. Static gravity only takes effect
with a change in window width and height.

Window should not be moved; the child should be
unmapped when the parent is resized.

The client can change the hierarchical position of a window in relation
to either all windows in the stack or to a specified sibling. If the client
changes the size, position, and stacking order of the window by calling
CONFIGURE WINDOW, the server restacks the window based on its final,
not initial, size and position. Table 3—12 lists constants and definitions for

restacking windows.

3-33

Working with Windows
3.6 Changing Window Characteristics

Figure 3-8 illustrates how the server moves the contents of a reconfigured
window when the bit gravity is set to the constant EastGravity.

Figure 3-9 illustrates how the server moves a child window if its parent is
resized and its window gravity is set to the constant NorthwestGravity.

Figure 3-8 East Bit Gravity

Original Window Resized Window
w
h/2
2w >
ZK-0072A-GE

3-34

Working with Windows
3.6 Changing Window Characteristics

Figure 3-9 Northwest Window Gravity

Original Parent and Child Windows
- W .

Child Parent

Resized Parent Window
2w >

Child Parent

ZK-0073A-GE

3.6.3 Changing Stacking Order

Xlib provides routines that alter the window stacking order in the
following ways:

* A specified window moves to either the top or the bottom of the stack.

3-35

3.6.4

Working with Windows
3.6 Changing Window Characteristics

¢ The lowest mapped child obscured by a sibling moves to the top of the
stack.

¢ The highest mapped child that obscures a sibling moves to the bottom
of the stack.

Use the RAISE WINDOW and LOWER WINDOW routines to move a
specified window to either the top or the bottom of the stack, respectively.

To raise the lowest mapped child of an obscured window to the top of the
stack, call CIRCULATE SUBWINDOWS UP. To lower the highest mapped
child that obscures another child, call CIRCULATE SUBWINDOWS
DOWN. The CIRCULATE SUBWINDOWS routine enables the client to
perform these operations by specifying either the constant RaiseLowest
or the constant LowerHighest.

To change the order of the window stack, use RESTACK WINDOW, which
changes the window stack to a specified order. Reordered windows must
have a common parent. If the first window the client specifies has other
unspecified siblings, its order relative to those siblings remains unchanged.

Changing Window Attributes

3-36

Xlib provides routines that enable clients to change the following:
¢ Default contents of an input-output window

¢ Border of an input-output window

¢ Treatment of the window when it or its relative is obscured

¢ Treatment of the window when it or its relative is moved

¢ Information the window receives about operations associated with
other windows

¢ Color

e Cursor

Section 3.2.2 includes descriptions of window attributes and their
relationship to the set window attributes data structure.

This section describes how to change any attribute using the CHANGE
WINDOW ATTRIBUTES routine. In addition to CHANGE WINDOW
ATTRIBUTES, Xlib includes routines that enable clients to change
background and border attributes. Table 3—16 lists these routines and
their functions.

Working with Windows
3.6 Changing Window Characteristics

Table 3-16 Routines for Changing Window Attributes

Routine Description

SET WINDOW BACKGROUND Sets the background pixel

SET WINDOW BACKGROUND PIXMAP Sets the background pixmap

SET WINDOW BORDER Sets the window border to a specified
pixel

SET WINDOW BORDER PIXMAP Sets the window border to a specified
pixmap

To change any window attribute, use CHANGE WINDOW ATTRIBUTES
as follows:

1 Assign a value to the relevant member of a set window attributes data
structure.

2 Indicate the attribute to change by specifying the appropriate flag
in the CHANGE WINDOW ATTRIBUTES value_mask argument.
To define more than one attribute, indicate the attributes by doing a
bitwise OR on the appropriate flags.

See Table 3-3 for symbols Xlib assigns to each member to facilitate
referring to the attributes.

Example 3-6 illustrates using CHANGE WINDOW ATTRIBUTES to
redefine the characteristics of a window.

Example 3-6 Changing Window Attributes

XSetWindowAttributes xswa;

xswa.background_pixel = BlackPixelOfScreen (dpy);
xswa.border pixel = WhitePixelOfScreen(dpy) ;

XChangeWindowAttributes (dpy, win, CWBorderPixel | CWBackPixel, &xswa);

@ Assign new values to a set window attributes data structure.

@® Call CHANGE WINDOW ATTRIBUTES to change the window
attributes. The CHANGE WINDOWS ATTRIBUTES routine has
the following format:

XChangeWindowAttributes (display, window_id,
attributes_mask, attributes)
Specify the attributes to change with a bitwise inclusive OR of the

relevant symbols listed in Table 3-3. The values argument passes the
address of a set window attributes data structure.

3-37

Working with Windows
3.6 Changing Window Characteristics

Table 3—17 lists changes in attributes and their effects.

Table 3—17 Effects of Window Attribute Changes
Attribute Changed Effects

Background Window contents are unchanged.

If the window is a root window, specifying the
constant None or ParentRelative restores the default
background pixmap.

The server does not repaint the background
automatically.

Border Setting the border causes the border to be repainted.

If a background change causes a change in the
border tile origin, the server repaints the border.

Specifying the constant CopyFromParent on a root
window restores the default border pixmap.

Bit and window gravity A change in window gravity has no effect until the
window is resized.

Backing store In this release, backing store is not supported.

Backing planes In this release, backing planes is not supported.

Backing pixels In this release, backing pixels is not supported.

Save under If the window is mapped, changing the value of save
under may have no immediate effect.

Event mask See Chapter 9.

Do not propagate mask See Chapter 9.

Color map See Chapter 5.

Cursor Specifying the constant None on a root window

restores the default cursor.

3.7 Getting Information About Windows

Using Xlib information routines, clients can get information about the
parent, children, and number of children in a window tree; window
geometry; the root window in which the pointer is currently visible; and
window attributes.

Table 3-18 lists and describes Xlib routines that return information about
windows.

3-38

Working with Windows
3.7 Getting Information About Windows

Table 3—-18 Window Information Routines

Routine Description
QUERY TREE Returns information about the window tree
GET GEOMETRY Returns information about the root window

identifier, coordinates, width and height, border
width, and depth

QUERY POINTER Returns the root window the pointer is
currently on and the pointer coordinates
relative to the root window origin

GET WINDOW ATTRIBUTES Returns information from the window attributes
data structure

To get information about window attributes, use the GET WINDOW
ATTRIBUTES routine. The client receives requested information in the
window attributes data structure. The following illustrates the window
attributes data structure:

typedef struct ({
int x, y;
int width, height;
int border_width;
int depth;
Visual *visual;
Window root;
int class;
int bit_gravity;
int win_gravity;
int backing_store;
unsigned long backing planes;
unsigned long backing pixel;
Bool save_under;
Colormap colormap;
Bool map_installed;
int map_state;
long all_event_masks;
long your_event mask;
long do_not_propagate mask;
Bool override_redirect;

} XWindowAttributes;

Table 3—-19 describes the members of the window attributes data structure.

3-39

Working with Windows
3.7 Getting Information About Windows

Table 3—19 Window Attributes Data Structure Members

Member Name

Contents

X

y

width

height
border_width
depth

visual

root

class
bit_gravity
win_gravity
backing_store

backing_planes

backing_pixel

save_under

color map

map_installed

Specifies, with the y member, the coordinates of the upper left corner of the window
relative to its parent.

Specifies, with the x member, the coordinates of the upper left corner of the window
relative to its parent.

Specifies the width of the window, excluding the window border, in pixels.
Specifies the height of the window, excluding the window border, in pixels.
Specifies the width of the window border in pixels.

Specifies the bits per pixel of the window.

A pointer to a visual data structure associated with the window. The visual data
structure specifies how displays should treat color resources. For more information, see
Section 3.5.1.

Identifies the screen with which the window is associated.

Specifies whether the window accepts input and output, or input only.
Specifies how pixels should be moved when the window is resized.
Specifies how the window should be repositioned when its parent is resized.

Indicates whether or not the server should maintain a record of portions of a window
that are obscured when the window is mapped. In this release, clients must maintain
contents of obscured windows.

Indicates (with bits set to 1) which bit planes of the window hold dynamic data that must
be preserved in backing stores and during save under operations. In this release, clients
must maintain data to be preserved.

Defines what values to use in planes not specified by the backing_planes member. In
this release, clients must maintain values to be saved.

Setting the save_under member to true informs the server that the client would like the
contents of the screen saved when the window obscures them. Saving the contents of
obscured portions of the screen is not guaranteed.

Specifies the color map, if any, that best reflects the colors of the window. The color
map must have the same visual type as the window. If it does not, an error occurs. For
more information about color maps, see Chapter 5.

If set to true, the map_installed member indicates that the color map is currently installed
and that the window is being displayed in its correct colors.

(continued on next page)

Working with Windows
3.7 Getting Information About Windows

Table 3-19 (Cont.) Window Attributes Data Structure Members

Member Name

Contents

map_state

all_events_mask

your_event_mask
do_not_propagate

override_redirect

screen

Indicates whether the window is mapped and viewable. Clients can specify the following
constants:

Constant
Name Description
IsUnmapped Indicates that the window is not mapped

IsUnviewable Indicates that the window is mapped, but that one of its ancestors is
unmapped, causing the window to be unviewable

IsViewable Indicates that the window is mapped and viewable

Indicates the set of events in which all applications have an interest. The all_events_
mask member is the inclusive OR of event masks set for the window. For more
information about event masks, see Chapter 9.

Indicates the events about which the querying application is interested in receiving
notice.

Defines which events should not be propagated to the window’s ancestors when no
application has the event type selected in the window.

Specifies whether requests to map and configure the window should override a request
by another client to redirect those calls (see Chapter 9). Typically, this mask, which
informs the window manager not to tamper with the window, should be used only on
subwindows such as menus.

Specifies the screen on which the window is mapped.

4 Defining Graphics Characteristics

After opening a display and creating a window, clients can draw lines
and shapes, create cursors, and draw text. Creating a graphics object is

a two-step process. Clients first define the characteristics of the graphics
object and then create it. For example, before creating a line, a client first
defines line width and style. After defining the characteristics, the client
creates the line with the specified width and style.

This chapter describes how to define the graphics characteristics prior to
creating them, including the following topics:

¢ The graphics context—A description of the graphics characteristics a
client can define and the GC values data structure used to define them

¢ Defining graphics characteristics—How to define graphics
characteristics using the CREATE GC routine

¢ Copying, changing, and freeing attributes—How to copy, change, and
undefine graphics characteristics

* Defining graphics characteristics efficiently—How to work efficiently
with several sets of graphics characteristics

Chapter 6 describes how to create graphics objects. Chapter 8 describes
how to work with text.

4.1 The Graphics Context

The characteristics of a graphics object make up its graphics context. As
with window characteristics, Xlib provides a data structure and routine

to enable clients to define multiple graphics characteristics easily. By
setting values in the GC values data structure and calling the CREATE
GC routine, clients can define all characteristics relevant to a graphics
object.

Xlib also provides routines that enable clients to define individual or
functional groups of graphics characteristics.

Xlib always records the defined values in a GC data structure, which is
reserved for the use of Xlib and the server only. This occurs when clients
define graphic characteristics using either the CREATE GC routine or one
of the individual routines. Table 41 lists the default values of the GC
data structure.

4-1

Defining Graphics Characteristics
4.1 The Graphics Context

Table 4-1 GC Data Structure Default Values

Member Default Value

Function GXcopy

Plane mask All ones

Foreground 0

Background 1

Line width 0

Line style Solid

Cap style Butt

Join style Mitre

Fill style Solid

Fill rule Even odd

Arc mode Pie slice

Tile Pixmap of unspecified size filled with foreground pixel
Stipple Pixmap of unspecified size filled with ones
Tile or stipple x origin 0

Tile or stipple y origin 0

Font Varies with implementation
Subwindow mode Clip by children

Graphics exposures True

Clip x origin 0

Clip y origin 0

Clip mask None

Dash offset 0

Dashes 4 (the list [4,4])

4.2 Defining Multiple Graphics Characteristics in One Call

Xlib enables clients to define multiple characteristics of a graphics object
in one call. To define multiple characteristics, use the CREATE GC routine
as follows:

1 Assign values to the relevant members of the GC values data
structure.

2 Indicate the attributes to define by specifying the appropriate flag in
the value_mask argument of the routine. To define more than one
attribute, do a bitwise OR on the appropriate attribute flags.

4-2

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

The following illustrates the GC values data structure:

typedef struct ({
int function;
unsigned long plane mask;
unsigned long foreground;
unsigned long background;
int line_width;
int line_style;
int cap_style;
int join_style;
int £ill style;
int fill rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts_x_origin;
int ts_y origin;
Font font;
int subwindow_mode;
Bool graphics_exposures;
int clip_x_origin;
int clip_y origin;
Pixmap clip mask;
int dash_offset;
char dashes:;
} XGCValues;

Table 4—2 describes the members of the data structure.

4-3

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 GC Values Data Structure Members

Member Name

Contents

function Defines how the server computes pixel values when the client updates a section of
the screen. The following lists available functions:
Constant Name Description
GXclear 0
GXand src AND dst
GXandReverse src AND NOT dst
GXcopy src
GXandinverted (NOT src) AND dst
GXnoop dst
GXxor src XOR dst
GXor src OR dst
GXnor (NOT src) AND NOT dst
GXequiv (NOT src) XOR dst
GXinvert NOT dst
GXorReverse src OR NOT dst
GXcopylnverted NOT src
GXorlnverted (NOT src) OR dst
GXnand (NOT src) OR NOT dst
GXset 1
The screen the client is updating is the destination (dst). The graphics context the
client uses to update the screen is the source (src). The function member specifies
how the server computes new destination bits from the source (src) and the old bits
of the destination (dst).
The most common logical function is the default specified by the constant GXcopy,
which only uses relevant values in the specified GC values data structure to update
the screen.

plane_mask Specifies the planes on which the server performs the bitwise computation of pixels,
defined by the function member.
Because a monochrome display has only one plane, the plane mask value is given in
the least significant bit of the longword. As planes are added to the display hardwars,
they are defined in the more significant bits of the mask. The display routine ALL
PLANES specifies that all planes of the display are referred to simultaneously.
The server does not perform range checking on the plane mask. |t truncates values
to the appropriate number of bits.

foreground Specifies an index to a color map entry for foreground color.

background Specifies an index to a color map entry for background color.

(continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

Contents

line_width

Defines the width of a line in pixels.

The server draws a line with a width of one or more pixels centered on the path
described in the graphics request and contained within a bounding box. Uniess
otherwise specified by the join or cap style, the bounding box of a line with endpoints
[1, y1], [22, ¥2] and width w > 0 is a rectangle with vertices at the following real
coordinates:

[x1l-w*sn/2, yl+w*cs/2], [xl+w*sn/2, yl-w*cs/2]
[x2-w*sn/2, y2+w*cs/2], [x2+w*sn/2, y2-w*cs/2]

In this example, sn is the sine of the angle of the line. The symbol ¢s is the cosine of
the angle of the line. A pixel is part of the line and is drawn if the center of the pixel
is fully inside the bounding box. If the center of the pixel is exactly on the bounding
box, the pixel is part of the line if and only if the interior is immediately to its right

(x increasing direction). Pixels with centers on a horizontal edge are a special case
and are part of the line if and only if the interior is immediately below the bounding
box (y increasing direction). See Figure 4-1.

Lines with zero line width are one pixel wide. The server draws them using an
unspecified, device-dependent algorithm that imposes the following two constraints:

« If the server draws the line unclipped from [z1, y1] to [z2, y2], and if the server
draws a second line from [z1 + dz, y1 + dy] to [22 + d=, y2 + dy}, then point
[=, y] is touched by drawing the first line if and only if the point [= + dz, y + dy]
is touched by drawing the second line.

» The effective set of points that compose a line cannot be affected by clipping.
That is, a point is touched in a clipped line if and only if the point lies inside
the clipping region and if the point would be touched by the line when drawn
unclipped.

A line more than one pixel wide drawn from { z1, y1} to [z2, y2] always draws the
same pixels as a line of the same width drawn from [22, y2] to [z1, y1], excluding
cap and join styles.

In general, drawing a line whose line width is zero is substantially faster than drawing
a line whose line width is one or more. However, because the drawing algorithms for
thin lines is different than those for wide lines, thin lines may not look as good when
mixed with wide lines. If clients want precise and uniform results across all displays,
they should always use a line width of one or more. Note, however, that specifying a
line width of greater than zero decreases performance substantially.

(continued on next page)

4-5

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

Contents

line_style

cap_style

Defines which sections of the line the server draws. The following lists available line
styles and the constants that specify them:

Constant

Name Description

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes, with cap butt style used where
even and odd dashes meet.

LineOffOnDash Only the even dashes are drawn. The cap_style member applies to

all internal ends of dashes. Specifying the constant CapNotlLast is
equivalent to specifying CapButt.

Figure 4-2 illustrates the styles.

Defines how the server draws the endpoints of a path. The following lists available
cap styles and the constants that specify them:

Constant
Name

Description

CapButt
CapNotLast

CapRound

CapProjecting

Square at the endpoint (perpendicular to the slope of the line) with
no projection beyond the endpoint.

Equivalent to CapButt, except that the final endpoint is not drawn if
the line width is zero or one.

A circular arc with the diameter equal to the line width, centered on
the endpoint (equivalent to the value specified by CapBultt for a line
width of zero or one).

Square at the end, but the path continues beyond the endpoint for
a distance equal to half the width of the line (equivalent to the vaiue
specified by the constant CapButt for a line width of zero or one).

Figure 4-3 illustrates the butt, round, and projecting cap styles. Figure 4—4 illustrates
the style specified by the constant CapNotLast.

4-6

{continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

Contents

join_style

If a line has coincident endpoints (z1 = 2, y1 = y2), the cap style is applied to both
endpoints with the following results:

Constant Line

Name Width Description

CapNotLast Thin Device dependent, but the desired effect is that nothing
is drawn

CapButt Thin Device dependent, but the desired effect is that a single
pixel is drawn

CapButt Wide Nothing is drawn

CapRound Thin Device dependent, but the desired effect is that a single

pixel is drawn

CapRound Wide The closed path is a circle, centered at the endpoint, with
the diameter equal to the line width

CapProjecting Thin Device dependent, but the desired effect is that a single
pixel is drawn

CapProjecting Wide The closed path is a square, aligned with the coordinate
axes, centered at the endpoint with sides equal to the
line width

Defines how the server draws corners for wide lines. Available join styles and the
constants that specify them are as follows:

Constant

Name Description

JoinMitre The outer edges of the two lines extend to meet at an angle

JoinRound A circular arc with diameter equal to the line width, centered at the
join point

JoinBevel Cap butt endpoint style, with the triangular notch filled

Figure 4-5 illustrates the styles.

For a line with coincident endpoints (z1 = 22, y1 = y2), when the join style is applied
at one or both endpoints, the effect is as if the line were removed from the overall
path. However, if the total path consists of (or is reduced to) a single point joined
with itself, the effect is the same as if the cap style were applied to both endpoints.

(continued on next page)

4-7

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name Contents

fill_style Specifies the contents of the source for line, text, and fill operations. The following
lists available fill styles for text and fill requests (DRAW TEXT, DRAW TEXT 16, FILL
RECTANGLE, FILL POLYGON, FILL ARC). It also lists available styles applicable
to solid lines and even dashes resulting from line requests (LINE, SEGMENTS,
RECTANGLE, ARC):

Constant Name Description
FillSolid Foreground
FiliTiled Tile

FillOpaqueStippled A tile with the same width and height as stipple but with
background everywhere stipple has a zero and with
foreground everywhere stipple has a one

FillStippled Foreground masked by stipple

The following lists available styles applicable to odd dashes resulting from line
requests:

Constant Name Description

FillSolid Background

FillTiled Tile

FillOpaqueStippled A tile with the same width and height as stipple but with
background everywhere stipple has a zero and with
foreground everywhere stipple has a one

FillStippled Background masked by stipple

fill_rule Defines what pixels the server draws along a path when a polygon is filled (see
Section 6.5.2). The two available choices are EvenOddRule and WindingRule. The
EvenOddRule constant defines a point to be inside a polygon if an infinite ray with
the point as origin crosses the path an odd number of times. If the point meets these
conditions, the server draws a corresponding pixel.

(continued on next page)

4-8

Table 4-2 (Cont.)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

GC Values Data Structure Members

Member Name

Contents

arc_mode

tile

stipple

The WindingRule constant defines a point to be inside the polygon if an infinite

ray with the pixel as origin crosses an unequal number of clockwise-directed and
counterclockwise-directed path segments. A clockwise-directed path segment is one
that crosses the ray from left to right as observed from the pixel. A counterclockwise-
directed segment is one that crosses the ray from right to left as observed from that
point. When a directed line segment coincides with a ray, choose a different ray
that is not coincident with a segment. If the point meets these conditions, the server
draws a corresponding pixel.

For both even odd rule and winding rule, a point is infinitely small, and the path is an
infinitely thin line. A pixel is inside the polygon if the center point of the pixel is inside,
and the center point is not on the boundary. If the center point is on the boundary,
the pixel is inside if and only if the polygon interior is immediately to its right

(x increasing direction). Pixels with centers along a horizontal edge are a special
case and are inside if and only if the polygon interior is immediately below

(y increasing direction).

Figure 4-6 illustrates fill rules. Figure 4-7 illustrates rules for filling a pixel when it
falls on a boundary.

Controls how the server fills an arc. The available choices are the values specified
by the ArcPieSlice and ArcChord constants. Figure 4-8 illustrates the two modes.

Specifies the pixmap the server uses for tiling operations. The pixmap must have the
same root and depth as the graphics context, or an error occurs. Clients can use any
size pixmap for tiling, although some sizes produce a faster response than others. To
determine the optimum size, use the QUERY BEST SIZE routine.

Storing a pixmap in a graphics context might or might not result in a copy being
made. If the pixmap is used later as the destination for a graphics request, the
change might or might not be reflected in the graphics context. If the pixmap is used
simultaneously in a graphics request both as a destination and as a tile, the results
are not defined.

Specifies the pixmap the server uses for stipple operations. The pixmap must have
the same root as the graphics context and a depth of one, or an error occurs. For
stipple operations where the fill style is specified as the FillStippled constant but not
the FillOpaqueStipple constant, the stipple pattern is tiled in a single plane and acts
as an additional clip mask. Perform a bitwise AND operation with the clip mask.
Clients can use any size pixmap for stipple operations, although some sizes produce
a faster response than others. To determine the optimum size, use the QUERY
BEST SIZE routine.

Storing a pixmap in a graphics context might or might not result in a copy being
made. If the pixmap is used later as the destination for a graphics request, the
change might or might not be reflected in the graphics context. If the pixmap is
used simultaneously in a graphics request both as a destination and as a stipple, the
results are not defined.

(continued on next page)

4-9

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

Contents

ts_x_origin
ts_y_origin

font
subwindow_mode

graphic_exposures
clip_x_origin

clip_y_origin

clip_mask

dash_offset

dashes

Defines the origin for tiling and stipple operations. Origins are relative to the origin of
whatever window or pixmap is specified in the graphics request.

Defines the origin for tiling and stipple operations. Origins are relative to the origin of
whatever window or pixmap is specified in the graphics request.

Specifies the font that the server uses for text operations.

Specifies whether or not inferior windows clip superior windows. The constant
ClipByChildren specifies that all viewable input-output children clip both source
and destination windows. The constant Includelnferiors specifies that inferiors clip
neither source nor destination windows. This results in drawing through subwindow
boundaries. The semantics of using the constant on a window with a depth of one
and with mapped inferiors of differing depth is undefined by the core protocol.

Specifies whether or not the server informs the client when the contents of a window
region are lost.

Defines the x-coordinate of the clip origin. The clip origin specifies the point within
the clip region that is aligned with the drawable origin.

Defines the y-coordinate of the clip origin. The clip origin specifies the point within
the clip region that is aligned with the drawable origin.

Identifies the pixmap the server uses to restrict write operations to the destination
drawable. The pixmap must have a depth of one and have the same root as the
graphics context. The clip mask clips only the destination drawable, not the source
drawable. Where a value of one appears in the mask, the corresponding pixel in
the destination drawable is drawn; where a value of zero occurs, no pixel is drawn.
Any pixel within the destination drawable that is not represented within the clip mask
pixmap is not drawn. When a client specifies the value of clip mask as None, the
server draws all pixels.

Specifies the pixel within the dash length sequence, defined by the dashes member,
to start drawing a dashed line. For example, a dash offset of zero starts a dashed
line as the beginning of the dash line sequence. A dash offset of five starts the line
at the fifth pixel of the line sequence. Figure 4-9 illustrates dashed offsets.

Specifies the length, in number of pixels, of each dash. The value of this member
must be nonzero or an error occurs.

4-10

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-1 Bounding Box

Endpoint [X4, Y
Ve p (X1, Y1]

0]
E E O Pixel
| m| Bounding
| 0 Box
l iC1
| 0
O O
ndpoint [X,, Y 5]
ZK-0011A-GE

Figure 4-2 Line Styles

Solid

Double Dash

On Off Dash

ZK-0010A-GE

Figure 4-3 Butt, Round, and Projecting Cap Styles

- Original Line [without cap]

Arc Diameter = Line Width

ECap Cap Projecting Style

ZK-0012A-GE

4-11

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 44 Cap Not Last Style

HEEENNNEEE Original Line [without cap]

|][]] Cap Not Last Style
ZK-0165A-GE

Figure 4-5 Join Styles

Miter

Round

Bevel

ZK-0013A-GE

4-12

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-6 Fill Rules

Even Odd

Direction of Ray

Winding

Direction of Ray

Direction
of Path
Segment

ZK-0071A-GE

4-13

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-7 Pixel Boundary Cases

Pix_els are
Inside

Polygon
(|

i
Lt

Pixels are
Outside
Polygon

ZK-0075A-GE

Figure 4-8 Styles for Filling Arcs

Chord

N
-1

ZK-0008A-GE

4-14

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-9 Dashed Line Offset

Dash List: 5,10,3,5,10,3

Dash Offset =0
5

5 10 3

Dash Offset = 4
1 10

10 3

ZK-0009A-GE

Xlib assigns a flag for each member of the GC values data structure to
facilitate referring to members (Table 4-3).

Table 4-3 GC Values Data Structure Flags

Flag Name GC Values Member
GCFunction function
GCPlaneMask plane_mask
GCForeground foreground
GCBackground background
GCLineWidth line_width
GCLineStyle line_style
GCCapStyle cap_style
GCJoinStyle join_style
GCFiliStyle fill_style

GCFillRule fill _rule

GCTile tile

GCStipple stipple
GCTileStipXOrigin ts_x_origin
GCTileStipYOrigin {s_y_origin

GCFont font
GCSubwindowMode subwindow_mode
GCGraphicsExposures graphics_exposures
GCClipXOrigin clip_x_origin

(continued on next page)

4-15

Defining Graphics Characteristics

4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-3 (Cont.) GC Values Data Structure Flags

Flag Name GC Values Member
GCClipYOrigin clip_y_origin
GCXClipMask clip_mask
GCDashOffset dash_offset
GCDashList dash_list
GCArcMode arc_mode

Example 4-1 illustrates how a client can define graphics context values
using the CREATE GC routine. Figure 4-10 shows the resulting output.

Example 4-1 Defining Graphics Characteristics Using the CREATE GC Routine

/* Create window win on

*
* display dpy, defined as follows: *
* Position: x = 100,y = 100 *
* Width = 600 *
* Height = 600 *
* gc refers to the graphics context */

"GC gc;

static void doCreateGraphicsContext ()
{
(2] XGCValues xgcv;

/* Create graphics context. */

(3] xgcv. foreground
xgcv.background
xgcv.line width 4;
xgcev.line_style LineDoubleDash;
xgcv.dash offset = 0;
xgcv.dashes = 25;

doDefineColor(3);
doDefineColor(4):;

b

(4] gc = XCreateGC(dpy, win, GCForeground | GCBackground
| GCLineWidth | GCLineStyle | GCDashOffset | GCDashlist,

static void doButtonPress (eventP)
XEvent *eventP;

{

100;

xl =yl
= 550;

x2 y2

(5] XDrawlLine (dpy, win, gc, x1, yl, x2, y2);
}

&xgcev) ;

@ Assign storage for a graphics context (GC) data structure
of gc is global to enable windowing and graphics routines in other

modules to refer to it.

4-16

. The scope

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

® Once the client defines characteristics with the GC values data
structure, Xlib does not have to refer to the data structure again.

© Specify the foreground, background, line width, line style, dash offset,
and dashes for line drawing.

The dashed line is four pixels wide. A dash offset value of zero starts
dashes at the beginning of the line. The dashes value, referred to by
GCDashlList, specifies that dashes be 25 pixels long.

® The CREATE GC routine loads values into a GC data structure. The
CREATE GC routine has the following format:

gc_id = XCreateGC (display, drawable_id, gc_mask,
values_struc)

Indicate defined attributes with a bitwise OR that uses symbols listed
in Table 4-3.

© See Chapter 6 for information about drawing lines.

4-17

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-10 Dashed Line

Dashed Line HE

Click MB1 to draw a dashed line.
Click MBS to exit.

ZK-0104A-GE

4.3 Defining Individual Graphics Characteristics

Xlib offers routines that enable clients to define individual or functional
groups of graphics characteristics. Table 4—4 lists and briefly describes
these routines. For more information about the components, see
Section 4.1.

4-18

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

Table 4-4 Routines That Define Individual or Functional Groups of
Graphics Characteristics

Routine

Description

Foreground, Background, Plane Mask, and Function Routines

SET STATE

SET FOREGROUND
SET BACKGROUND
SET PLANE MASK
SET FUNCTION

Sets the foreground, background, plane mask,
and function

Sets the foreground
Sets the background
Sets the plane mask
Sets the function

Line Attribute Routines

SET LINE ATTRIBUTES

SET LINE DASHES

Sets line width, line style, cap style, and join
style

Sets the dash offset and dash list of a line

Fill Style and Rule Routines

SET FILL STYLE

SET FILL RULE

Sets fill style to solid, tiled, stippled, or opaque
stippled

Sets fill rule to either even and odd or winding
rule

Fill Tile and Stipple Routines

QUERY BEST SIZE

QUERY BEST STIPPLE

QUERY BEST TILE

SET STIPPLE
SET TILE
SET TS ORIGIN

Queries the server for the size closest to the
one specified

Queries the server for the closest stipple
shape to the one specified

Queries the server for the closest tile shape to
the one specified

Sets the stipple pixmap
Sets the tile pixmap
Sets the tile or stipple origin

Font Routine

SET FONT

Sets the current font

(continued on next page)

4-19

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

4-20

Table 4-4 (Cont.) Routines That Define Individual or Functional Groups
of Graphics Characteristics

Routine Description

Clip Region Routines

SET CLIP MASK Sets the mask for bitmap clipping
SET CLIP ORIGIN Sets the origin for clipping
SET CLIP RECTANGLES Changes the clip mask from its current value

to the specified rectangles

Arc, Subwindow, and Exposure Routines

SET ARC MODE Sets the arc mode to either chord or pie slice

SET SUBWINDOW MODE Sets the subwindow mode to either clip by
children or include inferiors

SET GRAPHICS EXPOSURES Specifies whether exposure events are created

when calling COPY AREA or COPY PLANE

Example 4-2 illustrates using individual routines to set background,
foreground, and line attributes. Figure 4-11 illustrates the resulting
output.

Example 4-2 Using Individual Routines to Define Graphics
Characteristics

GC gc;

static void doButtonPress (eventP)
XEvent *event?P;

{

@ char dash _list[] = {20,5,10};
x1l =yl = 100;
x2 = y2 = 550;

XSetBackground (dpy, gc, doDefineColor(4)):;
XSetLineAttributes (dpy, gc, 0, LineDoubleDash, 0, 0);
XSetDashes (dpy, gc, 0, dash list, 3);

XDrawLine (dpy, win, gc, x1, yl, x2, y2);

o0

© The dash_list variable defines the length of odd and even dashes. The
first and third elements of the initialization list specify even dashes;
the second element specifies odd dashes.

® The SET LINE ATTRIBUTES routine enables the client to define line
width, style, cap style, and join style in one call.

The SET LINE ATTRIBUTES routine has the following format:

XSetLineAttributes (display, gc_id, line_width, line_style,
cap_style, join_style)

The zero cap_style argument specifies the default cap style.

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

© If using the CREATE GC routine to set line dashes, odd and even
dashes must have equal length. The SET DASHES routine enables
the client to define dashes of varying length. The SET DASHES
routine has the following format:

XSetDashes (display, gc_id, dash_offset, dash_list,
dash_list_len)

The dash_list_len argument specifies the length of the dash list.

Figure 4-11 Line Defined Using GC Routines

Line Defined with GC Convenience Routines @ al

Click MB1 to draw a dashed line.
Click MB3 to exit.

2 4
.
\
L4
A)
N\
L 4
.
N
*
.
\
*
.
\
L 4
.
N
ZK-0102A-GE

4.4 Copying, Changing, and Freeing Graphics Contexts

In addition to defining a graphics context, clients can copy defined
characteristics from one GC data structure into another. To copy a GC

4-21

Defining Graphics Characteristics
4.4 Copying, Changing, and Freeing Graphics Contexts

data structure, use COPY GC. The COPY GC routine has the following
format:

XCopyGC (display, src_gc_id, gc_mask, dst_gc_id)

The ge_mask argument selects values to be copied from the source
graphics context (src_ge_id). Use the method described in Section 4.2
for assigning values to a GRAPHICS CONTEXT.

The dst_gc_id argument specifies the new graphics context into which the
server copies values.

After creating a graphics context structure, change values as needed using
CHANGE GC. The following code fragment, which alters the values of
the line drawn by Example 4-1, illustrates changing a graphics context
structure:

xgcv.line_width
xgcv.line_style

10;
LineSolid;

I

XChangeGC (dpy, gc, GCLineWidth | GCLineStyle, &xgcv);

The example illustrates defining a new line style and width, and changing
the graphics context to reflect the new values.

4.5 Using Graphics Characteristics Efficiently

4-22

The server must revalidate a graphics context whenever a client redefines
it. Causing the server to revalidate a graphics context unnecessarily can
seriously degrade performance.

The server revalidates a graphics context when one of the following
conditions occurs:

* A client associates the graphics context with a different window.

* The graphics context clip list changes. Changes in the clip list can
happen either when a client changes the graphics context clip origin
or when the server modifies the clip list in response to overlapping
windows.

* Any member of the graphics context changes.

To minimize revalidating the graphics context, submit as a group the
requests to the server that identify the same window and graphics context.
Grouping requests enables the server to revalidate the graphics context
once instead of many times.

When it is necessary to change the value of graphics context members
frequently, creating a new graphics context is more efficient than
redefining an existing one, provided the client creates no more than 50
graphics contexts.

S

5.1

Using Color

Color is one attribute clients can define when creating a window or a
graphics object. Depending on display hardware, clients can define color
as black or white, as shades of gray, or as a spectrum of hues. Section 5.2
describes color definition in detail, including workstation types and the
colors they support.

Xlib offers clients the choice of either sharing colors with other clients or
allocating colors for exclusive use.

A client that does not have to change colors can share them with other
clients. By sharing colors, the client saves color resources.

A client must allocate colors for its exclusive use when it needs to change
them. For example, when presenting a graphic representation of a
pipeline, the client might indicate flow through the pipeline by changing
colors rather than redrawing the entire pipeline schematic. In this case,
the client would allocate for exclusive use colors that represent pipeline
flow.

This chapter introduces color management using Xlib and describes how
to share and allocate color resources. The chapter includes the following
topics:

¢ Color fundamentals—A description of pixels and planes, and color
indices, cells, and maps

¢ Matching color requirements to screen types— How screen types affect
color presentation

¢ Sharing color resources—How to share color resources with other
clients

* Allocating colors for exclusive use—How to reserve colors for a single
client

* Querying color resources—How to return values of color map entries
¢ Freeing color resources—How to release color resources
The concepts presented in this chapter apply to managing the color of both

windows and graphic objects. Chapter 6 describes how to create graphic
objects.

Pixels and Color Maps

The color of a window or graphics object depends on the values of

pixels that constitute it. The number of bits associated with each pixel
determines the number of possible pixel values. On a monochrome screen,
one bit maps to each pixel. The number of possible pixel values is two.
Pixels are either zero or one, black or white.

5-1

Using Color

5.1 Pixels and Color Maps

5-2

On a monochrome screen, all bits that define an image reside on
one plane, an allocation of memory in which there is a one-to-one
correspondence between bits and pixels. The number of planes is the
depth of the screen.

The depth of intensity or color screens is greater than one. More than one
bit defines the value of a pixel. Each bit associated with the pixel resides
on a different plane.

The number of possible pixel values increases as depth increases. For
example, if the screen has a depth of four planes (hardware will support
a four-plane screen), the value of each pixel comprises four bits. Clients
using a four-plane intensity display can produce up to sixteen levels of
brightness. Clients using a four-plane color display can produce as many
as sixteen colors.

Figure 5-1 illustrates the relationship between pixel values and planes.

Figure 5-1 Pixel Values and Planes

Bit Setting Xﬂ

> g
///
7
—»> A
7
Planes 0/
///
7
A
//
vd
//
//
//
//
td
//
//
//
//
//,
7 Screen Depth=4
///
of
Pixel Value 101 12
ZK-0074A-GE

Xlib uses color maps to define the color of each pixel. A color map
contains a collection of color cells, each of which defines the color pixel
value in terms of its red, green, and blue (RGB) components. Red, green,
and blue components are in the range of zero (off) to 65535 (brightest)
inclusive.

Each pixel value refers to a location in a color map, or is an index into a
color map. For example, the pixel value illustrated in Figure 5-1 indexes
color cell 11 in Figure 5-2.

Using Color
5.1 Pixels and Color Maps

Figure 5-2 Color Map, Cell, and Index

A

A

e
//

[¢
Pixel Value 1011, or M40 Indexes the Color Map

Color Map

Color Value 0

Color Value 1
" 2
" 3
" 4
" 5 Corresponding pixel is
" 6 illuminated using the
" 7 value in the eleventh
g color map entry.
. 10 Digital-to—Analog
" HE2Ee=__» gl
- 12 Converter
" 13
" 14

Color Value 15

ZK-0076A-GE

Because most VAXstations have a hardware color map that is global to the
entire display, clients should use the same color map whenever possible.
Otherwise, some clients will appear in the wrong color.

For example, an image processing program that requires 128 colors might
allocate and store a color map of these values. To alter some colors,
another client may invoke a color palette program that chooses and mixes
colors. The color palette program itself requires a color map, which the
program allocates and installs.

Since both programs have allocated different color maps, this can produce
undesirable results. When the image processing program runs, the color
palette image may be incorrectly displayed because only the image
processing color map is installed. Conversely, when the color palette
program runs, the image processing program may be incorrectly displayed
because only the color palette color map is installed.

5-3

Using Color

5.1 Pixels and Color Maps

Xlib reduces the problem of contending for color resources in two ways.
First, Xlib provides a default color map to which all clients have access.
Second, clients can either allocate color cells for exclusive use or allocate
colors for shared use from the default color map. By sharing colors, a
client can use the same color cells as other clients. This method conserves
space in the default color map.

In cases where the client cannot use the default color map and must use
a new color map, Xlib creates virtual color maps. The use of virtual color
maps is analogous to the use of virtual memory in a multiprogramming
environment where many processes must access physical memory. When
concurrent processes collectively require more color map entries than exist
in the hardware color map, the color values are swapped in and out of the
hardware color map. However, swapping virtual color maps in and out of
the hardware color map causes contention for color resources. Therefore,
the client should avoid creating color maps whenever possible.

The process of loading or unloading color values of the virtual color map
into the hardware lookup table occurs when a client calls the INSTALL
COLORMAP or UNINSTALL COLORMAP routines. Typically, the
privilege to install or remove color maps is restricted to the window
manager.

5.2 Matching Color Requirements to Screen Types

5-4

Each screen has a list of visual types associated with it. The visual type
identifies the characteristics of the screen, such as color or monochrome
capability. Visual types partially determine the appearance of color on
the screen and determine how a client can manipulate color maps for a
specified screen.

Color maps can be manipulated in a variety of ways on some hardware,
in a limited way on other hardware, and not at all on yet other hardware.
For example, a screen may be able to display a full range of colors or a
range of grays only, depending on its visual type.

VMS DECwindows supports the following visual types:

¢ Pseudocolor—A pixel value indexes a color map to produce independent
RGB values. RGB values can be changed dynamically, if a pixel has
been allocated for exclusive use.

* Gray scale—Same as pseudocolor, except the pixel value indexes a
color map that produces only shades of gray.

¢ Static gray—Same as gray scale, except that clients cannot change
values in the color map.

In addition to supporting pseudocolor, gray scale, and static gray, VMS
DECwindows enables clients to simulate the direct color visual type.
Direct color stores RGB components into three separate data structures:
one for red values, one for green values, and one for blue values. Pixel
values refer to these three data structures, as Figure 5-3 illustrates. A
direct color pixel value of 000000010, or 000 000 010, refers to member
0 of the data structure of red values, member 0 of the data structure of
green values, and member 2 of the data structure of blue values.

Using Color
5.2 Matching Color Requirements to Screen Types

See Section 5.4.2 for information about simulating a direct color device.

Figure 5-3 Visual Types and Color Map Characteristics

Pseudocolor
Pixel Value= 000 ?00 0102

0
1
2f 1 Converter
256
RGB
I
Direct Color

Pixel Value = 000 000 010,

0 0 0
1 1 1
2 2
Converter
: H : 7 S Y
256 256 256
R G B
| [
Gray Scale

Pixel Value= 000 (I)OO 010,

0
1
2 Converter
h
256
| I
Static Gray

Pixel Value = 000 000 010,
J

L (1) Converter

I *

ZK-0281A-GE

Default visual types are defined for each screen of a display and depend on
the workstation and monitor type.

5-5

Using Color

5.2 Matching Color Requirements to Screen Types

Table 5-1 lists VAXstations and their visual types.

Table 5-1 VAXstation Visual Types

Visual Type
Monochrome Color

VAXstation Type Monitor Monitor
VAXstation H Static gray N/A
VAXstation 2000 Static gray N/A
VAXstation II/GPX Gray scale Pseudocolor
VAXstation 2000/GPX Gray scale Pseudocolor
VAXstation 3200 Gray scale Pseudocolor
VAXstation 3500 Gray scale Pseudocolor

Before defining colors, use the following method to determine the visual
type of a screen:

1 Use the DEFAULT VISUAL OF SCREEN routine to determine the
identifier of the visual. Xlib returns the identifier to a visual data
structure.

2 Refer to the class member of the data structure to determine the visual
type.

The following example illustrates how to determine the visual type of a
screen:

if ((XDefaultVisualOfScreen (screen))->class == PseudoColor

|| (XDefaultVisualOfScreen (screen))->class ==
DirectColor)
5.3 Sharing Color Resources

Xlib provides the following ways to share color resources:
¢ Using named VMS DECwindows colors

* Specifying exact color values

The choice of using a named color or specifying an exact color depends on
the needs of the client. For instance, if the client is producing a bar graph,
specifying the named VMS DECwindows color “Red” as a color value may
be sufficient, regardless of the hue that VMS DECwindows names “Red”.
However, if the client is reproducing a portrait, specifying an exact red
color value might be necessary to produce accurate skin tones.

5.3.1

Using Color
5.3 Sharing Color Resources

Note that because of differences in hardware, no two monitors display
colors exactly the same even though the same named colors are specified.

For a list of named VMS DECwindows colors, see Appendix C.

Using Named VMS DECwindows Colors

VMS DECwindows includes named colors that clients can share. To use a
named color, call the ALLOC NAMED COLOR routine. ALLOC NAMED
COLOR determines whether the color map defines a value for the specified
color. If the color exists, the server returns the index to the color map. If
the color does not exist, the server returns an error.

Example 5-1 illustrates specifying a color using ALLOC NAMED COLOR.

Example 5-1 Using Named VMS DECwindows Colors

static int doDefineColor (n)

{

1]
2]

int pixel;
XColor exact_color, screen_color;
char *colors[] = {

"dark slate blue",

"light grey",

"firebrick"

};

if ((XDefaultVisualOfScreen(screen))->class == PseudoColor
|| (XDefaultVisualOfScreen (screen))->class == DirectColor)
{
if (XAllocNamedColor (dpy, DefaultColormapOfScreen (screen),
colors[n-1], &screen color, &exact color))
return screen_ color.pixel;
else
printf("Color not allocated!");

}
else
printf ("Not a color device!");

@ The client allocates storage for two color data structures. One, exact_
color, defines the RGB values specified by the VMS DECwindows
named color. The other, screen_color, defines the closest RGB values
supported by the hardware.

For an illustration of the color data structure, see Section 5.3.2.

® An array of characters stores the names of the predefined VMS
DECwindows colors that the client uses.

©® The ALLOC NAMED COLOR routine has the following format:

XAllocNamedColor (display, colormap_id, color name,
screen_def return, exact def return)

The client passes the names of VMS DECwindows colors by referring
to the array colors.

5-7

Using Color
5.3 Sharing Color Resources

5.3.2 Specifying Exact Color Values
To specify exact color values, use the following method:
1 Assign values to a color data structure

2 Call the ALLOC COLOR routine, specifying the color map that stores
the definition. ALLOC COLOR returns a pixel value and changes the
RGB values to indicate the closest color supported by the hardware.

Xlib provides a color data structure to enable clients to specify exact color
values when sharing colors. (Routines that allocate colors for exclusive
use and that query available colors also use the color data structure. For
information about using the color data structure for these purposes, see
Section 5.4.)

The following illustrates the color data structure:

typedef struct {
unsigned long pixel;
unsigned short red, green, blue;
char flags;
char pad;
} XColor;

Table 52 describes the members of the color data structure.

Table 5-2 Color Data Structure Members

Member Name Contents

pixel Pixel value

red Specifies the red value of the pixel '

green Specifies the green value of the pixel '

blue Specifies the blue value of the pixel '

flags Defines which color components are to be changed in
the color map. Possible flags are as follows:
DoRed Sets red values
DoGreen Sets green values
DoBlue Sets blue values

pad Makes the data structure an even length

Color values are scaled between 0 and 65535. “On full” in a color is a value of 65535,
independent of the number of planes of the display. Half brightness in a color is a value of
32767; off is a value of 0. This representation gives uniform results for color values across
displays with different color resolution.

Example 5-2 illustrates how to specify exact color definitions.

5-8

Using Color
5.3 Sharing Color Resources

Example 5-2 Specifying Exact Color Values

/x*Kkkk*k Create COLOr FXXKXAKkKKXKKKKKKX KK XKk kK /

static int doDefineColor (n)
{

int pixel;

XColor colors([3];

if ((XDefaultVisualOfScreen (screen))->class == PseudoColor
Il (XDefaultVisualOfScreen (screen))->class == DirectColor)
switch (n){
case 1l:{
" colors[n — 1].flags = DoRed | DoGreen | DoBlue;
2] colors(n - 1].red = 59904;
colors[n - 1l].green = 44288;
colorsfn - 1].blue = 59904;
(3] if (XAllocColor (dpy, XDefaultColormapOfScreen (screen),

&colors[n — 11]1))
return colors{n - 1].pixel;
else

printf ("Color not allocated!");

return;
}
case 2:{
colors[n -~ 1].flags = DoRed | DoGreen | DoBlue;
colors[n - 1l].red = 65280;
colors[n - 1].green = 0O;
colors[n — 1].blue = 32512;

if (XAllocColor (dpy,
&colors([n - 11))
return colors[n - 1].pixel;

XDefaultColormapOfScreen (screen),

else
printf ("Color not allocated!");
return;
}
case 3:{
colors[n - 1].flags = DoRed | DoGreen | DoBlue;
colors[n - 1l].red = 37632;
colorsin - 1l].green = 56064;
colors[n - 1].blue = 28672;

}

if (XAllocColor (dpy, XDefaultColormapOfScreen (screen),
&colors[n = 11))
return colors[n - 1].pixel;
else
printf ("Color not allocated!"):;
return;

}

else
switch (n) {
case 1: return XBlackPixelOfScreen (screen); break;
case 2: return XWhitePixelOfScreen (screen); break;
case 3: return XBlackPixelOfScreen (screen); break;

© Specify that RGB values are defined.

® Define color values in the first of three color data structures.

5-9

Using Color

5.3 Sharing Color Resources

© After defining RGB values, call the ALLOC COLOR routine. ALLOC
COLOR allocates shared color cells on the default color map and
returns a pixel value for the color that matches the specified color most
closely.

5.4 Allocating Colors for Exclusive Use

A client that does not need to change color values should share colors using
the methods described in Section 5.3.2. Sharing colors saves resources.
However, a client that changes color values must allocate them for its
exclusive use.

Xlib provides two methods for allocating colors for the exclusive use of
a client. First, the client can allocate cells and store color values in the
default color map. Second, if the default color map does not contain
enough storage, the client can create its own color map and store color
values in it.

This section describes how to specify a color map, how to allocate cells for
exclusive use, and how to store values in the color cells.

5.4.1 Specifying a Color Map

5-10

Clients can either use the default color map and allocate its color cells for
exclusive use or create their own color maps.

If possible, use the default color map. Although a client can create color
maps for its own use, the hardware color map storage is limited. When a
client creates its own color map, the map must be loaded, or installed, into
the hardware color map before the client map can be used. If the client
color map is not installed, the client may refer to a different color map and
possibly display the wrong color. Using the default color map eliminates
this problem. See Section 5.1 for information about how Xlib handles color
maps.

To specify the default color map, use the DEFAULT COLORMAP routine.
DEFAULT COLORMAP returns the identifier of the default color map.

If the default color map does not contain enough resources, the client can
create its own color map.

To create a color map, use the following method:

1 Determine the visual type of a specified screen using the method
described in Section 5.2

2 Call the CREATE COLORMAP routine.

The CREATE COLORMAP routine creates a color map for the specified
window and visual type. CREATE COLORMAP has the following format:

XCreateColormap (display, window__ici, visual struc, alloc)

5.4.2

Using Color
5.4 Allocating Colors for Exclusive Use

The alloc argument specifies whether the client creating the color map
allocates all of the color map entries for its exclusive use or creates a color
map with no defined color map entries. To allocate all entries for exclusive
use, specify the constant AllocAll. To allocate no defined map entries,
specify the constant AllocNone. The latter is useful when two or more
clients are to share the newly created color map.

If the visual type is pseudocolor or gray scale, the client can either allocate
all or no map entries. If the visual type is static gray, the client must
allocate no entries.

See Section 5.4.2 for information about allocating colors. See Example 5-3
for an example of specifying the default color map.

Allocating Color Cells

After specifying a color map, allocate color cells in it.

To allocate color cells, call the ALLOC COLOR CELLS routine to allocate
cells for a pseudocolor device or a gray scale device. Call the ALLOC
COLOR PLANES routine to simulate a direct color device. See Section 5.2
for information about the direct color visual type.

Example 5-3 illustrates how to allocate colors for exclusive use. The
program creates a color wheel that rotates when the user presses MBL.

Example 5-3 Allocating Colors for Exclusive Use

#include <decw$include/Xlib.h>
#include <decw$include/Xutil.h>

#include math;

#define winW 600
#define winH 600
#define backW 800
#define backH 800

Display *dpy;

Window win;

Pixmap pixmap;
Colormap map;

GC gc;

Screen *screen;

XColor *colors;

int offsetX, offsetY;
int fullcount;

int ButtonIsDown = 0;
int n, exposeflag = 0;
int ihop=1;
XSetWindowAttributes xswa;

(continued on next page)

5-11

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

static void doInitialize();
static void doCreateWindows();
static void doCreateGraphicsContext();
static void doCreatePixmap():
static void doCreateColor();
static void doCreateWheel();
static void doWMHints():
static void doMapWindows();
static void doHandleEvents():
static void doExpose()

static void doButtonPress():
static void doButtonRelease();
static void doChangeColors();
static void doLoadColormap();:
static void doHLS_to RGB();
static void doConfigure();

[HRFFI KKK KKK kKR Kk R xk*k*x The main Program *FXrxxxkkxkkxxkkkxkkk Xk k Ak kXX Kk %% /

static int main ()

{
doInitialize();
doHandleEvents();
}

[RxK KKKk kkKkhkkhkk doTnitialize FrEFXkAkAkk Xk Rk Rk Ak AR X AKXk Kk /

static void doInitialize{)
{
dpy = XOpenDisplay(0):;

screen = DefaultScreenOfDisplay (dpy) ;
doCreateWindows ()
doCreateGraphicsContext ();
doCreatePixmap()

doCreateColor();

doCreateWheel ();

doWMHints ();

doMapWindows () ;
}
J/****kx*% doCreateWindows ***xkkkkx/
static void doCreateWindows()
{
int winX = 100;
int winY = 100;

/* Create the win window */

xswa.event mask = ExposureMask | ButtonPressMask |
ButtonReleaseMask | StructureNotifyMask;
xswa.background pixel = XBlackPixelOfScreen (screen);

win = XCreateWindow (dpy, RootWindowOfScreen (screen),
winX, winY, winW, winH, O,
DefaultbepthOfScreen (screen), InputOutput,

DefaultVisualOfScreen (screen), CWEventMask | CWBackPixel,

&xswa) ;

5-12

(continued on next page)

Using Color

5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

/**%%kkkx* Create the graphics context ***xxxxxxx/
static void doCreateGraphicsContext ()

{
XGCValues xgcv;

/* Create graphics context. */

gc = XCreateGC(dpy, win, 0, 0);
XSetForeground (dpy, gc, XWhitePixelOfScreen (screen));

[***xFk%x doCreatePixmap *****k%*k/
static void doCreatePixmap()

{

o pixmap = XCreatePixmap (dpy, XRootWindow (dpy, XDefaultScreen (dpy)),
backW, backH, XDefaultDepthOfScreen (screen)):;
XFillRectangle (dpy, pixmap, gc, 0, 0, backW, backH);

}

/******* doCreateCOlor ******‘k*/
Ostatic void doCreateColor()

{

int *pixels;

int contig;

int *plane_masks;

if ((XDefaultVisualOfScreen (screen))->class != PseudoColor &&
(XDefaultVisualOfScreen (screen))->class != DirectColor)
{
sys$exit (1) ;
}

(3] map = XDefaultColormapOfScreen (screen);

xswa.colormap = map;
fullcount = XDisplayCells (dpy, XDefaultScreen (dpy))/2;
if (fullcount > 128) fullcount = 128;
pixels = malloc(sizeof (int)*fullcount);
if (!XAllocColorCells(dpy, map, contig, plane masks,
0, pixels, fullcount))
{
sys$exit (1) ;
}
colors = malloc(sizeof (XColor)*fullcount) ;
doLoadColormap (pixels) ;

}

/***** doCreateWheel ***x*xx%/
c,static void doCreateWheel ()
{

int pixel, i, 3;

XPoint *pgon;

int xcent, ycent;

pixel = XWhitePixelOfScreen (screen);

(continued on next page)

5-13

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

}

/* Now set up wheel. It is really a set of triangles*/
pgon = malloc(sizeof (XPoint) *3*fullcount+l);
xcent=backW/2;
ycent=backH/2;
pgon[0] .x = backW;
pgon[0].y = backH/2;

/* Fill in coordinate for center point in all triangles */

for (i=0;i<fullcount*3;i+=3)
{
pgon[i+l].x xcent;
pgon[i+l].y = ycent;
}

/* Calculate the triangle points on the outer circle */

for (pixel=0,i=0;pixel<fullcount;i+=3, pixel++)
{

double x,y,xcent_f,ycent f;

xcent_f = (double)xcent;

ycent_f = (double)ycent;

x=cos((((double)pixel+l.)/ (double)fullcount)*2.%¥3.14159);
y=sin((((double)pixel+l.)/ (double)fullcount)*2.%3.14159);
pgon[i+2).x = (int) (x*xcent f)+xcent;

il

pgon[i+2].y (int) (y*ycent f)+ycent;
pgon[i+3].x = pgon[i+2].x;
pgon[i+3].y = pgon[i+2].y;
XSetForeground (dpy, gc, colors[i/3].pixel);
XFillPolygon (dpy, pixmap, gc, &pgon[i], 3, Convex, CoordModeOrigin);
}
offsetX = (backW - winW)/2;
offsetY = (backH - winH)/2;
return;

[xxkxkkkk do WMHints *x*kkxkxkkkdx/
static void doWMHints()

{

XSizeHints xsh;
/* Define the size and name of the win window */

xsh.x = 100;

xsh.y = 100;

xsh.width = winW;

xsh.height = winH;

xsh.flags = PPosition | PSize;

XSetNormalHints (dpy, win, &xsh);
XStoreName (dpy, win, "Color Wheel: Press MBl to Rotate or Click MB2 to Exit.");

/******** dOMapWindOWS ***********/
static void doMapWindows()

{
}

XMapWindow (dpy, win);

(continued on next page)

5-14

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

JRkkKKkkhkkkkxkkkkx* doHandleRvents * Xk xxxkxkkxkhkkkkkkkk /
static void doHandleEvents()

{

XEvent event;

for (; ;) |
XNextEvent (dpy, &event);

switch (event.type) {

case Expose: doExpose (&event); break;

case ButtonPress: doButtonPress (&event) ; break;
case ButtonRelease: doButtonRelease (&event); break;
case ConfigureNotify: doConfigure (&event); break;

/***** Handle window exposures **%%*/

static void doExpose (eventP)

XEvent *eventP;

{

(6] XCopyArea (dpy, pixmap, win, gc, offsetX + eventP->xexpose.x,
offsetY + eventP->xexpose.y, eventP->xexpose.width,
eventP->xexpose.height, eventP->xexpose.x, eventP->xexpose.y);

Jxxkkkkxk doButtonPress **x*xkxkxkkxkxx/
static void doButtonPress (eventP)
XEvent *eventP;

{
1f (eventP ->xbutton.button == Button2) {

sys$exit (1);
}

ButtonIsDown = 1;
if (ButtonIsDown) doChangeColors{):
return;

}

/*xkxkxk* doButtonRelease **x*kxkxkkkkkk/
static void doButtonRelease (eventP)
XEvent *eventP;

{
ButtonIsDown = 0;
return;

JxxxxxxxxxdoConfigure **xxxkkkkkkkkkkkkkkxk/

static void doConfigure (eventP)

XEvent *eventP;

{

@ offsetx = (backW - eventP->xconfigure.width) /2;
offsetY = (backH - eventP->xconfigure.height)/2;

}

(continued on next page)

5-15

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

/****‘k********dochangeColors************/
Ostatic void doChangeColors()
{
for (;!(XPending{(dpy));) {
unsigned int i,temp;
double h,r,qg,b;

temp = colors[0].pixel;

for (i=0;i<fullcount-1;i++)
colors([i].pixel = colors[it+l].pixel;

colors[fullcount-1] .pixel = temp;

XStoreColors (dpy, map, colors, fullcount);

}

/**** doLoadColormap ****/
()Static void doLoadColormap (pPixels)
int *pPixels;

{

unsigned int 1i,73;
double h,r,qg,b;

for (i=0;i < fullcount;i++) {
colors([i] .pixel=pPixels[i];
colors([i]l.flags = DoRed | DoGreen |DoBlue;

}

for (i=0; i < fullcount ; i++) {

ﬂD h = (double)i*360/ ((double) fullcount+1) ;

doHLS _to RGB(&h,&.5,&.5,&r, &g, &b) ;
colors(i].red = r * 65535.0;
colors([i].green = g * 65535.0;
colors[i] .blue = b * 65535.0;

}

XStoreColors (dpy, map, colors, fullcount);

/**x* doHLS_to RGB ****/

static void doHLS_to RGB (h,1,s, r,g,b)
double *h,*1,*s,*r,*qg,*b;
{

double ml,m2;

double wvalue();

1l

m2 (*1 < 0.5) ? (*1)*(1l+*s) : *1 + *s— (*1)*(*s) ;
ml = 2% (*1) - m2;
if (*s == 0)
{ (*r)=(*g)=(*b)=(*1); }
else
{ *r=value (ml,m2, (double) (*h+120.));
*g=value (ml,m2, (double) (*h+000.));
*b=value (ml,m2, (double) (*h—-120.));
}

return;

5-16

(continued on next page)

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

double value (nl,n2,hue)

double nl,n2,hue;

{

double val;

if (hue>360.)
if (hue<0.)
if (hue<e60)

hue -= 360.;
hue += 360.;

val = nl+(n2-nl) *hue/60.;
else if (hue<180.)

val = n2;

else if (hue<240.)
val = nl+(n2-nl)*(240.-hue)/60.;

else
val = nl;
return (val);

The client uses a pixmap as a backing store for the color wheel. When
a user reconfigures the color wheel window, the client copies the color
wheel from the pixmap into the resized window. For information about
creating and using pixmaps, see Chapter 7.

After creating the pixmap for backing store, the client creates colors
for the wheel and the wheel itself. The client-defined doCreateColor
routine allocates color cells for the exclusive use of the client and
stores initial color values in the color map.

The client uses the default color map, specifying that only 128 color
cells be allocated. After allocating color cells, the client calls the
client-defined doLoadColormap routine to define color values. For a
description of the routine, see callouts 7, 8, 9, and 10.

The client-defined doCreateWheel routine defines the wheel used to
display colors and specifies initial color values.

The wheel is composed of polygons. Each polygon is defined by three
points, one in the center of the wheel and two at the circumference.
After the initial polygon is specified, each polygon shares one point
with the polygon previously defined, as Figure 5—4 illustrates.

To define each point the client uses a point data structure, which is
described in Chapter 6. After defining a polygon, the client fills it with
a specified foreground color.

When the user reconfigures the window, the server generates an
expose event. In response to the event, the client copies the pixmap
into the exposed area, which is calculated using the offset from the
original to the new position of the window. For information about
handling exposure events, see Chapter 9.

The client calculates the offset from the original window position in
response to a configure notify event. The server issues a configure
notify event each time the user resizes the color wheel window. For
information about handling configure notify events, see Chapter 9.

5-17

Using Color

5.4 Allocating Colors for Exclusive Use

5-18

® The rotation of the color wheel is accomplished by changing values in
the color map. As long as there are no pending events, and the user is
pressing MB1, the client-defined doChangeColors routine shifts color
values by one.

© The doLoadColormap routine initializes the color wheel by defining
128 colors and storing them in the color map.

@® Colors are defined initially using the Hue, Light, Saturation (HLS)
system. The values of color hues vary, while values for light and
saturation remain constant. After a color has been defined using HLS,
the color is converted into RGB values by the client-defined doHLS_to_
RGB routine. When all colors are defined, the client stores them in the
color map by calling the STORE COLORS routine.

Figure 5-4 Polygons That Define the Color Wheel

Ve Pixmap
PyoFys P
Fo
P2 = P3
P5=Fe
ZK-0518A-GE

When allocating colors from any shared color map, the client may exhaust
the resources of the color map. In this case, Xlib provides a routine for
copying the default color map entries into a new client-created color map.

To create a new color map when the client exhausts the resources of a
previously shared color map, use the COPY COLORMAP AND FREE
routine. The routine creates a color map of the same visual type and
for the same screen as the previously shared color map. The previously

5.4.3

5.5

Using Color
5.4 Allocating Colors for Exclusive Use

shared color map can be either the default color map or a client-created
color map. The COPY COLORMAP AND FREE routine has the following
format:

XCopyColormapAndFree (display, colormap_id)

COPY COLORMAP AND FREE copies all allocated cells from the
previously shared color map to the new color map, keeping color values
intact. The new color map is created with the same value of the argument
alloc as the previously shared color map and has the following effect on
the new color map entries:

Value of alloc Effect

AllocAll All entries are copied from the previously shared color map
and are then freed to create writable map entries.

AllocNone The entries moved are all pixels and planes that have been

allocated using the following routines and that have not been
freed since they were allocated: ALLOC COLOR, ALLOC
NAMED COLOR, ALLOC COLOR CELLS, ALLOC COLOR
PLANES.

Storing Color Values

After allocating color entries in the color map, store RGB values in the
color map cells using the following method:

1 Assign color values to the color data structure and set the flags
member to indicate the values defined.

2 Call the STORE COLOR routine to store one color, the STORE
COLORS routine to store more than one color, or the STORE NAMED
COLOR routine to store a named color.

The STORE COLOR routine has the following format:
XStoreColor (display, colormap_id, screen_def return)
The STORE COLORS routine has the following format:

XStoreColors (display, colormap id, screen_defs_return,
num_colors)

The STORE NAMED COLOR routine has the following format:

XStoreNamedColor (display, colormap_id, color_ name,
pixel, flags)

Freeing Color Resources

To free storage allocated for client colors, call the FREE COLORS routine.
FREE COLORS releases all storage allocated by the following color
routines: ALLOC COLOR, ALLOC COLOR CELLS, ALLOC NAMED
COLORS, ALLOC COLOR PLANES.

5-19

Using Color

5.5 Freeing Color Resources

To delete the association between the color map ID and the color map, use
the FREE COLORMAP routine. FREE COLORMAP has no effect on the
default color map of the screen. If the color map is an installed color map,
FREE COLORMAP removes it.

5.6 Querying Color Map Entries

5-20

Xlib provides routines to return both the RGB values of the color map
index and the name of a color.

To query the RGB values of a specified pixel in the color map, use the
QUERY COLOR routine. The value returned is the value passed in the
pixel member of the color data structure.

To query the RGB values of an array of pixel values, use the QUERY
COLORS routine. The values returned are the values passed in the pixel
member of the color data structure.

To look up the values associated with a named color, use the LOOKUP
COLOR routine. LOOKUP COLOR uses the specified color map to find out
the values with respect to a specific screen. It returns both the exact RGB
values and the closest RGB values supported by hardware.

6 Drawing Graphics

Xlib provides clients with routines that draw graphics into windows and
pixmaps. This chapter describes how to create and manage graphics
drawn into windows, including the following topics:

* Drawing points, lines, rectangles, and arcs

¢ Filling rectangles, polygons, and arcs

¢ Copying graphics

¢ Limiting graphics to a region of a window or pixmap
* (learing graphics from a window

* Creating cursors

Chapter 7 describes drawing graphics into pixmaps.

6.1 Graphics Coordinates

Xlib graphics coordinates define the position of graphics drawn in a
window or pixmap. Coordinates are either relative to the origin of the
window or pixmap in which the graphics object is drawn or relative to a
previously drawn graphics object.

Xlib graphics coordinates are similar to the coordinates that define window
position. Xlib measures length along the x axis from the origin to the
right. Xlib measures length along the y axis from the origin down. Xlib
specifies coordinates in units of pixels.

6.2 Using Graphics Routines Efficiently

If clients use the same drawable and graphics context for each call,

Xlib handles back to back calls of DRAW POINT, DRAW LINE, DRAW
SEGMENT, DRAW RECTANGLE, FILL ARC, and FILL RECTANGLE in
a batch. Batching increases efficiency by reducing the number of requests
to the server.

When drawing more than a single point, line, rectangle, or arc, clients
can also increase efficiency by using routines that draw or fill multiple
graphics (DRAW POINTS, DRAW LINES, DRAW SEGMENTS, DRAW
RECTANGLES, DRAW ARCS, FILL ARCS, and FILL RECTANGLES).
Clipping negatively affects efficiency. Consequently, clients should ensure
that graphics they draw to a window or pixmap are within the boundary
of the drawable. Drawing outside the window or pixmap decreases
performance. Clients should also ensure that windows into which they
are drawing graphics are not occluded.

6-1

6.3

6.3.1

Drawing Graphics
6.2 Using Graphics Routines Efficiently

The most efficient method for clearing multiple areas is using the FILL
RECTANGLES routine. By using the FILL RECTANGLES routine, clients
can increase server performance. For information about using FILL
RECTANGLES to clear areas, see Section 6.6.1.

Drawing Points and Lines

Xlib includes routines that draw points and lines. When clients draw
more than one point or line, performance is most efficient if they use Xlib
routines that draw multiple points or lines rather than calling single point
and line-drawing routines many times.

This section describes using routines that draw both single and multiple
points and lines.

Drawing Points

6-2

To draw a single point, use the DRAW POINT routine, specifying x and y
coordinates, as in the following:

int x,y=100;
XDrawPoint (display, window, gc, x, y);

If drawing more than one point, use the following method:
1 Define an array of point data structures.

2 Call the DRAW POINTS routine, specifying the array that defines the
points, the number of points the server is to draw, and the coordinate
system the server is to use. The server draws the points in the order
specified by the array.

Xlib includes the point data structure to enable clients to define an array
of points easily. The following illustrates the data structure:
typedef struct {
short x, y;
} XPoint;

Table 6-1 describes the members of the point data structure.

Table 6-1 Point Data Structure Members

Member

Name Contents

X Defines the x value of the coordinate of a point
y Defines the y value of the coordinate of a point

The server determines the location of points according to the following:

¢ If the client specifies the constant CoordModeOrigin, the server
defines all points in the array relative to the origin of the drawable.

Drawing Graphics
6.3 Drawing Points and Lines

¢ If the client specifies the constant CoordModePrevious, the server
defines the coordinates of the first point in the array relative to the
origin of the drawable and the coordinates of each subsequent point
relative to the point preceding it in the array.

The server refers to the following members of the GC data structure to
define the characteristics of points it draws:

Function Plane mask
Foreground Subwindow mode
Clip x origin Clip y origin

Clip mask

Chapter 4 describes GC data structure members.

Example 6-1 uses the DRAW POINTS routine to draw a circle of points
each time the user clicks MB1.

Figure 6-1 illustrates sample output from the program.
Example 6-1 Drawing Multiple Points

/* Create window win on *
* display dpy, defined as follows: *
* Position: x = 100,y = 100 *
* Width = 600 *
* Height = 600 *
* gc refers to the graphics context */

JrRh kKKK kKKK Rk kkk**x% doHandleEvents **xkkkkkrkkkkkkkkkkkkkxkx /
static void doHandleEvents()

{

XEvent event;

for (; ;) |
XNextEvent (dpy, &event);
switch (event.type) {
case Expose: doExpose (&event); break;
case ButtonPress: doButtonPress (&event); break;

}

/****% Write a message *xxxx/
"static void doExpose (eventP)
XEvent *eventP;
{
char messagel{]
char message2{]
char message3[]

= {"To create points, click MB1"};
{"Each click creates a new circle of points"};
= {"To exit, click MB2"};

XDrawImageString (dpy, win, gc, 150, 25, messagel, strlen(messagel)):;
XDrawImageString (dpy, win, gc, 150, 50, message2, strlen(message2));
XDrawImageString (dpy, win, gc, 150, 75, message3, strlen{(message3));

(continued on next page)

6-3

Drawing Graphics
6.3 Drawing Points and Lines

Example 6-1 (Cont.) Drawing Multiple Points

/***** Draw the points**xxx/
static void doButtonPress (eventP)
XEvent *eventP;

{

#define POINT CNT 100
#define RADIUS 50

(2

—

XPoint point_arr[POINT CNT];
int i;

int x = eventP->xbutton.x;
int y = eventP->xbutton.y;

if (eventP->xbutton.button == Button2) sys$exit (1);

for (i=0;i<POINT_CNT;i++) {
point_arr{i].x = x + RADIUS*cos (i)
point_arr[i].y = y + RADIUS*sin{(i):;
}

XDrawPoints (dpy, win, gc, &point arr, POINT_CNT, CoordModeOrigin);

@ When the client receives notification that the server has mapped the
window, the doExpose routine writes three messages into the window.
For information about using the DRAW IMAGE STRING routine, see
Chapter 8.

@ If the user clicks any mouse button, the client initiates the
doButtonPress routine. If the user clicks MB1, the client draws 50
points. If the user clicks MB2, the client exits the system. The client
determines which button the user pressed by referring to the button
member of the button event data structure. For more information
about the button event data structure, see Chapter 9.

© The DRAW POINTS routine has the following format:

XDrawPoints (display, drawable id, gc_id, points,
num_points, point mode)

The point_mode argument specifies whether coordinates are relative
to the origin of the drawable or to the previous point in the array.

Drawing Graphics
6.3 Drawing Points and Lines

Figure 6—1 Circles of Points Created Using the DRAW POINTS Routine

Drawing Multiple Points LHIE

To create points, click MB1.

Each click creates a new circle of points.
To exit, click MB2.

ZK-0107A-GE

6.3.2 Drawing Lines and Line Segments

Xlib includes routines that draw single lines, multiple lines, and line
segments. To draw a single line, use the DRAW LINE routine, specifying
beginning and ending points, as in the following:

int x1,y1=100;
int x2,y2=200;
XDrawLine (display, window, gc, x1, yl, x2, y2);

To draw multiple lines, use the following method:

1 Define an array of points using the point data structure described in
Section 6.3.1 to specify beginning and ending line points. The server
interprets pairs of array elements as beginning and ending points. For

6-5

Drawing Graphics
6.3 Drawing Points and Lines

example, if the array that defines the beginning point is point[z], the
server reads point[i + 1] as the corresponding ending point.

2 Call the DRAW LINES routine, specifying the following:
¢ The array that defines the points.
* The number of points that define the line.

¢ The coordinate system the server uses to locate the points. The
server draws the lines in the order specified by the array.

Clients can specify either the CoordModeOrigin or the
CoordModePrevious constant to indicate how the server determines
the location of beginning and ending points. The server uses the methods
described in Section 6.3.1.

The server draws lines in the order the client has defined them in the
point data structure. Lines join correctly at all intermediate points. If
the first and last points coincide, the first and last line also join correctly.
For any given line, the server draws pixels only once. The server draws
intersecting pixels multiple times if zero-width lines intersect; it draws
intersecting pixels of wider lines only once.

Example 6-2 uses the DRAW LINES routine to draw a star when the
server notifies the client that the window is mapped.

Example 6—2 Drawing Multiple Lines

/* Create window win on *
* display dpy, defined as follows: *
* Position: x = 100,y = 100 *
* Width = 600 *
* Height = 600 *
* gc refers to the graphics context */

JREKIK KKK KRRk R*kkx* doHandleEvents *xkkkxkkkkkkkkkkxkhkkkkx /
static void doHandleEvents({)
{

XEvent event;

for (; ;) |
XNextEvent (dpy, &event):;
switch (event.type) {
case Expose: doExpose (&event); break;

}
}

/***** doExpose **xx/
static void doExpose (eventP)
XEvent *eventP;
{

XPoint pt_arr[6}];

(continued on next page)

6-6

Drawing Graphics
6.3 Drawing Points and Lines

Example 6-2 (Cont.) Drawing Multiple Lines

1] pt_arr[0].

pt_arr(0].
pt_arr(l].
pt_arr[l].
pt_arr[2].
pt _arr[2].
pt_arr[3].
pt_arr(3].
pt_arr[4].
pt_arr(4].
pt_arr[5].
pt_arr[5].

KKK XK K X X

A T T T TR T

75;

500;
300;
100;
525;
500;
50;

225;
575;
225;
75;

500;

€) XDrawlLines (dpy, win, gc, &pt_arr, 6, CoordModeOrigin);

}

2]

The doExpose routine uses point data structures to define beginning
and ending points of lines.

The call to draw lines refers to a graphics context (gc), which the client
has previously defined, and an array of point data structures. The
constant CoordModeOrigin indicates that all points are relative to
the origin of win (100,100).

Figure 6-2 illustrates the resulting output.

6-7

Drawing Graphics
6.3 Drawing Points and Lines

6-8

Figure 6-2 Star Created Using the DRAW LINES Routine

Drawing Multiple Lines

To create a star, click MB1.

To exit, click MB2.

ZK-0103A-GE

Use the DRAW SEGMENTS routine to draw multiple, unconnected
lines, defining an array of segments in the segment data structure. The
following illustrates the data structure:

typedef struct {
short x1, vyl, x2, y2;
} XSegment;

Table 6-2 describes the members of the data structure.

Drawing Graphics
6.3 Drawing Points and Lines

Table 62 Segment Data Structure Members

Member Name Contents

x1 The x value of the coordinate that specifies one endpoint of
the segment

VAl The y value of the coordinate that specifies one endpoint of
the segment

X2 The x value of the coordinate that specifies the other endpoint
of the segment

y2 The y value of the coordinate that specifies the other endpoint
of the segment

DRAW SEGMENTS functions like the DRAW LINES routine, except the
routine does not use the coordinate mode.

The DRAW LINE and DRAW SEGMENTS routines refer to all but the join
style, fill rule, arc mode, and font members of the GC data structure to
define the characteristics of lines. The DRAW LINES routine refers to all
but the fill rule, arc mode, and font members of the data structure.

Chapter 4 describes the GC data structure.

6.4 Drawing Rectangles and Arcs

As with routines that draw points and lines, Xlib provides clients the
choice of drawing either single or multiple rectangles and arcs. If a client
is drawing more than one rectangle or arc, use the multiple-drawing
routines for most efficiency.

6.4.1 Drawing Rectangles

To draw a single rectangle, use the DRAW RECTANGLE routine,
specifying the coordinates of the upper left corner and the dimensions
of the rectangle, as in the following:

int x=50

int y=100;

int width=25;
int length=50;

XDrawRectangle (display, window, gc, x, y, width, length);

Figure 6-3 illustrates how Xlib interprets coordinate and dimension
parameters. The z and y coordinates are relative to the origin of the
drawable.

6-9

Drawing Graphics
6.4 Drawing Rectangles and Arcs

6-10

Figure 6-3 Rectangle Coordinates and Dimensions

< w »
(x, y] [X+w,Y]
A K n
h
Y k |
X,y +h] [x+w,y+h]
ZK-0078A-GE

To draw multiple rectangles, use the following method:
1 Define an array of rectangles using the rectangle data structure.

2 Call the DRAW RECTANGLES routine, specifying the array that
defines rectangle origin, width, and height, and the number of array
elements.

The server draws each rectangle as shown in Figure 6-4.

Figure 6-4 Rectangle Drawing

’f—Path of lines drawn

[Xq.y4l=lx g, Ypl X1, ¥4]
AR N
h dv
X5 Ysle- X5, Y5l
ZK-0077A-GE

Drawing Graphics
6.4 Drawing Rectangles and Arcs

For a specified rectangle, the server draws each pixel only once. If
rectangles intersect, the server draws intersecting pixels multiple times.

Xlib includes the rectangle data structure to enable clients to define an
array of rectangles easily. The following illustrates the data structure:

typedef struct {

short %, y;

unsigned short width, height;
} XRectangle;

Table 6-3 describes the members of the rectangle data structure.

Table 6-3 Rectangle Data Structure Members

Member Name Contents

X Defines the x value of the rectangle origin
y Defines the y value of the rectangle origin
width Defines the width of the rectangle

height Defines the height of the rectangle

When drawing either single or multiple rectangles, the server refers
to the following members of the GC data structure to define rectangle
characteristics:

Function Plane mask
Foreground Background

Line width Line style

Join style Fill style

Tile Stipple

Tile/stipple x origin Tile/stipple y origin
Subwindow mode Clip x origin

Clip y origin Clip mask

Dash offset Dashes

Chapter 4 describes the GC data structure members.

Example 6-3 illustrates using the DRAW RECTANGLES routine.
Figure 6-5 shows the resulting output.

6-11

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Example 6-3 Drawing Muitiple Rectangles

/* Create window win on *
* display dpy, defined as follows: *
* Position: x = 100,y = 100 *
* Width = 600 *
* Height = 600 *
* gc refers to the graphics context */

JERK KK KKk kkkKkkhkkkkx*x doHandleREvents **xxxkkxkkkxkkkkkhkxkkkkkk /
static void doHandleEvents ()

{

XEvent event;

for (; ;5) |
XNextEvent (dpy, &event):;
switch (event.type) {
case Expose: doExpose (&event); break;
case ButtonPress: doButtonPress (&event); break;

}

[****%k Write a message **xxk/

"Static vold doExpose (eventP)
XEvent *eventP;

{

{"To draw multiple rectangles, click MB1"};
= {"To exit, click MB2"};

char messagel []
char message2 []
XDrawImageString (dpy, win, gc, 150, 25, messagel, strlen (messagel)):;
XDrawImageString (dpy, win, gc, 150, 50, message2, strlen (message2));

/***** Draw the rectangles #****%x/
static void doButtonPress (event?P)
XEvent *eventP;
{
#define REC_CNT 40
#define STEP 15
XRectangle rec_arr[REC_CNT];
int 1i;
® if (eventP->xbutton.button == Button2) sysS$exit (1)
for (i=0;i<REC_CNT;i++) {
rec_arr([i].x = STEP * i;
rec_arr[i].y = STEP * i;
rec_arr(i] .width = STEP*2;
rec_arr([i].height = STEP*3;
}

(3] XDrawRectangles (dpy, win, gc, &rec_arr, REC_CNT);

—

© When the client receives notification that the server has mapped the
window, the doExpose routine writes two messages into the window.
For information about using the DRAW IMAGE STRING routine, see
Chapter 8.

6-12

Drawing Graphics
6.4 Drawing Rectangles and Arcs

@ If the user clicks any mouse button, the client calls the doButtonPress
routine. If the user clicks MB1, the client draws rectangles defined
in the initialization loop. If the user clicks MB2, the client exits the
system. The client determines which button the user has clicked by
referring to the button member of the button event data structure.
For more information about the button event data structure, see
Chapter 9.

©® The DRAW RECTANGLE routine has the following format:

XDrawRectangles (display, drawable id, gc_id, rectangles,
num_rectangles)

Figure 6-5 Rectangles Drawn Using the DRAW RECTANGLES Routine

Drawing Mulitiple Rectangles

To draw multiple rectangles, click MB1.
To exit, click MB2.

ZK-0105A-GE

6-13

6.4.2

Drawing Graphics
6.4 Drawing Rectangles and Arcs

Drawing Arcs

6-14

Xlib routines enable clients to draw either single or multiple arcs. To
draw a single arc, use the DRAW ARC routine, specifying a rectangle that
defines the boundaries of the arc and two angles that determine the start
and extent of the arc, as in the following:

int x=50

int y=100;

int width=25;
int length=50;
int anglel=5760;
int angle2=5760;

XDrawArc (display, window, gc, x, y, width, height,
anglel, angle2);

The server draws an arc within a rectangle. The client specifies the upper
left corner of the rectangle, relative to the origin of the drawable. The
center of the rectangle is the center of the arc. The width and height of
the rectangle are the major and minor axes of the arc, respectively.

Two angles specify the start and extent of the arc. The angles are signed
integers in degrees scaled up by 64. For example, a client would specify a
90 degree arc as 64 %90 or 5760. The start of the arc is specified by the first
angle, relative to the three o’clock position from the center of the rectangle.
The extent of the arc is specified by the second angle, relative to the start
of the arc. Positive integers indicate counterclockwise motion; negative
integers indicate clockwise motion.

Figure 6-6 illustrates the relationships among the rectan