HP 13255
2648A OPERATING SYSTEM MICROCODE
Manual Part No., 13255-90010
PRINTED

APRIT~17-78

T U S —

- P . S S P W T R S D SR R WR W WP D S W R R R S R T gy TP an O an TR SR R R R PGP TS G G T R SR R R T AR T T P S W R WD TR W G R R TR G G e e O W e

NOTICE

The information contained in this document is subject to change
without notice,

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, RBUT NOT LIMITED TO THE IMPLIED wWARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consegquential damages in connection with the furnishing, performance,
or use of this material.

This document contains proprietary information which is protected by
copyright. All rights are reserved. NoO part of this document may be
photocopied or reproduced without the prior written consent of Hewlett-
Packard Company.

Copyright c¢ 1978 by HEWLETT=PACKARD COMPANY

NOTE: This document is part of the 264XX DATA TERMINAL product
series Technical Information Package (HP 13255).

13255 13255-90010/01

2648A Microcode Listing Rev 04=-17-78 —_
CONTENTS
SECTION CONTENTS PAGE
1,0 INTRODUCTION 2
1.1 PURPOSE
1.2 SCOPE
1.3 RELATION TO 2645 FIRMWARE
2.0 MEMORY ALLOCATION 2
2.1 ROM ADDRESS MAP
2.2 DISPLAY MEMORY MAP
2.3 FAST RAM MAP
3.0 2645 FIRMWARE CHANGES 7
3.1 MAIN CODE CHANGES
3.2 KEYBOARD CODE CHANGES
3.3 DATACOM CODE CHANGES
3.4 I/0 CoODE CHANGES
4.0 GRAPHICS VARIABLES 14 ~
4,1 FAST RAM
4,2 DISPLAY RAM
4,3 AVAILABLE MEMORY
5.0 GRAPHICS ROUTINES 16
5.1 VECTOR DRAWING
5.2 DISPLAY CONTROL
5.3 GRAPHICS TEXT
5.4 FLOATING POINT ROUTINES
5.5 CHANGING THE GRAPHICS KEYPAD
6.0 DELETING AUTOPLOT 29
6.1 ENTRY VECTORS
6.2 RAM USED BY AUTOPLOT
7.0 CONTROLLING THE GRAPHICS HARDWARE 34
7.1 HARDWARE OVERVIEW
7.2 HARDWARE STATUS
7.3 STROBES
7.4 REGISTERS
7.5 CLEARING OR SETTING THE SCREEN
7.6 VECTOR GENERATION
7.7 GRAPHICS CURSOR
7.8 Z00M
7.9 SELF TEST
7.10 KEADING THE IMAGE MEMORY

13255

13255-90010/02

2648A Microcode Listing Rev

N—

INTRODUCTION
PURPOSE

This document describes the firmware implementation of
the 2648A graphics terminal. 0Only selected topics will
pe covered, and that coverage will necessarily be bhrief.
The two goals of this document are:

1. To give users entry points to routines that can be
immediately useful, such as those tor drawing vectors,
turning zoom on and off, etc. The routines selected
are those executed when graphics escape sequences and
keystrokes are executed,

2. To describe the firmware/hardware interface sufficiently
so that the implementation of the above routines can be
understood and expanded upon.

SCOPE

It will be assumed that the user is familiar with the
operation of the 2645A and its firmware, on which the
7648A is based. O0Only those features peculiar to graphics
are discussed.

RELATION TO 2645A FIRMWARE,

The 2648A firmware is an extension of that developed for
the 2645A., The bulk of the graphics additions consist of
subroutines added to service the new escape seauences which
control graphics functions, While virtually every 2645
module was changed, as outlined in Section 3, these changes
are relatively minor. Virtually all of the information
contained in the 2645A Operating System Microcode manual,
part number 13255-90003, is also applicable to the 2648A.

MEMORY ALLOCATION

The 2648A°s microprocessor can address 64K bytes of memorvye.
In general, the range 0 to 48K contains the microcode (in
ROM), 48k to 52K is KAM used for buffers, and 52K to 64K 1is
RAM used for display memory. The range 36K to 36.5k contains
fast access RAM, The range 32K to 36K is reserved for memory
mapped I/0. (See tigure 1.)

04-17-178

13255 13255=-
2648A Microcode Listing Rev
2.1 ROM ADDRESS MAP
The firmware is imolemented as discrete modules. Each module
can be separately assembled. A module reterences routines in
other modules through entry vectors stored at the beginning
of each module. The size and location of each module is as
follows:
MODULE S1IZE LOCATION
Main Code (essentially 10K 0 - 10K
2645 main code)
Graphics 18K 24K = 32K
38K = 48K
1/0 8K 10K = 18K
Keyboard 2K 18K = 20K
Datacom 2K=4K 20K = 24K
Alternate 1/0 1.5K 36.5K = 38K
2.2 DISPLAY MEMORY MAP
Display memory resides from 48K to 64K. The topmost portion
is used by the rom code for variable storage and buffers.
The end of this varlable section is set by the Main Code
equate DSPLIM, As this must be on a 256 byte boundary, there
are some unused memory locations., (See figure 2,)
2.3 FAST RAM MAP

Each Control Store PCA (02640-60192) contains 256 bytes of

RAM, The access time for this memory is much faster (at least
twice as fast) than for display memory. The 2648A contains

two blocks (512 bytes) of this RAM. The micronrocessors stack
is stored in the first block, and grows downward towards the
second (graphics) block. 1inder normal operation the stack does
not reach the qraphics fast RAM area. (See figqure 3,)

90010/03
04-17=-78

13255 13255=-90010/704
2648A Microcode Listing Rev 04-17-78

ey Y T L L L LA 0K

MAIN

CODE

— - —— w——

1
|
|
|
]

R T L]

| |
! 1/0 |
| |
[|

e L R LR L L Lk 18K
| KEYBOARD |
e L L L E L A L L 2OK

I I

I DATACOMM 1

B e X 1

| |

| GRAPHICS I

| |

| | cmeeececmecmemmeeccomana= 36K
cemcccescmmecemmema=a 32K | SECOND FAST RAM AREA |

| MEMORY MAPPED | B ittt Ll I +256
| 1/0 ADDRESSING | | FIRST FAST RAM AREA |
cemmececescees-me=== 36K ceceresmccesmeemmcec=a| +512
I | ==e=e=a==| [
cmcccccccmecbmmmamea 38K I ALTERNATE |

I [I 1/0 I

I |

cerecescencenmcncene==== 38K

GRAPHICS

- T 48K

BUFFERS |
|

PTTEE LR L L LR R L Al Rl 52K

|
|
|
|
|
|

|
|
| DISPLAY
! MEMORY
|
|

64K

FIGURE 1

13255

2648A Microcode Listing

| COMMON VARIABLES |
| MAIN CODE |
| VARIABLES |

IKEYBOARD VARIABLESI
| DATA COMM |
[VARIABLES |

I I/0 VARIABLES |

L B A R L L X X X

| ALTERNATE [/0 |

| MESSAGE BUFFER |

| DEVICE |
|

| I/0

|

| BUFFERS

IGRAPHICS VARIABLESI
1 |
| i
| AUTOPLOT I
| MENU |
| |

i UNUSED [
| |
| DISPLAY [
| AREA |
| |
ANV

AMAUANMVAMARNRINVAANAN NN
| |
| |
| |

1777778 (OCTAL)
(48 bytes)
1777208
(176 bytes)

1774408

(32 bytes)
1774008

(128 bytes)

1772008

(24 bytes)
1771508

(24 bytes)
1771208

(80 bytes)
177000R

(512 pytes)

1760008B
(294 bytes)
1753328

(589 bytes)

1742158
(142 bytes)
1737778 (DSPLIM)

(up to 12K bytes total)

DSPBGN

FIGURE 2

13255-90010/705

Rev

UNCHANGED FROM
2645 FIRMWARE

04-17-78

13255 13255=-90010/706
2648A Microcode Listing Rev 04-17-78

- - W - 1110008

KEYBOARD

! |
| |
| | (64 bytes)
| VARIABLES |
{ |
! |

cesccmemeemememee=e= 1107008

i |

| DATA COMM |

| | (64 bytes)

| VARIABLES |

] |

| |

recmcecsmenneeene=== 1106008

| ALTERNATE I1/0 | (32 bytes less

| VARTABLES | 1. SCNVEC 110550R=1105528

| (UNUSED) | 2. INTVEC 110545B=1105478)
cmcccerecenamn~e=e== 1105408

| I

| |

| STACK | (96 bytes, grows -

| | downward) | Fast RAM on
| | | ROM PCA
| | | 0=24K
cececceccmemeeec===== 110400R —m——m--
m—eeeemecssceccce————- 1104008

| |

| UNUSED | (32 bytes)

! [
meemmmeccecm=e=m==-= 1103408

GRAPHTICS

|
|
i (144 bytes)
VARIABLES |
[
cmmcccemccencee=ee= 1101208
UNUSED | (16 bytes)
ecmccemceenne=e===== 1101008
| -
FLOATING POINT | (64 bytes) | rast RAM on
VARIABLES | | ROM PCA
| | 24K=348K

P L L L L L L R 1100008 - o o - -

—— e e | e | = o -

FIGURE 3

13255 13255-90010/07
2648A Microcode Listing Rev 04-17-78
3.0 2645 FIRMWARE CHANGES

This section briefly describes the major chanages made to 2645

modules to accomodate graphics. The description is limited to

naming the affected routine and giving the purpose for the

change.
3.1 MAIN CODE CHANGES
3.1.1 CHINT AND RANGE TABLES

The single most important main code change was to the range
table mechanism to allow sybrouytine addresses greater than
32K. Consider the following example from the 2645 code:

3 KKK KR KKK KK AKX KK KK KK KK ko Kok K Kk K KK K
; NORMAL CHARACTER SET ATTRIRBUTES *
PRKRIKE KKK KRR KR KRR AR KKK F KKKk
RTABLE EQU §-3

DB 400,1779Q s ALPHANUMERICS

DW DSPCHR+B15 sDISPLAYABLE CHARACTERS

DB 70,179 ’BELL,BS,HT,LF,VT,FF,CR,S0,S1I
DW RTBO10 ;USE INDEX TABLE

’
: <BELL> THROUGH <SHIFT IN>
RTBO10 EQU s
Dw ZBELL 7BELL=-SOUND KEYROARD BELL
RTB020 EQU s 7<BS> THROUGH <SHIFT IN>
DW BCKSPC 7BS = BACKSPACE CURSOR
Dw HTAB sHORIZONTAL TAB

Each range table entry congists of two lines. The first
contains an upper and a lower bound, The second contains an
address. TIf the MSB of the address is set, it indicates that
the address is a subroutine address to be executed directly.
The MSB is masked off to get the true subroutine address.

It the MSB is not set, then the address is that of an index
table., The subroutine address must be extracted from the
table. When a character arrives at the terminal from dataconm,
keyboard, or tape, the routine CHINT determines what action
should be taken by comparing the character to the upper and
lower bounds in the current range table. When a match is
found, the indicated subrouytine is executed.

R

13255

2648A Microcode Listing

Note that no index table cagn have an address greater than

32K, or the MSB would be set, indicating a direct jump
address. Also, no direct jump can be to an address greater
than 32K, since the MSB is assumed to be a flag, and 1s

masked off.

13255-90010/08

Rev

Since much of the graphics code is above 32K, these problems
were solved as follows:

1. All index tables were placed below 32K. If a range table
address entry has its MSB cleared, then it is taken to be

an index table address,
2. Chint and the form of the range tables were modified to
allow direct jump addresses greater than 32K. 1If a
range table address has its MSB set, it is taken to be

a jump address.

another bit is OR‘ed in. By setting tnis bit, an
address in the full 0-64K range can be reached. The

used is the MSB of the upper bound entry.
bound entries use only 7 bits in the character comparison,

as onlv ASCII characters are expected.

A typical araphics range table entry appears as follows:

5 KKK KKK KRR K KR O R R KOO R KRR K X

: PLTTAB==USED IN VECTOR PLOTTING SEQUENCE ¥
$F RO R KOO KR RO KR OOk KRR KK

PLTTAB EQU
DB
Dw
DB
Dw

PINDX £QuU
Dw
Dw

$§-3
40Q,PLTPRM/XDIVXXMUL+77B s PARAMETER
PLTPRM+B15

1410,1540 s SMALL A-L

PINDX ;USE INDEX TABLE
S

PENUP sA==RAISF PEN
PENDN sB==LOWER PEN

However, after its MSB is masked out,

bit

Upper and lower

1f the MSB of the address entry is not set, the aadress 1is

used as an index table address,

32K, sO the MSB will never be set.

1f the MSB is set, the address is taken to be

a subroutine address.

All index tables are below

The MSB is masked off and replaced by

the MS3 of the upper bound entry, and control is transferred
to that location.

04-17-78

13255

13255-90010/09

2648A Mmicrocode Listing Rev 04-17-78

The operation PLTPRM/XDIv*XMUL shifts the MSB of the address
(a 16 bit value) to the location of the MSB of the upper
bound (an 8 bit value). If the routine PLTPRM was located
above 32K, the bounds entry w~#ould be assembled as

DB 40Q0,1770., 1If below 32K, the bounds entry would pe

D8 400,07790.

To summarize,

1. Index tables are indicated if the MSB of the address is
not set.

2. A direct jump address 1is indicated if the MSB of the address
is set. The effective address is computed by replacing the
MSB of the table address with the MSB of the upper bound
entry.

SOFT KEY CHANGES

The carriage return key was made into a soft key. GETKEY
returns a keycode of 357B for that key, instead of 158. The
soft key definition routine DFSFKY was expanded accordingly,
as was the waitloop.

The routine EXSFKY was added to allow execution of soft keys
through an escape seauence, This also involved changes to
DFSFKY to recognize the triggering sequence.

GRAPHICS TEXT

Routines that add characters to the display, CHINT and DSPCHR,
were modified to send characters to graphics if graphics

text mode is on, Certain control codes and cursor positioning
routines are also executed in graphics when graphics text

mode is on. The relevant routines are CRRET, LNFEED, BCKSPC,
and HTAB for the control codes, and CUKPR, CURPL, CURPD,

and CURPU for cursor positjoning.

ALPHANUMERIC INHIBIT

Both the alphanumeric display and the alphanumeric cursor
can be inhibited. The display is innibited by inserting an
‘END OF PAGE’® (EOP) code as the first character of the
display (the location DISPST). Routines that would change
this location (TOPUPD, DSPMSG, SFKYON, and RSTDSP) now
check graphics flags to determine thé state of the display.
The alpha display is re-enabled, and the graphics display
inhibited, to display error messages and soft keys.

13255 13255~

2648A Microcode Listing Rev

The alpha cursor is innipited by directing the display
hardware to put it off the screen. This is done by
storing a cursor row greater than 23 in the location
IOCCRW. Routines which change the cursor row address
now go throuah the graphics routine ANCHK to disallow
such stores if the cursor is inhibited.

3.1.5 CHANGES FOP AUTOPLOT

Changes for autoplot were made to direct incoming characters

to the plot routine, and to allow proper interaction with the
menu. The plot routine is called from CURADV (which is called
whenever a character is put on the screen) as well as from
certain control codes. Ck and LF cause jumps to autoplot
directly from the range tables, Changes for the menu were

made in ESCEND, to restore the proper range table, and

LOCLIN, to allow local only entry into the menu, and SFKYDS.

To allow recording of the menu, GETDSP and INITDG were changed.

3.1.6 RLOCK TRANSFERS

Graphics status requests cCause pblock transfers to be initiated.
The routines DSPTCH and CLPLXF were changes to increase the
number of possible pending transfers.

3.1.7 ECHO SUPPRESSION

In order to prevent status transfers from being displayed if
they are echoed, GETDCM was modified to ignore datacomm input
if an echo suppress flag is set. This mode is turned off (in
the same routine) upon receiot of certain control codes.

3.1.8 VERTICAL RETRACE SCAN

The graphics cursor, the rubber bpand line, and zoom are
updated once per frame, Conseaquently, the normal waitloop
scans of datacom and KeyboOard were expanded to monitor a
vertical retrace flag. w#hen set, it indicates that one
frame has elapsed.

90010/10
04-17-78

13255 13255-900610/11
2648A Microcode Listing Rev 04-17-78
3.2 KEYBOARD CODE CHANGES
3.2.1 RETSCN ROUTINE
The routine RETSCN was removed from the I/0 code, due to
lack of space there, and put into the keyboard ROM, wnich
has extra space, Fntry to the routine is made through
entry vectors at the start of the keyboard module,
3.2.2 ASCII TABLES
The upper and lower case ASCII tables, UPRASC and LWRASC,
were modified to replace the rumeric pad with agraphics
functions, as well as to make the return key a soft key,
The new values returned are as follows:
2645 2645 2648 2648 SHIFTED 2648 SHIFTED
KEY CODE CODE FUNCTION CODE FUNCTION
CR 158 357R SOFT RETURN 357R SOFT RETURN
0 60B 245B CURSQR FaST 2228 MENU
1 618 2138 200M IN 2158 CLEAR
2 628 2438 CURSQOR DOWN 2268 T ANG
3 63B 214R Z00M QUT 2278 T SZE
4 64B 244Kk CURSQR LEFT 2208 DRAW
5 658 2078 STQP 2178 A DSP
6 668 242R CURSOR RIGHT 2218 MOVE
7 678 223B AUTC PLCT 2248 AXES
8 708 241B CURSQOR UP 2118 RB LN
9 71B 210B G CURSOR 2168 G DSP
. 568 212B ZO0M 2258 TEXT
3.2.3 GRAPHICS CURSOR KEYS

The graphics cursor keys (codes 241B to 245B) are scanned
separately to allow more than one to be deoressed, for diagonal
movement and two speed operation. In the keyboard routine
GTKEY, when a Key is depressed the graphics routine GCKEYS

is called. When a key is released, the graphics routine

RELGC is called., These routines test the key in question to
see if it is a graphics cursor key, and if it is, bypass the
normal GTKEY processing.

13255
2648A

3.2.5

13255=-90010/12

Microcode Listing Rev

SOFT RETURN KEY

The carriage return key was made into a soft key and
consequently returns a kKeycode of 357B instead of 15B.

TIMER INTERRUPT

The graphics timer interrupt routine is called from the
xeyboard routine KBMON,

REPEAT RATES

The initial delay and the repeat rates for graphics keys
are set for longer than normal keys in GTKEY and SETRPT.

SETTING STRAPS P AND Q

A test for an escape sequence setting straps P or Q is made
in the routine STJMPR,

DATA COMM CODE CHANGES

BUFFER ALLOCATION

I1f either strap P or 9 is removed at power on, a very large
data comm buffer (2048 bytes) is allocated, instead of the
normal 96 byte buffer., The affected routines are DCINTR,
GETDC, and INITDC.

ENQ/ACK HANDSHAKE

1f in either scaled or unscaled Tek mode, ACK is not
returned upon receipt of EnNQ. The affected routine is
GETDC.

RUBOUT CHARACTERS

If in either scaled or unscaled Tek mode, rubout characters
(1778B) are not stripped out of the input data. (DCINTR)

04-17-78

13255 13255=90010/13
2648A Microcode Listing Rev 04=-17~-78

3.3.4 MULTIPOINT

The multipoint firmware is unchanged.,
3.4 I/0 CODE CHANGES

ALTERNATE I/0

Alternate I/0 was moved from 24K to 36.5K. The new
entry vectors are as follows,

LOCATION (OCTAL) FUNCTION

111002R Initialization Routine

1110058 Initialization Continuator

11101038 Interrupt Processor

1110138 Monitor Routine

1110168 Input Routine

1110218 Qutput koutine

1110248 control Routine

1110278 Status Routine

1110328 Device Name Message
3.4.2 SOFT RETURN KEY

Routines which monitor the keyboard for a carriage return
(GRNKEY, USRSKP, USREOF) now check for the soft return Kkey
keycode.

3.4.3 RETSCN ROUTINE

The I/0 routine RETSCN was moved to the Keyboard module
due to lack of space.

3.4.4 TRANSPARENT READ

when reading buffer to display (BF2DSP) in Tek mode, the
buffer is coried exactly as is. CR/LF’s are not stripped
out of the buffer, nor are they appended at the end of the
record., Carriage return is used to signal the end of a Tek
graphics sequence, and should not be automatically added by
the terminal.

13255

13255-90010/14

2648A Microcode Listing Rev 04=-17-78

AUTOPLOT GET

In the display to buffer routine (DSP2BF) tests are made to
see if the Autoplot menu is being displaved.

1/0 BUFFER FLUSH

when record mode is turned off in RCRDGU, a test is made for
the I/N buffer being partially filled. 1f it is, the data
is recorded before terminating record mode.

PRINTER DRIVER

The RS232 printer driver now interprets a switch configuration
of all closed, which used to mean send 56 nulls after each
control code, as meaning send NO nulls (PTRCHR). Previously,
at least one null was always sent. 1n addition, the Clear to
Send line is no longer monjtored (PRCHR2).

GRAPHICS VARIABLES

This section describes tnhe use of selected variables used

by the graphics code to store parameters and flags.

A flag is a single bit wnicn when set indicates that the
terminal is a certain state or that a certain action 1s to

be taken. For example, when zoom is to be turned on, the flag
WANTZM is set in the variaple GFLGSS.

FAST RAM VARIABLES

GFLGS1==Graphics Flags

MOVE = 1 => MOVE PEN WITHOUT DRAWING VECTOR
AVINHB = 1 => ALPHA VIDEQ IHNIBITED
ACINHB = 1 => ALPHA CURSOR INHIBITED

GFLGS3==Graphics Flags
WANTGC = 1 => USER WANTS GRAPHICS CURSOK TURNED ON
WANTRB = 1 => USEK WANTS RUBBRER BAND LINE GN

GFLGS5==Graphics Flags
NANTZM = 1 => USER WANTS Z0OOM TURNED ON

13255

13255~

2648A Microcode Listing Rev

GFLGSb==Graphics Flags
GTEXT =1 => GRKAPHICS TEXT MODE TURNED ON
SLANT =1 => SLANT GRAPHICS TEXT

TKFLGS~~Graphics Flags

UNSCLD = 1 => UNSCALED TrK MODE ON
SCLD = 1 => SCALED TEK MODE ON
SUPCHR =1 => ECHO SUPPRESS TURNED ON

XCURR, XCURR+1, YCURR, YCURR+1=-16 bit signed value of the
current pen position.

CURCD=~-Flags indicatina whether the current pen position is
within the clipping boundrjes or not.

LTXMIN = 1 => X COORD IS LESS THAN MINIMUM ALLOWABLE
GTXMAX = 1 => X COORD IS GREATER THAN MAXIMUM ALLOWABLE
LTYMIN = 1 => Y COORD IS LESS THAN MINIMUmM ALLOWABLE
GTYMAX = 1 => Y CUORD IS GREATER THAN MAXIMUM ALLOWABLE

XMIN, XMIN+1l==Minimum
XMAX, XMAX+1==maximum
YMIN, YMIN+l==Minimum
YMAX, YMAX+l==Maximum

clipping value (see Section 5.1.2).
clippina value.
clipping value,
clipping value.

o 5 <

CURMOD==Current vector drawing mode (see Section 5.1.4).,
CURPAT==Current dot=dash pattern.
SCALE==Current pattern scale factor,

CURGCX, CURGCX+1, CURGCY, CURGCY+1==-Current graphics cursor
position.

PRMBUF==-16 byte buffer for storing incoming grapnics
parameters,

DISPLAY RAM
MAG=~-Current zoom magnification (0-15),

ZX, 2Zx+1, ZY, ZY+1=-=Current coordinates of center of zoomed
Area.,

NUMBUF==132 character buffer used for graphics text and
messages (also equated as LBLBUF).

900106/15
04-17=78

13255

13255~

2648A Microcode Listing Rev

TXMAG==Current graphics text size (0=7).
TXANG==Current graphics text orientation (0-3),
TXORG==Current graphics text origin (0=-8).

APFLGS~-=-Autoplot flags
APIP = 1 => AUTOPLOT CHARACTER SCAN IS TURNED ON

APFLG2=-Autoplot flags
APMUON = 1 => AUTOPLOT MENU IS TURNED ON

AVAILABLE MEMORY
The following memory locatjons are available for use:

1. Fast RAM between 110340p and 110377B (32 bytes).
2. Fast RAM between 110100R and 110120B (15 bytes).
3, Display RAM between 173777B and 1742158 (142 bytes).
4, Display RAM between 175711B and 175722B (10 bytes).

GRAPHICS ROUTINES

This section lists some of the important routines used to
control araphics functions, A brief description of the
purpose of the routine, the symbolic label used to address
it, and any reaisters used for passing parameters are given,
Unless specified otherwise, registers not listed are assumed
to be destroyed,

Some of the routines exit through GEXIT. This routine tests
the escape seaquence character used to invoke the character for
upper or lower case. If upper case, the escape sequence i's
terminated through ESCEND. TO prevent the range tables from
being changed by ESCEND, if a routine that exits through GEXIT
is called, a lower case character should be stored in the
location ZCHAR (177610B).

90010/16
04-17=78

5.1 VECTOR ROUTINES

13255 13255-900106/17
2648A Microcode Listing Rev 04-17-78
5.1.1 DRAWING VECTORS

VECTOR=-=DRAW VECTOR OR CHANGE CURRENT PEN POSITION WITHOUT
DRAWING

ENTRY XNFW, XNEW+1
YNEW, YNEW+1
XCURR, XCURR+1
YCURR, YCURR+1

NEw X COORDINATE
NEW Y COORDINATE
CURRENT PEN X COORDINATE
CURRENT PEN Y COORDINATE

GFLGS(MOVE) = 0 => DPAW VECTOR FROM XCURR,YCURR TO
XNEW, YNEW
GFLGS(MOVE) = 1 => MOVE PEN TO XNEW, YNEW WITHOUT

DRAWIKG

CURRENT DOT-DASH PATTERN AND SCALE

CURPAT, SCALE

CURMOD CURRENT DRAWING MODE

The X and Y values are 16 bit signed (2°s complement) values.
They can be outside the range of the visible screen (0 to 719
for X, 0 to 359 for Y), as the routine tests to see if they
are in bounds or not. 1f not, only the portion of the vector
that is on screen, if any, is drawn, This process is called
clipping, 1t is necessary to use this routine to move the pen
without drawing so that it can be determined whether the new
coordinates are on screen or not, and set the flags in CURCD
accordingly.

The dot-dash pattern and drawing mode used when dgenerating the
vector can be chanaged by the routines described later in this
section.

5.1.2 CHANGING THE CLIP LIMITS

VECTNOR only draws the portion of the vector within a clipping
region. It iIs possible to change this region so that an area
smaller than the normal 0-719 X, 0~359 Y is used. This is done
when autoplot is running, The new limits are stored as the 2°s
complement of the desired 16 bit value in the following
locations:

13255

2648A Microcode Listing

XMIN,XMIN+]
YMIN,YMIN+1
XMAX , XMAX+1
YMAX,YMAX+1

- Lower
- Lower
- Upper
- poer

13255-90010/18
Rev 04~-17-78

left X coordinate of area (normally 0).
left Y coordinate of area (normally 0).
right X coordinate of area (normally =719).
right Y coordinate of area (normally =359).

After the clip limits have been changed, the routine HRD2
should be called to update the out-of=-bounds flags, as the
current pen position may now be outside (or inside) the
gion. The normal clipping 1limits can be set by

clipoing re
calling HRD

1.

A discussion of clipping can be found in the book "PRINCIPLES
OF INTERACTIVE GRAPHICS", by Mewman and Sproull. The
algorithm used is descriped in the paper "A CLIPPING DIVIDER",
AFIPS 1968 Fall Joint Compuyter Conference, Vol. 33, Part 1,

pages 765=7

CHANGING LI

75.

NE TYPE

SETLN1==CHANGE LINE TYPE

ENTRY

O

-w N - O >

[« |

NEW LINE
SOLID

TYPE

USER DEFINED DOT=DASH
USER DEFINED AREA SHADING

= PREDEFINED DOT~DASH
POINT PLOT

This routine changes the pattern used when drawing vectors.
The value of the predefineq patterns is defined by the table
LINETB. The simplest way to generate user-defined patterns is
by sending an image of the aopropriate escape seguence through

CHINT.

CHANGING DRAWING MODE

SETMD1=-=SET

ENTRY

L L T T T LI |

A
0
1
2
3
4

DRAWING

MODE

NEW DRAWING MODFE
DO NOTHTNG

CLEAR
SET

COMPLEMENT
JAM PATTERN

13255

13255-

2648A “icrocode Listing Rev

This routine changes the way the image memory is modified
when vectors are drawn., Do nothing mode leaves the image
memory unchanged, essentially a no-op. It is useful only
when reading the image memory. Set, clear and complement
perform the aporopriate operation only if the pattern bit
which is to be drawn is a “1°, rhat is, if a solid vector
is being arawn (all pattern bits on) then each bit in the
vector would be set, cleared, or complemented, If the
pAattern had only every other bit on (a dotted 1line) tnen
only every other bit of the vector would cause the image
memory to be modified. wWhen set, clear, or complement mode
is selected, a3 ‘0’ in the pattern does not modify the imaaqe
memory at all. Jam pattern mode cooies the pattern directly
into the image memory. A ‘1‘ in the pattern causes the
memory bit to be set, and a ‘0’ causes the memory bit to

be cleared.,

DISPLAY CONTROL
CLEARING/SETTING THE IMAGE MEMORY

GCLR1==-CLEAR THE IMAGE MEMQRY
GSET1=-=-SET THE IMAGE MEMORY

ENTRY DON°T CARE

These routines write 0°s and 1°s, respectively, into the

image memory. They operate as the image memory is being

read to display the graphics image., Conseguently, it takes
only one frame time (approximately 16 milliseconds) to write
the entire memory. Wwhen the display is zoomed, only a portion
of the memory is read, so that only that part beinag displayed
(approximately) is written, More than is being displayed may
be cleared while zoomed since the memory can only be read 16
bits at a time. 1If the zoom location starts or ends in the
middle of a 16 bit word, the entire word will be written,

GRAPHICS VIDEQO ON/OFF

GVON1=-=-TURN GRAPHICS VIDEO ON
GVOFF1=-~-TURN GRAPHICS VIDEN OFF

ENTRY DON’T CARE

These routines enable and disable the araphics video signal
generated by the graphics hardware. A hardware gate prevents
the graphics signal from reaching the terminals display
subsystem, Consequently, the image memory is unchanaed.

90010/19
04-17-78

13255 13255=-90010/20
2648A Microcode Listing Rev 04=-17-78

With the graphics video otf, the graphics hardware does not
nave to read the image memory to generate the video signal,
#hich it normally spends 75% of its time doing, and can
instead soend more time drawing vectors. With tne video off,
the vector generator canh draw vectors approximately 4 times
faster than with it on. Tnis difference is not normally
noticeaple for sinale vectors, since the firmware overhead

is the limiting factor. Area filling operations make better
use of this feature.

5.2.3 ALPHANUMERIC VIDEO UN/OFF

ANVON1=-=TURN ALPHANUMERIC VIDEO ON
ANVOF1==-TURN ALPHANUMERIC VIDEQ OFF

ENTRY DON‘T CARE

These routines enable and inhibit the alpha video without
erasing the aloha memory. The display is inhibited by
inserting an ‘END OF PAGE’ code as the first character of
the display. The hardware fills the rest of the display
with blanks.

5.2.4 GRAPHICS CURSOR ON/UFF

TGCON1=-=-TURN GRAPHIC CURSUR ON
TGCOF1==1URN GRAPHIC CURSOR OFF

ENTRY DON‘T CARE

The rubber band line is also turned off when the cursor is
turned off, 1f the cursor is turned on wnhen graphics text
mode is on, it is moved to where the next character would be
drawn, sO that it can act as a text cursor.

5.2.5 ALPHA CURSOR ON/OFF

ACON1==-TURN ALPHA CURSOR ON
ACOFF=<TURN ALPHA CURSOR QOFF

13255 13255=-90010/21
2648A Microcode Listing Rev 04=-17-78
ENTRY DONT CARE
EXIT ACOFF EXITS THROUGH GEXIT
The alpha cursor is inhipbited by telling the hardware to put it
off screen, Flags prevent routines which update the cursor
position from sending its true location to the hardware. Since
the cursor 1is updated after every character is put on the
screen, these flags must be examined for every character.
Consequently, the terminal cannot put characters on the screen
as fast as the 2645,
5.2.6 Z00M ON/QFF
ZON1-=TURN ZOOM ON
ZOFF1=-=-TURN ZGOM OFF
ENTRY DON’T CARE
when zoom is turned on, the region centered about the graphics
cursor position is zoomed by the current zoom size.
5.2.7 SET Z00M SIZE
NWS1ZE=-=SET NEW Z0QOM SI1ZE
ENTRY A = Z00M SIZE (0=15)
The zoom size can be set while zoom is either on or otf,
5.2.8 SETTING CURSGR OR Z0OOM POSITION

GCP1=-=-SET GRAPHICS CURSUR POSITION
ZP3S1=-SET ZOOM POSITION

ENTRY PRMBUF, PRMRBUF+1 = 16 BIT X COOURDINATE
PRMBUF+2, PRMBUF+3 = 16 BIT Y COORDINATE

13255 13255=-

2648A Microcode Listina Rev
with either routine, the graphics cursor is moved to the
specified point, If a coordinate is out of hounds, the
value will be set to the magximum or minimum allowable
value. The zoom position specified will be the center of
the zoom area. Changing the cursor position while zoomed
will not chance the zoom area until the cursor reaches the
edge of the area. Then the cursor ‘drags’ the zoom area,
so that the cursor would be at the edge of the region, not
the middle,

5.2.9 RUBBER BAND LINE QOuH/OFF
TRBON1==TURN RUBBER BAND LINE ON
TRBROF1-=TURN RUBBER BAND LINE CFF
ENTRY DON‘’T CARE
The graphics cursor is also turned on when the rubber band
line is enabled,

5.3 GRAPHICS TEXT

5.3.1 GRAPHICS TEXT MODE ON/OFF

GTXON1==TURN GRAPHICS TEXT MJDE ON
GTXOF1=-=TURN GRAPHICS TEXT MODE QFF

ENTRY DON’T CARE

When graphics text mode is on all displavable alpnanumeric
characters are drawn in the graphics memory using the current
size, orientation, slant, and origin. when the origin is set
to left justify, each character 1s drawn at tne current pen
position, which is updated after each character. If right
justify or center is selected, an entire line of characters is
puffered until CP or LF is received, at which point the line
is justified or centered about the current pen position. The
pen position is updated by the CR and LF, so that succeedina
lines will be justified about the proper point.

I1f the graphics cursor is on when grapnics text mode is turned
on, characters are drawn at the cursor position, the assumption
peing that the cursor is beina used as a text cursor.

90010/22
04=-17-78

13255

13255~

2648A Microcode Listing Rev

SET GREPHICS TEXT SIZE

TXSIZ1==SET TEXT SIZE

ENTRY A = SIZE (0-7)

The size can be set while graphics text is on or off.
SET GRAPHICS TEXT ORIENTATION

ANGLE==SET TEXT ORIENTATION

ENTRY A = ANGLE (0~3)

This routine changes the djirectiorn in which characters are
drawn. The parameter values have the following effect:

0 => Normal upright characters

1 => Rotate characters 90 degrees counter=clockwise

2 => Rotate characters 180 degrees counter=clockwise (upside
down)

3 => Rotate characters 270 dedrees counter=clockwise.

GRAPHICS TEXT SLANT ON/OFF

SLNTON==-TURN SLANT ON
SLNTOF=-=-TURN SLANT OFF

ENTRY DON‘T CARE

EXIT BOTH EXIT THROUGH GEXIT

90010723
04-17-78

13255 13255=90010/24
2648A Microcode Listing Rev 04=-17-78
5.3.5 SET GRAPHICS TEXT ORIGIN
LORG1==-SET ORIGIN
ENTRY A = ORIGIN (0=8)
The text origin is a single value which determines if a
string of graphics text is to be left Jjustified, right
justified, or centered, using either the bottom, middle, or
top of the character cell as the paseline. The relation
petween the parameter value and resultinag string is as
follows:
2 5 8
RERRA Q@ere QRQERR RRQEW Rr@RE
@ B e g @] R @
@ G @ @ Q R @
1 RPAgRrR k@M @ 4 8 R @ae 7
] @ R @ Q 2] @ @
@ @ @ R @ a e @
@ QA e’ RRRRE QEReE prERe
0 3 6
Tne normal setting is 0, left justified at the bottom of the
character cell. 2, 5, and 8 imply putting the string below
the specified point. 3, 4, and 5 cause centering, while 6, 7,
and 8 cause right justification. When centering or left
justifying, the cnaracters are buffered so that the number of
cnaracters to be drawn, and from tnat the starting point of
the string, can be determined.
This routine works as expected when the orientation is changed
from normal upriaht characters.
5.3.6 PRINT CHARACTER RUFFER

SNDBUF==PRINT CONTENTS OF BUFFER IN GRAPHICS

ENTRY HL
A

POINTER TO FIRST CHARACTER OF BUFFER
NUMBER OF CHARACTERS

EXIT XCURR, YCURR UPDATED

The buffer of characters is Arawn in the graphics memory

using the current size, orientation, slant, and origin.
Graphics text mode need not be turned on. The first character
i{s drasn at the current pen position, which is updatea after
every character. Control codes in the buffer are ianored.

13255

13255=-90010/25

20648A Microcode Listing Rev 04-17-78

5.3.7

CHARACTER IMAGES

Graphics characters are drawn as a series of adjacent vectors,
each with a particular dot-dash pattern. These patterns are
stored in a table called CHRTAB. Each character has 10 pattern
bytes associated with it, The basic character cell is 7 bits
wide by 10 pbits high, 0Only 7 ot the 8 pattern bits are used,
Larger characters are drawn by stretching the basic cell in
both directions, To stretch it horizontally (assuming upright
characters) the vector length and the pattern scale are
multiplied by the desired size, The cell is stretched vert=
ically by repeating the same pattern the proper number of
times. A 4 X character, for example, is drawn with vectors

28 bits wide instead of 7, with a pattern prescale of 4 instead
of 1. Each vector is repeated 4 times, so that the cell is

now 28 X 40 instead of 7 X 10.

By changing the patterns in CHRTAB, the graphics character

set can be redefined. The 10 pattern bytes are stored

in ‘too-down’ order. The pattern definition includes blank
dots at the top, bottom angd sides of the character used for
inter-character spacing. FoOr example, the character capital A
is defined as follows:

CODE RESULTING CHARACTER

DB 0000,0709,1040,1040,1049Q cocosee 000

DB 1740,1040,1040,0000,0000 «.@RA,. 070
.@...‘;d- 104
Reoe@, 104

XL 104
.REREA, 174
«B.0.R, 104
PRI 104
cccccen 000
ececccne 000

FLOATING POINT ROUTINES

The floating point routines used by autoplot are those
available through the Intel users library, reference
numbers BC1 and BC2. The following description is based
largely on the Intel documentation, with the exception of
INP, the routines are unchanged.

13255 13255=-90010/26
2648A Microcode Listing Rev 04=-17-78

BC1 contains the floating point arithmetic routines only.
BRC2 contains the BCD and fixed point to floating point, and
vice versa, conversion routines. The floating point repre-
sentation uses 4 consecutive bytes to store a sinale value.
24 bits are used as the binary repesentation of the number,
while 8 bits are used for the exponent. Note that the
binary representation will cause round off problems. The
largest number that can be represented is approximately

3,6 X 10*¥*38, The smallest is aoproximately 2.7 X 10%%=39,
The floatina point operations avallable are:

1. LOD==-l0ad a value from memory into tne floating point
accumulator.
ENTRY HL = pointer to 4 byte value to be loaded.

2. STR-=-store into memory the value in the floating point
accumulator.,
ENTRY HL = pointer to 4 byte store area,

3. ADD-~add a specified value to the floatina point
accumulator.
ENTRY HL = pointer to 4 byte value to be added.
EXIT Floating point accumulator contains result,
processor flags set as approcriate (Z, WZ, M, P)

4, SUB--subtract a specified value from the F,P.A.
ENTRY HL = pointer to 4 byte value to be subtracted.
EXIT same as ADD

S, MUL--multiply F.P.A. by specified value.
ENTRY HL = pointer to 4 byte value to be multiplied.
EXIT same as ADD

6. DIV==divide F.P.A. by specified value
ENTRY HL = pointer to divisor
EXIT same as ADD
7. TST=--set the processor flags to indicate the state of the
F.P.A.
EXIT P, M, Z, NZ set as appropriate
8. CHS==~change the sian of the F.P.A.
9, ABS-=-get the absolute value of the F.P.A.

10. INIT==an initializing routine that must be called (once
only) before usina DIV or MUL.

13255 13255=-90010/27
26487 Microcode Listing Rev 04=17-78

The conversion routines accept either strings or a fixed
point format for conversion to floating point. The fixed
point format uses 4 bytes to represent a 32 pit, signed (2°s
complement) number, The position of the binary voint within
the number is qiven by a binary scaling factor. This scaling
factor is only used by the formatting rouvtines. A value of

0 indicates that the binary pnoint is immediately to the left
of the most significant pit. A value of 32 indicates that the
binary point is immediately to the right of the least signit-
icant oit. The scaling factor can have a value from =128%
(200B) to +127 (1778).

Character strings for inout consist of the ASCII representation
for each character. 7This is the only change to the original
Intel package, which used 5 different format for input strings.
The following characters are valid in an input strinq:

Digits (0-9) 60B - 718
Space 408

+ 53R

- S5B

. 568

E 1258

Character strings on input may not cross a 256 byte boundary.
An input strinag is terminated by the first character that
departs from the specified format.

The output routine generates 2 possible formats, each 13
characters lonad. The formagt used depends on the magnitude

of the value, Zero and values between .1000000 and

9999999, are represented by a space or minus sign, seven
decimal digits, an appropriately positioned decimal point, and
4 spaces,

Magnitudes out of the above range are reoresented by a space
or minus sign, a value between 1.000000 and 9.,999999, a
capital E, and a signed, two digit power of 10,

The output characters are not ASCII, but can be converted
to ASCII by adding 60B to each.

CHAR REPRESENTATTION ON OUTPUT
Digits (0-9) 0B = 11R

Space 360B

+ 3738

- 3758

. 3768
E 0258

13255 13255=90010/28
2648A Microcode Listing Rev 04-17-78

Fxamples of input and output strings are as follows:

INPUT OUTPUT
3.141593 3.141593
-,0070000000001 -1,000000E~-13
+1,6E5 1600000,0

1.6 1.600000
123456789 1.234568E+08

The conversion routines are as follows:

1. FLT=-convert from fixed point to floating point.
ENTRY A,S8,C,D contain 32 bit signed fixed point value
(A = most significant byte, D = least significant)
E = binary scaling factor
EXIT Floating point accumulator contain floating point
reporesentation,

2, FIX-=-convert from floating point to fixed point.
ENTRY E = binary scaling factor
Floating point accumulator contains value
EXIT A,B,C,D contain fixed point value
(A = most significant byte, D = least significant)

3., INP==convert from ASCI1 string to floating point
ENTRY HL = pointer to start of string
(string is in true ASCI1 representation, and
cannot cross a 256 byte boundry)
EXIT Floating point accumulator contains value

4., OU~--convert from floatino point to string

ENTRY HL = pointer to 13 byte puffer (cannot cross
256 byte pboundry)
Floating point accumulator contains value to be
convertead

EXIT BCD representation of F.P.A. stored in buffer
(must add 60B to each character to convert to
ASCII)

5.5 CHANGING THE GRAPHICS KEYPAD

The araphics keypad returns key codes in the range 2078 to
2278B. The graphics routine KBFUNC uses the keycode as the
index to a table, and branches to the address stored for key
code it is called with. By changing the address stored in the
table, it is very easy to redefine the graphics keys to
perform any function desired. E£ach key returns two kKey codes,
depending on wnetner the shift key is held down or not. The
codes returned by each key are as follows:

13255

2648A Microcode Listing

GRAPHICS KEYPAD

SHIFT KEY UpP

| [|

1223B1 INONEI
| I i
| I |
INONE| 1207BI
| [|
| I !
121381 INONEI
i (I |
| |
| NONE |

Note that the
Key code,

GRAPHICS KEYPAD

SHIFT KEY PRESSED

12108 | 122481 1211B}
| | | (| |
| I | I |
INONE | 1220B1 121781
| | | (I |
| | | I |
12148 121581 122681
| | | (| |
| | | l
1212R 1 | 2228 !
| | | i

araphics cursor keys do not

| |
121681
! 1

| |
122181

return any

There are actually two taples used by KBFUNC. The
second is used when display functions is turned on,
and contains the locations of routines used to

generate an escape sequence for each key.

taple is called KYBDTB,

is called DFTAB.

DELETING AUTOPLOT

Many applications will regquire more code space than is
available with the standard araphics code.

The normal
and the display functions table

consequently,

a version of the code has been generated from which

autoplot has pbeen deleted.

ROM space, 64

Autoplot was deleted from the graphics code only.
modules still use entry vectors which used to jump to

autoplot routines. To delete all traces of autoplot,

This frees almost 6K bytes of

13255=90010/29
Rev 04-17-78

bytes of fast RAM, and approximately 700 bytes
of display memory.

Otner

would be necessary to delete all references in other modules

to the entry vectors.

immediately,

This has not been done,
entry vectors jump to dummy routines which simply return
some after setting the processor flags.

Instead,

the

13255

13255-90010/30

2648A Microcode Listing Rev 04-17-78

Other routines could be substituted for these dummy routines,
to use the existing hooks for alternate functions. The
following section exvlains the purpose of each autoplot
function called from an entry vector.
ENTRY VECTORS
TURN AUTOPLOT MENU COFF
APMUOF=-- TURN THE AUTOPLOT MENU OFF
ENTRY DCN’T CARE
This routine is called to insure that the autoplot menu is
off. Tt calls ESCEND, conrsequently the current range table
will be reset.
APSCAN=-=SCAN INPUT DATA FOR AUTOPLOT
ENTRY DCHAR CONTAINS InPUT CHARACTER
EXIT ALL REGISTERS DESTROYED
this routine is called from the cursor advance routine CURADV
in the main code whenever a character is put on the screen
and autoplot is on, Numerical values are built up fron
sinagle characters, and wnen numbers in the proper data columns
are complete, a data point is olotted. Only displavable
characters arrive at this routine.
MUCHK==SEE IF AUTOPLOT MENU 1S UP
ENTRY DGN’T CARE
EXIT Z => MENU NOT UP

NZ => MENU OM SCREEN

A DESTROYED
This routine is called to see if the autoplot menu is beina
displayed., FExamples of main code routines that use it are
ESCEND, to determine which range table to use, and GETDSP,
to see if autoplot menu is to be reaa from the disolay memorv.
INSFIX==COUNT WUMBFR OF CHARACTERS INSERTED
ENTRY DON’T CARE

EXIT ALL REGISTERS SAVED
LOCATION “INSERT® UPDATED

13255 13255=-90010/31
2648A Microcode Listing Rev 04=-17-78

This routine is called only from the main code character
display routine DISPLA, and is used by autoplot to keep
track of the number of display enhancement codes inserted
in a line. Autoplot uses this count to properly highlight
numerical values in inverse video as the data values are
scanned,

APCHK==-AUTOPLOT KEYBOARD INPUT
ENTRY C = KEYBOARD CHARACTER
EXLIT BC SAVED, ALL OTHERS DESTROYED

This routine is called from LOCLIN (main code) when auto-

nlot 1s on and a Keyboard entry is made. 1If any data point
has have been plotted, autoplot is turned off., If no points
have been plotted, the character is to be ignored by autoplot,.
This is done by incrementing an ‘ianore’ count, so that the
character will not be processed by the autoplot scan routine
wnen it is added to the display.

APCR~=-PROCESS CARRIAGE RETURN WHILE AUTOPLOT ON
ENTRY DON‘T CARE

EXIT ALL REGISTERS DESTROYED
EXITS THROUGH MAIN CODE ROUTINE °CRRET®

This routine is called directly from the ranage tables, and
causes a normal carriage return to pe executed when it is
finished., Autoplot uses a carriage return to terminate any
numerical value beina built.

MUTB~-ADDRESS OF MEN! RANGE TABLE

The address of the autoplot menu’s range table is used by the

main code routine ESCEND, Wwhen an escape seguence terminates,
ESCEND loads the appropriate range table depending on whether

the normal display, the soft key display, or the autoplot menu
is up.

GGTEST=--TEST FOR GRAPHICS DATA GET

ENTRY DON‘T CARE

EXIT A DESTROYED
NZ => GET GRAPHICS DATA
Z => GET ALPHA DATA

13255 13255-90010/32

2648A Microcode Listing Rev 04-17-78

N—
This is called by the main code routines GETDSP and INITDG
(also some I/0 routines) to determine which display data 1is
to be used when reading the display memory. If the autoplot
menu is up, the flags indicate that a graphics ‘aget’ should
be performed instead of the normal operation.
GGINIT==INITIALIZE FOR GRAPHICS GET
ENTRY DON‘T CARE
EXIT => GRAPHICS DATA AVAILABLE

NZ => NO GRAPHICS DATA

This routine is called from INITDG if the data from tnhe auto-
plot menu is to be read,
GRGET=-GET GRAPHICS DATA
ENTRY DON’T CARE
EXIT NC => CHAR AVAILABLE

~ A => CHAR

CY => N0 CHAKACTER
M => END OF DISPLAY
P,NZ => END OF LINE

This routine returns the data stored in the autoplot menu

one character at a time. Appropriate escape sequences for each
menu field are generated. This routine is called from GETDSP,
whenever the menu is recorded or copied to a printer, or when
the Enter key is pressed while the menu is up.

HOME==+H0OME THE AUTOPLOT ¥ENU CURSOR

ENTRY DON‘T CARE

This routine puts the cursor in the first column of the
first menu field.

APLF==PROCESS LINEFEED WHILF IN AUTOPLOT

ENTRY DON‘T CARE

EXIT EXITS THROUGH MAIN CUDE ROUTINE °‘LNFEED®

Similar to APCR, this routjne is called directly fronm the

main code range tables. It is used to update the ‘SKIP LINES’
count., It causes a normal line feed to be executed.

13255

13255~

2648A Microcode Listing rRev

RAM USED BY AUTOPLOT
FAST RAM

dhen autoplot is aeleted, 64 pbytes of fast ram become
available, from 110000B to 110100B. This ram is used
only by the floating point routines.

DISPLAY MEMORY

when autoplot is deleted, 768 bytes of display memory is
freed. As seen from the address map in Figure 2, the
display upper limit is normally set to 173777B. wWith

the autoplot menu and variaple store deleted, it is possiple
to raise the display 1limit (DSPLIM) to 175377B. This can
only be done in the main code. 1If the DSPLIM eguate is not
changed, the free space will be unavailable to the display,
but can be used for other varliable storage,

VARIABLES USED BY OTHER MODULES

The main code reads the autoplot variable APFLGS to
determine if autoplot is on or not. Using that location

for something else will not cause problems (it is read only)
as long as there are dummy routines for the autoplot entry
vectors (which may be inadvertantly called).

Fast ram variables must not be moved around if the floatina
point locations are deleted, since all modules reference
variables in this area.

GRAPHICS KEYPAD

Three Keys on the graphics keypad are used for autoplot
functions. With autoplot deleted, these Keys can be used
to control other functions merely by changing the jump
addresses associated with the following keyv codes,

KEY LABEL CODE FUNCTTON
AUTOPLOT MENU 2228 TOGGLE AUTOPLOT MENU DISPLAY

AUTOPLOT 2238 START AUTOPLOT SCANMN
AXES ’ 2248 DRAW AUTOPLOT AXES

90010/33
04=-17-~78

13255 13255-
2648A Microcode Listing Rev
7.0 CONTRUOLLING THE GRAPHICS HARDWARE

This section describes how the microprocessor controls the
graphics hardware. Further information on how the hardware
works can be obtained from manual part number 13255-91125,
Graphics M=Controller Module, and manual part nunber
13255=91126, Grachics Display Module.

7.1 HARDWARE GVERVIEW

The primary functions of the graphics hardware are as follows:

1. Reading the image memory in sync with the alphanumeric
display subsystem (in either normal or zoom mode) to
generate the graphics display.

. Writing vectors into the image memory.

. Clearing or setting the image memory.

. Drawing the graphics cursor.

. Performing self test.,

N & Wi

7.1.1 IMAGE MEMORY ORGANTZATION

The graphics image memory contains one bit for every point on
the 720 by 360 display. If this memory were organized as a two
-dimensional X,Y array, it would reguire 10 bits (X) by 9 bits
(Y), or 2*¥19 bits to store the image. By assigning each image
bit a numper, it is possible to store the image as a one dimen-
sional linear 1list 259,200 bits (720 * 360) lona. A memory
size of 2%%18 (262,144) pits is then sufficient, reducing the
memory requirement by half,

This linear list is organized as 16,200 16 bit words. FEach ot
the 16 16K ram chips contritutes one bit to each word. Points
adjacent on the screen are not necessarily adjacent in
the memory. There are & possible memory displacements
petween adjacent screen pojints, Successive memory addresses
corresprond to screen dots along a horizontal line.
Conseguently, a complete scan line (720 dots) can pe displayed
by reading 45 contiguous words from the memory. A dot directly
above another on the screen will be offset by 720 bits, one
scan line, in the memory. Note that moving upward on the
screen corresponds to a negative displacement. Since the ras-
ter sweeps top to bottom, the raster origin is taken to be the
upper left hand corner of the screen, with increasing Y point-
ing downward. An X,Y coordinate is converted to a bit address
by the relation:

Bit Address = (359=Y)*%720 + X
The Y value is subtracted from 359 to compensate for the
shifted origin.

90010/34
04-17-78

13255

13255~

2648A Microcode Listing Rev

VECTOR GEWERATION

Vectors are generated by computing the memory addresses of the
points on the screen which most closely aprroximate tne line
petween specified endpoints. An iterative algorithm is used,
where the memory address for a aiven point is computed by add=-
ing a memory displacement to the address of the oprevious point.
For a vector in a agiven octant, there are only two possible
displacements to choose from . The siagn of a discriminant
value Aetermines which of the two to use at each point.

After the inital values have been computed, the algorithm

uses only addition and subtraction.

The initial values for the algorithm are computed by the micro-
processor. These values include the initial starting point,
converted from X,Y coordinates to an 18 bit memory address, the
two memory displacements, the inital discriminant value, two
discriminant increments, and the numpber of dots to be drawn.
These values are transferred to registers on the graphics con=-
troller, which then executes the iterative alagorithm,

VECTOR ALGORITHM

The description of the algorithm assumes a vector between the
points (XSTART,YSTART) and (XFINISH,YFINISH) with absolute
slope less than 45 degrees, For vectors of absolute slope
greater than 45 degrees, Delta X and Delta Y should be
swapoed when computing D, D1, D2, and DC.

STEP 1, Compute the initia]l] oarameters, and transfer to the
graphics controller.

Delta X = XFINISH - XSTART.

Delta Y = YFINISH - YSTART.

Initial Memory Address MA = 720¥%(359~YSTART)+XSTART.
Look up the memory disolacements M1, M2 in a table
using the octant (determined by Delta X and Delta Y)
as a key.

Initial Discriminant D = =~-iIDelta X| + 2|Delta YI
Discriminant increment D1 = 2|Delta YI

Discriminant increment D2 = 2iDelta Y| =~ 2iDelta X|
Dot Count DC = =(lDelta X| + 1)

STEP 2. Write the bit at Memory Address MA,

STEP 3. Set NDC = DC + 1
If the Dot Count is 0, then stop, the vector is
finished. (Note that the Dot Count is a negative value
which is incremented by the hardware, NOT a positive
value which is decremented.)

90010735
04-17=178

13255 13255~
2648A Microcode Listing Rev

STEP 4. If the Discriminant D is negative,
set D = D + D1 (update the Discriminant)
set MA = MA + M1 (update the Memory Address)
GUTO Step 2

1f the Discriminant D is positive,

set D = D + D2 (ypdate the Discriminant)
set MA = MA + M2 (upn4date the Memory Address)
GOTO Step 2

Further information on the derivation of the vector gener-

ation algoritnm can pe found in these sources:

1. "Algorithm For Computer Control ot a Digital Plotter",
J.E. Bresenham, I3M Systems Journal, Vol. 4, no. 1, 1965,
25-300

2. "A Scan Conversion Algorithm wWith Reduced Storage Require~-
ments", B.w. Jordan and R.C, Barrett, CACM, Vol.l6, No. 11,
Nov 1973, 681-682.

3. Hewlett=Packara Journal, Jan, 1978.

7.1.4 ARCHITECTURE

The hardware which implements the above algorithm is manip=
ulated by the microprocessor throuah tne use of 4 B=pbit wide
registers, 2 strobes, and 16 12-bit wide buffer locations.

The overall method for controlling vector generation, cursor
qgeneration, zoom, and self test is to loaa the prooer nara<
meters into the buffer, then set flags in one of the registers
to indicate what the buffer values are for. All register and
puffer locations are loaded through normal 8080 memory refer=
ence instructions. A section of the memory address space is
reserved for 1/0 addressing.

Since buffer locations are 12 pits wide, 2 separate 8 bit
stores must be made to transfer all 12 bits. The address for
loading tne 4 upper bits is always one greater than that for
the lower 8 bits. Consequently, the °‘Store H and L Direct’
instruction can be used to send the L register into the 8 lower
pits, and the 4 LSB of the H register into the 4 uyoper bits of
the buffer location. Certain pbuffer locations use only one
bit as a flaa. The flag is set by storing 10B into the upper
4 bits of the buffer location. This corresponds to the MSB of
the 12 bit value. The flag is cleared by storina 0, Tnhe
lower 8 bits are ianored.

Memory addresses and increments, as explained in Section 7.1.1
are 18 bits wide., Consequently, 2 buffer locations are used

to store these values. 12 bits are stored in the first buffer,
and the remaining 6 bhits are stored in the 8 lower pits of the
second. The upper 4 bits of the second buffer are unused,

90010/36
04=-17=78

13255

13255~

2648A Microcode Listing Rev

Bits 4 ana 8 of all I/0 addresses are swapped by the processor
poard. Logic analyzers which monitor the terminal‘’s bus will
not see the same addresses as used by tne processor.

when transferring data to the 8-bit wide reqgisters, ALL flags
in the register are set to the values transfered, It is

not nossible to change just one of the flags in a register.
Conseguently, the flads used by tnhe ‘mode’ and “flags’
registers (described later in this section) are stored in RA#™
by the B8080. Wwhen one bit needs to be changed, the current
state of all bits is loaded, the appropriate bit is altered,
then all are sent to the hardware.

ADDRESSES

The following table summarizes the registers, bufter locations
and strobes available to the 8080, The buffer value, such as
B(14) is the notation used by the graphics controller documen=-
tation., The symbolic name is that used in the firmware listing
to reference a specific address. If more than one symbol is
given for an address, the buffer location is used for different
purposes at different times,

HARDWARE USE ADDRESS SYMBOL USE

STATUS 104440B HWSTAT READ CONTROLLER STATUS
STROBES

HARD RESET STROBE 1045408 GRESET RESET CONTROLLER

RETRACE STROBE 1045418 VRESET RESET VERTICAL RETRACE FLAG
REGISTERS

FLAGS 1044408 HwFLGS LOAD FLAGS F1,F3,F4,F5

MODE 1045018 HCEJK LOAD DRAWING MODE

PATTERN 1045008 PATERN LOAD DOT=DASH PATTERN

PATTERN SCALE 1044418 SCALEK LOAD PATTERN SCALE FACTOR

90010737
04-17-78

13255 13255=~
2648A Microcode Listing Rev
BUFFER LNCATIORS
B(O) 104436B D1 DISCRIMINANT INCREMENT #1
GC1DC HORYIZONTAL CURSOR DOT CNT
B(1) 104434B D2 DISCRIMINANT INCREMENT #2
GC2DC VERTICAL CURSOR DOT CNT
8(2) 104432 M1 12 LSB MEMNRY INCREMENT #1
GC1LO 12 LSB HORIZ CURSOR ADDRESS
B(3) 1044308 SIGNM1 6 MSB MEMORY INCREMENT #1
GCIHI 6 MSR HORIZ CURSOR ADDRESS
B(4) 104426B vZ 12 LS8 MEMNRY INCREMENT #2
GC2LO 12 LSB VERT CURSNKR ADDRESS
B(S5) 1044248 SIGNM2 6 MSHB MEMORY INCREMENT #2
GC2HI 5 MSR VERT CURSOR ADDRESS
B(h) 104422B DC DOT COUNT
ZALO 12 LS8 z00o" ADDRESS
B(7) 1044208 INITID ITNITIAL DISCRIMINANT
ZAHI 6 MSB ZU0OM ADDRESS
1044218 MSBD 4 MSB OF DISCRIMINANT D
8(8) 104416R LS3wA 12 LSB OF VECTOR ADDRESS
B3(9) 1044145 MSAWA 6 MSB OF VECTOR ADDRESS
B(10) 1044136 SEULWA FLAG=-=-SELECT OLD/NEW VECTOR
ADDRESS (MSR OF B(10))
B(11) 1044108 7ZO0O0OMRC ZUOM REPEAT COQUNT
1044118 SLFTST FLAG==START SELF TEST
(MSB OF BR(11))
3(12) 104406E ZO00MWC Z0O0OM WwWORD COUNT
104407R CUNTST FLAG==CONTINUE SeELF TEST
(MSB OF B(12))
B(13) 1044048 DCNTRL ZOOM DISPLAY CONTROL BYTE
(8 BITS ONLY)
1044058 PRESHF Z00OM PRESHIFT (4 BITS ONLY)
B(14) 1044028 vDC VECTOR DRAWING DOT COUNT
B(15) 1044018 DRWDOT FLAG==-DRAW FIRST DOT OF
VECTOR (MSR 0OF 3(15))
T.2 HARDWARE STATUS

A read from the location 104440R returns 8 bits of status
from the graphics hardware.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
	SELF	RE=	BAD	BAD	BAD	BAD	
DATA	TEST	TKACE	PACK	PACK	PACK	PACK	BUSY
	FAIL ! FLAG						

- - T W - " W O P M T A P R T W ow W T W R MR ST MR ER W W

BUSY--when the controller has been loaded with vector, cursor,
or zoom parameters, and the apnrooriate flaads have been
set (F1 or F4, described later in this section) the
hardware is busy until the operation is completed., The
8080 cannot access anv buffer locations while this bit
is set.

90010/38
04=-17-78

13255 13255-90010/39
2648A Microcode Listing Rev 04=17=78

BAD PACK==-These 4 bits indicate wnhich of the 16 RA“ chips
failed if the self test flag is set during self
test (see Section 7.9).

RETRACE==This bit is set by the hardware at the beginning
of vertical retrace, which occurs once each frame.
It must pbe cleared by a strobe from the 8080 (Section
7.3).

SELF TEST FAIL=--when set, this bit indicates that a failure
occurred during self test (Section 7.9).

DATA=-#hen drawing a vector, the state of each memory bit in
the vector (before being altered) is stored here.
The last bit of the vector is therefore accessible.
By drawing vectors one dot long, it is possible to
read the state of every bit in the image memory
(Section 7.10),

7.3 STROBES

The two strobes used are generated by any write operation
to the indicated address, The data is ignored.

GRESET==The graphics controller is not reset by the power on
sianal generated by power on or a hard reset. Instead,
this strobe must be explicitly sent by the firmware to
initialize the graphics hardware.

VRESET=~This strobe clears the vertical retrace flaaq, which
Is set by the hardware,

1.4 REGISTERS
7.4.1 FLAGS REGISTER

Four flags are used to tell the controller what the parameters
in the buffer locations are to be used for.

BIT 4 BIT 3 BIT 1 BIT O
| | | | | | | |
| | | I FS 1 F4 | I F3 | F1
| | | | | | | |

Fl=-This flag is set to indicate that the buffer contains
either vector or cursor data. It initates vector gener-
ation. It is referenced by the eguate BUSY.

13255

13255-

2648A Microcode Listing Rev

F3=-=This flag is set to turn zoom mode on. (ZGOM)

F4==-Tnis flag is set to indicate that the buffer contains
new zoom parameters. New parameters must be loaded when
zoom is initially turned on, or when the zoom size or
position changes. (NEWZM)

F5==Tnis flag is set to indicate that the vecor data loaded
is to be used to draw a cursor. (DRWGC)

To draw a vector, the proper parameters are loaded (Section
7.6) and flag F1 is set. Flags F4 and F5 must be cleared,
Flag F3 will pe set if zoom mode is on.

To draw a cursor, the cursor parameters are loaded (Section
7.7) and both flags F1 and FS are set. Flag ¥4 must be
cleared, and flag F3 will pe set if zoom mode is on.

To turn zoom mode on, or to chanae zoom size or position,
the zoom parameters are loaded (Section 7,.,8) and flags
F3 and F4 are set. Flags rl1 and F5 must pe cleared.

Flags F1 and F4 are cleared when the vector or zoom para-
meters have been processed by the hardware., If either is
set, the ‘RUSY’ bit will be returned by the hardware status.
This BUSY flag must be tested before sending any parameters
to the hardware to insure that the previous operation has
been completed.

MODE REGISTER

The mode register controls tne way in which the image meniory
is modifiea when vectors are drawn. Bits can bhe set, cleared,
or complemented with or without a pattern.

BIT 5 BIT 4 RIT 3 RBIT 2 BIT 1 RIT O

| | | | | | ! | |
| ! IS I H I C I E I J I K |
| | | | | | | | |

FJK==The EJK bits control the drawing mode. whenever an
image memory bit is to he moaified, the omeration that
occurs is determined by the EJK (and pnossibly pattern)
bitse.

90010/40
04-17-78

13255

13255~

264872 Microcode Listing Rev

E J K OPERATION

0 0 0 Do nothing (leave memory unchanaed).

0 0 1 Clear the bit always.

0 1 0 Set the bit always.

0 1 1 Complement the bit always.

1 0 0 Copy the pattern bit (jam pattern).

1 0 1 Clear the bit if the pattern bit is
set, otherwise do nothing.

1 1 0 Set the bit if the pattern bit is
set, otherwise do notning,

1 1 1 Complement the bit if the pattern

bit is set, otherwise do nothing.

C-~-This bit, when set, initiates a clear or set memory
overation (Section 7.5),

H==This bit, when cleared, inhibits the graphics video output.
when set, the graphics video is turned on.

S==-This tit has two functions. bDuring self test (Section 7.9)
it is used as a sample against which every bit in the
memory is compared.

when this bit is cleared, the pattern and pattern scale
registers are preventea from changing, as they normally
do after each write operation. This is used to prevent
the cursor Or rubber band line from changina the state of
the pattern.

PATTERN AND PATTERN SCALE REGISTERS

These registers are used to generate dotted and dasned lines
and graphics text characters. An 8 pit prototype pattern is
loaded into the pattern register. Assuming a scale factor of
0, each time a dot is drawn the pattern is shifted. 1f the
drawing mode has enabled the pattern, the pattern bit is usea
to determine what is actually written into the memory. The
tfirst pattern dot used is the MSB (bit 7). w@hen the pattern
is shitted it is rotated to the left, so that bit 6 is used
next, then bit 5, and so on. If the drawing mode were set

to ‘jam pattern’, the vector drawn would be made up of copies
of the pattern, repeating every 8 bits. If the scale factor
is set to a non zero value, then each pattern bit is used
that many times before shifting. Each bit in the pattern
would then correspond to more than one bit on the screen,
effectively stretching the pattern.

90010741
04-17-78

13255

13255-

2648A Microcode Listing Rev

The patterp reagister (PATERN) is loaded with the 8 bit pattern.
The scale reaister (SCALER) is loaded with a 4 bit scale factor
(0~15) which corresponds to the factor 1X to 16X,

Remember that the S bit in the mode reagister must be set to
enable the pattern shift,

CLEARING AND SFTTING THE SCREEN

The graphics image memory is cleared or set by loading the
oroper mode bits and asserting the C bit. As each memory
word is read to display the araphics image, every bit in it
is set to 0 or 1, respectively. Consequently, it takes one
frame time to clear or set the entire screen. As noted in
Section 5.2.1, when zoomed more of the memory than is being
displayed may be cleared., It is not possible to complement
the image memory this way, since the same data is written
into all bits of each 16 bjit word.

when the C bit is turned off after the clear is finished,

only the C bit should be changed, Or spurious data may be
written into the memory. The graphics video should be

turned off during the clear, since the outouts from the

memory chips is undefined while thev are being written into.
The procedure for settina or clearing the memory 1s as follows,

1. Set the HCEJK bits as follows:
To clear, C=1, K=1, all others 0.
To set, C=1, J=1, all others 0.

2. Wait at least 1 complete frame. This is most easily
done by using the real=-time timer to wait 20 milliseconds.

3, Clear the C bit to 0, byt maintain the others as tnhey were
in step 1.

4, Restore the SHCEJK bits to what they were before the
clear operation,

VECTOR GENERATION

To generate a vector, the parameters described in Section
7.1.3 must be computed and set to the aprropriate buffer
locations. 1In addition, there are several other locations
not described in the algorithr wnhicn must be properly loaded.

90010/42
04-17-78

13255 13255-90010/43
2648A Microcode Listing Rev 04=-17-78
Te6a1 ALGURITHM PARAMETERS

After insuring that the controller is idle, the following
puffer locations are loaded with the parameters described
in Section 7.1.3. Note that certain values are stored as
the negative of the actual value., Negative numbers are
represented in two’s complement form.

PARAMETER SYMBOLIC ADDRESS
INITIAL DISCRIMINANT D

DISCRIMINANT INCREMENT #1 D1

DISCRIMINANT [(NCREMENT #2 D2

VECTOR LENGTH (STORED AS DC

=LENGTH)

INITIAL START ADDRESS (18 RITS) LS8BwA (0=-11)
(NEED NOT BE SENT EVERY TIME, MSBWA (12-17)
SEE SECTION 7.6.2)

MEMORY INCREMENT #1 (18 BITS) M1 (0-11)
SIGNM1 (12-17)

MEMORY TNCREMENT #2 (18 BITS) M2 (0=-11)
SIGNMZ2 (12-17)

The memory increments M1 apd M2 are determined by the signs
of Delta X, Delta Y, and Ipelta X| = IDelta Y|

SIGN OF SIGN OF SIGN QOF |IDELTA XI OCTANT M1 M2

DELTA X DELTA Y - IDELTA YI
+ + + 1 +1 -719
+ + - 2 =720 -719
+ - + 8 +1 +721
+ - - 7 +720 +721
- + + 4 -1 -721
- + - 3 ~720 -721
- - + 5 -1 +719
- - - 6 +720 +719

13255 13255-
2648A Microcode Listing Rev
7.6.2 OTHER PARAMETERS

The following buffer location must be loaded with additional
parameters required by the hardware.

1.

SELECT OLD/NEW ADDRESS FLAG, BUFFER B(10)--If a series of
connected vectors is being drawn, the endpoint of the
previous vector is the same as the starting point of the
next vector. Consequently, the hardware will already have
the vector starting address. Since it takes a significant
amount of time to do the conversion from X,Y to the 18 bit
representation, it is advantageous to tell the hardware

to use the address it has when it is possible, rather than
always explicitly sending the address. To tell the nardware
to use the old address it already has, a vaule of 0 is set
to location SELWA. To use a new address, it is sent to tne
location LSBWA and MSB8WA, and a value of 10B is set to loc-
ation SELWA.

SELF TEST FLAGS, BUFFEKS 8(11) AND B(12)=-Two flags control
tne operation of self test. They must pe set to 0 before
drawing a vector. Since these same locations are also used
for zoom data, these locations should be cleared before
every vector. Tnis is done by sending 0 to locations
SLFTST and CONTST.

VECTOK DRAWING DOT COUNT, BUFFER B(14)=--The controller
can generate vector dots only after it has read the

data required to generate a scan line. Only a portion

of the vector can be drawn before the controller must
stop drawing and read the data for the next scan line.
This buffer location contains the number ot dots to be
drawn between read operations. For normal operation, at
most 4 dots can be drawn. In zoom mode, at most 3 dots
can be drawn. If it is not necessary to generate the
display, as when the grapnics video is off, a maximum

of 250 dots can be specified. As noted in Section 5.2.2,
there is a substantial speed improvement if this is done,
If more than 250 dots are specified, or a value greater
than 3 while in zoom mode, the dynamic memories may not
be refreshed, which will destroy the imaqge.

The values are sent as the negative of the true value
to the location VDC. To summarize,

NORMAL MODE vpC = -4
2N0¥ MODE VvDC = =3
AIGH SPFED VbC = =250

90010744
04-17-78

13255

13255=900610/45

2648A Microcode Listing Rev 04=-17-78

4, DRAW FIRST DOT FLAG, BUFFER B(15)=--When connected vectors
are drawn, the first dot of the new vector is the same as
the last dot of the previous vector. Qrdinarily, drawing
the dot twice does not matter, but if complement mode or a
line pattern is used, drawing the dot twice will cause
problems, Setting this flag, by storing a value of 10B in
location DRWDOT will cauyse the first dot of the vector to be
drawn. If 0 is stored, the first dot of the vector will
not be drawn.

In addition to the buffer l1ocations, the mode and pattern
registers should be set to the desired state. nNote that the
pattern and scale values should not be changed for every
vector when connected lines are drawn, or the pattern will
be reset for each vector,

The cursor and rubber band line must be turned off pefore
anything is drawn in the graphics memory (Section 7.7).

Once the parameters have peen loaded, flag F1 is set as
indicated in Section 7.4.1 to start the vector generator.

HORIZONTAL AND VERTICAL VECTOKRS

It is possible to draw horizontal, verical, or diaaonal
vectors by specifing fewer parameters. As can be seen from
the vector algorithm, if the discriminant value never changes,
the same memory increment will always be added. 1If tne
discriminant D is initially set to any negative value, and the
discriminant increment D1 is set to 0, then memory increment
M1 will always be aaded to optain the vector points. By
selecting M1 as follows, a8 vector can be drawn in any of the

8 indicated directions.

M1==720
[
M1==721 | M1==719
N
N
N/
Mlz=|ewene —ema= M{z=+1
/ 1A
/ 1\
/1N
M1=+719 | M1=4+721

M1=+720

13255 13255~
26487 Microcode Listing Rev
N—
To draw a single dot, even fewer parameters are needed.
The only algorithm parameters needed are the address and
a dot count of =1. The other flags such as draw first dot
and the self test flags must also be set to the oproper values.
7.6.4 F1IRMWARE RQUTINES
The following routines in the microcode pertain to vector
generation,
WAIT=-=-wWAIT FOR IDLFE CONTROLLEkK
ENTRY DON’T CARE
EXIT ALL REGISTERS SAVED
This routine loops until the busy bit is cleared, indicatina
the controller is ready for more parameters.
MPY45==COMPUTE (359=HL)*45
ENTRY HL = Y COORDINATE
\f

EXIT HL = (359-Y)%*45

This routine performs part of the conversion from X, X
coordinates to an 18 bit address.

GETWA=-COMPUTE 18 BIT ADDRESS

ENTRY HL = (359-Y)*45 (FROM MPY45)
DE = X COORDINATE

EXIT HL = 12 LSB OF ADDRESS
A = 6 MSB

This routine is used to compute the actual 18 bit address
from the input values. An address conversion typically
appears as follows:

LALD YCOOGRD GET THE Y COODORDINATE

CALL MPY45 COMPUTE (3%59=Y)*45

XCHG Dk = Y VALUE

LAdLD XCCuRD FETCH THE X CUORDINATE

XCHG Hh=Y, DE=X

CALL GETwA CONVERT TO 18 RITS

CALL YWAIT IMSURE THE COUONTROLLER IS 1IDLE
SHLD ILSHwWA skl BITS 0-11

STA MSBWA sk BI1S 12-17

90010746
04-17-78

13255 13255=-90010/47
2648A Microcode Listing Rev 04-17-78

SETUP~-COMPUTE DELTA X, DELTA Y, BOURNDS CODES, OCTAN

ENTRY XCURR, YCURR = VECTOR STARTING POINT
XNEW, YNEW = ENDING POINT

EXIT DELTAX, DELTAY, OCTANT UPDATED

This computes the parameters needed to determine the
algorithm parameters. The location OCTANT upon exit
contains the signs of Delta X and Delta Y. DELTAX and
DELTAY contain the absolute values of Delta X and
Delta Y. The rest of the computation is done in the
routine DRWVEC.,

DRWVEC==COMPUTE ALGORITHM PARAMETERS AND SEND TC HARDWARE

ENTRY=--OCTANT, DELTAX, DELTAY AS ABUVE
XSTART, YSTART CONTAINS STARTING PUINT

This routine uses DELTAX and DELTAY to compute D, D1, D2,
etc, 1Tt uses the sign bits in OCTANT as well as the sian of
DELTAX=DELTAY to determine the M1 and M2 values., If
necessary the starting address is sent. The value in
XSTART, YSTART 1is used since the clioping routine may have
changed the starting point of the vector.

HLINE=~-DRA¥ HORIZONTAL VECTOR (LEFT TO RIGHT)

VLINE==-DRAW VERTICAL VECTGOR (BOTTOM TO TOP)

ENTRY DE = X COOKRDINATE
HL = Y COORDINATE
BC = <« (LENGTH)

This routine draws constant direction vectors.

Other routines of possible interest are ABFILL, which fills
a rectangular area with horizontal vectors, and CHFILL, which
draws graphics character imaqes.

N—

13255 13255=-
2648A Microcode Listing Rev
7.7 GRAPHICS CURSOR

The graphics cursor is drawn as intersecting horizontal and
vertical vectors. The firmware determines the startina point
for each vector so that the point of intersection is in the
proper place, and the vector length for each vector, so that
the cursor does not extend off screen, Tne two addresses and
lengths are send to the controller, which draws the two vectors
during vertical retrace, while the screen is blanked. This
insures that partially drawn cursors will not be displayed,

To move the cursor, the lines at the old position must be
erasea, then new lines drawn. If the cursor were erased by
clearing the image memory pits, gaps would pe left in any line
the cursor intersected. Large parts of the display would be
erased as tne cursor moved across the screen. Consequently,
the cursor must be initially drawn in complement mode. It 1is
erased by recomplementing the same bits. Complementing a pit
twice restores it to its original state. Complementing also
insures that the cursor will always be visible, regaraless of
the backqround, However, gaps will now appear in intersecting
vectors when the cursor is drawn. To remedy this, the cursor
is complemented every fraine., The resulting cursor appears
half bright, since it is only visiple every otnher frame, but
it does not cause gaps when placed on other vectors.

For this compnlement/recomplement scheme to restore the display
when the cursor is removed, no vectors that intersect the
cursor can be drawn while the cursor is on., Otherwise, when
the cursor was turned off the intersecting bits in the vector
would also be complemented, leaving gaps. Consequently, the
cursor is turned oft betore anytning is written into the image
memory.

To draw the cursor, the following parameters are loaded.

Note that the horizontal vector is draw from left to right,
and the vertical vector from bottom to top. The startina
address must be compensatedq by one point. The norizontal
address must bhave 1 subtracted from the 18 bit value, and the
vertical address must have 720 added to the 18 pit value.

BUFFER VALUE

GC1DC NEGATIVE OF HORIZONTAL VECTOR LENGTH

GC2pC NEGATIVE OF VERTICAL VECTOR LENGTH

GC1LG 12 LSB OF HORIZONTAL VECTOR COMPENSATED ADDRESS
GC1HI 6 MSB OF HORIZONTAL VECTOR COMPENSATEU ADDRESS
GC2LO 12 LSB OF VERTICAL VECTOR COMPENSATED ADDRESS
GC2HI 6 MSB OF VEKRTICAL VECTOkR COMPENSATED ADDRESS

90010/48
04-17-78

13255 13255-90010/49
2648A Microcode Listing Rev 04=-17-78
The drawing mode should be set to complement, and the S pit
set to 0 to prevent the pattern from changing. Flags F1
and F5 are set to indicate that a cursor is to be drawn,
T7.7.1 FIRMWNARE ROUTINES

The tollowina microcode routines pertain to cursor gener=
ation.

1.

SUPRGC==Suppresses the cursor before drawing a vector.

The state of tne cursor is saved, so that it can be

turned back on if necessary when the vector is finishea.
The cursor can be suppressed by one of several flags, all
of which must be cleared bhefore the cursor w#ill pne drawn.
For example, a suppress flag is set when the graphics video
is turned off. Another flag is set when a vector is drawn.
Wwhen the vector is finished, tne second flag will be cleared
but the cursor will remagain off until the first is also when
the video is turned back on, The flag TIMSUP 1s automatice-
ally cleared after a preset time interval. This is so that
the cursor does not have to pe turned off, then on

after every vector.

ENABGC=-=Re=enables the cursor after being suppressed.

DRAWGC==Computes the parameters for the cursor and sends
them to the controller.

GCMON==MoONnitors the cursor keys and updates the cursor
position.

13255 13255-90010/50

2648A Microcode Listing Rev 04=-17=78
N—
7.8 Z00M

To cause the display to zoom, the microprocessor must send

the following parameters to the hardware.

1. Z0OOM ADDRESS, BUFFERS ZALO AND ZAHI--This is the 18 bit
address of the upper left hand corner of the area to be
zoomed. Zoom can start at any bit in the memorv.,
| {oemoocmeen—- e 7120 =ecmcecmcecce=- > I
[|
[|
(I Z00M ADDRESS |
[| |
I | |
1360 v |
r eeceeccesa=- |
(] | AREA TO | |
(I | BE | |
[| ZOQOMED i |
tfr v meceseccecca=-s |

_(- e ..

13255

13255=-90010/51

2648A Microcode Listing Rev 04=17-78

2.

REPEAT COUNT, BUFFER ZUgMRC==This 1is the negative of the
zoom magnification minus 1. Zoom sizes 2 through 16 are
given by values of =1 through =~15. 1t tells the hard=-
ware how many times each scan line is to bhe repeated,

WORD COUNT, BUFFER ZOOMWC=--This parameter tells the con-
troller how many 16 bit image memory words must oe read
to generate one scan line. At 1X, 45 words are read

(45 words X 16 bits/word = 720 bits). For zoom size 4,
the number of words is approximately 45/M., This is not
quite right, because if the zoom address is in the middle
of a word, an extra word may have toc be read. Given the
X coordinate of the center ot the zoom area (not the

zoom address), the word count is obtained by:

LEFTMOST WORD (X = (360/M))/16
RIGHTMQST wORD (X + (369/¥))/16
WORD COUNT = XRIGHT = XLEFT + 1

nn

ZOOMRC = =wORD COUNT (SENT TO HARDWARF AS NEGATIVE OF VALUE)

PRESHIFT, BUFFER PRESHF-=-The hardware can only read the
memory 16 bits at a8 time. 1f the zoom address starts in the
middle of 3 16 nit word, the leading bits, from 0 to 15,
must be discarded. This 4 bit value tells hows many leading
bits are unused. It is sent as a 1°s complement value,

To compute this, take the 4 LSb of the zoom address and
complement them,

DISPLAY CONTROL BRYTF, BUFFER DCNTRL=-This 8 bit value
controls how wide a dot is when in zoom mode. For zoom
size M, the hardware generates M dots for each dot in the
imaoce memory. Then, the last dot is blanked., This can be
changed to display all d4ots, deleting the blank at the end,
or to blank more than one dot. The values used are as
follows.

2004 SIZE CONTROL BYTE Z00M SIZF CONTROL BYTE

2 X 357R 10 X 1478
3 X 3368 11 X 1268
4 X 315R 12 X 1058
5 X 2748 13 X 064B
6 X 2538 14 X 0438
7 X 2328 15 X 022R
8 X 2118 16 X 0018
9 X 1708

13255 13255=-90010/52
2648A Microcode Listing Rev 04=-17=78

To change the number of dots displayed, the control byte
is pbuilt up from 2 values.

BIT 7 BIT 4 BIT 3 BIT 0O
| TWAO’S COMPLEMENT OF | TwD’S COMPLEMENT OF THE |
| MAGNIF1CATION | NUMBER OF DOTS TO BE |
I (=2 THRU =16) { DISPLAYED (=1 THRU =16) |

- D D R T D RS S e gy papepr T T e ey T R R R R R K R K A

For example to zoom 16X and display 15 dots, the values

are:
=-MAGNIFICATION = =(10000) = 10000 => 0000
-(DISPLAY 15 DOTS) = =(1111) = 0001

NDISPLAY CONTROL BYTE = 0018

6. VECTOR DRAWING DOT COUNT, BUFFER VDC==-This must be set
to =3 when zoomed.

Ahen the buffer is loaded, zoom is turned on by setting
flags F3 and F4. Flag F4 is cleared by the controller
when the zoom parameters have pbeen processed. Zoom is
turned off when the microprocessor clears flag F3.

700m is actually turned on or off only between frames
during vertical retrace.

7.8.1 FIRMWARE ROUTINES

Relevant routines in the microcode are ZmUPDA, which
computes the zoom parameters from tne cursor location,
NWSIZE and UNZ0OOM, which control zoom size, and VR, which
does zoom, cursor and rubbher band line updates once per
frame.

7.9 SELF TFEST

self test compares the state of the image memory against a
sample pbit as vectors are drawn. If a data bit differs

from the sample, the vector being drawn is stopped, an error
flag is set, and the pack number of the 16 K memory cnip which
contains the pad pit is noted. This allows the 8080 to put
the image memory in a known state, then test every pbit to

see if it resoonded correctly.

To initiate self test, tne parameters for a vector are loaded,
as for a normal vector. The self test flag is set. The memory
is set or cleared, and the S bit in the mode register is set
accordingly, Tf the controller finds a mismatcnh as it draws
the vector, drawing is stopped and the pbad pack noted. The
continue self test flag allows vector generation to be re-
started from the point of failure.

13255

2648A microcode Listing

The seguence of events in the 2648A test are:

1. Clear the screen, set

2. Turn on complement mode,

3. Draw vertical vectors
moving to X=719.

4, The screen should now

set),

set S bit to 1.

5. Draw vertical vectors
moving to X=0.

6., The screen snould now be clear again,
7. Draw horizontal vectors left to riahnt,

noving to Y=359,

8., The screen should now be set,
9. Draw horizontal vectors riagnt to left,

and moving to Y=0.

10. The screen is then set,

S bit to 0,

bottom to top,

13255-

kev

starting at X=0 and

be completely complemented (all bits

top to bottom,

starting at X=719 and

set S bit to 1.
starting at Y=359

set S bit to 0.
starting at Y=0 and

and steps 2-9 repeated with the

opprosite sense of data (set now where clear before ana

vice~versa)d.

To start self test:

1. The vector parameters are loaded as before.

2. The self test flag is set by storing 10B in buffer
SLFTST.
3. The continue self test flag is cleared by storing 0 in

buffer CONTST.
4, The S bit in tnhe mode flags is put into the proper state.
and the start

5. Flag F5 in the tlags register is cleared,

vector flag F1

when tne busy bit

is finished,

successfully.
bits are interpreted as follows:

8IT 4

3

2

_ OO =00

flag
1f

1

—_D O OO

is sert,

in the status byte indicates the vector

F5 1is tested, I1f 0,

set, then an error occured.,

PACK

11
21
31
41
51
61
71
81

ccCocccacocoacca

BIT

the memory compared
The bad pack

>

P hh e e R ped e

o O

e OO

N

—- O O OO

—

_O OO, O

PACK

—
=

12
22
32
42
52
02
72
82

S Cccocc

cca

90010/53
04=-17-78

13255

13255-

2648A Microcode Listing kKev

6. To continue the test from the point of failure, the continue
selft test flag is set by storing 10B in buffer location
CONTST. The error flag F5 is cleared, and the start vector
flag F1 is set.

note that flag F5 is used for two purposes, to signal a self
test error (when set by the controller) and to indicate that a
cursor is to be drawn (when set by the 8080). Frlag F5 must

be cleared before drawing a vector or it will always be
interpreted as draw cursor,

FIRMWARE KROUTINES

Relevant routines pertaining to self test are HTEST and VTEST,
which draw the vertical and horizontal lines, STDRAW, which
initiates vector drawing when in self test, and STFAIL, wnhich
is called in the event Oof an error when testing.

READING THFE IMAGE MEMORY

The 8080 can read the data stored in tnhe image memorv one

bit at a time., The status byte contains the bit read petfore
the last vector endpoint was drawn, Drawing a one dot vector
will return the value of that bit. The drawing mode should be
set to ‘Do Nothing’ to prevent the image memory from being
chanjed as it is read.

To read an image memory bit, tne following values must be
sent:

The 18 bit address, obuffers wALGC and WAHIL.

A dot count of -1, buffer vLC.

The draw first dot flag, 108 in bufter DRWDOT.

The use new address flag, 108 in buffer SELwA.

seif test off, 0 in buffers SLFTST and CONTST.

Set the drawing mode to do nothing.,

Set flag F1 to initiate tne read.

when the busy bit in the status byte is 0, the data
pit contains tne value at that memory location

L]

e BRSNS B e RS0 SRR VERN SR
.

90010/54
04-17-78

13255 13255790010

2648A MICROCODE LISTING ‘PT91° REV 04/17/78
ITEM LL0C OBJECT CODE SOURCE STATEMENTS PAGE 1
1 0000 . . . ASB,HEX sPT91 17AUGT7
2 0000 - . . SAKKARKARKIK KA ARKAKRKK KKK AKX K ARI AR R AR KK Ak kK kX ok kkok kX
3 0000 . . . s+ THIS 1S THE ROM CUDE PTY90 OF 21JUNT7 WITH ONE
4 0000 - B . s ROM MODIFIED. THE ROUTINE °STTERM® IN LOCATIONS
5 0000 . . . s 14322 TO 14431 WAS MODIFIED FOR MULTIPOIMNT
6 0000 . . . s CUMPATIBILITY.
7 0055 . . . VERSNZ EQU 1250 sNEW ROM = VERSION ‘U’
8 0000 - - . TR AR AR AR R AR AR A I KA R AR KRR KRR AR KA R AR AR AR Ak KK
9 0000 . - . A K KRR IRK AR KRR KKK KKK KAR KRR AR R AR AR AR I Ak k ok k k%
10 0000 . . . ;s 2645 MAIN CODE MODIFIED FOR GRAPHICS
11 0000 . . . TR KRKRI KR AKAKRR KRR RARKRKAKR K AR AR AR AR A A KA KRR ARk kX ok Ak
12 0000 . . . PRAKKAKKKKKARRAK KK RAK KX
13 0000 . . . s VERSION LEVEL CODE =
14 0000 . . . TRARKKKAARKAARRRRN R KKK
15 0000 . o . PR AR KKK I R KKK AR K AR KRRKR AR RN KRR AR KRR I KRR KK KRR KKK XK
16 0054 . . . VERSN EQU 124u sGRAPHICS = VERSION ‘T’
17 0000 . - . SRR KKK KKRARK KKK AR KA AR AR R AR KA AR AR I Ak Ak khkkkhkkk kX
18 0000 o . . H
19 0000 . . . H COMMON EQUATES = CM34 = 6/10/76 = 1315 HRS.
20 0000 . o . ;
el 9100 . . . FSTRAM EQU 1104000 sFAST RAM LOWER LIMIT
ee 0000 . . . SRR RKK KK AAKRKA KRR RA I IR KA A I AR AR KRR AR ARk KX
23 0u00 . . . s KBDCSW = KEYBUARD DATA CuUwMM SWITCHES *
24 0000 . . o PAKKKK KA KRR A KRR RRR KA A RRRR K AR ARR KK *kh K k&
25 0080 . . . FULDUP EQU 2000 sHALF/FULL DUPLEX
26 0000 . . . TR AN KK ARKRKRAR IR AAKRRKAARKR KKK AR KRR AN Ak kK&
a7 0000 . . . s KBIJMPR = KEYBOARD INTERFACE JUMPERS «*
28 0000 - . . PRI KKK FARARKIKRK KA RKRKR K KA XA KK Rk Kk kkkk k&
29 0000 . . . H
30 0000 - . . H JUMPERS SENSED AS 0’ WHEN INSERTED
31 0000 . . . H
3e 0000 . . . H ALL JUMPERS ARE NORMALLY INSERTED
33 0000 . . - H
34 0001 . . . CONDIS EQU 0011 sCONTROL CODE DISABLE
35 0000 . . . H (0=DISABLED)
36 000¢ . . . SPLDIS EQU 0020 +SPUW LATCH DISABLE
37 0000 . . . H (0=DISABLED)
38 0004 . . . LINWRP EQU 0041 sCOoLUmMN 80 AUTO CR,LF
%9 0000 . . . H (O=ENABLED)
40 0008 . . . PAGSTR £Qu 010@ :PAGE MUDE STRAP
41 0000 . . . H (u=LINE=-FIELD MODE)
a2 0010 . . . LFPOS EQU 208 sLINE FEED POSITIUN
43 0000 . . . H (0 = POSITION LINE FEED
a4 0000 . . . H AT START OF NEXT I/0
45 0000 . . . H READ
46 DIVETRY . . . H 1 = PUT LINE FEED AT END
47 0000 . . . : OF RECORD)
48 0020 . . . FSTSNU EQU 40G 9600 BAUD DATACOM SHIFT
49 0000 . . . H (0=9600 BAUD FOR ESC,E)
50 0040 . . . HNDSHK EQu 100Q ¢+ BLUCK TRANSFER HANDSHAKE

13255 132557906010

2648A MICROCODE LISTING ‘PTO1° REV 04/17/78

ITEM Lec OBJECT CODE SGURCE STATEMENTS PAGE l
51 0000 . . . ; (6 = FULLOW DC2SND SETTING
52 0000 . . . ; 1 = SEND DC2 BEFORE DATA)
53 0080 . N . DC2SND EQU 20019
54 0000 . . . H (0 = SEND DCe ON ENTER
55 0000 . . N H AND FUNCTION KEY IN
56 0000 . . . ; bLOCK MODE
57 0000 - . . ; 1 = INHIBIT ALL DCe
58 0000 . . . ; HANDSHAKE)

MICROCODE LISTING

13255790010

‘PT91’ REV 04/17/78

- T v = = = e P S M Y- e M W e M S M W W e e W= W = W W M =W == = = = T

- - - -
el R e aradadiesind

- - - - > - W W W w
P T T T T E L L L TS R S e E e e s e c e m e m oo o m oo™ w e -

;******************’k**********************t

: KBJMPZ = SECUND SET GF KEYBUARD JUMPEKS *
:**

AUTTRM EQU 1y sAUTO TERMINATE ON "ENTER"
CLRTRM EOQU 2Q sCLEAR TERMINATOR ON TRANSMI
NOTEST EGU 4Q s INHISIT TERMINAL SELF=TEST
EDTWRP EQU 100 s INVERT SENSE OF EDIT WRAP
PRNTAL EQU 200 :SEND ALL CONES TO PRINTER
DCJMPOU £QU 2004 sUATA CUMM JUMPER
;************************t****************

: KBJMP3 = THIRD SET OF KEYSUOARD JUMPERS x
','t********'k*****t*************************

DCJMP1 EGU 1@ +sDATA COUMM_JUMPERS

DCJMPE EQU 26 .

DCJIMPS EGU 4G .

DCJMmP4 EQU 10Q HIS

NUDCST EQU 20Q s INHIBIT VATA COMM SELF=-TEST

o we we

; (v = DISABLED)
SETCH EQuU 40Q s TUKN ON "CH" CONTROL LINE

(0 = UFF, 1 = 0N)
sMONITOR CC CUNTROL LINE
; (1 = ENABLED)
FRCPTY EBEQU 2000 +FORCE PARITY ON/NDO In CHECK
H (1 = ENABLED)
TRKKKKKKKKKRKKRKRRKX AR KKK KK
s CMFLGS = COMMON FLAGS *
PAKKKKKAK KKK KR RK KRR KKK K K
BLKTRG EQU 16 sBLUCK TRANSFER TRIGGER

CHEKCC €GUL 100@

INSWRP EQU 20 s INSERT wITH WRAP AROUND
FRCRST EGU 40 sFORCE FULL TERMINAL RESET
DEFSKY EQU 10Q ;OEFINE SUFT XKEY MODE ENABLE
REMSET eQu 200 sKEMUTE MODE ENABLED

RCVMDE efu 40Q sTERMINAL Iw RECEIVE mMODE

PR KK KR KAKA KKK KRR RKK KKK

s ERRFLG = ERROR FLAGS x

TRKKKKKKRKRRRKKRRRK KKK KX

DCMERKR EQU 10 ;DATACOM (1 = ERROR)

TESTOK EGU 20 ;SELF-TEST (0 = ERROR)
LDRCHK EQU 4Q sLOADER CHECKSUM (0 = ExRROUR)
PRAKKKKKKRRRKK KKK KK KKK KKK K *

s INTFLG = INTERRUPT FLAG *
TAKKKKKKRRAKAKKKRRKK KK KKK K KX

TMRINT £EQU 3 sTIMER INTERRUPT

13255

2646A MICROCODE LISTING

13255790010

‘PT9Y’ REV 04/17/78

- - > - - - — e W e G W S . S S W A SR WS Ge - W G e S S S S S S G B S Gn G e TN Gm R MR TR G Sr MM TS W R s - Sm e W W W W= W Y™ e = = o
peediedindie oo oo el ca e es it iasiuoede e aguai g P PP R R

- - . . S . v wv S mm S i v e G e BP G R WS e M S G S G G D T s W 4 A T W G0 e GBS B D R G- Mr W Nw e R T N TR Wh P M TR MR S SV N We T 4w S W W Sm e W em ew o e

- [L]
L) [L)
L} - .
° [.
L] . .
[- .
- [.
. o .
[. -
[. .
. [.
[. .
. ° .
. - .
- . .
[- -
L] [-
. - .
3 - .
. . .
- - .
[L] .
[L] -
. L] [
. . .
. . L]
[. L]
. . .
. . .
[. [
. L] [
. -)
[[[
[[.
. . [

PRI KKAAKAKAKR KRR KA KRR A KAk KAk kA Kk Kk k& Xk %

;3 PRCCTL - PRUCESSOr CONTROL FLAGS =
TRKKKKKKKKRRIAKRRRRA KRR KKK A AR KRR KKK

TMIACK EGU 0R sACKNUWLEDGE TIMErR INTERRUPT
; (oIT 1 OFF)

TMKRON EQU 10 sSET TIMER ON

TMIEN EQU 24 sRE-ENABLE TIMER INTERRUPT
DCIOFF QU 200 ;DISApLE DATA COMM INTERRUPT
TMIOFF EQU 400 sDISABLE TIMER INTERRUPTS
POLL EQU 100Q sPOLL CTU INTERRUPTS
sVxyxVxyx SET TO ZERU FOR ROM VERSION *xVxVaxyxVx
SETROM EQU 00 0 => ENABLE ROM

Sk ok ok ok ko k ok kK ok ok ok ko k k ok ok ok ok ok ok ko ok ok ko ok ok ok

;s MDFLG1 - TERMINAL MODE FLAGS 1 =
TRK KKK KA KKKk d kR Rk Rk ok ok ok kR kR kKK

DSPFNC QU 1@ sUISPLAY FUNCTIONS ENABLED
INSCHR EWU 26 s INSERT CHARACTER ENABLED
MEMLOK QU 4u sMEMOKY LOCK ENABLED
FORMAT EQU 100 sFOKMAT MODE ENABLED

EDIT EQu 200 sEDIT MUDE ENABLED

SELECT EQU 4081 s SELECT MUDE ENABLED
RECORD EQU 100Q sRECORD MODE ENABLED

FORGN EQU 200Q sFOREIGN MODE ENABLED

TRAAA AR A AAARKAA A KRR KA kA AKX R KX KA KA Xk &

+ MDFLGZ - TERMINAL MUDE FLAGS 2 «x
TR KRR AR R AR R AR AR AR R AR AR AR AR AR AR AKX

CAPSLK EQU 1@ sCAPS LOCK ENABLED

BLKMDE EGU 2@ sBLUCK mODE ENABLED

AUTOLF EQGU 4@ JAUTO LF ENABLEUD

REMOTE £QUL 108 sREMOTE ENABLED

WBSK tQu 40Q swWRITE-BACKSPACE=KEAD MODE

TR KK KKK KKK AR KKK KRR KK Ik A kKKK AR A KRR K kA KKKk Xk kK
; RADIX = BASE OF INPUT PARAMETER FOR ESC SEG =
PRI KR KRR R AR RRARRAR K AR AAR KA R AR R KR AR AR AR KRR AR XK
DECRDX tGU 10 sOECIMAL NUMBEKS

OCTwDX EGU 8 sOCTAL NUMBERS

13255
26U8A

MICROCODE LISTING

‘PTO91’

13255790010
REV 04/17/78

- o - = . e S Gm G e e T WS WP S G S W Tm G R WD S v T Wy S SR SR Ww m G T GR G W WP S TR AR TN SR TP T SO Wm MR Gm e W WS W = W% W W T S M wm W ee e
P S T T L L T T T ST T T LTS T e ST S S TS eSS S, S ST s s s rm e s e r e e r e s c e r e e T EE @ e o - - -

- - . o o - W S G T S A MR W N e M G G M G S T G G SR G G G SR W W A T e MR G TE S GRS TR e R AR TR 4R R W W R S G N Gn S WS W - W W W W W e
P T T T T T T T T E T e e S T T ST S S S TS S ST S E e e m e e s e s e m e E e e B E T e e E e e - -—- - - -

SHAKKRKAKIKKRKRRKXAKRKK
s COMMON VARIABLES =
PRI KKK KRR R KIARRKRKN
FSTRAM+145Q ;;CENTRAL INTERRUPT VECTOR

L] L] L] L] L] L] L] L] L] L] L] . . L]

. * ° L] L] L] L] * L . L] L] L[] L] L] * L] L[] L] L] L[]

L] L] . L] . L] L] L] L] . L]

INTVEC
SCNVEC

COMMON
CMBASE
CMSTOR

DISPST
TRMTYP
KBDCSW
KBJMPR
KBJMP2
KBJMP3
CMFLGS
ERRFLG
INTFLG
PRCCTL
MDFLG1
MDFLG?2
MSGPT1
MSGPT2
MSGPT3
MSGPT4
MSGPTS
MSGPTo
MSGPT7
MSGPT8
CTIVEC
CTIJMP
IODATA
IGCSGN
IOPSGN
PARM1

PARMZ

PARM3

PARMY

PARMS

PARW6

RADIX

RNGTA

ESCFLG

’
.

’
RSTTMR
T x X

EQU
EQU

EQU
EQU
EQU

EQU
EQU
EQU
EGU
EQU
EQU
EQU
QU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGU
EQU
EGU
EQU
EQU
EQU

tQuU

INTVEC+3

177777Q

CuMMON/256
CMBASE=*256

COMMON=1
DISPST=1
TRMTYP-1
KBDCSW=1
K8JMPR=1
KBJMP2=-1
KBJMP3=1
CMFLGS=1
ERRFLG=-1
INTFLG=1
PRCCTL=-1
MDFLG1=-1
MDFLG2=2
MSGPT1=2
MSGPT2=-2
MSGPT3=2
MSGPT4=2
MSGPT5=2
MSGPT6=2
MSGPT7=2
MSGPT8=2
CTIVEC=-1
CTIJMP=2
IODATA-1
I0CSGN=-1
IOPSGN=1
PARMl =1

PARMZE=1

PARM3=1

PARMA4=-1

PARMS=2

PARMb6=1

RADIX=2

RNGTA-1

ESCFLG=1

sFOREIGN TERMINAL DISPLY SCA

sUPPER LIMIT OF CUMMON AREA
sMSB OF CuMMON ADDRESSES
sMS8 ADJUSTMENT FACTOR

:DISPLAY REFRESH START PTR
s TERMINAL TYPE NUMBER
sKEYBUARD DATACOM SWITCHES
sKEYBUARD STRAPS
s SET 2
sSET 3
s COMMON FLAGS
sERROR FLAGS
s INTERRUPT FLAG
s PROCESSOR CONTROL FLAGS
sTERMINAL MODE FLAGS 1
sAND 2
sMESSAGE POINTERS

9 e we %o ws we wo
L] L] * L] L[] L]

sCTU INTERRUPT VECTOR

s JUMP CUDE FOR VECTOK

sESQG SEG PARM ACCUMULATOR
sSIGN FUOR PARAMETER
sPARAMETER SIGN

;ESCAPE SEQUENCE PARAMETERS

.e we we we we

sKADIX UOF PARAMETERS
:CHAR FUNCTION TABLE ADDRESS
sESCAPE SEQUENCE FLAG

= 0, NOT IN ESCAPE SEG

0, ESC SEQ IN PROGRESS
SOFT RESET TIMER

X k k %k Xk k *k Kk Kk Kk k k *x k *x Kk &k Kk k Kk * %

; END OF COMMON EQUATES *
’

A*A*A*A*a*-*a*A*h*a*a*h*hta*n*ﬂ*a*Q*A*A*A*A*Q*Q*

MICROCODE LISTING

‘PT91°

13255/90010
REV 04/17/78

- - - - e S e . W A - Gn WGP > Gh W Wn e We e S e e SN WS e 4 - W WD M W W AP G5 e G W WS WD GE ST MmN D TS MR e Gm WP MR W TR W G W M T W e W = e e e W
o e e e e e E R R E E E T m e m e m e e E E e s e o o e 2o o @ > . . e e e T AN M e e e e T G e e e W e e m e we

- . - o W = o = - = W G TE e e G e G e W S W e . T W M= e h WS e T = e S W AR P e e Mn Ge e G S e TR e R Gm G e An G M W n s T e e e e M e e .
e e R E S E E T EE T R E CE E e E T r E E R E e E e e e e = o oo oo e - -

HEAEESEEEE RS ERERE Rt RRRts SRl RS

L] * L] L] L] » L[] L[] L] L] L] ° L] L] L] L] L] L] L] L] L] L]

.
4

KEYBOARLD ENTRY VECTOR PUINTERS =

PRk kg ok ko okkokkk ok ok ok ok kokkkokkokokokkokkokkkk

ZKBBAS
ZINIKB
LGETKY
ZKBCTL
ZKBMON
Z5TMD1
ZCLMD1I
ZBELL

ZSTXMT
ZCLXMT
ZSTJPR
ZSTLKY
ZALPCK
ZNUMCK

~e ~

..

EQU
EQuU
EQU
EQU
EQuU
EQU
EQU
EQU
EqU
EQU
EQU
EQU
EQuU
EQU

KEYBOAKD

FRSALT EQU
ALTUUT EQU

.
’

o e

LOCKKB
UNLKKB
RPTKEY
STBLMD
STRTST
ENDTST
RSETKB
CKIOKY
STPRPT
CKBRKY
SWCHAR
SETFRN
STCHST
FRNMD1
FRNMDZ

KEYBUOARD

EGU
EQU
EQU
EAQU
EQU
EQU
EQU
EGuy
EQU
EQU
EQU
EQU
EQU
EQy
EQU

44000Q
IKBBAS+2
ZINIKB+3
ZGETKY+3
ZKBCTL+3
ZKBMON+3
ZSTMD1+3
ZCLMD1+3
ZBELL+3
ZSTXMT+3
ZCLXMT+3
ZSTJPR+3
ZSTLKY+3
ZALPCK+3

CONSTANTS

INUMCK+3
FRSALT+1

sKEYBOARD START ADDRESS
sINITIALIZE KEYBOARD

sGET KEYBOARD KEY

sPERFURM KEYBOARD COUNTROGL
sMONITOR KEYBOARD

sSET MODE 1 FLAGS

sCLEAR MODE 1 FLAGS

s SOUND THE BELL

s TURN ON TRANSMIT LED

s TURN OFF TRANSMIT LED
$SET JUMPERS ESC SEQ ROUTINE
$SET LATCHING KEYS ROUTINE
sALPHA KEY ENTRY CHECK
sNUMERIC KEY ENTRY CHECK

sINITIAL ALTERNATE CHAR SET
s INITIAL ALTERNATE CHAK QUT

CONTROL CALLS

O NN & WM~

sLOCK KEYBOARD

sUNLOCK KEYBOARD

sKEPEAT LAST KEY HIT

sSET PERMANENT BLOCK MODE
$START SELF-TEST

sEND SELF-TEST

sRESET KEYBUARD

sCHECK FOR I/O0 CONTROL KEY
+STOUP KEY REPEAT

sCHECK FOR BREAK KEY DOwN
sSWITCH CHARACTER SET
sUPDATE FOREIGN MODE

:SET FOREIGN OUTPUT MODE
sSET FOREIGN MODE 1

sSET FOREIGN MODE @2

13255
2648A

- ——— . = e e Gm M e W v e e W W= e W e =
fodbeibeedirieccidic i g i

MICROCUDE LISTING

- -— - - -
s e r e --

‘PT91°

13255790010
REV 04/17/78

- o - —— = e W W W = o = = e

- . - —— > G an wm - W W T m W = e M W S = = W —
i didi i pradieetiotbdbadi it uaiidie s gugiueipagieipaei PP D 4B

- - n - - - = W e = W W = W e o W W
oo fieeginedudieiondiunieiinegiiiundingie g R

° ° o ;**t*t*k**t‘k*****************************t**t*****
. . 0 H UATACUM CUNSTANTb

3 L] - ’

. - o ;****x**********t**********************t**********
. . . ZUCoAS EGU 500006 sDATACOM START ADUKESS

. . . TrRIGGR EGU ZDCBAS+e :BLUGCK TRANSFER TRIGGEK

. . . RECSEP EQU TRIGLGK+1 s XECOKD SEPARATUK CAARACTER
. . . BLKTKM EfSu RECSEP+1 spLUCK TEXMINATUR CHARACTER
. . . DCJIMSK Wl BLKTRM+1 sDATA CuMw JUMPER MASK

. . . OCJMSe eQu DCIMSK+] :DATA Cumii JUMPER MASK B2

. . - ;*t-k***t*'k*t*****t**t********************k*t*t****
. . . H UATACOM ENTRY VECTOUR POUINTERS

° ° - ;*'kt*t**************t*****************t****k******
. . . ZINIDC chy ZDCBAS+10R sINITIALIZE DATACOM

. . o 7IN2DC EQU ZINIDC+S INITLIALIZATION CUMTINUATUK
. . . ZDCHMON EQU ZINZDC+3 ;MONITORING ROUTINE

. . . JDCCTL EQU ZDCmON+S 3MISC CUNTRUL FUNCTIOINS

. . . ZDCTST Fu ZDCCTL+3 ;SELF=-TEST

. . . 7GETDC tou ZDCTST+3 GET UC CrARACTER

. . . ZPUTDC EGU ZGETDC+S ;PUT DC CHARACTER

. . . JGTBIN EWU ZPUTDC+3 3GET sINARY DC ChARACTEN

. . . ZSTBIN EQU ZGTRIN+S sSTART SINAKY OUTFUT

. . . ZNDBIN EQU ZSTBIN+3 END BINARY OuTPUT

. . . ZJUCINT EQuU ZNDBIN®3 ;DATACOM INTExKRUPTS

° ° . ;**t**************‘k*t****************ﬁ*******t****
. . o H UATACO~ COwTROCL CALL COUDES

- * - ;******************t*k*x**t**************k********
. . . CL&TRG EGQU O ;CLeAr bLUCK TRANSFeER ThILGE
. . . SETTRG clit 1 +SET BLUCK TwRANSFER TRIGOLEK
. . . KSETDC EGU 2 sKESET UATACOM

. . . SeTREM et 3 sSET REMOTE ™MUDE

. » . SETLCL EQU 4 ¢+ SET LUCAL MODE

. . . PUTHRK EQU S sUUTPUT BREAK SIGNAL

. . . DISCWT £QU 6 sMODEM UuTISCONNECT

- . . ENDBLK tfRu 7 s1FRMINATE OUTPUT M2SSAsE

. o . SFTwdn EQu 8 cEMTER MONITOR #0ODE

. . . St ThRM ey 9 sENTER NORMAL MUDE

. . . FSThIN EQU 10 tENTER FAST BIMARY (QUT MUUE
- . . SNDATN ERQU 11 s SEND ATTENTION CULDE

. . . SNDFCT EQU 12 sSEND FUNCTION UATA

. . . PROMPT EGU 15 s St PrOMPT COOE

15255
2648A

MICROCODE LISTINnG

- e - . T - T S o - e e M Y > M W= - - -
e e . " . - - e e - S . = = = T A w tm o o am o o - -~ - - ——

‘P191°

1325%/90u1v
RV 04/17/78

T - en G S G TR W AW M T WP W Mp T SR G G T SR M S e G S G R WS e S M S T e W > s S e Ve W AR W A e e Y e An e ae e S - T wn e e = - - = e e W W e .
- T - " = - - ——— e G e e e e e e . m— — .-~ e, T e, e eSS

R Ty R
7 ALTERNATE I/0 ENTkY VECIGRS *
R R R e R

- . .
- - .
- . .
. - .
. . .
L] L] L]
[. .
3 . .
. - .
[. .
. . .
. [.
L] . .

ALTORG
ZINIAL
ZINCAL
ZINTAL
IMONAL
IGETAL
IPUTAL
ZCTLAL
ZSTAAL
IMSGAL

QU
(Y]
e QU
QU
Eab
rQu
U
EGuU
EQU
EQU

1110004
ALTORG+?
ZINIAL+S
ZINCAL+S
LINTAL+S
ZiAUNAL TS
ZGETAL+3
IPUTAL+S
ZCTLAL+S
ZSTAAL+S

sALTERNATE IO STAKT (36.59K)
sINITIALIZATION RUUTINE
sINITIALIZATION CUNTINUATUR
sIMTERRUPT PKOCESSOR
sMONITORING ROGUT INE

s INPUT ROUTINE

sUUTPUT ROUTINE

sCONTROL ROUTINE

s STATUS RUUTINE

sALTERNATE DEVICE NAME

13255
2648A

MICROCODE LISTING

1325%9/90010

‘PT91’ REV 04/17/78

- - - T - . = - - - - W = S = - e > e > e Mm w m m Wm mm Am T e N G dn e e P G M e R S e T SN M We SR W S e S ew v W W A W m = e e
porinagiedieioefiuediaiib i ieniseiin i ndionedieiipsn g ios oo gigagiegiu-fu g Lab MR e i

- ot . . e - e m n S M S VR W En e G G G e S W m W G e - wm A S e S G e T W M e WS e e N T Gm Mh e W TR MR R M - s W W Y We W W W W W W W W e W e = e S
P T T e e T L T S T L T e S T e R TS S T RN S S S S S S S ST e r Ce ms s r m e r e m r r r e e r e e = = - - - - - -

AR KKK KKK RK KR KK R AR R AR A AR KRR R KRR AR KR KK KAk kX
;7 GRAPHICS ENTRY VECTORS AND SYMBOULS_

PR AR KKK KRR KK RA IR AR KK KRR AR KRR AR Rk kAR AR KRR KKK AR ARk
ZGBASE EGU 60000y ;START GRAPHICS AT 24K

ZINGR EQU ZGBASE+2 ;IN1T. GRAPHICS~-HARD RESET
ZGSOFT EQU ZINGR+3 ;SOFT RESET

ZGSTUP ERU ZGSUFT+3 ESC*=-=-SET UP FOR GRAPHICS
ZANCHK EQU ZGSTUP+3 ;A/ri CURSOR STURE CHECK
ZGCKEY EQU ZANCHK+S 5 CURSUR KtY SCAN

ZKELGC ENU ZGCKEY+S 3G CURSUR KEY RELEASED
IZTINTR EQU ZRELGC+3 TIMER INTERRUPT

VR Ewy ZTInNTR+3 ;vERTICAL RETRACE
ZAPMOF £QU ZVR+3 s TURN AUTOPLOT ™mERNU OFF
ZAPSCiN EQU ZAPMOF+3 AP VALUE SCAN

ZCR EQU ZAPSCN+3$ CARRIAGE RETURYW

IMUCHK EGU ZICR+3 s SEE IF AP MENU OWN

ZINFIX EQU ZMUCHK+3 INSERTED CHARACTER KLUGE
ZAPCHK EQU ZINFIX+S AP KEYSDARD ENTRY

ZGFUNC EQU ZAPCHK+3 ;;GKAPHICS KEYPAD FUNCTION
ZTKSUP tQU ZGFUNC+3 ;G6S--SET FOK TEK VECTORS
IPAGE EGQU ZTKSUP+3 ESC FF=-=-DU TEK °‘PAGE’
ZSTGIw EQuU ZPAGE+3 $ESC SUB=-=-STAKT TEK GIN MuDE
ZTKRC EQU ZSTGIN+3 ESC ETS=-=-MAKE TEK HARDCUPY
ZTKCUR EQU ZTKHC+3 ESC ENB=--RcAD CURSUR POSITI
ZTKCLR EQU ZTKCUR+3 ;CLEAR ECHOPLEX SUPRESS

IHT EGU 7ZTKCLK+3 ;PROCESS HT

VT EQU ZHT+3 sPRUCESS VT

ZBS EGu 7VT+3 s PPUCESS 38

ZLF EQU ZRBS+3 sFRUCESS LF

ZDPTST EQU ZLF+3 s TEST FUR A/WN OR G DISPLAY

ZVID1 enql ZOPTST+s 3SUFRESS GRAPHICS, ALLOW A/N
ZvIibe EQU ZVID1+3 sRESTORE STATE UF GRAFIX,A/N
ZAPCR EQU ZVIv2+3 sAUTOPLUT CARRIAGE RETUKN
ITKSTR EQGU 7APCr+3 s IMITIALZE TEK STRAPS

ZmUTB EQU ZTKSTR+3 ;ADDRESS OF MENU TABLE
ZGSTAT tGUL ZMmUIB+2 s SEND GRAPHICS STATUS

ZJGRTST Fisu 7ZGSTAT+3 TEST Fuk GRAPHICS GET
ZGGINT EQU ZGRTST+3 ;INITIALIZE FOR GKAPHICS GET
IGRGET ENU ZGGINT+3 :GET GRAPHICS DATA

ZAPHME EQU ZGRGET+3 sHOME AUTUPLOT CURSOR

ZGTEST EWU ZAPHME+3 ;GRAPHICS SELF TEST

JCHKTK EQU ZGTEST+sS ;SEE IF In TEK MOUDE

ZANCUR EQU ZCHKTK+3 sMOVE GC WITH A/N KEYS

ZAPLF EQU ZANCUR+3 ;AUTOPLUT LINE FEED

13255790010

2648A MICRCCODE LISTING °PT91° REV 04/17/78
.. "
ITEM LNC UBJECT CODE SCQUKRCEc STATEMENTS PAGE 10
340 0000 . - . TR A KRR KA A I AR KRR R AR KA KA K AR KRR AR A AR KA I AKX AKX AR Kk X
341 0000 . . . 5 GRAPHICS >SYMBOLS
24p 0000 - - . SR KA AR KA KRR X KRR AR IR Ak A A R AR KR AR kXX A A Ak kA XAk kK
243 VIVt . . . SUPCHR EGU 400 sECHOPLEX SUPRESS (TEK)
544 00eo . . . AVTinHs EOU 404 sA/w VIGDEO IS INHIBITED
245 ov4vy . . . ACINHB EGuU 1004 sA/d CUKSOR IS INRIBITED
346 0096 . - . GFUNMX EGU 2500 s MAX GRAPHICS FUNCTION CODE
347 0010 - - . GINMOD EQU 2010 sIN TEK GIN MUDE
348 0oo7 . . . BEL EQU 70 ;sELL CUNTROL CuDE
349 OulF . . - us EQU 370 sUNLIT SEPARATUK
350 QUAD . . . ZTKFLG EQU 110255Q s TEK MODE FLAGS
351 908¢e . . . ZGFLG1 EQU 1102620 s GFLGS1
352 Suéb . . . Z6SBLK EQU 110153@Q s GRAPHICS STATUS BLOCK #
353 FB96 . . . ZAPFLG EQU 1756268 s AUTOPLOT FLAGS
354 9097 . . . IGFLGh EQU 1102270 s GRAPHICS TeEXT FLAGS
355 0voe . . o APIP EQU 2@ 7AUTO PLOT IN PROGRESS
356 0uo0e . . . GTEXT EQu U sGRAPHICS TEXT UN
357 00890 . . . LABeL tAQu 200m sSINGLE RECORD LABEL
358 0004 . . - HPeobds EWU 44 s STATUS BRIT FUR TrRMIYP
359 0200 o . . MINMEM EQU 10000 sMINIMUM DISPLAY MEM NEEDED
360 0000 . . . RIGHT EQuU 0 s GRAPHICS CURSOK KRIGHT
361 0001 . - . DOwWnN EQU 1
362 ovoe . . . LEFT QU 2
363 0003 . . . up EQU 3
~—

13255

lPqul

13255790010
REV 04/17/78

- - —— . - - e e S - - > " " W M R W W We T Ww S Gm e vm Gm e GT WS M W M e T em m m Y- e W We W W W W e e o W~ W W e W e = W

Pl Sgineagiuii =i ik

— . - - WS WP S g W W > > W M W A S W WR W e S W W Am S SR e W e W S e W W M- e S MR YR A T M e — = W W W W W W ™ W W =
e R T T T e T T S T T S T S T S T S T ST S S S TS s T e s s r e c e c Ca T E E E T o e S o - —------- TS

2648A MICROCODE LISTING
ITEM LoC OBJECT CODE
365 0000 . . .
366 0000 . . .
367 0000 . . .
368 0000 . . .
369 000A . . .
570 00o0C . . .
371 000D - . .
372 000E . . .
373 000F . . .
374 0012 . . .
375 0013 . . .
376 0018 . . .
377 0020 . . .
378 0020 . . .
379 0026 . . .
380 0ve7 . . .
381 0029 . . .
38e 0oes . . .
383 00ecC . . .
384 0veb . . .
385 002E . . .
K1-1.) Vuer . . .
387 0030 . . .
388 Ou3le . . .
389 0033 . . .
390 0034 . . .
391 0035 . . .
392 0036 . . .
393 ovs7 . . .
394 0000 . . .
395 0040 . . .
396 0041 . . .
397 00453 . . .
398 0044 . . .
399 0046 . . .
400 ov4s . - .
401 004cC . . .
40e 004E . . .
403 005v . . .
404 005e . . .
405 0053 . . .
406 0054 . . .
497 0085 . . .
408 0059 . . .
409 00SA . . .
410 0058 . . .
411 005C . . .

AL LSRR SRS RS REEEEEEEES

7 ASCII CHARACTER EQUATES *
PRKRAKKKKRKKRRKRRRXRRRARKRRAKR KK X

NULL EQU 0G sNULL

LF EQUL 121 sLINE FEED

FF EQU 140 s FORM FEED

CR EQU 15Q sRETURN

SO EQGU 0160

SI tEQu 017Q

DCe EQu 224 +DEVICE CONTROL 2
DC3 EQU 230 sODEVICE CONTROL 3
ESC £EQU 330 sESCAFE

CTLLIM EQU 40Q sCONTRGOL CODE UPPER LIMIT
ABLNK EQuU 0400 sASCII BLANK

AMPSND EQU 460 s (&) = AMPERSAND
QUOTE EGU 474 s (’) = SINGLE QUOTE
ARPARN EGU S1Q s [))] = <IGHT PARENTHESIS
PLUS tQu 530 ;PLUS SIGN

COMMA EQU 540 s COMMA

MINUS EQU 550 sMINUS SIGN
PERIGD EGU So0 s () = PERIOD
SLANT ERQU S7Q 3 (/) = SLANT

ZERO EQU 60@ sASCII ZERO

TWO EQU 624 sASCIL Twu

THREE €00 634 sASCII THREE

FOUK cAU 640 sASCII FOUR

FIVE £QU 654 $ASCII FIVE

SIX EQU 668 $ASCIL SIX

SEVEN EQU 670 sASCII SEVEN
ATSIGN &£QU 1004 s"AT" SIGN (@)

A EQU 1014 sUPPER CA3E A

C EQU 1030 sUPPER CASE C

D EQU 1040 sUPPER CASE D

F EWu 1ueQd s UPPER CASE F

H EQU 110Q sUPPER CASE H

L tQU 114w sUPPER CASE L

N EQu 1164 s UPPER CASE N

P EQU 1200 sUPPER CASE P

R EGU 122w ;UPPER CASE K

S EQU 1234 sUPPEK CASE S

T EGU 12406 sUPPErR CASE T

U EQU 125u sUPPER CASE U

Y EQuU 1314 s UPPER CASE Y

z EQu 152u TUPPERK CASE Z
LFTeKT tOU 1334 sLEFT BRACKET
ABCKSL Edu 1340 s (\) = SACK SLANT

13255 13255790010

2648A MICROCODE LISTING ‘PT91° REV 04/17/738
ITEM LocC OBJECT CODE SOURCE STATEMENTS PAGE 12
413 0600V . . . TRRKEARRRKARKRKKRRKR KK X
414 0000 . . . s LUWER CAStE EQUATES «x
415 0000 . . . TRAXKKRRRAKRKR KKKk kkhkkk
416 0vel . . . SMALLA EGU 141Q sLOWER CASE A
417 0063 . o . ALCC Egu 1430 sASCII LOANER CASE C
418 0064 . . . SMALLD eQu 1449 sLOWER CASE O
419 0066 . . . SMALLF EQL 1464 ;LONER CASE F
420 0069 . . . SMALLI EGu 151G ;LOWER CASE I
421 0068 . . . SMALLK EGU 153G sLOwErR CASE K
422 0070 . . . SMALLP EuWu 1608 sLOWEx CASE P
423 0078 . o . SMALLX tau 170G sLOWER CASE X
424 0078 . o . LFTBRC £QU 173Q sLEFT 8rACE
425 007C . . . VRTBAR EQU 174d@ sVERTICAL BAR
426 007F . o . ADEL EQUu 1773 ;DELETE (RUBOUT)

13255
2648A

MICROCODE LISTING

13255790010

‘PT91’ REV 04/17/78

——— .~ - - > D = G = s S A - G MR S Gm Y W e WS TS W W TR W

- . S . = S n SR G W W WS Gm S S R Gh R MR W G T wm R W W
--——-—---———-------——--—-—_—--_-——-——--—_—_—-———_———-—--_---_————----——---——--

.--—---------—-—---—_—_--—-—---—-—-_..—-———----—----—--—--—--——-———---.-—-—---.--
.——------—--_------—----—--—_—-.-_—-—..—-—_—-—_-———-—-----—-—---—-—---———----_——-

L[] L] L[] . L] L] L] L] L] L[] L]

L] . L] °

* . L]

;**************t****t****

+ DISFLAY FLAGS EWUATES =
:************************

ENHLIM EQU 277Q sMAXIMUM ENHANCEMENT CODE
STPR EQU 3000 sSTART PRUTECTED FIELD
ENDPR EQU 3010 sENU PRUTECTED FIELD
XMONLY EQU 3020 :START TRANSMIT=ONLY FIELD
FILL EQU 3030 sEOL FILL CHARACTER

STPFLG EQU 30410 s NON=DISPLAYING TERMINATOR
ALPHA EQU 3054 s ALPHABETIC ONLY

NUMBER ERU 3060 s NUMERIC ONLY

ALPHNM EQU 307Q s ALPHANUMERIC FIELD

SFKYAT EQU 3101 +SOFT KEY ATTRIBUTE FIELD
FLDSEP EQU 304Q
EOL EQU 314Q
FOP EQU 316Q
LNKLIM EQU 3200 s LOWEST VALUE FOR A LINK

NUMZK EQU 40000 ¢ NUMBER 2048 (2K)

B1S EQU 1000000 :3IT7T 1S

JMP EQU 303Q s JuMP INSTRUCTIUN CODE

RET EQU 311Q sRETURN INSTKRUCTION CODE
:************************

¢ MISCELLANEOUS EWUATES =
:***t********************

MAXROwW EQU 23 sMAXIMUM ROW NUMBER

MAXCOL EQU 79 sMAXIMUM COLUMN NUMBER
SFTENL EQU 16 sLAST SUFT KEY DEFINITION RO
BELLIM EQU 8 :SPACE FROM RHTMGN FOKR BELL
BLKSM EQU 170 +B8LOCK SIZE MASK

BLKSZ EBU 16 +BLUCK SIZE

IOERRB EQU 400 :sI1/0 ERROR STATUS BIT

REXMIT EQU 19 sRE=TRANSMIT I/0 FLAG

BINXMT EGU 2 s SEND BINARY DATA

SFTOLY EGU S0 :SOFT RESET PERIOD - .50 SEC
NGSIGN EQU 2000 ;NO SIGN FLAG FUR INPUT DATA

sFIELD SEPARATUR FOR I/0 BUF

13255
2648A

MICROCODE LISTING

13255790010

‘PT91° REV 04/17/78

T - - - T - W " T - w > T G WS WP T M e S e e T . e e M S e G G S P S YR B S e G GE - e TS P S S TGS YR W MR WM T W e e m WP e e - e Se e W
prei—aieduaiueahssfmescipioafus s i i g e e R e R R R e e e e X R X R R

- —— > v " A - T o G G R . W e - R WP S S G e AR S G - e W G T G T P e T e W e M G W W R e Y W S WR T We R e N e - > = A e e WS e = -
o o o o o e o - = S . T e = - = = o = - = = — = - - - - " e = - - = n - e . e e - - - -

L] L] L] L] L] L] L] L] L] L]

L] L] [* o ° L]

L] . L] L[] L] . L] L] *

L] L]] . . . L[] L] L]

SRRKKK KKK KK h Kk hk kX Kk k ok

s 1/0 MODULE EGQUATES «

PRKKKA KA KA RKKARKKARA KX

RESET EQU 00 JRESET TERMINAL VECTOR
RSTJIJMP EQU 14 sVECTOR FUOR RESTART "PCHL"
PROCSR EQU 1600 sPRUCESSOR "OUT" PORT
IOBASE EQU 2000 s I/0 ADDRESS MSB’S

o we we

KEYBUAKRD

I10Ke EQU 30+INDBASEX256 sMODULE 11 BASE ADDRESS
IOKBCu EQU I0KB+2000 sRESET KEY CONTROL

RSTON EQU 20 sRESET ON

RSTOFF BWQU 4@ sKESET OFF

sk kkkkkkkkwk GRAPHICS MUDIFICATION *kkkkhkkxkhkkkk
NMFCTK EQU 9 s NUMBER OF FUNCTION KEYS
SFTCR EQU 3570 +SOFT RETURN KEY CODE

HREEEES RS EERRR LSS RRERERR RS RRERRRR SRR SRR RS RE RS

CUKSUR CONTROL

o ~o we

IODISP EQU T7Q+I0BASEx256 ;MUDULE 13 BASE ADDRESS
ICCRCL ERU IODISP+0 ;CURSOR COLUMN ADDRESS
IOCRRW EQU IODISP+40Q ;CURSOR ROW ADDRESS

MAYEGP EQU 400 ;DMA UN, EOP IF DMA ROW = RO
MAYEOL ERU 1000 sOMA UFF, SKIP EOP IF ROWS =
DMAOFF EQU 140Q sDMA UFF

CRTGFF EQU 200Q
INVRS tGuU 202u
NORMAL EQU 2000

:DISPLAY OFF
tINVERSE VIDEU ON
s NORMAL VIDEO ON

~e =

CARTRIDGE TAPE

IOCTU EQU 13Q3+I0BASE*256 MODULE 15 BASE ADDRES
I0OCTCO EQU IOCTU+0Q :COMMAND TGO CTU

IOCTSI EQU IQCTU+0Q $STATUS FROM CTU

IOCTDO EQGU TIO0OCTU+40Q ;DATA TO CTU

IOCTD1 EQU IOCTU+40UQ :DATA FROM CTU

MICROCODE LISTING

- ——— - - Wm e W v T W e G MR e T G = = AR W Tm W = o= =
-—— e e e c e - - --

‘PT91°

- -

13255790010
REV 04/17/78

- . o - —— - - - = = > W em - = e W = W= T W W M- W = = W =
prdbeciedbeediiiendmeiie i iiiuipediedeipegnipeipuaip-pmgpmieip P PP L L 1 Y

-~ - ———— . . = = - - - e W» S W - G- W W W Ms % Ww W W e = e =

- - - ww G W S MM R We - e W e e MmO S s W W W
Pt —ai— R S ittt

e & o 8 o o

I0PTR1 eQU
PTRCT1 twGU
PTRST1 tQu
PTRCL1 EGQU

9866 PKRINTER

150+ I0BASE*¢S6 ;MUDULE 16 BASE ADDRES
IOPTR1+406 $PRINTER ULATA GuT
IOPTR1+0G ;PRINTER STATUS 1IN
INPTR1+2Q ;PrRINTEXR CLEAK

7 RS=-232 PRINTER

I0OPTRe EQU
PTROTR EGU
PTRSTe EQU
PTRDAC EUU
PTRCF2 EQuU

SR+IGBASE*256 ;MUDULE 12 KASE ADDRESS
IOPTR2+100G6 ;INTERFACE CONTRUL OUT
JTOPTR2+400 sPRINTER STATUS IN
I0PTR2+14uG ;PRINTER DATA OUT
IGPTR2+100Q ;OPTION JUMPERS IN

13255
2648A

MICROCODE LISTING

Pttt ettt ettt e e o e ———
- - = - - - - —— = an an e e e am o - e - — -

1525579
‘PT91° REV 04/1
SOURCE STATEMENTS PAGE

T WD h en m Em G W G e e S R T G SR R SR T R W MR MR T W TR W Me G e WP T Gm e e em m S W m B e G e G WR W e e - e = v - - = s A @ = e T am e . e e e .
- - - — " o T = T S e > " G e A A T tE e e e e ————— - . Eme e ET LSSz

000v
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
000v
0000
0000
0000
0000
0000
0000
0000
0000
0SDC
0000
0000
0000
0001
0080
0000
0000
(VO
0002
0040
0veo
00EO
001F

[-
. [
. .
. -
[.
[.
- °
. -
. .
. .
. 3
. .
. .
- .
. .
. .
L] .
. o
L) .
- .
. .
L] L)
[.
. .
- L)
. -
. .
. -
[.
. -
. .
- L)
. .
- .
o .
. 3
[[
. .
] o
L] [
- .
. .
. .
. .
[.
L) L)
- .
[L]
L) .

PREKKKAK KK KRR KA K Kk k%
PRINTER EWUATES =
Kk kkK Kk kKRR KKK kK

R§=232 OPTION STwAPS

BITS 2=0 MEANINGL IF StT

Ahkkkkhkkkkkhkkkkkkk
DRIVER EQUATES =
;*t*****t********t
PTOLY EGU 1500 215 SECUND PRINTERK TIME
RASEEEEE SRS RS SRR R R EES/
s 9066 PRINTER EQUATES x
IR EE SR EREEE RS RRS RS X R
PTRLY1 EUU 1 sPRINTEx READY
PTRPO1l EGQU 200Q sPRINTEx QUT UF PAPER
IR SR RS R RS EEE SRR R RS REEEEE R
7 RS=232 PRINTER ERQUATES =*
pRA Ak I KAk Ak Ak hkkhkhkkhkkhkkkkkkkxkxk
PTRDYe EQU ¢ sPRINTENR RKEADY MASK
PTkoB2 Ewu 1004 sRS=252 So LINE STROUBE
PTRCOLe tQU 40U sPRINTER READY ™MASK
PTRHDZ cQuU 35404 sRS=252 HANDSHAKE PROTOCOL
PTRBDE EGQU 3719 sPARITY AND BAUD RATE MASK

H 0vo EXT BAUD RATE
H 001 110 "

: 010 150 "

H 011 500 "

H 100 1200 »

H 101 2400 "

H 110 4500 "

H 111 9000V "

H BIT 3 PARITY SELECT
H 1 EVEN

H 0 oDd

H 3IT 4 PAKITY In&HIBIT
H 1 NO PARITY

H 0 PAKITY

H BITS 7=5 # OF FILLS

H 060 HANDSHAKE DEVICE
H Uo1 o]

H 010 16

H 011 24

; 100 32

H 101 49

H 110 48

H 111 S6

0010
7/78

ouT

13255
2648A

MICROCODE LISTING

13255790010

‘PT91° REV 04/17/78

- - —— - - . A - T M WS G MR W W s G Wa eGP WS AN e We % W NS G» e G» ST W W W ™ W S e W

e e L L L]
et PP R e

pocindagiaih et ofuadp e gpadp

- - - - > W W= B . > S e W G e e T M e Um M R Y WS SR AR M e Y M R G S ee M W = W W W S e W =

-—— - - v W = G e Wb T e T W e am e
frathiedcbieeine it clnioni i oo ipeipiheiuegimae gl

SHKKKRKRKARKRKRRA KA IR AKX Ik k kA Kk k

s VARIABLE SPACE ALLOCATION =
SRAAKKRRKKAKRKKARKKIAKRK KKK Kk k ok kKX

PRKKRK KK ARIRKA KK KR KRR KKK KR KA A AR AR KA K KKK KKK kX
s MUST BE NN 256 BYTE BUUNDRY

DSPLIM EQU 1737774 sOISPLAY LOWER LIMIT

LRI IR KARR K AR KR AR A RR KRR KRR KRR AR KRR R AR AR KKK KKKk % %
LWDSP EQuU 150000Q/256 ;DISPLAY LUWER LIMIT
IOBUF EQU 1760009

T0BUFH EQU TOBUF/256

IOBUFL EBU =IO0BUFA*256+I0G3UF

I0BUF1 EQU 1760000

IOBUFZ EQU 1764000

DSPSTk EQU 177000Q+79 ;MESSAGE BUFFER

PTRELN EGU 256 sPRINTER INPUT BUFFER SIZE
PR KKK KKK KAR KRR KRR R RRRK KA KKK

;s OPERATING SYSTEM STURAGE =
THIAKRKAKK KKK AR AKX KK KK KKK XKk

STACK EQU FSTRAM+1409 3STACK ArREA (96 BYTES)
OPSTOR EQU 1777e20Q sVARIABLES STURAGE AREA
BASEH EQU OPSTUR/eS56 :MSB OF DATA PAGE ADDRESSE
BASE FAU BASEH*256 ;;DATA PAGE BASE ADDRESS
BASEHe EQU BASEH=-1 sBASE VALUES FOR SECOND PAGE
BASEZ EQU BASEH2*256 ;UF VARIABLES SPACE

PREAKK KRR K KKK R KK HKARK Ik KKk Kk

;s VARIABLE SUBROUTINE CALL *
TARRKKRKKKRRRKRKARARKR R Kk kk*k

ECONTF EQU UPSTOUR=3 :JUMP SUBROUTINE

CNTFAD EQuU FECONTF+1 ;CHARACTER FUNCTIUN ADDRESS

13255
P6UBA

MICROCODE LISTING

13255790010

‘PT91° REV 04717778

- o - - - . M0 W = v W W S - e e S W W e P We e S W M - e W W W Y S G T WS e e e S - W G e T Gn G e e e e e e - N W > W G . W v W e = W

- - - - ——— - - - = - . = A SR W e W W e M W e T e e e e M W A - e e G WP G e W WP Gn e e W e W e W = e =
- o o o v . = - = P e w Te e e == . - - e - .~ T = - - e W - e M T e e - e o e e e m e e -

PR KKK KRR K KKK RRA KR AR AR AR K KRR KA Rk kAR A K Kk k kK
s NURMAL/SOFT KEY SWAPPED DISPLAY PARAMETERS *
R R R e T
TOPLIn EQU ECONTF=¢2 ;LSHE PART OF WNEXT LINE

; PUINTER IN TOP DISPLAY

7 LINE

LSTLIN EQU TUPLIN=2 ;POINTER TO LSB PART OF

; NEXT LINE POINTER IN

; LAST LINE PROCESSED
LSTCOL EYuU LSTLIWN=1 ;COLUMN AND ROUW POSITION OF
LSTROW EQU LSTCOL=1 sLAST CHARACTER PROCESSED
; (CORRESPONDS TO CHARACTER

: GIVEN BY "CURADR")
LSTOCD EGU LSTRUW=1 ;LAST DISPLAY CODE USED
LSTFMT EGU LSTNDCU=1 3LAST FURMAT CONTROL USED
CURADR EGuU LSTFMT=2 ;ADDRESS OF LAST CHARACTER
; FROCESSED
PRUFLD EGU CURADR=1 ;PROTECT STATE OF (CURADR)

= -1, PROTECTED

4 =1, NOT PROTECTED
% % Kk e g e ok vk ok de ok d Kk kb kot ok k ok k ok ok

CURRENT CURSOR VALUES x

;****************‘k*******
CURCOL EQU PRUFLU=1 ;CURRENT COLUMN AND ROW
CURKOwW EQGU CURCOL=-1 :POSITION OF CURSOR
LFTMGN EQU CURROW=1 LEFT MARGIN SETTING
RHTMGN EGU LFTMGN=1 3RIGHT MARGIN SETTING
NUMSWP EQU ECUNTF=RHTMsN 3# OF SWAP VARIABLES
SWPSTR EQU RHTMGN=NUMSWP ;SWAP SUFFER
DSPTYP EQU SWPSTR=1 ;DISPLAY CURRENTLY ENABLED

0 = NURMAL DISPLAY

-1 = SOFT KEY DISPLAY

gk ki k ok ok ke ke e ok de vk ok Kk ok ok ok sk kR ok ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok
s FIXED DISPLAY PARAMETERS (NOT SWARPED)
:**********i**********‘k*******************
FRBLKS EGU DSPTYP=-2 ;FREE BLOCKS LIST HEAD
DSPBGN EQGU FRBLKS=2 ;LOW ADDRESS OF DISPLAY AREA
DSPEND EQU DSPBGN=2 3HIGH ADDR UF DISPLAY AREA
SFTKYS EWU DSPEND=2 ;SOFT KEY DISPLAY START ADDK
CURFKY EOU SFTKYS=¢ 3CURRENT FUNCTION KEY CHAR
TLINO EGU CURFKY=1 3$10P LINE ABSOLUTE ROW NUMBRE
LLINE EGQU TLINO=2 ;LAST DISPLAY LINE START ADD
FLINE EQU LLINE=2 ;PCINTER TO LSB PART OF NEX]I
; LINE POINTER IN FIRST
3 LINE GF NORMAL DISPLAY

e Ne w8 “e

s we ~e wa

13255
2648A

MICROCODE LISTING

- - -

. L] L] L] L] L] L[] L] e

L] L] L] L] L] L] L

L] L] . L]

‘PT91°

13255790010
REV 04/17/78

- - -
.—-————qoo-—_—---—-----—_——_---—--—--_-—---—-—-_--—-_—-—-—--—_-—--—--———.

— - - - —— ——— = - -~ e W= R WS W W W W= W= == W W ™ W = T

;********************

;s SCRATCH VARIABLES *
PAKKKRAAKRKKRKKKKRK KKK

TEMP1
TEMP
CHAKIN
NCHAR
NrROWS
NBLKS
CHSAV
’
LNKSAV
EOLADR
FRSTBL
BLKFIL
EOLMV
FILCHR
BFSFCt
LWBUF
BRUFBGN
BUFEND

EQU
EQU
EGU
EQU
EQU
EQU
chiu

EGQGU
tQU
cQuU
EQU
EQU
EQU
EGu
£y
EQU
EQU

FLINE=1
TEMP1-1
TEMP=1
CHARIN=1

s TEMPURARY
sCHARACTER
sNUMBER OF

NCHAR=1 nNO. OUF ROWS

NROWS=1 sNU .

- - —— -G TS b e W R W W W T W = em
ottt et eisin e e it

STURAGE

FRGM KEYBGARD
CHAKS 7O BE ADDED
TO BE ADDED

CF BLOCKS TO BE ADDED

NBLKS=1 $SAVE AREA FOk CHAR

PRECEUING LINK

CHSAV=2 LINK SAVE AREA

LNKSAV=2 ;ADDR OF LAST EUL
EOLADR=2 :;FIRST BLOCK IN DISPL1
FRSTBL=1 ;FILL FLAs FOR FNDCHR
BLKFIL=1 ;FLAG FOUR EQLMOV

EOLMV=1 FILL CHAR SAVE FUR GTBLK
sUPPEr LI&IT OF BUFFEK

1477774

130000Q/7256

FILCHR=2
BUFBGN=2

sLOW ADDK
sHIGH ADDR

sLUWER LIMIT
OF NON=-DTSPLY BUFF

FOK BUFFER

;*************************i*****t**t*****

:+ STURAGE FOR CHARACTERS Tu BE STORED %
SAKAKRKIKKKKRRKKRRAKRAKKRARK AR KKKk k Xk kK k kK kk*
sFORMAT CUNTRUL TU BE ENTERE

FMTICTL
DCHAR
CHAR
CHKKRTH
TMPCOL

COUNT

NMROLL
ROLLCT
NEWCOL
NEWROW
SCRNRW

EQuU
FEGU
tQu
EQU
EQU

EQU
EGU
EQU

QU
EQu
EQU

BUFEND=1
FATCTL=-1
DChAR=-1
CHAK=Z
CHKRTN=1

TMPCOL=]
COUnT=1
NMROLL=-1

PARM]
PARME
PARM3

sNEXT CrHAR

TO BE DISPLAYED

s CUKRENT CHAR BEING PROCEOSSE
;CURRENT TYPE CHECK ROUTINE
sCOLUMN # STORAGE FUR RCADDK
PAKKKKKKKKRKRKAAKAKRKRR KA KA KRR KK KK

; STORAGE FUOR CURSUR POSITIUNING *
TRAKKKKARK KK KKK RRK AN KKK KRR KK KAk Kk K

sNUMBER OF
s NUMBER OF

BYTES TO FILL
LINES TO ROLL

sROLL CUUNTER

sNEw COLUMN

NUMBER

:nEw ABSULUTE RGw NUMBER
s NEN SCREEN KOw SETTING

13255

2648A MICROCODE LISTING

13255790010

‘PT91° REV 04/17/78

- o - - - S o A . G W W e G - = - - > W = s T - T e W G e e G T T S S S - Gm W G m e Y- e em e T W e T e - e e = W v
- o o e " T - o B n o - o o - wh e e e - e e e e e T e A e - . G > A S e s e W en EE e e - N - - e e - - A A e m e T - - - -

- > - . R G Se W S G - - G . WS e G - = G e G G G - - . - W = - - - S MR > - wn 4e - M W R e W Ym R e T S T M W e e W - - e e - - = —
o o o o v o ah e e e W e o e e Mn e e . S G e e e o Mm e m n - = > m n e " - . e o - . m . a————— — —w—

HEE R EE R SRR REE SRS SR EEEDS]

5 HORIZONTAL TAB TAbLE x

;***************t*******

HTBLEN EQU 10 s TABLE LENGTH (= 10 x 8)
HTBTBL EQ@U ROLLCT=HTBLEN

;**t********************

s DISPLAY SEND STORAGE *

;*i****t****************

COSPEN EQU HTBTBL=1 ;CURRENT ENAANCEMENT IN

ENRGUT EQU CDSPEN=1 ;LAST ENHANCEMENT OuT

CALTST EGU ENHOUT=1 :CURRENT ALTERWNATE SET OUT
GETADK EWU CALTST=2 ;CURRENT CHARACTER ADDRESS
TRAKXKAKRKRA A A AAARKAARA AKX KA KX kX

: FLAGS AND TABLE POINTERS *
;*tt************************

CHKRSET EGU GETADk=1 sCUKRENT ALTERNATE CHAR SET
KBFCTK £QU CHRSET=1 KEYBUARD FUNCTION CODE
:******t*******t**********************************
MFLGS €eQU KBFCTK=1 sBLUCK TRANSFek PENDING FLAG
TRk ko dk ok ok Kk ok ok ok ok ok koA ok ko ok ok ko k ok ko ok ok ke ok ok ok k k ok ok ok ok ok ok ok ok ok ok ok ok ok ok

SDCe EQU 1Qx*256 :DC2 PENDING
SSTAT eQU 2Q=x2Se6 sTERMINAL STATUS PENDING
SSTATe EQU 4G*2Se6 ;TERMINAL STATUS ¢ PENDING

SDVST EWU 10Q%256 sDEVICE STATUS PENDING
SCRSEN EQU 2uQ@x236 sCURSUR SENSE PENDING
SFCTKY EQU 403x256 sFUNCTION KEY PENDING
SENTER EGU 100a%x256 ;DISPLAY SEND PENDING
SDVDUN EQU 2000%256 DEVICE DUNE PENDING
R TS 2

MFLGSe EQU MFLGS=1 sMAIN CUDE MODE FLAGS
R R 2

SDVREC EQU 1u :DEVICE RECURD PENDING
SBINRY EQU 26 sBINARY KECURD PENDING
RELSNS EGU 4G sRELATIVE CURSOR SENSE
ESCinP EQU 100 sESC <ECEIVED IN BLUCK ™MODE
FRSUUT EQU 20Q sFIRST SUFT KEY DATA OUuT
WRPDEL EQU 40Q sUELETE CH