
VAX COD/Plus User's Guide
Order Number: AA-KL46A-TE

August 1988

This manual provides tutorial information for VAX CDD/Plus. It
supersedes the VAX Common Data Dictionary User's Guide.

Operating System and Version: VMS

Software Version: VAX CDD/Plus V 4.0

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and. may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation. All rights reserved.

The postpaid Reader's Comments forms at the end of this document request the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS
DATATRIEVE
DEC
DECnet
DECreporter
DEC US
MicroVAX
PDP
RALLY

Rdb/ELN
Rdb/VMS
ReGIS
TDMS
TEAMDATA
UNIBUS
VAX
VAXcluster
VAXinfo

VAX Information Architecture
VIDA
VMS
VT

~U~UD~DTM

ZK4820

Contents

How to Use This Manual
Technical Changes and New Features

1 The COD/Plus Dictionary System

1.1
1.2

1.3

1.4

How CDD/Plus Affects Current DMU Users
Overview
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7

The CDO Interface .
Distributed Dictionary Access
Field-Level Data Descriptions
Relationships .
Pieces Tracking .
Data Security and Integrity .
CDD/Plus Call Interface

CDD/Plus Dictionary Naming Conventions
1.3.1 Parts of the Dictionary Definition Name
1.3.2 Accessing Dictionary Definitions ~
Emerging Support for CDO Dictionary Features

2 Using DMU with COD/Plus

2.1

2.2

2.3
2.4

The CDD/Plus Compatibility Scheme
2.1.1 Translating Dictionary Formats
2.1.2 Accessing Definitions in CDD/Plus
2.1.3 Resolving Path Names to Dictionary Definitions
Creating, Reading, and Deleting Definitions in Compatibility

Mode ························
2.2.1 Interpreting CDO Dictionary Features in DMU

Format · ·
2.2.2 Interpreting DMU Dictionary Features in CDO

Format
2.2.3 Translating COBOL Level 88 Conditions into DMU and

CDO Formats
Protecting Dictionary Definitions in Compatibility Mode
Converting Record Definitions from DMU to CDO Format
2.4.1 Sharing Fields After Record Conversion
2.4.2 Creating Directory Names for Definitions

Page

xv

xix

1-2
1-3
1-4
1-5
1-5
1-6
1-6
1-7
1-7
1-7
1-7
1-8
1-9

2-1
2-2
2-4
2-6

2-7

2-8

2-10

2-12
2-13
2-14
2-17
2-18

iii

3 Using the COO Utility

3.1
3.2
3.3

3.4

3.5
3.6

3.7

3.8
3.9

CDO Utility Features
Logical Dictionary Structure .
Getting Started with CDO .
3.3.1 Invoking CDO .
3.3.2 Running DCL Subprocesses
3.3.3 Creating a New Dictionary
3.3.4 Creating Dictionary Directories
3.3.5 Accessing Help in the CDO Environment
Editing Definitions in the CDO Environment
3.4.1 CDO Editor Key Definitions
3.4.2 Accessing Help in the CDO Editor
3.4.3 A Sample CDO Editing Session
3.4.4 CDO Editor Prompts
3.4.5 Editing Text Within the CDO Editor
3.4.6 Editing New Versions of Existing Definitions
3.4. 7 Browsing Through Current Definitions
3.4.8 Exiting from the CDO Editor
Summary of CDO Environment Commands
Setting CDO Environment Characteristics
3.6.1 Sending Command Output to a File
3.6.2 Setting the Default Directory
3.6.3 Using Search Lists
3.6.4 Defining Terminal Keys
3.6.5 CDO Initialization Files .
Manipulating Dictionary Definitions .
3. 7 .1 Listing Dictionary Definitions
3.7.2 Showing Dictionary Definitions
3.7.3 Examining Current Definitions
Executing CDO Environment Command Procedures
Checking Your Dictionary Version .

4 Populating Your Dictionary

4.1

iv

Creating Dictionary Definitions .
4.1.1 Documenting Dictionary Definitions

4.1.2
4.1.3

4.1.4

4.1.1.1 The DESCRIPTION Attribute
4.1.1.2 The AUDIT Attribute
Creating Field Definitions .
Creating Record Definitions
4.1.3.1 Bottom-Up Definitions
4.1.3.2 Top-Down Definitions
Creating Relationships .

3-1
3-2
3-5
3-5
3-6
3-7
3-8

3-10
3-11
3-11
3-15
3-15
3-28
3-28
3-29
3-29
3-29
3-30
3-32
3-32
3-32
3-34
3-36
3-37
3-38
3-38
3-41
3-43
3-44
3-46

4-1
4-2
4-2
4-2
4-4
4-7
4-7
4-8
4-9

4.2

4.3

4.4

4.5

Supported CDD/Plus Data Types
4.2.1 Character String Data Types
4.2.2 Fixed-Point Data Types
4.2.3 Floating-Point Data Types
4.2.4 Complex Numbers
4.2.5 Decimal String Data Types
4.2.6 Other Data Types
4.2.7 VAX Information Architecture Support for CDD/Plus

Data Types
4.2.8 VAX Language Support for CDD/Plus Data Types
Copying Dictionary Definitions
4.3.1 Copying Relationships .
4.3.2 Copying a Complete Dictionary
Changing Dictionary Definitions .
4.4.1 Creating New Versions of Definitions with the DEFINE

Command
4.4.2 Changing Original Definitions with the CHANGE

Command
4.4.2.1 Receiving Messages About Changes
4.4.2.2 Changing Field Definitions
4.4.2.3 Changing Record Definitions

4.4.3 Changing Relationships ,
4.4.3.1 Changing a Member with the CHANGE

Command
4.4.3.2 Changing a Member with the DEFINE

Command
4.4.3.3 Changing Relationships in a Network

Deleting and Purging Dictionary Definitions
4.5.1 Deleting Dictionary Definitions
4.5.2 Purging Dictionary Definitions

4-12
4-12
4-13
4-13
4-14
4-15
4-15

4-16
4-18
4-22
4-24
4-24
4-24

4-25

4-26
4-26
4-28
4-29
4-30

4-31

4-31
4-32
4-33
4-34
4-35

5 Protecting Your Dictionary

5.1 Controlling Dictionary Access .
5.1.1 User Identifiers
5.1.2 Access Control Entries .

5-1
5-1
5-2

5.1.3 Determining Access to the Dictionary 5-4
5.2 CDO Dictionary Protection Provisions . 5-6

5.2.1 Default Protection Provisions 5-7
5.2.2 Listing Protection Provisions 5-9

5.3 Protecting Dictionary Definitions . 5-10
5.3.1 Adding New Access Control Entries 5-10
5.3.2 Changing Access Control Entries 5-14
5.3.3
5.3.4

Deleting Protection Provisions
Protecting Interrelated Definitions

5-15
5-16

v

5.3.5 Accessing Remote Dictionary Definitions 5-17
5.3 .6 Protecting Your Dictionary from Corruption 5-17

6 Managing Dictionary Usage and Change

6.1

6.2

6.3

Tracking Dictionary Usage
6.1.1 Using the SHOW Commands
6.1.2 Generating Messages by Changing Definitions
6.1.3 Accessing Messages about Changes
6.1.4 Recompiling Application Programs
Confirming Dictionary Integrity .
6.2.1 Journaling
6.2.2 Saving Copies of Your Dictionary
6.2.3 Verifying the Dictionary Condition
6.2.4 Changing the Location of a Dictionary
Enhancing Dictionary Performance .
6.3.1 Removing Unused Definitions
6.3.2 Deleting a Dictionary .
6.3.3 Structuring Your Dictionary
6.3.4 Improving Dictionary Performance over a Network

6-1
6-2
6-4
6-6
6-7
6-8
6-8
6-8
6-9

6-13
6-14
6-14
6-15
6-15
6-15

7 Using VAX Rdb/VMS with VAX COD/Plus

7.1

7.2

7.3

7.4

vi

Introduction to Using CDD/Plus with Rdb/VMS
7.1.1 Who Should Create Definitions in CDO?
7.1.2 Moving Between the RDO and CDO Utilities
Creating a Database with Shareable CDO Definitions
7.2.1 Defining Entities in CDO
7.2.2 Displaying Entities and Attributes Used By

Databases
7.2.3 Defining a New Database
7 .2.4 Requiring the Dictionary for Database Definitions
Including Dictionary Definitions in Your Database
7.3.1 Naming Database Definitions
7.3.2 Duplicate Processing Names
7.3.3 Defining Relations Using Dictionary Definitions
7.3.4 Completing Your Database Design with RDO

Statements .. .
7.3.5 Referencing Definitions from Programs
Changing and Integrating Definitions .
7.4.1 Updating Dictionary Definitions with INTEGRATE

IN
7.4.2 Updating Database Definitions with INTEGRATE

7-2
7-3
7-4
7-5
7-6

7-11
7-13
7-14
7-15
7-17
7-19
7-20

7-22
7-23
7-25

7-25

FROM.................................. 7-26

7.5

7.6

7.7

7.4.3 Evaluating the Impact of Changes
7.4.4 Changing Definitions from CDO

7.4.4.1 The Impact of Immediate Changes
7.4.4.2 The Impact of Changes Over Time

7.4.5 Changing Shareable Definitions from RDO
7.4.6 Deleting Shared Definitions .
Restoring a Database That Uses Shareable Dictionary
Definitions .
7 .5.1 Backing Up and Restoring Databases
7 .5.2 Restructuring and Reloading Databases
Converting Databases to CDO Format .
7 .6.1 Copying Definitions Into the Compatibility

Dictionary .
7 .6.2 Sharing Converted Definitions
Deleting Databases .

8 Managing RMS Files with COO

7-27
7-28
7-28
7-29
7-31
7-34

7-35
7-35
7-35
7-36

7-36
7-37
7-38

8.1 Using CDD/Plus with RMS: An Overview. 8-1
8.2 Creating RMS Database Definitions . 8-3
8.3 Creating Physical Database Files . 8-4
8.4 Using RMS File Definitions in Programs and Applications 8-7

8.4.1 Creating Relationships with REFERENCE FROM
DICTIONARY . 8-8

8.4.2 Tracking File Program Components 8-8
8.5 Showing Databases and Database Definitions 8-8
8.6 Moving Databases with CHANGE DATABASE 8-11
8. 7 Deleting Databases and Database Definitions 8-11

A User's Guide to DMU Format Dictionaries

A.1 DMU Dictionary Structure
A.1.1 Sample DMU Dictionary
A.1.2 Subdictionary Directories in the DMU Dictionary
A.1.3 CDD Types in the DMU Dictionary

A.2 DMU Dictionary Paths
A.2.1 The Given Name in the DMU Dictionary
A.2.2 The Full DMU Dictionary Path Name
A.2.3 Version Numbers in Object Names in the DMU

Dictionary .
A.2.4 The Default DMU Dictionary Directory

A.3 CDD Utilities in the DMU Dictionary
A.3.1 Dictionary Management Utility (DMU)
A.3.2 Dictionary Verify/Fix Utility (CDDV)

A-2
A-2
A-5
A-5
A-6
A-6
A-7

A-7
A-7
A-8
A-8

A-10

vii

A.4

A.5

A.6

viii

A.3.3 Dictionary Data Definition Language Utility
(CDDL)

Using DMU and CDDV in the DMU Dictionary
A.4.1 lssu!ng DMU and CDDV Commands

A.4.1.1 System Level Commands
A.4.1.2 DCL and Utility Command Procedures
A.4.1.3 Halting a DMU Command Procedure

A.4.2 Reading Command Lines in the DMU Dictionary
A.4.2.1 Abbreviations
A.4.2.2 Exclamation Point
A.4.2.3 Hyphens in Utility Command Lines
A.4.2.4 CTRL/C in DMU Commands

A.4.3 Specifying Paths in the DMU Dictionary
A.4.3.1 Path Name
A.4.3.2 Given Name
A.4.3.3 Version Numbers in Object Names
A.4.3.4 Wildcard Characters
A.4.3.5 Hyphens in Path Specifications
A.4.3.6 Specifying Passwords in Path Names
A.4.3.7 Using Logical Names in Path Names

A.4.4 Defining Your Default Directory in the DMU
Dictionary .

Using DMU Commands in the DMU Dictionary
A.5.1 Checking Your Privileges in the DMU Dictionary
A.5.2 Copying a Directory in the DMU Dictionary
A.5.3 Changing Default Directories in the DMU

Dictionary .
A.5.4 Creating History List Entries in the DMU

Dictionary .
A.5.5 Listing the Contents of a DMU Dictionary Object
A.5.6 Removing Obsolete DMU Dictionary Directories and

Objects
A.5.6.1 Backing Up Portions of the DMU

Dictionary .
A.5.6.2 Purging DMU Dictionary Objects
A.5.6.3 Deleting DMU Dictionary Objects

A.5.7 Restoring Portions of the DMU Dictionary
A.5. 7 .1 Checking the Contents of a Backup File . . .
A.5.7.2 Restoring a Backup File

A.5.8 Creating Multiple Versions of DMU Dictionary
Objects
A.5.8.1 Using RENAME/VERSION to Change a

Version Number
A.5.8.2 Using COPY /VERSION

A.5.9 Exiting from DMU
Security and Protection for the D MU Dictionary

A-11
A-12
A-12
A-12
A-14
A-15
A-16
A-16
A-17
A-17
A-17
A-18
A-i8
A-19
A-19
A-20
A-22
A-22
A-23

A-24
A-25
A-25
A-27

A-29

A-30
A-31

A-33

A-35
A-36
A-36
A-37
A-37
A-38

A-39

A-40
A-41
A-42
A-42

A.7

A.8

A.6.1

A.6.2

A.6.3
A.6.4

A.6.5

Access Control Lists and Access Control List Entries in
the DMU Dictionary
A.6.1.1 User Identification Criteria
A.6.1.1.1 VMS User Name
A.6.1.1.2 VMS User Identifier
A.6.1.1.3 Terminal Number or Job Class
A.6.1.1.4 Passwords .
A.6.1.2 Access Control Privileges
A.6.1.3 Suggestions for Using Access Control

Lists
Sample Access Control Lists in the DMU Dictionary ..
A.6.2.1 Accumulation of Privileges
A.6.2.2 Combinations of ACL Entries
Summary of ACL Results in the DMU Dictionary
Modifying Access Control Lists in the DMU
Dictionary .
Using VMS File Protection in the DMU Dictionary ...
A.6.5.1 The DCL SET PROTECTION

A.6.5.2
A.6.5.3
A.6.5.4

Command
Granting Access to Certain Users
Controlling Access to Subdictionaries
The DCL Access Control List Editor
Utility

A.6.6 Overriding Security in the DMU Dictionary
Creating a CDDL Source File in the DMU Dictionary
A.7.1 The CDDL Source File
A.7.2 Creating a Record Definition in the DMU

A.7.3
Dictionary .
Describing the Record Definition in the DMU
Dictionary .
A. 7 .3.1 Field Description Statements
A.7.3.2 Documenting Field Description

A.7.3.3
A.7.3.4
A.7.3.4.1
A.7.3.4.2
A.7.3.4.3
A.7.3.4.4
A.7.3.4.5
A.7.3.4.6

Statements .
Field Attribute Clauses
CDDL Data Types

Character String Data Types
Fixed Point Data Types
Floating Point Data Types
Decimal String Data Types
Other Data Types
Language Support for CDDL Data
Types

Compiling, Modifying, and Using CDDL Record Definitions in the
DMU Dictionary
A.8.1 Compiling a New Record Definition in the DMU

Dictionary .

A-43
A-44
A-45
A-45
A-46
A-46
A-47

A-49
A-50
A-51
A-52
A-54

A-54
A-63

A-64
A-64
A-65

A-66
A-68
A-68
A-68

A-69

A-70
A-70

A-72
A-73
A-74
A-75
A-75
A-75
A-76
A-77

A-78

A-83

A-84

ix

A.9

x

A.8.2

A.8.3

Using CDD Record Definitions in the DMU
Dictionary .
A.8.2.1 Copying CDD Definitions into a

Program
A.8.2.2 Documenting the Use of Record

Definitions .
Modifying CDDL Source Files in the DMU
Dictionary .
A.8.3.1 Obtaining the Source File
A.8.3.1.1 Extracting CDDL Source Text
A.8.3.1.2 Extracting Record Definitions Without

A.8.3.2
A.8.3.3

A.8.3.4

A.8.3.5
A.8.3.5.1

A.8.3.5.2

A.8.3.5.3

CDDL Source Text
Replacing a CDDL Definition
Creating an Additional Version of a Record
Definition .
Recompiling Programs and Product
Definitions .
Recompiling CDD Record Definitions

Checking the Template Record's History
List · · ·
Checking Template Records with DMU
EXTRACT
Using CDDL/RECOMPILE

Organizing and Maintaining Your Dictionary in the DMU
Dictionary .
A.9.1 Organizing Your DMU Dictionary Directory

Hierarchy
A.9.1.1 By Organizational Entity
A.9.1.2 By Application
A.9.1.3 By Individual User
A.9.1.4 By a Combination of Criteria
A.9.1.5 Using Subdictionaries
A.9.1.5.1 Creating Subdictionaries
A.9.1.5.2 Deleting Subdictionaries
A.9.1.5.3 Moving Subdictionary Files and

Directories .
A.9.2 Organizing Your DMU Dictionary to Enhance

Performance .
A.9.2.1 Using the Directory Hierarchy
A.9.2.2 Reducing DMU Dictionary Size
A.9.2.3 Limiting the Creation of Subdictionaries .. .
A.9.2.4 Preventing the Creation of History Lists .. .

A.9.3 Creating a Sample Hierarchy from a DMU Command
Procedure in a DMU Dictionary ;

A-87

A-87

A-88

A-89
A-89
A-89

A-90
A-91

A-91

A-92
A-92

A-93

A-94
A-96

A-97

A-98
A-98
A-98
A-98
A-99
A-99

A-100
A-101

A-101

A-102
A-102
A-102
A-103
A-103

A-103

A.9.4 Maintaining DMU Dictionary Files A-107
A.9.4.1 Verifying the Condition of a DMU

Dictionary File . A-107
A.9.4.2 Fixing a DMU Dictionary File A-108
A.9.4.3 Compressing a DMU Dictionary File A-110

A.10 Setting Up Your DMU Dictionary on a VAXcluster A-110

Glossary

Index

Examples

A.10.1 Installing Your First DMU Dictionary A-111
A.10.2 Moving a Single Existing DMU Dictionary to a Cluster

A.10.3
Disk A-111
Merging Two or More DMU Dictionaries onto a Cluster
Disk A-112
A.10.3.1 Creating a Single Logical DMU

Dictionary . A-114
A.10.3.2 Reorganizing and Eliminating Redundant

Definitions A-116
A.10.3.2.1 Planning the Hierarchy of the Cluster

Dictionary . A-11 7
A.10.3.2.2 Identifying Redundant DMU Dictionary

Elements . A-117
A.10.3.2.3 Moving Portions of Former

Subdictionaries Within the Cluster
Dictionary A-118

A.10.3.3 Modifying Former Absolute Path Names ... A-119

A-1 ADDRESS.DDL, Sample CDDL Source File A-69

Figures

1-1

1-2
1-3
2-1
3-1
3-2
3-3
4-1
6-1
7-1
7-2

Accessing CDD/Plus Dictionary Definitions with DIGITAL
Products .. .
Valid CDD/Plus Definition Names
Using CDO Metadata for Project Control
The CDD/Plus Access Routes
Sample Logical Dictionary Structure .
CDO Editor Keypad Key Definitions .
CDO Editor Menu Keypad Key Definitions
Creating Local Copies of Remote Dictionary Definitions
Placing Directories in Your Dictionary .
Sharing Dictionary Definitions Among Database Products
Shareable CDO Definitions .

1-4
1-8

1-10
2-5
3-4

3-12
3-13
4-33
6-16

7-3
7-10

xi

A-1 Sample DMU Dictionary Hierarchy . A-3
A-2 Portions of Hierarchies of Two DMU Dictionaries A-113
A-3 DMU Dictionaries on ALPHA and OMEGA Merged A-113

Tables

xii

2-1
2-2

2-3
2-4

3-1
3-2
3-3
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8

4-9

4-10

5-1
5-2
5-3
6-1
6-2
8-1
8-2
A-1
A-2
A-3
A-4

A-5
A-6
A-7
A-8
A-9
A-10
A-11

Accomplishing Tasks Through DMU and CDO Access Routes
Interpretation of CDO Definitions Through a DMU Access
Route
How CDD/Plus Affects DMU RENAME
Translation of DMU Dictionary Protection Provisions to CDO
Format
Suggested Process Resource Limits .
Frequently Used CDO Editor Key Functions
Summary of CDO Commands
User-Specified Field Attributes
CDD/Plus Relationships
Fixed-Point Data Types
Floating-Point Data Types
Complex Numbers
Decimal String Data Types .
Other Data Types
VAX Information Architecture Products Support for CDD/Plus
Data Types
VAX BASIC, COBOL, DIBOL, and PL/I Support for CDD/Plus
Data Types
VAX FORTRAN, C, PASCAL, and RPG II Support for CDD/Plus
Data Types
VMS Access Rights .
CDO Functional Access Rights
Protocol Protection .
Summary of Usage Tracking Commands
Qualifiers to the VERIFY Command .
Summary of Commands For Manipulating RMS Files
DEFINE_RMS_DATABASE Attribute Clauses
The Dictionary Management Utility Commands
The Dictionary Verify/Fix Utility Commands
The Dictionary Data Definition Language Utility Commands .. ''., ..
Specifying Version Numbers with CDD Objects in the DMU
Dictionary .
Dictionary Management Utility Wildcard Characters
Access Control Privileges in the DMU Dictionary
General Field Attribute Clauses
Facility-Specific Field Attribute Clauses in the DMU Dictionary .. .
The Fixed-Point Data Types in the DMU Dictionary
The Floating Point Data Types in the DMU Dictionary
The Decimal String Data Types in the DMU Dictionary

2-6

2-8
2-10

2-12
3-7

3-14
3-30
4-4

4-11
4-13
4-14
4-14
4-15
4-16

4-17

4-19

4-21
5-3
5-6
5-7
6-2

6-12
8-2
8-4
A-9

A-11
A-12

A-19
A-21
A-48
A-73
A-74
A-75
A-76
A-77

A-12 BASIC, COBOL, DIBOL, and PL/I Support for CDDL Data Types
in the D MU Dictionary . A-79

A-13 FORTRAN, C, PASCAL, and RPG II Support for CDDL Data
Types in the DMU Dictionary. A-80

A-14 VAX Information Architecture Products Support for CDDL Data
Types in the DMU Dictionary. A-82

xiii

How to Use This Manual

This manual provides tutorial material for users who plan to store, maintain, and
analyze data descriptions in CDD/Plus using the CDO utility. Tutorial material is
also provided for using the DMU utility.

Intended Audience

The audience for this manual consists of the following groups:

• The data administrator or system manager responsible for creating the dictionary
hierarchy, setting up the security provisions, and maintaining the dictionary
structure

• The database administrator responsible for creating standard definitions that can
be shared among databases

• Programming supervisors responsible for maintaining portions of the dictionary
hierarchy

• Programmers responsible for maintaining their own portions of the directory
hierarchy, and for writing applications that use the definitions stored in
CDD/Plus

Operating System Information

For information on the compatibility of other software products with this version
of CDD/Plus, refer to the System Support Addendum (SSA) that comes with the
Software Product Description (SPD). You can use the SPD/SSA to verify which
versions of your operating system are compatible with this version of CDD/Plus.

xv

Structure

This manual has eight chapters, a glossary, and one appendix.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Appendix A

Glossary

Provides an overview of CDD/Plus and the features of CDO dictionaries.

Explains how CDD/Plus operates when established DMU dictionaries
and CDO dictionaries coexist.

Helps you get started using the CDO utility.

Describes how to define fields and records in a CDO dictionary.

Describes how to protect CDO dictionary definitions.

Describes how to analyze CDO dictionary usage and how to manage
changes. It also discusses dictionary performance.

Describes how to use shareable CDO dictionary definitions with
Rdb/VMS.

Describes how to create and use CDO dictionary definitions that repre­
sent VAX Record Management Services database entities.

Provides tutorial material on DMU dictionaries for users who access
the dictionary with products that do not support the CDO features of
CDD/Plus.

Defines terms used in this manual and other manuals in the documenta­
tion set.

Related Documents

The other manuals in the CDD/Plus documentation set are:

• VAX CDD /Plus Common Dictionary Operator Reference Manual

Provides reference material and syntax for all CDO commands

• VAX Common Data Dictionary Data Definition Language Reference Manual

Describes the VAX Common Data Dictionary Data Definition Language Utility
(CDDL), which manipulates definitions in DMU dictionaries

• VAX Common Data Dictionary Utilities Reference Manual

Describes the Dictionary Management Utility (DMU) and the Dictionary
Verify/Fix Utility (CDDV), utilities you use to manipulate DMU dictionaries

• VAX CDD/Plus Call Interface Manual

xvi

Provides reference material for the system administrator on CDO dictionary
architecture.

Conventions

The special symbols used in this book are:

Symbol

ICTRL/xl

KPn

SHIFT

SHIFT-KPn

IRETI

BOLD

$

COLOR

Meaning

This symbol tells you to press the CTRL (control) key and
hold it down while pressing the specified letter key.

Key names that begin with KP indicate keys on the numeric
keypad on the right side of the terminal keyboard.

The CDO editor uses the PFl key as a shift key.

The hyphen in key names means that you press the two keys
in the order listed.

This symbol indicates the RETURN key.

Bold lettering indicates the definition of a new term.

Vertical ellipsis in an example means that information not
directly related to the example has been omitted.

The dollar sign is used to indicate the DCL prompt. This
prompt may be different on your system.

Color in examples shows user input.

xvii

Technical Changes and New Features

CDD/Plus supports dictionary definitions in two distinct formats:

• DMU format-dictionary definitions that can be created and manipulated with
the DMU, CDDL, and CDDV utilities.

• CDO format-dictionary definitions that can be created and manipulated with
the CDO utility and the CDD /Plus call interface.

In addition to providing support for DMU dictionaries, CDD/Plus provides the
following major features for CDO dictionaries:

An Easy-to-Use Interface

CDD/Plus provides a single user interface, known as CDO, where you can accomplish
all data definition, administration, and management functions for CDO dictionar­
ies. A flexible, menu-driven editor allows you to enter common field and record
definitions easily. You can also read your D MU dictionary from CDO.

Distributed Dictionary Implementation

CDO dictionaries can be located on different devices on a single node, on different
nodes on a VAXcluster, and on local or wide area networks. The CDO utility allows
you to access all of these dictionaries, as well as your system D MU dictionary and
subdictionaries, as one logical dictionary.

xix

Field-Level Data Descriptions

You can create and access field definitions as the smallest fundamental data defini­
tions in CDO dictionaries. Field definitions can be shared by many other dictionary
definitions, thereby reducing redundancy of data.

Relationships

CDD/Plus allows you to connect CDO dictionary definitions in various ways. You do
not need to define the relationships; CDD/Plus implicitly creates these relationships
for you when you create CDO dictionary definitions. You can form relationships
between definitions that are stored in different dictionaries across a network.
CDD/Plus allows you to obtain information about the relationships between CDO
dictionary definitions. You cannot create relationships between definitions in D MU
dictionaries or between CDO dictionary definitions and DMU dictionary definitions.

Pieces Tracking

CDD/Plus keeps track of all dictionary usage in CDO dictionaries. With CDO
commands, you can locate the definitions that would be affected if a particular
definition were to be changed.

With CDO definitions you can make changes that take effect immediately, or changes
that can be incorporated into related definitions over time. When an immediate
change is made to a field definition, the appropriate changes are automatically made
to record definitions that include the field definition. Alternatively, creating new
versions provides you with a means of integrating changes over time. CDD/Plus
attaches an informational message about the change to CDO definitions that do not
automatically include the change.

Data Security and Integrity

CDO dictionaries implement protection provisions that are consistent with VMS and
Rdb/VMS.

Integrity is a critical factor in the success of any dictionary operation. For this
reason, CDD/Plus provides automatic journaling capabilities and commands you can
use to verify the dictionary condition.

Call Interface

You can make direct calls from user programs to CDD/Plus routines that manipulate
dictionaries with CDO format. This manual does not document how to make these
calls; the call interface is documented in the VAX CDD/Plus Call Interface Manual.

xx

Compatibility with DMU Dictionaries

CDD/Plus provides an automatic translation utility that allows you to read defini­
tions in DMU dictionaries from the CDO interface.

The DMU, CDDL, and CDDV utilities are provided in addition to the CDO utility.
You can continue to use these utilities to manipulate definitions in DMU dictionaries

• If you use VAX layered products that do not yet support CDO dictionary features

• If you need to perform write operations to DMU dictionaries

CDD /Plus is a member of the VAX Information Architecture, a group of products
that work with each other and with VAX languages conforming to the VAX calling
standard. The VAX Information Architecture products provide flexible solutions for
information management problems.

The VAX Information Architecture documentation explaining how these prod­
ucts interrelate is included with the CDD /Plus documentation. VAX Information
Architecture documentation is also available separately. To order documentation,
contact your DIGITAL representative.

The VAX CDD/Plus documentation to which this document belongs often refers to
other DIGITAL products by their abbreviated names.

• VAX ACMS software is referred to as ACMS.

• VAX CDD software-released prior to VAX CDD/Plus-is referred to as CDD.

• VAX CDD/Plus software is referred to as CDD/Plus.

• VAX DEC/CMS Code Management System is referred to as CMS.

• VAX DATATRIEVE software is referred to as DATATRIEVE.

• VAX Rdb/VMS software is referred to as Rdb/VMS.

• VAX DBMS software is referred to as VAX DBMS.

• VAX TDMS software is referred to as TDMS.

xxi

The COD/Plus Dictionary System 1

CDD/Plus is a data dictionary system that provides the ability to create, analyze,
and administer metadata. Metadata describes data and describes how that data is
used. Metadata includes the location, type, format, size, change history, and usage of
the actual data.

CDD/Plus supports metadata stored in two formats: metadata that you manipulate
with the Common Dictionary Operator (CDO dictionaries) and metadata that you
manipulate with the Dictionary Management Utility (DMU dictionaries).

• CDO Dictionaries

CDD/Plus dictionaries created in CDO can store not only definitions, but also
information about how the definitions are related. When you install CDD/Plus,
it creates a CDO compatibility dictionary on your system. The compatibility
dictionary is a special overlapping CDO dictionary that coordinates DMU
format definitions and CDO format definitions.

After installation, you can create additional CDO dictionaries, and relate them
to one another. When it is necessary to distinguish them from the compatibility
dictionary, these are called user-created dictionaries.

You can create and manipulate definitions in CDO dictionaries and read defini­
tions in DMU dictionaries through the CDO utility. The body of this manual
describes CDO dictionary features.

The COD /Plus Dictionary System 1-1

• DMU Dictionaries

CDD/Plus continues to support DMU dictionaries. CDD/Plus installation
installs the utilities that manipulate DMU dictionary definitions-DMD, CDDL,
and CDDV. You can create and delete DMU dictionary definitions through the
DMU utility; however, you can read DMU definitions through either DMU or
CDO. Tutorial material for creating DMU dictionary definitions is provided in
Appendix A.

You can access all of your physical dictionaries as one logical dictionary. (For more
information about the logical dictionary, see Section 3.2.)

1 .1 How COD/Plus Affects Current DMU Users

For the most part, the features of CDO dictionaries do not affect established DMU
dictionaries. This means that you can continue to access established DMU dictio­
naries with products such as DATATRIEVE and ACMS.

Since CDD/Plus provides the DMU, CDDL, and CDDV utilities, in addition to the
CDO utility, you can perform all your dictionary work as with previous releases of
CDD.

The special features of CDO dictionaries require definitions to be stored in a format
completely different from that of DMU record definitions. CDD/Plus automatically
translates definitions in DMU dictionaries so that you can read them from the CDO
interface.

Chapter 2 explains how to continue using DMU with CDD/Plus. You should con­
tinue using DMU if:

• You have a large existing application that you do not want to convert to CDO
format immediately

• You use only products that write definitions in DMU format

Most VAX languages and VAX Information Architecture products can read record
definitions from the compatibility dictionary. Products that can also read to and
write from user-created CDO dictionaries can take advantage of pieces tracking and
other CDO features described in Section 1.2.

Depending on the product that you are using, you can do one or several of the
following:

• Read record definitions from CDO dictionaries.

• Read and write record definitions in CDO dictionaries.

1-2 The CDD /Plus Dictionary System

• Read data definitions other than records from CDO dictionaries. (For example,
RALLY can read an RMS file, CDD$DATABASE.)

• Write data definitions other than records into CDO dictionaries. (For example,
Rdb/VMS can write a CDD$DATA_AGGREGATE_CONTAINS relationship
when defining a view in the dictionary.)

To determine the CDO support currently provided by a VAX product, consult the
documentation for that product.

1 .2 Overview

The CDD/Plus data dictionary:

• Ensures the integrity of shared metadata and the procedures used to analyze,
maintain, manage, and design business metadata

• Provides a centralized repository for information management shops

• Offers a dynamic aid to software application development

CDD/Plus enables the dictionary administrator to manage information and appli­
cation .resources by allowing shared and controlled access to all metadata and by
auditing the dictionary usage. Since the dictionary controls all changes to the meta­
data, the more the data administrator enforces dictionary usage, the more consistent
and accurate data will be.

The dictionary contains metadata in the form of dictionary definitions. ·A CDD/Plus
dictionary definition can contain various attributes and can be related to other
CDD/Plus dictionary definitions. The most commonly used dictionary definitions
are fields, records, and databases. Many products can share the metadata and data at
one time.

You can store and maintain the actual data values outside the data dictionary in
several ways; for example, with a database management system like Rdb/VMS, in
RMS files, in CMS libraries, or even off line.

Figure 1-1 illustrates how different products currently access dictionary definitions
through CDD/Plus.

CDD /Plus provides the following features:

• A single user interface

• Distributed dictionary access

The COD /Plus Dictionary System 1-3

• Field-level data descriptions

• Relationships between dictionary definitions

• Pieces tracking

• Data security and integrity

• Call interface

Figure 1-1: Accessing COD/Plus Dictionary Definitions with DIGITAL
Products

Other VAX Layered Products
including languages, tools,

BASIC
RALLY

Rdb/VMS
SOL

VIDA with
IDMS/R

and Information Architecture Products

I f
COO Interface

L
I I

DMU Interface

COD/Plus J
ZK-7575-HC

The following sections describe these features in detail. Section 1.4 discusses the
emerging support and anticipated uses of these features.

1 .2.1 The COO Interface

The CDO utility provides a single user interface to CDD/Plus capabilities where
you can accomplish all of the data description, administration, and dictionary
management functions. The CDO utility provides a flexible, menu-driven editor that
allows you to easily create common field and record definitions. CDO also supports
the VMS style of command entry. Chapter 3 discusses how to create definitions with
the CDO editor and summarizes CDO commands.

1-4 The COD /Plus Dictionary System

1.2.2 Distributed Dictionary Access

Through the CDO interface, you can access metadata in CDO dictionaries and
directories

• On different devices on a single node

• On different nodes in a V AXcluster

• On nodes connected by a local or wide area network

You can access metadata in all these places as a single logical dictionary, provided
that you have the appropriate access rights. You can also access your DMU dictio­
naries from CDO. This versatility affords you greater security for sensitive parts of a
dictionary and greater flexibility for storing large dictionary files.

1 .2.3 Field-Level Data Descriptions

A field definition is the smallest unit of metadata that can be created and accessed
in the dictionary. Because each piece of metadata is a separately addressable entity,
CDD/Plus is known as a field-level dictionary. Field definitions typically include
information about the data type and size, and other optional attributes.

Field definitions can be simple data structures or complex subscripted structures.
They can be combined to form various record definitions and can be accessed
individually from several of the VAX layered products. You only need to store one
copy of a particular definition that is used by various sources.

CDD/Plus keeps track of dictionary definition usage at the field level. Therefore, you
can easily show which dictionary entities make use of a particular field definition.
When you or someone else changes a field definition, you can identify which entities
the change may affect and which entities need to be redefined in order to access the
changed field. This ability to track entities is known as pieces tracking.

A record definition is a dictionary entity that typically consists of a grouping of
field definitions. You can combine field and record definitions into complex record
structures.

You organize your dictionary definitions by creating a dictionary directory structure.
Directories map each definition name to a certain location. A directory is not a
dictionary definition, but contains dictionary definitions and other directories. Field,
record, and other data definitions are grouped in directories. Dictionary directories
are similar in concept to VMS directories; they allow you to group definitions in your
dictionary and enable you to organize the definitions hierarchically. You can use
search lists and wildcards to specify definitions in directories.

The COD/Plus Dictionary System 1-5

1.2.4 Relationships

CDD/Plus creates relationships when you connect two CDO data definitions in
some way.

For example, you can base the definition of a new field on a field definition that
already exists in a CDO dictionary. You can also relate a group of field definitions to
a record definition by including the field names in the record definition.

You do not need to define these relationships; CDO automatically creates them for
you when you create your field and record definitions in CDO.

You can establish a relationship between two CDO definitions in different CDO
dictionaries that are distributed on different devices on a single node, on different
nodes in a V AXcluster environment, or on nodes connected by a local or wide area
network. For example, you can create a record definition in one CDO dictionary that
includes field definitions contained in another CDO dictionary. Chapter 4 discusses
the most common relationships between CDO definitions.

1.2.5 Pieces Tracking

Because CDD/Plus keeps track of all CDO dictionary usage, you can find out which
other dictionary entities make use of a particular field definition. Before you change
a field definition, you can confirm which definitions the change may affect and which
entities you must redefine to access the changed field definition.

For example, if you use a particular field definition in several different record def­
initions, and the record definitions are accessed in turn by other records and by
an Rdb/VMS database, CDD/Plus can locate all the uses of the single CDO field
definition. You find out about these relationships with the SHOW commands. The
SHOW USES, SHOW USED_BY, and SHOW WHAT_IF commands help you to
keep track of dependent and related definitions and to assess the impact of changes.

You can control changes to your definitions in two ways: you can change the original
definition to take effect immediately or you can create a new version and allow users
to incorporate the change over time. When you change or make a new version of a
definition, dependent definitions that do not automatically include the change (such
as Rdb/VMS databases) are flagged with an informational message about the change.
Messages allow you to warn users when a new version of a dictionary definition
exists or when inconsistencies may exist between the dictionary and external copies.
Chapter 6 discusses how to keep track of dictionary usage and changes.

1-6 The COD /Plus Dictionary System

1.2.6 Data Security and Integrity

To protect dictionary files from unauthorized users, CDD/Plus provides the database
administrator with the tools to grant or deny dictionary definition access rights. The
CDD /Plus protection provisions for CDO definitions are consistent with Rdb/VMS
and VMS protection schemes. Chapter 5 discusses how to protect the definitions in
your dictionary.

Integrity, the completeness, accuracy, and consistency of definitions, is a critical
factor in the success of any dictionary operation. For this reason, CDD/Plus provides
journaling capabilities that automatically protect your dictionary sessions from
system failures. Dictionary management features are discussed in Chapter 6.

1.2.7 COD/Plus Call Interface

You can make direct calls to the CDD/Plus entry points from user programs. Using
the call interface allows you to directly access CDO dictionaries without using the
CDO utility. The call interface is documented in the VAX CDD/Plus Call Interface
Manual.

1 .3 COD/Plus Dictionary Naming Conventions

In CDD /Plus, every dictionary definition has a full name that uniquely identifies it.
The naming conventions for CDO definitions and D MU definitions differ only in
their specification of the dictionary origin.

1 .3.1 Parts of the Dictionary Definition Name

Definition names consist of three parts: the dictionary origin, the path, and the
version number.

• The dictionary origin is the root of the dictionary. The CDO utility recognizes
two representations of a dictionary origin: the anchor and CDD$TOP.

To refer to CDO definitions, you specify the dictionary origin as a dictionary
anchor. A dictionary anchor specifies the VMS directory where the CDO
dictionary hierarchy is stored. It can optionally consist of node, device, and
directory components; a fully translated anchor includes all three components.
CENTRL::SYS$COMMON:[CDDPLUS] is an example of a fully translated
anchor.

To refer to DMU dictionary definitions, you specify the dictionary origin as
CDD$TOP.

The CDD /Plus Dictionary System 1-7

• A path consists of a list of dictionary directory names separated by periods and
ending with an entity name. The path name specifies the path, or route, to the
desired dictionary definition. EMPLOYEES.SALARIED.EMPLOYEE_REC,
for example, represents the path that leads to the record definition
EMPLOYEE_REC. Every name in the path except the last name is a
dictionary directory. Path names reflect the hierarchy in your dictionary. A
CDD /Plus path is similar to a VMS file specification.

• A version is similar to a VMS file version. The version number is always
preceded by a semicolon (;). CDD/Plus allows you to create multiple versions of
a dictionary definition. The maximum number of versions is 32, 767.

Information about the maximum number of characters for a path and anchor can be
found in VAX CDD /Plus Common Dictionary Operator Reference Manual.

1 .3.2 Accessing Dictionary Definitions

A fully qualified name specifies the complete dictionary location of a particular
data definition. While fully qualified names are unique, the individual names of
definitions in a dictionary need not be unique, provided that the path names are
different. Although it is not recommended, you can create field and record definitions
with the same names in different directories. When you create a field or record
definition with the same name as an existing definition in the same directory,
CDD/Plus creates a new version of the existing definition. Figure 1-2 shows two
fully qualified CDD /Plus definition names.

Figure 1-2: Valid COD/Plus Definition Names

COO NAMING CONVENTION:

DISK$1:[CORPORATE.MIS]PERSONNEL.SALARIED.EMPLOYEE_REC;1

I I l I AyJ
anchor path version

DMU NAMING CONVENTION:

CDD$TOP.PERSONNEL.SALARIED.EMPLOYEE_REC; 1

I I l I 4
dictionary path version

origin

ZK-7577-HC

1-8 The COD/Plus Dictionary System

You can use either the CDO or the DMU naming convention to access dictionary
definitions from the CDO utility: Section 2.1 details the CDD/Plus compatibility
provisions that enable you to do this.

Legal characters in a name include multinational alphanumeric characters such as
the underscore character (_) and the dollar sign ($). You can use diacritical marks
in the names of dictionary definitions such as fields and records, but not in the name
of a dictionary directory.

1 .4 Emerging Support for COO Dictionary Features

Managing data requires a significant amount of time and effort in application
development, especially when two or more applications need to share common data
in development. CDD /Plus enables data administrators to provide accurate and
complete definitions for application developers. For information about application
development using a dictionary as a common definition repository, see the VAX
Information Architecture manual, Introduction to Application Development. Many
products currently support the features of CDO definitions. These products include
VIDA, a product that allows you to access data on IBM mainframes, and Rdb/VMS,
a relational database system.

The VAX languages can include definitions stored in both the DMU and the CDO
dictionaries.

For details on how to include dictionary definitions from a particular VAX language,
see the documentation for that language.

As support for CDO dictionaries emerges, the CDO dictionary will play a more active
role both in information management systems and in the development of software
applications. CDO dictionary definitions are expected to be integrated with software
tools, application development environments, database management systems, and
information processing environments. Figure 1-3 shows the projected role of
CDD/Plus in the life cycle of a product.

The COD /Plus Dictionary System 1-9

Figure 1-3: Using COO Metadata for Project Control

Project
Management

Design

~ ~
Languages

Tools

COD/Plus

Maintenance ~ ~ Database

Application

ZK-7576-HC

CDD/Plus can be seen as the hub of the planning, design, and management cycle.
While support for CDO dictionary features will emerge in stages, you should keep the
support for the features you are using in mind when planning your own dictionary
use. Section 2.1 describes the support that individual DIGITAL products currently
provide for CDD/Plus.

Chapter 2 explains how CDD/Plus operates when you use DIGITAL products
that currently access D MU dictionaries. It explains how to maintain dictionary
definitions that can be accessed both from products that support user-created CDO
dictionaries and those that still rely on D MU dictionaries.

1-10 The COD /Plus Dictionary System

Using DMU with COD/Plus 2

If you do not currently maintain an established DMU dictionary, and if you intend
to use CDD/Plus for only CDO dictionary definitions that are accessed by supporting
products, you can skip this chapter and proceed to Chapter 3.

This chapter:

• Provides information about using the translation utility and compatibility
dictionary to compensate for format differences between DMU definitions and
CDO dictionary definitions

• Explains the different types of dictionary support provided by various VAX
products

• Describes how to convert DMU definitions into CDO format and recommends
when to convert

2.1 The COD/Plus Compatibility Scheme

The CDD/Plus translation utility and compatibility dictionary make it possible
for you to access your definitions without being concerned about which dictionary
format the definitions are stored in. The compatibility dictionary is a special
overlapping CDO dictionary that coordinates DMU format definitions and CDO
format definitions.

The system logical name for the compatibility dictionary's file specification is
CDD$COMPATIBILITY. The translation of CDD$COMP ATIBILITY must include
both a device and a directory.

Using DMU with COD/Plus 2-1

The CDD /Plus compatibility dictionary provides you with the capability to:

• Continue to use your DMU dictionary definitions

• Create new definitions through CDO that can be read from products that support
D MU dictionaries

• Create new definitions that can be accessed products beginning to support CDO
dictionaries

You can access your DMU dictionary and all CDO dictionaries from the CDO utility,
from RDO, and via the CDD/Plus call interface.

Definitions created in the compatibility dictionary can be interpreted by products
that support DMU dictionaries and by those that support CDO dictionaries.

Your D MU directory structure is mapped to the directory structure in the compat­
ibility dictionary, and vice versa. For example, when you create a new directory
in the compatibility dictionary, the new directory is listed in your D MU directory
hierarchy, just as your DMU directory structure is visible from the CDO utility.

You can refer to definitions in the compatibility dictionary with the naming conven­
tions for either dictionary format. You can specify either an anchor or CDD$TOP as
the dictionary origin for your compatibility dictionary.

Products that support DMU dictionaries and products that support CDO dictionaries
can access definitions created (and stored) in the compatibility dictionary. Section
7 .3.4.6 in Appendix A lists the VAX languages and VIA products that can read and
write D MU dictionary definitions. Some of these products can read CDO definitions
in user-created dictionaries as well as the compatibility dictionary. Other supporting
products can both read definitions in any dictionary and write definitions in any
CDO dictionary.

To determine the CDO support currently provided by a VAX product, consult the
documentation for that product.

2.1 .1 Translating Dictionary Formats

The translation utility translates definitions from CDO format into DMU format,
and vice versa.

You refer to D MU dictionary definitions by a path name beginning with the origin
CDD$TOP; you refer to CDO dictionary definitions by a path name beginning with
an anchor. The translation utility translates CDD$TOP to be equivalent to the
anchor of your compatibility dictionary (CDD$COMPATIBILITY).

2-2 Using DMU with COD /Plus

For example, if your compatibility dictionary is installed in
SYS$COMMON:[CDDPLUS], and you create a directory called PERSONNEL, you
can refer to this directory with either of the following two naming conventions:

• CDD$TOP.PERSONNEL

• SYS$COMMON:[CDDPLUS]PERSONNEL

Since the system logical name CDD$COMP ATIBILITY is equivalent to the anchor
of the compatibility dictionary, you can confirm where your own compatibility
dictionary is located by using the following SHOW LOGICAL command:

$ SHOW LOGICAL CDD$COMPATIBILITY
11 CDD$COMPATIBILITY 11 = "SYS$COMMON: [CDDPLUS]" (LNM$SYSTEM_TABLE)

After installation, you can create other CDO dictionaries from the CDO utility.
When you refer to definitions in such a user-created CDO dictionary, you must
use the anchor for the dictionary origin, since the anchor in a user-created CDO
dictionary is not associated with CDD$TOP.

When an application tries to access dictionary metadata, the translation utility
automatically searches throughout your DMU dictionary as well as your compat­
ibility dictionary. For example, VAX language programs currently support DMU
dictionaries; however, the languages can also read definitions in the compatibility
dictionary.

Specifying a path name beginning with CDD$TOP (either explicitly or by default)
automatically ensures that both the D MU and the compatibility dictionaries are
searched. The search is invisible to the user.

When a program attempts to include a definition, the translation utility searches for
this definition in the DMU dictionary first. If this search fails, CDD/Plus replaces
CDD$TOP with CDD$COMP ATIBILITY and searches for the definition in the
compatibility dictionary.

Caution

Your system manager has the ability to change the definition of the
system logical name CDD$COMPATIBILITY to a different anchor from
the one specified during the installation procedure. DIGITAL strongly
recommends that you do not redefine CDD$COMPATIBILITY once it
contains definitions or directories.

Such a change makes a different CDD/Plus dictionary equivalent to
CDD$COMPATIBILITY. Once CDD$COMPATIBILITY is changed, you
must specify CDD$TOP in your path names (either explicitly or by setting

Using DMU with COD /Plus 2-3

a default), or CDD/Plus searches for only a user-created CDO dictionary
and will not locate definitions in the compatibility dictionary.

Changing CDD$COMP ATIBILITY makes it difficult to maintain consis­
tency of definitions within the DMU and compatibility dictionaries.

2.1 .2 Accessing Definitions in COD/Plus

Figure 2-1 illustrates the CDD/Plus architecture and the two different access routes
into CDD/Plus: the CDO access route and DMU access route. The translation utility
interprets definitions in the CDO format (in the compatibility dictionary) to DMU
format, and vice versa.

Which access route you use depends on the product accessing CDD/Plus. Your
access route controls where definitions are created and stored, as well as your write
and delete access.

You use the CDO access route if you access with:

• CDO commands

• RDO commands (including callable RDO from a user program)

• Direct calls in a user program to the CDD/Plus entry points

You use the DMU access route if you access with:

• Any layered product that supports D MU dictionaries but not CDO dictionaries

• DMU, CDDL, and CDDV utility commands

You cannot access DMU dictionaries with direct calls to the dictionary in a user
program. The call interface to CDO dictionaries is documented in the
VAX CDD/Plus Call Interface Manual. Table 2-1 lists the tasks that you can and
cannot accomplish through the two access routes. These restrictions cannot be
overridden by protection provisions for individual definitions. For more information
about protection provisions, see Chapter 5.

2-4 Using DMU with COD /Plus

Figure 2-1: The COD/Plus Access Routes

VAX DBMS
*VAX languages

DATATRIEVE
DMU
COOL
CDDV

t
DMU Access Points

+
COD

Call Interface

coo
RDO

VIDA with
IDMS/R
**RALLY

SOL
BASIC

t
COO Access Points

J
COD/Plus

Call Interface

TRANSLATION UTILITY

" ~ • /

I
....... / I / .,,,x,
/

/
¥ ':i... t

COO Format Dictionaries

DMU Format Compatibility User-created
Dictionary

Dictionary coo
Dictionaries

Key: Vertical lines indicate read, write, and delete access;
dotted lines indicate read access only.

*Excluding BASIC

I-~

I'"

**You cannot create definitions in COO dictionaries using the
RALLY DAT ATRIEVE interface. For more information, see Table 2-1.

ZK-7578-HC

Using DMU with COD /Plus 2-5

Table 2-1: Accomplishing Tasks Through DMU and COO Access Routes

coo DMU
Access Access

Dictionary Task Route Route

Create definitions in compatibility dictionary YES NO

Write history lists into compatibility dictionary YES YES

Delete definitions in compatibility dictionary YES NO

Read definitions in compatibility dictionary YES YES

Create definitions in a user-created CDO dictionary YES NO

Write history lists into a user-created CDO dictionary YES YES

Delete definitions in a user-created CDO dictionary YES NO

Read definitions in a user-created CDO dictionary YES YES

Create definitions in a DMU dictionary NO YES

Delete definitions in a DMU dictionary NO YES

Read definitions in a D MU dictionary YES YES

Create CDD/Plus messages1 YES NO

Delete CDD/Plus messages YES NO

Read CDD/Plus messages YES NO

1 CDO sends messages when a dictionary definition changes or when a new version of a
definition is created. For more information about messages, see Section 4.4.2.1.

2. 1 .3 Resolving Path Names to Dictionary Definitions

You can create a directory in the DMU dictionary with the same name as a
directory that exists in the compatibility dictionary, but you cannot create
a definition in one dictionary with a pathname that matches that of a def­
inition or directory in another dictionary. For example, a directory named
CDD$TOP.EMPLOYEES.CONTRACT can exist in two dictionaries, but a field
or record named CDD$TOP.EMPLOYEES.CONTRACT.RATE can exist in only
one dictionary.

2-6 Using DMU with COD/Plus

CDD/Plus can locate the definition regardless of which dictionary stores it. When
you try to store new definitions in your compatibility dictionary, the translation
utility searches through your DMU dictionary for an existing occurrence of the
specified name. When a conflict exists, CDD /Plus signals an error and does not
create the new definition.

When you create definitions with DMU, CDDL, DATATRIEVE, or with a VAX
layered product that supports DMU dictionaries, your definitions are placed in a
DMU dictionary, not in a CDO dictionary. The DMU, CDDL, and CDDV utilities
can be invoked in the same manner as with previous versions of CDD/Plus. Although
you cannot create a DMU definition through a CDO access route, such as RDO or
CDO, definitions that you create in your DMU hierarchy can be read through the
mapped hierarchy in your compatibility dictionary.

In summary:

• To create new definitions in CDO format, create your definitions in the CDO en­
vironment or in the RDO utility. Specify a path name beginning with CDD$TOP
or the anchor for a user-created CDO dictionary.

• To create new definitions in DMU format, create your definitions through a
DMU access route, such as CDDL or DATATRIEVE, and specify a path name
beginning with CDD$TOP for the definition.

2.2 Creating, Reading, and Deleting Definitions in
Compatibility Mode

Your access route to CDD/Plus affects whether or not you can create or delete
dictionary definitions.

A useful rule of thumb is that you should delete definitions through the same access
route as you create them: delete where you create. When you request a directory
listing of definitions through a DMU access route, the record definitions in both
DMU and CDO compatibility dictionaries are listed. You can read definitions in
DMU and the compatibility dictionary regardless of your access route into
CDD/Plus; however, you can delete definitions in DMU dictionaries only when you
access the dictionary through a DMU access route. Similarly, you can delete defi­
nitions in compatibility and CDO dictionaries only when you access the dictionary
through a CDO access route. Table 2-1 lists the tasks you can accomplish through
each access route.

Using DMU with COD/Plus 2-7

2.2.1 Interpreting COO Dictionary Features in DMU Format

Because the features of CDO dictionaries extend beyond the features of D MU
dictionaries, DMU access routes cannot accurately translate these extensions into
DMU format. Therefore, when you read CDO definitions through a DMU access
route, some attributes of the definition are altered.

Table 2-2 shows the DMU interpretation of the CDO features that it cannot ac­
curately translate. The table lists alternative features you can use in the CDO
definition that can more readily be translated to DMU format.

Table 2-2: Interpretation of COO Definitions Through a DMU Access
Route

Interpretation
Feature of Definitions Through
Stored in COO Format DMU Access Route Alternative

Column major arrays Displayed as None
row major

Expression in Becomes Use a simple name
OCCURS ... DEPENDING "OCCURS n"

Expression in Ignored Use a simple name
OCCURS .. .INDEX

Expression in Ignored Use a simple value
MISSING_ VALUE

Expression in Ignored Use a simple value
INITIAL_ VALUE

ALPHABETIC Translated as TEXT None
data type

Invalid DTR expression Ignored Use valid DTR
in VALID_IF expression

Invalid DTR expression Ignored Use valid DTR
in COMPUTED_BY expression

2-8 Using DMU with COD /Plus

Table 2-2: Interpretation of COO Definitions Through a DMU Access
Route (Cont.)

Interpretation
Feature of Definitions Through
Stored in COO Format OM U Access Route Alternative

Complex overlay Ignored Use valid DMU
expression in dictionary tag
VARIANTS clause

Access rights Mapped to: See Table 2-4
PASS_THRU
SEE
DTR EXTEND
DTR READ
HISTORY
DTR WRITE
DTR MODIFY

If you are a CDDL user, you should be aware that the CDO attribute BASED ON is
not equivalent to the CDDL COPY clause; there is no CDO equivalent to the CDDL
COPY clause.

In special circumstances, DMU users may receive error messages related to the
presence of CDO format definitions.

If you specify a name referencing multiple subdirectories in your CREATE command,
the error message does not indicate which piece of the path is the name duplicated
by a CDO format definition. You need to use the CDO DIRECTORY command to
locate the CDO dictionary definition with the same name. For example:

DMU> CREATE PERSONNEL.SALES.EMPLOYEES.CONTRACT.SALARY.FY87
%DMU-E-CDDERROR, COD error at "PERSONNEL.SALES.EMPLOYEES.CONTRACT.SALARY.FY87;1"
-CDD-E-RENTOCDO, A CDO dictionary entity already exists with this name
DMU> EXIT
$ coo
CDO> DIRECTORY PERSONNEL.SALES.EMPLOYEES.*

Directory PERSONNEL.SALES.EMPLOYEES

ADDRESS_RECORD;1
CITY; 1
CONTRACT;!
FULL_NAME;1
PERFORMANCE_REVIEW
STATE;1
STREET;!
ZIP_CODE;1

RECORD
FIELD
RECORD
RECORD
FIELD
FIELD
FIELD
FIELD

Using DMU with COD /Plus 2-9

Since CDD/Plus does not let you create any new entity in a DMU directory that has
the same name as an entity already existing in a CDO dictionary, CDD/Plus changes
D MU command output in certain situations:

• A DMU LIST command may find no entities with a certain name, yet when you
try to create a DMU entity with that name, you receive an error message saying
that the operation cannot be performed. If you receive such a message, simply
use CDO to check your CDD/Plus dictionary for the entity in question.

• When you specify a target that is not a DMU format entity in a DMU RENAME
command, you may see certain error messages, shown in Table 2-3. If you
receive a message that a CDO entity already exists for a certain target name,
make certain that the existing entity is not what you want to create, then choose
a different name.

Such error messages are generated because CDO performs checks to maintain
consistency within the DMU dictionary and the CDO compatibility dictionary.

Table 2-3: How COD/Plus Affects DMU RENAME

RENAME input Error Message Explanation

Source is CDDL created No error message Entity is renamed success-
and target name is unused fully

Source is nonexistent -CDD-E-NODNOTFND, Entity is not found
entity directory or object not found

Source is CDDL created -CDD-E-RENTOCDO, A You cannot give the same
and target is D MU known CDO dictionary entity already name to two entities
CDO field exists with this name

Source is CDDL ere- -CDD-E-RENTOCDO, A You cannot give the same
ated and target is DMU CDO dictionary entity already name to two entities
unknown CDO entity exists with this name

Source is CDO created -CDD-E-CDDONLY, you You cannot rename an
cannot perform this call on a existing CDO entity
CDO dictionary node

2.2.2 Interpreting DMU Dictionary Features in COO Format

CDO interprets a DMU record definition that contains only one field as a field
definition. CDO interprets a single DMU field defined within a structure as a field.

Many features of DMU definitions can be displayed accurately in CDO format.

2-10 Using DMU with CDD /Plus

For example, in CDO, you cannot define fields within record definitions. However,
you can use the /FULL qualifier with the CDO SHOW RECORD command to
display the attributes of included field names in a CDO record or a DMU record
displayed in CDO format.

COO> SHOW RECORD /FULL ADDRESS_RECORD
Definition of record ADDRESS_RECORD;1

Contains field STREET
I Datatype text size is 30 characters
Contains field CITY
I Datatype text size is 30 characters
Contains field STATE
I Datatype text size is 2 characters
Contains record ZIP_CODE
I Contains field NEW
I I Datatype unsigned numeric digits 4
I Contains field OLD
I I Datatype unsigned numeric digits 5

Such a display does not indicate that a DMU definition is actually converted to CDO
format; the process of display is read-only. You can include DMU definitions in
programs without converting them.

To convert definitions from DMU to CDO format, you must use the CONVERT
command, as described in Section 2.4.

Note

If you request a CDO directory listing of DMU definitions, the listing
omits definitions that are currently locked. A later directory listing might
differ, because it could include definitions in directories that subsequently
became unlocked. CDO does not have a locking mechanism, and has no
means of reporting why a locked DMU definition is inaccessible.

There is no CDO equivalent for some of the DMU access rights, so CDD/Plus must
interpret some rights in order to display them in CDO format. Table 2-4 shows
how DMU protection provisions are interpreted to be the closest CDO protection
provisions. DMU protection provisions that are not listed in the table are not
translated.

Using DMU with COD/Plus 2-11

Table 2-4: Translation of DMU Dictionary Protection Provisions to COO
Format

DMU Protection Equivalent COO Protection

CONTROL CONTROL

DELETE DELETE
Local or global

MODIFY or DTR MODIFY (confirms that CHANGE access can be granted)
MODIFY

READ or DTR READ READ (confirms that SHOW access can be granted)

WRITE or DTR WRITE WRITE (confirms that DEFINE access can be granted)

SEE SHOW

UPDATE CHANGE+ DEFINE

2.2.3 Translating COBOL Level 88 Conditions into DMU and COO Formats

CDD/Plus translates COBOL level 88 conditions from DMU format to CDO format
and vice versa. The following example shows COBOL syntax for a record containing
level 88 definitions:

01 COB88.
03 c USAGE IS COMP PIC 9(4).
88 C_ONE VALUE 1.
88 C_FIVE_TEN VALUES ARE 5 THRU 10.
88 C_OTHER VALUES ARE 2 THRU 4

11 THRU 20.

The equivalent CDDL syntax for this record definition is:

DEFINE RECORD COB88.
COB88 STRUCTURE.

C DATATYPE SIGNED WORD

END.
END RECORD.

CONDITION FOR COBOL IS C_ONE VALUE IS 1
CONDITION FOR COBOL IS C_FIVE_TEN

COBOL NAME IS 11 C_5_10 11

VALUE IS 5 THRU 10
CONDITION FOR COBOL IS C_OTHER

VALUES ARE 2 THRU 4, 11 THRU 20.

2-12 Using DMU with COD/Plus

You can define the same record in CDO format using the DEFINE FIELD command
and COMPUTED BY clause with a conditional value expression. The following
CDO syntax definition is equivalent to the preceding CDDL definition:

DEFINE FIELD C
DATATYPE SIGNED WORD.

DEFINE FIELD C_ONE
COMPUTED BY IF C EQ 1 THEN 1 ELSE 0.

DEFINE FIELD C_FIVE_TEN
NAME FOR COBOL IS C_5_10
COMPUTED BY IF C GE 5 AND C LE 10 THEN 1 ELSE 0.

DEFINE FIELD C_OTHER
COMPUTED BY

IF (C GE 2 AND C LE 4) OR (C GE 11 AND C LE 20) THEN 1 ELSE 0.

DEFINE RECORD COB88.
c.
C_ONE.
C_FIVE_TEN.
C_OTHER.

END.RECORD.

2.3 Protecting Dictionary Definitions in Compatibility Mode

When you define a directory, subdictionary, or data definition in a DMU dictionary,
it automatically inherits the protection of its parent directory. When entities are
defined in a compatibility dictionary, they acquire the CDO default protection
provisions. It is possible that some protection inconsistencies exist unless you
explicitly specify protection provisions for CDO definitions to be as near as possible
to your DMU protection.

When a directory exists in both the DMU dictionary and the compatibility dictio­
nary, only the DMU definitions in this directory inherit the directory's protection.
When a dictionary item is created in CDO format with the same directory path
as a definition in your DMU dictionary, these items do not necessarily have the
same access control lists attached to them. By default, CDO grants the owner of a
definition all access rights including CONTROL; all other users have only SHOW
access. (For an explanation of the other default access rights listed in the example,
see Chapter 5.)

Although the following record definitions share the same directory path,
CDD$TOP.CORPORATE.PERSONNEL, they do not have the same protection
provisions. The first entity, ADDRESS_REC, a DMU record definition, inher­
ited protection from the parent directory. The second entity, FULL_NAME, a
compatibility definition, is protected by CDO default provisions.

Using DMU with COD/Plus 2-13

CDO> !
CDO> !Record in DMU dictionary with inherited protection
CDO> !

CDO> SHOW PROTECTION FOR RECORD CDD$TOP.CORPORATE.PERSONNEL.ADDRESS_REC

CDD$TOP.CORPORATE.PERSONNEL.ADDRESS_REC
Access control rights:
(IDENTIFIER=DBA,ACCESS=READ+WRITE+MODIFY+ERASE+

CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[12,5] ,ACCESS=READ+SHOW+CREATE+CHANGE)
(IDENTIFIER=[12,9] ,ACCESS=READ+SHOW)
CDO> !
CDO> !Record in compatibility dictionary with default protection
CDO> !
CDO> SHOW PROTECTION FOR RECORD CDD$TOP.CORPORATE.PERSONNEL.FULL_NAME

CDD$TOP.CORPORATE.PERSONNEL.FULL_NAME
Access control rights:
(IDENTIFIER=DBA,ACCESS=READ+WRITE+MODIFY+ERASE+CREATE+CHANGE

+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=WORLD,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW

+OPERATOR+ADMINISTRATOR)
CDO>

To avoid the problem of inconsistent protection schemes, you can explicitly define
the protection scheme for the definition stored in your CDO dictionary to match as
closely as possible the protection scheme for the D MU record definition. You can add
entries and change the access control list for individual definitions in a compatibility
dictionary with the DEFINE PROTECTION command (see Chapter 5).

2.4 Converting Record Definitions from DMU to COO Format

DMU dictionary definitions are not automatically converted to CDO format when
you install CDD/Plus; however, you can convert DMU record definitions to CDO
format with the CONVERT command.

Software products with read-only support for CDO field and record definitions create
definitions in DMU format. See Table 2-1.

Note

DIGITAL does not recommend that you convert your entire DMU dictio­
nary to CDO definitions at one time. It is better to create new applica­
tions using definitions in CDO format and convert definitions in existing
applications to CDO format in cases where a new application uses part of
an existing one.

2-14 Using DMU with COD/Plus

The CONVERT command copies a record definition from a DMU dictionary or from
an Rdb/VMS database into CDO format. (You cannot currently use CONVERT to
copy database definitions.) When the new definition is created in CDO format, the
old one is not deleted from the DMU dictionary. Since definitions with the same
name and the same path name cannot exist in both a DMU and a compatibility
dictionary, you must do one of the following:

• Place the converted definitions into a different directory structure

• Rename the definitions you are converting

To be consistent, you should choose one of these two methods and always use it.

The following command copies the record definition EMP_REC from a DMU
dictionary into a compatibility dictionary and renames it EMPLOYEE_RECORD.
No path names are included; therefore, the default path name is used for both the
DMU and the converted record definitions.

CDO> CONVERT EMP_REC EMPLOYEE_REC

To keep the same record definition name, you must specify a different directory
path. For example, the following command copies a DMU record definition,
ADDRESS_RECORD, in the default directory into a new compatibility direc­
tory, CONVERTED. A wildcard is used so that the definition in the directory
CONVERTED is also named ADDRESS_RECORD.

CDO> CONVERT ADDRESS_RECORD CDD$TOP.CORPORATE.CDNVERTED.*

If, in your destination path, you specify a directory that does not exist in your CDO
dictionary but that does exist in a DMU dictionary, CDD/Plus creates it in the CDO
dictionary for you.

When you do not specify a version number, the highest version of a record definition
is converted. The converted definition is created as version 1 in the new directory.

The following three step process allows you to convert your definitions to CDO
format and continue to use the same path and definition names: •

1. Copy the DMU definition to a new DMU dictionary directory using DMU

2. Delete the original definition using DMU

3. Convert the copied definition to the original path name using CDO

After converting a record definition, you should confirm the new CDO record defini­
tion to ensure that it reflects the layout you intended.

Using DMU with COD/Plus 2-15

The following example:

1. Displays an existing DMU record definition,
CDD$TOP.CORPORATE.ADDRESS_ RECORD, using the DMU LIST/FULL
command.

2. Exits DMU and enters CDO.

3. Converts the DMU ADDRESS_RECORD into a CDO ADDRESS_RECORD in
a new compatibility dictionary, CONVERTED.

CDD$TOP.CORPORATE.CONVERTED.ADDRESS_RECORD, the path name
for the CDO record definition, is different from the path name for the D MU
record definition, so the definition can retain the name ADDRESS_RECORD.

4. Displays the converted record definition in CDO using the /FULL qualifier with
the SHOW RECORD command.

DMU> SET DEFAULT CDD$TOP.CORPORATE
DMU> LIST/FULL ADDRESS_RECORD
CDD$TOP.CORPORATE.ADDRESS_RECORD;1 <CDD$RECORD>

Created by VAX CDD Data Definition Language Version V3.3-1
on 12-MAY-1986 12:00:24.62 using protocol version 4.

Source:
DEFINE RECORD _CDD$TOP.CORPORATE.ADDRESS_RECORD

DESCRIPTION IS
/* This record contains the standard format
for addresses. It provides the source from which all
address fields in other record descriptions are copied. */.

ADDRESS STRUCTURE.
STREET

CITY

STATE

ZIP_CODE STRUCTURE.
NEW

OLD

DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.
DATATYPE IS TEXT
SIZE IS 2 CHARACTERS.

DATATYPE IS UNSIGNED NUMERIC
SIZE IS 4 DIGITS
BLANK WHEN ZERO.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.

END ZIP_CODE STRUCTURE.
END ADDRESS STRUCTURE.

END ADDRESS_RECORD.
Description:

This record contains the standard format

DMU> EXIT

for addresses. It provides the source from which all
address fields in other record descriptions are copied.

2-16 Using DMU with COD/Plus

$ DICTIONARY
COO> SET DEFAULT CDD$TOP.CORPORATE
COO> CONVERT ADDRESS_RECORD CONVERTED.ADDRESS_RECORD
COO> SHOW RECORD CONVERTED.ADDRESS_RECORD
Definition of record ADDRESS_RECORD;1
I Contains field STREET
I Contains field CITY
I Contains field STATE
I Contains field ZIP_CODE
COO> DIRECTORY CONVERTED.*

Directory CDD$TOP.CORPORATE.CONVERTED
!
! Converted fields are not listed in the contents

ADDRESS_RECORD;1 RECORD

COO> SHOW RECORD /FULL CONVERTED.ADDRESS_RECORD
Definition of record SYS$COMMON: [CDDPLUS]CORPORATE.CONVERTED.ADDRESS_RECORD;1
I Contains field STREET
I I Datatype text size is 30 characters
I Contains field CITY
I I Datatype
I Contains field
I I Datatype
I Contains record
I I Contains field
I I I Datatype
I I Contains field
I I I Datatype

text size is 30 characters
STATE

text size is 2 characters
ZIP_CODE

NEW
unsigned numeric digits 4

OLD
unsigned numeric digits 5

After the conversion, notice that the DIRECTORY command does not list the
included field definitions individually. Definitions of fields in DMU dictionaries are
accessible only through their respective record definitions. However, a DMU record
containing only one field is converted to a CDO field.

2.4.1 Sharing Fields After Record Conversion

After being converted, a record definition includes the same fields with their re­
spective attributes as it did before. However, a field definition that was specified
as part of a DMU record cannot be shared by other applications; only the record is
shareable.

When you create a definition in CDO, you specify the exact dictionary directory
and the name for the definition; this is known as the directory name. The direc­
tory name acts as a pointer to the storage location of the actual entity definition.
The name of the entity itself is known as the processing name. For different
applications to share definitions, the definitions must be named and placed in a
CDO dictionary directory. Applications access an entity definition by specifying
the full dictionary path name and the definition's directory name-for example,
CDD$TOP.PERSONNEL.EMPLOYEE_ID.

Using DMU with COD /Plus 2-1 7

Fields internal to converted records cannot be referred to by name and, as a result,
cannot be listed individually by the DIRECTORY command. After conversion, such
an internal field continues to have only a processing name, not a directory name.

If you plan to create definitions through the call interface, you need to be aware of
the differences between the two names.

• The processing name is the name that all layered products use when processing
with the entity. All dictionary entities have a processing name: it is part of the
definition.

• The directory name is the given name that identifies the entity within the
dictionary structure. It enables layered products to find the definition.

If you need to know the processing name of a definition, use the SHOW FIELD or
SHOW RECORD command; all other CDO commands display the directory name, if
one exists.

Not all dictionary entities have a directory name. For example, when you store
fields in the dictionary using RDO (the RdbNMS Relational Database Operator),
the fields do not have directory names. You must locate such fields relative to the
database structure, as in the SHOW FIELD FROM DATABASE command described
in Section 7 .2.2.

A definition without a directory name cannot be directly named and, therefore, is
difficult to share among several applications. If a definition will be shared among
applications, use one of the methods described in Section 2.4.2 to give the definition
a directory name.

2;4.2 Creating Directory Names for Definitions

If you want the internal field definitions from a converted record to be shareable, you
must

• Create a directory name for each existing field with the ENTER ... FROM
RECORD command

• Create a new dictionary definition for each field with the DEFINE command

For example, you can explicitly define the field STREET after converting
ADDRESS_RECORD:

COO> DEFINE FIELD STREET
cont> DATATYPE IS TEXT
cont> SIZE IS 30

2-18 Using DMU with COD /Plus

A STREET field created with the DEFINE command is a different data definition
from the STREET field that previously existed in ADDRESS_RECORD.

Alternatively, you can create a directory name for existing definitions with the
ENTER command:

CDO> ENTER FIELD STREET FROM RECORD ADDRESS_RECORD

After you create a directory name for each converted field definition with the
ENTER command, you can list the individual field definitions with the other
contents of a dictionary directory:

CDO> SET DEFAULT CDD$TOP.CORPORATE.CONVERTED
CDO> CONVERT CDD$TOP.CORPORATE.ADDRESS_RECORD ADDRESS_RECORD
CDO> ENTER FIELD STREET FROM RECORD ADDRESS_RECORD
CDO> ENTER FIELD STATE FROM RECORD ADDRESS_RECORD
CDO> ENTER FIELD CITY FROM RECORD ADDRESS_RECORD
CDO> DIRECTORY CONVERTED.*

Directory CDD$TOP.CORPORATE.CONVERTED
!

! Fields are now listed in the directory
!
ADDRESS_RECORD;1
CITY;1
STATE;!
STREET;!

RECORD
FIELD
FIELD
FIELD

You cannot use wildcard characters with the ENTER command, so you must supply
the entity's processing name in the command line.

If you use a logical name that is defined for your system or your process as
the directory name for an entity, the name will be translated before use.

You can use the ENTER command to create directory names for entities that are
directly related to the named record. Consider a record-OUTSIDE-that includes
another record-INSIDE, which includes fields A, B, and C. Fields A, B, and C can
be accessed only after you have created a directory name for the record definition
INSIDE.

First, create a directory name for INSIDE with the statement ENTER RECORD
INSIDE FROM RECORD OUTSIDE. Once the record INSIDE has a directory
name, you can enter the command ENTER FIELD A FROM RECORD INSIDE.

Using DMU with CDD /Plus 2-19

To create a directory name for a field within a STRUCTURE clause of a record, you
must first create a directory name for the structure, then you can address the fields
within the structure. The ENTER command cannot create directory names for fields
in a VARIANTS clause. For more information about the ENTER command, see
Chapter 7.

The DMU history list is converted to a CDO definition and can be viewed with the
I AUDIT qualifier to the SHOW RECORD command.

An unstructured D MU record that contains a single field is converted to a CDO field.
The following DMU definition of the record SINGLE contains only one field. The
DIRECTORY command lists SINGLE as a field before conversion. After conversion,
SINGLE is a field definition.

CDO> CONVERT SINGLE CONVERTED.SINGLE
CDO> SHOW FIELD CONVERTED.SINGLE
Definition of field SYS$COMMON: [CDDPLUS]CORPORATE.CONVERTED.SINGLE;1
I Datatype text size is 12 characters
CDO>

In CDO definition format, DESCRIPTION attributes are attached to definitions, not
directory list entries. Therefore, when a DMU definition is converted to CDO format,
any descriptions attached to the directory access are not converted. Descriptions that
are attached to named definitions are included in the DESCRIPTION attribute for
the converted definition.

When a DMU record definition is converted to CDO format, CDD/Plus matches
the protection provisions according to the scheme shown in Table 2-4. To fine tune
the protection provisions for converted DMU record definitions, use the CHANGE
PROTECTION and DEFINE PROTECTION commands as described in Chapter 5.

The VAX CDD/Plus Common Dictionary Operator Reference Manual provides the
syntax diagram and rules for the CONVERT command.

Chapter 3 describes how to use logical names and search lists, and how to set your
default directory. These actions allow you to use abbreviated path names and to
easily search through your dictionaries from the CDO utility.

2-20 Using DMU with COD /Plus

Using the COO Utility 3

The Common Dictionary Operator (CDO) utility is the user interface to CDD/Plus.
This chapter helps you to get started using CDO and shows you how to create
common dictionary definitions with the CDO editor.

3. 1 COO Utility Features

The CDO utility supports many familiar VMS features. In CDO you can:

• Access any CDO or DMU dictionary that you have privileges to

• Create field and record definitions easily with the CDO editor

• Execute all CDO commands

• Learn CDO commands using the online help system

• Execute frequently used series of commands in CDO command procedures

• Manipulate several definitions by using wildcard characters (*, %, and ...) in
command lines

• Search through any number of physical dictionaries with search lists

• Enter frequently used commands quickly by defining key sequences

• Work in a subprocess without disturbing your dictionary session by using the
CDO commands SPAWN and ATTACH

• Recall and alter commands with VMS line editing features:

Erase the current command with I CTRL/U I

Using the COO Utility 3-1

Cancel the current command with I CTRL/C I

Edit lines with the DELETE key and the terminal left (f-) and right (~)
arrow keys

Recall previous commands with lcTRL/BI and the terminal up (j) and down
(!) arrow keys

3.2 Logical Dictionary Structure

The physical location of definitions in CDO dictionaries can be distributed on
different devices on a single node, on different nodes in a VAXcluster, and on local
or wide area networks. The CDO utility allows you to access all of these dictionaries,
as well as your system D MU dictionary, as one logical dictionary.

Your logical dictionary can include the physical dictionaries created during installa­
tion plus those created by users.

A logical dictionary has no implicit structure: it is a set of disjoint hierarchies, like
the logical structure of files and directories on a disk. You impose your own hierar­
chical structure when you create dictionary directories and group entity definitions
within these directories. You can use both explicit naming and search lists, which
are described in Section 3.6.3 to create the logical dictionary structure.

You can create a logical dictionary that consists of:

• One physical dictionary

• More than one physical dictionary

• One or more subsets of one physical dictionary

To define a physical dictionary, use the DEFINE DICTIONARY command, de­
scribed in Section 3.3.3. When you define a physical dictionary, you specify an
anchor that describes that dictionary's origin. (For details about naming conven­
tions, see Section 1.3.) You can define CDO dictionary directories and subdirectories
by using the DEFINE DIRECTORY command, described in Section 3.3.4.

Before creating your dictionary directory structure, consider what type of structure
might lend itself to the anticipated dictionary usage.

There are a number of ways to organize your dictionary:

• By application

3-2 Using the CDO Utility

In an organization where the departments must share most of the data, you can
structure your dictionary according to application areas. You can set aside one
dictionary directory for storing those definitions that are shared throughout the
organization. You can then create application-specific directories for definitions
that are less widely shared.

• By organizational entity

Organizing your dictionary by organizational entity is most useful in situations
where differences in data and security needs are sharply defined between differ­
ent divisions of the organization. For example, a company with two separate
departments might choose to create two separate physical dictionaries. Selected
employees might have access to the definitions in both dictionaries. A similar ef­
fect can be achieved by setting up two dictionary subdirectories in the dictionary
hierarchy and protecting the definitions in each subdirectory from unqualified
users.

• By individual user

When individuals work separately on independent projects, they may need a
personal dictionary, or a personal directory structure within a large dictionary.
You can reflect this structure in the dictionary hierarchy by assigning directories
to individuals for their own use, or allowing individuals to create their own
dictionaries on the system.

In many cases, the needs of an organization are served best by a combination of these
criteria. If your logical dictionary includes personal, department, and system-wide
dictionaries, you can store definitions that change frequently in a personal directory
and definitions that are permanent in a widely-used system location. You may have
special needs in your organization, such as security or maintenance requirements,
that indicate a need for multiple dictionaries. Good planning prior to setting up your
dictionary can result in a more secure and consistent dictionary.

Within the CDO interface, you can switch from one physical dictionary to another
and gain access to definitions in any of the dictionaries to which you have access.
Figure 3-1 shows the structure of one logical dictionary consisting of four physical
dictionaries. Information about each dictionary is provided following the figure.

CDD/Plus naming conventions are explained in Chapter 1. To recap, an anchor
is a VMS directory specification where a CDO dictionary is located. CDO allows
you to use CDD$TOP as the dictionary origin of your DMU dictionary and as an
alternative to specifying the anchor for definitions in the compatibility dictionary.
You must specify only the dictionary anchor to refer to definitions in a user-created
CDO dictionary.

Using the CDO Utility 3-3

Figure 3-1 : Sample Logical Dictionary Structure

[11
URNODE: :SYS$DISK:[COMPA T _DICT]

[3]
URNODE: :DISK$01 :[CORPORA TE.MIS]

[4]
FARWAY::DISK$1:

[MCKAY. DICTIONARY]

[2]
CDD$TOP

ZK-7579-HC

1. The compatibility dictionary-created in the installation procedure. (See Section
2.1). The anchor for this special CDO dictionary is the VMS directory selected
during the installation period-URNODE::SYS$DISK:[COMPAT_DICT], in
this case. This anchor can be interchanged with CDD$TOP.

2. The DMU dictionary-created when CDD/Plus is installed, unless one already
exists on the system. This dictionary directory structure is mapped to the
directory structure in the compatibility dictionary. The origin for the DMU
dictionary is CDD$TOP. CDD$TOP can be interchanged with the anchor for the
compatibility dictionary, URNODE::SYS$DISK:[COMPAT_DICT], in this case.

3. A new CDO dictionary-created by a user in the CDO environment.
This dictionary is the example dictionary that is created in this chapter.
URNODE::DISK$01:[CORPORATE.MIS] is the anchor for this dictionary.

4. A CDO dictionary created on a remote node. The anchor for this dictionary is
FARWA Y::DISK$1:[MCKAY.DICTIONARY].

3-4 Using the COO Utility

3.3 Getting Started with COO

On installation of CDD/Plus, two physical dictionaries are created that you can
access as one logical dictionary from CDO: the compatibility dictionary (a CDO
dictionary) and a DMU dictionary. You can also create and access other CDO
dictionaries through the CDO interface, all as members of one logical dictionary.

This section shows you how to:

1. Invoke CDO.

2. Create a new dictionary in a dedicated VMS directory. (You can eliminate this
step if you plan to work only in the compatibility dictionary.)

3. Create dictionary directories-either in the compatibility dictionary or another
CDO dictionary-where your definitions can reside.

3.3.1 Invoking COO

To enter the CDO environment, type the DICTIONARY OPERATOR command at
the DCL prompt. The system responds with a brief introductory message and the
CDO > prompt as shown:

$ DICTIONARY OPERATOR
Welcome to CDO V1.0
The COD/Plus V4.0 User Interface
Type HELP for help
CDO>

You can abbreviate the DICTIONARY command to its first four characters, like
other DCL commands. You can optionally omit the OPERATOR parameter because
the current default invokes CDO.

The DICTIONARY command accepts foreign command lines, so after you enter
the DICTIONARY command, you can specify any CDO command. After the CDO
command executes, you are returned to the DCL prompt.

To connect a CDO command that continues on more than one line, you can use the
hyphen (-) . The DCL prompt for a continued line is preceded by an underscore.

In the following example, a user defines the field CITY using DICTIONARY
OPERATOR and a foreign command.

$ DICTIONARY OPERATOR DEFINE FIELD CITY -
_$ DATATYPE IS TEXT SIZE IS 20.
$

Using the CDO Utility 3-5

To end your dictionary session, type EXIT or I CTRL/Z I at the CDO > prompt:

CDO> EXIT
$

3.3.2 Running DCL Subprocesses

You may wish to issue DCL commands without exiting from CDO. If you are in the
CDO environment, you can use the SP AWN command to create a DCL subprocess.
You can use a subprocess to work at DCL level without interrupting your dictionary
session. Section 3.3.3 shows how you might use a subprocess when creating a new
dictionary.

When you finish working in your subprocess, you can enter the DCL command
ATTACH, specify the name of your original process, and return to your dictionary
session. Unless you have specifically renamed the process. that is running CDO, the
process name is your system user name, as in the following example:

CDO> SPAWN
$
$ SHOW DEFAULT
DISK$01 : [SMITH]

$ ATTACH SMITH
CDO>

If you spawn more than two subprocesses from one process, you may exceed your
default quotas for certain process resources, generating an error message. If you
do not have system privileges, ask your system manager to increase your process
resource limits. Suggested values for the limits affected appear in Table 3-1. If you
use remote access to the dictionary, the DECnet account or the proxy account on
your remote node should also have these quotas. (The default DECnet account has a
default FILLM quota of less than 50.)

3-6 Using the COO Utility

Table 3-1: Suggested Process Resource Limits

Limit Description Value

BYTLM Buffered 1/0 count quota 20000

ENQLM Enqueue quota 600

FILLM Open file quota 60

PRCLM Subprocess quota 5

3.3.3 Creating a New Dictionary

If you use only DMU or products that have read-only access to CDO format field and
record definitions, you will only need to use the compatibility dictionary, created for
you during the installation of CDD /Plus. (To determine the CDO support currently
provided by a VAX product, consult the documentation for that product.) If you plan
to work only in the compatibility dictionary, skip this section and go to Section 3.3.4.

Before creating a CDO dictionary, you must create a VMS directory where the.
dictionary can reside. You should create only one dictionary for each VMS directory.
This VMS directory should remain dedicated to your CDO dictionary; do not store
other VMS files in this directory. If you delete the dictionary later, all files stored
in this directory will be deleted. You can set your process default to any other VMS
directory, invoking CDO and referring to your new dictionary from there.

Caution --------------

Do not store any other files in a dictionary anchor directory. If your
dictionary is to be used by the public, be sure to set the VMS protection
on your CDD/Plus anchor directory so that all users of the system have
read, write, and execute privileges (W:RWE). (Processes that write to
DMU-based dictionaries must also be able to write to a run-unit journal
file created in the anchor directory.) For details about setting VMS
directory protection, see Chapter 5.

To create a new VMS directory, you can spawn to a subprocess and use the DCL
command CREATE. After creating the directory, you can use the DCL command
ATTACH to return to your CDO session.

Using the COO Utility 3-7

The following example starts a subprocess to work at the DCL level, then creates a
new VMS directory, MIS, under the main account CORPORATE, then resumes the
CDO session:

CDO> SPAWN
$ SHOW DEFAULT
DISK$01:[CQRPORATE]
$CREATE/DIRECTORY [.MIS]
$ ATTACH CORPORATE
CDO>

Use the DEFINE DICTIONARY command to create a new dictionary in the
VMS directory. The following example creates a dictionary in the VMS direc-
tory [CORPORATE.MIS]. Before you begin, confirm that you have enough free disk
space to create a new dictionary (the amount required is listed in the
VAX CDD/Plus Installation Guide). This operation may take a few minutes depend­
ing on your system resources. The operation returns the CDO prompt when it has
completed successfully. To see proof that your dictionary was created, you can use
the CDO DIRECTORY command, as shown below.

CDO> DEFINE DICTIONARY [CORPORATE.MIS].
COO> DIRECTORY [CORPORATE.MIS]*

Directory DISK$01: [CORPORATE.MIS]

CDD$PROTDCOLS
CDO>

DIRECTORY

The directory CDD$PROTOCOLS appears in any directory where you create a
dictionary.

3.3.4 Creating Dictionary Directories

Dictionary directories are named sections of a dictionary that you use to organize
field and record definitions, and other directories. Before defining your dictionary
entities, you should create dictionary directories to group related definitions, keeping
your planned structure in mind.

After you invoke CDO, you should set a default dictionary directory. The def a ult
dictionary directory (CDD$DEFAULT) is the one in which you plan to work
during the current _session. All the definitions that you create will be stored in the
default directory that you specify, until you specify a different default directory.
You can designate a default directory with the SET DEFAULT command, as in the
following example:

3-8 Using the COO Utility

CDO> SET DEFAULT [CORPORATE.MIS]PERSONNEL
CDO>

For more information about setting default dictionary directories, see Section 3.6.2.

A dictionary directory is similar to a VMS directory in terms of hierarchical purpose.
Although a CDO dictionary itself has no implicit hierarchical structure, dictionary
directories allow you to group related entity definitions and to use the resulting
hierarchy in definition names. They act as markers or pointers to the definitions you
store in them; they are not dictionary definitions themselves.

From the CDO environment, you can create dictionary directories in the compatibil­
ity dictionary or in a user-created CDO dictionary. You create dictionary directories
with the DEFINE DIRECTORY command. In the following example, two dictio­
nary directories are created: BUDGET and PERSONNEL. Note that the names of
these dictionary directories are appended to the dictionary anchor, which appears in
square brackets. You can supply an asterisk (*) with the DIRECTORY command to
display a list of the contents of the dictionary so far:

CDO> DEFINE DIRECTORY [CORPORATE.MIS]BUDGET.
CDO> DEFINE DIRECTORY [CORPORATE.MIS]PERSONNEL.
COO> DIRECTORY [CORPORATE.MIS]*

Directory DISK$01: [CORPORATE.MIS]

CDD$PROTOCOLS
PERSONNEL
BUDGET
COO>

DIRECTORY
DIRECTORY
DIRECTORY

In the previous example, the dictionary contains only directories. If your dictionary
contains other data elements, such as fields, records, or databases, the DIRECTORY
command will display these also.

CDD/Plus creates the directory CDD$PROTOCOLS automatically when you create
a new CDO dictionary. It contains definitions that describe the types of entities and
attributes that you use in your data descriptions. These definitions are essential to
the functioning of your dictionary and should not be changed or deleted.

The following example sets the default directory to be the PERSONNEL directory
in the compatibility dictionary and creates two subdirectories. The subsequent
DIRECTORY command confirms that the subdirectories were created.

COO> SET DEFAULT CDD$TOP.PERSONNEL
COO> DEFINE DIRECTORY SALARIED.
COO> DEFINE DIRECTORY CONTRACT.
COO> DIRECTORY *

Directory DISK$01: [CORPORATE.MIS]PERSONNEL

CONTRACT
SALARIED
COO>

DIRECTORY
DIRECTORY

Using the COO Utility 3-9

Within these dictionary directories, you create the field and record definitions you
need.

Note

Before creating field and record definitions, you must make sure that you
have set the default dictionary directory to the location where you want
them created, or you must specify the full path. For more information
about setting the default dictionary directory, see Section 3.6.2.

3.3.5 Accessing Help in the COO Environment

To access online help for CDO commands, type HELP at the CDO > prompt, as
shown in the following example. The HELP utility displays a list of the available
help topics.

CDO> HELP
HELP
Provides help on COO commands and COD/Plus concepts.

liU.f --------->--------->
L> topic----->-----

~> subt~~
Additional information available:

©(At_Sign) ATTACH CHANGE
DELETE DIRECTORY EDIT
Expressions EXTRACT
PURGE Record_attr

Topic?

CLEAR CONVERT
Edit_str ENTER
Field_attr HELP
SET SHOW

COPY
EXIT
MOVE
SPAWN

DEFINE

ON
VERIFY

To save keystrokes, you can type the exact topic you want help on at the CDO >
prompt. For example, the following command displays help text on the /AUD IT
qualifier to the SHOW FIELD command:

CDO> HELP SHOW FIELD/AUDIT

3-10 Using the CDO Utility

3.4 Editing Definitions in the COO Environment

The CDO editor is a flexible, menu-driven tool that is available on DIGITAL video
terminals. The editor is useful for entering common field and record definitions.
(Chapter 4 describes how to use the DEFINE command to create field and record
definitions.) In the CDO editor you can:

• Create new field and record definitions

• Create new versions of previous definitions

• Browse through your current definitions

You can manipulate definitions by selecting items from menus and entering values
from the keyboard. Among the features that make defining fields and records within
the editor easy are:

• Convenient menu displays of possible attributes, relationships, and allowed values

• Useful browsing capability

• Dynamic data type validation

• Easy cursor movement between field attributes

• Online help on keypad keys and field attributes

• Easy keypad access to a text editor when necessary

Section 3.4.3 provides a sample CDO editing session that you can follow step-by-step.

3.4.1 COO Editor Key Definitions

During an editing session, the keypad keys are defined to aid faster editing.
Figure 3-2 illustrates the key functions on all keyboard keypads as well as the
special keypad on an LK201 keyboard. The shaded key functions are available when
you press the shaded key after pressing PFl (the editor's SHIFT key).

When the editor displays a menu, the keypad keys assume slightly different functions
to help you select menu items. Figure 3-3 illustrates the set of key functions available
when an editor menu is in effect.

Using the CDO Utility 3-11

Figure 3-2: COO Editor Keypad Key Definitions

VT200 SERIES KEYPAD KEYS:

Find Insert Re-
Here move

Select
Prev Next
Screen Screen

•
~ • t

ALL TERMINAL KEYPAD KEYS:

Existing Key Names: Editor Key Functions:

PF1 PF2 PF3 PF4 SHIFT
EDIT
HELP
DICT
HELP

7 8 9 - INSERT
REMOVE

HERE

SWITCH

4 5 6 ' SELECT UP

1 2 3 ENTER LEFT DOWN 'RIGHT

DIAG- PROMPT READ
NOSE

0 . NEXT SCREEN PREV
SCREEN

3-12 Using the COO Utility

DO

ZK-7580-HC

Figure 3-3: COO Editor Menu Keypad Key Definitions

Keypad: Editor Menu Key Functions:

PF1 PF2 PF3 PF4 SHIFT
MENU
HELP
DICT
HELP

7 8 9 -

4 5 6 ' UP

1 2 3 ENTER DOWN ENTER

0 . NEXT SCREEN PREV
SCREEN

ZK-7581-HC

In addition to the keypad keys displayed, users with LK201 keyboards can use
the DCL supported line-editing keys, such as the HELP and DO keyboard keys.
The FlO key allows you to exit from the CDO editor. Table 3-2 summarizes the
most frequently used key functions for the CDO editor. For a full list of the DCL
line-editing keys, see the VMS documentation set.

If you make a mistake entering text, you can erase incorrect characters with the
DELETE key. To move the cursor from one attribute to another, use the arrow
keys and enter the values as you choose. Enter I CTRL/Z I to cancel a menu display. To
remove an attribute that you inserted by mistake, press the REMOVE key or KP9.
When you press RETURN, the next appropriate menu is displayed.

If you decide to change from editing a field definition to a record definition, or
vice versa, you can make this switch by pressing the PFl key followed by 8 on the
numeric keypad (the PF1-KP8 combination). The editor responds by making the
appropriate changes in the display and in the menu items.

To access help on the editor key functions, press the PF2 key. If you want help on
a particular attribute or menu item, press PF1-PF2 while the cursor is positioned on
the item that you need help on. Section 3.4.3 provides a sample CDO editing session
that can help you become familiar with the key functions.

Using the CDO Utility 3-13

Table 3-2: Frequently Used COO Editor Key Functions

LK201 Keyboard Any DIGITAL Keyboard
Keypad Key Keypad Key Function

INSERT KP81 Displays menu of
attributes

SELECT KP41 Displays menu of current
definitions

REMOVE KP91 Deletes a selected menu
item

DO PF4 Enters a definition in
the dictionary

HELP PF2 Displays the keypad
diagram

PF1-PF2 PF1-PF2 Displays help for menu
items while the cursor is
positioned on the item

PF1-KP81 PF1-KP81 Switches from a record
definition to a field
definition, or vice versa

Left arrow Moves the cursor to the
or KP1 1 left

Right arrow Moves the cursor to the
or KP3 1 right

Up arrow Moves the cursor up
or KP51

Down arrow Moves the cursor down
or KP2 1

ICTRL/ZI ICTRL/ZI Exit from an editor
menu

FlO ICTRL/ZI Exit from the editor

1 Keys that begin with KP indicate keys on the numeric keypad on the right side of the
terminal keyboard.

3-14 Using the COO Utility

3.4.2 Accessing Help in the COO Editor

Two kinds of help are available during an editing session:

• Help on the editing key functions

• Help on the attributes and menu items displayed

To access online help on any of the key functions from within the editor, press the
PF2 or HELP key. This displays a diagram of the keypad keys that are available at
the time you request help. You can then request help on a particular key function by
pressing that key. Figure 3-2 and Figure 3-3 provide diagrams of the two sets of key
functions available.

You can access help on attributes and items in a menu by pressing PF1-PF2 while
the editor cursor is positioned on the item you want help on.

3.4.3 A Sample COO Editing Session

This section provides a sample CDO editing session on a VT200-series terminal with
an LK201 keyboard. You may want to refer to Figure 3-2 and Figure 3-3 while
following the steps outlined. (If you have a VTlOO-series terminal, use Table 3-2 to
locate the equivalent keys on your keyboard.) The purpose of this exercise is to help
you become familiar with the CDO editor. If you follow the steps outlined here, you
will create three new field definitions and one record definition that uses the fields.
The editor screen is updated with each step in the procedure. If you already feel
comfortable with the editor, you can skip this section.

1. Create a dictionary directory to group the example definitions together and set
your default work area to the new directory. Enter the following commands at
the CDO > prompt:

CDO> DEFINE DIRECTORY EDITOR_EXAMPLES.
CDO> SET DEFAULT YOUR$DISK: [YOUR_DICTIONARY]EDITOR_EXAMPLES

2. You can invoke the editor at the CDO> prompt with the EDIT FIELD or
EDIT RECORD command. If you do not include the definition name on the
command line, you can enter the name once you are within the editor. Be aware
that you cannot name a definition with a logical name that is defined for your
process or your system. Invoke the editor to begin creating a new field definition
FIRST_NAME. Enter the following command at the CDO> prompt:

CDO> EDIT FIELD FIRST_NAME

Using the CDO Utility 3-15

The editor responds with the following display:

Press SELECT to choose a reviousl defined element, or continue
------t~pe DO to finish a definition - t~pe CTRL/Z to exit-----­

PROCESSING NAME FIRST _NAME

-Gihf i,jMllll1p.ii@el.Liltg;Ai!~MUiilllJ4ftMll~M·IAilu1@i!l4fhuMml­
ent it~ FIRST_NAME not found in dictionar~

ZK-7466-HC

The processing name of the definition you are creating is displayed and the
cursor is positioned after the name. (For information about processing names,
see Chapter 1.) The message at the bottom of the screen indicates that th€
editor cannot find FIRST_NAME in the dictionary; you are creating a new
field definition. If another user on your system has already created this field
definition, you will see a different message.

3-1 6 Using the COO Utility

1
I

3. Press the INSERT key to view possible field attributes. The editor responds
with the following display:

Use the UP and DOWN ke~s to h1ghl1ght ~our selection
Press RET to confirm. CTRL-Z to cancel

t~pe DO to finish a definition - tMpe CTRL/Z to exit
PROCESSING NAME liltJW1!~Mjl 11 .------------.

optional attributes
and relationshi s

PROCESS NAME COB
PROCESS NAME RPG
PROCESS NAME PU
PROCESS NAME PAS
PROCESS NAME EBCDIC
DATATYPE
BASED ON
EDIT STRING
INITIAL VALUE
~ore below I

-nn11e1w•••••M·•t:M•M\.iil¢Au~uauuw11~u.m11.1,€1il!•a¥1·•·1~1-
entit~ FIRST_NAME not found in dictionar~

ZK-7467-HC

You must select at least one attribute. Press the down arrow key (!) until the
DAT A TYPE attribute is highlighted.

Using the COO Utility 3-1 7

4. Press RETURN to select DATATYPE. DATATYPE is added to the screen
display, as shown:

Press SELECT to choose from the list of allowed values
t~pe DO to finish a definition - t~pe CTRL/Z to exit.-----­

PROCESSING NAHE FIRST _NAME

DATATYPE I

-GDllUMillltM••t:MdMi•&•n~--agw11~u.m11el.ffii!li¥!.Mml­
entit~ FIRST_NAHE not found in dictionar~

I

ZK-7468-HC (,

3-18 Using the COO Utility

5. Press the SELECT key to view a menu of possible data types. Press the down
arrow key until the data type text is highlighted, as shown:

Use the UP and DOWN keHs to highlight Hour selection ,
Press RET to confirm, CTRL-Z to cancel

t~pe DO to finish a definition - type CTRL/Z to exit
PROCESSING NAME ~1101~;~~q~lll:mfi~1j~lilllllllllllllllllllll1

DATA TYPE
allowed datat es

more above
unsigned word
unsigned longword
unsigned ~uadword
signed b~te
signed word
signed longword
signed c1uadword
Lf loating
d_f loating
f_f loating complex
d_f loating co~plex
text
more below

-nn11e1w11111p.11:me1.Li*1¢•mMU4AMmM.Dlic.Jefilil!•4£U•m1-
ent it~ FIRST_NAME not found in dictionar~

ZK-7469-HC

Using the CDO Utility 3-19

6. Press RETURN to select text; text is inserted as the data type in the screen
display. You are required to enter the length of the text for the field; therefore,
the editor displays LENGTH on your screen. Use the down arrow key to move
the cursor to the length clause. Type a value, such as 12. Your screen should
look like this:

------t~pe DO to finish a def ini ti on - t~pe CTRL/Z to exit-----­

PROCESSING NAME

DATATYPE

LENGTH

FIRSLNAHE

--Gin11e1~•••••M·•t:i4e1.LH•&•mumupwmp.n;1111.&1;p11¥U•m1-
ent 1 t~ f IRS _NAME not found in dictionar~

ZK-7470-HC

If you press RETURN, the menu of possible attributes and relationships is
displayed again. At this point, you can select and enter more attributes. For
this exercise, erase the menu by entering I CTRL/Z I. If you select an attribute by
mistake, you can remove it from the display by pressing the REMOVE key.

3-20 Using the COO Utility

7. Press the DO key to enter the definition of the field FIRST_NAME. If you press
the DO key before you select at least one attribute, the editor issues an error
message. A success message is displayed at the bottom of your screen when CDO
has completed the definition. The definition of the field FIRST_NAME is still
displayed.

Press SELECT to choose a reviousl defined ele~ent, or continue
------t!:fpe DO to finish a definition - t!:fpe CTRL/Z to exit------

PROCESSING NAHE

DATATYPE

LENGTH

FIRST _NAME

--Gdl"'M'''''M·••@·i.i.nc;w11~uaugw;me.mHU1•e1411u¥t.•11~1-
starting definition of FIRST_NAHE
FIRST_NAHE Nas successfull!:f defined

ZK-7472-HC

Using the COO Utility 3-21

8. Begin a new definition by changing the processing name for the field definition.
Delete FIRST_NAME with the DELETE key (the backspace key) and enter
MIDDLE_INIT. Position the cursor on the 12 (using the arrow key) and change
the text length to 1. The editor checks if MIDDLE_INIT is already defined.
Press the DO key to enter the definition for the new field MIDDLE_INIT.

Press SELECT to choose a reviousl defined element, or continue
------t~pe DO to finish a definition - t~pe CTRL/Z to exit-----­

PROCESSING NAHE

DATATYPE

LENGTH

MIDDLE_ I NIT

--GbiieiMilll1@1lt:J4e!.IOiilifMm@&4QMmM11AiC.le€14!1i¥i1Mml­
starting definition of HIDDLE_INIT
HIDDLE_INIT was successfull~ defined

ZK-7471-HC

3-22 Using the COO Utility

9. Begin a third field definition by changing the processing name to LAST_NAME.
Change the text length to 15. You can change the data type and select other
attributes at this point. Press the DO key to enter the definition of the field
LAST_NAME.

Press SELECT to choose a reviousl defined ele~ent, or continue
------t~pe DO to finish a definition - t~pe CTRL/Z to exit------

PROCESSING NAME

DATATYPE

LENGTH

LAST_NAHE

--Gbli,fMilll1M1IFl4eM•iil4•mM4illlif4'1Mm@11Gil.!1€lil!IA¥t.Mml­
starting definition of LAST_NAME
LAST_NAME was successfull~ defined

ZK-7473-HC

Using the COO Utility 3-23

10. You are now going to create a record definition. Press PFI-KP8 to switch from
defining a field to defining a record. Type FULL_NAME as the processing name
for the record definition and press RETURN. CDO searches for a current record
definition of that name. If CDO finds a record definition with that name, the
definition is displayed on your screen; if the record does not already exist, you
can begin to enter the new definition. A menu of possible record attributes is
displayed on your screen. Move the cursor down to the CONTAINS attribute, as
shown:

Use the UP and DOWN ke~s to highlight ~our selection
Press RET to confirm, CTRL-Z to cancel

t~pe DO to finish a definition - twee CTRL/Z to exit
PROCESSING NAME 111111~@1 11 ------------.

optional attributes
and relationships

DESCRIPTION
PROCESS NAME BAS
PROCESS NAME COB
PROCESS NAME RPG
PROCESS NAME PLI
PROCESS NAME PAS
PROCESS NAME EBCDIC

'l~!Vb''A~
IDB$0WNER
IDB$MODIFIED DATE

I
--GihiidMWlllmftM,ff@,j.J.if'ILAmMWillilJ4&Wm@·naUleMi!iiF1jhMml­
reading FULL_NAME from the dictionar~
entit~ FULL_NAME not found in dictionar~

ZK-7474-HC

3-24 Using the CDO Utility

11. Select the CONTAINS attribute by pressing RETURN. You can now include
fields and records that already exist in the new record definition. Press the
SELECT key for a list of the current definitions in your dictionary directory.
Use the arrow keys to highlight the field FIRST_NAME.

Use the UP and DOWN ke~s to highlight ~our selection
Press RET to confirm, CTRL-Z to cancel

t~pe DO to finish a definition - twee CTRL/Z to exit
PROCESSING NAME 11111wm1;1 II ~----------.

CONTAINS
dictionar~ elements
found in director

FIRSLNAHE
LAST_NAHE
MIDDLLINIT

I

--Ghiiei@tJIHi!mp.1t@eMM•44AmM&4QMmM•IAiiilefilil!li¥UAll~l-­
r@ading FULL_NAHE fro~ the dictionar~
entit~ FULL_NAHE not found in dictionar~

ZK-7475-HC

Using the CDO Utility 3-25

12. Press RETURN to include the field FIRST_NAME. After adding
FIRST_NAME, press RETURN again to display the menu of record attributes.
Repeat Steps 11and12 to select and include the fields MIDDLE_INIT and
LAST_NAME.

Enter a name, or ress SELECT to choose a rev1ousl defined element
------type DO to finish a definition - type CTRL/Z to exit

PROCESSING NAHE

CONTAINS

CONTAINS

CONTAINS

FULL_NAME

FIRST_NAME

HIDDLLINIT

LAST_NAHE

--nn11e1a:111111:1•+·•t:M·'•Lii•&••1:uaamaa•n:u.n111.1.@u1ag;uwu:1-
reading FULL-NAME fro~ the dictionary
entity FULL_NAME not found in dictionar~

ZK-7476-HC

3-26 Using the COO Utility

13. Press the INSERT key to view the menu of possible attributes again. Choose
the DESCRIPTION attribute and press RETURN. Press the SELECT key to
access the text editor. Enter some comments about the record definition, then
press I CTRL/Z I and type EXIT to exit from the text editor. The record definition
FULL _NAME is displayed on your screen again. The text you entered for the
DESCRIPTION attribute is not displayed.

Press SELECT to modif
------t~pe DO to finish a definition - t~pe CTRL/Z to exit------

PROCESSING NAME

CONTAINS

CONTAINS

CONTAINS

DESCRIPTION

FULL_NAME

FIRST _NAME

MIDDLLINIT

LAST_NAME

press SELECT to modif~ this value

-nn+1e1a:11111:11p.1t:•Y·•·L.ii«tfw11~u&@1M11~g.1111c.1.fi!i!•ag:1.w11~­
read ing FULL_NAME from the dictionar~
entit~ FULL_NAME not found in dictionarH

ZK-7477-HC

14. Press the DO key to enter the record definition for FULL_NAME.

15. Press lcTRL/ZI to exit from the editor.

16. Confirm that your definitions are contained in your examples directory by typing
the following command at the CDO > prompt:

CDO> DIRECTORY *
Directory DISK$01: [DICTIONARY_NAME]EDITOR_EXAMPLES

FIRST_NAME;1 FIELD
FULL_NAME;1 RECORD
LAST_NAME;1 FIELD
MIDDLE_INIT;1 FIELD

Using the COO Utility 3-27

You can find more information about your definitions with the SHOW command,
as described in Section 3.7.2.

3.4.4 COO Editor Prompts

As you become more familiar with the CDO editor, you may no longer want the
prompts displayed. Some of these prompts appear at the bottom of the sample
screens in Section 3.4.3. To disable these prompts, press PF1-KP2.

The diagnostics prompt indicates whether or not the editor checks the validity of
your entries. For example, the editor warns you if you try to enter a processing
name of more than 31 characters. Similarly, when you specify a data type, you
must specify a valid type from the supplied list. If, for example, you specify a
data type that requires a signed word value for the scale, the editor issues an error
message if you then supply a value that cannot be a signed word. You cannot enter
hexadecimal or octal values within the editor. Diagnostics are ON by default. To
disable diagnostics, press PFl-KPl.

The reading from the dictionary prompt indicates whether or not CDO searches
through the dictionary for a definition with the specified processing name. For
example, after entering the definition of a field, you can begin another definition by
changing the processing name in the current editor display.

When reading from the dictionary is 0 N, CDO checks to see if a definition with this
new processing name already exists; if it does, CDO places the definition in the editor
display.

When reading from the dictionary is OFF, CDO does not search the dictionary for
a definition with the same processing name and the screen display is not changed.
Reading from the dictionary is ON by default.

To disable reading from _the dictionary, press PF1-KP3. To resume reading from the
dictionary after disabling, press PF1-KP3 again.

3.4.5 Editing Text Within the COO Editor

Within the CDO editor, you can access V AXTPU to edit text in a definition. For
example, to access the text editor to enter comments for a DESCRIPTION attribute,
press the SELECT key while the cursor is placed on the DESCRIPTION attribute.

The CDO editor supplies the EVE interface for V AXTPU by default. You can choose
another editing interface by defining an alternative section file for TPUSECINI in
your login procedure. For example, after the following command is executed, the
EDT interface is presented whenever V AXTPU is invoked:

$ DEFINE TPUSECINI SYS$LIBRARY:EDTSECINI

3-28 Using the COO Utility

3.4.6 Editing New Versions of Existing Definitions

When you enter a processing name for the editor, the editor searches through your
dictionary for the named definition. If such a definition already exists, the editor
displays the attributes and values associated with the previous definition. You can
proceed to make the changes you require.

When you enter changes to a definition that was previously defined, you create a
new version of the definition. The original version of the definition is not changed.
(Entering definitions in the CDO editor is equivalent to using the DEFINE com­
mand, not the CHANGE command.) For example, if versions 1, 2, 3, and 4 of a field
definition exist and you edit version 2, the new field definition becomes version 5.

CDO stores all versions of a definition unless you purge or delete them. An applica­
tion can access any version of a definition provided that the application specifies the
version number. When no version number is specified, CDO defaults to the highest
version. For more information about changes and new versions, see Chapter 4.

3.4. 7 Browsing Through Current Definitions

You can browse through your current definitions and examine them without leaving
the editor by invoking the editor without specifying a definition name and pressing
SELECT for a list of your current definitions. When you choose an item from this
menu, the editor displays the selected definition on your editing screen. You can
then select other definitions to view or change.

You can access a menu of previously defined definitions while you are editing another
definition. Press the SELECT key while the cursor is positioned on an attribute
that requires a definition name, such as the CONTAINS or BASED ON attributes,
and the PROCESSING NAME. The items displayed in the menu are valid names
of definitions already in your current dictionary directory. When you make your
selection from· the menu, the editor places the name you select in the attribute you
are editing. In Section 3.4.3, Step 11 shows how you might complete a CONTAINS
clause by selecting existing elements from a menu.

3.4.8 Exiting from the COO Editor

To exit from the editor, press lcTRL/ZL If you have not already pressed the DO key,
the CDO editor prompts you to confirm whether or not you want to exit from the
editor without entering your definition. Respond with a Y or N, depending on your
choice. You can choose to quit from your editing session, or stay in the editing
session and press the DO key to enter your definition before exiting.

Using the CDO Utility 3-29

3.5 Summary of COO Environment Commands

There are two types of commands available in the CDO environment:

• Commands that allow you to set the environment characteristics to suit your
needs. For example, you can log the output from your dictionary session in a file
with the SET OUTPUT command. Most of these commands are discussed in
this chapter.

• Commands that allow you to create and manipulate dictionary definitions and
directories. For example, you can clear unused definitions with the PURGE and
DELETE commands. The dictionary commands for creating and manipulating
definitions are described in subsequent chapters of this manual.

For the most part, commands follow simple syntax rules. Note that the DEFINE,
CHANGE, and DELETE commands require a terminating period. Table 3-3 sum­
marizes the commands you can enter at the CDO > prompt.

Table 3-3: Summary of COO Commands

Command Purpose

AT(@ sign) Executes a CDO environment command procedure.

ATTACH Switches control from your current process to another process in your
job.

CHANGE Modifies the protection or definition of a dictionary definition. Requires
a terminating period.

CLEAR Deletes messages that have been sent to a dictionary definition.

CONVERT Copies definitions from a DMU dictionary into CDO format.

COPY Copies a named definition and its relationships.

DEFINE Creates dictionaries, directories, access control lists, or dictionary
definitions. Requires a terminating period.

DELETE Deletes dictionaries, directories, access control lists, or dictionary
definitions. Requires a terminating period.

DIRECTORY Provides a list of definitions in a specified directory.

EDIT Invokes the CDO screen editor and allows you to create field and record
definitions.

3-30 Using the COO Utility

Table 3-3: Summary of COO Commands (Cont.)

Command Purpose

ENTER Creates a directory entry for specified fields within a converted record
definition.

EXIT Exits from the CDO environment and places your process at DCL level.

EXTRACT Displays a specified definition in the format of the DEFINE command.

HELP Invokes the online HELP facility and provides information about CDO
commands.

MOVE Moves a dictionary from one anchor to another, resolving all pointers to
the old location.

PURGE Deletes all but the highest-numbered versions of the specified
definitions.

SET Sets protection for dictionary definitions and allows you to select
environment characteristics for your current session.

SHOW Allows you to browse through your dictionary and display information
about the characteristics of your current session.

SPAWN Creates a subprocess and attaches to it.

VERIFY Confirms the integrity of the dictionary and allows you to recover
definitions after a dictionary session is aborted.

You can abbreviate a CDO command provided that the abbreviation is unique.

You do not need to use continuation marks to continue a command on the next
line. If you press RETURN before your command is complete, CDO prompts you
for the remaining input with a continuation prompt (cont>). The CDO> prompt
is displayed again after the command is executed. CDO dynamically checks the
command syntax as you enter partial command lines.

In the following example, CDO displays the continuation prompt after each line of
command entry until the DEFINE FIELD command is completed:

CDO> DEFINE FIELD ASSET_ID
cont> DESCRIPTION IS
cont> /* Equipment asset number */
cont> DATATYPE rs ZONED NUMERIC
cont> SIZE rs 10.
CDO>

For complete information on the syntax of all CDO commands, see the
VAX CDD/Plus Common Dictionary Operator Reference Manual.

Using the CDO Utility 3-31

3.6 Setting COO Environment Characteristics

This section discusses the SET and DEFINE KEY commands, which allow you to
select the characteristics for your session in the CDO environment. Section 3.6.5
includes a sample command procedure that uses these commands.

3.6.1 Sending Command Output to a File

Whenever you execute CDO commands, you can optionally send the output from
the commands to a file. Command output is sent to the specified file and also
displayed at your terminal unless another device is specified for the logical name
SYS$0UTPUT.

To send output to a specified file, enter the command SET OUTPUT with the file
specification at the CDO > prompt. The SET OUTPUT command remains in effect
for other CDO commands that you execute during the same environment session.
To stop sending command output to the specified file, reenter the command SET
OUTPUT without any file specification, as shown:

CDO> SET OUTPUT DEFINITION.LOG
CDO> SHOW DEFAULT
CDD$DEFAULT = DISK$01: [CORPORATE.MIS]PERSONNEL
COO>

COO> SET OUTPUT
COO> EXIT

3.6.2 Setting the Default Directory

You can abbreviate references to dictionary definitions by setting a default dictionary
directory. If you establish [CORPORATE.MIS]PERSONNEL as your default
directory, for example, you can then omit that part of the name and refer to a
definition in that directory by the definition name alone.

You can establish an initial default directory to take effect whenever you invoke
CDO. Whatever you assign to the logical name CDD$DEFAULT becomes your
initial default dictionary directory every time you invoke CDO. When you invoke
CDO, CDD/Plus searches for a translation for the logical name CDD$DEFAULT.
The directory associated with CDD$DEFAULT establishes your initial dictionary
directory. The following DCL command defines CDD$DEFAULT to be an anchor
(a VMS directory) plus a dictionary directory path. You should define your initial
directory to be the dictionary area where you commonly work.

3-32 Using the COO Utility

$ASSIGN "DISK$01: [CORPORATE.MIS] PERSONNEL" CDD$DEFAULT
$ DICTIONARY OPERATOR
COO> SHOW DEFAULT
DISK$01: [CORPORATE.MIS]PERSONNEL

If you work in the compatibility dictionary, you can use CDD$TOP in the defini­
tion of the logical name CDD$DEFAULT. The following example sets your initial
dictionary area to be the CONTRACT directory in the compatibility dictionary:

$ASSIGN "CDD$TOP.PERSONNEL.CONTRACT" CDD$DEFAULT
$

When no translation for CDD$DEFAULT exists, your initial dictionary directory
is the VMS directory where your compatibility dictionary resides (CDD$TOP). You
can override your initial default with the SET DEFAULT command.

You can change your dictionary directory at any time within the CDO environment
with the SET DEFAULT command. With the SET DEFAULT command, you
supply the full path to the dictionary area you plan to work in. You can specify the
path in the following ways:

• A path originating with CDD$TOP

• A path originating with a VMS directory specification (the dictionary anchor)

• A logical name or search list

For example, after setting the default to DISK$01:[CORPORATE.MIS]PERSONNEL
as shown below, you can create a field definition named JOB_TITLE to be contained
in this directory without specifying the full path name for JOB_ TITLE.

COO> SET DEFAULT DISK$01: [CORPORATE.MIS]PERSONNEL
COO> SHOW DEFAULT
DISK$01:[CORPORATE.MIS]PERSONNEL
COO> DEFINE FIELD JOB_TITLE
cont> DATATYPE IS TEXT
cont> SIZE IS 15.
COO> D !RECTORY
Directory DISK$01: [CORPORATE.MIS]PERSONNEL
JOB_TITLE;l FIELD
COO>

After a default directory has been established, it remains in effect un­
til another default is established with a subsequent SET DEFAULT
command.

Using the COO Utility 3-33

You can change the default directory as often as you need to during a dictionary ses­
sion. To change the default directory to DISK$01:[CORPORATE.MIS]SUPPORT,
for example, simply specify this directory with the SET DEFAULT command. You
can include the SET DEFAULT command in a CDO command procedure. For
details on command procedures, see Section 3.8.

When you access CDO at the DCL prompt, you cannot override your default dic­
tionary directory. Therefore, before you use a CDO foreign command with the
DICTIONARY command, make sure that you have set your CDD$DEFAULT to
the dictionary that you want to work in. You can use the ASSIGN command at the
DCL prompt to set your default dictionary directory without entering CDO.

You can set up a logical name to be equivalent to one or more dictionary areas,
then use the logical name in the SET DEFAULT command. In the follow­
ing example, MY_DICT is defined as the logical name for the dictionary area
DISK$01:[MCKAY.TESTS], then specified in the SET DEFAULT command.

$DEFINE MY_DICT DISK$01: [MCKAY.TESTS]
$ DICTIONARY OPERATOR
COO> SET DEFAULT MY_DICT
COO> DIRECTORY ADDRESS_RECORD

Directory DISK$01: [MCKAY.TESTS]

ADDRESS_RECORD;2
ADDRESS_RECORD;l
COO>

RECORD
RECORD

To override a default directory, you must specify fully qualified names. (For more
information on fully qualified names, see Section 1.3.2.) You can specify another
path explicitly, or use another logical name.

3.6.3 Using Search Lists

You can use access more than one physical dictionary by using search list logical
names to identify physical dictionary areas that you want to treat as a single dic­
tionary. You create a search list when you assign one or more dictionary areas to
a logical name, using the DCL command ASSIGN or DEFINE. In the following
example, a search list is established by defining the logical name MY_DICT as the
four physical dictionaries illustrated in Figure 3-1.

$DEFINE MY_DICT CDD$TOP.PERSONNEL,DISK$01: [CORPORATE.MIS] PERSONNEL,­
_$ CDD$TOP.CORPORATE,FARWAY::SYS$DISK: [MCKAY.DICTIONARY]

3-34 Using the COO Utility

If you specify the logical name for your search list in the SET DEFAULT command,
the first area specified in the search list becomes your default dictionary area.
Commands that directly affect definitions, such as DEFINE and CHANGE, affect
definitions in only the first dictionary area in a search list. Searching commands,
such as DIRECTORY and SHOW, search through all areas in the search list, as
shown in the following example:

$!
$!Define a logical name equivalent to several dictionary areas
$!
$DEFINE MY_DICT CDD$TOP.PERSONNEL,DISK$01: [CORPORATE.MIS]PERSONNEL,­
_$ CDD$TOP.CORPDRATE,FARWAY: :SYS$DISK: [MCKAY.DICTIONARY]
$!
$!Invoke CDO
$!
$ DICTIONARY OPERATOR
CDO> !
CDO> !Set the default to your search list areas
CDO> !
CDO> SET DEFAULT MY_DICT
CDO> !
CDO> SHOW DEFAULT
MY_DICT

= SYS$COMMON: [CDDPLUS]PERSONNEL
= DISK$01:[CORPORATE.MIS]PERSONNEL
= SYS$COMMON: [CDDPLUS]CORPORATE
= FARWAY::SYS$DISK: [MCKAY.DICTIONARY]

CDO> DIRECTORY FIELD_TESTING

Directory SYS$COMMON: [CDDPLUS]PERSONNEL
FIELD_TESTING;1 FIELD

Directory FARWAY: :SYS$DISK: [MCKAY.DICTIONARY]
FIELD_TESTING;2 FIELD
FIELD_TESTING;1 FIELD
CDO>

You can associate a search list with the logical name CDD$DEFAULT. First assign a
search list to a logical name, then assign the logical name to CDD$DEFAULT. Your
initial default is the first dictionary area specified in the search list.

If you frequently access large portions of several different dictionaries, you can bene­
fit from building a more complex group of logical names for dictionary areas. You can
define a logical name to be equivalent to previously defined logical names, as shown
in the following example. The subsequent DIRECTORY command searches through
all the specified dictionary areas equivalent to the logical name CORPORATE.

Using the COO Utility 3-35

$ DEFINE PERSONNEL RETIRED,CURRENT,INTRANSIT
$ DEFINE COMPANY PERSONNEL,FINANCE,PAYROLL
$ DEFINE CORPORATE COMPANY,REGION,MINE
$ DICTIONARY OPERATOR

COD> !
COO> !List all fields in your widest search list area
COO>
COO> DIRECTORY/TYPE=FIELD CORPDRATE.BADGE_NO

CDO searches through the dictionary areas for field definitions with the name
BADGE_NO in the following order: RETIRED, CURRENT, INTRANSIT,
FINANCE, PAYROLL, REGION, MINE. See Section 3.7.1 for more information on
the DIRECTORY command.

You can use logical names as path names within VAX language statements that
include definitions from the dictionary.

3.6.4 Defining Terminal Keys

You can save time entering frequently used commands by binding commands to
terminal keys. To do this, use the DEFINE KEY command. You must supply the
name of the key that you are defining, and the string that you want to be associated
with the key. The definitions are valid until you exit CDO. (See the VAX CDD/Plus
Common Dictionary Operator Reference Manual for valid key names.)

The following example uses the DEFINE KEY command to associate the key PF4
with the string SET DEFAULT [HEINES.CDDPLUS]. After the DEFINE KEY
command is executed, you can enter SET DEFAULT [HEINES.CDDPLUS] at the
CDO> prompt by simply pressing the PF4 key. The cursor remains at the end of
the command line, allowing you to add directory names to your usual default, or to
press RETURN to execute the command as it is.

COO> DEFINE KEY PF4 "SET DEFAULT [HEINES.CDDPLUS]"
COO> ~
COD> SET DEFAULT [HEINES.CDDPLUS]

To display the definition of a particular key in the CDO environment, enter the
SHOW KEY command at the CDO> prompt. For example:

3-36 Using the COO Utility

CDO> SHOW KEY PF4
DEFAULT keypad definitions:

SET DEFAULT [HEINES.CDDPLUS]
CDO>

PF4

The SHOW KEY/ ALL command displays all of the key definitions you have set in
the CDO environment.

The DEFINE command has many other uses that are discussed in later chapters
of this manual and in the VAX CDD/Plus Common Dictionary Operator Reference
Manual.

3.6.5 COO Initialization Files

Rather than entering the same set of commands at the start of each CDO session,
you can include the commands in an initialization file. A CDO initialization file
is a command procedure that is executed when you invoke CDO. When you invoke
CDO, it automatically searches your default directory for the file CD0$1NIT.CDO
and executes the file. (You can optionally define CD0$1NIT.CDO to point to a
location other than your default directory.)

You can write your own initialization file, name it CD0$1NIT.CDO, and thereby set
up your own environment characteristics at the start of each dictionary session. You
can define a logical name for your initialization file by placing the following line in
your LOGIN.COM file:

$DEFINE CDO$INIT SYS$LOGIN:CDD$INIT.CDO

In the example above, you can replace SYS$LOGIN with any directory speci­
fication where you want to keep your initialization file. However, if you define
CD0$INIT.CDO in your login file, you can use it no matter what directory you call
CDO from.

The following sample initialization file sets up environment characteristics for a CDO
session:

!CDO$INIT;CDD initialization file

!Subsequent commands executed in this procedure will be echoed at the terminal
!
SET VERIFY

!Define key to get back to top level quickly
!
DEFINE KEY PF4 "SET DEFAULT [CORPORATE.MIS]"

Using the COO Utility 3-37

!Define key to quickly get to work area
!
DEFINE KEY PF3 "SET DEFAULT [CORPORATE.MIS] PERSONNEL"
!
!Select initial default to usual dictionary area
!
SET DEFAULT [CORPORATE.MIS]PERSONNEL.RETIRED

!Send output from subsequent commands to a file
!
SET OUTPUT OUTPUT.LOG

See Section 3.8 for more information about executing command procedures in CDO.

3. 7 Manipulating Dictionary Definitions

Once you have definitions stored in the dictionary, you frequently need to view those
definitions in various ways. The following sections discuss the DIRECTORY, SHOW
FIELD, SHOW RECORD, and EXTRACT commands. These commands allow you
to view the contents of your dictionary.

3. 7 .1 Listing Dictionary Definitions

The CDO command DIRECTORY produces a catalog of the dictionary definitions
contained in the specified directory. You can use this command as an easy way to
check on the contents and structure of a portion of your dictionary. In the following
example, the DIRECTORY command shows a list of definitions contained in the
directory [CORPORATE.MIS]. CDO displays the current directory and lists each
definition, showing the definition name and its type.

CDO> SET DEFAULT DISK$01: [CORPORATE.MIS]
CDO> DIRECTORY
Directory DISK$01: [CORPORATE.MIS]
BENEFITS
CDD$PROTOCOLS
CONTRACT
PERSONNEL
RATE;2
RATE;l
TAXES
CDO>

DIRECTORY
DIRECTORY
DIRECTORY
DIRECTORY
FIELD
FIELD
DIRECTORY

You can also use wildcards to list all definitions in the directory. For example, the
following command produces a list of all the subdirectories and definitions contained
within the CONTRACT and SALARIED subdirectories of the PERSONNEL
directory. Note that all versions of the definitions are displayed.

3-38 Using the CDO Utility

COO> SET DEFAULT [CORPORATE.MIS]PERSONNEL
COO> DIRECTORY *· ..

Directory DISK$01: [CORPORATE.MIS] PERSONNEL.CONTRACT

BADGE_N0;1
EMPLOYEE_REC;1
FIRST_NAME;1
FULL_NAME;1
MIDDLE_INIT; 1
WAGE_CLASS;1
YR_TO_DATE;1

Directory DISK$01: [CORPORATE. MIS] PERSONNEL.SALARIED

BADGE_N0;1
FIRST_NAME;1
FIRST_NAME;2
FULL_NAME;1
MIDDLE_INIT; 1
WAGE_CLASS;1
YR_TO_DATE;1
CDO>

FIELD
RECORD
FIELD
RECORD
FIELD
FIELD
FIELD

FIELD
FIELD
FIELD
RECORD
FIELD
FIELD
FIELD

The optional /TYPE qualifier allows you to limit the type of definitions that the
DIRECTORY command displays. The following command uses the /TYPE qualifier
to display only the record definitions in the directory specified by the logical name
CONTRACT_DIR.

COO> DIRECTORY /TYPE=RECORD CONTRACT_DIR.*

Directory DISK$01: [CORPORATE.MIS]PERSONNEL.CONTRACT
EMPLOYEE_REC;1
FULL_NAME;1
COO>

RECORD
RECORD

You can create CONTRACT_DIR in your initialization file, CDO$INIT.CDO, just
as you would create other VMS system logical names in dedicated initialization files.
For more information on initialization files, see Section 3.6.5.

As the example shows, you can use wildcards in the name of the specified entity. You
cannot, however, use wildcards in the /TYPE=(protocol-name) clause. For example:

COO> SET DEFAULT [PERSONNEL.CONTRACT]
COO> DIR/TYPE=(REC*)
%CDO-E-ERRDIRE, error during directory
-CDO-E-BAD_NAME, The protocol name supplied contains illegal wildcard characters

The form of the preceding commands is DIRECTORY/BRIEF, which is the default.
You can use the /FULL qualifier with the DIRECTORY command to obtain a list
of directory definitions and all the related information that CDO stores for the
definition, such as the creation date, modification date, protection provisions, and

Using the COO Utility 3-39

relative size of the definition. The DIRECTORY /FULL command also displays
whether the specified definition is stored in CDO or DMU format.

CDO> SET DEFAULT [CORPORATE.MIS]PERSONNEL.CONTRACT
CDO> DIRECTORY/FULL

Directory DISK$01: [CORPORATE.MIS] PERSONNEL.CONTRACT

RATE; 1 FIELD
Created: 6-MAR-1987 12:19:29.57
Size: 30 blocks
Owner [13, 10]

Revised: 6-MAR-1987 12:19:29.57
Dictionary storage: CDO format

Access Control List:
(IDENTIFIER=[13,10] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+

DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=PERSONNEL,ACCESS=READ+SHOW+DEFINE)
(IDENTIFIER=SECRETARIES,ACCESS=SHOW)

YR_TO_DATE;l FIELD
Created: 7-JAN-1987 19:10:23.42 Revised: 28-JAN-1987 15:18:20:56
Size: 28 blocks Dictionary storage: CDO format
Owner [13, 62]
Access Control List:
(IDENTIFIER=[13,62] ,ACCESS=ALL)
(IDENTIFIER=PERSONNEL,ACCESS=READ+WRITE+CREATE)
(IDENTIFIER=[20,*] ,ACCESS=READ)
CDO>

Like the DIRECTORY in DCL, the DIRECTORY command in CDO accepts the
/SINCE qualifier with the parameters TODAY, YESTERDAY, and TOMORROW.
For example, the following CDO command includes the qualifier /SINCE=TODA Y
to list only the definitions created since 00:00 o'clock (midnight) on the current day,
month, and year:

CDO> DIRECTORY/SINCE=TODAY *
Directory DISK$01: [CORPORATE.MIS]PERSONNEL.CONTRACT

RATE;2
CDO>

FIELD

Dictionary subdirectories are not subject to the /SINCE parameter, so they will
appear in output regardless of when they were created.

3-40 Using the COO Utility

3. 7 .2 Showing Dictionary Definitions

You can also display dictionary definitions with the SHOW FIELD, SHOW
RECORD, and SHOW DATABASE commands. These commands display the
attributes stored in the dictionary for a specified definition. For example, the follow­
ing SHOW FIELD command displays the information stored in the dictionary for
the field definition SUPERVISOR_NAME.

CDO> SHOW FIELD SUPERVISOR_NAME
Definition of field SUPERVISOR_NAME
I Datatype text size is 20 characters
CDO>

You can optionally use the /BRIEF qualifier to display the output shown above,
which is the default SHOW command output. To display more information about
a definition, you can use other optional qualifiers. The /FULL qualifier is shown in
the following example:

CDO> SHOW FIELD /FULL SUPERVISOR_NAME
Definition of field SUPERVISOR_NAME
I Edit_string X(30)
I Based on LAST_NAME
I I Datatype text size is 20 characters
CDO>

The output from /BRIEF or /FULL shows only the user-specified attributes,
those attributes stored in the directory by the user who created or changed the field.
To display more information about a definition, you can use the I ALL qualifier.
The SHOW/ ALL command displays the definition's system-specified attributes
in addition to its user-specified attributes. System-specified attributes include the
owner, creation date, modification date, protection provisions, history list, and rela­
tive size of the definition. For more information about user-specified attributes, see
Section 4.1.2. You can use the /ALL qualifier with all of the SHOW commands ex­
cept the usage tracking commands listed in Table 6-1. The following SHOW FIELD
/ALL command displays both the user-specified and system-specified attributes of
the field definition ST A TE.

Using the COO Utility 3-41

CDO> SHOW FIELD /ALL STATE
Definition of field STATE
I acl
(IDENTIFIER=[CDD,MCKAY] ,ACCESS=READ+WRITE+MODIFY+ERASE

+SHOW+DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[*.*] ,ACCESS=READ+WRITE+MODIFY+ERASE

+SHOW+OPERATOR+ADMINISTRATOR)
Created time 30-APR-1987 15:48:19.04
Modified time 30-APR-1987 15:48:19.04
Owner MCKAY
Datatype text size is 2 characters
I History entered by MCKAY ([COD.MCKAY])
I using CDO V1.0
I I CREATE definition on 30-APR-1987 15:47:41.24

CDO>

When you display a record definition with the SHOW RECORD command, CDO
displays the included field definitions:

CDO> SHOW RECORD FULL_NAME
Definition of FULL_NAME
I Contains field
I Contains field
I Contains field
CDO>

FIRST_NAME
MIDDLE_ IN IT
LAST_NAME

When you use the /FULL qualifier, as in the following SHOW RECORD command,
CDO displays the included field definitions and attributes:

CDO> SHOW RECORD /FULL FULL_NAME
Definition of FULL_NAME
I Contains field FIRST_NAME
I I Datatype text size is 15 characters
I Contains field MIDDLE_INIT
I I Datatype text size is 1 characters
I Contains field LAST_NAME
I I Datatype text size is 30 characters
CDO>

When you display a database definition with the SHOW DATABASE command,
CDO displays the database name, file name, and fully qualified path name.

CDO> SHOW DATABASE/BRIEF DEPT5
Definition of database DEPT5
I database uses RDB database DEPT5
I database in file DEPT5
I I fully qualified file SYS$COMMON: [MIS.DATABASES]DEPT5.RDB;1

3-42 Using the COO Utility

To view the complete definition of an RdbNMS database, use the
SHOW_USED_BY /FULL command, RDO (Relational Database Operator), or
VAX SQL (Structured Query Language). See VAX Rdb/VMS Reference Manual or
VAX SQL Reference Manual for information about displaying RdbNMS database
definitions.

The SHOW FIELD, SHOW RECORD, and SHOW DIRECTORY com­
mands display processing names, not directory names. (The difference
between the processing name and the directory name is discussed in
Section 2.4.1.) Unless definitions were created using the CDD/Plus call
interface, your field and record definitions have a processing name that
is the same as the directory name that you use to refer to it. Therefore,
in most cases, you need not be concerned with the processing names
displayed by the SHOW FIELD and SHOW RECORD commands.

The processing name may be important to you if you use dictionary
definitions in an Rdb/VMS database. For information about naming
definitions for an RdbNMS database, see Chapter 7.

To see the history list for a definition, use the /AUDIT qualifier with the SHOW
FIELD or SHOW RECORD command. Chapter 4 discusses how to enter descrip­
tions and history lists for your definitions.

You can use the SHOW command for many purposes. Further examples of the
SHOW commands are included throughout this manual; syntax information is
contained in the VAX CDD/Plus Common Dictionary Operator Reference Manual.

3. 7 .3 Examining Current Definitions

It is easier to change or redefine a definition if you can examine the current def­
inition. If you created a definition by selecting attributes in the CDO editor, the
EXTRACT command recalls the full DEFINE command that the editor used to
create the definition. In the following example, EXTRACT shows the DEFINE
command that created the field definition FIRST_NAME.

CDO> EXTRACT FIELD FIRST_NAME
Define field SYS$DISK: [COMPAT_DICT]EDITOR_EXAMPLES.FIRST_NAME

Datatype text size is 12 characters

CDO>

Using the CDO Utility 3-43

You can optionally extract output to a file rather than to your terminal with the
SET OUTPUT command. With the output from the EXTRACT command in a
file, you can use one of the VMS text editors to change the command syntax, add
new attributes, or make whatever changes you wish. You can then execute the new
DEFINE FIELD command later at the CDO> prompt with the AT command(@).
For example:

!Send output to a file
!
CDO> SET OUTPUT [WORKSPACE]FIRST_NAME.CDO
CDO> EXTRACT FIELD FIRST_NAME

!Set output to null to avoid locking file
!
CDO> SET OUTPUT

!Spawn to a subprocess to use a DCL editor
!
CDO> SPAWN

!Make changes to file in a text editor at DCL level
!
$ EDIT/TPU [WORKSPACE]FIRST_NAME.CDO

!Return to your original process
!
$ ATTACH MCKAY

!Execute the modified command file

CDO> ©[WORKSPACE]FIRST_NAME

The following chapter discusses how to create field and record definitions with the
DEFINE command.

3.8 Executing COO Environment Command Procedures

You can include frequently used commands in a file and execute the file at the
CDO > prompt.

Command procedures should contain no prompts; place the CDO commands directly
at the left margin of your file. ,CDO ignores characters after the exclamation point
(!) on a command line; this allows you to include comments in your file.

Execute a command procedure in CDO with the AT sign command(@). During
execution, CDO executes the commands in the procedure in sequential order. When
no file extension is specified, CDO looks for a file with the file extension of .CDO.

3-44 Using the CDO Utility

You can optionally include the SET VERIFY command in a command procedure.
The SET VERIFY command instructs CDO to display subsequent commands on
your screen as they are executed. By default, command lines are not echoed (SET
NOVERIFY). The following lines are contained in PERSONAL.CDO:

SET VERIFY

!Change default dictionary area
!
SET DEFAULT [DICTIONARY]PERSONAL

At the CDO> prompt, the following command executes all the commands in the
procedure PERSONAL.CDO. Each command, except the SET VERIFY command, is
echoed to the terminal. The full VMS file specification is included on the command
line. Remember that the VMS directory where a CDO dictionary resides should
contain no files other than those that CDD/Plus creates. You should not place a
command procedure like PERSONAL.CDO in the VMS directory containing the
CDO dictionary.

CDO> ©SYS$DISK: [MYACCOUNT.COMS]PERSONAL
SET DEFAULT [DICTIONARY]PERSONAL
CDO>

You can define dictionary definitions in a command procedure. Instead of entering
many definitions at the CDO> prompt or in the editor, you can include defining
commands in a file and execute the file at the CDO > prompt. This method is
convenient when you anticipate creating new versions of particular field or record
definitions-for example, for testing purposes. Maintaining long definitions in
command procedures can prevent repetition and syntax errors.

The following command procedure, DEFINE_ADDRESS.CDO, creates a record
definition that includes five fields that are already defined. The record definition is
created by executing DEFINE_ADDRESS.CDO at the CDO > prompt:

CDO> ©SYS$COMMON: [MCKAY.COMFILES]DEFINE_ADDRESS
DEFINE RECORD ADDRESS.

UNIT.
STREET.
HOME_TOWN.
STATE.
ZIP.

END ADDRESS RECORD.

Using the CDO Utility 3-45

The following file, CREATE_ TESTS.CDO, executes several other CDO command
procedures. The commands and output from the commands executed in
CREATE_ TESTS.CDO and any subsequent commands are logged in the file
OUTPUT.LOG.

!Send output of commands in this procedure to OUTPUT.LOG
!
SET OUTPUT OUTPUT.LOG

!Each command will be listed after execution

SET VERIFY

!Set the default directory to be TESTS
!
SET DEFAULT [MAIN.FINANCE]TESTS

!Define the fields for testing
!
@DEFINE_TEST_FIELDS.CDO

!Define the records for testing
!
©DEFINE_TEST_RECORDS.CDO

!List contents of directory
!
DIRECTORY TESH
!
!Run tests

@TEST_RUN.CDO

3.9 Checking Your Dictionary Version

You can use the CDO SHOW VERSION command to find out the version
number of:

• CDD/Plus installed on your system

• CDO installed on your system

• Dictionaries you have accessed during the current session

Changes in the dictionary software and the disk structure (database schema) create
new versions. Although dictionary users cannot cause such changes, you may need
to give the· version numbers when reporting dictionary problems to your system
manager. The system manager can compare the version numbers to determine
whether or not different dictionaries are at the same revision level.

3-46 Using the COO Utility

In order to see the version number for a certain dictionary, you must have invoked
that dictionary earlier in your session. To invoke a dictionary, issue a command that
manipulates the elements within that dictionary, such as DEFINE or SHOW. You
cannot invoke a dictionary using a SET DEFAULT command or a DIRECTORY
command that specifies a dictionary directory that does not contain dictionary
elements.

During a session in which you have invoked two dictionaries, SHOW VERSION
produces output like the following:

CDO> SHOW VERSION
CDO V1.0
CDD/Plus V4.0
Dictionary DISK$01: [CORPORATE.MIS]CDD$DATABASE;1

Major Version 15
Minor Version 5

Dictionary SYS$COMMON: [CDDPLUS]CDD$DATABASE;1
Major Version 15
Minor Version 5

COO>

A minor version of the dictionary is created when the new version of dictionary
software will continue to run on old dictionary databases without change.

A major version of the dictionary is created when a rebuild of the dictionary is
required before the new version of software will run on old dictionary databases.
Minor versions of the dictionary are upward compatible; major versions are not.

During a session in which you do not invoke a dictionary, the SHOW VERSION
command displays only the version of CDO, the version of CDD/Plus, and the fully
qualified name of the dictionary.

Using the CDO Utility 3-4 7

Populating Your Dictionary 4

This chapter shows you how to create CDO field and record definitions and how to
make changes to definitions.

4.1 Creating Dictionary Definitions

You can define and store many types of data definitions in a CDO dictionary. This
chapter is limited to the most commonly used dictionary entities: field and record
definitions. For information about creating database descriptions in the dictionary,
see Chapter 7. For information about creating other dictionary entities, see the
sections on the DEFINE GENERIC command in the VAX CDD/Plus Common
Dictionary Operator Reference Manual.

You can create field and record definitions in the CDO utility in two ways:

• With the CDO screen editor

• With the DEFINE command at the CDO > prompt

CDD/Plus provides a convenient screen editor in the CDO utility. The CDO editor
is menu driven and easy to use. The editor is described in Chapter 3. When you
create definitions with the editor, it generates the appropriate defining commands
for you. For the purpose of illustration, the definitions in this chapter are all created
with the DEFINE command at the CDO > prompt.

All of the definitions listed in this chapter can be created in a command procedure
with a text editor at DCL level. You can then execute the command procedure at
the CDO > prompt with the AT command (@), as described in Chapter 3. CDO
assumes the default file extension of .CDO and searches for the specified file in the
default VMS dictionary directory, unless another directory is named.

Populating Your Dictionary 4-1

4. 1 . 1 Documenting Dictionary Definitions

You can document your definitions in two ways:

• The DESCRIPTION attribute allows you to include comments within a defini­
tion.

• The AUDIT attribute allows you to add an entry to the history list for a defini­
tion.

Both of these attributes are valid for the DEFINE and CHANGE commands. The
text you supply for these attributes can spread over several lines provided that you
delimit each line of text with the characters/* and*/, as shown in the examples in
these sections.

4. 1 . 1 .1 The DESCRIPTION Attribute - You can document a definition by
enclosing comments in the DESCRIPTION attribute of a DEFINE or CHANGE
command. Including the DESCRIPTION attribute in a definition is optional.
However, if you include it, the DESCRIPTION attribute must be the first attribute
listed in the DEFINE command.

CDO> DEFINE FIELD CDD$TOP.PERSONNEL.TEST
cont> DESCRIPTION /* This is a test */
cont> /*Add more text like this*/.

You can display the DESCRIPTION text for an existing definition with the
EXTRACT command or the SHOW command. The EXTRACT command displays
a definition in the DEFINE command format.

4.1.1.2 The AUDIT Attribute -CDD/Plus maintains a history list for each
CDO dictionary definition. You include a remark in the history list for a definition
with the AUDIT attribute in the DEFINE command.

CDO> DEFINE FIELD CDD$TOP.PERSONNEL.TEST
cont> DESCRIPTION /* This is a test */
cont> AUDIT/* An example history entry*/.

4-2 Populating Your Dictionary

Including the AUDIT attribute in a definition is optional. However, if you include
it, the AUDIT attribute must be listed after the DESCRIPTION attribute in the
DEFINE command. If no DESCRIPTION attribute is included, AUDIT must be
the first attribute listed. If you do not include the AUDIT attribute, an empty
remark is recorded in the history list for the definition.

When you compile a VAX language program that uses a dictionary definition, you
can add an entry in the history list for that definition. For example, the following
command adds the remark "Used for payroll run with PAYROLL_SALES2.COB" to
the history list for the dictionary definition included in the COBOL program:

$ COBOL/AUDIT="Used for payroll run with PAYROLL_SALES2.COB"/LIST PAYROLL_SALES2

To display dictionary definitions, use the /AUDIT qualifier with the SHOW FIELD
and SHOW RECORD commands. For example, the following command displays the
history list associated with the field PAYROLL _SALES2. The /ALL qualifier to
the SHOW command displays all the information stored for a definition, including
the history list.

CDO> SHOW FIELD /AUDIT PAYROLL_SALES2
I I History entered by MCKAY ([COD.MCKAY])
I I using CDO V1.0
I I to CREATE definition on 29-APR-1987 12:32:07.01
I I Explanation:
I I Used for payroll run with PAYROLL_SALES2.COB
I I History entered by MCKAY ([COD.MCKAY])
I I using CDO V1.0
I I to MODIFY definition on 30-APR-1987 16:32:06.72
I I Explanation:
I I Change size to 12
CDO>

The following sections provide examples of creating dictionary definitions with
the DEFINE command. Many of the command keywords are optional; for clarity,
the examples in this manual show all keywords. See the VAX CDD/Plus Common
Dictionary Operator Reference Manual for syntax diagrams and rules governing the
DEFINE command.

Populating Your Dictionary 4-3

4.1 .2 Creating Field Definitions

A field definition is the smallest unit that you can store and access in the dictionary.
Field definitions can include characteristics, or field attributes, ranging from data
type information to validation criteria.

The following example shows how to define a simple field with the DEFINE FIELD
command. When you enter partial command lines, as shown here, CDO continues to
display the cont> prompt until you complete the command with a period.

COO> DEFINE FIELD CDD$TOP.PERSONNEL.FIRST_NAME
cont> DESCRIPTION IS /*Up to 10 characters of first name.*/
cont> DATATYPE IS TEXT
cont> SIZE IS 10.
COO>

If the default was previously set to be the path CDD$TOP.PERSONNEL, the field
definition could have been referred to simply as FIRST_NAME, without the path
name.

The DAT A TYPE attribute in the previous definition is an example of a field at­
tribute that you can include in your definition. The SIZE clause is part of the
DATATYPE attribute. Table 4-1 lists the possible user-specified field attributes.
Complete details of these attributes can be found in the VAX CDD/Plus Common
Dictionary Operator Reference Manual.

Table 4-1 : User-Specified Field Attributes

Attribute Purpose

ARRAY Declares a field to be an array.

AUDIT Creates an entry in the history list for a definition.

BASED ON Permits one field definition to be based on another.

COMPUTED BY Supplies expressions used to calculate the values of
virtual fields.

DATATYPE [IS] Defines the field data type and, optionally, the size, scale,
and number of digits.

DESCRIPTION [IS] Allows you to add comments about the field definition.

4-4 Populating Your Dictionary

Table 4-1: User-Specified Field Attributes (Cont.)

Attribute Purpose

[LANGUAGE] Declares the format used to display the value of a
EDIT_STRING [IS] field. 1For more information, see the VAX CDD/Plus

Common Dictionary Operator Reference Manual.

INITIAL_VALUE [IS] Sets a value for a field when it is first allocated.1

JUSTIFIED Justifies character strings.

MISSING_VALUE [IS] Specifies contents for a field that has never been assigned
a meaningful value.1

NAME FOR Declares a language specific name for a field; used by
VAX BASIC, COBOL, RPG II, and PL/I.

OCCURS ... TIMES Declares a field to be a one-dimensional array.

QUERY_HEADER [IS] Specifies a label for report headers.1

QUERY_NAME [IS] Specifies an alternative name for the field. 1

VALID_IF Declares an input validation expression. 1

1These attributes are currently product specific; however, they are stored in a generic
format and can be shared among products.

The following example defines a field to be a two-dimensional array; the first dimen­
sion has a lower bound of 5 and an upper bound of 20, and the second dimension
has a lower bound of 100 and an upper bound of 200. (You cannot currently specify
an expression for an array bound.) By default, CDD/Plus arrays are row major;
however, products that support column major arrays translate the order accordingly.

CDO> DEFINE FIELD CDD$TOP.PERSONNEL.MATRIX
cont> DESCRIPTION IS /* 2-dim array, row-major */
cont> DATATYPE IS LONGWORD
cont> SIZE IS 9 DIGITS
cont> ARRAY 5:20 100:200.
CDO>

The following field definition includes an INITIAL_ VALUE attribute; this allows
an initial value to be assigned by an application at run time. Note that some
applications cannot support initial values. This field is defined as a one-dimensional
array; the number of elements in the array is defined in the OCCURS attribute. An
entry is added to the definition's history list with the AUDIT attribute, as shown.

Populating Your Dictionary 4-5

CDO> DEFINE FIELD CDD$TOP.PERSONNEL.SIMPLE_LIST
cont> DESCRIPTION IS /* 1-dim array with initial value */
cont> AUDIT /* This is the initial definition entry */
cont> DATATYPE IS TEXT
cont> SIZE IS 1
cont> OCCURS 5 TIMES
cont> INITIAL_VALUE IS "X".
CDO>

Using the BASED ON attribute, you can easily create definitions that vary slightly
from existing definitions. You can add more attributes to a definition that is based
on another, or you can override attributes that were assigned to the original
definition.

An important feature of the BASED ON attribute is that if the original definition is
changed, the change is automatically reflected in definitions based on it.

In the next example, the field definition BUSINEss_z1p is created based on the
definition of ZIP_CODE. The attributes assigned to the field ZIP_CODE are auto­
matically assigned to the field BUSINEss_z1p using the BASED ON attribute. The
length of the field has been increased, and an EDIT_STRING has been added. Since
the field definition ZIP_CODE is in another directory, the full name is specified.

CDO> SET DEFAULT [CORPORATE.MIS]PERSONNEL.CONTRACT
CDO> DEFINE FIELD BUSINESS_ZIP
cont> DESCRIPTION IS /* Based on field ZIP_CODE*/
cont> BASED ON [CORPORATE.MIS]PERSONNEL.SALARIED.ZIP_CODE
cont> DATATYPE IS TEXT
cont> SIZE IS 9
cont> EDIT_STRING IS 99999 11 - 11 9999.
CDO>

When you specify the name of a directory in a field or record definition, the directory
must already exist; directories are not created implicitly. In the following example,
the directory TAXES must be defined before the new field definition is created:

CDO> DEFINE DIRECTORY TAXES.
COO> DEFINE FIELD TAXES.FICA_MAX
cont> DESCRIPTION IS /* Maximum FICA deduction *I
cont> DATATYPE IS ZONED NUMERIC
cont> SIZE IS 8.
CDO>

The field definitions shown here display only a few of the possible attributes.
Table 4-1 lists the available field attributes. For full descriptions of the field at­
tributes, see the VAX CDD/Plus Common Dictionary Operator Reference Manual.

4-6 Populating Your Dictionary

4.1 .3 Creating Record Definitions

You create CDO record definitions with the bottom-up approach. However, for
compatibility reasons, the top-down approach is also supported.

4.1.3.1 Bottom-Up Definitions -You create simple record definitions in the
dictionary by including previously defined fields. You can then combine field and
record definitions into complex record definitions that duplicate any data structure
required by a VAX layered product. Alternatively, you can use the shareable CDO
field definitions directly in a layered application to build up complex data structures.

The following record definition is created by listing the names of fields that have
been previously defined in the same directory.

COO> DEFINE RECORD FULL_NAME.
cont> FIRST_NAME.
cont> MIDDLE_INIT.
cont> LAST_NAME.
cont> END FULL_NAME RECORD.
COO>

The fields and structures included in a record definition must already be defined.
You cannot implicitly define entities in CDO dictionaries by including them in other
definitions.

You can nest record definitions. In the following example, the record definition
FULL_NAME is included in EMPLOYEE-REC:

COO> DEFINE RECORD EMPLOYEE_REC.
cont> FULL_NAME.
cont> DEPENDENTS;1.
cont> WAGE_CLASS.
cont> START_DATE.
cont> END EMPLOYEE_REC RECORD.
CDO>

When you do not specify the version of a definition in a command line, CDO defaults
to the highest version that exists at the time of creation. For example, the field
DEPENDENTS is specified in the definition of record EMPLOYEE_REC. If a
new version of DEPENDENTS is created, you must redefine EMPLOYEE_REC to
include the new version of DEPENDENTS. For more information, see Section 4.4.

The VARIANTS clause defines a set of two or more definitions that provide alter­
native descriptions for the same portion of a record definition. This allows you to
map different data types to the same storage location. With VARIANT definitions,
you have the option of specifying a tag expression whose value is used at run time to
determine the current VARIANT. The following example shows the definition of the

Populating Your Dictionary 4-7

EMPLOYEE_REC record definition with the RETIRED and DISMISSED variants
for the field JOB_CQDE:

COO> DEFINE RECORD EMPLOYEE_REC.
cont> FULL_NAME.
cont> BADGE_NO.
cont> DEPENDENTS.
cont> WAGE_CLASS.
cont> START_DATE.
cont> JOB_CODE.
cont> VARIANTS.
cont> VARIANT EXPRESSION IS JOB_CODE IN EMPLOYEE_REC= 11 D11 •

cont> DISMISSED.
cont> END VARIANT.
cont> VARIANT EXPRESSION IS JOB_CODE IN EMPLOYEE_REC= 11 R11 •

cont> RETIRED.
cont> END VARIANT.
cont> END VARIANTS.
cont> END EMPLOYEE_REC RECORD.
COO>

The previous example shows two variant definitions within one VARIANTS clause.
To specify the DISMISSED definition, the user enters "D" in the field JOB_CODE.
To specify the RETIRED definition, the user enters "R" in JOB_CODE. You can
include as many variants as you want in a record definition and you can repeat the
VARIANTS clause as required.

4.1.3.2 Top-Down Definitions -CDO allows you to create record definitions
with a top-down approach. For example, you can create a record definition and add
additional fields to it later.

You can also create arrays that depend on a field in the body of a record. To do this,
you create structures. A structure is a named group within a record definition. The
named structure allows you to refer to a field within the record definition and to use
this entity as a dependency, even though it is not a separate dictionary definition.
For example, the OCCURS clause in the following record definition of FAMILY
depends on another field definition, NUM_QF_KIDS.

4-8 Populating Your Dictionary

CDO> DEFINE RECORD FAMILY
cont> DESCRIPTION IS /*Sample of record structures.*/.
cont> NUM OF KIDS.
cont> KIDS STRUCTURE
cont> OCCURS 1 TO 5 TIMES DEPENDING ON NUM OF KIDS IN FAMILY.
cont> NAME.
cont> AGE.
cont> END KIDS STRUCTURE.
cont> BENEFITS STRUCTURE.
cont> MED_INS.
cont> DENTAL_INS.
cont> WORK_STATUS.
cont> END BENEFITS STRUCTURE.
cont> END FAMILY RECORD.
CDO>

Record definition structures can contain complex field and record definitions. You
can use other structures to refer to fields within the record definition structure. If
you define a record and do not name a structure, you cannot include dictionary
entities that have not already been defined. You should use record structures only for
compatibility reasons with CDDL definitions or for the particular language you use.

The record definitions shown in this chapter display only a few of the optional
clauses and attributes; for complete details, see the VAX CDD/Plus Common
Dictionary Operator Reference Manual.

4. 1 .4 Creating Relationships

Relationships are created implicitly by CDD/Plus when you explicitly connect
CDO definitions in some way. For instance, a record definition relates several field
definitions to the record when you include them in the record definition. Similarly,
a field definition that specifies an array connects, or relates, the dimensions of the
array.

A relationship exists between two CDO definitions. A dictionary definition is an
owner of a relationship when it uses another definition or depends on another
definition. A dictionary definition is a member of one relationship when it is used
by another definition. A relationship has one owner and one member.

For example, the record definition FULL _NAME includes the field definitions
FIRST_NAME, MIDDLE_INIT, and LAST_NAME, so FULL_NAME is the
owner of three relationships. Each of the included fields is a member of a relation­
ship with FULL_NAME.

In the following example, the field definition GIVEN _NAME is assigned the same
attributes as FIRST_NAME using the BASED ON attribute. This definition
implicitly relates the two fields. Any subsequent change to the definition of
FIRST_NAME (the member) may affect GIVEN_NAME (the owner); however, a
change to GIVEN_NAME will not affect FIRST_NAME.

Populating Your Dictionary 4-9

CDO> SET DEFAULT [CDRPDRATE.MIS]PERSONNEL.CONTRACT
CDO> DEFINE FIELD GIVEN_NAME
cont> BASED ON [CORPDRATE.MIS]PERSONNEL.SALARIED.FIRST_NAME.
CDO>

Note

Relationships are created between specific versions of CDO dictionary
definitions. When you do not specify the version of a member, CDD/Plus
creates the relationship to the highest version of the member at the time
the owner is defined. If you subsequently define a new version of an entity,
the new version is not included in the previous relationship. The owner
must be redefined to specify the new version of the member.

If you change the member of a relationship with the CHANGE command (and
therefore do not create a new version), the changed member continues to be related
to the owner of the relationship. For more information about changing relationships,
see Section 4.4.3.

You can use the SHOW commands to review the relationships that your definitions
create. The following SHOW USED_BY command lists the relationship owned by
GIVEN _NAME, and the member of that relationship, FIRST_NAME.

CDO> SHOW USED_BY GIVEN_NAME
Members of DISK$01: [CORPORATE.MIS]PERSONNEL.GIVEN_NAME;1
I FIRST_NAME (Type : FIELD)
I I via CDD$DATA_ELEMENT_BASED_ON
CDO>

The following SHOW FIELD command displays the actual attributes for
GIVEN_NAME:

CDO> SHOW FIELD GIVEN_NAME
DEFINITION OF FIELD GIVEN_NAME
I Datatype text size is 10 characters
CDO>

Similarly, in the following example, the record definition FULL_NAME is defined
as containing the fields FIRST_NAME, MIDDLE_JNIT, and LAST_NAME. The
subsequent SHOW RECORD command displays the relationships implicitly created
in the definition of FULL _NAME:

4-10 Populating Your Dictionary

COO> DEFINE RECORD FULL_NAME.
cont> FIRST_NAME.
cont> MIDDLE_INIT.
cont> LAST_NAME.
cont> END FULL_NAME RECORD.

COO> SHOW RECORD FULL_NAME
Definition of FULL_NAME
I Contains field
I Contains field
I Contains field
COO>

FIRST_NAME
MIDDLE_INIT
LAST_NAME

The following SHOW USES command lists the definitions that use the field
FIRST_NAME, and the relationships that the definitions own:

COO> SHOW USES FIRST_NAME
Owners of DISK$01: [CORPORATE.MIS]PERSONNEL.FIRST_NAME;1
I FULL_NAME (Type RECORD)
I I via CDD$DATA_AGGREGATE_CONTAINS
I GIVEN_NAME (Type : FIELD)
I I via CDD$DATA_ELEMENT_BASED_ON
COO>

For more information about the SHOW commands and how to keep track of changes,
see Chapter 6.

BASED ON and AGGREGATE CONTAINS are commonly created relationships.
Table 4-2 lists other common relationships that you create implicitly when you
create field and record definitions. CDD/Plus stores relationships in addition to
those listed.

Table 4-2: COD/Plus Relationships

Relationship Description

CDD$DATA_AGGREGATE_CONTAINS Created when a record definition
includes field or record definitions

CDD$DATA_ELEMENT_BASED_ON Created when one field definition is
based on another

CDD$DATA_ELEMENT_COMPUTED_VALUE Created when an expression in a
field definition is dependent on the
resolution of the expression at run
time

Populating Your Dictionary 4-11

You can relate a definition to a definition in another dictionary on the same node or
on a different node in a network. For remote access, CDD/Plus must be installed on
each node or V AXcluster.

For example, the field ID_NUM is based on a field in another dictionary on a
network. The creator of the field ID_NUM must have SHOW access to the field
SOC_SEC on the remote node.

CDO> DEFINE FIELD ID_NUM
cont> DESCRIPTION IS /*New ID number same as Social Security number*/
cont> BASED ON FARWAY: :SYS$DISK: [TAX_DATA]SOC_SEC.

For faster performance, CDD /Plus creates a local copy of remote CDO definitions.
When this DEFINE command is executed, CDD/Plus searches for a local copy of the
remote field definition SOC_SEC. If no local copy already exists, CDD/Plus creates
a local copy. Therefore, when a remote definition is first defined, the network link
between the local and remote node must be viable. Section 4.4.3.3 discusses remote
access further.

4.2 Supported COD/Plus Data Types

The design of CDO record definition structures is such that the data structure of
any VMS layered product can be duplicated in the dictionary and then used by the
layered application. CDD /Plus supports most of the VMS data types.

Valid CDD /Plus data types include:

• character string

• fixed-point

• floating-point

• decimal string classes

Other valid CDD/Plus data types are listed in Table 4-7.

4.2.1 Character String Data Types

The character string data type TEXT represents text in strings of contiguous 8-bit
bytes up to a maximum of 65,535 bytes.

4-12 Populating Your Dictionary

4.2.2 Fixed-Point Data Types

Fixed-point data types represent scaled quantities in a binary format. They can be
signed or unsigned.

Fixed-point numbers of the data type SIGNED are stored in two's complement form.
Values range from -2<n-l) to 2<n-l) - 1, where n is equal to the number of bits in
the data type. Fixed-point numbers of the data type UNSIGNED range from 0 to
2n - 1. Table 4-3 shows the fixed-point data types.

Table 4-3: Fixed-Point Data Types

Data Type Length Unsigned Signed

BYTE 8 bits 0 to 255 -128
to 127

WORD 16 bits 0 to 65535 -32768
to 32767

LONGWORD 32 bits 0 to -2, 147, 483, 648
4,294,967 ,295 to 2,147,483,647

QUADWORD 64 bits 0 to 264 - 1 -263

to 263 - 1

OCTA WORD 128 bits 0 to 2128 - 1 -2127

to 2127 - 1

4.2.3 Floating-Point Data Types

Floating-point data types represent approximations to quantities in a scientific
notation consisting of a signed exponent and a mantissa. The floating-point data
types are shown in Table 4-4.

Populating Your Dictionary 4-13

Table 4-4: Floating-Point Data Types

Approximate Approximate
Data Type Length Precision Range

F_FLOATING 32 bits 7 decimal digits ±10-38

to 10
38

D_FLOATING 64 bits 16 decimal digits ±10-38

to 10
38

G_FLOATING 64 bits 15 decimal digits ±10-308

to 10308

H_FLOATING 128 bits 33 decimal digits ±10-4932

to 104932

4.2.4 Complex Numbers

Complex numbers specify ordered pairs of floating-point data types representing
the real and imaginary components of a number. Complex numbers are shown in
Table 4-5.

Table 4-5: Complex Numbers

Approximate Approximate
Precision of Range of

Data Type Total Length Each Part Each Part

F_FLOATING COMPLEX 64 bits 7 decimal digits ±10-38

to 10
38

D_FLOATING COMPLEX 128 bits 16 decimal digits ±10-38

to 10
38

G_FLOATING COMPLEX 128 bits 15 decimal digits ±10-308

to 10308

H_FLOATING COMPLEX 256 bits 33 decimal digits ±10-4932

to 104932

4-14 Populating Your Dictionary

4.2.5 Decimal String Data Types

The decimal string data types represent fixed scale quantities. They are efficient in
applications that generate numerous reports and listings.

There are two classes of decimal string data types. Those in which each decimal
digit occupies one 8-bit byte are called NUMERIC data types. In the more compact
form called PACKED DECIMAL, two decimal digits occupy each byte. The decimal
string data types are shown in Table 4-6.

Table 4-6: Decimal String Data Types

Data Type Description

UNSIGNED NUMERIC An unsigned numeric ASCII string.

LEFT SEPARATE NUMERIC A signed numeric ASCII string; the leftmost
byte contains the sign.

LEFT OVERPUNCHED NUMERIC A signed numeric ASCII string; the sign and
the leftmost digit occupy the same byte.

RIGHT SEPARATE NUMERIC A signed numeric ASCII string; the rightmost
byte contains the sign.

RIGHT OVERPUNCHED NUMERIC A signed numeric ASCII string; the sign and
the rightmost digit occupy the same byte.

ZONED NUMERIC The VAX ZONED NUMERIC data type; this
signed numeric ASCII string is similar to the
RIGHT OVERPUNCHED NUMERIC, but
the sign codes differ.

PACKED DECIMAL A signed numeric ASCII string; two digits
occupy each byte, and the low half of the last
byte is reserved for the sign.

4.2.6 Other Data Types

CDD/Plus can also assign the data types listed in Table 4-7.

Populating Your Dictionary 4-15

Table 4-7: Other Data Types

Data Type Description

ALPHABETIC Specifies a text string.

BIT Specifies a string of contiguous bits.

DATE Specifies a VMS standard 64-bit absolute date data type.

UNSPECIFIED Sets aside a specified number of contiguous unsigned 8-bit
bytes.

SEGMENTED STRING Specifies a segmented string for DSRI compliant products.

VARYING STRING Specifies a PL/I varying string class field.

POINTER Specifies a field containing the address of another field or
buffer.

4.2. 7 VAX Information Architecture Support for COD/Plus Data Types

Table 4-8 shows the VAX Information Architecture products support for the
CDD /Plus data types. The following list provides a key to the symbols used in
Table 4-8.

4-1 6 Populating Your Dictionary

(

Key to Table 4-8

S Indicates that the facility fully supports the data type.

W Indicates that the facility translates the data type into one that is supported and issues
diagnostics. In some cases, this support may not be usable.

X Indicates a data type that DATATRIEVE can use but cannot define.

U Indicates that the data type is unsupported and that the facility issues a fatal diagnostic.

E Indicates that the data type is unsupported and that the facility issues a non-fatal error.

Indicates that the data type is ignored and that the facility issues no diagnostic messages.

R Indicates that the facility can make use of an unsupported data type only to pass its
address as a parameter.

Table 4-8: VAX Information Architecture Products Support for COD/Plus
Data Types

Rdb
Data Type DTR DBMS ACMS /VMS TOMS

UNSPECIFIED s s s u s
SIGNED BYTE s s R u s
UNSIGNED BYTE x s R u s
SIGNED WORD s s R s s
UNSIGNED WORD x s R u s
SIGNED LONGWORD s s s s s
UNSIGNED LONGWORD x s R u s
SIGNED QUADWORD s s R s s
UNSIGNED QUADWORD x s R u s
SIGNED OCTAWORD u s R u u
UNSIGNED OCTAWORD u s R u u
F_FLOATING s s R s s
F_FLOATING COMPLEX u s R u u
D_FLOATING s s R u s
D_FLOATING COMPLEX u s R u u

(Continued on next page)

Populating Your Dictionary 4-1 7

Table 4-8: VAX Information Architecture Products Support for COD/Plus
Data Types (Cont.)

Rdb
Data Type DTR DBMS ACMS /VMS TOMS

GJ'LOATING u s R s s
GJ'LOATING COMPLEX u s R u u
H_FLOATING s s R u s
H_FLOATING COMPLEX u s R u u
UNSIGNED NUMERIC s s R u s
LEFT OVERPUNCHED NUMERIC s s R u s
LEFT SEPARATE NUMERIC s s R u s
RIGHT OVERPUNCHED NUMERIC s s R u s
RIGHT SEPARATE NUMERIC s s R u s
PACKED DECIMAL s s R u s
ZONED NUMERIC s s R u s
BIT u u R u u
DATE s s R s s
TEXT s s s s s
VARYING STRING u u u s s
POINTER u u u u u
VIRTUAL FIELD s u u u E

SEGMENTED STRING u u u s u

4.2.8 VAX Language Support for COD/Plus Data Types

CDD/Plus supports fixed-point, floating-point, character string, and decimal string
data types. Not all of these types are supported by the VAX languages. The lan­
guages that currently support DMU dictionaries include:

• VAX BASIC

• VAXC

• VAX COBOL

• VAX DIBOL

4-18 Populating Your Dictionary

• VAX FORTRAN

• VAX PASCAL

• VAX PL/I

• VAX RPG II

For more information about using CDD/Plus with VAX languages, see Chapter 1
and the documentation for the particular language. When you intend definitions
to be shared by more than one language, be sure to use data types that are equally
supported by each language. Table 4-9 lists the VAX COBOL, BASIC, DIBOL,
and PL/I support for CDD/Plus data types; Table 4-10 lists the VAX PASCAL,
FORTRAN, C, and RPG II support. The symbols used in Table 4-9 and Table 4-10
are the same as the symbols used in Table 4-8 except that the symbol X is not used.

Table 4-9: VAX BASIC, COBOL, DIBOL, and PL/I Support for COD/Plus
Data Types

Data Type
Language

COBOL BASIC DIBOL PL/I

UNSPECIFIED w w w R

SIGNED BYTE w s s s
UNSIGNED BYTE w w s R

SIGNED WORD s s s s
UNSIGNED WORD w w s R

SIGNED LONGWORD s s s s
UNSIGNED LONGWORD w w s R

SIGNED QUADWORD s w R R

UNSIGNED QUADWORD w w R R

SIGNED OCTAWORD w w R R

UNSIGNED OCTAWORD w w R R

F_FLOATING s s w s
F_FLOATING COMPLEX w w w R

D_FLOATING s s w s
(Continued on next page)

Populating Your Dictionary 4-19

Table 4-9: VAX BASIC, COBOL, DIBOL, and PL/I Support for COD/Plus
Data Types (Cont.)

Data Type
Language

COBOL BASIC DIBOL PL/I

D_FLOATING COMPLEX w w w R

G_FLOATING w s w w
G_FLOATING COMPLEX w w w R

H_FLOATING w s w s
H_FLOATING COMPLEX w w w R

UNSIGNED NUMERIC s w s s
LEFT OVERPUNCHED NUMERIC s w w s
LEFT SEPARATE NUMERIC s w w s
RIGHT OVERPUNCHED s w w s
NUMERIC

RIGHT SEPARATE NUMERIC s w w s
PACKED DECIMAL s s s s
ZONED NUMERIC w w s R

BIT w w w s
DATE w w w R

TEXT s s s s
VARYING STRING w w w s
POINTER s w w s
VIRTUAL FIELD I I w I

SEGMENTED STRING w u u u

4-20 Populating Your Dictionary

Table 4-10: VAX FORTRAN, C, PASCAL, and RPG II Support for COD
/Plus Data Types

Data Type
Language

c FORTRAN PASCAL RPG II

UNSPECIFIED R R R w
SIGNED BYTE s s s w
UNSIGNED BYTE s R s w
SIGNED WORD s s s s
UNSIGNED WORD s R s w
SIGNED LONGWORD s s s s
UNSIGNED LONGWORD s R s w
SIGNED QUADWORD R R R w
UNSIGNED QUADWORD R R R w
SIGNED OCTAWORD R R R w
UNSIGNED OCTAWORD R R R w
F_FLOATING s s s w
F_FLOATING COMPLEX R s R w
D_FLOATING s s s w
D_FLOATING COMPLEX R s R w
G_FLOATING s s s w
G_FLOATING COMPLEX R s R w
H_FLOATING R s s w
H_FLOATING COMPLEX R R R w
UNSIGNED NUMERIC R R R w
LEFT OVERPUNCHED NUMERIC R R R w
LEFT SEPARATE NUMERIC R R R w
RIGHT OVERPUNCHED R R R s
NUMERIC

(Continued on next page)

Populating Your Dictionary 4-21

Table 4-10: VAX FORTRAN, C, PASCAL, and RPG II Support for COD
/Plus Data Types (Cont.)

Data Type
Language

c FORTRAN PASCAL RPG II

RIGHT SEPARATE NUMERIC R R R w
PACKED DECIMAL R R R s
ZONED NUMERIC R R R w
BIT si R si w
DATE R R R w
TEXT s s s s
VARYING STRING R R s w
POINTER s R s w
VIRTUAL FIELD I I I I

SEGMENTED STRING u u u u
1 For bit fields that exceed 32 bits, see the individual language documentation.

4.3 Copying Dictionary Definitions

You can copy definitions when you need duplicates for production or testing. The
COPY command allows you to copy a specified definition and the relationships it
owns. You must supply the name of the definition to be copied and the name of the
target.

For example, the following COPY command copies the record definition
EMPLOYEE_REC from the SALARIED directory to the CONTRACT directory.

COO> COPY CDO$TOP.PERSONNEL.SALARIED.EMPLOYEE_REC
cont> CDD$TOP.PERSONNEL.CONTRACT.EMPLOYEE_REC
COO>

Wildcards are valid for both the source and the target. In the following example, the
COPY command copies all the definitions from the PERSONNEL directory to the
SALARIED directory.

4-22 Populating Your Dictionary

CDO> DIRECTORY
Directory DISK$01: [CORPORATE.MIS]PERSONNEL.SALARIED

ADDRESS_DATA_1;1 FIELD
DEPARTMENTS;! RECORD
EMPLOYEE_REC;1 RECORD
CDO>
CDO> COPY [CORPORATE.MIS]PERSONNEL.*
cont> [CORPORATE.MIS]PERSDNNEL.SALARIED.*
CDO> DIRECTORY
Directory DISK$01: [CORPORATE.MIS]PERSONNEL.SALARIED

ADDRESS_DATA_1;1 FIELD
COLLEGE_NAME;1 FIELD
DEPARTMENTS;! RECORD
DEPARTMENT_NAME;1 FIELD
EMPLOYEE_REC;1 RECORD
FIRST_NAME;1 FIELD
FULL_NAME;1 RECORD
LAST_NAME;1 FIELD
STATUS_NAME;1 FIELD

If a dictionary directory does not exist, you can implicitly create it when you
copy dictionary definitions. For example, the following command copies all defi­
nitions in the directory SALARIED and the directories beneath it to the directory
SALARIED .MAIN. The command implicitly recreates all directories beneath the
directory SALARIED. However, the target directory, MAIN, must exist before you
issue the COPY command.

CDO> COPY [CORPORATE.MIS] PERSONNEL. SALARIED .. .
cont> [CORPORATE.MIS]PERSONNEL.SALARIED.MAIN .. .
CDO>

When you copy a dictionary definition, no entry is added to the history list auditing
the copy operation. However, the existing history list is copied to the new definition.

The COPY command can be used to copy a definition from one CDO dictionary to
another. (To copy a DMU record definition to CDO format, use the CONVERT
command, as described in Chapter 1.) The COPY command is valid across a net­
work. When more than one version of the specified definition exists, CDD/Plus
copies all versions unless you specify an alternative with the COPY command. When
you use the COPY command to create another definition with the same name in the
same directory, CDD/Plus creates a new version of the definition.

If a subsequent change is made to the original EMPLOYEE_REC in the directory
SALARIED, this change is not reflected in the copied record definition in the
directory SALARIED.MAIN.

Populating Your Dictionary 4-23

4.3.1 Copying Relationships

The COPY command preserves all relationships. When both the owner and the
member of a relationship are copied, the new relationships are between the new
copies of both. Consider, for example, the relationship between GIVEN_NAME and
FIRST_NAME. GIVEN_NAME is based on FIRST_NAME; therefore,
GIVEN_NAME is the owner of the relationship and FIRST_NAME is the member.
If FIRST_NAME and GIVEN_NAME are both copied, a new relationship is created
between the new copies of both.

When an owner is copied but the member is not, the new relationship is from
the new owner to the old member. For example, if GIVEN_NAME is copied but
FIRST_NAME is not, the new copy of GIVEN_NAME has the original definition
of FIRST_NAME for a member.

When a member is copied but the owner is not, no new relationship is created
because no definitions own the copied member. For example, if FIRST_NAME is
copied but GIVEN_NAME is not, no definition uses the copy of FIRST_NAME.
The old relationship remains intact.

4.3.2 Copying a Complete Dictionary

To copy a complete dictionary, you must be aware of potential problems related
to changing the anchor. External references to the dictionary must be changed to
accommodate the new anchor. The MOVE DICTIONARY command changes the
external references for you. For more information, see Chapter 6.

4.4 Changing Dictionary Definitions

There are two ways to change field and record definitions:

• You can create new versions of your definitions and phase in the change over
time.

• You can change original definitions and cause immediate updates.

It is good practice to document all changes. You can include remarks with the
DESCRIPTION and the AUDIT attributes for both the CHANGE and the DEFINE
commands, as described in Section 4.1.1.

When you change a definition, dictionary definitions that do not automatically
include the change are flagged with a message to warn the user about the change.
When you create a new version with the DEFINE command, no dictionary defi­
nitions include the new version automatically; therefore, all dependent dictionary
definitions are flagged with a message about the new version. When you change a

4-24 Populating Your Dictionary

dictionary definition with the CHANGE command, related record and field defini­
tions automatically include the change, only external entities that do not include the
change automatically (such as databases) are flagged with a message.

The following two sections discuss the differences between making changes with the
CHANGE and DEFINE commands.

4.4.1 Creating New Versions of Definitions with the DEFINE Command

CDD /Plus allows you to store several versions of the same definition. You need
DEFINE access rights to an existing definition to create new versions of it.

When you store several versions of the same definition, programs and other defini­
tions can specify and access any of these versions. When you want to phase in a
change over a period of time and continue to allow access to the original definition,
you should create a new version of the definition with the DEFINE command rather
than use the CHANGE command. Creating new versions, rather than changing the
original definition, leaves an audit trail of changes.

When you define a record and include a field without specifying the field version
number, CDD/Plus includes the highest version available at the time the record
is defined. If you create a new version of the field definition with the DEFINE
command, the record continues to include the previous version until you redefine
the record. Relationships exist between specific versions of definitions and do not
automatically change to accommodate new versions. For more information, see
Section 4.4.3.

To redefine a record definition that uses an outdated version so that it will use the
new version, you can use either of the following methods:

• Use the CDO editor

• Use the CDO EXTRACT command to display the record definition, then modify
the definition using CHANGE or DEFINE commands

When you create a new version of a definition, all dictionary definitions that use
the previous version of the definition are flagged with a message. For example, if
you create a new version of the field definition BADGE_NO, the new version is
not included in the record EMPLOYEE_REC and not automatically used by the
Rdb/VMS database DEPTl. DEPTl is flagged with a message that warns the user
that a new version of BADGE_NO exists. Users can optionally take advantage of
the new version of BADGE_NO. Consider also that EMPLOYEE_REC is used
by another supporting product. If the product is attached to EMPLOYEE_REC,
CDD /Plus attaches a message to that product's dictionary definition, to warn the
user that a new version exists.

Populating Your Dictionary 4-25

Chapter 6 includes more information about analyzing the impact of changes and
tracking dictionary usage.

You need DEFINE access to create new versions of a definition. By default, only
the original creator of a definition has the right to make new versions; however, the
default protection can be changed by a user with CONTROL access. See Chapter 5
for more information about protection.

4.4.2 Changing Original Definitions with the CHANGE Command

The CHANGE command changes the original definition and does not create a new
version of a definition. After you change a definition with the CHANGE command,
you can no longer access the original definition at compilation time. If you change
the original version of a field definition with the CHANGE command, a record that
includes the field automatically includes the changes.

4.4.2.1 Receiving Messages About Changes -CDO sends messages when
a dictionary definition changes or when a new version of a definition is created. A
CDO message signals that a dictionary definition that is a member of a relationship
has been changed. Messages can be sent from a member of a relationship to:

• The owner of the relationship

• The owner's ancestors

• Both the owner and the owner's ancestors

To find out which definitions will be flagged with a message as a result of a change in
place, use the SHOW WHAT_IF command discussed in Chapter 6. Chapter 6 also
provides information about accessing these messages from the CDO environment and
from other products, as well as information about analyzing dictionary usage.

You can also determine which dictionary definitions receive messages by examining
the CDD$MESSAGE_ACTION attribute. VAX CDD/Plus Common Dictionary
Operator Reference Manual explains how to use the SHOW PROTOCOL com­
mand to examine the CDD$MESSAGE_ACTION attribute, and tells which
CDD$MESSAGE_ACTION attributes cause messages.

When a field or record definition is changed with the CHANGE command, defini­
tions that include it automatically include the change. Only dictionary definitions
that do not automatically include the changed definition are flagged with a message.

For example, if the field definition BADGE_NO is changed with the CHANGE
command, the record definition EMPLOYEE-REC automatically includes the
change to BADGE_NO; therefore, no message is signaled on EMPLOYEE_REC.
However, the copy of BADGE_NO contained in the database DEPTl is now

4-26 Populating Your Dictionary

inconsistent with the BADGE_NO in the dictionary; so the database is flagged with
a message about this.

COO> CHANGE FIELD BADGE_NO
cont> DATATYPE IS TEXT
cont> SIZE IS 8.
%CDO-I-DBMBR, database SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1;1
may need to be INTEGRATED
COO> SHOW MESSAGES DEPT1
SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1;1 is possibly invalid,
triggered by CDD$DATA_ELEMENT SYS$COMMON: [CDDPLUS]PERSONNEL.BADGE_N0;3

The message warns the database administrator that the definition of BADGE_NO
is now inconsistent with the database copy and with the definition of BADGE_NO
that is included in EMPLOYEE_REC.

With the CHANGE command, you can make changes to dictionary definitions
and protection schemes. For details on how to change the protection scheme for
dictionary definitions, see Chapter 5. For information about changing the instances
of protocols, see the command in the VAX CDD /Plus Common Dictionary Operator
Reference Manual.

The following sections provide examples of how to change field and record definitions
with the CHANGE command and how relationships are affected by such changes.
Remember that the CHANGE command, like DEFINE and DELETE, requires a
terminating period.

You need CHANGE access rights to dictionary definitions in order to change them.
By default, only the creator of a definition has the right to change it; however, the
default protection can be changed by a user with CONTROL access.

To find out if you have CHANGE access rights, use the SHOW PROTECTION
command or the SHOW PRIVILEGES command, as shown in the following exam­
ple. The SHOW PROTECTION command displays the access control list for the
specified definition; the SHOW PRIVILEGES command displays your current priv­
ileges for the definition. You would see the following SHOW PRIVILEGES output
only if you were a member of group 20.

COO> SHOW PROTECTION FOR FIELD RATE

Directory DISK$01: [CORPORATE.MIS]PERSONNEL.RATE

Populating Your Dictionary 4-27

RATE;!
(IDENTIFIER=[VDD,DICTIONARY] ,ACCESS=READ+
WRITE+MODIFY+ERASE+SHOW+DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+
ADMINISTRATOR)
(IDENTIFIER=[VDD,DICTIONARY] ,ACCESS=READ+WRITE+MODIFY+ERASE
+SHOW+DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[20,*] ,ACCESS=READ+WRITE+MODIFY+ERASE+
SHOW+DEFINE+CHANGE+DELETE)
(IDENTIFIER=[SECRETARIES,*] ,ACCESS=SHOW)
(IDENTIFIER=[SALES,JONES] ,ACCESS=NONE)

COO> SHOW PRIVILEGE FOR FIELD RATE

Directory DISK$01: [CORPORATE.MIS]PERSONNEL.RATE

RATE; 1

COO>

(IDENTIFIER=[20,*] ,ACCESS=READ+WRITE+MODIFY+ERASE+
SHOW+DEFINE+CHANGE+DELETE)

Chapter 5 discusses access rights in detail. The following sections show you how to
make changes to field and record definitions with the CHANGE command.

4.4.2.2 Changing Field Definitions - In Section 4.1.2, the field SIMPLE_LIST
was given an initial value. In the following example, the definition of
SIMPLE_LIST is changed so that the definition no longer has an INITIAL
VALUE attribute.

COO> CHANGE FIELD SIMPLE_LIST
cont> AUDIT /* Removing initial value attribute */
cont> NOINITIAL_VALUE.
COO>

You can change attributes such as the data type with the CHANGE command. For
example, the following command changes the data type of the previously defined field
MATRIX from a longword to a floating-point value.

COO> CHANGE FIELD MATRIX
cont> AUDIT /* Change datatype to f_floating */
cont> DATATYPE IS F _FLOATING.
COO>

This command changes only the data type of the defined field, not the data type of
the stored data.

4-28 Populating Your Dictionary

The following example changes the array created in the field SIMPLE_LIST from a
five-element array to a ten-element array:

CDO> CHANGE FIELD SIMPLE_LIST
cont> AUDIT /* Changed from 5 to 10 array elements */
cont> OCCURS 10 TIMES.
CDO>

When a field is included in a record definition, the record automatically includes
the changed field definition if the change is made with the CHANGE command.
Remember that this is not the case if new versions are created with the DEFINE
command or with the CDO editor.

Caution

In languages that must be compiled, if you do not recompile a program
after a dictionary definition has been changed, the program continues to
use the executable code representing the original definition.

The CHANGE command allows you to change attributes such as missing values,
special names for languages, query headers, and so on. For information on the field
attributes that you can change, see the CHANGE FIELD command description in
the VAX CDD/Plus Common Dictionary Operator Reference Manual.

4.4.2.3 Changing Record Definitions - Record definitions can also be modified
with the CHANGE command. The following examples show some of the changes
you can make to record definitions; for more information about the changes you can
make, see the CHANGE RECORD command description in the VAX CDD/Plus
Common Dictionary Operator Reference Manual.

The following example deletes a field from the record definition EMPLOYEE_REC.
Other field or record definitions related to EMPLOYEE_REC remain unchanged.

CDO> CHANGE RECORD EMPLOYEE_REC
cont> AUDIT/* Removing DEPENDENTS field*/.
cont> DELETE DEPENDENTS.
cont> END EMPLOYEE_REC RECORD.
CDD>

To include an additional field in a record definition, use the CHANGE command
with the DEFINE record attribute. The following example adds the field
W AGE_STATUS to the record definition EMPLOYEE_REC. The included field
becomes the last field in the record definition.

Populating Your Dictionary 4-29

CDO> CHANGE RECORD EMPLOYEE_REC
cont>/* Adding new fields WAGE_STATUS and CLASS_CODE */.
cont> DEFINE WAGE_STATUS.
cont> END DEFINE.
cont> DEFINE CLASS_CODE.
cont> END DEFINE.
cont> END EMPLOYEE_REC RECORD.
CDO>

Although you use the keyword DEFINE to specify the new field W AGE_STATUS,
this field must be already defined in the dictionary. You cannot implicitly create a
field definition by specifying a new field in a CHANGE RECORD definition.

To make changes to the VARIANTS clause in a record definition, you must identify
the variant by listing all the variants in the VARIANTS clause. The variant fields
that you do not want to change need not be named, but all variant groups must be
listed so that CDD/Plus can identify the variant you are changing by position. The
following example defines the field RATE in the second variant in the VARIANTS
clause of the record definition EMPLOYEE_REC; none of the other variants are
changed.

CDO> CHANGE RECORD EMPLOYEE_REC.
cont> VARIANTS.
cont> VARIANT.
cont> END VARIANT.
cont> VARIANT.
cont> DEFINE RATE.
cont> END DEFINE.
cont> END VARIANT.
cont> END VARIANTS.
cont> END EMPLOYEE_REC RECORD.
CDO>

4.4.3 Changing Relationships

When two definitions are related, the relationship exists between the owner and
the specified version of the member. When no version of the member is specified,
the owner is related to the highest version of the member at the time the owner is
defined.

The following two sections discuss the differences between changing members of
relationships with the CHANGE command and the DEFINE command. Remember
that when you redefine entities with the CDO editor, you define new versions as with
the DEFINE command.

4-30 Populating Your Dictionary

4.4.3.1 Changing a Member with the CHANGE Command - Consider
the record definition FULL _NAME. FULL _NAME includes the field definitions
FIRST_NAME, MIDDLE_INIT, and LAST_NAME. FULL_NAME is the
owner of three relationships, one relationship between each of the field definitions
FULL _NAME includes. Each of the included fields are members of a relationship
with FULL_NAME.

No versions were specified in the original definition of FULL_NAME:

COO> DEFINE RECORD FULL_NAME.
cont> FIRST_NAME.
cont> MIDDLE_INIT.
cont> LAST_NAME.
cont> END FULL_NAME RECORD.

Suppose that you want to change MIDDLE_INIT to increase the size to be three
characters (to allow for the convention NMN for "no middle name"). If you change
the original definition with the CHANGE command; therefore, you do not create a
new version of the definition. The relationship continues to exist between
FULL_NAME and the changed version of MIDDLE_INIT.

The size of MIDDLE_INIT is now increased by two additional characters. This
change in size is incorporated automatically by all definitions that use
MIDDLE_INIT. No message is attached to FULL_NAME or any other field or
record definitions that automatically include the change.

When copies of dictionary definitions are maintained in a database, the database
copies are not automatically updated after a change in the dictionary; therefore,
database descriptions in the dictionary are flagged with a message about the
inconsistency.

4.4.3.2 Changing a Member with the DEFINE Command - Consider
again the record definition FULL _NAME, which uses the field definitions
FIRST_NAME, MIDDLE_INIT, and LAST_NAME. Because no versions
were specified in the original definition of FULL _NAME, the relationships
were established with the highest version of each of the members at the time
FULL _NAME was defined.

Suppose that you decide to change MIDDLE_INIT to increase the size to three
characters, but you choose to redefine the definition with the DEFINE command.
The DEFINE command creates a new version of the definition, leaving the original
version intact. The record FULL_NAME continues to be the owner of the rela­
tionship between FULL_NAME and MIDDLE_INIT;l because version 1 was the
highest version of MIDDLE_INIT when FULL _NAME was defined.

Populating Your Dictionary 4-31

New versions of definitions are not automatically included in the definitions that use
them. The newly created MIDDLE_INIT;2 is not related to FULL_NAME;l. The.
owner of a relationship must be changed or redefined to include the new version of
the member.

If you redefine FULL_NAME with the DEFINE command and do not specify a
version number for the members, FULL_NAME;2 will include the highest current
version of MIDDLE_INIT, which is MIDDLE_INIT;2. Because new versions of
definitions are not automatically reflected in the definitions that use them, a message
that a new version exists is attached to each user of the previous version.

Relationships are often nested. For example, the record definition FULL _NAME
is itself a member of a relationship with EMPLOYEE_NAME. You can list all
dependent uses of a definition with either the /FULL or the /ALL qualifier to the
SHOW USED_BY command, as discussed in Chapter 6.

4.4.3.3 Changing Relationships in a Network ...;... Figure 4-1 illustrates how
CDD/Plus uses local copies for faster performance when dictionary definitions are
related via a network.

When a local definition is changed with the CHANGE command, CDD/Plus auto­
matically updates all remote copies. If all remote dictionaries containing copies of
the definition are not available, the change is not allowed and CDD /Plus issues an
error message. However, when a new version of the definition is created with the
DEFINE command, the local copy is not changed. Instead, users of the definition
are flagged with a message that the new version exists.

For example, if a user changes version 1 of field definition Z on the local node,
CDD/Plus updates the changed definition on the remote node if the network link is
viable. As the changed field is automatically included in the record definitions X, Y,
and Z, these definitions are not flagged with a warning message about the change.

On the other hand, when a new version of a local definition is created with the
DEFINE command, the copy on the remote node remains unchanged. For example,
if a user creates version 2 of field definition Z on the local node, version 1 of field
definition Z remains the only copy on the remote node. To update the relationship,
you must redefine record definitions X, Y, and V on the remote node.

4-32 Populating Your Dictionary

Figure 4-1 : Creating Local Copies of Remote Dictionary Definitions

REMOTE COO Dictionary

field A
Record Definition X includes: field B

LOCAL field z---

field M
Record Definition Y includes: LOCAL field z---+---------.

field N

LOCAL field z--­
Record Definition V includes: field P

field Q

LOCAL COO Dictionary

Field Definition Z

ZK-7582-HC

4.5 Deleting and Purging Dictionary Definitions

You need DELETE access to dictionary definitions to purge or delete them. By
default, only the owner of a definition has the right to delete it; however, the default
protection can be changed by a user with CONTROL access.

The ERASE access right is associated only with the protocol definition; only
DELETE access allows you to delete or purge definitions.

To delete or purge definitions on a remote CDO dictionary, the network link between
the local and the remote node must be viable.

Populating Your Dictionary 4-33

4.5.1 Deleting Dictionary Definitions

When you are aware that a particular definition is not used at all, delete it with the
DELETE command. For example, the following command deletes all versions of the
field definition GIVEN_NAME from the dictionary.

CDO> DELETE FIELD GIVEN_NAME;*.
CDO>

You can supply several definition names with a single DELETE command, provided
that the definitions are all the same type. For example, you can delete several fields
or several records at the same time, but you cannot mix fields and records in the
same DELETE command.

CDO> DELETE FIELD GIVEN_NAME.FIRST_NAME.
CDO>

You can delete definitions that are members of a relationship with the specified
entity. For example, the following command uses the /DESCENDANTS qualifier to
delete the record definition FAMILY and also delete all definitions that the record
uses. If a member of a relationship to FAMILY is also a member of a relationship
with another definition, CDD /Plus does not delete the descendant.

CDO> DELETE RECORD /DESCENDANTS /LOG FAMILY;*.

%CDO-I-ENTDELDESC, entity DISK$01:[CORPORATE.MIS]PERSONNEL.FAMILY;1 and its descendants
were deleted

CDO>

The default, DELETE/NODESCENDANTS, deletes only the specified definition.

You can delete a dictionary directory, provided that the directory is empty. The
following command deletes the empty directory BENEFITS.

CDO> DELETE DIRECTORY [CORPORATE.MIS]BENEFITS.
CDO>

The DELETE DICTIONARY command allows you to delete a dictionary. To delete
a complete dictionary, first make sure that the dictionary definitions are not used
by entities external to the dictionary, such as databases or other dictionaries. If
necessary, copy definitions to another dictionary and change the anchor and path to
the definitions where appropriate.

4-34 Populating Your Dictionary

You must have DELETE privilege for all of the definitions contained in the dictio­
nary and CONTROL privilege to the dictionary files.

Caution

When CDD/Plus deletes a complete dictionary, all files in the anchor
directory are deleted. DIGITAL recommends that you store only files
created by CDD/Plus in a VMS directory that is dedicated to a dictionary.
If you do store other files in the VMS directory, these files are deleted
when you delete the dictionary.

The DELETE command also allows you to delete protection schemes (see Chapter 5).
For a full list of qualifiers and other details on the DELETE command, see the VAX
CDD/Plus Common Dictionary Operator Reference Manual.

4.5.2 Purging Dictionary Definitions

When you have created more than one version of a definition, you can purge earlier
versions with the CDO command PURGE, which deletes all but the most recent
version of the specified definition by default. You cannot purge a definition that is a
member of a relationship, such as a field in a database.

The following command. deletes all but the latest version of the field definition
SALARY_MAX.

CDD> PURGE FIELD SALARY_MAX.
CDO>

The PURGE command provides two optional qualifiers: /KEEP and
/[NO]DESCENDANTS. The /KEEP qualifier allows you to specify the number of
versions to be kept after the purge. The /DESCENDANTS qualifier also purges
members of relationships owned by the purged definition unless they are related to
other definitions. By default, related definitions are not purged
(/NODESCENDANTS).

The following command purges all but the highest two versions of the record defi­
nition EMPLOYEE_REC. All but the highest two versions of definitions that are
related to EMPLOYEE_REC are also purged, unless these definitions are already
related to others.

CDO> PURGE RECORD /KEEP=2/0ESCENDANTS EMPLOYEE_REC.
CDO>

Populating Your Dictionary 4-35

You can use wildcards with the PURGE command. The following command purges
all of the fields that are not related to others in the current default directory.

CDO> PURGE FIELD*·
CDO>

4-36 Populating Your Dictionary

Protecting Your Dictionary 5

This chapter shows you how to specify which users can access the definitions in your
CDO dictionary. It explains users' access control rights and describes how to grant
and deny these rights.

5.1 Controlling Dictionary Access

VMS security protects devices, directories, and files; individual definitions stored
within the dictionary files are protected by CDO security provisions.

CDO dictionary security is based on the VMS style of security. Access to dictionary
objects is controlled by access control lists that explicitly specify the access that a
particular user is allowed.

5.1.1 User Identifiers

The basic component of the VMS protection scheme is an identifier. Identifiers can
be User Identification Codes (UICs) or general identifiers:

• UICs are used to classify processes and groups of processes on VMS systems.
The system manager assigns a UIC to each system user with the VMS Authorize
Utility.

[group,member]

[group,*]

[*,member]

specifies a user's group and member

specifies any member of the named group

specifies a named member regardless of the group

Protecting Your Dictionary 5-1

• General identifiers can be system- or user-defined. They can identify users from
different UIC groups, a single user, a group of users, a single UIC group, or
a combination of these. For example, WRITERS might combine users from
different UIC groups.

System identifiers often correspond to an environment. For example, the identi­
fier BATCH addresses all attempts at access made by batch jobs. Other system
identifiers include: INTERACTIVE, NETWORK, LOCAL, REMOTE, and
DIAL UP.

The following are examples of valid identifiers:

[360, 12)
[SALES, MARY]
[SALES,*]
[EXECUTIVES.MCKAY]
[BATCH]

To see identifiers for your current process, use the DCL command SHOW
PROCESS, as in the following example:

$ SHOW PROCESS
8-FEB-1988 16:26:38.09 RTA3: User: LUFKIN

Pid: 20600A3F Proc. name: _RTA3: UIC: [CDD,LUFKIN]
Priority: 6 Default file spec: DISK$1: [LUFKIN]
Devices allocated: RTA3:

5.1.2 Access Control Entries

An access control list (ACL) allows you to define what types of access, if any, should
be granted to the potential users of system entities. An ACL consists of a list of
access control entries (ACEs), each specifying an identifier and the associated access
rights. The order of the entries in the list allows VMS to determine access priorities;
therefore, you should take care when ordering the entries in your ACLs.

To see the AC Ls for one of your existing definitions, use the SHOW /ALL command,
as in the following example:

CDO> SHOW PROTECTION FOR FIELD FIRST_NAME

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

FIRST _NAME; 1
(IDENTIFIER=[CDD,CDDPLUS],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+
DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[*,*] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+OPERATOR+
ADMINISTRATOR)

5-2 Protecting Your Dictionary

Table 5-1 lists the VMS access rights you can specify in an ACL for a file in a VMS
directory.

Table 5-1 : VMS Access Rights

Privilege Access Permitted

READ Grants the right to examine, print, or copy files

WRITE Grants the right to modify files and create new files

EXECUTE Grants the right to execute a file that contains an exe-
cutable image; permits wildcard searches and matching, as
with the DIRECTORY command

DELETE Grants the right to delete a file

CONTROL Grants the right to create, change, and delete ACLs

All rights can be denied with NONE; individual rights can be negated with the prefix
NO-for example, NODELETE. Access rights are specified by separating each with
a plus sign (+) . For examples of commands that grant or deny access rights, see
Section 5.3.2.

The entry that provides the greatest amount of file access for a user should be in the
list. In the following example ACL, if one of the users has both the SECURITY and
PERSONNEL identifiers, the user obtains the maximum access rights through the
first match, which is the SECURITY identifier. The user with UIC [SALES,JONES]
is prohibited from any access to the file. However, if Jones also happens to belong
to one of the previously identified groups, he will acquire the access rights for that
group.

CDO> SHOW PROTECTION FOR FIELD ID_NUMBER
Directory SYS$COMMON: [CDDPLUS]PERSONNEL

FIRST_NAME;7
(IDENTIFIER=SECURITY,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=PERSONNEL,ACCESS=READ+WRITE+EXECUTE+DELETE)
(IDENTIFIER=SECRETARIES,ACCESS=READ+WRITE)
(IDENTIFIER=[2D,*] ,ACCESS=READ)
(IDENTIFIER=NETWORK,ACCESS=NONE)
(IDENTIFIER=[SALES,JONES] ,ACCESS=NONE)

In this example, if Jones also belongs to the group SECRETARIES, then Jones
is granted READ and WRITE access to the file because VMS processes the third
ACE before the last ACE. This is probably an oversight on the part of the cre­
ator of the ACL. If the ACL creator wants to be certain that the user with UIC
[SALES,JONES] cannot gain access to the file, the ACE that is at the bottom ·of
this ACL should be moved to the top. For an individual to have fewer privileges

Protecting Your Dictionary 5-3

than they have as a group member, the ACL creator must move their individual ACE
above their group ACE.

Remember that users are often associated with more than one group or more than
one identifier. A user is granted the privileges listed in the ACE that provides the
first match for that user.

The following are two guidelines for ordering ACEs:

• An ACE that grants powerful privileges should be positioned at or near the top
of the list of entries.

• If there are no conflicts in the user identifiers, place the more restrictive ACEs at
or near the bottom of the list.

5.1 .3 Determining Access to the Dictionary

This section describes how to protect VMS files such as the directory where you
choose to create your CDO dictionary. To disallow a user from accessing the dic­
tionary, access can be denied at the VMS directory level; however, you should fine
tune this protection by protecting individual dictionary definitions, as described in
Section 5 .3.

When determining whether or not a user is allowed access to a particular system
entity, VMS follows these steps:

1. If the system entity has an ACL associated with it, VMS uses this to determine
whether or not access is permitted.

2. If the system entity does not have an ACL associated with it, VMS uses DIC­
based protection to determine whether or not access is permitted. Access is
granted or denied on the basis of the relationship between the entity owner's
DIC and the user's DIC.

(This is a simplification of ACL processing by VMS. For more information, see the
Guide to VAX/VMS System Security.)

The VMS protection provisions apply to the node, device, and directory or directo­
ries where your CDO dictionary resides (the anchor or the root of your compatibility
dictionary). For users to access any dictionary elements, they must first be granted
access to the node, device, and directory where the dictionary resides. You can con­
trol access to the dictionary anchors with the DCL command SET PROTECTION,
or with the VMS ACL Editor.

5-4 Protecting Your Dictionary

The DCL command SET PROTECTION allows you to specify access rights to a file
for four different categories of users:

SYSTEM (S)

OWNER (0)

GROUP (G)

WORLD (W)

All users with system privileges

Any user with the same user identification code as the creator of the file

All users who have the same group as the owner of the file

All users of the system

With the DCL command SET PROTECTION, you can specify four types of pro­
tection rights: READ, WRITE, EXECUTE, and DELETE. These rights allow the
privileges shown in Table 5-1. In a SET PROTECTION command, the access rights
can be abbreviated to the first letter of each right.

The following command specifies that all groups of users have READ and EXECUTE
rights to the directory where our sample dictionary resides. SYSTEM, OWNER, and
WORLD users are also granted WRITE privileges. Only SYSTEM and OWNER
users are granted DELETE privileges.

$SET PROTECTION = (S:RWED,O:RWED,G:RE,W:RWE) PERSONNEL.DIR

In addition to setting up protection schemes with the SET PROTECTION com­
mand, you can manipulate the entries directly by using the VMS ACL editor. The
ACL editor is a screen-oriented editor that you can use to create and maintain ACLs.

To invoke the ACL editor, you enter the EDIT/ACL command at the DCL prompt.
For example, to edit the protection scheme for the directory [CORPORATE.MIS],
type the following command at the DCL prompt when [CORPORATE] is your
process default directory:

$ EDIT/ACL MIS.DIR

The ACL editor displays the ACL for the specified file (if one exists already) and
prompts you for changes. For more information about the ACL editor, see the
appropriate material in the VMS documentation set.

To better understand VMS security procedures in general, and for information about
other methods of creating or modifying ACLs, see the VMS documentation set. The
following sections discuss how to protect individual definitions in a CDO dictionary.

Protecting Your Dictionary 5-5

5.2 COO Dictionary Protection Provisions

Each dictionary definition has an ACL associated with it. Each entry in the ACL for
the definition lists the access rights associated with an individual or group of users
for that particular definition. The access rights that dictionary users can be granted
include: SHOW, DEFINE, CHANGE, DELETE, and CONTROL. Table 5-2 lists
the access allowed to a definition for each of these rights.

Table 5-2: COO Functional Access Rights

Privilege Access Permitted

[NO]SHOW Read and copy definitions

[NO]DEFINE Create new definitions and new versions of definitions

[NO]CHANGE Change definitions

[NO]DELETE Delete and purge definitions

[NO]CONTROL Define, change, and delete ACLs

Reserved for future use

[NO]OPERATOR

[NO]ADMINISTRATOR

Three additional terms make listing access rights easier: ALL, NOALL, and
NONE. You can enable or disable all rights with ALL or NOALL, respectively.
For example, to grant a user all access rights except CONTROL, you can specify
ACCESS=ALL+NOCONTROL, rather than list each right separately. Similarly,
ACCESS=NOALL+SHOW grants a user only SHOW access, while ACCESS=NONE
denies all access to a user.

Before access to a dictionary definition is granted or denied, CDO checks the protec­
tion defined for the definition's protocol. For information about protocol protection,
see the VAX CDD/Plus Common Dictionary Operator Reference Manual.

The access rights in a definition's protocol indicate which access rights can be
confirmed for the definition. Protocol access rights for a definition include: READ,
WRITE, MODIFY, and ERASE access.

If the definition's protocol includes READ, this means that SHOW access to the
definition is confirmed. Similarly, if the protocol access right MODIFY is removed,
CHANGE access to the definition cannot be confirmed; even if the definition's ACL

5-6 Protecting Your Dictionary

shows that a user had CHANGE privilege, the definition cannot be changed unless
the definition's protocol confirms the access.

Table 5-3 shows which access right must be present in a definition's protocol to
confirm the related functional access to a definition. These rights are granted by
default for all CDD/Plus-supplied protocols.

Table 5-3: Protocol Protection

Protocol Access Right Purpose

READ Required to confirm SHOW access to the definition

WRITE Required to confirm DEFINE access to the definition

MODIFY Required to confirm CHANGE access to the definition

ERASE Required to confirm DELETE access to the definition

The protocols for field and record definitions include READ, WRITE, MODIFY, and
ERASE access by default. This means that a user with CONTROL access can grant
SHOW, DEFINE, CHANGE, and DELETE access to definitions and that these
access rights will be confirmed.

The rights assigned to a definition by the definition's protocol can be ignored by
most dictionary users unless a conflict of rights exists. A conflict can exist only if
the default protocol protection is changed.

For example, if a user with CONTROL access to the definition's protocol definition
eliminates the ERASE privilege on the protocol for that definition, CDO does not
confirm any user's DELETE access. Such a conflict cannot arise unless the default
rights are changed in the definition's protocol protection provisions.

5.2.1 Default Protection Provisions

By default, the creator of a CDO dictionary definition has full access to it, including
CONTROL. All other users have only SHOW access. CDO dictionary definitions
do not inherit access control lists from their parent directories. You can change the
default protection, providing that you have CONTROL privileges.

When you first create a CDO definition, CDD/Plus attaches to it an ACL with two
entries. Remember that the rights READ, WRITE, MODIFY, and ERASE listed in
the default ACL entries of the definition's protocol confirm which functional access
rights can be granted for the definition. The default ACL for each new dictionary
definition consists of the following two entries.

Protecting Your Dictionary 5-7

1. The creator (owner) of the definition is given all access rights including
CONTROL. For example:

(IDENTIFIER=[JONES] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+CHANGE
+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)

2. All other users are given only SHOW, ADMINISTRATOR, and OPERATOR
access rights to the definition:

(IDENTIFIER=[*,*] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW
+ADMINISTRATOR+OPERATOR)

CDO dictionary directories cannot be protected. Directories are merely part of the
hierarchy you create within a dictionary. Any user who has access to the dictionary
can list directory contents. You can, however, protect all of the definitions contained
in any directory (see Section 5.3.1).

Compatibility Note

When both DMU and CDO dictionaries are maintained, it is possible
that some protection inconsistencies will exist unless you explicitly specify
protection provisions as close as possible to your DMU protection.

When you create a definition in a DMU dictionary, it automatically
inherits the protection of its parent. When definitions are created in
CDO dictionaries, they are supplied with the default CDD/Plus protection
provisions. Therefore, when a CDO dictionary item is created with the
same directory name as a D MU definition, these items do not necessarily
have the same ACLs attached to them.

For example, although the following record definitions share the same
dictionary path, they do not have the same protection provisions. The
first definition (a DMU record definition) inherited protection from the
parent directory. The second definition (in the compatibility dictionary)
is protected by CDO default provisions:

Show protection for a record defined in DMU

COO> SHOW PROTECTION FOR RECORD CDD$TOP.PERSONNEL.ADDRESS

Directory SYS$COMMON: [DMU_DIC]PERSONNEL

ADDRESS;!
(IDENTIFIER=[CDD,5] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[12,5] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)
(IDENTIFIER=[12,9] ,ACCESS=SHOW+DEFINE)
(IDENTIFIER=[12,*] ,ACCESS=SHOW)

5-8 Protecting Your Dictionary

Show protection for a record defined in CDD

CDO> SHOW PROTECTION FOR RECORD CDD$TDP.PERSONNEL.ADDRESS_REC

Directory SYS$COMMON: [CDDPLUS]PERSONNEL.ADDRESS_REC;1

(IDENTIFIER=DBA,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+
CHANGE+DELETE+CONTRDL+DPERATOR+ADMINISTRATOR)

(IDENTIFIER=WORLD,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW
+OPERATOR+ADMINISTRATOR)

CDO>

To avoid the problem of inconsistent protection schemes for definitions
that exist in both a CDO and a DMU dictionary, you can define the
protection scheme for the definition stored in your CDO dictionary to
match the DMU protection as closely as possible. You do this with
the DEFINE PROTECTION command. Chapter 2 includes a conversion
table for protection provisions when DMU record definitions are converted
to CDO format.

5.2.2 Listing Protection Provisions

To find out your access rights to a particular definition, use the SHOW PRIVILEGES
command, as shown in the following example. The SHOW PRIVILEGES command
displays your current privileges for the definition:

CDO> SHOW PRIVILEGES FDR FIELD HOME_PHONE

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

HOME_PHONE;1
(IDENTIFIER=[20,EVELYN] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+CHANGE)

CDD>

The SHOW PROTECTION command displays the complete ACL for the specified
definition:

CDO> SHOW PROTECTION FOR FIELD CDD$TOP.PERSDNNEL.HOME_PHONE

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

HOME_PHONE;1
(IDENTIFIER=[DBA] ,ACCESS=READ+WRITE+MODIFY+ERASE+CONTROL+SHOW+DEFINE+CHANGE)
(IDENTIFIER=[20,EVELYN] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+CHANGE)
(IDENTIFIER=[20,*] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE)

You cannot display the ACL for a dictionary definition on a remote node.

Protecting Your Dictionary 5-9

5.3 Protecting Dictionary Definitions

CDO protects individual CDO dictionary definitions with the default ACL. You need
CONTROL access to a dictionary definition to be able to add or change entries in
the ACL.

As previously discussed, an ACL consists of a list of entries each specifying access
rights for one or more UICs. The entries are numbered and prioritized according to
their position in the ACL; for example, the first ACE in the list is number 1, the
second in the list is number 2, and so on. The relative position of an ACE is as
significant in CDO as it is in VMS. CDO searches the entries of user identification
criteria in order, and stops searching as soon as it finds a match.

You can add an entry to the history list for a definition with the AUDIT attribute in
the DEFINE PROTECTION, CHANGE, and DELETE PROTECTION commands.

5.3.1 Adding New Access Control Entries

You can create new entries in the ACL for a dictionary definition with the DEFINE
PROTECTION command in the CDO environment, providing that you have
CONTROL access rights. This command defines an ACE for one or more UICs
to be positioned in the ACL for a specified dictionary· definition. You include the
following parameters with the DEFINE PROTECTION command:

• The type of definition you are protecting

• The name of the dictionary definition you are protecting

• The position of the ACE you are specifying

• One or more identifiers for the users whose rights you are specifying

• The specific access rights you want to grant or deny

For example, the following DEFINE PROTECTION command:

1. Grants SHOW and DEFINE access to the record definition ADDRESS for the
user with the identifier [SECRET ARIES,SUSAN].

2. Inserts the new access entry as the second ACE, using the POSITION 2 qualifier.

3. Makes the original second ACE the new third ACE, since there were originally
only two ACEs.

5-10 Protecting Your Dictionary

'Show previous protection
COO> SHOW PROTECTION FDR RECORD ADDRESS

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

ADDRESS;!
(IDENTIFIER=[CDD,5] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[12,5] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)

'Define a new ACE
CDO> DEFINE PROTECTION FOR RECORD ADDRESS
cont> POSITION 2 IDENTIFIER [SECRETARIES.SUSAN]
cont> ACCESS SHOW+DEFINE.
' New protection
CDO> SHOW PROTECTION FOR RECORD ADDRESS

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

ADDRESS;!
(IDENTIFIER=[CDD,5] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[SECRETARIES,SUSAN] ,ACCESS=SHOW+DEFINE)
(IDENTIFIER=[12,5] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)

CDO>

An optional AFTER clause allows you to specify which ACE the new entry is to
be inserted after. In the AFTER clause, you specify the previous ACE with an
identifier, not a position. When you specify an AFTER clause, you cannot also
specify a POSITION clause. For example, the following command creates a new
ACE for the field definition RATE and specifies that the new entry is to be placed
after the ACE with the identifier [21,12]:

! Show current protection
CDO> SHOW PROTECTION FDR FIELD RATE

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

RATE;1
(IDENTIFIER=[CDD,5] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[21,12] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)

!Define a new ACE
CDO> DEFINE PROTECTION FOR FIELD RATE AFTER [21,12]
cont> IDENTIFIER [30,13]
cont> ACCESS NONE.
! New protection
CDO> SHOW PROTECTION FDR FIELD RATE

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

RATE;1
(IDENTIFIER=[CDD,5] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[21,12] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)
(IDENTIFIER=[30,13] ,ACCESS=NONE)

CDO>

Protecting Your Dictionary 5-11

Compatibility Note

You cannot change the protection for a DMU definition from the CDO
environment. However, you can display the protection scheme for DMU
definitions from CDO with the SHOW PROTECTION command. CDO
translates DMU access rights into the equivalent CDO rights for the
display. For more information, see Section 2.2.2.

The following example defines an ACE for the dictionary definitions RATE and
SALARY that is to be positioned after the entry associated with the group of users
[EXECS,*]. CDO allows SHOW and DEFINE access only when the user [JOHN]
accesses the dictionary in batch mode.

CDO> DEFINE PROTECTION FOR FIELD RATE,SALARY AFTER [EXECS,*]
cont> IDENTIFIER [JOHN]+[BATCH]
cont> ACCESS SHOW+DEFINE.
CDO>

Note

When you do not specify the position or the identifier for the new ACE,
CDO places it in the first position by default. Because the first ACE is
usually a powerful one, you should be careful that you do not create a new
first ACE by mistake.

No position is included in the following command, so CDO creates a new first entry
for the field definition YEAR_ TO_DATE. As the default, ACL already had two
entries (in positions one and two), the new ACE moves the original first entry into
second position, and the original second entry into third position.

5-12 Protecting Your Dictionary

! Previous protection
CDO> SHOW PROTECTION FOR FIELD YEAR_TO_DATE

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

YEAR_TO_DATE;l
(IDENTIFIER=[CDD,5],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTRDL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[21,12] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)

!Define the new ACE
CDO> DEFINE PROTECTION FOR FIELD YEAR_TO_DATE
cont> IDENTIFIER [12,*]
cont> ACCESS CONTROL.
' New protection
CDO> SHOW PROTECTION FOR FIELD YEAR_TO_DATE

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

YEAR_TO_DATE;1
(IDENTIFIER=[12,*] ,ACCESS=CONTROL)
(IDENTIFIER=[CD0,5] ,ACCESS=READ+WRITE+MDDIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTRDL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[21,12] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)

CDO>

When you specify a position number that is higher than the last ACE in the ACL,
CDO places the new entry in the last position possible in the list. For example, the
following command defines the tenth ACE for field V AC__DA YS in the BENEFITS
directory. Since there are only two entries in the ACL for the specified field defini­
tion, CDO places the new ACE third.

CDO> DEFINE PROTECTION FOR FIELD BENEFITS.VAC_DAYS
cont> POSITION 10 IDENTIFIER [DOC,SUE] ACCESS ALL.
!Show new ACL
CDO> SHOW PROTECTION FOR FIELD BENEFITS.VAC_DAYS

Directory SYS$COMMON: [CDDPLUS]PERSONNEL.BENEFITS

VAC_DAYS;1
(IDENTIFIER=[CDD,5],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[21,12] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)
(IDENTIFIER=[DOC,SUE],ACCESS=ALL)

CDO>

You can use wildcards to define the protection for all of the definitions in a particular
directory. The following command defines the fourth ACE for all versions of all
record definitions in the BENEFITS directory:

CDO> DEFINE PROTECTION FOR RECORD BENEFITS.*;* POSITION 4
cont> IDENTIFIER [PERSONNEL,*] ACCESS SHOW.
CDO>

Protecting Your Dictionary 5-1 3

The previous command defines the protection for all existing definitions in the
BENEFITS directory. CDO does not apply this as a default protection scheme for
any new definitions created in this directory.

If you define a new ACE with an identifier that matches the identifier in
an existing ACE, CDO deletes the original ACE for that identifier and cre­
ates a new ACE with the rights and position you specify in the DEFINE
PROTECTION command. To change the privileges for an identifier in an
existing ACE, use the CHANGE PROTECTION command, as shown in
Section 5.3.2.

5.3.2 Changing Access Control Entries

You can modify your protection scheme for particular definitions with the CHANGE
PROTECTION command, providing that you have CONTROL access rights. The
new access control rights you specify do not replace the old; instead, they are
combined with the old set of rights to produce a new set.

The CHANGE PROTECTION command allows you to alter an ACE that already
exists; only the DEFINE PROTECTION command allows you to create new ACL
entries. With the CHANGE PROTECTION command, you can identify the ACE
either by position or by identifier.

When neither the position nor an identifier is specified with the CHANGE
PROTECTION command, CDO makes the change to the first ACE by
default. It is always safer to identify the ACE you want to change than to
risk altering the first ACE by mistake.

The following command changes the fourth ACE in the ACL list so that the user has
no access to the field definition FIRST_NAME. A new ACE is not created, and the
current fourth ACE is changed.

CDO> SHOW PROTECTION FOR FIELD FIRST_NAME

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

5-14 Protecting Your Dictionary

FIRST_NAME; 1
(IDENTIFIER=[CDD,5] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[21,12] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)
(IDENTIFIER=[21,19] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)
(IDENTIFIER=[21,*] ,ACCESS=SHOW)

!Change the fourth ACE
!

COO> CHANGE PROTECTION FOR FIELD FIRST_NAME 4
cont> ACCESS NONE.

!List changed protection
!
COO> SHOW PROTECTION FOR FIELD FIRST_NAME

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

FIRST _NAME; 1
(IDENTIFIER=[CDD,5] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+

CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[21,12] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)
(IDENTIFIER=[21,19] ,ACCESS=SHOW+DEFINE+CHANGE+DELETE)
(IDENTIFIER=[21,*] ,ACCESS=NONE)

COO>

The following command changes the ACE identified by [CDD,HALVORSON] so
that the user has CONTROL access to the field definition DEPENDENTS. Unlike
DEFINE PROTECTION, the CHANGE PROTECTION command does not use the
IDENTIFIER keyword.

COO> CHANGE PROTECTION FOR FIELD DEPENDENTS
cont> [COD.HALVORSON]
cont> ACCESS CONTROL.
COO>

The following command changes the third ACE so that the user only has SHOW
access to the field definition CONTRACT.BADGE_NO:

CDO> CHANGE PROTECTION FOR FIELD CONTRACT.BADGE_NO 3
cont> ACCESS NOALL+SHOW.
COO>

Remember that the order of the entries in the ACL determines priorities in the
protection scheme. Always take special care in ordering the entries within your
ACLs.

Protecting Your Dictionary 5-15

5.3.3 Deleting Protection Provisions

You can delete an ACE or a complete ACL with the DELETE PROTECTION
command, providing that you have CONTROL access rights. To delete an entry
from the ACL for a definition, identify the entry you want to delete by specifying
the position or identifier for the ACE. The optional /LOG qualifier causes CDO to
display a message indicating success when the ACE is deleted. For example:

COO> DELETE PROTECTION /LOG FOR RECORD EMPLOYEE_REC 3.
%CDO-I-PROTDEL, specified protection on entity
SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_REC;1 deleted
CDO>

To delete every entry in an ACL, do not specify a position or identifier with
the DELETE command. The following command deletes the complete ACL for
EMPLOYEE_REC:

COO> DELETE PROTECTION /LOG FOR RECORD EMPLOYEE_REC.
%CDO-I-PROTDEL, specified protection on entity
SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_REC;1 deleted

!List changed protection
!
CDO> SHOW PROTECTION FOR RECORD EMPLOYEE_REC

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

EMPLDYEE_REC;1
COO>

You should exercise caution when deleting complete AC Ls. If the ACL for a dictio­
nary definition is deleted, then that definition has no associated protection provisions
and all users have full access to it.

5.3.4 Protecting Interrelated Definitions

When a user has conflicting access rights to definitions, CDO always selects the most
restrictive protection provisions. For example, the field definition GIVEN _NAME
is based on the definition of field FIRST_NAME. GIVEN_NAME is contained
in the record FULL_NAME. If you have SHOW access to the record definition
FULL_NAME, but no access to FIRST_NAME, CDO denies you SHOW access to
FULL _NAME. CDO issues an error message if you attempt to view the attributes of
the protected field definition with the SHOW command. You can, however, list the
name of the protected field definition with the DIRECTORY command.

5-1 6 Protecting Your Dictionary

If a record definition contains four fields and you have access to the record but only
three of the fields, CDO issues an error message in response to the SHOW RECORD
command. You can, however, list the record contents with the DIRECTORY
command.

Note

When you have no access rights, or access to only part of a definition, you
should be careful when you access the definition from another product,
such as DATATRIEVE or one of the VAX languages. For example, if you
attempt to include a record definition in a language program when you
have access to only four out of five field definitions, the included record
definition will be incomplete.

5.3.5 Accessing Remote Dictionary Definitions

You should use a proxy account for remote access. When proxy accounts are used,
the dictionary definition's ACL need not grant SHOW access to all users. For
information about setting up proxy accounts, see the Guide to VAX/VMS System
Security.

A remote CDO dictionary user with no proxy account is represented on the target
node as the user DECNET with the UIC DECNET. You can limit remote access to
dictionary definitions in two ways:

• If you specify ACCESS=NONE for the identifier DECNET, users on other nodes
who do not have proxy accounts will be denied access.

• If you specify ACCESS=NONE for the identifier SYS$REMOTE, all users on
other nodes are denied access to the dictionary definition over DECnet whether
or not they have a proxy account.

You cannot display the entire ACL for a dictionary definition on a remote node: you
can show the protection but not the privilege.

Protecting Your Dictionary 5-17

5.3.6 Protecting Your Dictionary from Corruption

The CDO security facilities are a safeguard against unauthorized access to the
dictionary. These facilities are not guaranteed to prevent deliberate attempts to
corrupt a dictionary.

For security reasons, you should be wary of granting DELETE or CONTROL
access rights to dictionary users. CONTROL should be granted only to the data
administrator, the system manager, and users with personal directories. Remember
also that CDO and VMS file security provisions can be overridden by any user
with VMS BYPASS or SYSPRV privileges. In general, you should grant users the
minimum privileges they need to work in their portions of the dictionary.

CDO dictionaries are protected by Rdb/VMS locking mechanisms in addition
to access control lists. CDO uses these mechanisms to protect your dictionary
definitions from simultaneous updates. When a user is modifying a dictionary
definition, another user cannot modify the same definition until the first user
finishes, regardless of the user's access rights. Rdb/VMS also protects your dictionary
in the event of a system failure during modification of the dictionary. Chapter 6
discusses dictionary integrity in greater detail.

5-18 Protecting Your Dictionary

Managing Dictionary Usage and Change 6

This chapter shows you how to monitor dictionary usage and control changes. Other
management issues are discussed, such as verifying the status of the dictionary and
improving dictionary performance.

6.1 Tracking Dictionary Usage

This section shows you how CDD/Plus keeps track of CDO dictionary usage. In the
CDO environment, you can browse through your dictionary to monitor and analyze
dictionary usage. Knowledge of how your dictionary is used can help you:

• Evaluate when a directory structure is overloaded

• Evaluate how far-reaching a change to a definition will be

• Decide when definitions become obsolete

• Decide when definitions should be purged

• Restructure your dictionary hierarchy

Managing Dictionary Usage and Change 6-1

6.1.1 Using the SHOW Commands

CDD/Plus provides you with information about the relationships between the
definitions you store in CDO dictionaries. Table 6-1 summarizes these commands.
Examples of the commands are provided in the following sections. For details of
command syntax and qualifiers, see VAX CDD/Plus Common Dictionary Operator
Reference Manual.

Table 6-1: Summary of Usage Tracking Commands

Command Tracking Function

SHOW MESSAGES Displays any of four kinds of messages attached to the specified
definition. The message indicates that the specified element
might be invalid because of a recent change to a related defi-
nition, that the specified definition is invalid because a related
element was changed or deleted, that the specified definition
might be invalid because a relationship whose owner is related to
the element was changed, or that a new version of a related ele-
ment exists. Supporting software products can read the message
and generate a warning to the user.

SHOW UNUSED Displays entity definitions that are not used by any other
definition. This helps you decide when it is safe to purge or
delete dictionary definitions.

SHOW USES Displays all of the entity definitions that use the specified
definition. This helps you to consider the impact of changing the
definition by creating a new version.

SHOW USED-13Y Displays the definitions that are used by the specified definition.

SHOW WHAT_IF Displays a listing of the dictionary definitions that would be
flagged with a message after a definition is changed with the
CHANGE command. This helps you to consider the impact of
changing the original definition.

You can use optional qualifiers with the SHOW USES, SHOW UNUSED, SHOW
USED-13Y, and SHOW WHAT_IF commands to display various levels of usage:

• The /BRIEF qualifier allows you to display only those entities that are directly
related to the specified entity.

• The /FULL qualifier allows you to display all database entities that are directly
or indirectly related to the specified entity. Related entities include those that
own the specified entity as well as those owned by that entity.

6-2 Managing Dictionary Usage and Change

• The I ALL qualifier allows you to display all of the entities shown by the /FULL
qualifier plus the history list and system information, such as create/modified
time and protection, for the specified entity.

• The /TYPE qualifier allows you to display only entities of a specified protocol
type (such as field or record). You can use /TYPE with any of the other three
qualifiers to limit output.

The default is for CDO to display only one level of usage (/BRIEF). For full details
of the optional qualifiers, see the VAX CDD/Plus Common Dictionary Operator
Reference Manual.

CDO keeps track of all definitions and sources that use, or are used by, a particular
definition. You can list these dependencies with the SHOW USES and SHOW
USED_BY commands. In the following example, the SHOW USES command
displays the definitions that use the record definition FULL_NAME; the SHOW
USED_BY command displays all definitions that are used by the record definition
FULL_NAME.

CDO> SHOW USES FULL_NAME
Owners of SYS$COMMON: [CDDPLUS]PERSONNEL.FULL_NAME;1
I SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_NAME
I I via CDD$DATA_AGGREGATE_CONTAINS
I SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_REC
I I via CDD$DATA_AGGREGATE_CONTAINS

CDO> SHOW USED_BY FULL_NAME
Members of SYS$COMMON: [CDDPLUS]PERSONNEL.FULL_NAME;1

SYS$COMMON: [CDDPLUS]PERSONNEL.FIRST_NAME
I via CDD$DATA_AGGREGATE_CONTAINS
SYS$COMMON: [CDDPLUS]PERSONNEL.MIDDLE_INIT
I via CDD$DATA_AGGREGATE_CONTAINS
SYS$COMMON: [CDDPLUS]PERSONNEL.LAST_NAME
I via CDD$DATA_AGGREGATE_CONTAINS

CDO>

(Type RECORD)

(Type RECORD)

(Type FIELD)

(Type FIELD)

(Type FIELD)

The SHOW USES, SHOW USED-13Y, SHOW MESSAGES, and SHOW WHAT_
IF commands display only definitions stored in CDD/Plus dictionary format.

Managing Dictionary Usage and Change 6-3

6. 1 .2 Generating Messages by Changing Definitions

CDD/Plus provides an automatic message system that communicates information
about changing definitions. Whenever you change a dictionary definition, you
potentially affect any other definitions or sources that use the definition. You must
decide if sources can use the original or the latest version of a definition. A change
or a new version of a definition can potentially affect all definitions that use it.

To recap, CDD/Plus provides you with two ways to change CDO definitions:

• You can define a new version and allow users to accommodate the change over a
period of time.

• You can change the original definition and cause users to automatically include
the change at compilation time.

The changes you make with the CHANGE command:

• Are automatically included in dictionary definitions that use the changed
definition.

• Are automatically included in all remote copies of the changed definition.

• Are not automatically copied to external copies of dictionary definitions, such as
database copies. (You must explicitly integrate changed dictionary definitions
into the database to resolve any inconsistencies (see Chapter 7).)

• Generate messages only to entities that represent objects with external
dependencies.

New versions created with the DEFINE command:

• Are never automatically included in the definitions that use them.

• Generate messages to all users of the previous version of the definition.

Consider that a field definition RATE is used in record definition SALARY_REC
and is also used in an Rdb/VMS database PERSONNEL. Consider also that
SALARY_REC is included in the record EMPLOYEE_REC. When you change
RATE with the CHANGE command, the database PERSONNEL is flagged with
a message about the change when the database is next invoked. SALARY-REC
and EMPLOYEE-REC both include the changed definition of RATE; therefore, no
message is attached to those record definitions. However, if a new version of RA TE
is created with the DEFINE command, the new version is not automatically included
in other definitions; therefore, all dependent dictionary definitions are flagged with a
message.

6-4 Managing Dictionary Usage and Change

Regardless of whether the changes were made with the DEFINE or the CHANGE
command, external copies of the dictionary definitions in the PERSONNEL database
are neither changed nor flagged with a message by the dictionary; only the dictionary
definition of the database itself is flagged with a message about the inconsistency.
For example, when an audit line is added to the existing definition of the field RATE,
CDD/Plus notifies the user that the field is part of the database PERSONNEL, and
that dictionary definition of RA TE is now inconsistent with the definition of RA TE
in the external copy of the database PERSONNEL:

CDO> CHANGE FIELD RATE
cont> AUDIT IS/* INSERT NEW PAY RATE HERE*/.
%CDO-I-DBMBR, database SYS$COMMON: [CDDPLUS]PERSONNEL;l
may need to be INTEGRATED

When you consider changing a definition, you need to know:

• which other entities use the definition

• which entities automatically include changes

• which entities will be flagged with a message if an inconsistency occurs

Any product that supports CDD/Plus can read messages that are attached to CDO
definitions. For example, when you try to use a CDO definition from your Rdb/VMS
database, Rdb/VMS generates a warning if it encounters a message attached to the
definition. The message is a signal to you that the dictionary definition you are
accessing has been altered in some way.

RDO> INVOKE DATABASE PATHNAME 'SYS$COMMON: [CDDPLUS]PERSONNEL'
%CDD-I-MESS, entity has messages

To find out which dictionary definitions would be flagged with a message if a defini­
tion were to be changed with the CHANGE command, use the /FULL qualifier with
the SHOW WHAT_IF command. For example, if the field definition
SIMPLE_LIST were to be changed with the CHANGE command, the records that
use it would not be flagged with a message because the records automatically include
the changed field; however, any Rdb/VMS database would be flagged with a message
because the database is not automatically updated by the dictionary.

The following command displays a listing of the the dictionary definitions that would
be flagged with a message if SIMPLE_LIST were to be changed with the CHANGE
command. Remember that when a new version of a definition is created with the
DEFINE command, all definitions that use the definition are flagged with a message;
these definitions are not displayed by the SHOW WHAT_IF command.

Managing Dictionary Usage and Change 6-5

COO> SHOW WHAT_IF /FULL SIMPLE_LIST

Owners of SYS$COMMON: [COOPLUS]SIMPLE_LIST;1

COO>

SYS$COMMON: [COOPLUS]PERSONNEL (Type: C00$0ATABASE)
I via C00$0ATABASE_SCHEMA
SYS$COMMON: [COOPLUS]PERSONNEL (Type: C00$0ATABASE)
I via C00$0ATABASE_SCHEMA

Entities that are not represented in the dictionary at all (such as a language pro­
gram) can still use dictionary definitions. Copies of dictionary definitions in these

· external entities are neither changed nor flagged with a message by the dictionary;
only entities that are represented in the dictionary can be changed or flagged with
messages.

Note

Remember that messages are passive place markers; they do not automati­
cally change, recompile, or update definitions. They indicate that you may
need to take action to accommodate changes.

6.1.3 Accessing Messages about Changes

CDD/Plus messages communicate information about a change to a CDO dictionary
definition to definitions that use it. Any product that supports CDD/Plus can read
messages that are attached to CDO definitions. The message is a signal to you that a
definition you access in the dictionary has been altered in some way. You may need
to change your source program and perhaps recompile it. For example, when you
next invoke the EMPLOYEES database, Rdb/VMS generates a warning that the
database and dictionary are now inconsistent. To accommodate the inconsistency,
you can issue the RDO statement INTEGRATE (see Chapter 7).

Compatibility Note ---------

If you access changed definitions from a product that does not support
the features of CDO dictionaries, you must use CDO to read or access the
warning messages.

To read messages attached to a definition; you use the SHOW MESSAGES
command. For example, to read any messages attached to the record definition
ADDRESS_REC, specify the definition name on the SHOW MESSAGES command
line as shown:

6-6 Managing Dictionary Usage and Change

COO> SHOW MESSAGES CDO$TOP.PERSONNEL.ADDRESS_REC

SYS$COMMON: [COOPLUS]PERSONNEL.AOORESS_REC;1 uses an entity
which has new versions, triggered by entity
SYS$COMMON: [COOPLUS]PERSONNEL.ZIP_COOE;1

COO>

CDD/Plus generates a message that a new version exists of ZIP_CODE;l which is
used by ADDRESS_REC.

After all the users have been warned of a change in the definition, the warning
message may become superfluous. You can delete messages with the CLEAR
MESSAGES command. For example, the following command clears the message
attached to the record definition ADDRESS_REC.

COO> CLEAR MESSAGES ADDRESS_REC
COO>

You should not clear messages from a definition until you are certain that all sources
have been altered to accommodate the changes.

If you have made a compatible change to a definition (such as merely adding text to
the DESCRIPTION clause), you may decide to clear all messages without checking
that all users have been updated. However, you should be aware that what seems like
a compatible change to you may not be seen that way by another user.
CDD/Plus considers all changes and new versions of CDO definitions to be incom­
patible changes with the exception of a change to a definition's history list.
CDD/Plus, therefore, flags all dependent uses with messages when a new version is
created.

6. 1 .4 Recompiling Application Programs

Messages are passive; it is up to you to change the source code, redefine the record,
integrate the dictionary and database, or take other appropriate action.

The VAX languages include definitions from CDD /Plus at compile time. This means
that any changes to definitions are not reflected in the programs unless they are
recompiled. A change to a definition may require a related change in the program
source code. When a source program is not recompiled, the executable code will
continue to reflect the original definitions.

If you access an Rdb/VMS database with callable RDO, messages about new versions
of definitions in the dictionary will be displayed by Rdb/VMS when you invoke the
database. For more information, see Chapter 7.

Managing Dictionary Usage and Change 6-7

Remember that if you access CDO definitions from a product that does not support
CDD /Plus, warning messages will not be issued. If this is the case, it is up to the
person who makes the change to the definition to isolate all programs that access
the changed definition, and to notify the appropriate people to make any required
changes to their sources.

When new versions have been accommodated by all users, dictionary definitions can
be removed with the PURGE or DELETE commands.

6.2 Confirming Dictionary Integrity

It is good practice to monitor the condition of your dictionary periodically. The
following sections discuss CDD/Plus journaling, making backup copies of your CDO
dictionary, and using the CDO command VERIFY.

6.2.1 Journaling

CDD/Plus protects your dictionary automatically in the event of a system or network
failure during modification of dictionary definitions. By default, CDD/Plus maintains
journal files for all dictionary transactions until each transaction is complete. This
feature allows CDD/Plus to recover when a dictionary session is aborted. When
a dictionary session has completed without interruption, CDD/Plus deletes these
journal files. When a session is aborted, CDD/Plus automatically uses the journal
files to roll back to the start of the transaction that was interrupted.

No action is required in the event of a system failure; journaling and recovery is
automatic.

6.2.2 Saving Copies of Your Dictionary

As a precaution, you should perform regular backups of each dictionary under
your control with the VMS Backup Utility. The DCL command BACKUP saves
the entire contents of the specified VMS directory that contains your dictionary.
To back up a single physical dictionary, specify the anchor with the BACKUP
command. Note that you cannot perform a backup from the CDO environment.

You should disallow all users from the dictionary before beginning the procedure.
This is commonly accomplished by backing up the dictionary at night. You can also
temporarily change the protection for the dictionary anchor to allow access only to
the database administrator.

In the following example, the SA VE_SET qualifier is used with the DCL command
BACKUP. The dictionary files in SYS$COMMON:[CDDPLUS] are written to a
save set SA VEIT .BCK on the magnetic tape mounted on drive MT AO. The second
command lists the files that were written into the save set.

6-8 Managing Dictionary Usage and Change

$BACKUP SYS$COMMON: [CDDPLUS] MIAO: :SAVEIT.BCK/SAVE_SET
$ BACKUP /LIST MTAO: : SA VEIT. BCK

When you manage more than one physical dictionary and when dictionary definitions
are interdependent, back up all of your dictionaries as closely together as possible.
This helps to eliminate inconsistencies between dictionaries. If you suspect a prob­
lem due to restoring backup copies of dictionaries, use the VERIFY command, as
described in the following section.

Cross-dictionary relationships affect two dictionaries. For example, if a dictionary
is backed up before a relationship is made to an external dictionary; the external
dictionary would be aware of the relationship but the backed up copy would not be.
After you restore a backup copy of a dictionary, you may need to verify that all rela­
tionships leaving or entering the dictionary are known by the related dictionaries. To
do this, use the /EXTERNAL_REFERENCE qualifier to the VERIFY command.
The VERIFY command is discussed in Section 6.2.3.

It is up to you to use the Backup Utility as often as you feel necessary. DIGITAL
recommends that you back up your dictionary at least once per week. For more
information about the BACKUP command, see the VMS Backup Utility Manual.

6.2.3 Verifying the Dictionary Condition

The VERIFY command scans your dictionary files to confirm that one or more dic­
tionaries are structurally correct. The /FIX qualifier repairs any detected problems.

You should use the VERIFY command in the CDO environment in the following
situations:

• When you restore backed up copies of dictionaries with interrelated definitions
or a single dictionary with external relationships

• When you move a dictionary to a new location

• When an error message indicates the need for verification

To use the VERIFY command, you must have SHOW access to the dictionary and
to any definitions that you are verifying. (To verify a cross-dictionary relationship,
you must be able to read it.)

The VERIFY command can only confirm the integrity of a dictionary, or part of a
dictionary, when no users are accessing the dictionary; therefore, you must prohibit
all use of the dictionary before issuing the command.

Managing Dictionary Usage and Change 6-9

------------ Caution

When you use the VERIFY command, the dictionary is temporarily
inaccessible to all other users. After execution, the dictionary becomes
available again. This protects the dictionary from modifications that could
potentially corrupt the dictionary again during a recovery.

The VERIFY command creates a report describing the condition of the dictionary
and lists any corrupted definitions. For example, you may have restored the files on
a different disk drive and thereby altered the dictionary anchor. The report displays
any problems discovered in the specified dictionary. The following example uses the
/LOG qualifier to show the output from the VERIFY command when no dictionary
problems have been discovered.

CDO> VERIFY /LOG SYS$COMMON: [CDDPLUS]PERSDNNEL
%CDD-I-NORECOVER, dictionary does not need recovery
COO>

You can include a search list as a parameter to the VERIFY command. This allows
you to obtain a report on all of the physical dictionaries that you manage. The
following example uses a search list to verify the status of several dictionaries. A
problem is found and repaired, as reported:

CDO> VERIFY /LOG /FIX MY_DICT
%CDO-F-ERRVERIFY, error verifying object
-COO-I-FIXED, dictionary was corrupt, has been fixed
CDO>

If you used RDO or RMU to back up your dictionary database, you can use the
VERIFY command with the /REBUILD_DIRECTORY qualifier to recover the
directory system. You can also use VERIFY /REBUILD_DIRECTORY to recover
a severely corrupted directory system that VERIFY /FIX/DIRECTORY could not
fix. If you run the VERIFY command with /REBUILD_DIRECTORY and /LOG
qualifiers, CDD/Plus provides numerous informational messages about the rebuilding
process.

6-10 Managing Dictionary Usage and Change

CDO>VERIFY/REBUILD_DIRECTORY/LOG SYS$COMMON: [CDDPLUS]PERSONNEL.
%CDD-I-NORECOVER, dictionary does not need recovery
%COD-I-REBUILD, rebuilding directory structure for SYS$COMMON: [CDDPLUS]PERSONNEL.
%CDD-I-CREDIR, the backpointer 3000000050000000A is being used to create
a new directory
%CDD-I-CREDIR, the backpointer 5000000060000000B is being used to create
a new directory

%CDD-I-FIXBKPTR, the backpointer 3000000040000000CDD$ELEMENT_TYPE is
being used to generate a new directory name
%CDD-I-FIXBKPTR, the backpointer 3000000040000000CDD$ATTRIBUTE_TYPE is
being used to generate a new directory name

%COD-I-FIXED, dictionary was corrupt, has been fixed

If you use the /NOLOG qualifier with the command above, the message display
omits some of the informational messages, and begins with the %CDD-I-FIXBKPTR
messages.

Caution

DIGITAL recommends that you back up your dictionary before using the
/REBUILD_DIRECTORY option. You should use the
/REBUILD_DIRECTORY option only when corruption is so severe that
all other options fail.

Table 6-2 describes the functions of the various qualifiers to the VERIFY command.

Managing Dictionary Usage and Change 6-11

Table 6-2: Qualifiers to the VERIFY Command

VERIFY
Qualifier Explanation

/ALL Causes all verification options except /REBUILD_DIRECTORY to be
performed1

/DIRECTORY Confirms that every directory name corresponds to a dictionary def­
inition; directory names that do not refer to actual definitions are
deleted

/EXTERNAL_ Checks all relationships that leave or enter the dictionary and verifies
REFERENCE that the other dictionary knows about them; use after a dictionary

backup

/FIX

/LOCATION

/LOG

/ORPHANS

/REBUILD_
DIRECTORY

Repairs detected problems

Determines the VMS directory that contains the dictionary and verifies
or corrects all pointers to the dictionary from external sources; use after
a dictionary. is moved or copied (see Section 6.2.4)

Displays all success, informational, and error messages

Confirms that all definitions are named or owned by other definitions;
missing names are created and definitions with no name and no owner
are named and placed in CDD$0RPHANS

Causes all directory files for the specified anchor to be deleted and
recreated; use to recover severely corrupted directory system after a back
up with RDO or RMU

1The /ALL qualifier does not include /REBUILD_DIRECTORY because
/REBUILD_DIRECTORY always causes the entire directory to be rebuilt: it does not
only fix what is corrupt.

If you have interrelating definitions in two or more dictionaries, special action may
be required after a dictionary has been backed up and recovered, or when a node has
been unavailable for a long period of time.

When dictionary definitions use or are used by definitions on a remote node, it is
possible that parts of the dictionary on the local node can be locked. For example,
consider that record definition X on a dictionary in LOCALl uses field definition A
on REMOTE!. A user changes field definition A on REMOTE! with the CHANGE
command (changes the original definition). The dictionary on REMOTE! attempts
to copy the new definition to LOCALl. While the transaction is being committed,
the system on REMOTE! fails. Until the REMOTE! system is running again, some
definitions in the dictionary on LOCALl may be locked against change or use in
other definitions.

6-12 Managing Dictionary Usage and Change

6.2.4 Changing the Location of a Dictionary

You should not move a dictionary without forethought. Dictionary definitions that
use or are used by definitions in other dictionaries must refer to them with a fully
qualified name including node, disk, and VMS directory names. Therefore, when you
move a dictionary, you potentially invalidate any references to the dictionary from
other dictionaries. If you use concealed device logicals, you can avoid problems when
moving disks.

To move a dictionary, use the MOVE DICTIONARY command in the CDO en­
vironment. The MOVE DICTIONARY command resolves all pointers to the old
dictionary location so that the new location is indicated. The target location must be
a VMS directory that contains no files.

------------ Caution

When you use the MOVE DICTIONARY command, you must specify the
entire name, including device and directory pathname, of both location
and target files. If you specify only directory names, you could lose an
entire VMS directory.

The following command moves the dictionary at SYS$COMMON:[CDDPLUS] to
DISK$01:[CORPORATE.MIS]:

CDO> MOVE DICTIONARY SYS$COMMON: [CDDPLUS]
cont> TO DISK$01: [CORPORATE.MIS].
COO>

If the dictionary you are moving contains definitions that are related to definitions
in a remote dictionary, the MOVE DICTIONARY command can only resolve these
references if the network link is viable at the time of execution. If the network link
is not viable, the MOVE DICTIONARY command fails and you must retry the
operation.

If you change the location of a dictionary without the MOVE DICTIONARY
command, you must use the VERIFY command with the /FIX and /LOCATION
qualifiers to resolve the pointers.

Managing Dictionary Usage and Change 6-13

6.3 Enhancing Dictionary Performance

While dictionary performance is a prime concern, it should be considered along
with other dictionary management issues, such as security and accessibility. Do you
need contiguous space for files? Do you prefer a small number of elements in each
directory? As the dictionary administrator, you must decide on the priorities so that
your dictionary can best meet the needs of your own organization.

6.3.1 Removing Unused Definitions

Your dictionary will perform better if unused definitions are deleted from the dic­
tionary. You can remove unused definitions from your dictionary with the PURGE
and DELETE commands, as described in Chapter 4. Note that to delete or purge
definitions on a remote CDO dictionary, the network link between the local and the
remote node must be viable.

You can use the SHOW UNUSED command to isolate definitions that are not used
by any other definition. For example, the following command displays all definitions
stored in the BENEFITS directory that are not used by any other entities in the
dictionary:

CDO> SHOW UNUSED [CDDPLUS]PERSONNEL.BENEFITS.*

SYS$COMMON: [CDDPLUS]PERSONNEL.BENEFITS.LAST_ZIP;1
SYS$COMMON: [CDDPLUS]PERSONNEL.BENEFITS.NEW_RATE;1
CDO>

(TYPE FIELD)
(TYPE FIELD)

You may also choose to delete or change definitions that require large amounts of
space. You can find out the relative amount of storage that CDO definitions require
with the DIRECTORY/FULL command. (CDD/Plus uses Rdb/VMS to compress
CDO dictionary definitions.)

You need DELETE access to dictionary definitions to purge or delete them. By
default, only the owner of a definition has the right to delete it; however, the default
protection can be changed by a user with CONTROL access. Note that the ERASE
access right is associated only with the protocol definition; only DELETE access
allows you to delete or purge definitions.

6-14 Managing Dictionary Usage and Change

6.3.2 Deleting a Dictionary

To delete a complete dictionary, first make sure that the dictionary definitions are
not used by entities external to the dictionary.

When CDD/Plus deletes a complete dictionary, all files in the anchor directory are
deleted. You should store only files created by CDD/Plus in a VMS directory that is
dedicated to a dictionary. If you do store other files in the VMS directory, these files
are deleted when you delete the dictionary.

If you delete the compatibility dictionary, you cannot read DMU definitions from
CDO.

6.3.3 Structuring Your Dictionary

You may have special needs in your organization, such as security or maintenance
requirements, that indicate a need for multiple dictionaries rather than one. CDD
/Plus manages complex dictionary structures efficiently. However, a large number of
dictionaries can be difficult to manage. An alternative is to create organizational or
personal directories within a single dictionary.

You should avoid creating a large number of directories immediately below the
dictionary origin because this can cause unnecessary locking problems and may
reduce performance. Rather, you should create a minimum of directories under the
anchor directory and create personal or departmental directories at the next level.
Figure 6-1 illustrates a hierarchy with several departmental directories two levels
below the dictionary origin.

6.3.4 Improving Dictionary Performance over a Network

Maintaining several dictionaries that are distributed over a network offers several
advantages in security and accessibility.

Because CDD/Plus uses local copies of CDO dictionary definitions, performance
when accessing relationship members is not affected adversely by network issues.
Transactions that perform retrieval operations over a network are fast. However,
interrelating definitions spread over many remote dictionaries can affect the speed
of transactions that involve changing, deleting, or creating new versions of related
definitions. Change and delete operations are also dependent on a viable network
link.

Managing Dictionary Usage and Change 6-15

Figure 6-1: Placing Directories in Your Dictionary

CDD$TOP

CORPORATE PERSONNEL

SERVICE ST AND ARDS

INVENTORY CUSTOMERS EMPLOYEES

ZK-7583-HC

6-16 Managing Dictionary Usage and Change

Using VAX Rdb/VMS with VAX COD/Plus 7

This chapter provides information about using CDD /Plus to create, change, and
track the usage of dictionary definitions that may be shared by multiple Rdb/VMS
databases. It discusses concurrent use of Rdb/VMS and CDD/Plus.

The features of CDD/Plus described in this chapter are available only for the
definitions stored in CDO dictionary format. You can create dictionary definitions in
a CDO dictionary when you use:

• CDO

• The CDD/Plus call interface

• RDO (Relational Database Operator)

Since dictionaries that are manipulated using the DMU Utility (DMU dictionaries)
do not provide the features described in this chapter, information about converting
definitions from DMU to CDO format is provided.

This chapter assumes that you are familiar with the dictionary concepts discussed in
Chapter 1 and Chapter 3 of this manual and the basic concepts of Rdb/VMS.

Using VAX Rdb/VMS with VAX COD/Plus 7-1

7 .1 Introduction to Using COD/Plus with Rdb/VMS

Rdb/VMS is a relational database product that supports the features of CDO dic­
tionaries. When you create CDO dictionary definitions for your database, other
databases (and potentially other products) can share the same definitions. Storing
definitions in one central repository helps to reduce redundancies. More importantly,
sharing common dictionary definitions provides consistency of definitions across the
databases and other software products as you develop an application.

Using CDD/Plus to store definitions in a CDO dictionary for your RdbNMS
database allows you to:

• Define fields and relations in your database based on dictionary definitions

• Share standard definitions among several databases

• Analyze the impact of changing shared definitions

In CDO dictionaries, CDD/Plus keeps track of all users of a particular dictionary
definition. You can easily analyze the effects of changing a definition that is used
throughout your application. Whenever a dictionary definition is changed, a mes­
sage about the change is attached to the dictionary description of any RdbNMS
databases that use the definition.

When you invoke an Rdb/VMS database, Rdb/VMS informs you if a message about
a dictionary change is attached to the database. You can read the message from
the CDO utility. Messages warn you that dictionary definitions may be inconsistent
with database definitions. In this way, standard definitions can be created and
maintained in a CDO dictionary, replicated in any number of Rdb/VMS databases,
and potentially shared by other applications.

Figure 7 -1 illustrates how CDO dictionary definitions can be shared by a prototype
database, a production database, a read-only copy of the production database, and
end-user applications.

7-2 Using VAX Rdb/VMS with VAX COD/Plus

Figure 7-1: Sharing Dictionary Definitions Among Database Products

Prototype
of

Database

Production
Database

coo
Dictionary
Definitions

Query
Application

Read-Only Production
Database

ZK-7584-HC

7 .1 .1 Who Should Create Definitions in COO?

You will benefit from creating and maintaining your data definitions in CDO if:

• You are developing an application where data definitions are shared among
databases (and potentially other supporting products)

• You need to track the definitions that are shared among databases

• You require some measure of centralized control

• You anticipate that shared definitions will be changed

Creating definitions in the dictionary provides you with analysis tools and a method
of controlling your shared definitions. However, not all applications benefit equally
from these provisions. You need not create data definitions in the dictionary if:

• Your data definitions are specific to a single application

• No centralized control is required

Using VAX Rdb/VMS with VAX COD/Plus 7-3

If you are developing an application where data definitions are not shared among
different storage sources and products, you may still choose to store definitions in the
dictionary for completeness or for pieces tracking within that application.

Note

If you currently use Rdb/VMS with other products that do not support the
features of CDO dictionaries, you should ensure that shareable definitions
are created in your compatibility dictionary. For more details about
supporting products and the compatibility dictionary, see Chapter 2.

7.1.2 Moving Between the RDO and COO Utilities

You can create subprocesses and attach to them from both CDO and RDO. For
example, from the CDO utility, you can use the SP AWN command to create a
subprocess and invoke the RDO utility. In the subprocess from RDO, you can
proceed to enter statements at the RDO > prompt. When you need to return to
the CDO utility, you can use the $ATTACH statement at the RDO> prompt and
specify the name of your original process. Remember to use the RDO statement
COMMIT or ROLLBACK before leaving RDO so that you do not lock dictionary
definitions.

You should be aware that RDO creates an additional subprocess each time you issue a
$ATTACH statement. Therefore, you may quickly exceed your quota of subprocesses
if you continue to issue the $ATTACH statement from RDO. A workaround exists
to avoid running out of subprocesses. When you want to reattach to the process
running the RDO statement $ATTACH, you must specify the second process name
and not the first.

In the following example, the original process name is ACCOUNT. From CDO, a
subprocess ACCOUNT_l is spawned to invoke RDO. From RDO, the $ATTACH
statement is used to attach to the original process ACCOUNT. However, to reattach
to the process running RDO, the secondary process name, ACCOUNT_2, is specified.

7-4 Using VAX Rdb/VMS with VAX COD/Plus

(

CDO> !
CDO> !Spawn out of CDO and invoke ROD
CDO> !
CDO> SPAWN $RDO

RDO> !
RDO> !Commit transactions before attaching to COO process again
RDO> !
RDO> COMMIT
RDO> I

RDO> !Return to original process
ROD> !
RDO> $ATTACH ACCOUNT
CDO>

CDO> I

CDO> 'Reattach to the secondary subprocess created by the $ATTACH statement
CDO> !
CDO> ATTACH ACCOUNT_2
RDO>

RDO> COMMIT
RDO> $ATTACH ACCOUNT
CDO>

CDO> ATTACH ACCOUNT_2
RDO>

The following sections discuss how to proceed when you have a large application
that uses the dictionary to track definitions that are used in more than one storage
location.

7 .2 Creating a Database with Shareable COO Definitions

When you define a new Rdb/VMS database, you can optionally specify a dictionary
directory where a description of your database is stored. You can create more than
one database in the same dictionary directory. This allows you to share definitions
among several databases and thereby reduce redundancies. As no two objects in the
same dictionary directory can have the same name (except different versions of the
same definition), storing the definitions for several databases in the same CDD/Plus
directory encourages sharing rather than duplication.

Using VAX Rdb/VMS with VAX COD/Plus 7-5

The following list shows the recommended procedure to follow when you intend to
share dictionary definitions among two or more new databases, or more than one
supporting product: /

1. Define the fields and records that you expect to be shared from the CDO utility
with the screen editor or with the DEFINE FIELD and DEFINE RECORD
commands, (Section 7.2.1).

2. Define your database with the RDO statement DEFINE DATABASE and create
a description of it in the dictionary (Section 7.2.3).

3. Include the shareable CDO definitions into the database with the RDO statement
DEFINE ... FROM PATHNAME (Section 7.3).

4. Complete your database design with RDO statements to create views, indices,
and constraints (Section 7.3.4).

5. Load and test your database with data, as discussed in the Rdb/VMS
documentation.

6. Analyze the impact of changes to definitions with the CDO pieces tracking
commands (Section 7.4.3).

7. Make necessary changes to dictionary definitions with CDO commands or RDO
statements (Section 7.4).

8. Integrate your changed dictionary definitions with the copies in the database
(Section 7.4).

9. When necessary, repeat step 7, followed by step 8.

Setting up a database requires you to consider many issues that are beyond the scope
of this manual. For more information about designing a database, see the VAX
Information Architecture manual, Introduction to Database Development, and the
VAX Rdb/VMS Guide to Database Design and Definition.

7 .2.1 Defining Entities in COO

For applications to share the same definitions, you should first create these defini­
tions in a CDO dictionary. Dictionary definitions created in the CDO utility can
be shared among the various applications that use them. You can create definitions
in CDO with the screen editor or with the CDO command DEFINE. Section 3.4
describes the CDO editor; examples of the DEFINE command are provided in
Chapter 4 and in this chapter.

G Using VAX Rdb/VMS with VAX COD/Plus

\

The examples in this chapter assume that specified dictionary definitions are con­
tained in the compatibility dictionary; therefore, CDD$TOP is used as the dictionary
origin. If you do not use the compatibility dictionary, you should explicitly specify
the anchor of the dictionary instead of using CDD$TOP.

When you invoke CDO, your default is set to the translation of the logical name
CDD$DEFAULT. Unless you change your default, any subsequent data definitions
will be created there. You can change your default while in the CDO utility with the
CDO command SET DEFAULT. Chapter 3 explains how to use search lists with the
SET DEFAULT command.

You can also change your default dictionary while you are within RDO with the SET
DICTIONARY statement, as follows:

CDO> I

CDO> 'Display dictionary default from CDO
CDO> I

CDO> SHOW DEFAULT
CDD$DEFAULT
= SYS$COMMON: [CDDPLUS]
CDO> !
CDO> !Exit CDO and invoke RDO
CDO> I

CDO> EXIT
$ RDO
RDO> I

RDO> !Display dictionary default from RDO
RDO> !
RDO> SHOW DICTIONARY
The current CDD dictionary is SYS$COMMON: [CDDPLUS]
RDO> !
RDO> !Change dictionary default
RDO> I

RDO> SET DICTIONARY SYS$COMMON: [CDDPLUS]PERSONNEL
RDO> I

RDO> 'Display new dictionary default
RDO> !
RDO> SHOW DICTIONARY
The current CDD dictionary is SYS$COMMON: [CDDPLUS]PERSONNEL
RDO> !

You can create shareable field and record definitions with the CDO editor. The editor
is menu-driven and easy to use (see Section 3.4). You can also define shareable field
definitions with the CDO command DEFINE FIELD. For example:

CDO> SET DEFAULT CDD$TOP.PERSONNEL
CDO> DEFINE FIELD EMPLOYEE_ID
cont> DATATYPE IS TEXT
cont> SIZE IS 7.
CDO> DEFINE FIELD ADDRESS_DATA_1
cont> DATATYPE IS TEXT
cont> SIZE IS 20.

Using VAX Rdb/VMS with VAX COD/Plus 7-7

You define the shared relations for Rdb/VMS databases and other products with the
CDO command DEFINE RECORD. For example:

CDO> SET DEFAULT CDD$TOP.PERSONNEL
CDO> DEFINE RECORD NEW_HIRE.
cont> EMPLOYEE_ID.
cont> LAST_NAME.
cont> FIRST_NAME.
cont> ADDRESS_DATA 1.
cont> ADDRESS_DATA_2.
cont> CITY.
cont> STATE.
cont> POSTAL_CODE.
cont> STATUS_CODE.
cont> END NEW_HIRE RECORD.

Only those fields and relations that you intend to be shared need be defined in CDO.
Other fields and relations can be defined with RDO statements, as well as the views,
constraints, and indices that are local to your database.

Before proceeding further, you should be aware of the differences between definitions
that you create in CDO and those that you create in RDO.

When you create a definition in CDO, you specify the exact dictionary directory and
the name for the definition; this is known as the directory name or pathname.

For different applications to share definitions, the definitions must be named
and placed in a known CDO dictionary directory. The directory name acts as a
pointer to the storage location of the actual entity definition. Applications access
an entity definition by specifying the definition's directory name-for example,
CDD$TOP .PERSONNEL.EMPLOYEE_ID. The name of the entity itself is known
as the processing name.

When you define a database in RDO and specify a directory name, Rdb/VMS places
copies of your database definitions in the dictionary as you create them.

If definitions are placed in the dictionary using the RDO statement DEFINE without
the FROM PATHNAME keywords, the definitions are held within the database
structure and are given only a processing name. (They are not given a directory
name.) For example, although the database DEPTl contains many definitions that
are stored in the dictionary, these definitions are not listed among the contents of
the dictionary directory at the given path:

CDO> DIRECTORY SYS$COMMON: [CDDPLUS]PERSONNEL.*

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

DEPT1 CDD$DATABASE

7-8 Using VAX Rdb/VMS with VAX COD/Plus

SYS$COMMON:[CDDPLUS]PERSONNEL.DEPT1 is the path name of the
database; however, the dictionary definitions within the database DEPTl have
no directory name. Definitions created using RDO have no dictionary directory
names and are not listed by the CDO command DIRECTORY.

When a definition is created using the CDO utility, the definition is given both a
directory and a processing name. Therefore, when you intend to share definitions,
create them with the CDO utility. After you create fields and records in CDO, you
can include them in your databases using the RDO statements DEFINE FIELD
and DEFINE RELATION with the FROM PATHNAME keywords, as described in
Section 7.3.

If you create a definition in RDO, then later decide that you want it to be shareable,
you can create a directory name for the definition with the ENTER command from
CDO. The ENTER command is discussed in Section 7.6.

Figure 7 -2 shows that dictionary copies of database definitions created with RDO
statements are stored only within the database structure. Internal database defini­
tions can be addressed only by traversing the database structure; whereas, the fields
with directory names, such as BADGE_NO and SALARY, can be named, listed, and
accessed directly by other applications.

Using VAX Rdb/VMS with VAX COD/Plus 7-9

Figure 7-2: Shareable COO Definitions

COO DICTIONARY AT SYS$SYSTEM:fCOMPAT_DICTlPERSONNEL

• DEPT1
Definition

""' -- Internal DEPT1 .ROB
Shareable database

Field definitions -- ...loo
Database

Definition have no - - File
BADGE_NO directory

names
Shareable

Field
Definition
SALARY

ZK-7585-HC

Because definitions created inside an Rdb/VMS database have no directory name,
they are not listed by a DIRECTORY command at the CDO> prompt; only the
database description and the shareable fields are listed by the CDO command
DIRECTORY. For example:

CDO> DIRECTORY CDD$TOP.PERSONNEL.*

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

BADGE_NO
SALARY
DEPT1

FIELD
FIELD
CDD$DATABASE

7-10 Using VAX Rdb/VMS with VAX COD/Plus

7 .2.2 Displaying Entities and Attributes Used By Databases

To find out the names of the entities that a database uses, use the SHOW
USED_BY /FULL command. In the following example, the /TYPE qualifier is used
to limit the listing to field definitions used by the DEPTl database:

CDO> SHOW USED_BY /TYPE=(FIELD) /FULL DEPT1

Members of SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1;1
I SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID;1 (Type : FIELD)
I I via CDD$RDB_DATA_ELEMENT (1 unshown intermediate node)
I SYS$COMMON: [CDDPLUS]PERSONNEL.BADGE;1 (Type : FIELD)
I I via CDD$DATA_AGGREGATE_CONTAINS (2 unshown intermediate nodes)
I SYS$COMMON: [CDDPLUS]PERSONNEL.FIRST_NAME;1 (Type : FIELD)
I I via CDD$RDB_DATA_ELEMENT (1 unshown intermediate node)

The example has been truncated; the actual command output would also display
system relations. The unshown intermediate nodes represent the number of inter­
vening entities between the current entity and the entity named in the preceding
indentation level. To display more information about an internal database entity,
such as an index or constraint, use the SHOW GENERIC command. For details
about SHOW GENERIC, see the VAX CDD/Plus Common Dictionary Operator
Reference Manual.

If you use a product that only accesses DMU format dictionaries, you can list field
and record definitions in a database using the DMU command LIST. The following
LIST command displays the names of the relations in the DEPTl database:

DMU> LIST CDD$TOP.DEPT1.RDB$RELATIONS.*

The definitions that are internal to the database structure only have processing
names and, therefore, cannot be shared without traversing the database struc­
tures. However, from CDO, you can view the attributes of existing field, record
and view definitions within the database structure with the SHOW FIELD and
SHOW RECORD commands, provided that you know the processing name for the
definitions.

The FROM DAT ABASE clause enables you to specify the database processing name.
Note that wildcard characters are invalid with the SHOW ... FROM DATABASE
command; therefore, you can only display one field definition at a time with this
command.

Using VAX Rdb/VMS with VAX COD/Plus 7-11

For example, if the field FIRST_NAME is defined for the database with RDO
statements, a DIRECTORY command would not list the field definition. However,
the SHOW FIELD command with the FROM DATABASE clause allows you to
display the attributes for the field from CDO.

CDO> SHOW FIELD FIRST_NAME FROM DATABASE DEPT1

Definition of field FIRST_NAME
I Datatype text size is 12

You can display the attributes for known database relations with the SHOW
RECORD command. For example, the following command displays the record
EMPLOYEES in the database DEPTl:

CDO> SHOW RECORD EMPLOYEES FROM DATABASE DEPT1

Definition of record EMPLOYEES
I Contains field EMPLOYEE_ID
I Contains field LAST_NAME
I Contains field FIRST_NAME
I Contains field MIDDLE_INIT
I Contains field ADDRESS_DATA1
I Contains field ADDRESS_DATA2
I Contains field BIRTHDAY

You should be aware that CDO definitions are provided with a default access control
list containing the following two entries:

1. The creator (owner) of the entity is given all access rights, including CONTROL.
For example:

(IDENTIFIER=[JONES],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+CHANGE
+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)

2. All other users are given only SHOW, ADMINISTRATOR, and OPERATOR
access rights to the entity:

(IDENTIFIER=[*,*] ,ACCESS=READ+WRITE+MODIFY+ERASE+SHOW
+ADMINISTRATOR+OPERATOR)

For more information about protecting dictionary definitions, see Chapter 5.

7-12 Using VAX Rdb/VMS with VAX COD/Plus

7 .2.3 Defining a New Database

In addition to shareable field and record definitions, the dictionary can contain a
description, or definition of a database. To create an Rdb/VMS database description
in the dictionary, use the RDO statement DEFINE DATABASE and specify the
CDD/Plus dictionary path where you want the database definition to be located.

Note ~~~~~~~~~~~~­

Do not confuse the RDO statement DEFINE DATABASE with the
CDO command DEFINE DATABASE. For CDD/Plus V4.0, the CDO
DEFINE DAT ABASE command is currently restricted to creating an
RMS database. See Section 8.3 for further information about DEFINE
DATABASE.

In the following example, two database definitions-DEPTl and DEPT2-are
created within the directory at CDD$TOP.PERSONNEL using the RDO utility.

RDO> DEFINE DATABASE DEPT1
cont> IN 'CDD$TOP.PERSONNEL'.
RDO> DEFINE DATABASE DEPT2
cont> IN 'CDD$TOP.PERSONNEL'.

Note that the database definitions need not be in the same dictionary directory
as your shareable field and record definitions. CDD/Plus provides shared access;
therefore, you can include CDD/Plus definitions from other dictionary directories as
well as from remote dictionaries.

Caution

Locking problems can occur when multiple users write to a dictionary.
For example, when one user updates metadata using RDO, the database
indices are locked against other users. Locking problems can also occur
when users access multiple Rdb/VMS databases maintained in the same
dictionary location. Shared dictionary definitions do not generate this
problem and can be stored together in any dictionary location. To avoid
these locking problems:

• Place databases in separate dictionaries whenever interactive RDO
sessions will be used to update the metadata

• In RDO, use the COMMIT or ROLLBACK statement as often as
possible to release locks

Using VAX Rdb/VMS with VAX COD/Plus 7-13

• Perform large updates, such as with the INTEGRATE and RESTORE
statements, as after-hours batch jobs

CDO offers two ways to display the Rdb/VMS database definitions in your
dictionary.

• Use the DIRECTORY command to list the Rdb/VMS database definition(s) in
your default directory, as shown in Section 7.2.2.

• Use the SHOW DATABASE command to list the database name, filename, and
fully qualified pathname of one or more Rdb/VMS database definitions.

The SHOW DATABASE command accepts the same optional qualifiers that can be
used with SHOW FIELD and SHOW RECORD. In the following example, SHOW
DATABASE is used with the /FULL qualifier to display the database name, file
name, and fully qualified path name of the database definition.

CDO> SHOW DATABASE/FULL DEPT5
Definition of database DEPT5
I database uses RDB database DEPT5
I database in file dept5
I I fully qualified file SYS$COMMON: [COMPAT_DICT.PERSONNEL]DEPT5.RDB;

For more information about SHOW DATABASE, see Section 3.7.2 or
VAX CDD/Plus Common Dictionary Operator Reference Manual.

7 .2.4 Requiring the Dictionary for Database Definitions

In order to maintain consistent data definitions and to facilitate pieces tracking, a
database administrator can create a database that requires the dictionary. When the
keywords DICTIONARY IS REQUIRED are specified in the DEFINE DATABASE
statement, subsequent invocations of the database that do not specify the dictionary
path name will be invalid. This feature enables the database administrator to enforce
dictionary usage.

If a database has been defined with DICTIONARY IS REQUIRED, you must specify
the dictionary location to add or change definitions. You must use the PATHNAME
keyword instead of the FILENAME keyword to invoke a database that requires the
dictionary, as shown in the following example:

7-14 Using VAX Rdb/VMS with VAX COD/Plus

RDO> !
RDO> 'Create a database, dictionary required
RDO> !
RDO> DEFINE DATABASE CANDIDATES DICTIONARY IS REQUIRED.
RDO> SHOW DATABASE
Database with db_handle CANDIDATES in file CANDIDATES

COD is being maintained.
RDO> FINISH
RDO> !
RDO> !Invoke by pathname and try to add a field -- Should succeed
RDO> !
RDO> DATABASE PATHNAME CDD$TOP.PERSONNEL.CANDIDATES
RDO> SHOW DATABASE
Database with filename CANDIDATES

CDD is being maintained.
RDO> !
RDO> DEFINE FIELD COLLEGE
cont> DATATYPE IS TEXT SIZE IS 30.
RDO> ROLLBACK
ROD> FINISH
RDO> !
RDO> !Invoke by filename and try to add a field -- Should fail
ROD> !
RDO> DATABASE FILENAME CANDIDATES
RDO> SHOW DATABASE
Database with filename CANDIDATES
RDO> I

RDO> DEFINE FIELD COLLEGE
cont> DATATYPE IS TEXT SIZE IS 30.
%RDO-W-NOCDDUPDAT, database invoked by filename, the CDD will
not be updated
%RDO-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQD, CDD required for metadata updates is not
being maintained
RDO> ROLLBACK
RDO> FINISH

7 .3 Including Dictionary Definitions in Your Database

If you have shareable field and record definitions already stored in one or more
CDD/Plus dictionaries, you can include them in your databases.

To access dictionary definitions for your database, you must invoke the database
and specify the dictionary location of the database description with the keyword
PATHNAME. To include shareable definitions, specify the dictionary paths for the
field and relation definitions with the keywords FROM PATHNAME in the RDO
statements DEFINE FIELD and DEFINE RELATION.

In the following example, two databases are invoked specifying the dictionary path.
Each database includes a record that was originally defined in CDO. Note that you
must use an RDO FINISH command before invoking a different database.

Using VAX Rdb/VMS with VAX COD/Plus 7-15

RDO> INVOKE DATABASE PATHNAME
cont> 'CDD$TOP.PERSONNEL.DEPT1'
RDO> !
ROD> DEFINE RELATION EMPLOYEES
cont> FROM PATHNAME
cont> 'CDD$TOP.PERSONNEL.EMPLOYEES'
cont> END EMPLOYEES RELATION.
ROD> !
RDO> COMMIT
ROD> FINISH
RDO> INVOKE DATABASE PATHNAME
cont> 'CDD$TOP.PERSONNEL.DEPT2'
RDO> !
ROD> DEFINE RELATION FULL_NAME
cont> FROM PATHNAME 1 CDD$TOP.PERSONNEL.FULL_NAME'
cont> END FULL_NAME RELATION.
RDO> COMMIT
ROD> FINISH

Field and record definitions in the dictionary are stored in a format that can be
interpreted appropriately by different products. Rdb/VMS searches through all
attributes in a dictionary definition. When Rdb/VMS encounters an attribute that
is not valid for Rdb, it issues an error. For example, a data type of UNSIGNED
QUADWORD is invalid for Rdb/VMS. Attributes such as NAME FOR COBOL are
simply ignored by Rdb/VMS. For a complete list of valid Rdb/VMS attributes, see
the chapter on field attributes in the manual VAX Rdb/VMS Reference Manual.

In your Rdb/VMS database, you can use dictionary definitions from another dictio­
nary directory, from a different dictionary anchor, or from a CDD/Plus dictionary
on another node. To include a dictionary definition from other than your default
dictionary directory, specify the fully qualified name for the definition. For example:

RDO> DEFINE RELATION SALARY_HISTORY
cont> FROM PATHNAME FARWAY: :SYS$DISK: [MCKAY.DICTIONARY]EMPLOYEES.SALARY_HISTORY
cont> END.
RDO> COMMIT

Note

When an RDO transaction terminates with an error, some operations
dictionary may have completed successfully while at least one opera-
tion has failed. If such a transaction occurs when you are accessing a
database invoked with the dictionary path name, this mixture results in
the dictionary and the database becoming inconsistent. Therefore, when a
transaction causes an error, you must roll back the database with the RDO
statement ROLLBACK. The dictionary and database will return to their
previously consistent state after you issue the ROLLBACK statement.

7-16 Using VAX Rdb/VMS with VAX COO/Plus

(

Definitions created in CDO are provided with the default protection provisions
discussed in Section 7.2.1. Briefly, the definition owner is granted all rights including
CONTROL and all other users are granted SHOW access. Users with CONTROL
access can change and add new ACEs to the default dictionary ACL. Once you have
included copies of the shareable dictionary definitions in your database, you can
further fine tune the protection provisions with RDO statements, as necessary.

The FROM PATHNAME keywords in the RDO DEFINE FIELD and DEFINE
RELATION statements allow you to specify dictionary definitions in only CDO
format. To take advantage of pieces tracking, you must convert the DMU definitions
to CDO format (see Section 7.6).

7 .3.1 Naming Database Definitions

Database, field, and record names must be unique within a database: two entities
with the same directory name cannot exist in the same subdirectory. Therefore, a
new field or relation cannot be included from the dictionary into the database if
another entity with the same name already exists. When you include a dictionary
record into the database and one of the fields in the record is contained in the
database already, RDO does not create a second copy of the field definition, provided
that the two definitions are equal.

You can use either CDO utility or the RDO utility to find out if a name is already
in use by a database. For information about using the RDO utility, see the VAX
Rdb/VMS Guide to Data Manipulation. From CDO, specify the name you are
concerned about with the SHOW FIELD or SHOW RECORD command and use the
FROM DATABASE keywords. If the entity name you specify is not contained in
the database, CDO issues an informational message.

In the following example, CDO displays that the field ID_NUMBER is in use by the
database while the field ID_NO is not:

CDO> DIR

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

DEPT2;1
ID _NUMBER; 1
ID_NO; 1

CDD$DATABASE
FIELD
FIELD

CDO> SHOW FIELD ID_NUMBER FROM DATABASE DEPT2
Definition of field ID_NUMBER
I Datatype is text size is 7

CDO> SHOW FIELD ID_NO FROM DATABASE DEPT2
%CDO-E-NOTFOUND, entity ID_NO not found in dictionary

Using VAX Rdb /VMS with VAX COD /Plus 7-1 7

You cannot rename a dictionary definition as you include it into a database.
However, you can create additional shareable definitions in the dictionary to re­
solve duplicate names. For example, suppose that you want to use the shareable
dictionary field SOC_SEC_NUM in your database. The SHOW FIELD ... FROM
DAT ABASE command displays that a field with this name is already in use within
the database. The attributes of the database SOC_SEC_NUM are different from
the dictionary definition by the same name.

Suppose that you do want to use the shareable dictionary definition named
soc_SEC_NUM rather than the database field. y OU cannot include the dictionary
field as it is because the name already exists in the database and you cannot rename
the dictionary definition as you include it into the database. Instead, you can cre­
ate another field, DRIVE_LIC, in the dictionary using the BASED ON attribute.
(When naming definitions, you should consider your organization's naming stan­
dards.) Since the name DRIVE_LIC is not used in the database, you can include it
instead of SOC_SEC_NUM. For example:

CDO> SHOW FIELD SOC_SEC_NUM
Definition of field SOC_SEC_NUM
I Datatype is text size is 11
I Edit string is 999"-"99"-"9999.
CDO> I

CDO> SHOW FIELD SOC_SEC_NUM FROM DATABASE DEPT!
Definition of field SOC_SEC_NUM
I Datatype is text size is 11
CDO> !
CDO> !Test another name
CDO> !
CDO> SHOW FIELD DRIVE_LIC FROM DATABASE DEPT!
%CDO-E-NOTFOUND, entity DRIVE_LIC not found in database
SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1;1
CDO> !
CDO> !Define a new field in CDO
CDO> !
CDO> DEFINE FIELD DRIVE_LIC
cont> BASED ON SOC_SEC_NUM.
CDO> SPAWN $RDO
RDO> !
RDO> !Include the new field into the database
RDO> !
RDO> DEFINE FIELD DRIVE_LIC
cont> FROM PATHNAME 1 CDD$TOP.PERSONNEL.DRIVE_LIC 1

•

RDO> COMMIT

If the dictionary field SOC_SEC_NUM was included in a dictionary record defini­
tion that you intend to include, you must make a new version or change the record
definition to include the field DRIVE_LIC and use the changed record within your
database. Otherwise, the database will continue to attempt to include the dictionary
definition SOC_SEC_NUM.

7-18 Using VAX Rdb/VMS with VAX COD/Plus

Suppose that you also require the fields BADGE_NQ and EMPLOYEE_ID with
the same attributes as SOC_SEC_NUM. You can define the fields BADGE_NO
and EMPLOYEE_ID based on DRIVE_LIC. All four dictionary definitions are
shareable.

CDO> DEFINE FIELD BADGE_NO
cont> BASED ON DRIVE_LIC.
CDO> DEFINE FIELD EMPLDYEE_ID
cont> BASED ON SOC_SEC_NUM.
CDO> SPAWN $ROD

!Include the fields into the database

RDO> DEFINE FIELD BADGE_NO
cont> FROM PATHNAME 'CDD$TOP.PERSONNEL.BADGE_NO'.
RDO> DEFINE FIELD EMPLOYEE_ID
cont> FROM PATHNAME 'CDD$TDP.PERSONNEL.EMPLOYEE_ID'.

Alternatively, you can use the single field DRIVE_LIC in many relations that you
create for your database from within RDO. However, these relations would not
be directly related to the dictionary record definitions that use SQC_SEC_NUM.
It is preferable to include dictionary record definitions where possible so that the
dictionary can track the field and record usage within your database.

7 .3.2 Duplicate Processing Names

Definitions created with CDO commands always have a directory name that is the
same as the processing name. However, if you use definitions that have been created
with direct calls to the CDD/Plus call interface, it is possible that a definition has
a processing name that is not the same as its directory name. When a definition's
directory name and processing name do not match, a naming problem can occur
within the database.

When a field in the database has a processing name that matches the directory
name of the field you are trying to include from the dictionary, RDO searches for an
existing field with the directory name you specify. If a duplicate name is found, RDO
compares the two definitions as follows:

If the two fields have the same processing name, then RDO considers them to be
equal, no error is issued, and you can proceed with your definitions. If the two fields
do not have the same processing name, then RDO considers them to be unequal,
issues an error that the field already exists, and does not include the dictionary field.
(It is possible that these two definitions are actually equal despite having different
processing names.) To resolve this issue, you must rename the definition from the
CDO utility, as described in Section 7.3.1.

Using VAX Rdb/VMS with VAX COD/Plus 7-19

7 .3.3 Defining Relations Using Dictionary Definitions

When you define a relation in RDO, you can create the internal fields within the
relation definition. However, when you define a record in the dictionary, the field
definitions must already exist. You cannot implicitly define the fields as you include
them in a dictionary record definition. This difference requires you to choose your
method of including dictionary records with some care. Keep in mind the fact that
you may already have included into your database one or more of the fields in the
dictionary record definition.

You can define a relation for the database using dictionary definitions in the follow­
ing ways:

• Include an existing dictionary record definition with the FROM PATHNAME
keywords in the DEFINE RELATION statement. For example:

RDD> DEFINE RELATION FULL_NAME FROM PATHNAME 'CDD$TOP.PERSONNEL'.

RDO searches the database to see whether or not the fields for the relation are
already included. If the fields are not already included in the database, RDO
includes them for you.

If RDO finds a field with the same name as a field required for the relation, it
then checks to see if the fields are equal. If the fields are equal, then RDO pro­
ceeds to include the relation. If the fields by the same name are not equivalent,
RDO issues an error message and the relation definition is not included. You
must resolve any such naming conflict yourself before you re-try the operation.
(See Section 7.3.2.)

• Include the existing shareable fields from the dictionary yourself and then include
the dictionary record definition for the relation. For example:

ROD> DEFINE FIELD FIRST_NAME FROM PATHNAME
cont> 1 CDD$TOP.PERSONNEL.FIRST_NAME'.
RDO> DEFINE FIELD MIDDLE_INIT FROM PATHNAME
cont> 1 CDD$TOP.PERSONNEL.MIDDLE_INIT'.
RDO> DEFINE FIELD LAST_NAME FROM PATHNAME
cont> 'CDD$TOP.PERSONNEL.LAST_NAME'.
ROD>
ROD> !Include the dictionary record
RDO> !Fields are already in database
ROD> !
RDO> DEFINE RELATION FULL_NAME
cont> FROM PATHNAME 1 CDD$TOP.PERSONNEL.FULL_NAME 1

•

7-20 Using VAX Rdb/VMS with VAX COD/Plus

The FROM PATHNAME keywords are invalid within internal field definitions
inside a relation definition. For example, the following RDO DEFINE statement is
invalid and generates an error:

RDO> DEFINE RELATION FULL_NAME.
FIRST_NAME FROM PATHNAME 'CDD$TOP.PERSONNEL.FIRST_NAME'.

%RDO-W-LOOK_FOR_STT,
%RDO-W-LOOK_FOR_CON,
%RDO-W-LOOK_FOR_CON,
%RDO-W-LOOK_FOR_CON,
%RDO-W-LOOK_FOR_CON,
%RDO-F-LOOK_FOR_FIN,

syntax error, looking for:
BASED, VALID, period, DATATYPE,
COMPUTED, QUERY_NAME, EDIT_STRING,
QUERY_HEADER, DEFAULT_VALUE,
MISSING_ VALUE

found FROM instead

You cannot define a relation from a CDO record that contains other CDO records.
Since RDO relations can contain only CDO fields, the RDO DEFINE statement in
the following example is invalid and generates an error:

CDO> SHOW RECORD NEW_HIRE
Definition of record NEW_HIRE
I Contains record FULL_NAME
I Contains field ADDRESS_DATA_1
I Contains field ADDRESS_DATA_2
CDO> EXIT
$!
$ RDO
RDO> INVOKE DATABASE PATHNAME 'CDD$TOP.PERSONNEL'
RDO>
RDO> !Fields are already in database
RDO> !Record FULL_NAME is' already in database as a relation
RDO>
RDO> SHOW FIELDS
User Fields in Database with pathname SYS$COMMON: [CDDPLUS]PERSONNEL;1

ADDRESS_DATA_1 text size is 25
ADDRESS_DATA_2
EMPLOYEE_ ID
FIRST_NAME
LAST_NAME
MIDDLE_ I NIT
SALARY

RDO> SHOW RELATIONS

text size is 20
text size is 5
text size is 10
text size is 14
text size is
signed longword scale -2

User Relations in Database with pathname SYS$COMMON: [CDDPLUS]PERSONNEL;1
CURRENT_INFO A view.
FULL_ NAME
JOB_HISTORY
SALARY_HISTORY

RDO>
RDO> !Try to define a relation from a record that contains a record
RDO> !
RDO> DEFINE RELATION NEW_HIRE FROM PATHNAME
cont> 'CDD$TOP.PERSONNEL.NEW_HIRE'
%CDD-E-DTYPE_REQUIRED, field must have a datatype for inclusion
in an Rdb database

Using VAX Rdb/VMS with VAX COD/Plus 7-21

7.3.4 Completing Your Database Design with RDO Statements

Complete your database definition by defining the views, indices, and constraints
with RDO statements. Currently, view, index, and constraint definitions can be
stored in the dictionary, but only the view definitions are shareable. The definitions
created in RDO are automatically stored in the dictionary at the path you specify,
provided that you invoke the database with the PATHNAME keyword.

The following RDO statements create a sample index, view, and constraint for
the DEPTl database. You can find tutorial and reference information on these
statements in the Rdb/VMS documentation.

RDO> DEFINE INDEX JOB_HISTORY_HASH
cont> DESCRIPTION IS /* Hash index for job_history */
cont> FOR JOB_HISTORY
cont> DUPLICATES ARE ALLOWED
cont> STORE USING EMPLOYEE_ID
cont> WITHIN
cont> EMPIDS_LOW WITH LIMIT OF "00200";
cont> EMPIDS_MID WITH LIMIT OF "00400";
cont> EMPIDS_OVER;
cont> TYPE IS HASHED.
cont> EMPLOYEE_ID.
cont> END JOB_HISTORY_HASH.
RDO> DEFINE VIEW CURRENT_JOB
cont> OF JH IN JOB_HISTORY.
cont> CROSS E IN EMPLOYEES OVER EMPLOYEE_ID
cont> WITH JH.JOB_END MISSING.
cont> E.LAST_NAME.
cont> E.FIRST_NAME.
cont> E.EMPLOYEE_ID.
cont> JH.JOB_CODE.
cont> JH.DEPARTMENT_CODE.
cont> JH.SUPERVISOR_ID.
cont> JH.JOB_START.
cont> END VIEW.
RDO> DEFINE CONSTRAINT EMPLOYEE_ID_REQUIRED
cont> FOR E IN EMPLOYEES
cont> REQUIRE NOT E.EMPLOYEE_ID MISSING.
RDO> COMMIT.
RDO> FINISH

You cannot currently define shareable database indices, views, and constraints with
CDO commands. (See Section 7.2.1 for information about displaying database views
from CDO.)

7-22 Using VAX Rdb/VMS with VAX COD/Plus

7 .3.5 Referencing Definitions from Programs

You can use RDO to test statements before adding them to programs. You do not
need to give complete data descriptions in your program, because programs can
locate dictionary definitions if you just reference the dictionary, using the syntax
appropriate for the programming language.

Programs can simplify data entry. For example, if you want to store several records
in the database, RDO would require that you enter the STORE statement for each
record that you want to store. A program can contain a loop that repeatedly executes
the STORE statement so that the end user only has to provide input data in order to
store records.

A BASIC program can read records from CDO format dictionaries, and can read
records with a STRUCTURE clause from DMU format dictionaries or the compat­
ibility dictionary. The BASIC compiler can write a compiled module entity into a
CDO dictionary. The compiled module entity (CDD$COMPILED_MODULE)
represents the object file (.OBJ) that the compiler produces. (If you specify the
/NOOBJECT qualifier on the command line, or if the program has compilation
errors, a compiled module entity is not generated.) BASIC can then create dictionary
relationships between this compiled module entity and the dictionary definitions that
the BASIC program uses.

To reference a dictionary definition from a BASIC program, use the %INCLUDE
%FROM %CDD directive. For example, the following BASIC program, called
PAYROLL.BAS, references the dictionary definition EMPLOYEE_REC:

PROGRAM EMPLOYEE_PAYROLL

%INCLUDE %FROM %CDD "SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_REC"

END PROGRAM

In this example, the definition EMPLOYEE_REC is specified by dictionary path­
name. You can optionally specify a field or relation by database pathname. For
example:

• %INCLUDE %FROM %CDD "DEPT1.RDB$RELATIONS.EMPLOYEE_
REC"

• %INCLUDE %FROM %CDD "DEPT1.RDB$FIELDS.NAME_FIELD"

Using VAX Rdb/VMS with VAX COD/Plus 7-23

If you want to create the relationship and the compiled module without copying
the referenced object into the BASIC program, use the %REPORT directive. For
example:

%REPORT %DEPENDENCY "SYS$COMMON: [CDDPLUS]PERSDNNEL.EMPLOYEE_FDRM" &
"CDD$COMPILED_DEPENDS_ON"

To create relationships from a VAX BASIC program, you must use the %INCLUDE
or %REPORT directives in conjunction with the compilation qualifier
/DEPENDENCY_DATA. For example:

$ BASIC/DEPENDENCY_DATA PAYROLL.BAS

As the result of this command, CDD/Plus:

1. Creates a compiled module entity called EMPLOYEE_P A YROLL in your
current default dictionary directory

2. Copies the record SYS$COMMON:[CDDPLUS]PERSONNEL.EMPLOYEE_
REC into the program

3. Creates a relationship between the compiled module EMPLOYEE_P A YROLL
and the record EMPLOYEE_REC

If you do not specify /DEPENDENCY_DATA to the BASIC compiler, %INCLUDE
directives can copy dictionary definitions, but no relationship will be created in the
CDD. Programs can use dictionary objects without relationships, but relationships
are needed for pieces tracking.

For more information about BASIC directives, see the VAX BASIC User Manual.

Rdb/VMS provides two precompilers to check and process data manipulation state­
ments in programs: RDBPRE and RDML. These precompilers convert data manip­
ulation language (DML) statements into a series of equivalent DIGITAL Standard
Relational Interface (DSRI) calls to the database. You compile these calls with your
application program.

The RDML preprocessor will operate with any DSRI compliant database man­
agement system. You can use the RDML/ADA, RDML/C, and RDML/PASCAL
precompilers to process Ada, C, and PASCAL programs using statements very similar
to RDO statements. For more information on RDML, see RDML Reference Manual
and VAX Rdb/VMS Guide to Programming.

7-24 Using VAX Rdb/VMS with VAX COD/Plus

7 .4 Changing and Integrating Definitions

You can change shareable definitions created in the CDO utility from either CDO or
RDO. The CDO CHANGE command modifies the original dictionary definition. The
RDO CHANGE FIELD or CHANGE RELATION statements modify the database
copy of the definition.

Inconsistencies can develop between dictionary and database copies of the defini­
tions if you change or add database definitions without changing the original data
definition in the dictionary. CDD/Plus warns all users of the original definition with
a message about the change. You can resolve these inconsistencies with the RDO
statement INTEGRATE.

When the dictionary and database definitions are inconsistent, you must update the
definitions with the RDO statement INTEGRATE. The INTEGRATE statement
can update the database file to reflect the current state of the database description
in the dictionary, or it can update the dictionary to reflect the current state of the
definitions in the database file.

There are two formats for the INTEGRATE statement to accommodate these two
activities. The following sections explain how and when to use each format.

Note

After an INTEGRATE operation is complete, you must specify the
COMMIT or the ROLLBACK statement to save or abort the changes
made by INTEGRATE.

7 .4.1 Updating Dictionary Definitions with INTEGRATE IN

The INTEGRATE IN statement writes the latest definitions from the database
file into the database description in the dictionary. The database file definitions
replace the definitions in the dictionary. For example, the following statement writes
the definitions in the database file with the database description DEPTl into the
dictionary at CDD$TOP.PERSONNEL:

RDO> INTEGRATE DATABASE DEPT1 IN PATHNAME 'CDD$TOP.PERSONNEL.DEPT1'
RDO> COMMIT

Any changes to definitions in the Rdb/VMS source database will now supersede the
definitions in the dictionary description of the database. If any shareable dictionary
definition changes, CDD /Plus attaches a message about the new definition version to
all other dictionary definitions or databases that use the previous version. Users can
adapt to the new version over time.

Using VAX Rdb/VMS with VAX COD/Plus 7-25

7.4.2 Updating Database Definitions with INTEGRATE FROM

The INTEGRATE FROM statement writes the latest changes of the definitions
stored in the dictionary definition of the database into the actual database file.

RDO> START_TRANSACTION READ_WRITE
RDO> INTEGRATE DATABASE DEPT1 FROM PATHNAME 'CDD$TOP.PERSONNEL.DEPT1'
RDO> COMMIT

All definitions in the dictionary definition at CDD$TOP.PERSONNEL are written
to the database file. If definitions exist in the dictionary that did not previously exist
in the database file, these definitions are created in the database.

Caution

If there are definitions in the database file that do not also exist in the
dictionary description of the database, these definitions are deleted during
INTEGRATE FROM and data may be lost. Be sure to use the
START_ TRANSACTION statement prior to entering the INTEGRATE
command so that you can roll back the database if necessary.

RDO automatically clears the messages attached to the database after the
INTEGRATE statement is executed.

As the INTEGRATE statement executes, it displays on your screen the differences
between the database and the dictionary and informs you if any deletions will occur
during the integration. You are not prompted to confirm whether or not you want
a particular definition to be deleted. In the following example, a new field has been
added to the database file DEPTI but not to the dictionary. When the database file
is updated to integrate definitions from the dictionary, this definition is deleted. The
user issues a ROLLBACK statement to restore the database to its condition before
the field was deleted. Before integrating again, the user can define this field in the
dictionary.

RDO> START_TRANSACTION READ_WRITE
RDO> INTEGRATE DATABASE DEPT1
RDO> FROM PATHNAME 'CDD$TOP.PERSONNEL.DEPT1'
%CDD-E-INT_DELETE, object NEW_FIELD will be deleted -- data may be lost
RDO> ROLLBACK

If you observe that definitions have been deleted when you want to keep them, you
can use the RDO statement ROLLBACK to roll back the database to its state before
you entered the INTEGRATE statement. Be sure to use the
START_ TRANSACTION statement prior to entering the INTEGRATE command.

7-26 Using VAX Rdb/VMS with VAX COD/Plus

The following sections describe how to change shareable dictionary definitions,
how to evaluate the impact of these changes, and how to keep your dictionary and
database definitions consistent after changes have been made.

7 .4.3 Evaluating the Impact of Changes

From the CDO utility, the SHOW commands allow you to keep track of the dictio­
nary entities that use a definition. These commands help you to analyze the effects
of changing shareable dictionary definitions.

Suppose that you are considering a change to the definition EMPLOYEE-REC. To
find out which definitions use EMPLOYEE_REC, issue the CDO command SHOW
USES:

COO> SHOW USES EMPLOYEE_REC
Owners of SYS$COMMON: [CODPLUS]PERSONNEL.EMPLOYEE_REC;1

OEPT1 (Type COD$RDB_DATABASE)
I via COD$0ATA_AGGREGATE
OEPT2 (Type COD$ROB_OATABASE)
I via COD$0ATA_AGGREGATE
*** name is unspecified *** (Type CD0$0ATA_INSTANCE)

via COD$0ATA_INSTANCE_PATH

CDO shows you that the databases DEPTl and DEPT2 and an unspecified entity
(a view) all use the record definition EMPLOYEE_REC. Therefore, if you change
EMPLOYEE_REC, these entities will be affected in some way by the change.

To find out if any definitions will actually be inconsistent if you change a dictionary
entity, use the SHOW WHAT_IF command. If you change the field EMPLOYEE_
ID with the CHANGE command, the record definition EMPLOYEE_REC (which
originally included the field EMPLOYEE_ID) automatically includes the changed
field definition because the original definition has been changed. The definition in
the database file will not be automatically updated; therefore, the database definition
of EMPLOYEE_ID will be inconsistent with the definition in the dictionary. You
can use the INTEGRATE FROM command to replace the definition in the database
file with the dictionary definition.

'Display entities that will be inconsistent if EMPLOYEE_ID is changed
I

COO> SHOW WHAT_IF /FULL EMPLOYEE_ID

SYS$COMMON: [CDOPLUS]PERSONNEL.OEPT1;1
SYS$COMMON: [CODPLUS]PERSONNEL.DEPT2;1
SYS$COMMON: [COOPLUS]PERSONNEL.PT_TIME;1

COO$DATABASE
COD$DATABASE
COD$0ATABASE

Using VAX Rdb/VMS with VAX COD/Plus 7-27

If you change EMPLOYEE_ID, the database definitions listed by the SHOW
WHAT_IF command are flagged with a message about the change. When the
database is invoked, RDO informs you that a message is attached to the database in
the dictionary. Messages are passive, you must take action to integrate the dictionary
with the databases. Messages are illustrated in the following sections.

The following sections include examples of how to change shareable definitions and
of using the various SHOW commands to manage the effects of these changes. The
SHOW commands are also described in Chapter 6 of this manual and in the VAX
CDD/Plus Common Dictionary Operator Reference Manual.

7 .4.4 Changing Definitions from COO

You can change dictionary definitions in two ways from the CDO utility:

• You can make an immediate change to an original dictionary definition with the
CHANGE command

• You can create a new version of a dictionary definition and permit users to adapt
to the change over time with the DEFINE command

Whether or not you use the CHANGE or the DEFINE command, if you change a
definition, all databases that use the definition are flagged with a message about the
possible inconsistency.

7 .4.4.1 The Impact of Immediate Changes - If you make changes with the .
CHANGE command, the original definition is changed and no copy of the original is
kept in the dictionary. The database is flagged with a message that the definitions
in the dictionary and the database file are inconsistent. Once the dictionary and
database are integrated, the database and dictionary definitions are consistent again.

The following example steps through the commands and displays that you can use
before and after making an immediate change to a shared definition.

!Display entities that will be inconsistent if an immediate
'change is made to EMPLOYEE_ID
!
CDO> SHOW WHAT_IF /FULL EMPLOYEE_ID

SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1;1
SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT2;1

!Make the change
t

CDO> CHANGE FIELD EMPLOYEE_ID
cont> datatype is text size is 15.

7-28 Using VAX Rdb/VMS with VAX COD/Plus

CDD$DATABASE
CDD$DATABASE

!CDO issues warnings about possible inconsistencies

%CDO-I-DBMBR, database SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1;1
may need to be INTEGRATED
%CDO-I-DBMBR, database SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT2;1
may need to be INTEGRATED

1Read message about the change attached to the database
!
CDO> SHOW MESSAGES DEPT1
SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1;1 is possibly invalid,
triggered by entity SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID;1

'Spawn to a subprocess to integrate the database with new dictionary definitions
!
CDO> SPAWN $RDO
RDO> INVOKE DATABASE DEPT1
cont> =PATHNAME 'SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1'
%RDO-I-CDOMESS, entity has messages
!
!Start a transaction so that you can roll back after the
!integrate operation, if necessary
!
RDO> START_TRANSACTION READ_WRITE
RDO> INTEGRATE DATABASE DEPT1
cont> FROM PATHNAME 'CDD$TOP.PERSDNNEL.DEPT1'

RDO> COMMIT

Remember that if the integrate operation deletes or creates definitions that you do
not want, you can roll back the database to its state at the start of the transaction.

7 .4.4.2 The Impact of Changes Over Time -To phase in a change more
gradually, use the DEFINE command rather than the CHANGE command. The
DEFINE command creates a new version of the definition and keeps the previous
version in the dictionary. If you make new versions with the DEFINE command,
entity definitions that use the previous version are flagged with a message that a new
version exists. You may decide that you do not want to use a new version that exists
in the dictionary. If you do not want to integrate the dictionary and database, you
can clear the messages with the CDO command CLEAR MESSAGES. Other users
can accommodate the new version at their own pace.

The following example creates a new version of the field EMPLOYEE_ID. Version
1 of EMPLOYEE_ID is used by the record definition EMPLOYEE_REC. When
the record EMPLOYEE_REC was defined, EMPLOYEE_ID;l was the high-
est version and, therefore, the relationship between EMPLOYEE_REC and
EMPLOYEE_ID only exists between version 1 of each of these definitions. Version
2 of EMPLOYEE_ID is not automatically included in the definition of the record

Using VAX Rdb/VMS with VAX COD/Plus 7-29

EMPLOYEE_REC. To include the new version of the field EMPLOYEE_ID in
EMPLOYEE_REC, you must change or redefine the record EMPLOYEE_REC.

!Create a new version of EMPLOYEE ID

CDO> DEFINE FIELD EMPLDYEE_ID
cont> DATATYPE IS TEXT
cont> SIZE IS 7.

!New version of EMPLOYEE_ID is not used yet

CDO> SHOW USES /FULL EMPLOYEE_ID;2
%CDO-E-NOOWN, no owners found for entity

SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID;2

!Read any messages on EMPLOYEE_REC

CDO> SHOW MESSAGES EMPLOYEE_REC
SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLDYEE_REC;1 uses an entity which has new
versions, triggered by entity SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID;1
!
!Create a new version of EMPLOYEE_REC to include version 2 of EMPLOYEE_ID
!A message about this new version is attached to all users of EMPLOYEE_REC;1

COO> DEFINE RECORD EMPLOYEE_REC.
cont>
cont>
cont>
cont>

EMPLOYEE_ID.
FULL_NAME.
ADDRESS_DATA.
STATUS __ CODE.

cont> END EMPLOYEE_REC RECORD.

'Confirm that version 2 of EMPLOYEE ID is in use

COO> SHOW USES EMPLOYEE_ID;2
Owners of SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID;2
SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_REC;2 (Type RECORD)
I via CDD$DATA_AGGREGATE_CONTAINS

!Spawn a subprocess and invoke ROD

COO> SPAWN $ROD

7-30 Using VAX Rdb/VMS with VAX COD/Plus

'Integrate the new dictionary version of EMPLOYEE_ID into DEPT1
I

RDO> INTEGRATE DATABASE DEPT1
cont> FROM PATHNAME 'CDD$TOP.PERSONNEL.DEPT1'

RDO> COMMIT

'Go back to CDO utility
I

RDO> $ATTACH SMITH

'Confirm that DEPT1 now uses version 2 of EMPLOYEE_ID

CDO> SHOW USED_BY /TYPE=(FIELD) /FULL DEPT1
Members of SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1;1
I SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID;2

!PARTS_INVENTORY still uses version 1 of EMPLOYEE_ID

(Type FIELD)

CDO> SHOW USED_BY /TYPE=(FIELD) /FULL PARTS_INVENTORY
Members of SYS$COMMON: [CDDPLUS]PERSONNEL.PARTS_INVENTORY;1
I SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID;1 (Type : FIELD)

Messages about the new versions are attached to all other users of the original
versions of both EMPLOYEE_ID and EMPLOYEE_REC.

7 .4.5 Changing Shareable Definitions from RDO

When you change a shareable CDD /Plus definition with the RDO statement
CHANGE, the change is reflected in the database description in the dictionary.
CDD/Plus then creates a new version of the dictionary definition. (The RDO
statement CHANGE is equivalent to the CDO command DEFINE, not the CDO
command CHANGE.) This allows other users of the changed dictionary definition to
adapt to the change over time. Messages about the existing new version of the defi­
nition are attached to all users of the previous version, including all other databases.
You must read the messages attached to an entity using the CDO command SHOW
MESSAGES. (If the shareable definition you are changing is on a remote node, the
network link must be viable; otherwise, the change is not permitted.)

In the following example, the database is invoked using the PATHNAME keyword
and a shareable field definition is changed with the RDO statement CHANGE.
Subsequent CDO commands show that a new version of the field definition has been
created and that the appropriate messages have been generated.

Using VAX Rdb/VMS with VAX COD/Plus 7-31

COO> SET DEFAULT CDD$TOP.PERSONNEL
COO> DIRECTORY EMPLOYEE_ID

! Observe that only one version of EMPLOYEE_ID exists in dictionary

Directory SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID
EMPLOYEE_ID;1 FIELD

!Show all users of EMPLOYEE_ID

COO> SHOW USES /FULL EMPLOYEE_ID
Owners of SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID;1
SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_REC;1 (Type : RECORD)
I I via CDD$DATA_AGGREGATE_CONTAINS
SYS$COMMON:[CDDPLUS]PERSONNEL.DEPT1;1 (Type CDD$DATABASE)
I I via CDD$DATABASE_SCHEMA
SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT2;1 (Type CDD$DATABASE)
I I via CDD$DATABASE_SCHEMA

!Spawn to a subprocess to work in RDO

COO> SPAWN $RDO

!Invoke the database specifying the path name

ROD> INVOKE DATABASE DEPT!
cont> =PATHNAME 'CDD$TOP PERSONNEL.DEPT!'

'Establish your dictionary default for RDO

RDO> SET DICTIONARY CDD$TOP.PERSONNEL

!Change a field from RDO

RDO> CHANGE FIELD EMPLOYEE ID
cont> DATATYPE IS TEXT SIZE IS 12.

!Return to the CDO process

RDO> $ATTACH HEINES
COO> SHOW DEFAULT

SYS$COMMON: [CDDPLUS]PERSONNEL
COO> DIRECTORY EMPLOYEE_ID

' Confirm that a new version was created in dictionary

Directory SYS$COMMON: [CDDPLUS]PERSONNEL.EMPLOYEE_ID
EMPLOYEE_ID;2 FIELD
EMPLOYEE_ID;1 FIELD

7-32 Using VAX Rdb/VMS with VAX COD/Plus

! Confirm that there is a message about the new version
! attached to other users of EMPLOYEE_ID

COO> SHOW MESSAGES EMPLOYEE_REC
SYS$COMMON: [CODPLUS]PERSDNNEL.EMPLDYEE_REC;1 uses an entity which has new
versions, triggered by entity SYS$CDMMDN:[COOPLUS]PERSONNEL.EMPLDYEE_I0;1

Caution

If you invoke the database without using the PATHNAME keyword
and subsequently change shareable definitions with RDO statements, a
new version of the dictionary definition is not created. Therefore, your
dictionary and database definitions will be inconsistent. It is up to you to
issue the RDO statement INTEGRATE to update the dictionary copies of
the database definitions. For example:

!
!Invoke the database without PATHNAME option

ROD> INVOKE DATABASE FILENAME DEPT!

!Change the relation EMPLOYEE_REC by adding
!globally defined field WAGE_CLASS
!

ROD> CHANGE RELATION EMPLOYEE_REC.
cont> DEFINE WAGE_CLASS.
cont> END.

!Integrate the change in EMPLOYEE_REC into the dictionary
I

ROD> INTEGRATE DATABASE DEPT!
cont> IN PATHNAME 'CDD$TOP.PERSONNEL.DEPT1'

ROD> COMMIT

Confirm that the new version of EMPLOYEE_REC is created in the
dictionary with CDO commands as shown previously.

Using VAX Rdb/VMS with VAX COD/Plus 7-33

7 .4.6 Deleting Shared Definitions

When a shared dictionary entity is no longer required by a database, you can delete
the database copy with the RDO statement DELETE. The DELETE statement
removes the link between the database and the shareable dictionary definition.
The dictionary definition remains intact and can continue to be shared by other
applications.

ROD> DELETE FIELD BIRTHDATE
ROD> $ DICTIONARY OPERATOR

COD>
!Confirm that the dictionary definition still exists
I

COO> SET DEFAULT CDD$TOP.PERSONNEL
COO> DIRECTORY BIRTHDATE

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

BIRTHDATE;1 FIELD

The following example changes a database relation-ADDRESS_REC-by deleting
the field PHONE from the relation. A new version of ADDRESS-REC is created in
the dictionary and the appropriate messages are attached to users of
ADDRESS_REC;l. However, the definition of PHONE remains intact in the
dictionary so that other users can continue to access it.

ROD> CHANGE RELATION ADDRESS_REC.
cont> DELETE PHONE.
cont> END.
RDO> COMMIT

You can delete definitions with the CDO command DELETE. However, you cannot
delete a dictionary definition that is used by another entity. For example, although
PHONE is no longer used by DEPTI, you cannot delete the field from the dictionary
because DEPT2 and the record EMPLOYEE_DATA use it:

COO> SHOW USES PHONE
Owners of SYS$COMMON: [CDDPLUS]PERSONNEL.PHONE;1
I EMPLOYEE_DATA;1 (Type RECORD)
I I via CDD$DATA_AGGREGATE_CONTAINS
I DEPT2;1 (Type CDD$DATABASE)
I I via CDD$DATABASE_SCHEMA

COO> DELETE FIELD PHONE
%CDD-E-INUSE, Entity in use; not deleted

7-34 Using VAX Rdb/VMS with VAX COD/Plus

7.5 Restoring a Database That Uses Shareable Dictionary
Definitions

You can copy your Rdb/VMS databases using either of two methods:

• RMU/BACKUP and RMU/RESTORE - for regular maintenance backups or
disaster recovery.

• RDO IMPORT and EXPORT statements - for unloading and reloading
databases, restructuring physical database files, or migrating a database from
one DSRI (Digital Standard Relational Interface) system to another.

7 .5.1 Backing Up and Restoring Databases

The RMU /BACKUP command creates a backup copy of an Rdb/VMS database
and places it in a file. You can back up the entire database or you can request an
incremental backup that backs up only the pages that have changed since the last full
backup. In the event of subsequent damage to the database, you can specify backup
files in an RMU /RESTORE command to restore the database to the condition it was
in when you backed it up.

The RMU /RESTORE command recreates all the relationships between the database
structure and shared definitions individually defined in CDO.

You can rename or move the files that comprise an Rdb/VMS database by using the
RMU/BACKUP and RMU/RESTORE command combination. To move a multifile
Rdb/VMS database, you must use the RMU /BACKUP and RMU /RESTORE
commands or the RDO EXPORT and IMPORT statements. If you use the DCL
COPY command with a multifile database, the resulting database will be unusable.

7 .5.2 Restructuring and Reloading Databases

You can use the RDO EXPORT and IMPORT statements to:

• Migrate a database from one DSRI system to another; for example, from
Rdb/ELN to Rdb/VMS

• Change parameters such as storage area definition or page size

• Reload a database (Leaving the storage area definitions the same but changing
the device specifications)

For more details about RDO IMPORT and EXPORT statements, see
VAX Rdb/VMS Reference Manual.

Using VAX Rdb/VMS with VAX COD/Plus 7-35

7.6 Converting Databases to COO Format

You must convert database definitions that you created with versions of Rdb/VMS
prior to Rdb/VMS V3.0, in order to use them with CDD/Plus.

CDD/Plus tracks the usage of definitions in CDO format only. You cannot take
advantage of pieces tracking if definitions for your database are stored in DMU
format. Definitions are created in DMU format by any software that does not
support CDD /Plus.

To convert database definitions from DMU to CDO format, use the following
procedure:

1. Use the RDO DELETE PATHNAME statement to delete the DMU definitions
from the database structure.

2. Use the RDO INTEGRATE IN statement to copy the definitions to the CDO
compatibility dictionary.

3. Create directory names for those converted field or record definitions that need
to be shareable.

The converted definitions are placed in the compatibility dictionary with exactly the
same path as before the conversion. Therefore, you can continue to use established
applications for the database. When your converted definitions are stored in the
compatibility dictionary, CDD/Plus tracks usage on the shared definitions, and these
definitions can be read from all products that access CDD/Plus.

7 .6.1 Copying Definitions Into the Compatibility Dictionary

In the following example, the DMU dictionary definitions for the DEPTI database
are converted to CDO format. The new definitions continue to be at the same path
and are in the compatibility dictionary. The DMU format definitions are deleted
prior to the conversion process, leaving a single copy of all converted definitions.

RDO> DELETE PATHNAME 'CDD$TOP.PERSONNEL.DEPT1'.
RDO> INTEGRATE DATABASE DEPT1
cont> IN PATHNAME 'CDD$TOP.PERSONNEL.DEPT1'
RDO> COMMIT

The definitions for the database definition DEPTI located in the compatibility
dictionary at CDD$TOP.PERSONNEL.DEPT1 are converted to CDO format
but they continue to exist only within the database structure. These converted
definitions have no directory name and are, therefore, not yet shareable. To be
shared, a definition must have a full directory name.

7-36 Using VAX Rdb/VMS with VAX COD/Plus

7.6.2 Sharing Converted Definitions

You can create a directory name for a field or record definition with the CDO com­
mand ENTER. The ENTER ... FROM DATABASE command creates a directory
name for a field or relation definition. After creating a directory name for a defini­
tion, that definition can be shared among databases and specified by other dictionary
entities.

The following example illustrates use of the ENTER command. The example shows
that converted fields are not listed with the other contents of a dictionary directory.
However, after an individual definition is specified with the CDO command ENTER,
the definition has a directory name and is listed by the DIRECTORY command.
First, the database definitions in the dictionary are converted, using RDO commands:

RDO> DELETE PATHNAME 'CDD$TOP.PERSONNEL.DEPT1'.
RDO> INTEGRATE DATABASE DEPT1
cont> IN PATHNAME 'CDD$TOP.PERSONNEL.DEPT1'
RDO> COMMIT

To invoke CDO, you must spawn a subprocess. A CDO DIRECTORY command
reveals that the converted field EMPLOYEE_ID is not listed.

RDO> $
$ DICTIONARY OPERATOR
CDO> SET DEFAULT CDD$TOP.PERSONNEL
CDO> DIRECTORY EMPLOYEE_ID

%CDO-E-NOTFOUND, entity EMPLOYEE_ID not found

To give the field a directory name, and make it shareable, use the ENTER command:

CDO> ENTER FIELD EMPLOYEE_ID
cont> FROM DATABASE DEPT1
CDO> DIRECTORY EMPLOYEE_ID

Directory SYS$COMMON: [CDDPLUS]PERSONNEL

EMPLOYEE_ID;1 FIELD

The ENTER ... FROM DATABASE command can be used to create directory
names for entities that are directly related to the named database. For example,
consider that a database-DBI-includes a record-RI. Before you can create a
directory name for any of the fields within Rl, you must create a directory name for
Rl with the command ENTER RECORD Rl FROM DATABASE DBL Once Rl
has a directory name, you can enter the command ENTER FIELD Fl FROM Rl.
Similarly, to create a directory name for a field within a STRUCTURE clause in R2,
you must first create a directory name for R2, then specify the structure name in
the ENTER FIELD ... FROM RECORD command, specifying the structure name

Using VAX Rdb/VMS with VAX COD/Plus 7-37

rather than the record name. The ENTER command cannot create directory names
for fields in a VARIANTS clause in a record definition.

You cannot use wildcard characters with this command; you must know and specify
the processing name of the entity definition.

The RDO statement IMPORT automatically creates the dictionary definitions for a
database in CDO format.

Once all the database definitions are in CDO format, you can track the usage of the
various pieces of your application. For example, the following command displays all
of the dictionary definitions that are used by the database DEPTl:

CDO> SHOW USED_BY /FULL DEPT1
Members of DEPT1;1
I ADDRESS_REC;1 (Type RECORD)
I I via CDD$RDB_DATA_AGGREGATE
I I EMPLOYEE_ID;l (Type FIELD)
I I I via CDD$DATA_AGGREGATE_CONTAINS
I I STREET;! (Type FIELD)
I I I via CDD$DATA_AGGREGATE_CONTAINS
I EMPLOYEE_REC;l (Type RECORD)
I I via CDD$RDB_DATA_AGGREGATE
I I BADGE_NO; 1 (Type FIELD)
I I I via CDD$DATA_AGGREGATE_CONTAINS

Note

If you use products that do not support the new features of CDO dic­
tionaries, these products continue to have read access to your converted
definitions but do not have write or delete access to CDO definitions. Do
not convert definitions if you need to have write or delete access to them
from such products.

7. 7 Deleting Databases

You can delete Rdb/VMS databases with the RDO DELETE DATABASE state­
ment, which has two qualifiers:

• PATHNAME - Deletes the database files and the dictionary definition for the
database

• FILENAME - Deletes only the database files

7-38 Using VAX Rdb/VMS with VAX COD/Plus

The DELETE DATABASE statement deletes the physical database file (.RDB) and
its snapshot file (.SNP). The PATHNAME qualifier deletes the CDD$DATABASE
definition in addition to these files.

Issue the DELETE DAT ABASE statement before invoking the database or after
issuing the FINISH statement, because you cannot delete a database when there are
active users for that database. You must enclose the path name or file name for the
databas~ in single quotes.

When you use the PATHNAME qualifier, you can specify either:

• A full dictionary path name, such as CDD$TOP.PERSONNEL.DEPT1.

• A relative dictionary path name, such as DEPTl.

If you use a relative path name, be sure that the current CDD/Plus default directory
is defined to be all of the path segments preceding the relative path name. The
following example shows how to delete DEPTl, the only database in the current
directory:

RDO> SET DICTIONARY CDD$TOP.PERSONNEL
RDO> DELETE DATABASE PATHNAME 'DEPT1'.
RDO> INVOKE DATABASE 'DEPT1'
%CDD-E-NOT_A_DB, dept1, is not the name of a CDD database
RDO> SHOW DATABASE ALL
The databases in the current CDD directory.

Because you have successfully deleted DEPTl, RDO shows no databases in the
current CDD directory.

When you delete a database using the FILENAME qualifier, you can use either a full
or partial file specification. The following command deletes the files DEPTl.RDB
and DEPTl .SNP:

RDO> DELETE DATABASE FILENAME 'DEPT1'.
%RDO-W-NOCDDUPDAT, database invoked by filename, the CDD will not be updated

Because the dictionary is not updated when you delete by filename, the database
definition remains in the dictionary directory.

Using VAX Rdb/VMS with VAX COD/Plus 7-39

RDO> SHOW DATABASE ALL
The databases in the current CDD directory.
Database with pathname SYS$COMMON: [CDDPLUS]PERSONNEL.DEPT1;1
RDO> EXIT
$ DICTIONARY OPERATOR
Welcome to CDO V1.0
The CDD/Plus V4.0 User Interface
Type HELP for help
CDO> DIR
Directory SYS$COMMON: [CDDPLUS]

DEPT1; 1 CDD$DATABASE

You can delete the CDD$DATABASE definition by using the CDO DELETE
GENERIC command, as shown:

CDO> DELETE GENERIC CDD$DATABASE DEPT1.

When you have successfully deleted the database definition, you will not be able to
display it. In the example, the database definition was the only file contained in the
specified directory.

7-40 Using VAX Rdb/VMS with VAX COD/Plus

Managing RMS Files with COO 8

This chapter explains the relationship between logical database file definitions and
the physical database files for VAX Record Management Services (RMS) databases.
It shows you how to create and use database file definitions and physical RMS
.database files.

8.1 Using COD/Plus with RMS: An Overview

If you use RMS services to create and access files and to process records, you can
create CDD/Plus definitions for these entities. There are several advantages to
representing RMS files in your dictionary. CDD/Plus can be used to:

• Store RMS database definitions for you to reference in programs.

• Help you standardize the definitions within an RMS database.

• Keep track of which entities are used by an RMS database.

• Generate messages to notify you when the definitions of entities used by an RMS
database are changed.

• Provide an additional level of protection for database entities.

• Create RMS database entities that can be used by RALLY applications.

Each RMS file is an array of records of one particular type. Each record is an array
of fields. An RMS database is an RMS file that is built according to a template-an
entity of type CDD$RMS_DAT ABASE. CDD$RMS_DATABASE entities describe
the logical definition of the file, which includes both a record definition and a file

Managing RMS Files with COO 8-1

definition. In this document, entities of type CDD$RMS_DAT ABASE are called the
RMS database definitions.

Table 8-1 lists the CDD/Plus commands used to manipulate RMS files.

Table 8-1: Summary of Commands For Manipulating RMS Files

Command Function

DEFINE DATABASE Creates the physical file and puts file entity into
logical dictionary.

DEFINE RMS_DATABASE Creates a file definition that includes descriptions
of the RMS file and data structures within the file.
Does not create the physical file.

SHOW DATABASE Displays the file definition for the database, and the
field and record definitions used by the database.

SHOW RMS_DATABASE Displays a database file definition, its attributes, and
the record used by the database.

SHOW MESSAGES Displays any messages attached to the specified
definition to indicate changes in that definition or a
related one. See Chapter 6.

SHOW USED_BY Displays the definitions that are used by the specified
definition.

SHOW USES Displays all of the entity definitions that use the
specified definition.

CHANGE DATABASE Changes dictionary attributes, moves the physical
file, and updates the database name in the logical
dictionary.

DELETE DATABASE Deletes the physical file and the file entity in the
logical dictionary.

DELETE RMS_DATABASE Deletes the file definition only.

To define an RMS database in the dictionary, follow this two-step process:

1. Use the DEFINE RMS_DATABASE command to create a database definition.

2. Use the DEFINE DAT ABASE command to create a physical file based on the
RMS database definition and an entry in the dictionary.

The following sections describe this process.

8-2 Managing RMS Files with COO

8.2 Creating RMS Database Definitions

Before you can define an RMS database, you must create an RMS database definition
that describes the proposed database(s) in your dictionary. To create an RMS
database definition, use the DEFINE RMS_DATABASE command. Command
arguments allow you to specify the attributes and structure you want. All databases
based on this definition share the specified attributes and structure.

As in other CDO operations, the following naming rules apply to the DEFINE
RMS_DATABASE command:

• The record that you specify in the DEFINE RMS_DATABASE command must
already exist in a dictionary.

• The name of the record that you specify in the command line cannot be the same
as the database name.

• If you do not specify a full pathname for the database, CDD/Plus creates the
RMS database definition in your current default directory.

The following example creates an RMS database definition that specifies two keys.

DEFINE RMS_DATABASE EQUIPMENT_RMS.
RECORD PART_REC.
FILE_DEFINITION

MAX_RECORD_SIZE 41
ORGANIZATION INDEXED.

KEYS.
KEY 0
DUPLICATES
SEGMENT MANUFACTURER IN TYPE IN PART_REC
SEGMENT MODEL IN TYPE IN PART_REC.

KEY 1
CHANGES
DUPLICATES
SEGMENT MODEL IN TYPE IN PART_REC.

END KEYS.
END.

Specifying File Attributes

Table 8-2 shows the three types of clauses used in specifying file attributes. VAX
CDD/Plus Common Dictionary Operator Reference Manual describes the CDO
syntax for each clause.

Managing RMS Files with CDO 8-3

Table 8-2: DEFINE_RMS_DATABASE Attribute Clauses

Clause Specifies

File-Definition Defines file characteristics and certain run-time
options.

Area-Definition Controls file or area space allocation on disk devices
to optimize performance.

Keys-Definition Defines the characteristics of one or more key(s) in
an indexed file.

Attribute clauses can enable you to fine-tune your RMS applications. For example,
you can use a clause to pre-allocate the file in a situation where performance is
important and size of the file is predetermined. Descriptions and valid values of
attribute clause parameters appear in VAX Record Management Services Reference
Manual.

8.3 Creating Physical Database Files

After completing your RMS database definition, you can use one or more DEFINE
DATABASE commands to create specific physical RMS database file(s) based on
that definition. A physical database file appears in the dictionary as the entity
CDD$DATABASE.

The following examples show how a user might build an RMS database in the
dictionary to maintain a list of current employees in three departments. The first
step is to define the database objects that make up an employee record:

COO> SET DEFAULT SYS$COMMON: [CDDPLUS]

COO> DEFINE FIELD FIRST_NAME
cont> DATATYPE IS TEXT
cont> SIZE IS 20.
COO> DEFINE FIELD LAST_NAME
cont> DATATYPE IS TEXT
cont> SIZE IS 30.
COO> DEFINE FIELD ID_NUMBER
cont> DATATYPE IS UNSIGNED LONGWORD.
COO> DEFINE RECORD EMPLOYEE_DATA.
cont> LAST_NAME.
cont> FIRST_NAME.
cont> ID_NUMBER.
cont> END.
COO>

8-4 Managing RMS Files with COO

After the objects are defined in the dictionary, you can create an RMS database
definition from the employee record. The following definition specifies two areas and
two keys (ID_NUMBER and LAST_NAME):

CDO> DEFINE RMS_DATABASE EMPLDYEE_INFORMATION
cont> AUDIT/* STORAGE FOR EMPLOYEE INFORMATION*/.
cont> RECORD EMPLOYEE_DATA.

FILE_DEFINITIDN
ORGANIZATION INDEXED
CHANNEL_ACCESS_MODE SUPER
CARRIAGE_CONTROL CARRIAGE_RETURN
ACCESS RECORD_IO

cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>
cont>

FILE_PROCESSING_OPTIONS BEST_TRY_CONTIGUOUS
FORMAT VARIABLE
SHARING GET, USER_INTERLOCK

AREAS.
AREA 0

ALLOCATE 1000
BUCKET_SIZE 10
EXTENSION 100
CONTIGUOUS.

AREA 1
ALLOCATE 1000
BUCKET_SIZE 1
EXTENSION 100
BEST_TRY_CONTIGUOUS.

AREA 2
ALLOCATE 1000
BUCKET_SIZE 1
EXTENSION 100
BEST_TRY_CONTIGUOUS.

END AREAS.
KEYS.

KEY 0
DATA_AREA 0
INDEX_AREA 2
LEVEL1_INDEX_AREA 1
SEGMENT ID_NUMBER IN EMPLOYEE_DATA.

KEY 1
DUPLICATES
DATA_AREA 1
INDEX_AREA 1
SEGMENT LAST_NAME IN EMPLOYEE_DATA.

cont> END KEYS.
cont> END EMPLOYEE_INFORMATION RMS_DATABASE.
COO>

Now you can use the DEFINE DATABASE command to create physical RMS
databases based on the same RMS database definition. You must reference an RMS
database definition in the USING clause: if a VAX Rdb/VMS database is referenced,
an error will result.

Managing RMS Files with COO 8-5

Note

DIGITAL recommends that you create the physical RMS file(s) in a VMS
directory other than your CDO anchor directory. If you create the RMS
file in your anchor directory, CDD/Plus deletes it when you delete your
dictionary.

The commands in the following example create three RMS databases that are located
on different disks:

COO> DEFINE DATABASE SALES_FILE USING
EMPLOYEE_INFORMATION ON DISK$02: [SALES]EMP.DAT.
%CDO-I-FILECRE, file DISK$02: [SALES]EMP.DAT; created
CDO> DEFINE DATABASE DEVELOPMENT_FILE USING
EMPLOYEE_INFORMATION ON DISK$03: [DEVELOPMENT]EMP.DAT.
%CDO-I-FILECRE, file DISK$03: [DEVELOPMENT]EMP.DAT; created
CDO> DEFINE DATABASE SUPPORT_FILE USING
EMPLOYEE_INFORMATION ON DISK$07: [SUPPORT]EMP.DAT.
%CDO-I-FILECRE, file DISK$07: [SUPPORT]EMP.DAT; created

When your definitions are completed, the RMS database definition appears in
your dictionary directory as a CDD$RMS__DATABASE and the physical RMS file
appears as a CDD$DATABASE entity. You can use a directory (DIR) command to
make sure that you created the database.

CDO> DIR
Directory SYS$COMMON: [CDDPLUS]

DEVELOPMENT_FILE;1
EMPLOYEE_DATA;1
EMPLOYEE_INFORMATION;1
FIRST_NAME;1
LAST_NAME;1
ID_NUMBER;1
SALES_FILE;1
SUPPORT_FILE; 1
COO>

CDD$DATABASE
RECORD
CDD$RMS_DATABASE
FIELD
FIELD
FIELD
CDD$DATABASE
CDD$DATABASE

You can use the following commands to check that you created the physical RMS file
in the VMS directory where you wanted it:

$ SET DEFAULT DISK$07: [SUPPORT]
$ DIR

Directory DISK$07: [SUPPORT]

EMP.DATA;1

Total of 1 files.
$ dir/full emp.data

8-6 Managing RMS Files with COO

Directory DISK$07: [SUPPORT]

EMP.DATA;1 File ID: (10657,17,0)
Size: 3006/3006 Owner: [VDD,HALVORSON]
Created: 15-FEB-1988 15:42 Revised: 24-MAR-1988 15:10 (2)
Expires: <None specified> Backup: 10-APR-1988 19:10
File organization: Indexed, Prolog: 3, Using 2 keys

In 3 areas
File attributes: Allocation: 3006, Extend: 100, Maximum bucket size: 10

Global buffer count: 0, No version limit
Record format: Variable length, maximum 19 bytes
Record attributes: Carriage return carriage .control
Journaling enabled: None
File protection: System:RW, Owner:RWED. Group:RWED, World:RWED
Access Cntrl List: None

Total of 1 file, 3006/3006 blocks.

You can use information from databases in a VAX RALLY application.

8.4 Using RMS File Definitions in Programs and Applications

VAX RALLY is a forms-based application generator. In its default form, the
DCL command RALLY CREA TE places an entity in the dictionary for each
Application File (AFILE) and each Data Source Definition (DSD). These enti­
ties, RALLY$APPLICATION and RALLY$DATA_SOURCE_DEFINITION, are
proxy objects. Proxy objects contain information about and point to an actual
RALLY object, but the actual RALLY object is created and maintained in the
AFILE. Since the dictionary entities keep track of the location and change history
for the corresponding RALLY object, you can use CDO to display the location and
creation history of RALLY applications.

RALLY builds DSDs based on the CDD/Plus pathname to an RMS file or record
definition. You can use Data Source Definitions to connect the information in the
RMS database to form/report fields or to variables in an AFILE. The VAX RALLY
Definition System User's Guide describes RMS file access from RALLY, including
dictionary requirements for such access.

Managing RMS Files with COO 8-7

8.4.1 Creating Relationships with REFERENCE FROM DICTIONARY

If the VAX language you use supports CDO dictionaries, you can insert a compiler
directive anywhere in your program in order to create a compiled module. You can
then create a relationship between the compiled module and an entity you name.
For the proper syntax for compiler directives and creating a relationship, see the
documentation for the language that you are using. You can reference any of the
following data types in this command:

• Data aggregates

• Databases

• Subschemas

• Other source modules

• Other compiled modules

8.4.2 Tracking File Program Components

CDO keeps track of the relationships between the entities you define, create, or
change. If you alter file metadata in an RMS database, CDO sends messages to any
CDO database or any compiled module that owns that file, provided that module is
represented in the dictionary.

You can use the CHECK_MESSAGES routine described in VAX CDD/Plus Call
Interface Manual to see changes that may affect programs and applications. You
can write a program that parses the message buffer and displays messages for you
or queries you concerning inconsistencies noted by messages. CDO does not provide
these services.

8.5 Showing Databases and Database Definitions

The SHOW commands listed in Table 8-1 let you check the contents of your
database and your database definition.

The SHOW DATABASE command displays the database definition. SHOW
DAT ABASE default output (/BRIEF) includes the database name and descrip­
tion, record name, file organization attributes, and fully qualified path name of an
RMS database:

8-8 Managing RMS Files with COO

(

CDD> SET DEFAULT DISK$02: [SALES]
CDO> SHOW DATABASE SALES_FILE
Definition of database SALES_FILE

CDO>

database uses RMS database EMPLDYEE_INFORMATION
I database uses record EMPLDYEE_DATA

file definition
I channel mode protection supervisor
I access for block or record IO

file contiguous best try
file organization index sequential
record carriage_control carriage_return
file record format variable
file sharing on get
file sharing on user interlock
key 0
I key data area 0
I key index area 2
I segment ID_NUMBER IN EMPLOYEE_DATA
key 1
I key duplicates
I key data area 1
I key index area 1
I segment LAST_NAME IN EMPLOYEE_DATA
storage area 0
I area allocation 1000
I area bucket size 10
I area contiguous
I area extension 100
storage area 1
I area allocation 1000
I area bucket size 1
I area contiguous best try
I area extension 100
storage area 2
I area allocation 1000
I area bucket size 1
I area contiguous best try
I area extension 100

data ase in file DISK$02: [SALES]EMP.DAT
fully qualified file DISK$02: [SALES]EMP.DAT;

The /FULL qualifier causes SHOW DAT ABASE to add the record definition
attributes to the default display.

Managing RMS Files with COO 8-9

The SHOW RMS_DATABASE command displays the RMS database definition:

CDO> SHOW RMS DATABASE EMPLOYEE INFORMATION
Definition of-RMS database EMPLOYEE_INFORMATION

CDO>

Description 'INFORMATION ON'
'CURRENT EMPLOYEE'

database uses record EMPLOYEE_DATA
file definition
I channel mode protection supervisor
I access for block or record IO
I file contiguous best try
I file organization index sequential
I record carriage_control carriage_return
I file record format variable
I file sharing on get

file sharing on user interlock
key 0
I key data area 0
I key index area 2
I segment ID_NUMBER IN EMPLOYEE_DATA
key 1
I key duplicates
I key data area 1
I key index area 1
I segment LAST_NAME IN EMPLOYEE_DATA
storage area 0
I area allocation 1000
I area bucket size 10
I area contiguous
I area extension 100
storage area 1
I area allocation 1000
I area bucket size 1
I area contiguous best try
I area extension 100
storage area 2
I area allocation 1000
I area bucket size 1
I area contiguous best try
I area extension 100

If you have more than one RMS database definition in your dictionary and do not
specify one, CDD /Plus displays all of them.

8-1 0 Managing RMS Files with COO

8.6 Moving Databases with CHANGE DATABASE

When you want to move an RMS database to a new location, use the CHANGE
DATABASE command. You can change your database in three ways:

• You can specify a new location with FILENAME attribute.

• You can enclose a comment with the DESCRIPTION attribute.

• You can add an entry to the history list for a definition with the AUDIT
attribute.

The following example changes the location of the database SALES_FILE by
specifying the new filename parameter after the optional word ON.

CDO> CHANGE DATABASE SALES_FILE;1 ON DISK$03: [MIS.MARKETING]EMP.DAT.
moving file DISK$02: [SALES]EMP.DAT; to DISK$03: [MIS.MARKETING]EMP.DAT;,
proceed? [Y/N] (N) Y
%CDO-I-FILECRE, file DISK$03: [MIS.MARKETING]EMP.DAT; created
%CDO-I-FILEDEL, file DISK$02: [SALES]EMP.DAT; deleted
CDO>

You can also use CHANGE DATABASE to add history information or change the
description without changing the filename.

CDO> CHANGE DATABASE SALES_FILE;1
cont> DESCRIPTION IS/* Moved to new disk during departmental reorganization */
CDO>

8. 7 Deleting Databases and Database Definitions

You can delete either the physical RMS database file or the file description. To
delete the physical file as well as the entity that represents it in the database, use the
DELETE DATABASE command. CDD/Plus prompts you for confirmation before
deleting the database.

CDO>
CDO> DELETE DATABASE SUPPDRT_FILE;2.
deleting file DISK$07: [SUPPORT]EMP.DAT;, proceed? [Y/N] (N)Y
CDO>

After all the databases that use it are deleted, you can use the DELETE
RMS_DAT ABASE command to delete the RMS database definition in the dictio­
nary. CDD /Plus deletes the definition without prompting you.

Managing RMS Files with COO 8-11

COO> DELETE RMS_OATABASE EMPLOYEE_INFORMATION.
COO>

If you want notification that the RMS database definition was deleted, you can use
the /LOG qualifier with the DELETE RMS__DATABASE command, as follows:

COO> DELETE RMS_DATABASE /LOG EMPLOYEE_INFORMATION.
%COO-I-ENTOEL, entity SYS$COMMON: [COOPLUS]EMPLOYEE_INFORMATION;2 deleted

8-12 Managing RMS Files with COO

User's Guide to DMU Format Dictionaries A

The CDD/Plus dictionary system supports dictionaries in two formats: the format
of dictionaries manipulated with the CDO utility and the format of dictionaries
manipulated with the DMU utility. The body of this manual provides tutorial
material on creating and manipulating definitions in CDO dictionaries; this appendix
provides tutorial material about dictionaries that are manipulated through the DMU
utility.

Before using this appendix, you should read the description of the CDD/Plus com­
patibility scheme in Chapter 2. You should be aware of the access routes into
CDD/Plus and which products can read, write, and delete definitions in DMU dictio­
naries. Depending on the products you use to access CDD /Plus, you may continue to
require the information on DMU dictionaries that this appendix provides.

Since this appendix deals only with DMU format dictionaries, to avoid confusion,
VAX Common Data Dictionary software is referred to as CDD, rather than
CDD/Plus.

This appendix includes a separate index made up of entries referring only to subjects
related to DMU format dictionaries. The main index at the end of this book includes
no entries referring to this appendix.

User's Guide to DMU Format Dictionaries A-1

A.1 DMU Dictionary Structure

You can think of the DMU Dictionary's hierarchical structure as a family tree
defining parent-child relationships. Dictionary directories are the parents, and their
children include other directories, as well as dictionary objects (see Figure A-1).

The rules that govern these hierarchical relationships are simple. Some of the rules
help distinguish directories from objects:

• A dictionary object cannot have any children.

• A dictionary directory can have any number of children (within the limits of
your system's resources).

• The children of a dictionary directory can be other directories, dictionary objects,
or a combination of both dictionary directories and objects.

• It is possible to have multiple versions of a dictionary object; therefore, a dictio­
nary object has a version number associated with it.

• It is not possible to have multiple versions of a dictionary directory; therefore, a
dictionary directory does not have a version number associated with it.

• A dictionary directory cannot contain two directories with the same name.

• A dictionary directory can contain two objects with the same name if they have
different version numbers.

Some of the rules apply to both directories and objects:

• When you create a dictionary directory or object, you assign it a name.

• A dictionary directory or dictionary object can have only one parent.

All of the dictionary directories that precede and are related to an object or directory
are called its ancestors. All dictionary directories and objects of which a directory
is an ancestor are called its descendants. The dictionary directory that serves as
the origin of the directory hierarchy is CDD$TOP, the root dictionary directory.
CDD$TOP is an ancestor of every other dictionary directory and object in the CDD.

A.1.1 Sample DMU Dictionary

The sample dictionary in Figure A-1 shows some of the relationships that can exist
between dictionary directories and dictionary objects. All of the examples in this
manual are drawn from this sample directory hierarchy and its associated data
definitions.

A-2 User's Guide to DMU Format Dictionaries

c
C/)

~-
C/)

G)
c
Ci
CD
....+
0

0
s::
c .,,
0

3
Q)
....+

0 n·
....+
5·
::J
Q) ...,
Ci)"
C/)

f w

Figure A-1: Sample DMU Dictionary Hierarchy

ADDRESS_
RECORD; 1

EMPLOYEE­
LIST; 1

CORPORATE

PRODUCT_
INVENTORY; 1

SALARY_
RECORD; 1

SALARY_
RECORD; 2

SALARY_
RANGE; 1

CDD$TOP

PRODUCTION

SALARY_
RANGE; 2

CUSTOMER_
RECORD; 1

SALES

JONES

LEADS_
RECORD; 1

SALES_
RECORD; 1

ZK-8543-HC

At the top of the sample dictionary is CDD$TOP, the root dictionary directory. The
next level consists of four directories:

• CORPORATE

• PERSONNEL

• PRODUCTION

• SALES

Three of these directories have children:

• The CORPORATE directory has three children:

ADDRESS_RECORD;l

EMPLOYEE_LIST;l

PRODUCT_INVENTORY;l

These are dictionary objects that contain record definitions for the product
inventory, address record, and employee list.

• The SALES directory has three children:

CUSTOMER_RECORD;l

SALES_RECORD;l

JONES

CUSTOMER_RECORD;l and SALES_RECORD;l are dictionary objects that
contain record definitions.

JONES is a dictionary directory with one child, the dictionary object
LEADS_RECORD;l.

SALES is an ancestor of LEADS_RECORD;l. LEADS_RECORD;l is a
descendant of SALES.

• The PERSONNEL directory has two children:

SERVICE

STANDARDS

These are both dictionary directories.

SERVICE has two children:

- SALARY_RECORD;l

A-4 User's Guide to DMU Format Dictionaries

SALARY_RECORD;2.

SALARY_RECORD;2 is an updated version of SALARY_RECORD;l.

STANDARDS also has two children:

SALARY_RANGE;l

SALARY_RANGE;2

SALARY_RANGE;l is an updated version of SALARY_RANGE;2.

All the children of SERVICE and STANDARDS are descendants of
PERSONNEL.

A.1.2 Subdictionary Directories in the DMU Dictionary

When you first install the VAX Common Data Dictionary, you create a dictionary
file named CDD.DIC in which the directory hierarchy is physically stored. The
DMU Dictionary then allows you to store portions of this single logical hierarchy
in separate physical files called subdictionary files. The directories that point to
separate subdictionary files are called subdictionary directories, or subdictionaries.

Except for their physical location, subdictionary directories are exactly like dictio­
nary directories. Subdictionaries are part of the same logical hierarchy, and they
perform the same functions, as dictionary directories. For more information about
subdictionaries, see Section A.6.5 and Section A.9.1.5.

A.1.3 COD Types in the DMU Dictionary

When you create dictionary directories and subdictionaries, and when you insert
dictionary objects into the hierarchy, the CDD assigns each of them a dictionary
type. Examples of CDD types include SUBDICTIONARY, CDD$RECORD, and
DTR$DOMAIN.

The Dictionary Management Utility's LIST/BRIEF command displays the hierarchy
and includes the type that the D MU Dictionary assigns to each subdictionary and
dictionary object. LIST /BRIEF does not display a type for dictionary directories.

The following example shows how to use LIST /BRIEF to produce a listing of the
sample dictionary. The listing shows PERSONNEL to be a subdictionary directory
stored in the file DB3:[CASADAY.CDD]PERS.DIC.

User's Guide to DMU Format Dictionaries A-5

DMU> LIST/BRIEF CDD$TOP>

CDD$TOP
CORPORATE
I ADDRESS_RECORD;1 <CDD$RECORD>
I EMPLOYEE_LIST;1 <CDD$RECORD>
I PRODUCT_INVENTORY;1 <CDD$RECORD>
PERSONNEL <SUBDICTIONARY> : DB3: [CASADAY.CDD]PERS.DIC
I SERVICE _
I I SALARY_RECORD;2 <CDD$RECORD>
I I SALARY_RECORD;1 <CDD$RECORD>
I STANDARDS
I I SALARY_RANGE;2 <CDD$RECORD>
I I SALARY_RANGE;1 <CDD$RECORD>
PRODUCTION
SALES
I CUSTOMER_RECORD;1 <CDD$RECORD>
I JONES
I I LEADS_RECORD;1 <CDD$RECORD>
I SALES_RECORD;1 <CDD$RECORD>

A.2 DMU Dictionary Paths

In the DMU Dictionary, when you want access to the CDD-for example, to create
or modify the directory hierarchy, to copy a record definition into an application, or
to ready a DATATRIEVE domain-you must be able to locate particular dictionary
directories, subdictionaries, or objects. You do this by using dictionary path
names. A path name is the string of given names linking CDD$TOP to the given
name of the target dictionary directory, subdictionary, or object.

A.2.1 The Given Name in the DMU Dictionary

Every dictionary directory, subdictionary, and object in the CDD has a given name.
Except for CDD$TOP, the given name of the root dictionary directory, you assign
given names when you create each directory, subdictionary, and object.

Given names, however, are not necessarily unique designations. In fact, two directo­
ries or objects in the dictionary can have the same given name as long as they do not
share the same parent directory or subdictionary. Objects with the same name can
have the same parent directory or subdictionary if they are different versions of the
same object, distinguished from each other by version numbers.

To uniquely identify a dictionary directory, subdictionary, or object, you must use its
dictionary path name.

A-6 User's Guide to DMU Format Dictionaries

A.2.2 The Full DMU Dictionary Path Name

The full dictionary path name of a directory, subdictionary, or object consists of the
concatenation of the given names of all its ancestors, beginning with CDD$TOP, and
ending with its given name. Separate each given name from the next by a period.

For example, the full dictionary path name of the dictionary directory SERVICE in
the sample dictionary (Figure A-1) is:

CDD$TDP.PERSONNEL.SERVICE

A.2.3 Version Numbers in Object Names in the DMU Dictionary

You can create multiple versions of dictionary objects. Nevertheless, every object
must have a path name that uniquely identifies it. Therefore, each dictionary object
is assigned a version number when it is created and when it is renamed. To identify a
specific object, you must specify its version number. For example, the full dictionary
path name of SALARY_RECORD;2 is:

CDD$TOP.PERSONNEL.SERVICE.SALARY_RECORD;2

The full dictionary path name of SALARY_RECORD;l is:

CDD$TOP.PERSONNEL.SERVICE.SALARY_RECORD;1

There are a number of ways to specify the version of an object. For the most part,
the rules for specifying versions of CDD objects follow the rules for specifying
versions of VMS files, except that the creation of multiple versions of CDD objects is
not the default. Table A-4 describes the various methods of specifying versions.

A.2.4 The Default DMU Dictionary Directory

You need not always use the full dictionary path name to identify directories and
objects in the CDD. Instead, you can establish a default directory at a specified
dictionary directory or subdictionary in the hierarchy. Then you have to use only
that portion of the path name descended from the default to identify a directory or
object. This shortened path name is called the relative dictionary path name.

You can establish your default directory in two ways:

• By using the Dictionary Management Utility's SET DEFAULT command (see
Section A.5.3)

• By defining the logical name CDD$DEFAULT (see Section A.4.4)

User's Guide to DMU Format Dictionaries A-7

For example, if you establish your default directory as CDD$TOP.SALES, then you
can use either the full or the relative dictionary path name to identify the dictionary
object LEADS_RECORD;l:

• Full path name: CDD$TOP.SALES.JONES.LEADS_RECORD;l

• Relative path name: JONES.LEADS_RECORD;l

A.3 COD Utilities in the DMU Dictionary

CDD provides three utilities to help you create and maintain your DMU
dictionary:

• The Dictionary Management Utility (DMU)

• The Dictionary Verify/Fix Utility (CDDV)

• The Dictionary Data Definition Language Utility (CDDL)

A.3.1 Dictionary Management Utility (DMU)

D MU commands allow you to create dictionary directories and subdictionaries, to
manage the dictionary structure, and to control access to the dictionary. You can
invoke the utility by typing:

$ RUN SYS$SYSTEM:DMU

DMU commands are briefly described in Table A-1. See Section A.5 for more
information about using DMU commands. For a complete description of DMU
commands, parameters, and qualifiers, see the VAX Common Data Dictionary
Utilities Reference Manual.

A-8 User's Guide to DMU Format Dictionaries

Table A-1: The Dictionary Management Utility Commands

Command Function

BACKUP Makes a backup copy of the information in
specified directories and objects in the CDD
and stores it in an RMS file.

COPY Duplicates· portions of the CDD across· directo-
ries.

CREATE Creates new dictionary directories and subdic-
tionaries.

DELETE Deletes specified dictionary directories, subdic-
tionaries, and objects.

DELETE/HISTORY Purges history list entries.

DELETE/PROTECTION Deletes portions of the access control list of a
directory, subdictionary, or object.

EXIT Returns control to DCL.

EXTRACT Copies or generates the source text of a
dictionary object and inserts it into an RMS
file.

HELP Displays documentary text about D MU.

LIST Displays information about dictionary direc-
tories, subdictionaries, or objects and their
history and access control lists.

MEMO Adds an entry to the history list of a dictio-
nary directory, subdictionary, or object.

PURGE Deletes versions of dictionary objects, keeping
a specified number of the highest versions.

RENAME Allows you to change the name of a dictionary
directory, subdictionary, or object, and to
change the version number of an object.

RENAME/SUBDICTIONARY Changes the VMS file specification to which a
subdictionary directory points.

RESTORE Copies portions of the dictionary from a
backup file into the CDD.

(Continued on next page)

User's Guide to DMU Format Dictionaries A-9

Table A-1: The Dictionary Management Utility Commands (Cont.)

Command Function

SET ABORT Halts utility command procedures when DMU
or CDD signals an error.

SET DEFAULT Allows you to establish a temporary default
dictionary directory.

SET PROTECTION Allows you to establish or modify access
control lists.

SET PROTECTION/EDIT Runs the access control list editor to modify
access control list entries.

SHOW DEFAULT Displays your current default dictionary
directory.

SHOW PROTECTION Displays your access privileges to a dictionary
directory, subdictionary, or object.

SHOW VERSION Displays the software version number.

A.3.2 Dictionary Verify/Fix Utility (CDDV)

Dictionary files can become corrupted (for example, by a hardware failure during an
input/output operation). The Dictionary Verify/Fix Utility (CDDV) validates and
repairs corrupt dictionary files and compresses valid dictionary files.

Users who own dictionary files can use CDDV to maintain those files. To use CDDV
with files you do not own, you must have VMS SYSPRV or BYPASS privilege.

You can invoke the utility by typing:

$ RUN SYS$SYSTEM:CDDV

You can then issue CDDV commands, which are briefly described in Table A-2. See
Section A.9.4 for more information about using CDDV. For a complete description
of the CDDV commands, parameters, and qualifiers, see the VAX Common Data
Dictionary Utilities Reference Manual.

A-10 User's Guide to DMU Format Dictionaries

Table A-2: The Dictionary Verify/Fix Utility Commands

Command Function

COMPRESS Copies and reorganizes a dictionary file, reducing its size.

EXIT Returns control to DCL.

FIX Scans a dictionary file, reports any inconsistencies, and makes
repairs.

HELP Displays documentary text about the CDDV.

SHOW VERSION Displays the software version number.

VERIFY Scans a dictionary file and reports any inconsistencies.

A.3.3 Dictionary Data Definition Language Utility (COOL)

CDDL compiles record definitions contained in CDDL source files and stores them
in the dictionary. CDDL allows you to:

• Create entirely new record definitions

• Replace already existing record definitions

• Create additional versions of existing record definitions without replacing old
versions

You can invoke the utility by typing:

$RUN SYS$SYSTEM:CDDL

CDDL then prompts you for the name of a CDDL source file. See Section A.7 and
Section A.7.1 for more information about using CDDL. For a complete description
of the CDDL commands, parameters, and qualifiers, see the VAX Common Data
Dictionary Data Definition Language Reference Manual.

User's Guide to DMU Format Dictionaries A-11

Table A-3: The Dictionary Data Definition Language Utility Commands

Command Function

CDDL Compiles a CDDL source file and stores the record
definitions it contains in the dictionary.

CDDL/RECOMPILE Recompiles record definitions from source text already in
the dictionary.

A.4 Using DMU and CDDV in the DMU Dictionary

You use the Dictionary Management Utility (DMU) to create and maintain the
DMU Dictionary's directory hierarchy, history lists, and access control lists. You can
use the Dictionary Verify/Fix Utility (CDDV) to repair damaged dictionary files.

These sections show you how to invoke and use these utilities, how to specify
dictionary path names, and how to define your default directory.

A.4.1 Issuing DMU and CDDV Commands

You can invoke the CDD utilities and issue utility commands in either of the
following ways:

• By commands at the system (DCL) level

• Through a DCL command procedure

A.4.1.1 System Level Commands -To access the CDD utilities, enter one of
the following DCL commands:

$ RUN SYS$SYSTEM:DMU
$RUN SYS$SYSTEM:CDDV

The utility you are running then displays a prompt. The Dictionary Management
Utility prompt is:

DMU>

A-12 User's Guide to DMU Format Dictionaries

(

The Dictionary Verify /Fix Utility prompt is:

CDDV>

To save keystrokes, you can define DMU and CDDV as global symbols in your login
command file:

$ DMU:==SYSSYSTEM:DMU
$ CDDV:==SYSSYSTEM:CDDV

Then you can access the utilities simply by typing the symbol name:

$ DMU
$ CDDV

You can issue utility commands in interactive sessions within the utility or at the
DCL level.

Within a utility program, you are prompted for commands until you enter EXIT. For
example:

$ DMU
DMU> LIST/FULL CDD$TOP.PERSONNEL

DMU> EXIT
$

$ CDDV
CDDV> VERIFY DB3: [CASADAY]PERS.DIC

CDDV> EXIT
$

To enter utility commands at the DCL level, you must have defined DMU and
CDDV as global symbols. Then you can invoke the utility and issue the utility
command in one response to the DCL dollar sign prompt. For example:

$ DMU LIST/FULL CDD$TOP.PERSONNEL
$

$ CDDV VERIFY DB3: [CASADAY]PERS.DIC
$

User's Guide to DMU Format Dictionaries A-1 3

A.4.1.2 DCL and Utility Command Procedures -You can run CDD utilities
and issue utility commands from DCL command procedures. Include the command
to invoke the utility followed by utility commands. You can then execute the
procedure at DCL level by typing an at sign (@) followed by the file specification of
the command procedure:

$ ©file-specification

For example, you can store the following commands in a procedure named
VERIFY.COM:

$ RUN SYS$SYSTEM:CDDV
VERIFY DB3: [CASADAY.CDD]PERS.DIC
EXIT

Executing the procedure then invokes CDDV and verifies the dictionary file
PERS.DIC:

$ ©VERIFY. COM

You can also create a command file that includes only utility commands. You execute
a utility command file by:

1. Invoking the utility

2. Typing an at sign (@) followed by the file specification of the command file

For example, you can create a command procedure named LIST.COM containing the
following DMU commands:

LIST/FULL CDD$TOP.PERSONNEL
EXIT

You can invoke DMU and execute the procedure to list information about
PERSONNEL:

$ RUN SYS$SYSTEM:DMU
DMU> ©LIST.COM

When you use DCL command procedures or utility command files, the following
conditions apply:

• The at sign (@) must be the first character following the DCL or utility prompt.

• There must be no space between the at sign and the file specification.

A-14 User's Guide to DMU Format Dictionaries

• The file specification is a standard VMS file specification.

• The default file type is .COM.

A.4.1 .3 Halting a DMU Command Procedure -All command procedures stop
if a fatal error is signalled; however, a nonfatal error in a command procedure can
cause commands after the error to be performed incorrectly. For example, consider
the utility command procedure DELJONES.COM:

!PROCEDURE DELJONES
SET DEFAULT CDD$TOP.SOLES
DELETE/ALL JONES
EXIT

When DMU executes this command file in the sample dictionary, CDD tries to
set the default directory to CDD$TOP.SOLES instead of CDD$TOP.SALES (see
Figure A-1) because the second line of this procedure contains a spelling error. If
there is no such directory, CDD issues an error message and the current default
directory is not changed. If there is a directory JONES under the current default
directory, the next command attempts to delete that directory and all its children.
Thus, the spelling error in this procedure could cause the deletion of the wrong
portion of the dictionary.

A DMU command, SET ABORT, halts a DMU command procedure and returns you
to DMU command level if DMU or the CDD issues a nonfatal error. SET ABORT
does not roll back any commands already executed (unless the error occurs in the
middle of the execution of a COPY/STAGE or RESTORE/STAGE command).

Note

SET ABORT works only for DMU command procedures, that is, for
command files executed from within DMU. It does not halt DCL or
CDDV command procedures.

The following example illustrates the use of SET ABORT. If you add SET ABORT
to DELJONES.COM, it looks like this:

!PROCEDURE DELJONES
SET ABORT
SET DEFAULT CDD$TOP.SOLES
DELETE/ALL JONES
EXIT

User's Guide to DMU Format Dictionaries A-1 5

You can now execute the procedure:

DMU> ©DELJONES

DMU issues the following error messages at the second line of the command proce­
dure:

%DMU-E-CDDERROR, CDD error at node "CDD$TOP.SOLES"
-CDD-E-NODNOTFND, Directory er object not found
DMU>

As a result of these errors:

• SET ABORT halts the procedure.

• No commands after the errors execute.

• No directories or objects are deleted.

• DMU returns you to DMU command level.

A.4.2 Reading Command Lines in the DMU Dictionary

Both the Dictionary Management Utility and the Dictionary Verify/Fix Utility
accept abbreviations and recognize the exclamation point (!) as a comment delimiter.
You can continue a utility command on a second line by typing a hyphen (-) . In
addition, you can abort execution of DMU commands by pressing CTRL/C.

A.4.2.1 Abbreviations -You can use abbreviations for any of the DMU or
CDDV command words. The only restriction is that you must specify enough
characters to avoid ambiguity.

For example, the first two characters in RENAME are the same as the first two
characters in RESTORE. Therefore, you need at least three characters for unique
abbreviations: REN and RES. You can abbreviate LIST as Land VERIFY as V,
however, because no other commands begin with the letters L and V.

A-1 6 User's Guide to DMU Format Dictionaries

A.4.2.2 Exclamation Point - DMU and CDDV interpret an exclamation point
(!) occurring anywhere outside of a quoted string as a comment delimiter. In parsing
a command line, the utilities ignore that part of the line following the exclamation
point.

For example, the following input line validates the PERSONNEL subdictionary file.

CDDV> VERIFY DB3: [CASADAY.CDD]PERS.DIC ! Validate PERSONNEL

A.4.2.3 Hyphens in Utility Command Lines -If a utility command is too
long to enter on a single line, you can use a hyphen (-) at the end of the first line
to indicate that it is continued on the next line. Make sure the hyphen is the last
character you type before you press the RETURN key. The DMU prompt for a
continuation is DMU>. The CDDV prompt for a continuation is CDDV>. For
example:

DMU> COPY/AUDIT="COPIED FROM CORPORATE DIRECTORY"/HISTORY­
DMU>_/PROTECTION CORPORATE.ADDRESS_RECORD;1 SALES.JONES

Despite this ability to continue command lines, you must limit utility commands to
255 characters.

Note

You can enter only one command per line. D MU no longer accepts mul­
tiple commands on a single line separated by a semicolon. You should
change any DCL or utility command procedures that use multiple com­
mands on a single line.

A.4.2.4 CTRL/C in DMU Commands - If you enter a CTRL/C while a
DMU command is executing, DMU aborts the execution and returns you to DMU
command level. If you enter CTRL/C in response to the DMU> prompt, DMU
returns you to DCL command level.

User's Guide to DMU Format Dictionaries A-1 7

DMU> LIST *
-c
%DMU-E-CTRLCAST, Execution terminated by operator
DMU>

DMU> -c
$

Note

CTRL/C does not roll back any part of the command that has already
been executed before you pressed CTRL/C. If, for example, you entered
a command to delete a number of objects, those objects that had been
deleted before you pressed CTRL/C remain deleted. Always check the ex­
tent to which the command executed before being terminated by CTRL/C.
The only exceptions to this rule are the COPY/STAGE and
RESTORE/STAGE commands, which withhold committing any changes
until all changes are made.

A.4.3 Specifying Paths in the DMU Dictionary

The following sections describe the rules for specifying CDD path names to identify
dictionary directories, subdictionaries, and objects in the DMU Dictionary.

A.4.3.1 Path Name -A path name consists of a string of given names separated
by periods. It uniquely identifies a dictionary directory, subdictionary, or object
through its line of ancestry from CDD$TOP. Because it is possible to have multiple
versions of dictionary objects, object names end with a semicolon and version
number.

For example, you can specify the dictionary directory STANDARDS in the sample
dictionary (Figure A-1) with the following path name:

CDD$TOP.PERSONNEL.STANDARDS

The following is not a legal path name because a path name cannot contain consecu­
tive periods:

CDD$TOP .. PERSONNEL

A-18 User's Guide to DMU Format Dictionaries

A.4.3.2 Given Name -A given name is a string of up to 31 characters. The
legal characters in a given name are A-Z, 0-9, underscore (_), and dollar sign ($).
The first character must be a letter from A-Z, and the last character cannot be_ or
$. If you are using a terminal of the VT200 family, you can use 8-bit alphabetic
characters in given names. Remember that other terminals cannot reproduce 8-bit
characters. In a given name, DMU translates all lowercase letters to uppercase.

For example, SALES and CDD$TOP are legal given names. S{L?S, however, is not
a legal given name because it contains the illegal characters { and ? .

A.4.3.3 Version Numbers in Object Names -The given name of an object
also includes a version number, separated from the rest of the given name by a
semicolon (;). This number can be an absolute version number, a relative version
number, or an asterisk (*) used as a wildcard. You can also use just a semicolon or
omit the semicolon and number.

For the most part, version numbers used with CDD objects in the DMU Dictionary
follow the same rules as version numbers used with VMS files. Table A-4 lists the
various ways of specifying version numbers, the results of such specification, and an
example of each specification.

Table A-4: Specifying Version Numbers with COD Objects in the DMU
Dictionary

Specification Result Example

Absolute version number1 DMU operates on the object with SALARY_RANGE;2
the specified version number.

Relative version number1 DMU operates on the object SALARY_RANGE;-1
a specified number of versions
below the highest version.

Wildcard version number1 DMU operates on all versions of SALARY_RANGE;*
the object.

Semicolon without a version DMU operates on the highest SALARY_RANGE;
number1 version of the object.

No semicolon or version DMU operates on the highest SALARY_RANGE
number2 version of the object.

1You cannot use this specification with PURGE.
2If you use this specification with LIST, DMU lists all the children in the directory.

The use of certain version specifications is restricted in various ways depending on
the command used. See the DMU command specifications in the VAX Common

User's Guide to DMU Format Dictionaries A-19

Data Dictionary Utilities Reference Manual for a description of the version specifi-
cations that can be used with each command. '

If the logical name CDD$VERSION _LIMIT has been defined for your system,
group, or process, the dictionary will store only the number of versions allowed by
the quota CDD$VERSION _LIMIT specifies.

The following example limits the number of versions of any object to three. Then
a user tries to place a fourth version of the object ADDRESS_RECORD in the
dictionary and receives an error message:

$ DEFINE CDD$VERSION_LIMIT 11 3 11

$COOL/VERSION ADDRESS.DDL
0001 DEFINE RECORD

%CDDL-E-CDDERROR, error encountered while creating record
%CDD-E-EXCVERLIM. exceeded version limit for object

0009 END ADDRESS_RECORD.
1

%CDDL-E-RECNOTCRE, error in record definition -- record not created

Informational: 0
Warnings: 0
Errors: 3
Fatal Errors: 0

Because the D MU Dictionary does not support multiple versions of directories and
subdictionaries, you cannot use a semicolon or version number at the end of directory
and subdictionary names.

A.4.3.4 Wildcard Characters -With some commands in the Dictionary
Management Utility, you can specify a path by using its proper path name or by
including wildcard characters in the path name.

Legal DMU wildcards are%,*,> , and@:

• The % replaces any single character in a given name. For example, SA%ES is
equivalent to SALES.

• The * replaces any number of characters, and its use is legal even if there is no
corresponding character to replace. So, for example, SA* and SALES* are both
legal wildcard specifications, and they could both identify the directory SALES.
The* can also replace a version number in a CDD object. Note that an* used
by itself refers to all the children of a directory, including all versions of any
object in that directory. Be careful about using the* with the DMU DELETE
command because DMU then deletes all versions of any object in the default
directory.

A-20 User's Guide to DMU Format Dictionaries

• The > as the last character in a path name indicates that you want to include all
the descendants of the specified dictionary directory or subdictionary, including
all versions of any objects. If you end a path name with . > , the wildcard
indicates that only the descendants are to be processed. If you end a path name
with > , the wildcard without the preceding period, the DMU processes the last
specified dictionary directory or subdictionary as well as all of its descendants.

In the sample dictionary (Figure A-1), for example, the following path specifi­
cation identifies CUSTOMER_RECORD;l, SALES_RECORD;l, JONES, and
LEADS_RECORD;l:

CDD$TOP.SALES.>

The following path specification identifies SALES as well as JONES,
CUSTOMER_RECORD;l, SALES_RECORD;l, and LEADS_RECORD;l:

CDD$TOP.SALES>

• The @ prefixed to the given name of a dictionary directory or subdictionary
signifies that the directory or subdictionary and all of its named descendants are
to be processed. In the sample dictionary, for example, the following path speci­
fication directs the DMU to process SALES, JONES, and LEADS_RECORD;l:

CDD$TOP.©SALES.JONES.LEADS_RECORD;1

Table A-5 is a summary of the DMU wildcard characters.

Table A-5: Dictionary Management Utility Wildcard Characters

Character Signifies Restrictions

% Any single character. None.

* Any number of characters. None.

> All descendants of last specified Can be used only as the last
directory or subdictionary. character in a path specifica-

tion.

@ All specified given names that follow Can be used only once; it must
it. precede a given name.

The use of wildcards is restricted in various ways depending on the command
used. See the DMU command specifications in the VAX Common Data Dictionary

User's Guide to DMU Format Dictionaries A-21

Utilities Reference Manual for a description of the wildcards that can be used with
each command.

A.4.3.5 Hyphens in Path Specifications -The hyphen (-) in place of a given
name in any path name indicates a name one generation back. This substitution
is valid only for the first given names in the specification. You can use multiple
hyphens; however, once you have specified a given name, you cannot use any
hyphens further down in the chain. The hyphens must be first in the string. If your
default directory is CDD$TOP.SALES.JONES, for example, you can specify the
CORPORATE directory by typing -.-.CORPORATE.

Note that -.SALES.-.PRODUCTION is not a legal usage because the sequence
SALES.- is not allowed.

Note

When using a hyphen in place of a given name, make sure that the hyphen
is not the last character in a command line. DMU interprets a hyphen
that ends a line as a continuation character (see Section A.4.2.3). If no
given name follows a hyphen, end the line by typing a space.

A.4.3.6 Specifying Passwords in Path Names -Within any type of path
specification, each dictionary directory, subdictionary, and object can have a
password associated with it. To use a password in a path specification, enclose
the password in parentheses. Place it immediately after the given name of the
directory or subdictionary, or after the version number of the object, with which it
is associated. Do not type a space between the given name and the password. If
you are using a > at the end of a path name, the wildcard follows any password
associated with the last given name in the chain~

Passwords contain from 1 to 64 printable characters, including space and tab.
DMU translates lowercase letters to uppercase. The only forbidden characters in a
password are left parenthesis [(], right parenthesis [)], and period [.]. If you associate
a password with an object name, the password must follow the version number.

The following are legal given names with passwords:

PERSDNNEL(SEMI_SECRET)
SERVICE(SECRET)
LEADS_RECORD;1(EYESONLY)

A-22 User's Guide to DMU Format Dictionaries

The following is a legal path name with passwords:

CDD$TOP.PERSONNEL(SEMI_SECRET) .SERVICE(SECRET) .SALARY_RECORD;1

The following is not a legal given name and password because it contains illegal
characters:

PRODUCTION(B(AD.CH)ARS)

A.4.3. 7 Using Logical Names in Path Names -You can use logical names to
save keystrokes if you work in several dictionary directories with long path names.
With the DCL commands DEFINE and ASSIGN, you can define logical names for
CDD path names you use often.

Use either of the following formats in response to the DCL dollar sign prompt:

DEFINE logical-name 11 _CDD$TOP . . . given-name"
ASSIGN 11 _CDD$TOP . . . given-name" logical-name

For example, you could give CDD$TOP.PRODUCTION the logical name PROD by
typing one of the following commands or by including it in your login command file:

$DEFINE PROD 11 _CDD$TOP.PRODUCTION 11

$ ASSIGN 11 _CDD$TOP.PRODUCTION 11 PROD

Once you have defined logical names, you can use them in place of path names in
utility command lines.

The CDD attempts to translate the first given name of any path specification as
a logical name. For example, if you specify the path name SALES.JONES in the
sample dictionary (Figure A-1), the CDD makes one attempt to translate SALES. If
SALES is not defined as a logical name, the translation fails, and the CDD utility
processes the directory CDD$TOP.SALES.JONES.

If, however, SALES is defined as a logical name, the translation succeeds, and the
CDD utility attempts to process a path name beginning with the translation string of
SALES. If, for example, SALES is defined as CDD$TOP.PRODUCTION, then the
CDD processes the path name SALES.JONES as:

CDD$TOP.PRODUCTION.JONES

Note

The CDD makes no more than on:e logical translation per name. If your
logical name translates to another logical name, the CDD does not make

User's Guide to DMU Format Dictionaries A-23

the second translation. Make sure any logical names that you define
translate to actual path names in one step.

CDD$TOP is an exception to this rule. The name CDD$TOP is always
translated once and preceded by an underscore (_) . If a logical name
translates to an absolute pathname, then the first name (CDD$TOP) will
be translated again.

To prevent logical name translation, prefix the path specification with an underscore
(_). The CDD makes no attempt to translate SALES if you specify the path name:

_SALES.JONES

Instead, the CDD processes CDD$TOP.SALES.JONES.

Some DMU commands limit the use of logical names. See the reference section on a
specific command in the VAX Common Data Dictionary Utilities Reference Manual
for more information on that command's use of logical names.

A.4.4 Defining Your Default Directory in the DMU Dictionary

Each time you invoke an image that uses the CDD, you are assigned to a default
directory. To refer to a dictionary directory or object that is a child of your default
directory, you need to type only the child's relative path name.

The CDD automatically assigns CDD$TOP as your default directory. You can,
however, begin sessions in another dictionary directory. You need only define the
logical name CDD$DEFAULT as the full dictionary path name of the dictionary
directory you want assigned to you as a default.

You can use either of two DCL commands, DEFINE or ASSIGN, in response
to the DCL dollar sign prompt to define your default directory. The name you
use with DEFINE or ASSIGN must be an actual path name, not a logical name.
CDD$DEFAULT is a logical name, and the CDD makes only one logical translation
per name.

To avoid having to retype the command line each time you log into the system, you
should insert the command into your login command file.

In the sample dictionary (Figure A-1), for example, you could define JONES as the
default dictionary directory by typing one of the following commands or by entering
it in your login command file.

A-24 User's Guide to DMU Format Dictionaries

$DEFINE CDD$DEFAULT "CDD$TDP.SALES.JONES"
$ASSIGN "CDD$TDP.SALES.JONES" CDD$DEFAULT

You can then refer to any descendant of your default directory by either its full
dictionary path name or by its relative dictionary path name.

For example, if your default directory in the sample dictionary is JONES, you have
two choices for specifying the dictionary path name of LEADS_RECORD;l. You·
can use the full path name:

CDD$TDP.SALES.JONES.LEADS_RECORD;1

Or you can use the relative path name:

LEADS_RECORD;l

If your default directory were SALES, then the relative dictionary path to
LEADS_RECORD;l would be:

JONES.LEADS_RECDRD;l

A.5 Using DMU Commands in the DMU Dictionary

The purpose of this section is to give you an opportunity to try out some of
the commands and common operations of the Dictionary Management Utility.
Section A.6 contains information on using the DMU SET PROTECTION and SET
PROTECTION/EDIT commands. Section A.8 contains information on using DMU
commands in conjunction with the Data Definition Language Utility (CDDL). For a
complete description of DMU commands and their qualifiers, see the VAX Common
Data Dictionary Utilities Reference Manual.

A.5.1 Checking Your Privileges in the DMU Dictionary

When you enter DMU, CDD places you in your default directory. CDD deter­
mines your default directory by translating the logical name CDD$DEFAULT (see
Section A.4.4). Once you have entered DMU, check your default directory with the
SHOW DEFAULT command:

DMU> SHOW DEFAULT

User's Guide to DMU Format Dictionaries A-25

SHOW DEFAULT displays a full path name. If CDD cannot place you in the direc­
tory you specified or translate CDD$DEFAULT for you, it places you in CDD$TOP,
the only directory sure to exist in every CDD. If your default directory is CDD$TOP,
you should read Section A.4.4 before you continue.

Every directory and object in the CDD has an access control list (ACL) associated
with it. The access control list contains the protection information for each
directory or object. When you enter a command, CDD checks the access control
lists of all the affected directories and objects to determine if you have the privileges
necessary to perform the operation. In this section, you need only know how to
determine which privileges you have been assigned. Section A.6 describes how to
create and modify an access control list.

To check your privileges at your default directory, type:

DMU> SHOW PROTECTION

Because you did not specify a path name, DMD displays your privileges in your
default directory. If you have all privileges, the output of the SHOW PROTECTION
command is:

Control (C) -- may control access control list
Local Delete (D) -- may delete subdictionary, directory or object
Global Delete (G) -- may delete subdictionary or directory and its

History (H)
Pass Thru (P)
See (S)
Update (U)
Extend (X)
Forward (F)
DTR Read (R)
DTR Write (W)
DTR Extend (E)
DTR Modify (M)

children
-- may add entries to history list
-- may pass thru subdictionary or directory
-- may see (read) dictionary object
-- may update dictionary object
-- may create dictionary children
-- may create subdictionaries
-- may ready DATATRIEVE domain for read
-- may ready DATATRIEVE domain for write
-- may extend DATATRIEVE table or procedure
-- may ready DATATRIEVE domain for modify

If you have not been granted all privileges, SHOW PROTECTION displays only
the privileges you have. To perform the operations in Section A.5.1 through
Section A.5.7, you need EXTEND, HISTORY, LOCAL_DELETE, PASS_THRU,
SEE, and UPDATE. To perform the operations in Section A.5.8, you also need
CONTROL privilege.

Note

You may lack sufficient privilege to perform some of the tasks in these
sections. See your system manager or data administrator to obtain
additional privileges.

A-26 User's Guide to DMU Format Dictionaries

A.5.2 Copying a Directory in the DMU Dictionary

After checking your privileges, copy the contents of CDD$TOP.CDD$EXAMPLES
to your default directory. CDD$TOP.CDD$EXAMPLES is created during the
installation procedure and contains the sample dictionary (Figure A-1). There are
two differences between the sample dictionary in Figure A-1 and the installed version
of the sample dictionary in CDD$TOP.CDD$EXAMPLES:

• In the sample dictionary, CDD$TOP is the parent of directories CORPORATE,
PERSONNEL, PRODUCTION, and SALES. In the installed version of the sam­
ple dictionary, CDD$TOP.CDD$EXAMPLES is the parent of CORPORATE,
PERSONNEL, PRODUCTION, and SALES.

• The directory CDD$TOP.PERSONNEL in the sample dictionary is a subdic­
tionary directory; the directory CDD$TOP.CDD$EXAMPLES.PERSONNEL is
not. Section A.9.1.5.1 describes how to create a subdictionary directory.

COPY takes the contents of one directory and duplicates them in another direc­
tory, so you must also check your privileges at CDD$TOP.CDD$EXAMPLES to
determine if you have sufficient privilege to copy its contents. Type:

DMU> SHOW PROTECTION CDD$TOP.CDD$EXAMPLES>

The wildcard character > at the end of the path name indicates that you want
to see your privileges at CDD$TOP.CDD$EXAMPLES and at every directory and
object under it. You need PASS_ THRU and SEE at each of these directories and
objects to perform the operations in this section.

Once you have determined that you have sufficient privileges to copy
CDD$TOP.CDD$EXAMPLES to your default directory, type:

DMU> COPY/LOG CDD$TOP.CDD$EXAMPLES

When you do not specify a file to hold the output, the /LOG qualifier displays the
results of the COPY operation on your terminal screen. The following list is the
result of the COPY /LOG command above.

User's Guide to DMU Format Dictionaries A-27

"CDD$EXAMPLES" copied
"CORPORATE" copied
"ADDRESS_RECORD;1" copied
"EMPLOYEE_LIST;1" copied
"PRODUCT_INVENTORY;1" copied
"PERSONNEL" copied
"PRODUCTION" copied
"SERVICE" copied
"SALARY_RECORD;2" copied
"SALARY_RECORD;1" copied
"STANDARDS" copied
"SALARY_RANGE;2" copied
"SALARY_RANGE;1" copied
"SALES" copied
"CUSTOMER_RECORD;1" copied
"JONES" copied
"LEADS_RECORD;1" copied
"SALES_RECORD;1" copied

DMU>

Note that the COPY command copied all directories and objects under CDD$EXAMPLES
even though you did not specify the wildcard > . The COPY command automatically
copies all the descendants of any specified directory.

The contents of the directory CDD$TOP.CDD$EXAMPLES are now in your default
directory. To check, type:

DMU> LIST _CDD$EXAMPLES>

The above command specifies a relative path name. The underscore (_) before
the path name prevents CDD from attempting to translate it as a logical name.
DMU looks in your default directory for a directory named CDD$EXAMPLES. The
wildcard "> " tells DMU to list every directory and object under CDD$EXAMPLES.
DMU displays the following hierarchy:

A-28 User's Guide to DMU Format Dictionaries

(

CDD$EXAMPLES
CORPORATE
I ADDRESS_RECORD;1 <CDD$RECORD>
I EMPLOYEE_LIST;1 <CDD$RECORD>
I PRODUCT_INVENTORY;1 <CDD$RECORD>
PERSONNEL
I SERVICE
I I SALARY_RECORD;2 <CDD$RECORD>
I I SALARY_RECORD;1 <CDD$RECORD>
I STANDARDS
I I SALARY_RANGE;2 <CDD$RECORD>
I I SALARY_RANGE;1 <CDD$RECORD>
PRODUCTION
SALES
I CUSTOMER_RECORD;1 <CDD$RECORD>
I JONES
I I LEADS_RECORD;1 <CDD$RECORD>
I SALES_RECORD;1 <CDD$RECORD>

The form of the above display is the LIST /BRIEF form, which is the default for
LIST. LIST /BRIEF displays the name of each specified directory and object and its
type. (LIST /BRIEF does not display a type for directories.) Indentation shows the
hierarchical relationships among the specified directories and objects. LIST /BRIEF
is a useful way to check on the contents and structure of a portion of the dictionary.

A.5.3 Changing Default Directories in the DMU Dictionary

You will perform the next several operations on descendants of CDD$EXAMPLES.
To save yourself the trouble of typing "CDD$EXAMPLES" in every path name, you
can temporarily change your default directory to CDD$EXAMPLES by typing:

DMU> SET DEFAULT CDD$EXAMPLES

To ensure that you are in the correct directory, type:

DMU> SHOW DEFAULT

Your new default directory should be the CDD$EXAMPLES directory that is a child
of your original default directory.

User's Guide to DMU Format Dictionaries A-29

A.5.4 Creating History List Entries in the DMU Dictionary

The CDD's history list feature enables you to monitor the use of each dictionary
directory, subdictionary, and object. This list of operations makes up an audit trail
for each dictionary element.

Use of the history list feature is optional. History lists take up dictionary space, but
they can provide you with a concise record of dictionary usage.

You can add your own text to the history list of a dictionary directory, subdictionary,
or object to enhance or explain the information automatically stored by the CDD.
For example, you can record the names of the programs that access a data definition
in the definition's history list. With the LIST command, you can retrieve this
information easily.

Whenever you perform any operation that modifies the dictionary, it is wise to create
a history list entry noting the change. Such documentation makes it much easier to
maintain the consistency of the dictionary. You must have HISTORY privilege at
the specified directory or object to create a history list entry.

Some dictionary operations automatically create a history list entry, but you must
use the /AUDIT qualifier to create history list entries with DMU commands. You
can use the /AUDIT qualifier with the following DMU commands:

• BACKUP

• COPY

• CREATE

• DELETE/PROTECTION

• EXTRACT

• MEMO

• RENAME

• RENAME/SUBDICTIONARY

• RESTORE

• SET PROTECTION

You probably should have used /AUDIT to document the COPY operation in
the previous section, but it is unlikely that you had HISTORY privilege at
CDD$TOP.CDD$EXAMPLES. However, because you have HISTORY privilege
in your default directory, you can now insert a history list entry into the history lists

A-30 User's Guide to DMU Format Dictionaries

of the directories and objects under your default directory by using the MEMO com­
mand. The sole purpose of MEMO is to insert a history list entry into the history
list of a directory or object.

Ordinarily, the history list entry automatically describes the operation that occurred.
Because MEMO can be used to document any dictionary operation, however, you
must include text describing the purpose of the entry.

For example, you could document the source of the ADDRESS_RECORD;l copied
object by typing:

DMU> MEMO/AUDIT="Copied from CDD$TOP.CDD$EXAMPLES.CORPORATE.­
DMU>_ADDRESS_RECORD; 1" CORPORATE.ADDRESS_RECORD;1

The hyphen (-)after CORPORATE allows you to continue the command on the
next line. Make sure it is the last character typed before a carriage return.

CORPORATE.ADDRESS_RECORD;l is a relative path name indicating that the
object is a descendant of your default directory. The history list entry created by
this command resembles the following one, except that where CASADA Y's process
characteristics appear, your process characteristics would appear.

Memo entered by CASADAY (UIC [30,10]) in process CASADAY
using VAX CDD Dictionary Management Utility Version 3.00
on 7-JAN-1984 16:22:51.39.

Explanation:
Copied from CDD$TOP.CDD$EXAMPLES.CORPORATE.ADDRESS_RECORD;1

A.5.5 Listing the Contents of a DMU Dictionary Object

In Section A.5.2, you used the LIST /BRIEF command to display the name and type
of CDD$EXAMPLES and its descendants and their hierarchical relationship to each
other. You can use another form of the LIST command, LIST/FULL, to display the
entire contents of a directory or object. This command is most useful when you want
to see what a particular dictionary object contains. The following example lists the
contents of CDD$EXAMPLES.CORPORATE.ADDRESS_RECORD;l:

DMU> LIST/FULL CORPORATE.ADDRESS_RECORD;1

In this case, LIST displays information similar to the following listing. Where
CASADA Y's process characteristics appear, your process characteristics appear in
your listing.

User's Guide to DMU Format Dictionaries A-31

CDD$EXAMPLES.CORPORATE.ADDRESS_RECORD;1 <CDD$RECORD>
Created by VAX CDD Data Definition Language Version 3.00

on 6-JAN-1984 15:13:28.29 using protocol version 4.
Source:

DEFINE RECORD _CDD$TOP.CDD$EXAMPLES.CORPORATE.ADDRESS_RECORD
DESCRIPTION IS

/* This record contains the standard format
for addresses. It provides the source from which all
address tields in other record descriptions are copied. */.

ADDRESS STRUCTURE.
STREET DATATYPE IS TEXT

SIZE IS 30 CHARACTERS.
CITY DATATYPE IS TEXT

SIZE IS 30 CHARACTERS.
STATE DATATYPE IS TEXT

SIZE IS 2 CHARACTERS.
ZIP_CODE STRUCTURE.

NEW DATATYPE IS UNSIGNED NUMERIC
SIZE IS 4 DIGITS
BLANK WHEN ZERO.

OLD DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.

END ZIP_CODE STRUCTURE.
END ADDRESS STRUCTURE.

END ADDRESS_RECORD.
Description:

This record contains the standard format
for addresses. It provides the source from which all
address fields in other record descriptions are copied.

Memo entered by CASADAY (UIC [30,10]) in process CASADAY
using VAX CDD Dictionary Management Utility Version 3.0
on 7-JAN-1984 16:22:51.39.

Explanation:
Copied from CDD$TOP.CDD$EXAMPLES.CORPORATE.ADDRESS_RECORD;1

In addition to the path name and CDD type of the specified directory or object, a
LIST /FULL command displays the following kinds of information:

• For objects, creation information, including the facility or product (such as
CDDL or DATATRIEVE) that created the object, the date and time when it was
created, and the version of the protocol that was used.

• For objects, the source text of the object, if the source text is stored in the CDD.
For more information about source text, see Section A. 7 and Section A.8.

• For objects, the optional description clause contained in the source text. The
description information is available only if the person creating the source code
entered description information. For information about adding description
information to record definitions, see Section A.7.3.

• The history list. Each history list entry contains:

The operation performed.

The user name and UIC of the person initiating the operation.

A-32 User's Guide to DMU Format Dictionaries

(

The process in which the operation occurred.

The facility or product (such as DMU or a VAX language compiler) that
performed the operation.

The date and time when the operation occurred.

Explanatory text added when the history list entry was created. "Copied
from CDD$TOP.CDD$EXAMPLES.CORPORATE.ADDRESS_RECORD",
the phrase you added to the /AUDIT qualifier, appears in the history list
entry.

LIST /FULL does not display protection information. To see the access control list
for a directory or object, use the LIST /PROTECTION command. You must have
CONTROL privilege to use LIST/PROTECTION.

Other qualifiers to the LIST command allow you to see just the parts of this infor­
mation that you are interested in. For example, if you use LIST/AUDIT_TRAIL,
DMU displays the name of the directory or object and its history list. For a complete
description of the LIST command and all its qualifiers, see the VAX Common Data
Dictionary Utilities Reference Manual.

A.5.6 Removing Obsolete DMU Dictionary Directories and Objects

Obsolete directories and objects clutter the dictionary (just as unused files can clutter
a VMS directory). Keeping obsolete directories and objects can slow CDD perfor­
mance, increase the size of the dictionary file, and make dictionary maintenance
more difficult. You should remove unused portions of the dictionary when you are
sure they are no longer needed.

For example, the directory PERSONNEL.SERVICE contains two versions of the
object SALARY_RECORD: SALARY_RECORD;2 and SALARY_RECORD;l. You
can use LIST /FULL to compare the contents of the two objects:

DMU> LIST/FULL PERSONNEL.SERVICE.SALARY_RECORD

User's Guide to DMU Format Dictionaries A-33

CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD;2 <CDD$RECORD>
Created by VAX COD Data Definition Language Version 3.00

on 6-JAN-1984 15:13:43.10 using protocol version 4.
Source:

DEFINE RECORD _CDD$TOP.CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD
DESCRIPTION IS

/* This is the record containing salary
information for all employees. It is sensitive, and access
is carefully restricted. Direct deposit information added
5-JAN-1984.*/.

SALARY STRUCTURE.
EMPLOYEE_ID DATATYPE IS UNSIGNED NUMERIC

SIZE IS 9 DIGITS.
PAY STRUCTURE.

JOB_CLASS

IN CR_ LEVEL

WEEKLY_SALARY

DIRECT_DEP

END PAY STRUCTURE.
END SALARY STRUCTURE.

DATATYPE IS TEXT
SIZE IS 3 CHARACTERS.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 1 DIGIT.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 6 DIGITS 2 FRACTIONS.
DATATYPE IS TEXT
SIZE IS 1 CHARACTER
VALID FOR DTR IF "DIRECT_DEP=Y OR
DIRECT_DEP=N".

END SALARY_RECORD RECORD.
Description:

This is the record containing salary
information for all employees. It is sensitive, and access
is carefully restricted. Direct deposit information added
5-JAN-1984.

CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD;1 <CDD$RECORD>
Created by VAX CDD Data Definition Language Version 3.00

on 6-DEC-1984 15:13:41.72 using protocol version 4.
Source:

DEFINE RECORD _CDD$TOP.CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD
DESCRIPTION IS

/* This is the record containing salary
information for all employees. It is sensitive, and access
is carefully restricted. */.

SALARY STRUCTURE.
EMPLOYEE~ID

PAY STRUCTURE.
JOB_CLASS

INCR_LEVEL

WEEKLY_SALARY

END PAY STRUCTURE.
END SALARY STRUCTURE.

END SALARY_RECORD RECORD.
Description:

DATATYPE IS UNSIGNED NUMERIC
SIZE IS 9 DIGITS.

DATATYPE IS UNSIGNED NUMERIC
SIZE IS 3 DIGITS.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 1 DIGIT.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 6 DIGITS 2 FRACTIONS.

This is the record containing salary
information for all employees. It is sensitive, and access
is carefully restricted.

A-34 User's Guide to DMU Format Dictionaries

By comparing the DESCRIPTION clauses of both SALARY_RECORD definitions,
you can see that SALARY_RECORD;2 is a revision of SALARY_RECORD;l,
created to add direct deposit information. A comparison of the source text reveals
that the data type of the field JOB_CLASS has been changed from UNSIGNED
NUMERIC to TEXT.

Similarly, the directory PERSONNEL.ST AND ARDS contains two versions of
the object SALARY_RANGE. A comparison of these two objects reveals that
SALARY_RANGE;2 is an updated version of SALARY_RANGE;l.

Because both PERSONNEL.SERVICE.SALARY_RECORD;l and
PERSONNEL.STANDARDS.SALARY_RANGE;l are obsolete, you should remove
them from the dictionary. The following sections describe ways to remove unwanted
directories and objects from the CDD.

A.5.6.1 Backing Up Portions of the DMU Dictionary -Because you are now
going to delete objects from PERSONNEL, you should first back up that directory
to protect yourself against errors. You can back up the PERSONNEL directory with
the following command:

DMU> BACKUP/AUDIT="PERSONNEL directory backed up" PERSONNEL PERS.BAK

Like COPY, BACKUP automatically operates on the descendants of a specified
directory. PERS.BAK is a VMS file created to contain the backed-up directories and
objects. PERS.BAK is your protection against deleting needed objects by mistake.
DMU places PERS.BAK in your default VMS directory unless you specify another
VMS directory in the command line.

Because you used the /AUDIT qualifier, DMU creates a history list entry in the
history lists of each backed-up directory or object noting the BACKUP operation.

You can include the history list of a directory or object in the backup file by using
the /HISTORY qualifier, and you can include the access control list in the backup
file by using the /PROTECTION qualifier. In the preceding example, the backed-up
directories and objects do not contain access control lists or any history list entries,
so it is not necessary to use these two qualifiers.

User's Guide to DMU Format Dictionaries A-35

A.5.6.2 Purging DMU Dictionary Objects -You can delete obsolete versions
of objects by using the DELETE command (see Section A.5.6.3). However, when
you have a number of obsolete versions of objects under the same directory, it is
easier to use the PURGE command.

PURGE deletes earlier versions of dictionary objects, keeping a specified number of
the highest versions. By default, PURGE keeps one version.

Because the SALARY_RANGE and SALARY_RECORD objects are descendants
of the directory PERSONNEL, and because PERSONNEL contains no other CDD
objects, you can purge them with the following command:

DMU> PURGE/LOG PERSONNEL>
"SALARY_RECORD;1" deleted
"SALARY_RANGE;1" deleted

DMU>

The wildcard > after PERSONNEL tells DMU to purge all objects under
PERSONNEL. (PURGE has no effect on directories.) If you do not use the /KEEP
qualifier to specify the number of versions you want to keep, PURGE keeps only the
most recent version of an object. The /LOG qualifier displays the names of purged
objects on your terminal unless you specify a file to hold the output.

A.5.6.3 Deleting DMU Dictionary Objects -The PURGE command operates
only on dictionary objects and always leaves at least one version of the object in the
CDD. To remove any unwanted directory or object, use the DELETE command.

DELETE allows you to remove individual directories and objects or to remove a
directory and all its descendants. You must have GLOBAL_DELETE privilege to
remove a directory with descendants, however. In a well-managed dictionary, very
few users have GLOBAL_DELETE privilege.

You could remove the objects PERSONNEL.SERVICE.SALARY_RECORD;2 and
PERSONEL.STANDARDS.SALARY_RANGE;2 with DELETE. You have backed
up the PERSONNEL directory, so you have saved these two objects.

DMU> DELETE/LOG PERSONNEL.SERVICE.SALARY_RECORD
11 SALARY_RECORD;2" deleted

DMU> DELETE/LOG PERSDNNEL.STANDARDS.SALARY_RANGE
"SALARY_RANGE;2" deleted

DMU>

You did not need to specify the objects' versions because there is only one version of
each. If there had been multiple versions, the above commands would have removed
only the highest version of each object.

A-36 User's Guide to DMU Format Dictionaries

(

A.5.7 Restoring Portions of the DMU Dictionary

The RESTORE command inserts the contents of a backup file into the CDD. You
can restore a portion of the dictionary to the directory from which it was backed up
or to a different directory. If you restore the contents of a backup file to a different
directory, the combined BACKUP and RESTORE operations work as if you had
performed a COPY operation.

You can even restore an object to a directory that already contains an object with the
same name if you use the /VERSION qualifier. If an object with the same name and
version number exists, however, the RESTORE operation aborts. See Section A.5.8
for more information about using the /VERSION qualifier with DMU commands.

Earlier in this section, you backed up the PERSONNEL directory into the file
PERS.BAK. Then you removed all the objects in the PERSONNEL directory. To
display the current contents of PERSONNEL, type:

DMU> LIST PERSONNEL>
PERSONNEL
I SERVICE
I STANDARDS

You can now restore PERS.BAK and retrieve the definitions you otherwise
would have lost. It does not matter that PERS.BAK also contains the directo-
ries PERSONNEL, SERVICE, and STANDARDS, which have not been deleted. If
a directory to be restored already exists, the RESTORE operation continues.

A.5. 7 .1 Checking the Contents of a Backup File - Before you restore the
directory, you should check the contents of the backup file to ensure that you are
restoring the objects you need. The BACKUP /LIST command displays the contents
of a backup file. BACKUP /LIST:

• Allows you to check that you are restoring the correct backup file

• Reports whether or not the backup file contains history and access control list
information

• Allows you to determine if you need to use the /VERSION qualifier to restore
the objects in the backup file

User's Guide to DMU Format Dictionaries A-37

To display the contents of PERS.BAK, type:

DMU> BACKUP/LIST PERS.BAK
The backup file contains no history or ACL list information.

PERSONNEL
I SERVICE
I I SALARY_RECORD;2 <CDD$RECORD>
I I SALARY_RECORD;1 <CDD$RECORD>
I STANDARDS
I I SALARY_RANGE;2 <CDD$RECORD>
I I SALARY_RANGE;1 <CDD$RECORD>

DMU>

Because you did not specify a file to hold the output, BACKUP /LIST sends the
output to your terminal. The first sentence of the listing tells you whether you
included history lists or access control lists in the backup file. In this case, you did
not, because none of the objects or directories had history lists or access control lists.
The rest of the listing is the same as the output from the LIST /BRIEF command.

A.5. 7 .2 Restoring a Backup File - Now that you are certain that the backup
file contains the objects you want to restore, you should restore it. Type:

DMU> RESTORE/LOG PERS.BAK
"PERSONNEL" restored
"SERVICE" restored
"SALARY_RECORD;2" restored
"SALARY_RECORD;1" restored
"STANDARDS" restored
"SALARY_RANGE;2" restored
"SALARY_RANGE;1" restored

DMU>

Your CDD$EXAMPLES directory should look just as it did when you started. To
check CDD$EXAMPLES, set your default directory back to your original default.
You can move up one level in the hierarchy by using a minus sign (-) as the path
name. Be sure to type a space or tab after the minus sign, however, so that DMU
does not interpret it as a continuation character.

A-38 User's Guide to DMU Format Dictionaries

DMU> SET DEF -
DMU> LIST CDD$EXAMPLES>

DMU

CDD$EXAMPLES
CORPORATE
I ADDRESS_RECORD;1 <CDD$RECORD>
I EMPLOYEE_LIST;1 <CDD$RECORD>
I PRODUCT_INVENTORY;1 <CDD$RECORD>
PERSONNEL
I SERVICE
I I SALARY_RECORD;2 <CDD$RECORD>
I I SALARY_RECORD;1 <CDD$RECORD>
I STANDARDS
I I SALARY_RANGE;2 <CDD$RECORD>
I I SALARY_RANGE;1 <CDD$RECORD>
PRODUCTION
SALES
I CUSTOMER_RECORD;1 <CDD$RECORD>
I JONES
I I LEADS_RECORD;1 <CDD$RECORD>
I SALES_RECORD;1 <CDD$RECORD>

A.5.8 Creating Multiple Versions of DMU Dictionary Objects

You can create multiple versions of DMU Dictionary objects with three DMU
commands: COPY, RENAME, and RESTORE. The creation of multiple versions
of CDD objects is not the default, however. Each of these commands requires you
to use the /VERSION qualifier to ensure that you know that you are creating an
additional version of an existing object.

The following sections show you how to create multiple versions of CDD objects with
DMU RENAME and DMU COPY.

Note

To attempt these operations, you need CONTROL privilege in your
default directory in addition to the privileges you needed in Section A.5.1
through Section A.5. 7.

User's Guide to DMU Format Dictionaries A-39

A.5.8.1 Using RENAME/VERSION to Change a Version Number -There
are cases in which the CDD prohibits the creation of an additional version even if
you use the NERSION qualifier. For example, DMU does not allow you to create an
object with the same full path name and version number as an existing object.

Suppose you enter the command:

DMU> COPY/VERSION CDD$TOP.CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD;2 -
DMU>_CDD$EXAMPLES.PERSONNEL.SERVICE

DMU sends you the following error message:

%DMU-E-OBJALREXI, object "SALARY_RECORD;2" already exists - not superseded

Your SERVICE directory already contains an object named SALARY_RECORD;2,
and the COPY command cannot change the version number of the
SALARY_RECORD;2 object it is copying. Therefore, you cannot copy an object
named SALARY_RECORD;2 into your SERVICE directory.

You must use the DMU RENAME command to change the given name or the
version number of one of the two SALARY_RECORD;2 objects to copy the object
CDD$TOP.CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD;2 into
your CDD$EXAMPLES.PERSONNEL.SERVICE directory. You probably lack
the privileges to rename objects under CDD$TOP.CDD$EXAMPLES, however, so
you should change the name or version number of the SALARY_RECORD;2 object
under your default directory.

RENAME changes the name of directories and objects within the same directory.
It does not change the location of the directory or object within the dictionary
hierarchy.

You could change the given name of SALARY_RECORD;2. In this case, however,
you probably would not want to change the given name of the object, because the
directory would then contain two versions of the same definition under two different
names.

The RENAME/VERSION command, on the other hand, allows you to change the
version number of an object without changing the given name. Once you change the
version number of SALARY_RECORD;2, you can copy
CDD$TOP.CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD;2 into
your CDD$EXAMPLES.PERSONNEL.SERVICE directory.

The following commands change the version number of SALARY_RECORD;2 and
check the results of the rename operation.

A-40 User's Guide to DMU Format Dictionaries

DMU> SET DEFAULT CDD$EXAMPLES.PERSONNEL.SERVICE
DMU> RENAME/VERSION SALARY_RECORD;2 SALARY_RECORD;3
DMU> LIST>

SALARY_RECORD;3 <CDD$RECORD>
SALARY_RECORD;1 <CDD$RECORD>

DMU>

Note that the RENAME/VERSION command changes nothing about the object
except its version number. SALARY_RECORD;3 has the same history and ac­
cess control lists as SALARY_RECORD;2 did. With RENAME, the object being
renamed always retains its access control list and history list.

A.5.8.2 Using COPY /VERSION - Now that you have changed the version
number of CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD
under your default directory, you can copy
CDD$TOP.CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD;2 by
typing:

DMU> COPY/VERSION CDD$TOP.CDD$EXAMPLES.PERSONNEL.SERVICE.SALARY_RECORD;2
%DMU-I-HIGHVER, higher version of "SALARY_RECORD;2 already exists

Because you did not specify the destination directory, DMU copies the object to
CDD$EXAMPLES.PERSONNEL.SERVICE, the default directory you specified in
the last section. The /VERSION qualifier allows you to copy SALARY_RECORD;2
into this directory, even though it already contains SALARY_RECORD;3 and
SALARY_RECORD;l.

With the DMU COPY command, you can use the /HISTORY qualifier to copy the
history list from the object in the source directory to the object in the destination
directory. If you do not use the /HISTORY qualifier, the copied object inherits the
history list of the highest existing object with the same name in the directory, in this
case, SALARY_RECORD;3. Because you are more interested in the history list in
your own default directory than in CDD$TOP.CDD$EXAMPLES, it makes sense in
this case not to copy the history list from the source directory.

You can also copy the access control list from the source directory by using the
/PROTECTION qualifier with COPY. To use the /PROTECTION qualifier with
COPY/VERSION, however, you must have CONTROL privilege at:

• The source object

• The destination directory

• The highest existing version of the object in the destination directory (in this
case, SALARY_RECORD;3)

User's Guide to DMU Format Dictionaries A-41

If you do not use the /PROTECTION qualifier with COPY/VERSION, the object
inherits the access control list of the highest existing version of the object in the
destination directory. Because you are unlikely to have CONTROL privilege under
CDD$TOP .CDD$EXAMPLES, it makes sense not to copy the access control list
from the source directory. If you did, you would not be able to perform certain
operations on the object, even though it is under your default directory.

DMU sends you an informational message informing you that the version of
SALARY_RECORD that you copied is not the highest version in the destina-
tion directory. This fact is important because programs and products that use a
definition without specifying the version number receive the definition with the high­
est version number. If you want the newly copied version to be the highest version,
use RENAME/VERSION again to change its version number.

A.5.9 Exiting from DMU

To leave DMU and return to DCL level, enter:

DMU> EXIT
$

You can also leave DMU and return to DCL level by using CTRL/Z:

A.6 Security and Protection for the DMU Dictionary

The DMU Dictionary provides security mechanisms to protect the dictionary against
unauthorized use. You should use these CDD access control facilities, along with the
VMS file security mechanisms, when you plan and implement the security strategy
for your dictionary.

Note

The CDD security facilities are a safeguard against unauthorized access
by nonmalicious users. The CDD cannot intercept and prevent deliberate
attempts to corrupt the dictionary.

A-42 User's Guide to DMU Format Dictionaries

A.6.1 Access Control Lists and Access Control List Entries in the DMU
Dictionary

The key to the CDD's system of protection is the access control list (ACL). An
ACL controls access to each dictionary directory, subdictionary, and object in the
DMU Dictionary. Specifically, access control lists determine whether or not an
individual user or class of users can:

• Create, modify, or delete a dictionary directory, subdictionary, or object

• See the definition of a dictionary object and use it in an application

• See or modify the information in the history list of a dictionary directory,
subdictionary, or object

• See or modify the access control list of a dictionary directory, subdictionary, or
object

• Use the given name of a dictionary directory or subdictionary in the path name
of another directory, subdictionary, or object

When you first install the CDD on your system, all users have all access privileges
to CDD$TOP. In addition, the default access control list created with a directory or
object grants privileges to the creator and denies privileges to no one. This means
that each user has access to every descendant of CDD$TOP, unless his or her access
privileges are explicitly modified.

In addition, CDD access privileges are inherited. Users inherit rights granted them
at CDD$TOP at all of the children of CDD$TOP. This inheritance of privileges
continues as users move from parent to child throughout the directory hierarchy.

Access control lists at each dictionary directory, subdictionary, or object in the
hierarchy modify inheritance by specifically granting or denying privileges to users or
groups of users. Therefore, you can specify which users can use different portions of
the dictionary.

The CDD creates an access control list for every directory and object it creates,
unless you specify the /NOACL qualifier. The access control list contains one or
more access control list entries. Each access control list entry consists of three
parts:

• A position number identifying a particular entry within an access control list

• User identification criteria identifying the users whose privileges are defined in
the entry

• Privilege specifications modifying the access rights these users inherit

User's Guide to DMU Format Dictionaries A-43

The following example of an access control list contains two entries. The first line
of each entry contains the user identification criteria, and the second line contains
the granted, denied, and banished privileges, which are specified by key letters (see
Section A.6.1.2).

CDD$TOP
1: [*, *] , Username: 11 CASADAY11

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*]

Grant - P, Deny - CDEFGHMRSUWX, Banish - none

A.6.1.1 User Identification Criteria -The CDD user identification criteria
include:

• VMS user names

• VMS user identifiers

numeric user identification code (UIC)

alphanumeric user identification code (UIC)

rights identifier

• Terminal numbers and job classes

• Passwords

Whenever a user process attempts to access a dictionary directory, subdictionary, or
object, the CDD searches the ACL entries for the first entry whose user identification
criteria match the characteristics of the process.

To match, all the specified user identification criteria must be the same as the
corresponding process characteristics. For example, if user name were the only
identification criterion specified in an ACL entry, then any process logging in under
that user name would match. If, on the other hand, both a user name and a terminal
number were specified as user identification criteria, then processes using that user
name would match only if they originated from the specified terminal.

The CDD begins searching for a match at the first entry in the access control list.
If the user's process characteristics match the user identification criteria, the CDD
modifies the privileges the user inherits according to the privilege specifications in
the matching entry. Then the CDD discontinues its search.

If there is no match, the associated privilege specifications do not apply, and the
CDD continues searching for a match at the next entry. If there is no match after
all the access control list entries have been searched, the user process's inherited
privileges remain unchanged.

A-44 User's Guide to DMU Format Dictionaries

(

A.6.1 .1 .1 VMS User Name -The CDD compares user names specified in the
access control list entries to the user name of a process to determine if there is a
match.

A.6.1.1.2 VMS User Identifier -VMS provides three alternative types of identifier
to describe users:

• Numeric UIC

A numeric user identification code (UIC) is a two-part number that identifies a
user and determines his or her relationship to other users on the system. Each
part of a UIC is an octal number of up to five digits. The two parts are separated
by a comma, and the entire UIC is enclosed in either square brackets or angle
brackets.

The first part of a UIC identifies the group to which a particular user belongs.
Group members thus share the digits in the first part of their UICs. The second
part of the UIC identifies an individual user within the group.

In CDD access control lists, you can identify users by numeric UIC in any of
four possible ways:

By specifying all the ~igits of both parts of a UIC, you can identify one user.

By using the asterisk (*) as a wildcard in place of the first part of the UIC,
you can identify users who share the second part. A UIC specification of
[*,10], for example, matches users with UICs of [10,10], [20,10], and [30,10].

By using the asterisk (*) as a wildcard in place of the second part of the
UIC, you can identify users who share the first part and so belong to the
same group. A UIC specification of [30,*], for example, matches users with
UICs of [30,10], [30,15], and [30,20].

By using asterisks in place of both parts of a UIC, you can identify all users
regardless of UIC. A UIC specification of [*,*], therefore, matches all users on
the system.

If no UIC is specified in an access control list entry, the CDD supplies [*,*] as a
default.

• Alphanumeric UIC

An alphanumeric user identification code (UIC) consists of a single text string
within brackets. Thus you can indicate user JONES by specifying a UIC
[JONES] as an alternative to specifying a user name JONES.

User's Guide to DMU Format Dictionaries A-45

• Rights identifier

You can specify a rights identifier to indicate all the members of a group. Rights
identifiers are defined in the rights database by the system manager. A rights
identifier of SECRETARY, for example, matches all users defined in the rights
database as owners of the right "SECRET ARY".

A.6.1.1.3 Terminal Number or Job Class - You can specify the terminal line
number or job class of a process as a user identification criterion. There are several
options:

• You can identify users working from a particular terminal line by specifying the
terminal number in the format TTcn, TXcn or WTcn - TXA4, for example.

• You can identify all users whose terminal lines are hard-wired to your local
system by using the keyword LOCAL.

• You can identify all users whose processes are running on anything other than
a hard-wired line by using the keyword NON _LOCAL. This specification
includes all processes running in batch mode and all processes using dial-up lines,
DECnet, and the Distributed Data Manipulation Facility to run DATATRIEVE
from a remote node in a network.

• You can identify all batch processes by using the keyword BATCH.

• You can identify processes using the Distributed Data Manipulation Facility to
run DAT A TRIEVE from a remote node in a network by specifying the keyword
NETWORK.

A.6.1.1.4 Passwords -You can specify a password as an identification criterion
in an access control list entry. To match an ACL entry containing a password, users
must add the password, enclosed in parentheses, to the given name of the target
directory, subdictionary, or object. (See Section A.4.3.6 to learn how to specify
passwords in path names.)

For example, the password SECRET is associated with the directory SERVICE
in the sample dictionary (Figure A-1), and only those users who know and spec­
ify the password are entitled to use SERVICE in a path name. To gain access
to SALARY_RECORD;2, a child of SERVICE, a user would have to supply the
following dictionary path name:

CDD$TOP.PERSONNEL.SERVICE(SECRET) .SALARY_RECORD;2

A-46 User's Guide to DMU Format Dictionaries

A.6.1.2 Access Control Privileges -With the DMU's SET PROTECTION
and SET PROTECTION/EDIT commands, you can modify access control lists to
grant, deny, or banish access privileges to users whose process characteristics match
the corresponding user identification criteria. Therefore, at any dictionary directory,
subdictionary, or object, you can use the access control lists to modify the privileges
a user or group of users inherits by:

• Granting specified access privileges. These privileges are added to any the
user may have inherited from the parent of the current dictionary directory,
subdictionary, or object.

• Denying specified access privileges. If you deny a privilege, the user no longer
inherits that privilege further down in the hierarchy. You can, however, grant
the privilege again at a lower level.

• Banishing specified access privileges. Banishing a privilege denies it to a user at
the current dictionary directory or subdictionary and at all of its descendants.
Once you have banished a privilege for a user or class of users, you cannot grant
the privilege again at a lower level.

Note

Banishment of privileges is irreversible at descendants of the directory
where you used BANISH. If you want to retain the option of restoring a
privilege later, use DENY.

You can also allow a user or group of users to inherit access privileges without
modification. To allow unmodified inheritance, do not include an access control list
entry that matches the process characteristics of that user or users.

You can grant, deny, or banish any of 13 access control privileges. Of these, 9 are
specifically CDD privileges, and the remaining 4 are DATATRIEVE access rights
(see the VAX DATATRIEVE Reference Manual). Table A-6 briefly describes each
of these 13 privileges.

User's Guide to DMU Format Dictionaries A-4 7

Table A-6: Access Control Privileges in the DMU Dictionary

Privilege Description

CONTROL(C) Allows you to read, modify, and delete access
control list entries. You cannot deny yourself
CONTROL privilege.

DTR_EXTEND/EXECUTE (E) Allows you to ready a DATATRIEVE domain
for EXTEND access, to access a DATATRIEVE
table, and to execute a DAT ATRIEVE procedure.

DTR_MODIFY (M) Allows you to ready a DATATRIEVE domain for
READ and MODIFY access.

DTR_READ(R) Allows you to ready a DATATRIEVE domain for
READ access.

DTR_ WRITE (W) Allows you to ready a DATATRIEVE domain for
READ, WRITE, MODIFY, and EXTEND access.

EXTEND (X) Allows you to create children of dictionary
directories and subdictionaries.

FORWARD (F) Allows you to create subdictionary files.

GLOBAL_DELETE (G) Allows you to delete dictionary directories and
subdictionaries, including any children they may
have, with a single command.

HISTORY (H) Allows you to add entries to history lists.

LOCAL _DELETE (D) Allows you to delete dictionary objects, as well as
directories and subdictionaries with no children,
to edit DATATRIEVE procedures, and to replace
or recompile data definitions stored in the CDD.

PASS_THRU (P) Allows you to use a dictionary directory, subdic-
tionary, or object in a path name. You cannot
deny yourself PASS_ THRU privilege.

SEE (S) Allows you to see the definition of a dictionary
object.

UPDATE(U) Allows you to update the definition of a dictionary
object and to create new versions of an object.

When you create a dictionary directory, subdictionary, or object, the default access
control list entry grants privileges to your VMS user name.

A-48 User's Guide to DMU Format Dictionaries

For dictionary or subdictionary directories:

• CONTROL

• LOCAL_DELETE

• HISTORY

• PASS_THRU

• SEE

• EXTEND

For dictionary objects:

• CONTROL

• LOCAL_DELETE

• DTR__EXTEND/EXECUTE

• HISTORY

• DTR_MODIFY

• DTR_READ

• SEE

• UPDATE

• DTR_WRITE

When you create a new version of an already existing dictionary object, the default
access control list created with the new version may vary. For more informa-
tion about access control lists and the creation of versions, see Section A.5.8 and
Section A.8.3.

A.6.1.3 Suggestions for Using Access Control Lists -For many applications,
users need only DTR_READ, PASS_THRU, and SEE to access the data definitions
in the CDD. To safeguard the dictionary, consider restricting most users to these
privileges. Other suggestions include:

• Restricting full access at CDD$TOP to the system manager or data administrator
responsible for organizing and maintaining the directory hierarchy. Limit all
other users to PASS_THRU.

User's Guide to DMU Format Dictionaries A-49

• Including an access control list entry at the bottom of each access control
list containing only the wildcard UIC [*,*] and denying all privileges except
PASS_THRU. All users who do not match any other ACL entry match this
entry. This suggestion is most useful at the highest levels of the dictionary.

• Distributing control over the next level in the hierarchy. If, for example, your
dictionary is organized by department, give department managers the privileges
they need to manage their portions of the hierarchy.

• Making full access more widespread at the second level below CDD$TOP, where
some data definitions are stored and where some users have personal directories
assigned to them. Grant DTR_READ, PASS_THRU, SEE, and HISTORY
to those users who need only to access record definitions and record audit trail
information in history list entries. For those users with personal directories, you
can include CONTROL, LOCAL-DELETE, and EXTEND as well.

Be especially careful about granting GLOBAL-DELETE, CONTROL, and
FORWARD:

• CONTROL allows the user who possesses it to modify the access control list.
Therefore, CONTROL is equivalent to having all access privileges. At the
top levels of the hierarchy, limit CONTROL to the system manager or data
administrator.

• FORWARD allows the user to create subdictionary files. Subdictionaries can
be more secure than dictionary directories, but they require more time for I/0
operations, and they· are charged against FILLM, your VMS open file limit, and
also against the SYSGEN CHANNELCNT quota. Whether or not you choose
to use subdictionaries, you should limit the ability to create them to the system
manager or data administrator.

• GLOBAL-DELETE allows the user to delete a directory or subdictionary and
all of its descendants. Deny GLOBAL-DELETE to all users except the system
manager or data administrator. Remember, however, that users who modify
DBMS schemas need GLOBAL-DELETE privilege to use DBO/MODIFY.

In general, you should grant users only those privileges they need to work in their
portions of the CDD.

A.6.2 Sample Access Control Lists in the DMU Dictionary

The following examples, taken from the sample dictionary (Figure A-1), demonstrate
the use of access control lists.

A-50 User's Guide to DMU Format Dictionaries

A.6.2.1 Accumulation of Privileges - Along the path
CDD$TOP.SALES.JONES.LEADS_RECORD;l, each of the four
segments has an access control list associated with it. An examination of each ACL
entry matching user JONES shows how privileges accumulate as they are granted,
inherited, denied, and banished.

CDD$TOP
1: [*,*], Username: "JONES"

Grant - P, Deny - CDEHMRSUWX, Banish - FG

At CDD$TOP, user JONES has PASS_THRU, which allows her to use CDD$TOP
in a path name. She has also had two privileges banished, FORWARD and
GLOBAL _DELETE.

CDD$TOP.SALES
1: [*,*], Username: "JONES"

Grant - H, Deny - none, Banish - none

At the directory SALES, JONES is granted an additional privilege, HISTORY.
Because she inherits PASS_THRU from CDD$TOP, JONES now has PASS_THRU
and HISTORY.

CDD$TOP.SALES.JONES
1: [*.*], Username: "JONES"

Grant - CFGSX, Deny - none, Banish - none

This access control list attempts to grant JONES five new privileges: CONTROL,
FORWARD, GLOBAL_DELETE, SEE, and EXTEND. However, the ACL for
CDD$TOP has already banished two of these, FORWARD and GLOBAL _DELETE,
so they cannot be granted now. JONES, therefore, adds CONTROL, SEE, and
EXTEND to her inherited privileges. She now has PASS_THRU, HISTORY,
CONTROL, SEE, and EXTEND.

With CONTROL privilege at her directory, JONES can use the SET PROTECTION
command to restrict access by other users.

CDD$TOP.SALES.JONES.LEADS_RECORD;1
1: [*,*]. Username: "JONES"

Grant - DEMRUW, Deny - none, Banish - none

The six new privileges JONES receives at dictionary object LEADS_RECORD;l
give her complete control over that record definition. She can use DAT ATRIEVE,
she can update the record definition, and she can read and write access control list
entries. She now has PASS_THRU, HISTORY, CONTROL, SEE, EXTEND,
LOCAL_DELETE, DTR_EXTEND/EXECUTE, DTR_MODIFY, DTR_READ,
UPDATE, and DTR_WRITE.

User's Guide to DMU Format Dictionaries A-51

A.6.2.2 Combinations of ACL Entries - Along the path
CDD$TOP.PERSONNEL.SERVICE.SALARY_RECORD;2, the access
control lists demonstrate how combinations of user identification criteria at
different levels of the CDD hierarchy control access to data descriptions. The
user identification criteria in these ACL entries match the characteristics of four
individual users: CASADAY, KELLERMAN, FOSTER, and JONES.

CDD$TOP
1: [*, *], Username: "CASADAY"

Grant - CDHPSX, Deny - none, Banish - none
2: [*.*]

Grant - P, Deny - CDEHMRSUWX, Banish - FG

CASADAY, the system manager, is responsible for organizing and maintaining the
CDD, and so she retains all the access privileges granted by default. CASADAY
inherits these privileges at each hierarchy level.

To protect the CDD against modification or redundancy, CASADAY grants only
PASS_THRU to all other users, including KELLERMAN, FOSTER, and JONES.
In addition, she banishes FORWARD and GLOBAL__DELETE to ensure that no
other user can create subdictionary files or delete large portions of the dictionary.

CDD$TOP.PERSONNEL
1: [*, *] , Username: "CASADAY"

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*], Password: "SEMI_SECRET"

Grant - HS, Deny - CDEFGMRUWX, Banish - none
3: [*' *]

Grant - none, Deny - none, Banish - CDEFGHMPRSUWX

All the record definitions in the PERSONNEL subdictionary are sensitive, and so
CASADA Y has included the password "SEMI_SECRET" as a user identification
criterion to restrict access. KELLERMAN, who is responsible for all the records
in the Personnel Department, and FOSTER, an applications programmer who
uses personnel record definitions, know the password and so have PASS_ THRU
(inherited from CDD$TOP), HISTORY, and SEE privileges to the subdictionary.
JONES, who works in Sales, does not know the password and so has no access to
PERSONNEL or any of its children.

The relative position of access control list entries is significant. The CDD stops
searching the user identification criteria in the ACL entries as soon as it finds a
match. In this example, if entries 2 and 3 were reversed, then only CASADA Y would
have any access privileges at PERSONNEL. All other processes would match the
second entry, which banishes all privileges. Therefore, the CDD would discontinue
the user identification search before reaching entry 3, the one granting access to
those using the password.

A-52 User's Guide to DMU Format Dictionaries

CDD$TOP.PERSONNEL.SERVICE
1: [*,*], Username: "CASADAY"

Grant - CDHPSX, Deny - none, Banish - none
2: [*. *] , Password: "SECRET"

Grant - HS, Deny - DEMRUWX, Banish - C
3: [*,*]

Grant - none, Deny - none, Banish - CDEFGHMPRSUWX

Confidential employee record definitions are stored in the SERVICE directory.
CASADA Y has added a new password, "SECRET," to limit the number of Personnel
Department users with access to this directory. Authorized users like KELLERMAN
and FOSTER now have access to this directory only when they include the appropri­
ate passwords in the dictionary path name:

CDD$TOP.PERSONNEL(SEMI_SECRET).SERVICE(SECRET)

Failure to include either password would result in the banishment of all privileges,
and users would be unable to proceed further, even if the next level granted all
privileges to all users.

CDD$TOP.PERSONNEL.SERVICE.SALARY_RECORD;2
1: [*, *] , Username: "CASADAY"

Grant - CDEHMRSUW, Deny - none, Banish - none
2: [*, *] , Username: "KELLERMAN"

Grant - DEMRUW, Deny - none, Banish - none
3: [*, *] , Username: "FOSTER"

Grant - ER, Deny - none, Banish - none

Unlike CDD$TOP, PERSONNEL, or SERVICE, SALARY_RECORD;2 is a dic­
tionary object that holds a record definition. This difference is reflected in the new
default privileges that DMU displays for CASADAY.

ACL entry 2 grants KELLERMAN the privileges he needs to maintain the
SALARY_RECORD;2 definition. FOSTER, whose process matches the third access
control list entry, inherits PASS_THRU, HISTORY, and SEE from SERVICE,
and he receives DTR__EXTEND and DTR_READ, which allow him to use
DATATRIEVE with SALARY_RECORD;2.

User's Guide to DMU Format Dictionaries A-53

A.6.3 Summary of ACL Results in the DMU Dictionary

Here is a summary of the effects access control lists can have on user access to the
CDD:

• All users receive all privileges at CDD$TOP when you first install the CDD.

• Users inherit privileges from parent to child within the hierarchy until you grant,
deny, or banish specific privileges in access control· lists.

• Your access privileges to a dictionary directory, subdictionary, or object are those
you inherit, modified by the current ACL entry.

• An ACL entry applies to a user only if all its user identification criteria match
the characteristics of the user's process.

• The CDD begins its search of an access control list with entry 1 and ends its
search as soon as it finds the first entry for which the characteristics of the user's
process match all the user identification criteria.

• No one can restore a banished privilege to a user simply by granting it. If an
access privilege is banished by an ACL entry, that privilege can be restored only
if the banishment is deleted from the access control list.

A.6.4 Modifying Access Control Lists in the DMU Dictionary

If you have CONTROL privilege at a directory or object, you can modify its access
control list. You can use the DMU SET PROTECTION command, as in the
following example:

DMU> SET PROTECTION/POSITION=2/USERNAME=JONES/GRANT=<HS> CDD$TOP.SALES
DMU>

The above command creates an access control list entry at CDD$TOP.SALES
for user JONES. The entry is the second entry in the ACL and grants JONES
HISTORY and SEE privileges.

A-54 User's Guide to DMU Format Dictionaries

You can then use LIST /PROTECTION to see the access control list you have
modified:

DMU> LIST/PROTECTION CDD$TOP.SALES

CDD$TOP.SALES
1: [*,*], Username: 11 CASADAY 11

Grant - CDEFGHMPRSUWX, Deny - none, Banish - none
2: [*,*], Username: "JONES"

Grant - HS, Deny - CDEfGMPRUWX, Banish - none
DMU>

If you are using a VT52 terminal or a terminal of the VTlOO or VT200 family,
you can easily modify an access control list with the DMU SET PROTECTION
/EDIT command. It allows you to edit access control lists with single-stroke keypad
commands. SET PROTECTION/EDIT allows you to see the entire access control
list as you are modifying it. In the sample dictionary (Figure A-1), for example, the
system manager CASADAY has full access to the directory CDD$TOP.SALES. She
can, therefore, modify the access control list. This section presents a sample VTlOO
session in which CASADAY uses the ACL editor to grant a new user named DENN
access to CDD$TOP.SALES.

·First, CASADA Y invokes DMU and runs the access control list editor:

$ RUN SYS$SYSTEM:DMU
DMU> SET PROTECTION/EDIT CDD$TOP.SALES.

User's Guide to DMU Format Dictionaries A-55

DMU then displays the current access control list:

r I

.--~~~~~~~~~~=DDSTOP.SALES;~~~~~~~~~~~~--.

Grant: CDHPSX
Usernatte: CASADAY
Terainal:

Grant: HS
Usernatte: JONES
Terainal:

Grant:
Usernatte:
Terainal:

[END]

Defl9:
Rights: [1,1]
Password:

Der19:
Rights:
Password:

Der19:
Rights:
Password:

[1,1]

CDEFGHttPRSUWX
[1,1]

A-56 User's Guide to DMU Format Dictionaries

Banish:

Banish:

Banish:

ZK-8633-HC

On the VTlOO, the keypad PF2 key is the HELP key for the access control list
editor. CASADAY presses HELP, and her terminal displays the following:

A Down
I Entr9 <- ->
Up I Left Right

! Entr~ v Char Char
~ l

Delete Rubout character

Bacf.. space Bacf..up to prior· field
CTRL!~ Ref'resh screeri
CTRL!Z Return to DHU cuMMand evel;

do not MiJdif~ ACL

T9pe a ~-~ for help on that k~.
To exit, t9pe a space.

On VT200 k~boards,
T9pe F17 for help on VT200 ke~s.

• Fndnxt Del
Help ••r.r.• ••• Entr~

Hove ! Sect Show Del I
I ~,T:I. ~~ra:•I
!

Advance! Backup Cut Dei 1

! ••GE•!
-1:-1"""11Q-.;,-, llDM •mm Char I
Field I p~

1111111

Entr~

0 en Entr

Enter

Select
ZK-8632-HC

User's Guide to DMU Format Dictionaries A-57

To return to editing, CASADAY presses the space bar. Because she wants to grant
privileges to DENN at position 3, she presses the keypad ENTRY (0) key twice to
move the cursor down to the third position, and then she opens a new entry at that
position by pressing OPEN ENTRY (GOLD 0). She is now ready to add the new
access control list entry:

I

DDSTOP.SALES
Grant: CDHPSX »ens: Banish:
Use matte: CASADA Y Rights: [1,1]
Ten1inal: Password:

Grant: HS 1>en9: Banish:
Usernatte: JONES Rights: [1,1]
Ten1inal: Password:

Grant: 1>en9: Banish:
Usernatte: Rights:
Ten1inal: Password:

Grant: 1>en9: CDEFGHIFRSUWX Banish:
Usernatte: Rights: [1,1]
Ten1inal: Password:

CENDJ

ZK-8634-HC

A-58 User's Guide to DMU Format Dictionaries

DENN inherits PASS_THRU from CDD$TOP, so he needs only HISTORY and
SEE to work in the SALES directory. CASADAY, therefore, types the key letters
H and S in the Grant field. She then uses the keypad FIELD key (1) to move the
cursor to the Rights field, where she types DENN. Note that she could, alternatively,
have identified him by typing DENN in the Username field.

r I

~DDtTOP.SALES-----
Grant: CDHPSX Der19: Banish:
Usematte: CASADAY Rights: [1,1]

TeM1inal: Password:

Grant: HS ~: Banish:
UsemiRe: JONES Rights: [1,1]
TeM1inal: Password:

Grant: HS ~: Banish:
UsemaRe: Rights: [DENN]

TeM1inal: Password:

Grant: Der19: CDEFGllFRSUWX Banish:
UsemaRe: Rights: [1,1]
TeM1inal: Password:

CENDl

\..

ZK-8630-HC

User's Guide to DMU Format Dictionaries A-59

Before committing the access control list change, CASADA Y can test the new entry
to be sure it functions correctly. She presses the DEFINE USER key (GOLD 9)
to enter sample user characteristics, and the SAMPLE USER form appears on her
terminal screen:

I
.--------AHPLE USER'S CHARACTERISTICS---------.

UsernaMe
Rights
TerMinai nuMber (ttcn)

(LDCAL
BATCH

Path fidMe

ICDD$TOP
jSALES

NOfUDCAL
NETWORK

ZK-8631-HC

The SAMPLE USER screen allows her to enter user identification criteria for any
user. She can enter a user name, a rights identifier or UIC, a terminal number, a
terminal type, and any necessary passwords. The SAMPLE USER screen contains
a line for every directory from CDD$TOP to the directory or object whose ACL you
are modifying. To associate a password with a directory or object, type the password
on the correct line. The SAMPLE USER screen can display up to ten directory or
object names at a time. If the path name is more than ten levels deep, you can scroll
down with the down arrow key or up with the up arrow key.

In this case, CASADAY could enter a password for CDD$TOP or SALES.

A-60 User's Guide to DMU Format Dictionaries

Because no password is associated with either directory, CASADAY just types the
alphanumeric UIC DENN in the Rights space.

UsernaMe
Rights
TerMinal nuMber (ttcn)
TerMinal t~pe

(LOCAL
I BATCH

! P:-th natte
lcDMT~-- I -

!SALES

I
i

I

Password

ZK-8629-HC

She enters the sample user characteristics by pressing ENTER. The ACL editor
reappears on the screen.

User's Guide to DMU Format Dictionaries A-61

To test the new entry, CASADA Y presses the SHOW USER key (9):

<DDS TOP. SALES
Grant: CJ>ll>SX J>ens: Banish:
Userna11e: CASADAY Rights: [1,1]

Terttinal: Passuord:

Grant: HS J>ens: Banish:
Userna11e: JONES Rights: [1,1]
Terttinal: Passuord:

Grant: HS Der19: Banish:
Userna111e: Rights: CDEJID
Terttinal: Passuord:

Grant: Der19: CDEFGHttPRSUUX Banish:
Userna111e: Rights: [1,1]
Terttinal: Password:

CENDl

Rights: Inherited - P, Banished - none, Net - HPS

ZK-8627-HC

The line under the ACL display shows the privileges granted DENN at higher
levels of the dictionary, any banished privileges, and his net privileges at
CDD$TOP.SALES. He inherits PASS_THRU and has had no privileges ban-
ished. His inherited PASS_THRU privilege, combined with HISTORY and SEE
privileges granted him at this directory, make his net privileges HPS.

CASADAY now presses CTRL/Z to commit the change and return to DMU com­
mand level. The LIST /PROTECTION command displays the new access control
list:

DMU> LIST/PROTECTION CDD$TOP.SALES

CDD$TOP.SALES
1: [*,*], Username: "CASADAY"

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*], Username: "JONES"

Grant - HS, Deny - none, Banish - none
3: [DENN]

Grant - HS, Deny - none, Banish - none
4: [*,*]

Grant - none, Deny - CDEFGHMPRSUWX, Banish - none

A-62 User's Guide to DMU Format Dictionaries

When you use SET PROTECTION/EDIT, LIST/PROTECTION, and SET
PROTECTION, remember:

• The relative position of entries is important. CASADA Y had to be sure that the
ACL entry for DENN came before the entry denying all privileges to all users.

• When you press the SHOW USER key (9), the ACL editor displays privi­
leges granted at higher levels in the hierarchy, any banished privileges, and
the net privileges a user has at the referenced directory or object. The LIST
/PROTECTION command shows only the privileges a user has been granted,
denied, or banished at the named directory or object, not the privileges inherited
from higher directories.

If you are using a VT52 terminal or a terminal of the VTlOO or VT200 family, you
should use the ACL editor to modify access control lists because:

• The ACL editor allows you to use single-stroke keypad commands instead of
entering commands from DMU command level.

• The ACL editor displays the whole access list for you.

• The ACL editor allows you to test new entries before you commit them. If any
problems arise, you can abort the editing session by pressing GOLD Z.

Otherwise, use a combination of the DELETE/PROTECTION and SET
PROTECTION commands to fine tune your dictionary's access control lists.

A.6.5 Using VMS File Protection in the DMU Dictionary

CDD access control lists provide protection against nonmalicious users, but they
cannot provide complete protection for dictionary entries that contain sensitive
material or must be kept secure. You can use VMS file protection to augment
protection provided by access control lists.

The root dictionary directory is stored in a file with the name CDD.DIC. All the de­
scendants of that directory are also stored in that file unless they are subdictionaries.
Subdictionaries are stored in separate files that you specify in the D MU
CREATE/SUBDICTIONARY command (see Section A.9.1.5.1).

User's Guide to DMU Format Dictionaries A-63

A.6.5.1 The DCL SET PROTECTION Command -You can use the DCL SET
PROTECTION command to set the protection of the root dictionary file and any
subdictionary files. File protection provides another layer of protection in addition
to the access control list. Rights denied through file protection cannot be gained
through an access control list. For example, if you deny someone READ access to
CDD.DIC, it does not matter which CDD access privileges you grant that person;
that person cannot open the file.

For any file, four VMS file protection rights can be granted:

• READ (R): the right to examine, print, or copy a file

• WRITE (W): the right to modify a file

• EXECUTE (E): the right to execute a file that contains an executable image

• DELETE (D): the right to delete a file

Each of these rights can be granted to four different categories of users:

• SYSTEM (S): all users with system privileges

• OWNER (0): any user with the same user identification code as the creator of
the file (for more information about the UIC, see Section A.6.1.1.2.)

• GROUP (G): all users who have the same group number (the first three digits
of the UIC) as the owner of the file

• WORLD (W): all users of the system

The format of the DCL SET PROTECTION command is:

SET PROTECTION=(S:rights,O:rights,G:rights,W:rights) file-spec

The rights are any of the four protection rights you want to grant.

A.6.5.2 Granting Access to Certain Users -You have considerable flexibility
in granting access to CDD.DIC. By default, all users are granted all rights except
DELETE, as in the following command:

$ SET PROTECTION=(S:RWE,O:RWE,G:RWE,W:RWE) COD.DIC

Because CDD.DIC contains your root dictionary directory, it is inadvisable
to grant anyone DELETE rights.

A-64 User's Guide to DMU Format Dictionaries

If, on the other hand, you want to grant WRITE and EXECUTE access only to
yourself, type:

$SET PROTECTION=(S:R,O:RWE,G:R,W:R) CDD.DIC

It is also possible to deny all access to anyone outside the group:

$SET PROTECTION=(S,O:R.WE,G:R,W) CDD.DIC

Choose the combination of rights that suits your needs.

A.6.5.3 Controlling Access to Subdictionaries -Certain directories and
objects of the dictionary may need to be more secure than other directories and
objects. PERSONNEL, a subdictionary directory in the sample dictionary, is
an example. Such subdictionary directories are stored in files separate from the
rest of the dictionary. You specify the location of such files by using the DMU
CREATE/SUBDICTIONARY command. The PERSONNEL subdictionary, for
instance, is stored in the file DB3:[CASADAY.CDD]PERS.DIC.

Because PERSONNEL is stored in a separate file, it can be protected differently
from the root dictionary file, CDD.DIC. If extremely sensitive material is kept in
that subdictionary file, you might grant access only to its owner and the system:

$SET PROTECTION=(S:RWE,O:RWE,G,W) DB3: [CASADAY.CDD]PERS.DIC

Again, it is advisable not to grant DELETE rights to anyone.

If, however, members of the Personnel Department need to make changes to parts of
that directory regularly, you can grant access to them, while denying access to other
users:

$SET PROTECTION=(S:RWE,O:RWE,G:RWE,W) DB3: [CASADAY.CDD]PERS.DIC

In some situations, security is the overriding concern in the use of the CDD. For
example, several organizations may share a CDD through a time-sharing program.
Under these circumstances, an organization may want assurances that their defini­
tions are secure. You can store their definitions on a separate device and take it off
line when it is not in use.

Putting certain directories and objects in subdictionaries allows you to tailor access
to those sections, according to the needs of your organization.

For more information about creating and using subdictionaries, see Section A.9.1.5.
For more information about the DCL SET PROTECTION command, see the related
information in the VMS documentation set.

User's Guide to DMU Format Dictionaries A-65

A.6.5.4 The DCL Access Control List Editor Utility -The DCL EDIT/ACL
command invokes the VMS Access Control List (ACL) Editor Utility. You can
use this utility to create or modify a VMS access control list for a specified root
dictionary file or subdictionary file. EDIT/ ACL allows you to edit VMS access
control lists more quickly and easily than with the DCL SET PROTECTION
command. The utility provides an easy way to see an entire access control list for a
VMS file.

The format of the DCL EDIT/ACL command is:

EDIT/ACL file-specification

The ACL Editor prompts for each VMS access control entry. Each entry consists of
two parts separated by a comma:

• An identifier. The identifier can be a numeric (group and member numbers)
UIC, an alphanumeric UIC, or a rights identifier created in the rights database
by the system manager. The identifiers BATCH, DIALUP, INTERACTIVE,
LOCAL, NETWORK, and REMOTE exist by default on the system.

• Privileges associated with the identifier. In addition to READ, WRITE,
EXECUTE, and DELETE privileges, you can specify CONTROL and NONE.
CONTROL grants all the privileges of the file's owner.

The format of an ACL entry is:

(IDENTIFIER=[identifier], ACCESS=privilege[+privilege ...])

The following example creates an VMS access control list for the subdictionary
file CORP.DIC. CASADAY, the system manager, grants herself all five privi-
leges. The second entry grants READ and WRITE access to any user on a local,
hard-wired terminal whose group number is 210. CASADAY has created the iden­
tifier SECRET ARY and assigned it in the rights database. Any user defined as
SECRETARY in the rights database matches this entry. Any batch job or any user
in group 210 whose terminal is not locally hard-wired receives only READ access.
The sixth entry denies file access to any user whose terminal is not hard-wired. This
entry is optional because CASADA Y inludes the final entry as a safeguard to deny
access to any user whose characteristics are not specified in a higher entry.

A-66 User's Guide to DMU Format Dictionaries

$ EDIT/ACL CORP.DIC
(IDENTIFIER=[CASADAY], ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=[210,*]+LOCAL, ACCESS=READ+WRITE)
(IDENTIFIER=SECRETARY, ACCESS=READ+WRITE)
(IDENTIFIER=BATCH, ACCESS=READ)
(IDENTIFIER=[210,*]+REMOTE, ACCESS=READ)
(IDENTIFIER=REMOTE, ACCESS=NONE)
(IDENTIFIER=[*,*], ACCESS=NONE)

In the following example, CASADAY uses the DCL DIRECTORY/ACL command to
display the VMS access control list for the file CORP.DIC:

$DIRECTORY/AGL CORP.DIC

Directory DB3: [CASADAY.CDD]

CORP.DIC;!
(IDENTIFIER=[CASADAY], ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=[210,*]+LOCAL, ACCESS=READ+WRITE)
(IDENTIFIER=SECRETARY, ACCESS=READ+WRITE)
(IDENTIFIER=BATCH, ACCESS=READ)
(IDENTIFIER=[210,*]+REMOTE, ACCESS=READ)
(IDENTIFIER=REMOTE, ACCESS=NONE)
(IDENTIFIER=[*,*], ACCESS=NONE)

In the following example, CASADAY uses the keywords OPTIONS=PROTECTED
to prevent deletion of the last entry if the remainder of the list is deleted. Then she
can use the DCL SET FILE/ A CL/DELETE command to delete all the unprotected
entries. The DIRECTORY/ ACL command shows that the last entry remains intact:

$ EDIT/ACL PERS.DIC
(IDENTIFIER=[CASADAY], ACCESS=WRITE+READ+EXECUTE+CONTROL+DELETE)
(IDENTIFIER=SECRETARY, ACCESS=READ+WRITE)
(IDENTIFIER=[*,*], OPTIONS=PROTECTED, ACCESS=NONE)
-z
$SET FILE/AGL/DELETE PERS.DIC
$DIRECTORY/AGL PERS.DIC

Directory DB3:[CASADAY.CDD]
(IDENTIFIER=[*,*], OPTIONS=PROTECTED, ACCESS=NONE)

When VMS receives a request for access to a file, it searches the access control list
starting with the first entry and stops searching at the first entry matching the user's
identifying characteristics.

You can use EDIT/ ACL only on files that you own or that you can access with the
VMS privilege BYPASS, SYSPRV, or GRPPRV.

EDIT/ACL creates an access control list if it does not already exist. You must
specify the file type .DIC.

CTRL/Z terminates the editing session and returns you to DCL command level.

User's Guide to DMU Format Dictionaries A-67

For more information about the DCL EDIT/ ACL command, see the related informa­
tion in the VMS documentation set.

A.6.6 Overriding Security in the DMU Dictionary

Neither VMS file protection nor the CDD security provisions apply to any process
possessing the VMS BYPASS privilege.

A. 7 Creating a CDDL Source File in the DMU Dictionary

The primary goal of the Data Definition Language Utility (CDDL) is to provide you
with a mechanism for entering record definitions directly into the CDD. The actual
procedure consists of two steps:

• Use a text editor to create a CDDL source file containing a record definition.

• Invoke the CDDL compiler to insert the record definition into the dictionary.

This section describes how to create a CDDL source file.

A. 7 .1 The COOL Source File

In the source file, you specify the name and description of a record, the fields that
comprise it, and the attributes of those fields. Field attributes include data type and
alignment specifications, array or initial-value declarations, and a number of facility­
specific attributes recognized only by a particular language, such as VAX COBOL, or
language processor, such as DATATRIEVE.

The source file contains the record definitions to be placed in the dictionary. Source
file names follow the rules for standard VMS file specifications. The default file type
is .DDL.

The basic unit of a CDDL source file is the DEFINE statement, which names the
record you are creating and includes documentary text with the DESCRIPTION IS
clause. Following the DEFINE statement is a field description statement defining the
record's field attributes. Subordinate field description statements can be embedded
within the field description statement. Finally, the END statement completes the
record definition. The general format of a source file is:

DEFINE RECORD path-name

[DESCRIPTION [IS] /* text */] .

field-description-statement

A-68 User's Guide to DMU Format Dictionaries

[path-name]
END [given-name] [RECORD].

Example A-1 shows a simple CDDL source file named ADDRESS.DDL, which
defines a dictionary object from the sample dictionary (Figure A-1). The object is a
CDD record definition, and its dictionary path name is
CDD$TOP.CORPORATE.ADDRESS_RECORD.

Example A-1: ADDRESS.DDL, Sample CDDL Source File

DEFINE RECORD CDD$TOP.CORPORATE.ADDRESS_RECORD
DESCRIPTION IS

/* This record contains the standard format
for addresses. It provides the source from which all
address fields in other record descriptions are copied. */.

ADDRESS STRUCTURE.
STREET

CITY

STATE

ZIP_CODE STRUCTURE.

DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.
DATATYPE IS TEXT
SIZE IS 2 CHARACTERS.

NEW DATATYPE IS UNSIGNED NUMERIC
SIZE IS 4 DIGITS
BLANK WHEN ZERO.

OLD DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.

END ZIP_CODE STRUCTURE.
END ADDRESS STRUCTURE.

END ADDRESS_RECORD.

A. 7 .2 Creating a Record Definition in the DMU Dictionary

A record definition begins with a DEFINE statement and ends with an END state­
ment. A CDDL source file can contain any number of record definitions, provided
each one begins with DEFINE and ends with END.

You name a record definition and specify its location in the CDD using the DEFINE
statement. For example, in the source file ADDRESS.DDL:

• ADDRESS_RECORD is the given name of the record definition. You can
specify the absolute version number of the definition. You need not specify a
version number in the record definition. If you do not specify a version number,
the CDDL compiler gives the record definition a version number when it inserts
the record definition into the dictionary.

User's Guide to DMU Format Dictionaries A-69

• CDD$TOP.CORPORATE is the directory into which CDDL places
ADDRESS_RECORD. You can use a full path name or a relative path name.
If you use a relative path name, CDDL appends the path name of the record
definition to your default directory or to a path name specified with the /PA TH
qualifier (see Section A.8.1).

Within the DEFINE statement, you can document the nature and purpose of the
definition by including a DESCRIPTION statement. The description must be
enclosed in the text delimiters/* and*/. CDDL stores the description in the record
definition, and you can access it with the DMU LIST /ITEM= DESCRIPTION
command.

End the DEFINE statement with a period.

The END statement contains the keyword END by itself or followed by the full path
name of the definition, the given name, or just the keyword RECORD. If you specify
a name in the END statement, it must match the name in the DEFINE statement,
including any specified version number. The END statement must also terminate
with a period.

A. 7 .3 Describing the Record Definition in the DMU Dictionary

You describe the contents of the record definition with field description statements.
There are four types of field description statements.

A. 7 .3.1 Field Description Statements - A field description statement
describing the contents of the record definition follows the DEFINE statement. You
can choose from four types of field description statements:

• Elementary field description statements define fields that are not divided into
subordinate fields. The fields CITY, STATE, NEW, and OLD in Example A-1
are examples of elementary fields.

• STRUCTURE field description statements define fields that are divided into
one or more subordinate fields. The top-level field description statement for a
record is ordinarily a STRUCTURE field description statement. For example,
the ADDRESS field in Example A-1 is a STRUCTURE field divided into three
elementary fields (STREET, CITY, and STATE) and one STRUCTURE field,
ZIP_CODE. As this example demonstrates, you can nest STRUCTURE fields
within other STRUCTURE fields.

• COPY field description statements insert the field descriptions of existing
records into the descriptions of new records. As the DESCRIPTION IS clause of
Example A-1 explains, CORPORATE.ADDRESS_RECORD is the source from
which the address fields of all other records are copied. You could, therefore,

A-70 User's Guide to DMU Format Dictionaries

define an ADDRESS field in another record with the COPY field description
statement:

ADDRESS COPY FROM CDD$TOP.CORPORATE.ADDRESS_RECORD.

• VARIANTS field description statements define a set of two or more fields that
provide alternative descriptions for the same portion of a record. The function. of
the VARIANTS field description is similar to that of the REDEFINES clause in
VAX COBOL and DATATRIEVE. With VARIANT fields, you have the option
of specifying a tag variable whose value is used at run time to determine the
current VARIANT.

The following example shows a STRUCTURE field description statement with
VARIANT fields and the tag variable option.

STOCK STRUCTURE.
/* RECORD_IDENTIFIER determines field type:

S --> In-stock record.
B --> Back order record.
0 --> Out-of-stock record. */

RECORD_IDENTIFIER DATATYPE IS TEXT
SIZE IS 1 CHARACTER.

VARIANTS OF RECORD_IDENTIFIER.
VARIANT VALUE IS "S".

IN_STOCK STRUCTURE.
PRODUCT_NO DATATYPE IS TEXT

SIZE IS 8 CHARACTERS.
DATE_ORDERED DATATYPE IS DATE.
STATUS_CODE DATATYPE IS BYTE.
QUANTITY DATATYPE IS LONGWORD

ALIGNED ON LONGWORD.
LOCATION ARRAY 1:4

DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.

UNIT_PRICE DATATYPE IS LONGWORD SCALE -2.
END IN_STOCK STRUCTURE.

END VARIANT.
VARIANT VALUE IS "B".

BACK_ORDER STRUCTURE.
PRODUCT_NO DATATYPE IS TEXT

SIZE IS 8 CHARACTERS.
DATE_ORDERED DATATYPE IS DATE.
STATUS_CODE DATATYPE IS BYTE.
QUANTITY DATATYPE IS LONGWORD

ALIGNED ON LONGWORD.
SUPPLIER ARRAY 1:4

DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.

UNIT_PRICE DATATYPE IS LONGWORD
SCALE -2.

END BACK_ORDER STRUCTURE.
END VARIANT.

User's Guide to DMU Format Dictionaries A-71

VARIANT VALUE IS 11 011
•

OUT_OF_STOCK STRUCTURE.
PRODUCT_NO DATATYPE IS TEXT

SIZE IS 8 CHARACTERS.
DATE_LAST_SOLD DATATYPE IS DATE.

END OUT_OF_STOCK STRUCTURE.
END VARIANT.

END VARIANTS.
END STOCK STRUCTURE.

End each field description statement with a period.

A. 7 .3.2 Documenting Field Description Statements - You can use the
DESCRIPTION statement to document the entire record definition. There are also
two ways to document individual fields:

• You can enclose a comment in the text delimiters/* and*/. Place the comment
immediately before the field description it documents. In the following example,
the comment documents the ST A TE elementary field description.

/*Use USPO standard abbreviations for state code.*/
STATE DATATYPE IS TEXT

• You can use the exclamation point (!) as a comment delimiter. CDDL ignores
any text preceded by an exclamation point. Thus, you could also document the
STATE field in this way:

!Use USPO standard abbreviations for state code.
STATE DATATYPE IS TEXT

The preferred method of documenting field description statements is to use/* and*/
as comment delimiters, because these comments are stored in the record definition.
Comments delimited by an exclamation point are stored only in the source text. This
difference becomes important, for example, when you use the /RECORD qualifier
with the EXTRACT command (see Section A.8.3.1.2).

A-72 User's Guide to DMU Format Dictionaries

A. 7 .3.3 Field Attribute Clauses - In each field description statement, you
use field attribute clauses to define the fields in a record. General field attributes
provide unambiguous field descriptions recognized by every facility using the CDD.
Table A-7 presents a brief description of each general field attribute clause.

Table A-7: General Field Attribute Clauses

Field Attribute Clause Function

ALIGNED Sets a field's starting boundary relative to the start of
a record.

ARRAY, Declares a field to be an array.
OCCURS,
OCCURS ... DEPENDING

DATATYPE Defines the type and size of a field. Data types
are further explained in the VAX Common Data
Dictionary Data Definition Language Reference
Manual.

INITIAL_ VALUE Sets a value for a field when it is first allocated.

In addition to the general field attributes, there are facility-specific field attributes
that are supported by some languages or language processors but not by others.

In the ZIP_CODE field of Example A-1, for example, the field NEW has the facility­
specific field attribute BLANK WHEN ZERO. Only VAX COBOL recognizes
this field attribute. Other language processors, such as DATATRIEVE, ignore the
BLANK WHEN ZERO clause.

Table A-8 presents a brief description of each facility-specific field attribute clause.

User's Guide to DMU Format Dictionaries A-73

Table A-8: Facility-Specific Field Attribute Clauses in the DMU Dictionary

Field Attribute Clause Function

BLANK WHEN ZERO Causes VAX COBOL to set an entire field to
blanks when you assign that field a value of zero.

COMPUTED BY DATATRIEVE Supplies expressions used to calculate the values
of virtual fields.

CONDITION FOR COBOL Associates condition names with specific values in
a field.

DEFAULT_VALUE FOR Sets a default value for a field used by
DATATRIEVE DATATRIEVE.

EDIT_STRING FOR DATATRIEVE Declares the format used to display the value of a
field.

INDEXED FOR COBOL BY Specifies index names for the INDEXED BY
clause in VAX COBOL.

JUSTIFIED RIGHT Causes the same nonstandard truncation as the
VAX COBOL JUSTIFIED clause. Only VAX
COBOL recognizes the JUSTIFIED RIGHT
clause.

MISSING_ VALUE FOR Specifies contents for a field that has never been
DATATRIEVE assigned a meaningful value.

NAME Declares a VAX COBOL-specific, VAX BASIC-
specific, or VAX PL/I-specific name for a field.

PICTURE Declares a VAX COBOL-specific, DATATRIEVE-
specific, or VAX PL/I-specific picture string for a
field.

QUERY_HEADER FOR Specifies a field label for report headers.
DATATRIEVE

QUERY_NAME FOR DATATRIEVE Specifies an alternate field name.

VALID FOR DATATRIEVE IF Declares a DAT ATRIEVE validation expression.

A. 7 .3.4 COOL Data Types -With CDDL, you can store record definitions using
most VAX data types. Legal CDDL data types include fixed point, floating point,
character string, and decimal string classes.

A-74 User's Guide to DMU Format Dictionaries

A. 7 .3.4.1 Character String Data Types -The character string data type represents
text in strings of contiguous 8-bit bytes. The first character is stored in the first
byte, the second character in the second byte, and so on, up to a maximum of 65,535
bytes.

A. 7 .3.4.2 Fixed Point Data Types - Fixed point data types represent scaled
quantities in a binary format, and they can be SIGNED or UNSIGNED.

SIGNED fixed point numbers are stored in two's complement form. Values range
from -2**(n-1) to 2**(n-l)-l, where n is equal to the number of bits in the data type.
UNSIGNED fixed point numbers range from 0 to (2**n)-1, where n is equal to the
number of bits in the data type.

The fixed point data types include the 8-bit BYTE, the 16-bit WORD, the 32-bit
LONGWORD, the 64-bit QUADWORD, and the 128-bit OCTAWORD. Table A-9
shows the fixed point data types.

Table A-9: The Fixed-Point Data Types in the DMU Dictionary

Data Type Length Unsigned Signed

BYTE 8 bits 0 to 255 -128
to 127

WORD 16 bits 0 to 65535 -32768
to 32767

LONGWORD 32 bits 0 to -2, 147, 483, 648
4,294,967 ,295 to 2,147,483,647

QUADWORD 64 bits 0 to 264 - 1 -263

to 263 - 1

OCTA WORD 128 bits 0 to 2128 - 1 -2127

to 2127 - 1

A. 7 .3.4.3 Floating Point Data Types - Floating point data types represent
approximations to quantities in a scientific notation consisting of a signed exponent
and a fraction. The four floating point data types are:

• F_FLOATING (32 bits)

• D_FLOATING (64 bits)

• G_FLOATING (64 bits)

• H_FLOATING (128 bits)

User's Guide to DMU Format Dictionaries A-75

In addition, you can use F_FLOATING COMPLEX, DJLOATING COMPLEX,
GJLOATING COMPLEX, and H_FLOATING COMPLEX to specify ordered
pairs of floating point data types representing the real and imaginary components of
complex numbers. Table A-10 shows the floating point data types.

Table A-10: The Floating Point Data Types in the DMU Dictionary

Approximate Approximate
Data Type Length Precision Range

F__FLOATING 32 bits 7 decimal digits ±10-38

to 10
38

D__FLOATING 64 bits 16 decimal digits ±10-38

to 10
38

G__FLOATING 64 bits 15 decimal digits ±10-308

to 10308

H__FLOATING 128 bits 33 decimal digits ±10-4932

to 104932

A. 7 .3.4.4 Decimal String Data Types - Decimal string data types represent fixed
scaled quantities, and so they are efficient in applications that generate numerous
reports and listings.

There are two classes of decimal string data types. Those in which each decimal digit
occupies one 8-bit byte are called NUMERIC data types. In the more compact form,
called PACKED DECIMAL, two decimal digits occupy each byte. Table A-11 shows
the decimal string data types.

A-76 User's Guide to DMU Format Dictionaries

Table A-11: The Decimal String Data Types in the DMU Dictionary

Datatype Description

UNSIGNED NUMERIC An unsigned numeric ASCII string.

LEFT SEPARATE NUMERIC A signed numeric ASCII string; the
leftmost byte contains the sign.

LEFT OVERPUNCHED NUMERIC A signed numeric ASCII string; the sign
and the leftmost digit occupy the same
byte.

RIGHT SEPARATE NUMERIC A signed numeric ASCII string; the
rightmost byte contains the sign.

RIGHT OVERPUNCHED NUMERIC A signed numeric ASCII string; the sign
and the rightmost digit occupy the same
byte.

ZONED NUMERIC The VAX ZONED NUMERIC data
type; this signed numeric ASCII string is
similar to the RIGHT OVERPUNCHED
NUMERIC, but the sign codes differ.

PACKED DECIMAL A signed numeric ASCII string; two digits
occupy each byte, and the low half of the
last byte is reserved for the sign.

A.7.3.4.5 Other Data Types -In addition to the data types described in the
preceding sections, the CDDL can assign the following data types to fields within
record definitions:

• BIT specifies a string of contiguous bits.

• DATE specifies a VMS standard 64-bit absolute date data type.

• UNSPECIFIED sets aside a specified numbe'r of contiguous unsigned 8-bit bytes.

• VARYING STRING specifies a PL/I varying string class field.

• POINTER specifies a field containing the address of another field or buffer.

• VIRTUAL FIELD specifies a DATATRIEVE virtual field data type.
DATATRIEVE calculates the field's value at run time. No space is allocated
for it in the record.

User's Guide to DMU Format Dictionaries A-77

A. 7.3.4.6 Language Support for CDDL Data Types -The languages that currently
support the CDD include:

• VAX BASIC

• VAX C Version 2.0 and later

• VAX COBOL

• VAX DIBOL, Version 2.0 and later

• VAX FORTRAN, Version 4.0 and later

• VAX PASCAL, Version 3.0 and later

• VAX PL/I, Version 2.0 and later

• VAX RPG II, Version 2.0 and later

The VAX Information Architecture products that currently support the CDD
include:

• ACMS

• DATATRIEVE

• DBMS

• Rdb/VMS

• TDMS

If you plan to share data definitions between two or more of these languages
and products, you must be careful to use data types supported by each of them.
Table A-12 and Table A-13 provide a cross reference of the CDDL data types and
the languages that support them. Table A-14 provides a cross reference of CDDL
data types and VAX Information Architecture products. In both tables:

S Indicates that the facility fully supports the data type.

W Indicates that the facility translates the data type into one that is supported and issues
diagnostics.

X Indicates a data type that DATATRIEVE can use but cannot define.

U Indicates that the data type is unsupported and that the facility issues a fatal diagnostic.

E Indicates that the data type is unsupported and that the facility issues a non-fatal error.

R Indicates that the facility can make use of an unsupported data type only to pass its
address as a parameter.

A-78 User's Guide to DMU Format Dictionaries

Table A-12: BASIC, COBOL, DIBOL, and PL/I Support for CDDL Data
Types in the DMU Dictionary

Data Type
Language

COBOL BASIC DIBOL PL/I

UNSPECIFIED u s w R

SIGNED BYTE u s w R

UNSIGNED BYTE u w w R

SIGNED WORD s s w s
UNSIGNED WORD w w w R

SIGNED LONGWORD s s w s
UNSIGNED LONGWORD w w w R

SIGNED QUADWORD s w w R

UNSIGNED QUADWORD w w w R

SIGNED OCTAWORD u w w R

UNSIGNED OCTAWORD u w w R

F_FLOATING s s w s
F_FLOATING COMPLEX u w w R

D_FLOATING s s w s
D_FLOATING COMPLEX u w w R

G_FLOATING u s w w
G_FLOATING COMPLEX u w w R

H_FLOATING u s w s
H_FLOATING COMPLEX u w w R

UNSIGNED NUMERIC s w w s
LEFT OVERPUNCHED NUMERIC s w w s
LEFT SEPARATE NUMERIC s w w s
RIGHT OVERPUNCHED s w w s
NUMERIC

(Continued on next page)

User's Guide to DMU Format Dictionaries A-79

Table A-12: BASIC, COBOL, DIBOL, and PL/I Support for CDDL Data
Types in the DMU Dictionary (Cont.)

Data Type
Language

COBOL BASIC DIBOL PL/I

RIGHT SEPARATE NUMERIC s w w s
PACKED DECIMAL s s w s
ZONED NUMERIC u w s R

BIT u w w s
DATE w w w R

TEXT s s s s
VARYING STRING u w w s
POINTER u u w s
VIRTUAL FIELD w w w E

Table A-13: FORTRAN, C, PASCAL, and RPG II Support for COOL Data
Types in the DMU Dictionary

Data Type
Language

c FORTRAN PASCAL RPG II

UNSPECIFIED w R s w
SIGNED BYTE s s s w
UNSIGNED BYTE s R s w
SIGNED WORD s s s s
UNSIGNED WORD s R s w
SIGNED LONGWORD s s s s
UNSIGNED LONGWORD s R s w
SIGNED QUADWORD R R R w

A-80 User's Guide to DMU Format Dictionaries

Table A-13: FORTRAN, C, PASCAL, and RPG II Support for COOL Data
Types in the DMU Dictionary (Cont.)

Data Type
Language

c FORTRAN PASCAL RPG II

UNSIGNED QUADWORD R R R w
SIGNED OCTAWORD R R R w
UNSIGNED OCTAWORD R R R w
F_FLOATING s s s w
FJLOATING COMPLEX R s R w
DJLOATING s s s w
D_FLOATING COMPLEX R s R w
GJLOATING s s s w
GJLOATING COMPLEX R s R w
H_FLOATING R s R w
HJLOATING COMPLEX R R R w
UNSIGNED NUMERIC R R R w
LEFT OVERPUNCHED NUMERIC R R R w
LEFT SEPARATE NUMERIC R R R w
RIGHT OVERPUNCHED R R R s
NUMERIC

RIGHT SEPARATE NUMERIC R R R w
PACKED DECIMAL R R R s
ZONED NUMERIC R R R w
BIT si R s w
DATE w R R w
TEXT s s s s
VARYING STRING w R s w
1The bit field cannot exceed 32 bits and must be part of a structure field. VAX C does not
support a separate bit data type.

(Continued on next page)

User's Guide to DMU Format Dictionaries A-81

Table A-13: FORTRAN, C, PASCAL, and RPG II Support for CDDL Data
Types in the DMU Dictionary (Cont.)

Data Type
Language

c FORTRAN PASCAL RPG .11

POINTER s R s w
VIRTUAL FIELD E E E w
TEXT s s s s
VARYING STRING w R s w
POINTER s R s w
VIRTUAL FIELD E E E w

Table A-14: VAX Information Architecture Products Support for CDDL
Data Types in the DMU Dictionary

Rdb
Data Type DTR DBMS ACMS /VMS TOMS

UNSPECIFIED s s s u s
SIGNED BYTE s s s u s
UNSIGNED BYTE x s s u s
SIGNED WORD s s s s s
UNSIGNED WORD x s s u s
SIGNED LONGWORD s s s s s
UNSIGNED LONGWORD x s s u s
SIGNED QUADWORD s s s s s
UNSIGNED QUADWORD x s s u s
SIGNED OCTAWORD u s s u s
UNSIGNED OCTAWORD u s s u s
F_FLOATING s s s s s

A-82 User's Guide to DMU Format Dictionaries

Table A-14: VAX Information Architecture Products Support for CDDL
Data Types in the DMU Dictionary (Cont.)

Rdb
Data Type DTR DBMS ACMS /VMS TOMS

F_FLOATING COMPLEX u s s u u
DJ'LOATING s s s u s
DJ'LOATING COMPLEX u s s u u
GJ'LOATING u s s s s
GJ'LOATING COMPLEX u s s u u
H_FLOATING u s s u s
HJ'LOATING COMPLEX u s s u u
UNSIGNED NUMERIC s s s u s
LEFT OVERPUNCHED NUMERIC s s s u s
LEFT SEPARATE NUMERIC s s s u s
RIGHT OVERPUNCHED NUMERIC s s s u s
RIGHT SEPARATE NUMERIC s s s u s
PACKED DECIMAL s s s u s
ZONED NUMERIC s s s u s
BIT u u s u u
DATE s s s s s
TEXT s s s s s
VARYING STRING x u u s s
POINTER u u u u u
VIRTUAL FIELD s u u u E

SEGMENTED STRING s u u s u

A.8 Compiling, Modifying, and Using CDDL Record Definitions
in the DMU Dictionary

The Data Definition Language Utility (CDDL) is the CDD utility that compiles
source files and inserts them into the CDD.

User's Guide to DMU Format Dictionaries A-83

CDDL allows you to:

• Create a new record definition

• Replace an existing record definition with a modified record definition

• Modify an existing record definition and insert it into the CDD without replacing
the old version

• Recompile definitions that use a modified record definition in a COPY field
description statement

Once a definition is inserted into the CDD, VAX Information Architecture products
and programs written in many VAX programming languages can copy the definition.

A.8.1 Compiling a New Record Definition in the DMU Dictionary

You use the CDDL command to compile the contents of a CDDL source file and
place the record definitions it contains into the CDD. ADDRESS.DDL, for example,
contains the source file for the CDD$TOP .CORPORATE.ADDRESS_RECORD
record definition in the sample dictionary (Figure A-1). The following command
compiles ADDRESS.DDL and inserts it into the dictionary:

$ CDDL/AUDIT ADDRESS.DDL
$

CDDL creates a default access control list containing one entry granting the creator
the default privileges for a CDD object (see Section A.6.1.2). If you use the /NOACL
qualifier, CDDL does not create an access control list.

You document the creation of a record definition by using the /AUDIT qualifier. The
following history list entry was created when CASADA Y compiled ADDRESS.DDL:

First version created by CASADAY (UIC [30,10]) in process CASADAY
using VAX CDD Data Definition Language Version 3.1
on 2-JUL-1984 16:49:37.83.

CDDL automatically creates a listing file unless you specify /NOLISTING.
ADDRESS.LIS, the listing file created when CASADA Y compiled ADDRESS.DDL,
contains the following information:

VAX CDD Data Definition Language Utility Version 3.1
2-JUL-1984 16:05:59.97 Page 1
Command Line: CDDL/AUDIT ADDRESS.DDL
Source File: DB3: [CASADAY.CDD]ADDRESS.DDL;1

A-84 User's Guide to DMU Format Dictionaries

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017

DEFINE RECORD CDD$TOP.CORPORATE.ADDRESS_RECORD
DESCRIPTION IS

/* This record contains the standard format for
addresses. It provides the source from which
all address fields in other record descriptions are
copied.*/.

ADDRESS STRUCTURE.
STREET

CITY

STATE

ZIP_CODE

END ADDRESS STRUCTURE.
END ADDRESS_RECORD.

1

DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.
DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.
DATATYPE IS TEXT
SIZE IS 2 CHARACTERS.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.

%CDDL-S-RECORDCRE, record 11 CDD$TOP.CORPORATE.ADDRESS_RECORD;1"
created in the COD

The listing file contains:

• Creation information

• The command line used and the location of the source file

• The source text of the record definition

• A success message

ADDRESS.DDL contains a full path name in its DEFINE statement. Thus, the
record definition can be placed in only one location in the CDD. If, however, you use
a relative path name, CDDL determines the location of the record definition in one
of two ways:

• If you specify a path name with the /PATH qualifier, the CDD appends the
relative path name to the specified path name.

• If you do not specify a path name with the /PATH qualifier, the CDD appends
the relative path name to your default directory.

Using a relative path name has several advantages:

• It is easy to move the definition to a new location in the CDD (or to a CDD on
another system).

• You can place the definition under a directory that requires a password for access
without having to include the password in the DEFINE statement. If you include
the password in the DEFINE statement, anyone with SEE privilege can display
the password by using the LIST/ITEM=SOURCE command. By specifying the

User's Guide to DMU Format Dictionaries A-85

directory name and associated password in the /PATH qualifier, you need not
include it in the source text.

For example, if the password SEMI_SECRET is associated with the directory
PERSONNEL, and the password SECRET with the directory SERVICE, the full
path name of the record definition SALARY_RECORD is
CDD$TOP .PERSONNEL(SEMI_SECRET) .SERVICE(SECRET) .SALARY_RECORD.
In order to keep the passwords out of the DEFINE statement of SALARY.DDL, you
could use a relative path name in the source text.

!SALARY.DDL
DEFINE RECORD SALARY_RECORD

DESCRIPTION IS
/* This is the record containing salary
information for all employees. It is sensitive, and access
is carefully restricted. Direct deposit information added
5-JAN-1984.*/.

SALARY STRUCTURE.
EMPLOYEE_ID DATATYPE IS UNSIGNED NUMERIC

SIZE IS 9 DIGITS.
PAY STRUCTURE.

JOB_CLASS DATATYPE IS TEXT
SIZE IS 3 CHARACTERS.

INCR_LEVEL DATATYPE IS UNSIGNED NUMERIC
SIZE IS 1 DIGIT.

WEEKLY_SALARY DATATYPE IS UNSIGNED NUMERIC
SIZE IS 6 DIGITS 2 FRACTIONS.

DIRECT_DEP DATATYPE IS TEXT
SIZE IS 1 CHARACTER

END PAY STRUCTURE.
END SALARY STRUCTURE.

END SALARY_RECORD RECORD.

VALID FOR DTR IF "DIRECT_DEP=Y OR
DIRECT_DEP=N".

You could then compile the record definition with this command:

$ CDDL/AUDIT/PATH=CDD$TOP.PERSONNEL(SEMI_SECRET).SERVICE(SECRET)­
$_SALARY.DDL

A-86 User's Guide to DMU Format Dictionaries

A.8.2 Using COD Record Definitions in the DMU Dictionary

A number of VAX programming languages and VAX Information Architecture
products can copy the definitions stored in the CDD. Section A.7.3.4.6 lists these
languages and products. It also contains three tables listing CDDL data type com­
patibility.

Not all languages accept all CDD data types, however, and there may be
other minor compatibility problems. For problems other than data type
compatibility, check the documentation for the language or product you
are using.

A.8.2.1 Copying COD Definitions into a Program - Each VAX programming
language and VAX Information Architecture product has its own method of copying
record definitions from the CDD. Consult the documentation for the language or
product you are using to obtain this information. This section uses VAX BASIC as
an example to show you how one language uses CDD record definitions.

FOSTER, an applications programmer, wants to copy the ADDRESS_RECORD
definition into a BASIC program called MAILLIST.BAS. He includes_ the following
declaration in MAILLIST .BAS:

%INCLUDE %FROM %COD 1 CDD$TOP.CDRPORATE.ADDRESS_RECORD 1

This line tells the BASIC compiler to copy the CDD definition
CDD$TOP.CORPORATE.ADDRESS_RECORD into MAILLIST. FOSTER does
not include a version number in the declaration because he wants to copy the highest
existing version of the record definition. He must specify a full path name for
ADDRESS_RECORD.

FOSTER compiles MAILLIST.BAS with the following command:

$ BASIC/LISTING/AUDIT MAILLIST

The VAX BASIC compiler produces an object file, MAILLIST.OBJ, and a listing
file, MAILLIST.LIS. MAILLIST.LIS contains the following record declaration,
which shows how the BASIC compiler converts ADDRESS_RECORD into BASIC
form.

User's Guide to DMU Format Dictionaries A-87

5 %INCLUDE %FROM %COD 1 CDD$TOP.CORPORATE.ADDRESS_RECORD 1

Cl 5 This record contains the standard format
Cl 5 for addresses. It provides the source from which all
Cl 5 address fields in other record descriptions are copied.
Cl 5 RECORD ADDRESS UNSPECIFIED
Cl 5 STRING STREET = 30 TEXT
Cl 5 STRING CITY = 30 TEXT
Cl 5 STRING STATE = 2 TEXT
Cl 5 GROUP ZIP_CODE UNSPECIFIED
Cl 5 GROUP NEW UNSIGNED NUMERIC
Cl 5 STRING STRING_VALUE = 4
Cl 5 END GROUP
Cl 5 GROUP OLD UNSIGNED NUMERIC
Cl 5 STRING STRING_VALUE = 5
Cl 5 END GROUP
Cl 5 END GROUP
Cl 5 END RECORD
.................................. 1

%BASIC-I-CDDSUBGRO, 1: data type in COD not supported,
substituted group for: ADDRESS: :ZIP_CODE: :NEW.

%BASIC-I-CDDSUBGRO, 1: data type in COD not supported,
substituted group for: ADDRESS: :ZIP_CODE: :OLD.

The "Cl" designation at the beginning of each line is the way BASIC indicates that
the definition has been copied directly from the CDD. Each line also contains a
comment indicating the CDDL data type that produced the BASIC data type on the
line. Note that the BASIC compiler also copied the DESCRIPTION clause from the
CDD definition and included it in the listing.

As the two informational messages indicate, BASIC converted the two fields contain­
ing UNSIGNED NUMERIC data types, which BASIC does not support, to GROUP
fields.

Once FOSTER links MAILLIST.OBJ, it runs like any other BASIC program.

A.8.2.2 Documenting the Use of Record Definitions -The /AUDIT qualifier
allows you to insert an entry into the history list of any record definition. Most
VAX programming languages and VAX Information Architecture products accept
the I AUD IT qualifier.

When FOSTER compiles MAILLIST.BAS, for example, he uses the /AUDIT
qualifier. In the history list of CDD$TOP.CORPORATE.ADDRESS_RECORD,
BASIC produces the following entry:

Compiled by FOSTER (UIC [210,1]) in process FOSTER
using VAX-11 BASIC V2.0 on 10-JAN-1984 11:02:55.98
for program MAILLIST.

A-88 User's Guide to DMU Format Dictionaries

When you compile programs using CDD record definitions, however, you may be
reluctant to use the I AUDIT qualifier until you are certain that the program runs as
you expect.

If you compile the same program several times for debugging purposes, you can make
several history list entries for the same program.

In order to avoid creating multiple history list entries for the same program, you can
use the DMU MEMO/AUDIT command to insert a history list entry into the CDD.
Section A.5.4 contains an example of the use of the MEMO/AUDIT command.

A.8.3 Modifying COOL Source Files in the DMU Dictionary

Often, business decisions require that record definitions stored in the CDD be
modified. To modify a CDD record definition, you:

• Create a modified CDDL source file.

• Compile the modified source file with the /REPLACE or /VERSION qualifier.

• Recompile any programs or applications that use the definition so that they
reflect the change. Also recompile any other CDD record definitions that use
that definition as a template record.

A.8.3.1 Obtaining the Source File -You can edit the original source file to
obtain a source file containing the modifications you wish to make. If, however, the
original source file is unavailable, you can:

• Create an entirely new source file. This represents a great deal of work when you
want to modify only a part of the definition.

• Use the DMU EXTRACT command. DMU EXTRACT copies or generates
CDDL source text from the CDD and puts it in a file that you can then edit.

A.8.3.1.1 Extracting CDDL Source Text -If the CDDL compiler creates a record
definition, it stores the source text of that definition in the CDD. By default,
EXTRACT copies that source text and places it in a VMS file. The following
command extracts the source text stored with the object ADDRESS_RECORD;l
and places it in the file ADDRESS.LIS:

DMU> EXTRACT CDD$TOP.CORPORATE.ADDRESS_RECORD;1 ADDRESS.LIS

You can edit ADDRESS.LIS just as you would edit the original source file.

User's Guide to DMU Format Dictionaries A-89

A.8.3.1.2 Extracting Record Definitions Without COOL Source Text - Certain
VAX Information Architecture products (DAT A TRIEVE, for example) create
record definitions that do not contain CDDL source text. You can extract such
record definitions from the CDD and generate CDDL source text for them if you
use the /RECORD qualifier with DMU EXTRACT. EXTRACT/RECORD creates
source text from record definitions stored in the CDD. For example, if you extract
source text from the DATATRIEVE definition SKILL_REC;l without using the
/RECORD qualifier, the listing file contains DATATRIEVE source text:

DMU> EXTRACT SKILL_REC;1 SKILL.LIS
DMU> EXIT
$ TYPE SKILL.LIS
RECORD SKILL_REC USING
01 SKILL_REC.

03 TASK_DESC PIC X(25)
QUERY_HEADER "TASK 11 / 11 DESCRIPTION 11 •

03 JOB_CODE PIC X(3)
QUERY_HEADER 11 TASK 11 / 11 JOB 11 / 11 CODE 11 •

$

With the /RECORD qualifier, DMU creates CDDL source text from the information
stored in the record definition:

DMU> EXTRACT/RECORD SKILL_REC;1 SKILL.LIS
DMU> EXIT
$ TYPE SKILL.LIS
DEFINE RECORD SKILL_REC.

SKILL_REC STRUCTURE.
TASK_DESC DATATYPE IS TEXT

SIZE IS 25 CHARACTERS
PICTURE FOR DATATRIEVE IS "X(25)"
QUERY_HEADER FOR DATATRIEVE IS "TASK"

JOB_ CODE DATATYPE IS TEXT
SIZE IS 3 CHARACTERS

"DESCRIPTION".

PICTURE FOR DATATRIEVE IS "X(3)"
QUERY_HEADER FOR DATATRIEVE IS "TASK"

END SKILL_REC STRUCTURE.
END SKILL_REC RECORD.

"JOB"
"CODE".

SKILL.LIS contains a CDDL description of the record definition created by
DATATRIEVE. You can edit SKILL.LIS and recompile it using the CDDL
compiler.

The /RECORD qualifier can be used only with record definitions, that is, with
dictionary objects of the type CDD$RECORD.

A-90 User's Guide to DMU Format Dictionaries

A.8.3.2 Replacing a COOL Definition -After you have modified a source file,
you can compile it again and replace the original record definition. If you modify
ADDRESS.DDL, for example, you can compile it again with the following command:

$ CDDL/REPLACE/AUDIT ADDRESS.DDL

The CDDL compiler then:

• Deletes the original version of ADDRESS_RECORD;l

• Compiles the revised ADDRESS.DDL as ADDRESS_RECORD;l

• Copies the access control list and history list of the original version to the new
version, adding a history list entry describing the operation

It is important to use the /AUD IT qualifier in this case, so that the change in the
definition is recorded in the history list. The history list entry alerts other users that
the ADDRESS_RECORD;l definition has been modified.

A.8.3.3 Creating an Additional Version of a Record Definition - You may
want to save the original version of a record definition until you are sure that you
are satisfied with the modified version. The /VERSION qualifier allows you to add a
new version of the record definition to the CDD without deleting the old version:

$ CDDL/VERSION/AUDIT ADDRESS.DDL

The CDDL compiler then:

• Creates ADDRESS_RECORD;2.

• Copies the access control list and history list of ADDRESS_RECORD;l to
ADDRESS_RECORD;2. The compiler adds a history list entry documenting the
operation to ADDRESS_RECORD;2's history list.

If you use the /NOACL qualifier, you can inhibit the creation of an access control
list at ADDRESS_RECORD;2.

The higher version number indicates that someone has modified the record defini­
tion. Nevertheless, you should use the /AUDIT qualifier to document the change.
The history list entry tells other users when the record definition was modified and
who was responsible for the change. You can also add text explaining the nature and
purpose of the change.

User's Guide to DMU Format Dictionaries A-91

A.8.3.4 Recompiling Programs and Product Definitions - Programs written
in VAX programming languages and most VAX Information Architecture products
copy CDD record definitions at compile time. Therefore, after you modify a
record definition, the programs and applications using the old definition become
inconsistent with the definition in the dictionary. You should recompile the
programs and product definitions that use that definition.

If you keep a complete and accurate history list, you can use the entries in it to deter­
mine which programs need to be recompiled. The following history list contains en­
tries describing the use of a modified CDD$TOP.CORPORATE.ADDRESS_RECORD;l:

Record replaced by WOOLSON (UIC [30,25]) in process WOOLSON
using VAX CDD Data Definition Language Version 3.1
on 3-JUL-1984 10:32:52.73.

Compiled by FOSTER (UIC [210,1]) in process FOSTER
using VAX-11 BASIC Version 2.0 on 10-JAN-1984 11:02:55.98
for program MAILLIST.

Compiling by WOOLSON (UIC [30,25]) in process WOOLSON
using VAX-11 COBOL V2.0-30 on 19-JUN-1983 10:36:37.17
for program COB$DEVICE: [WOOLSON.CDD]CDDADDR.COB;1.

Explanation:
To print address labels

Used as a generic record by FOSTER (UIC [210,1]) in process FOSTER
using VAX-11 CDD Data Definition Language Version 2.3
on 10-JUN-1983 12:31:56.23.

Explanation:
CDD$TOP.CORPORATE.EMPLOYEE_LIST;1

Backed up by WOOLSON (UIC [30,25]) in process WOOLSON
using VAX-11 CDD Dictionary Management Utility Version 2.3
on 21-MAR-1983 21:14:24.53.

After WOOLSON modified the record definition, he could use the preceding his­
tory list to determine that he needed to recompile programs MAILLIST.BAS and
CDDADDR.COB.

A.8.3.5 Recompiling COD Record Definitions - Some record
definitions contain COPY field description statements that copy other record
definitions, called template records, at compile time (see Section A. 7 .3.1).
CDD$TOP.CORPORATE.EMPLOYEE_LIST;l is an example of such a record. A
listing of its source file, EMPLOYEE.DDL, shows that the field ADDRESS copies
the record definition CDD$TOP .CORPORATE.ADDRESS-RECORD:

A-92 User's Guide to DMU Format Dictionaries

DEFINE RECORD CDD$TOP.CORPORATE.EMPLOYEE_LIST
DESCRIPTION IS

/* This record contains the master list of all
employees */.

EMPLOYEE STRUCTURE.
I* An employee's ID number is his
or her social security number */
ID DATATYPE IS UNSIGNED NUMERIC

SIZE IS 9 DIGITS.
NAME STRUCTURE.

LAST_NAME DATATYPE IS TEXT
SIZE IS 15 CHARACTERS.

FIRST_NAME DATATYPE IS TEXT
SIZE IS 10 CHARACTERS.

MIDDLE_INITIAL DATATYPE IS TEXT
SIZE IS 1 CHARACTER.

END NAME STRUCTURE.

ADDRESS

DEPT_CODE

END EMPLOYEE STRUCTURE.
END EMPLOYEE_LIST RECORD.

COPY FROM
CDD$TOP.CORPORATE.ADDRESS_RECORD.
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 3 DIGITS.

After WOOLSON modified CDD$TOP.CORPORATE.ADDRESS_RECORD;l,
the definition stored at CDD$TOP.CORPORATE.EMPLOYEE_LIST;l became
inconsistent with the new definition, just as MAILLIST.BAS and COBADDR.COB
did. You should recompile definitions containing COPY field description statements
when the template record is modified.

A.8.3.5.1 Checking the Template Record's History List -The history list of
CDD$TOP.CORPORATE.ADDRESS_RECORD;l contains the following entry:

Used as a generic record by FOSTER (UIC [210,1]) in process FOSTER
using VAX-11 CDD Data Definition Language Version 2.3
on 10-JUN-1983 12:31:56.23.

Explanation:
CDD$TOP.CORPORATE.EMPLOYEE_LIST;1

CDDL automatically makes an entry like the preceding one in the history list of
a template record every time another CDD record definition copies it. When you
modify a record definition, you should check its history list to determine if another
record definition copies it.

User's Guide to DMU Format Dictionaries A-93

A.8.3.5.2 Checking Template Records with DMU EXTRACT - CDDL
automatically makes an entry in the history list of a template record. It does not,
however, automatically make an entry in the history lists of the record definitions
that copy the template record. If another user modifies a template record without
making a history list entry, you may not know that a definition you are using is
inconsistent with the current version of a template record it copies.

You can check a record definition containing a COPY field description statement
to make sure that the information in the COPY field description is current. Using
the /TEMPLATE qualifier with the DMU EXTRACT /RECORD command, you
can compare the current definition in the template record with the definition that a
record definition copied when it was compiled.

When you use the /TEMPLATE qualifier, DMU first creates source text from
the definition in any template records copied by the specified definition. DMU
then places the template record source text at the top of the output file. Finally, it
creates source text from the specified definition, including the expanded COPY field
description statement, and places that source text in the output file as well.

For example, to determine whether or not EMPLOYEE_LIST;l contains the current
version of ADDRESS_RECORD, you can type:

DMU> EXTRACT/RECORD/TEMPLATE CDD$TOP.CORPORATE.EMPLOYEE_LIST EMP.LIS
DMU> EXIT

DMU creates a file, EMP.LIS, to hold the template record and the definition that
copies it:

$ TYPE EMP. LIS

DEFINE RECORD CDD$TOP.CORPORATE.ADDRESS_RECORD;1
DESCRIPTION IS
/* This record contains the standard format

for addresses. It provides the source from which all
address fields in other record descriptions are copied. */.

ADDRESS STRUCTURE.
STREET DATATYPE IS TEXT

SIZE IS 30 CHARACTERS.
CITY DATATYPE IS TEXT

SIZE IS 30 CHARACTERS.
STATE DATATYPE IS TEXT

SIZE IS 2 CHARACTERS.
ZIP_CODE STRUCTURE.

NEW DATATYPE IS UNSIGNED NUMERIC
SIZE IS 4 DIGITS
BLANK WHEN ZERO.

OLD DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.

END ZIP_CODE STRUCTURE.
END ADDRESS STRUCTURE.

END ADDRESS_RECORD;1 RECORD.

A-94 User's Guide to DMU Format Dictionaries

DEFINE RECORD EMPLOYEE_LIST
DESCRIPTION IS
I* This record contains the master list of all

employees*/.
EMPLOYEE STRUCTURE.

/* An employee's ID number is his
or her social security number */

ID DATATYPE IS UNSIGNED NUMERIC
SIZE IS 9 DIGITS.

NAME STRUCTURE.
LAST_NAME DATATYPE IS TEXT

SIZE IS 15 CHARACTERS. ·
FIRST_NAME DATATYPE IS TEXT

SIZE IS 10 CHARACTERS.
MIDDLE_INITIAL DATATYPE IS TEXT

SIZE IS 1 CHARACTER.
END NAME STRUCTURE.
ADDRESS COPY FROM CDD$TOP.CORPORATE.ADDRESS_RECORD.
ADDRESS STRUCTURE.

STREET DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.

CITY DATATYPE IS TEXT
SIZE IS 30 CHARACTERS.

STATE DATATYPE IS TEXT
SIZE IS 2 CHARACTERS.

ZIP_CODE STRUCTURE.
NEW DATATYPE IS UNSIGNED NUMERIC

SIZE IS 4 DIGITS
BLANK WHEN ZERO.

OLD DATATYPE IS UNSIGNED NUMERIC
SIZE IS 5 DIGITS.

END ZIP_CODE STRUCTURE.
END ADDRESS STRUCTURE.
DEPT_CODE DATATYPE IS UNSIGNED NUMERIC

SIZE IS 3 DIGITS.
END EMPLOYEE STRUCTURE.

END EMPLOYEE_LIST RECORD.

The first definition in EMP.LIS is the current version of ADDRESS_RECORD.
The ADDRESS STRUCTURE field description is the definition of ADDRESS_RECORD
that EMPLOYEE_LIST;l copied when it was compiled. Note that every line of the
expanded COPY field description is preceded by an exclamation point, a CDDL com­
ment delimiter. If you used the CDDL compiler to replace or create an additional
version of EMPLOYEE_LIST, the CDDL compiler would copy the definition at
CDD$TOP.CORPORATE.ADDRESS_RECORD and ignore the expanded fields
marked by exclamation points.

If you compare the definition of the template record and the expanded ADDRESS
STRUCTURE field in EMPLOYEE_LIST, you can see that they contain the same
description. In this case, you know that EMPLOYEE_LIST;l is still current. If the
definitions were different, you could recompile EMPLOYEE_LIST;l with CDDL
/RECOMPILE to incorporate the changes in ADDRESS-RECORD.

User's Guide to DMU Format Dictionaries A-95

To use /TEMPLATE, you must also use /RECORD. Therefore, /TEMPLATE can
be used only with dictionary objects of the type CDD$RECORD.

A.8.3.5.3 Using COOL/RECOMPILE -The CDDL/RECOMPILE command allows
you to update CDD definitions when a template record is modified. You need
not create a new source file because the source text does not change. Instead of
specifying a source file name, specify the path name of the record definition you
want to update. For example, you could recompile EMPLOYEE_LIST;l by typing:

$ CDDL/RECOMPILE/AUDIT CDD$TOP.CORPORATE.EMPLOYEE_LIST;1

The CDDL compiler then:

• Deletes the original EMPLOYEE_LIST;l

• Recompiles the definition, copying the modified ADDRESS_RECORD

• Copies the access control list and history list from the original
EMPLOYEE_LIST;l, adding a history list entry documenting the operation

By default, CDDL/RECOMPILE replaces the original definition with the recom­
piled one. You can save the original definition for backup purposes by using the
/VERSION qualifier with CDDL/RECOMP.ILE. You can create an additional
version of EMPLOYEE_LIST by typing:

$ CDDL/RECOMPILE/VERSION/AUDIT CDD$TOP.CORPORATE.EMPLOYEE_LIST

The CDDL compiler then:

• Recompiles the definition, copying the modified ADDRESS-RECORD.
It gives the new definition a version number one higher than the high­
est existing version number. In this case, the new definition would be
CDD$TOP.CORPORATE.EMPLOYEE_LIST;2.

• Copies the access control list and history list from the original
EMPLOYEE_LIST, adding a history list entry documenting the operation. You
can keep the CDDL compiler from creating an access control list by using the
/NOACL qualifier.

A-96 User's Guide to DMU Format Dictionaries

A.9 Organizing and Maintaining Your Dictionary in the DMU
Dictionary

When you install the CDD on your system, only the following structures are created:

• CDD$TOP, the root dictionary directory

• CDD$TOP.CDD$EXAMPLES, the directory that contains the sample dictio­
nary, and its descendants

You organize the rest of the dictionary so that you can tailor it to meet the needs of
your organization. To derive the full benefit from the DMU dictionary, however, you
must organize it carefully. The care you take in organizing your dictionary will be
reflected in:

• Performance. You retrieve definitions from a well-organized dictionary faster
than from a poorly-organized one. The increased speed will be most evident
when you use information management products like DAT ATRIEVE and
DBMS.

• Security. The CDD protection scheme allows you to use the CDD hierarchical
structure to tailor access to directories and objects. A well-organized dictionary
can take advantage of this feature. For more information about CDD security,
see Section A.6.

• Ease of use. It is much easier to find the definitions you need if the dictionary is
organized carefully.

• Accuracy. A well-organized dictionary is a safeguard against inconsistency and
redundancy.

• Compact dictionary files. A well-organized dictionary is likely to be smaller than
a poorly-organized one. Also, if your well-organized dictionary becomes too large,
you can easily create subdictionaries out of several directories and reduce the size
of your main dictionary file.

• Maintainability. A well-organized dictionary makes it easy to assess the impact
of modifying definitions, reorganize parts of your dictionary, or move portions of
your dictionary to other systems.

Before you populate your dictionary with record definitions, take some time to plan
the organization. The benefits greatly outweigh the time spent.

User's Guide to DMU Format Dictionaries A-97

A.9.1 Organizing Your DMU Dictionary Directory Hierarchy

There are a number of ways to set up the directory hierarchy:

• By organizational entity

• By application

• By individual user

• By a combination of criteria

A.9.1.1 By Organizational Entity -When you install the CDD on your system,
you have one logical dictionary for your entire organization. You can, however,
divide the dictionary by assigning directories separately to departments within the
organization. Each department maintains its share of the CDD independently of the
others.

Such a structure corresponds roughly to the first directory level below CDD$TOP in
the sample dictionary (Figure A-1) and is most useful in situations where differences
in data and security needs are sharply defined between divisions of the organization.

A.9.1.2 By Application -In an enterprise where divisions need shared access
to most of the data descriptions, you can create a dictionary hierarchy organized
according to application areas. You can set aside one directory in which to store
those data definitions shared throughout the organization. You can then create
application-specific directories for definitions less widely shared. In the sample
dictionary (Figure A-1), the organization within the PERSONNEL subdictionary is
an example of structuring a dictionary by application.

A.9.1.3 By Individual User -Some organizations have only a limited need to
share many record definitions because individuals or small teams work separately
on independent projects. You can reflect this structure in your directory hierarchy
by assigning directories to individuals or project managers for their own use. User
JONES, for example, has her own directory in the sample dictionary (Figure A-1),
and in it she has stored a private record definition, LEADS_RECORD;l.

A-98 User's Guide to DMU Format Dictionaries

A.9.1.4 By a Combination of Criteria -The structural schemes described above
represent different but not mutually exclusive approaches. For many organizations, a
combination of approaches might offer the best solution. The overall structure of the
sample dictionary (Figure A-1) represents such a combination.

Remember that the dictionary structure is only as useful as it is consistent with your
organization's needs. In practical terms, you can organize your dictionary to mirror
the current organization of your records and files or the needs of new applications.
Whatever the case, you must be aware of your data needs before you set up the
directory hierarchy.

The creation and maintenance of the CDD should be the responsibility of a system
manager or data administrator who can work with top management to determine
the organization's information requirements, and who understands the organization's
data processing facility. If the CDD directory hierarchy or the security mechanisms
are poorly planned, it will be difficult to protect the CDD against redundancy and
inconsistency.

A.9.1 .5 Using Subdictionaries -When you first install the VAX Common Data
Dictionary, you create one dictionary file named CDD.DIC in which the directory
hierarchy is physically stored. The CDD allows you, however, to store portions
of this single logical hierarchy in separate physical files called subdictionary files.
The directories that point to separate subdictionary files are called subdictionary
directories, or subdictionaries.

Except for their physical location, subdictionary directories are exactly like dictionary
directories. Subdictionaries are part of the same logical hierarchy and perform the
same functions as dictionary directories. For most CDD users, the difference between
dictionary directories and subdictionaries is invisible. You can use subdictionaries to:

• Provide extra security. Because the information contained in a subdictionary
is stored in a separate file, you can augment dictionary security with VMS file
protection (see Section A.6.5). You can even store the subdictionary file on
another device and take it off line when it is not in use. This ability is most
useful when:

You have two or more separate organizations using the same dictionary, as
in a time-sharing system. Each organization can have its own subdictionary
on its own device. Thus, one organization does not have any access to the
other's definitions, even though they are using the same dictionary.

A particular department has sensitive material in its portion of the dictio­
nary. In the sample dictionary in Figure A-1, the record definitions used by
the Personnel Department are sensitive. Therefore, PERSONNEL has been
created as a subdictionary directory stored in a separate file on a separate
device.

User's Guide to DMU Format Dictionaries A-99

• Reduce the size of your main dictionary file. If CDD.DIC, the main dictionary
file, becomes too large, you can create subdictionaries to move some directories
to another device.

• Facilitate transporting portions of the dictionary to another part of the same
dictionary or to a dictionary on another system. You can change the location of
a subdictionary within the CDD by deleting the existing subdictionary directory
and creating another one elsewhere that points to the same file. You need not
alter the file in any way. You can move a subdictionary to another system by
copying the subdictionary file to the other system and creating a subdictionary
directory on that system that points to the file. Again, you need not alter the
file.

• Allow system managers to bill users for the amount of dictionary space their data
descriptions use.

There are some limitations to consider when deciding whether or not to create a
subdictionary:

• Subdictionaries require more time for I/0 operations than dictionary directories.
Thus, they can increase execution time if you use definitions from several
subdictionaries at the same time.

• Subdictionaries are charged against FILLM, your process' VMS open file limit,
and also against the SYSGEN CHANNELCNT quota.

A.9.1.5.1 Creating Subdictionaries -You create subdictionaries with the DMU
CREATE/SUBDICTIONARY command. You must specify a VMS file to hold
the contents of the subdictionary. The file specification must include a device
and directory name for the file. You can use a system logical name for the device,
directory, and file specification, but you cannot use a group or process logical name.
CDD creates the file for you if it does not already exist.

The following command creates PERSONNEL as a subdictionary and creates the
subdictionary file PERS.DIC:

DMU> CREATE/SUBDICTIONARY=DB3: [CASADAY.CDD]PERS.DIC PERSONNEL

If CASADAY created the system logical name CDD$DISK to stand for DB3:[CASADAY.C
she could create a subdictionary with the following command:

DMU> CREATE/SUBDICTIONARY=CDD$DISK:PERS.DIC PERSONNEL

Using a system logical name provides an easy way to move your subdictionary
pointer. See Section A.9.1.5.3.

A-1 00 User's Guide to DMU Format Dictionaries

A.9.1.5.2 Deleting Subdictionaries -There are two ways to delete subdictionaries:

• If you use DELETE/SUBDICTIONARY, DMU deletes the subdictionary pointer
and the directories and objects in the subdictionary file.

• If you use DELETE/NOSUBDICTIONARY (the default), DMU deletes only the
subdictionary pointer.

In both cases, the file is not deleted.

A.9.1.5.3 Moving Subdictionary Files and Directories -Subdictionaries aid you
in maintaining the CDD because they are easy to move. If you want to move the
subdictionary file to a different device or VMS directory, you:

• Use DCL COPY or RENAME to move the subdictionary file to the new location.

• Use RENAME/SUBDICTIONARY to set the subdictionary directory to point to
the new location; of course, if you used a system logical name when you created
the subdictionary, you need only change the translation of the logical name.

On the other hand, you may want to leave the subdictionary file where it is and move
the subdictionary directory. To do so:

• Use DELETE/ALL/NOSUBDICTIONARY to delete the subdictionary pointer.

• Use CREATE/SUBDICTIONARY to create a subdictionary directory in another
location in the CDD pointing to the same subdictionary file.

It is important to delete the first subdictionary pointer. CDD allows only one
subdictionary directory to point to a subdictionary file.

Note that the access control lists of the directories and objects in the subdictionary
file remain intact. If the privileges they inherit in the new location are different
from the ones they inherited in their old location, you may need to modify the access
control lists (see Section A.6).

You can even move a subdictionary to another system:

• Use VMS COPY or BACKUP and RESTORE to copy the subdictionary file to
the other system.

• Use CREATE/SUBDICTIONARY to create a subdictionary directory in the
CDD of the other system pointing to the file.

User's Guide to DMU Format Dictionaries A-101

A.9.2 Organizing Your DMU Dictionary to Enhance Performance

There are several ways to enhance the performance of dictionary operations. Follow
these guidelines whenever they do not interfere with other organization goals, such
as security.

A.9.2.1 Using the Directory Hierarchy - Dictionaries that use directories to
group related objects perform better than dictionaries in which objects are stored,
unorganized, near the top of the dictionary.

In general, a narrow dictionary is better than a broad dictionary; however, the
benefits of a narrow dictionary are lost if related definitions are stored in widely
separate portions of the hierarchy. For example, if JONES wants to access both
LEADS_RECORD;l and EMPLOYEE_LIST;l from the sample dictionary
(Figure A-1), CDD must:

1. Traverse the path from JONES' default directory to LEADS_RECORD;l

2. Travel up the hierarchy to CDD$TOP

3. Travel down a separate path, CDD$TOP.CORPORATE.EMPLOYEE_LIST;l,
to access EMPLOYEE_LIST;l

Because the sample dictionary is well-organized, however, it is unlikely that JONES
would want to access these two unrelated definitions. Use the directory hierarchy to
group related definitions together.

A.9.2.2 Reducing DMU Dictionary Size -A small, compact dictionary
performs better than a large dictionary. There are several ways to. reduce the size of
your dictionary.

• Delete unused· dictionary directories and objects. Directories and objects used in
obsolete applications needlessly clutter your dictionary and degrade performance.
Periodically prune your dictionary of these unused directories and objects.

• Purge earlier versions of objects no longer needed for backup purposes. You
may want to keep backup versions of dictionary objects until you are satisfied
that the most recent version fulfills your needs. When you no longer need those
earlier versions, use the DMU PURGE command to remove them from the
dictionary. For more information about purging versions of dictionary objects,
see Section A.5.6.2.

• Use CDDV COMPRESS. COMPRESS reduces the size of a dictionary file by
eliminating free space created by dictionary deletions and by reorganizing dic­
tionary pages. Periodically compress the main dictionary file and subdictionary
files. For information about compressing dictionary files, see Section A.9.4.3.

A-102 User's Guide to DMU Format Dictionaries

A.9.2.3 Limiting the Creation of Subdictionaries -Subdictionaries enhance
the security of portions of the CDD; however, they require more time for 1/0
operations than dictionary directories. Create only the number of subdictionaries
necessary for security. Try to group related objects in the same subdictionary.
Traversing from one subdictionary to another takes more time than traversing from
one directory to another. For this reason, you should limit those users who can
create subdictionaries to the data administrator and the system manager.

A.9.2.4 Preventing the Creation of History Lists -If dictionary performance
is the overriding consideration in the organization of your system, you may want
to deny users the privilege of creating history lists. Dictionaries without history
lists are more compact than well-documented dictionaries. Of course, you can
use the DMD DELETE/HISTORY command qualifiers to remove some of the
entries in the history list of a directory or object. For more information about
DELETE/HISTORY, see the VAX Common Data Dictionary Utilities Reference
Manual.

Note

History lists are very valuable in maintaining the dictionary and assessing
the impact of changing data definitions. Not using them makes it more
difficult to avoid data definition redundancy and inconsistency.

A.9.3 Creating a Sample Hierarchy from a DMU Command Procedure in a
DMU Dictionary

Execution of the following DMD command procedure, named CREATE.COM,
creates the sample dictionary hierarchy (Figure A-1). Although you could enter these
utility commands interactively, placing them in a DMD command procedure has two
advantages:

• You can use a text editor to correct typing and syntax errors.

• You can use the DMD SET ABORT command to halt the procedure if CDD or
D MU signals a non-fatal error.

User's Guide to DMU Format Dictionaries A-103

CREATE.COM

This command procedure creates a sample VAX COD dictionary
hierarchy, including history lists and access control lists.
This sample dictionary is the source of all of the examples
in the VAX COD documentation set.

Use the SET ABORT command to halt the command procedure in case of
a non-fatal error.

SET ABORT

Use the SET PROTECTION command to establish access privileges
at CDD$TOP. The system manager retains full access privileges
at CDD$TOP.

Restrict the privileges other users will inherit. Grant
PASS_THRU, and banish FORWARD and GLOBAL_DELETE.

A hyphen allows a long command to be continued on the next
line. Be certain that the hyphen is the last character on the line.

REATE CDD$TOP
SET PROTECTION/POSITION=2/UIC=[*,*]/GRANT=<P>/DENY=<CDEHMRSUWX>­
/BANISH=<FG> CDD$TOP

Next, use the CREATE command to create
directories with the default access control list. Use the /AUDIT
qualifier to create a history list entry auditing the creation.
Finally, use the SET PROTECTION command to modify the access
privileges of other users on the system.

Use full dictionary path names to eliminate ambiguity.

CREATE/AUDIT CDD$TOP.PRODUCTION
SET PROTECTION/POSITION=2/UIC=[*,*]/GRANT=<HS> CDD$TOP.PRODUCTION

The /AUDIT qualifier also allows you the option of adding
text enclosed in quotation marks to describe the directory
or its contents.

CREATE/AUDIT="Storage of global definitions" CDD$TOP.CORPORATE
SET PROTECTION/POSITION=2/UIC=[*,*]/GRANT=<HS> CDD$TOP.CORPORATE

CREATE/AUDIT CDD$TOP.SALES
SET PROTECTION/POSITION=2/USER=JONES/GRANT=<HS> CDD$TOP.SALES

A-104 User's Guide to DMU Format Dictionaries

Use the /SUBDICTIONARY qualifier to create a subdictionary
directory. The subdictionary file specification must contain
both a device and a directory name in addition to the file name.

CREATE/AUDIT/SUBDICTIONARY=DBA5: [CASADAY.CDD]PERS.DIC CDD$TOP.PERSONNEL
SET PROTECTION/POSITION=2/PASSWORD="SEMI_SECRET"-
/GRANT=<HS> CDD$TOP.PERSONNEL
SET PROTECTION/POSITION=3/UIC=[*,*]/BANISH=ALL CDD$TOP.PERSONNEL

After creating the first directory level, use the SET DEFAULT
command to create the next level.

SET DEFAULT CDD$TOP.SALES
CREATE/AUDIT="Jones' personal directory" JONES
SET PROTECTION/POSITION=2/USER=JONES/GRANT=<CX> JONES
SET PROTECTION/POSITION=3/UIC=[*,*]/DENY=ALL JONES

SET DEFAULT CDD$TOP.PERSONNEL
CREATE/AUDIT="Department Standards" STANDARDS
!

CREATE/AUDIT="Sensitive Records" SERVICE
SET PROTECTION/POSITION=2/PASSWORD= 11 SECRET 11 /GRANT=<HPS>­
/DENY=<DEMRUW>/BANISH=<C> SERVICE
SET PROTECTION/POSITION=3/UIC=[*,*]/BANISH=ALL SERVICE

SET DEFAULT CDD$TOP
LIST/FULL/PROTECTION >
EXIT

To execute the command, invoke DMU and type @CREATE at the DMU> prompt.
After successful creation of the hierarchy, DMU lists the results on your terminal.

$ RUN SYS$SYSTEM:DMU
DMU> @CREATE

CDD$TOP.CORPORATE <DIRECTORY>
1: [*, *] , Username: 11 CASADAY 11

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*]

Grant - HS, Deny - none, Banish - none
Created by CASADAY (UIC [30,10)) in process CASADAY

using VAX COD Dictionary Management Utility Version 3.00
on 8-JAN-1984 21:12:03.22.

Explanation:
Storage of global definitions

User's Guide to DMU Format Dictionaries A-105

CDD$TOP.PERSONNEL <SUBDICTIONARY> : DB3: [CASADAY.CDD]PERS.DIC
1: [*, *] , Username: "CASADAY" .

Grant - CDHPSX, Deny - none, Banish - none
2: [*, *] , Password: "SEMI_SECRET"

Grant - HS, Deny - none, Banish - none
3: [*,*]

Grant - none, Deny - none, Banish - CDEFGHMPRSUWX
Created by CASADAY (UIC [30,10]) in process CASADAY

using VAX CDD Dictionary Management Utility Version 3.00
on 8-JAN-1984 21:12:06.04.

CDD$TOP.PERSONNEL.SERVICE <DIRECTORY>
1: [*, *] , Username: 11 CASADAY 11

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*], Password: "SECRET"

Grant - HPS, Deny - DEMRUW, Banish - C
3: [*,*]

Grant - none, Deny - none, Banish - CDEFGHMPRSUWX
Created by CASADAY (UIC [30,10]) in process CASADAY

using VAX CDD Dictionary Management Utility Version 3.00
on 8-JAN-1984 21:12:09.85.

Explanation:
Sensitive Records

CDD$TOP.PERSONNEL.STANDARDS <DIRECTORY>
1: [*,*], Username: 11 CASADAY 11

Grant - CDHPSX, Deny - none, Banish - none
Created by CASADAY (UIC [30,10]) in process CASADAY

using VAX CDD Dictionary Management Utility Version 3.00
on 8-JAN-1984 21:12:09.65.

Explanation:
Department Standards

CDD$TOP.PRODUCTION <DIRECTORY>
1: [*,*], Username: 11 CASADAY 11

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*]

Grant - HS, Deny - none, Banish - none
Created by CASADAY (UIC [30,10]) in process CASADAY

using VAX CDD Dictionary Management Utility Version 3.00
on 8-JAN-1984 21:12:02.07.

CDD$TOP.SALES <DIRECTORY>
1: [*,*], Username: "CASADAY"

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*], Username: "JONES"

Grant - HS, Deny - none, Banish - none
Created by CASADAY (UIC [30,10]) in process CASADAY

using VAX CDD Dictionary Management Utility Version 3.00
on 8-JAN-1984 21:12:04.44.

A-1 06 User's Guide to DMU Format Dictionaries

CDD$TOP.SALES.JONES <DIRECTORY>
1: [*, *], Username: "CASADAY"

Grant - CDHPSX, Deny - none, Banish - none
2: [*,*], Username: "JONES"

Grant - CX, Deny - none, Banish - none
3: [*,*]

Grant - none, Deny - CDEFGHMPRSUWX, Banish - none
Created by CASADAY (UIC [30,10)) in process CASADAY

using VAX CDD Dictionary Management Utility Version 3.00
on 8-JAN-1984 21:12:08.21.

Explanation:
Jones' personal directory

A.9.4 Maintaining DMU Dictionary Files

Use the CDD Verify/Fix Utility (CDDV) to maintain the main dictionary file and
any subdictionary files. The owner of a dictionary file can use CDDV to maintain
that file. If you do not own a dictionary file, you need VMS SYSPRV or BYPASS
privilege to use CDDV with that dictionary file.

There are three major functions that CDDV performs:

• It verifies a dictionary file to determine if it is corrupt.

• It fixes corrupt dictionary files, when possible.

• It compresses dictionary files containing large amounts of free space.

When you use CDDV with the main dictionary file, nobody else can use the CDD.
When you use CDDV with a subdictionary file, however, other users can use other
portions of the CDD.

A.9.4.1 Verifying the Condition of a DMU Dictionary File -CDDV VERIFY
scans a dictionary file for dictionary directories, objects, and history lists damaged by
a hardware failure or some other cause. It writes a report describing the condition of
the dictionary and reporting any corrupt directories, objects, or history lists it finds.

Verify the condition of your dictionary after hardware failures and before using
CDDV COMPRESS or CDDV FIX. You should also verify your dictionary files
periodically to monitor their condition.

CASADAY, the owner of PERS.DIC, a subdictionary file, could verify the condition
of that file by typing:

$ RUN SYS$SYSTEM:CDDV
CDDV> VERIFY/COMPLETE/LISTING=PERS.LIS PERS.DIC

User's Guide to DMU Format Dictionaries A-107

Because she uses the /COMPLETE qualifier, VERIFY creates a report listing:

• Corrupt directories that can be reconstructed

• Directories or objects whose corrupt parent directories can be reconstructed

• Uncorrupted directories whose corrupt parent directories cannot be
reconstructed

The VAX Common Data Dictionary Utilities Reference Manual contains an example
of a CDDV VERIFY listing of a corrupt file.

A.9.4.2 Fixing a DMU Dictionary File -When a dictionary file is corrupted,
CDDVFIX:

• Reconstructs corrupt directories when possible, and restores their children

• Preserves uncorrupted directories and objects whose parents cannot be
restored

• Deletes corrupted dictionary objects, history lists, and directories that cannot be
repaired

• Rebuilds the free page list

For example, a hardware failure could corrupt the sample dictionary (Figure A-1).
The following listing represents the state of the dictionary before the failure:

CDD$TOP
CORPORATE
I ADDRESS_RECORD;1 <CDD$RECORD>
I EMPLOYEE_LIST;1 <CDD$RECORD>
I PRODUCT_INVENTORY;1 <CDD$RECORD>
PERSONNEL
I SERVICE
I I SALARY_RECORD;2 <CDD$RECORD>
I I SALARY_RECORD;1 <CDD$RECORD>
I STANDARDS
I I SALARY_RANGE;2 <CDD$RECORD>
I I SALARY_RANGE;1 <CDD$RECORD>
PRODUCTION
SALES
I CUSTOMER_RECORD;1 <CDD$RECORD>
I JONES
I I LEADS_RECORD;1 <CDD$RECORD>
I SALES_RECORD;1 <CDD$RECORD>

A-108 User's Guide to DMU Format Dictionaries

If the hardware failure corrupts the two directories SALES and J 0 NES and the
object SALES_RECORD;l, FIX would do the following:

• Reconstruct SALES. SALES has an uncorrupted parent, CDD$TOP, and an
uncorrupted child, CUSTOMER_RECORD;l. Therefore, FIX can reconstruct it
from the pointers contained in its parent and its child.

• Create a directory, CDD$TOP.CDD$LOST_NODES, to hold LEADS_
RECORD;l). LEADS_RECORD;l is uncorrupted, but it cannot be restored to
its former place in the dictionary because FIX cannot locate its parent, JONES.
All uncorrupted directories and objects that cannot be restored are instead placed
in CDD$TOP.CDD$LOST_NODES.

• Rebuild the free page list.

The following listing represents the sample dictionary after the FIX operation:

CDD$TOP
CDD$LOST_NODES
I LEADS_RECORD;l <CDD$RECORD>
CORPORATE
I ADDRESS_RECORD;l <CDD$RECORD>
I EMPLOYEE_LIST;l <CDD$RECORD>
I PRODUCT_INVENTORY;l <CDD$RECORD>
PERSONNEL
I SERVICE
I I SALARY_RECORD;2 <CDD$RECORD>
I I SALARY_RECORD;l <CDD$RECORD>
I STANDARDS
I I SALARY_RANGE;2 <CDD$RECORD>
I I SALARY_RANGE;l <CDD$RECORD>
PRODUCTION
SALES
I CUSTOMER_RECORD;l <CDD$RECORD>

Note that JONES and SALES_RECORD;l are not reconstructed. JONES has an
uncorrupted child, LEADS_RECORD;l, but its parent was corrupted. FIX cannot
reconstruct a directory unless both its parent and a child are uncorrupted. Corrupted
objects cannot be reconstructed. The VAX Common Data Dictionary Utilities
Reference Manual contains sample CDDV FIX listings.

User's Guide to DMU Format Dictionaries A-109

A.9.4.3 Compressing a DMU Dictionary File -When you delete a number
of dictionary directories and objects, there may be a large amount of free space in
a dictionary file. CDD uses this space before requesting additional space, but the
dictionary file may contain unused space for a period of time. To free this space for
use by other files, use the COMPRESS command.

COMPRESS also reorganizes dictionary pages to improve efficiency.

COMPRESS does not work if the file is corrupted. Before you compress a dictionary
file, run CDDV VERIFY to make certain the file is not corrupted. If it is corrupted,
use CDDV FIX before compressing the file.

CASADAY could compress PERS.DIC with the CDDV command:

CDDV> COMPRESS PERS.DIC PERS.DIC

This command compresses the file PERS.DIC and places the contents in a new file
with the same name (but with a version number one higher). It is not necessary to
use the same name for the input and output files, but it is better to keep the same
name because:

• If you change the name of your subdictionary file, you must use the RENAME
/SUBDICTIONARY command to set the subdictionary directory to point to it.

• After the COMPRESS operation, you can delete the old dictionary file simply by
using the DCL PURGE command.

A compressed dictionary file often improves dictionary performance. You should
compress your dictionary files periodically to maintain optimum dictionary
performance.

A.10 Setting Up Your DMU Dictionary on a VAXcluster

This section discusses managing the dictionary in a V AXcluster environment.
Material in this section applies only to systems that are connected in a V AXcluster.

VMS (Version 3.7 and later) permits you to connect an organization's individual
computer systems into a cluster. Systems in a cluster can share processing resources
as well as data stored on common disks.

If you are connecting your organization's systems in a cluster, you fall into one of
three categories:

• You are installing your first dictionary.

• You currently have one existing dictionary.

A-110 User's Guide to DMU Format Dictionaries

• You currently have two or more dictionaries (each on a different system).

Whichever your category, y-0u should plan to locate your root dictionary on a cluster
disk that is always accessible to all CDD users from any system in the cluster.
Placing CDD.DIC on a cluster disk and establishing a single logical dictionary:

• Allows a user access to the dictionary even if his particular system fails.

• Lets your organization share data definitions more widely. A single dictionary
limits redundant data storage and helps ensure consistency of data. If you
maintain separate dictionaries on different systems, you risk discrepancies in
data definition and inconsistencies in updating data.

• Lets you maintain extra autonomy and security of any current system-specific
dictionary by keeping it as a subdictionary.

A.10.1 Installing Your First DMU Dictionary

To install your first dictionary on a cluster-wide disk, see the VAX Common Data
Dictionary Installation Guide.

Once you have physically established your root dictionary file on a shared disk,
follow the recommendations in this manual on organizing and maintaining your
single logical dictionary.

A.10.2 Moving a Single Existing DMU Dictionary to a Cluster Disk

If you have only one dictionary and want to move it to a cluster disk, follow the
steps in this section. You may have placed the root dictionary on a cluster disk when
you installed CDD Version 4.x and defined the logical name CDD$DICTIONARY in
the CDDSTRTUP .COM prodedure. If you did not, you should now move the root
dictionary to a disk that is always accessible by all systems in the cluster. You can
use a system logical name for the device and directory, but you cannot use a group or
process logical name. The default file name for the root dictionary file is CDD.DIC.
Be sure to define CDD$DICTIONARY the same way on each system that accesses
the CDD.

In the following example, CASADAY, the cluster manager, locates the dictionary on
2DUA1:, a cluster disk:

$ DEFINE/SYSTEM CDD$DICTIONARY 2DUA1: [CDD]CDD.DIC

User's Guide to DMU Format Dictionaries A-111

Optionally, CASADAY could create a system logical name to stand for 2DUA1:[CDD].
If she has created the logical name CDD$DISK for
2DUA1:[CDD], for example, she can define the location of the root dictionary with
the following command:

$ DEFINE/SYSTEM CDD$DICTIDNARY CDD$DISK:CDD.DIC

Then she can copy the dictionary file to its new location on the shared disk. In the
following example CASADA Y copies the former root dictionary file from the disk
DB2: and directory [CASADAY.CDD] into the directory [CDD] on 2DUA1:, the
cluster-wide disk:

$COPY DB2: [CASADAY.CDD]CDD.DIC 2DUA1: [CDD]CDD.DIC

Remember that the new file created by DCL COPY has whatever default file protec­
tion is specified. You may need to explicitly change the protection.

A.10.3 Merging Two or More DMU Dictionaries onto a Cluster Disk

If you have more than one existing dictionary, you can merge them into a single
dictionary in phases to minimize the impact on users:

1. Create a single logical dictionary from multiple dictionaries.

2. Reorganize the new single dictionary and eliminate redundant data definitions.

3. Change existing path names to reflect the changes in dictionary hierarchy.

Figure A-2 shows portions of the directory hierarchies of two dictionaries, one on
system ALPHA and one on system OMEGA, before merging.

Figure A-2 shows the problem facing CASADAY, the cluster manager responsible
for merging the two dictionaries existing on systems ALPHA and OMEGA. She
cannot declare CDD$TOP the universal parent directory, because she would create
duplicate path names CDD$TOP.CORPORATE.ADDRESS_RECORD. Therefore,
she creates a new CDD$TOP as the parent of the ALPHA and OMEGA dictionar­
ies. As Figure A-3 shows, the former CDD$T0Ps on ALPHA and OMEGA thus
become CDD$TOP.ALPHA and CDD$TOP.OMEGA respectively. She tells users
to define the logical name CDD$TOP to translate to either CDD$TOP.ALPHA or
CDD$TOP.OMEGA.

A-112 User's Guide to DMU Format Dictionaries

Figure A-2: Portions of Hierarchies of Two DMU Dictionaries

ALPHA OMEGA

CDD$TOP CDD$TOP

~ ~
CORPORATE PERSONNEL CORPORATE PERSONNEL

I I
ADDRESS_RECORD ADDRESS_RECORD

ZK-8635-HC

Figure A-3: DMU Dictionaries on ALPHA and OMEGA Merged

_CDD$TOP

ALPHA

~ONNEL
OMEGA

~SONNEL
CORPORATE CORPORATE

I I
ADDRESS_RECORD:1 ADDRESS_RECORD:1

ZK-8636-HC

The underscore preceding the ultimate CDD$TOP prevents CDD from translating it
as a logical name.

If she wants to retain the pre-cluster organization and keep the former ALPHA
and OMEGA dictionaries separate, she can tell users to change their path names to
reflect the new directories ALPHA and OMEGA.

After CASADAY has physically merged the dictionaries, however, the new cluster
dictionary contains undesirable redundancies. She should now decide on a defini­
tive ADDRESS_RECORD that all users of both former ALPHA and OMEGA
dictionaries can share.

User's Guide to DMU Format Dictionaries A-11 3

The following two sections describe in detail how to physically combine multiple
dictionaries and how to logically reorganize your cluster-wide dictionary.

A.10.3.1 Creating a Single Logical DMU Dictionary - You create a new file
for the root dictionary. During the transitional phase, the root dictionary will refer
to your current dictionary files as subdictionaries.

The following steps merge dictionaries that exist on separate systems:

1. Boot the systems as for a VAXcluster, but use the same CDDSTRTUP.COM
procedures as during the original installation of each dictionary; the dictionaries
are still separate at this phase. During the next three steps, no one can use the
CDD or products that require it.

2. Move each dictionary from its local device to a shared disk. Thus, access to the
dictionary no longer depends on any particular system.

In the following example, CASADAY creates the directory [CASADAY.CDD] on
a cluster-wide disk, 2DUA1:, and copies into it each existing dictionary from
disk DB2:.

$CREATE/DIR 2DUA1: [CASADAY.CDD]
$COPY DB2: [CASADAY.CDD]ALPHA.DIC 2DUA1: [CASADAY.CDD]ALPHA.DIC
$COPY DB2: [CASADAY.CDD]OMEGA.DIC 2DUA1: [CASADAY.CDD]OMEGA.DIC

After checking that the dictionaries were copied successfully, she can delete the
ones on DB2:.

3. Define the location of the new root dictionary, CDD$DICTIONARY, to be a file
on a disk accessible to all the systems in the cluster. This location need not be
the same as the disk or disks containing the system-specific dictionaries moved
in Step 2.

You can use a system logical name for the device and directory, but you cannot
use a group or process logical name. The default file name for the root dictionary
file is CDD.DIC. The following example locates the dictionary on 2DUA1:, a
cluster disk:

$DEFINE/SYSTEM CDD$DICTIONARY 2DUA1: [CDD]CDD.DIC

If CASADAY has created a system logical name CDD$DISK to stand for
2DUA1:[CDD], she can define the location of the root dictionary with the
following command:

$DEFINE/SYSTEM CDD$DICTIONARY CDD$DISK:CDD.DIC

A-114 User's Guide to DMU Format Dictionaries

Be sure to edit your CDDSTRTUP.COM file to reflect this new logical name
definition.

When you invoke DMU, an empty root file will be created in the location
CDD$DICTIONARY specifies.

4. Create a subdictionary directory pointing to each formerly separate dictionary.

In the following example CASADAY invokes DMU. The file she has just created
is empty until she creates a subdictionary directory pointing to each of two
current dictionaries. This step merges the two dictionaries into a single logical
dictionary.

$ DMU
DMU> LIST
%DMU-W-NONODFND, no directories or objects found
DMU> CREATE/SUBDICTIONARY=2DUA1: [CASADAY.CDD]ALPHA.DIC ALPHA
DMU> CREATE/SUBDICTIONARY=2DUA1: [CASADAY.CDD]OMEGA.DIC OMEGA

5. Now you have changed the path names to existing objects; for example, the
CDD$TOP of ALPHA is now CDD$TOP.ALPHA. How you choose to make the
new path names consistent with those in the existing definitions depends on how
you plan to organize your new merged dictionary. Possible options include:

• You may decide to eliminate system-specific directory names from the new
dictionary. If different departments of your organization will now share
dictionary definitions, for example, ALPHA may be a meaningless entity. In
this case you will probably be changing the structure of the former system­
specific dictionaries. As you reorganize the dictionary, you must change
affected path names.

• You may decide to keep the system-specific names. If you want to keep
OMEGA's definitions separate, for example, you can retain the direc­
tory OMEGA. In this case, you must change path names of objects under
OMEGA to reflect this new directory name.

Also, if any system-specific subdictionary will remain logically separate from
the rest of the dictionary, a user who works in that subdictionary can now
permanently adjust his login procedure to reflect his new default directory.
The following command in user JONES' login command file establishes
ALPHA as a directory in his default directory path name:

$ASSIGN "_CDD$TDP.ALPHA.JONES" CDD$DEFAULT

User's Guide to DMU Format Dictionaries A-11 5

If your merged dictionary requires many changes, which it will take time to imple­
ment, you may choose to reorganize your dictionary gradually, a branch at a time.
You can allow a user to use his own area of the dictionary while you are in the pro­
cess of reorganizing other portions of the hierarchy. A user can temporarily define
a process logical name to refer to the dictionary on his system. In the following
example, user JONES defines _CDD$TOP.ALPHA to refer to the dictionary that
exists on system ALPHA. The underscore prevents CDD from translating the root
CDD$TOP as a logical. JONES can include this command in his login command
file:

$DEFINE CDD$TOP "_CDD$TOP.ALPHA"

When you are sure that all a user's path names under CDD$TOP are stable, he can
delete the command. If the path name of his default directory has changed, he should
modify any of his own definitions to reflect their new location. For example, he may
need to change DBMS or DATATRIEVE definitions.

After you have finished redefining CDD$DICTIONARY and converting existing
dictionaries to subdictionaries, users can access the CDD again.

A.10.3.2 Reorganizing and Eliminating Redundant Definitions -
Although you now have one logical dictionary, it probably contains

record definitions that are duplicate or overlapping. For example, if
_CDD$TOP.ALPHA.CORPORATE.ADDRESS_RECORD is identical to
_CDD$TOP.OMEGA.CORPORATE.ADDRESS_RECORD, one should be
deleted. Similarly, if ADDRESS_RECORD on ALPHA is almost identical to
ADDRESS_RECORD on OMEGA, you can establish either one (or create a
new one) as the definitive ADDRESS_RECORD. On the other hand, if the two
ADDRESS_RECORDs are totally different, you should rename one.

In addition, your merged dictionary may now include record definitions with
different given names but similar source code. For example, record definitions named
PART_REC and ITEM_REC from two former system dictionaries may store
essentially the same definitions.

Sorting the definitions in your merged dictionary includes three steps:

• Planning the cluster dictionary's hierarchy

• Identifying redundant dictionary elements

• Moving portions of former system-specific dictionaries to appropriate directories
of the cluster dictionary

A-116 User's Guide to DMU Format Dictionaries

A.10.3.2.1 Planning the Hierarchy of the Cluster Dictionary - Before you move
portions of any system-specific subdictionary to the main dictionary file, plan an
overall directory hierarchy that suits the needs of your organization. The more
definitions you centralize and share widely, the more efficiently you can use your
dictionary.

You may want to keep one or more of your former dictionaries logically separate, in
its own branch of the hierarchy. For example, if ALPHA's data will be accessed only
by its former users, CASADA Y may leave its dictionary hierarchy untouched, as long
as all its path names are unique.

In certain cases, you may even want to keep a former dictionary as a subdictionary.
Subdictionaries require more time for I/0 operations than dictionary directories,
and they are charged against FILLM, your process' VMS open file limit. On the
other hand, if a group of users works almost entirely in one area, keeping that area a
subdictionary improves locking efficiency on a cluster. See Section A.9.1.5 for further
recommendations about using subdictionaries.

The guidelines in Section A.9 for structuring your dictionary apply to cluster dictio­
naries as well as those on separate systems.

A.10.3.2.2 Identifying Redundant DMU Dictionary Elements - In the following
example, CASADAY displays a list of all definitions of the type CDD$RECORD
in the directories of ALPHA and OMEGA. Then she can inspect the file
RECORDS.LIS for those that have the same given name or that she suspects
contain duplicate or redundant definitions.

DMU> SET DEFAULT CDD$TOP
DMU> LIST/LISTING=RECORDS.LIS/TYPE=CDD$RECORD

The following example shows two separate portions of the listing CASADA Y obtains.
To see whether or not CDD$TOP.ALPHA.PRODUCTION.PARTS_REC and
CDD$TOP.OMEGA.PRODUCTION.FACTORY.ITEM_REC are redundant, she
then uses the LIST command to inspect the two source texts. She includes the
/AUDIT_ TRAIL qualifier to help her judge the relative impacts of eliminating either
one:

ALPHA
I PRODUCTION
I I PARTS_RECORD;1 <CDD$RECORD>

OMEGA
I PRODUCTION
I I FACTORY
I I I ITEM_RECORD;1 <CDD$RECORD>

User's Guide to DMU Format Dictionaries A-117

DMU> LIST/AUDIT_TRAIL/ITEM=SOURCE/LISTING=PARTS.LIS_
DMU>_CDD$TOP.ALPHA.PRODUCTION.PARTS_RECORD
DMU> LIST/AUDIT_TRAIL/ITEM=SOURCE/LISTING=ITEM.LIS_
DMU>_CDD$TOP.OMEGA.PRODUCTION.FACTORY.ITEM_RECORD

A.10.3.2.3 Moving Portions of Former Subdictionaries Within the Cluster
Dictionary - You probably can use many existing definitions, but you may need to
change their location to reflect any new combination of departments now sharing
the cluster-wide dictionary. If more users will now share ADDRESS_RECORD, for
example, locating it in an appropriate corporate directory simplifies access to it.

If you no longer need to keep a former system-specific dictionary as a separate
branch of your cluster dictionary, you should eliminate the directory associated with
it.

In the following example cluster manager CASADA Y has decided to implement in the
merged dictionary the same organizational hierarchy as in the old ALPHA system
dictionary. She has already copied directories CDD$TOP.ALPHA.PERSONNEL,
CDD$TOP.ALPHA.PRODUCTION, and CDD$TOP.ALPHA.SALES to CDD$TOP.
She uses the LIST command to check these three directories and then copies the
fourth and last directory, CDD$TOP.ALPHA.CORPORATE, to CDD$TOP. The
/HISTORY and /PROTECTION qualifiers copy history lists and access control lists
for each directory and object copied.

Because she has copied the other directories, she then deletes the subdictionary
ALPHA.

DMU> SET DEFAULT CDD$TOP
DMU> LIST

ALPHA <SUBDICTIONARY> 2DUA1[CASADAY.CDD] :ALPHA.DIC
PERSONNEL
PRODUCTION
SALES

DMU> COPY/PROTECTION/HISTORY CDD$TOP.ALPHA.CORPORATE
DMU> LIST

ALPHA <SUBDICTIONARY> : 2DUA1:[CASADAY.CDD]ALPHA.DIC
CORPORATE
PERSONNEL
PRODUCTION
SALES

DMU> DELETE/ALL/SUBDICTIONARY CDD$TOP.ALPHA
DMU> LIST

CORPORATE
PERSONNEL
PRODUCTION
SALES

Copying a directory as recommended will convert any subdictionaries in the hierar­
chy below it to directories in the main dictionary file. You can change a directory
back into a subdictionary with DMU CREATE/SUBDICTIONARY and COPY.

A-118 User's Guide to DMU Format Dictionaries

In the following example CASADA Y recreates OMEGA as a subdictionary. Because
the directory OMEGA already exists, she names the subdictionary directory
OMEGA2. Then she uses a wildcard to copy all the directories and objects un-
der OMEGA to OMEGA2. The example shows a portion of the list CASADAY
obtains to check that the contents of OMEGA were copied successfully. When she
has deleted the old directory and its contents, she can rename the subdictionary
directory OMEGA2 back to OMEGA:

DMU> CREATE/SUBDICTIONARY=2DUA1: [CASADAY.CDD]OMEGA2.DIC OMEGA2
DMU> COPY OMEGA. * OMEGA2
DMU> LIST ALPHA2>

OMEGA2 <SUBDICTIONARY> : 2DUA1: [CASADAY.CDD]OMEGA2.DIC
I PRODUCTION
I PARTS_RECORD:1 <CDD$RECORD>

DMU> DELETE/ALL OMEGA
DMU> RENAME OMEGA2 OMEGA

You can locate a subdictionary on a different device from the root file, but only users
with access to that device will be able to use it.

A.10.3.3 Modifying Former Absolute Path Names -When your dictionary
structure is stable, you may need to modify many CDDL source files or programs
that copy dictionary objects. If a file refers to a dictionary object by absolute path
name or by a logical name that translates to an absolute path name, you must edit
the file to reflect any changed location. Use the object's history list to discover the
locations of source files, programs, and procedures that use the definition.

In addition, some VAX Information Architecture products store pointers to dictio­
nary objects' locations by full path name, even if the user who defined the object
entered only a relative path name. Therefore, after you copy an object elsewhere in
the hierarchy, the dictionary tries to concatenate its former full path name to its new
location, and fails to locate it. This section describes how to restore the correct path
specification to DAT ATRIEVE and DBMS dictionary objects:

• DATATRIEVE Definitions

Certain DATATRIEVE objects in the CDD, such as domains, refer in their
definitions to associated objects:

A DATATRIEVE domain definition refers to a single associated record
definition.

A DAT ATRIEVE domain table definition refers to a single associated
domain definition.

A DATATRIEVE view domain definition refers to one or more associated
domain definitions.

User's Guide to DMU Format Dictionaries A-11 9

When DAT ATRIEVE processes these definitions, it translates the associated
references to full CDD path names. Therefore, after you move a domain, do­
main table, or view domain definition, and its associated object, with DMU
COPY, BACKUP, or RESTORE, you must reprocess these definitions in
DAT ATRIEVE to make sure they refer to the correct path name for the asso­
ciated object. To reprocess the definitions, use the DAT ATRIEVE REDEFINE
command or the DATATRIEVE EXTRACT ALL command.

The DATATRIEVE REDEFINE command redefines definitions without deleting
any history or access control lists. Follow one of two procedures, depending on
the number of definitions you must redefine:

If you have only a few definitions to redefine, follow these steps:

1. Enter DATATRIEVE and use the SET DICTIONARY command to
place yourself in the dictionary directory containing definitions to be
redefined.

2. Enter an EDIT path-name command for the domain or domain table to
be redefined. DATATRIEVE EDIT automatically enters a REDEFINE
command for the definition in your editing buffer.

3. If SET NO EDIT-13ACKUP is in effect during your session, remove the
DELETE path-name command that appears at the top of your editing
buffer. This step preserves access control and history lists.

4. Exiting from the DAT ATRIEVE editor executes the REDEFINE
command. REDEFINE redefines the definition to reflect its current
path-name.

5. Repeat steps 2 through 4 for each definition that needs to be
redefined.

If you have many definitions to redefine, you can use the DATATRIEVE
EXTRACT ALL command, using these steps:

1. Enter DATATRIEVE. Use EXTRACT ALL ON filename.COM to copy
dictionary directory contents to a command file in your current VMS
directory. For example, EXTRACT ALL ON TEMP.COM creates the
VMS command file TEMP.COM.

2. The command file contains a DELETE command, followed by a
REDEFINE command, for each definition in your directory. You
must exit from DATATRIEVE to edit the command file to remove all
the DELETE commands. This step preserves access control and history
lists.

3. Reenter DATATRIEVE and use SET DICTIONARY to place yourself
in the directory containing the definitions to be redefined.

A-120 User's Guide to DMU Format Dictionaries

4. Execute the command file. For example, the command @TEMP executes
TEMP.COM.

• DBMS Definitions

You can copy DBMS definitions to new locations using the INTEGRATE
command. For information on this procedure, see the VAX DBMS Database
Administration Reference Manual.

User's Guide to DMU Format Dictionaries A-121

This index uses the following symbols:

t Entry occurrence in a table
f Entry occurrence in a figure
e Entry occurrence in an example

A

Abbreviations in utility commands, A-16
Access control list editor

example, A-54 to A-62
rationale, A-63

Access control list entry, A-43
Access control lists, A-26, A-43

editing example, A-54 to A-62
example, A-44, A-50 to A-53
organization, A-49
position of entries, A-52
summary of results, A-54

Access privileges, A-47 to A-49
banishment, A-47, A-51 to A-53
checking with SHOW PROTECTION,

A-26
CONTROL (C), A-48t
defaults, A-49
denial, A-47, A-51 to A-53
description, A-48t
DTR_EXTEND/EXECUTE (E), A-47t

Index

Access privileges (cont'd.)
DTR_MODIFY (M), A-48t
DTR_READ (R), A-48t
DTR_WRITE (W), A-48t
EXTEND (X), A-48t
FORWARD (F), A-48t
GLOBAL_DELETE (G), A-48t
granting, A-47, A-51 to A-53
HISTORY (H), A-48t
inheritance, A-43
LOCAL_DELETE (D), A-48t
PASS_THRU (P), A-48t
SEE (S), A-48t
UPDATE (U), A-48t

ACL
See Access control lists

ALIGNED field attribute, A-73t
Ancestor, A-2
ARRAY field attribute, A-73t
ASSIGN

DCL command, A-24

Appendix A lndex-1

Asterisk (*)
in path names, A-20
in UICs, A-45
in version numbers, A-20

At sign(@)
in path names, A-21

I AUD IT qualifier
with CDDL, A-84
with VAX Information Architecture

products, A-88
with VAX languages, A-88

Audit trails
See History lists

B

BACKUP command, A-35
BACKUP/LIST command, A-37
BIT data type, A-77
BLANK WHEN ZERO field attribute

A-74t ,
BYPASS, A-68
BYTE data type, A-75t

c
CDD$DEFAULT, A-7, A-24 to A-25
CDD$LOST_NODES, A-109
CDD$TOP, A-2
CDD$VERSION _LIMIT, A-20
CDDL, A-11

command descriptions, A-llt
sample listing file, A-85

CDDL data types, A-74
BIT, A-77
BYTE, A-75t
character string, A-75
DATE, A-77
decimal string, A-76
DJLOATING, A-76t
fixed point, A-75
floating point, A-75
F_FLOATING, A-76t
GJLOATING, A-76t
H_FLOATING, A-76t
language support, A-78t
LEFT OVERPUNCHED NUMERIC,

A-77t

2-Appendix A Index

CDDL data types (cont'd.)
LEFT SEPARATE NUMERIC, A-77t
LONGWORD, A-75t .
OCTAWORD, A-75t
PACKED DECIMAL, A-77t
POINTER, A-77
QUADWORD, A-75t
RIGHT OVERPUNCHED NUMERIC

A-77t '
RIGHT SEPARATE NUMERIC, A-77t
UNSIGNED NUMERIC, A-77t
UNSPECIFIED, A-77
VARYING STRING, A-77
VAX Information Architecture support,

A-81t
VIRTUAL FIELD, A-77
WORD, A-75t
ZONED NUMERIC, A-77t

CDDL source files
DEFINE statements, A-69
documenting field description statements,

A-72
END statement, A-70
sample, A-69

CDDV, A-10, A-107 to A-110
abbreviations, A-16
CDD$LOST_NODES, A-109
command descriptions, A-9t
comments in command lines, A-17
COMPRESS command, A-110
continuing commands on the next line,

A-17
FIX command, A-108
invoking the utility, A-12 to A-13
VERIFY command, A-107

Character string data types, A-75
Checking template records, A-94
Checking the contents of a backup file

with BACKUP/LIST, A-37
Checking your privileges

with SHOW PROTECTION, A-26
Cluster

subdictionaries, A-11 7
Cluster disk

moving existing dictionary to, A-111
Clusters, A-110

merging multiple dictionaries on, A-114

Clusters (cont'd.)
planning hierarchy of cluster dictionary,

A-117
Compiling a record definition,

A-84 to A-86
sample listing file, A-85
with a relative path name, A-85

COMPRESS command, A-110
COMPUTED BY DATATRIEVE field

attribute, A-73t
CONDITION FOR COBOL field attribute,

A-73t
CONTROL (C) privilege, A-48t, A-50
Control C

See CTRL/C
Converting CDD record definitions in VAX

BASIC, A-88
COPY command, A-27

creating multiple versions of dictionary
objects, A-41

COPY field description statements, A-70,
A-92

Copying record definitions into programs,
A-87

CREATE.COM
DMU command procedure,

A-103 to A-107
CREATE command, A-100
Creating a sample hierarchy,

A-103 to A-107
Creating CDDL source text

with DMU EXTRACT /RECORD, A-90
Creating multiple versions of dictionary

objects, A-91
Creating the sample dictionary,

A-103 to A-107
CTRL/C, A-17 to A-18

D

D_FLOATING data type, A-76t
Data Definition Language Utility

See CDDL
DATATYPE field attribute, A-73t
Data types

BIT, A-77
BYTE, A-75t
character string, A-75

Data types (cont'd.)
DATE, A-77
decimal string, A-76
DJLOATING, A-76t
fixed point, A-75
floating point, A-75
F_FLOATING, A-76t
G_FLOATING, A-76t
H_FLOATING, A-76t
language support, A-79t
LEFT OVERPUNCHED NUMERIC,

A-77t
LEFT SEPARATE NUMERIC, A-77t
LONGWORD, A-75t
OCTAWORD, A-75t
PACKED DECIMAL, A-77t
POINTER, A-77
QUADWORD, A-75t
RIGHT OVERPUNCHED NUMERIC,

A-77t
RIGHT SEPARATE NUMERIC, A-77t
UNSIGNED NUMERIC, A-77t
UNSPECIFIED, A-77
VARYING STRING, A-77
VAX Information Architecture support,

A-82t
VIRTUAL FIELD, A-77
WORD, A-75t
ZONED NUMERIC, A-77t

DATE data type, A-77
DBMS

modifying definitions, A-121
DCL

ACL Editor Utility, A-66
EDIT/ACL command, A-66

DCL ASSIGN command, A-24
DCL command procedures

running CDD utilities from,
A-14 to A-15

DCL DEFINE command, A-24
DCL SET PROTECTION command,

A-64 to A-65
categories of users, A-64
rights, A-64

Decimal string data types, A-76
Default dictionary directory, A-7,

A-24 to A-25
DEFAULT_ VALUE field attribute, A-74t

Appendix A I ndex-3

DEFINE
CDDL source file statement, A-68
DCL command, A-24

DEFINE statements, A-69
DELETE command, A-36

deleting subdictionaries, A-101
Descendant, A-2
Dictionary

sample, A-2 to A-5
Dictionary directory, A-2

default, A-7
root, A-2

Dictionary Management Utility
See DMU

Dictionary objects, A-2
Dictionary path names

full, A-6 to A-7
relative, A-7

Dictionary performance, A-102 to A-103
Dictionary types, A-5
Dictionary Verify /Fix Utility

See CDDV
Directory

default, A-7
dictionary, A-2
root dictionary, A-2

Directory hierarchy, A-2 to A-5
organization, A-97 to A-99

DMU, A-8
abbreviations, A-16
BACKUP command, A-35
BACKUP /LIST command, A-37
command descriptions, A-9t
comments in command lines, A-17
continuing commands on the next line,

A-17
COPY command, A-27

creating versions of dictionary
objects, A-41

CREATE command, A-100
creating multiple versions of dictionary

objects, A-39 to A-42
DELETE command, A-36

deleting subdictionaries, A-101
EXTRACT/RECORD command, A-90
EXTRACT /RECORD /TEMPLATE

command, A-94

4-Appendix A Index

DMU (cont'd.)

invoking the utility, A-12 to A-13
LIST/BRIEF command, A-29
LIST/FULL command, A-31
PURGE command, A-36
RENAME command, A-40
RESTORE command, A-37
SET DEFAULT command, A-29
SHOW DEFAULT command, A-25
SHOW PROTECTION command, A-26
single utility command per line, A-17

DMU command procedures
creating the sample dictionary,

A-103 to A-107
halting with SET ABORT,

A-15 to A-16
Documenting dictionary directories and

objects, A-30 to A-31
Documenting dictionary use, A-89
Documenting field description statements,

A-72
DTR_EXTEND/EXECUTE (E) privilege,

A-48t
DTR_MODIFY (M) privilege, A-48t
DTR_READ (R) privilege, A-48t
DTR_ WRITE (W) privilege, A-48t

E

Editor
See Access control list editor

EDIT_STRING field attribute, A-74t
Eightbit characters

path names, A-19
Elementary field description statements,

A-70
END statement, A-70
Exclamation point(!)

in comments, A-72
in utility command lines, A-17

EXTEND (X) privilege, A-48t
EXTRACT/RECORD command, A-90

F

F_FLOATING data type, A-76t
Facility-specific field attributes, A-73
Field attribute clauses, A-73

Field attribute clauses (cont'd.)

ALIGNED, A-73t
ARRAY, A-73t
BLANK WHEN ZERO, A-74t
COMPUTED BY DATATRIEVE,

A-74t
CONDITION FOR COBOL, A-74t
DATATYPE, A-73t
DEFAULT_VALUE, A-74t
EDIT_STRING, A-74t
facility-specific, A-73
general, A-73t
INDEXED BY, A-74t
INITIAL_ VALUE, A-73t
JUSTIFIED RIGHT, A-74t
MISSING_VALUE, A-74t
NAME, A-74t
OCCURS, A-73t
OCCURS ... DEPENDING, A-73t
PICTURE, A-74t
QUERY_HEADER, A-74t
QUERY_NAME, A-74t
VALID FOR DATATRIEVE IF, A-74t

Field attributes, A-68
Field description statements

COPY, A-70
elementary, A-70
STRUCTURE, A-70
VARIANTS, A-71

sample, A-71
File protection

categories of users, A-64
using VMS, A-63 to A-68
VMS rights, A-64

FIX command, A-108
Fixed point data types, A-75
Floating point data types, A-75
FORWARD (F) privilege, A-48t, A-50
Full dictionary path names, A-6 to A-7

G

G_FLOATING data type, A-76t
Given name, A-19
Given names, A-6
GLOBAL_DELETE (G) privilege, A-48t,

A-50

H

H_FLOATING data type, A-76t
Halting DMU command procedures,

A-15 to A-16
Hierarchy

directory, A-2 to A-5
Hierarchy, directory

organization, A-97 to A-99
HISTORY (H) privilege, A-48t
History lists, A-30 to A-31
Hyphen(-)

as a continuation character, A-17
in path specifications, A-22

INDEXED BY field attribute, A-7 4t
INITIAL_ VALUE field attribute, A-73t

J

JUSTIFIED RIGHT field attribute, A-74t

L

Language support, A-79t
LEFT OVERPUNCHED NUMERIC data

type, A-77t
LEFT SEPARATE NUMERIC data type,

A-77t
LIST/BRIEF command, A-29
LIST/FULL command, A-31
LOCAL _DELETE (D) privilege, A-48t
Logical names

in path names, A-23 to A-24
LONGWORD data type, A-75t

M

Maintaining dictionary files,
A-107 to A-110

MISSING_VALUE field attribute, A-74t
Modifying a record definition,

A-89 to A-96
using DMU EXTRACT, A-89

Multiple versions of dictionary objects
with DMU, A-39 to A-42

Appendix A lndex-5

N

NAME field attribute, A-74t
Names

source file, A-68
/NOACL qualifier

with CDDL, A-84

0

Objects
dictionary, A-2

OCCURS ... DEPENDING field attribute,
A-73t

OCCURS field attribute, A-73t
OCTAWORD data type, A-75t

p

PACKED DECIMAL data type, A-77t
Passwords

in path names, A-22
PASS_THRU (P) privilege, A-48t
Path names, A-6 to A-8, A-18

full, A-6 to A-7
relative, A-7

/PA TH qualifier
with CDDL, A-85

Path specifications
given name, A-19
hyphen, A-22
logical names, A-23 to A-24
passwords, A-22
path name, A-18
wildcards, A-20 to A-22
wildcard table, A-21t

Percent sign(%)
in path names, A-20

Performance
improving, A-102 to A-103

PICTURE field attribute, A-74t
POINTER data type, A-77
Privileges

See Access privileges
Protection

See Access control lists
PURGE command, A-36

6-Appendix A Index

Q

QUADWORD data type, A-75t
QUERY-HEADER field attribute, A-74t
QUERY-NAME field attribute, A-74t

R

/RECOMPILE qualifier
with CDDL, A-96

Relative dictionary path names, A-7
Relative path names

with CDDL, A-85
Removing obsolete directories and objects,

A-33 to A-36
with DELETE, A-36
with DMU PURGE, A-36

RENAME command, A-40
/REPLACE qualifier

with CDDL, A-91
Replacing a CDDL definition, A-91
RESTORE command, A-37
Restoring directories and objects,

A-37 to A-39
Right angle bracket (>)

in path names, A-21
RIGHT OVERPUNCHED NUMERIC data

type, A-77t
Rights database, A-46
RIGHT SEPARATE NUMERIC data type,

A-77t
Root dictionary directory, A-2

s
Sample CDDL listing file, A-85
Sample dictionary, A-2 to A-5
Security

See Access control lists
SEE (S) privilege, A-48t
SET ABORT

with DMU command procedures,
A-15 to A-16

SET DEFAULT command, A-29
SHOW DEFAULT command, A-25
SHOW PROTECTION command, A-26
SIGNED NUMERIC data type

See ZONED NUMERIC data type

SIGNED NUMERIC LEFT
OVERPUNCHED data type

See LEFT OVERPUNCHED
NUMERIC data type

SIGNED NUMERIC LEFT SEPARATE
data type

See LEFT SEPARATE NUMERIC data
type

SIGNED NUMERIC RIGHT
OVERPUNCHED data type

See RIGHT OVERPUNCHED
NUMERIC data type

SIGNED NUMERIC RIGHT SEPARATE
data type

See RIGHT SEPARATE NUMERIC
data type

Source file names, A-68
Source files

general format, A-68
sample, A-69

Specifying version numbers
in object names, A-19t

STRUCTURE field description statements,
A-70

Subdictionaries, A-99 to A-101
creating, A-100
deleting, A-101
in cluster dictionary, A-117
limitations, A-100
moving, A-101
rationale, A-99
using system logical names, A-100

Subdictionary, A-5
VMS file protection, A-65

/SUBDICTIONARY qualifier
with CREATE, A-100
with DELETE, A-101

T

/TEMPLATE qualifier
with EXTRACT, A-94

Template records, A-92
Types, A-5

u
UNSIGNED NUMERIC data type, A-77t

UNSPECIFIED data type, A-77
UPDATE (U) privilege, A-48t
User identification criteria, A-44 to A-46

alphanumeric UIC, A-45
job class, A-46
numeric UIC, A-45
passwords, A-46
rights identifier, A-45
terminal number, A-46
VMS user name, A-45

Using record definitions, A-87 to A-96
Utility command procedures

running CDD utilities from,
A-14 to A-16

v
VALID FOR DATATRIEVE IF field

attribute, A-73t
VARIANTS field description statements,

A-71
sample, A-71

VARYING STRING data type, A-77
VERIFY command, A-107
Version numbers

in dictionary object names, A-7
specifying, A-19t

/VERSION qualifier, A-39 to A-42
with CDDL, A-91
with DMU COPY, A-41
with DMU RENAME, A-40

Versions
setting maximum number, A-20

VIRTUAL FIELD data type, A-77
VMS file protection, A-63 to A-68

categories of users, A-64
rights, A-64
subdictionary, A-65

w
Wildcards in path names, A-20 to A-22
WORD data type, A-75t

z
ZONED NUMERIC data type, A-77t

Appendix A lndex-7

Glossary

access control list

A table listing the users that are allowed access to an object and the kind of
access they are allowed. CDD/Plus maintains an access control list (ACL) for
each object you store in the CDD/Plus dictionary system. In addition, CDD/Plus
maintains an ACL for each directory contained in a DMU dictionary.

See also privilege

access control list entry (ACE)

An entry in an access control list (ACE). An ACE is a link between a user or
group of users and the access privileges they have to a particular object.

anchor

A VMS directory containing all the files that describe a CDO dictionary and
directory system.

array

An ordered list of elements of a given datatype. In CDD/Plus, you describe an
array with the ARRAY attribute.

attribute

A characteristic of an element. An attribute contains a value for an element
in the CDD /Plus dictionary system. Examples of attributes are length and
data type.

Glossary-1

attribute protocol

A set of rules for defining and interpreting attributes. An example of an attribute
protocol is CDD$DATA__ELEMENT_LENGTH.

buffer

A contiguous block of bytes that programs use to exchange information with
the call interface. Buffers adhere to strict syntax rules, described in the VAX
CDD/Plus Call Interface Manual.

buffer version

An internal number, comprising both a major and minor version number,
CDD/Plus software clients use the number to identify the version of the syntax
rules describing a buffer's format.

See also protocol version, object version, buffer

call interface

A set of software routines that directly manipulate the contents of the CDD
/Plus dictionary system. CDD/Plus software clients, like CDO or RDO, call
dictionary entry points to request specific dictionary operations. The Call
Interface performs these operations, then returns control to the client.

CDD$COMPATIBILITY

A system logical name for the file specification of the compatibility dictionary.
The translation of CDD$COMP ATIBILITY must include a device and directory.
This definition should never be changed.

CDDL

The CDD Data Definition Language Utility, the CDD/Plus utility that lets
you insert record definitions into a DMU dictionary (CDD). You create the
data descriptions in a CDDL source file that you compile with the CDDL
compiler. You can also use CDDL to replace existing record definitions in a
DMU dictionary.

See also DMU dictionary

Glossary-2

COOV

The CDD Verify/Fix Utility, the CDD/Plus utility that detects damaged DMU
dictionary files and repairs them. CD D V also compresses the data in D MU
dictionary files for more efficient storage.

See also DMU dictionary

coo
The Common Dictionary Operator utility, the CDD/Plus user interface that lets
you create and manage data definitions in CDO dictionaries, and read definitions
from D MU dictionaries.

See also DMU dictionary

COO dictionary

A dictionary created in a format that enables it to store not only definitions but
information about how the definitions are related. A CDO dictionary is created
on your system during CDD/Plus installation. You can create additional CDO
dictionaries with the CDO utility.

See also DMU dictionary

client

A language processor, database management system, utility, or program that
requests dictionary operations from CDD/Plus by using the call interface. For
example, CDO is a client of CDD/Plus because CDO uses the call interface
to read and write objects in the dictionary. Programs you write using the call
interface are also dictionary clients.

command file

An RMS file of commands you can execute with the at-sign (@) operator. You
can save useful sequences of CDO commands in a file and execute the file from
the CDO prompt. The default file extension for files containing CDO commands
is .CDO.

compatibility dictionary

A special CDO dictionary you use to coordinate your CDO-format definitions
with DMU-format definitions. Each system can have only one compatibility
dictionary.

See also CDD$COMPATIBILITY

Glossary-3

computed-by clause

See virtual field and virtual record

conditional expression

An expression comprising value expressions, relational operators, and logical
operators. The value of a conditional expression is either TRUE, FALSE, or
MISSING.

data aggregate

A collection of data elements describing a record, Rdb/VMS relation, or a
structure field.

data element

A CDD/Plus field contained in a CDO dictionary.

database

A collection of related information stored in one or more files. A database
organizes related information to promote fast storage and retrieval.

datatype

An attribute assigned to a field definition determining the kind of data the field
can contain.

DEC multi-national character set (DMCS)

A computer character set and collating sequence. Each character in the DMCS
corresponds to a unique 8-bit byte.

default directory

When you use DCL, default directory refers to the VMS directory in which your
process is currently operating. When you use CDO, default directory refers to the
dictionary directory in which you are currently operating.

See also anchor, dictionary directory

dictionary client

Any program that uses the CDD/Plus call interface.

See also language processor, client

Glossary-4

dictionary definition

An instance of an entity, a relationship, or an attribute protocol.

See also entity, instance, protocol

dictionary directory

A place in the dictionary hierarchy under which you store logically related
dictionary objects or other dictionary directories. Dictionary directories are like
VMS directories; they let you organize dictionary objects just as VMS directories
let you organize files.

See also anchor

directory entry

The portion of a CDO data definition that allows you to refer to it by path name.
When you create an object, you provide both a name and a description of it.
CDD/Plus inserts the name in the directory system; it records the name in a
structure called a directory entry. In contrast, CDD/Plus inserts the actual de­
scription of the object in the dictionary system in a structure called a dictionary
entry.

DMU

The Dictionary Management Utilty, the CDD/Plus utility that lets you create
and maintain the dictionary directory hierarchy and associated access control
and history lists for non-CDO dictionaries.

See also CDDL, CDO dictionary

DMU dictionary

A dictionary containing data definitions that can be written to and manipulated
by DMU and CDDL. All dictionaries created prior to CDD/Plus V4.0 are DMU
dictionaries. If you do not already have one, a DMU dictionary is created during
CDD/Plus V4.0 installation. You must use CDDL to insert record definitions
into DMU dictionaries, because DMU dictionaries and CDO dictionaries have
different storage formats.

See also CDO dictionary

edit string

A character or string of characters controlling how a dictionary client displays
data in a field.

Glossary-5

element

A relationship or an entity definition. An attribute is not an element.

entity

Any collection of data in an application system that can be treated as a unit.
Examples of entities are the personnel database, the record describing employee
JONES, or JONES' badge number.

See also entity type, entity protocol

entity protocol

A set of rules for defining and interpreting dictionary entities. Examples of entity
protocols are CDD$DATA_ELEMENT and CDD$DATA_AGGREGATE.

See also entity and entity type

entity type

A description of a unit of data or processing in an application system. Examples
of entity types are the EMPLOYEE_REC data aggregate and the ZIP_CODE
data element.

See also entity protocol, entity

entry point

A software routine dictionary clients call to perform a specific operation on the
contents of the CDD/Plus dictionary system files.

See also client

expression

An expression consists of operands separated by arithmetic, string, relational, or
logical operators.

See also missing value, initial value, virtual field

fetch stream

A set of dictionary elements you process consecutively through a program that
calls the CDD/Plus call interface.

Glossary-6

field

The smallest meaningful unit of data in a business application. Examples of
fields are employee MACWIRE's badge number, address, or zip code.

field description

See data element

generic entity

Any entity type in the CDD/Plus dictionary system. You can refer to any entity
definition as a generic entity, regardless of the protocol under which it was
originally created.

initial value

A value dictionary clients insert into a field when allocating storage for it.

initialization file

A file of CDO commands that CDD/Plus executes each time you enter the CDO
utility. You identify the initialization file with the logical name CDQ$INIT.

See also command file

instance

A specific occurrence of a protocol in the dictionary. For example, the field
LAST_NAME is an instance of the field protocol.

integrity

The correctness of information in a database. There are three general types of
integrity control:

• Integrity constraints ensure the database information remains correct when
users try to modify it incorrectly.

• Concurrency control lets only one user at a time update a file while allowing
many users simultaneous access to the database.

• Recovery restores a database to the state it was in before a system failure.

Glossary-7

journaling

The process of recording onto a recoverable resource information about opera­
tions on a database. The type of information recorded depends on the type of
journal being created.

language processor

A compiler or interpreter that uses the call interface to read or write definitions
in the dictionary.

See also client

logical operator

An operator that links two conditional expressions into another, more complex
conditional expression. CDD/Plus logical operators are AND, OR, and NOT.

See also conditional expression

major version

A number that designates the particular variation of on-disk structure (database
schema) that CDD/Plus uses for dictionary storage. If the major version changes,
the new version will be incompatible with existing dictionaries. Users must
convert existing dictionaries in order to use them with the new version.

See also minor version

member

The subordinate participant in a relationship. For example, a field is subordinate
to a record. Thus, when CDD/Plus stores a relationship between a field descrip­
tion (data element) and record description (data aggregate), the field description
is the member of the relationship.

See also owner

message

An encoded report of the status of an element of the CDD/Plus dictionary
system. When an element in the dictionary changes, CDD/Plus sends a message
to related elements; the message contains a warning indicating that a portion of
the dictionary has recently changed and that the change may affect the element
receiving the message.

Glossary-8

minor version

A number that designates the particular variation of dictionary software used
by CDD/Plus. If the minor version changes, the minor version number of the
software must be equal to or less than the minor version on the disk in order
to be compatible with existing dictionaries. A minor version results when you
change a protocol.

See also major version

missing value

An expression clients evaluate at run time when a field has no value.
CDD/Plus clients use the result of the missing value expression in reports and
screen displays.

object

A data definition in the CDD /Plus dictionary system.

See also element

overlay

One of a set of logical views of a single physical portion of a record description.

owner

The principal participant in a relationship. For example, a field is subordinate to
a record. Thus, when CDD/Plus stores a relationship between a field description
(data element) and record description (data aggregate), the record description is
the owner of the relationship.

See also member

pathname

A string that identifies an object or directory in the CDD/Plus dictionary system.
An object or directory's path name is the concatenation of the given names of all
its ancestors in the hierarchy, starting with the root directory, and ending with
the object's given name. (Separate each given name in the path name with a
period [.].) For objects stored in CDO dictionaries, the root directory is a VMS
anchor specification. For objects stored in DMU dictionaries, the root directory
is CDD$TOP.

Glossary-9

privilege

The ability to access a database, data definition, or other resource for a certain
purpose.

See also security and access control list

processing name

The name of an object in the CDD/Plus dictionary system. In most cases, the
processing name is the same as the given name of the object.

See also pathname and directory entry

protocol

A set of rules for storing definitions in the dictionary.

See also entity protocol, relationship protocol, attribute protocol

protocol version

An internal number CDD/Plus uses to keep track of changes to the strict
conventions clients follow when storing definitions in the dictionary.

See also buffer version

query header

A string that calling programs use to label a field in screen displays and reports.

query name

A string dictionary clients use as an alternate name for a field. A query name
is used merely for convenience; typically it is an abbreviation of the field's
processing name.

RDO

The Relational Data Operator Utility, an interactive utility for maintaining
databases, creating and modifying database elements, and storing and manipulat­
ing data.

record

A body of information within a database.

Glossary-10

record definition

A description of a record's structure that includes its name and the fields it
includes.

record selection expression

A phrase that defines specific conditions that individual records must meet before
a language processor or database system includes them in a record stream.

relational operator

An operator that compares two value expressions, producing a value of TRUE or
FALSE.

relationship

An element that logically links two other elements. For example, the
CDD$DATA_AGGREGATE_CONTAINS relationship links a record defi­
nition with a field definition. Each relationship links only one owner and one
member.

See also owner, member

relationship protocol

A set of rules for defining and interpreting relationships. An example of a
relationship protocol is CDD$DATA_VALUE_DEPENDS_ON.

See also entity, entity type

security

The protection of information stored in a database or dictionary against unau­
thorized use.

See also privilege, access control list

structure field

A field comprising a number of subordinate fields. CDD/Plus clients typically
use data aggregates as record or relation definitions. Clients can, however, use a
data aggregate as a complex portion of a larger record or relation description. In
such a case, the data aggregate describes a structure field.

See also data aggregate

Glossary-11

subscript

tag

An integer indicating the position of an element in an array.

See also array

A longword value the CDD/Plus call interface and its clients use to identify
attributes, relationships, and entity in buffers.

transaction

An exchange of information between a database user and a database. The
operations in a transaction are treated as a unit; either all of them are completed
at once or none of them is completed. A transaction is a complete process from
input to output, regardless of the number of events in between. For DIGITAL
database management products, a transaction groups a series of statements that
perform an operation on a database.

validation

A rule or constraint that ensures that CDD/Plus users and clients insert only
valid values in the dictionary system.

value expression

A field name or absolute value, or a string of symbols that evaluate to a field
name or absolute value.

variant

See overlay

version

A number CDD/Plus uses to differentiate among various instances of a given
dictionary definition. When you first create a definition, CDD/Plus assigns it a
version number of 1. CDD/Plus assigns successively higher version numbers to
subsequent versions of the dictionary definition.

See also protocol version, buffer version, major version, minor version

Glossary-12

virtual field

A field whose value depends entirely on other fields within the record; a virtual
field requires no physical storage. Users define virtual fields with a computed-by
expression, which describes the formula CDD/Plus clients use to generate the
value of the virtual field at run time.

virtual record

A record comprising only fields stored in other records; a virtual record requires
no physical storage. Users define virtual records by naming the individual field
to be included from other records.

Glossary-13

A

This index uses the following symbols:

t
f
e

Entry occurrence in a table
Entry occurrence in a figure
Entry occurrence in an example

Access control
compatibility, 2-11
conflicting rights, 5-16
deleting ACE, 5-15
editor, 5-5
protection, 5-1, 5-3t
rights, 5-6t

Access routes
dictionary definition, 2-4, 2-7

Account
proxy, 5-16

ACL
See Access control lists

AGGREGATE CONTAINS relationship,
4-10, 6-3

I ALL qualifier
SHOW command (CDO), 4-3
SHOW FIELD command (CDO), 3-41
SHOW USES command (CDO), 6-2
VERIFY command (CDO), 6-12t

Index

ALPHABETIC data type
DMU compatibility,· 2-8t

Analysis
of usage, 6-1
what-if, 1-6, 6-2

Anchor
changing, 6-9
creating VMS directory for, 3-7
default, 3-33
default compatibility, 2-2
fully translated, 1-7
initial, 3-32
name, 1-7
protection, 3-7

Application
recompiling, 6-7

ARRAY attribute, 4-4
Array bounds

DMU compatibility, 2-8t
ASSIGN command (DCL), 3-34
AT command(@ sign), 4-1

lndex-1

@ (At sign)
See At sign command (@)

At sign command (@), 3-30
ATTACH command (CDO), 3-30t, 7-4
ATTACH command (DCL), 3-6
ATTACH statement (RDO), 7-4
Attribute clauses

in RMS database definitions, 8-4
Attributes

ARRAY, 4-4
AUDIT, 4-4
BASED ON, 4-4
COMPUTED BY, 4-4
DATATYPE, 4-4
DESCRIPTION, 4-4
EDIT_STRING, 4-4
field, 4-4t
INITIAL_VALUE, 4-4
JUSTIFIED, 4-4
MISSING_VALUE, 4-4
NAME FOR, 4-4
OCCURS, 4-4
QUERY_HEADER, 4-4
QUERY_NAME, 4-4
record, 4-9
system-specified, 3-41
user-specified, 3-41
V ALID_IF, 4-4

AUDIT attribute, 4-4, 4-5, 4-23, 4-24,
5-10

DEFINE command (CDO), 4-2
I AUDIT qualifier, 2-20

for language compilation, 4-3
SHOW command (CDO), 4-3

Audit trails
See History lists

B

Backing up
dictionaries, 6-8
Rdb/VMS.databases, 7-35

BACKUP
Utility, 6-8

BACKUP command (DCL), 6-8 to 6-9
BASED ON

attribute, 4-4, 4-6
DMU compatibility, 2-8t

2-lndex

BASED ON (cont'd.)
relationship, 4-10

BASIC support, 7-~23

Bottom-up definition, 4-7
/BRIEF qualifier

SHOW USES command (CDO), 6-2
Browse

in editor, 3-28
with SHOW commands, 6-1, 6-2

c
CDD$COMPATIBILITY, 2-1, 2-2

logical name, 2-3
CDD$DATABASE, 8-6
CDD$DEFAULT, 2-7, 3-8, 3-32 to 3-34,

3-35
CDD$0RPHANS, 6-12
CDD$RMS_DATABASE, 8-2
CDD$TOP, 2-2, 2-7
CDDL COPY clause

DMU compatibility, 2-8t
CDO

commands, 3-30t
editor, 3-11 to 3-29
file extension, 3-44, 4-1
format definitions, 2-2 to 2-7
interface, 1-4
invoking, 3-5
prompt, 3-5

CDO$INIT.CDO, 3-37
CDO commands

ATTACH, 7-4
CHANGE, 4-24, 4-26 to 4-32
CHANGE DATABASE, 8-11
CHANGE GENERIC, 4-27
CHANGE PROTECTION, 5-14
CLEAR MESSAGES, 6-7, 7-29
DEFINE, 4-1 to 4-9, 4-25 to 4-26
DEFINE DATABASE, 8-5
DEFINE DICTIONARY, 3-8
DEFINE DIRECTORY, 3-9
DEFINE GENERIC, 4-1
DEFINE PROTECTION, 5-10
DEFINE RECORD, 4-7
DEFINE RMS_DATABASE, 8-3
DELETE DICTIONARY, 4-34
DELETE GENERIC, 7-40

CDO commands (cont'd.)

DELETE PROTECTION, 5-15
DIRECTORY, 3-38, 7-10
EDIT, 4-1
EXIT, 3-6
EXTRACT, 3-30t
HELP, 3-30t
MOVE DICTIONARY, 4-24
PURGE, 3-30t, 4-35
SET, 3-30t
SET DEFAULT, 3-33
SET OUTPUT, 3-32
SET VERIFY, 3-45
SHOW, 3-30t, 4-3, 4-27
SHOW DATABASE, 3-42, 7-14, 8-9
SHOW FIELD, 3-41, 4-10, 7-17
SHOW MESSAGES, 6-2, 6-6
SHOW PRIVILEGES, 4-27, 5-9
SHOW PROTECTION, 4-27, 5-9
SHOW PROTOCOL, 4-26
SHOW RECORD, 2-20, 3-42, 4-10
SHOW RMS_DATABASE, 8-10
SHOW UNUSED, 6-2, 6-14
SHOW USED_BY, 6-2
SHOW USES, 6-2
SHOW VERSION, 3-46
SHOW WHAT_IF, 6-2, 6-5
SP AWN, 3-6, 3-30t, 7-4
VERIFY, 3-30t

CDO dictionary, 1-1
See also Compatibility dictionary
See also Dictionary
See also User-created dictionary

Change
auditing, 6-4
definitions, 4-24 to 4-30
messages, 6-6
new versions, 4-25
recording, 6-2 to 6-7
relationships, 4-30 to 4-32
to Rdb/VMS database, 7-25 to 7-34
tracking, 6-1 to 6-8

CHANGE command (CDO), 3-30t, 4-24,
4-26 to 4-32

effect on Rdb/VMS database,
7-28 to 7-29

CHANGE DATABASE command (CDO),
8-lle

CHANGE GENERIC command (CDO),
4-27

CHANGE privilege, 4-27, 5-6
CHANGE PROTECTION command

(CDO), 5-14to 5-15
CLEAR MESSAGES command (CDO),

3-30t, 6-7, 7-29
Command

editing, 3-1
executing procedures in environment,

3-44
output to a file, 3-32
procedure, 3-44, 4-1
recalling in CDO environment, 3-1
summary, 3-30 to 3-37
usage tracking, 6-2

Comments in definitions, 4-2 to 4-3
Common Dictionary Operator

See CDO
Compatibility

access rights, 2-6t
DMU record structures, 4-8
protection, 2-13, 5-8
Rdb/VMS, 7-4
upward, 3-47

Compatibility dictionary, 1-1, 2-1, 2-10,
3-4f, 3-33

See also CDD$COMPATIBILITY
access by VAX products, 2-4f
anchor, 2-3
creating directories, 3-9
default, 3-5, 3-8, 3-33
definition of, 2-1
initial default, 3-33
in search list, 3-34
locating, 2-3
logical name, 2-1
purpose, 2-1 to 2-2, 3-7
tasks, 2-6t

Compiled module
BASIC, 7-23
relationship with CDD/Plus entity, 8-8

Compiling definitions, 4-1
Compressing definitions, 6-14
COMPUTED BY attribute, 4-4

lndex-3

COMPUTED BY attribute (cont'd.)

DMU compatibility, 2-8t
Continuation prompt, 3-31
Control C

See CTRL/C
CONTROL privilege, 5-7
Conversion from DMU format, 2-14
CONVERT command (CDO),

2-14 to 2-20,3-30t
Convert Rdb/VMS database, 7-36
COPY command (CDO), 3-30t,

4-22 to 4-24
CREATE command (DCL), 3-7
Creating dictionaries

See DEFINE DICTIONARY (CDO)

D

Database
See Rdb/VMS database
See RMS Database

Database relation, 7-12
Database view, 7-22
Data definition

See Definition
Data Definition Language Utility

SeeCDDL
Data Source Definition, 8-7
Data type, 4-12 to 4-22

complex numbers, 4-14t
decimal string, 4-15t
fixed-point, 4-13t
floating-point, 4-14t
language support, 4-18 to 4-22
string, 4-12

DATATYPE attribute, 4-4
Data values

storage of, 1-3
DCL commands

ASSIGN, 3-34
ATTACH, 3-6
BACKUP, 6-8 to 6-9
CREATE, 3-7
DEFINE, 3-34
DICTIONARY, 3-5
RALLY CREATE, 8-7
SET PROTECTION, 5-5

DECnet account, 5-16

4-lndex

Default
anchor, 2-2
dictionary, 2-1, 7-7
directory, 3-8, 3-32
privileges, 5-7
protection, 5-7

DEFINE command
effect on Rdb/VMS database,

7-29 to 7-31
DEFINE command (CDO), 3-30t,

4-1 to 4-9, 4-25 to 4-26,
4-30 to 4-32

AUDIT attribute, 4-2
DEFINE command (DCL), 3-34
DEFINE DATABASE command (CDO),

8-5, 8-6e
DEFINE DATABASE statement (RDO)

DICTIONARY IS REQUIRED clause,
7-14

DEFINE DICTIONARY (CDO), 3-8
DEFINE DIRECTORY (CDO), 3-9
DEFINE FIELD command (CDO),

4-4 to 4-6
DEFINE GENERIC command (CDO), 4-1
DEFINE KEY command (CDO),

3-36 to 3-37
DEFINE privilege, 4-26, 5-6
DEFINE PROTECTION command (CDO),

5-10
DEFINE RECORD command (CDO), 4-7
DEFINE RMS_DATABASE command

(CDO), 8-3, 8-5e
Definition

attributes, 4-4t
bottom-up, 4-7
CDO editor sample, 3-15
changing, 4-1, 4-26
changing original, 4-26
commenting, 4-2 to 4-3
compiling, 3-10 to 3-29, 4-1 to 4-9
compressing, 6-14
copies, 6-7
copying, 4-22
copy to language, 1-9
deleting, 2-7, 6-14, 7-34
displaying, 3-43
distributed, 7-16

Definition (cont'd.)

DMU, 2-7, 2-10, 2-11, 2-14
editing, 4-1
entering, 4-1
entity, 3-11 to 3-28
field, 1-5, 4-4
implicit, 4-8
listing in editor, 3-29
name, 1-8
Rdb/VMS database, 7-3 to 7-40
record, 1-5, 4-7
RMS database, 8-2
size, 3-39
storage formats, 1-2, 2-1
top-down, 4-8
version, 4-25, 4-35

DELETE command, 4-34 to 4-35
DELETE command (CDO), 3-30t
DELETE DATABASE statement (RDO),

7-38
DELETE DICTIONARY command (CDO),

4-34
DELETE GENERIC command (CDO),

7-40
DELETE PATHNAME statement (RDO),

7-36
DELETE privilege, 4-33, 5-6, 6-14
DELETE PROTECTION command (CDO),

5-15
DELETE statement (RDO), 7-34
/DESCENDANTS qualifier

PURGE command (CDO), 4-35
DESCRIPTION attribute, 4-2, 4-4, 4-24
Diagnostics in editor, 3-28
Dictionary

active, 1-3
backing up, 6-8
CDO, 1-1
changing anchor, 6-13
compatibility for Rdb/VMS, 7-4
copying, 4-24
creating, 3-7
default directory for, 3-7
deleting, 4-34, 6-15
design, 3-2
directory, 3-9
distributed, 1-5, 3-5, 6-15
DMU, 1-1, 2-7, 2-10, 2-11, 2-14

Dictionary (cont'd.)

DMU protection, 5-8
enforced usage, 1-3
hierarchy, 3-2
integrity, 1-7
listing contents, 3-38 to 3-43
location, 6-12
locked, 6-12
logical, 1-5, 3-5, 3-34
moving, 4-24, 6-12, 6-13
multiple, 6-9
network, 1-5, 3-5
origin, 1-7
passive, 1-3
performance, 6-14
planning, 3-2
protection, 1-7, 5-1 to 5-1 7
recovery, 6-8
remote, 6-12
restoring, 6-9
saving, 6-8
structure, 3-2
support, 1-2
usage, 6-1 to 6-8
User-created, 1-1
version, 3-46
with Rdb/VMS, 7-1 to 7-40

DICTIONARY command (CDO)
OPERATOR keyword, 3-5

DICTIONARY command (DCL), 3-5
DICTIONARY IS REQUIRED clause

DEFINE DATABASE statement (RDO),
7-14

Dictionary Management Utility
See DMU

Dictionary usage
benefits, 7-3 to 7-4

Dictionary Verify/Fix Utility
See CDDV

Directory
contents, 3-38 to 3-43
default, 3-32
defining, 3-9, 4-6
definition, 1-5
initial, 3-32

DIRECTORY command (CDO), 3-30t,
3-38,6-14, 7-10

lndex-5

DIRECTORY command (CDO) (cont'd.)

/FULL qualifier, 3-39
/SINCE qualifier, 3-40
/TYPE qualifier, 3-39

Directory name, 2-17, 2-18, 7-8
/DIRECTORY qualifier

VERIFY command (CDO), 6-12t
Distributed dictionary access, 1-5, 3-5,

4-12, 4-32, 6-12
for Rdb/VMS, 7-16
protection, 5-9, 5-16

DMU, 2-7
compatibility, 1-2, 2-1 to 2-20
converting records, 2-14
definition, 2-7
format definitions, 2-2 to 2-7
history list, 2-6
protection, 2-11, 5-8
reading from CDO, 2-10, 2-lle
support, 1-2, 2-1 to 2-20

DMU dictionary, 1-1
See also Appendix A

Documentation

E

AUDIT attribute, 4-2
DESCRIPTION attribute, 4-2
for changes, 4-24

EDIT command (CDO), 3-30t, 4-1
Editor

See Access control list editor
creating new versions, 3-29
exit, 3-29
invoking, 3-15
key definitions, 3-1 lf
list of current definitions, 3-29
sample definitions, 3-15
screen mode, 3-11
SHIFT key, 3-11
validation, 3-28

EDIT_STRING attribute, 4-4
ENTER command (CDO), 3-30t

FROM DATABASE, 7-37 to 7-38
FROM RECORD, 2-18 to 2-20

Entity
defining, 4-1 to 4-12
has messages, 6-5

6-lndex

Entity (cont'd.)

listing, 3-38
processing name for, 2-18
user-defined, 4-1

Environment
characteristics, 3-32 to 3-38
entering, 3-5
exiting, 3-6
prompt, 3-5

Error
checking, 3-31
syntax, 4-1

Exclamation point, 3-44
EXIT command (CDO), 3-6, 3-30t
EXPORT statement (RDO), 7-35
Expressions

valid for DMU, 2-8t
/EXTERNAL_REFERENCE qualifier

VERIFY command (CDO), 6-9, 6-12t
EXTRACT command (CDO), 3-30t,

3-43 to 3-44

F

Field
attributes, 4-4t
changing, 4-28
defining, 4-4
defining with editor, 3-11
definition, 1-5
implicit definition, 4-7, 4-8
including in record definition, 4-7
order in records, 4-29
shareable, 7-8 to 7-12
variants, 4-7

File access control, 5-1
File allocation

specifying in RMS applications, 8-4
File definition

for RMS database, 8-2
File extension

default, 3-44
FILENAME keyword

INVOKE DATABASE statement
(RDO), 7-14

File specification
Rdb/VMS database, 7-39

/FIX qualifier
VERIFY command (CDO), 6-12t

Foreign command, 3-5
Formats

for dictionary definition storage, 1-2,
2-1, 2-2

/FULL qualifier
DIRECTORY command (CDO), 3-39,

6-14
SHOW USED_BY command (CDO),

7-11
SHOW USES command (CDO), 6-2,

7-30e
Fully qualified name, 1-8, 3-34, 6-13, 7-16,

8-8, 8-9e
Fully translated anchor, 1-7
Future of dictionary, 1-3

G

Generic entity definition, 4-1

H

Help
on CDO commands, 3-10
within CDO editor, 3-15

HELP command (CDO), 3-10, 3-30t
Hierarchy of dictionary, 3-2
History list, 2-6, 2-20, 4-2 to 4-3, 4-23,

4-24, 5-10

Identifiers, 5-1
IMPORT statement (RDO), 7-35, 7-38
%INCLUDE %FROM %CDD directive

(BASIC), 7-23
Index

for Rdb/VMS database, 7-22
Initialization file, 3-37
INITIAL_ VALUE attribute, 4-4, 4-5
INTEGRATE message (CDO), 6-5
INTEGRATE statement (RDO), 6-6,

7-25 to 7-33, 7-36
Interrupt, 6-8
INVOKE DATABASE statement (RDO),

7-14

INVOKE DATABASE statement (RDO)
(cont'd.)

J

FILENAME keyword, 7-14
PATHNAME keyword, 7-14

Journaling, 6-8
JUSTIFIED attribute, 4-4

K

/KEEP qualifier
PURGE command (CDO), 4-35

Key definition, 3-36

L

Layered products, 1-2
Line editing, 3-1
Location

changing, 6-12
/LOCATION qualifier

VERIFY command (CDO), 6-12t
Locking mechanisms, 5-17
Log file, 3-32
Logical dictionary, 1-5, 3-2, 3-5, 6-9

structure, 3-2
Logical name, 1-8, 3-34, 4-4
/LOG qualifier

VERIFY command (CDO), 6-12t

M

Major version of dictionary, 3-47
Message

about change, 4-24, 4-26 to 4-27, 4-31,
4-32, 6-2 to 6-7

about new version, 4-25 to 4-26, 4-32
attached to CDO definitions, 6-5
clearing, 6-7, 7-26
for Rdb/VMS database, 7-28
reading, 6-6, 6-7
reading from language, 6-7

Metadata, 1-1
Migration from DMU format, 2-14
Minor version of dictionary, 3-47
MISSING_ VALUE attribute, 2-8t, 4-4

lndex-7

MOVE DICTIONARY command (CDO),
4-24, 6-13

Moving RMS databases, 8-11
Multiple versions of dictionary objects

N

Name
anchor, 1-7, 6-9
compatibility, 2-2
default dictionary, 1-7, 1-8
definition, 1-7
directory, 2-17, 7-8
duplicate, 1-8
for CDO definitions, 2-2
for DMU definitions, 2-2
path, 1-7
processing, 2-17, 3-42, 7 -8
qualified, 1-7, 1-8
unique, 1-8
version, 1-8

NAME FOR attribute, 4-4
Name for definition, 1-8, 4-4
Network

access, 1-5, 3-5
failure, 6-8, 6-12
performance, 6-15
protection, 5-16
relationships, 4-12, 4-32

Node
distributed dictionary, 1-5, 3-5, 6-15
distributed relationships, 4-12, 4-32

/NODESCENDANTS qualifier
PURGE command (CDO), 4-35

Notice
See Message

0

Object
See Definition

Object file
BASIC, 7-23

OCCURS attribute, 4-4
OCCURS expressions

DMU compatibility, 2-8t
OPERATOR keyword

DICTIONARY command (CDO), 3-5

8-lndex

/ORPHANS qualifier
VERIFY command (CDO), 6-12t

Output to a file, 3-32
Overlay tags

DMU compatibility, 2-8t

p

Path name
See also Directory name
CDD$TOP, 2-7
deleting, 7-39
qualified, 1-7, 1-8
relative, 7-39

PATHNAME keyword
INVOKE DATABASE statement

(RDO), 7-14
Performance, 6-14 to 6-15
Period

terminating commands, 3-30
Physical dictionary, 3-2

See also Dictionary
Pieces tracking, 1-6, 6-1 to 6-8, 7-4, 8-8

for Rdb/VMS database, 7-27 to 7-34
Privilege

CHANGE, 4-27, 5-6
DEFINE, 4-26, 5-6
DELETE, 4-33, 5-6, 6-14
SHOW, 5-6

Privileges
See Access privileges

Processing name, 2-17, 3-42, 7-8
Process quotas, 3-7
Program

recompiling, 6-7
Programming languages

data types supported, 4-19
dictionary support, 8-8

Prompt
continuation, 3-31
in environment, 3-5

Protection, 5-1 to 5-17
See Access control lists
access control, 5-2
changing, 5-14
changing definitions, 4-27
compatibility, 2-13

Protection (cont'd.)

compatibility with DMU, 5-8
confirming, 5-6
conflict, 5-16
conversion, 2-12t, 2-20
default, 4-26, 4-27, 4-33, 5-7, 6-14
definition, 4-26
delete definitions, 4-33
deleting, 5-15, 6-14
for Rdb/VMS definitions, 7-17
protocol, 5-6
rights, 5-3 to 5-5
setting, 5-10
VMS, 5-1 to 5-5

Protocol
protection, 5-6

Proxy account, 5-16
Punctuation for syntax, 3-30
PURGE command (CDO), 3-30t, 4-35

/DESCENDANTS qualifier, 4-35
/KEEP qualifier, 4-35
/NODESCENDANTS qualifier, 4-35

Q

QUERY_HEADER attribute, 4-4
QUERY_NAME attribute, 4-4
Quotas

process, 3-7

R

RALLY CREATE command (DCL), 8-7
RALLY DSD

See Data Source Definition
RALLY support, 8-7
Rdb/VMS

displaying relation from CDO, 7-12
displaying view from CDO, 7-22
locking mechanisms, 5-17

Rdb/VMS database, 7-1 to 7-40
changing definitions, 7-25 to 7-34
clearing messages, 7-26
compatibility, 7-4
converting, 7 -36
defining, 7-5, 7-13
defining relations, 7-20
deleting, 7 -38

Rdb/VMS database (cont'd.)

deleting shared definitions, 7 -34
displaying definitions from CDO, 7-11
embedded statements, 7-23
internal definitions, 7-22
internal names, 7-18 to 7-19
message chain, 7-28
multiple, 7-2f
reading messages, 6-7
requiring dictionary, 7-14
restoring, 7-35
showing internal entities, 7-11
showing internal fields, 7-17
support, 1-9, 6-7

RDML, 7-23
RDO, 6-7
RDO statements

ATTACH, 7-4
DEFINE DATABASE, 7-13
DEFINE FIELD, 7-15
DEFINE RELATION, 7-20
DELETE, 7-34
DELETE DATABASE, 7-38
DELETE PATHNAME, 7-36
EXPORT, 7-35
IMPORT, 7-35, 7-38
INTEGRATE, 6-6, 7-25 to 7-33, 7-36
INVOKE DATABASE, 7-14, 7-15
ROLLBACK, 7-4, 7-16, 7-26
SET DICTIONARY, 7-7
SPAWN, 7-4
START_TRANSACTION, 7-26

/REBUILD_DIRECTORY qualifier
VERIFY command (CDO), 6-11, 6-12t

Recall previous commands, 3-1
Record

adding new fields, 4-29
attributes, 4-9
changing, 4-29
defining, 4-7
defining with editor, 3-11
nested, 4-7
shareable, 7-8 to 7-12
structure, 4-8
unstructured, 2-20
variant fields, 4-7

Record definition
for RMS database, 8-2

lndex-9

Relation
displaying, 7-12

Relationship
AGGREGATE CONTAINS, 4-10
BASED ON, 4-6, 4-10
changing, 4-30 to 4-32
creating, 4-9 to 4-12
defining, 1-6

Remote access, 3-7, 4-12, 4-32, 5-16, 6-12
%REPORT directive (BASIC), 7-24
Repository

See Dictionary
Requiring dictionary in DEFINE

DATABASE statement (RDO), 7-14
Resource limits

for processes, 3-7
Restrictions

DMU compatibility, 2-8t
Rights

See Protection
RMS database, 8-1 to 8-12

See also RMS files
creating database definition, 8-3
creating physical database file, 8-4
defining, 8-2
deleting, 8-11
moving, 8-11
pieces tracking, 8-8
showing, 8-8

RMS database definition, 8-2
deleting, 8-11
showing, 8-8

RMS files, 8-1 to 8-12
access from RALLY, 8-7
CDO commands related to, 8-2
where to create, 8-6

RMU /BACKUP command, 7-35
RMU/RESTORE command, 7...:35
Roll back of RdbNMS database, 7-26
ROLLBACK statement (RDO), 7-4

s
Search list, 3-34 to 3-36, 6-10
Security

See Access control lists
SET command (CDO), 3-30t, 3-32 to 3-36

10-lndex

SET DEFAULT command (CDO), 3-33
SET DICTIONARY statement (RDO), 7-7
SET OUTPUT command (CDO), 3-32
SET PROTECTION command (DCL), 5-5
SET VERIFY command (CDO), 3-45
SHOW command (CDO), 3-30t, 4-3, 4-27,

6-2t
qualifiers, 6-2

SHOW DATABASE command (CDO),
3-42, 7-14, 8-9e

SHOW FIELD command
FROM DATABASE clause, 7-18

SHOW FIELD command (CDO), 3-41,
4-10

FROM DATABASE clause, 7-12e, 7-17
SHOW MESSAGES command (CDO), 6-2,

6-6, 7-30e
SHOW privilege, 5-6, 5-7
SHOW PRIVILEGES command (CDO),

4-27, 5-9
SHOW PROTECTION command (CDO),

4-27, 5-9
SHOW PROTOCOL command (CDO),

4-26
SHOW RECORD command (CDO), 2-11,

2-20, 3-42, 4-10
/AUDIT qualifier, 2-20

SHOW RMS__DATABASE command
(CDO), 8-lOe

SHOW UNUSED command (CDO), 6-2,
6-14

SHOW USED__BY command (CDO),
4-lOe, 6-2, 7-lle, 7-38e

SHOW USES command (CDO), 4-lle,
6-2, 7-27e, 7-30e, 7-34e

SHOW VERSION command (CDO), 3-46
SHOW WHAT_IF command (CDO), 6-2,

6-5, 7-27e
SIGNED NUMERIC data type

See ZONED NUMERIC data type
SIGNED NUMERIC LEFT

OVERPUNCHED data type
See LEFT OVERPUNCHED

NUMERIC data type

SIGNED NUMERIC LEFT SEPARATE
data type

See LEFT SEPARATE NUMERIC data
type

SIGNED NUMERIC RIGHT
OVERPUNCHED data type

See RIGHT OVERPUNCHED
NUMERIC data type

SIGNED NUMERIC RIGHT SEPARATE
data type

See RIGHT SEPARATE NUMERIC
data type

Simultaneous updates, 5-17
/SINCE qualifier

DIRECTORY command (CDO), 3-40
Size of definition, 6-14
Source

isolating, 6-2
SPAWN command (CDO), 3-6, 3-30t, 7-4
SPAWN statement (RDO), 7-4
START_ TRANSACTION statement

(RDO), 7-26
Storage of definitions, 6-14

formats, 1-2, 2-1
Structure

dictionary, 3-2
record, 4-8

Subprocess, 7-4
Support for dictionary

BASIC, 7-23
languages, 1-2
programming languages, 1-7, 4-19, 7-11,

7-23, 8-8
Rdb/VMS, 1-9
VAX Information Architecture, 1-2
VIDA, 1-9

Syntax
terminating commands, 3-30

Syntax errors, 3-31
SYS$0UTPUT, 3-32
System failure, 6-8
System-specified attributes, 3-41

T

Terminating commands, 3-30
Top-down definition, 4-8
Tracking, 6-1 to 6-8

Tracking (cont'd.)
See also Change, tracking

Translation utility, 2-2
/TYPE qualifier

DIRECTORY command (CDO), 3-39
SHOW USED_BY command (CDO),

7-11
SHOW USES command (CDO), 6-2

u
UIC-based protection, 5-1
Update locking, 5-17
Usage tracking

See Pieces tracking
User-created dictionary, 1-1
User-specified attributes, 3-41

v
Validation in editor, 3-28
V ALID_IF attribute, 4-4
V ALID_IF expressions

DMU compatibility, 2-8t
VARIANTS clause, 4-7 to 4-8, 4-30
VAXcluster

distributed dictionary, 1-5, 3-5
VAX Information Architecture products,

1-3, 4-16
VERIFY command (CDO), 3-30t,

6-9 to 6-13
Version

definition, 4-25, 4-35
dictionary, 3-46
major, 3-47
minor, 3-47
name, 1-8

Versions
VIDA with IDMS/R support, 1-9
-View

displaying, 7-22
for Rdb/VMS database, 7-22

w
What-if analysis, 1-6, 6-1, 6-2
Wildcard, 3-38, 4-35

restrictions, 3-39
search list, 3-34

lndex-11

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internal1

Call

800-DIGITAL

809-754-75 75

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local DIGITAL subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local DIGITAL subsidiary or
approved distributor

SDC Order Processing - WMO/E15
or
Software Distribution Center
Digital Equipment Corporation
Westminster, Massachusetts 01473

1For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments VAX COD/Plus User's Guide
AA-KL46A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's:

Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Excellent

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using· Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

Do Not Tear - Fold Here and Tape

--------------ir-i-~-----------~;;----
if Malled

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
1 10 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ... 1.11 .. 1

Do Not Tear - Fold Here --

I

I
I
I
I
I

Reader's Comments VAX COD/Plus User's Guide
AA-KL46A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's:

Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)-
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Excellent

D
D
D
D
D
D
D
D

Additional comments or suggestions to improve this manual:

Good

D
D
D
D
D
D
D
D

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Dept.

Phone

Fair Poor

D D
D D
D D
D D
D D
D D
D D
D D

Date

I
I
I
I
I -;D~~;;~•d u- and Tape ______________

11
_

1
_n-----------~~~~----1

11 ;

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35
1 10 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 .. 1.1 ... 1.11 .. 1

United States

- Do Not Tear • Fold Here --

, ..
11
It
I
I

Reader's Survey VAX COD/Plus User's Guide
AA-KL46A-TE

1. How useful are the following methods for finding information in this manual?

Table of contents
Most

D
D
D
D

Very
D
D
D
D

Moderately
D
D
D
D

Not Very
D
D
D
D

Not at All
D

Divider pages (if applicable)
Index (circle: book or master)
Other (specify) ______ _

2. What feature do you most want to see improved in this manual? Why?

3. How helpful are these sources when you use the software this manual describes?

D
D
D

Handbook or user's guide
Introduction or overview
Reference manual

Most
D
D
D
D
D
D
D

Very
D
D
D
D
D
D
D

Moderately
D
D
D
D
D
D
D

Not Very
D
D
D
D
D
D

Not at All
D

Quick reference guide
Online help
Online tutorial (if available)
Other: colleague, telephone support
services (specify) ______ _

D
D
D
D
D

D D

4. What business tasks are you using the software described by this manual to solve (for
example: billing, funds transfer, report writing)?

5. Please estimate, if you can, how long the following VAX Information Architecture
products have been used at your site:

VAX ACMS ___ _ VAX COD/Plus---- VAX DATATRIEVE ----
VAX Data Distributor ___ _ VAX DBMS ___ _ VAX RALLY __ _
VAX Rdb/VMS __ _ VAXSQL __ _ VAX TEAMDATA __ _
VAX TOMS ___ _ VIDA with IDMS/R ---

6. This release of VAX Information Architecture documentation uses a 7x9 format for
quick reference guides. Do you prefer such books in a 7x9 or a 4x8 pocket guide
format? ·

Thank you for your assistance.

May we contact you at work for further information? D Yes D No

Name

Company

Mailing Address

Dept.

Phone

Date

Do Not Tear - Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK02-2/N53
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

II I 11111 II 1 II 111 .11 1.11.1 .. 1.1 .. 1 •• 1.1 .. • 1.11 .. 1

No Postage
Necessary
if Mailed

in the
United States

- Do Not Tear - Fold Here --

1c
I
I

