

VMS DECwindows
Guide to Xlib Programming:
MIT C Binding

Order Number: AA-MG24A-TE

December 1988

This manual is a guide to programming Xlib routines.

Revision/Update Information: This is a new manual.

Software Version: VMS Version 5.1

digital equipment corporation
maynard, massachusetts

December 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1988.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA MASS BUS VAX RMS
DDIF PrintServer 40 VAXstation
DEC Q-bus VMS
DECnet ReGIS VT
DECUS ULTRIX XUI
DECwindows UNIBUS
DIGITAL VAX

mamaomoTM LN03 VAXcluster

The following are third-party trademarks:

Postscript is a registered trademark of Adobe Systems, Inc.

X Window System, Version 11 and its derivations (X, X11, X Version 11, X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK4733

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use DIGITAL-supported devices, such as the LN03 laser
printer and PostScript printers (PrintServer 40 or LN03R ScriptPrinter),
to produce a typeset-quality copy containing integrated graphics.

Contents

PREFACE xvii

CHAPTER 1 PROGRAMMING OVERVIEW OF XLIB 1-1

1.1 OVERVIEW OF XLIB 1-1

1.2 SAMPLE XLIB PROGRAM 1-2
1.2.1 Sample Initialization Routine 1-2
1.2.1.1 Creating Windows • 1-3
1.2.1.2 Defining Colors • 1-3
1.2.1.3 Working with the Window Manager• 1-3
1.2.1.4 Making Windows Visible on the Screen • 1-4
1.2.2 Sample Event-Handling Routine 1-4

1.3 HANDLING ERROR CONDITIONS 1-9

1.4 DEBUGGING XLIB PROGRAMS 1-10

CHAPTER2 MANAGING THE CLIENT-SERVER CONNECTION 2-1

2.1 OVERVIEW OF THE CLIENT-SERVER CONNECTION 2-1

2.2 ESTABLISHING THE CLIENT-SERVER CONNECTION 2-3

2.3 CLOSING THE CLIENT-SERVER CONNECTION 2-4

2.4 GETTING INFORMATION ABOUT THE CLIENT-SERVER
CONNECTION 2-5

2.5 MANAGING REQUESTS TO THE SERVER 2-8

v

Contents

CHAPTER 3 WORKING WITH WINDOWS

3.1 WINDOW FUNDAMENTALS
3.1.1 Window Hierarchy
3.1.2 Window Position
3.1.3 Window Visibility and Occlusion

3.2 CREATING WINDOWS
3.2.1 Using Attributes of the Parent Window
3.2.2 Defining Window Attributes

3.3 DESTROYING WINDOWS

3.4 MAPPING AND UNMAPPING WINDOWS

3.5 ASSOCIATING PROPERTIES WITH WINDOWS
3.5.1 Using Properties to Communicate with the Window Manager
3.5.1.1 Defining Properties Using the SET WM HINTS Routine • 3-23
3.5.1.2 Defining Individual Properties • 3-24
3.5.1.3 Providing Size Hints • 3-25
3.5.2 Exchanging Properties Between Clients

3.6 CHANGING WINDOW CHARACTERISTICS
3.6.1 Reconfiguring Windows
3.6.2 Effects of Reconfiguring Windows
3.6.3 Changing Stacking Order
3.6.4 Changing Window Attributes

3.7 GETTING INFORMATION ABOUT WINDOWS

CHAPTER 4 DEFINING GRAPHICS CHARACTERISTICS

4.1

4.2

vi

THE GRAPHICS CONTEXT

DEFINING MULTIPLE GRAPHICS CHARACTERISTICS IN ONE
CALL

3-1

3-1
3-2
3-4
3-5

3-6
3-6
3-7

3-14

3-14

3-16
3-22

3-27

3-28
3-28
3-32
3-35
3-36

3-38

4-1

4-1

4-2

Contents

4.3 DEFINING INDIVIDUAL GRAPHICS CHARACTERISTICS 4-18

4.4 COPYING, CHANGING, AND FREEING GRAPHICS CONTEXTS 4-21

4.5 USING GRAPHICS CHARACTERISTICS EFFICIENTLY 4-22

CHAPTERS USING COLOR 5-1

5.1 PIXELS AND COLOR MAPS 5-1

5.2 MATCHING COLOR REQUIREMENTS TO SCREEN TYPES 5-4

5.3 SHARING COLOR RESOURCES 5-6
5.3.1 Using Named VMS DECwindows Colors 5-7
5.3.2 Specifying Exact Color Values 5-8

5.4 ALLOCATING COLORS FOR EXCLUSIVE USE 5-10
5.4.1 Specifying a Color Map 5-10
5.4.2 Allocating Color Cells 5-11
5.4.3 Storing Color Values 5-19

5.5 FREEING COLOR RESOURCES 5-19

5.6 QUERYING COLOR MAP ENTRIES 5-21

CHAPTER 6 DRAWING GRAPHICS 6-1

6.1 GRAPHICS COORDINATES 6-1

6.2 USING GRAPHICS ROUTINES EFFICIENTLY 6-1

6.3 DRAWING POINTS AND LINES 6-2
6.3.1 Drawing Points 6-2
6.3.2 Drawing Lines and Line Segments 6-5

vii

Contents

6.4 DRAWING RECTANGLES AND ARCS 6-9
6.4.1 Drawing Rectangles 6-9
6.4.2 Drawing Arcs 6-14

6.5 FILLING AREAS 6-19
6.5.1 Filling Rectangles and Arcs 6-19
6.5.2 Filling a Polygon 6-20

6.6 CLEARING AND COPYING AREAS 6-23
6.6.1 Clearing Window Areas 6-24
6.6.2 Copying Areas of Windows and Pixmaps 6-25

6.7 DEFINING REGIONS 6-25
6.7.1 Creating Regions 6-25
6.7.2 Managing Regions 6-28

6.8 DEFINING CURSORS 6-33
6.8.1 Creating Cursors 6-34
6.8.2 Managing Cursors 6-40
6.8.3 Destroying Cursors 6-40

CHAPTER 7 USING PIXMAPS AND IMAGES 7-1

7.1 CREATING AND FREEING PIXMAPS 7-1

7.2 CREATING AND MANAGING BITMAPS 7-4

7.3 WORKING WITH IMAGES 7-5

CHAPTER 8 WRITING TEXT 8-1

8.1 CHARACTERS AND FONTS 8-1

8.2 SPECIFYING A FONT 8-13

viii

Contents

8.3 GETTING INFORMATION ABOUT A FONT 8-15

8.4 COMPUTING THE SIZE OF TEXT 8-17

8.5 DRAWING TEXT 8-17

CHAPTER 9 HANDLING EVENTS 9-1

9.1 EVENT PROCESSING 9-1

9.2 SELECTING EVENT TYPES 9-5
9.2.1 Using the SELECT INPUT Routine 9-5
9.2.2 Specifying Event Types When Creating a Window 9-7
9.2.3 Specifying Event Types When Changing Window Attributes 9-7

9.3 POINTER EVENTS 9-8
9.3.1 Handling Button Presses and Releases 9-8
9.3.2 Handling Pointer Motion 9-11

9.4 KEY EVENTS 9-14

9.5 WINDOW ENTRIES AND EXITS 9-15
9.5.1 Normal Window Entries and Exits 9-17
9.5.2 Pseudomotion Window Entries and Exits 9-20

9.6 INPUT FOCUS EVENTS 9-21
9.6.1 Normal Keyboard Input Focus 9-22
9.6.2 Keyboard Input Focus Changes Caused by Grabs 9-26

9.7 KEY MAP STATE EVENTS 9-26

9.8 EXPOSURE EVENTS 9-26
9.8.1 Handling Window Exposures 9-27
9.8.2 Handling Graphics Exposures 9-28

ix

Contents

9.9 WINDOW STATE NOTIFICATION EVENTS 9-33
9.9.1 Handling Window Circulation 9-34
9.9.2 Handling Changes in Window Configuration 9-35
9.9.3 Handling Window Creations 9-36
9.9.4 Handling Window Destructions 9-37
9.9.5 Handling Changes in Window Position 9-38
9.9.6 Handling Window Mappings 9-39
9.9.7 Handling Key, Keyboard, and Pointer Mappings 9-39
9.9.8 Handling Window Reparenting 9-40
9.9.9 Handling Window Unmappings 9-41
9.9.10 Handling Changes in Window Visibility 9-42

9.10 COLOR MAP STATE EVENTS 9-43

9.11 CLIENT COMMUNICATION EVENTS 9-44
9.11.1 Handling Event Notification from Other Clients 9-44
9.11.2 Handling Changes in Properties 9-45
9.11.3 Handling Changes in Selection Ownership 9-46
9.11.4 Handling Requests to Convert a Selection 9-47
9.11.5 Handling Requests to Notify of a Selection 9-48

9.12 EVENT QUEUE MANAGEMENT 9-49
9.12.1 Checking the Contents of the Event Queue 9-50
9.12.2 Returning the Next Event on the Queue 9-50
9.12.3 Selecting Events That Match User-Defined Routines 9-50
9.12.4 Selecting Events Using an Event Mask 9-51
9.12.5 Putting an Event Back on Top of the Queue 9-52
9.12.6 Sending Events to Other Clients 9-52

9.13 ERROR HANDLING 9-52
9.13.1 Enabling Synchronous Operation 9-52
9.13.2 Using the Default Error Handlers 9-53

APPENDIX A COMPILING FONTS A-1

x

Contents

APPENDIX B ROUTINES REQUIRING PROTOCOL REQUESTS B-1

APPENDIX C VMS DECWINDOWS NAMED COLORS C-1

APPENDIX D VMS DECWINDOWS FONTS D-1

INDEX

EXAMPLES
1-1 Sample Xlib Program 1-5
3-1 Creating a Simple Window 3-7
3-2 Defining Attributes When Creating Windows 3-13

3-3 Mapping and Raising Windows 3-15
3-4 Exchanging Window Properties 3-19
3-5 Reconfiguring a Window Using the CONFIGURE WINDOW

Routine 3-31

3-6 Changing Window Attributes 3-37
4-1 Defining Graphics Characteristics Using the CREATE GC

Routine 4-16

4-2 Using Individual Routines to Define Graphics
Characteristics 4-20

5-1 Using Named VMS DECwindows Colors 5-7
5-2 Specifying Exact Color Values 5-9
5-3 Allocating Colors for Exclusive Use 5-11
6-1 Drawing Multiple Points 6-3
6-2 Drawing Multiple Lines 6-6
6-3 Drawing Multiple Rectangles 6-12
6-4 Drawing Multiple Arcs 6-17
6-5 Filling a Polygon 6-21

6-6 Clearing a Window 6-24
6-7 Defining a Region Using the POLYGON REGION Routine 6-26
6-8 Defining the Intersection of Two Regions 6-30
6-9 Creating a Pixmap Cursor 6-39
7-1 Creating a Pixmap 7-2
7-2 Creating a Bitmap Data File 7-4
7-3 Creating a Pixmap from Bitmap Data 7-5

xi

Contents

8-1 Drawing Text Using the DRAW TEXT Routine 8-19
8-2 Drawing Text Using the DRAW STRING Routine 8-20
9-1 Selecting Event Types Using the CREATE WINDOW Routine 9-7
9-2 Handling Button Presses 9-11
9-3 Handling Pointer Motion 9-13
9-4 Handling Window Entries and Exits 9-19

9-5 Handling Graphics Exposures 9-31

FIGURES
1-1 Client, Xlib, and Server 1-2
2-1 Graphics Output to Instructor VAXstation 2-2
2-2 Graphics Output to Student VAXstations 2-3
3-1 Root Window and One Child 3-2
3-2 Relationship Between Second-Level Windows 3•3
3-3 Relationship Between Third-Level Windows 3-4
3-4 Coordinate System 3-5
3-5 Window Before Restacking 3-16
3-6 Restacked Window 3-17
3-7 Reconfigured Window 3-32
3-8 East Bit Gravity 3-34
3-9 Northwest Window Gravity 3-35
4-1 Bounding Box 4-11
4-2 Line Styles 4-11
4-3 Butt, Round, and Projecting Cap Styles 4-11
4-4 Cap Not Last Style 4-12
4-5 Join Styles 4-12
4-6 Fill Rules 4-13
4-7 Pixel Boundary Cases 4-14
4-8 Styles for Filling Arcs 4-14
4-9 Dashed Line Offset 4-15
4-10 Dashed Line 4-18
4-11 Line Defined Using GC Routines 4-21
5-1 Pixel Values and Planes 5-2
5-2 Color Map, Cell, and Index 5-3
5-3 Visual Types and Color Map Characteristics 5-5
5-4 Polygons That Define the Color Wheel 5-18
6-1 Circles of Points Created Using the DRAW POINTS Routine 6-5
6-2 Star Created Using the DRAW LINES Routine 6-8

xii

6-3
6-4

6-5
6-6
6-7

6-8

6-9
6-10
6-11

7-1
7-2
7-3
8-1

8-2
8-3

8-4

8-5

8-6
8-7

9-1

9-2

TABLES
2-1
2-2

2-3
2-4
3-1

3-2

3-3
3-4

3-5
3-6
3-7

3-8

3-9
3-10

3-11

Rectangle Coordinates and Dimensions

Rectangle Drawing

Rectangles Drawn Using the DRAW RECTANGLES Routine

Specifying an Arc

Multiple Arcs Drawn Using the DRAW ARCS Routine

Filled Star Created Using the FILL POLYGON Routine

Arcs Drawn Within a Region

Intersection of Two Regions

Cursor Shape and Cursor Mask

XV Bitmap Format

XV Pixmap Format

Z Format

Composition of a Character

Composition of a Back Slash

Single-Row Font

Multiple-Row Font

Indexing Single-Row Font Character Metrics

Indexing Multiple-Row Font Character Metrics

Atoms and Font Properties

Window Entries and Exits

Window Scrolling

Client-Server Connection Routines

Screen Routines

Image Format Routines

Output Buffer Routines

Set Window Attributes Data Structure Members

-

Default Values of the Set Window Attributes Data Structure _

Set Window Attributes Data Structure Flags

Predefined Atoms

Routines for Managing Properties

Atom Names of Window Manager Properties

WM Hints Data Structure Members

Class Hint Data Structure Members

Set Window Attributes Data Structure Flags

Size Hints Data Structure Members

Window Changes Data Structure Members

Contents

6-10
6-10
6-13
6-15
6-19

6-23

6-28
6-33
6-38
7-9

7-9
7-10
8-2

8-3
8-5

8-5
8-8

8-10
8-12
9-20

9-33

2-5
2-7
2-7

2-8
3-9

3-11

3-12
3-18
3-21
3-22
3-24

3-25

3-25

3-26

3-29

xiii

Contents

3-12 Stacking Values 3-30

3-13 Window Changes Data Structure Flags 3-30

3-14 Window Configuration Routines 3-31

3-15 Gravity Definitions 3-33

3-16 Routines for Changing Window Attributes 3-37

3-17 Effects of Window Attribute Changes 3-38

3-18 Window Information Routines 3-39

3-19 Window Attributes Data Structure Members 3-40

4-1 GC Data Structure Default Values 4-2

4-2 GC Values Data Structure Members 4-4

4-3 GC Values Data Structure Flags 4-15

4-4 Routines That Define Individual or Functional Groups of
Graphics Characteristics 4-19

5-1 VAXstation Visual Types 5-6

5-2 Color Data Structure Members 5-8

6-1 Point Data Structure Members 6-2

6-2 Segment Data Structure Members 6-9

6-3 Rectangle Data Structure Members 6-11

6-4 Arc Data Structure Members 6-16

6-5 Routines for Managing Regions 6-29

6-6 Predefined Xlib Cursors 6-34

6-7 Predefined VMS DECwindows Cursors 6-35

7-1 Image Data Structure Members 7-6

7-2 Routines That Change Images 7-10

8-1 Char Struct Data Structure Members 8-4

8-2 Char 2B Data Structure Members 8-6

8-3 Font Struct Data Structure Members 8-6

8-4 Font Prop Data Structure Members 8-13

8-5 Atom Names of Font Properties 8-15

8-6 Text Item Data Structure Members 8-18

8-7 Text Item 16 Data Structure Members 8-18

9-1 Event Types 9-2

9-2 Any Event Data Structure Members 9-4

9-3 Event Masks 9-5

9-4 Values Used for Grabbing Buttons 9-8

9-5 Button Event Data Structure Members 9-9

9-6 Motion Event Data Structure Members 9-12

9-7 Key Event Data Structure Members 9-15

9-8 Crossing Event Data Structure Members 9-16

9-9 Normal Window Entry and Exit Event Reporting 9-18

xiv

Contents

9-10 Focus Change Event Data Structure Members 9-22

9-11 Effect of Focus Changes: Windows on Same Screen 9-23

9-12 Focus Changes Caused by Pointer Movement 9-23

9-13 Effect of Focus Changes: Windows on Different Screens 9-24

9-14 Pointer Window and No Focus Changes 9-25

9-15 Keymap Event Data Structure Members 9-26

9-16 Expose Event Data Structure Members 9-27

9-17 Graphics Expose Event Data Structure Members 9-29

9-18 No Expose Event Data Structure Members 9-30

9-19 Circulate Event Data Structure Members 9-34

9-20 Configure Event Data Structure Members 9-35

9-21 Create Window Event Data Structure Members 9-37

9-22 Destroy Window Event Data Structure Members 9-37

9-23 Gravity Event Data Structure Members 9-38

9-24 Map Event Data Structure Members 9-39

9-25 Mapping Event Data Structure Members 9-40

9-26 Reparent Event Data Structure Members 9-41

9-27 Unmap Event Data Structure Members 9-42

9-28 Visibility Event Data Structure Members 9-42

9-29 Color Map Event Data Structure Members 9-44

9-30 Client Message Event Data Structure Members 9-45

9-31 Property Event Data Structure Members 9-46

9-32 Selection Clear Event Data Structure Members 9-47

9-33 Selection Request Event Data Structure Members 9-48

9-34 Selection Event Data Structure Members 9-49

9-35 Selecting Events Using a Predicate Procedure 9-51

9-36 Routines to Select Events Using a Mask 9-51

9-37 Error Event Data Structure Members 9-53

9-38 Event Error Codes 9-54

B-1 Routines Requiring Protocol Requests B-1

C-1 VMS DECwindows Named Colors C-1

D-1 VMS DECwindows 75 DPI Fonts D-1

D-2 VMS DECwindows 100 DPI Fonts D-8

xv

Preface

This manual describes how to program Xlib routines using the MIT
C binding. VMS DECwindows includes the MIT binding for Xlib
programmers using the C programming language and other languages
that support pointers.

The manual includes an overview of Xlib and tutorials that show how to
use Xlib routines.

Intended Audience
This manual is intended for experienced programmers who need to learn
graphics programming using Xlib routines. Readers should be familiar
with a high-level language. The manual requires minimal knowledge of
graphics programming.

Document Structure
This manual is organized as follows:

• Chapter 1 provides an overview ofXlib, a sample Xlib program, and a
guide to debugging Xlib programs.

• Chapters 2 through 9 provide tutorials that show how to use Xlib
routines and include descriptions of predefined Xlib data structures
and code examples that illustrate the concepts described.

This manual also includes the following appendixes:

• Appendix A is a guide to using the VMS DECwindows font compiler.

• Appendix B lists routines that require Xlib to issue protocol requests
to the server.

• Appendix C lists the VMS DECwindows named colors.

• Appendix D lists VMS DECwindows fonts.

Associated Documents
The following documents contain additional information:

• VMS DECwindows Guide to Application Programming-Provides an
overview of programming in the VMS DECwindows environment and
a guide to programming the XUI Toolkit

• VMS DECwindows Xlib Routines Reference Manual-Provides detailed
descriptions of each Xlib routine

• XU! Style Guide-Describes the standard XUI user interface

xvii

Preface

Conventions

xviii

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

[]

boldface text

italic text

UPPERCASE TEXT

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one or
all of the choices.

Boldface text represents the introduction of a new
term or the name of an argument, a constant, or a
flag.

Italic text represents a variable or a client-defined
routine.

Uppercase letters indicate the name of a routine or a
system service call.

1 Programming Overview of Xlib

1.1 Overview of XI i b

The VMS DECwindows programming environment includes Xlib, a library
of low-level routines that enable the VMS DECwindows programmer to
perform windowing and graphics operations.

This chapter provides the following:

• An overview of the library

• A description of error handling conditions

• Xlib debugging techniques

Additionally, the chapter includes an introductory Xlib program. The
program includes annotations that are explained more completely in the
programming descriptions in later chapters of this guide.

The VMS DECwindows programming environment enables application
programs, called clients, to interact with workstations using the
X Window System, Version 11 protocol. The program that controls
workstation devices such as screens and pointing devices is the server.
Xlib is a library of routines that enables a client to communicate with the
server to create and manage the following:

• Connections between clients and the server

• Windows

• Colors

• Graphics characteristics such as line width and line style

• Graphics

• Cursors

• Fonts and text

• Pixmaps and offscreen images

• Windowing and sending graphics between clients

• Client notification of windowing and graphics operations

Xlib processes some client requests, such as requests to measure the width
of a character string, within the Xlib library. It sends other client requests,
such as those pertaining to putting graphics on a screen or receiving device
input, to the server.

The server returns information to clients through either replies or events.
Replies and events both return information to clients; the server returns
replies synchronously and events asynchronously.

1-1

Programming Overview of Xlib
1.1 Overview of Xlib

Appendix B lists routines that cause Xlib to send requests to the server.

Figure 1-1 illustrates the relationships among client, Xlib, and server.
The client calls Xlib routines, which always reside on the client system.
If possible, Xlib processes calls internally and returns information to
the client when appropriate. When an Xlib function requires server
intervention, Xlib generates a request and sends the request to the server.

The server may or may not reside on the same system as the client
and Xlib. In either case, Xlib communicates with the server through a
transport protocol, which can be either local shared memory or DECnet.

Figure 1-1 Client, Xlib, and Server

Routine

Client r Calls ~ Xlib I.. Requests ~ Server I~
~ Xlib/Server ~"----~- Replies and~ ·

Messages Events

ZK-0003A-GE

1.2 Sample Xlib Program

1.2.1

The introductory Xlib program described in Example 1-1 illustrates the
structure of a typical client program that uses Xlib windowing and graphic
operations. The program creates two windows, draws text in one of them,
and exits if the user clicks any mouse button while the cursor is in the
window containing text.

The main loop of the program comprises two client-defined routines:
dolnitialize and doHandleEvents.

This section describes these routines and introduces fundamental concepts
about Xlib resources, windowing, and event-handling.

Sample Initialization Routine

1-2

The sample program begins by calling a client-defined routine, dolnitialize.
The routine creates the resources the client needs to perform tasks. Xlib
resources include windows, fonts, pixmaps, cursors, color maps, and data
structures that define the characteristics of graphics objects. The sample
program uses a default font, default cursor, default color map, client­
defined windows, and a client-defined data structure that specifies the
characteristics of the text displayed.

1.2.1.1

1.2.1.2

1.2.1.3

Programming Overview of Xlib
1.2 Sample Xlib Program

The dolnitialize routine makes a connection between the client and
the server. The client-server connection is called the display. After
making the connection, or opening the display, the client can get display
information from the server. For example, immediately after opening the
display, the program calls the DEFAULT SCREEN OF DISPLAY routine
to get the identifier of the default screen. The program uses the identifier
as an argument in a variety of routines it calls later.

Creating Windows
A window is an area of the screen that either receives input or both
receives input and displays graphics.

Windows in the X Window System are hierarchically related. At the base
of the hierarchy is the root window. All windows that a client creates
after opening a display are inferiors of the root window. The sample
program includes two inferiors of the root window. First generation
inferiors of a window are its children. The root window has one child,
identified in the sample as windowl. The window named window2 is an
inferior of the root window and a child of window 1.

To complete the window genealogy, all windows created before a specified
window and hierarchically related to it are its ancestors. In the sample
program, windowl has one ancestor (the root window); window2 has two
ancestors (the root window and windowl).

Defining Colors
Defining background and foreground colors is part of the process of
creating windows in the sample program. The doDefineColor routine
allocates named VMS DECwindows colors for client use in a way that
permits other clients to share the same color resource. For example,
the routine specifies the VMS DECwindows color named "light grey"
as the background color of window2. If other clients were using VMS
DECwindows color resources, they too could access the VMS DECwindows
data structure that defines "light grey." Sharing enables clients to use
color resources efficiently.

The sample program calls the doDefineColor routine again in the next
step of initialization, creating the graphics context that defines the
characteristics of a graphics object. In this case, the program defines
foreground and background colors used when writing text.

Working with the Window Manager
Most clients run on systems that have a window manager, which is an
Xlib application that controls conflicts between clients. Clients provide
the window manager with information about how it should treat client
resources, although the manager can ignore the information. The sample
program provides the window manager with information about the size
and placement of window I. Additionally, the program assigns a name that
the window manager displays in the title bar of windowl.

1-3

1.2.2

Programming Overview of Xlib
1.2 Sample Xlib Program

1.2.1.4 Making Windows Visible on the Screen
Creating windows does not make them visible on the screen. To make
its windows visible, a client must map them, painting the windows on a
specified screen. The last step of initializing the sample program is to map
windowl and window2.

Sample Event-Handling Routine

1-4

The core of an Xlib program is a loop in which the client waits for the
server to notify it of an event, which is a report of either a change in
the state of a device or the execution of a routine call by another client.
The server can report 30 types of events associated with the following
occurrences:

• Key presses and releases

• Pointer motion

• Window entries and exits

• Changes of keyboards receiving input

• Changes in keyboard configuration

• Window and graphics exposures

• Changes in window hierarchy and configuration

• Requests by other clients to change windows

• Changes in available color resources

• Communication from other clients

When an event occurs, the server sends information about the event to
Xlib. Xlib stores the information in a data structure. If the client has
specified an interest in that kind of event, Xlib puts the data structure
on an event queue. The doHandleEvents routine polls the event queue
to determine if it contains an event of interest to the client. When the
routine finds an event that is of interest to the client, the doHandleEvents
routine calls one or more other routines.

Because Xlib clients do their essential work in response to events, they are
considered event driven.

The sample program continually checks its event queue to determine if
a window has been made visible or a button has been clicked. When the
server informs it of either kind of event, the program performs its real
work, as follows.

If the event is a window exposure, the program calls the doExpose routine.
This routine checks to determine whether or not the window exposed
is window2 and the event is the first instance of the exposure. If both
conditions are true, the program writes a message into the window.

Programming Overview of Xlib
1.2 Sample Xlib Program

If the event is a button press, the program calls the doButtonPress routine.
This routine checks to make certain the cursor was in window2 when the
user clicked the mouse button. If the user clicked the mouse button when
the cursor was on the root window or window 1, the program reminds the
user to click on window2. Otherwise, the program initiates a series of
shutdown routines.

The shutdown routines unmap windowl and window2, free resources
allocated for the windows, break the connection between the sample
program and its server, and exit the system. On the VMS operating
system, clients only need to call SYS$EXIT. Exiting the system causes
the other shutdown operations to occur. The call to SYS$EXIT breaks the
connection between client and server, which frees resources allocated for
client windows, and so forth.

See Example 1-1 for the sample Xlib program.

Example 1-1 Sample Xlib Program

#include <decw$include/Xlib.h>
#include <decw$include/Xutil.h>

#define FontName "-ADOBE-NEW CENTURY SCHOOLBOOK-MEDIUM-R-NORMAL--*-140-*-*-P-*"
#define WindowName "Sample Xlib Program"

Display *dpy;
Window windowl,window2;
GC gc;
Screen *screen;
int n, state = O;
char *message[]= {

"Click here to exit",
"Click HERE to exit!"
} ;

static void doinitialize(
static int doDefineColor(

) ;
) ;

static void doCreateWindows() ;
static void doCreateGraphicsContext(
static void doLoadFont() ;
static void doExpose() ;
static void doWMHints() ;
static void doMapWindows() ;
static void doHandleEvents() ;
static void doButtonPress() ;

) ;

/********************** The main program *******************************/

static int main()
{

doinitialize();
doHandleEvents();

(continued on next page)

1-5

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1-1 (Cont.) Sample Xlib Program

/***************** doinitialize **************************/
static void doinit.ialize(
{

t» dpy = XOpenDisplay(O);
if (!dpy){

printf("Display not opened!\n");
exit(-1);

screen = XDefaultScreenOfDisplay(dpy);

~ XSynchronize(dpy,1);

doCreateWindows();

doCreateGraphicsContext();

doLoadFont();

doWMHints();

doMapWindows();

/******* doCreateWindows *********/
@)static void doCreateWindows(
{

int windowlW
int windowlH
int windowlX
int windowlY
int window2X
int window2Y

400;
300;
(XWidthOfScreen(screen)-windowlW)>>l;
(XHeightOfScreen(screen)-windowlH)>>l;
50;
75;

int window2W 300;
int window2H 150;
XSetWindowAttributes xswa;

/* Create the windowl window */

xswa.event_mask = ExposureMask I ButtonPressMask;
xswa.background_pixel = doDefineColor(l);

windowl = XCreateWindow(dpy, XRootWindowOfScreen(screen),
windowlX, windowlY, windowlW, windowlH, 0,
XDefaultDepthOfScreen(screen), InputOutput,
XDefaultVisualOfScreen(screen), CWEventMask I CWBackPixel, xswa);

/* Create the window2 */

xswa.event_mask = ExposureMask I ButtonPressMask;
xswa.background_pixel = doDefineColor(2);

window2 = XCreateWindow(dpy, windowl, window2X, window2Y, window2W,
window2H, 4, XDefaultDepthOfScreen(screen), InputOutput,
XDefaultVisualOfScreen(screen), CWEventMask I CWBackPixel, xswa);

/******** Create the graphics context *********/
.. static void doCreateGraphicsContext()
{

XGCValues xgcv;

/* Create graphics context. */

(continued on next page)

1-6

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1-1 (Cont.) Sample Xlib Program

xgcv.foreground = doDefineColor(3);
xgcv.background = doDefineColor(2);

gc = XCreateGC(dpy, window2, GCForeground GCBackground, xgcv);

/******* Load the font for text writing ******/
Ctstatic void doLoadFont(
{

Font font;

font= XLoadFont(dpy, FontName);
XSetFont(dpy, gc, font);

/******* Create color ************************/
<!tstatic int doDefineColor(n)
{

int pixel;
XColor exact color,screen color;
char *colors[] = {

"dark slate blue",
"light grey",
"firebrick"
} ;

if ((XDefaultVisualOfScreen(screen))->class == PseudoColor
I I (XDefaultVisualOfScreen (screen)) ->class == DirectColor)
if (XAllocNamedColor(dpy, XDefaultColormapOfScreen(screen),

colors[n-1), &screen_color, &exact_color))
return screen_color.pixel;

else
switch (n)

case 1:
case 2:
case 3:

return XBlackPixelOfScreen(screen); break;
return XWhitePixelOfScreen(screen); break;
return XBlackPixelOfScreen(screen); break;

/******** do WMHints *************/
fjstatic void doWMHints(
{

XSizeHints xsh;

/* Define the size and name of the window windowl */

xsh.x = 362;
xsh.y = 282;
xsh.width = 400;
xsh.height = 300;
xsh.flags = PPosition I PSize;

XSetNormalHints(dpy, windowl, &xsh);

XStoreName(dpy, windowl, WindowName);

(continued on next page)

1-7

Programming Overview of Xlib
1.2 Sample Xlib Program

Example 1-1 (Cont.) Sample Xlib Program

/******** doMapWindows ***********/
«3static void doMapWindows()
{

XMapWindow(dpy, windowl);
XMapWindow(dpy, window2);

/****************** doHandleEvents ***********************/
CDstatic void doHandleEvents(
{

XEvent event;
for (; ;) {

XNextEvent(dpy, &event);
switch (event.type) {

case Expose:
case ButtonPress:

doExpose(&event); break;
doButtonPress(&event); break;

/***** Write the message in the window *****/
static void doExpose(eventP)
XEvent *eventP;
{

/* If this is an expose event on our child window, then write the text. */

if (eventP->xexpose.window != window2) return;
XClearWindow(dpy, window2);
XDrawimageString(dpy, window2, gc, 75, 75, message[state],

strlen(message[state]));

/***************** doShutdown ***************************/
static void doButtonPress(eventP)
XEvent *eventP;
{

if (eventP->xexpose.window != window2)
state = 1;
XDrawimageString(dpy, window2, gc, 75, 75, message[state],

strlen(message[state]));
return;

/* Unmap and destroy windows */

48) XUnmapWindow(dpy, windowl);
XDestroyWindow(dpy, windowl);

1-8

XCloseDisplay(dpy);

sys$exit (1);

0 For information about connecting client and server, see Chapter 2.

8 Xlib buffers client requests and sends them to the server
asynchronously. This causes clients to receive errors after they have
occurred. When debugging a program, call the SYNCHRONIZE
routine to enable synchronous error reporting. Using the

Programming Overview of Xlib
1.2 Sample Xlib Program

SYNCHRONIZE routine has a serious negative effect on performance.
Clients should call the routine only when debugging. For more
information about debugging, see Section 1.4.

0 For information about creating windows, see Chapter 3.

8 Before drawing a graphics object on the screen, clients must define
the characteristics of the object. The doCreateGraphicsContext routine
defines the foreground and background values for writing text. For
information about defining graphics characteristics, see Chapter 4.

0 The sample program loads a VMS DECwindows font, New Century
Schoolbook Roman 14, which the program uses to write the text in
window2. For information about loading fonts, see Chapter 8.

0 VMS DECwindows includes named colors for the convenience of
clients. The sample program uses the named colors "dark slate blue,"
"light grey," and "firebrick." It shares the named colors it uses with
other clients. For information about sharing colors, whether named or
client-defined, see Chapter 5. For information about defining colors for
exclusive use, see Section 5.4. For a list of named VMS DECwindows
colors, see Appendix C.

8 For more information about window management, see Section 3.5.1.

0 Mapping windows makes them visible on the screen. For information
about window mapping, see Chapter 3

0 For more information about event handling, see Chapter 9.

8 When a client exits a VMS DECwindows program on the VMS
operating system, the series of calls to unmap and destroy windows
and close the display occurs automatically.

1.3 Handling Error Conditions
Xlib differs from most VMS programming libraries in the way it handles
error conditions. In particular, Xlib does not perform any validation of
input arguments when an Xlib routine is called.

If the input arguments are incorrect, the server usually generates an error
event when it receives the Xlib request. Unless the client has specified
an error handler, the server invokes the default Xlib error handler, which
prints out a diagnostic message and exits. For more information about the
Xlib error handler, refer to Section 9.13.2.

In some cases, Xlib signals a fatal access violation (SYS-F-ACCVIO) when
passed incorrect arguments. This occurs when arguments are missing or
are passed using the wrong addressing mode (passed by value instead of
passed by reference).

1-9

Programming Overview of Xlib
1.4 Debugging Xlib Programs

1.4 Debugging Xlib Programs

1-10

As noted in Section 1.1, Xlib handles client requests asynchronously.
Instead of dispatching requests as it receives them, Xlib buffers requests
to increase communication efficiency.

Buffering contributes to delays in error reporting. Asynchronous reporting
enables Xlib and the server to continue processing client requests despite
the occurrence of errors. However, buffering contributes to the delay
between the occurrence and client notification of an error.

As a result, programmers who want to step through routines to
locate errors must override the buffering that causes asynchronous
communication between client and server. To override buffering, use
the SYNCHRONIZE routine. Example 1-1 includes a SYNCHRONIZE
call as a debugging tool. Use the SYNC routine if you are interested in a
specific call. The SYNC routine flushes the output buffer and then waits
until all requests have been processed.

2 Managing the Client-Server Connection

A client requires one or more servers to process requests and return
keyboard and mouse input. The server can be located either on the same
system as the client or at a remote location where it is accessed across a
network.

This chapter describes the following topics related to managing the client­
server connection:

• Overview of the client-server connection

• Opening and closing a display

• Getting information about a display

• Managing sending requests to the server

2.1 Overview of the Client-Server Connection
A client using Xlib makes its first call to open a display. After opening a
display, the client can get display information from and send requests to
the server. To increase the efficiency of the client-server connection, Xlib
buffers client requests.

To understand the relationship between a display and hardware, consider
the classroom illustrated in Figure 2-1. The server and an instructor
client program are running on the instructor VAXstation, which includes a
screen, a keyboard, and a mouse. When the instructor opens a display,
Xlib establishes a connection between the instructor client program
and the server. The instructor can output graphics on the instructor
VAX.station screen.

2-1

Managing the Client-Server Connection
2.1 Overview of the Client-Server Connection

Figure 2-1 Graphics Output to Instructor VAXstation

2-2

Instructor VAXstation Student V AXstations

Server

Xlib

Client

ZK-0001 A-GE

If the instructor wants to output graphics to student screens, each student
VAXstation must be running a server, and the client program must be
connected to each server, as Figure 2-2 illustrates. Unlike the prior
example, where the client program opened one display by making an
internal connection with the server running on the VAXstation, here the
client program establishes connections with multiple servers.

Xlib also enables multiple clients to establish connections with one server.
For example, to output student work on the instructor screen, each
student must open a display with the server running on the instructor
VAXstation.

Managing the Client-Server Connection
2.1 Overview of the Client-Server Connection

Figure 2-2 Graphics Output to Student VAXstations

Instructor VAXstation Student VAXstations

Drivers

Server

Xlib

Client

Drivers
I
!

Server
I
I
I

Transport
Connection

Drivers
I
I

Server
I
I
I

ZK-0002A-GE

2.2 Establishing the Client-Server Connection
The OPEN DISPLAY routine establishes a connection between the client
and the server. The OPEN DISPLAY routine call has the following format:

display=XOpenDisplay(display_name)

In this call, display _name is a string that specifies the node on which
the server is running and the transport mechanism used to make the
connection between the client and the server. If the transport mechanism
is local shared memory, users should use the DCL command SET DISPLAY
to define which display to open and pass a null argument to the OPEN
DISPLAY routine. The null argument causes the server to search for
the definition of the display. If the transport mechanism is DECnet, the
display _name argument has the following format:

hostname: :number.screen

The elements of the argument are as follows:

2-3

Managing the Client-Server Connection
2.2 Establishing the Client-Server Connection

Elements

hostname

number

screen

Description

The host on which the server is running. The double colons indicate
that the transport mechanism is DECnet.

The number of the display on the host machine. If the client and
server are physically running in the same CPU, clients can specify a
display number of zero, which causes the transport to use a version
of DECnet that optimizes local performance.

The screen on which client input and output is handled.

See Example 1-1 for an example of defining a display.

If successful, OPEN DISPLAY returns a unique identifier of the display.

Refer to the VMS DECwindows User's Guide for more information about
specifying a display.

2.3 Closing the Client-Server Connection

2-4

Although Xlib automatically destroys windows and resources related to
a process when the process exits the server, clients should close their
connection with a server explicitly. Clients can close the connection using
the CLOSE DISPLAY routine. CLOSE DISPLAY destroys all windows
associated with the display and all resources the client has allocated. The
CLOSE DISPLAY routine call has the following format:

XCloseDisplay(display)

For an example of closing a display, see Example 1-1.

After closing a display, clients should not refer to windows, identifiers, and
other resources associated with that display.

When a display is closed automatically or by an explicit call to CLOSE
DISPLAY, the server does the following:

• Discards all input events selected by the client. For information about
input events, see Chapter 9.

• If the client has marked the keyboard, specific keys, the pointer button,
the pointer, or the server for its exclusive use, the server releases them
for use by other clients.

• Determines what happens to client resources after the display is
closed.

If the server is to destroy all client resources, it destroys them as follows:

• Examines each window in the client save set. The save set is a list of
windows that other clients are using. If a window is a member of the
save set, the server reparents the window to an ancestor not created
by the client.

• Maps the save set window, if it is unmapped. The server does this
even if the save set window was not a subwindow of a window created
by the client.

• Destroys all windows created by the client after examining each in the
client save set.

Managing the Client-Server Connection
2.3 Closing the Client-Server Connection

• Frees each nonwindow resource (font, pixmap, cursor, color map, and
graphics context) created by the client.

• Frees all colors and color map entries allocated by the client.

When the last connection to the server closes and the server is to destroy
all client resources, the server performs the following additional steps:

• Resets its state as if it had just been started

• Deletes all identifiers except predefined names of window
characteristics

• Deletes all information associated with the root window

• Resets all device maps and attributes (key click, bell volume,
acceleration) and the server access control list, a list of hosts
that can run client programs

• Restores the standard cursors and root tile, which is a pixmap
replicated to create a window background

• Restores the default font path

• Restores input focus to the root window

The server does not perform reset operations if a client requests the server
to retain its resources.

Refer to the VMS DECwindows Xlib Routines Reference Manual for
information about the SET CLOSE DOWN MODE routine.

2.4 Getting Information About the Client-Server Connection
After opening a display, clients can get information about the client-server
connection using routines listed in Table 2-1. Clients can get information
about client screens using routines listed in Table 2-2. Clients can get
information about images created on screens using routines listed and
described in Table 2-3.

These routines are useful for supplying arguments to other routines.
See the VMS DECwindows Xlib Routines Reference Manual for the
syntax of information routines. Programming examples throughout
this programming guide provide examples and descriptions of the use
of information routines.

Table 2-1 Client-Server Connection Routines

Routine Value returned

ALL PLANES All bits set on. Used as a plane argument to a
routine.

BLACK PIXEL Pixel value that yields black on the specified
screen.

(continued on next page)

2-5

Managing the Client-Server Connection
2.4 Getting Information About the Client-Server Connection

2-6

Table 2-1 (Cont.) Client-Server Connection Routines

Routine

CONNECTION NUMBER

DEFAULT COLORMAP

DEFAULT DEPTH

DEFAULT GC

DEFAULT ROOT WINDOW

DEFAULT SCREEN

DEFAULT VISUAL

DISPLAY CELLS

DISPLAY PLANES

DISPLAY STRING

IMAGE BYTE ORDER

PROTOCOL REVISION

PROTOCOL VERSION

Q LENGTH

ROOT WINDOW

SCREEN COUNT

SERVER VENDOR

VENDOR RELEASE

WHITE PIXEL

Value returned

Connection number of the specified display.

Identifier of the default color map for allocation
on the specified screen.

Depth in planes of the default root window for
the specified screen.

Default graphics context for the root window of
the specified screen.

Default root window for the specified screen.

Default screen referred to by the OPEN
DISPLAY routine.

Default visual data structure for the specified
screen.

Number of color map entries on the specified
screen.

Number of planes on the specified screen.

String passed when the display was opened.
The string takes the form O::NAME.

Byte order for images for each scanline
unit in XV format (bitmap) or for each pixel
value in Z format. If byte order is least most
significant bit first, the server returns the
constant LSBFirst. If the byte order is most
significant bit first, the server returns the
constant MSBFirst.

Minor protocol revision number that the server
is using.

Version number of the protocol associated with
the display.

Length of the event queue for the display.
There may be events that the server has not
put on the queue.

Identifier of the root window.

Number of available screens.

Identifier of the owner of the server
implementation.

Release number of the server, which is
assigned by the vendor.

Pixel value that yields white on the specified
screen.

Managing the Client-Server Connection
2.4 Getting Information About the Client-Server Connection

Table 2-2 Screen Routines

Routine

BLACK PIXEL OF SCREEN

CELLS OF SCREEN

DEFAULT COLORMAP OF SCREEN

DEFAULT DEPTH OF SCREEN

DEFAULT GC OF SCREEN

DEFAULT SCREEN OF DISPLAY

DEFAULT VISUAL OF DISPLAY

DOES BACKING STORE

DOES SAVE UNDERS

DISPLAY OF SCREEN

EVENT MASK OF SCREEN

HEIGHT OF SCREEN

HEIGHT MM OF SCREEN

MAX CMAPS OF SCREEN

MIN CMAPS OF SCREEN

PLANES OF SCREEN

ROOT WINDOW OF SCREEN

SCREEN OF DISPLAY

WHITE PIXEL OF SCREEN

WIDTH OF SCREEN

WIDTH MM OF SCREEN

Value Returned

Black pixel value of the specified screen.

Number of color map entries for the specified
screen.

Identifier of the default color map of the
specified screen.

Depth in planes of the specified screen.

Default graphics context of the specified
screen.

Default screen of display.

Default visual type of display.

Backing store is not supported in this release.

Either true or false. True indicates the server
saves the contents of windows that the client
window obscures.

Display of the screen.

Root event mask of the screen.

Height of screen in pixels.

Height of screen in millimeters.

Maximum number of color maps supported by
the screen.

Minimum number of color maps supported by
the screen.

Number of planes on the screen.

Root window on the screen.

Identifier of the specified screen.

White pixel value of the specified screen.

Width of the screen in pixels.

Width of the screen in millimeters.

Table 2-3 Image Format Routines

Routine

BITMAP BIT ORDER

BITMAP PAD

BITMAP UNIT

DISPLAY HEIGHT

Value Returned

The leftmost bit in a bitmap can be either
the least or most significant bit. This routine
returns either the constant LSBFirst or the
constant MSBFirst.

Number of bits by which scanlines are padded.

Size in bits of a bitmap unit.

Height of the screen in pixels.

(continued on next page)

2-7

Managing the Client-Server Connection
2.4 Getting Information About the Client-Server Connection

Table 2-3 (Cont.) Image Format Routines

Routine

DISPLAY HEIGHT MM

DISPLAY WIDTH

DISPLAY WIDTH MM

Value Returned

Height of the screen in millimeters.

Width of the display in pixels.

Width of the display in millimeters.

2.5 Managing Requests to the Server

2-8

Instead of sending each request to the server as the client specifies the
request, Xlib buffers requests and sends them as a block to increase
the efficiency of client-to-server communication. The routines listed in
Table 2-4 control how requests are output from the buffer.

Table 2-4 Output Buffer Routines

Routine

FLUSH

SET AFTER FUNCTION

SYNC

SYNCHRONIZE

Description

Flushes the buffer.

Specifies the function the client calls after
processing each protocol request.

Flushes the buffer and waits until the server
has received and processed all events,
including errors. Use SYNC to isolate one call
when debugging.

Causes the server to process requests in the
buffer synchronously. SYNCHRONIZE causes
Xlib to generate a return after each Xlib routine
completes. Use it to debug an entire client or
block.

Most clients do not need to call the FLUSH routine because the output
buffer is automatically flushed by calls to event management routines.
Refer to Chapter 9 for more information about event handling.

3 Working with Windows

Windows receive information from users; they display graphics, text, and
messages. Xlib enables a client to create multiple windows and define
window size, location, and visual appearance on one or more screens.

Conflicts between clients about displaying windows are handled by a
window manager, which controls the size and placement of windows and,
in some cases, window characteristics such as title bars and borders. The
window manager also keeps clients informed about what it is doing with
their windows. For example, the window manager might tell a client
that one of its windows has been resized so that the client can reformat
information displayed in the window.

This chapter describes the following topics related to windows and the
window manager:

• Window fundamentals-A discussion of window type, hierarchy,
position, and visibility

• Creating and destroying windows-How to create and destroy windows

• Working with the window manager-How to work with the window
manager to define user information concerning window management

• Mapping and unmapping windows-How to make windows visible on
the screen

• Changing window characteristics-How to change the size, position,
stacking order, and attributes of windows

• Getting information about windows-How to get information about
window hierarchies, attributes, and geometry

3.1 Window Fundamentals
A window is an area of the screen that either receives input or receives
input and displays graphics.

One type of window only receives input. Because an input-only window
does not display text or graphics, it is not visible on the screen. Clients
can use input-only windows to control cursors, manage input, and define
regions in which the pointer is used exclusively by one client.

A second type of window both receives input and displays text and
graphics.

Clients can make input-output windows visible on the screen. To make
a window visible, a client first creates the window and then maps it.
Mapping a window allows it to become visible on the screen. When more
than one window is mapped, the windows may overlap. Window hierarchy
and position on the screen determine whether or not one window hides the
contents of another window.

3-1

3.1.1

Working with Windows
3.1 Window Fundamentals

Window Hierarchy
Windows that clients create are part of a window hierarchy. The hierarchy
determines how windows are seen. At the base of the hierarchy is the root
window, which covers the entire screen when the client opens a display.
All windows created after opening a display are subwindows of the root
window.

When a client creates one or more subwindows of the root window, the root
window becomes a parent. Children of the root window become parents
when clients create subwindows of the children.

The hierarchy is structured like a stack of papers. At the bottom of the
stack is the root window. Windows that clients create after opening a
display are stacked on top of the root window, overlapping parts of it.
For example, the window named child-of-root overlaps parts of the root
window in Figure 3-1. The child-of-root window always touches the root
window. Xlib always stacks children on top of the parents.

Figure 3-1 Root Window and One Child

Child-of-root

3-2

ZK-0004A-GE

If a window has more than one child and if their borders intersect, Xlib
stacks siblings in the order the client creates them, with the last sibling on
top. For example, the second-level window named 2nd-child-of-root, which
was created last, overlaps the second-level window named 1st-child-of-root
in Figure 3-2.

Working with Windows
3.1 Window Fundamentals

Figure 3-2 Relationship Between Second-Level Windows

1st-child-of-root

2nd-child-of-root

Root

ZK-0005A-GE

Third-level windows maintain the hierarchical relationships of their
parents. The child-of-1st-child window overlaps child-of-2nd-child in
Figure 3-3.

3-3

3.1.2

Working with Windows
3.1 Window Fundamentals

Figure 3-3 Relationship Between Third-Level Windows

Child-of-1st-child ---

Child-of-2nd-child --­

Root~

Window Position

3-4

ZK-0006A-GE

Windows created before a specified window and hierarchically related to
it are ancestors of that window. For example, the root window and the
window named 1st-child-of-root are ancestors of child-of-1st-child-of-root.

Xlib coordinates define window position on a screen and place graphics
within windows. Coordinates that specify the position of a window
are relative to the origin, the upper left corner of the parent window.
Coordinates that specify the position of a graphic object within a window
are relative to the origin of the window in which the graphic object is
displayed.

Xlib measures length along the x axis from the origin to the right; it
measures length along the y axis from the origin down. Xlib specifies
coordinates in units of pixels, the smallest unit the server can display on
a screen. Figure 3-4 illustrates the Xlib coordinate system.

3.1.3

Working with Windows
3.1 Window Fundamentals

Figure 3-4 Coordinate System

Parent'
Origin

Child
Origin

Parent

Child

ZK-0007A-GE

For more information about positioning windows, see Section 3.2. For
more information about positioning graphics, see Chapter 6.

Window Visibility and Occlusion
A window is visible if one can see it on the screen. To be visible, a window
must be an input-output window, it must be mapped, its ancestors must
be mapped, and it must not be totally hidden by another window. When a
window and its ancestors are mapped, the window is considered viewable.
A viewable window that is totally hidden by another window is not visible.

Even though input-only windows are never visible, they can overlap
other windows. An input-only window that overlaps another window
is considered to occlude that window. Specifically, window A occludes
window B if both are mapped, if A is higher in the stacking order than
B, and if the rectangle defined by the outside edges of A intersects the
rectangle defined by the outside edges of B.

A viewable input-output window that overlaps another window is
considered to obscure that window. Specifically, window A obscures
window B if A is a viewable input-output window, if A is higher in the
stacking order than B, and if the rectangle defined by the outside edges of
A intersects the rectangle defined by the outside edges of B.

3-5

Working with Windows
3.2 Creating Windows

3.2 Creating Windows

3.2.1

After opening a display, clients can create windows. As noted in the
description of window fundamentals (Section 3.1), creating a window does
not make it visible on a screen. To be visible, the window must meet the
conditions described in Section 3.1.3.

Clients can either create windows that inherit most characteristics not
relating to size or shape from their parents or define all characteristics
when creating windows.

Using Attributes of the Parent Window

3-6

An attribute is a characteristic of a window not relating to size or shape,
such as the window background color. The CREATE SIMPLE WINDOW
routine creates an input-output subwindow that inherits the following
attributes from its parent:

• Method of moving the contents of a window when the parent is moved
or resized

• Instructions for saving window contents when the window obscures or
is obscured by another window

• Instructions to the server regarding information that ancestors should
know when a window change occurs

• Instructions to the window manager concerning map requests

• Color

• Cursor

For more information about these attributes, see Section 3.2.2.

If the parent is a root window, the new window created with the CREATE
SIMPLE WINDOW routine has the following attributes:

• The server discards window contents if the window is reconfigured.

• The server discards the contents of obscured portions of the window.

• The server discards the contents of any window that the new window
obscures.

• No events are specified as being of interest to the window ancestors.

• No restrictions are placed on the window manager.

• The color is identical to the parent color.

• No cursor is specified.

In addition to creating a window with attributes inherited from the parent
window, the CREATE SIMPLE WINDOW routine enables clients to define
the border and background attributes of the window and its position and
size.

3.2.2

Working with Windows
3.2 Creating Windows

Example 3-1 illustrates creating a simple window. To make the window
visible, the example includes mapping and event handling functions, which
are described in Section 3.4 and Chapter 9.

Example 3-1 Creating a Simple Window

Window winl;

static void doCreateWindows(
{

8

•
int winlW = 600;
int winlH = 600;
int winlX = (XWidthOfScreen(screen)-windowlW)>>l;
int winlY = (XHeightOfScreen(screen)-windowlH)>>l;

/* Create the window */

6) winl = XCreateSimpleWindow(dpy, XRootWindowOfScreen(screen),
winlX, winlY, winlW, winlH, 10, XBlackPixelOfScreen(screen),
XWhitePixelOfScreen(screen);

8 Assign window width and height the value of 600 (pixels) each.

8 The client specifies the position of the window using two display
information routines, WIDTH OF SCREEN and HEIGHT OF
SCREEN. The x and y coordinates define the top left outside corner of
the window borders relative to the inside of the parent border. In this
case, the parent is the root window, which does not have a border.

6) The CREATE SIMPLE WINDOW routine call has the following format:

window_id = XCreateSimpleWindow(display, parent_id,
x_coord, y_coord, width, height, border_width,
border_id, background_id)

The client specifies a black border ten pixels wide, a white background,
and a size of 600 by 600 pixels.

The window manager overrides border width and color.

CREATE SIMPLE WINDOW returns a unique identifier, winl, used in
subsequent calls related to the window.

Defining Window Attributes
To create a window whose attributes are different from the parent window,
use the CREATE WINDOW routine. The CREATE WINDOW routine
enables clients to specify the following window attributes when creating
an input-output window:

• Default contents of an input-output window

• Border of an input-output window

• Treatment of the window when it or its relative is obscured

• Treatment of the window when it or its relative is moved

3-7

Working with Windows
3.2 Creating Windows

3-8

• Information the window receives about operations associated with
other windows

• Color

• Cursor

Clients creating input-only windows can define the following attributes:

• Treatment of the window when it or its relative is moved

• Information the window receives about operations associated with
other windows

• Cursor

Specifying other attributes for an input-only window causes the server to
generate an error. Input-only windows cannot have input-output windows
as children.

Use the following method to define window attributes:

1 Assign values to the relevant members of a set window attributes data
structure.

2 Indicate the defined attribute by specifying the appropriate flag in the
value_mask argument of the CREATE WINDOW routine. If more
than one attribute is to be defined, indicate the attributes by doing a
bitwise OR on the appropriate flags.

The following illustrates the set window attributes data structure:

typedef struct {
Pixmap background_pixmap;
unsigned long background_pixel;
Pixmap border_pixmap;
unsigned long border_pixel;
int bit_gravity;
int win gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;
long event_mask;
long do_not_propagate_mask;
Bool override_redirect;
Colormap colormap;
Cursor cursor;

XSetWindowAttributes;

Table 3-1 describes the members of the data structure.

Working with Windows
3.2 Creating Windows

Table 3-1 Set Window Attributes Data Structure Members

Member Name

backgrou nd_pixmap

background__pixel

Contents

Defines the window background. The background_pixmap member can assume
one of three possible values: pixmap identifier, the constant None (default), or the
constant ParentRelative.

If the client specifies a pixmap identifier, a pixmap defines the window background.
The pixmap must have the same root and number of bits per pixel as the window,
but can be any size. For more information about creating pixmaps, see Chapter 7.

If the client specifies the constant None (default), the window has no defined
background. If the parent has no defined background, neither does the window
being created.

If the client specifies the constant ParentRelative, the background of the window
is identical to the background of its parent. In this case, the window must have
the same number of bits per pixel as the parent. If the background value of
the window is ParentRelative and the parent background is None, the window
being created has no defined background. The server does not copy the
parent background; instead, it reexamines the parent background each time
the client needs the window background. For a background that is identical to the
parent background, the origin of the pixmap used to paint the background, the
background tile, always aligns with the origin of the parent background tile origin.
Otherwise, the background tile origin is always the window origin.

If the client alters the pixmap after using it for the background, the results are
unpredictable because the server might either make a copy of the pixmap used to
draw the background, or it might refer to the pixmap directly. Free the background
pixmap when the client no longer needs to refer to it. In particular, free the pixmap
after setting it into the window but before destroying the window.

When regions of the window are exposed and the server has not retained their
contents, the server automatically tiles the regions with the background pixmap if
the client specified a pixmap identifier or the constant ParentRelative. If the client
specified the constant None, the server leaves the previous screen contents in
place, provided the window and its parent have the same number of bits per pixel.
Otherwise, the initial contents of the exposed region are undefined.

Specifying a value for the background_pixel member causes the server to override
the background_pixmap member. This is equivalent to specifying a pixmap of any
size filled with the background pixel and used to paint the window background.

(continued on next page)

3-9

Working with Windows
3.2 Creating Windows

Table 3-1 (Cont.) Set Window Attributes Data Structure Members

Member Name

border _pixmap

border_pixel

bit_gravity

win_gravity

backing_ store

backing_planes

backing_pixel

save_under

3-10

Contents

Defines the window border. The following conditions apply:

The border tile origin is always the same as the background tile origin.

The border pixmap and the window must have the same root and the same
number of bits per pixel. Otherwise, the server issues an error.
Clients can specify a pixmap of any size. Using some sizes, however,
increases performance.
The default copies the border pixmap from the parent. If the client specifies
the constant CopyFromParent, the parent border pixmap is copied. The
window must have the same number of bits per pixel as the parent, or the
server issues an error. Subsequent changes to the parent do not affect the
child.

If the client alters the pixmap after using it for the border, the results are
unpredictable because the server may either make a copy of the pixmap used to
draw the border, or it may refer to the pixmap directly.

Because output to a window is always limited or clipped to the inside of the
window, graphics operations are never affected by the window border.

Specifying a value for border_pixel causes the server to override the border_
pixmap member. This is equivalent to specifying a pixmap of any size filled with
the border pixel and used to paint the window border.

Defines how the contents of the window should be moved when the window
is resized. By default, the server does not retain window contents. For more
information about bit gravity, see Section 3.6.

Defines how the server should reposition the newly created window when its
parent window is resized. By default, the server does not move the newly created
window. For more information about window gravity, see Section 3.6.

Provides a hint to the server about how the client wants it to manage obscured
portions of the window. In this release, clients must maintain window contents.

Indicates (with bits set to one) which bit planes of the window hold dynamic data
that must be preserved if the window obscures or is obscured by another window.
In this release, clients must maintain data to be preserved.

Defines what values to use in planes not specified by the backing__planes member.
The server is free to save only specified bit planes and to regenerate the
remaining planes with the specified pixel value. Bits that extend beyond the
number per pixel of the window are ignored. In this release, clients must maintain
values.

Setting the save_under member to true informs the server that the client would
like the contents of the screen saved when the window obscures them. Saving
the contents of obscured portions of the screen is not guaranteed.

(continued on next page)

Working with Windows
3.2 Creating Windows

Table 3-1 (Cont.) Set Window Attributes Data Structure Members

Member Name

event_ mask

do_not_propagate_mask

override _redirect

color map

cursor

Contents

Defines which types of events associated with the window the server should report
to the client. For more information about defining event types, see Chapter 9.
Following are events about which the client can state an interest:

Event Type

Button

Color

Window

Exposure

Input focus

Keyboard and keys

Pointer

Property

Structure

Description

Motion, button press and release, exclusive input

Change in color map

Entry into and exit from a window

Exposure of a previously obscured window

Change in window that receives keyboard input

Change in keyboard state, and key press or release

Motion

Change in window characteristics

Notification and control of requests from clients

Defines which kinds of events should not be propagated to ancestors. For more
information about managing events, see Chapter 9.

Specifies whether calls to map and configure the window should override a request
by another client to redirect those calls. For more information about redirecting
calls, see Chapter 9. Typically, this is used to inform a window manager not to
tamper with the window, for example when the client is creating and mapping a
menu.

Specifies the color map, if any, that best reflects the colors of the window. The
color map must have the same visual type as the window. If it does not, the server
issues an error. For more information about the color map and visual types, see
Chapter 5.

Specifying a value for the cursor member causes the server to use a particular
cursor when the pointer is in the window.

Table 3-2 lists default values for the set window attributes data
structure.

Table 3-2 Default Values of the Set Window Attributes Data Structure

Member

background_pixmap

background_pixel

border _pixmap

border_pixel

bit_gravity

win_gravity

Default Value

None

Undefined

Copied from the parent window

Undefined

Window contents not retained

Window not moved

(continued on next page)

3-11

Working with Windows
3.2 Creating Windows

3-12

Table 3-2 (Cont.) Default Values of the Set Window Attributes Data
Structure

Member

backing_ store

backing_planes

backing_pixel

save_under

event_ mask

do _not_propagate_mask

override_redirect

colormap

cursor

Default Value

Window contents not retained

All 1s

0

False

Empty set

Empty set

False

Copied from parent

None

Xlib assigns a flag for each member of the set window attributes data
structure to facilitate referring to the members, as listed in Table 3-3.

Table 3-3 Set Window Attributes Data Structure Flags

Flag Name Set Window Attributes Member

CWBackPixmap background_pixmap

CWBackPixel background_pixel

CWBorderPixmap border _pixmap

CWBorderPixel border_pixel

CWBitGravity bit_gravity

CWWinGravity win_gravity

CWBackingStore backing_ store

CWBackingPlanes backing_planes

CWBackingPixel backing_pixel

CWOverrideRedirect override_redirect

CWSaveUnder save_under

CWEventMask event_ mask

CWDontPropagate do _not_propagate

CWColormap colormap

CWCursor cursor

Example 3-2 illustrates how clients can define window attributes while
creating input-output windows with the CREATE WINDOW routine.
The program creates a parent window and two children windows. The
hierarchy of the subwindows is determined by the order in which the
program creates them. In this case, subwinl is superior to subwin2, which
is created last.

Working with Windows
3.2 Creating Windows

Example 3-2 Defining Attributes When Creating Windows

Window window, subwindowl,subwindow2;
int n;

static void doCreateWindows(
{

int windowW 600;
int windowH 600;
int windowX (WidthOfScreen(screen)-windowW)>>l;
int windowY (HeightOfScreen(screen)-windowH)>>l;
int subwindowlX 150;
int subwindowlY 100;
int subwindowlW 300;
int subwindowlH 400;
int subwindow2X 275;
int subwindow2Y 125;
int subwindow2W 50;
int subwindow2H 150;

0 XSetWindowAttributes xswa;

/* Create the window window */

~ xswa.event_mask = ExposureMask I ButtonPressMask;
xswa.background_pixel = doDefineColor(l);

~ window= XCreateWindow(dpy, XRootWindowOfScreen(screen),
windowX, windowY, windowW, windowH, 0,
XDefaultDepthOfScreen(screen), InputOutput,
XDefaultVisualOfScreen(screen), CWEventMask I CWBackPixel, &xswa);

/* Create the window subwindowl */

xswa.background_pixel = doDefineColor(3);

subwindowl = XCreateWindow(dpy, window, subwindowlX, subwindowlY, subwindowlW,
subwindowlH, 4, XDefaultDepthOfScreen(screen), InputOutput,
XDefaultVisualOfScreen(screen), CWEventMask I CWBackPixel, &xswa);

/* Create the window subwindow2 */

xswa.background_pixel = doDefineColor(3);

subwindow2 = XCreateWindow(dpy, window, subwindow2X, subwindow2Y, subwindow2W,
subwindow2H, 4, XDefaultDepthOfScreen(screen), InputOutput,
XDefaultVisualOfScreen(screen), CWEventMask I CWBackPixel, &xswa);

static int doDefineColor(n)
{

0 Allocate storage for a set window attributes data structure used to
define window attributes.

3-13

Working with Windows
3.2 Creating Windows

8 Set the attributes of the parent window. The client indicates an
interest in window exposure and button press events. For more
information about events, see Chapter 9.

The client defines the window background by calling the client-defined
doDefineColor routine. For more information about defining colors, see
Chapter 5.

@) The CREATE WINDOW routine call has the following format:

window id return=XCreateWindow(display, parent id,
- -x coord, y coord, width, height, border width,

depth, class, visual_struc, attributes_;ask,
attributes)

The depth of a window is its number of bits per pixel. The call passes
a display information routine to indicate that the client wants the
parent window depth to be identical to the display depth.

The window class can be either input only or input-output, specified by
the following constants:

• InputOnly

• InputOutput

If the window is the same class as the parent, pass the constant
CopyFromParent.

The visual type indicates how the window displays color values. For
more information about visual types, see Chapter 5.

3.3 Destroying Windows
When a client no longer needs a window, the client should destroy it using
either the DESTROY WINDOW or the DESTROY SUBWINDOWS routine.
DESTROY WINDOW destroys a specified window and all its subwindows.
DESTROY SUBWINDOWS destroys all subwindows of a specified window
in bottom to top stacking order.

Destroying a window frees all storage allocated for that window. If the
window is mapped to the screen, the server notifies applications using the
window that it has been destroyed.

3.4 Mapping and Unmapping Windows

3-14

After creating a window, the client can map it to a screen using the MAP
WINDOW or MAP SUBWINDOWS routine. Mapping generally makes a
window visible at the location the client specified when creating it. Part or
all of the window is not visible when the following conditions occur:

• One or more windows higher in the stacking order obscures it

• One or more window ancestors is not mapped

• The new window extends beyond the boundary of its parent

Working with Windows
3.4 Mapping and Unmapping Windows

MAP WINDOW maps a window. If the window is an inferior, and one
or more of its ancestors has not been mapped, the server considers the
window to be mapped after the call, even though the window is not visible
on the screen. The window becomes visible when its ancestors are mapped.

To map all subwindows of a specified window in top to bottom order, use
MAP SUBWINDOWS. Using the MAP SUBWINDOWS routine to map
several windows may be more efficient than calling the MAP WINDOW
routine to map each window. The MAP SUBWINDOWS routine enables
the server to map all of the windows at one time instead of mapping a
single window with the MAP WINDOW routine.

To ensure that the window is completely visible, use the MAP RAISED
routine. MAP RAISED reorders the stack with the window on top and
then maps the window. Example 3-3 illustrates how a window is mapped
and raised to the top of the stack.

Example 3-3 Mapping and Raising Windows

Window window,subwindowl,subwindow2;

/* Create windows in the following order: window, subwindow2, subwindowl */

static void doMapWindows()
{

XMapWindow(dpy, window);
0 XMapWindow(dpy, subwindow2);
8 XMapRaised(dpy, subwindowl);

0 In this example, the client created subwindowl after subwindow2,
putting sub window 1 at the top of the stack.

Consequently, whether subwindow2 were to be mapped before or after
subwindowl, subwindowl would obscure subwindow2.

The effect is illustrated in Figure 3-5.

8 Mapping and raising subwindow2 moves it to the top of the stack. It
is now visible, as Figure 3-6 illustrates.

When the client no longer needs a window mapped to the screen, call
UNMAP WINDOW. If the window is a parent, its children are no longer
visible after the call, although they are still mapped. The children become
visible when the parent is mapped again.

To unmap all subwindows of a specified window, use UNMAP
SUBWINDOWS. UNMAP SUBWINDOWS results in an UNMAP
WINDOW call on all subwindows of the parent, from bottom to top
stacking order.

3-15

Working with Windows
3.5 Associating Properties with Windows

Figure 3-5 Window Before Restacking

subwindow1 subwindow2

ZK-0082A-GE

3.5 Associating Properties with Windows

3-16

Xlib enables clients to associate data with a window. This data is
considered a property of the window. For example, a client could store
text as a window property. Although a property must be data of only one
type, it can be stored in 8-bit, 16-bit, and 32-bit formats.

Xlib uses atoms to uniquely identify properties. An atom is a string
paired with an identifier. For example, a client could use the atom
XA_ WM_ICON_NAME to name a window icon stored for later use. The
atom XA_ WM_ICON_NAME pairs the string XA_ WM_ICON_NAME
with a value, 37, that uniquely identifies a property.

Working with Windows
3.5 Associating Properties with Windows

Figure 3-6 Restacked Window

subwindow1 subwindow2

ZK-0080A-GE

In DECW$INCLUDE:XATOMS.H, VMS DECwindows includes predefined
atoms such as XA_ WM_ICON_NAME for commonly used properties.
Table 3-4 lists by function all predefined atoms except those used to
identify font properties and atoms used to communicate with the window
manager. See Table 3-6 for a list of atoms related to window management.
See Chapter 8 for a list of atoms related to fonts.

3-17

Working with Windows
3.5 Associating Properties with Windows

3-18

Table 3-4 Predefined Atoms

For Global Selection

XA_PRIMARY

For Cut Buffers

XA_CUT_BUFFERO

XA_CUT_BUFFER2

XA_CUT_BUFFER4

XA_CUT_BUFFER6

For Color Maps

XA_RGB_COLOR_MAP

XA_RGB_BLUE_MAP

XA_RGB_GREEN_MAP

XA_RGB_DEFAULT_MAP

For Resources

XA_RESOURCE_MANAGER

XA_ATOM

XA_CARDINAL

XA_CURSOR

XA_FONT

XA_PIXMAP

XA_RECTANGLE

XA_ VISUALID

XA_SECONDARY

XA_CUT_BUFFER1

XA_CUT_BUFFER3

XA_CUT_BUFFER5

XA_CUT_BUFFER7

XA_RGB_BEST _MAP

XA_RGB_RED_MAP

XA_RGB_GRAY _MAP

XA_ARC

XA_BITMAP

XA_ COLORMAP

XA_DRAWABLE

XA_INTEGER

XA_POINT

XA_STRING

XA_WINDOW

In addition to providing predefined atoms, Xlib enables clients to create
atom names of their own. To create an atom name, use the INTERN
ATOM routine, as in the following example:

Atom atom_id;
char *name = "MY_ATOM";
Bool if _exists;

atom id= XInternAtom(dpy, name, if_exists);

The routine returns an identifier associated with the string MY_ATOM.
Xlib also returns the value of false to if _exists if the atom does not exist in
the atom table.

Working with Windows
3.5 Associating Properties with Windows

To get the name of an atom, use the GET ATOM NAME routine, as in the
following example:

char name;
Atom atom id = 39;

name= XGetAtomName(dpy, atom_id);

The routine returns a string associated with the atom identifier.

Xlib enables clients to change, obtain, update, and interchange properties.
Example 3-4 illustrates exchanging properties between two subwindows.
The example uses the CHANGE PROPERTY routine to set a property on
the parent window and the GET PROPERTY routine to get the data from
the parent window.

Example 3-4 Exchanging Window Properties

#define windowWidth 600
#define windowHeight 600
#define subwindowWidth 300
#define subwindowHeight 150
#define true 1

static void doCreateWindows(

int winW windowWidth;
int winH windowHeight;
int winX 100;
int winY 100;
int subwindowlX 150;
int subwindowlY 100;
int subwindow2X 150;
int subwindow2Y 350;
XSetWindowAttributes xswa;

/* Create the win window */

xswa.event_mask = ExposureMask I ButtonPressMask I PropertyChangeMask;
xswa.background_pixel = doDefineColor(l);

win= XCreateWindow(dpy, RootWindowOfScreen(screen),
winX, winY, winW, winH, 0,
DefaultDepthOfScreen(screen), InputOutput,
DefaultVisualOfScreen(screen), CWEventMask CWBackPixel, &xswa);

/* Create the subwindows */
xswa.event_mask = ExposureMaskl ButtonPressMask;
xswa.background_pixel = doDefineColor(2);

(continued on next page)

3-19

Working with Windows
3.5 Associating Properties with Windows

Example 3-4 (Cont.) Exchanging Window Properties

subwinl = XCreateWindow(dpy, win, subwindowlX, subwindowlY, subwindowWidth,
subwindowHeight, 0, DefaultDepthOfScreen(screen), InputOutput,
DefaultVisualOfScreen(screen), CWEventMask I CWBackPixel, &xswa);

subwin2 = XCreateWindow(dpy, win, subwindow2X, subwindow2Y, subwindowWidth,
subwindowHeight, 0, DefaultDepthOfScreen(screen), InputOutput,
DefaultVisualOfScreen(screen), CWEventMask I CWBackPixel, &xswa);

/****************** doHandleEvents ***********************/
static void doHandleEvents(
{

XEvent event;

for (; ;) {
XNextEvent(dpy, &event);
switch (event.type)

case Expose:
case ButtonPress:
case PropertyNotify:

doExpose(&event); break;
doButtonPress(&event);break;
doPropertyNotify(&event);break;

/***** Handle button presses *******/
static void doButtonPress(eventP)
XEvent *eventP;
{

char *property_data = "You clicked MBl";

if (eventP->xbutton.button == Button2) sys$exit(l);
if (eventP->xbutton.window == subwinl && eventP->xbutton.button

.. XChangeProperty(dpy, win, XA_CUT_BUFFERO, XA_STRING, 16,
PropModeReplace, property_data, 15);

return;

/***** Get the property and draw text into the subwindow *******/
static void doPropertyNotify(eventP)
XEvent *eventP;
{

long offset = O;
long length = 1000;
Atom type returned;
int format returned;
unsigned long nurn items returned, bytes_remaining;
unsigned char *property=returned;

if (eventP->xproperty.atorn == XA_CUT_BUFFERO) {

fl XGetWindowProperty(dpy, win, XA_CUT_BUFFERO, offset, length,
true, XA STRING, &type returned, &format returned,
&num_items_returned, &bytes_remaining, &property_returned);

Buttonl)

(continued on next page)

3-20

Working with Windows
3.5 Associating Properties with Windows

Example 3-4 (Cont.) Exchanging Window Properties

@) XDrawString(dpy, subwin2, gc, 75, 75, property_returned,

return;

num_items_returned);

8 When the user clicks MBl in subwindow subwinl, the client calls
the CHANGE PROPERTY routine. CHANGE PROPERTY causes
the server to change the property identified by the atom XA_CUT_
BUFFERO to the value specified by property_data. The property is
associated with the parent window, win.

When changing properties, clients can specify how the server
should treat the property. If the client specifies the constant
PropModeReplace, the server discards the previous property. If
the client specifies the constant PropModePrepend, the server
inserts the new data at the beginning of the existing property data. If
the client specifies the constant PropModeAppend, the server inserts
the new data at the end of the existing property data.

Changing the property causes the server to send a property notify
event to win. For information about event handling, see Chapter 9.

8 After checking to ensure that the changed property is the one to
obtain, the client calls the GET WINDOW PROPERTY routine.

@) After getting the string data from the parent window, the client uses
it to write text in subwin2. For information about writing text, see
Chapter 8.

In addition to the GET WINDOW PROPERTY routine, Xlib includes the
property-management routines described in Table 3-5.

Table 3-5 Routines for Managing Properties

Routine

LIST PROPERTIES

ROTATE WINDOW
PROPERTIES

DELETE PROPERTY

Description

Returns a list of properties defined for a specified
window.

Rotates the properties of a specified window and
generates a property notify event. For more information
about property notify events, see Chapter 9.

Deletes a specified property.

3-21

3.5.1

Working with Windows
3.5 Associating Properties with Windows

Using Properties to Communicate with the Window Manager
Xlib provides predefined atoms to enable clients to communicate hints to
the window manager about the following:

• Window names

• Icon names

• Pixmaps used to define window icons

• Commands used to start the application

• Position and size of windows in their startup state

• Initial state of windows

• Input that windows accept

• Names used to retrieve application resources

Table 3-6 describes the atom names, data types, and formats of these
properties.

Table 3-6 Atom Names of Window Manager Properties

Atom

XA_WM_NAME

XA_WM_ICON_NAME

XA_WM_NORMAL_HINTS

XA_WM_ZOOM_HINTS

XA_WM_HINTS

XA_WM_COMMAND

XA_WM_ICON_SIZE

XA_WM_CLASS

XA_WM_ TRANSIENT _FOR

3-22

Data Type Format Description

STRING 8 Application name

STRING 8 Icon name

WM_SIZE_HINTS 32 Size hints for a window in its normal
state

WM_SIZE_H INTS 32 Size hints for a zoomed window

WM_HINTS 32 Hints about keyboard input, initial
state, icon pixmap, icon window, icon
position, and icon mask

STRING 8 Command used to start the client

WM_ICON_SIZE 32 Specifies the icon size supported by
the window manager

STRING 32 Allows window manager to obtain
the application resources from the
resource database

WINDOW 32 Indicates that a window, such as a
dialog box, is transient

Xlib provides the following methods for using the properties described in
Table 3-6 to communicate with the window manager:

• Defining properties with the SET WM HINTS routine-SET WM
HINTS uses the WM hints data structure to define hints about
keyboard input, initial state of the window, icon pixmap, icon window,
icon position, icon mask, and window group.

3.5.1.1

Working with Windows
3.5 Associating Properties with Windows

• Using convenience routines to communicate with the window
manager-Xlib includes routines that enable clients to communicate
individual hints about window names, window icon names, and
window classes.

• Providing and obtaining hints about the size and position of windows­
Xlib routines communicate information about the size and position of
windows.

• Changing the values of a property-Xlib includes a routine to change
the value of an existing property.

Note that it is not guaranteed that the window manager will apply window
manager hints.

This section describes how to use properties to communicate with the
window manager.

Defining Properties Using the SET WM HINTS Routine
Use the SET WM HINTS routine to provide the window manager with
hints about keyboard input, initial window state, icon pixmap, icon
window, icon position, icon mask, and window group. A window manager
can use the window group property to treat a set of windows as a group.
For example, if a client manipulates multiple children of the root window,
SET WM HINTS enables the client to provide enough information so that
a window manager can make all windows into icons, rather than just one
window.

Xlib provides a WM hints data structure to enable clients to specify these
hints easily. The following illustrates the WM hints data structure:

typedef struct {
long flags;
Bool input;
int initial_state;
Pixmap icon_pixmap;
Window icon_window;
int icon x, icon y;
Pixmap icon_mask7
XID window group;

XWMHints; -

Table 3-7 defines the members of the data structure.

3-23

Working with Windows
3.5 Associating Properties with Windows

Table 3-7 WM Hints Data Structure Members

Member Name

flags

input

initial_ state

icon_pixmap

icon_window

icon_x

icon_y

icon_mask

window_group

3.5.1.2

3-24

Contents

Specifies the members of the data structure that are defined.

Indicates whether or not the client relies on the window manager to get keyboard
input.

Defines how the window should appear in its initial configuration. Possible initial
states are as follows:

Constant
Name Description

DontCareState Client is not interested in the initial state

NormalState Initial state used most often

ZoomState Window starts zoomed

lconicState Window starts as an icon

lnactiveState Window is seldom used

Identifies the pixmap used to create the window icon.

Specifies the window to be used as an icon.

Specifies the initial x-coordinate of the icon position.

Specifies the initial y-coordinate of the icon position.

Specifies the pixels of the icon pixmap used to create the icon.

Specifies that a window belongs to a group of other windows.

Defining Individual Properties
Xlib includes routines to enable clients to define individual properties
for communicating with the window manager about window names, icon
names, and window classes.

To define a window name, use the STORE NAME routine. The sample
program in Chapter 1 uses the STORE NAME routine to define the name
of its parent window, as follows:

XStoreName(dpy, windowl, "A Sample Xlib Program");

To get the name of a window, use the FETCH NAME routine. The routine
either returns the name of the specified window or sets the value of the
XA_ WM_NAME property to null.

The SET ICON NAME and GET ICON NAME routines define and get the
name of a window icon.

To define and get the class of a specified window, use the SET CLASS
HINT and GET CLASS HINT routines. The routines refer to the class
hint data structure, which has the following form:

typedef struct {
char *res_name;
char *res_class;

} XClassHint;

3.5.1.3

Working with Windows
3.5 Associating Properties with Windows

Table 3-8 defines the members of the data structure.

Table 3-8 Class Hint Data Structure Members

Member
Name

res_name

res_class

Contents

Defines the name of the window. The name defined in this data
structure may differ from the name defined by the XA_WM_NAME
property. The XA_WM_NAME property specifies what should be
displayed in the title bar. Consequently, it may contain a temporary
name, as in the name of a file a client currently has in a buffer.
In contrast to XA_WM_NAME, the res_name member defines
the formal window name that clients should use when retrieving
resources from the resource database.

Defines the class of the window.

At times, clients may need to indicate to the window manager that a
top-level window is really only a transient window. For instance, a client
may communicate to the window manager that the window is a dialog box
mapped on behalf of another window. To communciate this, a client calls
the SET TRANSIENT FOR HINT routine. The routine sets the
XA_ WM_TRANSIENT_FOR property of the transient window and
associates the transient window with a main window. To obtain the
XA_WM_TRANSIENT_FOR property for a specified window, call the GET
TRANSIENT FOR HINT routine.

To define the command that invokes an application in a specified window,
use the SET COMMAND routine.

Providing Size Hints
Xlib provides routines to communicate with the window manager about the
size and position of windows in their normal and zoomed startup states.
Use the following method to specify the size and position of a window in
its usual startup state:

1 Assign values to the relevant members of the size hints data structure,
including the flags member, which specifies the members of the data
structure that are defined. Table 3-9 lists the flags.

2 Call the SET NORMAL HINTS routine

Table 3-9 Set Window Attributes Data Structure Flags

Flag Name

USPosition

USSize

PPosition

PSize

Size Hints Member

User-specified position of the window

User-specified size of the window

Client-specified position

Client-specified size

(continued on next page)

3-25

Working with Windows
3.5 Associating Properties with Windows

Table 3-9 (Cont.) Set Window Attributes Data Structure Flags

Flag Name

PMinSize

PMaxSize

PResizelnc

PAspect

PAii Hints

Size Hints Member

Client-specified minimum size of the window

Client-specified maximum size of the window

Client-specified increments for resizing the window

Client-specified minimum and maximum aspect ratios

The bitwise OR of PPosition, PSize, PMinSize, PMaxSize,
PResizelnc, and PAspect

The following illustrates the size hints data structure:

typedef struct {
long flags;
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {

int x;
int y;

min_aspect, max_aspect;

XSizeHints;

Table 3-10 describes its contents.

Table 3-10 Size Hints Data Structure Members

Member Name

flags

x

y

width

height

min_ width

min_height

max_ width

max_height

width_inc

height_inc

min_aspect_x

3-26

Contents

Defines which members the client is assigning values to.

Specifies the x-coordinate that defines window position.

Specifies the y-coordinate that defines window position.

Defines the width of the window.

Defines the height of the window.

Specifies the minimum useful width of the window.

Specifies the minimum useful height of the window.

Specifies the maximum useful width of the window.

Specifies the maximum useful height of the window.

Defines the increments by which the width of the window can be resized.

Defines the increments by which the height of the window can be resized.

With the min_aspect y member, specifies the minimum aspect ratio of the window.

(continued on next page)

3.5.2

Working with Windows
3.5 Associating Properties with Windows

Table 3-10 (Cont.) Size Hints Data Structure Members

Member Name

min_aspect_y

max_aspect_x

max_aspect_y

Contents

With the min_aspect x member, specifies the minimum aspect ratio of the window.

With the max_aspect y member, specifies the maximum aspect ratio of the window.

With the max_aspect_x member, specifies the maximum aspect ratio of the window.

Setting the minimum and maximum aspects indicates the preferred range of the size of a
window. An aspect is expressed in terms of a ratio between x and y.

For example, if the minimum aspect of x is 1 and y is 2, and the maximum aspect of x is
2 and y is 5, then the minimum window size is a ratio of 1 /2, and the maximum is a ratio
of 2/5. In this case, a window could have a width of 300 pixels and a height of 600 pixels
minimally, and maximally a width of 600 pixels and a height of 1500 pixels.

The following illustrates using the size hints data structure to set the
normal window manager hints for a window:

static void doWMHints(
{

XSizeHints xsh;

/* Define the size and name of the window windowl */

xsh.x = 362;
xsh.y = 282;
xsh.width = 400;
xsh.height = 300;
xsh.flags = PPosition I PSize;

XSetNormalHints(dpy, windowl, &xsh);

The example sets hints about the size and location of window windowl.

Exchanging Properties Between Clients
Xlib provides routines that enable clients to exchange properties. The
properties, which are global to the server, are called selections. Text cut
from one window and pasted into another window exemplifies the global
exchange of properties. The text cut in window A is a property owned by
client A. Ownership of the property transfers to client B, who then pastes
the text into window B.

Properties are exchanged between clients by a series of calls to routines
that manage the selected text. When a user drags the pointer cursor,
client A responds by calling the SET SELECTION OWNER routine. SET
SELECTION OWNER identifies client A as the owner of the selected
text. The routine also identifies the window of the selection, associates
an atom with the text, and puts a timestamp on the selection. The atom,
XA_PRIMARY, names the selection. The timestamp enables any clients
competing for the selection to determine selection ownership.

3-27

Working with Windows
3.5 Associating Properties with Windows

Clients can determine the owner of a selection by calling the GET
SELECTION OWNER routine.

When a user decides to paste the selected text in window B, client B, who
owns window B, sends client A a selection request. The request identifies
the window requesting the cut text and the format in which the client
would like the property transferred.

In response to the request, client A first checks to ensure that the time of
the request corresponds to the time in which client A owns the selection.
If the time coincides, and if the selection is in the data type required by
client B, client A notifies client B that the text is stored and available. The
text is then moved to client B.

After receiving the text, client B informs client A that client B is the
current owner of the selection.

In addition to requesting a selection in its current format, clients can
call the CONVERT SELECTION routine. CONVERT SELECTION
asks the owner of a selection to convert it to a particular data type. If
conversion is possible, the client converting the selection notifies the client
requesting the conversion that the selection is available. The property is
then exchanged as previously described.

Clients request and notify other clients of selections by using events. For
information about using events to request, convert, and notify clients of
selections, see Chapter 9. For style guidelines about using selections, see
the XUI Style Guide.

3.6 Changing Window Characteristics

3.6.1

Xlib provides routines that enable clients to change window position, size,
border width, stacking order, and attributes.

This section describes how to use Xlib routines to do the following:

• Change multiple window characteristics in one call

• Change position, size, or border width

• Change stacking order

• Change window attributes

Reconfiguring Windows

3-28

Xlib enables clients either to change window characteristics using one
call or to use individual routines to reposition, resize, or to change border
width.

The CONFIGURE WINDOW routine enables clients to change window
position, size, border width, and place in the hierarchy. To change these
window characteristics in one call, use the CONFIGURE WINDOW
routine, as follows:

1 Set values of relevant members of a window changes data structure.

Working with Windows
3.6 Changing Window Characteristics

2 Indicate what is to be reconfigured by specifying the appropriate flag
in the CONFIGURE WINDOW value_mask argument.

The window changes data structure enables clients to specify one or more
values for reconfiguring a window. The following illustrates the window
changes data structure:

typedef struct
int x, y;
int width, height;
int border width;
Window sibling;
int stack_mode;

XWindowChanges;

Table 3-11 describes the members of the data structure.

Table 3-11 Window Changes Data Structure Members

Member
Name Contents

x Defines, with the y member, the new location of the window relative
to the origin of its parent.

y

width

height

border_width

sibling

stack_mode

Defines, with the x member, the new location of the window relative
to the origin of its parent.

Defines the new width of the window, excluding the border.

Defines the new height of the window, excluding the border.

Specifies the new window border in pixels.

Specifies the sibling window for stacking order.

Defines how the window is restacked. Table 3-12 lists constants and
definitions for restacking windows.

The client can change the hierarchical position of a window in relation to
all windows in the stack or to a specified sibling. If the client changes the
size, position, and stacking order of the window by calling CONFIGURE
WINDOW, the server restacks the window based on its final, not initial,
size and position. Table 3-12 lists constants and definitions for restacking
windows.

3-29

Working with Windows
3.6 Changing Window Characteristics

Table 3-12 Stacking Values

Constants

Above

Below

Top If

Bottom If

Opposite

3-30

Relative to All Windows

Top of stack.

Bottom of stack.

If any sibling obscures a window, the server
places the obscured window on top of the
stack.

If a window obscures any sibling, the server
places the obscuring window at the bottom
of the stack.

If any sibling obscures a window, the server
places the obscured window on top of the
stack. If a window obscures any window,
the server places the obscuring window at
the bottom of the stack.

Relative to Siblings

Just above the sibling.

Just below the sibling.

If the specified sibling obscures a window, the
server places the obscured window at the top of
the stack.

If a window obscures the specified sibling, the
server places the obscuring window at the bottom
of the stack.

If the specified sibling obscures a window, the
server places the obscuring window on top of the
stack. If a window obscures the specified sibling,
the server places the obscuring window on the
bottom of the stack.

Xlib assigns a symbol to the flag associated with each member of the data
structure (Table 3-13).

Table 3-13 Window Changes Data Structure Flags

Flag Name Window Changes Member

cwx x

CWY y

CWWidth width

CWHeight height

CWBorderWidth border_width

CWSibling sibling

CWStackMode stack_mode

Example 3-5 illustrates using CONFIGURE WINDOW to change the
position, size, and stacking order of a window when the user presses a
button.

Working with Windows
3.6 Changing Window Characteristics

Example 3-5 Reconfiguring a Window Using the CONFIGURE WINDOW Routine
~

/* This program changes the position, size, and stacking
order of subwindowl */

static void doButtonPress(eventP)
XEvent *eventP
{

XWindowChanges xwc;

• xwc.x = 200;
xwc.y = 350;
xwc.width = 200;
xwc.height = 50;
xwc.sibling = subwindow2;
xwc.stack_mode =Above;

@ XConfigureWindow(dpy, subwindowl, CWX I CWY I CWWidth I CWHeight I CWSibling
I CWStackMode, &xwc);

8 Assign values to relevant members of the window changes data
structure. Because the client identifies a sibling (subwindowl), it
must also choose a mode for stacking operations.

8 The call to reconfigure subwindowl. The CONFIGURE WINDOW
routine call has the following format:

XConfigureWindow(display, window_id, change_mask, values)

Create a mask by performing a bitwise OR operation on relevant flags
that indicate which members of WINDOW CHANGES the client has
defined.

Figure 3-7 illustrates how the windows look after being reconfigured.

Table 3-14 lists routines to change individual window characteristics.

Table 3-14 Window Configuration Routines

Routine

MOVE WINDOW

RESIZE WINDOW

MOVE RESIZE WINDOW

SET WINDOW BORDER
WIDTH

Description

Moves a window without changing its size.

Changes the size of a window without moving it. The
upper left window coordinate does not change after
resizing.

Moves and changes the size of a window.

Changes the border width of a window.

3-31

3.6.2

Working with Windows
3.6 Changing Window Characteristics

Figure 3-7 Reconfigured Window

subwindow1 subwindow2

ZK-0083A-GE

Effects of Reconfiguring Windows

3-32

It is important to know how reconfiguring windows affects graphics and
text drawn in them by the client. (See Chapter 6 for a description of
working with graphics and Chapter 8 for a description of writing text.)
When a client resizes a window, window contents are either moved or lost,
depending on the bit gravity of the window. Bit gravity indicates that a
designated region of the window should be relocated when the window is
resized. Resizing also causes the server to resize children of the changed
window.

Working with Windows
3.6 Changing Window Characteristics

To control how the server moves children when a parent is resized, set the
window gravity attribute. Table 3-15 lists choices for retaining window
contents and controlling how the server relocates children.

Table 3-15 Gravity Definitions

Constant Name

ForgetGravity

NorthWestGravity

North Gravity

North EastGravity

WestGravity

CenterGravity

EastGravity

SouthWestGravity

SouthGravity

South EastGravity

StaticGravity

UnmapGravity

Movement of Window Contents and
Subwindows

The server always discards window contents and
tiles the window with its selected background. If
the client has not specified a background, existing
screen contents remain the same.

Not moved.

Moved to the right half the window width.

Moved to the right the distance of the window
width.

Moved down half the window height.

Moved to the right half the window width and down
half the window height.

Moved to the right the distance of the window width
and down half the window height.

Moved down the distance of the window height.

Moved to the right half the window width and down
the distance of the window height.

Moved to the right the distance of the window width
and down the distance of the window height.

Contents or origin not moved relative to the origin
of the root window. Static gravity only takes effect
with a change in window width and height.

Window should not be moved; the child should be
unmapped when the parent is resized.

The client can change the hierarchical position of a window in relation
to either all windows in the stack or to a specified sibling. If the client
changes the size, position, and stacking order of the window by calling
CONFIGURE WINDOW, the server restacks the window based on its final,
not initial, size and position. Table 3-12 lists constants and definitions for
restacking windows.

3-33

Working with Windows
3.6 Changing Window Characteristics

3-34

Figure 3-8 illustrates how the server moves the contents of a reconfigured
window when the bit gravity is set to the constant EastGravity.

Figure 3-9 illustrates how the server moves a child window if its parent is
resized and its window gravity is set to the constant NorthwestGravity.

Figure 3-8 East Bit Gravity

Original Window

t
r h

+ 2h .-- w---.

l

Resized Window

w
h/2

ZK-0072A-GE

3.6.3

Working with Windows
3.6 Changing Window Characteristics

Figure 3-9 Northwest Window Gravity

Original Parent and Child Windows

l
h

l
Child Parent

Resized Parent Window
2w ~~~~~~~~~-.-

Child

ZK-0073A-GE

Changing Stacking Order
Xlib provides routines that alter the window stacking order in the
following ways:

• A specified window moves to either the top or the bottom of the stack.

3-35

3.6.4

Working with Windows
3.6 Changing Window Characteristics

• The lowest mapped child obscured by a sibling moves to the top of the
stack.

• The highest mapped child that obscures a sibling moves to the bottom
of the stack.

Use the RAISE WINDOW and LOWER WINDOW routines to move a
specified window to either the top or the bottom of the stack, respectively.

To raise the lowest mapped child of an obscured window to the top of the
stack, call CIRCULATE SUBWINDOWS UP. To lower the highest mapped
child that obscures another child, call CIRCULATE SUBWINDOWS
DOWN. The CIRCULATE SUBWINDOWS routine enables the client to
perform these operations by specifying either the constant RaiseLowest
or the constant LowerHighest.

To change the order of the window stack, use RESTACK WINDOW, which
changes the window stack to a specified order. Reordered windows must
have a common parent. If the first window the client specifies has other
unspecified siblings, its order relative to those siblings remains unchanged.

Changing Window Attributes

3-36

Xlib provides routines that enable clients to change the following:

• Default contents of an input-output window

• Border of an input-output window

• Treatment of the window when it or its relative is obscured

• Treatment of the window when it or its relative is moved

• Information the window receives about operations associated with
other windows

• Color

• Cursor

Section 3.2.2 includes descriptions of window attributes and their
relationship to the set window attributes data structure.

This section describes how to change any attribute using the CHANGE
WINDOW ATTRIBUTES routine. In addition to CHANGE WINDOW
ATTRIBUTES, Xlib includes routines that enable clients to change
background and border attributes. Table 3-16 lists these routines and
their functions.

Working with Windows
3.6 Changing Window Characteristics

Table 3-16 Routines for Changing Window Attributes

Routine

SET WINDOW BACKGROUND

Description

Sets the background pixel

Sets the background pixmap SET WINDOW BACKGROUND PIXMAP

SET WINDOW BORDER Sets the window border to a specified
pixel

SET WINDOW BORDER PIXMAP Sets the window border to a specified
pixmap

To change any window attribute, use CHANGE WINDOW ATTRIBUTES
as follows:

1 Assign a value to the relevant member of a set window attributes data
structure.

2 Indicate the attribute to change by specifying the appropriate flag
in the CHANGE WINDOW ATTRIBUTES value_mask argument.
To define more than one attribute, indicate the attributes by doing a
bitwise OR on the appropriate flags.

See Table 3-3 for symbols Xlib assigns to each member to facilitate
referring to the attributes.

Example 3-6 illustrates using CHANGE WINDOW ATTRIBUTES to
redefine the characteristics of a window.

Example 3-6 Changing Window Attributes

XSetWindowAttributes xswa;

8 xswa.background_pixel = BlackPixelOfScreen(dpy);
xswa.border_pixel = WhitePixelOfScreen(dpy);

8 XChangeWindowAttributes(dpy, win, CWBorderPixel I CWBackPixel, &xswa);

8 Assign new values to a set window attributes data structure.

8 Call CHANGE WINDOW ATTRIBUTES to change the window
attributes. The CHANGE WINDOWS ATTRIBUTES routine has
the following format:

XChangeWindowAttributes(display, window id,
attributes_mask, attributes) -

Specify the attributes to change with a bitwise inclusive OR of the
relevant symbols listed in Table 3-3. The values argument passes the
address of a set window attributes data structure.

3-37

Working with Windows
3.6 Changing Window Characteristics

Table 3-1 7 lists changes in attributes and their effects.

Table 3-17 Effects of Window Attribute Changes

Attribute Changed

Background

Border

Bit and window gravity

Backing store

Backing planes

Backing pixels

Save under

Event mask

Do not propagate mask

Color map

Cursor

Effects

Window contents are unchanged.

If the window is a root window, specifying the
constant None or ParentRelative restores the default
background pixmap.

The server does not repaint the background
automatically.

Setting the border causes the border to be repainted.

If a background change causes a change in the
border tile origin, the server repaints the border.

Specifying the constant CopyFromParent on a root
window restores the default border pixmap.

A change in window gravity has no effect until the
window is resized.

In this release, backing store is not supported.

In this release, backing planes is not supported.

In this release, backing pixels is not supported.

If the window is mapped, changing the value of save
under may have no immediate effect.

See Chapter 9.

See Chapter 9.

See Chapter 5.

Specifying the constant None on a root window
restores the default cursor.

3.7 Getting Information About Windows

3-38

Using Xlib information routines, clients can get information about the
parent, children, and number of children in a window tree; window
geometry; the root window in which the pointer is currently visible; and
window attributes.

Table 3-18 lists and describes Xlib routines that return information about
windows.

Working with Windows
3. 7 Getting Information About Windows

Table 3-18 Window Information Routines

Routine

QUERY TREE

GET GEOMETRY

QUERY POINTER

GET WINDOW ATTRIBUTES

Description

Returns information about the window tree

Returns information about the root window
identifier, coordinates, width and height, border
width, and depth

Returns the root window the pointer is
currently on and the pointer coordinates
relative to the root window origin

Returns information from the window attributes
data structure

To get information about window attributes, use the GET WINDOW
ATTRIBUTES routine. The client receives requested information in the
window attributes data structure. The following illustrates the window
attributes data structure:

typedef struct
int x, y;
int width, height;
int border_width;
int depth;
Visual *visual;
Window root;
int class;
int bit_gravity;
int win gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;
Colormap colormap;
Bool map_installed;
int map_state;
long all_event_masks;
long your_event_mask;
long do_not_propagate_mask;
Bool override redirect;

XWindowAttributes;

Table 3-19 describes the members of the window attributes data structure.

3-39

Working with Windows
3. 7 Getting Information About Windows

Table 3-19 Window Attributes Data Structure Members

Member Name

x

y

width

height

border_width

depth

visual

root

class

bit_gravity

win_gravity

backing_ store

backing_planes

backing_pixel

save_under

color map

map_installed

3-40

Contents

Specifies, with the y member, the coordinates of the upper left corner of the window
relative to its parent.

Specifies, with the x member, the coordinates of the upper left corner of the window
relative to its parent.

Specifies the width of the window, excluding the window border, in pixels.

Specifies the height of the window, excluding the window border, in pixels.

Specifies the width of the window border in pixels.

Specifies the bits per pixel of the window.

A pointer to a visual data structure associated with the window. The visual data
structure specifies how displays should treat color resources. For more information, see
Section 3.5.1.

Identifies the screen with which the window is associated.

Specifies whether the window accepts input and output, or input only.

Specifies how pixels should be moved when the window is resized.

Specifies how the window should be repositioned when its parent is resized.

Indicates whether or not the server should maintain a record of portions of a window
that are obscured when the window is mapped. In this release, clients must maintain
contents of obscured windows.

Indicates (with bits set to 1) which bit planes of the window hold dynamic data that must
be preserved in backing stores and during save under operations. In this release, clients
must maintain data to be preserved.

Defines what values to use in planes not specified by the backing_planes member. In
this release, clients must maintain values to be saved.

Setting the save_under member to true informs the server that the client would like the
contents of the screen saved when the window obscures them. Saving the contents of
obscured portions of the screen is not guaranteed.

Specifies the color map, if any, that best reflects the colors of the window. The color
map must have the same visual type as the window. If it does not, an error occurs. For
more information about color maps, see Chapter 5.

If set to true, the map_installed member indicates that the color map is currently installed
and that the window is being displayed in its correct colors.

(continued on next page)

Working with Windows
3. 7 Getting Information About Windows

Table 3-19 (Cont.) Window Attributes Data Structure Members

Member Name

map_state

all_events_mask

your_event_mask

do_not_propagate

override_redirect

screen

Contents

Indicates whether the window is mapped and viewable. Clients can specify the following
constants:

Constant
Name

ls Unmapped

lsUnviewable

ls Viewable

Description

Indicates that the window is not mapped

Indicates that the window is mapped, but that one of its ancestors is
unmapped, causing the window to be unviewable

Indicates that the window is mapped and viewable

Indicates the set of events in which all applications have an interest. The all_events_
mask member is the inclusive OR of event masks set for the window. For more
information about event masks, see Chapter 9.

Indicates the events about which the querying application is interested in receiving
notice.

Defines which events should not be propagated to the window's ancestors when no
application has the event type selected in the window.

Specifies whether requests to map and configure the window should override a request
by another client to redirect those calls (see Chapter 9). Typically, this mask, which
informs the window manager not to tamper with the window, should be used only on
subwindows such as menus.

Specifies the screen on which the window is mapped.

3-41

4 Defining Graphics Characteristics

After opening a display and creating a window, clients can draw lines
and shapes, create cursors, and draw text. Creating a graphics object is
a two-step process. Clients first define the characteristics of the graphics
object and then create it. For example, before creating a line, a client first
defines line width and style. After defining the characteristics, the client
creates the line with the specified width and style.

This chapter describes how to define the graphics characteristics prior to
creating them, including the following topics:

• The graphics context-A description of the graphics characteristics a
client can define and the GC values data structure used to define them

• Defining graphics characteristics-How to define graphics
characteristics using the CREATE GC routine

• Copying, changing, and freeing attributes-How to copy, change, and
undefine graphics characteristics

• Defining graphics characteristics efficiently-How to work efficiently
with several sets of graphics characteristics

Chapter 6 describes how to create graphics objects. Chapter 8 describes
how to work with text.

4.1 The Graphics Context
The characteristics of a graphics object make up its graphics context. As
with window characteristics, Xlib provides a data structure and routine
to enable clients to define multiple graphics characteristics easily. By
setting values in the GC values data structure and calling the CREATE
GC routine, clients can define all characteristics relevant to a graphics
object.

Xlib also provides routines that enable clients to define individual or
functional groups of graphics characteristics.

Xlib always records the defined values in a GC data structure, which is
reserved for the use of Xlib and the server only. This occurs when clients
define graphic characteristics using either the CREATE GC routine or one
of the individual routines. Table 4-1 lists the default values of the GC
data structure.

4-1

Defining Graphics Characteristics
4.1 The Graphics Context

Table 4-1 GC Data Structure Default Values

Member

Function

Plane mask

Foreground

Background

Line width

Line style

Cap style

Join style

Fill style

Fill rule

Arc mode

Tile

Stipple

Tile or stipple x origin

Tile or stipple y origin

Font

Subwindow mode

Graphics exposures

Clip x origin

Clip y origin

Clip mask

Dash offset

Dashes

Default Value

GXcopy

All ones

0

1

0

Solid

Butt

Mitre

Solid

Even odd

Pie slice

Pixmap of unspecified size filled with foreground pixel

Pixmap of unspecified size filled with ones

0

0

Varies with implementation

Clip by children

True

0

0

None

0

4 (the list [4,4])

4.2 Defining Multiple Graphics Characteristics in One Call

4-2

Xlib enables clients to define multiple characteristics of a graphics object
in one call. To define multiple characteristics, use the CREATE GC routine
as follows:

1 Assign values to the relevant members of the GC values data
structure.

2 Indicate the attributes to define by specifying the appropriate flag in
the value_mask argument of the routine. To define more than one
attribute, do a bitwise OR on the appropriate attribute flags.

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

The following illustrates the GC values data structure:

typedef struct {
int function;
unsigned long plane_mask;
unsigned long foreground;
unsigned long background;
int line_width;
int line_style;
int cap style;
int join_style;
int fill_style;
int f ill_rule;
int arc mode;
Pixmap tile;
Pixmap stipple;
int ts x origin;
int ts=y=origin;
Font font;
int subwindow_mode;
Bool graphics exposures;
int clip_x_orTgin;
int clip y origin;
Pixmap clip_mask;
int dash_off set;
char dashes;

XGCValues;

Table 4-2 describes the members of the data structure.

4-3

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 GC Values Data Structure Members

Member Name

function

plane_mask

foreground

background

4-4

Contents

Defines how the server computes pixel values when the client updates a section of
the screen. The following lists available functions:

Constant Name Description

GXclear 0

GXand src AND dst

GXandReverse src AND NOT dst

GXcopy src

GXandlnverted (NOT src) AND dst

GXnoop dst

GXxor src XOR dst

GXor src OR dst

GXnor (NOT src) AND NOT dst

GXequiv (NOT src) XOR dst

GXinvert NOT dst

GXorReverse src OR NOT dst

GXcopylnverted NOT src

GXorlnverted (NOT src) OR dst

GXnand (NOT src) OR NOT dst

GXset

The screen the client is updating is the destination (dst). The graphics context the
client uses to update the screen is the source (src). The function member specifies
how the server computes new destination bits from the source (src) and the old bits
of the destination (dst).

The most common logical function is the default specified by the constant GXcopy,
which only uses relevant values in the specified GC values data structure to update
the screen.

Specifies the planes on which the server performs the bitwise computation of pixels,
defined by the function member.

Because a monochrome display has only one plane, the plane mask value is given in
the least significant bit of the longword. As planes are added to the display hardware,
they are defined in the more significant bits of the mask. The display routine ALL
PLANES specifies that all planes of the display are referred to simultaneously.

The server does not perform range checking on the plane mask. It truncates values
to the appropriate number of bits.

Specifies an index to a color map entry for foreground color.

Specifies an index to a color map entry for background color.

(continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

line_width

Contents

Defines the width of a line in pixels.

The server draws a line with a width of one or more pixels centered on the path
described in the graphics request and contained within a bounding box. Unless
otherwise specified by the join or cap style, the bounding box of a line with endpoints
[xl, yl], [x2, y2] and width w > o is a rectangle with vertices at the following real
coordinates:

[xl-w*sn/2, yl+w*cs/2], [xl+w*sn/2, yl-w*cs/2]
[x2-w*sn/2, y2+w*cs/2], [x2+w*sn/2, y2-w*cs/2]

In this example, sn is the sine of the angle of the line. The symbol cs is the cosine of
the angle of the line. A pixel is part of the line and is drawn if the center of the pixel
is fully inside the bounding box. If the center of the pixel is exactly on the bounding
box, the pixel is part of the line if and only if the interior is immediately to its right
(x increasing direction). Pixels with centers on a horizontal edge are a special case
and are part of the line if and only if the interior is immediately below the bounding
box (y increasing direction). See Figure 4-1.

Lines with zero line width are one pixel wide. The server draws them using an
unspecified, device-dependent algorithm that imposes the following two constraints:

If the server draws the line unclipped from [xl, yl] to [x2, y2], and if the server
draws a second line from [xl + dx, yl + dy] to [x2 + dx, y2 + dy], then point
[x, y] is touched by drawing the first line if and only if the point [x + dx, y + dy]
is touched by drawing the second line.

The effective set of points that compose a line cannot be affected by clipping.
That is, a point is touched in a clipped line if and only if the point lies inside
the clipping region and if the point would be touched by the line when drawn
unclipped.

A line more than one pixel wide drawn from [xl, yl] to [x2, y2] always draws the
same pixels as a line of the same width drawn from [x2, y2] to [xl, yl], excluding
cap and join styles.

In general, drawing a line whose line width is zero is substantially faster than drawing
a line whose line width is one or more. However, because the drawing algorithms for
thin lines is different than those for wide lines, thin lines may not look as good when
mixed with wide lines. If clients want precise and uniform results across all displays,
they should always use a line width of one or more. Note, however, that specifying a
line width of greater than zero decreases performance substantially.

(continued on next page)

4-5

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

line_style

cap_style

4-6

Contents

Defines which sections of the line the server draws. The following lists available line
styles and the constants that specify them:

Constant
Name

LineSolid

Line Double Dash

LineOffOn Dash

Description

The full path of the line is drawn.

The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes, with cap butt style used where
even and odd dashes meet.

Only the even dashes are drawn. The cap_style member applies to
all internal ends of dashes. Specifying the constant CapNotLast is
equivalent to specifying CapButt.

Figure 4-2 illustrates the styles.

Defines how the server draws the endpoints of a path. The following lists available
cap styles and the constants that specify them:

Constant
Name Description

CapButt Square at the endpoint (perpendicular to the slope of the line) with
no projection beyond the endpoint.

CapNotLast Equivalent to CapButt, except that the final endpoint is not drawn if
the line width is zero or one.

CapRound A circular arc with the diameter equal to the line width, centered on
the endpoint (equivalent to the value specified by CapButt for a line
width of zero or one).

CapProjecting Square at the end, but the path continues beyond the endpoint for
a distance equal to half the width of the line (equivalent to the value
specified by the constant CapButt for a line width of zero or one).

Figure 4-3 illustrates the butt, round, and projecting cap styles. Figure 4-4 illustrates
the style specified by the constant CapNotLast.

(continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

join_style

Contents

If a line has coincident endpoints (x1 = x2, yl = y2), the cap style is applied to both
endpoints with the following results:

Constant Line
Name Width

CapNotlast Thin

Cap Butt Thin

Cap Butt Wide

Cap Round Thin

Cap Round Wide

Cap Projecting Thin

Cap Projecting Wide

Description

Device dependent, but the desired effect is that nothing
is drawn

Device dependent, but the desired effect is that a single
pixel is drawn

Nothing is drawn

Device dependent, but the desired effect is that a single
pixel is drawn

The closed path is a circle, centered at the endpoint, with
the diameter equal to the line width

Device dependent, but the desired effect is that a single
pixel is drawn

The closed path is a square, aligned with the coordinate
axes, centered at the endpoint with sides equal to the
line width

Defines how the server draws corners for wide lines. Available join styles and the
constants that specify them are as follows:

Constant
Name

Join Mitre

Join Round

Join Bevel

Description

The outer edges of the two lines extend to meet at an angle

A circular arc with diameter equal to the line width, centered at the
join point

Cap butt endpoint style, with the triangular notch filled

Figure 4-5 illustrates the styles.

For a line with coincident endpoints (xl = x2, yl = y2), when the join style is applied
at one or both endpoints, the effect is as if the line were removed from the overall
path. However, if the total path consists of (or is reduced to) a single point joined
with itself, the effect is the same as if the cap style were applied to both endpoints.

(continued on next page)

4-7

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

fill_ style

fill_rule

4-8

Contents

Specifies the contents of the source for line, text, and fill operations. The following
lists available fill styles for text and fill requests (DRAW TEXT, DRAW TEXT 16, FILL
RECTANGLE, FILL POLYGON, FILL ARC). It also lists available styles applicable
to solid lines and even dashes resulting from line requests (LINE, SEGMENTS,
RECTANGLE, ARC):

Constant Name

FillSolid

FillTiled

FillOpaqueStippled

Fi II Stippled

Description

Foreground

Tile

A tile with the same width and height as stipple but with
background everywhere stipple has a zero and with
foreground everywhere stipple has a one

Foreground masked by stipple

The following lists available styles applicable to odd dashes resulting from line
requests:

Constant Name

FillSolid

FillTiled

FillOpaqueStippled

Fill Stippled

Description

Background

Tile

A tile with the same width and height as stipple but with
background everywhere stipple has a zero and with
foreground everywhere stipple has a one

Background masked by stipple

Defines what pixels the server draws along a path when a polygon is filled (see
Section 6.5.2). The two available choices are EvenOddRule and WindingRule. The
EvenOddRule constant defines a point to be inside a polygon if an infinite ray with
the point as origin crosses the path an odd number of times. If the point meets these
conditions, the server draws a corresponding pixel.

{continued on next page)

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

arc_mode

tile

stipple

Contents

The WindingRule constant defines a point to be inside the polygon if an infinite
ray with the pixel as origin crosses an unequal number of clockwise-directed and
counterclockwise-directed path segments. A clockwise-directed path segment is one
that crosses the ray from left to right as observed from the pixel. A counterclockwise­
directed segment is one that crosses the ray from right to left as observed from that
point. When a directed line segment coincides with a ray, choose a different ray
that is not coincident with a segment. If the point meets these conditions, the server
draws a corresponding pixel.

For both even odd rule and winding rule, a point is infinitely small, and the path is an
infinitely thin line. A pixel is inside the polygon if the center point of the pixel is inside,
and the center point is not on the boundary. If the center point is on the boundary,
the pixel is inside if and only if the polygon interior is immediately to its right
(x increasing direction). Pixels with centers along a horizontal edge are a special
case and are inside if and only if the polygon interior is immediately below
(y increasing direction).

Figure 4-6 illustrates fill rules. Figure 4-7 illustrates rules for filling a pixel when it
falls on a boundary.

Controls how the server fills an arc. The available choices are the values specified
by the ArcPieSlice and ArcChord constants. Figure 4-8 illustrates the two modes.

Specifies the pixmap the server uses for tiling operations. The pixmap must have the
same root and depth as the graphics context, or an error occurs. Clients can use any
size pixmap for tiling, although some sizes produce a faster response than others. To
determine the optimum size, use the QUERY BEST SIZE routine.

Storing a pixmap in a graphics context might or might not result in a copy being
made. If the pixmap is used later as the destination for a graphics request, the
change might or might not be reflected in the graphics context. If the pixmap is used
simultaneously in a graphics request both as a destination and as a tile, the results
are not defined.

Specifies the pixmap the server uses for stipple operations. The pixmap must have
the same root as the graphics context and a depth of one, or an error occurs. For
stipple operations where the fill style is specified as the FillStippled constant but not
the FillOpaqueStipple constant, the stipple pattern is tiled in a single plane and acts
as an additional clip mask. Perform a bitwise AND operation with the clip mask.
Clients can use any size pixmap for stipple operations, although some sizes produce
a faster response than others. To determine the optimum size, use the QUERY
BEST SIZE routine.

Storing a pixmap in a graphics context might or might not result in a copy being
made. If the pixmap is used later as the destination for a graphics request, the
change might or might not be reflected in the graphics context. If the pixmap is
used simultaneously in a graphics request both as a destination and as a stipple, the
results are not defined.

(continued on next page)

4-9

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-2 (Cont.) GC Values Data Structure Members

Member Name

ts_x_origin

ts_y_origin

font

subwindow_mode

graphic_ exposures

clip_x_origin

clip_y_origin

clip_mask

dash_ offset

dashes

4-10

Contents

Defines the origin for tiling and stipple operations. Origins are relative to the origin of
whatever window or pixmap is specified in the graphics request.

Defines the origin for tiling and stipple operations. Origins are relative to the origin of
whatever window or pixmap is specified in the graphics request.

Specifies the font that the server uses for text operations.

Specifies whether or not inferior windows clip superior windows. The constant
ClipByChildren specifies that all viewable input-output children clip both source
and destination windows. The constant lncludelnferiors specifies that inferiors clip
neither source nor destination windows. This results in drawing through subwindow
boundaries. The semantics of using the constant on a window with a depth of one
and with mapped inferiors of differing depth is undefined by the core protocol.

Specifies whether or not the server informs the client when the contents of a window
region are lost.

Defines the x-coordinate of the clip origin. The clip origin specifies the point within
the clip region that is aligned with the drawable origin.

Defines the y-coordinate of the clip origin. The clip origin specifies the point within
the clip region that is aligned with the drawable origin.

Identifies the pixmap the server uses to restrict write operations to the destination
drawable. The pixmap must have a depth of one and have the same root as the
graphics context. The clip mask clips only the destination drawable, not the source
drawable. Where a value of one appears in the mask, the corresponding pixel in
the destination drawable is drawn; where a value of zero occurs, no pixel is drawn.
Any pixel within the destination drawable that is not represented within the clip mask
pixmap is not drawn. When a client specifies the value of clip mask as None, the
server draws all pixels.

Specifies the pixel within the dash length sequence, defined by the dashes member,
to start drawing a dashed line. For example, a dash offset of zero starts a dashed
line as the beginning of the dash line sequence. A dash offset of five starts the line
at the fifth pixel of the line sequence. Figure 4-9 illustrates dashed offsets.

Specifies the length, in number of pixels, of each dash. The value of this member
must be nonzero or an error occurs.

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-1 Bounding Box

r Endpoint [X1, Y1]
D ,_....,D
D ••••• D
D ••••• D
D ••••• D
D ••••• D
D ••••• D D ••••• D
D D

'--Endpoint [X2 , Y 2]

Figure 4-2 Line Styles

D Pixel

I Bounding
Box

ZK-0011A-GE

Solid ,. . ···=.· : .. ·:···-:··· .. : ·.·.

Double Dash

OnOffDash -

ZK-001 OA-GE

Figure 4-3 Butt, Round, and Projecting Cap Styles

Original Line [without cap]

ri
t_JCap

Cap Butt Style

~Cap Cap Round Style

LJ Arc Diameter = Line Width

Cap Projecting Style

ZK-0012A-GE

4-11

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-4 Cap Not Last Style

••••••••• Original Line [without cap]

•••••••• Cap Not Last Style

ZK-0165A-GE

Figure 4-5 Join Styles

Miter

Round

Bevel

ZK-0013A-GE

4-12

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-6 Fill Rules

Even Odd

Winding

Direction
of Path

Segment

Direction of Ray

Direction of Ray

ZK-0071A-GE

4-13

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-7 Pixel Boundary Cases

Pixels are
Inside

~Po-ly~g·~n~~~~~~~~~-

ZK-0075A-GE

Figure 4-8 Styles for Filling Arcs

Chord

Pie Slice

ZK-0008A-GE

4-14

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-9 Dashed Line Offset

Dash List: 5, 10,3,5, 10,3

Dash Offset = O

5

Dash Offset = 4

10

10 3

3 5

5 10 3

10 3

ZK-0009A-GE

Xlib assigns a flag for each member of the GC values data structure to
facilitate referring to members (Table 4-3).

Table 4-3 GC Values Data Structure Flags

Flag Name

GCFunction

GCPlaneMask

GCForeground

GCBackground

GCLineWidth

GCLineStyle

GCCapStyle

GCJoinStyle

GCFillStyle

GCFillRule

GCTile

GCStipple

GCTileStipXOrigin

GCTileStip YOrigin

GCFont

GCSubwindowMode

GCGraphicsExposures

GCClipXOrigin

GC Values Member

function

plane_mask

foreground

background

line_ width

line_style

cap_style

join_ style

fill_ style

fill_rule

tile

stipple

ts_x_origin

ts_y_origin

font

subwindow_mode

graphics_ exposures

clip_x_origin

(continued on next page)

4-15

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Table 4-3 (Cont.) GC Values Data Structure Flags

Flag Name GC Values Member

GCClip YOrigin clip_y_origin

GCXClipMask clip_mask

GCDashOffset dash_offset

GCDashList dash_list

GCArcMode arc_mode

Example 4-1 illustrates how a client can define graphics context values
using the CREATE GC routine. Figure 4-10 shows the resulting output.

Example 4-1 Defining Graphics Characteristics Using the CREATE GC Routine

/* Create window win on
* display dpy, defined as follows:

* Position: x = 100,y = 100
* Width = 600
* Height = 600
* gc refers to the graphics context

0Gc gc;

static void doCreateGraphicsContext(
{

~ XGCValues xgcv;

/* Create graphics context. */

@) xgcv.foreground = doDefineColor(3);
xgcv.background = doDefineColor(4);
xgcv.line width = 4;
xgcv.line=style = LineDoubleDash;
xgcv.dash_offset = O;
xgcv.dashes = 25;

C» gc = XCreateGC(dpy, win, GCForeground I GCBackground

*
*
*

*
*
*/

I GCLineWidth I GCLineStyle I GCDashOffset I GCDashList, &xgcv);

static void doButtonPress(eventP)
XEvent *eventP;
{

xl = yl = 100;
x2 = y2 = 550;

CB XDrawLine(dpy, win, gc, xl, yl, x2, y2);
}

4-16

0 Assign storage for a graphics context (GC) data structure. The scope
of gc is global to enable windowing and graphics routines in other
modules to refer to it.

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

8 Once the client defines characteristics with the GC values data
structure, Xlib does not have to refer to the data structure again.

@) Specify the foreground, background, line width, line style, dash offset,
and dashes for line drawing.

The dashed line is four pixels wide. A dash offset value of zero starts
dashes at the beginning of the line. The dashes value, referred to by
GCDashList, specifies that dashes be 25 pixels long.

8 The CREATE GC routine loads values into a GC data structure. The
CREATE GC routine has the following format:

gc_id = XCreateGC (display, drawable_id, gc_mask,
values_struc)

Indicate defined attributes with a bitwise OR that uses symbols listed
in Table 4-3.

0 See Chapter 6 for information about drawing lines.

4-17

Defining Graphics Characteristics
4.2 Defining Multiple Graphics Characteristics in One Call

Figure 4-10 Dashed Line

mJ Dashed Line mJlmJ

'
Click MB 1 to draw a dashed line.

Click MB3 to exit.

' ' ' ' ' ' '
ZK-0104A-GE

4.3 Defining Individual Graphics Characteristics

4-18

Xlib offers routines that enable clients to define individual or functional
groups of graphics characteristics. Table 4-4 lists and briefly describes
these routines. For more information about the components, see
Section 4.1.

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

Table 4-4 Routines That Define Individual or Functional Groups of
Graphics Characteristics

Routine Description

Foreground, Background, Plane Mask, and Function Routines

SET STATE

SET FOREGROUND

SET BACKGROUND

SET PLANE MASK

SET FUNCTION

Line Attribute Routines

SET LINE ATTRIBUTES

SET LINE DASHES

Fill Style and Rule Routines

SET FILL STYLE

SET FILL RULE

Fill Tile and Stipple Routines

QUERY BEST SIZE

QUERY BEST STIPPLE

QUERY BEST TILE

SET STIPPLE

SET TILE

SET TS ORIGIN

Font Routine

SET FONT

Sets the foreground, background, plane mask,
and function

Sets the foreground

Sets the background

Sets the plane mask

Sets the function

Sets line width, line style, cap style, and join
style

Sets the dash offset and dash list of a line

Sets fill style to solid, tiled, stippled, or opaque
stippled

Sets fill rule to either even and odd or winding
rule

Queries the server for the size closest to the
one specified

Queries the server for the closest stipple
shape to the one specified

Queries the server for the closest tile shape to
the one specified

Sets the stipple pixmap

Sets the tile pixmap

Sets the tile or stipple origin

Sets the current font

(continued on next page)

4-19

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

4-20

Table 4-4 (Cont.) Routines That Define Individual or Functional Groups
of Graphics Characteristics

Routine

Clip Region Routines

SET CLIP MASK

SET CLIP ORIGIN

SET CLIP RECTANGLES

Description

Sets the mask for bitmap clipping

Sets the origin for clipping

Changes the clip mask from its current value
to the specified rectangles

Arc, Subwindow, and Exposure Routines

SET ARC MODE Sets the arc mode to either chord or pie slice

Sets the subwindow mode to either clip by
children or include inferiors

SET SUBWINDOW MODE

SET GRAPHICS EXPOSURES Specifies whether exposure events are created
when calling COPY AREA or COPY PLANE

Example 4-2 illustrates using individual routines to set background,
foreground, and line attributes. Figure 4-11 illustrates the resulting
output.

Example 4-2 Using Individual Routines to Define Graphics
Characteristics

GC gc;

static void doButtonPress(eventP)
XEvent *eventP;
{

0 char dash_list[] = {20,5,10};
xl = yl = 100;
x2 = y2 = 550;

XSetBackground(dpy, gc, doDefineColor(4));
@ XSetLineAttributes(dpy, gc, 0, LineDoubleDash, 0, 0);
@) XSetDashes(dpy, gc, 0, dash list, 3);

XDrawLine(dpy, win, gc, xl,-yl, x2, y2);

0 The dash_list variable defines the length of odd and even dashes. The
first and third elements of the initialization list specify even dashes;
the second element specifies odd dashes.

@ The SET LINE ATTRIBUTES routine enables the client to define line
width, style, cap style, and join style in one call.

The SET LINE ATTRIBUTES routine has the following format:

XSetLineAttributes(display, gc_id, line_width, line_style,
cap_style, join_style)

The zero cap_style argument specifies the default cap style.

Defining Graphics Characteristics
4.3 Defining Individual Graphics Characteristics

8 If using the CREATE GC routine to set line dashes, odd and even
dashes must have equal length. The SET DASHES routine enables
the client to define dashes of varying length. The SET DASHES
routine has the following format:

XSetDashes(display, gc_id, dash_offset, dash_list,
dash_list_len)

The dash_list_len argument specifies the length of the dash list.

Figure 4-11 Line Defined Using GC Routines

m Line Defined with GC Convenience Routines [PJ](iil]

Click MB 1 to draw a dashed line.

Click MB3 to exit.

4.4 Copying, Changing, and Freeing Graphics Contexts

ZK-0102A-GE

In addition to defining a graphics context, clients can copy defined
characteristics from one GC data structure into another. To copy a GC

4-21

Defining Graphics Characteristics
4.4 Copying, Changing, and Freeing Graphics Contexts

data structure, use COPY GC. The COPY GC routine has the following
format:

XCopyGC(display, src_gc_id, gc_mask, dst_gc_id)

The gc_mask argument selects values to be copied from the source
graphics context (src_gc_id). Use the method described in Section 4.2
for assigning values to a GRAPHICS CONTEXT.

The dst_gc_id argument specifies the new graphics context into which the
server copies values.

After creating a graphics context structure, change values as needed using
CHANGE GC. The following code fragment, which alters the values of
the line drawn by Example 4-1, illustrates changing a graphics context
structure:

xgcv.line_width = 10;
xgcv.line_style = LineSolid;

XChangeGC(dpy,gc,GCLineWidth I GCLineStyle,&xgcv);

The example illustrates defining a new line style and width, and changing
the graphics context to reflect the new values.

4.5 Using Graphics Characteristics Efficiently

4-22

The server must revalidate a graphics context whenever a client redefines
it. Causing the server to revalidate a graphics context unnecessarily can
seriously degrade performance.

The server revalidates a graphics context when one of the following
conditions occurs:

• A client associates the graphics context with a different window.

• The graphics context clip list changes. Changes in the clip list can
happen either when a client changes the graphics context clip origin
or when the server modifies the clip list in response to overlapping
windows.

• Any member of the graphics context changes.

To minimize revalidating the graphics context, submit as a group the
requests to the server that identify the same window and graphics context.
Grouping requests enables the server to revalidate the graphics context
once instead of many times.

When it is necessary to change the value of graphics context members
frequently, creating a new graphics context is more efficient than
redefining an existing one, provided the client creates no more than 50
graphics contexts.

5 Using Color

Color is one attribute clients can define when creating a window or a
graphics object. Depending on display hardware, clients can define color
as black or white, as shades of gray, or as a spectrum of hues. Section 5.2
describes color definition in detail, including workstation types and the
colors they support.

Xlib offers clients the choice of either sharing colors with other clients or
allocating colors for exclusive use.

A client that does not have to change colors can share them with other
clients. By sharing colors, the client saves color resources.

A client must allocate colors for its exclusive use when it needs to change
them. For example, when presenting a graphic representation of a
pipeline, the client might indicate flow through the pipeline by changing
colors rather than redrawing the entire pipeline schematic. In this case,
the client would allocate for exclusive use colors that represent pipeline
flow.

This chapter introduces color management using Xlib and describes how
to share and allocate color resources. The chapter includes the following
topics:

• Color fundamentals-A description of pixels and planes, and color
indices, cells, and maps

• Matching color requirements to screen types- How screen types affect
color presentation

• Sharing color resources-How to share color resources with other
clients

• Allocating colors for exclusive use-How to reserve colors for a single
client

• Querying color resources-How to return values of color map entries

• Freeing color resources-How to release color resources

The concepts presented in this chapter apply to managing the color of both
windows and graphic objects. Chapter 6 describes how to create graphic
objects.

5.1 Pixels and Color Maps
The color of a window or graphics object depends on the values of
pixels that constitute it. The number of bits associated with each pixel
determines the number of possible pixel values. On a monochrome screen,
one bit maps to each pixel. The number of possible pixel values is two.
Pixels are either zero or one, black or white.

5-1

Using Color
5.1 Pixels and Color Maps

5-2

On a monochrome screen, all bits that define an image reside on
one plane, an allocation of memory in which there is a one-to-one
correspondence between bits and pixels. The number of planes is the
depth of the screen.

The depth of intensity or color screens is greater than one. More than one
bit defines the value of a pixel. Each bit associated with the pixel resides
on a different plane.

The number of possible pixel values increases as depth increases. For
example, if the screen has a depth of four planes (hardware will support
a four-plane screen), the value of each pixel comprises four bits. Clients
using a four-plane intensity display can produce up to sixteen levels of
brightness. Clients using a four-plane color display can produce as many
as sixteen colors.

Figure 5-1 illustrates the relationship between pixel values and planes.

Figure 5-1 Pixel Values and Planes

Bit Setting

Planes

Screen Depth=4

ZK-0074A-GE

Xlib uses color maps to define the color of each pixel. A color map
contains a collection of color cells, each of which defines the color pixel
value in terms of its red, green, and blue (RGB) components. Red, green,
and blue components are in the range of zero (off) to 65535 (brightest)
inclusive.

Each pixel value refers to a location in a color map, or is an index into a
color map. For example, the pixel value illustrated in Figure 5-1 indexes
color cell 11 in Figure 5-2.

Using Color
5.1 Pixels and Color Maps

Figure 5-2 Color Map, Cell, and Index

Color Map

Color V__alue
Color Value

C_0_lor V_alu__e_

;/
Pixel Value 1011 2 or 11 10 Indexes the Color Map ---....,

0
1
2
3
4
5
6
7
8
9
10
11---+ Digital-to-Analog
12 Converter

13
14
15

Corresponding pixel is
illuminated using the
value in the eleventh
color map entry.

ZK-0076A-GE

Because most VAXstations have a hardware color map that is global to the
entire display, clients should use the same color map whenever possible.
Otherwise, some clients will appear in the wrong color.

For example, an image processing program that requires 128 colors might
allocate and store a color map of these values. To alter some colors,
another client may invoke a color palette program that chooses and mixes
colors. The color palette program itself requires a color map, which the
program allocates and installs.

Since both programs have allocated different color maps, this can produce
undesirable results. When the image processing program runs, the color
palette image may be incorrectly displayed because only the image
processing color map is installed. Conversely, when the color palette
program runs, the image processing program may be incorrectly displayed
because only the color palette color map is installed.

5-3

Using Color
5.1 Pixels and Color Maps

Xlib reduces the problem of contending for color resources in two ways.
First, Xlib provides a default color map to which all clients have access.
Second, clients can either allocate color cells for exclusive use or allocate
colors for shared use from the default color map. By sharing colors, a
client can use the same color cells as other clients. This method conserves
space in the default color map.

In cases where the client cannot use the default color map and must use
a new color map, Xlib creates virtual color maps. The use of virtual color
maps is analogous to the use of virtual memory in a multiprogramming
environment where many processes must access physical memory. When
concurrent processes collectively require more color map entries than exist
in the hardware color map, the color values are swapped in and out of the
hardware color map. However, swapping virtual color maps in and out of
the hardware color map causes contention for color resources. Therefore,
the client should avoid creating color maps whenever possible.

The process of loading or unloading color values of the virtual color map
into the hardware lookup table occurs when a client calls the INSTALL
COLORMAP or UNINSTALL COLORMAP routines. Typically, the
privilege to install or remove color maps is restricted to the window
manager.

5.2 Matching Color Requirements to Screen Types

5-4

Each screen has a list of visual types associated with it. The visual type
identifies the characteristics of the screen, such as color or monochrome
capability. Visual types partially determine the appearance of color on
the screen and determine how a client can manipulate color maps for a
specified screen.

Color maps can be manipulated in a variety of ways on some hardware,
in a limited way on other hardware, and not at all on yet other hardware.
For example, a screen may be able to display a full range of colors or a
range of grays only, depending on its visual type.

VMS DECwindows supports the following visual types:

• Pseudocolor-A pixel value indexes a color map to produce independent
RGB values. RGB values can be changed dynamically, if a pixel has
been allocated for exclusive use.

• Gray scale-Same as pseudocolor, except the pixel value indexes a
color map that produces only shades of gray.

• Static gray-Same as gray scale, except that clients cannot change
values in the color map.

In addition to supporting pseudocolor, gray scale, and static gray, VMS
DECwindows enables clients to simulate the direct color visual type.
Direct color stores RGB components into three separate data structures:
one for red values, one for green values, and one for blue values. Pixel
values refer to these three data structures, as Figure 5-3 illustrates. A
direct color pixel value of 000000010, or 000 000 010, refers to member
0 of the data structure of red values, member 0 of the data structure of
green values, and member 2 of the data structure of blue values.

Using Color
5.2 Matching Color Requirements to Screen Types

See Section 5.4.2 for information about simulating a direct color device.

Figure 5-3 Visual Types and Color Map Characteristics

Pseudocolor

Pixel Value = 000 000 01O 2

25~1
RGB

256
R

Gray Scale
Pixel Value =

0
1
2

256

Static Gray

Pixel Value =

L~I I

256 256 ----- .____,.,B___.
G

000 000 0102

Converter •
000 000 0102

I

~-I Converter

f

ZK-0291 A-GE

Default visual types are defined for each screen of a display and depend on
the workstation and monitor type.

5-5

Using Color
5.2 Matching Color Requirements to Screen Types

Table 5-1 lists VAXstations and their visual types.

Table 5-1 VAXstation Visual Types

Visual Type

Monochrome Color
VAXstation Type Monitor Monitor

VAXstation 11 Static gray NIA

VAXstation 2000 Static gray NIA

VAXstation lllGPX Gray scale Pseudocolor

VAXstation 20001GPX Gray scale Pseudocolor

VAXstation 3200 Gray scale Pseudocolor

VAXstation 3500 Gray scale Pseudocolor

Before defining colors, use the following method to determine the visual
type of a screen:

1 Use the DEFAULT VISUAL OF SCREEN routine to determine the
identifier of the visual. Xlib returns the identifier to a visual data
structure.

2 Refer to the class member of the data structure to determine the visual
type.

The following example illustrates how to determine the visual type of a
screen:

if ((XDefaultVisualOfScreen(screen))->class == PseudoColor
I I (XDefaultVisualOfScreen (screen)) ->class

Direct Color)

5.3 Sharing Color Resources

5-6

Xlib provides the following ways to share color resources:

• Using named VMS DECwindows colors

• Specifying exact color values

The choice of using a named color or specifying an exact color depends on
the needs of the client. For instance, if the client is producing a bar graph,
specifying the named VMS DECwindows color "Red" as a color value may
be sufficient, regardless of the hue that VMS DECwindows names "Red".
However, if the client is reproducing a portrait, specifying an exact red
color value might be necessary to produce accurate skin tones.

5.3.1

Using Color
5.3 Sharing Color Resources

Note that because of differences in hardware, no two monitors display
colors exactly the same even though the same named colors are specified.

For a list of named VMS DECwindows colors, see Appendix C.

Using Named VMS DECwindows Colors
VMS DECwindows includes named colors that clients can share. To use a
named color, call the ALLOC NAMED COLOR routine. ALLOC NAMED
COLOR determines whether the color map defines a value for the specified
color. If the color exists, the server returns the index to the color map. If
the color does not exist, the server returns an error.

Example 5-1 illustrates specifying a color using ALLOC NAMED COLOR.

Example 5-1 Using Named VMS DECwindows Colors

static int doDefineColor(n)
{

int pixel;
«a XColor exact color,screen color;
f) char *colors[] = {

"dark slate blue",
"light grey",
"firebrick"
} ;

if ((XDefaultVisualOfScreen(screen))->class PseudoColor
I I (XDefaul tVisualOfScreen (screen)) ->class == DirectColor)

{

., if (XAllocNamedColor(dpy, DefaultColormapOfScreen(screen),
colors[n-1], &screen_color, &exact_color))

return screen_color.pixel;
else

printf("Color not allocated!");

else
printf("Not a color device!");

«a The client allocates storage for two color data structures. One, exact_
color, defines the RGB values specified by the VMS DECwindows
named color. The other, screen_color, defines the closest RGB values
supported by the hardware.

For an illustration of the color data structure, see Section 5.3.2.

f) An array of characters stores the names of the predefined VMS
DECwindows colors that the client uses.

8 The ALLOC NAMED COLOR routine has the following format:

XAllocNamedColor(display, colormap_id, color_name,
screen_def_return, exact_def _return)

The client passes the names of VMS DECwindows colors by referring
to the array colors.

5-7

5.3.2

Using Color
5.3 Sharing Color Resources

Specifying Exact Color Values

5-8

To specify exact color values, use the following method:

1 Assign values to a color data structure

2 Call the ALLOC COLOR routine, specifying the color map that stores
the definition. ALLOC COLOR returns a pixel value and changes the
RGB values to indicate the closest color supported by the hardware.

Xlib provides a color data structure to enable clients to specify exact color
values when sharing colors. (Routines that allocate colors for exclusive
use and that query available colors also use the color data structure. For
information about using the color data structure for these purposes, see
Section 5.4.)

The following illustrates the color data structure:

typedef struct {
unsigned long pixel;
unsigned short red, green, blue;
char flags;
char pad;

XColor;

Table 5-2 describes the members of the color data structure.

Table 5-2 Color Data Structure Members

Member Name

pixel

red

green

blue

flags

pad

Contents

Pixel value

Specifies the red value of the pixel 1

Specifies the green value of the pixel 1

Specifies the blue value of the pixel 1

Defines which color components are to be changed in
the color map. Possible flags are as follows:

DoRed Sets red values

DoGreen

Do Blue

Sets green values

Sets blue values

Makes the data structure an even length

1 Color values are scaled between O and 65535. "On full" in a color is a value of 65535,
independent of the number of planes of the display. Half brightness in a color is a value of
32767; off is a value of 0. This representation gives uniform results for color values across
displays with different color resolution.

Example 5-2 illustrates how to specify exact color definitions.

Using Color
5.3 Sharing Color Resources

Example 5-2 Specifying Exact Color Values

/******* Create color ************************/
static int doDefineColor(n)
{

0
8

int pixel;
XColor colors[3];

if ((XDefaultVisualOfScreen(screen))->class
I I (XDefaultVisualOfScreen(screen))->class

switch (n) {

PseudoColor
DirectColor)

case 1:{
colors[n - 1] .flags= DoRed I DoGreen I DoBlue;
colors[n - 1] .red= 59904;
colors[n - 1] .green= 44288;
colors[n - 1] .blue= 59904;
if (XAllocColor(dpy, XDefaultColormapOfScreen(screen),

&colors[n - 1]))
return colors[n - 1] .pixel;

else
printf("Color not allocated!");

return;

case 2:{
colors[n - 1] .flags = DoRed I DoGreen I DoBlue;
colors[n - 1] .red= 65280;
colors[n - 1] .green= O;
colors[n - 1] .blue= 32512;
if (XAllocColor(dpy, XDefaultColormapOfScreen(screen),

&colors[n - 1]))
return colors[n - 1] .pixel;

else
printf("Color not allocated!");

return;
}

case 3:{

else
switch (n) {

case 1:
case 2:
case 3:

colors[n - 1] .flags= DoRed I DoGreen I DoBlue;
colors[n - 1] .red= 37632;
colors[n - 1] .green= 56064;
colors[n - 1] .blue= 28672;
if (XAllocColor(dpy, XDefaultColormapOfScreen(screen),

&colors[n - 1]))

else

return;
}

return colors[n - 1] .pixel;

printf("Color not allocated!");

return XBlackPixelOfScreen(screen); break;
return XWhitePixelOfScreen(screen); break;
return XBlackPixelOfScreen(screen); break;

0 Specify that RGB values are defined.

8 Define color values in the first of three color data structures.

5-9

Using Color
5.3 Sharing Color Resources

@) After defining RGB values, call the ALLOC COLOR routine. ALLOC
COLOR allocates shared color cells on the default color map and
returns a pixel value for the color that matches the specified color most
closely.

5.4 Allocating Colors for Exclusive Use

5.4.1

A client that does not need to change color values should share colors using
the methods described in Section 5.3.2. Sharing colors saves resources.
However, a client that changes color values must allocate them for its
exclusive use.

Xlib provides two methods for allocating colors for the exclusive use of
a client. First, the client can allocate cells and store color values in the
default color map. Second, if the default color map does not contain
enough storage, the client can create its own color map and store color
values in it.

This section describes how to specify a color map, how to allocate cells for
exclusive use, and how to store values in the color cells.

Specifying a Color Map

5-10

Clients can either use the default color map and allocate its color cells for
exclusive use or create their own color maps.

If possible, use the default color map. Although a client can create color
maps for its own use, the hardware color map storage is limited. When a
client creates its own color map, the map must be loaded, or installed, into
the hardware color map before the client map can be used. If the client
color map is not installed, the client may refer to a different color map and
possibly display the wrong color. Using the default color map eliminates
this problem. See Section 5.1 for information about how Xlib handles color
maps.

To specify the default color map, use the DEFAULT COLORMAP routine.
DEFAULT COLORMAP returns the identifier of the default color map.

If the default color map does not contain enough resources, the client can
create its own color map.

To create a color map, use the following method:

1 Determine the visual type of a specified screen using the method
described in Section 5.2

2 Call the CREATE COLORMAP routine.

The CREATE COLORMAP routine creates a color map for the specified
window and visual type. CREATE COLORMAP has the following format:

XCreateColormap(display, window_id, visual_struc, alloc)

5.4.2

Using Color
5.4 Allocating Colors for Exclusive Use

The alloc argument specifies whether the client creating the color map
allocates all of the color map entries for its exclusive use or creates a color
map with no defined color map entries. To allocate all entries for exclusive
use, specify the constant AllocAll. To allocate no defined map entries,
specify the constant AllocNone. The latter is useful when two or more
clients are to share the newly created color map.

If the visual type is pseudocolor or gray scale, the client can either allocate
all or no map entries. If the visual type is static gray, the client must
allocate no entries.

See Section 5.4.2 for information about allocating colors. See Example 5-3
for an example of specifying the default color map.

Allocating Color Cells
After specifying a color map, allocate color cells in it.

To allocate color cells, call the ALLOC COLOR CELLS routine to allocate
cells for a pseudocolor device or a gray scale device. Call the ALLOC
COLOR PLANES routine to simulate a direct color device. See Section 5.2
for information about the direct color visual type.

Example 5-3 illustrates how to allocate colors for exclusive use. The
program creates a color wheel that rotates when the user presses MBl.

Example 5-3 Allocating Colors for Exclusive Use

#include <decw$include/Xlib.h>
#include <decw$include/Xutil.h>
#include math;

#define winW 600
#define winH 600
#define backW 800
#define backH 800

Display *dpy;
Window win;
Pixmap pixmap;
Colormap map;
GC gc;
Screen *screen;
XColor *colors;
int offsetX, offsetY;
int fullcount;
int ButtonisDown = 0;
int n, exposeflag = O;
int ihop=l;
XSetWindowAttributes xswa;

(continued on next page)

5-11

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

static void doinitialize() ;

static void doCreateWindows() ;

static void doCreateGraphicsContext() ;

static void doCreatePixmap() ;
static void doCreateColor() ;
static void doCreateWheel() ;
static void doWMHints() ;
static void doMapWindows() ;

static void doHandleEvents() ;
static void doExpose() ;

static void doButtonPress() ;

static void doButtonRelease() ;

static void doChangeColors() ;
static void doLoadColormap() ;
static void doHLS to RGB() ;
static void doConfigure() ;

/********************** The main program *******************************/

static int main()
{

doinitialize();
doHandleEvents();

/***************** doinitialize **************************/
static void doinitialize()
{

dpy = XOpenDisplay(O);

screen= DefaultScreenOfDisplay(dpy);

doCreateWindows();

doCreateGraphicsContext();

doCreatePixmap();

doCreateColor();

doCreateWheel();

doWMHints() ;

doMapWindows() ;

/******* doCreateWindows *********/
static void doCreateWindows(
{

int winX = 100;
int winY = 100;

/* Create the win window */

xswa.event_mask = ExposureMask I ButtonPressMask I
ButtonReleaseMask I StructureNotifyMask;

xswa.background_pixel = XBlackPixelOfScreen(screen);

win= XCreateWindow(dpy, RootWindowOfScreen(screen),
winX, winY, winW, winH, 0,
DefaultDepthOfScreen(screen), InputOutput,
DefaultVisualOfScreen(screen), CWEventMask I CWBackPixel, &xswa);

(continued on next page)

5-12

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

/******** Create the graphics context *********/
static void doCreateGraphicsContext()
{

XGCValues xgcv;

/* Create graphics context. */

gc = XCreateGC(dpy, win, 0, 0);
XSetForeground(dpy, gc, XWhitePixelOfScreen(screen));

/******* doCreatePixmap *********/
static void doCreatePixmap()
{

tt pixmap= XCreatePixmap(dpy, XRootWindow(dpy, XDefaultScreen(dpy)),
backW, backH, XDefaultDepthOfScreen(screen));

XFillRectangle(dpy, pixmap, gc, 0, 0, backW, backH);

/******* doCreateColor ********/
~static void doCreateColor()
{

int *pixels;
int contig;
int *plane_masks;

if ((XDefaultVisualOfScreen(screen))->class != PseudoColor &&
(XDefaultVisualOfScreen(screen))->class != DirectColor)
{

sys$exit(l);

map XDefaultColormapOfScreen(screen);

xswa.colormap = map;
fullcount = XDisplayCells(dpy, XDefaultScreen(dpy))/2;
if (fullcount > 128) fullcount = 128;
pixels= malloc(sizeof(int)*fullcount);
if (!XAllocColorCells(dpy, map, contig, plane_masks,

0, pixels, fullcount))
{

sys$exit(l);

colors= malloc(sizeof(XColor)*fullcount);
doLoadColormap(pixels);

/***** doCreateWheel *****/
.,static void doCreateWheel(
{

int pixel, i, j;
XPoint *pgon;
int xcent, ycent;

pixel = XWhitePixelOfScreen(screen);

(continued on next page)

5-13

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

/* Now set up wheel. It is really a set of triangles*/
pgon = malloc(sizeof(XPoint)*3*fullcount+l);
xcent=backW/2;
ycent=backH/2;
pgon[O] .x = backW;
pgon[O] .y = backH/2;

/* Fill in coordinate for center point in all triangles */

for (i=O;i<fullcount*3;i+=3)
{

pgon [i+l] .x
pgon [i + 1] . y
}

xcent;
ycent;

/* Calculate the triangle points on the outer circle */

for (pixel=O,i=O;pixel<fullcount;i+=3, pixel++)
{

double x,y,xcent f,ycent f;
xcent_f = (double)xcent;
ycent f = (double)ycent;
x=cos((((double)pixel+l.)/(double)fullcount)*2.*3.14159);
y=sin((((double)pixel+l.)/(double)fullcount)*2.*3.14159);
pgon [i+2] .x (int) (x*xcent_f) +xcent;
pgon[i+2] .y (int) (y*ycent f)+ycent;
pgon[i+3] .x pgon[i+2] .x;
pgon[i+3] .y pgon[i+2] .y;
XSetForeground(dpy, gc, colors[i/3] .pixel);
XFillPolygon(dpy, pixmap, gc, &pgon[i], 3, Convex, CoordModeOrigin);
}

offsetX
offsetY
return;

(backW - winW)/2;
(backH - winH)/2;

/******** do WMHints *************/
static void doWMHints(
{

XSizeHints xsh;

/* Define the size and name of the win window */

xsh.x = 100;
xsh.y = 100;
xsh.width = winW;
xsh.height = winH;
xsh.flags = PPosition I PSize;

XSetNormalHints(dpy, win, &xsh);

XStoreName(dpy, win, "Color Wheel: Press MBl to Rotate or Click MB2 to Exit.");

/******** doMapWindows ***********/
static void doMapWindows()
{

XMapWindow(dpy, win);

5-14

(continued on next page)

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

/****************** doHandleEvents ***********************/
static void doHandleEvents()
{

XEvent event;

for (; ;) {
XNextEvent(dpy, &event);

/*****
static
XE vent
{

switch (event.type)
case Expose:
case ButtonPress:
case ButtonRelease:
case ConfigureNotify:

Handle window exposures *****/
void doExpose(eventP)
*eventP;

doExpose(&event); break;
doButtonPress(&event); break;
doButtonRelease(&event); break;
doConfigure(&event); break;

8 XCopyArea(dpy, pixmap, win, gc, offsetX + eventP->xexpose.x,
offsetY + eventP->xexpose.y, eventP->xexpose.width,
eventP->xexpose.height, eventP->xexpose.x, eventP->xexpose.y);

/******** doButtonPress ************/
static void doButtonPress(eventP)
XEvent *eventP;
{

if (eventP ->xbutton.button
sys$exit (l);

ButtonisDown = l;

Button2) {

if (ButtonisDown) doChangeColors();
return;

/******** doButtonRelease ************/
static void doButtonRelease(eventP)
XEvent *eventP;
{

ButtonisDown 0;
return;

/*********doConfigure ********************/
static void doConfigure(eventP)
XEvent *eventP;
{

fj offsetX = (backW - eventP->xconfigure.width)/2;
offsetY = (backH - eventP->xconfigure.height)/2;

(continued on next page)

5-15

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

/*************doChangeColors************/
fDstatic void doChangeColors()
{

for (; ! (XPending(dpy));) {
unsigned int i,temp;
double h,r,g,b;

temp= colors[O] .pixel;
for (i=O;i<fullcount-l;i++)

colors[i] .pixel= colors[i+l] .pixel;
colors[fullcount-1] .pixel= temp;
XStoreColors(dpy, map, colors, fullcount);

/**** doLoadColormap ****/
CDstatic void doLoadColormap(pPixels)
int *pPixels;
{

unsigned int i,j;
double h,r,g,b;

for (i=O;i < fullcount;i++)
colors[i] .pixel=pPixels[i];
colors[i] .flags= DoRed I DoGreen IDoBlue;

for (i=O; i < fullcount ; i ++) {
h = (double)i*360/((double)fullcount+l);
doHLS_to_RGB(&h,&.5,&.5,&r,&g,&b);
colors[i] .red= r * 65535.0;
colors[i] .green= g * 65535.0;
colors[i] .blue= b * 65535.0;

XStoreColors(dpy, map, colors, fullcount);

/**** doHLS_to_RGB ****/

static void doHLS to RGB (h,l,s, r,g,b)
double *h,*l,*s,*r,*g,*b;
{

5-16

double ml,m2;
double value();

m2 = (*l < 0.5) ? (*l)*(l+*s) *l + *s- (*l)*(*s)
ml= 2*(*1) - m2;

if (*s == 0)
{ (*r)=(*g)=(*b)=(*l);

else
{ *r=value (ml,m2, (double) (*h+l20.));

*g=value (ml,m2, (double) (*h+OOO.));
*b=value (ml,m2, (double) (*h-120.));

return;

(continued on next page)

Using Color
5.4 Allocating Colors for Exclusive Use

Example 5-3 (Cont.) Allocating Colors for Exclusive Use

double value (nl,n2,hue)
double nl,n2,hue;
{

double val;

if (hue>360.) hue 360.;
if (hue<O. hue += 360.;

if (hue<60)
val= nl+(n2-nl)*hue/60.;

else if (hue<180.)
val = n2;

else if (hue<240.)
val nl+(n2-n1)*(240.-hue)/60.;

else
val nl;

return (val);

0 The client uses a pixmap as a backing store for the color wheel. When
a user reconfigures the color wheel window, the client copies the color
wheel from the pixmap into the resized window. For information about
creating and using pixmaps, see Chapter 7.

8 After creating the pixmap for backing store, the client creates colors
for the wheel and the wheel itself. The client-defined doCreateColor
routine allocates color cells for the exclusive use of the client and
stores initial color values in the color map.

8 The client uses the default color map, specifying that only 128 color
cells be allocated. After allocating color cells, the client calls the
client-defined doLoadColormap routine to define color values. For a
description of the routine, see callouts 7, 8, 9, and 10.

8 The client-defined doCreate Wheel routine defines the wheel used to
display colors and specifies initial color values.

0 The wheel is composed of polygons. Each polygon is defined by three
points, one in the center of the wheel and two at the circumference.
After the initial polygon is specified, each polygon shares one point
with the polygon previously defined, as Figure 5-4 illustrates.

To define each point the client uses a point data structure, which is
described in Chapter 6. After defining a polygon, the client fills it with
a specified foreground color.

<St When the user reconfigures the window, the server generates an
expose event. In response to the event, the client copies the pixmap
into the exposed area, which is calculated using the offset from the
original to the new position of the window. For information about
handling exposure events, see Chapter 9.

8 The client calculates the offset from the original window position in
response to a configure notify event. The server issues a configure
notify event each time the user resizes the color wheel window. For
information about handling configure notify events, see Chapter 9.

5-17

Using Color
5.4 Allocating Colors for Exclusive Use

5-18

0 The rotation of the color wheel is accomplished by changing values in
the color map. As long as there are no pending events, and the user is
pressing MBl, the client-defined doChangeColors routine shifts color
values by one.

0 The doLoadColormap routine initializes the color wheel by defining
128 colors and storing them in the color map.

8 Colors are defined initially using the Hue, Light, Saturation (HLS)
system. The values of color hues vary, while values for light and
saturation remain constant. After a color has been defined using HLS,
the color is converted into RGB values by the client-defined doHLS_to_
RGB routine. When all colors are defined, the client stores them in the
color map by calling the STORE COLORS routine.

Figure 5-4 Polygons That Define the Color Wheel

,-Pixmap

--==---------•Po
P2 =P3

ZK-0518A-GE

When allocating colors from any shared color map, the client may exhaust
the resources of the color map. In this case, Xlib provides a routine for
copying the default color map entries into a new client-created color map.

To create a new color map when the client exhausts the resources of a
previously shared color map, use the COPY COLORMAP AND FREE
routine. The routine creates a color map of the same visual type and
for the same screen as the previously shared color map. The previously

5.4.3

Using Color
5.4 Allocating Colors for Exclusive Use

shared color map can be either the default color map or a client-created
color map. The COPY COLORMAP AND FREE routine has the following
format:

XCopyColormapAndFree(display, colormap_id)

COPY COLORMAP AND FREE copies all allocated cells from the
previously shared color map to the new color map, keeping color values
intact. The new color map is created with the same value of the argument
alloc as the previously shared color map and has the following effect on
the new color map entries:

Value of alloc

AllocAll

AllocNone

Storing Color Values

Effect

All entries are copied from the previously shared color map
and are then freed to create writable map entries.

The entries moved are all pixels and planes that have been
allocated using the following routines and that have not been
freed since they were allocated: ALLOC COLOR, ALLOC
NAMED COLOR, ALLOC COLOR CELLS, ALLOC COLOR
PLANES.

After allocating color entries in the color map, store RGB values in the
color map cells using the following method:

1 Assign color values to the color data structure and set the flags
member to indicate the values defined.

2 Call the STORE COLOR routine to store one color, the STORE
COLORS routine to store more than one color, or the STORE NAMED
COLOR routine to store a named color.

The STORE COLOR routine has the following format:

XStoreColor(display, colormap_id, screen_def_return)

The STORE COLORS routine has the following format:

XStoreColors(display, colormap_id, screen_defs_return,
num_colors)

The STORE NAMED COLOR routine has the following format:

XStoreNamedColor(display, colormap_id, color_name,
pixel, flags)

5.5 Freeing Color Resources
To free storage allocated for client colors, call the FREE COLORS routine.
FREE COLORS releases all storage allocated by the following color
routines: ALLOC COLOR, ALLOC COLOR CELLS, ALLOC NAMED
COLORS, ALLOC COLOR PLANES.

5-19

Using Color
5.5 Freeing Color Resources

To delete the association between the color map ID and the color map, use
the FREE COLORMAP routine. FREE COLORMAP has no effect on the
default color map of the screen. If the color map is an installed color map,
FREE COLORMAP removes it.

5.6 Querying Color Map Entries

5-20

Xlib provides routines to return both the RGB values of the color map
index and the name of a color.

To query the RGB values of a specified pixel in the color map, use the
QUERY COLOR routine. The value returned is the value passed in the
pixel member of the color data structure.

To query the RGB values of an array of pixel values, use the QUERY
COLORS routine. The values returned are the values passed in the pixel
member of the color data structure.

To look up the values associated with a named color, use the LOOKUP
COLOR routine. LOOKUP COLOR uses the specified color map to find out
the values with respect to a specific screen. It returns both the exact RGB
values and the closest RGB values supported by hardware.

6 Drawing Graphics

Xlib provides clients with routines that draw graphics into windows and
pixmaps. This chapter describes how to create and manage graphics
drawn into windows, including the following topics:

• Drawing points, lines, rectangles, and arcs

• Filling rectangles, polygons, and arcs

• Copying graphics

• Limiting graphics to a region of a window or pixmap

• Clearing graphics from a window

• Creating cursors

Chapter 7 describes drawing graphics into pixmaps.

6.1 Graphics Coordinates
Xlib graphics coordinates define the position of graphics drawn in a
window or pixmap. Coordinates are either relative to the origin of the
window or pixmap in which the graphics object is drawn or relative to a
previously drawn graphics object.

Xlib graphics coordinates are similar to the coordinates that define window
position. Xlib measures length along the x axis from the origin to the
right. Xlib measures length along the y axis from the origin down. Xlib
specifies coordinates in units of pixels.

6.2 Using Graphics Routines Efficiently
If clients use the same drawable and graphics context for each call,
Xlib handles back to back calls of DRAW POINT, DRAW LINE, DRAW
SEGMENT, DRAW RECTANGLE, FILL ARC, and FILL RECTANGLE in
a batch. Batching increases efficiency by reducing the number of requests
to the server.

When drawing more than a single point, line, rectangle, or arc, clients
can also increase efficiency by using routines that draw or fill multiple
graphics (DRAW POINTS, DRAW LINES, DRAW SEGMENTS, DRAW
RECTANGLES, DRAW ARCS, FILL ARCS, and FILL RECTANGLES).
Clipping negatively affects efficiency. Consequently, clients should ensure
that graphics they draw to a window or pixmap are within the boundary
of the drawable. Drawing outside the window or pixmap decreases
performance. Clients should also ensure that windows into which they
are drawing graphics are not occluded.

6-1

Drawing Graphics
6.2 Using Graphics Routines Efficiently

The most efficient method for clearing multiple areas is using the FILL
RECTANGLES routine. By using the FILL RECTANGLES routine, clients
can increase server performance. For information about using FILL
RECTANGLES to clear areas, see Section 6.6.1.

6.3 Drawing Points and Lines

6.3.1 Drawing Points

6-2

Xlib includes routines that draw points and lines. When clients draw
more than one point or line, performance is most efficient if they use Xlib
routines that draw multiple points or lines rather than calling single point
and line-drawing routines many times.

This section describes using routines that draw both single and multiple
points and lines.

To draw a single point, use the DRAW POINT routine, specifying x and y
coordinates, as in the following:

int x,y=lOO;
XDrawPoint(display, window, gc, x, y);

If drawing more than one point, use the following method:

1 Define an array of point data structures.

2 Call the DRAW POINTS routine, specifying the array that defines the
points, the number of points the server is to draw, and the coordinate
system the server is to use. The server draws the points in the order
specified by the array.

Xlib includes the point data structure to enable clients to define an array
of points easily. The following illustrates the data structure:

typedef struct {
short x, y;

} XPoint;

Table 6-1 describes the members of the point data structure.

Table 6-1 Point Data Structure Members

Member
Name Contents

x Defines the x value of the coordinate of a point

y Defines the y value of the coordinate of a point

The server determines the location of points according to the following:

• If the client specifies the constant CoordModeOrigin, the server
defines all points in the array relative to the origin of the drawable.

Drawing Graphics
6.3 Drawing Points and Lines

• If the client specifies the constant Coord.ModePrevious, the server
defines the coordinates of the first point in the array relative to the
origin of the drawable and the coordinates of each subsequent point
relative to the point preceding it in the array.

The server refers to the following members of the GC data structure to
define the characteristics of points it draws:

Function

Foreground

Clip x origin

Clip mask

Plane mask

Subwindow mode

Clip y origin

Chapter 4 describes GC data structure members.

Example 6-1 uses the DRAW POINTS routine to draw a circle of points
each time the user clicks MBl.

Figure 6-1 illustrates sample output from the program.

Example 6-1 Drawing Multiple Points

/* Create window win on

*
*
*
*
*

display dpy, defined as follows:
Position: x = 100,y = 100
Width = 600
Height = 600

gc refers to the graphics context

*
*
*
*
*
*/

/****************** doHandleEvents ***********************/
static void doHandleEvents()
{

XEvent event;

for (; ;) {
XNextEvent(dpy, &event);
switch (event.type) {

case Expose:
case ButtonPress:

doExpose(&event); break;
doButtonPress(&event); break;

/***** Write a message *****/
.,static void doExpose(eventP)
XEvent *eventP;
{

char messagel[
char message2[
char message3[

{"To create points, click MBl"};
{"Each click creates a new circle of points"};
{"To exit, click MB2"};

XDrawimageString(dpy, win, gc, 150, 25, rnessagel, strlen(messagel));
XDrawirnageString(dpy, win, gc, 150, 50, rnessage2, strlen(rnessage2));
XDrawirnageString(dpy, win, gc, 150, 75, rnessage3, strlen(rnessage3));

(continued on next page)

6-3

Drawing Graphics
6.3 Drawing Points and Lines

Example 6-1 (Cont.) Drawing Multiple Points

/***** Draw the points*****/
static void doButtonPress(eventP)
XEvent *eventP;
{

#define POINT CNT 100
#define RADIUS 50

XPoint point_arr[POINT_CNT];
int i;

8 int x = eventP->xbutton.x;
int y = eventP->xbutton.y;

if (eventP->xbutton.button == Button2) sys$exit (1);

for (i=O;i<POINT_CNT;i++) {
point_arr[i] .x x + RADIUS*cos(i);
point_arr[i] .y = y + RADIUS*sin(i);

@) XDrawPoints(dpy, win, gc, &point_arr, POINT_CNT, CoordModeOrigin);
}

6-4

0 When the client receives notification that the server has mapped the
window, the doExpose routine writes three messages into the window.
For information about using the DRAW IMAGE STRING routine, see
Chapter 8.

8 If the user clicks any mouse button, the client initiates the
doButtonPress routine. If the user clicks MBl, the client draws 50
points. If the user clicks MB2, the client exits the system. The client
determines which button the user pressed by referring to the button
member of the button event data structure. For more information
about the button event data structure, see Chapter 9.

@) The DRAW POINTS routine has the following format:

XDrawPoints(display, drawable_id, gc_id, points,
num_points, point_mode)

The point_mode argument specifies whether coordinates are relative
to the origin of the drawable or to the previous point in the array.

6.3.2

Drawing Graphics
6.3 Drawing Points and Lines

Figure 6-1 Circles of Points Created Using the DRAW POINTS Routine

m Drawing Multiple Points [!;)[iii]

To create points, click MB1.

Each click creates a new circle of points.

To exit, click MB2.

,•1"'"·; .. ,_..~
1-. • ·- I I I - •• ~\L

1"'/ I 1,I <'-'"•- \ °'
~~~:.:;-~t~·~;~ ) .. - ,'>~~y 

~~ .: ·~·., ~I ,••-•• ,•I 111\ I .,.r .... .-•r.....Jt[-_• • ''\"1•'•".,>··-•·-~ h d., 
, .. '(I.~ ... ; ... •..:\;>-~~·\·{ I •I .. , \1 I I •• 1'1

11
\11• 

__,.,.,_, 1, 1••11 lo. I 111 l•!I\ I I Io I' "' 
1 ''#0' I I ''\I • I I Si <J \ •• I 11 • , -, I •• I I \ I f. 

.,/'l~::r.·~.' ,",•';.•''-· 1 ·••,',•:::.\.~~~'t · .. ·. ;• 1 :,: .·~.; 
1 1 IA1'~_.=;.rJ.,._', :\11• i 1 : 1111•

1

=:···· 1 t'~•'.!li•;: .::,•,• ' 11 •\t 
.·, ·.' t·~·i_•_ fl_, ·~.~,i·. I · .. ··. ·.···.I .... '1-i':' ... _-.r.""',' •• • I I I.'!.· 

j' 1,1 1 I r I 't- I I" I I I' I• I I "1" .~".'!.l-\\~ I I "•" 
1 

.. , 
-··-. ',' •• ·=-=·.i: .. ·:., · ... '•, ~ ..... : .. , ,.:J,·~.·f\·1.: ,_ ....... 

1.e-°••,.r•-'L J 1f1'-•·•• ""°' ")J.1 11•1• I"•\• "/"~" • \ \ool I •'1 
~ ' ., • •• .. •'" I ... ~.I I ~\I \. .. • \ I •• ,J,~ •• i.;. ........ ,'!.·~~ 1',,Jf.-... -1\,• 1,1 ,1 ... "1'• •"'·\ \ 'J·I I • '""' • I 

)f1- •r:.,,•, "9· .-. ·-\~ ~·-\· I~ I _ .... · .. ,,I·~·= ~·J .' rf.11 ·.:-~\I\ I•) ~1 ~· I •: ~ \ .. I ~ :. I 
,1 ...... -,,,\I.,\ ..... ~ .. ~-.. -- ••• 1 •('t•\\Mt.(J~1·,,. '··' 
>'I ;••-.,~' 1 11 \1~ 1 

.. '-4' ···~~ '•. •i \•'•fl~ • .\;.I • 
• ~o:--1•:"- 1 1 1 11• •, 1' .\ 11'J ,,,., 1 1., •' ,~.1~"r.I 

...... "] I" "11' > I 1•1 , .... ~ .. \1 I I•• \ /""'I 0 
,. I I •••• ·' ., • ..,,. •• ,. ...... \. \ '··' I·· ... 

•J, I • • • • • • .. " I ••••• ............ • •• •• ,. I I I •• I I • 

lij I •:• \!: j : ~'..;!_." .. ; "j ... : ~·~I~.·.:·;~~::,;/ ;~1'.r" 
t I • I '1. I I • •I jl fl I" J 11 1. • I I • • \ L I I .r,, 

i • I ' 'r i • i • , \ • l ' , i "' • ·' i ~ 
I ".I 1

11 \.:. 1 111~{.C,• ••1' 1 •1 1 j.,1I _,,If." 
• "• I 

1
1 •:• \ •\"J.,~~.Y" I•""•' 1 1 I: .""••\ ~ .. ·~ d • • • • \ \ •11 .r. • .· L • " ,. f \ ..... , , •• , 

'• I I I I I o o ~ \ \ • o// •r ,\ •.'!11 o ·~I II \ • "1 '. '·'' ~•I 
I I • \ • ·' •• .. \ •I I • • I \ "·;' I I 

•• ·.~' \ •• ,,,.,. ""."\."..it~~~>,,.:,· • 
• • \ \ • al I • • \ • al '1• 

\. ·' 

ZK-0107A-GE 

Drawing Lines and Line Segments 
Xlib includes routines that draw single lines, multiple lines, and line 
segments. To draw a single line, use the DRAW LINE routine, specifying 
beginning and ending points, as in the following: 

int xl,yl=lOO; 
int x2,y2=200; 
XDrawLine(display, window, gc, xl, yl, x2, y2); 

To draw multiple lines, use the following method: 

1 Define an array of points using the point data structure described in 
Section 6.3.1 to specify beginning and ending line points. The server 
interprets pairs of array elements as beginning and ending points. For 

6-5 



Drawing Graphics 
6.3 Drawing Points and Lines 

example, if the array that defines the beginning point is point[i], the 
server reads point[i + 1] as the corresponding ending point. 

2 Call the DRAW LINES routine, specifying the following: 

• The array that defines the points. 

• The number of points that define the line. 

• The co01·dinate system the server uses to locate the points. The 
server draws the lines in the order specified by the array. 

Clients can specify either the CoordModeOrigin or the 
CoordModePrevious constant to indicate how the server determines 
the location of beginning and ending points. The server uses the methods 
described in Section 6.3.1. 

The server draws lines in the order the client has defined them in the 
point data structure. Lines join correctly at all intermediate points. If 
the first and last points coincide, the first and last line also join correctly. 
For any given line, the server draws pixels only once. The server draws 
intersecting pixels multiple times if zero-width lines intersect; it draws 
intersecting pixels of wider lines only once. 

Example 6-2 uses the DRAW LINES routine to draw a star when the 
server notifies the client that the window is mapped. 

Example 6-2 Drawing Multiple Lines 

/* Create window win on 
* display dpy, defined as follows: 
* Position: x = 100,y = 100 
* Width = 600 
* Height = 600 
* gc refers to the graphics context 

* 
* 
* 
* 
* 
*/ 

/****************** doHandleEvents ***********************/ 
static void doHandleEvents( 
{ 

XEvent event; 

for ( ; ; ) { 
XNextEvent(dpy, &event); 
switch (event.type) 

case Expose: 

/***** doExpose ****/ 
static void doExpose(eventP) 
XEvent *eventP; 
{ 

XPoint pt_arr[6]; 

6-6 

doExpose(&event); break; 

(continued on next page) 



Example 6-2 (Cont.) Drawing Multiple Lines 

0 pt_arr[O] .x = 75; 
pt_arr[O] .y 500; 
pt_arr[l] .x 300; 
pt_arr[l] .y 100; 
pt_arr[2] .x 525; 
pt_arr[2] .y 500; 
pt_arr[3] .x 50; 
pt_arr[3] .y 225; 
pt_arr[4] .x 575; 
pt_arr[4] .y 225; 
pt_arr[5] .x 75; 
pt_arr[5] .y 500; 

Drawing Graphics 
6.3 Drawing Points and Lines 

8 XDrawLines(dpy, win, gc, &pt_arr, 6, CoordModeOrigin); 

0 The doExpose routine uses point data structures to define beginning 
and ending points of lines. 

8 The call to draw lines refers to a graphics context (gc), which the client 
has previously defined, and an array of point data structures. The 
constant CoordModeOrigin indicates that all points are relative to 
the origin of win (100,100). 

Figure 6-2 illustrates the resulting output. 

6-7 



Drawing Graphics 
6.3 Drawing Points and Lines 

6-8 

Figure 6-2 St~r Created Using the DRAW LINES Routine 

m Drawing Multiple Lines (!l]lm] 

To create a star, click MB1. 

To exit, click MB2. 

ZK-0103A-GE 

Use the DRAW SEGMENTS routine to draw multiple, unconnected 
lines, defining an array of segments in the segment data structure. The 
following illustrates the data structure: 

typedef struct { 
short xl, yl, x2, y2; 

} XSegment; 

Table 6-2 describes the members of the data structure. 



Drawing Graphics 
6.3 Drawing Points and Lines 

Table 6-2 Segment Data Structure Members 

Member Name 

x1 

y1 

x2 

y2 

Contents 

The x value of the coordinate that specifies one endpoint of 
the segment 

The y value of the coordinate that specifies one endpoint of 
the segment 

The x value of the coordinate that specifies the other endpoint 
of the segment 

The y value of the coordinate that specifies the other endpoint 
of the segment 

DRAW SEGMENTS functions like the DRAW LINES routine, except the 
routine does not use the coordinate mode. 

The DRAW LINE and DRAW SEGMENTS routines refer to all but the join 
style, fill rule, arc mode, and font members of the GC data structure to 
define the characteristics of lines. The DRAW LINES routine refers to all 
but the fill rule, arc mode, and font members of the data structure. 

Chapter 4 describes the GC data structure. 

6.4 Drawing Rectangles and Arcs 

6.4.1 

As with routines that draw points and lines, Xlib provides clients the 
choice of drawing either single or multiple rectangles and arcs. If a client 
is drawing more than one rectangle or arc, use the multiple-drawing 
routines for most efficiency. 

Drawing Rectangles 
To draw a single rectangle, use the DRAW RECTANGLE routine, 
specifying the coordinates of the upper left corner and the dimensions 
of the rectangle, as in the following: 

int x=50 
int y=lOO; 
int width=25; 
int length=50; 

XDrawRectangle(display, window, gc, x, y, width, length); 

Figure 6-3 illustrates how Xlib interprets coordinate and dimension 
parameters. The x and y coordinates are relative to the origin of the 
drawable. 

6-9 



Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

6-10 

Figure 6-3 Rectangle Coordinates and Dimensions 

[x, y) 

1 
h 

j 
[x, y + h] 

w 

[x + w, y) 

[x + w, y + h] 

ZK-0078A-GE 

To draw multiple rectangles, use the following method: 

1 Define an array of rectangles using the rectangle data structure. 

2 Call the DRAW RECTANGLES routine, specifying the array that 
defines rectangle origin, width, and height, and the number of array 
elements. 

The server draws each rectangle as shown in Figure 6-4. 

Figure 6-4 Rectangle Drawing 

,_-Path of lines drawn 
[x4 'Y4]=[X 0' Yol------------------[X1 'Y1l 

~ . 

[x 3 'Y3l------------------[X 2' Y2] 

ZK-0077 A-GE 



Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

For a specified rectangle, the server draws each pixel only once. If 
rectangles intersect, the server draws intersecting pixels multiple times. 

Xlib includes the rectangle data structure to enable clients to define an 
array of rectangles easily. The following illustrates the data structure: 

typedef struct { 
short x, y; 
unsigned short width, height; 

} XRectangle; 

Table 6-3 describes the members of the rectangle data structure. 

Table 6-3 Rectangle Data Structure Members 

Member Name 

x 

y 

width 

height 

Contents 

Defines the x value of the rectangle origin 

Defines the y value of the rectangle origin 

Defines the width of the rectangle 

Defines the height of the rectangle 

When drawing either single or multiple rectangles, the server refers 
to the following members of the GC data structure to define rectangle 
characteristics: 

Function Plane mask 

Foreground Background 

Line width Line style 

Join style Fill style 

Tile Stipple 

Tile/stipple x origin Tile/stipple y origin 

Subwindow mode Clip x origin 

Clip y origin Clip mask 

Dash offset Dashes 

Chapter 4 describes the GC data structure members. 

Example 6-3 illustrates using the DRAW RECTANGLES routine. 
Figure 6-5 shows the resulting output. 

6-11 



Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

Example 6-3 Drawing Multiple Rectangles 

/* Create window win on 
* display dpy, defined as follows: 
* Position: x = 100,y = 100 
* Width = 600 
* Height = 600 
* gc refers to the graphics context 

* 
* 
* 
* 
* 
*/ 

/****************** doHandleEvents ***********************/ 
static void doHandleEvents( 
{ 

XEvent event; 

for ( ; ; ) { 
XNextEvent(dpy, &event); 
switch (event.type) { 

case Expose: 
case ButtonPress: 

/***** Write a message *****/ 
C.static void doExpose(eventP) 
XEvent *eventP; 
{ 

doExpose(&event); break; 
doButtonPress(&event); break; 

char messagel [ ] = {"To draw multiple rectangles, click MBl"}; 
char message2 [ ] = {"To exit, click MB2"}; 

XDrawimageString(dpy, win, gc, 150, 25, messagel, strlen(messagel)); 
XDrawimageString(dpy, win, gc, 150, 50, message2, strlen(message2)); 

/***** Draw the rectangles *****/ 
static void doButtonPress(eventP) 
XEvent *eventP; 
{ 

#define REC CNT 40 
#define STEP 15 

XRectangle rec_arr[REC CNT]; 
int i; 

~ if (eventP->xbutton.button == Button2) sys$exit (1); 

for (i=O;i<REC_CNT;i++) 
rec_arr[i] .x = STEP * i; 
rec_arr[i] .y = STEP * i; 
rec_arr[i] .width = STEP*2; 
rec_arr[i] .height = STEP*3; 

@) XDrawRectangles(dpy, win, gc, &rec_arr, REC_CNT); 
} 

6-12 

C. When the client receives notification that the server has mapped the 
window, the doExpose routine writes two messages into the window. 
For information about using the DRAW IMAGE STRING routine, see 
Chapter 8. 



Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

8 If the user clicks any mouse button, the client calls the doButtonPress 
routine. If the user clicks MBl, the client draws rectangles defined 
in the initialization loop. If the user clicks MB2, the client exits the 
system. The client determines which button the user has clicked by 
referring to the button member of the button event data structure. 
For more information about the button event data structure, see 
Chapter 9. 

8 The DRAW RECTANGLE routine has the following format: 

XDrawRectangles(display, drawable_id, gc_id, rectangles, 
num_rectangles) 

Figure 6-5 Rectangles Drawn Using the DRAW RECTANGLES Routine 

To draw multiple rectangles, click MB 1. 

To exit, click MB2. 

ZK-0105A-GE 

6-13 



6.4.2 

Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

Drawing Arcs 

6-14 

Xlib routines enable clients to draw either single or multiple arcs. To 
draw a single arc, use the DRAW ARC routine, specifying a rectangle that 
defines the boundaries of the arc and two angles that determine the start 
and extent of the arc, as in the following: 

int x=50 
int y=lOO; 
int width=25; 
int length=50; 
int angle1=5760; 
int angle2=5760; 

XDrawArc(display, window, gc, x, y, width, height, 
anglel, angle2); 

The server draws an arc within a rectangle. The client specifies the upper 
left corner of the rectangle, relative to the origin of the drawable. The 
center of the rectangle is the center of the arc. The width and height of 
the rectangle are the major and minor axes of the arc, respectively. 

Two angles specify the start and extent of the arc. The angles are signed 
integers in degrees scaled up by 64. For example, a client would specify a 
90 degree arc as 64 * 90 or 5760. The start of the arc is specified by the first 
angle, relative to the three o'clock position from the center of the rectangle. 
The extent of the arc is specified by the second angle, relative to the start 
of the arc. Positive integers indicate counterclockwise motion; negative 
integers indicate clockwise motion. 

Figure 6-6 illustrates the relationships among the rectangle, axes, and 
angles that specify the arc. 



Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

Figure 6-6 Specifying an Arc 

X-Y 
Coordinate 

' 
Height 

Angle 2: 
Relative to 
Angle 1 

Angle 1: 
Relative to Three 
O'clock Position 

i.oc;.... ______ .___ Three O'clock 
Position 

Width 

ZK-001 SA-GE 

For an arc specified as [ x, y, width, height, anglel, angle2], the origin of the 
major and minor axes is at [ x + width/2, y + height/2]. The infinitely 
thin path describing the entire arc intersects the horizontal axis at 
[ x, y + height/2] and [ x +width, y + height/2] and the vertical axis at 
[ x + width/2, y] and [ x + width/2, y +height]. These coordinates are not 
truncated to discrete coordinates if they are fractional. 

The path of the arc is defined as the ideal mathematical path. For a wide 
line of width w, the bounding outlines for filling are given by two infinitely 
thin paths consisting of all points whose perpendicular distance from the 
path of the circle or ellipse is equal to w /2. 

For an ellipse defined as [ x, y, width, height, anglel, angle2], the angles 
must be specified in the skewed coordinate of the ellipse. The relationship 
between the coordinate system of the ellipse and that of a circle is specified 
using the following formula: 

skewed angle= atan(tan(normal angle) *width/height)+ adjust 

The skewed angle and normal angle are expressed in radians (rather than 
in degrees scaled by 64) in the range [ O, 2 * 7r ], where the atan returns a 
value in the range [ -7r /2, 7r /2]. The adjust is as follows: 

• 0 for normal-angle in the range [ 0, 7r /2] 

• 7r for a normal angle in the range [ 7r /2, 3 * 7r /2] 

• 2 * 7r for a normal angle in the range [ 3 * 7r /2, 2 * 7r] 

6-15 



Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

6-16 

To draw multiple arcs, use the following method: 

1 Define an array of arc data structures. 

2 Call the DRAW ARCS routine, specifying the array that defines the 
arcs and the number of array elements. 

The following illustrates the arc data structure: 

typedef struct { 
short x, y; 
unsigned short width, height; 
short anglel, angle2; 

XArc; 

Table 6-4 describes the members of the arc data structure. 

Table 6-4 Arc Data Structure Members 

Member Name 

x 

y 

width 

height 

angle1 

angle2 

Contents 

Defines the x-coordinate value of the rectangle in which the 
server draws the arc 

Defines the y-coordinate value of the rectangle in which the 
server draws the arc 

Defines the major axis of the arc 

Defines the minor axis of the arc 

Defines the starting point of the arc relative to the 3-o'clock 
position from the center of the rectangle 

Defines the extent of the arc relative to the starting point 

When drawing either single or multiple arcs, the server refers to the 
following members of the GC data structure to define arc characteristics: 

Function 

Foreground 

Line width 

Join style 

Fill style 

Tile/stipple x origin 

Clip x origin 

Clip mask 

Dashes 

Subwindow mode 

Plane mask 

Background 

Line style 

Cap style 

Tile 

Tile/stipple y origin 

Clip y origin 

Dash offset 

Stipple 

Chapter 4 describes the GC data structure members. 

If the last point in one arc coincides with the first point in the following 
arc, the two arcs join. If the first point in the first arc coincides with the 
last point in the last arc, the two arcs join. 

If two arcs join, the line width is greater than zero, and the arcs intersect, 
the server draws all pixels only once. Otherwise, it may draw intersecting 
pixels multiple times. 



Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

Example 6-4 illustrates using the DRAW ARCS routine. 

Example 6-4 Drawing Multiple Arcs 

/* Create window win on 
* display dpy, defined as follows: 

* 
* 
* 
* 
* 

* Position: x = 100,y = 100 
* Width = 600 
* Height = 600 
* gc refers to the GRAPHICS CONTEXT *I 

/****************** doHandleEvents ***********************/ 
static void doHandleEvents( 
{ 

XEvent event; 

for ( ; ; ) { 
XNextEvent(dpy, &event); 
switch (event.type) { 

case Expose: 
case ButtonPress: 

/***** Write a message *****/ 
static void doExpose(eventP) 
XEvent *eventP; 
{ 

doExpose(&event); break; 
doButtonPress(&event); break; 

char messagel[ 
char message2[ 
char message3[ 

{"To create arcs, click MBl"}; 
{"Each click creates a new circle of arcs."}; 
{"To exit, click MB2"}; 

XDrawimageString(dpy, win, gc, 150, 25, messagel, strlen(messagel)); 
XDrawimageString(dpy, win, gc, 150, 50, message2, strlen(message2)); 
XDrawimageString(dpy, win, gc, 150, 75, message3, strlen(message3)); 

/***** Draw the arcs *****/ 
static void doButtonPress(eventP) 
XEvent *eventP; 
{ 

#define ARC CNT 16 
#define RADIUS 50 
#define INNER RADIUS 20 

XArc arc arr[ARC_CNT]; 
int i; 

«t int x = eventP->xbutton.x; 
int y = eventP->xbutton.y; 

if (eventP->xbutton.button Button2) sys$exit (1); 

(continued on next page) 

6-17 



Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

Example 6-4 (Cont.) Drawing Multiple Arcs 

for (i=O;i<ARC_CNT;i++) { 
arc_arr[i] .anglel = (64*360)/ARC CNT * i; 
arc_arr[i] .angle2 = (64*360)/ARC=CNT*3; 
arc_arr[i] .width = RADIUS*2; 
arc_arr[i] .height = RADIUS*2; 
arc arr[i] .x x RADIUS + sin(2*3.14159/ARC CNT*i) * INNER_RADIUS; 
arc=arr[i] .y = y - RADIUS+ cos(2*3.14159/ARC=CNT*i) * INNER_RADIUS; 

f9 XDrawArcs(dpy, win, gc, &arc_arr, ARC_CNT); 
} 

6-18 

0 The x and y variables specify the upper left corner of the rectangle that 
defines the boundary of the arc. The client determines the rectangle 
coordinates by taking the values of the x and y arguments from the 
button event data structure. Because these values indicate the position 
of the cursor when the user clicks the mouse button, the server draws 
the arcs relative to the position of the cursor. For more information 
about the button event data structure, see Chapter 9. 

8 The DRAW ARCS routine has the following format: 

XDrawArcs(display,drawable_id,gc_id,arcs,num_arcs) 

Figure 6-7 illustrates the resulting output. 



6.5 Fi Iii ng Areas 

Drawing Graphics 
6.4 Drawing Rectangles and Arcs 

Figure 6-7 Multiple Arcs Drawn Using the DRAW ARCS Routine 

IE81 Drawing Multiple Arcs [!l)liil] 

To create arcs, click MB 1. 
Each click creates a new circle of arcs. 

To exit, click MB2. 

ZK-0106A-GE 

This section describes using Xlib routines to fill single rectangles, arcs, 
and polygons, and multiple rectangles and arcs. 

6.5.1 Filling Rectangles and Arcs 
The FILL RECTANGLE, FILL RECTANGLES, FILL ARC, and FILL 
ARCS routines create single and multiple rectangles or arcs and fill them 
using the fill style the client specifies in a graphics context data structure. 

The method of calling the fill routines is identical to that for drawing 
rectangles and arcs. For example, to create rectangles filled solidly with 
foreground color in Example 6-3, the client needs only to call the FILL 
RECTANGLES routine instead of DRAW RECTANGLES. The default 
value of the GC data structure fill style member is solid. If the client were 

6-19 



6.5.2 

Drawing Graphics 
6.5 Filling Areas 

Filling a Polygon 

6-20 

to specify a tile or stipple for filling the rectangles, the client would have 
to change the graphics context used by the FILL RECTANGLES routine. 

The server refers to the following members of the GC data structure to 
define characteristics of the rectangles and arcs it fills: 

Function 

Foreground 

Fill style 

Stipple 

Tile/stipple x origin 

Clip x origin 

Clip mask 

Plane mask 

Background 

Tile 

Subwindow mode 

Tile/stipple y origin 

Clip y origin 

Additionally, the server refers to the arc mode member if filling arcs. 

For information about using graphics context, see Chapter 4. 

To fill a polygon, use the following method: 

1 Define an array of point data structures. 

2 Call the FILL POLYGON routine, specifying the array that defines the 
points of the polygon, the number of points the server is to draw, the 
shape of the polygon, and the coordinate system the server is to use. 
The server draws the points in the order specified by the array. 

See Section 6.3.1 for an illustration of the point data structure. 

To improve performance, clients can specify whether the shape of the 
polygon is complex, convex, or nonconvex, as follows: 

• Specify the constant Complex as the shape argument if the path that 
draws the polygon may intersect itself. 

• Specify the constant Convex if the path that draws the shape is 
wholly convex. If a client specifies Convex for a path that is not 
convex, the results are undefined. 

• Specify the constant Nonconvex as the shape argument if the path 
does not intersect itself, but the shape is not wholly convex. If a client 
specifies Nonconvex for a path that intersects itself, the results are 
undefined. 

When filling the polygon, the server draws each pixel only once. 

The server determines the location of points as follows: 

• If the client specifies the constant Coord.ModeOrigin, the server 
defines all points in the array relative to the origin of the drawable. 

• If the client specifies the constant CoordModePrevious, the server 
defines the coordinates of the first point in the array relative to the 
origin of the drawable, and the coordinates of each subsequent point 
relative to the point preceding it in the array. 



Drawing Graphics 
6.5 Filling Areas 

If the last point does not coincide with the first point, the server closes the 
polygon automatically. 

The server refers to the following members of the GC data structure to 
define the characteristics of the polygon it fills: 

Function 

Foreground 

Fill rule (if polygon is complex) 

Tile/stipple x origin 

Clip x origin 

Subwindow mode 

Stipple 

Plane mask 

Fill style 

Tile 

Tile/stipple y origin 

Clip y origin 

Clip mask 

Background 

Chapter 4 describes GC data structure members. 

Example 6-5 uses the FILL POLYGON routine to draw and fill the star 
created in Example 6-2. 

Example 6-5 Filling a Polygon 

/* Create window win on 
* display dpy, defined as follows: 

* 
* 
* 

Position: x = 100,y = 100 
Width = 600 
Height = 600 

* gc refers the graphics context 

* 
* 
* 
* 
* 
*/ 

/****************** doHandleEvents ***********************/ 
static void doHandleEvents( 
{ 

XEvent event; 

for ( ; ; ) { 
XNextEvent(dpy, &event); 
switch (event.type) 

case Expose: 

/***** doExpose ****/ 
static void doExpose(eventP) 
XEvent *eventP; 
{ 

XPoint pt_arr[6]; 

doExpose(&event); break; 

(continued on next page) 

6-21 



Drawing Graphics 
6.5 Filling Areas 

Example 6-5 (Cont.) Filling a Polygon 

0 pt_arr[O] .x = 75; 
pt_arr[O] .y 500; 
pt_arr[l] .x = 300; 
pt_arr[l] .y 100; 
pt_arr[2] .x 525; 
pt_arr[2] .y 500; 
pt_arr[3] .x 50; 
pt_arr[3] .y 225; 
pt_arr[4] .x 575; 
pt_arr[4] .y 225; 
pt_arr[5] .x 75; 
pt_arr[5] .y = 500; 

~ XFillPolygon(dpy, win, gc, &pt_arr, 6, Complex, CoordModeOrigin); 
} 

6-22 

0 Use an array of point data structures to specify the points that define 
the polygon. 

8 The call to fill the polygon refers to a graphics context (gc), which the 
client has previously defined, and an array of point data structures. 
The constant Complex indicates that the path of the line that 
draws the polygon intersects itself. The constant CoordModeOrigin 
indicates that all points are relative to the origin of win (100,100). 

Figure 6-8 illustrates the resulting output. 



Drawing Graphics 
6.5 Filling Areas 

Figure 6-8 Filled Star Created Using the FILL POLYGON Routine 

m Filling a Polygon !!I] [iii! 

6.6 Clearing and Copying Areas 

To create a filled polygon, click MB1. 

To exit, click MB2. 

ZK-0158A-GE 

Xlib includes routines that enable clients to clear or copy a specified area 
of a drawable. Because pixmaps do not have defined backgrounds, clients 
clearing an area of a pixmap must use the FILL RECTANGLE routine 
described in Section 6.5.1. For more information about pixmaps, see 
Chapter 7. 

This section describes how to clear windows and copy areas of windows 
and pixmaps. 

6-23 



6.6.1 

Drawing Graphics 
6.6 Clearing and Copying Areas 

Clearing Window Areas 
To clear an area of a window, use the CLEAR AREA or CLEAR WINDOW 
routine. The CLEAR AREA routine clears a specified area and generates 
an exposure event, if the client directs the server to do so. 

The CLEAR WINDOW routine clears the entire area of the specified 
window. If the window has a defined background tile, the window is 
retiled. If the window has no defined background, the server does not 
change the window contents. 

Example 6-6 illustrates clearing a window. 

Example 6-6 Clearing a Window 

/***** Draw multiple arcs *****/ 
static void doButtonPress(eventP) 
XEvent *eventP; 
{ 

#define ARC CNT 16 
#define RADIUS 50 
#define INNER RADIUS 20 

XArc arc arr[ARC_CNT]; 
int i; 
int x = eventP->xbutton.x; 
int y = eventP->xbutton.y; 

if (eventP->xbutton.button 
if (eventP->xbutton.button 
{ 

Button2) sys$exit (1); 
Button3) 

XClearWindow(dpy, win); 
return; 

for (i=O;i<ARC_CNT;i++) { 
arc_arr[i] .anglel = (64*360)/ARC_CNT * i; 
arc arr[i] .angle2 = (64*360)/ARC CNT*3; 
arc=arr[i] .width = RADIUS*2; -
arc_arr[i] .height = RADIUS*2; 
arc arr[i] .x x - RADIUS + sin(2*3.14159/ARC CNT*i) * INNER_RADIUS; 
arc=arr[i] .y = y - RADIUS+ cos(2*3.14159/ARC=CNT*i) * INNER_RADIUS; 

XDrawArcs(dpy, win, gc, &arc_arr, ARC_CNT); 

6-24 

The example modifies the doButtonPress routine of Example 6-4 to clear 
the window when the user clicks MB3. 

If clearing multiple areas, using the FILL RECTANGLES routine is faster 
than using the CLEAR WINDOW or CLEAR AREA routine. To clear 
multiple areas on a monochrome screen, first set the function member of 
the GC data structure to the value specified by the constant GXclear. 
Then call the FILL RECTANGLES routine. If the screen is a color type, 
set the value of the background to the background of the window before 
calling FILL RECTANGLES. 



6.6.2 

Drawing Graphics 
6.6 Clearing and Copying Areas 

Copying Areas of Windows and Pixmaps 
Xlib includes the COPY AREA and COPY PLANE routines to enable 
clients to copy a rectangular area defined on one window or pixmap (the 
source) to an area of another window or pixmap (the destination). COPY 
AREA copies areas between drawables of the same root and depth. COPY 
PLANE copies a single bit plane of the specified drawable to another 
drawable, regardless of their depths. The bit plane is treated as a stipple 
with a fill style of FillOpaqueStippled. Both drawables must have the 
same root window. 

The server refers to the following members of the GC data structure when 
copying areas and planes: 

Function 

Clip x origin 

Subwindow mode 

Graphics exposures 

Plane mask 

Clip y origin 

Clip mask 

If the client calls COPY AREA or COPY PLANES, the server also refers 
to the graphics exposures member of the GC data structure. If the client 
calls the COPY PLANES routine, the server additionally refers to the 
foreground and background members. 

6.7 Defining Regions 

6.7.1 

A region is an arbitrarily defined area within which graphics drawing is 
clipped. In other words, clipping regions are portions of either windows or 
pixmaps in which clients can restrict output. As Chapter 4 notes, the SET 
CLIP MASK, SET CLIP ORIGIN, and SET CLIP RECTANGLES routines 
define clipping regions. Xlib provides other, more convenient, routines that 
enable clients to define regions and associate them with drawables without 
having to change graphics context values directly. 

This section describes how to create and manage clipping using Xlib region 
routines. 

Creating Regions 
Xlib includes the CREATE REGION and POLYGON REGION routines for 
creating regions. CREATE REGION creates an empty region. POLYGON 
REGION creates a region defined by an array of points. 

Example 6-7 illustrates using POLYGON REGION to create a star-shaped 
region. Using the DRAW ARCS routine of Example 6-4, the program 
limits arc drawing to the star region. 

6-25 



Drawing Graphics 
6.7 Defining Regions 

Example 6-7 Defining a Region Using the POLYGON REGION Routine 

/* Create window win on * 
* display dpy, defined as follows: * 
* Position: x = 100,y = 100 * 
* Width = 600 * 
* Height = 600 * 
* gc refers to the graphics context */ 

/******** Create the graphics context *********/ 
static void doCreateGraphicsContext( ) 
{ 

XPoint pt_arr[NUM_PTS]; 
XGCValues xgcv; 

tt pt_arr[O] .x = 75; 
pt_arr[O] .y 500; 
pt_arr[l] .x 300; 
pt_arr[l] .y 100; 
pt_arr[2] .x 525; 
pt_arr[2] .y 500; 
pt_arr[3] .x 50; 
pt_arr[3] .y 225; 
pt_arr[4] .x 575; 
pt_arr[4] .y 225; 
pt_arr[5] .x 75; 
pt_arr[5] .y 500; 

/* Create graphics context. */ 

xgcv.foreground = doDefineColor(2); 
xgcv.background = doDefineColor(3); 

gc = XCreateGC(dpy, win, GCForeground I GCBackground, &xgcv); 
~ star_region XPolygonRegion(&pt~arr, NUM_PTS, WindingRule); 

/****************** doHandleEvents ***********************/ 
static void doHandleEvents( 
{ 

XEvent event; 

for ( ; ; ) { 
XNextEvent{dpy, &event); 
switch (event.type) { 

case Expose: 
case ButtonPress: 

6-26 

doExpose(&event); break; 
doButtonPress(&event); break; 

(continued on next page) 



Drawing Graphics 
6. 7 Defining Regions 

Example 6-7 {Cont.) Defining a Region Using the POLYGON REGION Routine 

/***** Write a message *****/ 
static void doExpose(eventP) 
XEvent *eventP; 
{ 

char messagel[ 
char message2[ 
char message3[ 

{"To create arcs in a region, click MBl"}; 
{"Each click creates a new circle of arcs."}; 
{"To exit, click MB2"}; 

XDrawimageString(dpy, win, gc, 150, 25, messagel, strlen(messagel)); 
XDrawimageString(dpy, win, gc, 150, 50, message2, strlen(message2)); 
XDrawimageString(dpy, win, gc, 150, 75, message3, strlen(message3)); 

/***** Draw the arcs *****/ 
static void doButtonPress(eventP) 
XEvent *eventP; 
{ 

#define ARC CNT 16 
#define RADIUS 50 
#define INNER RADIUS 20 

XArc arc arr[ARC_CNT]; 
int i; 
int x = eventP->xbutton.x; 
int y = eventP->xbutton.y; 

if (eventP->xbutton.button == Button2) sys$exit (1); 

@» XSetRegion(dpy, gc, star region); 
for (i=O;i<ARC_CNT;i++) { 

arc arr[i] .anglel = (64*360)/ARC CNT * i; 
arc=arr[i] .angle2 = (64*360)/ARC=CNT*3; 
arc_arr[i] .width = RADIUS*2; 
arc_arr[i] .height = RADIUS*2; 
arc arr[i] .x x - RADIUS + sin(2*3.14159/ARC CNT*i) * INNER_RADIUS; 
arc=arr[i] .y = y - RADIUS+ cos(2*3.14159/ARC=CNT*i) * INNER_RADIUS; 

XDrawArcs(dpy, win, gc, &arc_arr, ARC_CNT); 

0 Define an array of point data structures to define the clipping region. 

8 Define the clipping region. Note that defining the region does not 
associate it with a graphics context. 

Fill rule can be either even odd rule or winding rule. For more 
information about fill rule, see Chapter 4. 

0 Associate the region with a graphics context. The association sets 
fields in the specified GC data structure that control clipping. 
Drawables that refer to the GC data structure have output clipped 
to the region. 

6-27 



6.7.2 

Drawing Graphics 
6. 7 Defining Regions 

Figure 6-9 illustrates sample output from the program. 

Figure 6-9 Arcs Drawn Within a Region 

m Drawing Multiple Arcs in a Region l!i)lmJ 
To create arcs, click MB1. 
Each click creates a new circle of arcs. 

To exit, click MB2. 

ZK-0323A-GE 

Managing Regions 
Xlib includes routines that enable clients to do the following: 

• Move and shrink a region 

• Compute the intersection, union, and results of two regions 

• Determine if regions are empty or equal 

• Locate a point or rectangle within a region 

6-28 



Drawing Graphics 
6. 7 Defining Regions 

Table 6-5 lists and describes Xlib routines that manage regions. 

Table 6-5 Routines for Managing Regions 

Routine 

Moving and Shrinking 

OFFSET REGION 

SHRINK REGION 

Computing 

INTERSECT REGION 

UNION REGION 

SUBTRACT REGION 

XOR REGION 

Description 

Moves a region a specified amount 

Reduces a region a specified amount 

Computes the intersection of two regions 

Computes the union of two regions 

Subtracts two regions 

Calculates the difference between the union and 
intersection of two regions 

Determining if Regions are Empty or Equal 

EMPTY REGION 

EQUAL REGION 

Determines if a region is empty 

Determines if two regions have the same offset, size, 
and shape 

Locating a Point or Rectangle Within a Region 

POINT IN REGION 

RECT IN REGION 

Determines if a point is within a region 

Determines if a rectangle is within a region 

Example 6-8 illustrates creating a region from the intersection of two 
others. 

6-29 



Drawing Graphics 
6. 7 Defining Regions 

Example 6-8 Defining the Intersection of Two Regions 

Pixmap pixmapl, pixmap2, pixmap3; 
Region regionl, region2, region3; 

/***************** doinitialize **************************/ 
static void doinitialize( ) 
{ 

dpy = XOpenDisplay(O); 

screen= XDefaultScreenOfDisplay(dpy); 

doCreateWindows( ); 

doCreateGraphicsContext( ); 

doCreatePixmap( ); 

doCreateRegion( ); 

doWMHints( ); 

doMapWindows( ); 

/******* doCreatePixmap *********/ 
t»static void doCreatePixmap( ) 
{ 

pixmapl 

pixmap2 

pixmap3 

XCreatePixmap(dpy, win, pixWidth, pixHeight, 
DefaultDepthOfScreen(screen)); 
XCreatePixmap(dpy, win, pixWidth, pixHeight, 
DefaultDepthOfScreen(screen)); 
XCreatePixmap(dpy, win, pixWidth, pixHeight, 
DefaultDepthOfScreen(screen)); 

/* Set the pixmap background */ 
XFillRectangle(dpy, pixmapl, gc, 0, 0, pixWidth, pixHeight); 
XFillRectangle(dpy, pixmap2, gc, 0, O, pixWidth, pixHeight); 
XFillRectangle(dpy, pixmap3, gc, 0, 0, pixWidth, pixHeight); 

/* Redefine foreground value for line drawing and text */ 
XSetForeground(dpy, gc, doDefineColor(2)); 

/* Draw Line into the pixmap */ 
XDrawLine(dpy, pixmapl, gc, 0, 4, 0, 8) ; 
XDrawLine(dpy, pixmap2, gc, 4, 0, 8, 0) ; 
XDrawLine(dpy, pixmap3, gc, O, 4, 0, 8) ; 
XDrawLine(dpy, pixmap3, gc, 4, 0, 8, 0) ; 

/******* doCreateRegion *********/ 
static void doCreateRegion( ) 
{ 

~ XPoint pt_arr_l[num_pts], pt_arr_2[num_pts]; 

6-30 

(continued on next page) 



Drawing Graphics 
6. 7 Defining Regions 

Example 6-8 (Cont.) Defining the Intersection of Two Regions 

pt_arr_l[O] .x 
pt_arr_l [OJ .y 
pt_arr_l [l] .x 
pt_arr_l[l] .y 
pt_arr_1[2] .x 
pt_arr_1[2] .y 
pt_arr_1[3] .x 
pt_arr_1[3] .y 

pt_arr_2[0] .x 
pt_arr_2[0] .y 
pt_arr_2[1] .x 
pt_arr_2[1] .y 
pt_arr_2[2] .x 
pt_arr_2[2] .y 
pt_arr_2[3] .x 
pt_arr_2[3] .y 

200; 
100; 
50; 
300; 
200; 
500; 
350; 
300; 

400; 
100; 
250; 
300; 
400; 
500; 
550; 
300; 

regionl 
region2 

XPolygonRegion(pt_arr_l, num_pts, WindingRule); 
XPolygonRegion(pt_arr_2, num_pts, WindingRule); 

/****************** doHandleEvents ***********************/ 
static void doHandleEvents( ) 
{ 

XEvent event; 

for ( ; ; ) { 
XNextEvent(dpy, &event); 
switch (event.type) { 

case Expose: 
case ButtonPress: 

doExpose(&event); break; 
i++; doButtonPress(&event); break; 

/***** Write a message *****/ 
static void doExpose(eventP) 
XEvent *eventP; 
{ 

char messagel[ ] = {"To map regions click MBl three times."}; 
char message2[ ] = {"To exit, click MB2."}; 

XDrawimageString(dpy, win, gc, 150, 25, messagel, strlen(messagel)); 
XDrawimageString(dpy, win, gc, 150, 50, message2, strlen(message2)); 

/***** Map the regions when the button is pressed *****/ 
static void doButtonPress(eventP) 
XEvent *eventP; 
{ 

char message3[ ] = {"That's it! Click MB2 to exit."}; 

if (eventP->xbutton.button == Button2) sys$exit (1); 
if (i == 1) { 

/* Redefine the fill style for stippling */ 
@) XSetFillStyle(dpy, gc, FillTiled); 

(continued on next page) 

6-31 



Drawing Graphics 
6. 7 Defining Regions 

Example 6-8 (Cont.} Defining the Intersection of Two Regions 

XClearWindow(dpy, win); 
XSetTile(dpy, gc, pixmapl); 

., XSetRegion(dpy, gc, regionl); 
@t XFillRectangle(dpy, win, gc, xOrigin, yOrigin, winW, winH); 

} 

else if (i == 2) { 
0 XClearWindow(dpy, win); 

XSetTile(dpy, gc, pixmap2); 
XSetRegion(dpy, gc, region2); 
XFillRectangle(dpy, win, gc, xOrigin, yOrigin, winW, winH); 
} 

else if (i == 3) { 
XClearWindow(dpy, win); 

fj region3 = XCreateRegion(); 
XIntersectRegion(regionl, region2, region3); 
XSetTile(dpy, gc, pixmap3); 
XSetRegion(dpy, gc, region3); 
XFillRectangle(dpy, win, gc, xOrigin, yOrigin, winW, winH); 
} 

else{ 
/* To draw text, redefine the fill style as solid */ 

fD XSetFillStyle(dpy, gc, FillSolid); 

6-32 

XDrawimageString(dpy, win, gc, 150, 50, message3, strlen(message3)); 
} 

0 Pixmaps are used to tile the window with horizontal, vertical, and 
cross-hatched lines. For information about pixmaps, see Chapter 7. 

8 Arrays of point data structures define two regions. 

8 After writing messages in the window, the fill style defined in the 
GC data structure is changed to tile the window with pixmaps. The 
subsequent call to SET TILE defines one of the three pixmaps created 
earlier as the window background pixmap. For information about fill 
styles and tiling, see Chapter 4. 

8 The SET REGION routine specifies the clipping region in the graphics 
context. The region defined by pt_arrl is first specified. 

0 FILL RECTANGLE repaints the window, filling it with the tiling 
pattern defined in pixmapl. Tiling is restricted to the region defined 
by regionl. 

0 Before specifying a new tiling pattern and region, the window is 
cleared. 

fj CREATE REGION creates an empty region and returns an identifier, 
region3. Xlib returns the results of intersecting regionl and region2 to 
region3. 

0 Before displaying a final message in the window, the fill style is 
redefined to solid to enable text writing. 



6.8 Defining Cursors 

Drawing Graphics 
6. 7 Defining Regions 

Figure 6-10 illustrates the output from the program. 

Figure 6-10 Intersection of Two Regions 

IEEJ Intersection of Two Regions [!;][iii] 

I . - --· -I --

ZK-0322A-GE 

A cursor is a bit image on the screen that indicates either the movement 
of a pointing device or the place where text will next appear. Xlib enables 
clients to associate a cursor with each window they create. After making 
the association between cursor and window, the cursor is visible whenever 
it is in the window. If the cursor indicates movement of a pointing device, 
the movement of the cursor in the window automatically reflects the 
movement of the device. 

Xlib and VMS DECwindows provide fonts of predefined cursors. Clients 
that want to create their own cursors can either define a font of shapes 
and masks or create cursors using pixmaps. 

6-33 



6.8.1 

Drawing Graphics 
6.8 Defining Cursors 

Creating Cursors 

6-34 

This section describes the following: 

• Creating cursors using the Xlib cursor font, a font of shapes and 
masks, and pixmaps 

• Associating cursors with windows 

• Managing cursors 

• Freeing memory allocated to cursors when clients no longer need them 

Xlib enables clients to use predefined cursors or to create 
their own cursors. To create a predefined Xlib cursor, use the 
CREATE FONT CURSOR routine. Xlib cursors are predefined in 
DECW$INCLUDE:CURSORFONT.H. Table 6-6 lists the constants that 
refer to the predefined Xlib cursors. 

Table 6-6 Predefined Xlib Cursors 

XC_X_cursor 

XC _ based_arrow _down 

XC_boat 

XC_bottom_left_corner 

XC_bottom_side 

XC_box_spiral 

XC_circle 

XC_coffee_mug 

XC_cross_reverse 

XC_diamond_cross 

XC_dotbox 

XC_draft_large 

XC _draped_box 

XC_fleur 

XC_gumby 

XC_hand2 

XC_icon 

XC_left_ptr 

XC_left_tee 

XC_ll_angle 

XC_man 

XC_mouse 

XC_pirate 

XC_arrow 

XC_based_arrow_up 

XC_bogosity 

XC_bottom_right_corner 

XC _ bottom_tee 

XC_center_ptr 

XC_clock 

XC_cross 

XC_crosshair 

XC_dot 

XC_double_arrow 

XC_draft_small 

XC_exchange 

XC_gobbler 

XC_hand1 

XC_heart 

XC_iron_cross 

XC_left_side 

X C _leftbutton 

XC_lr_angle 

XC _middlebutton 

XC_pencil 

XC_plus 

(continued on next page) 



Drawing Graphics 
6.8 Defining Cursors 

Table 6-6 (Cont.) Predefined Xlib Cursors 

XC _question_arrow 

XC _right_side 

XC _rightbutton 

XC_sailboat 

XC_sb_h_double_arrow 

XC _sb_right_arrow 

XC_sb_v_double_arrow 

XC_sizing 

XC_spraycan 

XC_target 

XC_top_left_arrow 

XC_top_right_corner 

XC_top_tee 

XC_ul_angle 

XC_ur_angle 

XC_xterm 

XC _right_ptr 

XC _right_tee 

XC_rtl_logo 

XC_sb_down_arrow 

XC_sb_left_arrow 

XC_sb_up_arrow 

XC_shuttle 

XC_spider 

XC_star 

XC_tcross 

XC_top_left_corner 

XC_top_side 

XC_trek 

XC_umbrella 

XC_watch 

The following example creates a sailboat cursor, one of the predefined Xlib 
cursors, and associates the cursor with a window: 

Cursor fontcursor; 

fontcursor = XCreateFontCursor(dpy, XC_sailboat); 
XDefineCursor(dpy, win, fontcursor); 

The DEFINE CURSOR routine makes the sailboat cursor automatically 
visible when the pointer is in window win. 

To create a predefined VMS DECwindows cursor, use the CREATE 
GLYPH CURSOR routine. VMS DECwindows cursors are predefined 
in SYS$LIBRARY:DECW$CURSOR.H. Table 6-7 lists the constants that 
refer to the predefined VMS DECwindows cursors. 

Table 6-7 Predefined VMS DECwindows Cursors 

decw$c_select_cursor 

decw$c_help_select_cursor 

decw$c_inactive_cursor 

decw$c_vpane_cursor 

decw$c_text_insertion_cursor 

decw$c_cross_hair _cursor 

decw$c _leftselect_ cursor 

decw$c_wait_cursor 

decw$c_resize_cursor 

decw$c_hpane_cursor 

decw$c_text_insertion_bl_cursor 

decw$c_draw_cursor 

(continued on next page) 

6-35 



Drawing Graphics 
6.8 Defining Cursors 

6-36 

Table 6-7 (Cont.) Predefined VMS DECwindows Cursors 

decw$c_pencil_cursor 

decw$c_center_cursor 

decw$c_wselect_cursor 

decw$c_x_cursor 

decw$c_mouse_cursor 

decw$c_leftgrab_cursor 

decw$c_rightgrab_cursor 

decw$c _uppointing_ cursor 

decw$c_rpencil_cursor 

decw$c_rightselect_ cu rs or 

decw$c_eselect_cursor 

decw$c_circle_cursor 

decw$c_lpencil_cursor 

decw$c_grabhand_cursor 

decw$c_leftpointing_cursor 

decw$c_rightpointing_cursor 

CREATE GLYPH CURSOR selects a cursor shape and cursor mask from 
the VMS DECwindows cursor font, defines how the cursor appears on 
the screen, and assigns a unique cursor identifier. The following example 
illustrates creating the select cursor and associating the cursor with a 
window: 

Font cursorfont 
Cursor glyphcursor; 
XColor forecolor, backcolor; 

cursorfont = XLoadFont(dpy, "decw$cursor"); 
XSetFont(dpy, gc, "decw$cursor"); 

glyphcursor = XCreateGlyphCursor(dpy, cursorfont, cursorfont, 
decw$c_select_cursor, decw$c_select_cursor + 1, 
&forecolor, &backcolor); 

XDefineCursor(dpy, win, glyphcursor); 

To create client-defined cursors, either create a font of cursor shapes or 
define cursors using pixmaps. In each case the cursor consists of the 
following components: 

• Shape-Defines the cursor as it appears without modification in a 
window 

• Mask-Acts as a clip mask to define how the cursor actually appears 
in a window 

• Background color-Specifies RGB values used for the cursor 
background 

• Foreground color-Specifies RGB values used for the cursor foreground 

• Hot spot-Defines the position on the cursor that reflects movements 
of the pointing device 

Figure 6-11 illustrates the relationship between the cursor shape and the 
cursor mask. The cursor shape defines the cursor as it would appear on 
the screen without modification. The cursor mask bits that are set to 1 
select which bits of the cursor shape are actually displayed. If the mask 
bit has a value of 1, the corresponding shape bit is displayed whether it 
has a value of 1 or 0. If the mask bit has a value of 0, the corresponding 
shape bit is not displayed. 



Drawing Graphics 
6.8 Defining Cursors 

In the resulting cursor shape, bits with a 0 value are displayed in the 
specified background color; bits with a 1 value are displayed in the 
specified foreground color. 

To create a client-defined cursor from a font of glyphs, use the CREATE 
GLYPH CURSOR routine, specifying the cursor and mask fonts that 
contain the glyphs. To create a cursor from pixmaps, use the CREATE 
PIXMAP CURSOR routine. The pixmaps must have a depth of one. If the 
depth is not one, the server generates an error. 

6-37 



Drawing Graphics 
6.8 Defining Cursors 

Figure 6-11 Cursor Shape and Cursor Mask 

Cursor Shape 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 0 0 0 

0 0 0 1 0 0 0 1 0 0 0 

0 0 0 1 1 0 1 1 0 0 0 

0 0 0 0 1 0 1 0 0 0 0 

0 0 0 0 1 0 1 0 0 0 0 

0 0 0 0 1 0 1 0 0 0 0 

0 0 0 0 1 0 1 0 0 0 0 

0 0 0 1 1 0 1 1 0 0 0 

0 0 0 1 0 0 0 1 0 0 0 

0 0 0 1 1 1 1 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

Resulting Cursor 

Background 

6-38 

Cursor Mask 

0 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 1 1 1 1 1 0 0 

0 0 1 1 1 1 1 1 1 0 0 

0 0 1 1 0 0 0 1 1 0 0 

0 0 1 1 1 0 1 1 1 0 0 

0 0 1 1 1 0 1 1 1 0 0 

0 0 0 1 1 0 1 1 0 0 0 

0 0 0 1 1 0 1 1 0 0 0 

0 0 1 1 1 0 1 1 1 0 0 

0 0 1 1 1 0 1 1 1 0 0 

0 0 1 1 0 0 0 1 1 0 0 

0 0 1 1 1 1 1 1 1 0 0 

0 0 1 1 1 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 

ZK-0154A-GE 



Drawing Graphics 
6.8 Defining Cursors 

The size of the pixmap cursor must be supported by the display on which 
the cursor is visible. To determine the supported size closest to the size 
the client specifies, use the QUERY BEST CURSOR routine. Example 6-9 
illustrates creating a pencil pointer cursor from two pixmaps. 

Example 6-9 Creating a Pixmap Cursor 

#include <decw$include/Xlib.h> 
#include <decw$include/Xutil .h> 

#define winW 600 
#define winH 600 
#define pencil_width 16 
#define pencil_height 16 
#define pencil_xhot 1 
#define pencil_yhot 15 

Display *dpy; 
Window win; 
Pixmap pixmap, pencil; 
Pixmap pencil_mask; 
Cursor pencil_cursor; 

static char pencil_bits[] = { 
OxOOOO, Ox0070, OxOOOO, Ox0088, OxOOOO, Ox008C, OxOOOO, Ox0096, 
OxOOOO, Ox0069, Ox0080, Ox0030, Ox0040, Ox0010, Ox0020, Ox0008, 
OxOOlO, Ox0004, Ox0008, Ox0002, Ox0008, OxOOOl, Ox0094, OxOOOO, 
Ox0064, OxOOOO, OxOOlE, OxOOOO, Ox0006, OxOOOO, OxOOOO, OxOOOO}; 

static char pencil_mask bits[] = 
OxOO, OxF8, OxOO, OxFC, OxOO, OxFE, OxOO, OxFF, Ox80, OxFF, OxCO, Ox7F, 
OxEO, Ox3F, OxFO, OxlF, OxF8, OxOF, OxFC, Ox07, OxFC, Ox03, OxFE, OxOl, 
OxFE, OxOO, Ox7F, OxOO, OxlF, OxOO, Ox07, OxOO}; 

/******* doCreateCursor *********/ 
static void doCreateCursor( ) 
{ 

XColor dummy, cursor_f0reground, cursor_background; 

/*Create pixmaps for cursor */ 
t) pixmap= XCreatePixmap(dpy, XDefaultRootWindow(dpy), 1, 1, 1); 

8 XLookupColor(dpy, XDefaultColormapOfScreen(screen), "black", 
&dummy, &cursor_foreground); 

XLookupColor(dpy, XDefaultColormapOfScreen(screen), "white", 
&dummy, &cursor_background); 

6) pencil= XCreatePixmapFromBitmapData(dpy, pixmap, pencil_bits, 
pencil width, pencil height, 1, 0, 1); 

pencil_mask = XCreatePixmapFromBitmapData(dpy, pixmap, pencil_mask_bits, 
pencil_width, pencil_height, 1, 0, 1); 

Ct pencil cursor= XCreatePixmapCursor(dpy, pencil, pencil mask, 
&cursor foreground, &cursor background, pencil xho-t,° pencil yhot); 

XDefineCursor(dpy, win, pencil_cursor); - -

t) The client first creates a pixmap into which it will draw bit images for 
the cursor and cursor mask. Note that the depth of the pixmap must 
be one. For information about creating pixmaps, see Chapter 7. 

6-39 



6.8.2 

6.8.3 

Drawing Graphics 
6.8 Defining Cursors 

8 The LOOKUP COLOR routine returns the color value associated with 
the named color to the cursor Joreground and cursor _background 
variables. For information about LOOKUP COLOR, see Chapter 5. 

8 The CREATE PIXMAP FROM BITMAP DATA routine writes an image 
into a specified pixmap. The client uses the routine to write images for 
the cursor and the cursor mask into two pixmaps with depths of one. 

8 The CREATE PIXMAP CURSOR routine uses the two pixmaps to 
create the pixmap cursor. 

Managing Cursors 
To dissociate a cursor from a window, call the UNDEFINE CURSOR 
routine. After a call to UNDEFINE CURSOR, the cursor associated with 
the parent window is used. If the window is a root window, UNDEFINE 
CURSOR restores the default cursor. UNDEFINE CURSOR does not 
destroy a cursor. Using its identifier, the client can still refer to the cursor 
and associate it with a window. 

To change the color of a cursor, use the RECOLOR CURSOR routine. If 
the cursor is displayed on the screen, the change is immediately visible. 
For information about defining foreground and background colors, see 
Chapter 5. For information about loading fonts, see Chapter 8. 

Destroying Cursors 

6-40 

To destroy a cursor, use the FREE CURSOR routine. FREE CURSOR 
deletes the association between the cursor identifier and the specified 
cursor. It also frees memory allocated for the cursor. 



7 Using Pixmaps and Images 

Xlib enables clients to create and work with both on-screen graphics, such 
as lines and cursors, and off-screen images, such as pixmaps. Chapter 4 
and Chapter 6 describe how to work with on-screen graphics objects. 

This chapter describes how to work with off-screen graphics resources, 
including the following topics: 

• Creating and freeing pixmaps 

• Creating and managing bitmap files 

• Working with images 

7.1 Creating and Freeing Pixmaps 
A pixmap is an area of memory into which clients can either define an 
image or temporarily save part of a screen. Pixmaps are useful for defining 
cursors and icons, for creating tiling patterns, and for saving portions of a 
window that has been exposed. Additionally, drawing complicated graphics 
sequences into pixmaps and then copying the pixmaps to a window is often 
faster than drawing the sequences directly to a window. 

Use the CREATE PIXMAP routine to create a pixmap. The routine creates 
a pixmap of a specified width, height, and depth. If the width or height is 
zero or the depth is not supported by the drawable root window, the server 
returns an error. The pixmap must be associated with a window, which 
can be either an input-output or an input-only window. 

Example 7-1 illustrates creating a pixmap to use as backing store for 
drawing the star of Example 6-5. 

7-1 



Using Pixmaps and Images 
7.1 Creating and Freeing Pixmaps 

Example 7-1 Creating a Pixmap 

/* Create window win on 
* display dpy, defined as follows: 
* Position: x = 100,y = 100 
* Width = 600 
* Height = 600 
* gc refers to the graphics context 

Pixmap pixmap; 
int n, exposef lag O; 

/******** Create the graphics context *********/ 
static void doCreateGraphicsContext( ) 
{ 

XGCValues xgcv; 

/* Create graphics context. */ 

t» xgcv.foreground = doDefineColor(l); 
xgcv.background = doDefineColor(l); 

* 
* 
* 
* 
* 
*/ 

gc = XCreateGC(dpy, win, GCForeground I GCBackground, &xgcv); 

/******* doCreatePixmap *********/ 
static void doCreatePixmap( 
{ 

XPoint pt_arr[6]; 

pt_arr[O] .x 75; 
pt_arr[O] .y 500; 
pt_arr[l] .x 300; 
pt_arr[l] .y 100; 
pt_arr[2] .x 525; 
pt_arr[2] .y 500; 
pt_arr[3] .x 50; 
pt_arr[3] .y 225; 
pt_arr[4) .x 575; 
pt_arr[4] .y 225; 
pt_arr[5] .x 75; 
pt_arr[5] .y 500; 

pixmap= XCreatePixmap(dpy, win, winW, winH, DefaultDepthOfScreen(screen)); 
XFillRectangle(dpy, pixmap, gc, 0, 0, winW, winH); 
XSetForeground(dpy, gc, doDefineColor(2)); 
XFillPolygon(dpy, pixmap, gc, &pt_arr, 6, Complex, CoordModeOrigin); 

/****************** doHandleEvents ***********************/ 
static void doHandleEvents( 
{ 

XEvent event; 

7-2 

(continued on next page) 



Using Pixmaps and Images 
7 .1 Creating and Freeing Pixmaps 

Example 7-1 {Cont.) Creating a Pixmap 

for ( ; ; ) { 
XNextEvent(dpy, &event); 
switch (event.type) { 

case Expose: 
case ButtonPress: 

doExpose(&event); break; 
doButtonPress(&event); break; 

/***** Write a message *****/ 
static void doExpose(eventP) 
XEvent *eventP; 
{ 

char messagel[ ] = {"To create a filled polygon, click MBl."}; 
char message2[ ] = {"To exit, click MB2."}; 

XDrawimageString(dpy, win, gc, 150, 25, messagel, strlen(messagel)); 
XDrawimageString(dpy, win, gc, 150, 50, message2, strlen(message2)); 

@) if (!exposeflag) 
exposeflag = 1; 

else 
XCopyArea(dpy, pixmap, win, gc, O, 0, winW, winH, O, 0); 
XDrawimageString(dpy, win, gc, 150, 50, message2, strlen(message2)); 

/***** Draw the polygon in the window *****/ 
static void doButtonPress(eventP) 
XEvent *eventP; 
{ 

char message2[ ] = {"To exit, click MB2."}; 

if (eventP->xbutton.button == Button2) sys$exit (1); 

XCopyArea(dpy, pixmap, win, gc, 0, 0, winW, winH, 0, 0); 
XDrawimageString(dpy, win, gc, 150, 50, message2, strlen(message2)); 

0 Pixmaps use only the foreground member of the graphics context 
to define color. Because the client is using the pixmap as backing 
store, which is copied into the window to repaint exposed areas, both 
foreground and background members of the graphics context are first 
defined as the window background color. 

8 The pixmap has the width, height, and depth of the window. 

0 FILL RECTANGLE fills the pixmap with the background color of the 
window. After filling the pixmap to ensure that pixel values of both 
the pixmap and window background are the same, the foreground color 
is redefined for graphics operations. 

e After redefining foreground color, the client draws the polygon into 
the pixmap. For description of specifying and filling the polygon, see 
Example 6-5. 

7-3 



Using Pixmaps and Images 
7 .1 Creating and Freeing Pixmaps 

0 At the first window exposure, the client draws only the text into the 
window. On subsequent exposures, the client copies the pixmap into 
the window to repaint exposed areas. For a description of handling 
exposure events, see Chapter 9. 

When a client no longer needs a pixmap, use the FREE PIXMAP routine to 
free storage associated with it. FREE PIXMAP first deletes the association 
between the pixmap identifier and the pixmap and then frees pixmap 
storage. 

7.2 Creating and Managing Bitmaps 
Xlib enables clients to create files of bitmap data and then use those files 
to create either bitmaps or pixmaps. To create a bitmap data file, use the 
WRITE BITMAP FILE routine. Example 7-2 illustrates creating a pixmap 
and writing the pixmap data into a bitmap data file. 

Example 7-2 Creating a Bitmap Data File 

/******* doCreatePixmap *********/ 
static void doCreatePixmap( 
{ 

7-4 

XPoint pt_arr[5]; 

pt_arr[O] .x 20; 
pt_arr[O] .y 0; 
pt_arr[l] .x 20; 
pt_arr[l] .y 5; 
pt_arr[2] .x 20; 
pt_arr[2] .y 10; 
pt_arr[3] .x 20; 
pt_arr[3] .y 15; 
pt_arr[4] .x 20; 
pt_arr[4] .y 20; 

pixmap= XCreatePixmap(dpy, win, pixW, pixH, DefaultDepthOfScreen(screen)); 
XFillRectangle(dpy, pixmap, gc, O, 0, pixW, pixH); 
XSetForeground(dpy, gc, doDefineColor(2)); 
XDrawLines(dpy, pixmap, gc, &pt arr, 5, CoordModeOrigin); 
status= XWriteBitmapFile(dpy, "bitfile.dat", pixmap, 20, 20, 0, 0); 

The client first creates a pixmap using the method described in Section 7.1 
and then calls the WRITE BITMAP FILE routine to write the pixmap data 
into the BITFILE.DAT bitmap file. 

To create a bitmap or pixmap from a bitmap data file, use either the 
CREATE BITMAP FROM DATA or CREATE PIXMAP FROM DATA 
routine. Example 7-3 illustrates creating a pixmap from the bitmap data 
stored in BITFILE.DAT. 



Using Pixmaps and Images 
7.2 Creating and Managing Bitmaps 

Example 7-3 Creating a Pixmap from Bitmap Data 

/******* doCreatePixmap *********/ 
static void doCreatePixmap( ) 
{ 

static char LINES[] = { 

OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, Ox3f, Ox06, OxOO, 
Ox03, OxOc, OxOO, Ox03, Ox18, Ox02, Ox03, Ox30, OxOO, Oxf3, Ox7f, Ox05, 
Ox03, Ox30, OxOO, Ox03, Ox18, OxOO, Ox03, OxOc, OxOO, Ox3f, Ox06, OxOO, 
OxOO, OxOO, Ox05, OxOO, OxOO, OxOO, OxOO, OxOO, Ox04, OxOO, OxOO, OxOO, 
Oxaa, Oxaa, OxOa, Ox55, Ox55, Ox05, Oxaa, Oxaa, OxOa, Ox55, Ox55, Ox05}; 

pixmap= XCreatePixmapFromBitmapData(dpy, win, LINES, pixW, pixH, 
xgcv.foreground, xgcv.background, XDefaultDepthOfScreen(screen)); 

XSetWindowBackgroundPixmap(dpy, win, pixmap); 

The client uses the pixmap to define window background. 

7.3 Working with Images 
Instead of managing images directly, clients perform operations on them 
by using the image data structure, which includes a pointer to data such 
as the LINES array defined in Example 7-3. In addition to the image 
data, the image data structure includes pointers to client-defined functions 
that perform the following operations: 

• Destroying an image 

• Getting a pixel from the image 

• Storing a pixel in the image 

• Extracting part of the image 

• Adding a constant to the image 

If the client has not defined a function, the corresponding Xlib routine is 
called by default. 

7-5 



Using Pixmaps and Images 
7.3 Working with Images 

7-6 

The following illustrates the data structure: 

typedef struct _XImage 
int width, height; 
int xoff set; 
int format; 
char *data; 
int byte_order; 
int bitmap_unit; 
int bitmap bit order; 
int bitmap=pad7 
int depth; 
int bytes_per_line; 
int bits_per_pixel; 
unsigned long red_mask; 
unsigned long green_mask; 
unsigned long blue_mask; 
char *obdata; 
struct funcs { 

struct XImage *(*create image) (); 
int (*destroy_image) (); -
unsigned long (*get _pixel) () ; 
int (*put_pixel) (); 
struct _XImage * (*sub_image) (); 
int (*add_pixel) (); 
} f; 

XImage; 

Table 7-1 Image Data Structure Members 

Member Name Contents 

Specifies the width of the image. 

Specifies the height of the image. 

width 

height 

offset Specifies the number of pixels offset in the x direction. 
Specifying an offset permits the server to ignore the 
beginning of scanlines and rapidly display images when 
Z pixmap format is used. 

format 

data 

byte_order 

Specifies whether the data is stored in XY pixmap or Z 
pixmap format. The following flags facilitate specifying 
data format: 

Flag Name 

XV Bitmap 

XV Pixmap 

ZPixmap 

Description 

A single bitmap representing one plane 

A set of bitmaps representing individual 
planes 

Data organized as a list of pixel values 
viewed as a horizontal row 

Address of the image data. 

Indicates whether least significant or most significant 
byte is first. 

(continued on next page) 



Using Pixmaps and Images 
7.3 Working with Images 

Table 7-1 (Cont.) Image Data Structure Members 

Member Name 

bitmap_unit 

bitmap _bit_ order 

bitmap_pad 

depth 

bytes_per_line 

bits_per_pixel 

red_mask 

green_mask 

blue_mask 

obdata 

create_image 

destroy _image 

get_pixel 

put_pixel 

sub_image 

add_pixel 

Contents 

Specifies whether the bitmap is organized in units of 8, 
16, or 32 bits. 

Specifies whether the bitmap order is least or most 
significant. 

Specifies whether padding in XY format or Z format 
should be done in units of 8, 16, or 32 bits. 

Specifies the depth of the image. 

Specifies the bytes per line to be used as an accelerator. 

Indicates for Z format the number of bits per pixel. 

Specifies red values for Z format. 

Specifies green values for Z format. 

Specifies blue values for Z format. 

Address of a data structure that contains object routines. 

Client-defined function that creates an image. 

Client-defined function that destroys an image. 

Client-defined function that gets the value of a pixel in 
the image. 

Client-defined function that changes the value of a pixel 
in the image. 

Client-defined function that creates a new image from an 
existing one. 

Client-defined function that increments the value of each 
pixel in the image by a constant. 

To create an image, use either the CREATE IMAGE or the GET IMAGE 
routine. CREATE IMAGE initializes an image data structure, including 
a reference to the image data. For example, the following call creates an 
image data structure that points to the image data LINES, illustrated in 
Example 7-3: 

#define pixW 16 
#define pixH 16 
#define bitmap_pad 16 
#define bytes_per_line 16 

XImage *image; 

image= XCreateimage(dpy, XDefaultVisualOfScreen(screen), 
XDefaultDepthOfScreen(screen), ZPixmap, 0, &LINES, 
pixW, pixH, bitmap_pad, bytes_per_line); 

Note that the CREATE IMAGE routine does not allocate storage space for 
the image data. 

7-7 



Using Pixmaps and Images 
7.3 Working with Images 

7-8 

To create an image from a drawable, use the GET IMAGE routine. In the 
following example, the client creates an image from a pixmap: 

#define xOrigin 0 
#define yOrigin 0 
#define pixW 16 
#define pixH 16 

image= XGetimage(dpy, pixmap, xOrigin, yOrigin, pixW, 
pixH, AllPlanes, ZPixmap); 

To transfer an image from memory to a drawable, use the PUT IMAGE 
routine. In the following example, the client transfers the image from 
memory to a window: 

#define pixW 16 
#define pixH 16 
#define srcX 0 
#define srcY 0 
#define dstX 200 
#define dstY 200 

XPutimage(dpy, win, gc, image, srcX, srcY, dstX, dstY, 
pixW, pixH); 

The call transfers the entire image, which was created in the call to GET 
IMAGE, from memory to coordinates (200, 200) in the window. 

As the description of the image data structure indicates, Xlib enables 
clients to store an image in the following ways: 

• As a bitmap-XY bitmap format stores the image as a two-dimensional 
array. Figure 7-1 illustrates XY bitmap format. 

• As a set of bitmaps-XY pixmap format stores the image as a stack of 
bitmaps. Figure 7-2 illustrates XY pixmap format. 

• As a list of pixel values-Z pixmap format stores the image as a list of 
pixel values viewed as a horizontal row. Each example of creating an 
image uses Z pixmap format. Figure 7-3 illustrates scanline order. 



Figure 7-1 XV Bitmap Format 

XV Bitmap Format 

1 2 3 

4 5 6 

7 8 9 

ZK-0157 A-GE 

Figure 7-2 XV Pixmap Format 

XV Pixmap Format 

ZK-0155A-GE 

Using Pixmaps and Images 
7.3 Working with Images 

7-9 



Using Pixmaps and Images 
7.3 Working with Images 

7-10 

Figure 7-3 Z Format 

Z Pixmap Format 

ZK-0156A-GE 

Xlib includes routines to change images by manipulating their pixel values 
and creating new images out of subsections of existing images. Table 7-2 
lists these routines and their use. Clients can override these routines by 
defining functions referred to in the image data structure. 

Table 7-2 Routines That Change Images 

Routine 

ADD PIXEL 

GET PIXEL 

PUT PIXEL 

SUB IMAGE 

Description 

Increments each pixel in an image by a constant value 

Returns the pixel value of an image 

Sets the pixel value of an image 

Creates a new image out of a subsection of an existing image 

When a client no longer needs an image, use the DESTROY IMAGE 
routine to deallocate memory associated with the image data structure. 



8 Writing Text 

This chapter describes writing text using Xlib. The chapter includes the 
following topics: 

• Characters and fonts-A description of the composition of characters 
and types of fonts and their components 

• Specifying fonts-How to load a font and associate it with a graphics 
context 

• Computing text size-How to determine the size of text 

• Getting information about text-How to get information about text 

• Drawing text-How to write text on the screen 

VMS DECwi.p_dows provides a font compiler to enable programmers 
to convert ASCII files into binary form. For a guide to using the font 
compiler, see Appendix A. 

8.1 Characters and Fonts 
The smallest unit of text the server displays on a screen is a character. 
Pixels that form a character are enclosed within a bounding box that 
defines the number of pixels the server turns on or off to represent the 
character on the screen. For example, Figure 8-1 illustrates the bounding 
box that encloses the character "y." 

The server turns each pixel within the bounding box either on or off, 
depending on the character. Consequently, bounding box size affects 
performance. Larger bounding boxes require more server time to process 
than do smaller boxes. 

The character is positioned relative to the baseline and the character 
origin. The baseline is logically viewed as the x axis that runs just below 
nondescending characters. The character origin is a point along the 
baseline. The left bearing of the character is the distance from the origin 
to the left edge of the bounding box; the right bearing is the distance 
from the origin to the right edge. Ascent and descent measure the 
distance from the baseline to the top and bottom of the bounding box, 
respectively. Character width is the distance from the origin to the next 
character origin ( x + width, y ). 

8-1 



Writing Text 
8.1 Characters and Fonts 

Figure 8-1 Composition of a Character 

I 
,-character Width ,. ________ __.., 

1 .. 
r Right Bearing 

I 
Lett Bearing~~-- Ascent' 

7 -7 

Baseline' 

Origin of _JI 
Character 

8-2 

6 -6 

5 -5 

4 -4 

3 -3 

2 -2 

-1 

0 0 

-1 

-2 2 

-3 3 

-4 
,-oescent 

'--Bou~din~ -
4 

Origin of Next 
Box Character 

ZK-0290A-GE 

Figure 8-2 illustrates that the bounding box of a character can extend 
beyond the character origin. The bounding box of the back slash extends 
one pixel to the left of the origin of the slash, giving the character a 
left bearing of -1. The back slash is also unusual because its bounding 
box extends to the right of the next character. The width of the slash, 
measured from origin to origin, is 5; the right bearing, measured from 
origin to the right edge of the bounding box, is 6. 



Writing Text 
8.1 Characters and Fonts 

Figure 8-2 Composition of a Back Slash 

• 

•• • • • • • ••• 

.--1 
I 

_r~ounding Box of Slash 

••• ••• • • • • • • • • • • • • -·~ ••.••• 
'-l-Origin of Next Character 

•• • • • 
~~~+----1-~-+---. 

ZK-0289A-GE

The left bearing, right bearing, ascent, descent, and width of a character
are character metrics. Xlib maintains information about character
metrics in a char struct data structure. The following illustrates the data
structure:

typedef struct
short lbearing;
short rbearing;
short width;
short ascent;
short descent;
unsigned short attributes;

XCharStruct;

Table 8-1 describes members of the char struct data structure. Any
member of the data structure can have a negative value, except the
attributes member.

8-3

Writing Text
8.1 Characters and Fonts

8-4

Table 8-1 Char Struct Data Structure Members

Member Name

I bearing

rbearing

width

ascent

descent

attributes

Contents

Distance from the origin to the left edge of the bounding box.
When the value of this member is zero, the server draws only
pixels whose x-coordinates are less than the value of the
origin x-coordinate.

Distance from the origin to the right edge of the bounding
box.

Distance from the current origin to the origin of the next
character. Text written left to right, such as Arabic, uses a
negative width to place the next character to the left of the
current origin.

Distance from the baseline to the top of the bounding box.

Distance from the baseline to the bottom of the bounding
box.

Attributes of the character defined in the bitmap distribution
format (BDF) file. A character is not guaranteed to have any
attributes.

A font is a group of characters that have the same style and size. Xlib
supports both fixed and proportional fonts. A fixed font has equal
metrics. For example, all characters in the font have the same value
for left bearing. Consequently, the bounding box for all characters is the
same. All metrics in a proportional font can vary from character to
character. A monospaced font is a special type of proportional font in
which only the width of all characters must be equal. Bounding boxes of
characters in a monospaced font vary depending on the size of characters.
If the same font is compiled as a monospaced font and a fixed font, the
bounding boxes of the monospaced font are typically smaller than the
bounding box that encloses fixed-font characters. For information about
compiling fonts, see Appendix A.

Xlib uses indexes to refer to characters that compose a font. The indexes,
each defined by a byte, are arranged in one or more rows of up to 256
indexes. A font can contain as many as 256 rows of character indexes,
used contiguously. Fonts seldom use all possible indexes.

For example, the font illustrated in Figure 8-3, comprises 219 characters
in columns 32 through 250, one column for each character index. Columns
0 through 31 and 251 through 255 are undefined. The first character of
the font is located at column 32; the last character is located at column
250. Because all characters are defined in one row of 256 indexes, the
font is a single-row font. In the illustration, character "A" is located at
column 65.

Writing Text
8.1 Characters and Fonts

Figure 8-3 Single-Row Font

Last Character ' "A" ' ,-- First Character

255 250 r((65

....__......___.____,,_,__..__~)'- II I I t2if I IOI

ZK-0278A-G E

Multiple-row fonts, such as Kanji, comprise more characters than
can be indexed by a single row of 256 bytes. Figure 8-4 illustrates the
configuration of a multiple-row font. Byte 1 refers to the row. Byte 2
refers to the column in the row. In Figure 8-4, the character is located at
column 36 in row 17. Note that each row of a multiple-row font has the
same number of undefined bytes at the beginning and end. In each row,
characters begin at column 32 and end at column 250.

Figure 8-4 Multiple-Row Font

Byte 1

Byte 2

1111111

7

0

0

0 0

0 1

1

0

0

0

• • •

• • •

O r Char 2B Structure

0 0 1

1 0 0

I r First Character

36 35 34 33 32)J~~

15

16

17

1111111)~1 I I I I I I I l)f_ffi~:;
Last Character___/

ZK-0275A-GE

8-5

Writing Text
8.1 Characters and Fonts

8-6

Xlib provides a char 2B data structure to enable clients to index multiple­
row fonts easily. The following illustrates the data structure:

typedef struct {
unsigned char bytel;
unsigned char byte2;

} XChar2b;

Table 8-2 describes members of the data structure.

Table 8-2 Char 28 Data Structure Members

Member
Name

byte1

byte2

Contents

Row in which the character is indexed

Position of the character in the row

Xlib maintains a record of the characteristics of a font in the font struct
data structure. The following illustrates the font struct data structure:

typedef struct
XExtData *ext_ data;
Font fid;
unsigned direction;
unsigned min_char_or_byte2;
unsigned max char or byte2;
unsigned min=bytel; -
unsigned max_bytel;
Bool all_chars_exist;
unsigned default_char;
int n_properties;
XFontProp *properties;
XCharStruct min_bounds;
XCharStruct max_bounds;
XCharStruct *per_char;
int
int

XFontStruct;

ascent;
descent;

Table 8-3 describes members of the data structure.

Table 8-3 Font Struct Data Structure Members

Member Name Contents

Data used by extensions.

Identifier of the font.

ext_ data

fid

direction Hint about the direction in which the font is painted. The
direction can be either left to right, specified by the constant
FontleftToRight, or right to left, specified by the constant
FontRightToleft. The core protocol does not support vertical
text.

min_char_or_byte2 First character in the font.

(continued on next page)

Table 8-3 (Cont.)

Member Name

max_char_or_byte2

min_byte1

max_byte1

all_chars_exist

default_ char

n_properties

properties

min_ bounds

max_ bounds

per_char

ascent

Writing Text
8.1 Characters and Fonts

Font Struct Data Structure Members

Contents

Last character in the font.

First row that exists.

Last row that exists.

If the value of this member is true, all characters in the array
pointed to by per_char have nonzero bounding boxes.

Character used when an undefined or nonexistent character
is printed. The default character is a 16-bit, not a 2-byte,
character. For a multiple-row font, default_char has byte
1 in the most significant byte and byte 2 in the least
significant byte. If default_char specifies an undefined or
nonexistent character, the server does not print an undefined
or nonexistent character.

Number of properties associated with the font.

Address of an array of additional font properties.

The minimum bounding box value of all the elements in the
array of char struct data structures that define each character
in the font. For a description of the use of min_bounds see
max_bounds.

Maximum metrics values of all the characters in the font.

Using the values of min_bounds and max_bounds, clients
can compute the bounding box of the font. The bounding
box of the font is determined by first computing the minimum
and maximum values of the left bearing, right bearing, width,
ascent, and descent of all characters and then subtracting
minimum from maximum values. The upper left coordinate of
the bounding box (x,y) is defined as follows:

x + min_bounds.lbearing, y - max_bounds.ascent

The width of the font bounding box is defined as follows:

max_bounds.rbearing - min_bounds.lbearing

Note that this is not the width of a character in the font.

The height is defined as follows:

max bounds.ascent +max bounds.descent - -

Address of an array of char struct data structures that define
each character in the font.

Distance from the baseline to the top of the bounding box.
With descent, ascent is used to determine line spacing.
Specific characters in the font may extend beyond the font
ascent.

(continued on next page)

8-7

Writing Text
8.1 Characters and Fonts

Table 8-3 (Cont.) Font Struct Data Structure Members

Member Name

descent

Contents

Distance from the baseline to the bottom of the bounding
box. With ascent, descent is used to determine line spacing.
Specific characters in the font may extend beyond the font
descent.

As Table 8-3 indicates, Xlib records metrics for each character in an
array of char struct data structures specified by the font struct per_char
member. The array comprises as many char struct data structures as
there are characters in the font. However, the indexes that refer to the
location of characters in the array differ from the indexes to characters in
the font. For example, 32 indexes the first character of the font illustrated
in Figure 8-5, whereas 0 indexes its char struct data structure in the
array.

Figure 8-5 Indexing Single-Row Font Character Metrics

Last Character' ,--__First Character

~2ss _______ 2_so~JSJ~l_l~_.:.l~._._~l3PJcrrJ

CHARSTRUCT

CHARSTRUCT

• • •
CHARSTRUCT

• • •
CHARSTRUCT

(

0 Defines Metrics of First Character (32)
Defines Metrics of Second Character (33)

33 Defines Metrics of "A" (65)

218 Defines Metrics of Last Character

Array of CHAR STRUCT Structures

8-8

ZK-0276A-GE

To locate the char struct data structure that defines the metrics of any
character in a single-row font, subtract the value of the column that
indexes the first character in the font, specified by min_char_or_byte2,
from the position of the character. For instance, in Figure 8-5 the metrics
of character "A" are located at index 33 in the array of char struct data
structures specified by the per_char member.

Writing Text
8.1 Characters and Fonts

To locate the char struct data structure that defines the metrics of a
character of a multiple-row font, use the following formula to adjust for
both the number of rows in the font and the position of the character in a
row:

(row - first row of characters)* N +(position in column - first column)

N is equal to the last column minus the first column plus 1.

For example, the array index of the character specified in Figure 8-6
is 442.

8-9

Writing Text
8.1 Characters and Fonts

Figure 8-6 Indexing Multiple-Row Font Character Metrics

7 0
/Char 2B Structure

Byte 1
0 0 0 1 0 0 0 1

0 0 1 0 0 1 0 0

I
Byte 2

11111
• • •

li---t--t-1 1~1 1--.......-1 r ~ I I I I I I i ~ f i±E ~::
Last Character~-----------------------------l

'-- Font Characters

Array of Char Struct Structures

Char Struct

• • •
Char Struct

Char Struct

• • •
Char Struct

• • •
Char Struct

8-10

O Defines Metrics of Character at Row 15, Column 32

218 Defines Metrics of Character in Row 15, Column 250

219 Defines Metrics of Character in Row 16, Column 32

442 Defines Metrics of Char 2B Character

52778 Defines Metrics of Last Character

ZK-0277 A-GE

Like windows, fonts may have properties associated with them. However,
font properties differ from window properties. Window properties are data
associated with windows; font properties describe font characteristics, such
as spacing between words. When the font is compiled, its properties are
defined in an array of font prop data structures.

Writing Text
8.1 Characters and Fonts

Just as atoms name window properties, atoms name font properties. If
the atoms are predefined, they have associated literals. For example, the
predefined atom that identifies the height of capitalized letters is referred
to by the literal XA_CAP _HEIGHT.

When working with properties, clients must know beforehand how to
interpret the font property identified by an atom. Figure 8-7 illustrates
this concept.

The server maintains an atom table for font properties. The table
associates values with strings. For example, the atom table illustrated
in Figure 8-7 defines two atoms. One associates the string FULL_NAME
with the value 41. The other associates the string CAP _HEIGHT with
the value 42. Notice that the string in the atom table is different from
XA_FULL_NAME, the literal that refers to the atom.

Both atoms uniquely identify different types of data. FULL_NAME
identifies string data that names the font. CAP _HEIGHT identifies integer
data that defines the height of capitalized letters.

Although the atoms identify different types of data, the property table
illustrated in Figure 8-7 associates both atoms with integers. The integer
associated with CAP _HEIGHT defines without further interpretation the
height of capitalized letters. However, the integer listed with FULL_
NAME is an atom value. This integer, 90, corresponds to a value in the
atom table that has an associated string, HELVETICA BOLD. To use the
string, the client must know that the value associated with the atom is
itself an atom value.

8-11

Writing Text
8.1 Characters and Fonts

Figure 8-7 Atoms and Font Properties

Atom Table

Value String

• •
• •
• • Literals

FULL_ NAME -4- XA_FULL_NAME

42 CAP_HEIGHT -4- XA_CAP _HEIGHT

• •
• •
• •
90 HELVETICA BOLD

• •
• •
• •

Array of FONT PROP Structures

FONT PROP (n+1)

8-12

Atom Value

• •
• •
• •
41 90

42 10

• •
• •
• •

ZK-0321A-GE

Xlib lists each font property and its corresponding atom in a font prop data
structure. The property value table in Figure 8-7 is an array of font prop
data structures.

The following illustrates the data structure:

typedef struct {
Atom name;
unsigned long card32;

} XFontProp;

Writing Text
8.1 Characters and Fonts

Table 8-4 describes members of the data structure.

Table 8-4 Font Prop Data Structure Members

Member Name

name

card32

Contents

String of characters that names the property

A 32-bit value that defines the font property

8.2 Specifying a Font
To specify a font for writing text, first load the font and then associate the
loaded font with a graphics context. Appendix D lists VMS DECwindows
fonts.

To load a font, use either the LOAD FONT or the LOAD QUERY FONT
routine. LOAD FONT loads the specified font and returns a font identifier.
LOAD QUERY FONT loads the specified font and returns information
about the font to a font struct data structure.

Because LOAD QUERY FONT returns information to a font struct data
structure, calling the routine takes significantly longer than calling LOAD
FONT, which returns only the font identifier.

When using either routine, pass the display identifier and font name. Xlib
font names consist of the following fields, in left to right order:

1 Foundry that supplied the font, or the font designer

2 Typeface family of the font

3 Weight (book, demi, medium, bold, light)

4 Style (R (roman), I (italic), 0 (oblique))

5 Width per horizontal unit of the font (normal, wide, double wide,
narrow)

6 Additional style font identifier

7 Pixel font size

8 Point size (8, 10, 12, 14, 18, 24)

9 Resolution in pixels/dots per inch

10 Spacing (monospaced, proportional, or character cell)

11 Average width of all characters in the font

12 Set character encoding

The full name of a representative font in
SYS$SYSROOT:[DECW$FONT.100DPI] is as follows:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--14-100-100-100-P-80-IS08859-l
'

The font is named ITC Avant Garde Gothic. Font weight is book, font style
is R (roman), and width between font units is normal.

The pixel size is 14 and the decipoint size is 100.

8-13

Writing Text
8.2 Specifying a Font

Horizontal and vertical resolution in dots per inch (dpi) is 100. When the
dpi is 100, 14 pixels are required to be a 10 point font.

The font is proportionally spaced. Average width of characters is 80.
Character encoding is ISOLATINl.

The following designates the full name of the com parable font designed for
a 75 dpi system:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--10-100-75-75-P-59-IS08859-1

Unlike the previous font, this font requires only 10 pixels to be 10 points.
Note that this font differs from the previous font only in pixel size,
resolution, and character width.

Xlib enables clients to substitute a question mark for a single character
and an asterisk for one or more fields in a font name. The following
illustrates using the asterisk to specify a 10-point ITC Avant Garde Gothic
font of book weight, roman style, and normal spacing for display on either
7 5 or 100 dpi systems:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--*-100-*-*-P-*

When using the asterisk, make sure that substitutions are clearly defined.
For example, the following name ambiguously specifies two fonts:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--*-100-*-P-*

Because the leftmost asterisk substitutes for all fields before the 100, the
name defines the following two 100 dpi fonts:

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--11-80-100-100-P-80-IS08859-1

-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--14-100-100-100-P-80-IS08859-1

8-14

The first is an 8 point font. The second is a 10 point font.

The following example illustrates loading the 10-point font:

#define FontName "-ADOBE-ITC Avant Garde
Gothic-Book-R-Normal--*-100-*-*-P-*

font XLoadFont(dpy, FontName);

After loading a font, associate it with a graphics context by calling the
SET FONT routine. Specify the font identifier that either LOAD FONT or
LOAD QUERY FONT returned, and a graphics context, as in the following
example:

XSetFont(dpy, gc, font);

The call associates font with gc.

Writing Text
8.3 Getting Information About a Font

8.3 Getting Information About a Font
Xlib provides clients with routines that list available fonts, get font
information with or without character metrics, and return the value of
a specified font property.

To get a list of available fonts, use the LIST FONTS routine, specifying the
font searched for.

LIST FONTS returns a list of available fonts that match the specified font
name. When the client no longer needs the list of font names, call the
FREE FONT NAMES routine to free storage allocated for the font list.

To receive both a list of fonts and information about the fonts, use the
LIST FONTS WITH INFO routine. LIST FONTS WITH INFO returns
both a list of fonts that match the font specified by the client and the
address of a font struct data structure for each font listed. Each data
structure contains information about the font. The data structure does not
include character metrics in the per_char member. For a description of the
information returned, see Table 8-3.

To receive information about a font, including character metrics, use the
QUERY FONT routine. Because the server returns character metrics,
calling QUERY FONT takes approximately eight times longer than calling
LIST FONTS WITH INFO. To get the value of a specified property, use the
GET FONT PROPERTY routine.

Although a font is not guaranteed to have any properties, it should have
at least the properties described in Table 8-5. The table lists properties
by atom name and data type. For information about properties, see
Section 3.5.

Table 8-5 Atom Names of Font Properties

Atom

XA_MIN_SPACE

XA_NORMAL_SPACE

XA_MAX_SPACE

XA_END_SPACE

XA_SUPERSCRIPT_X

XA_SUPERSCRIPT _ Y

Data Type

Unsigned

Unsigned

Unsigned

Unsigned

Signed

Signed

Description of the Property

Minimum interword spacing, in pixels.

Normal interword spacing, in pixels.

Maximum interword spacing, in pixels.

Additional spacing at the end of a sentence, in pixels.

With XA_SUPERSCRIPT_ Y, the offset from the character
origin where superscripts should begin, in pixels. If the
origin is [x, y], superscripts should begin at the following
coordinates:

x + XA_SUPERSCRIPT_X,
y - XA_SUPERSCRIPT_Y

With XA_SUPERSCRIPT_X, the offset from the
character origin where superscripts should begin, in
pixels. See the description under
XA_SUPERSCRIPT _X.

(continued on next page)

8-15

Writing Text
8.3 Getting Information About a Font

Table 8-5 (Cont.) Atom Names of Font Properties

Atom

XA_SUBSCRIPT_X

XA_SUBSCRIPT_ Y

XA_UNDERLINE_POSITION

XA_UNDERLINE_ THICKNESS

XA_STRIKEOUT _ASCENT

XA_STRIKEOUT _DESCENT

XA_ITALIC_ANGLE

XA_X_HEIGHT

XA_QUAD_WIDTH

XA_CAP _HEIGHT

XA_WEIGHT

XA_POINT _SIZE

XA_RESOLUTION

XA_COPYRIGHT

XA_NOTICE

8-16

Data Type

Signed

Signed

Signed

Unsigned

Signed

Signed

Signed

Signed

Signed

Signed

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Description of the Property

With XA_SUBSCRIPT _ Y, the offset from the character
origin where subscripts should begin, in pixels. If the
origin is [x, y], subscripts should begin at the following
coordinates:

x + XA_SUBSCRIPT_X,
y + XA_SUBSCRIPT_Y

With XA_SUBSCRIPT _X, the offset from the character
origin where subscripts should begin, in pixels. See the
description under XA_SUBSCRIPT_X.

The y offset from the baseline to the top of an underline,
in pixels. If the baseline y-coordinate is y, then the top of
the underline is at y + XA_UNDERLINE_POSITION.

Thickness of the underline, in pixels.

With XA_STRIKEOUT _DESCENT, the vertical extent for
boxing or voiding characters, in pixels. If the baseline
y-coordinate is y, the top of the strikeout box is
y - XA_STRIKEOUT _ASCENT. The height of the box is
as follows:

XA STRIKEOUT ASCENT + - -
XA STRIKEOUT DESCENT - -
With XA_STRIKEOUT _ASCENT, the vertical extent
for boxing or voiding characters, in pixels. See the
description under XA_STRIKEOUT _ASCENT.

The angle of the cominant staffs of characters in the font,
in degrees scaled by 64, relative to the 3-o'clock position
from the character origin. Positive values indicate
counterclockwise motion.

One ex, as in TeX, but expressed in units of pixels.
Often the height of lowercase x.

One em, as in TeX, but expressed in units of pixels.
Often the width of the digits O to 9.

The y offset from the baseline to the top of capital letters,
ignoring ascents. If the baseline y-coordinate is y, the
top of the capitals is at y - XA_CAP _HEIGHT.

Weight or boldness of the font, expressed as a value
between O and 1000.

Point size of the font at ideal resolution, expressed in
1 /1 O points.

Number of pixels per point, expressed in 1/100, at which
the font was created.

Copyright date of the font.

Copyright date of the font name.

(continued on next page}

Writing Text
8.3 Getting Information About a Font

Table 8-5 (Cont.) Atom Names of Font Properties

Atom

XA_FONT _NAME

XA_FAMILY _NAME

XA_FULL_NAME

Data Type

Atom

Atom

Atom

Description of the Property

Font name.

Name of the font family.

Full name of the font.

8.4 Computing the Size of Text

8.5 Drawing Text

Use the TEXT WIDTH and TEXT WIDTH 16 routines to compute the
width of 8-bit and 2-byte strings, respectively. The routines return the
sum of the width of each character in the specified string. To compute the
bounding box of a specified 8-bit string, use either tl):e TEXT EXTENTS
or QUERY TEXT EXTENTS routine. Both TEXT EXTENTS and QUERY
TEXT EXTENTS return the direction hint, ascent, descent, and overall
size of the character string being queried.

TEXT EXTENTS passes to Xlib the font struct data structure returned
by a previous call to either LOAD QUERY FONT or QUERY FONT.
QUERY TEXT EXTENTS queries the server for font information, which
the server returns to a font struct data structure. Because Xlib can process
TEXT EXTENTS locally, without querying the server for font metrics,
calling TEXT EXTENTS is significantly faster than calling QUERY TEXT
EXTENTS.

To compute the bounding boxes of a specified 2-byte string, use either the
TEXT EXTENTS 16 or the QUERY TEXT EXTENTS 16 routine. Both
routines return information identical to information returned by TEXT
EXTENTS and QUERY TEXT EXTENTS. As with TEXT EXTENTS,
calling TEXT EXTENTS 16 is significantly faster than calling QUERY
TEXT EXTENTS 16 because Xlib can process the call without making the
round-trip to the server.

Xlib enables clients to draw text stored in text data structures, text
whose foreground bits are only displayed, and text whose foreground and
background bits are displayed.

To draw 8-bit or 2-byte text stored in data structures, use either the
DRAW TEXT or the DRAW TEXT 16 routine. Xlib includes text item and
text item 16 data structures to enable clients to store text. The following
illustrates the text item data structure:

typedef struct {
char *chars;
int nchars;
int delta;
Font font;

XTextitem;

8-17

Writing Text
8.5 Drawing Text

8-18

Table 8-6 describes members of the text item data structure.

Table 8-6 Text Item Data Structure Members

Member Name Contents

chars Address of a string of characters.

nchars Number of characters in the string.

delta Horizontal spacing before the start of the string. Spacing is always
added to the string origin and is not dependent on the font used.

font Identifier of the font used to print the string. If the value of this
member is None, the server uses the current font in the GC data
structure. If the member has a value other than None, the specified
font is stored in the GC data structure.

The following illustrates the text item 16 data structure:

typedef struct {
XChar2b *chars;
int nchars;
int delta;
Font.font;

XTextitem16;

Table 8-7 describes members of the text item 16 data structure.

Table 8-7 Text Item 16 Data Structure Members

Member Name

chars

nchars

delta

font

Contents

Address of a string of characters stored in a char 28 data
structure. For a description of the char 28 data structure, see
the description immediately following this table.

Number of characters in the string.

Horizontal spacing before the start of the string. Spacing is
always added to the string origin and is not dependent on the
font used.

Identifier of the font used to print the string. If the value of
this member is None, the server uses the current font in the
GC data structure. If the member has a value other than
None, the specified font is stored in the GC data structure.

Xlib provides a char 2B data structure to enable clients to store 2-byte
text. The following illustrates the data structure:

typedef struct {
unsigned char bytel;
unsigned char byte2;

} XChar2b;

Xlib processes each text item in turn. Each character image, as defined by
the font in the graphics context, is treated as an additional mask for a fill
operation on the drawable. The drawable is modified only where the font
character has a bit set to 1.

Writing Text
8.5 Drawing Text

Example 8-1 illustrates using the DRAW TEXT routine to draw three
words in one call.

Example 8-1 Drawing Text Using the DRAW TEXT Routine

#define FirstFont "-ADOBE-NEW CENTURY SCHOOLBOOK-BOLD-R-NORMAL--*-80-*-*-P-*"
#define SecondFont "-ADOBE-NEW CENTURY SCHOOLBOOK-BOLD-R-NORMAL--*-140-*-*-P-*"
#define ThirdFont "-ADOBE-NEW CENTURY SCHOOLBOOK-BOLD-R-NORMAL--*-240-*-*-P-*"

Display *dpy;
Window window;
GC gc;
Screen *screen;
int n;
XTextitern text[] = {

"small", 5, 0, 0,
"bigger", 6, 0, 0,
"biggest", 7, 0, 0,

} ;

/******* Load the font for text writing ******/
static void doLoadFont()
{

Font FontOne, FontTwo, FontThree;

FontOne = XLoadFont(dpy, FirstFont);
FontTwo = XLoadFont(dpy, SecondFont);
FontThree = XLoadFont(dpy, ThirdFont);
XSetFont(dpy, gc, FontTwo);

text[O] .delta= O;
text[O] .font= FontOne;

text[l] .delta= 20;
text[l] .font= FontTwo;

text[2] .delta= 20;
text[2] .font= FontThree;

/***************** doButtonPress ***************************/
static void doButtonPress(eventP)
XEvent *eventP;
{

if (eventP->xbutton.button == Button2) sys$exit (1);
if (eventP->xbutton.button == Buttonl)

XDrawText(dpy, window, gc, 100, 300, text, 3);

To draw 8-bit or 2-byte text, use the DRAW STRING, DRAW STRING
16, DRAW IMAGE STRING, and DRAW IMAGE STRING 16 routines.
DRAW STRING and DRAW STRING 16 display the foreground values of
text only. DRAW IMAGE STRING and DRAW IMAGE STRING 16 display
both foreground and background values.

8-19

Writing Text
8.5 Drawing Text

Example 8-2 illustrates drawing text with the DRAW STRING routine.
The example modifies the sample program in Chapter 1 to draw shadow
text.

Example 8-2 Drawing Text Using the DRAW STRING Routine

/***** Write the message in the window *****/
static void doExpose(eventP)
XEvent *eventP;
{

if (eventP->xexpose.window != window2) return;
XClearWindow(dpy, window2);
XSetForeground(dpy, gc, doDefineColor(3));
XDrawString(dpy, window2, gc, 35, 75, message[state], strlen(message[state]));
XSetForeground(dpy, gc, doDefineColor(4));
XDrawString(dpy, window2, gc, 31, 71, message[state], strlen(message[state]));

/***************** doShutdown ***************************/
static void doButtonPress(eventP)
XEvent *eventP;
{

if (eventP->xexpose.window != window2) {
state = 1;
XClearWindow(dpy, window2);
XSetForeground(dpy, gc, doDefineColor(3));
XDrawString(dpy, window2, gc, 35, 75, message[state], strlen(message[state]));
XSetForeground(dpy, gc, doDefineColor(4));
XDrawString(dpy, window2, gc, 31, 71, message[state], strlen(message[state]));
return;
}

/* Unmap and destroy windows */

XUnmapWindow(dpy, windowl);
XDestroyWindow(dpy, windowl);

XCloseDisplay(dpy);

sys$exit (1);

The server refers to the following members of the GC data structure when
writing text with DRAW TEXT, DRAW TEXT 16, DRAW STRING, and
DRAW STRING 16:

Function

Foreground

Stipple

Background

Tile stipple x origin

Clip x origin

Clip mask

Plane mask

Subwindow mode

Font

Tile

Tile stipple y origin

Clip y origin

Fill style

8-20

Writing Text
8.5 Drawing Text

To draw both foreground and background values of text, use the DRAW
IMAGE STRING and DRAW IMAGE STRING 16 routines. For example,
the sample program uses the DRAW IMAGE routine to write the text
"Click Here to Exit," as follows:

int n, state = O;
char *message[]= {

"Click here to exit",
"Click HERE to exit!"
} ;

if (eventP->xexpose.window != window2) return;
XDrawimageString(dpy, window2, gc, 75, 75, message[state],

strlen(message[state]));

The effect is first to fill a rectangle with the background defined in the
graphics context and then to paint the text with the foreground pixel. The
upper left corner of the filled rectangle is at 75, (75 - font ascent). The
width of the rectangle is equal to the width of the string. The height of the
rectangle is equal to font ascent+ font descent.

When drawing text in response to calls to DRAW IMAGE STRING and
DRAW IMAGE STRING 16, the server ignores the function and fill style
the client has defined in the graphics context. The value of the function
member of the GC data structure is effectively the value specified by the
constant GXCopy. The value of the fill style member is effectively the
value specified by the constant FillSolid.

The server refers to the following members of the GC data structure when
writing text with DRAW IMAGE STRING and DRAW IMAGE STRING 16:

Subwindow mode

Foreground

Stipple

Clip x origin

Clip mask

Plane mask

Background

Font

Clip y origin

8-21

g Handling Events

An event is a report of either a change in the state of a device (such as a
mouse) or the execution of a routine called by a client. An event can be
either unsolicited or solicited. Typically, unsolicited events are reports of
keyboard or pointer activity. Solicited events are Xlib responses to calls by
clients.

Xlib reports events asynchronously. When any event occurs, Xlib processes
the event and sends it to clients that have specified an interest in that
type of event.

This chapter describes the following concepts needed to manage events:

• Event processing-An overview of types of events

• Event type selection-A description of how clients can specify the types
of events Xlib reports to them

• Event handling-A description of handling specific types of events

9.1 Event Processing
Apart from errors, which Section 9.13 describes, Xlib events issue from
operations on either windows or pixmaps. Most events result from
operations associated with windows. The smallest window that contains
the pointer when a window event occurs is the source window.

Xlib searches the window hierarchy upward from the source window until
one of the following applies:

• Xlib finds a window that one or more clients has identified as
interested in the event. This window is the event window. After
Xlib locates an event window, it sends information about the event to
appropriate clients.

• Xlib finds a window whose do_not_propagate attribute has been set
by a client. Setting this attribute specifies that Xlib should not notify
ancestors of the window owned by the client about events occurring in
the window and its children. For more information about the do_not_
propagate attribute, see Chapter 3.

• Xlib reaches the top of the window hierarchy without finding a window
that a client has identified as interested in the event.

While there are many types of window events, events associated with
pixmaps occur only when a client cannot compute a destination region
because the source region is out of bounds (see Chapter 6 for a description
of source and destination regions). When a client attempts an operation
on an out of bounds pixmap region, Xlib puts the event on the event queue
and checks a list to determine if a client is interested in the event. If a

9-1

Handling Events
9.1 Event Processing

9-2

client is interested, Xlib sends information to the client using an event
data structure.

Xlib can report 30 types of events related to keyboards, mice, windowing,
and graphics operations. A flag identifies each type to facilitate referring
to the event. Table 9-1 lists event types, grouped by category, and the
flags that represent them.

Table 9-1 Event Types

Event Type Flag Name

Keyboard Events

Key press

Key release

Pointer Motion Events

Button press

Button release

Motion notify

Window Crossing Events

Enter notify

Leave notify

Input Focus Events

Focus in

Focus out

Keymap State Event

Keymap notify

Exposure Events

Expose

Graphics expose

No expose

Key Press

Key Release

Button Press

Button Release

Motion Notify

EnterNotify

Leave Notify

Focus In

FocusOut

KeymapNotify

Expose

Graphics Expose

No Expose

(continued on next page)

Table 9-1 (Cont.) Event Types

Event Type

Window State Events

Circulate notify

Configure notify

Create notify

Destroy notify

Gravity notify

Map notify

Mapping notify

Reparent notify

Unmap notify

Visibility notify

Color Map State Events

Color map notify

Client Communication Events

Client message

Property notify

Selection clear

Selection notify

Selection request

Flag Name

Circulate Notify

Configure Notify

Create Notify

Destroy Notify

Gravity Notify

Map Notify

Mapping Notify

ReparentNotify

UnmapNotify

VisibilityNotify

ColormapNotify

ClientMessage

Property Notify

Selection Clear

Selection Notify

Selection Request

Handling Events
9.1 Event Processing

Every event type has a corresponding data structure that Xlib uses to pass
information to clients. See the sections that describe handling specific
event types for a description of the relevant event-specific data structures.

Xlib includes the any event data structure, which clients can use to receive
reports of any type of event. The following illustrates the any event data
structure:

typedef struct {
int type;
unsigned long serial;
Bool send event;
Display *display;
Window window;

XAnyEvent;

Table 9-2 describes members of the data structure.

9-3

Handling Events
9.1 Event Processing

9-4

Table 9-2 Any Event Data Structure Members

Member Name Contents

type Type of event being reported

serial

send_event

Number of the last request processed by the server

Value defined by the constant true if the event came from a
SEND EVENT request

display

window

Display on which the event occurred

Window on which the event report was requested

To enable clients to manage multiple types of events easily, Xlib also
includes an event data structure, which is composed of the union of
individual event data structures.

The following illustrates the event data structure:

typedef union _XEvent {
int type;
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConf igureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;

XEvent;

The type member specifies the type of event being reported. For
descriptions of the other members of the event data structure, see the
section that describes the specific event type.

Handling Events
9.2 Selecting Event Types

9.2 Selecting Event Types

9.2.1

Xlib sends information about an event only to clients that have specified
an interest in that event type. Clients use one of the following methods to
indicate interest in event types:

• By calling the SELECT INPUT routine. SELECT INPUT indicates to
Xlib which events to report.

• By specifying event masks when creating a window.

• By specifying event masks when changing window attributes.

• By specifying the graphics exposure mask when creating the graphics
context. For more information about specifying a graphics exposure
mask, see Chapter 4.

Note that Xlib always reports client messages, mapping notifications,
selection clearings, selection notifications, and selection requests.

See the description of the SELECT INPUT routine in the VMS
DECwindows Xlib Routines Reference Manual for restrictions on event
reporting to multiple clients.

Using the SELECT INPUT Routine
Use the SELECT INPUT routine to specify the types of events Xlib reports
to a client. Select event types by passing to Xlib one or more of the masks
listed in Table 9-3.

Table 9-3 Event Masks

Event Mask

Button Motion Mask

Button1 MotionMask

Button2MotionMask

Button3MotionMask

Button4MotionMask

ButtonSMotionMask

Button Press Mask

Button Release Mask

ColormapChangeMask

EnterWindowMask

Exposure Mask

LeaveWindowMask

Event Reported (Event Type)

At least one button on the pointing device is pressed while the pointer moves
(Motion Notify).

Button 1 of the pointing device is pressed while the pointer moves (MotionNotify).

Button 2 of the pointing device is pressed while the pointer moves (MotionNotify).

Button 3 of the pointing device is pressed while the pointer moves (MotionNotify).

Button 4 of the pointing device is pressed while the pointer moves (MotionNotify).

Button 5 of the pointing device is pressed while the pointer moves (MotionNotify).

A button on the pointing device is pressed (ButtonPress).

A button on the pointing device is released (ButtonRelease).

A client installs, changes, or removes a color map (ColormapNotify).

The pointer enters a window (EnterNotify).

A window becomes visible, a graphics region cannot be computed, a graphics
request exposes a region, or all sources available and a no expose event
generated (Expose, GraphicsExpose, NoExpose).

The pointer leaves a window (LeaveNotify}.

(continued on next page)

9-5

Handling Events
9.2 Selecting Event Types

Table 9-3 (Cont.) Event Masks

Event Mask

FocusChangeMask

KeymapStateMask

KeyPressMask

OwnerGrabButtonMask

PointerMotionMask

PointerMotionHintMask

PropertyChangeMask

StructureNotifyMask

SubstructureNotifyMask

VisibilityChangeMask

9-6

Event Reported (Event Type)

The keyboard focus changes (Focusln, FocusOut).

The key map changes (KeymapNotify).

A key is pressed or released (KeyPress, KeyRelease).

Not applicable.

The pointer moves (MotionNotify).

Xlib is free to report only one pointer-motion event (MotionNotify) until one of the
following occurs:

Either the key or button state changes.

The pointer leaves the window.

The client calls QUERY POINTER or GET MOTION EVENTS.

A client changes a property (PropertyNotify).

One of the following operations occurs on a window:

Circulate (CirculateNotify)

Configure (ConfigureNotify)

Destroy (DestroyNotify)

Move (GravityNotify)

Map (MapNotify)

Reparent (ReparentNotify)

Unmap (UnmapNotify)

One of the following operations occurs on the child of a window:

Circulate (CirculateNotify)

Configure (ConfigureNotify)

Create (CreateNotify)

Destroy (DestroyNotify)

Move (GravityNotify)

Map (MapNotify)

Reparent (ReparentNotify)

Unmap (UnmapNotify)

The visibility of a window changes (VisibilityNotify).

The following illustrates using the SELECT INPUT routine:

XSelectinput(dpy,win,StructureNotifyMask);
}

Clients specify the StructureNotifyMask mask to indicate an interest in
one or more of the following window operations (see Table 9-3):

Circulating

Destroying

Changing gravity

Configuring

Reparenting

Mapping and unmapping

9.2.2

9.2.3

Handling Events
9.2 Selecting Event Types

Specifying Event Types When Creating a Window
To specify event types when calling the CREATE WINDOW routine,
use the method described in Section 3.2.2 for setting window attributes.
Indicate the type of event Xlib reports to a client by doing the following:

1 Set the event_mask window attribute to one or more masks listed in
Table 9-3.

2 Specify the event mask flag using the value_mask argument of the
CREATE WINDOW routine.

Example 9-1 illustrates this method of selecting events. The program
specifies that Xlib notify the client of exposure events.

Example 9-1 Selecting Event Types Using the CREATE WINDOW Routine

Window window;

static void doCreateWindows(

int windowW 400;
int windowH 300;
int windowX (WidthOfScreen(screen)-windowlW)>>l;
int windowY (HeightOfScreen(screen)-windowlH)>>l;
XSetWindowAttributes xswa;

/* Create the windowl window */

0 xswa.event_mask = ExposureMask;

8 window= XCreateWindow(dpy, RootWindowOfScreen(screen),
windowX, windowY, windowW, windowH, 0,
DefaultDepthOfScreen(screen), InputOutput,
DefaultVisualOfScreen(screen), CWEventMask, &xswa);

0 Set the event mask of the set window attributes data structure to
indicate interest in exposure events.

8 The window attribute is referred to by the constant CWEventMask,
which specifies the attribute.

Specifying Event Types When Changing Window Attributes
To specify one or more event types when changing window attributes,
use the method described in Section 3.6 for changing window attributes.
Indicate an interest in event types by doing the following:

1 Set the event_mask window attribute to one or more masks listed in
Table 9-3.

2 Specify the event mask flag using the value_mask argument of the
CHANGE WINDOW ATTRIBUTES routine.

9-7

Handling Events
9.2 Selecting Event Types

The following illustrates this method:

xswa.event_mask = StructureNotify;

XChangeWindowAttributes(dpy, win, CWEventMask, &xswa);

9.3 Pointer Events

9.3.1

Xlib reports pointer events to interested clients when the button on the
pointing device is pressed or released, or when the pointer moves.

This section describes how to handle the following pointer events:

• Pressing a button on the pointing device

• Releasing a button on the pointing device

• Moving the pointing device

The section also describes the button event and motion event data
structures.

Handling Button Presses and Releases

9-8

To receive event notification of button presses and releases, pass the
window identifier and either the ButtonPressMask mask or the
ButtonReleaseMask mask when using the selection method described in
Section 9.2.

When a button is pressed, Xlib searches for ancestors of the event window
from the root window down to determine whether or not a client has
specified a passive grab, an exclusive interest in the button. If Xlib finds
no passive grab, it starts an active grab, reserving the button for the
sole use of the client receiving notification of the event. Xlib also sets the
time of the last pointer grab to the current Xlib time. The effect is the
same as calling the GRAB BUTTON routine with argument values listed
in Table 9-4.

Table 9-4 Values Used for Grabbing Buttons

Argument

window_id

event_ mask

pointer_mode

keyboard_mode

Value

Event window.

Client pointer motion mask.

Value specified by the constant GrabModeAsync.

Value specified by the constant GrabModeAsync.

(continued on next page)

Handling Events
9.3 Pointer Events

Table 9-4 (Cont.) Values Used for Grabbing Buttons

Argument

owner_ events

confine_to

cursor

Value

True, if the owner has selected OwnerGrabButtonMask.
Otherwise, false.

None.

None.

Xlib terminates the grab automatically when the button is released.
Clients can modify the active grab by calling the UNGRAB POINTER and
CHANGE ACTIVE POINTER GRAB routines.

Xlib uses the button event data structure to report button presses and
releases. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int button;
Bool same_screen;

XButtonEvent;
typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

Table 9-5 describes members of the button event data structure. Note
that Xlib defines the button pressed event and button released event data
structures as a type button event.

Table 9-5 Button Event Data Structure Members

Member Name

type

serial

send_event

display

window

root

subwindow

Contents

Type of event reported. The event type can be either
ButtonPress or ButtonRelease.

Number of the last request processed by the server.

Value defined by the constant true if the event came from
a SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Root window in which the event occurred.

Source window in which the event occurred.

(continued on next page)

9-9

Handling Events
9.3 Pointer Events

9-10

Table 9-5 (Cont.) Button Event Data Structure Members

Member Name

time

x

y

x_root

y_root

state

button

screen

Contents

Time in milliseconds at which the event occurred.

The x value of the pointer coordinates in the source
window.

The y value of the pointer coordinates in the source
window.

The x value of the pointer coordinates relative to the root
window.

The y value of the pointer coordinates relative to the root
window.

State of the button just prior to the event. Xlib can set
this member to the bitwise OR of one or more of the
following masks:

Button1Mask Button2Mask

Button3Mask

Button5Mask

Mod2Mask

Mod4Mask

Button4Mask

Mod1Mask

Mod3Mask

Mod5Mask

Buttons that changed state. Xlib can set this member to
one of the following values:

Button1 Button2

Button3

Buttons

Button4

Indicates whether or not the event window is on the
same screen as the root window.

Example 9-2 illustrates the button press event handling routine of the
sample program described in Chapter 1. The program calls shutdown
routines when the user clicks the mouse button in window2.

Xlib removes the next event from the event queue and copies it into
an event data structure. The program executes one of two routines,
depending on the flag returned in the event data structure type field. Xlib
indicates an exposure event by setting the Expose flag in the type field; it
indicates a button press event by setting the ButtonPress flag.

When creating windowl and window2, the client indicated an interest in
exposures and button presses by setting the event mask field of the set
window attributes data structure, as follows:

XSetWindowAttributes xswa;

xswa.event_mask = ExposureMask I ButtonPressMask;

For more information about selecting event types, see Section 9.2.

9.3.2

Handling Events
9.3 Pointer Events

Example 9-2 Handling Button Presses

/****************** doHandleEvents ***********************/
static void doHandleEvents(
{

XEvent event;

for (; ;) {
XNextEvent(dpy, &event);
switch (event.type) {

case Expose:
case ButtonPress:

doExpose(&event); break;
doButtonPress(&event); break;

static void doButtonPress(eventP)
XEvent *eventP;
{

if (eventP->xexpose.window != window2) {
state =l;
XDrawimageString(dpy, child, gc, 75, 75, message[state],

strlen(message[state]));
return;

/* Unmap and destroy windows */

XUnmapWindow(dpy, windowl);
XDestroyWindow(dpy, windowl);

XCloseDisplay(dpy);

sys$exit (l);

The event data structure includes other data structures Xlib uses to
report information about various kinds of events. The client-defined
doButtonPress routine checks the window field of one of these data
structures (the expose event data structure) to determine whether or
not the server has mapped window2.

If the server has mapped window2, the client calls a series of shutdown
routines when the user presses the mouse button.

Handling Pointer Motion
To only receive pointer motion events when a specified button is pressed,
pass the window identifier and one of the following masks when using the
selection method described in Section 9.2:

ButtonMotionMask

Button2Motion Mask

Button4MotionMask

Button1 MotionMask

Button3MotionMask

ButtonSMotionMask

9-11

Handling Events
9.3 Pointer Events

9-12

Xlib reports pointer motion events to interested clients whenever the
pointer moves and the movement begins and ends in the window. Spatial
and temporal resolution of the events is not guaranteed, but clients are
assured they will receive at least one event when the pointer moves and
then rests. The following illustrates the data structure Xlib uses to report
these events:

typedef struct {
int type;
unsigned long serial;
Bool send event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
char is_hint;
Bool same_screen;

XMotionEvent;
typedef XMotionEvent XPointerMovedEvent;

Table 9-6 describes members of the motion event data structure. Note
that Xlib defines the pointer moved event data structure as type motion
event.

Table 9-6 Motion Event Data Structure Members

Member Name

type

serial

send_event

display

window

root

subwindow

time

x

y

x_root

y_root

Contents

Type of event reported. The member can have only the value
specified by the constant MotionNotify.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Root window in which the event occurred.

Source window in which the event occurred.

Time in milliseconds at which the event occurred.

The x value of the pointer coordinates in the source window.

The y value of the pointer coordinates in the source window.

The x value of the pointer coordinates relative to the root
window.

The y value of the pointer coordinates relative to the root
window.

(continued on next page)

Handling Events
9.3 Pointer Events

Table 9-6 (Cont.) Motion Event Data Structure Members

Member Name Contents

state State of the button just prior to the event. Xlib can set this
member to the bitwise OR of the following masks:

is_hint

same_screen

Button1 Mask Button2Mask

Button3Mask

Button5Mask

Mod2Mask

Mod4Mask

Button4Mask

Mod1Mask

Mod3Mask

Mod5Mask

Indicates that motion hints are active. No other events
reported until pointer moves out of window.

Indicates whether or not the event window is on the same
screen as the root window.

Example 9-3 illustrates pointer motion event handling.

Example 9-3 Handling Pointer Motion

/****************** doHandleEvents ***********************/
static void doHandleEvents(
{

XEvent event;

for (; ;) {
XNextEvent(dpy, &event);
switch (event.type) {

case Expose:
case MotionNotify:
case ButtonPress:

static void doMotionNotify(eventP)
XEvent *eventP;
{

int x = eventP->xmotion.x;
int y = eventP->xmotion.y;
int width = 5;
int length = 5;

doExpose(&event); break;
doMotionNotify(&event); break;
sys$exit(l);

XFillRectangle(dpy, win, gc, x, y, width, length);

Each time the pointer moves, the program draws a small filled rectangle
at the resulting x and y coordinates.

9-13

Handling Events
9.3 Pointer Events

9.4 Key Events

9-14

To receive pointer motion events, the client specifies the MotionNotify
flag when removing events from the queue. The client indicated an
interest in pointer motion events when creating window win, as follows:

xswa.event mask = ExposureMask I ButtonPressMask I
PointerMotionMask;

win= XCreateWindow(dpy, RootWindowOfScreen(screen),
winX, winY, winW, winH, 0,
DefaultDepthOfScreen(screen), InputOutput,
DefaultVisualOfScreen(screen), CWEventMask, &xswa);

The server reports pointer movement. Xlib records the resulting
position of the pointer in a motion data structure, one of the event data
structures that constitute the event data structure. The client-defined
doMotionNotify routine determines the origin of the filled rectangle it
draws by referring to the motion event data structure x and y members.

Xlib reports key press and key release events to interested clients. To
receive event notification of key presses and releases, pass the window
identifier and either the KeyPressMask mask or the KeyReleaseMask
mask when using the selection method described in Section 9.2.

Xlib uses a key event data structure to report key presses and releases to
interested clients whenever any key changes state, even when the key is
mapped to modifier bits.

The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int keycode;
Bool same_screen;

XKeyEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

Table 9-7 describes members of the key event data structure. Note that
Xlib defines the key pressed event and key released event data structures
as type key event.

Handling Events
9.4 Key Events

Table 9-7 Key Event Data Structure Members

Member Name

type

serial

send_event

display

window

root

subwindow

time

x

y

x_root

y_root

state

keycode

same_screen

9.5 Window Entries and Exits

Contents

Value defined by either the KeyPress or the KeyRelease
constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Root window on which the event occurred.

Source window of the event.

Time in milliseconds at which the key event occurred.

The x value of the pointer coordinates in the source window.

The y value of the pointer coordinates in the source window.

The x value of the pointer coordinates relative to the root
window.

The y value of the pointer coordinates relative to the root
window.

State of the key just prior to the key event. Xlib can set this
member to the bitwise OR of the the following states:

ShiftMask Lock Mask

ControlMask Mod1 Mask

Mod2Mask Mod3Mask

Mod4Mask Mod5Mask

An arbitrary but unique representation of the key that
generated the event.

Indicates whether the event window is on the same screen as
the root window.

Xlib reports window entries and exits to interested clients when one of the
following occurs:

• The pointer moves into or out of a window due to either pointer
movement or to a change in window hierarchy. This is normal window
entry and exit.

• A client calls WARP POINTER, which moves the pointer to any
specified point on the screen.

• A client calls CHANGE ACTIVE POINTER GRAB, GRAB
KEYBOARD, GRAB POINTER, or UNGRAB POINTER. This is
pseudomotion, which simulates window entry or exit without actual
pointer movement.

9-15

Handling Events
9.5 Window Entries and Exits

9-16

To receive event notification of window entries and exits, pass the
window identifier and either the EnterWindowMask mask or the
Leave Window Mask mask when using the selection method described
in Section 9.2.

Xlib uses the crossing event data structure to report window entries and
exits. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
int mode;
int detail;
Bool same_screen;
Bool focus;
unsigned int state;

XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
typedef XCrossingEvent XLeaveWindowEvent;

Table 9-8 describes members of the crossing event data structure. Note
that Xlib defines the enter window event and leave window event data
structures as type crossing event.

Table 9-8 Crossing Event Data Structure Members

Member Name

type

serial

send_event

display

window

root

subwindow

time

x

y

x_root

Contents

Value defined by either the EnterNotify or the LeaveNotify
constant.

Number of the last request processed by the server.

The value defined by the constant true if the event came from
a SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Root window on which the event occurred.

Source window in which the event occurred.

Time in milliseconds at which the key event occurred.

The x value of the pointer coordinates in the source window.

The y value of the pointer coordinates in the source window.

The x value of the pointer coordinates relative to the root
window.

(continued on next page)

9.5.1

Handling Events
9.5 Window Entries and Exits

Table 9-8 (Cont.} Crossing Event Data Structure Members

Member Name

y_root

mode

detail

same_screen

focus

state

Contents

The y value of the pointer coordinates relative to the root
window.

Indicates whether the event is normal or pseudomotion. Xlib
can set this member to the value specified by the constants
NotifyNormal, NotifyGrab, and NotifyUngrab. See Section 9.5.1
and Section 9.5.2 for descriptions of normal and pseudomotion
events.

Indicates which windows Xlib notifies of the window entry or
exit event. Xlib can specify one of the following constants:

Notify Ancestor NotifyVirtual

Notifylnferior

NotifyNonlinearVirtual

NotifyNonlinear

Indicates whether or not the event window is on the same
screen as the root window.

Specifies whether the event window or an inferior is the focus
window. If true, the event window is the focus window. If false,
an inferior is the focus window.

State of buttons and keys just prior to the event. Xlib can
return values specified by the following constants:

Button1 Mask Button2Mask

Button3Mask Button4Mask

Button5Mask Mod1Mask

Mod2Mask Mod3Mask

Mod4Mask Mod5Mask

ShiftMask Control Mask

Lock Mask

Normal Window Entries and Exits
A normal window entry or exit event occurs when the pointer moves from
one window to another due to either a change in window hierarchy or the
movement of the pointer. In either case, Xlib sets the mode member of the
crossing event data structure to the constant NotifyNormal.

If the pointer leaves or enters a window as a result of one of the following
changes in window hierarchy, Xlib reports the event after reporting the
hierarchy event:

Mapping

Configuring

Changing gravity

Un mapping

Circulating

Xlib can report a window entry or exit event caused by changes in focus,
visibility, and exposure either before or after reporting these events.

9-17

Handling Events
9.5 Window Entries and Exits

Table 9-9 describes the events Xlib reports when the pointer moves from
window A to window B as a result of a normal window entry or exit.

Table 9-9 Normal Window Entry and Exit Event Reporting

Relationship of Windows

Window A is inferior to window B

Window Bis inferior of window A

Window C is the least common ancestor of
A and B

Window A and window B are on different
screens

Events Reported

A leave notify event on window A with the detail member of the
crossing event data structure set to the constant NotifyAncestor

A leave notify event on each window between window A and
window B exclusive, with the detail member of each crossing event
data structure set to the constant NotifyVirtual

An enter notify event on window B with the detail member of the
crossing event data structure set to the constant Notifylnferior

A leave notify event on window A with the detail member of the
crossing event data structure set to the constant Notifylnferior

An enter notify event on each window between window A and
window B exclusive with the detail member of each crossing event
data structure set to the constant NotifyVirtual

An enter notify event on window B with the detail member of the
crossing event data structure set to the constant NotifyAncestor

A leave notify event on window A with the detail member of the
crossing event data structure set to the constant NotifyNonlinear

A leave notify event on each window between window A and
window C exclusive with the detail member of the crossing event
data structure set to the constant NotifyNonlinearVirtual

An enter notify event on each window between window C and
window B exclusive with the detail member of each crossing event
data structure set to the constant NotifyNonlinearVirtual

An enter notify event on window B with the detail member of the
crossing event data structure set to the constant NotifyNonlinear

A leave notify event on window A with the detail member of the
crossing event data structure set to the constant NotifyNonlinear

If window A is not a root window, a leave notify event on each
window above window A up to and including its root, with the detail
member of each crossing event data structure set to the constant
NotifyNonlinearVirtual

If window B is not a root, an entry notify event on each window
from window B's root down to but not including window B, with
the detail member of the crossing event data structure set to the
constant NotifyNonlinearVirtual

An enter notify event on window B with the detail member of the
crossing event data structure set to the constant NotifyNonlinear

Example 9-4 illustrates window entry and exit event handling. The
program changes the color of a window when the pointer enters or leaves
the window.
Figure 9-1 shows the resulting output.

9-18

Handling Events
9.5 Window Entries and Exits

Example 9-4 Handling Window Entries and Exits

/* Create windows win, subwinl, *
* subwin2, subwin3, and *
* subwin4 on *
* display dpy, defined as follows: *
* #define windowWidth 600 *
* #define windowHeight 600 *
* #define subwindowWidth 120 *
* #define subwindowHeight 120 *
* win position: x = 100,y = 100 *
* subwinl position: x = 120,y 120 *
* subwin2 position: x = 360,y 120 *
* subwin3 position: x = 120,y 360 *
* subwinl position: x = 360,y 360 */

/****************** doHandleEvents ***********************/
static void doHandleEvents(
{

XEvent event;

for (; ;) {
XNextEvent(dpy, &event);
switch (event.type) {

case Expose:
case ButtonPress:
case EnterNotify:
case LeaveNotify:

doExpose(&event); break;
sys$exit(l);
doEnterNotify(&event); break;
doLeaveNotify(&event); break;

/*****
static
XEvent
{

Change window color when pointer enters window *******/
void doEnterNotify(eventP)
*eventP;

0

f)

Window window = eventP->xcrossing.window;
XSetWindowBackground(dpy, window, doDefineColor(4));
XClearArea(dpy, window, 0, O, subwindowWidth, subwindowHeight, 0);
return;

/***** Change window color when pointer leaves window *******/
static void doLeaveNotify(eventP)
XEvent *eventP;
{

Window window = eventP->xcrossing.window;
XSetWindowBackground(dpy, window, doDefineColor(2));
XClearArea(dpy, window, 0, 0, subwindowWidth, subwindowHeight, 0);
return;

0 Xlib gives the identifier of the window that the pointer cursor has
entered in the crossing event data structure window field. The
program uses the identifier to define the window background and
clear the window.

9-19

9.5.2

Handling Events
9.5 Window Entries and Exits

8 The CLEAR AREA routine clears the window and repaints it with the
newly defined window background.

Figure 9-1 Window Entries and Exits

m Window Entry and Exit [!I] [iii)

Subwindows turn gray when pointer cursor is in them.

To exit, click MB2.

ZK-0153A-GE

Pseudomotion Window Entries and Exits

9-20

Pseudomotion window entry and exit events occur when the pointer cursor
moves from one window to another due to activating or deactivating a
pointer grab.

Xlib reports a pseudomotion window entry if a client grabs the pointer,
causing the pointer cursor to change from one window to another even
though the pointer cursor has not moved. For example, if the pointer
cursor is in window A and a client maps window B over window A, the
pointer cursor changes from being in window A to being in window B. If
possible, the pointer cursor remains in the same position on the screen.
When the placement of the two windows prevents the pointer cursor from

Handling Events
9.5 Window Entries and Exits

maintaining the same position, the pointer cursor moves to the location
closest to its original position.

Clients can grab pointers actively by calling the GRAB POINTER routine
or passively by calling the GRAB BUTTON routine. Whether the grab is
active or passive, Xlib sets the following members of the crossing event
data structure to the indicated constants after the pointer cursor moves
from one window to another:

• Type member-EnterNotify

• Mode member-N otifyGrab

When a client passively grabs the pointer by calling the GRAB BUTTON
routine, Xlib reports a button press event after reporting the pointer grab.

Xlib reports a pseudomotion window exit when a client deactivates a
pointer grab, causing the pointer cursor to change from one window to
another even though the pointer cursor has not moved.

Clients can deactivate pointer grabs either actively by calling the
UNGRAB POINTER routine or passively by calling the UNGRAB
BUTTON routine. Whether deactivating the grab is active or passive,
Xlib sets the following members of the crossing event data structure to
the indicated constants after the pointer cursor moves from one window to
another:

• Type member-LeaveN otify

• Mode member-NotifyUngrab

When a client passively deactivates a pointer grab by calling the UNGRAB
BUTTON routine, Xlib reports a button release event before reporting that
the pointer has been released.

9.6 Input Focus Events
Input focus defines the window to which Xlib sends keyboard input. The
keyboard is always attached to some window. Typically, keyboard input
goes to either the root window or to a window at the top of the stack called
the focus window. The focus window and the position of the pointer
determine the window that receives keyboard input.

When the keyboard input focus changes from one window to another, Xlib
reports a focus out event and a focus in event. The window that loses the
input focus receives the focus out event. The window that gains the focus
receives a focus in event. Additionally, Xlib notifies other windows in the
hierarchy of focus in and focus out events.

To receive notification of input focus events, pass the window identifier and
the FocusChangeMask mask when using the selection method described
in Section 9.2.

Xlib uses the focus change event data structure to report keyboard input
focus events. The following illustrates the data structure:

9-21

9.6.1

Handling Events
9.6 Input Focus Events

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int mode;
int detail;

XFocusChangeEvent;
typedef XFocusChangeEvent XFocusinEvent;
typedef XFocusChangeEvent XFocusOutEvent;

Table 9-10 describes members of the focus change event data structure.
Note that Xlib defines the focus in event and focus out event data
structures as type focus change event.

Table 9-10 Focus Change Event Data Structure Members

Member Name

type

serial

send_event

display

window

mode

detail

Contents

Value defined by either the Focusln or the FocusOut constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Specifies whether the event is the result of normal keyboard
input, keyboard input after a client has grabbed the keyboard,
keyboard input at the time the client activates a keyboard grab,
or keyboard input at the time the client deactivates a keyboard
grab.

Xlib can set this field to one of the following constants:

NotifyNormal NotifyWhileGrabbed

NotifyGrab NotifyUngrab

See Section 9.6.1 and Section 9.6.2 for descriptions of
processing input focus events in each of these conditions.

Indicates which windows and pointers Xlib notifies of the input
focus change. Xlib can set this field to one of the following
constants:
Notify Ancestor NotifyVirtual

Notify Inferior

NotifyNonlinearVirtual

NotifyPointerRoot

NotifyNonlinear

Notify Pointer

NotifyDetailNone

Normal Keyboard Input Focus

9-22

A normal keyboard input focus event occurs when keyboard input focus
changes, and the keyboard has not been or is not being grabbed. When a
normal keyboard input focus event occurs, Xlib sets the MODE member of
the focus change event data structure to the constant NotifyNormal.

Handling Events
9.6 Input Focus Events

Table 9-11 lists focus change events reported when window A and window
B are on the same screen, the focus changes from window A to window B,
and the pointer cursor is in window P.

Table 9-11 Effect of Focus Changes: Windows on Same Screen

Window A Inferior to Window B

Window

Window A

Window B

Window P

Other windows

Event Reported Value of DETAIL

Focus out event NotifyAncestor

Focus in event Notifylnferior

Focus in event on each window between Notifylnferior
window B and window P including P if
window P is inferior of window B, but
window P is not window A or an inferior of A

Focus out event on each window between NotifyVirtual
window A and window B exclusive

Window B Inferior to Window A

Window

Window A

Window B

Window P

Other windows

Event Reported

Focus out event

Focus in event

Focus out event on each window between
window P and window A if window P is an
inferior of window A, but window P is not
window A or an inferior or ancestor of B

Focus in event on each window between
window A and window B exclusive

Value of DETAIL

Notify Inferior

Notify Ancestor

Notify Pointer

NotifyVirtual

Table 9-12 lists focus change events reported when the pointer cursor
moves from window A to window B and window C is their least common
ancestor. The pointer cursor is in window P.

Table 9-12 Focus Changes Caused by Pointer Movement

Pointer Moves From Window A to Window B

Window

Window A

Window B

Window P

Event Reported

Focus out event

Focus in event

If window P is an inferior of window A, but
window P is not window A or an inferior
or ancestor of B, a focus out event on
each window from window P up to but not
including window A

Value of DETAIL

Notify Non Li near

NotifyNonlinear

NotifyPointer

(continued on next page)

9-23

Handling Events
9.6 Input Focus Events

Table 9-12 (Cont.) Focus Changes Caused by Pointer Movement

Pointer Moves From Window A to Window B

Window

Other windows

Event Reported

If window P is an inferior of window B,
a focus in event on each window below
window B down to and including window P

Focus out event on each window between
window A and window C exclusive

Focus in event on each window between
window C and window B exclusive

Value of DETAIL

NotifyPointer

NotifyNonlinearVirtual

NotifyNonli nearVi rtual

Table 9-13 lists focus change events reported when window A and window
B are on different screens and the focus changes from window A to window
B. The pointer cursor is in window P.

Table 9-13 Effect of Focus Changes: Windows on Different Screens

Focus Changes from Window A to Window B

Window

Window A

Window B

Window P

Other windows

9-24

Event Reported

Focus out event

Focus in event

If window P is an inferior of window A,
a focus out event on each window from
window P up to but not including window A

If window P is an inferior of window B,
a focus in event on each window below
window B down to and including window P

Value of DETAIL

NotifyNonlinear

NotifyNonlinear

Notify Pointer

NotifyPointer

If window A is not a root window, a focus NotifyNonlinearVirtual
out event on each window above window A
up to and including its root

If window B is not a root window, a focus in NotifyNonlinearVirtual
event on each window from the root window
of B down to but not including B

Table 9-14 lists focus change events reported when the focus changes
between window A and the pointer window, or when the focus is set to
none (no focus).

Table 9-14 Pointer Window and No Focus Changes

Focus Changes from Window A to Pointer Window or to No Focus

Window

Window A

All root windows

Window P

Other windows

Event Reported

Focus out event

Focus in event

If window P is an inferior of window A,
a focus out event on each window from
window P up to but not including window A

If window A is not a root window, a focus
out event on each window above window A
up to and including its root

If the new focus is the window under the
pointer, a focus in event on each window
from the root of window P down to and
including window P

Focus Changes from Pointer Window or No Focus to Window A

Window

Window A

All root windows

Window P

Other windows

Event Reported

Focus in event

Focus out event

If window P is an inferior of window A,
a focus in event on each window below
window A down to and including P

Focus out event on each window from
window P up to and including the root of P

Focus out event on each window from
window P up to and including the root of P

If window A is not a root window, a focus
in event on each window from the root of
window A down to but not including A

Focus Changes from Pointer Window to No Focus or from No Focus
to Pointer Window

Window

All root windows

Old focus window

New focus window

Event Reported

Focus out event

If the old focus was the window under the
pointer, a focus out event on each window
from window P up to and including the root
of P

If the new focus is the window under the
pointer, a focus in event on each window
from the root of P down to and including P

Handling Events
9.6 Input Focus Events

Value of DETAIL

NotifyNonlinear

NotifyPointerRoot or NotifyDetailNone

Notify Pointer

NotifyNonlinearVirtual

NotifyPointerRoot

Value of DETAIL

NotifyNonlinear

NotifyPointerRoot or NotifyDetailNone

Notify Pointer

NotifyPointerRoot

NotifyPointerRoot

NotifyNonlinearVirtual

Value of DETAIL

NotifyPointerRoot or NotifyDetailNone

NotifyPointerRoot

NotifyPointerRoot

9-25

9.6.2

Handling Events
9.6 Input Focus Events

Keyboard Input Focus Changes Caused by Grabs
When a keyboard focus event occurs because a client activates a grab,
Xlib sets the move member of the focus change event data structure to the
constant NotifyGrab.

When a keyboard focus event occurs because a client deactivates a grab,
Xlib sets the move member of the focus change event data structure to the
constant NotifyUngrab.

9. 7 Key Map State Events

9.8 Exposure Events

9-26

Xlib reports changes in the state of the key map immediately after every
enter notify and focus in event.

To receive notification of key map state events, pass the window identifier
and the KeymapStateMask mask when using the selection method
described in Section 9 .2.

Xlib uses the keymap event data structure to report changes in the key
map state. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
char key_vector[32];

XKeymapEvent;

Table 9-15 describes members of the keymap event data structure.

Table 9-15 Keymap Event Data Structure Members

Member Name

type

serial

send_event

display

window

key_vector

Contents

Value defined by the KeymapNotify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Bit vector of the keyboard. Each one bit indicates that the
corresponding key is currently pressed. Byte N contains
the bits for keys 8N to SN+ 7 with the least significant bit
representing key 8N.

Xlib reports an exposure event when one of the following conditions occurs:

• A formerly obscured window or window region becomes visible.

• A destination region cannot be computed.

9.8.1

Handling Events
9.8 Exposure Events

• A graphics request exposes one or more regions.

This section describes how to handle window exposures and graphics
exposures.

Handling Window Exposures
A window exposure occurs when a formerly obscured window becomes
visible again. Because Xlib does not guarantee to preserve the contents of
regions when windows are obscured or reconfigured, clients are responsible
for restoring the contents of the exposed window.

To receive notification of window exposure events, pass the window
identifier and the ExposureMask mask when using the selection method
described in Section 9.2. Xlib notifies clients of window exposures using
the expose event data structure.

The following illustrates the data structure.:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int x, y;
int width, height;
int count;

XExposeEvent;

Table 9-16 describes members of the expose event data structure.

Table 9-16 Expose Event Data Structure Members

Member Name

type

serial

send_event

display

window

x

y

Contents

Value defined by the Expose constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

The x value of the coordinates that define the upper left
corner of the region that is exposed. The coordinates are
relative to the origin of the drawable.

The y value of the coordinates that define the upper left
corner of the region that is exposed. The coordinates are
relative to the origin of the drawable.

(continued on next page)

9-27

9.8.2

Handling Events
9.8 Exposure Events

Table 9-16 (Cont.) Expose Event Data Structure Members

Member Name Contents

width Width of the exposed region.

height Height of the exposed region.

count Number of exposure events that are to follow. If Xlib sets
the count to zero, no more exposure events follow for this
window.

Clients that do not want to optimize redisplay by
distinguishing between subareas of its window can ignore
all exposure events with nonzero counts and perform full
redisplays on events with zero counts.

The following fragment from the sample program in Chapter 1 illustrates
window exposure event handling:

/****************** doHandleEveats ***********************/
static void doHandleEvents(
{

XEvent event;

for (; ;) {
XNextEvent(dpy, &event);
switch (event.type)

case Expose: doExpose(&event); break;

static void doExpose(eventP)
XEvent *eventP;
{

char message[] = {"Click here to exit"};

if (eventP->xexpose.window != window2) return;

XDrawimageString(dpy, window2, gc, 75, 75, message,
strlen(message));

The program checks exposure events to verify that the server has mapped
the second window. After the window is mapped, the program writes text
into it.

The client-defined doExpose routine checks the window and count members
of the expose event data structure to determine whether or not the server
has completed mapping window2. If the window is mapped, the program
writes the message "Click here to exit" in it.

Handling Graphics Exposures

9-28

Xlib reports graphics exposures when one of the following conditions
occurs:

• A destination region could not be computed due to an obscured or out
of bounds source region. For information about destination and source
regions, see Chapter 6.

Handling Events
9.8 Exposure Events

• A graphics request exposes one or more regions. If the request exposes
more than one region, Xlib reports them continuously.

Instead of using the SELECT INPUT routine to indicate an interest in
graphics exposure events, assign a value of true to the graphics_exposures
member of the GC values data structure. Clients can set the value to true
at the time they create a graphics context. If a graphics context exists,
use the SET GRAPHICS EXPOSURES routine to set the value of the field.
For information about creating a graphics context and using the SET
GRAPHICS EXPOSURES routine, see Chapter 4.

Xlib uses the graphics expose event data structure to report graphics
exposures. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int x, y;
int width, height;
int count;
int major_code;
int minor_code;

XGraphicsExposeEvent;

Table 9-17 describes members of the graphics expose event data
structure.

Table 9-17 Graphics Expose Event Data Structure Members

Member Name

type

Contents

Value defined by the GraphicsExpose constant.

Number of the last request processed by the server. serial

send_event Value defined by the constant true if the event came from a
SEND EVENT request.

display

drawable

x

y

width

height

Address of the display on which the event occurred.

Drawable reporting the event.

The x value of the coordinates that define the upper left corner
of the exposed region. The coordinates are relative to the
origin of the drawable.

The y value of the coordinates that define the upper left corner
of the exposed region. The coordinates are relative to the
origin of the drawable.

Width of the exposed region.

Height of the exposed region.

(continued on next page)

9-29

Handling Events
9.8 Exposure Events

9-30

Table 9-17 (Cont.) Graphics Expose Event Data Structure Members

Member Name

count

major_code

minor_code

Contents

Number of exposure events that are to follow. If Xlib sets the
count to zero, no more exposure events follow for this window.

Indicates whether the graphics request was a copy area or a
copy plane.

The value zero. Reserved for use by extensions.

Xlib uses the no expose event data structure to report when a graphics
request that might have produced an exposure did not. The following
illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int major code;
int minor=:code;

XNoExposeEvent;

Table 9-18 describes members of the no expose event data structure.

Table 9-18 No Expose Event Data Structure Members

Member Name

type

serial

send_event

display

drawable

major_opcode

minor_opcode

Contents

Value defined by the NoExpose constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Window or pixmap reporting the event.

Indicates whether the graphics request was a copy area or a
copy plane.

The value zero. Reserved for use by extensions.

Example 9-5 illustrates handling graphics exposure events. The program
checks for graphics exposures and no exposures to scroll up a window.

Figure 9-2 shows the resulting output of the program.

Handling Events
9.8 Exposure Events

Example 9-5 Handling Graphics Exposures

#define scrollPixels 1
#define windowWidth 600
#define windowHeight 600

Display *dpy;
Window win;
GC gc;
Screen *screen;
int n;
int ButtonisDown;
int vY = 0;

/****************** doHandleEvents ***********************/
static void doHandleEvents(
{

XEvent event;

for (; ;)
XNextEvent(dpy, &event);
switch (event.type)

case Expose:
case ButtonPress:
case GraphicsExpose:
case ButtonRelease:
case NoExpose:

I
/***** Write a message *****/
static void doExpose(eventP)
XEvent *eventP;
{

doExpose(&event); break;
doButtonPress(&event); break;
doGraphicsExpose(&event); break;
doButtonRelease(&event); break;
doNoExpose(&event); break;

char messagel[] = {"To scroll, press MBl."};
char message2[] = {"To exit, click MB2."};

XDrawimageString(dpy, win, gc, 150, 25, messagel, strlen(messagel));
XDrawimageString(dpy, win, gc, 150, 50, message2, strlen(message2));

/***** Start a scroll operation *****/
static void startScroll()
{

t) XCopyArea(dpy, win, win, gc, 0, scrollPixels,
windowWidth, windowHeight, 0, 0);

vY += scrollPixels;

/***** Copy the area *******/
static void doButtonPress(eventP)
XEvent *eventP;
{

if (eventP->xbutton.button
ButtonisDown = 1;
startScroll();
return;

Button2) sys$exit(l);

(continued on next page)

9-31

Handling Events
9.8 Exposure Events

Example 9-5 (Cont.) Handling Graphics Exposures

/***** Draw points into the exposed area *******/
static void doGraphicsExpose(eventP)
XEvent *eventP;
{

8 int x = eventP->xgraphicsexpose.x;
int y = eventP->xgraphicsexpose.y;
int width = eventP->xgraphicsexpose.width;
int height = eventP->xgraphicsexpose.height;
int px, py;

for (py=y; py<(y+height); py++)
for (px=x; px<(x+width); px++)

if (! ((px+py+vY) % 10)) XDrawPoint(dpy, win, gc, px, py);

if (ButtonisDown) startScroll();

return;

/****** Quit scrolling when the button is released *******/
static void doButtonRelease(eventP)
XEvent *eventP;
{

ButtonisDown O;
return;

/****** Draw points in the exposed area when window is obscured ****/
static void doNoExpose(eventP)
XEvent *eventP;
{

9-32

if (ButtonisDown) startScroll();
return;

0 The client-defined startScroll routine copies the window contents,
less one row of pixels, to the top of the window. The result leaves an
exposed area one pixel high at the bottom of the window.

8 When a graphics exposure occurs, the client calculates where to draw
points into the exposed area by referring to members of the expose
event data structure.

Figure 9-2 Window Scrolling

Handling Events
9.8 Exposure Events

m Graphics Exposure [!i)&J

To scroll, press MB1.

To exit, click MB2.

ZK-0152A-GE

9.9 Window State Notification Events
Xlib reports events related to the state of a window when a client does one
of the following:

• Circulates a window, changing the order of the window hierarchy

• Configures a window, changing its position, size, or border

• Creates a window

• Destroys a window

• Changes the size of a parent, causing Xlib to move a child window

• Maps a window

• Reparents a window

9-33

9.9.1

Handling Events
9.9 Window State Notification Events

• Unmaps a window

• Changes the visibility of a window

This section describes handling events that result from these operations.

Handling Window Circulation

9-34

To receive notification when a client circulates a window, pass either the
window identifier and the StructureNotifyMask mask or the identifier of
the parent window and the SubstructureNotifyMask mask when using
a selection method described in Section 9.2.

Xlib reports to interested clients a change in the hierarchical position
of a window when a client calls the CIRCULATE SUBWINDOWS,
CIRCULATE SUBWINDOWS UP, or CIRCULATE SUBWINDOWS DOWN
routine.

Xlib uses the circulate event data structure to report circulate events. The
following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int place;

XCirculateEvent;

Table 9-19 describes members of the circulate event data structure.

Table 9-19 Circulate Event Data Structure Members

Member Name

type

serial

send_event

display

event

window

place

Contents

Value defined by the CirculateNotify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Window that has been circulated.

Place of the window on the stack after the window has
been circulated. Xlib sets the value of this member to either
the constant PlaceOnTop or the constant PlaceOnBottom.
PlaceOnTop indicates that the window is above all siblings.
PlaceOnBottom indicates that the window is below all siblings.

9.9.2

Handling Events
9.9 Window State Notification Events

Handling Changes in Window Configuration
To receive notification when window size, position, border, or
stacking order changes, pass either the window identifier and the
StructureNotifyMask mask or the identifier of the parent window
and the constant SubstructureNotifyMask when using the selection
method described in Section 9.2.

Xlib reports changes in window configuration when the following occur:

• Window size, position, border, and stacking order change when a client
calls the CONFIGURE WINDOW routine

• Window position in the stacking order changes when a client calls the
LOWER WINDOW, RAISE WINDOW, or RESTACK WINDOW routine

• Window moves when a client calls the MOVE WINDOW routine

• Window size changes when a client calls the RESIZE WINDOW
routine

• Window size and location change when a client calls the MOVE
RESIZE WINDOW routine

• Border width changes when a client calls the SET WINDOW BORDER
WIDTH routine

For more information about these routines, see Chapter 3.

Xlib reports changes to interested clients using the configure event data
structure. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
Bool override_redirect;

XConfigureEvent;

Table 9-20 describes members of the configure event data structure.

Table 9-20 Configure Event Data Structure Members

Member Name

type

Contents

Value defined by the ConfigureNotify constant.

Number of the last request processed by the server. serial

send_event Value defined by the constant true if the event came from a
SEND EVENT request.

(continued on next page)

9-35

9.9.3

Handling Events
9.9 Window State Notification Events

Table 9-20 (Cont.) Configure Event Data Structure Members

Member Name

display

event

window

x

y

width

height

border_width

above

override_redirect

Contents

Address of the display on which the event occurred.

Event window.

Window that has been reconfigured.

The x value of the coordinates that define the upper left corner
of the window relative to the upper left corner of the parent
window.

The y value of the coordinates that define the upper left corner
of the window relative to the upper left corner of the parent
window.

Width of the window, excluding the border.

Height of the window, excluding the border.

The width of the border in pixels.

The identifier of the sibling window above which the window is
stacked. If this member has a value specified by the constant
None, Xlib places the window at the bottom of the stack.

If true, this member specifies that the window manager ignore
requests to reconfigure the window.

Handling Window Creations

9-36

To receive notification when a client creates a window, pass the identifier
of the parent window and the constant SubstructureNotifyMask when
using the selection method described in Section 9.2.

Xlib reports window creations using the create window event data
structure. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Bool override_redirect;

XCreateWindowEvent;

Table 9-21 describes members of the create window event data structure.

9.9.4

Handling Events
9.9 Window State Notification Events

Table 9-21 Create Window Event Data Structure Members

Member Name

type

serial

send_event

display

parent

window

x

y

width

height

border_width

override_redirect

Handling Window Destructions

Contents

Value defined by either the Focusln or the FocusOut constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Parent of the window created.

Window created.

The x value of the coordinates that define the origin of the
window.

The y value of the coordinates that define the origin of the
window.

Width of the window created.

Height of the window created.

Width of the border in pixels.

If true, this member specifies that the window manager ignore
requests to create the window.

To receive notification when a client destroys a window, pass either
the window identifier and the constant StructureNotifyMask or the
identifier of the parent window and the SubstructureNotifyMask mask
when using the selection method described in Section 9.2.

Xlib reports window destructions using the destroy window event data
structure. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;

XDestroyWindowEvent;

Table 9-22 describes members of the destroy window event data
structure.

Table 9-22 Destroy Window Event Data Structure Members

Member Name

type

serial

Contents

Value defined by the DestroyNotify constant.

Number of the last request processed by the server.

(continued on next page)

9-37

9.9.5

Handling Events
9.9 Window State Notification Events

Table 9-22 (Cont.) Destroy Window Event Data Structure Members

Member Name

send_event

display

event

window

Contents

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Window that has been destroyed.

Handling Changes in Window Position

9-38

To receive notification when a window is moved because a client has
changed the size of its parent, pass the window identifier and the
StructureNotifyMask mask or the identifier of the parent window and
the SubstructureNotifyMask mask when using the selection method
described in Section 9.2.

Xlib reports window gravity events using the gravity event data structure.
The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int x, y;

XGravityEvent;

Table 9-23 describes members of the gravity event data structure.

Table 9-23 Gravity Event Data Structure Members

Member Name

type

serial

send_event

display

event

window

x

y

Contents

Value defined by the GravityNotify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Window that has been moved.

The x value of the coordinates that define the upper left corner
of the window relative to the upper left corner of the parent
window.

The y value of the coordinates that define the upper left corner
of the window relative to the upper left corner of the parent
window.

9.9.6

9.9.7

Handling Events
9.9 Window State Notification Events

Handling Window Mappings
To receive notification when a window changes state from
unmapped to mapped, pass either the window identifier and the
StructureNotifyMask mask or the identifier of the parent window and
the SubstructureNotifyMask mask when using the selection method
described in Section 9.2.

Xlib reports window mapping events using the map event data structure.
The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Bool override_redirect;

XMapEvent;

Table 9-24 describes members of the map event data structure.

Table 9-24 Map Event Data Structure Members

Member Name Contents

type Value defined by the MapNotify constant.

Number of the last request processed by the server. serial

send_event Value defined by the constant true if the event came from a
SEND EVENT request.

display

event

Address of the display on which the event occurred.

Event window.

Window that has been mapped. window

override_redirect If true, indicates that the window manager should disregard
requests to map the window. When true, it overrides a
substructure redirect on the parent.

Handling Key, Keyboard, and Pointer Mappings
All clients receive notification of changes in key, keyboard, and pointer
mapping. Xlib reports these events when a client has successfully done
one of the following:

• Called the SET MODIFIER MAPPING routine to indicate which
keycodes are modifiers

• Changed keyboard mapping using the CHANGE KEYBOARD
MAPPING routine

• Set pointer mapping using the SET POINTER MAPPING routine

9-39

9.9.8

Handling Events
9.9 Window State Notification Events

Xlib reports key, keyboard, and pointer mapping events using the mapping
event data structure. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int request;
int first_keycode;
int count;

XMappingEvent;

Table 9-25 describes members of the mapping event data structure.

Table 9-25 Mapping Event Data Structure Members

Member Name

type

serial

send_event

display

event

window

request

first_keycode

count

Contents

Value defined by the MappingNotify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Unused member.

The type of mapping change being reported. Possible values
are indicated by the following constants:

MappingModifier Specified key codes are used
as modifiers.

Mapping Keyboard Keyboard mapping has
changed. Sets the first_
keycode and count members.

MappingPointer Pointer button mapping is set.

First number of the range of altered keys, set only if the
request member has a value specified by the constant
Mapping Keyboard.

Last number of the range of altered keys, set only if the
request member has a value specified by the constant
Mapping Keyboard.

Handling Window Reparenting

9-40

To receive notification when the parent of a window changes, pass
either the window identifier and the StructureNotifyMask mask or
the identifier of the parent window and the SubstructureNotifyMask
mask when using the selection method described in Section 9.2.

Xlib reports window reparenting events using the reparent event data
structure. The following illustrates the data structure:

9.9.9

Handling Events
9.9 Window State Notification Events

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Window parent;
int x, y;
Bool override_redirect;

XReparentEvent;

Table 9-26 describes members of the reparent event data structure.

Table 9-26 Reparent Event Data Structure Members

Member Name

type

Contents

Value defined by the ReparentNotify constant.

Number of the last request processed by the- server. serial

send_event Value defined by the constant true if the event came from a
SEND EVENT request.

display

event

window

parent

x

y

Address of the display on which the event occurred.

Event window.

Window reparented.

New parent of the window.

The x value of the coordinates that define the upper left corner
of the window relative to the upper left corner of the parent
window.

The y value of the coordinates that define the upper left corner
of the window relative to the upper left corner of the parent
window.

override_redirect If true, this member specifies that the window manager ignore
requests to reparent the window. When true, it overrides a
substructure redirect on the parent.

Handling Window Unmappings
To receive notification when a window changes from mapped to unmapped,
pass either the window identifier and the StructureNotifyMask mask
or the identifier of the parent window and the SubstructureNotifyMask
mask when using the selection method described in Section 9.2.

Xlib reports window unmapping events using the unmap event data
structure. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send event;
Display *display;
Window event;
Window window;
Bool from_configure;

XUnmapEvent;

9-41

Handling Events
9.9 Window State Notification Events

Table 9-27 describes members of the unmap event data structure.

Table 9-27 Unmap Event Data Structure Members

Member Name

type

serial

send_event

display

event

window

from_configure

Contents

Value defined by the UnmapNotify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Event window.

Window unmapped.

If true, indicates that the event occurred as a result of resizing
the parent window when the window itself has a window gravity
specified by the constant UnmapGravity.

9.9.1 O Handling Changes in Window Visibility

9-42

All or part of a window is visible if it is mapped to a screen, if all of its
ancestors are mapped, and if it is at least partially visible on the screen.
To receive notification when the visibility of a window changes, pass the
window identifier and the StructureN otifyMask mask when using the
selection method described in Section 9.2.

Xlib reports changes in visibility to interested clients using the visibility
event data structure. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int state;

XVisibilityEvent;

Table 9-28 describes members of the visibility event data structure.

Table 9-28 Visibility Event Data Structure Members

Member Name

type

serial

send_event

Contents

Value defined by the VisibilityNotify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

(continued on next page)

9.10

Handling Events
9.9 Window State Notification Events

Table 9-28 (Cont.) Visibility Event Data Structure Members

Member Name Contents

display

window

state

Color Map State Events

Address of the display on which the event occurred.

Window whose visibility changed.

If set to the value defined by the VisibilityUnobscured constant,
the window has changed from being partially and fully
obscured to being fully visible. If set to the value defined
by the VisibilityPartiallyObscured, the window has changed
from being fully obscured or fully visible to partially obscured.
If set to the value defined by the VisibilityFullyObscured
constant, the window has changed from being fully visible or
partially obscured to not visible.

Xlib reports a color map event when the window manager installs,
changes, or removes the color map.

To receive notification of color map events, pass the window identifier
and the ColormapChangeMask mask when using the selection method
described in Section 9.2.

Xlib reports color map events to interested clients when the following
occur:

• A client sets the color map member of the set window attributes data
structure by calling CHANGE WINDOW ATTRIBUTES. See Chapter 3
for more information on the data structure and routine.

• A client calls the FREE COLORMAP routine. See Section 5.5 for more
information about FREE COLORMAP.

• The window manager installs or removes a color map in response
to either a client call of the INSTALL COLORMAP or UNINSTALL
COLORMAP routine.

Xlib reports color map events using the color map event data structure.
The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Colormap colormap;
Bool new;
int state; ~

XColormapEvent;

9-43

9.11

9.11.1

Handling Events
9.10 Color Map State Events

Table 9-29 describes members of the color map event data structure.

Table 9-29 Color Map Event Data Structure Members

Member Name

type

serial

send_ event

display

window

colormap

new

state

Contents

Value defined by the ColormapNotify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Window whose associated color map has changed.

If the window manager changes the color map in response
to a call to CHANGE WINDOW ATTRIBUTES, INSTALL
COLORMAP, or UNINSTALL COLORMAP, this member has
a value specified by the constant Colormap. If the window
manager changes the color map in response to a call to
FREE COLORMAP, this member has a value specified by the
constant None.

Value defined by the constant true if the window manager has
changed the color map. The value defined by the constant
false if the window manager has installed or removed the color
map.

Value defined by the constant Colormaplnstalled if the
color map is installed. The value defined by the constant
ColormapUninstalled if the color map is not installed.

Client Communication Events
Xlib reports an event when one of the following occurs:

• One client notifies another client that an event has happened.

• A client changes, deletes, rotates, or gets a property.

• A client loses ownership of a window.

• A client requests ownership of a window.

This section describes how to handle communication between clients.

Handling Event Notification from Other Clients

9-44

Clients can notify each other of events by calling the SEND EVENT
routine.

Handling Events
9.11 Client Communication Events

Xlib sends notification between clients using the client message event data
structure. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom message_type;
int format;
union {

char b [20];
short s[lO];
int 1[5];
} data;

XClientMessageEvent;

Table 9-30 describes members of the client message event data structure.

Table 9-30 Client Message Event Data Structure Members

Member Name

type

serial

send_event

display

window

message_type

format

b

s

Contents

Value defined by the ClientMessage constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Window to which the message is sent.

Indicates how the message data is to be interpreted by the
receiving client. For more information about atoms, see
Chapter 3.

Indicates whether the data is in units of 8, 16, or 32 bits.

Data of 20 8-bit values.

Data of 10 16-bit values.

Data of 5 32-bit values.

9.11.2 Handling Changes in Properties
As Chapter 3 notes, a property associates a constant with data of a
particular type. Xlib reports a property event when a client does one of
the following:

• Changes a property

• Rotates a window property

• Gets a property

• Deletes a property

9-45

Handling Events
9.11 Client Communication Events

To receive information about property changes, pass the window identifier
and the PropertyChangeMask mask when using the selection method
described in Section 9.2.

Xlib reports changes in properties to interested clients using the property
event data structure. The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom atom;
Time time;
int state;

XPropertyEvent;

Table 9-31 describes members of the property event data structure.

Table 9-31 Property Event Data Structure Members

Member Name

type

serial

send_event

display

window

atom

time

state

Contents

Value defined by the PropertyNotify constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Window whose property was changed.

Identifies the property that was changed. For more
information about properties and atoms, see Chapter 3.

Server time that the property changed.

Value specified by the constant PropertyNewValue if a
client changes a property by calling either the CHANGE
PROPERTY or the ROTATE PROPERTY routine. The
same result occurs if the client replaces all or part of a
property with identical data using CHANGE PROPERTY or
ROTATE PROPERTY.

The value specified by the constant PropertyDelete if a
client deletes a property by calling either the DELETE
PROPERTY or the GET PROPERTY routine. For more
information about properties, see Chapter 3.

9.11.3 Handling Changes in Selection Ownership

9-46

Clients receive notification automatically when they lose ownership of
a selection in a window. Xlib reports the event when a client takes
ownership of a selection by calling the SET SELECTION OWNER routine.

Handling Events
9.11 Client Communication Events

To report the event, Xlib uses the selection clear event data structure. The
following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom selection;
Time time;

XSelectionClearEvent;

Table 9-32 describes members of the selection clear event data structure.

Table 9-32 Selection Clear Event Data Structure Members

Member Name

type

Contents

Value defined by the SelectionClear constant.

Number of the last request processed by the server. serial

send_event Value defined by the constant true if the event came from a
SEND EVENT request.

display

window

selection

time

Address of the display on which the event occurred.

Window losing ownership of the selection.

Selection atom. For more information about atoms and
selection, see Chapter 3.

Last time change recorded for the selection.

9.11.4 Handling Requests to Convert a Selection
The server issues a selection request event to the owner of a selection
when a client calls the CONVERT SELECTION routine. For information
about the CONVERT SELECTION routine, see Section 3.5.2.

To report the event, Xlib uses the selection request event data structure.
The following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send event;
Display *display;
Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

XSelectionRequestEvent;

Table 9-33 describes members of the selection request event data
structure.

9-47

Handling Events
9.11 Client Communication Events

Table 9-33 Selection Request Event Data Structure Members

Member Name

type

serial

send_event

display

owner

requestor

selection

target

property

time

Contents

Value defined by the SelectionRequest constant.

Number of the last request processed by the server.

Value defined by the constant true if the event came from a
SEND EVENT request.

Address of the display on which the event occurred.

Window that owns the selection.

Window that requests the selection.

Selection atom. For more information about atoms and
selection, see Chapter 3.

Data type that selection is converted to before being
returned.

Atom that specifies a property or the constant None.

Timestamp, expressed in milliseconds, or the constant
CurrentTime from the convert selection request

9.11.5 Handling Requests to Notify of a Selection

9-48

The server issues a selection notify event after a client calls the CONVERT
SELECTION routine. The owner of the selection being converted should
initiate this event by calling SEND EVENT when either the selection
has been converted and stored as a property or the selection conversion
could not be performed. For information about converting selections, see
Section 3.5.2.

To report the event, Xlib uses the selection event data structure. The
following illustrates the data structure:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

XSelectionEvent;

Table 9-34 describes members of the selection event data structure.

9.12

Handling Events
9.11 Client Communication Events

Table 9-34 Selection Event Data Structure Members

Member Name

type

Contents

Value defined by the SelectionNotify constant.

Number of the last request processed by the server. serial

send_event Value defined by the constant true if the event came from a
SEND EVENT request.

display

requestor

selection

target

property

time

Event Queue Management

Address of the display on which the event occurred.

Window that requests the selection.

Selection atom. For more information about atoms and
selection, see Chapter 3.

Data type to which selection is converted.

Atom that specifies a property or the constant None.

Timestamp, expressed in milliseconds, or the constant
CurrentTime from the convert selection request.

Xlib maintains an input queue known as the event queue. When an
event occurs, the server sends the event to Xlib, which places it at the end
of an event queue. By using routines described in this section, the client
can check, remove, and process the events on the queue. As the client
removes an event, remaining events move up the event queue.

Certain routines may block or prevent other routine calls from accessing
the event queue. If the blocking routine does not find an event that the
client is interested in, Xlib flushes the output buffer and waits until an
event is received from the server.

This section describes how the event queue is managed, including the
following topics:

• Checking events on the queue

• Returning events in order and removing them from the queue

• Returning events without removing them from the queue

• Obtaining events that match the event mask or the arbitrary functions
that the client provides

• Putting events back onto the event queue

• Sending events to other clients

9-49

9.12.1

Handling Events
9.12 Event Queue Management

Checking the Contents of the Event Queue
To check the event queue without preventing other routines from accessing
the queue, use the EVENTS QUEUED routine. Clients can check events
already queued by calling the EVENTS QUEUED routine and specifying
one of the following constants:

QueuedAlready

QueuedAfterFlush

QueuedAfterReading

Returns the number of events already in the event
queue and never performs a system call.

Returns the number of events in the event queue if
the value is a nonzero. If there are no events in the
queue, this routine flushes the output buffer, attempts
to read more events out of the client connection, and
returns the number read.

Returns the number of events already in the event
queue if the value is a nonzero. If there are no events
in the queue, this routine attempts to read more
events out of the client connection without flushing the
output buffer and returns the number read.

To return the number of events in the event queue, use the PENDING
routine. If there are no events in the queue, PENDING flushes the output
buffer, attempts to read more events out of the client connection, and
returns the number read. The PENDING routine is identical to EVENTS
QUEUED with constant Queued.AfterFlush specified.

9.12.2 Returning the Next Event on the Queue
To return the first event on the event queue and copy it into the specified
event data structure, use the NEXT EVENT and PEEK EVENT routines.
NEXT EVENT returns the first event, copies it into an EVENT structure,
and removes it from the queue. PEEK EVENT returns the first event,
copies it into an event data structure, but does not remove it from the
queue. In both cases, if the event queue is empty, the routine flushes the
output buffer and blocks until an event is received.

9.12.3 Selecting Events That Match User-Defined Routines

9-50

Xlib enables the client to check all the events on the queue for a specific
type of event by specifying a client-defined routine known as a predicate
procedure. The predicate procedure determines if the event on the queue
is one that the client is interested in.

The client calls the predicate procedure from inside the event routine.
The predicate procedure should determine only if the event is useful and
must not call Xlib routines. The predicate procedure is called once for each
event in the queue until it finds a match.

Table 9-35 lists routines that use a predicate procedure and indicates
whether or not the routine blocks.

Handling Events
9.12 Event Queue Management

Table 9-35 Selecting Events Using a Predicate Procedure

Routine Description Blocking/No Blocking

IF EVENT Checks the event queue for the specified event. Blocking
If the event matches, removes the event from the
queue. This routine is also called each time an
event is added to the queue.

CHECK IF EVENT Checks the event queue for the specified event. No blocking
If the event matches, removes the event from the
queue. If the predicate procedure does not find a
match, it flushes the output buffer.

PEEK IF EVENT Checks the event queue for the specified event but Blocking
does not remove it from the queue. This routine
is also called each time an event is added to the
queue.

9.12.4 Selecting Events Using an Event Mask
Xlib enables a client to process events out of order by specifying a window
identifier and one of the event masks listed in Table 9-3 when calling
routines listed in Table 9-36.

For example, the following specifies keyboard events on window window
by using the event mask name constant KeymapStateMask.

XWindowEvent(dpy, window, KeymapState, &event)

Table 9-36 lists routines that use event or window masks and indicates
whether the routine blocks.

Table 9-36 Routines to Select Events Using a Mask

Routine Description Blocking/No Blocking

WINDOW EVENT Searches the event queue and removes the next Blocking
event that matches both the specified window and
event mask

CHECK WINDOW EVENT Searches the event queue, then the events No blocking
available on the server connection, and removes
the first event that matches the specified event and
window mask

MASK EVENT Searches the event queue and removes the next Blocking
event that matches the event mask

(continued on next page)

9-51

Handling Events
9.12 Event Queue Management

Table 9-36 (Cont.) Routines to Select Events Using a Mask

Routine Description Blocking/No Blocking

CHECK MASK EVENT Searches the event queue, then the events No blocking
available on the server connection, and removes
the next event that matches an event mask

CHECK TYPED EVENT Returns the next event in the queue that matches No blocking
an event type

CHECK TYPED WINDOW Searches the event queue, then the events No blocking
EVENT available on the server connection, and removes

the next event that matches the specified type and
window

9.12.5 Putting an Event Back on Top of the Queue
To push an event back onto the top of the event queue, use the PUT BACK
EVENT routine. PUT BACK EVENT is useful when a client returns an
event from the queue and decides to use it later. There is no limit to how
many times in succession PUT BACK EVENT can be called.

9.12.6 Sending Events to Other Clients

9.13

9.13.1

Error Handling

To send an event to a client, use the SEND EVENT routine. For example,
owners of a selection should use this routine to send a SELECTION
NOTIFY event to a requestor when a selection has been converted and
stored as a property.

Xlib has two default error handlers. One manages fatal errors, such as
when the connection to a display is severed due to a system failure. The
other handles error events from the server. The default error handlers
print an explanatory message and text and then exit.

Each of these error handlers can be replaced by client error handling
routines. If a client-supplied routine is passed a null pointer, Xlib
reinvokes the default error handler.

This section describes the Xlib event error handling resources including
enabling synchronous operation, handling server errors, and handling
input/output (l/0) errors.

Enabling Synchronous Operation

9-52

When debugging programs it is convenient to require Xlib to behave
synchronously so that errors are reported at the time they occur.

To enable synchronous operation, use the SYNCHRONIZE routine. The
client passes the display argument and the onoff argument. The onoff
argument passes either a value of zero (disabling synchronization) or a
nonzero value (enabling synchronization).

Handling Events
9.13 Error Handling

9.13.2 Using the Default Error Handlers
To handle error events when an error event is received, use the SET
ERROR HANDLER routine.

Xlib provides an error event data structure that passes information to the
SET ERROR HANDLER routine.

The following illustrates the error event data structure:

typedef struct {
int type
Display *display
unsigned long serial;
char error_code;
char request_code;
char minor_code;
XID resourceid;

XErrorEvent;

Table 9-37 describes the members of the data structure.

Table 9-37 Error Event Data Structure Members

Member Name Description

Type of error event being reported

Display on which the error event occurred

type

display

serial Number of requests starting at one sent over the network
connection since it was opened

error_code

request_ code

minor_code

resource id

Identifying error code of the failing routine

Protocol representation of the name of the procedure that
failed and defined in X11/X.h

Minor opcode of failed request

Resource ID

The routines described in this section return Xlib error codes. Table 9-38
lists the codes and describes the errors.

9-53

Handling Events
9.13 Error Handling

Table 9-38 Event Error Codes

Error Code

BadAccess

BadAlloc

BadAtom

Bad Color

BadCursor

Bad Drawable

Bad Font

BadGC

Bad I DChoice

Bad Implementation

Bad length

9-54

Description

Possible causes are:

An attempt to grab a key/button combination that
has already been grabbed by another client.

An attempt to free a color map entry that was not
allocated by the client.

An attempt to store into a read-only, or unallocated,
color map entry.

An attempt to modify the access control list from
other than the local host.

An attempt to select an event type that only one
client can select at a time when another client has
already selected it.

The server did not allocate the requested resource for
any cause.

The value specified in an atom argument does not name
a defined atom.

A value specified for a color map argument does not
name a defined color map.

A value specified for a cursor argument does not name a
defined cursor.

A value specified for a drawable argument does not
name a defined window or pixmap.

A value specified for a font argument does not name a
defined font (or, in some cases, graphics context).

A value specified for a graphics context argument does
not name a defined graphics context.

The value specified for a resource identifier is either
not included in the range assigned to the client, or it is
already in use. Under normal circumstances this cannot
occur and should be considered a server or Xlib error.

The server does not implement some aspect of the
request. This error is most likely caused by a server
extension; a server that generates this error for a core
protocol request is deficient. As such, this error is
not listed for any particular request. Clients should be
prepared to receive this type of error and either handle
or discard it.

The length of a request is shorter or longer than required
to minimally contain the arguments. This error usually
indicates an internal Xlib or server error. The length of
a request exceeds the maximum length accepted by the
server.

(continued on next page)

Handling Events
9.13 Error Handling

Table 9-38 (Cont.) Event Error Codes

Error Code

Bad Match

Bad Name

Bad Pixmap

Bad Request

Bad Value

BadWindow

Description

Possible causes are:

In a graphics request, the root and depth of
the graphics context does not match that of the
drawable.
An input-only window is used as a drawable.
One argument or pair of arguments has the correct
type and range but fails to match in some other way
required by the request.

An input only window lacks this attribute.

The font or color specified does not exist.

A value specified for a pixmap argument does not name
a defined pixmap.

The major or minor opcode specified does not indicate a
valid request. This is usually an Xlib or server error.

Some numeric values fall outside the range of values
accepted by the request. Unless a specific range is
specified for an argument, the full range defined by the
argument's type is accepted. Any argument defined as a
set of alternatives can generate this error.

A value specified for a window argument does not name
a defined window.

Note that Bad Atom, Bad Color, Bad Cursor, Bad Drawable, Bad Font,
Bad Pixmap, and Bad Window errors are also used when the argument
type is extended by a set of fixed alternatives.

To obtain a text description of the specified error code, use the GET
ERROR TEXT routine. This routine copies a null terminated string
describing the specified error code into the specified buffer. The client
should use this routine to obtain an error description because extensions
to Xlib may define their own error codes and error strings.

To obtain error messages from the error database, use the GET ERROR
DATABASE TEXT routine. This routine returns a message (or the default
message) from the error message database. The GET ERROR DATABASE
TEXT uses the resource manager to look up a string and returns it in the
buffer argument. Xlib uses this function internally to look up its error
messages.

To report an error when the requested display does not exist, use the
DISPLAY NAME routine. This routine returns the name of the display
that the client is currently using. The DISPLAY NAME routine passes
the argument string. If null string is specified, DISPLAY NAME looks in
the environment and returns the display name requested. This makes it
easier to report precisely which display the client attempted to open when
the initial connection attempt failed.

9-55

Handling Events
9.13 Error Handling

9-56

To handle fatal I/O errors, use the SET IO ERROR HANDLER routine.
Xlib calls the supplied error handler if any system call error occurs (for
example, the connection to the server is lost). In this case, the called
routine should not return. If the I/O handler does return, the client exits.

A Compiling Fonts

VMS DECwindows includes a font compiler that enables programmers
to convert an ASCII bitmap distribution format (BDF) into binary server
natural form (SNF). The server uses an SNF file to display a font. In
addition to converting the BDF file to binary form, the compiler provides
statistical information about the font and the compilation process.

To invoke the font compiler, use the following format:

FONT filespec [
/[NO]OUTPUT[=filename]
/[NO]MINBBOX
/[NO] REPORT
]

The filename parameter specifies the BDF file to be converted. A
file name is required. The default value of the optional file type is
DECW$BDF.

The /OUTPUT qualifier specifies the file name and type of the resulting
SNF file. The default output file name is the file name of the BDF file
being converted. The default output SNF file type is DECW$FONT.

Compiler output consists of a header file that contains font information,
character metrics, and the image of each character in the font. Font
information in the header file is essentially the same as information stored
in the font struct data structure. For a description of the data structure,
see Section 8.1.

The /MINBBOX qualifier specifies that the compiler produce the minimum
bounding box for each character in the font and adjust values for the left
bearing, right bearing, ascent, and descent of each character accordingly.
Character width is not affected. Specifying the /MINBBOX qualifier
is equivalent to converting a fixed font to a monospaced font. For a
description of character metrics and fonts, see Section 8.1.

Using the /MINBBOX qualifier has two advantages. Because the font
compiler produces minimum instead of fixed bounding boxes, the resulting
SNF file is significantly smaller than the comparable fixed font SNF file.
Consequently, both disk requirements for storing the font and server
memory requirements when a client loads the font are reduced. Also,
because the resulting font comprises minimum inkable characters, server
performance when writing text is increased as much as 20 percent.

The /REPORT qualifier directs the compiler to report information about
the font and the conversion process, including BDF information, font
properties, compiler generation information, and metrics. The /REPORT
qualifier also causes the compiler to illustrate each glyph in the font.

A-1

B Routines Requiring Protocol Requests

Table B-1 lists Xlib routines requiring protocol requests. The table
provides the protocol request and a short description for each Xlib function.

Table B-1 Routines Requiring Protocol Requests

Xlib Function Protocol Request

ALLOC COLOR ALLOC COLOR

ALLOC COLOR CELLS ALLOC COLOR CELLS

ALLOC COLOR PLANES ALLOC COLOR PLANES

ALLOC NAMED COLOR ALLOC NAME COLOR

CHANGE GC CHANGE GC

CHANGE PROPERTY CHANGE PROPERTY

CHANGE WINDOW ATTRIBUTES CHANGE WINDOW
ATTRIBUTES

CIRCULATE SUBWINDOWS CIRCULATE WINDOW

CIRCULATE SUBWINDOWS DOWN CIRCULATE WINDOW

CIRCULATE SUBWINDOWS UP CIRCULATE WINDOW

CLEAR AREA CLEAR AREA

CLEAR WINDOW CLEAR AREA

CONFIGURE WINDOW CONFIGURE WINDOW

CONVERT SELECTION CONVERT SELECTION

COPY AREA COPY AREA

Description

Allocates a read-only color cell

Allocates read/write color cells and
color plane combinations for a
PseudoColor model

Allocates read/write color resources for
DirectColor visual types

Allocates a read-only color cell by
name and returns the closest color
supported by the hardware

Changes the components in the
specified graphics context

Changes the property of a specified
window

Changes one or more window
attributes

Circulates a subwindow up or down

Lowers the highest mapped child of
a window that partially or completely
occludes another child

Raises the lowest mapped child of an
occluded window

Clears a specified rectangular area of
the specified window

Clears the entire area in the specified
window

Configures a window's size, location,
stacking, or border

Requests conversion of a selection

Copies an area of the specified
drawable between drawables of the
same root and depth

(continued on next page)

B-1

Routines Requiring Protocol Requests

Table 8-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function

COPY COLORMAP AND FREE

COPY GC

COPY PLANE

CREATE COLORMAP

CREATE FONT CURSOR

CREATE GC

CREATE GLYPH CURSOR

CREATE PIXMAP

CREATE PIXMAP CURSOR

CREATE SIMPLE WINDOW

CREATE WINDOW

DEFINE CURSOR

DELETE PROPERTY

DESTROY SUBWINDOWS

DESTROY WINDOW

DRAW ARC

DRAW ARCS

DRAW IMAGE STRING

DRAW IMAGE STRING 16

DRAW LINE

DRAW LINES

8-2

Protocol Request Description

COPY COLOR MAP AND FREE Creates a new color map when
allocating out of a previously shared
color map has failed due to resource
exhaustion

COPY GC

COPY PLANE

CREATE COLORMAP

CREATE GLYPH CURSOR

CREATE GC

CREATE GLYPH CURSOR

CREATE PIXMAP

CREATE CURSOR

CREATE WIN DOW

CREATE WINDOW

CHANGE WINDOW
ATTRIBUTES

DELETE PROPERTY

DESTROY SUBWINDOWS

DESTROY WINDOW

POLY ARC

POLY ARC

IMAGE TEXT 8

IMAGE TEXT 16

POLY SEGMENT

POLY LINE

Copies components from a source
graphics context to a destination
graphics context

Copies a single bit-plane of the
specified drawable

Creates a color map for a screen

Creates a cursor from a standard font

Creates a new graphics context that is
usable with the specified drawable

Creates a cursor from font glyphs

Creates a pixmap of a specified size

Creates a cursor from two bitmaps

Creates an unmapped input-output
subwindow of the specified parent
window

Creates an unmapped subwindow for a
specified parent window

Defines which cursor will be used in a
window

Deletes a property for the specified
window

Destroys all subwindows of a specified
window

Destroys a window and all of its
subwindows

Draws a single arc in the specified
drawable

Draws multiple arcs in the specified
drawable

Draws 8-bit image text characters in
the specified drawable

Draws 2-byte image text characters in
the specified drawable

Draws a single line between two points
in the specified drawable

Draws multiple lines in the specified
drawable

(continued on next page)

Routines Requiring Protocol Requests

Table B-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function Protocol Request

DRAW POINT POLY POINT

DRAW POINTS POLY POINT

DRAW RECTANGLE POLY RECTANGLE

DRAW RECTANGLES POLY RECTANGLE

DRAW SEGMENTS POLY SEGMENT

DRAW STRING POLY TEXT 8

DRAW STRING 16 POLY TEXT 16

DRAW TEXT POLY TEXT 8

DRAW TEXT 16 POLY TEXT 16

FETCH BYTES GET PROPERTY

FETCH NAME GET PROPERTY

FILL ARC POLY FILL ARC

FILL ARCS POLY FILL ARC

FILL POLYGON FILL POLY

FILL RECTANGLE POLY FILL RECTANGLE

FILL RECTANGLES POLY FILL RECTANGLE

FREE COLORMAP FREE COLOR MAP

FREE COLORS FREE COLOR

FREE CURSOR FREE CURSOR

FREE FONT CLOSE FONT

FREE GC FREE GC

Description

Draws a single point in the specified
drawable

Draws multiple points in the specified
drawable

Draws the outline of a single rectangle
in the specified drawable

Draws the outline of multiple rectangles
in the specified drawable

Draws multiple but not necessarily
connected lines in the specified
drawable

Draws 8-bit characters in the specified
drawable

Draws 2-byte characters in the
specified drawable

Draws 8-bit characters in the specified
drawable

Draws 2-byte characters in the
specified drawable

Returns data from cut buffer O

Gets the name of a window

Fills a single arc in the specified
drawable

Fills multiple arcs in the specified
drawable

Fills a polygon area in the specified
drawable

Fills a single rectangular area in the
specified drawable

Fills multiple rectangular areas in the
specified drawable

Deletes the association between the
color map resource ID and the color
map

Frees color map cells

Frees (destroys) the specified cursor

Unloads the font and frees the storage
used by the font data structure that
was allocated by QUERY FONT and
LOAD QUERY FONT

Frees the specified graphics context

(continued on next page)

B-3

Routines Requiring Protocol Requests

Table B-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function

FREE PIXMAP

GET ATOM NAME

GET FONT PATH

GET GEOMETRY

GET ICON SIZES

GET IMAGE

GET MOTION EVENTS

GET NORMAL HINTS

GET SELECTION OWNER

GET SIZE HINTS

GET WM HINTS

GET WINDOW ATTRIBUTES

GET WINDOW PROPERTY

GET ZOOM HINTS

INIT EXTENSION

INTERN ATOM

LIST EXTENSIONS

LIST FONTS

LIST FONTS WITH INFO

LIST PROPERTIES

LOAD FONT

B-4

Protocol Request

FREE PIXMAP

GET ATOM NAME

GET FONT PATH

GET GEOMETRY

GET PROPERTY

GET IMAGE

GET MOTION EVENTS

GET PROPERTY

GET SELECTION OWNER

GET PROPERTY

GET PROPERTY

GET WINDOW ATTRIBUTES
GET GEOMETRY

GET PROPERTY

GET PROPERTY

QUERY EXTENSION

INTERN ATOM

LIST EXTENSIONS

LIST FONTS

LIST FONTS WITH INFO

LIST PROPERTIES

OPEN FONT

Description

Frees all storage associated with a
specified pixmap

Returns a name for the specified atom
identifier

Gets the current font search path

Obtains the current geometry of the
specified drawable

Returns the value of the icon sizes
atom

Returns the contents of a rectangle in
the specified drawable on the display

Gets the motion history for a specified
window and time

Returns the size hints for a window in
its normal state

Returns the selection owner

Reads the value of any property of
type WM_SIZE_HINTS

Reads the value of the window
manager hints atom

Obtains the current attributes or
geometry of a specified window

Obtains the atom type and property
format of a specified window

Reads the value of the zoom hints
atom

Allocates storage for maintaining
the information about the extension
on the connection, chains this onto
the extension list, and returns the
information the stub implementor
needs to access the extension

Returns an atom for a specified name

Returns a list of all extensions
supported by the server

Returns a list of the available font
names

Obtains the names and information
about loaded fonts

Obtains the specified window's
property list

Loads the specified font

(continued on next page)

Routines Requiring Protocol Requests

Table B-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function Protocol Request

LOAD QUERY FONT OPEN FONT
QUERY FONT

LOOKUP COLOR LOOKUP COLOR

LOWER WINDOW CONFIGURE WINDOW

MAP RAISED CONFIGURE WINDOW
MAP WINDOW

MAP SUBWINDOWS MAP SUBWINDOWS

MAP WINDOW MAP WINDOW

MOVE RESIZE WINDOW CONFIGURE WINDOW

MOVE WINDOW CONFIGURE WINDOW

NOOP NO OPERATION

OPEN DISPLAY CREATE GC

PARSE COLOR LOOKUP COLOR

PUT IMAGE PUT IMAGE

QUERY BEST CURSOR QUERY BEST SIZE

QUERY BEST SIZE QUERY BEST SIZE

QUERY BEST STIPPLE QUERY BEST SIZE

QUERY BEST TILE QUERY BEST SIZE

QUERY COLOR QUERY COLORS

QUERY COLORS QUERY COLORS

QUERY EXTENSION QUERY EXTENSION

QUERY POINTER QUERY POINTER

QUERY TEXT EXTENTS QUERY TEXT EXTENTS

Description

Performs a LOAD FONT and QUERY
FONT in a single operation

Looks up the name of a color

Lowers a window so that it does not
obscure any sibling window

Maps and raises a window

Maps all subwindows for a specified
window

Maps the specified window

Changes size and location of a window

Moves a window without changing its
size

Sends a NoOperation request to the
server

Opens a connection to the server
controlling the specified display

Parses color values

Combines an image in memory with a
rectangle of a drawable on the display

Determines useful cursor sizes

Obtains the best size of a tile, stipple,
or cursor

Obtains the best stipple shape

Obtains the fill tile shape

Queries the RGB values of a single
specified pixel value

Queries the RGB values of an array
of pixels stored in the color data
structures

Determines if the named extension
is present and, if so, returns major
opcode for the extension

Obtains the root window the pointer
is currently on and the pointer
coordinates relative to the root's
origin

Queries the server for the bounding
box of a 1-byte character string

(continued on next page)

B-5

Routines Requiring Protocol Requests

Table B-1 {Cont.) Routines Requiring Protocol Requests

Xlib Function Protocol Request

QUERY TEXT EXTENTS 16 QUERY TEXT EXTENTS

QUERY TREE QUERY TREE

RAISE WINDOW CONFIGURE WINDOW

RECOLOR CURSOR RECOLOR CURSOR

RESIZE WINDOW CONFIGURE WINDOW

RESTACK WINDOWS CONFIGURE WINDOW

ROTATE BUFFERS ROTATE PROPERTIES

ROTATE WINDOW PROPERTIES ROTATE PROPERTIES

SELECT INPUT CHANGE WINDOW
ATTRIBUTES

SEND EVENT SEND EVENT

SET ARC MODE CHANGE GC

SET BACKGROUND CHANGE GC

SET CLIP MASK CHANGE GC

SET CLIP ORIGIN CHANGE GC

SET CLIP RECTANGLES SET CLIP RECTANGLES

SET COMMAND CHANGE PROPERTY

SET DASHES SET DASHES

SET FILL RULE CHANGE GC

SET FILL STYLE CHANGE GC

B-6

Description

Queries the server for the bounding
box of a 2-byte character string in the
specified font

Obtains a list of children, the parent,
and number of children for a specified
window

Raises a window so that no sibling
window obscures it

Changes the color of the specified
cursor

Changes a window's size without
changing the upper left coordinate

Restacks a set of windows from top to
bottom

Rotates the cut buffers

Rotates properties in the properties
array

Requests server to report events
associated with the event masks
passed to the event_mask argument

Sends an event to a specified window

Sets the arc mode of the specified
graphics context

Sets the background of the specified
graphics context

Sets the clip_mask of the specified
graphics context to the specified
pixmap

Sets the clip origin of the specified
graphics context

Sets the clip_mask of the specified
context to the specified list of
rectangles

Sets the value of the command atom

Sets the dash_offset and dash_list
for dashed line styles of the specified
graphics context

Sets the fill rule of the specified
graphics context

Sets the fill style of the specified
graphics context

(continued on next page)

Routines Requiring Protocol Requests

Table B-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function Protocol Request

SET FONT CHANGE GC

SET FONT PATH SET FONT PATH

SET FOREGROUND CHANGE GC

SET FUNCTION CHANGE GC

SET GRAPHICS EXPOSURES CHANGE GC

SET ICON SIZES CHANGE PROPERTY

SET LINE ATTRIBUTES CHANGE GC

SET NORMAL HINTS CHANGE PROPERTY

SET PLANE MASK CHANGE GC

SET SELECTION OWNER SET SELECTION OWNER

SET SIZE HINTS CHANGE PROPERTY

SET STANDARD PROPERTIES CHANGE PROPERTY

SET STATE CHANGE GC

SET STIPPLE CHANGE GC

SET SUBWINDOW MODE CHANGE GC

SET TILE CHANGE GC

SET TS ORIGIN CHANGE GC

SET WM HINTS CHANGE PROPERTY

SET WINDOW BACKGROUND CHANGE WINDOW
ATTRIBUTES

SET WINDOW BACKGROUND CHANGE WINDOW
PIXMAP ATTRIBUTES

SET WINDOW BORDER CHANGE WINDOW
ATTRIBUTES

Description

Sets the current font of the specified
graphics context

Sets the font search path

Sets the foreground of the specified
graphics context

Sets the display function in the
specified graphics context

Sets the graphics exposures flag of the
specified graphics context

Sets the value of the icon size atom

Sets the line drawing components of
the specified graphics context

Sets the size hints for a window in its
normal state

Sets the plane mask of the specified
graphics context

Sets the selection owner

Sets the value of any property of type
WM_SIZE_HINTS

Specifies a minimum set of properties
describing a simple application

Sets the foreground, background,
plane mask, and function components
for the specified graphics context

Sets the stipple of the specified
graphics context

Sets the subwindow mode of the
specified graphics context

Sets the fill tile of the specified
graphics context

Sets the tile or stipple origin of the
specified graphics context

Sets the value of the window manager
hints atom

Sets the background of a specified
window to the specified pixel

Sets the background of a specified
window to the specified pixmap

Changes and repaints a window's
border to the specified pixel

(continued on next page)

B-7

Routines Requiring Protocol Requests

Table B-1 (Cont.) Routines Requiring Protocol Requests

Xlib Function

SET WINDOW BORDER PIXMAP

SET WINDOW BORDER WIDTH

SET WINDOW COLORMAP

SET ZOOM HINTS

STORE BUFFER

STORE BYTES

STORE COLOR

STORE COLORS

STORE NAME

STORE NAMED COLOR

SYNC

TRANSLATE COORDINATES

UNDEFINE CURSOR

UNLOAD FONT

UNMAP SUBWINDOWS

UNMAP WINDOW

8-8

Protocol Request

CHANGE WINDOW
ATTRIBUTES

CONFIGURE WINDOW

CHANGE WINDOW
ATTRIBUTES

CHANGE PROPERTY

CHANGE PROPERTY

CHANGE PROPERTY

STORE COLORS

STORE COLORS

CHANGE PROPERTY

STORE NAMED COLOR

GET INPUT FOCUS

TRANSLATE COORDINATES

CHANGE WINDOW
ATTRIBUTES

CLOSE FONT

UNMAP SUBWINDOWS

UNMAP WINDOW

Description

Changes and repaints a window's
border tile

Changes the border width of a window

Sets the color map of a specified
window

Sets the value of the zoom hints atom

Stores data in specified cut buffer

Stores data in cut buffer zero

Stores an RGB value into a single
color map cell

Stores RGB values into color map cells

Assigns a name to a window

Sets the color of a pixel to the named
color

Flushes the output buffer and then
waits until all requests have been
processed

Performs a coordinate transformation
from the coordinate space of one
window to another window

Removes the association of the cursor
with the specified window

Unloads the specified font that was
loaded by LOAD FONT

Unmaps all subwindows for a specified
window

Unmaps a window

C VMS DECwindows Named Colors

Table C-1 lists available VMS DECwindows named colors. The table
provides the color name and the RGB values associated with that color.
For a description of using named colors, see Section 5.3.1.

Table C-1 VMS DECwindows Named Colors

Named Color
RGB Values

Red Green Blue

Aquamarine 28672 56064 37632

MediumAquamarine 12800 52224 39168

Medium Aquamarine 12800 52224 39168

Black 0 0 0

Blue 0 0 65280

CadetBlue 24320 40704 40704

Cadet Blue 24320 40704 40704

CornflowerBlue 16896 16896 28416

Cornflower Blue 16896 16896 28416

DarkSlateBlue 27392 8960 36352

Dark Slate Blue 27392 8960 36352

LightBlue 48896 55296 55296

Light Blue 48896 55296 55296

LightSteelBlue 36608 36608 48128

Light Steel Blue 36608 36608 48128

MediumBlue 12800 12800 52224

Medium Blue 12800 12800 52224

MediumSlateBlue 32512 0 65280

Medium Slate Blue 32512 0 65280

MidnightBlue 12032 12032 20224

Midnight Blue 12032 12032 20224

NavyBlue 8960 8960 36352

Navy Blue 8960 8960 36352

Navy 8960 8960 36352

SkyBlue 12800 39168 52224

Sky Blue 12800 39168 52224

SlateBlue 0 32512 65280

(continued on next page)

C-1

VMS DECwindows Named Colors

Table C-1 (Cont.) VMS DECwindows Named Colors

Named Color
RGB Values

Red Green Blue

Slate Blue 0 32512 65280

Steel Blue 8960 27392 36352

Steel Blue 8960 27392 36352

Brown 42240 10752 10752

SandyBrown 62464 41984 24576

Coral 65280 32512 0

Cyan 0 65280 65280

Firebrick 36352 8960 8960

Gold 52224 32512 12800

Goldenrod 56064 56064 28672

MediumGoldenrod 59904 59904 44288

Medium Goldenrod 59904 59904 44288

Green 0 65280 0

DarkGreen 12032 20224 12032

Dark Green 12032 20224 12032

DarkOliveGreen 20224 20224 12032

Dark Olive Green 20224 20224 12032

ForestGreen 8960 36352 8960

Forest Green 8960 36352 8960

LimeGreen 12800 52224 12800

Lime Green 12800 52224 12800

MediumForestGreen 27392 36352 8960

Medium Forest Green 27392 36352 8960

MediumSeaGreen 16896 28416 16896

Medium Sea Green 16896 28416 16896

MediumSpringGreen 32512 65280 0

Medium Spring Green 32512 65280 0

PaleGreen 36608 48128 36608

Pale Green 36608 48128 36608

Sea Green 8960 36352 27392

Sea Green 8960 36352 27392

SpringGreen 0 65280 32512

Spring Green 0 65280 32512

YellowGreen 39168 52224 12800

Yellow Green 39168 52224 12800

(continued on next page)

C-2

VMS DECwindows Named Colors

Table C-1 (Cont.) VMS DECwindows Named Colors

Named Color
RGB Values

Red Green Blue

DarkSlateGray 12032 20224 20224

Dark Slate Gray 12032 20224 20224

Dark Slate Grey 12032 20224 20224

DarkSlateGrey 12032 20224 20224

DimGray 21504 21504 21504

Dim Gray 21504 21504 21504

Dim Grey 21504 21504 21504

Dim Grey 21504 21504 21504

LightGray 43008 43008 43008

Light Gray 43008 43008 43008

LightGrey 43008 43008 43008

Light Grey 43008 43008 43008

Khaki 40704 40704 24320

Magenta 65280 0 65280

Maroon 36352 8960 27392

Orange 52224 12800 12800

Orchid 56064 28672 56064

Dark Orchid 39168 12800 52224

Dark Orchid 39168 12800 52224

MediumOrchid 37632 28672 56064

Medium Orchid 37632 28672 56064

Pink 48128 36608 36608

Plum 59904 44288 59904

Red 65280 0 0

Indian Red 20224 12032 12032

Indian Red 20224 12032 12032

MediumVioletRed 56064 28672 37632

Medium Violet Red 56064 28672 37632

Orange Red 65280 0 32512

Orange Red 65280 0 32512

VioletRed 52224 12800 39168

Violet Red 52224 12800 39168

Salmon 28416 16896 16896

Sienna 36352 27392 8960
Tan 56064 37632 28672

(continued on next page)

C-3

VMS DECwindows Named Colors

Table C-1 (Cont.) VMS DECwindows Named Colors

Named Color
RGB Values

Red Green Blue

Thistle 55296 48896 55296

Turquoise 44288 59904 59904

Dark Turquoise 28672 37632 56064

Dark Turquoise 28672 37632 56064

Medium Turquoise 28672 56064 56064

Medium Turquoise 28672 56064 56064

Violet 20224 12032 20224

Blue Violet 40704 24320 40704

Blue Violet 40704 24320 40704

Wheat 55296 55296 48896

White 65535 65535 65535

Yellow 65280 65280 0

Green Yellow 37632 56064 28672

Green Yellow 37632 56064 28672

C-4

D VMS DECwindows Fonts

Table D-1 lists VMS DECwindows 75 DPI fonts and their file names.
Table D-2 lists VMS DECwindows 100 DPI fonts and their file names. For
information about using fonts, see Chapter 8.

Table D-1 VMS DECwindows 75 DPI Fonts

File Name Font Name

FIXED FIXED (MIT) (now ISOLATIN1)

CURSOR CURSOR (MIT)

DECW$CURSOR DECW$CURSOR (VMS)

DECW$SESSION DECW$SESSION (VMS)

VARIABLE VARIABLE (MIT)

AVANT GARDE

AVANTGARDE_BOOK8

AVANTGARDE_BOOK10

AVANTGARDE_BOOK12

AVANTGARDE_BOOK14

AVANTGARDE_BOOK18

AVANTGARDE_BOOK24

AVANTGARDE_BOOKOBLIQUE8

AVANTGARDE_BOOKOBLIQUE10

AVANTGARDE_BOOKOBLIQUE12

AVANTGARDE_BOOKOBLIQUE14

AVANTGARDE_BOOKOBLIQUE18

AVANTGARDE_BOOKOBLIQUE24

AVANTGARDE_DEMl8

AVANTGARDE_DEMl10

AVANTGARDE_DEMl12

AVANTGARDE_DEMl14

AVANTGARDE_DEMl18

AVANTGARDE_DEMl24

AVANTGARDE_DEMIOBLIQUE8

AVANTGARDE_DEMIOBLIQUE10

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-8-80-75-75-P-49-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-10-100-75-75-P-59-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-12-120-75-75-P-70-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-14-140-75-75-P-80-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-18-180-75-75-P-103-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-R-Normal-24-240-75-75-P-138-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-0-Normal-8-80-75-75-P-49-1808859-1

-Adobe-ITC Avant Garde Goth1c-Book-0-Normal-10-100-75-75-P-59-1808859-1

-Adobe-ITC Avant Garde Goth1c-Book-O-Normal-12-120-75-75-P-69-IS08859-1

-Adobe-ITC Avant Garde Gothic-Book-0-Normal-14-140-75-75-P-81-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-0-Normal-18-180-75-75-P-103-1808859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-24-240-75-75-P-138-1808859-1

-Adobe-ITC Avant Garde Goth1c-Demi-R-Normal-8-80-75-75-P-51-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-10-100-75-75-P-61-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-12-120-75-75-P-70-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-14-140-75-75-P-82-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-18-180-75-75-P-105-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-24-240-75-75-P-140-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-8-80-75-75-P-51-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-10-100-75-75-P-61-1808859-1

(continued on next page)

D-1

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

AVANT GARDE

AVANTGARDE_DEMIOBLIQUE12

AVANTGARDE_DEMIOBLIQUE14

AVANTGARDE_DEMIOBLIQUE18

AVANTGARDE_DEMIOBLIQUE24

COURIER

COURIER10

COURIER12

COURIER14

COURIER18

COURIER24

COURIERS

COURIER_BOLD10

COU RIER_BOLD12

COURIER_BOLD14

COURIER_BOLD18

COURIER_BOLD24

COURIER_BOLD8

COURIER_BOLDOBLIQUE10

COURIER_BOLDOBLIQUE12

COURIER_BOLDOBLIQUE14

COURIER_BOLDOBLIQUE18

COURIER_BOLDOBLIQUE24

COURIER_BOLDOBLIQUE8

COURIER_OBLIQUE10

COURIER_OBLIQUE12

COURIER_OBLIQUE14

COURIER_OBLIQUE18

COURIER_OBLIQUE24

COURIER_ OBLIQUES

D-2

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-12-120-75-75-P-71-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-14-140-75-75-P-82-1808859-1

-Adobe-ITC Avant Garde Gothic-Dem1-0-Normal-18-180-75-75-P-103-1808859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-24-240-75-75-P-139-1808859-1

-Adobe-Courier-Medium-R-Normal-10-100-75-75-M-60-1808859-1

-Adobe-Courier-Med1um-R-Normal-12-120-75-75-M-70-1808859-1

-Adobe-Couner-Medium-R-Normal-14-140-75-75-M-90-1808859-1

-Adobe-Courier-Medium-R-Normal-18-180-75-75-M-110-1808859-1

-Adobe-Courier-Medium-R-Normal-24-240-75-75-M-150-1808859-1

-Adobe-Courier-Medium-R-Normal-8-80-75-75-M-50-1808859-1

-Adobe-Couner-Bold-R-Normal-10-100-75-75-M-60-1808859-1

-Adobe-Courier-Bold-R-Normal-12-120-75-75-M-70-1808859-1

-Adobe-Courier-Bold-R-Normal-14-140-75-75-M-90-1808859-1

-Adobe-Courier-Bold-R-Normal-18-180-75-75-M-110-1808859-1

-Adobe-Courier-Bold-R-Normal-24-240-75-75-M-150-1808859-1

-Adobe-Couner-Bold-R-Normal-8-80-75-75-M-50-1808859-1

-Adobe-Courier-Bold-0-Normal-10-100-75-75-M-60-1808859-1

-Adobe-Couner-Bold-O-Normal-12-120-75-75-M-70-1808859-1

-Adobe-Couner-Bold-O-Normal-14-140-75-75-M-90-1808859-1

-Adobe-Couner-Bold-O-Normal-18-180-75-75-M-110-1808859-1

-Adobe-Couner-Bold-0-Normal-24-240-75-75-M-150-IS08859-1

-Adobe-Couner-Bold-O-Normal-8-80-75-75-M-50-1808859-1

-Adobe-Courier-Med1um-0-Normal-10-100-75-75-M-60-1808859-1

-Adobe-Courier-Medium-0-Normal-12-120-75-75-M-70-1808859-1

-Adobe-Courier-Med1um-O-Normal-14-140-75-75-M-90-IS08859-1

-Adobe-Courier-Medium-0-Normal-18-180-75-75-M-110-1808859-1

-Adobe-Courier-Medium-0-Normal-24-240-75-75-M-150-IS08859-1

-Adobe-Courier-Medium-O-Normal-8-80-75-75-M-50-1808859-1

(continued on next page)

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

HELVETICA

HELVETICA10

HELVETICA12

HELVETICA 14

HELVETICA18

HELVETICA24

HELVETICA8

HELVETICA_BOLD10

HELVETICA_BOLD12

HELVETICA_BOLD14

HELVETICA_BOLD18

HELVETICA_BOLD24

HELVETICA_BOLD8

HELVETICA_BOLDOBLIOUE10

HELVETICA_BOLDOBLIOUE12

HELVETICA_BOLDOBLIOUE 14

HELVETICA_BOLDOBLIOUE18

HELVETICA_BOLDOBLIQUE24

HELVETICA_BOLDOBLIQUE8

HELVETICA_OBLIQUE10

HELVETICA_OBLIQUE12

HELVETICA_OBLIQUE14

HELVETICA_OBLIQUE18

HELVETICA_OBLIQUE24

HELVETICA_OBLIQUE8

INTERIM

INTERIM_DM_EXTENSION14

INTERIM_DM_ITALIC14

INTERIM_DM_SYMBOL 14

LUBALIN GRAPH

LUBALINGRAPH_BOOK8

LUBALINGRAPH_BOOK10

LUBALINGRAPH_BOOK12

-ADOBE-Helvetica-Medium-R-Normal-10-100-75-75-P-56-IS08859-1

-ADOBE-Helvet1ca-Medium-R-Normal-12-120-75-75-P-67-IS08859-1

-ADOBE-Helvetica-Medium-R-Normal-14-140-75-75-P-77-IS08859-1

-ADOBE-Helvetica-Med1um-R-Normal-18-180-75-75-P-98-IS08859-1

-ADOBE-Helvetica-Med1um-R-Normal-24-240-75-75-P-130-IS08859-1

-ADOBE-Helvetica-Medium-R-Normal-8-80-75-75-P-46-1508859-1

-ADOBE-Helvetica-Bold-R-Normal-10-100-75-75-P-60-IS08859-1

·ADOBE-Helvet1ca-Bold-R-Normal-12-120-75-75-P-70-IS08859-1

-ADOBE-Helvetica-Bold-R-Normal-14-140-75-75-P-82-IS08859-1

-ADOBE-Helvetica-Bold-R-Normal-18-180-75-75-P-103-IS08859-1

-ADOBE-Helvetica-Bold-R-Normal-24-240-75-75-P-138-IS08859-1

-ADOBE-Helvetica-Bold-R-Normal-8-80-75-75-P-50-IS08859-1

-ADOBE-Helvetica-Bold-0-Normal-10-100-75-75-P-60-IS08859-1

-ADOBE-Helvetica-Bold-O-Normal-12-120-75-75-P-69-IS08859-1

-ADOBE-Helvetica-Bold-O-Normal-14-140-75-75-P-82-1$08859-1

-ADOBE-Helvetica-Bold-O-Normal-18-180-75-75-P-104-IS08859-1

·ADOBE-Helvetica-Bold-O-Normal-24-240-75-75-P-138-IS08859-1

-ADOBE-Helvetica-Bold-O-Normal-8-80-75-75-P-50-IS08859-1

-ADOBE-Helvetica-Medium-0-Normal-10-100-75-75-P-57-IS08859-1

-ADOBE-Helvetica-Medium-O-Normal-12-120-75-75-P-67-1$08859-1

-ADOBE-Helvetica-Medium-0-Normal-14-140-75-75-P-78-1508859-1

-ADOBE-Helvetica-Med1um-0-Normal-18-180-75-75-P-98-IS08859-1

-ADOBE-Helvet1ca-Med1um-0-Normal-24-240-75-75-P-130-IS08859-1

-ADOBE-Helvetica-Med1um-0-Normal-8-80-75-75-P-47-IS08859-1

-ADOBE-Interim DM-Med1um-l-Normal-14-140-75-75-P-140-DEC-DECMATH_EXTENSION

-ADOBE-Interim DM-Medium-l-Normal-14-140-75-75-P-140-DEC-DECMATH_ITALIC

-ADOBE-Interim DM-Medium-l-Normal-14-140-75-75-P-140-DEC-DECMATH_SYMBOL

-Adobe-ITC Lubalin Graph-Book-R-Normal-8-80-75-75-P-50-1508859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-10-100-75-75-P-60-IS08859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-12-120-75-75-P-70-IS08859-1

(continued on next page)

D-3

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

LUBALIN GRAPH

LUBALINGRAPH_BOOK14

LUBALINGRAPH_BOOK18

LUBALINGRAPH_BOOK24

LU BALING RAPH_BOOKOBLIQUE8

LUBALINGRAPH_BOOKOBLIQUE10

LUBALINGRAPH_BOOKOBLIQUE12

LUBALINGRAPH_BOOKOBLIQUE14

LUBALINGRAPH_BOOKOBLIQUE18

LUBALINGRAPH_BOOKOBLIQUE24

LUBALINGRAPH_DEMl8

LUBALINGRAPH_DEMl10

LUBALINGRAPH_DEMl12

LUBALINGRAPH_DEMl14

LUBALINGRAPH_DEM118

LUBALINGRAPH_DEMl24

LUBALINGRAPH_DEMIOBLIQUE8

LUBALINGRAPH_DEMIOBLIQUE10

LUBALINGRAPH_DEMIOBLIQUE12

LUBALINGRAPH_DEMIOBLIQUE14

LU BALING RAPH_DEMIOBLIQUE18

LUBALINGRAPH_DEMIOBLIQUE24

MENU

MENU10

MENU12

NEW CENTURY SCHOOLBOOK

NEWCENTU RY8CHLBK_BOLD10

NEWCENTURYSCHLBK_BOLD12

NEWCENTURY8CHLBK_BOLD14

NEWCENTURY8CHLBK_BOLD18

NEWCENTURY8CHLBK_BOLD24

NEWCENTURY8CHLBK_BOLD8

NEWCENTURY8CHLBK_BOLDITALIC10

D-4

-Adobe-ITC Lubalin Graph-Book-R-Normal-14-140-75-75-P-81-1808859-1

-Adobe-ITC Lubahn Graph-Book-R-Normal-18-180· 75-75-P-106-1808859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-24-240-75-75-P· 139-1808859-1

-Adobe-ITC Lubal1n Graph-Book-O-Normal-8-80-75-75-P-50-1808859-1

-Adobe-ITC Lubahn Graph-Book-0-Normal-10-100· 75-75-P-60-1808859-1

-Adobe-ITC Lubahn Graph-Book-O-Normal-12-120-75-75-P-70-1808859-1

-Adobe-ITC Lubalin Graph-Book-0-Normal-14-140· 75-75-P-82-1808859· 1

-Adobe-ITC Lubahn Graph-Book-O-Normal-18-180-75-75-P-105·1808859-1

-Adobe-ITC Lubahn Graph-Book-0-Normal-24-240-75-75-P-140-1808859-1

-Adobe-ITC Lubahn Graph·Dem1-R-Normal-8-80· 75-75-P-51-1808859-1

-Adobe-ITC Lubahn Graph-Demi-R-Normal-10-100-75-75-P-61-1808859· 1

-Adobe-ITC Lubahn Graph-Demi-R-Normal-12-120-75-75-P-73-1808859-1

-Adobe-ITC Lubahn Graph-Demi-R-Normal-14-140-75-75-P-85-1808859· 1

-Adobe-ITC Lubahn Graph·Dem1-R-Normal-18-180-75-75-P-109-1808859-1

-Adobe-ITC Lubahn Graph-Demi-R-Normal-24-240-75-75-P-144-1808859-1

-Adobe-ITC Lubahn Graph-Dem1-0-Normal-8-80· 75-75-P-52-1808859-1

-Adobe-ITC Lubahn Graph-Demi-0-Normal-10-100-75-75-P-62-1808859-1

-Adobe-ITC Lubahn Graph-Demi-O-Normal-12-120-75-75-P-7 4-1808859-1

-Adobe-ITC Lubahn Graph-Demi-O-Normal-14-140-75-75-P-85-1808859-1

-Adobe-ITC Lubahn Graph-Dem1-0-Normal-18-180-75-75-P-109-1808859·1

-Adobe-ITC Lubahn Graph-Demi-O-Normal-24-240-75-75-P-144-1808859-1

-Bigelow & Holmes-Menu-Medium-R-Normal-10-100-75-75-P-56-1808859-1

-Bigelow & Holmes-Menu-Medium-R-Normal-12-120-75-75-P-70·1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-10-100-75· 75-P-66-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-12-120-75-75-P-77-1808859-1

-Adobe-New Century Schoolbook-Bold-R-Normal-14-140-75-75-P-87 -1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-18-180-75-75-P-113-1808859-1

·Adobe-New Century 8choolbook-Bold-R-Normal-24-240-75-75-P-149-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-8-80-75-75-P-56-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-10-100-75-75-P-66-IS08859-1

(continued on next page)

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

NEW CENTURY SCHOOLBOOK

NEWCENTU RY8CHLBK_BOLDITALIC12

NEWCENTU RY8CHLBK_BOLDITALIC14

NEWCENTU RY8CHLBK_BOLDITALIC18

NEWCENTURY8CHLBK_BOLDITALIC24

NEWCENTURY8CHLBK_BOLDITALIC8

NEWCENTURY8CHLBK_ITALIC10

NEWCENTURY8CHLBK_ITALIC12

NEWCENTURY8CHLBK_ITALIC14

NEWCENTU RY8CHLBK_ITALIC 18

NEWCENTU RY8CHLBK_ITALIC24

NEWCENTU RY8CHLBK_ITALIC8

NEWCENTU RY8CHLBK_ROMAN 10

NEWCENTU RY8CHLBK_ROMAN 12

NEWCENTURY8CHLBK_ROMAN 14

NEWCENTURY8CHLBK_ROMAN 18

NEWCENTU RY8CHLBK_ROMAN24

NEWCENTURY8CHLBK_ROMAN8

SOUVENIR

80UVENIR_DEMl10

80UVENIR_DEMl12

80UVENIR_DEMl14

80UVENIR_DEMl18

80UVENIR_DEMl24

80UVENIR_DEMl8

SOUVENIR_DEMllTALIC10

80UVENIR_DEMllTALIC12

80UVENIR_DEMllTALIC14

80UVENIR_DEMllTALIC18

80UVENIR_DEMllTALIC24

80UVENIR_DEMllTALIC8

80UVENI R_LIGHT10

80UVENI R_LIGHT12

80UVENIR_LIGHT14

80UVENIR_LIGHT18

-Adobe-New Century 8choolbook-Bold-l-Normal-12-120-75-75-P-76-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-14-140-75-75-P-88-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-18-180-75-75-P-111-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-24-240-75-75-P-148-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-8-80-75-75-P-56-1808859-1

-Adobe-New Century 8choolbook-Med1um+Normal-10-100-75-75-P-60-1808859-1

-Adobe-New Century 8choolbook-Med1um+Normal-12-120-75-75-P-70-1808859-1

-Adobe-New Century 8choolbook-Med1um+Normal-14-140-75-75-P-81-1808859-1

-Adobe-New Century 8choolbook-Med1um-l-Normal-18-180-75-75-P-104-1808859-1

-Adobe-New Century 8choolbook-Medium+Normal-24-240-75-75-P-136-1808859-1

-Adobe-New Century 8choolbook-Medium-l-Normal-8-80-75-75-P-50-1808859-1

-Adobe-New Century 8choolbook-Med1um-R-Normal-10-100-75-75-P-60-1808859-1

-Adobe-New Century 8choolbook-Med1um-R-Normal-12-120-75-75-P-70-1808859-1

-Adobe-New Century 8choolbook-Med1um-R-Normal-14-140-75-75-P-82-1808859-1

-Adobe-New Century 8choolbook-Med1um-R-Normal-18-180-75-75-P-103-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-24-240-75-75-P-137-1808859-1

-Adobe-New Century 8choolbook-Med1u m-R-Normal-8-80-75-75-P-50-1808859-1

-Adobe-ITC 8ouvernr-Demi-R-Normal-10-100-75-75-P-62-1808859-1

-Adobe-ITC 8ouvernr-Dem1-R-Normal-12-120-75-75-P-75-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-14-140-75-75-P-90-1808859-1

-Adobe-ITC 8ouvernr-Dem1-R-Normal-18-180-75-75-P-112-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-24-240-75-75-P-149-1808859-1

-Adobe-ITC 8ouveni r-Demi-R-Normal-8-80-75-75-P-52-1808859-1

-Adobe-ITC 8ouvenir-Demi-l-Normal-10-100-75-75-P-67-1808859-1

-Adobe-ITC 8ouvenir-Dem1+Normal-12-120-75-75-P-78-1808859-1

-Adobe-ITC 8ouvenir-Dem1-l-Normal-14-140-75-75-P-92-1808859-1

-Adobe-ITC 8ouvernr-Demi-l-Normal-18-180-75-75-P-115-1808859-1

-Adobe-ITC 8ouvernr-Dem1-l-Normal-24-240-75-75-P-154-1808859-1

-Adobe-ITC 8ouvernr-Demi-l-Normal-8-80-75-75-P-57-1808859-1

-Adobe-ITC 8ouvenir-Light-R-Normal-10-100-75-75-P-56-1808859-1

-Adobe-ITC 8ouvenir-Light-R-Normal-12-120-75-75-P-68-1808859-1

-Adobe-ITC 8ouvenir-L1ght-R-Normal-14-140-75-75-P-79-1808859-1

-Adobe-ITC 8ouvenir-Light-R-Normal-18-180-75-75-P-102-1808859-1

(continued on next page)

D-5

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

SOUVENIR

SOUVENIR_LIGHT24

SOUVENIR_LIGHT8

SOUVENI R_LIGHTITALIC10

SOUVENIR_LIGHTITALIC12

SOUVENIR_LIGHTITALIC14

SOUVENIR_LIGHTITALIC18

SOUVENIR_LIGHTITALIC24

SOUVENIR_LIGHTITALIC8

SYMBOL

SYMBOL10

SYMBOL12

SYMBOL14

SYMBOL18

SYMBOL24

SYMBOLS

TERMINAL

TERMINAL14

TERMINAL18

TERMINAL28

TERMINAL36

TERMINAL_BOLD14

TERMINAL_BOLD18

TERMINAL_BOLD28

TERMINAL_BOLD36

TERMINAL_BOLD_DBLWIDE14

TERMINAL_BOLD _DBLWIDE18

TERMINAL_BOLD_DBLWIDE_DECTECH14

TERMINAL_BOLD _DBLWIDE_DECTECH18

TERMINAL_BOLD _DECTECH14

TERMINAL_BOLD _DECTECH18

TERMINAL_BOLD_DECTECH28

TERMINAL_BOLD_DECTECH36

D-6

-Adobe-ITC Souvenir-Light-R-Normal-24-240-75-75-P-135-1808859-1

-Adobe-ITC Souvenir-L19ht-R-Normal-8-80-75-75-P-46-1808859-1

-Adobe-ITC Souvenir-L19ht-l-Normal-10-100-75-75-P-59-1808859-1

-Adobe-ITC Souvenir-Light-1-Normal-12-120-75-75-P-69-IS08859-1

-Adobe-ITC Souvenir-Light-l-Normal-14-140-75-75-P-82-IS08859-1

-Adobe-ITC Souvenir-Light-1-Normal-18-180-75-75-P-104-IS08859-1

-Adobe-ITC Souveni r-Lig ht-l-Normal-24-240-75-75-P-139-1808859-1

-Adobe-ITC Souveni r-L1ght-l-Normal-8-80-75-75-P-49-1808859-1

-Adobe-Symbol-Medium-R-Normal-10-100-75-75-P-61-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Medium-R-Normal-12-120-75-75-P-7 4-ADOBE-FONTSPECIFIC

-ADOBE-Symbol-Medium-R-Normal-14-140-75-75-P-85-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Medium-R-Normal-18-180-75-75-P-107-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Medium-R-Normal-24-240-75-75-P-142-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Med1um-R-Normal-8-80-75-75-P-51-ADOBE-FONTSPECIFIC

-DEC-Terminal-Medium-R-Normal-14-140-75-75-C-8-IS08859-1

-Bitstream-Terminal-Medium-R-Normal-18-180-75-75-C-11-IS08859-1

-DEC-Termmal-Med1um-R-Normal-28-280-75-75-C-16-IS08859-1

-Bitstream-Terminal-Medium-R-Normal-36-360-75-75-C-22-IS08859-1

-DEC-Terminal-Bold-R-Normal-14-140-75-75-C-8-IS08859-1

-Bitstream-Terminal-Bold-R-Normal-18-180-75-75-C-11-IS08859-1

-DEC-Terminal-Bold-R-Normal-28-280-75-75-C-16-IS08859-1

-Bitstream-Terminal-Bold-R-Normal-36-360-75-75-C-22-IS08859-1

-DEC-Termmal-Bold-R-Double Wide-14-140-75-75-C-16-1808859-1

-Bitstream-Terminal-Bold-R-Double Wide-18-180-75-75-C-22-1808859-1

-DEC-Termmal-Bold-R-Double Wide-14-140-75-75-C-16-DEC-DECtech

-B1tstream-Terminal-Bold-R-Double Wide-18-180-75-75-C-22-DEC-DECtech

-DEC-Terminal-Bold-R-Normal-14-140-75-75-C-8-DEC-DECtech

-Bitstream-Terminal-Bold-R-Normal-18-180-75-75-C-11-DEC-DECtech

-DEC-Termmal-Bold-R-Normal-28-280-75-75-C-16-DEC-DECtech

-Bitstream-Term1nal-Bold-R-Normal-36-360-75-75-C-22-DEC-DECtech

(continued on next page)

VMS DECwindows Fonts

Table D-1 (Cont.} VMS DECwindows 75 DPI Fonts

File Name Font Name

TERMINAL

TERMINAL_BOLD_NARROW14

TERMINAL_BOLD_NARROW18

TERMINAL_BOLD_NARROW28

TERMINAL_BOLD_NARROW36

TERMINAL_BOLD_NARROW_DECTECH14

TERMINAL_BOLD_NARROW_DECTECH18

TERMINAL_BOLD _NARROW _DECTECH28

TERMINAL_BOLD _NARROW _DECTECH36

TERMINAL_BOLD_WIDE14

TERMINAL_BOLD_WIDE18

TERMINAL_BOLD_WIDE_DECTECH14

TERMINAL_BOLD_WIDE_DECTECH18

TERMINAL_DBLWIDE14

TERMINAL_DBLWIDE18

TERMINAL_DBLWIDE_DECTECH14

TERMINAL_DBLWIDE_DECTECH18

TERMINAL_DECTECH14

TERMINAL_DECTECH18

TERMINAL_DECTECH28

TERMINAL_DECTECH36

TERMINAL_NARROW14

TERMINAL_NARROW18

TERMINAL_NARROW28

TERMINAL_NARROW36

TERMINAL_NARROW_DECTECH14

TERMINAL_NARROW_DECTECH18

TERMINAL_NARROW_DECTECH28

TERMINAL_NARROW_DECTECH36

TERMINAL_WIDE14

TERMINAL_WIDE18

TERMINAL_WIDE_DECTECH 14

TERMINAL_WIDE_DECTECH18

-DEC-Terminal-Bold-R-Narrow-14-140-75-75-C-6-1808859-1

-Bitstream-Terminal-Bold-R-Narrow-18-180-75-75-C-7-1808859-1

-DEC-Termi nal-Bold-R-Narrow-28-280-75-75-C-12-1808859-1

-Bitstream-Terminal-Bold-R-Narrow-36-360-75-75-C-14-1808859-1

-DEC-Terminal-Bold-R-Narrow-14-140-75-75-C-6-DEC-DECtech

-Bitstream-Terminal-Bold-R-Narrow-18-180-75-75-C-7-DEC-DECtech

-DEC-Terminal-Bold-R-Narrow-28-280-75-75-C-12-DEC-DECtech

-Bitstream-Terminal-Bold-R-Narrow-36-360-75-75-C-14-DEC-DECtech

-DEC-Terminal-Bold-R-Wide-14-140-75-75-C-12-1808859-1

-Bitstream-Terminal-Bold-R-Narrow-18-180-75-75-C-14-1808859-1

-DEC-Terminal-Bold-R-W1de-14-140-75-75-C-12-DEC-DECtech

-Bitstream-Terminal-Bold-R-Narrow-18-180-75-75-C-14-DEC-DECtech

-DEC-Terminal-Medium-R-Double Wide-14-140-75-75-C-16-1808859-1

-Bitstream-Terminal-Medium-R-Double Wide-18-180-75-75-C-22-1808859-1

-DEC-Terminal-Med1um-R-Double Wide-14-140-75-75-C-16-DEC-DECtech

-B1tstream-Terminal-Medium-R-Double Wide-18-180-75-75-C-22-DEC-DECtech

-DEC-Terminal-Med1um-R-Normal-14-140-75-75-C-8-DEC-DECtech

-B1tstream-Terminal-Med1um-R-Normal-18-180-75-75-C-11-DEC-DECtech

-DEC-Terminal-Med1um-R-Normal-28-280-75-75-C-16-DEC-DECtech

-B1tstream-Terminal-Med1um-R-Normal-36-360-75-75-C-22-DEC-DECtech

-DEC-Terminal-Medium-R-Narrow-14-140-75-75-C-6-1808859-1

-Bitstream-Terminal-Medium-R-Narrow-18-180-75-75-C-7-1808859-1

-DEC-Terminal-Medium-R-Narrow-28-280-75-75-C-12-1808859-1

-Bitstream-Term1nal-Medium-R-Narrow-36-360-75-75-C-14-1808859-1

-DEC-Terminal-Medium-R-Narrow-14-140-75-75-C-6-DEC-DECtech

-Bitstream-Terminal-Medium-R-Narrow-18-180-75-75-C-7-DEC-DECtech

-DEC-Terminal-Medium-R-Narrow-28-280-75-75-C-12-DEC-DECtech

-Bitstream-Terminal-Medium-R-Narrow-36-360-75-75-C-14-DEC-DECtech

-DEC-Terminal-Medium-R-Wide-14-140-75-75-C-12-1808859· 1

-Bitstream-Terminal-Medium-R-Wide-18-180-75-75-C-14-1808859-1

-DEC-Terminal-Medium-R-Wide-14-140-75-75-C-12-DEC-DECtech

-Bitstream-Terminal-Medium-R-Wide-18-180-75-75-C-14-DEC-DECtech

(continued on next page)

D-7

VMS DECwindows Fonts

Table D-1 (Cont.) VMS DECwindows 75 DPI Fonts

File Name Font Name

TIMES

TIMES_BOLD10

TIMES_BOLD12

TIMES_BOLD14

TIMES_BOLD18

TIMES_BOLD24

TIMES_BOLD8

TIMES_BOLDITALIC10

TIMES_BOLDITALIC12

TIMES_BOLDITALIC14

TIMES_BOLDITALIC18

TIMES_BOLDITALIC24

TIMES_BOLDITALIC8

TIMES_ITALIC10

TIMES_ITALIC12

TIMES_ITALIC14

TIMES_ITALIC18

TIMES_ITALIC24

TIMES_ITALIC8

TIMES_ROMAN10

TIMES_ROMAN12

TIMES_ROMAN14

TIMES_ROMAN18

TIMES_ROMAN24

TIMES_ROMAN8

-ADOBE-limes-Bold-R-Normal-10-100-75-75-P-57-IS08859-1

-ADOBE-limes-Bold-R-Normal-12-120-75-75-P-67-IS08859-1

-ADOBE-Times-Bold-R-Normal-14-140-75-75-P-77-IS08859-1

-ADOBE-Times-Bold-R-Normal-18-180-75-75-P-99-IS08859-1

-ADOBE-Times-Bold-R-Normal-24-240-75-75-P-132-IS08859-1

-ADOBE-Times-Bold-R-Normal-8-80-75-75-P-47-IS08859-1

-ADOBE-Times-Bold-1-Normal-10-100-75-75-P-57-IS08859-1

-ADOBE-Times-Bold-l-Normal-12-120-75-75-P-68-IS08859-1

-ADOBE-Times-Bold-l-Normal-14-140-75-75-P-77-IS08859-1

-ADOBE-Times-Bold-l-Normal-18-180-75-75-P-98-IS08859-1

-ADOBE-Times-Bold-l-Normal-24-240-75-75-P-128-IS08859-1

-ADOBE-Times-Bold-l-Normal-8-80-75-75-P-47-IS08859-1

-ADOBE-Times-Med1um-l-Normal-10-100-75-75-P-52-IS08859-1

-ADOBE-Times-Medium-l-Normal-12-120-75-75-P-63-IS08859-1

-ADOBE-Times-Medium-1-Normal-14-140-75-75-P-73-IS08859-1

-ADOBE-Times-Med1um+Normal-18-180-75-75-P-94-IS08859-1

-ADOBE-Times-Medium-l-Normal-24-240-75-75-P-125-IS08859-1

-ADOBE-Ti mes-Medium-l-Normal-8-80-75-75-P-42-IS08859-1

-ADOBE-Times-Medium-R-Normal-10-100-75-75-P-54-IS08859-1

-ADOBE-Times-Medium-R-Normal-12-120-75-75-P-64-IS08859-1

-ADOBE-T1mes-Medium-R-Normal-14-140-75-75-P-74-IS08859-1

-ADOBE-Times-Medium-R-Normal-18-180-75-75-P-94-IS08859-1

-ADOBE-Times-Medium-R-Normal-24-240-75-75-P-124-IS08859-1

-ADOBE-Times-Med1um-R-Normal-8-80-75-75-P-44-IS08859-1

Table D-2 VMS DECwindows 100 DPI Fonts

File Name Font Name

FIXED_ 1 OODPI

CURSOR_100DPI

DECW$CURSOR_ 1 OODPI

VARIABLE_ 1 OODPI

D-8

FIXED (MIT)

CURSOR (MIT)

W$CURSOR (VMS)

VARIABLE (MIT)

(continued on next page)

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

AVANT GARDE

AVANTGARDE_BOOK8_100DPI -Adobe-ITC Adobe-ITC Avant Garde Goth1c-Book-R-Normal-11-80-100-100-P-59-IS08859-1

AVANTGARDE_BOOK10_ 1 OODPI -Adobe-ITC Avant Garde Gothic-Book-R-Normal-14-100-100-100-P-80-IS08859-1

AVANTGARDE_BOOK12_ 1 OODPI -Adobe-ITC Avant Garde Goth1c-Book-R-Normal-17-120-100-1 OO-P-93-1$08859-1

AVANTGARDE_BOOK14_100DPI -Adobe-ITC Avant Garde Goth1c-Book-R-Normal-20-140-100-100-P-104-IS08859-1

AVANTGARDE_BOOK18_100DPI -Adobe-ITC Avant Garde Gothic-Book-R-Normal-25-180-100-100-P-138-IS08859-1

AVANTGARDE_BOOK24_ 1 OODPI -Adobe-ITC Avant Garde Goth1c-Book-R-Normal-34-240-100-1 OO-P-183-1$08859-1

AVANTGARDE_BOOKOBLIQUE8_ 1 OODPI

AVANTGARDE_BOOKOBLIQUE10_1 OODPI

AVANTGARDE_BOOKOBLIQUE12_1 OODPI

AVANTGARDE_BOOKOBLIQUE14_ 1 OODPI

AVANTGARDE_BOOKOBLIQUE18_1 OODPI

AVANTGARDE_BOOKOBLIQUE24_ 1 OODPI

AVANTGARDE_DEMl8_ 1 OODPI

AVANTGARDE_DEMl10_ 100DPI

AVANTGARDE_DEMl12_ 100DPI

AVANTGARDE_DEMl14_ 100DPI

AVANTGARDE_DEMl18_ 1 OODPI

AVANTGARDE_DEMl24_ 100DPI

AVANTGARDE_DEMIOBLIQUE8_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE10_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE12_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE14_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE18_ 1 OODPI

AVANTGARDE_DEMIOBLIQUE24_ 1 OODPI

COURIER

COURIER8_100DPI

COURIER10_ 1 OODPI

COURIER12_ 1 OODPI

COURIER14_100DPI

COURIER18_100DPI

COURIER24_ 1 OODPI

COURIER_BOLD8_ 1 OODPI

COURIER_BOLD10_ 1 OODPI

COURIER_BOLD12_ 1 OODPI

-Avant Garde Gothic-Book-0-Normal-10-80-100-1 OO-P-59-1508859-1

-Adobe-ITC Avant Garde Gothic-Book-0-Normal-14-100-100-100-P-81-1508859-1

-Adobe-ITC Avant Garde Gothic-Book-0-Normal-17-120-100-1 OO-P-92-1508859-1

-Adobe-ITC Avant Garde Goth1c-Book-O-Normal-20-140-100-100-P-103-1508859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-25-180-100-1 OO-P-138-1508859-1

-Adobe-ITC Avant Garde Gothic-Book-O-Normal-34-240-100-1 oo-P-184-1508859-1

-Adobe-ITC Avant Garde Goth1c-Dem1-R-Normal-11-80-100-1 OO-P-61-1508859-1

-Adobe-ITC Avant Garde Goth1c-Dem1-R-Normal-14-100-100-1 OO-P-82-1508859-1

-Adobe-ITC Avant Garde Gothic-Dem1-R-Normal-17-120-100-1 OO-P-93-1508859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-20-140-100-100-P-105-1508859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-25-180-100-100-P-140-1508859-1

-Adobe-ITC Avant Garde Gothic-Demi-R-Normal-34-240-100-1 OO-P-182-1508859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-11-80-100-100-P-61-1$08859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-14-100-100-1 OO-P-82-1508859-1

-Adobe-ITC Avant Garde Gothic-Dem1-0-Normal-17-120-100-1 OO-P-93-1508859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-20-140-100-100-P-103-1508859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-25-180-100-100-P-139-1$08859-1

-Adobe-ITC Avant Garde Gothic-Demi-O-Normal-34-240-100-1 OO-P-183-1508859-1

-Adobe-Courier-Medium-R-Normal-11-80-100-1 OO-M-60-IS08859-1

-Adobe-Couner-Medium-R-Normal-14-100-100-100-M-90-1808859-1

-Adobe-Courier-Medium-R-Normal-17-120-100-100-M-100-IS08859-1

-Adobe-Couner-Medium-R-Normal-20-140-100-1OO-M-110-1808859-1

-Adobe-Courier-Med1um-R-Normal-25-180-100-1 OO-M-150-1808859-1

-Adobe-Courier-Med1um-R-Normal-34-240-100-100-M-200-1808859-1

-Adobe-Courier-Bold-R-Normal-11-80-100-1 OO-M-60-1808859-1

-Adobe-Courier-Bold-R-Normal-14-100-100-100-M-90-1808859-1

-Adobe-Courier-Bold-R-Normal-17-120-100-100-M-100-1808859-1

(continued on next page)

D-9

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

COURIER

COURIER_BOLD14_ 1 OODPI -Adobe-Courier-Bold-R-Normal-20-140-100-100-M-110-1508859-1

COURIER_BOLD18_ 1 OODPI -Adobe-Couner-Bold-R-Normal-25-180-100-1 OO-M-150-IS08859-1

COURIER_BOLD24_ 1 OODPI -Adobe-Courier-Bold-R-Normal-34-240-100-100-M-200-IS08859-1

COURIER_BOLDOBLIQUE8_ 1 OODPI

COURIER_BOLDOBLIQUE10_ 1 OODPI

COURIER_BOLDOBLIQUE12_ 1 OODPI

COURIER_BOLDOBLIQUE14_ 1 OODPI

COURIER_BOLDOBLIQUE18_ 1 OODPI

COURIER_BOLDOBLIQUE24_ 1 OODPI

COURIER_OBLIQUE8_ 1 OODPI

COURIER_OBLIQUE10_ 1 OODPI

COURIER_OBLIQUE12_ 1 OODPI

COURIER_OBLIQUE14_ 1 OODPI

COURIER_OBLIQUE18_100DPI

COURIER_OBLIQUE24_ 1 OODPI

HELVETICA

HELVETICA 10_ 1 OODPI

HELVETICA 12_ 1 OODPI

HELVETICA 14_ 1 OODPI

HELVETICA 18_ 1 OODPI

HELVETICA24_ 1 OODPI

HELVETICA8_ 1 OODPI

HELVETICA_BOLD10_ 1 OODPI

HELVETICA_BOLD12_ 1 OODPI

HELVETICA_BOLD14_ 1 OODPI

HELVETICA_BOLD18_ 1 OODPI

HELVETICA_BOLD24_ 1 OODPI

HELVETICA_BOLD8_ 1 OODPI

HELVETICA_BOLDOBLIQ'JE10_ 1 OODPI

HELVETICA_BOLDOBLIQUE 12_ 1 OODP I

HELVETICA_BOLDOBLIQUE14_1 OODPI

HELVETICA_BOLDOBLIQUE18_ 1 OODPJ

HELVETICA_BOLDOBLIQUE24_1 OODPI

HELVETICA_BOLDOBLIQUE8_ 1 OODPI

D-10

-Adobe-Courier-Bold-O-Normal-11-80-100-1 OO-M-60-IS08859-1

-Adobe-Courier-Bold-O-Normal-14-100-100-100-M-90-IS08859-1

-Adobe-Couner-Bold-O-Normal-17-120-100-100-M-1 OO-IS08859-1

-Adobe-Courier-Bold-O-Normal-20-140-100-1OO-M-110-IS08859-1

-Adobe-Courier-Bold-0-Normal-25-180-100-1 OO-M-150-IS08859-1

-Adobe-Courier-Bold-0-Normal-34-240-100-100-M-200-JS08859-1

-Adobe-Couner-Medium-O-Normal-11-80-100-1 OO-M-60-IS08859-1

-Adobe-Couner-Medium-O-Normal-14-100-100-1 OO-M-90-IS08859-1

-Adobe-Couner-Med1um-O-Normal-17-120-100-100-M-100-IS08859-1

-Adobe-Courier-Medium-O-Normal-20-140-100-100-M-110-IS08859-1

-Adobe-Courier-Medium-O-Normal-25-180-100-100-M-150-IS08859-1

-Adobe-Cou ner-Medium-O-Normal-34-240-1 00-1 00-M-200-IS08859-1

-Adobe-Helvet1ca-Med1um-R-Normal-14-100-100-1 OO-P-76-IS08859-1

-Adobe-Helvetica-Medium-R-Normal-17-120-100-1 OO-P-88-IS08859-1

-Adobe-Helvetica-Medium-R-Normal-20-140-100-100-P-100-IS08859-1

-Adobe-Helvetica-Med1um-R-Normal-25-180-100-1 OO-P-130-JS08859-1

-Adobe-Helvet1ca-Med1um-R-Normal-34-240-100-100-P-176-IS08859-1

-Adobe-Helvetica-Medium-R-Normal-11-80-100-1 OO-P-56-IS08859-1

-Adobe-Helvetica-Bold-R-Normal-14-100-100-100-P-82-IS08859-1

-Adobe-Helvetica-Bold-R-Normal-17-120-1 00-100-P-92-IS08859-1

-Adobe-Helvet1ca-Bold-R-Normal-20-140-100-100-P-105-1508859-1

-Adobe-Helvet1ca-Bold-R-Normal-25-180-100-1 OO-P-138-IS08859-1

-Adobe-Helvet1ca-Bold-R-Normal-34-240-100-100-P-182-IS08859-1

-Adobe-Helvet1ca-Bold-R-Normal-11-80-100-100-P-60-IS08859-1

-Adobe-Helvetica-Bold-0-Normal-14-100-100-1 OO-P-82-IS08859-1

-Adobe-Helvetica-Bold-O-Normal-17-120-100-100-P-92-IS08859-1

-Adobe-Helvet1ca-Bold-O-Normal-20-140-100-100-P-103-IS08859-1

-Adobe-Helvetica-Bold-O-Normal-25-180-100-100-P-138-IS08859-1

-Adobe-Helvetica-Bold-O-Normal-34-240-100-100-P-182-IS08859-1

-Adobe-Helvet1ca-Bold-O-Normal-11-80-100-100-P-60-IS08859-1

(continued on next page)

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

HELVETICA

HELVETICA_OBLIQUE10_100DPI -Adobe-Helvetica-Med1um-0-Normal-14-100-100-100-P-78-IS08859-1

HELVETICA_OBLIQUE12_ 1 OODPI

HELVETICA_OBLIQUE14_ 1 OODPI

HELVETICA_OBLIQUE18_ 1 OODPI

HELVETICA_OBLIQUE24_ 1 OODPI

HELVETICA_OBLIQUE8_ 1 OODPI

INTERIM

INTERIM_DM_EXTENSION14_ 1 OODPI

INTERIM_DM_ITALIC14_ 1 OODPI

INTERIM_DM_SYMBOL 14_ 1 OODPI

LUBALIN GRAPH

LUBALINGRAPH_BOOK8_1 OODPI

LUBALINGRAPH_BOOK10_ 1 OODPI

LUBALINGRAPH_BOOK12_ 1 OODPI

LUBALINGRAPH_BOOK14_ 1 OODPI

LU BALING RAPH_BOOK18_ 1 OODPI

LUBALINGRAPH_BOOK24_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE8_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE10_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE12_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE14_ 1 OODPI

LUBALINGRAPH_BOOKOBLIQUE18_ 1 OODPI

LU BALING RAPH_BOOKOBLIQUE24_ 1 OODPI

LUBALINGRAPH_DEMl8_ 1 OODPI

LUBALINGRAPH_DEMl10_ 1 OODPI

LUBALINGRAPH_DEMl12_ 1 OODPI

LUBALINGRAPH_DEMl14_ 1 OODPI

LUBALINGRAPH_DEMl18_ 1 OODPI

LUBALINGRAPH_DEMl24_ 1 OODPI

LU BALING RAPH_DEMIOBLIQUE8_ 1 OODPI

LUBALINGRAPH_DEMIOBLIQUE10_ 1 OODPI

-Adobe-Helvet1ca-Medium-O-Normal-17-120-100-1 OO-P-88-1$08859-1

-Adobe-Helvet1ca-Med1um-O-Normal-20-140-100-100-P-98-1808859-1

-Adobe-Helvet1ca-Med1um-0-Normal-25-180-100-100-P-130-1808859-1

-Adobe-Helvet1ca-Med1um-0-Normal-34-240-100-100-P-176-1808859-1

-Adobe-Helvet1ca-Med1um-O-Normal-11-80-100-1 OO-P-57-1$08859-1

-ADOBE-lntenm DM-Medium-l-Normal-20-140-100-1 OO-P-180-DEC-DECMATH_EXTENSION

-ADOBE-lntenm DM-Medium-l-Normal-20-140-100-100-P-180-DEC-DECMATH_ITALIC

-ADOBE-Interim DM-Med1um-l-Normal-20-140-100-100-P-180-DEC-DECMATH_SYMBOL

-Adobe-ITC Lubalin Graph-Book-R-Normal-11-80-100-100-P-60-1808859-1

-Adobe-ITC Lubahn Graph-Book-R-Normal-14-100-100-100-P-81-1808859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-17-120-100-100-P-89-1808859-1

-Adobe-ITC Lubalin Graph-Book-R-Normal-19-140-100-100-P-106-1808859-1

-Adobe-ITC Lubahn Graph-Book-R-Normal-24-180-100-100-P-139-1808859-1

-Adobe-ITC Lubahn Graph-Book-R-Normal-33-240-100-100-P-180-1808859-1

-Adobe-ITC Lubahn Graph-Book-O-Normal-11-80-100-1 OO-P-60-1$08859-1

-Adobe-ITC Lubalin Graph-Book-O-Normal-14-100-100-100-P-82-1$08859-1

-Adobe-ITC Lubahn Graph-Book-O-Normal-19-120-100-100-P-89-1808859-1

-Adobe-ITC Lubalin Graph-Book-0-Normal-20-140-100-100-P-105-1808859-1

-Adobe-ITC Lubahn Graph-Book-O-Normal-24-180-100-100-P-140-1808859-1

-Adobe-ITC Lubahn Graph-Book-O-Normal-33-240-100-100-P-181-1808859-1

-Adobe-ITC Lubahn Graph-Demi-R-Normal-11-80-100-1 OO-P-61-1808859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-14-100-100-100-P-85-1808859-1

-Adobe-ITC Lubahn Graph-Demi-R-Normal-17-120-100-100-P-92-1808859-1

-Adobe-ITC Lubahn Graph-Demi-R-Normal-19-140-100-100-P-109-1$08859-1

-Adobe-ITC Lubalin Graph-Demi-R-Normal-24-180-100-100-P-144-1808859-1

-Adobe-ITC Lubahn Graph-Demi-R-Normal-33-240-100-100-P-184-IS08859-1

-Adobe-ITC Lubahn Graph-Demi-O-Normal-11-80-100-1 OO-P-62-1808859-1

-Adobe-ITC Lubalin Graph-Demi-O-Normal-14-100-100-100-P-85-1808859-1

(continued on next page)

D-11

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

LUBALIN GRAPH

LUBALINGRAPH_DEMIOBLIQUE12_ 1 OODPI

LUBALINGRAPH_DEMIOBLIQUE14_ 1 OODPI

LUBALINGRAPH_DEMIOBLIQUE18_ 1 OODPI

LUBALINGRAPH_DEMIOBLIQUE24_ 1 OODPI

MENU

MENU10_100DPI

MENU12_100DPI

NEW CENTURY SCHOOLBOOK

NEWCENTURY8CHLBK_BOLD8_ 1 OODPI

NEWCENTURY8CHLBK_BOLD10_ 1 OODPI

NEWCENTURY8CHLBK_BOLD12_ 1 OODPI

NEWCENTURYSCHLBK_BOLD14_ 1 OODPI

NEWCENTURY8CHLBK_BOLD18_ 1 OODPI

NEWCENTURY8CHLBK_BOLD24_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC8_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC10_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC12_1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC14_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC18_ 1 OODPI

NEWCENTURY8CHLBK_BOLDITALIC24_ 1 OODPI

NEWCENTURYSCHLBK_ITALIC8_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC10_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC12_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC14_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC18_ 1 OODPI

NEWCENTURY8CHLBK_ITALIC24_ 1 OODPI

NEWCENTURY8CHLBK_ROMAN8_ 1 OODPI

NEWCENTURY8CHLBK_ROMAN10_ 1 OODPI

NEWCENTURYSCHLBK_ROMAN 12_ 1 OODPI

D-12

-Adobe-ITC Lubalin Graph-Demi-0-Normal-17-120-100-100-P-92-1808859-1

-Adobe-ITC Lubahn Graph-Demi-O-Normal-19-140-100-100-P-109-1808859-1

-Adobe-ITC Lubalin Graph-Demi-O-Normal-24-180-100-100-P-144-1808859-1

-Adobe-ITC Lubahn Graph-Demi-O-Normal-33-240-100-1 OO-P-184-1808859-1

-Bigelow & Holmes-Menu-Med1um-R-Normal-14-100-100-1 OO-P-77-1808859-1

-Bigelow & Holmes-Menu-Med1um-R-Normal-17-120-100-1 OO-P-92-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-11-80-100-100-P-66-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-14-100-100-100-P-87-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-17-120-100-1 OO-P-99-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-20-140-100-1 OO-P-113-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-25-180-100-1 OO-P-149-1808859-1

-Adobe-New Century 8choolbook-Bold-R-Normal-34-240-100-100-P-193-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-11-80-100-100-P-66-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-14-100-100-100-P-88-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-17-120-100-100-P-99-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-20-140-100-1 OO-P-111-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-25-180-100-100-P-148-1808859-1

-Adobe-New Century 8choolbook-Bold-l-Normal-34-240-100-100-P-193-1808859-1

-Adobe-New Century Schoolbook-Medium-1-Normal-11-80-100-1 OO-P-60-1808859-1

-Adobe-New Century 8choolbook-Medium-l-Normal-14-100-100-100-P-81-1808859-1

-Adobe-New Century 8choolbook-Medium+Normal-17-120-100-100-P-92-1808859-1

-Adobe-New Century 8choolbook-Medium-l-Normal-20-140-100-100-P-104-1808859-1

-Adobe-New Century 8choolbook-Med1um+Normal-25-180-100-1 oo-P-136-IS08859-1

-Adobe-New Century 8choolbook-Medium+Normal-34-240-100-1 OO-P-182-1808859-1

-Adobe-New Century 8choolbook-Med1um-R-Normal-11-80-100-100-P-60-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-14-100-100-100-P-82-1808859-1

-Adobe-New Century 8choolbook-Medium-R-Normal-17-120-100-100-P-91-1808859-1

(continued on next page)

VMS DECwindows Fonts

Table D-2 (Cont.} VMS DECwindows 100 DPI Fonts

File Name Font Name

NEWCENTURY8CHLBK_ROMAN 14_ 1 OODPI

NEWCENTURY8CHLBK_ROMAN18_ 1 OODPI

NEWCENTURY8CHLBK_ROMAN24_ 1 OODPI

SOUVENIR

80UVENIR_DEMl8_ 1 OODPI

80UVENIR_DEMl10_1 OODPI

80UVENIR_DEMl12_100DPI

80UVENIR_DEMl14_1 OODPI

80UVENIR_DEMl18_ 1 OODPI

80UVENIR_DEMl24_ 1 OODPI

80UVENIR_DEMllTALIC8_ 1 OODPI

SOUVENIR_DEMllTALIC10_ 1 OODPI

80UVENIR_DEMllTALIC12_ 1 OODPI

SOUVENIR_DEMllTALIC14_1 OODPI

SOUVENIR_DEMllTALIC18_ 1 OODPI

80UVENIR_DEMllTALIC24_ 1 OODPI

SOUVENIR_LIGHT8_1 OODPI

SOUVENIR_LIGHT10_ 1 OODPI

80UVENIR_LIGHT12_ 1 OODPI

SOUVENIR_LIGHT14_ 1 OODPI

SOUVENIR_LIGHT18_ 1 OODPI

80UVENIR_LIGHT24_ 1 OODPI

80UVENIR_LIGHTITALIC8_100DPI

SOUVENIR_LIGHTITALIC10_ 1 OODPI

80UVENIR_LIGHTITALIC12_ 1 OODPI

SOUVENIR_LIGHTITALIC14_100DPI

SOUVENIR_LIGHTITALIC18_ 1 OODPI

SOUVENIR_LIGHTITALIC24_ 1 OODPI

SYMBOL

SYMBOL8_ 1 OODPI

SYMBOL 10_ 1 OODPI

SYMBOL 12_ 1 OODPI

-Adobe-New Century Schoolbook-Medium-R-Normal-20-140-100-100-P-103-1808859-1

-Adobe-New Century Schoolbook-Medium-R-Normal-25-180-100-100-P-136-1808859-1

-Adobe-New Century Schoolbook-Medium-R-Normal-34-240-100-100-P-181-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-11-80-100-1 OO-P-62-IS08859-1

-Adobe-ITC 8ouvenir-Dem1-R-Normal-14-100-100-100-P-90-IS08859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-17-120-100-100-P-94-IS08859-1

-Adobe-ITC Souvenir-Demi-R-Normal-20-140-100-1 OO-P-112-1808859-1

-Adobe-ITC 8ouvenir-Demi-R-Normal-25-180-100-1 OO-P-149-1808859-1

-Adobe-ITC Souvernr-Demi-R-Normal-34-240-100-100-P-191-IS08859-1

-Adobe-ITC Souvenir-Demi-l-Normal-11-80-100-100-P-67-1808859-1

-Adobe-ITC Souvernr-Demi+Normal-14-100-100-1 OO-P-92-IS08859-1

-Adobe-ITC Souvenir-Demi-l-Normal-17-120-100-100-P-98-1808859-1

-Adobe-ITC Souvernr-Dem1-l-Normal-20-140· 100-1 OO-P-115-IS08859-1

-Adobe-ITC 8ouvenir-Dem1+Normal-25-180-100-100-P-154-IS08859-1

-Adobe-ITC 8ouvenir-Demi-l-Normal-34-240-100-1 OO-P-197-1808859-1

-Adobe-ITC 8ouvernr-Light·R-Normal-11-80-100-100-P-56-IS08859-1

-Adobe-ITC Souvernr-Light-R-Normal-14-100-100-1 OO-P-79-1808859-1

-Adobe-ITC 8ouvernr-Light·R-Normal-17-120-100-100-P-85-IS08859-1

-Adobe-ITC 8ouvenir-L1ght·R-Normal-20-140-100-100-P-102-1808859-1

-Adobe-ITC 8ouvernr-L1ght·R-Normal-25-180-100-1 OO-P-135-1808859-1

-Adobe-ITC Souvenir-Light·R-Normal-34-240-100-1OO-P-174-1808859-1

-Adobe-ITC Souvernr-L1ght-l-Normal-11-80-100-100-P-59-IS08859-1

-Adobe-ITC Souvernr-Light·l-Normal-14-100-100-1 OO-P-82-IS08859-1

-Adobe-ITC Souvenir-Llght-l-Normal-17-120-100-1 OO-P-88-IS08859-1

-Adobe-ITC 8ouvenir-Light-l-Normal-20-140-100-100-P-104-1808859-1

-Adobe-ITC Souveni r-Light+Normal-25-180-100-100-P-139-1508859-1

-Adobe-ITC Souvenir-Light-1-Normal-34-240-100-1 OO-P-177-1808859-1

·Adobe-Symbol-Medium-R-Normal-11-80-100-1 OO-P-61-ADOBE-FONT8PECIFIC

-Adobe-8ymbol-Medium-R-Normal-14-100-100-1 OO-P-85-ADOBE-FONT8PECIFIC

-Adobe-8ymbol-Medium-R-Normal-17-120-100-100-P-95-ADOBE-FONTSPECIFIC

(continued on next page)

D-13

VMS DECwindows Fonts

Table D-2 {Cont.) VMS DECwindows 100 DPI Fonts

File Name

SYMBOL

SYMBOL 14_ 1 OODPI

SYMBOL 18_ 1 OODPI

SYMBOL24_ 1 OODPI

TERMINAL

TERMINAL 10_ 1 OODPI

TERMINAL 14_ 1 OODPI

TERMINAL20_ 1 OODPI

TERMINAL28_ 1 OODPI

TERMINAL_BOLD10_ 1 OODPI

TERMINAL_BOLD14_ 1 OODPI

TERMINAL_BOLD20_ 1 OODPI

TERMINAL_BOLD28_ 1 OODPI

TERMINAL_BOLD_DBLWIDE10_ 1 OODPI

TERMINAL_BOLD _DBLWIDE 14_ 1 OODPI

TERMINAL_BOLD_DBLWIDE_DECTECH10_ 1 OODPI

TERMINAL_BOLD_DBLWIDE_DECTECH14_ 1 OODPI

TERMINAL_BOLD_DECTECH10_ 1 OODPI

TERMINAL_BOLD_DECTECH14_ 1 OODPI

TERMINAL_BOLD_DECTECH20_ 1 OODPI

TERMINAL_BOLD_DECTECH28_ 1 OODPI

TERMINAL_BOLD_NARROW10_ 1 OODPI

TERMINAL_BOLD _NARROW14_ 1 OODPI

TERMINAL_BOLD_NARROW20_ 1 OODPI

TERMINAL_BOLD _NARROW28_ 1 OODPI

TERMINAL_BOLD_NARROW_DECTECH10_ 1 OODPI

TERMINAL_BOLD _NARROW_DECTECH14_ 1 OODPI

TERMINAL_BOLD_NARROW_DECTECH20_ 1 OODPI

TERMINAL_BOLD_NARROW_DECTECH28_ 1 OODPI

TERMINAL_BOLD _WIDE10_1 OODPI

TERMINAL_BOLD_WIDE14_ 1 OODPI

TERMINAL_BOLD _WIDE_DECTECH 10_ 1 OODPI

TERMINAL_BOLD _WIDE_DECTECH 14_ 1 OODPI

TERMINAL_DBLWIDE10_ 1 OODPI

TERMINAL_DBLWIDE14_ 1 OODPI

D-14

Font Name

-Adobe-Symbol-Medium-R-Normal-20-140-100-100-P-107-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Medlum-R-Normal-25-180-100-100-P-142-ADOBE-FONTSPECIFIC

-Adobe-Symbol-Medium-R-Normal-34-240-100-100-P-191-ADOBE-FONTSPECIFIC

-DEC-Terminal-Medium-R-Normal-14-100-100-100-C-8-IS08859-1

-B1tstream-Terminal-Med1um-R-Normal-20-140-100-100-C-11-1808859-1

-DEC-Termmal-Medium-R-Normal-28-200-100-100-C-16-1808859-1

-Bitstream-Termmal-Medium-R-Normal-40-280-100-1 OO-C-22-1808859-1

-DEC-Terminal-Bold-R-Normal-14-100-100-100-C-8-1808859-1

-Bitstream-Terminal-Bold-R-Normal-20-140-100-100-C-11-1808859-1

-DEC-Terminal-Bold-R-Normal-28-200-100-100-C-16-1808859-1

-B1tstream-Term1 nal-Bold-R-Normal-40-280-1 00-100-C-22-1808859-1

-DEC-Terminal-Bold-A-Double Wide-14-100-100-100-C-16-1808859-1

-Bitstream-Terminal-Bold-R-Double Wide-20-140-100-1 OO-C-22-1808859-1

-DEC-Terminal-Bold-A-Double Wide-14-100-100-100-C-16-DEC-DECtech

-B1tstream-Termmal-Bold-R-Double Wide-20-140-100-100-C-22-DEC-DECtech

-DEC-Terminal-Bold-R-Normal-14-100-100-100-C-8-DEC-DECtech

-Bitstream-Termmal-Bold-R-Normal-20-140-100-100-C-11-DEC-DECtech

-DEC-Termmal-Bold-R-Normal-28-200-100-1 OO-C-16-DEC-DECtech

-Bitstream-Termmal-Bold-R-Normal-40-280-100-1 oo-C-22-DEC-DECtech

-DEC-Termmal-Bold-R-Narrow-14-100-100-100-C-6-1808859-1

-Bitstream-Termmal-Bold-R-Narrow-20-140-100-100-C-7-IS08859-1

-DEC-Termmal-Bold-R-Narrow-28-200-100-100-C-12-1808859-1

-Bitstream-Terminal-Bold-R-Narrow-40-280-100-100-C-14-1808859-1

-DEC-Termmal-Bold-R-Narrow-14-100-100-100-C-6-DEC-DECtech

-Bitstream-Terminal-Bold-R-Narrow-20-140-100-100-C-7-DEC-DECtech

-DEC-Termmal-Bold-R-Narrow-28-200-100-100-C-12-DEC-DECtech

-Bitstream-Termmal-Bold-R-Narrow-40-280-100-100-C-14-DEC-DECtech

-DEC-Terminal-Bold-R-Wide-14-100-100-1 OO-C-12-1808859-1

-Bitstream-Terminal-Bold-R-Narrow-20-140-100-100-C-14-1808859-1

-DEC-Termmal-Bold-R-Wide-14-100-100-1 OO-C-12-DEC-DECtech

-Bitstream-Terminal-Bold-R-Narrow-20-140-100-100-C-14-DEC-DECtech

-DEC-Terminal-Med1um-R-Double Wide-14-100-100-1 OO-C-16-1808859-1

-Bitstream-Termmal-Medium-R-Double Wide-20-140-100-1 OO-C-22-1808859-1

(continued on next page)

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

TERMINAL

TERMINAL_DBLWIDE_DECTECH10_ 1 OODPI

TERMINAL_DBLWIDE_DECTECH14_ 1 OODPI

TERMINAL_DECTECH10_ 1 OODPI

TERMINAL_DECTECH14_ 1 OODPI

TERMINAL_DECTECH20_ 1 OODPI

TERMINAL_DECTECH28_ 1 OODPI

TERMINAL_NARROW10_ 1 OODPI

TERMINAL_NARROW14_ 1 OODPI

TERMINAL_NARROW20_ 1 OODPI

TERMINAL_NARROW28_ 1 OODPI

TERMINAL_NARROW_DECTECH10_ 1 OODPI

TERMINAL_NARROW_DECTECH14_ 1 OODPI

TERMINAL_NARROW_DECTECH20_ 1 OODPI

TERMINAL_NARROW_DECTECH28_ 1 OODPI

TERMINAL_WIDE10_ 1 OODPl

TERMINAL_WIDE14_ 1 OODPI

TERMINAL_WIDE_DECTECH10_ 1 OODPI

TERMINAL_WIDE_DECTECH14_ 1 OODPI

TIMES

TIMES_BOLD8_ 1 OODPI

TIMES_BOLD10_ 1 OODPI

TIMES_BOLD12_ 1 OODPI

TIMES _BOLD14_ 1 OODPI

TIMES_BOLD18_ 1 OODPI

TIMES_BOLD24_ 1 OODPI

TIMES_BOLDITALIC8_ 1 OODPI

TIMES_BOLDITALIC10_ 1 OODPI

TIMES_BOLDITALIC12_ 1 OODPI

TIMES_BOLDITALIC14_ 1 OODPI

TIMES_BOLDITALIC18_ 1 OODPI

TIMES_BOLDITALIC24_ 1 OODPI

TIMES_ITALIC8_ 1 OODPI

TIMES_ITALIC10_ 1 OODPI

TIMES_ITALIC12_ 1 OODPI

-DEC-Terminal-Med1um-R-Double Wide-14-100-100-1 OO-C-16-DEC-DECtech

-B1tstream-Termmal-Med1um-R-Double Wide-20-140-100-100-C-22-DEC-DECtech

-DEC-Terminal-Medium-R-Normal-14-100-100-100-C-8-DEC-DECtech

-B1tstream-Terminal-Med1um-R-Normal-20-140-100-1 OO-C-11-DEC-DECtech

-DEC-Termmal-Medium-R-Normal-28-200-100-100-C-16-DEC-DECtech

-B1tstream-Terminal-Medium-R-Normal-40-280-100-1 OO-C-22-DEC-DECtech

-DEC-Termmal-Medium-R-Narrow-14-100-100-100-C-6-IS08859-1

-B1tstream-Termmal-Medium-R-Narrow-20-140-100-1 OO-C-7-1508859-1

-DEC-Termmal-Medium-R-Narrow-28-200-100-1 OO-C-12-1508859-1

-Bitstream-Termmal-Medium-R-Narrow-40-280-100-100-C-14-1508859-1

-DEC-Terminal-Medium-R-Narrow-14-100-100-100-C-6-DEC-DECtech

-Bitstream-Termmal-Medium-R-Narrow-20-140-100-100-C-7-DEC-DECtech

-DEC-Terminal-Medium-R-Narrow-28-200-100-100-C-12-DEC-DECtech

-B1tstream-Terminal-Medium-R-Narrow-40-280-1 00-1 OO-C-14-DEC-DECtech

-DEC-Termmal-Med1um-R-W1de-14-100-100-100-C-12-1508859-1

-B1tstream-Terminal-Med1um-R-W1de-20-140-100-1 OO-C-14-1508859-1

-DEC-Termmal-Medium-R-Wide-14-100-100-100-C-12-DEC-DECtech

-Bitstream-Termmal-Med1um-R-W1de-20-140-100-1 OO-C-14-DEC-DECtech

-Adobe-limes-Bold-R-Normal-11-80-100-1 OO-P-57-1508859-1

-Adobe-Tlmes-Bold-R-Normal-14-100-100-100-P-76-1808859-1

-Adobe-Tlmes-Bold-R-Normal-17-120-100-100-P-88-IS08859-1

-Adobe-limes-Bold-R-Normal-20-140-100-100-P-100-1508859-1

-Adobe-Tlmes-Bold-R-Normal-25-180-100-100-P-132-1508859-1

-Adobe-Tlmes-Bold-R-Normal-34-240-100-1 OO-P-177-1508859-1

-Adobe-limes-Bold-1-Normal-11-80-100-1 OO-P-57-1508859-1

-Adobe-Tlmes-Bold-l-Normal-14-100-100-1 OO-P-77-1508859-1

-Adobe-Tlmes-Bold-l-Normal-17-120-100-100-P-86-IS08859-1

-Adobe-Tlmes-Bold-l-Normal-20-140-100-1 OO-P-98-1508859-1

-Adobe-Tlmes-Bold-l-Normal-25-180-100-1 OO-P-128-1508859-1

-Adobe-Tlmes-Bold-l-Normal-34-240-100-1 OO-P-170-IS08859-1

-Adobe-Tlmes-Medium-1-Normal-11-80-100-100-P-52-1508859-1

-Adobe-limes-Medium-l-Normal-14-100-100-1 OO-P-73-IS08859-1

-Adobe-Tlmes-Medium-l-Normal-17-120-100-1 OO-P-84-IS08859-1

(continued on next page)

D-15

VMS DECwindows Fonts

Table D-2 (Cont.) VMS DECwindows 100 DPI Fonts

File Name Font Name

TIMES

TIMES_ITALIC14_ 1 OODPI -Adobe-limes-Medium-l-Normal-20-140-100-100-P-94-1808859-1

TIMES_ITALIC18_100DPI -Adobe-limes-Medium-l-Normal-25-180-100-100-P-125-IS08859-1

TIMES_ITALIC24_ 1 OODPI -Adobe-limes-Medium-l-Normal-34-240-100-1 OO-P-168-IS08859-1

TIMES_ROMAN8_ 1 OODPI -Adobe-l1mes-Med1um-R-Normal-11-80-100-100-P-54-1808859-1

TIMES_ROMAN10_ 1 OODPI -Adobe-l1mes-Med1um-R-Normal-14-100-100-100-P-7 4-1808859-1

TIMES_ROMAN12_ 1 OODPI -Adobe-limes-Medium-R-Normal-17-120-100-100-P-84-IS08859-1

TIMES_ROMAN14_ 1 OODPI -Adobe-l1mes-Med1um-R-Normal-20-140-100-100-P-96-IS08859-1

TIMES_ROMAN18_ 1 OODPI -Adobe-limes-Medium-R-Normal-25-180-100-100-P-125-IS08859-1

TIMES_ROMAN24_ 1 OODPI -Adobe-limes-Medium-R-Normal-34-240-100-100-P-170-IS08859-1

D-16

Index

A
ALLOC COLOR CELLS routine • 5-11
ALLOC COLOR routine • 5-8
ALLOC NAMED COLOR routine • 5-7
Any event data structure • 9-3
Arc

drawing• 6-14 to 6-15
drawing more than one • 6-16
filling • 6-19
GC members used to draw • 6-16
GC members used to fill • 6-20
styles of filling • 4-9

illustrated • 4-14
Arc data structure • 6-16
Area

clearing • 6-23
copying • 6-23
filling • 6-19
GC members used to copy • 6-25

Atom
associated with font properties • 8-11
associated with window properties• 3-17
definition • 3-16

Attribute
changing window • 3-36 to 3-38
defining window• 3-7
getting information about window • 3-39 to 3-41

B
Background color

specifying• 4-4
Backing pixel

definition • 3-10
effect of changing • 3-38

Backing plane
definition • 3-1 O
effect of changing • 3-38

Backing store
definition • 3-1 O
effect of changing • 3-38

BDF (Bitmap Distribution Format) • A-1

Bit gravity
definition • 3-1 O
effect of changing • 3-38

Bitmap
creating data file for• 7-4

Bitmap Distribution Format

See BDF
Blocking

definition • 9-49
Bounding box

line• 4-10
text character • 8-1

Button
handling presses and releases • 9-8 to 9-11

Button event data structure • 9-9
Button pressed event data structure

See Button event data structure
Button released event data structure

See Button event data structure

c
CHANGE WINDOW ATTRIBUTES routine• 3-37
Char 2B data structure • 8-18
Char struct data structure • 8-3
CHECK IF EVENT routine• 9-51
CHECK MASK EVENT routine• 9-52
CHECK TYPED EVENT routine• 9-52
CHECK TYPED WINDOW EVENT routine• 9-52
CHECK WINDOW EVENT routine• 9-51
Child window

See also Window hierarchy
getting information about • 3-38

Circulate event data structure • 9-34
CIRCULATE SUBWINDOWS DOWN routine• 3-36
CIRCULATE SUBWINDOWS UP routine• 3-36
CLEAR AREA routine • 6-24
CLEAR WINDOW routine• 6-24
Client

communication with • 9-44 to 9-49
connecting with server • 2-3
definition• 1-1
sending message to • 9-44

Client message event data structure • 9-45

lndex-1

Index

Client request

controlling • 2-8
handling by Xlib

See Server
Client-server connection

breaking • 2-4
establishing • 2-3
getting information about • 2-5

Clipping
specifying pixmap for • 4-10

CLOSE DISPLAY routine • 2-4
Color

direct• 5-4
exclusive use of• 5-10 to 5-19
freeing storage assigned for • 5-19
gray scale • 5-4
index• 5-2
named

list of• C-1
pseudocolor • 5-4
range of • 5-2
RGB components • 5-2
RGB values• 5-4
screen configuration and • 5-4
sharing • 5-6 to 5-1 O

named• 5-7
specifying exact value • 5-8 to 5-10

static gray • 5-4
type of

See Visual type
using named • 5-7
VAXstations that support• 5-6

Color cell
allocating for exclusive use • 5-11 to 5-19
definition • 5-2

Color data structure• 5-8
Color index

definition • 5-2
Color map • 5-1 to 5-4

creating • 5-10
creating from default • 5-18
default

allocating for exclusive use • 5-10
definition• 5-2
hardware • 5-4
receiving notification of change in • 9-43
specifying • 5-10 to 5-11
specifying for a window• 3-11
storing colors • 5-19
virtual • 5-4

Color map event data structure • 9-43

lndex-2

Color values
specifying exact• 5-8

Configure event data structure • 9-35
Configure request

overriding • 3-11
CONFIGURE WINDOW routine• 3-28
CONVERT SELECTION routine • 3-28
COPY AREA routine • 6-25
COPY COLORMAP AND FREE routine• 5-19
COPY PLANE routine• 6-25
CREATE COLORMAP routine• 5-10
CREATE FONT CURSOR routine• 6-35
CREATE GLYPH CURSOR routine• 6-35
CREATE IMAGE routine• 7-7
CREATE PIXMAP CURSOR routine• 6-37
CREATE PIXMAP routine• 7-1
CREATE REGION routine• 6-25
CREATE SIMPLE WINDOW routine• 3-6
Create window event data structure• 9-36
CREATE WINDOW routine• 3-7
Crossing event data structure• 9-16
Cursor

creating • 6-34 to 6-40
using a client cursor font • 6-36
using pixmaps • 6-37
using VMS DECwindows cursor font• 6-35
using Xlib cursor font• 6-34

definition • 6-33
destroying • 6-40
determining size of• 6-39
effect of changing default• 3-38
elements of• 6-36
illustration of shape and mask • 6-37
making visible on screen • 6-35
mask• 6-36
shape• 6-36
specifying for a window • 3-11

D
Debugging programs • 1-10
DEFAULT COLORMAP routine• 5-10
DEFAULT VISUAL OF SCREEN routine• 5-6
Default window characteristics

See Window
DEFINE CURSOR routine• 6-35
Depth

definition • 5-2
DESTROY SUBWINDOWS routine• 3-14

Destroy window event data structure • 9-37
DESTROY WINDOWS routine• 3-14
Direct color• 5-4
Display

closing • 2-4
compared to hardware• 2-1
information routines • 2-5 to 2-8
opening • 2-3 to 2-4
server response to closing • 2-4 to 2-5

Display information routines • 2-5 to 2-8
DISPLAY NAME routine• 9-55
DRAW ARC routine• 6-14
DRAW ARCS routine• 6-17
DRAW IMAGE STRING 16 routine· 8-21
DRAW IMAGE STRING routine• 8-21
DRAW LINE routine• 6-5
DRAW LINES routine• 6-6
DRAW POINT routine • 6-2
DRAW RECTANGLE routine • 6-9
DRAW SEGMENTS routine • 6-9
DRAW STRING 16 routine • 8-20
DRAW STRING routine• 8-20
DRAW TEXT 16 routine• 8-19
DRAW TEXT routine• 8-19

E
Enter window event data structure

See Crossing event data structure
Error

codes• 9-54
handling event• 9-52

using default• 9-53
Error event data structure • 9-53
Error handling conditions • 1-9
Error reporting

delays caused by Xlib buffering • 1-1 O
Event

blocking • 9-49
button press and release • 9-8 to 9-11
client communication • 9-44 to 9-49
client message• 9-44
color map • 9-43
convert selection• 9-47
data structure used to report all types of• 9-3
data structure used to report multiple types of •

9-4
default error handlers • 9-52
definition • 9-1
error codes • 9-54

Event (cont'd.)

error handling• 9-52 to 9-56
graphics exposure • 9-28 to 9-32
handling queue • 9-49 to 9-52
key• 9-14
keyboard mapping• 9-39
key mapping • 9-39
masks used to specify • 9-5
notifying ancestors of • 3-11
pointer • 9-8
pointer grabs • 9-21
pointer mapping • 9-39
pointer motion • 9-11
predicate procedure

definition • 9-50
processing• 9-1 to 9-4
property change • 9-45

Index

reported as result of window entry or exit • 9-18
selecting

using a mask• 9-51 to 9-52
using predicate procedure• 9-50
using the SELECT INPUT routine• 9-5
when changing window attributes • 9-7
when creating a window• 9-7

selecting types of• 9-5 to 9-8
selection notification • 9-48
selection ownership • 9-46
sending to other applications • 9-52
specifying type associated with a window • 3-11
types• 9-2
types always reported • 9-5
window circulation • 9-34
window configuration • 9-35
window creation • 9-36
window destruction • 9-37
window entry or exit

caused by a grab • 9-17
caused by pointer movement • 9-17

window exposure • 9-27 to 9-28
window gravity• 9-38
window mapping• 9-39
window reparenting • 9-40
window unmapping • 9-41
window visibility• 9-42

Event data structure • 9-4
See data structures associated with specific

events
Event mask

effect of changing • 3-38
selecting events in order using • 9-5
selecting events out of order using• 9-51

lndex-3

Index

Event queue • 9-49
checking • 9-50
putting event back on • 9-52
returning next event • 9-50

EVENTS QUEUED routine• 9-50
Expose event data structure• 9-27
Exposure

See also Graphics exposure

See also Window exposure
notification of window region • 4-1 O

F
FILL POLYGON routine• 6-21
Fill style • 4-8

illustration of• 4-13
Flags

for defining color values • 5-8
for referring to window attributes • 3-12
for referring to window change values • 3-30

Focus change event data structure • 9-22
Focus in event data structure

See Focus change event data structure
Focus out event data structure

See Focus change event data structure
Font

advantages of minimum bounding box• A-1
associating with graphics context • 8-14
bounding box of• 8-7
compiling • A-1
converting from BDF to SNF • A-1
definition • 8-4
fixed • 8-4
getting illustration of when compiling • A-1
getting information about • 8-15
getting information about a property • 8-15
list of VMS DECwindows • D-1
loading• 8-14
monospaced • 8-4
multiple-row • 8-5
naming

conventions when • 8-13
wildcards used when• 8-14

pixel size of • 8-14
point size of • 8-14
properties • 8-15
single-row • 8-4
specifying• 4-10, 8-13
specifying output file • A-1

lndex-4

Font prop data structure • 8-12
Font struct data structure • 8-6
Foreground color

specifying• 4-4
FREE COLORMAP routine • 5-20
FREE COLORS routine • 5-19
FREE CURSOR routine• 6-40
FREE PIXMAP routine• 7-4

G
GC

See Graphics context
GC values data structure• 4-3

flags for referring to members of• 4-15
GET ERROR DATABASE TEXT routine• 9-55
GET ERROR TEXT routine • 9-55
GET GEOMETRY routine• 3-39
GET IMAGE routine• 7-8
GET SELECTION OWNER routine• 3-28
GET WINDOW ATTRIBUTES routine • 3-39 to

3-41
Grab

active• 9-8
effect on input focus• 9-26
handling pointer• 9-21
passive • 9-8

Graphics
clearing areas • 6-23 to 6-24
copying areas • 6-25
defining characteristics of• 4-2 to 4-21
defining the position of • 6-1
drawing

arcs• 6-14
lines• 6-5 to 6-9
points• 6-2 to 6-5
rectangles • 6-9

filling areas• 6-19 to 6-23
introduction to • 6-1
position relative to drawable • 6-1
styles of filling • 4-8

Graphics characteristics

See Graphics context
Graphics context

changing • 4-22
copying • 4-22
default values • 4-1
defining in one call • 4-2
definition • 4-1

Graphics context (cont'd.)

effect of window changes on• 4-22
maximum number of• 4-22
overview of• 4-1
specifying individual components of • 4-18
using efficiently • 4-22

Graphics expose event data structure • 9-29
Graphics exposure• 9-28 to 9-32

definition • 9-28
Gravity event data structure • 9-38
Gray scale• 5-4
GX data structure

default values of • 4-1

H
Host machine

specifying• 2-4

I
IF EVENT routine• 9-51
Image

changing• 7-10
creating• 7-7 to 7-8

from pixmap • 7-8
creating data file of• 7-4
destroying • 7-10
format of • 7-8
storing• 7-8
transferring to drawable• 7-8

Image data structure• 7-6
Information routines

as arguments to routines • 2-5
Input focus

change caused by grab • 9-26
definition• 9-21
normal keyboard • 9-22

K
Key

mapping events • 9-39
presses • 9-14
releases • 9-14

Keyboard input

Index

Keyboard input (cont'd.)

providing window manager hints about• 3-23
Key event data structure • 9-14
Key map

changes in state of • 9-26
Keymap event data structure • 9-26
Key pressed event data structure

See Key event data structure
Key released event data structure

See Key event data structure

L
Leave window event data structure

See Crossing event data structure
Line

dash offset illustrated • 4-15
double dash • 4-6
drawing more than one• 6-5
endpoints of• 4-6
how server draws • 4-5
on off dash • 4-6
solid• 4-6
specifying beginning of dashed • 4-1 o
specifying dash length of • 4-1 O
specifying style of • 4-6
specifying width of • 4-5
styles of • 4-11
styles of endpoints • 4-11
styles of filling dashed • 4-8
styles of joining another • 4-12
styles of joining another line• 4-7
treatment of coincident endpoints of• 4-7
Xlib performance and width of• 4-5

LIST FONTS routine• 8-15
LIST FONTS WITH INFO routine• 8-15
LOAD FONT routine • 8-14
LOAD QUERY FONT routine• 8-14
LOOKUP COLOR routine• 5-21
LOWER WINDOW routine• 3-36

M
Map event data structure• 9-39
Mapping and unmapping windows• 3-14 to 3-15
Mapping event data structure • 9-40
MAP RAISED routine • 3-15

lndex-5

Index

Map request
overriding • 3-11

MAP SUBWINDOWS routine• 3-14
MAP WINDOW routine• 3-14
MASK EVENT routine • 9-51
Motion event data structure • 9-12
MOVE RESIZE WINDOW routine• 3-31
MOVE WINDOW routine• 3-31

N
Named VMS DECwindows colors

list of• C-1
using• 5-7

NEXT EVENT routine• 9-50
No expose event data structure • 9-30

0
OPEN DISPLAY routine• 2-3
Origin

definition • 3-4
Ownership

See Window selection

p
Parent window

See also Window hierarchy
definition • 3-2
getting information about• 3-38
receiving notification of change of • 9-40
using attributes of• 3-6

PEEK EVENT routine• 9-50
PEEK IF EVENT routine• 9-51
PENDING routine• 9-50
Pixel

and color values • 5-1
definition • 3-4
determining if inside a filled polygon • 4-9

illustrated• 14-14
relationship to planes • 5-2

Pixel value
computing • 4-4

Pixmap
clearing areas of• 6-23

lndex-6

Pixmap (cont'd.)

copying areas of • 6-25
creating• 7-1
creating from bitmap data file• 7-4
example of creating• 7-1
freeing storage for• 7-4

Plane
definition • 5-2

Point
determining location of• 6-2
drawing more than one • 6-2
GC members used to draw• 6-3

Point data structure• 6-2
Pointer

button event handling • 9-8 to 9-11
mapping events • 9-39
motion event handling• 9-11 to 9-14

Pointer moved event data structure
See Motion event data structure

Polygon
filling • 6-20 to 6-23
GC members used to fill • 6-21

POLYGON REGION routine• 6-25
Predicate procedure• 9-51
Property

communicating with window manager using•
3-22

defining for window manager• 3-22
defining individual • 3-24
definition • 3-16
example of using • 3-19
exchanging between clients • 3-27
font• 8-15
receiving notification of change in• 9-45

Property event data structure• 9-46
Protocol requests • B-1
Pseudocolor • 5-4
Pseudomotion

definition • 9-15
window entry or exit • 9-20

PUT BACK EVENT routine • 9-52
PUT IMAGE routine• 7-8

Q
QUERY BEST CURSOR routine• 6-39
QUERY BEST SIZE routine• 4-9
QUERY COLOR routine• 5-21
QUERY POINTER routine• 3-39
QUERY TEXT EXTENTS 16 routine• 8-17

QUERY TEXT EXTENTS routine• 8-17
QUERY TREE routine• 3-39

R
RAISE WINDOW routine• 3-36
Rectangle

drawing more than one• 6-10
filling• 6-19
GC members used to draw • 6-11
GC members used to fill • 6-20

Rectangle data structure • 6-11
Region

creating• 6-25 to 6-28
definition • 6-25
example of intersecting• 6-29
managing• 6-28 to 6-33

Reparent event data structure • 9-40
Request

buffering• 1-10
client• 1-10
how Xlib handles client • 1-1 O

RESIZE WINDOW routine• 3-31
RESTACK WINDOW routine• 3-36
Root window • 3-2
Routines

ALLOC COLOR • 5-8
ALLOC COLOR CELLS • 5-11
ALLOC NAMED COLOR• 5-7
CHANGE WINDOW ATTRIBUTES • 3-37
CHECK IF EVENT• 9-51
CHECK MASK EVENT• 9-52
CHECK TYPED EVENT• 9-52
CHECK TYPED WINDOW EVENT• 9-52
CHECK WINDOW EVENT• 9-51
CIRCULATE SUBWINDOWS DOWN• 3-36
CIRCULATE SUBWINDOWS UP• 3-36
CLEAR AREA• 6-24
CLEAR WINDOW• 6-24
CLOSE DISPLAY• 2-4
CONFIGURE WINDOW• 3-28, 3-31
CONVERT SELECTION • 3-28
COPY AREA • 6-25
COPY COLORMAP AND FREE • 5-19
COPY PLANE• 6-25
CREATE COLORMAP • 5-10
CREATE FONT CURSOR• 6-35
CREATE GLYPH CURSOR• 6-35
CREATE IMAGE• 7-7

Routines (cont'd.)

CREATE PIXMAP• 7-1
CREATE PIXMAP CURSOR• 6-37
CREATE REGION • 6-25
CREATE SIMPLE WINDOW• 3-6
CREATE WINDOW• 3-7
DEFAULT COLORMAP • 5-10
DEFAULT VISUAL OF SCREEN• 5-6
DEFINE CURSOR• 6-35
DESTROY SUBWINDOWS • 3-14
DISPLAY NAME• 9-55
DRAW ARC• 6-14
DRAW ARCS• 6-17
DRAW IMAGE STRING• 8-21
DRAW IMAGE STRING 16 • 8-21
DRAW LINE• 6-5
DRAW LINES• 6-6
DRAW POINT• 6-2
DRAW RECTANGLE• 6-9
DRAW SEGMENTS • 6-9
DRAW STRING • 8-20
DRAW STRING 16 • 8-20
DRAW TEXT• 8-19
DRAW TEXT 16 • 8-19
EVENTS QUEUED• 9-50
FILL POLYGON • 6-21
FREE COLORMAP • 5-20
FREE COLORS • 5-19
FREE CURSOR• 6-40
FREE PIXMAP• 7-4
GET ERROR DATABASE TEXT• 9-55
GET ERROR TEXT• 9-55
GET GEOMETRY• 3-39
GET IMAGE• 7-8
GET SELECTION OWNER• 3-28

Index

GET WINDOW ATTRIBUTES• 3-39 to 3-41
IF EVENT• 9-51
LIST FONTS • 8-15
LIST FONTS WITH INFO• 8-15
LOAD FONT• 8-14
LOAD QUERY FONT• 8-14
LOOKUP COLOR• 5-21
LOWER WINDOW• 3-36
MAP RAISED• 3-15
MAP SUBWINDOWS • 3-14
MAP WINDOW• 3-14
MASK EVENT• 9-51
MOVE RESIZE WINDOW• 3-31
MOVE WINDOW• 3-31
NEXT EVENT• 9-50
OPEN DISPLAY• 2-3
PEEK EVENT • 9-50

lndex-7

Index

Routines (cont'd.)

PEEK IF EVENT• 9-51
PENDING • 9-50
POLYGON REGION• 6-25
PUT BACK EVENT• 9-52
PUT IMAGE• 7-8
QUERY BEST CURSOR • 6-39
QUERY BEST SIZE• 4-9
QUERY COLOR• 5-21
QUERY POINTER • 3-39
QUERY TEXT EXTENTS• 8-17
QUERY TEXT EXTENTS 16 • 8-17
QUERY TREE• 3-39
RAISE WINDOW• 3-36
requiring protocol requests • B-1
RESIZE WINDOW• 3-31
RESTACK WINDOW• 3-36
SELECT INPUT• 9-5
SEND EVENT• 9-52
SET ERROR ROUTINE• 9-53
SET FONT• 8-14
SET 10 ERROR HANDLER • 9-56
SET SELECTION OWNER• 3-27
SET WINDOW BORDER WIDTH• 3-31
SET WM HINTS• 3-23
STORE COLOR • 5-19
STORE COLORS • 5-19
STORE NAMED COLOR • 5-19
SYNCHRONIZE • 9-52
TEXT EXTENTS • 8-17
TEXT EXTENTS 16 • 8-17
TEXT WIDTH• 8-17
TEXT WIDTH 16• 8-17
UNDEFINE CURSOR• 6-40
UNMAP SUBWINDOWS • 3-15
UNMAP WINDOW• 3-15
WINDOW EVENT• 9-51

s
Save under operation

definition • 3-10
effect of changing • 3-38

Screen
specifying display • 2-4
updating pixel values • 4-4

Screen type

See Visual type
Segment data structure • 6-8
SELECT INPUT routine• 9-5

lndex-8

Selection
See Window selection

Selection clear event data structure• 9-47
Selection event data structure • 9-48
Selection request event data structure• 9-47
SEND EVENT routine • 9-52
Server

client requests to • 1-10
definition• 1-1
managing requests • 2-8
relationship to client • 2-1

Server access control list
definition • 2-5

Server Natural Form
See SNF

SET ERROR HANDLER routine• 9-53
SET FONT routine • 8-14
SET 10 ERROR HANDLER routine• 9-56
SET SELECTION OWNER routine• 3-27
Set window attributes data structure• 3-8
SET WINDOW BORDER WIDTH routine • 3-31
SET WM HINTS routine• 3-23
Size hints data structure• 3-26
SNF (Server Natural Form)• A-1
Stacking order

changing • 3-35 to 3-36
receiving notification of change in • 9-35

Static gray • 5-4
Stippling

origin for• 4-1 O
specifying pixmap for • 4-9

STORE COLOR routine • 5-19
STORE COLORS routine • 5-19
STORE NAMED COLOR routine• 5-19
Subwindow

lowering • 3-36
mapping• 3-14
movement when reconfiguring parent • 3-33
raising • 3-36
reordering in hierarchy • 3-15

SYNCHRONIZE routine• 9-52
Synchronous operation • 9-52

T
Text

computing size of • 8-17
drawing • 8-17
example of drawing with DRAW STRING • 8-20

Text (cont'd.)

example of drawing with DRAW TEXT• 8-19
styles of filling • 4-8
text character

definition • 8-1
illustrated • 8-1
positioning• 8-1

TEXT EXTENTS 16 routine• 8-17
TEXT EXTENTS routine • 8-17
Text item 16 data structure· 8-18
Text item data structure • 8-17
TEXT WIDTH 16 routine• 8-17
TEXT WIDTH routine• 8-17
Tiling

origin for • 4-10
specifying pixmap for• 4-9

Transport mechanism • 2-4

u
UNDEFINE CURSOR routine• 6-40
Unmap event data structure• 9-41
UNMAP SUBWINDOWS routine• 3-15
UNMAP WINDOW routine• 3-15

v
Visibility event data structure • 9-42
Visual type

default• 5-6
definition • 5-4
determining • 5-6
direct color• 5-4
gray scale • 5-4
pseudocolor • 5-4
static gray • 5-4
using to share color• 5-4

w
Window

associating properties with • 3-16
changing

attributes • 3-36 to 3-38
characteristics of • 3-28
stacking order • 3-35 to 3-36

Window (cont'd.)

circulation
receiving notification of• 9-34

clearing areas of• 6-24

Index

clearing areas with FILL RECTANGLES • 6-24
copying areas of• 6-25
creating

receiving notification of • 9-36
using attributes of parent • 3-6

creating and specifying attributes of· 3-7 to
3-14

creating simple• 3-6 to 3-7
default characteristics • 3-6
destroying • 3-14

receiving notification of• 9-37
entries and exits • 9-15
example of configuring • 3-30
example of creating simple• 3-7
example of mapping and raising in hierarchy •

3-15
flags for referring to attributes • 3-12
getting information about • 3-38 to 3-41
initial state

providing window manager hints about • 3-23
lowering in the hierarchy • 3-36
mapping• 3-14

receiving notification of • 9-39
obscuring • 3-5
overview of • 3-1
parent

definition • 3-2
receiving notification of change of • 9-40

position relative to parent • 3-4
raising in the hierarchy • 3-36
reconfiguration

effects on graphics and text • 3-32
receiving notification of• 9-35

resizing • 3-28
re stacking

constants for specifying • 3-30
restoring contents of exposed• 9-27
saving contents of another• 3-1 O
specifying background color of• 4-4
specifying color maps for• 3-11
specifying cursor for• 3-11
specifying foreground color of• 4-4
types of • 3-1
unmapping • 3-14

receiving notification of • 9-41
visibility of• 3-5

receiving notification of change in • 9-42

lndex-9

Index

Window attribute
data structure used to define • 3-8
default value of• 3-11
defining• 3-7 to 3-14

Window attributes data structure• 3-39
Window background

effect of changing • 3-38
repainting• 3-38
server treatment of• 3-9
specifying when creating a window• 3-6 to 3-7,

3-9
using a pixel to define • 3-9
using a pixmap to define • 3-9

Window border
effect of changing • 3-38
effect on graphic operations • 3-1 O
receiving notification of change in • 9-35
specifying when creating a window• 3-6 to 3-7,

3-10
using a pixel to define• 3-10
using a pixmap to define• 3-10

Window changes data structure • 3-29
Window clipping

specifying • 4-10
Window contents

managing when window is resized • 3-10
preserving • 3-10
repainting when obscured • 3-1 O
saving• 3-10

Window coordinate system • 3-4 to 3-5
Window entry or exit

caused by a grab • 9-17
caused by pointer movement• 9-17
events reported as result of• 9-18
example of handling• 9-19
pseudomotion • 9-20

Window event
See Event

WINDOW EVENT routine• 9-51
Window exposure • 9-27 to 9-28

definition• 9-27
example of handling • 9-28

Window gravity
definition • 3-1 O
effect of changing • 3-38

Window hierarchy • 3-2 to 3-4
Window icon

providing window manager hints about • 3-23
Window manager

providing hints to• 3-22
working with• 3-22

lndex-10

Window movement
managing when parent is resized • 3-10

Window obscuring• 3-5
treating • 3-10

Window occlusion • 3-5
Window position

receiving notification of change in• 9-35, 9-38
specifying when creating a window• 3-6 to 3-7

Window restacking • 3-36
Window selection

definition • 3-27
receiving notification of • 9-46
receiving notification of request for• 9-48
receiving request to convert• 9-47

Window size
receiving notification of change in• 9-35
specifying when creating a window• 3-6 to 3-7

Window visibility • 3-5

See also Mapping
receiving notification of changes in • 9-42

WM hints data structure • 3-23

x
Xlib program

sample of• 1-2
XY bitmap format• 7-8
XY pixmap format• 7-8

z
Z pixmap format• 7-8

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SDC Order Processing - WMO/E15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 014 73

1 For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VMS DECwindows
Guide to Xlib Programming:

MIT C Binding
AA-MG24A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

·- Do Not Tear - Fold Here and Tape -------------------[lllr--------------­
No Postage

~nmnama™ ~:~=~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 •••• 1.11.1 •• 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

in the
United States

I
I
I
I
I
I
I

·-Do Not Tear - Fold Here --1
1

Reader's Comments VMS DECwindows
Guide to Xlib Programming:

MIT C Binding
AA-MG24A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Namefl'itle

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

- Do Not Tear - Fold Here and Tape -------------------~lllr--------------­
No Postage

~nmnomn™ ~;~=~=~y

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

in the
United States

·- Do Not Tear - Fold Here --

I
I
I
I
I
I

