"

-,
-
& p.
=
&
o
B

Developer's Series

rogramming

in-depth reference
for the DOS programmer

surmueIgo.1

Includes 2 ready-to-use
companion disks with over
1 MB of programs

Michael Tischer
036

Abacus FFFFEL
e AbacusHi

A Data Becker Book Michael Tischer




PC System
Programming

by Michael Tischer

Abacusiii
A Data Becker Book



Fifth Printing

Printed in U.S.A.
Copyright © 1989, 1990, 1991 Abacus
5370 52nd Street, S.E.
Grand Rapids, MI 49512
Copyright © 1988, 1989, 1990, 1991 DATA BECKER GmbH
Merowingerstrasse 30
4000 Duesseldorf, West Germany

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of Abacus or Data Becker,
GmbH.

Every effort has been made to ensure complete and accurate information concerning the
material presented in this book. However, Abacus can neither guarantee nor be held legally
responsible for any mistakes in printing or faulty instructions contained in this book. The
authors always appreciate receiving notice of any errors or misprints.

This book contains trade names and trademarks of many companies and products. Any
mention of these names or trademarks in this book are not intended to either convey
endorsement or other associations with this book.

PC-DOS, IBM PC, XT, AT, PS/2, OS/2 and PC-BASIC are trademarks or registered
trademarks of International Business Machines Corporation. Ventura Publisher is a
trademark or registered trademark of Xerox Corporation. GEM and CP/M are trademarks or
registered trademarks of Digital Research Corporation. Microsoft Works, Microsoft Quick
C, Microsoft Windows, MS-DOS, XENIX and GW-BASIC are trademarks or registered
trademarks of Microsoft Corporation. Lotus 1-2-3 is a trademark or registered trademark of
Lotus Development Corporation. dBASE is a registered trademark of Ashton-Tate, Inc.
Sidekick, Turbo C and Turbo Pascal are trademarks or registered trademarks of Borland
International. UNIX is a registered trademark of Bell Laboratories. Mickey Mouse is a
registered trademark of Walt Disney Corporation.

Library of Congress Cataloging-in-Publication Data

Tischer, Michael, 1953-

PC system programming for developers / Michael Tischer.
p. ocm.

*A Data Becker book.*

ISBN 1-55755-036-0

1. System programming (computer science) 2. Microcomputers-Programming. 1I. Title
QA76.66.T57 1989 005.265--dc20 85-18350

.
11



Table of Contents

2.1
22
23
2.3.1
232
2.3.3
2.34
2.3.5
2.3.6
2.3.7
2.3.8
24

3.1
32
3.2.1
322
33

4.1
4.2
4.3

5.1
52

6.1
6.2
6.3

INOAUCHON ....coeeieieereeieeeieereitiii e ceessereseeessaseeeesanenennensenannseanoenesassens 1
The PC'S BIaiN.....cccciieiiieiieeiieieete e e sceeeeseee e e ee e s e ereeneaa s ennnennn s e s 3
BOBB REGISIEIS ..vvuuiirerrunnieeereteniieeererreereseeerenssnnsensesessnesersensssmnsnsnsssessnss 6
Segment and Offset AdAreSSiNgG........vuvueueeiieirirrrieiereeeieererereereeeensensrereeneneseens 8
The CPU Support ChiPS.......cccccovvririeieeieeriecierenrseseeeseeeeeseseeseessineeessensnes 13
The DMA CODIOIIET .......ccovieieriieceeeeeeereeeeeeeeeeeeeeeeeereereenaeeeessrsnseananeens 13
The Interrupt CONrOLET .....ceviieeirrerereeiiicirreeeeeseeeeeerresrenentenranreee e e e 13
The Programmable Peripheral Interface........coccoeceeververrcrrrceseeceercneestenseennans 13
THE CLOCK ... ciiiieeieiereree et ee e e s st retese e s eese s e s se s sasanssaneae s sssenaeeas 14
THE TIMET ..o eiieiiieee ettt e ee e seeeese s e ee e e ereeeeeese s seraaasas sesesnnnanansane 14
The Screen Controller........ccceuuevvriviniieieneieieeeeisiiereieaereeeseseeeeseerssrenesennes 14
The Disk CONtrolIEr .........ccvieiiiiiuiiiiieieeiieieeee e eeee e e e e et s v eee 14
The Math Coprocessors (8087/80287/80387) .....cceeevieeerereeenenceeenereeeeerereeenees 14
The CPU and MEMOTY ........ccevvuureriiiiierieerieeneesisnraeeneeaeeeseseeseessessssenssennes 16
Introduction t0 INEEITUPLS ....cevvirirrieitiaieeeeaieeeeieeeeeeeeeseeeeaereeesenan e sessenannansans 19
The Structure of the Interrupt Vector Table ........c.ceeevueerevrrernieeirrereeneenenenenenns 20
INEEITUPE TYPES.cceuenneieiiiiieieeeeetteeeeeere e eeeeaeannteeeesesennneessstnnsesressnsrnnanns 22
SOftWAre INTETTUPLS ...ceeveeeeiieiieeneierreeeteaeeeseessereraenreraeaaesaesaeanesansssensasnnes 22
Hardware INLEITUPLS.....cccereverririreiienieieeneeneeesseessuesesessssassnssessssesaessnsaenes 22
Interrupts at @ GIANCe..........eevviiviuiiieeeeeeeiieeeeeeee et teeeeeeeseaeeeeeeeeeenes 24
Using Interrupts from High Level Languages ...........c..cucuiiiiieieeeeeneniiieereenenns 27
Interrupt Calls from BASIC..........uuvuiuieeriieieieeeeereeeereiriceeeeeeseneeeeeeeeeeans 28
Interrupt Calls from Turbo Pascal ...........cceviveivveninieeeerinioneeereenneereereersannienes 36
Interrupt Calls from C .......ooiiiiiiieiiieieiiiieec et eerrreee e erreeeseereess e v 40
Using Interrupts from Assembly Language ...........ccoceeecevuenmermnineineeseneeesenas 47
Using Assembler Macro FUNCHONS. .........coeeeveeivmveeesseeesreeerseeessensessaesnsenes 48
L NIINT: 111 ) O -1l (o OO OO TPPPPPPPRY 49
The Disk Operating SYSteM.........iiiieiirueiierireeiieieeerrrteeeeeereneeresssseserersssesses 51
A Short HiStory 0f DOS .......uuuiieiiiiieiieiieieieeeeeireeeeeaeseeeevsaeneeeaeanees 52
Internal Structure 0f DOS .........u i e e s e e ererereeeeaeeae e 56
BOOHNE DOS ... ciiiiiiiitiiiieceeeeeeeeeeeeeereeersesssasaressrsnnsnsseasssseanareesaassnenee 59

iii



Table of Contents PC System Programming

6.4 COM and EXE PIOZIAMS ........uvuvvevereeereensnsirneeneesenecessssssssssssssssssssssnsnrsnes 60
6.4.1  COM PIOIAMS.....uuuueueeenirereareaeerereeeeererererereeenesrsssmsssssssssssssssesessmmmassssnnd 62
6.4.2  EXE PrOZIAIMNS ...c.uuuuuueereneieaerereaeeeerereeeseeererereeerenrmrsnsssnnssssessssssescrsrmsnsrnned 66
6.5 Character Input and Output from DOS ..........coomriiiiiiiiiirieiieererereereeeees 70
6.5.1  Handle FUNCHONS ....ccceetirecnrinrrarereeeeeeeeeniimreneerreesesesssssssssnsssssnnsnsssssssarenes 70
6.5.2  Traditional DOS FUNCHONS .....ccceeieirieiiiiiiririreeiicitirtteentiei e erarasaaes 74
6.6 File Management in DOS........ccccccimuiiiiviinneiiniinninniiiniren e 84
6.6.1  Handle FUNCHOMS ....cc.cetrreeiiuriiritirreeeereeessinrenroeeetensersesessssnsssisnssonsssassasnses 84
6.6.2 FCB FUNCLIONS.....ccciiieeierurieieeieeeireeeeeseireesseresssnnnnesssesnesssnssnsssssssssssses 86
6.7 Accessing the DOS DIT€CLOTY .....c.ccevrevirreiemreeeeieeemsuiiiiisiseeseenrermemmmiennnnnne 92
6.7.1  Searching for Files using FCB FUNCHONS.......ccccerrerierernerareiisissnnnssnnnneneneeees 94
6.7.2  Searching for Files using Handle FUNCHONS ........ccovtereerrvrercinnininnninnineneaened 95
6.8 The EXEC FUNCLION......ccccvrurreieeeecarneeerinssnerneeseesesscenmeersssosesssnsasassssons 110
6.9 Memory Allocation from DOS............. eeeeeerenreeennernaneerensesrreteteisserenraees 119
6.10  DOS FAIEIS.c.oceiiiiiiiiiienertrereeeeesreecerresereeseessssessesessessssansssnsnsnsenes 132
6.11  <Crtl><Break> and Critical Error INterruptS........c.eeeeereeeenenmmemmmenensnnemenences 142
6.12  DOS DEVICE DIIVEIS....cuvveerreeeerinererierinreneeesessessessesssssssasssessserssessassereenes 148
6.12.1 Character DeviCe DIIVEIS ......ceviriiruenirerieneeeeienerenraieeseerensreeeeeanenseeerensnens 150
6.12.2 BlOCK DEVICE DIIVETS...cuvuuueuiiiiieeeieiereeeeeeeieiieereeeeeeaeeesnassssessnssseasanasaneses 151
6.12.3  Structure of a Device DIIVET.....ccciiiiireiiiiinireeeiieeier i recicreerserenenracreee e 151
6.12.4 Device Driver FUNCHONS.......cceiiiiiieeeiiierieeiseeeeessrneseeesssssnsesessseecssesssonees 155
6.12.5 ClOCK DIIVEI...cciiiiiiiiiiiiiieiiiereieereesiecninenttsteesesesseesssseesassssansssnnnnseenes 168
6.12.6 Device Driver Calls from DOS.......cccoeiiiiiiiiiiiiiiiietieiiiriereee e eeeereteresennes 169
6.12.7 Direct DeviCe DIIVET ACCESS. . eererrerieirieriiererieereererereeremmenreessseseesesesssesees 170
6.12.8 Tips on Developing Device DIIVETS........cccceieeeieeeeiererernenieneieeseeeeeerereneanenes 172
6.12.9  Driver EXamPIES......ccceeeereiimeerereieeeerineesiinieseseseesesssasssseessssessnsssessenenes 172
6.12.10 CD-ROMS...ciuiiiiiiiiineiiiieeeenirreeteeesieieresssessnereenessssesesssssssessessssessannns 192
6.13  DOS MaSS SOTAZC.....cccvrrerrreernrrrrnreerssessvessaessssessssesnsssesssssesssssasssasossns 196
6.14  Tips on Compatibility between COMPULETS........ccceereervereveereeereessreessensessnses 206
6.15  Undocumented DOS StUCIUIES.....uveeeeirreriierereereeeeseereerererensessosssessssssnseens 208
6.16  DOS 4.0 ..ttt erreriraree e e s ese s srener s e s saesese et s s ssss s ssnisanas 213
7. TREBIOS ...ttt e e se s eeeeeeseesss s rabaaabanens 219
7.1 BOOting the SYSteM......cccceieviirriierieeriiiecriernrueessreessssesesnessssessssseressesses 221
7.2 Determining BIOS VEISION.......ccvuvutueumeuemeneieitercieeeieneenterertesens s sneens 223
7.3 Determining the PC TYPe....covcvvrerieerreerreeererre e scnrteseestr et sssnesesenessens 224
74 BIOS Screen Output FUnCHONS.......ccceeienirereerrerssereseeessnesineeeseessasesseess 226
7.41 The EGA and VGA BIOS.......cvteiiiiiieieernieerieseesinrreressssenrerecessesosnseeeesenas 254
7.5 Determining System Configuration using BIOS ..........cccceievieiiniininiiniininnnn. 289
7.6 Determining Available RAM using the BIOS.......ccococtivniiinnnincnnincnnnnens 291
7.7 Accessing the Floppy Disk from the BIOS ........cccoucvieiiieerininerieeriniininnnnnn. 297
7.8 Accessing the Hard Disk from the BIOS...........cviiiimmiiieriineieeerecennieeneeeenen. 323
19 Accessing the Serial Port from the BIOS...........cccuvveeiiineiiniieeiiininiininiinnnne. 330
7.10  The Cassette INTEIMUPL. ...c.coceeeiirieieieiiirieeeeeeeeieerenerraeerasesaeesereenesnnensnnanes 336
7.11 Accessing the Keyboard from the BIOS .........coovvveirimerirerieeicncereeeenenneennnes 358
7.12  Accessing the Printer from the BIOS .......c.cccoriiiiieiiieeiiiiieeeeneieciaceennns 384

iv



Abacus Table of Contents
7.13  Reading the Date and Time from the BIOS........ccccevevirverrerreereenernenreceenenens 395
7.14  BIOS Variables.......cccceeviiiieeriuerniiieirieeseeesieeeessesssseesssseesssseessessesseness 398
8. Terminate and Stay Resident Programs.........cccceceveeecvenveneceneeseennecsenseenne 407
9. Sound on the PC ....cciiiiiiiiiiiiiiieiiiirt ettt e eeeeeeeeaeeeseee s saes 447
10. Accessing and Programming the Video Cards .......c.ceueueeeeececiiiiniiiiiiniiiennnnns 457
10.1 Anatomy Of @ Vide0 Card ..........cceeuiuueieerriienineeeeraenenineeseerenesseeeeeeeeenen s 460
10.2  The IBM Monochrome Card...........cceevuveervvereeeseereeesreeseeseesseseessessseseensee 469
10.3  The Hercules Graphic Card.........c.cccoecevieoueerieceesreseeneneneeneeneeseeeesssesnes 482
104  The IBM COlIOr Card........cccoceeerieieeiinrenreeiesresrassesesseessesssessessessesseses 497
10.5  EGA and VGA Cards.......ccccuereeeieeieieiieeeernnierreeteeesseeseseseessensnmnneessssesses 519
10.6  Determining the Type of Video Card.........cccceeevreeeeeeerecereceeereeneneeniereeanes 537
10.7  Accessing Video RAM from High Level Languages ............evuveeeeeeeeeienieneeens 554
11. Accessing and Programming the AT Realtime ClocK.......c.uuueerieeiecreereneeneenn. 563
12. Keyboard Programming.......c.cccceeeiieeiiorriereennereeeeseseorneeseesessseseessesssseesces 575
13. Expanded Memory SpecifiCation ..........ccveveieeeerunieeeeneerneereeneerenncreseenenes 597
14. Mouse Programming..........coeeeecimerirreereerineneireieeerereeeeseesenessesesseneseenns 617
15. Determining ProCesSOT TYPES....cuvuruuuuurninieiieirieressaeaseseraeeeeeresnnnsnsarnsanness 653
16. PC Hardware INLEITUPLS .......ceeevriieeeeieiiieceieeereeenneeeeeeennrnreseesnnnneesseneesnes 667
17. Hard Disk Partitioning...........ccceeuuueiiriieriiiiieeeeeeeneneneeseseneenssecenennsensannns 687
18. The PC POILS.c.cviiieriiieiieiiieieiicecitirieieee e eeeee s seinneaeeetesesenesanessesssseseneanne 699
19. Interaction between Keyboard, BIOS and DOS.......cc.oovvveeeeireiniieeerenninenienns 701
APDCIAICES .eveniiieiiiiie et ee et e e te et ee et et e et rr e e rereseraanns 709
A. Important Hardware INLEITUPLS......ccccoervereererreruerienrereeeeseeeseeesessessenesanesns 710
B. BIOS Interrupts and FUNCLIONS.........ccceevveceeeenruenieeesserseesiesseessesesessneees 713
C. DOS Interrupts and FUNCHONS .........cooeeieveiiieiieeeieeiiieeeeeerenieeeeeveeeeeeeeeeees 766
D. EMM FUNCHONS .....ciiiiiiiiiieieineeieeeeetintesaseessessnssnesessenesssssesnenssssssnssesesns 849
E. EGA/VGA BIOS FUNCHONS.......ccoceeueeirreiereeeeseeesnrereseeseseeeeessesssnsssaesses 856
F. Mouse Driver INTEITUPLS ....cevvvvveieieiicieieieeeeereieeeeeeeeeeeeeneeeereeeseeesesnnnnaes 882
G. Introduction to Number SYSLEMS........ccciereeerieverrererrerseeereeesssesseesesesaens 900
H. GIOSSATY Of TEIMS....uviieecrreeiieiieeeeirreeeeeireseaneeesseeeessareeeeessseesessensareees 903
I SCAN COES . ..uuuiiiiiiiiiiiititiir e iirerieeeteres sttt eeeeseseessarseseeeeaneseeeeaeeeannnsennns 918
J. ASCIT Character SEt........cooeiuururiniiiieieireereeeieeeeessnerereneeeeeeseeeesenessimneesees 919
INACX ...t ittt ittt et er e e s e ae e e e e s e e bbb aneeeaeaeeenbeanes 921



Chapter 1

Introduction

A few years ago, my computer was a small home computer. When I became
interested in the IBM PC, I had to learn a lot of new things. I learned about MS-
DOS and became familiar with 8088 assembly language. I soon reached a point
where I started developing commercial PC programs in partnership with my friend
Axel Sellemerten. All of this happened some time ago, but I still clearly
remember sitting at my desk, looking through dozens of PC books and technical
manuals, trying to find a critical piece of information.

These books and manuals were expensive and hard to find. Besides, none of them
covered all aspects of the PC. Some books tell you about PC hardware or the
BIOS or DOS. I could never find a book that dealt with the PC as a total system.

No single book was able to provide me with a complete system overview.

This book is the result of my experience with all of these references. The three
main areas of the PC (hardware, the BIOS and DOS) are combined in this book
from a software developer’s point of view. This book was written to serve as an
instruction book as well as a reference manual. It is not, and was never intended to
be, a book for the beginner. The book assumes that you’re familiar with MS-DOS
and are able to program in one of the four most popular PC programming
languages (machine language, BASIC, Pascal or C).

Organization

The book is divided into five parts. Part 1 (Chapters 1-5) gives an introduction to
the PC’s internal components. Part 2 (Chapter 6) describes the Disk Operating
System (DOS) and Part 3 (Chapter 7) describes the Basic Input Output System
(BIOS). PC hardware that is not part of the central processor is discussed in Part 4
(Chapters 8-18). Part 5 (Chapter 19) describes the interaction between these
components and the keyboard. The book concludes with a large reference section
(Appendices) containing all functions of DOS and the BIOS, among other things.

To understand the content of this book, you must first know something about the
different number systems used in computers. Readers unfamiliar with the binary

1



1. Introduction PC System Programming

and hexadecimal number systems should read Appendix G (Introduction to Number
Systems) before continuing.

Chapters 2 through 5 contain descriptions of PC microprocessors and interrupts. If
you’re an experienced assembly language programmer you can skip these chapters,
but you may learn something new by reading them anyway.

BASIC, Pascal and C programmers should read Chapters 2 and 3 and should work
through the subsections in Chapter 4 devoted to your preferred language. Chapter 5
is devoted exclusively to assembly language programming and may be skipped.



Chapter 2

The PC's Brain

While working with the PC, many users have wondered about its ability to solve
complex problems. Users often attribute these abilities to the software or operating
system. The fact is, hardware is as important as the software.

Microprocessor

Intel’s

The microprocessor is the brain of the PC. It understands a limited number of
machine language instructions and processes or executes programs in this machine
language. These instructions are very simple and can’t be compared to commands
in high level languages such as BASIC, Pascal or C. Commands in these
languages must be translated into a large number of machine language instructions
that the PC’s microprocessor can then execute. For example, displaying text with
the BASIC PRINT statement requires the equivalent of several hundred machine
language instructions.

Machine language instructions differ for each microprocessor used in different
computers. When you hear someone talk about Z-80, 6502 or 8088 machine
language, these terms refer to the microprocessor being programmed.

80xx series

The PC has its own family of microprocessor chips, all designed by the Intel
Corporation. The figure on the next page describes the Intel 80xx family tree.
Your PC may contain an 8086, an 8088 (used in the PC/XT), an 80186, an 80286
(used in the AT) or even an 80386 microprocessor. The first generation of this
group (the 8086) was developed in 1978. The successors of the 8086 were different
from the original chip. The 8088 is actually a step backward since it has the same
internal structure and instructions of the 8086, but is slower than the 8086. The
reason is that the 8086 transfers 16 bits (2 bytes) between memory and the
microprocessor at one time. The 8088 is slower since it transfers only 8 bits (1
byte) at one time.



2. The PC’s Brain PC System Programming

Multiprocessing

The three other microprocessors of this family are improved versions of the 8086.
The 80186 offers auxiliary functions. The 80286 has additional registers and
extended addressing capabilities. The 80286’s biggest advantages over its

- predecessors are its multiprocessing and virtual memory capabilities.
Multiprocessing allows several programs to execute at the same time, such as
compiling a program while using a word processor. This capability, which is
based on the fast switching between the individual programs, can also be
implemented through software (e.g., Microsoft Windows®), but working directly
through the processor is more efficient.

Virtual memory

Virtual memory means that a program appears to use much more memory than is
available in the computer’s RAM. Portions of the programs or data which don’t fit
into memory are temporarily stored on the mass storage device (floppy or hard
disk). The computer loads these sections into RAM as needed. The CPU and the
operating system share the task of virtual memory management. Earlier versions
of MS-DOS don’t support the multiprocessing or virtual memory capabilities of
the 80286, so most AT computers aren’t working to their full potential.

7'y 80486
20 P
8— 80386 0
Relative 80186
power
0188
l 1 8086
8088
8080 8285
I N T N N T O T T N Y T B 1

74 7576 77 78 79 80 81 8283 84 85 86 8788 83 90
Year

The Intel 80xx processor family



Abacus

2. The PC’s Brain

The 80386 represents current state of the art technology. It has a more extensive
instruction set than the 80286, and offers additional memory protection features.

These processors are all upwardly compatible with software. This means that
machine language programs developed for the 8086 can be executed on the other
processors of this series. On the other hand, a program written for the 80386 may
not run correctly on the 80286 or the 8088, because instructions available on the
80386 may not be available in the earlier processors.

Throughout this book the PC processor is designated as the 8088, even though
your PC may use a different processor.



2. The PC'’s Brain

PC System Programming

2.1

Register groupings

8088 Registers

Registers are memory locations within the processor itself, instead of in RAM.
These registers can be accessed much faster than RAM. In addition, registers are
specialized memory locations. The CPU performs arithmetic and logical operations
using its registers.

1587 0
AX
AH
BX
BH [
___CX
C
_..DX
D
Di
Si
SP
BP

Common Registers

ACCUMULATOR

BASE

DATA

DESTINATION INDEX
SOURCE INDEX
STACK POINTER
BASER POINTER

Segment Registers

DS DATA SEGMENT
ES EXTRA SEGMENT
cSs CODE SEGMENT
SS STACK SEGMENT

Program Counter

IP

INSTRUCTION

POINTER

15

Flag Register

o[p[1 TS|z

1110 9 8 7 6

8088 registers

All registers are 16 bits (2 bytes) in size. If all 16 bits of a register contain a 1,
this is the largest number that can be represented within 16 bits. This number is
the decimal number 65535. Therefore, a register can contain any value from 0 to

65535.

As shown in the above figure, registers are divided into four groups: common
registers, segment registers, the program counter and the flag register. The different
register assignments are designed to duplicate the way in which a program
processes data—which is the basic task of a microprocessor.

The disk operating system and the routines stored in ROM use the common
registers a great deal, especially the AX, BX, CX and DX registers. The contents
of these registers tell DOS what tasks it should perform and which data to use for
execution.



Abacus

2.1 8088 Registers

These registers are affected mainly by mathematical (addition, subtraction, etc.) and
input/output instructions. They are assigned a special position within the registers
of the 8088 because they can be separated into two 8-bit (1-byte) registers. Each
common register may be thought to consist of three registers: a single 16-bit
register, or two smaller 8-bit registers.

bit 15 bit 8 bit 7 bit 0
AH AL
bit 15 bit 0
AX register

The registers have designators of H (high) and L (low). Thus the 16-bit AX
register may be divided into an 8-bit AH and an 8-bit AL register. The H and the L
register designators occur in such a way that the L register contains the lower 8
bits (bit 0 through 7) of the X register, and the H register the higher 8 bits (bits 8
through 15) of the X register. The AH register consists of bits 8-15 and the AL
register of bits 0-7 of the AX register. However, the three registers cannot be
considered independent of each other. For example, if bit 3 of the AH register is
changed, then the value of bit 11 of the AX register also changes automatically.
The values change in both the AH and the AX registers. The value of the AL
register remains constant since it is made of bits 0-7 of the AX register (bit 11 of
the AX register does not belong to it). This connection between the AX, the AH
and the AL register is also valid for all other common registers and can be
expressed mathematically.

You can determine the value of the X register from the values of the H and the L
registers, and vice versa. To calculate the value of the X register, multiply the
value of the H register by 256 and add the value of the L register.

Example: The value of the CH register is 10, the value of the CL register is
118. The value of the CX register results from CH*256+CL, which
is 10*256+118 = 2678.

Specifying register CH or CL, you can read or write an 8-bit data item from or to
any memory location. Specifying register CX, you can read or write a 16-bit data
item from or to a memory location.



2. The PC’s Brain PC System Programming

2.2

Segment and Offset Addressing

One of the design goals of the 8088 was to provide an instruction set that was
superior to the earlier 8-bit microprocessors (6502, Z80, etc.). A second goal was
to provide easy access to more than 64 kilobytes of memory. This goal was of
special importance since increasing processor capabilities allow programmers to
write more complex applications, which in turn require more memory. The
designers of the 8088 increased the memory capacity or address space of the
microprocessor by more than 16 times to one megabyte.

Address register

The number of memory locations which a processor can access depends on the
width of the address register. Since every memory location is accessed by
specifying a unique number or address, the maximum value contained in the
address register determines the address space. Earlier microprocessors used a 16-bit
address register enabling access to addresses from 0 to 65535. This corresponds to
the 64K memory capacity of these processors.

To address one megabyte of memory the address register must be at least 20 bits
wide. At the time the 8088 was developed, it was impossible to use a 20-bit
address register, so the designers used an alternate way to achieve the 20-bit width:
the contents of two different 16-bit numbers are used to form the 20-bit address.

Segment register

One of the numbers is contained in a segment register. The 8088 has four segment
registers. The second number is contained in another register or in a memory
location. To form a 20-bit number, the contents of the segment register are shifted
left by 4 bits (thereby multiplying the value by 16) and the second number is added
to the first.

Segment and offset addresses

These addresses are the segment address and the offset address. The segment address
is formed by a segment register and indicates the start of a segment of memory.
During the address formulation, the offset address is added to the segment address.
The offset address indicates the number of the memory location within the segment
whose beginning was defined by the segment register. Since the offset address can
never be larger than 16 bits, a segment can be no larger than 65,535 bytes (64K).

Segmented address

The segmented address results from the combined segment and offset addresses.
This segmented address specifies the exact number of the memory location which
should be accessed. Unlike the segmented address, the segment and the offset
addresses are relative addresses or relative offsets.



Abacus

2.2 Segment and Offset Addressing

151413 ... ... 210 BIT So .
gmen
Logical ofojojo address
address
151413 ... ... 21 0
(16 bits L Offset
address
— BIT
. I
Physical 15577 ... 210
address
(20 bits)
BIT

Memory structure using segment and offset addresses

A segment cannot start at every one of the million or so memory locations.
Multiplying the segment register by 16 always produces a segment address that is
divisible by 16. For example, it’s not possible for a segment to begin at memory
location 22.

Combining the segment and offset addresses requires special notation to indicate a
memory location’s address. This notation consists of the segment address in four-
digit hexadecimal format, followed by a colon, and the offset address in four-digit
hexadecimal format. For example, a memory location with a segment address of
2000H and an offset address of AF3H would appear in this notation as 2000:0AF3.
Because of this notation, you can omit the H suffix from hexadecimal numbers.



2. The PC’s Brain PC System Programming

10

N 4
2600H
( 25FFFH
25FFEH

Offset
17105H address = 1104H
Segment 17104H
17103H

% Offset

16001H
& 16000H
Segment 15FFFH

address = 1600H \/\

1
0

sossalppe Alowaw pajuawalou]

Segment and offset address

The 8088 has four segment registers, which have special roles in the execution of
an assembly language program. There are four registers to accommodate the basic
structure of any program. A program consists of a set of instructions (code). There
are also variables and data items that are processed by the program. A structured
program keeps the code and data separate from each other while they reside in
memory. Assigning code and data their own segments conveniently separates
them.

Each needs a segment address and a segment register. The CS (Code Segment)
register uses the IP (Instruction Pointer) register as the offset address. The CS then
determines the address at which the next assembly language instruction is located.
The IP is also called the Program Counter. When the processor executes the
current instruction, the IP register is automatically incremented to point to the
next assembly language instruction. This ensures the execution of instructions in
the correct order.

Like the CS register, the DS (Data Segment) register contains the segment address
of the data which the program accesses (writing or reading data to or from



* Abacus

2.2 Segment and Offset Addressing

memory). The offset address is added to the content of the DS register and may be
contained in another register or may be contained as part of the current instruction.

The SS (Stack Segment) register specifies the starting address of the stack. The
stack acts as temporary storage space by some assembly language programs. It
allows fast storage and retrieval of data for various instructions. For example,
when the CALL instruction is executed, the processor places the return address on
the stack. The SS register and either the SP or BP registers form the address that is
pushed onto the stack.

The last segment register is the ES (Extra Segment) register. It is used by some
assembly language instructions to address more than 64K of data or to transfer data

between two different segments of memory.

| m
ES:FFFF fi;fﬁﬁ?f ES:FTFE o7
/ CS:FFFF P A A AP T A A 4
A %‘,II =

ES: 0000 :
CS : FFFF c2. 000
CS:0000 =
$S:FFFF
q $5:FFFF
$5:0000 DS:FFFF
1 0000

RN N

Non-overlapping Overlapping
segments segments

Overlapping and non-overlapping segments

As the figure above shows, two segment registers can specify areas of memory
which overlap, or are completely different from one another. In many cases, a
program doesn’t require a full 64K segment for storing code or data. You can
conserve memory by overlapping the segments. For example, you can store data
immediately following the program code by setting the DS and CS registers
accordingly.

11



2. The PC’s Brain PC System Programming

12

The flag register is of special importance. Various bits in this register indicate or
signal the special conditions which may occur during execution of an assembly
language instruction. For example, if an arithmetic operation results in a negative
number, the processor sets the S (sign) flag to 1 to indicate this change.

The C (carry) flag is set to 1 if the sum of two 8-bit numbers cannot be
represented as an 8-bit number.

As the figure above shows, the processor doesn’t use all 16 bits of this register.
The unused bits normally contain the value 0.

This ends our short trip into the PC’s brain. If you didn’t quite follow some of
these concepts, the sample application programs in the sections on the BIOS and
DOS functions should help you understand.



Abacus

2.3 The CPU Support Chips

2.3

2.3.1

2.3.2

2.3.3

The CPU Support Chips

The microprocessor is the computer’s brain, and is probably the most intelligent
component in a computer system. However, it cannot supervise all the computer’s
functions on its own. For this reason, other components called support chips
perform many other tasks, leaving the processor to concentrate on its primary task
of executing assembly language programs.

These support chips communicate with and control external peripherals such as a
disk drive or the screen display.

Some of these support chips can be programmed using the assembly language
instructions IN and OUT. Since the programming of most support chips is very
complex, we recommend that you leave this up to DOS, unless you have a
complete understanding of the structure and operation of these chips.

The following sections define the most important support chips in the PC.

The DMA Controller

This chip gets its name from the acronym DMA which stands for Direct Memory
Access. This chip can directly write data to or read data from RAM. The DMA
controller performs disk input/output operations, moving data from RAM to disk
or from disk to RAM. This relieves the processor of this task and accelerates
program execution.

The Interrupt Controller

Interrupts are signals from individual components of the system to get the CPU’s
attention and to initiate certain tasks. Several interrupts or requests for services
from different system components can be outstanding at one time. These requests
are initially handled by the interrupt controller, which passes them on to the CPU.
It assigns priority to every interrupt request according to its source and passes the
request with the highest priority to the CPU. The interrupt controller in the
PC/XT can process up to 8 interrupt requests at the same time. ATs require more
power, so they use two interconnected interrupt controllers which can process up
to 15 interrupt requests simultaneously.

The Programmable Peripheral Interface

This chip provides a link between the CPU and the peripherals such as the
keyboard or an audio speaker. However, it only operates as a mediator, addressed by
the CPU for unit access and transmission of certain signals. You cannot bypass
the PPI for direct communication between the CPU and peripherals.

13



2. The PC’s Brain PC System Programming

2.3.4

2.3.5

2.3.6

2.3.7

2.3.8

14

The Clock

If the microprocessor is the brain of the computer, then the clock could be
considered the heart of the computer. This heart beats several million times a
second (about 14.3 megaHertz) and paces the microprocessor and the other chips in
the system. Since almost none of the chips operate at such high frequencies, each
support chip modifies the clock frequency to its own requirements.

The Timer

The timer chip can be used as a counter and timekeeper. This chip transmits
constant electrical pulses from one of its output pins. The frequency of these
pulses can be programmed as needed, and each output pin can have its own
frequency. Each output pin leads to another component. One line goes to the audio
speaker and another to the interrupt controller. The line to the interrupt controller
triggers interrupt 8 at every pulse, which advances the timer count.

The Screen Controller

Unlike the chips discussed up until now, the CRT (Cathode Ray Tube) controller
is separate from the main circuit board of the PC. You’ll find this chip on the
video board which is mounted in one of the computer’s expansion slots. Even
though there are many boards that differ widely in their capabilities (monochrome
display, color display, etc.), all video boards are based on the 6845 CRT controller.
It produces a display on the monitor connected to the computer. The controller has
several internal registers which control the output of the display.

The Disk Controller

This chip is also usually located on an expansion board. It is addressed by the
operating system and controls the functions of the disk drive. It moves the
read/write head of the disk drive over the disk, reads data from the disk and writes
data to the disk.

The Math Coprocessors (8087/80287/80387)

The 8088, 80286 and the 80386 are not capable of performing floating point
arithmetic operations directly. There is a socket on the main circuit board of the
PC for adding a special math coprocessor. The PC/XT uses the 8087, the AT the
80287 and the new 80386 uses the 80387 coprocessor.

While floating point arithmetic can be performed using software routines, a math
coprocessor is up to 100 times faster. The 8087 and the 80287 can perform basic



Abacus

2.3 The CPU Support Chips

math functions such as addition, subtraction, multiplication and division, as well
as the trigonometric functions sine, cosine, etc. They can also compute square
roots of numbers.

In general, only a few application software packages support the math
COProcessors.

15



2. The PC's Brain PC System Programming

2.4

The CPU and Memory

While the chips described up until now are intelligent system components,
memory is a passive element. Data can be stored and later retrieved from memory.
Each memory location is used to store one byte (8 bits) of data. Memory locations
are identified by a unique address, starting from zero.

The support chips communicate with memory using a bus or path over which the
electronic signals travel.

Address bus

The address bus carries the number of the memory location to be accessed. The
signals on the bus represent a binary number whose value indicates the memory
location for access. Since only those memory locations represented on the address
bus can be accessed, the number which make up the bus lines determine the
number of addressable memory locations.

The PC/XT has a 20-bit address bus and can address a maximum of 2% (about 1
million) different memory locations. The AT has a 24-bit address bus and can
address more than 16 million memory locations.

Data bus

Once the bus knows the address of the memory location to be accessed, data can be
transferred between the individual chips and the memory location over the data bus.
The number of lines in this circuit determine how many bits are transferred to or
from memory simultaneously.

The PC/XT has 8 lines so it can transfer one byte at a time. However, since the
8088 is a 16-bit processor, 16-bit data must often be transferred. There aren’t
enough lines to transfer 16-bit data, so the system divides a 16-bit data item into
two 8-bit numbers. These two 8-bit data bytes are transferred one after the other
along the bus.

The 8086 and 80286 processors can transfer 16 bits simultaneously over their 16-
bit-wide data buses. This is one reason why the AT executes programs faster than
the 8088 processor. The 80386 processor can transfer 32 bits at a time.

Word storage

16

All members of the Intel 80xx processor family share the same method of storing
words (16-bit data) in memory. The lower numbered memory location contains
bits 0-7 (the low byte) and the higher numbered memory location contains bits 8-
15 (the high byte). For example, if you store the word 3F87H starting at address
0000:0400, memory location 0000:0400 accepts the low byte 87H and memory
location 0000:0401 accepts the high byte 3FH.



Abacus 24 The CPU and Memory

Two details were left out of the discussion of memory so far:

1) The processor doesn’t care if a memory address is located in a RAM chip
or a ROM chip. The main difference between RAM and ROM lies in the
fact that you can’t write or store new data into ROM (hence its name:
Read Only Memory).

2) The addressable space of the microprocessor (1 megabyte) is allocated into
16 storage segments of 64K each. This is an almost universal division
used on IBM PC/XTs and most compatible machines.

| Block {Addresses Description

15 |F000:0000-FOQQ:FFFF ] BIOS ROM

14_JE000 : 0000-EQO0 : FFFF |ROM cartridge

13 |D000:0000-DO00 :FFFF Rd cartr clgetf 5

2 _1C000:0000—CO00 : FFFF ditional BIOS ROM : ‘

T 1000 - OO KOO0 FErT T dac RAM

10 JA000:0000-A000:FFFF |additional video RAM ‘

3 19000 :0000-9000:FFFF_J RAM up to 640K

8 18000:0000-8 sEREE \M _up to O /6K

7 _17000: 0—7000:FFFF_|RAM up to D12K

6 |6000:0000-6000:FFFF | RAM up to 448K
5000:0000-5000:FFFF. AM up to 384K

4 14000:0000-4000:FFFF |RAM up to 320K

3 13000:0 —3000:FFEE up to 256K

2 |2000:0000-2000:FFFF |RAM up to 192K

1 J1000:0000-1000:FFFF |RAM up to 128K

0 {0000:0000-0000:FFFF |RAM up to 64K, CPU vector table,

DOS & BIOS variables

Memory allocation

The first 10 memory segments are reserved for the main RAM memory, limiting
maximum RAM to 640K. A computer’s memory size may differ from one PC
manufacturer to another but has at least 64K installed in segment 0. If you install
additional RAM, its first memory address must immediately follow the last
existing memory address, since no gaps may exist betweer individual RAM
memory segments. Memory segment 0 has a special role since it contains
import: «# data and operating system routines.

Memory segment A follows the RAM memory. In this case, an EGA (Extended
Graphics Adapter) is installed. This board uses the memory for the screen display
in different graphic modes.

Memory segment B is reserved for a monochrome or color graphics board. They
share the segment as screen memory. The monochrome board uses the lower 32K
and the color board uses the upper 32K. Each board uses only as much memory as
it needs for the screen display. The monochrome board uses 4K; the color board
uses 16K because of the additional color capabilities.

17



2. The PC's Brain PC System Programming

The next memory segment contains ROM beginning at segment C. Some
computers store the BIOS routines which aren’t part of the original BIOS kernel at
this location. For example, the XT uses these routines for hard disk support. Since
this area isn’t fully utilized, it is possible that BIOS routines supporting future
hardware enhancements will also be placed in this memory range.

ROM cartridges

18

Segments D and E are reserved for ROM cartridges. These cartridges extend the
computer with certain ROM routines. The PC has rarely used them and the area
usually remains unused.

Segment F contains the actual BIOS routines, the system loader and the ROM
BASIC available on many computers.



Chapter 3

Introduction to Interrupts

This chapter presents a view of interrupts, which are vitally important to the
operation of the 8088 processor. An interrupt is a signal from a peripheral device
or a request from a program to perform a specific service. When an interrupt
occurs, the currently executing program is temporarily suspended and an interrupt
routine begins execution to handle the condition that caused the interrupt.

Program Interrupt routine

3 Save register contents
o

£ [interrupt]

3

]

X

o©

s}

s Return Restore register contents
)

=

v IRET
Program interrupt

When a program is suspended, the processor saves the contents of the CS and IP
registers on the stack, and begins the interrupt routine. After the interrupt routine
has completed its task, it issues the IRET (Interrupt RETurn) instruction which
restores the contents of the CS and IP registers from the stack, thus resuming the

program,

The interrupt routine saves and restores contents of the other registers before
returning to the interrupted program.

19



3. Introduction to Interrupts PC System Programing

3.1

20

The Structure of the Interrupt Vector Table

So far we’ve talked about a single interrupt and a single interrupt routine. In fact,
the 8088 has 256 possible interrupts numbered from 0 to 255, not just one.

Each interrupt has an associated interrupt routine to handle the particular condition.
To organize the 256 interrupts, the starting address of the corresponding interrupt
routines are arranged in the interrupt vector table.

‘When an interrupt occurs, the processor automatically retrieves the starting address
of the interrupt routine from the interrupt vector table.

The starting address of each interrupt routine is specified in the table in terms of
the offset address and segment address. Both addresses are 16 bits (2 bytes) wide.
Therefore each table entry occupies 4 bytes. The total length of the table is 256*4
or 1024 bytes (1K).

Interrupt Purpose

number:
0000:003FE CS 055 Free
0000:003FC IP
0000:000E CcS _
0000:000C P 3 Breakpoint
0000:000A CS
0000:0008 IP 2 NMI
0000:0006 CS ; Sinaloost
ingle-ste

0000:0004 1P g P
0000: 0002

CS 0 Division by 0
0000: 0000 IP

15 0
Interrupt vector table

The table itself is located in memory from OH to 3FFH. Since the interrupt’s
number is the same as the table entry for the corresponding interrupt routine, the
interrupt routine address for interrupt 0 is the zero table entry in locations O0H-3H.



Abacus 3.1 The Structure of the Interrupt Vector Table

Memory locations 4H—7H contain the address for the interrupt routine for
interrupt 1, etc. The last interrupt, interrupt 255, occupies the end of the table at
locations 3FCH—3FFH.

To calculate the starting address of an interrupt, simply multiply the interrupt
number by four.

Advantages

An advantage of using the interrupt vector table is that it’s easy to change an entry
in the table to the starting address of a user-written interrupt routine. This makes a
new interrupt routine available to any program which can invoke the routine
simply by executing the corresponding interrupt instruction.

The next section explains the different types of interrupts and how they are used in
the system.

21



3. Introduction to Interrupts PC System Programming

3.2

3.2.1

3.2.2

22

Interrupt Types

Until now, we haven’t talked about different types of interrupts. There are two
major types of interrupts—hardware interrupts and software interrupts.

The figure below shows the different interrupt types.

| l
Software Hardware
interrupt interrupt
System |[User [Internal| |External|

interrupts | |interrupts

[Suppressible|

[pos|(BlOS]|

[Non-suppressible |

Interrupt types

Software Interrupts

A software interrupt is an interrupt called by the INT instruction in a machine
language program. The INT instruction includes the number of the interrupt to be
signalled. For example, the instruction to call interrupt 5, which sends a hardcopy
of the current screen to the printer, appears as INT 5. The INT instruction allows
you to call any one of the 256 interrupts.

Software interrupts make it possible to use many of the basic operating system
services from either the assembler (or machine language) level or from many of the
higher level languages which support interrupt processing.

Hardware Interrupts

A hardware device such as a disk drive or keyboard can trigger a hardware interrupt.
This is a simple and efficient mechanism for handling events which require
attention.

One example is the keyboard. When you press or release a key, interrupt 9 (the
keyboard interrupt) is signalled. The standard DOS interrupt routine responds by
placing the character value corresponding to the key that was pressed into the



Abacus

3.2 Interrupt Types

keyboard buffer following any value which may have been previously there. If the
keyboard buffer is full, the routine generates a short beep. As in any other
interrupt, the original program continues after the completion of the interrupt
routine.

Maskable interrupts

This interrupt is designated as an external hardware interrupt, because it was
triggered by an external device. For these interrupts, a distinction is also made
between maskable and non-maskable interrupts. The keyboard interrupt just
described belongs in the maskable interrupt category. You can mask (disable) this
interrupt by using the assembler instruction STI (SeT Interrupt flag). If you mask
interrupt 9H, the keyboard ignores any characters you type. To reverse this
condition, use the CLI instruction (CLear Interrupt flag) to re-enable the interrupt.

Non-maskable interrupts

In contrast, a non-maskable interrupt cannot be disabled by the STI instruction.
One example is interrupt 2. This interrupt indicates an error in the PC’s memory.
It displays a message on the screen that one or more of the RAM chips is defective
and should be replaced.

The last interrupt type to be described is the internal hardware interrupt. The
processors on the main circuit board of the PC trigger this interrupt. One example
is interrupt 8 which is designated as a timer interrupt. The timer triggers this
interrupt at a rate of 12.8 times per second. It also disables the disk drive motor if
no disk access is in progress.

23



3. Introduction to Interrupts

PC System Programming

3.3

24

Interrupts at a Glance

The tables here show the significance which these interrupts occupy in the control
and use of the PC. The next few chapters explain these interrupts in more detail.

" Nr. Vector Purpose
00 000 - 003 | CPU: Division by zero
01 004 - 007 | CPU: Single step
02 008 - 00B | CPU: NMI (Error in RAM chip)
03 00C - O00F | CPU: Breakpoint
04 010 - 013 | CPU: Numeric overflow
05 014 - 017 | Hardcopy
06 018 - 01B | Unknown instruction (80286 only)
07 01D - O01F reserved
08 020 - 023 IRQ0: Timer (Call 18.2 per/sec.)
09 024 - 027 | IRQl: Keyboard
[0): 028 - 02B | IRQ2: Second 8259 (AT only)
0B 02C - 02F | IRQ3: Serial interface 2
oc 030 - 033 | IRQ4: Serial interface 1
0D 034 - 037 | IRQ5: Hard disk
OE 038 - 03B | IRQ6: Diskette
oF 03C - 03F | IRQ7: Printer
10 040 - 043 | BIOS: Video functions
11 044 - 047 | BIOS: Determine configuration
12 048 - 04B | BIOS: Determine RAM storage size
13 04C - 04F | BIOS: Diskette/hard disk functions
14 050 - 053 | BIOS: Access to serial interface
15 054 - 057 | BIOS: Cassette/enhanced functions
16 058 - 05B | BIOS: Keyboard sensing
17 05C - O5F | BIOS: Access to parallel printer
18 060 - 063 | Call of ROM-BASIC
19 064 - 067 | BIOS: System boot (ALT+CTRL+DEL)
1A 068 - 06B | BIOS: Read time/date
1B 06C - 06F | Break key not activated (not CTRL-C)
1c 070 - 073 | called after every INT 08
1D 074 - 077 | Address of the video parameter table
1E 078 - 07B | Address of the disk parameter table
1F 07C - 07F | Address of the character bit pattern
20 080 - 083 | DOS: Terminate program
21 084 - 087 | DOS: Call DOS function
22 088 - 08B | Address of DOS end of program routine
23 08C - O8F | Address of DOS CTRL-BREAK routine
24 090 - 093 | Address of DOS error routine
25 094 - 097 | DOS: Read diskette/hard disk
26 098 - 09B | DOS: Write diskette/hard disk
27 09C - 09F | DOS: End Prg., remain resident
28- 0A0 - Reserved for various, non-
3F - OFF | documented DOS functions
40 100 - 103 | BIOS: diskette functions
41 104 - 107 | Address of hard disk table 1
42—~ 108 - Reserved
45 - 117
46 118 - 11B | Address of hard disk table 2
47-1 11c - can be used by application programs
49 - 127 for any purpose




Abacus 3.3 Interrupts at a Glance

Nr. Vector Purpose

4A | 128 - 12B | Alarm time reached (AT only)

4B~ 12¢c - Can be used by application programs
67 - 19F for any purpose

68— 1A0 - Unused

6F - 1BF

70 1c0 - 1c3 IRQ08: Realtime clock (AT only)
71 1c4 - 1c7 IRQ09: (AT only)

72 1C8 - 1CB | IRQ10: (AT only)

13 1cC - 1CF IRQ11: (AT only)

74 1D0 - 1D3 | IRQ12: (AT only)

75 iv4 - 1D7 LRQ13: 8UZB/ NMI (AT only)

76 1D8 - 1DB | IRQ14: Hard disk (AT only)

77 1DC - 1DF IRQ15: (AT only)

78~ 1E0 - Unused

F - 1FF

80~ ] 200 - Used by the BASIC
FO - 3C3 interpreter

Fl- 3c4 - Unused

FF - 3CF

General overview—interrupts

25






Chapter 4

Using Interrupts from High
Level Languages

The assembly language programmer can invoke an interrupt by loading the
parameters required by the interrupt routine into designated registers and executing
the INT instruction. Although these capabilities aren’t available in all higher level
languages, some languages such as Turbo Pascal®, Turbo C® and Microsoft C®

have built-in functions, procedures or subroutines to call the interrupt.

A BASIC programmer can call an interrupt using a short assembly language pro-

gram. You’ll find an example of this in Section 4.1.

This chapter provides information on calling interrupts from Pascal, BASIC and
C. Each describes how interrupts can be called in the particular language and the
rules the programmer must observe. Each section concludes with a short

demonstration program.

Read through the section devoted to the language with which you feel most
comfortable. A comparison of the three sample programs could be interesting for
those of you who wish to compare the similarities and differences in the three

languages.

The programs are only examples. Experiment as much as you want-you won’t

damage your computer if you change them a little.

27



4. Using Interrupts from High Level Languages PC System Programming

4.1

28

Interrupt Calls from BASIC

The two most commonly used BASIC interpreters are BASICA (from IBM) and
GW-BASIC (from Microsoft). This book refers to GW-BASIC, since it can be
used on IBM PCs as well as any compatible PC. The command sets of both are
nearly identical.

GW-BASIC does not have a function for calling interrupts. However, the CALL
command can be used to execute a machine language program. You can also use
the CALL command to pass certain parameters to the called program. The called
machine language program must be located in the 64K used by GW-BASIC for
program statements and variable storage. Because of this, the interpreter must be
told to reserve part of program memory for the machine language routine.
Otherwise the program or variables may overwrite the machine language routine,
causing a system crash. You can reserve memory directly when you call BASIC
from the operating system. Enter the name GWBASIC followed by the /M:
parameter. After the colon, enter the highest memory location you want used by
BASIC. For example, since the sample program starts at memory location 60000,
start the GW-BASIC interpreter as follows:

gwbasic /m:60000

This reserves the required memory space. Now you can place the machine language
routine into memory by making it part of the current BASIC program and loading
it into memory using a suitable subroutine. The current BASIC program must
contain the following commands:

60000 PR R AR AR AR R AR AR AR AR KRR AR KRR R AR AR AR R AR KRR AR R AR AR Ak Ak AR AR ARk hkhhhhhh ?
60010 ** initialize the routine for the interrupt call *!
60020 ** *
60030 ** Input: none *
60040 *'* Output: IA is the Start address of the Interrupt routine *
60050 TR R R AR AR R AR AR AR AR R A AR AR R AR AR A AR A AR A RAR AR AR A KRR A AR R AAA R AR A A A A A
60060 *

60070 IA=60000! ‘Start address of the routine in the BASIC segment
60080 DEF SEG 'set BASIC segment

60090 RESTORE 60130

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT ‘poke Routine
60110 RETURN ‘back to caller
60120

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

The DATA statements contain the machine language routine which performs the
interrupt call. The routine is READ and then POKEd into memory. To start this
routine at another memory location, change the value in line 60070. Remember



Abacus

4.1 Interrupt Calls from BASIC

that the parameters used to start GW-BASIC must also be changed so that the
routine cannot be overwritten by the variables of the program.

To use the machine language routine to call an interrupt, this subroutine must of
course be called first. The first line of the user program should therefore be:

100 GOSUB 60000

The actual program which calls the interrupt function during its execution can be
stored between line numbers 100 and 60000. The following program line
demonstrates how this can be done:

200 CALL IA(INTNR$,AHS%,ALS$,BH%,BL%,CH$,CL%,DH%,DL%,DI%, SI%,ES%, FLAGSS)

The variables within parentheses are the variables passed to the assembly language
program. All variables must pass true integer variables and not constants. The
variable names mentioned above may be changed but their order must remain
unchanged. Within your program they can have other names.

The first variable in this example, called INTNR %, is the number of the interrupt
you want to call. Be careful to specify the exact interrupt number. Also, avoid
passing a variable which has not been initialized. Otherwise, you may call the
wrong interrupt, which could lead to a system crash. The variables following
INTNR% are copied into the processor registers of the same names. If a register is
not used by an interrupt routine, you can pass any integer variable in the
corresponding register variable. The value of the ES register is treated differently. If
the value of ES% is -1, the contents of the DS register is copied to the ES
register.

Following the completion of the interrupt call, the values are returned in the
designated register variables.

This technique works only with half registers (AH, AL, BH...). It may be
necessary to transform these half registers into a whole register. This can be done
as follows:

300 AX$ = AH% * 256 + AL$

On the other hand, a whole register can be split into two half registers with the
following commands:

410 AH% = INT(AX$ / 256)
420 AL% = AX% AND 255

After calling interrupt functions, the carry flag in the flag register indicates if the
called functions were executed correctly. In a BASIC program, it may be necessary
to test the carry or zero flags. Since the content of the flag register is in the
variable FLAGS% after the interrupt call, the status of individual flags can be
inspected through this variable. This is possible with the following program
statements:

29



4. Using Interrupts from High Level Languages PC System Programming

200 IF FLAGS% AND 1=0 THEN PRINT "CARRY-FIAG OFF" ELSE
PRINT "“CARRY-FLAG SET"

210 IF FLAGS% AND 64=0 THEN PRINT "“ZERO-FLAG OFF" ELSE
PRINT "“ZERO-FLAG SET"

Another problem with interrupt calling is passing variable addresses (e.g., character
string output). BASIC stores this set of characters as a string. To determine the
offset address of such a string (the segment address of all variables is constant), use
the VARPTR function. The LO and HI byte of the offset address can be determined
with the following two program lines:

300 LO=PEEK (VARPTR (STRING_NAME) +1) '10-Byte of the Offset address
310 HI=PEEK(VARPTR (STRING_NAME) +2) 'HI-Byte of the Offset address

Garbage collection

30

These addresses should be determined at the beginning of a BASIC program as well
as immediately before each interrupt call, since BASIC frequently performs garbage
collection (removing unused variables and junk data). Garbage collection frees up
variable memory, rearranges remaining data in memory and changes addresses. If a
string address is determined at the beginning of a program, it may change several
times before the interrupt call is made.

Remember to include an end marker (“$” or a CHR$(0)) at the end of the string
(BIOS and DOS functions expect one of these).

Note: Before copying this subroutine and trying it, we have a small
suggestion. During your first attempts something will probably go
wrong. This is perfectly normal, and you can even expect the
computer to crash a couple of times. Save programs
frequently...especially before running the program. This way, you
won’t have to type in the program again from the beginning.

Here is a short sample program which uses the subroutine described above to
display text on the screen with function 9 of interrupt 21H.

100 ' hhkhkhkhhhhhhkk Ak kAR KR A AR K KRR R AR AR K KRR R AR KRR R AR KRR K KRR AR Ak hh kA RAK KKK K1

110 ** INTDOSB *1
120 '+ *
130 '* Assignment : outputs as an example of an Interrupt *
140 ** a String through a DOS function on *
150 '* the display screen *
160 *'* Author : MICHAEL TISCHER *
170 '* developed : 07/30/87 *
180 '* last Update : 04/08/89 *

190 VA kAR KRR R R A KA KRR KRk kKA kA AR AR R AR KAk h kA hkhhhhhkhkhkkhkhhhhhkhkhhkhkhkhkkhkk?
200

210 CLS : KEY OFF

220 PRINT"NOTE: This program can only be started if the GWBASIC was "
230 PRINT"started from the DOS level with the command "

235 PRINT“<GWBASIC /m:60000>."

240 PRINT : PRINT"If this is not the case, please input <s> for Stop."
250 PRINT"Otherwise press any key...";

260 AS$ = INKEY$ : IF A$ = “s" THEN END

270 IF AS$ = " THEN 260

280 PRINT

290 GOSUB 60000 'install function for interrupt call



Abacus

4.1 Interrupt Calls from BASIC

300 T$ = CHR$(13) + CHR$(10) + “this text was output through *
305 T$ = T$ + "Function 9 of Interrupt 21H...$"

310 INR% = &H21 'Number of interrupt to be called
320 FKT% = 9 'Number of functions to be called
330 OFSLO% PEEK (VARPTR (T$) +1) 'LO-Byte Offset address to the String

340 OFSHI% PEEK (VARPTR (T$) +2) ‘HI-Byte Offset address to the String
350 CALL IA(INRS,FKT$,2%,2%,2%,2%, 2%, OFSHI%,OFSLOS, 2%, 2%, 2%, 2%)

360 PRINT : PRINT : PRINT ‘output three blank lines
370 END

380

60000 TR AR AR AR AR AR AR R R A AR AR R A AR R A AR AR AR AR NAR AN R AN A AR A AR A AR A A A A Ak Ak k)
60010 ** initialize the routine for the interrupt call *
60020 '* *
60030 *'* Input : none *e

60040 '* Output: IA is the Start address of the Interrupt routine *
60050 AR AR R I IR AR AR A AR AR AR AR A AN AR AR AA A AR AR AR AR R AR R AN RARN AN AN AR AR
60060 *

60070 IA=60000! ‘Start address of the routine in the BASIC segment
60080 DEF SEG 'set BASIC segment
60090 RESTORE 60130

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT 'poke Routine

60110 RETURN ‘back to caller
60120

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118

60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216

60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24

60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18

60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10

60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118

60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118

60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118

60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4

60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93

60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

How it works

The program is composed of separate parts. Lines 210-290 call the subroutine to
initialize the machine language function for the interrupt call. Then the individual
variables for the interrupt call are loaded. T$ accepts the string to be output.
CHR$(13) and CHR$(10) print a blank line before the output of the actual text.
This text ends with the “$” character because the DOS function which outputs the
string expects this character as an end marker (it will not display this character).
INR% and FKT% contain the interrupt number and the function number to be
called. Besides these two variables, the variables OFSLO% and OFSHI% contain
the offset address of T$.

The CALL command (line 350) calls the interrupt. The first variable passed is
INR% with the number of the interrupt to be called. Then follows FKT%, which
transfers to the AH register before the interrupt call and informs interrupt 21H of
the function number to be called. Several Z% variables follow. These act as
dummy variables for all registers which have no special significance to the
function which is called. The content of Z% is unimportant. The content of the
register into which it is copied is irrelevant for the called function. After the Z%
variables, which determine the contents of the AL, BH, BL, CH and CL registers,
follow the variables OFSHI% and OFSLO%, which set the offset address of the
string in the DX register. The remaining register contents are unimportant for the
function call and are filled with Z%.

31



4. Using Interrupts from High Level Languages PC System Programming

32

To permit the DOS function which is called to output the text, its offset and
segment address must be known. This address is expected in the DS register and
will be set automatically by GW-BASIC.

To conclude this section, here is the listing of the assembler program that we just
used to call an interrupt.

'-****k************k***********t**********t*******t***t*********t********

;* BASINT.ASM: This routine offers the capability of *
;* calling any interrupt from BASICA or *
7* GWBASIC *
’-* *
'-*i- *x
;* Call: *
;* CALL ADR (INTNR$, AH%,AL%, BH%, BL$,CH$, CL$,DH%$,DL%,DI%, SI%,ES%, FLAGS%) *
- kk **
;

;* On passing control to the machine language program BASIC *
;* deposits the variables on the following positions of the stack *
;* INTNR% = SP+30 AH% = SP+28 AL% = SP+26  BH% = SP+24 *
;* BL$ = SP+22 CHS% = SP+20 CL% = SP+18 DH% = SP+16 *
;* DL% = SP+14 DI$% = SP+12 SI% = SP+10 ES$ = SP+8 *
;* FLAGS% = SP+6 *
-k k. * Kk
;* for ES the value -1 is passed, then ES is set to DS *

PRI KKK KA R KKK AR KA KKK KKK KKK KRR KKK KRR KKK KRR R I K AR AR K KRR KR KKK AR K KKK I KKK |

code segment

assume cs:code,ds:code, es:code, ss:code

;-— the Routine for Interrupt call

basint proc far ;GW expected during CALL far procedure
push bp ;GW base pointer saved
mov bp, sp ;Send SP to BP
push ds ;GW dta segment stored
push es ;GW extra segment saved
mov si, [bp+30] ;Get address of variable INTNR
mov ax, [si] ;Move content of this variable to AX
call set_intnr ;Store interrupt number
ad_1 label near ;Address for SET_INTNR
mov si, [bp+12) ;Get address of DI% variables
mov di, [si] ;Move content of variables to DI
mov si, (bp+8] ;Get address of variable ES%
mov ax, [si] ;Move content of variable to AX
cmp  ax, -1 ;was -1 passed?
jne setes ;No --> set ES
mov ax,ds ;Set AX to DS and thereby ES = DS
setes: mov es,ax ;transfer AX to ES
mov si, [bp+28) ;Get address of variable AH%
mov ah, [si] ;Move content of variable to AH
mov si, [bp+26] ;Get address of variable AL$
mov al, [si] ;Move content of variable to AL
mov si, [bp+24] ;Get address of variable BH%
mov bh, [si] Move content of variable to BH
mov si, [bp+22] ;Get address of variable BL$%
mov bl, [si} ;Move content of variable to BL
mov si, [bp+20] ;Get address of variable CH%
mov ch, [si) sMove content of variable to CH
mov si, [bp+18] ;Get address of variable CL%
mov cl, [si} ;Move content of variable to CL



Abacus

4.1 Interrupt Calls from BASIC

mov si, [bpt+16]
mov dh, [si]
mov si, [bpt+l4]
mov dl, [si]

mov si, [bp+10]
mov si, [si]

;Get address of variable DH%
;Move content of variable to DH
;Get address of variable DL$
;Move content of variable to DL

;Get address of variable SI%
;Move content of variable to SI

push bp ;Store base pointer

ad_2 label near ;Address for SET_INTNR
int 21h ;Call interrupt
pop bp sReplace base pointer
push si ;Store SI
pushf ;Store flag register
mov si, [bp+12] ;Get address of variable DI%
mov [si],di ;Move content of variable to DI
mov si, [bp+28] ;Get address of variable AH%
mov (si],ah ;Store AH in this variable
mov si, [bp+26] ;Get address of variable AL$
mov [si],al ;Store AL in this variable
mov si, [bp+24] ;Get address of variable BH%
mov [si],bh ;Store BH in this variable
mov si, [bp+22] ;Get address of variable BL%
mov [si],bl ;Store BL in this variable
mov si, [bp+20] ;Get address of variable CH%
mov [si],ch ;Store CH in this variable
mov si, [bpt+18] ;Get address of variable CL%
mov [si],cl ;Store CL in this variable
mov si, [bp+l6] ;Get address of variable DH%
mov [si],dh ;Store DH in this variable
mov si, [bp+14] ;Get address of variable DL%
mov [si],dl ;Store DL in this variable
mov si, [bp+8] ;Get address of variable ES%
mov ax,es ;transfer ES to AX
mov [si],ax ;Store ES (AX) in this variable
pop ax ;Move flag register from stack to AX
mov si, [bp+6] ;Get address of variable FLAGS%
mov [si],ax ;Store FLAGs in this variable
pop ax ;Move DI register from stack to AX
mov si, [bp+10] ;Get address of variable SI%
mov [si],ax ;Store SI (AX) in this variable
pop es ;Get GW extra segment back
pop ds ;Get GW data segment back
pop bp ;Return GW base pointer
ret 26 ;Addresses of variables on the stack

;are no longer needed

basint endp

;

set_intnr proc near ;stores the interrupt number
pop bx
mov cs:[bx+ad_2-ad 1+1],al
Jmp ad_1

set_intnr endp

H

code ends
end

33



4. Using Interrupts from High Level Languages PC System Programming

34

Some brief notes on this program follow for those not familiar with the calling
and linking of assembly language programs in GW-BASIC: The program first
pushes the base pointer on the stack since it will be reset by the next instruction.
During re-entry into GW-BASIC, the base pointer must have the value it had
during the call of the routine. Then the base pointer is set to the value of the stack
pointer for access to data on the stack. This is necessary for GW-BASIC to pass
the BASIC variables named in the CALL command to the stack. In the next step,
the DS and the ES registers are stored on the stack, because their content may
change during execution of the routine and must be preserved for return to GW-
BASIC.

Now the routine can read in the variables and set the various processor registers. It
is important to note that the stack does not contain variable contents, but their
addresses relative to the DS register. Because of this, the address of the variable
must be loaded first and then the relative value of this address.

Which addresses contain the addresses of the individual variables stored on the stack
can be determined from the header of the assembly language routine. First you
must determine the number of the interrupt to be called. This value must be treated
in a different manner than the other variables on the stack because it isn’t passed in
one of the processor registers, but is a part of the INT instruction which calls the
interrupt. It is indicated as a byte following the code of the INT instruction (CDH).

To set the interrupt number, the number to be passed must be stored following the
CDH code of the INT instruction. This creates a small problem since this routine
can be POKEd by the BASIC program into any memory location. Because of this,
the address of the INT instruction depends on the current starting address of the
routine instead of remaining constant. The routine doesn’t know where the INT
instruction is located.

A small trick can be used to help here. The routine does not know where it is
stored, but the processor knows the location of the INT instruction (it has to
know, otherwise it couldn’t execute the routine). The subroutine SET_INTR is
called after the interrupt number is loaded into the AX register. The processor, as
in any CALL instruction, stores the address where the program execution is to
continue on the stack, before calling any subroutine. This is the instruction which
precedes the label AD_1.

Subroutine SET_INTR gets the address of AD_1 from the stack. While the address
of the INT instruction is still not known, the distance between AD_1 and the INT
instruction remain constant, the address of the INT instruction can be calculated
and the interrupt number can be stored following the instruction. The task ends and
the routine returns to the main program (to the label AD_1).

The rest of the routine consists of repeating instructions which determine the
contents of the different variables and pass them to the corresponding processor



Abacus

4.1 Interrupt Calls from BASIC

registers. The value for the ES register is given a special test: if it is equal to -1,
the value of the DS register is copied to the ES register.

After all registers are loaded, the interrupt is called and the contents of the
processor registers are transferred back to the corresponding BASIC variables. The
last step is to restore the contents of all registers which had been saved on the
stack. Finally control returns to GW-BASIC.

35



4. Using Interrupts from High Level Languages PC System Programming

4.2 Interrupt Calls from Turbo Pascal
Calling interrupts from Turbo Pascal is very easy. Throughout this book we'll be
using Turbo Pascal Version 4.0.

INTR
Turbo Pascal uses the INTR procedure. Since this parameter can accept any value
between 0 and 255, all available interrupts can be called.

MSDOS

36

A special form of this INTR procedure is the MSDOS procedure. It is called in a
manner similar to INTR:

MsDos ( Regs:Registers );

The InterruptNumber parameter needed by Turbo Pascal Version 3.0 isn’t required
in this procedure since it always calls interrupt 21H, through which almost all
operating system functions can be called.

In both procedures, the parameter register is a record type which holds the contents
of the registers to be passed. These are copied into the registers before the interrupt
call.

The DOS unit contains the parameters for the type called Registers:

type Registers = record
case integer of
0 : (AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags : word);
1 : (AL, AH, BL, BH, CL, CH, DL, DH : byte);
end;

Once the DOS unit has been included in a Turbo Pascal source code, the var
statement can be used to define the register variables under the name Regs:

var Regs : Registers;

Now Turbo Pascal can easily communicate with the following processor registers:

. Regs.ax,
. Regs.bx,
. Regs.cx,

Regs.ah, etc.

You then pass the values to the registers through standard assignments. For
example:

Register.ax := 254;

The same method is used with all other registers.



Abacus

4.2 Interrupt Calls from Turbo Pascal

Unfortunately, the contents of the half registers AH, AL, BL, etc. can’t be defined
this way. In this case, a trick can be used by defining the half registers as normal
integer or byte variables and then merging them together into a whole register.

In the case of the AX register, this could be done as follows:

var al,
ah : integer;

Register.ax := ah shl 8 + al;

In this statement, the AX register is assigned value composed of the sum of the
AH register multiplied by 256 (shifting a variable left by 8 places is equivalent to
multiplying it by 256) and the AL register.

If you must do this repeatedly in a program, it would be useful to define a small
function for this:

function WholeRegister(lo, Hi : integer) : integer;

begin
WholeRegister := Lo + Hi shl 8;
end;

Instead of the above, the following could be written:

Register.ax := WholeRegister(al, ah);

Before calling the interrupt, you must first specify the interrupt value in the
register. The contents of all other registers are unimportant here. If the called
interrupt returns values to the calling program through registers, they can be
examined by looking at the individual components of the variable register.

Sometimes individual flags pass information from the interrupt to the calling
program. In most cases, the Carry flag serves this purpose. If an error occurs
during the execution of an interrupt, the flag is set.

To test for a set flag, the following Pascal statements are used. They return TRUE
or FALSE as a result depending on whether the corresponding flag was set or not.
carry flag: (register.flags and 1)

zero flag: (register.flags and 64)
sign flag: (register.flags and 128)

Often the address of a variable (usually a text buffer) must be passed to an
interrupt. In this case the Turbo functions Ofs and Seg are used to obtain the offset
or segment addresses of a variable. The name of the variable whose address should
be determined is passed to both functions as the argument:

ofs (variablename)
seg (variablename)

Turbo Pascal uses a different format than DOS and BIOS for string storage,
especially for text buffers (mostly variables of type string).

37



4. Using Interrupts from High Level Languages PC System Programming

38

These formats are illustrated below.

TURBO PASCAL

2 |"P"|"C"|%—No end of string marker

4
DOS & BIOS

String length

nuLL | BIOS (and often in DOS)
"e DOS

"P w "C"

f———End of string marker

No string length parameter

String storage - Turbo Pascal and BFOS-DOS

To convert a Turbo Pascal string into DOS or BIOS format, an end character
(ASCII code 0) or the dollar sign “$” (ASCII code 36) is appended. Which of these
two characters you should use for indicating the end of the string is described
during the discussions of individual interrupts. Regardless of which format you
use, the characters appear as in either of the following commands:

string :
string :

string+#0;
string+#36;

The address returned by the Ofs function plus 1 must be passed to the interrupt,

otherwise the byte which indicates the length of the string is accepted by the
interrupt as its first character.

Here is the sample program. Just like the example in Section 4.1, it displays text
on the screen using function 9 of interrupt 21H:

{FHK KRR IR KK IK KRR KRR KRR KKK RK K KRR A ARK K KRR AR K KRR AR A AR KRR A IR AR A KRNI I A K}

{* INTDOS *}
{* . *}
{* Task : as an example this interrupt call outputs *}
{* a string through a function of DOS on *}
{* the display *}
{* - *}
{* Author : MICHAEL TISCHER *}
{* developed : 07/30/87 *}
{* last update : 05/04/89 *}

{FHHEEIR KRR R IR I KRR KA I AR KRR AR KR AR AKX IK KRR K AR R A R KRR KRR KK KA K AK KX KA KK KR K AK |

program INTDOSP;



Abacus

4.2 Interrupt Calls from Turbo Pascal

7~

Uses Dos;
var Regs : Registers; { Register variables for interrupt call}
Text : string([128]; { accepts the output text }

{Rhhkdokkk ok kkk kA ok kk ok kR Ak kk kR kR ARk Kk ARk KR KRR A KRR AR KA KRR R IR KA KRNI AKX ]
{* MAIN PROGRAM *}

[FARKR KRR KKK KRR AR KRR AR K KRR R AR A KK KRR AR K AR R KKK KRR AR KA R KA KRR R KA AR KK KRR A XKk |

begin

Text := #13#10'this text was output with Function 9 of DOS-'+

‘Interrupt ZiH ... #13%#10+°3°;
Regs.ah := $09; { Function number 9 in the AH-Register }
Regs.dx := Ofs(Text)+1; { Offset address of the text }
Regs.ds := Seg(Text); { Segment address of the text }
MsDos (Regs) ; { Call DOS-Interrupt 21 (h) }
end.

The variable TEXT contains the text to be displayed. The sequence “#13#10”
places the ASCII code 13, followed by ASCII code 10, at the beginning and the
end of the text, creating a blank line before and after the text. The last character is

the “$” character which indicates the last character of text to DOS.

The number of the function being called (9) is copied to the AH register. Since
Turbo Pascal doesn’t allow access to the AH register alone, the entire AX register
must be addressed. The value 0 is loaded into the AL register, but any other value
could be entered into this register since its content has no significance to the called
function. As a last step, before calling interrupt 21H using the MSDOS procedure,
the segment address of the string is placed in the DS register and the offset address

in the DX register.

39



4. Using Interrupts from High Level Languages PC System Programming

4.3

40

Interrupt Calls from C

The C language is the language of choice for most developers. Since it was
originally designed for operating system development, C has provisions to include
machine language routines, which is a benefit within the scope of this book.

The standard libraries of both the Microsoft C and Borland Turbo C compilers have
a number of functions for calling interrupts.

The following functions are of interest to us in this book:

int86
int86x
intdos
intdosx
. segread

All functions and applicable data structures are declared in the DOS.H library file.
A program which wants to access one of these functions must therefore link the
file to the current program using the #include preprocessor command.

The three structures WORDREGS, BYTEREGS and SEGREGS pass register
values. WORDREGS contains the whole registers AX, BX, CX, DX, SI, DI and
the Carry flag. On the other hand, BYTEREGS contains the half registers AH,
AL, BH, BL, CH, CL, DH and DL, while SEGREGS represents the segment
registers DS, CS, SS and ES.

The BYTEREGS and the WORDREGS structures are joined in the union REGS
which lets the programmer work selectively with either half or whole registers.

Using a variable of the type REGS (called register here for simplicity’s sake) gives
us the following:

union REGS register;

This allows access to individual registers:

register.x.ax
register.x.bx etc.
register.h.ah
register.h.al
register.h.bh etc.

BEERE

The carry flag is represented by the variable register.x.cflag. If this variable is equal
to 0, the carry flag remains unset. Any other value sets the carry flag.

In the case of the segment register a representative variable can be defined as
follows:

struct SREGS SegRegister;



Abacus

4.3 Interrupt Calls from C

int86

int86x

The individual components of the variables SegRegister.ds, SegRegister.es, etc.,
correspond to the equivalent processor registers.

The functions starting with the characters int all serve to call interrupts. The
SEGREAD function reads the current contents of the segment register.

The functions that call interrupts use different register variables for input to the
interrupt routine, and output from the interrupt routine. There is an advantage to
this method over returning information to the same regisier variabie in that the
input information is not overwritten.

Since the individual functions pass only the address of the variable representing the
register and not the variable itself, it is possible to combine the input and output
registers into a single variable. In this case, the address of one variable is provided
for the variable representing the input and the output registers (this method is used
in the sample program at the end of this section).

Before calling the interrupt, the contents of the input variable are copied to the
corresponding processor registers. Following the interrupt call their contents
become the output variables.

All interrupt functions return the content of the AX register as a result code after
the interrupt call.

Here are the details of the functions and their calls:

The int86 function is called as follows:

int86 (IntNumber, InRegister, OutRegister);

IntNumber is a variable or constant indicating the number of the interrupt to be
called. InRegister and OutRegister contain the address of two (or one) variables of
the REGS type. As the variable name suggests, InRegister contains the register
contents before the interrupt call, and OutRegister contains the register contents
after the interrupt call.

The int86x function differs from the int86 function in that it requires an additional
argument of the SREGS type. Its contents are copied into the segment register
before calling the interrupt, but are not copied back following the call to the
interrupt routine.

The call of the function is as follows:

int86x (IntNumber, InRegister, OutRegister, SegRegister);

41



4. Using Interrupts from High Level Languages PC System Programming

intdos

The intdos and the intdosx functions differ from the two functions described above,
in that the number of the interrupt to the call is not passed. As the names suggest,
they call DOS interrupt 21H through which most DOS functions can be accessed.

Only the addresses of the input and the output variables representing the processor
registers are passed to the intdos function:

intdos(InRegister, OutRegister);

intdosx

42

The intdosx function, like the int86x function, has an additional parameter for the
segment register. The function call is as follows:

intdosx (InRegister, OutRegister, SegRegister);

So far you’ve seen how to call an interrupt from C and how to set the registers.
You also have to determine the address of a variable.

In C, you can easily determine the address of a variable. To do this, use the address
operator &, which returns the offset address of any desired variable. Use the
SEGREAD function mentioned above to determine the segment address of a
variable. The address of a variable of the SREG type is passed to the function
(using the address operator &) into which the content of the segment register can
be copied.

If, for example, the address of the variable SegRegister is passed to the function
and the variable was previously defined by the command:

union SREG SegRegister;

Then the variable SegRegister.ds contains the segment address of the variable
SegRegister, after calling the SEGREAD function.

While C supports interrupt calls with numerous functions, the library of the
Microsoft C compiler library does not have a function to return the contents of a
memory location. Since such a function could be very valuable in some programs,
the assembler program below contains the PEEKB and POKEB functions for
inclusion in programs created with the Microsoft C compiler. PEEK returns the
contents of a memory location (one byte), while the POKE function writes a one-
byte value into a memory location.

Note: If you use the Borland Turbo C compiler, you won’t need to use this
program since the Turbo C library already contains the PEEK,
PEEKB, POKE and POKEB functions. Because of this, linking the
assembler program into the C example programs of this book is



Abacus

4.3 Interrupt Calls from C

unnecessary. Additional information is presented in the header of each
program.

If you are using the Microsoft C compiler, enter the following program with a text
editor and save it under the name PEPO.ASM. It can then be assembled with:

masm pepo;

Here’s the program:
;t**k****tt**i*****ﬁk**t*ﬁtk************t*'k*ﬁ****ﬁﬁ*tﬁt**kﬁ*****t*ﬁ***’-
i* PEPO *7
i *;
i Task : Makes the PEEKB and POKEB function available for *;
it inclusion in a C program *;
-k * -
; ;
i* Author : MICHAEL TISCHER *;
i developed : 08/13/87 *;
i * last Update : 04/08/89 *;
-k *e
;
. * assemble : MASM PEPO; *;

JRKKKKRAKK KK KKK KRIKKRKRKR K KRR KRNI KA RIR KKK AR AR KRR AR R KRR R KA KRk kR kR kkhhhk o

IGROUP group _text ;Grouping of program segments
DGROUP group const, bss, _data ;Grouping of data segments
assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP
public _PeekB sFunctions become accessible to
public _PokeB ;other programs
CONST segment word public *‘CONST' ;this segment accepts all constants
CONST ends ;which are readable
_Bss segment word public *BSS* ;this segment accepts all non-
_Bss ends sinitialized static variables

_DATA segment word public 'DATA' ;all initialized global and
_DATA ends ;static variables are stored in this
; segment

_TEXT segment byte public 'CODE' ;the Program segment

;-— PEEKB: read a byte from memory
;-=- call of C: int = PeekB{(int Segment, int Offset)

_PeekB  proc near

push bp ;store BP on the stack
mov bp, sp ;transmit SP to BP
push ds ;store data segment register
mov ax, [bp]+4 ;get first argument (Segment)
mov ds,ax ;set as data segment
mov bx, [bp]+6 ;get second argument (Offset)
mov al, [bx] ;read memory location
Xor ah,ah sHI-byte of INT to O
Jmp short fctend ;terminate function

_PeekB  endp

;—— POKEB: write a byte into memory
;-— Call C: PokeB(int Segment, int Offset, short int Wert)

_PokeB  proc near
push bp ;store BP on the stack

mov bp, sp ;transmit SP to BP

43



4. Using Interrupts from High Level Languages PC System Programming

push ds ;store data segment register
mov ax, [bp]+4 ;Get first argument (Segment)
mov ds,ax ;Set as data segment
mov bx, [bp]+6 ;Get second argument (Offset)
mov al, [bp]+8 ;Get third argument (Value)
mov [bx],al ;swrite into memory location
fctend: pop ds ;Return data segment register
mov sp,bp ;Restore stack pointer
pop bp ;Get BP from stack
ret sReturn to calling C program
_PokeB endp
v
_text ends ;End of the program segment
end sEnd of the assembler source

The example program below uses the two functions described above. This next
program examines the model identification number or code of the PC and displays
PC type on the screen using a DOS function:

JEEIEKKKK AR AR AR AR AR AR R KRR AR RN AR R AR AR KRR AR AR KRR AR A AR AR AR AR AR AR AR A * X/

/* INTDOS */
/* */
/* Task : an example of an interrupt call, outputs */
/* a string through a DOS function on */
/* the display screen */
/* */
/* Author : MICHAEL TISCHER */
/* developed : 08/30/87 */
/* last update : 04/08/89 */
/* */
/* (MICROSOFT C) */
/* Creation : MSC INTDOSC */
/* LINK INTDOSC PEPO; */
/* Call : INTDOSC */
/* */
/* (BORLAND TURBO C v2.0) */
/* Creation : through the RUN command in the menu...or... */
/* tcc =K intdosc */
/* Call : intdosc */
/****ﬁ*****t***tt****ﬁ***t****tt******k**it**tt*****t*k*****t**t*k*****/
#include <dos.h> /* include header file */
/* Microsoft C user must uncomment the following line */
/* extern short int peekb(); /* PEEKB must be linked to */
/* Microsoft C object code */
/*t**k*'t*******t**t**t*ﬁtkt*tﬂ***t*ﬁ*t**i***********kk*tt*t****k*kt***/
/** MAIN PROGRAM *x/

/k**********t*t*k*****t*****ﬂﬁ**i*t*fﬁ*t**i*k**i**ﬁ*k**ﬁk'*t*tk*tﬁtt*ﬁt/
void main()

{

static char AT[] = "\r\nthis computer is an AT\r\ns$";
static char XT[] = "\r\nthis computer is an XT\r\n$";
static char PC[] = "\r\nthis computer is an PC\r\n$";

union REGS Register; /* Register variable for interrupt call */
Register.h.ah = 9; /* Function number for output of string */
switch (peekb (0xF000, OXFFFE)) /* detect model of PC */
{
case OXFE : Register.x.dx = (int) XT; /* Address of XT text */
break;

44



Abacus

4.3 Interrupt Calls from C

case 0OxFC : Register.x.dx = (int) AT; /* Address of AT text */
break;
case OxFF :
default : Register.x.dx = (int) PC; /* Address of PC text */
}
intdos (&Register, &Register); /* Call DOS interrupt 21H */

}

The main function defines three CHAR pointers which point to the text for each
PC type. Each of them starts and ends with an ‘“\n” character. This creates a blank
line before and after the text itself.

In the first instruction of the main program the AH register is loaded with the
DOS function number for string output on the screen. Then the model
identification byte is read from memory location FOOO:FFFE using the PEEKB
function. Depending on the value read, the offset address of the accompanying text
is transferred to the DX register where it is expected by the interrupt 21H function.

In addition to this offset address, the function also requires the segment address of
the text in the DS register. Since the compiler automatically sets this register, you
don’t have to be concerned with the segment address. The last instruction of the
program calls the INTDOS function which in turn calls interrupt 21H with the
registers which were defined earlier.

The file header states how it can be executed: If you are using the Microsoft C
computer, then it is important that you link the file with the previously assembled
PEPO program so that the new program contains the PEEKB and POKEB
functions. These can then be called from the C program.

The integrated environment of the Turbo C compiler requires a different procedure.
Compiler options must be set to default values except for under "code generation.”
You must set "default char type" to "unsigned”, then select Run from the menu.
The options file appears on the disk under the filename INTBSPC.TC.

A small comment about using Borland Turbo C compiler. Several programs in
this book include assembly language routines within the programs. Since Turbo C
differentiates between upper and lowercase characters in function names, you may
have problems compiling programs as entered from this book. To avoid this,
select the OPTION command, then the LINKER command in the command line of
Turbo C before creating a program. The lowest line in the window displays the
option “Case sensitive link”. Select OFF here to avoid difficulties with upper and
lowercase letters.

45



(3



Chapter 5

Using Interrupts from
Assembly Language

Unlike programmers using any of the higher level languages, the assembly
language programmer doesn’t have to rely on complicated functions or procedures
to call an interrupt. The MOV instruction loads the input parameters into the
registers provided, and the INT instruction calls the interrupt.

Certain interrupts, or the functions hidden behind these interrupts, are called
frequently in many programs. An example of this is interrupt 21H function 9,
which displays text on the screen. You call it by placing function number 9 in the
AH register and the offset address of the text you want displayed in the DX
register. This process looks like this in assembly language:

mov ah,9 ;load function number 9
mov dx,offset Text ;load offset address of text
int 21h ;call DOS interrupt 21h

Even if you call the function very frequently, it doesn’t pay to write a subroutine
for it since the address of the text to be displayed must be passed. All that remains
is to load the value 9 into the AH register and to call the interrupt. You’ll find the
three program lines described above included for every function call in a program in
this chapter.

47



5. Using Interrupts from Assembly Language PC System Programming

5.1

Macros

48

Using Assembler Macro Functions

An alternative to this method are macros which most assemblers support.

A macro is a “shorthand” way to write a series of assembly language instructions.
It has a name and may have one or more parameters. During assembly, if the
macro name is encountered, the series of instructions and parameters replace the
macro.

Below is an example of defining and calling a macro using the Microsoft
Assembler (MASM). See your assembler’s reference manual for information on
macro handling (and whether your assembler supports macros). Since this macro
displays text, we’ve named the macro PRINT:

print macro string sMacro header with Name and Parameter
mov ah,9 7load function 9
mov dx,offset string ;load offset address of the text
int 21h ;call DOS interrupt 21h
endm sthe endm command terminates a macro

The first line declares the macro name (PRINT). In this case, the macro also has
one parameter (string). The assembly language instructions follow in successive
lines until the ENDM instruction terminates the macro.

Now you can use the macro to display text:

print Message

In this example, Message is the name of a variable containing the text to be
displayed. In the macro declaration, string is a parameter. During assembly, string
is replaced by Message and creates the following program lines:

mov ah,9

mov dx,offset Message
int 21h



Abacus

52 A Sample Macro

5.2

A Sample Macro

The following program demonstrates the macro just described.

FREKRKK KA KK KRR KRR KK KRR KKK KRR KKK KR RRK KKK KRR KRR K KRR AK K KRR KA K KRR AR A Ak khp

i * MACRO

'-*

Fad Task : in this Program a Macro is used for output
i* of a String with Function 9 of Interrupt 21H
-k

;' Authcr : MICHAEL TISCHER

i * developed : 08/30/87

FAd last Update : 04/08/89

-k

r

o* assembly : MASM MACRO;

i : LINK MACRO;

-k

;

it Call: : MACRO

FRKKKKKK KRR KRR RKK KRR KR KKR KRR K IR RA KA KK KR KRR KRR KKK KRR KRN RK K KR KRR KKKk Ak

;== Macro
Print macro String ;this is the macro
mov ah, 9 sload function number
mov dx,offset String ;load offset address of text
int 21h ;call DOS interrupt
endm ;End of macro

;== Constants

CR equ 13 ;ASCII-Code of carriage return
LF equ 10 ;ASCII-Code of linefeed

TEND equ "$" 7End of a character string

;== Data

Data segment
Text db CR,LF,"This is how MACROS are used",CR,LF,TEND

Data ends

stack segment STACK
dw 64 dup (?)

stack ends

;== Code
Program segment

assume CS:Program, DS: Data, SS:stack
Start proc far ;program starts here

mov ax,Data
mov ds,ax

;set data segment register

Print Text ;Macro inserted here

mov ax,4C00h
int 21h

;Program terminated with call of a
;DOS function with return of error-code 0

49



5. Using Interrupts from Assembly Language PC System Programming

50

Start endp +End of procedure

’

Program ends
end Start ;sbegin with START

After you enter the source program, it can be assembled, linked and executed as
indicated in the header.

Most of the lines in this listing have nothing to do with the actual program but
are definitions and declarations for the assembler.

The macro and constants are defined in the first part of the program, which helps to
make the listing more understandable to the reader. The definition of the data
segment follows, where the string to be displayed is stored as a character string. It
is preceded and followed by a carriage return and a linefeed to display a blank line
before and after the actual text. The text ends with the character “$” (the DOS
function used for text display always looks for this as the last character in a
string).

Following the data segment is the stack segment, which controls the stack during
program execution. Since the program is not very large, the stack can be fairly
small. The last segment is the code segment which contains the program
instructions. It consists of only five commands: The first two instructions
initialize the program. They load the segment address of the data segment into the
DS register to provide access to the text in this segment. Then the macro PRINT
is called, and the text is passed to it.

The following instructions terminate the program by calling a DOS function.

Note: You may find it useful to group together certain macros into a file or
library. When one of these macros will be used in a program, the
library may be linked or included with the assembly language code.



Chapter 6

The Disk Operating System

The following chapter discusses the PC’s operating system, which the PC loads
from floppy diskette or hard disk. It is commonly referred to as PC-DOS, MS-
DOS or just DOS.

What is DOS?

Most users only know the user interface of DOS, with which you run programs,
format disks, etc. In the following sections, however, you’ll view DOS from an
angle you may not have known existed.

Beneath the surface of DOS many processes takes place. DOS uses a large number
of different routines (called functions) to accomplish its tasks. These functions are
available to the user as well as to DOS. The main focus is on how these functions
can be used in practical applications.

This chapter includes a historical sketch of the development of DOS, highlighting
its origins in the CP/M operating system. You’ll learn the differences between
transient and resident commands, COM and EXE files, and DOS file access.

The data structures which act as the connecting link between the different DOS
functions will also be examined in this chapter. These data structures make mass
storage devices such as floppy disks and a hard disk possible.

Finally, this chapter discusses each DOS function in detail, and includes a brief
look at DOS Version 4.0.

51



6. The Disk Operating System PC System Programming

6.1 A Short History of DOS

DOS appeared in 1980, at a time when 8-bit systems and CP/M 80 operating
systems made up the majority of microcomputers. A few years before, Intel had
designed the 8086 microprocessor, the first generation of 16-bit microprocessors.

In April 1980 the CP/M-86 operating system announced by Digital Research for
use on the 8086 processor was unavailable. A programmer named Tim Paterson
began developing a new operating system. This system is the ancestor of the
current MS-DOS.

At this time a lot of software was available for CP/M-80 systems. The
development of new software for an 8086 operating system would have required
enormous expenses and effort. Paterson’s goal was to allow easy conversion of
existing software from CP/M-80 to the new operating system. He tried to include
the functions and the most important data structures of the CP/M-80 operating
system, while removing the weak points of CP/M-80. The finished product was an
operating system that required only 6K of memory. Programs developed for CP/M-
80 could also be converted with little effort to the 8086. The new system was
named 86-DOS.

Meanwhile IBM was developing a 16-bit microcomputer. Microsoft offered to
develop an operating system for it. Microsoft obtained a prototype of the new
computer from IBM, bought the rights to Paterson’s operating system, and made
some enhancements to the software. Even though Paterson was participating in the
project, the strict security provisions of IBM prevented him from seeing the
machine for which he had developed an operating system. Despite this, the
development work was concluded in August of 1981. The new operating system
was released for the IBM PC under the name MS-DOS.

Many changes have been made to DOS since 1981. Because these changes are of
great significance to the DOS programmer, this chapter contains a segment for
each major version of DOS. Each segment lists changes from preceding versions
with explanations. Many components of DOS are explained here, which will give
you some idea of the complexity of an operating system.

Version 1.0

52

This version represented a compromise for Microsoft. They had relied heavily on
CP/M-80 and needed to transfer existing programs quickly and easily. This can be
seen in the fact that the file names (eight-character filename, three-character
extension) was identical with CP/M-80. Also, the designation of the disk drives
and the internal structure had many similarities to the successful 8-bit operating
system.



Abacus

6.1 A Short History of DOS

During this time many improvements and enhancements of the hardware occurred,
such as more RAM and faster disk drives. Microsoft decided to make DOS more
hardware independent by removing the association between physical file length and
logical file length.

In CP/M-80 every disk was divided into 128-byte units which could only be
accessed as a whole. This is why you couldn’t access individual bytes on the disk
(this created a programming problem that shouldn’t have existed in the first place).
DOS solved this problem by making the logical and physical data length
independent of one another. In addition, functions were implemented to permit
reading or writing of more than one data set of a file on a disk. Treating the input
and output devices like files achieved hardware independence. These input and
output devices were assigned their own names:

CON (Keyboard and Display)
PRN (Printer)
AUX (serial Interface)

If you used one of these three names instead of a filename to access a file with a
DOS routine, then the computer addressed the corresponding device and not the
disk drive. This also permitted redirecting input and output from the keyboard or
screen to a file or other device.

Before this time, DOS only supported program files which loaded and executed
from a fixed location in memory. This proved to be impractical, and so Version
1.0 introduced a new program file type. This new file type had a file extension of
.EXE instead of .COM. An .EXE file could be stored and executed from almost
any memory location.

Two changes were made to the command processor, the part of the operating
system which accepts commands from the user and controls the execution of these
commands. The first change was to store the command processor in a separate file
named COMMAND.COM. This allowed programmers to develop a customized
command processor and link it to the system.

The second change was to divide the command processor into a resident and a
transient portion. This approach was taken because early PC systems contained
only a small amount of memory. The resident portion was written to be as small
as possible. Many DOS commands were stored on disk and loaded and run only
when required, hence the name transient. Examples of transient commands are
DISKCOPY and FORMAT.

A major innovation that took MS-DOS Version 1.0 beyond CP/M-80 was the
introduction of the FAT (file allocation table) on disk. Every entry in this table
corresponds to a data area of 512 bytes (called a sector) on the disk. The FAT
indicates whether the sector is allocated to a file or is still available.

53



6. The Disk Operating System PC System Programming

The FAT has special significance in connection with the directory entry which
exists for every file type. Besides the filename and other information, it also
indicates the number of an entry in the FAT which corresponds with the first
sector of a file on the disk. This FAT entry points to another FAT entry which
indicates the next sector which was allocated to the file. The other FAT entries on
a disk perform the same task.

In conclusion two additional developments should be mentioned which make work
with the PC easier for the user:

The introduction of batch processing offers the user the option of placing several
DOS commands into one file. When you “run” this file (which has a file extension
of .BAT), DOS executes the individual commands from this file as if you had
entered the commands from the keyboard, thus saving the user time in entering
frequently used groups of commands repeatedly.

The current date and time follows every filename. DOS includes this data to help
the user determine the last time a file was modified.

When IBM introduced a new PC in 1982 which used both sides of a disk for data
storage, Microsoft released DOS Version 1.1.

Version 2.0

54

IBM announced a new personal computer in March of 1983, called the PC XT,
which in addition to the floppy disk drive also had a hard disk (also called a fixed
disk). The enormous capacity of this hard disk (10 megabytes) allowed the user to
store several hundred files on one unit, but created some problems for the operating
system. The largest problem was that DOS could only handle one directory for
each storage unit. It would be nearly impossible for the hard disk user to maintain
hundreds of files in a single directory. Microsoft had two options to solve this
problem: They could either borrow an idea from the CP/M-80 operating system, or
from the UNIX operating system.

CP/M views a hard disk as several individual disk drives which share the total
storage on the hard disk, each with only one directory.

UNIX uses a hierarchical file system, in which every storage unit has a root
directory which can contain subdirectories as well as files. Every one of these
subdirectories can have subdirectories within them. This creates a directory tree
whose trunk is the root directory and whose branches are represented by the
individual subdirectories.

Microsoft chose the hierarchical file system, which has since become a popular
component of DOS. This was another step away from CP/M-80 toward an
efficient 16-bit operating system. With the introduction of an hierarchical file
system some major changes had to be made in the area of file control by DOS.
Before this time, file access was conducted through a file control block or FCB.



Abacus

6.1 A Short History of DOS

This file control block had been introduced for compatibility with CP/M-80. The
FCB contained important information about the name, size and location of a file
on disk. This CP/M would not allow access to a file in another directory.

The DOS developers standardized file access through DOS functions. The access to
a file occurs exclusively through the file handles. A handle is a numerical value
passed to the program as soon as it opens a file through a DOS function. The
FCBs were not eliminated, but the programmer no longer came in contact with
them since DOS took over the control block manipulation.

An important innovation was the introduction of installable device drivers. They
offer the programmer the capability of easily including different devices in DOS,
such as an exotic hard disk, a mouse or a tape drive. Version 2.0 introduced the
display device driver ANSL.SYS which gave the programmer flexibility in cursor
positioning and color selection through DOS functions.

Version 2.0 added the option of formatting the individual tracks of a disk with nine
sectors instead of eight. This increased the storage capacity of a single-sided disk
from 160K to 180K, and the capacity of a double-sided disk from 320K to 360K.

Version 3.0

Version 3.0, like Version 2.0, was developed for a new PC, the IBM PC AT. It
was released in August of 1984 and supported the 20 megabyte hard disk of the
ATs as well as the high capacity 1.2 megabyte floppy disk drive. Many changes
occurred in DOS’s internal routines. They contributed to faster execution of certain
operations, but are transparent to the programmer.

Version 4.0

DOS 4.0 appeared on the market in August 1988. Before this, Microsoft released a
new multiprocessing operating system called OS/2. Before OS/2, multiprocessing
was unknown to MS-DOS.

The user can easily see the changes to DOS 4.0 over earlier versions of DOS. In
place of the line-oriented command line interpreter used by DOS versions 3.3 and
earlier, DOS 4.0 has a Shell allowing user-defined menus, easy selection of
applications, files and directories from both mouse and keyboard.

Most important are the unseen changes made to DOS, particularly in adapting the
operating system to the new hardware standards on the market. As the operating
system has grown in power, it has also grown in complexity and memory use. For
example, earlier versions of DOS were limited to "only" 640K of RAM and a 32
megabyte hard disk. However, DOS 4.0 handles the Expanded Memory System
(EMS) following the LIM standard, normal RAM capacity of up to 8 megabytes,
and hard disks up to 2 gigabytes (2048 megabytes) capacity.

55



6. The Disk Operating System PC System Programming

6.2 Internal Structure of DOS
Several major components comprise DOS, each with a certain task within the
system. The three most important components are the DOS-BIOS, the DOS kernel
and the command processor. Each appear in a separate file.
DOS-BIOS
DOS-BIOS is stored in a system file which appears under various names
(IBMBIO.COM, IBMIO.SYS or I0.SYS). This file has the file attributes Hidden
and Sys, which means this system file doesn't appear when the DIR command is
entered. The DOS-BIOS contains the device drivers for the following units:
CON (Keyboard and Display)
PRN (Printer)
AUX (Serial Interface)
CLOCK (Clock)
Disk drives and/or hard disks which have the unit
designations A, B and C
If DOS wants to communicate with one of these, it accesses a device driver
contained in this module, which in turn uses the routines of ROM-BIOS. The
DOS-BIOS (i.e., the connection between individual device drivers and other
hardware dependent routines) are the most hardware dependent components of the
operating system, and vary from one computer to another.
Do not confuse the device drivers in this module with the installable device drivers.
The DOS-BIOS device drivers cannot be changed by the user.
DOS kernel

The DOS kernel in the IBMDOS.COM or MSDOS.SYS file is normally invisible
to the user. It contains file access routine handles, character input and output, and
more. The routines operate independent of the hardware and use the device drivers
of DOS-BIOS for keyboard, screen and disk access. The module can be used by
different PCs without being limited to one machine. User programs can access
these functions in the same manner as the ROM-BIOS functions: every function
can be called with a software interrupt. The processor registers pass the function
number and the parameters.

Command processor

56

Unlike the two modules described above, the command processor is contained in
the file named COMMAND.COM. It displays the “A>” or “C>” prompt on the
screen, accepts user input and controls input execution. Many users wrongly think
that the command processor is actually the operating system. In reality it is only a
special program which executes under DOS control.



Abacus

62 Internal Structure of DOS

Batch

The command processor, also called a shell in programmer's terminology, actually
consists of three modules: A resident portion, a transient portion and the
initialization routine.

The resident portion (the part that always stays in the computer’s memory)
contains various routines called critical error handlers. These allow the computer to
react to different events, such as pressing the <Ctrl><C> or <Ctrl><Break> keys
or errors during communication with external devices (e.g., disk drives and
printers). The latter cause the message:

Abort, Retry, Ignore
or
Abort, Retry, Fail

The transient portion contains code for displaying the (A>) prompt, reading user
input from the keyboard and executing the input. The name of this module is
derived from the fact that the RAM memory where it is located is unprotected, and
can be overwritten under certain circumstances. When a program ends, control
returns to the resident portion of the command processor. It executes a checksum
program to determine whether the transient portion was overwritten by the applica-
tion program. If so, the resident portion reloads the transient portion.

The initialization portion loads during the booting process and initializes DOS.
This part of the command processor will be examined in detail in the next chapter.
When its job ends, it is no longer needed and the RAM memory it occupies can be
overwritten by another program. The commands accepted by the transient portion
of the command processor can be divided into three groups: internal commands,
external commands and batch files.

Internal commands lie in the resident portion of the command processor. COPY,
RENAME and DIR are internal commands.

External commands must be loaded into memory from diskette or hard disk as
needed. FORMAT and CHKDSK are external commands.

After execution the command processor releases the memory used by these
programs. This memory can then be used for other purposes.

files

A batch file is a text file containing a series of DOS commands. When a batch file
is started, a special interpreter in the transient portion of the command processor
executes the batch file commands. Execution of batch file commands is the same
as if the user entered them from the keyboard. An important batch file is the
AUTOEXEC.BAT file which executes immediately after DOS is first loaded.

Like all commands of a batch file, these commands are checked for internal
commands, external commands or calls to other batch files. If the first is true, the

57



6. The Disk Operating System PC System Programming

58

command executes immediately, since the code is already in memory (in the
transient part of the command processor). If it is an external command or another
batch file, the system searches the current directory for the command. If such a file
doesn’t exist in this directory, all directories specified in the PATH command are
searched in sequence. During the search, only files with the .COM, .EXE or .BAT
extensions are examined.

Since the command processor cannot search for all three extensions at the same
time, it first searches for files with .COM extensions, then for .EXE files and
finally for .BAT files. If the search is unsuccessful, the screen displays an error
message and the system waits for new input.



Abacus

6.3 Booting DOS

6.3

Booting DOS

When a PC is turned on, the program contained in ROM begins executing. This
ROM program is sometimes called the ROM-BIOS, POST (power-on self test),
resident diagnostics or bootstrap ROM. It performs several tests on the hardware
and memory and then starts to load the DOS.

First the PC checks for a disk in the floppy disk drive. If a disk exists in the
floppy disk drive, the PC checks the disk for the boot sector. If a disk is not in the
drive, the PC searches for a hard disk from which to boot DOS. If no hard disk
exists, the PC displays an error message asking the user to insert a system disk.

The first sector on a bootable floppy disk or hard disk is called the boot sector. The
program in the boot sector is read into memory and executes. First it checks for
the presence of two files: IBMBIO.COM (sometimes called I0.SYS) and
IBMDOS.COM (sometimes called MSDOS.SYS). A bootable floppy disk or hard
disk must contain these two files or an error message is displayed. Next these
program files are loaded into memory.

The program file IBMBIO.COM consists of two modules. The first contains the
basic device drivers—keyboard, display and disk. The second contains the
initialization sequence for DOS. When the IBMBIO.COM program executes it
continues to initialize the system by moving the DOS kernal (loaded in the
IBMDOS.COM program file) to the last available memory location.

The DOS kernal builds several important tables and data areas, and performs
initialization procedures for individual device drivers which were loaded with the
IBMBIO.COM program file.

Next, DOS searches the boot disk for a file named CONFIG.SYS. If found, the
commands contained in the file are executed. These commands add device drivers to
DOS, allocate disk buffers and file control blocks for DOS and initialize the
standard input and output devices.

Lastly the command processor COMMAND.COM (or other shell specified in the
CONFIG.SYS file) is loaded and control is passed to it. The booting process ends
and the initialization routines remain as “garbage” data in memory until
overwritten by another program.

59



6. The Disk Operating System PC System Programming

6.4

EXEC

60

COM and EXE Programs

DOS recognizes three types of “program” files: those with file extensions of BAT,
COM and EXE.

This section describes the structure and functions of these last two program types.

One difference between COM and EXE program files is in the size limitation for
each type of program. A COM program cannot exceed 64K in size. An EXE
program can be as large as the memory capacity available to DOS.

In a COM program, the program code, data and stack are stored in one 64K
partition. All of the segment registers are set at the start of the program and remain
fixed for the duration of the program execution. They point to the start of the 64K
memory segment. The contents of the ES register may be changed however, since
it has no direct effect on program execution.

In an EXE program, the code, data and stack may be stored in different segments,
and depending on program size, may be distributed over several segments.

While a COM program file is stored on disk as an image copy of RAM memory,
an EXE program file is stored in a special format that will be described shortly.

Both program types can be loaded and started using the DOS EXEC function. Any
user can access this, but the command processor uses it for executing external
commands. Before the EXEC function loads the program into memory, it reserves
the RAM memory to hold the program. At the beginning of this memory the
EXEC function stores a PSP (program segment prefix) data structure. The program
is then loaded immediately following the PSP. The segment registers and the stack
are initialized and the program is given control. Later, when the program ends, the
memory is released based on the contents of the PSP.



Abacus

64 COM and EXE Programs

+ OOH | Interrupt 20H call (2 bytes)
+ 02H | Segment address of memory (1 word)
allocated for a program
+ 04H Reserved (1 byte)
+ O5H | Interrupt 21H call (5 bytes) RAM
+ OAH | Copy of interrupt (2 words) 0000:0000
vector 22H
+ OEH | Copy of interrupt (2 words)
vector 23H
+ 12H Copy of interrupt (2 words) '
vector 24H
+ 16H reserved (22 bytes)
+ 2CH Segment address of (1 word)
environment block
+ 2EH reserved (46 bytes)
+ 5CH |FCB 1 (16 bytes)
+ 6CH | FCB 2 (16 bytes)
+ 80H Number of characters (1 byte)
in command line
+ 81H Command line (ended by CR) (127 bytes)

Structure of the PSP

The PSP itself is always 256 bytes long and contains information important for
DOS and the program to be executed.

Memory location 00H of the PSP contains a DOS function call to terminate a
program. This function releases program memory and returns control to the
command processor or the calling program. Memory location 05H of the PSP
contains a DOS function call to interrupt 21H. Neither of these are used by DOS,
but are leftovers from the CP/M system.

Memory location 02H of the PSP contains the segment address to the end of the
program. Memory location 0AH contains the previous contents of the program
termination interrupt vector. Memory location OEH contains the previous contents
of the <Ctrl><C> or <Ctrl><Break> interrupt vector. Memory location 12H
contains the previous contents of the critical error interrupt vector. For each of
these memory locations, the program changes one of the corresponding vectors
during execution; DOS can use the original vector in the event that it detects an
error.

Location 2CH contains the segment address of the environment block. The
environment block contains information such as the current search path and the
directory in which the COMMAND.COM command processor is located on disk.

61



6. The Disk Operating System PC System Programming

Memory locations SCH through 6CH contain a file control block. This FCB is
not often used by DOS since it does not support hierarchical files (paths) and is
also left over from CP/M.

The string of parameters that are entered on the command line following the
program name is called the command tail. The command tail is copied to the
parameter buffer in the PSP beginning at memory location 81H and its length is
stored at memory location 80H. Any redirection parameters are eliminated from the
command tail as it is copied to the parameter buffer. The program can examine the
parameters in the parameter buffer to direct its execution.

The parameter buffer is also used by DOS as a disk transfer area (DTA) for
transmitting data between the disk drive and memory. Most DOS programs do not
use the DTA contained in the PSP because it is another leftover from CP/M.

SS:0000
DS:0000_ ES:0000
ES:0000 DS:0000
CS:0000 PSP (256 BYTES) PSP (256 BYTES)
CS:Ip —b
Code
Code, data
and stack in (Address defined
one 64K segment by the END
CS:IP—#] command in an
; assembler
SS:SP Stack adjusts program)
to the direction
SS:FFFF of data and code| DS:0000—»
CS:FFFF - Data
DS:FFFF SS:0000—
ES:FFFF
Stack
SS:Sp—9

A comparison of COM and EXE programs in memory

6.4.1 COM Programs

62

COM program files are stored on disk as an image copy of memory. Because of
this, no further processing is required during loading. Therefore COM programs
load faster and start execution faster than EXE programs.

A COM program loads immediately following the PSP. Execution then begins at
the first memory location following the PSP at offset 100H. For this reason, a
COM program must begin with an executable instruction, even it if is only a
jump instruction to the actual start of the program.



Abacus 6.4 COM and EXE Programs

COM program memory limits

As described in the previous section, a COM program is limited to 64K (65,536
bytes) in length. The PSP (256 bytes) and at least 1 word (2 bytes) for the stack
must be reserved from this total. Even though the length of the COM program can
never exceed 64K, DOS reserves the entire available RAM for a program.
Therefore DOS can allocate no further memory, and the COM program cannot call
another program using the EXEC function. This limitation can be overcome by
releasing the unused memory for other uses with a DOS function.

When control is turned over to the COM program, all segment registers point to
the beginning of the PSP. Because of this, the beginning of the COM program
(relative to the beginning of the PSP) is always at address 100H. The stack pointer
points to the end of the 64K memory segment containing the COM program
(usually FFFEH). During every subroutine call within the COM program, the
stack is adjusted by 2 bytes in the direction towards the end of the program. The
programmer is responsible for preventing the stack from growing and overwriting
the program, which would cause it to crash.

There are several ways to end a COM program and return control to DOS or the
calling program:

If the program runs under DOS Version 1.0, it can be terminated by calling
interrupt 21H function 0, or by calling interrupt 20H. It can also be terminated by
using the RET (RETurn) assembler instruction. When this instruction executes,
the program continues at the address which is at the top of the stack. Since the
EXEC function stored the value 0 at this location before turning control over to
the COM program, program execution continues at location CS:0 (the start of the
PSP). Recall that this location contains the call for interrupt 20H which
terminates the program.

Programs that run on versions later than DOS Version 1.0, are terminated using
interrupt 21H function 4CH. The terminating program can pass a numeric return
code to the calling program. For example, a value of 0 may indicate that the
program executed successfully, while a non-zero value indicates an error during
execution.

Next we’ll talk about a few of the details that the assembly language programmer
will have to take care of in developing a COM program. Note that the high level
language programmer is usually insulated from these details by the compiler or
interpreter, so you may want to skip ahead.

A COM program is limited to a 64K size. The code and data for the program must
be contained within a single segment and addressed through NEAR procedures.
Therefore an assembly language program that is to become a COM program may
not contain any FAR procedures.

63



6. The Disk Operating System PC System Programming

64

Before calling a COM program, DOS reserves all available memory for the
program even though it normally uses only one 64K segment and indicates this by
setting memory location 2 in the PSP. Usually the program terminates and the
memory is made available to DOS again.

In some circumstances you may want to write a program which is to remain
resident after execution. But DOS thinks that there isn’t any memory available.
This prevents other programs from loading and executing.

In other circumstances you may want to execute another program from this COM
program using the EXEC function. Again, since DOS thinks that memory is
unavailable, it won’t allow the new program to run.

Both of these problems can be circumvented by freeing up the unused memory.

There are two approaches in doing this: release only the memory outside of the
64K COM segment or release memory outside of the 64K COM segment plus any
unused memory within the 64K COM segment. This creates more memory for
other programs, but relocates the stack outside the protected COM segment
memory, leaving it open to be overwritten by other programs. Because of this, the
stack must be relocated to the end of the code segment before releasing the
memory. The stack must have a certain limit in size (in most cases 512 bytes will
be more than enough).

The following sample program can serve as an example for developing a COM
program. A small (init) routine relocates the stack to the end of the code segment
after the start of the program and releases all remaining memory. Even when this
program loads another program, it remains resident. This routine can be useful to
applications, and can be part of any COM program.

;testcom.asm
code segment para ‘CODE‘ ;Definition of CODE-segments

org 100h ;starts at Address 100H
;directly behind the PSP

assume cs:code, ds:code, es:code, ss:code

;all segments point to the CODE

; segment
start: jmp init ;Call of the Initialization Routine
;== Data
;-- Data, Buffers and --==—=====-
;-—- Variables can be stored here
;== Program
prog proc near sthis Procedure is the actual

;Main program and is executed after
;the Initialization

mov ax,4C00h ;Terminate Program through calling a



Abacus

64 COM and EXE Programs

int 21h ;DOS function on error code 0
prog endp ;End of the PROG procedure

;-- Initialization

init: mov ah,4Ah ;Change Function number for memory size
mov bx,offset endp ;Calculate number of paragraphs (16 byte
mov cl,4 ;each) available to the program
shr bx,cl
inc bx
int 21h ;Call function through DOS-Interrupt
mov  en offeet endp ;Set new ctack-Pointer
jmp prog

init_end label near

;== stack

dw (256-((init_end-init) shr 1)) dup (?)

;the stack has 256 Words, but includes
;the code of the INIT-Routine which
;after its execution is no longer needed

endp equ this byte ;End of memory used by this
;program
;== End
code ends ;End of the CODE-segment
end start ;End of the Assembler-Program. For

;execution use START command

First you must assemble the source program using the assembler. In the following
example, we are using the Microsoft assembler. Following assembly, you then
link the object code using the LINK program. When you execute the LINK
program, the following message appears:

Warning: no stack segment

You can disregard this message. If the program contains no errors, the LINK
program creates an EXE file. Since you want a COM program and not an EXE
program developed, you must run the EXE2BIN program as the last step. This
converts EXE programs into COM programs. Here are the steps for preparing an
assembly language program using the Microsoft assembler. The program to
assemble is named TESTCOM.ASM.

masm testcom;
link testcom;
exe2bin testcom.exe testcom.com

If all steps were carried out correctly, the program TESTCOM.COM can be
executed from DOS by simply typing TESTCOM.

65



6. The Disk Operating System PC System Programming

6.4.2 EXE Programs

EXE programs have an advantage over COM programs because they are not
limited to a maximum length of 64K for code, data and stack. The disadvantage of
this is the greater complexity of these files. This means that in addition to the
program itself, other information must be stored in an EXE file.

EXE vs. COM

66

EXE programs contain separate segments for code, data and stack which can be
organized in any sequence. Unlike a COM program, an EXE program loads into
memory from disk and undergoes processing by the EXEC function and then
finally begins execution. This is necessary because of the limitations already
described for COM programs.

EXE programs aren’t limited to loading at a fixed memory location, but to any
desired location in memory that’s a multiple of 16. Since an EXE program can
have several segments, this requires the use of FAR machine language
instructions. For example, a main program can be in one segment and call a
subroutine in another segment. The segment address must be provided for this
FAR instruction in addition to the offset for the routine to be called. The problem
is that the segment address may be different for every execution of the program.

COM files avoid this problem since the program size is limited to 64K, which
makes the use of FAR commands unnecessary. EXE programs solve this problem
in a more complex way: the LINK program places a data structure at the beginning
of every EXE file which contains the addresses of all segments, among other
things. It contains the addresses of all memory locations in which the segment
address of a certain segment is stored during program execution.

If the EXEC function loads the EXE program, it knows the addresses where the
various segments should be loaded. It can therefore enter these values into the
memory locations at the beginning of the EXE file. Because of this, more time
elapses between the initial program call and when the program actually begins
execution than for a COM program. The EXE program also occupies more
memory than a COM program. The following illustration shows the structure of
the header for an EXE file.



Abacus

6.4 COM and EXE Programs

EXE file header structure
Address|Contents Type
+00H EXE program identifier (5A4Dh) 1 WORD
+02H file length MOD 512 1 WORD
+04H file length DIV 512 1 WORD
+06H Number of segment addresses for passing |l WORD
+08H Head size 1n paragraphs 1 WORD
+0AH Minimum no. of extra paragraphs needed |1 WORD
+0EH Maximum no. of extra paragraphs needed |1 WORD
+10H SP register contents on program start 1 WORD
+12H Checksum based on EXE file header 1 WORD
+14H IP register contents on program start 1 WORD
+16H Start of code segment in EXE file 1 WORD
+18H Relocation table address in EXE file 1 _WORD
+1AH Overlay number 1 WORD
+1CH Buffer memory 1 WORD
+2?H Address of passing segment addresses 1 WORD
(relocation table)
+2?2H Program code, data and stack segment 1 WORD

EXE file header construction

After the segment references within the EXE program have been resolved to the
current addresses, the EXEC function sets the DS and the ES segment register to
the beginning of the PSP which also precedes all EXE programs in memory.
Because of this, the EXE program can access the information contained in the
PSP, such as the address of the environment block and the parameters contained in
the command line (command tail). The stack address and the contents of the stack
pointer are stored in the EXE file header and accessed from there. This also applies
to the code segment address containing the first instructions of the program, and
the program counter. After the values have been assigned, the program execution
starts.

To ensure compatibility with future DOS versions, an EXE program should
terminate by calling interrupt 21H function 4CH.

Of course, memory must be available for the EXE program. The EXE loader
determines the total program size based on the size of the individual segments of
the EXE program. Then it can allocate this amount of memory and some
additional memory immediately following the EXE program. The first two fields
of the EXE program file header contain the minimum and maximum size of
memory required in paragraphs (1-6 bytes).

First, the EXE loader tries to reserve the maximum number of paragraphs. If this
is not possible the loader tries to reserve the remaining memory which may be no
smaller than the minimum number of paragraphs. These fields are determined by
the compiler or assembler, not the linker. The minimum is 0 and the maximum

67



6. The Disk Operating System PC System Programming

68

allowed is FFFFH. This last number is unrealistic in most cases (it adds up to 1
megabyte) but reserves the entire memory for the EXE program.

This brings us back to the same problem as in COM programs. EXE files make
poor resident programs, but an EXE program may need to call another program
during execution. This is possible only by first releasing the additional reserved
memory. The following program below contains a routine which reduces the
reserved memory to a minimum.

The program uses separate code, data and stack segments. It can serve as a model
for other EXE programs that you can write.

; testexe.asm

;== stack

stack segment para stack ;Definition of the stack-segment
dw 256 dup (?) ;the stack has 256 Words

stack ends ;End of the stack-segment

;== Data

data segment para ‘DATA' ;Definition of the Data-segment

;all data, buffers and variables can be stored here

data ends ;End of the Data segment
;== Code
code segment para ‘CODE' ;Definition of the CODE-segment

assume cs:code, ds:data, ss:stack

;CS defines the Code, DS
;the Data and SS the stack
; segment

prog proc far ;this procedure is the actual
;Main program and is executed after
;the program start

mov ax,data ;Load segment address of the Data segment into
mov ds,ax ;the DS-Register
call setfree ;release memory not needed

;store application program here

mov ax,4C00h ;terminate with call of DOS function
int 21h ;on return of error code 0
;terminate

prog endp ;End of PROG Procedure
;—— SETFREE : release memory storage not occupied ----——-—--——--—-
;-- Inputt : ES = Address of PSP
;—— Output : none
;-- Register : AX, BX, CL and FLAGS are changed
;—-- Info : Since the stack-segment is always the last segment in an
; EXE file, ES:0000 points to the beginning and SS:SP
; to the end of the program in storage. Because of this the
; length of the program can be calculated.



Abacus

6.4 COM and EXE Programs

setfree proc near
mov bx,ss ;subtract the two segment addresses
mov ax,es ;from each other. The result is the
sub bx,ax snumber of paragraphs from PSP to

;the beginning of the stack

mov ax,sp ;since the stackpointer is a the end
mov cl,4 ;of the stack segment, its content
shr ax,cl ;gives the length of the stacks
add bx,ax ;add to the present length
inc bx ;one more paragraph as a precaution
mov ah,4ah ;pass new size to DOS
int 2ih
ret ;back to calling program

setfree endp

;== End

code ends sEnd of the CODE-segment
end prog ;End of the Assembler program.

;Start execution with the PROG procedure

To develop an EXE program, it must be assembled like a normal program with an
assembler. Then it is linked with the LINK program. If the program contains no
errors, the LINK program creates an EXE file.

Here are the individual steps for preparing an EXE program from the assembly
language source named TESTEXE.ASM.

masm testexe;
link testexe;

If all these steps were executed correctly, the program TESTEXE.EXE can be
started from the DOS level by typing TESTEXE.

69



6. The Disk Operating System PC System Programming

6.5

6.5.1

70

Character Input and Output from DOS

When first learning a programming language, many beginners learn the basic input
and output instructions of the language. In much the same way, programmers get
their experience writing DOS accessible programming by using the functions for
character input and output. For this reason, this book starts with these input and
output functions instead of more complex functions. These input and output
functions can address the keyboard, screen, printer and serial interface.

The functions can be divided into two types: those carried over from the CP/M
operating system and those borrowed from the UNIX operating system. While the
two types of functions can be intermixed, we recommend that you use one type of
function throughout a program for the sake of consistency.

The UNIX type functions use a handle as an identifier to a device. Because of
recent DOS trends to move closer to UNIX, you may want to give the handle
functions precedence.

Handle Functions

The handle functions perform file access as well as character input to or output
from a device. DOS recognizes the difference by examining the name assigned by
the handle. If the handle is a device name, it addresses the device; otherwise it
assumes that file access should occur. The device names are as follows:

CON Keyboard and display

AUX Serial Interface

PRN Printer

NUL Imaginary device (nothing happens on access)

Output and input go to and from the AUX, PRN and NUL devices. For the device
CON, output is sent to the screen and input is read from the keyboard.

When DOS passes control to a program, five handles are available for access to
individual devices. These handles have values from 0 to 4 and represent the
following devices:

Standard input (CON)

Standard output (CON)

Standard output for error messages (CON)
Standard serial interface (AUX)

Standard printer (PRN)

Slwinirjo

Here is a short example to help demonstrate the use of this table:



Abacus 6.5 Character Input and Output from DOS

Display error message

If a program wants to accept input from the user, the handle function 0 indicates
this during the call since the standard input device is addressed. Handle O normally
represents the keyboard, permitting user input from the user to the program. Since
the user can redirect standard input, you can redirect input to originate from a file
instead of the keyboard. This redirection remains hidden from the program.

Before discussing these devices, here are some functions used to access any device.

Function 40H of interrupt 21H sends data to a device. The function number (40H)
is passed in the AH register and the handle is passed in the BX register. For
example, to display an error message, the value 2 indicates the handle for
displaying the error message (this device cannot be redirected, so handle 2 always
addresses the console). The number of characters to be in the error message is
passed in the CX register. The characters making up the message are stored
sequentially in memory whose segment address is stored in the DS register and
offset address in the DX register.

Following the call to the function, the carry flag signals any error. If there was no
error, the carry flag is reset and the AX register contains the number of characters
that were displayed. If the AX register contains the value 0, then there was no
more space available on the storage medium for the message. If the carry flag is
set, the error message was not sent and an error code is indicated in the AX
register. An error code of 5 indicates that the device was not available. An error
code of 6 indicates that the handle was not opened.

Function 3FH of interrupt 21H reads character data from a device and has many
similarities to the previous function. Both functions have identical register usage.
The function number is passed in the AX register and the handle in the BX
register. The number of characters read is passed in the CX register and the
memory address of the characters transferred are passed in the DS:DX register pair.

Following the call to the function, the carry flag also signals any error. Again, any
error code is passed in the AX register. Error codes 5 and 6 have the same meaning
as when using function 40H. If the carry flag is reset, then the function executed
successfully. The AX register then contains the number of characters read into the
buffer. A value of 0 in the AX register means that the data to be read should have
come from a file, but that this file contains no more data.

As we already mentioned, it’s possible to redirect the input or output when
accessing DOS. For example, a program that normally expects input from the
keyboard can be made to accept the input from a file. So, to avoid having input or
output redirected, you can open a new handle to a specific device which insures that
the transfer of data to or from the desired device takes place instead of to or from a
redirected device.

Use function 3DH of interrupt 21H to open such a device.

71



6. The Disk Operating System PC System Programming

The function number 3DH is passed in the AH register. The AL register contains 0
to enable reading from the device, 1 to enable writing to the device and 2 for both
reading and writing to the device. The name of the device is placed in memory
whose address is passed in the DS:DX register pair. So that the DOS can properly
identify the device name, the names must be specified in uppercase characters. The
last character of the string must be an end character (ASCII value 0).

Following the function calls the status is indicated by the carry flag. A reset flag
means that the device was opened successfully and the handle number is passed
back in the AX register. A set flag indicates an error and the AX register contains
any error code.

The handle is closed using function 3EH of interrupt 21H. The function number is
passed in the AH register and the handle number is passed in the BX register. The
carry flag again indicates the status of the function call. A set carry flag indicates
an error.

You can also close the predefined handles O through 4 using this function. But if
you close handle O (the standard input device) you’ll no longer be able to accept
input from the keyboard.

Let’s examine the special characteristics of each device.

Keyboard

72

The keyboard can perform only read operations. The results of the read operations
depend on the mode in which the device was addressed. Here DOS differentiates
between raw and cooked. In the cooked mode DOS checks every character sent to a
device or received from a device to see if it is a special control character. If DOS
finds a special control character, it performs a certain action in response to the
character. In raw mode the individual characters are passed through unchecked and
unmanipulated. DOS normally operates the device in cooked mode for character
input and output. However, you can switch to raw mode within a program (see
below).

The difference between cooked and raw mode can be best explained by an example
of reading the keyboard. Assume that 30 characters are read from the keyboard in
cooked mode. As you enter the characters DOS allows you to edit the input using
several of the control keys. For example <Ctrl><C> and <Ctrl><Break> abort the
input. <CtrI><S> temporarily halts the program until another key is pressed.
<Ctrl><P> directs subsequent data from the screen to the printer (until <Ctrl><P>
is pressed again). <Backspace> removes the last character from the DOS buffer. If
the <Enter> key is pressed, the first 30 characters (or all characters input up to
now if there are less than 30) are copied from the DOS buffer into the input buffer
of the program without the control characters.

In raw mode all characters entered (including control characters) are passed to the
calling program without requiring the user to press the <Enter> key. After exactly



Abacus

6.5 Character Input and Output from DOS

Screen

Printer

30 characters, control passes to the calling program, even if you pressed the
<Enter> key as the second character of the input.

To display characters on the screen, handle 1 is usually addressed as the standard
output device. Since this device can be redirected, output through this handle can
pass to devices other than the screen. On the other hand, you cannot redirect the
standard error outpul device (handle 2), so error messages that pass through this
handle always appears on the screen. This handle is recommended for character
display on the screen only.

The screen is normally addressed in cooked mode—every character displayed on the
screen is tested for the <Ctrl><C> or the <Ctrl><Break> control characters. This
test slows down the screen output, so sometimes changing to raw mode decreases
program execution time.

Unlike the keyboard and screen, printer output cannot be redirected—at least not
from the user level. An exception to this rule is redirecting output from a parallel
printer to a serial printer. Characters ready to print can be sent to a buffer before
they are sent to the printer. Handle 4 is used to address the standard printer. There
are three standard printer devices LPT1, LPT2 and LPT3. Device PRN is
synonymous with LPT1. When this handle is opened the device name is specified
as one of the three: LPT1, LPT2 or LPT3.

Serial interface

Much of the information that applies to the printer also applies to the serial
interface. For example, serial input and output cannot be redirected to another
device (e.g., from a serial printer to a parallel printer). The programmer can use the
predefined handle 3 for serial access, through which you can address the standard
serial interface (AUX).

Handle 3 is used to address the standard serial device. The two are names COM1
and COM2. A PC can have multiple serial interfaces. Only the first two (COM1
and COM2) are supported by DOS. Since the system doesn’t know exactly which
interface to access during AUX device access, you should open a new handle for
access to the specific device.

Errors during read operations in DOS mode are returned to the serial interface in
cooked mode. The number returned to the AX register will not match the number
of characters actually read. We recommend that you operate the serial interface in
the raw mode, even if this mode ignores control characters such as <Ctrl><C> and
EOF (end-of-file).

73



6. The Disk Operating System PC System Programming

6.5.2 Traditional DOS Functions

The DOS functions for input and output aren’t based on the handle oriented
functions. If you use these functions you won’t need to specify a handle, since
each function pertains to a specific device.

Below are the various input and output devices and the way in which these
functions work with them.

Keyboard

74

There are seven DOS functions for addressing the keyboard but they differ in many
ways. For example, they respond differently to the <Ctrl> <Break> key. Some
functions echo the characters on the screen; others don’t.

You can use DOS functions 01H, 06H, 07H and 08H to read a single keyboard
character. The function number is passed in the AH register. Following the call,
the character is returned in the AL register.

For DOS function 01H, DOS waits for a keypress if the keyboard buffer is empty.
When this happens, the character is echoed on the screen. If the keyboard buffer is
not empty, a new character is fetched and returned to the calling program. DOS
function 06H can be used for both character input and output. To input a character
a value of FFH is loaded into the DL register. This function doesn’t wait for a
character to be input but returns immediately to the calling program. If the zero
flag is set, a character was not read. If the zero flag is reset, a character was read and
returned in the AL register. The character is not echoed on the screen.

DOS functions 07H and O8H are used to read the keyboard similar to function 1.
Both either fetch a character from the keyboard buffer or wait for a character to be
entered at the keyboard. Neither echo the character to the screen. They differ in that
function 08H responds to <Ctrl><C> and function 07H does not.

By using function OBH, a program can determine whether one or more characters
are in the keyboard buffer before calling any functions that read characters. After
calling this function, the AL register contains O if the keyboard buffer is empty,
and FFH if the keyboard buffer is not empty.

DOS function OCH is used to clear the keyboard buffer. After it is cleared, the
function whose number was passed to function OCH in the AL registered is
automatically called.

i

DOS function 0AH is used to read a string of characters. Again this function
number is passed in the AH register. In addition, the memory address of a buffer
for the character string is passed in the DS:DX register pair. This buffer is used to
hold the character string. The first byte of the buffer indicates the maximum
number of characters that may be contained in the buffer.



Abacus

6.5 Character Input and Output from DOS

When this function is called, DOS reads up to the maximum number of characters
and stores them in the buffer starting at the third byte. It reads until either the
maximum number of characters is entered or the <Enter> key is pressed. The
actual number of characters is stored in the second byte of the buffer. Extended key
codes which occupy two bytes each in the buffer may be entered. The first byte of
the pair (ASCII value 0) signifies that an extended key code follows. This means,
for example, that for a maximum buffer size of 10 bytes, only five extended
characters may be entered.

The following table illustrates how the various functions respond to <Ctrl><C>
or <Curl><Break>, and provides a quick overview of the individual functions for
character input.

Fct. Task <Ctrl><Cc> Echo
01H Character input yes yes
06H direct character input o o

07H Character input o o

08H Character input yes no

0AH Character string input yes no

OBH Read input-status yes o

OCH Reset input-buffer then input varies varies

Screen output

There are three DOS functions for character output.

DOS function 02H outputs a single character to the screen or standard output
device. The character is passed to the DL register.

DOS function 06H which is multi-purpose is also used to output a single
character. The character is passed in the DL register. You can see that the character
whose value is 255 cannot be output since this indicates that the function is to
perform an input operation. Output using this function is faster than using
function 02H since it doesn’t test for the <Ctrl><C> or <Ctrl><Break> keys.

DOS function 09H is used for string output. Again, the function number is passed
in the AH register. The address of the string is passed in the DS:DX register pair.
The last character of the string is a dollar sign. In addition, the following control
codes are recognized.

Code] Operation

7 "Bell", rings the bell on the PC

8 "Backspace", erases the preceding character and moves the cursor
back by one character

10 "Line Feed", (LF) moves the cursor one line down

13 "Carriage Return", (CR) moves the cursor to the beginning of the
current line

As with function 02H, this function also checks for <Ctrl><C> or
<CtrI><Break>.

75



6. The Disk Operating System PC System Programming

Printer

DOS function 05H is used to output a single character to the printer. If the printer
is busy, this function waits until it is ready before returning control to the calling
program. During this time, it will respond to the <Ctrl><C> and <Ctrl><Break>
keys.

The function number is passed in the AH register. The character to output is
passed in the DL register. The status of the printer is not returned. Most
programmers will elect to use the BIOS function instead of the DOS function for
printer output since you can specify the exact printer device and determine the
printer status using the BIOS version. See Section 7.12 for more detailed
information.

Serial interface

There are two DOS functions for communicating using serial interface—one for
input and one for output. Both functions respond to <Ctrl><C> and
<Cul><Break>, but they don’t return the status of the serial interface, nor do they
recognize transmission errors.

DOS function 03H is used to input data from the serial interface. The character is
returned in the AL register. Since the data is not buffered, the data can overrun the
interface if the interface receives data faster than this function can handle it.

DOS function 04H is used to output data over the serial interface. The character to
output is passed in the DL register. If the serial interface is not ready to accept the
data, this function waits until it is free.

Again, most programmers prefer to use the BIOS equivalent functions (see Section
7.9) to perform serial data transmission because of their more complete data
handling capabilities.

Demonstration programs

76

Earlier we mentioned that it was possible to switch a device from cooked mode to
raw mode and back. The BASIC, Pascal and C programs that follow show you
how to do this. They use the IOCTL functions which permit access to the DOS
device drivers (see Section 6.11.7 for details on this routine). These are routines
which serve as interfaces between the DOS input/output functions and the
hardware. The IOCTL functions in these programs tell the CON device driver
(responsible for the keyboard and the display) whether it should operate in the
cooked mode or in the raw mode.

To demonstrate how differently characters respond in the two modes, the programs
switch the CON driver into raw mode first. Then this driver displays a sample
string several times. Unlike cooked mode, pressing <Ctrl><C> or <Ctrl><S> in
raw mode has no effect on stopping program execution or text display.



Abacus

6.5 Character Input and Output from DOS

After the program finishes displaying the sample string, the driver switches to the
cooked mode. The sample string is displayed again several times. When you press
<Ctrl><C> the program stops (Turbo Pascal version). For the BASIC and C
versions, you can press <Ctrl><C> to stop the program, or press <Ctrl><S> to
pause or continue the display.

Switching between the raw and the cooked mode does not take place directly
through a function. First the device attribute of the driver is determined. This
attribute contains certain information which identifies the driver and describes its
method of operation. One bit in this word indicates if the driver operates in raw or
cooked mode. The programs set or reset this bit, depending on the mode you want
running the driver.

BASIC listing: RAWCOOK.BAS

100
110
120
130
140
150
160
170
180
190
200

440

PR A AR AR AR R AR A AR AR R AR A AR KRR AR AR R A RRAR AR RARARARR A ARAAA R R A ARk kA A Ak k ?
'x RAWCOOK *
“x * 0
‘** Task : make two subroutines available *
'* to switch the character driver into RAW- or *
x COOKED mode *
**  Author : MICHAEL TISCHER *
'* developed : 07/23/87 *

** last Update : 04/08/89 *

LR R e T s s ]

CLS : KEY OFF

PRINT"WARNING: This program can only be started if the GWBASIC was"
PRINT"started from DOS with the command <GWBASIC /m:60000>."

PRINT : PRINT"If this is not the case, please input <s> for Stop."
PRINT"Otherwise press any key...";

A$ = INKEY$ : IF A$ = “s" THEN END

IF A$ = “" THEN 260

GOSUB 60000 ‘Install function for interrupt call
CLS ‘erase display
HANDLES$ = 0 ‘handle is connected with console driver
PRINT"RAWCOOK (c) 1987 by Michael Tischer" : PRINT

PRINT"The Console driver (Keyboard and Display) is now in RAW-"
PRINT"Mode so that during input and output no control characters "
PRINT"are recognized."

PRINT"Because of this not even <CTRL> + <S> can stop the "

PRINT"following output."

PRINT"Try it ..." : PRINT

PRINT “"Press any key to start output ..."

GOSUB 25000 ‘Clear keyboard buffer
A$ = INKEY$ : IF A$ = "" THEN 370 ‘wait for a key
GOSUB 52000 ‘Switch console driver into RAW mode
GOSUB 50000 ‘Output Test-String
CLS

PRINT"The Console driver (Keyboard and Display) is now in *
PRINT"COOKED mode. Control characters will be recognized during "
PRINT"input/output."

PRINT"The following output can be stopped with <CTRL> + <S>."
PRINT"Try it ..." : PRINT

717



6. The Disk Operating System PC System Programming

450 PRINT “Press any key to start the output..."

455 GOSUB 25000 ‘Clear the keyboard buffer
460 AS$ = INKEY$ : IF A$ = "“ THEN 460 ‘wait for a key
470 GOSUB 51000 ‘change console driver to the COOKED mode
480 GOSUB 50000 ‘output Test-String
490 CLS

500 END

510 °*

25000 A$ = INKEY$ : IF A$ = "" THEN RETURN ‘Clear the keyboard buffer
25010 goto 25000

S0000 ' **hhkd kAR KKK IR RRKRAKRARKRK KK AR KRR KRR A AR KRR R AR A AR A A AR A Ak Ak hkhhh ko

50010 '* outputs a Test-String on the Standard output device *
50020 '* *0
50030 ** Input : none *
50040 *'* Output: none *!
50050 TAA AR A AR AR AR A A AR AR AR AR AR AR AR A AR AR AR A AR RARARRAA AR AR ARA AR A AR A AR AR
50060 *
50070 T$ = "Test.... * 'Output Test-String
50080 FOR I = 1 TO 250 *250 times
50090 FCT$ = &H40 : FCT1% = O '‘Write function number for handle
50100 INR$ = &H21 'Call DOS-Interrupt 21H
50110 ADRLO% = 9 : ADRHI% = 0 ‘output 9 characters at a time
50120 OFSLO% = PEEK(VARPTR(T$)+1l) 'LO-byte of offset address of string
50130 OFSHI% = PEEK (VARPTR(T$)+2) '‘HI-byte of offset address string
50140 HANDLO$ = 1: HANDHIS% = 0 'address the standard output device
50150 CALL IA(INR%,FCT%,FCT1%, HANDHI%, HANDLO%, ADRHI%,ADRLO%, OFSHI%,
OFSLO%, 2%, 2%, 2%, 2%)
50160 NEXT ‘next run
50170 PRINT
50180 RETURN ‘back to caller
50190 '
51000 T RAK AR KRR AR KRR AR AR A AR R KRR AR R AR AR R R KRR R ARR AR AR AR A AR AR AR AR AR AR AR AA KK
51010 '* change device driver to COOKED mode *
51020 '* *
51030 '* Input : HANDLE% = handle connected with the driver *
51040 '* Qutput: none *
51050 TR A AR AR R AR A AR AR AR AR AR AR AR AR A AR A AR R AR A AA R AR AR AR AA A AR A A A A Ak kA k §
51060 *
51070 GOSUB 53000 'Get device attribute of driver
51080 ATTRIB$ = ATTRIB% AND 223 ‘Find COOKED-Bit
51090 GOSUB 54000 'Set device attribute of driver
51100 RETURN ‘back to caller
51110 '
52000 AR AR A AR R AR R A A AR R AR AR R A AR AR A AR A AR A AR A A AR AR AR AR R AR A AR A AR A AR AR kA0
52010 '* change device driver to RAW mode *
52020 ** *
52030 '* Input : HANDLE% = handle connected to the driver *
52040 '* Output: none *
52050 PR AR KRR AR AR AR KRR AR R KRR AR R AR A AR AR A A kA kkkk ko kA A Ak ke kA kkhhkhkk ?
52060 *
52070 GOSUB 53000 ‘Get device attribute of driver
52080 ATTRIB% = ATTRIB% OR 32 'Set RAW-Bit
52090 GOSUB 54000 ‘Set device attribute of driver
52100 RETURN ‘back to caller
52110 *
53000 AR AR A AR R AR R R KRR AR AR R R R AR R AR R AR AR R AR AR AR AR R AR A AR AR AR AR R R AR R AR A AR
53010 '* Get device attribute of a driver *
53020 *'* *
53030 '* Input : HANDLE% = handle connected with a driver *e
53040 *'* Output: ATTRIB% = Attribute of driver *

53050 '* Info : 2% used as Dummy-Variable *

78



Abacus 6.5 Character Input and Output from DOS

53060 ** only Bits 0 to 7 of the device attribute *
53070 '* determined *
53080 "AAARKAKAKKKAKKKARKKAR KK KKK KRR KRR K KA ARKRKRKARAR KK KRR K AR KKK Ak hkkhhd?
53090

53100 FCT%$=&H44 ‘Function number for IOCTL
53110 FCT1%=0 ‘Read Function number for IOCTL: Read device attribute
53120 INR$=&H21 ‘Call DOS-Interrupt 21H
53130 HANDHI% = INT (HANDLE%/256) '‘HI-byte of the handle
53140 HANDLO% = HANDLE% AND 255 'LO-byte of the handle
53150 CALL IA(INR%,FCT$,FCT1%, HANDHI%, HANDLO%, 2%, 2%, 2%, ATTRIBS, 2%, 2%, 2%, 2%)
53160 RETURN ‘back to caller
53170 *

54000 IR RS SRR R St Rl L R RS S s S S EEs a]
54010 *'* Set device attribute of a driver *
54020 '+ *e
54030 '* Input : HANDLE$% = handle connected to a driver *
54040 ** ATTRIB% = the attribute of the driver *e
54050 ** Output: none *e
54060 '* Info : 2% used as Dummy-Variable *
54070 A AR AR KRR AR AR KRR AR A AR KR RARARNKRAKRARRA AR AR AR A AR AR A A ARk kA Ak Ak Ak Ak AR Ak A
54080 '

54090 FCT$=&H44 ‘Function number for IOCTL
54100 FCT1%=1 'Set function number for IOCTL: device attribute
54110 INR$=&H21 ‘Call DOS-Interrupt 21 (h)
54120 HANDHI% = INT (HANDLE%/256) '‘HI-byte of the handle
54130 HANDLO% = HANDLE% AND 255 ‘LO-byte of the handle
54140 ATHI% = INT (ATTRIB%/256) ‘HI-byte of the Attribute
54150 ATLO% = ATTRIB% AND 255 'LO-byte of the Attribute
54160 CALL IA(INR%,FCT%,FCT1%,HANDHI%, HANDLO%, 2%, 2%,ATHI%, ATLO%, 2%, 2%, 2%, 2%)
54170 RETURN ‘back to caller
54180

60000 LR ke s R TR 2]
60010 *'* Initlalize the Routine for Interrupt Call *
60020 ** *e
60030 '* Input : none *e

60040 '* Output: IA is the Start address of the Interrupt-Routine *
60050 AR AR AR AR R KRR KRR AR AR AR AR AR R AR KRR AR AR AR KA R A A AR KRR RAR AR AR A A RA A A AR

60060 *
60070 IA=60000! 'Start address of the routine in the BASIC-Segment
60080 DEF SEG *Set BASIC-Segment

60090 RESTORE 60130

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT 'Poke Routine
60110 RETURN ‘back to caller
60120

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118

60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216

60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24

60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18

60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10

60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118

60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118

60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118

60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4

60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93

60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

79



6. The Disk Operating System PC System Programming

Pascal listing: RAWCOOK.PAS

{HARRRIRRIRRKKKRRRK KA R R A AR RRNK A AR KRR A RK KRR R RR KKK IR KK R ARk kA k]

{* RAWCOOK *}
{* *)
{* Task : provide two functions to switch *}
{* a character device driver to the RAW- *}
{* or the COOKED mode *}
{* *}
{* Author : MICHAEL TISCHER *}
{* developed : 08/16/87 *}
{* last Update : 05/11/89 *}

{t**t******it*tﬁ**t**k****t**k***t***ﬁt***********t*k*****i*****t*****}

program RAWCOOKP;

~—

Uses Crt, Dos; { CRT and DOS units

const STANDARDIN = 0; { handle 0 is connected with Standard input
STANDARDOUT = 1; { handle 1 is connected with Standard output

~—

var Keys : char; { only needed for Demo program }

(****k***t**t*********t****ttk*ﬁ***t****t********ti**kk*****t*ﬁ*t*****}

{* GETMODE: read attribute of device driver in *}
{* Input : the handle passed must be connected to device addressed *}
{* Output : the device attribute *}

(k*************kk*ti***t**t*ttkt***k**t*t*t**************ﬁ*k**t*k*****}

function GetMode (Handle : integer) : integer;

var Regs : Registers; { register-Variable for Interrupt call }
begin

Regs.ah := $44; { Function number for IOCTL: Get Mode }
Regs.bx := Handle;

MsDos( Regs ); { Call DOS-Interrupt 21H }
GetMode := Regs.dx { Pass device attribute }
end;

[FrHAIEKIE KRR I I HEKIRRAK IR RK A KRR KKK AR KRR KRR KRR AR KA A KN KRR AKKKIR KA KRR A h K

{* SETRAW : Change a character driver into RAW-Mode *}
{* Input : the handle passed must be connected with *}
{* addressed device *}
{* Output : none *}

[FHARKRKRK KA KKK K KR RK AR KKK R RK KRR KKK KRR RKKKRRRR AR KRR AR R KA KA KA KA KRR KKK K ]

procedure SetRaw (Handle : integer);

var Regs : Registers; { register-Variable for Interrupt call }
begin

Regs.ax := $4401; { Function number for IOCTL: Set Mode }
Regs.bx := Handle;

Regs.dx := GetMode (Handle) and 255 or 32; { new device attribute }
MsDos( Regs ); { Call DOS-Interrupt 21H }
end;

{FHAKRRRKKK KRR KRR KRR AK KRR AR KA RR AR KRR R AR K KRR AR RRK KKK KKK AR KRR R A AN A KKK |

{* SETCOOKED : Change a character driver into the COOKED-Mode *}
{* Input : the handle passed must be connected with the *}
{* device addressed *}
{* Output : none *}

[FAKKRAIKRRIKRKK KRR KRR KR R KRR KRR KRR KR RKAR KR AR AKX AKX KRR KRR KRR KR KRR KA XK ]

procedure SetCooked(Handle : integer);

var Regs : Registers; { register-Variable for Interrupt call }

80



Abacus

6.5 Character Input and Output from DOS

begin

Regs.ax := $4401;
Regs.bx := Handle;
Regs.dx :

MsDos( Regs );
end;

{ Function number for IOCTL: Set Mode }

= GetMode (Handle) and 223; { new device attribute }

{ Call DOS-Interrupt 21H }

(*****k**k*ﬁka**t*t******t*************’kt***t****t*t****t*************}

{* TESTOUTPUT : Output a Test-String 1000 times on the Standard *}
{* output device *}
{* Input : none *}
{* Output : none *}

procedure TestOutput;

var Regs : Registers;
LoopCnt : integer;
Test : string[9];

begin
Test := ‘Test.... ';

Regs.bx := STANDARDOUT;
Regs.cx := 9;

Regs.ds := Seg(Test);
Regs.dx := Ofs(Test)+1;

for LoopCnt := 1 to 1000 do
begin
Regs.ah := $40;
MsDos( Regs };
end;
writeln;
end;

{ register-vVariable for Interrupt call
{ Loop variable
{ The Test-String for output

{ output on the Standard output device
{ Number of characters

{ Segment address of the text

{ Offset address of the text

———

{ Write function number for handle }
{ Call DOS-Interrupt 21H }

{rrA KRR KKK KKK KR KRR IR KK I RK AR AR KRR KKK KRR AR A AR AR KRR KAk ok ko hk kK h* )

‘*

MAIN PROGRAM *}

[Frrr I I IR KK KKK KI KRR KKK KRR AR KRR AR K ARR KRR KRR KA KKK KRR KKK KK kAR A Kk )

begin
ClrScr;

{ Clear screen }

writeln('RAWCOOK (c) 1987 by Michael Tischer'#13#10);
writeln('The Console driver is now in RAW-Mode. Control keys such as <Ctrl><C>');
writeln('are not recognized during output. Press a key to display a text on

'#13#10) ;

writeln('the screen, and try stopping the display by pressing <Ctrl><C>');

Keys := ReadKey;

Set Raw (STANDARDIN) ;

TestOutput;

Clrscr;

while KeyPressed do
Keys := ReadKey;

{ wait for key }

{ Console driver in RAW mode

{ Output Test-String 1000 times
{ Clear Screen

{ Empty keyboard buffer }

writeln('The Console driver is now in COOKED mode. Control keys such as');
writeln ('<CTRL><C> are recognized during output');
writeln('Press a key to start, then press <Ctrl><C> to stop the display');

Keys := ReadKey;
SetCooked (STANDARDIN) ;
TestOQutput;

end.

{ Wait for key }

{ Output Test-String 1000 times }

81



6. The Disk Operating System PC System Programming

C listing: RAWCOOK.C

/*******ti*i**tt******’k***ﬁt**t**t****ﬁ*i**ﬁ********t**t**ﬁ*i'f*’****‘k*/

/* RAWCOOK */
/* */
/* Task : provides two functions for */
/* switching a character device driver into the RAW */
/* or into the COOKED mode */
/* */
/* Author : MICHAEL TISCHER */
/* developed on : 08/16/87 */
/* last Update : 04/08/89 */
/* */
/* (MICROSOFT C) */
/* Creation : MSC RAWCOOKC; */
/* LINK RAWCOOKC; */
/* Call : RAWCOOKC */
/* */
/* (BORLAND TURBO C) */
/* Creation : through command RUN in the menu */

JREARKK KKK KRR RR AR AR RR K AR KKK ARK KRR KRR R KK AR K RAKARR K AR A RKARR K AR K AR AR AKX/

#include <dos.h> /* include Header files */
#include <stdio.h>
#include <conio.h>

#define STANDARDIN 0 /* handle 0 is the Standard input device */
#define STANDARDOUT 1 /* handle 1 is the Standard output device */

/********ﬂ**t**t***t***ii**t**tttt***ﬁﬁ****t*ik****ii*k***ﬂ*********’*/
/* GETMODE: read the attribute of an device driver */
/* Input : the handle must be connected with the addressed device */

/* Output : the device attribute */
/****i*******t****t****tt**ﬂ*****t****k*************k****ﬁ***i*t***t**/

int GetMode (Handle)

int Handle; /* points to the character driver */
{

union REGS Register; /* register-Variable for Interrupt call */
Register.x.ax = 0x4400; /* Function number for IOCTL: Get Mode */
Register.x.bx = Handle;

intdos (&éRegister, &Register); /* Call DOS-Interrupt 21H */
return (Register.x.dx); /* Pass device attribute */

}

JEEEARK AR KA AR AR AR R K AR KR A AR KRR R KRR AR A AR R KRR KRR A AR KK AR AR AR R KK A KRR AR KKk K/

/* SETRAW : Change a character driver into RAW mode */
/* Input : the handle passed must be connected with the addressed */
/* device */
/* Output : none */

SRR AR AR KKk R AR KRR IR KRR A KRR AR KRR AR AR AR AR AR AR R AR KRR KRR KRR AR A RK R AR KA KK/

int SetRaw (Handle)

int Handle; /* points to the character driver */
{

union REGS Register; /* register-Variable for Interrupt call */
Register.x.ax = 0x4401; /* Function number for IOCTL: Set Mode */

Register.x.bx = Handle;
Register.x.dx = GetMode (Handle) & 255 | 32; /* new device attribute */
intdos (¢Register, &Register); /* Call DOS-Interrupt 21H */

82



Abacus 6.5 Character Input and Output from DOS

[ R R AR AR KRR AR AR KRR AR AR AR AR AR R AR AR KRR A KRR KA RAR KRR AR KRR R AR KRR AN R K/

/* SETCOOKED: Changes a character driver into the COOKED mode */
/* Input : the handle passed must be connected with the device */
/* addressed */
/* Output : none */

[RAIR KKK IRR KRR I KRR AR AR R KA AR KRR RN KRR AR R KRR AR K AR AR KR AR KKK AR K AR KA K/

int SetCooked (Handle)

int Handle; /* points to the character driver */
{
union REGS Register; /* register-Variable for Interrupt call */
Register.x.ax = 0x4401; /* Function number for IOCTL: Set Mode */
Register.x.bx = Handle;
Register.x.dx = GetMode (Handle) & 223; /* new device attribute */
intdos (&Register, &Register); /* Call DOS-Interrupt 21H */

}

J AR AR KRR R AR AR A RR R KRR A RK R AR R KA KRR AR KRR AR KRR AR KRR AR AR AR R RK AR AR/

/* TESTOUTPUT: outputs a Test-String 1000 times on the Standard */
/* output device */
/* Input : none */
/* Output : none */

/**t**i*i*iit*ii*iﬁ*ﬁ***i**i****i*****t**************Q*****i*i*ﬁi****t/
void TestOutput ()

{
int i; /* Loop Variable */
static char Test[] = "Test.... "; /* the text for output */

printf (“\n");

for (1 = 0; 1 < 1000; i++) /* output 1000 times */
fputs (Test, stdout); /* Output String on the Standard output. */

printf (“\n");

}

SRR AR AR AR R AR AR A AR KRR AR AR AR AR KA K AR KRR R KRR AR KRR AR KR KA KRR KKK A KKK KKK /

/** MAIN PROGRAM *x/

/************ikﬁ*****ttk*****tt****kk*k*tk*t*it********t********k***ik/
void main{()

{
printf ("\nRAWCOOK (c) 1987 by Michael Tischer\n\n");

printf ("The Console Driver (Keyboard, Display) is now in ");

printf (“RAW Mode.\nDuring the following output control characters,\n");
printf ("such as <CTRL-S> will not be recognized.\n");

printf ("Try it.\n\n");

printf ("Please press a key to start...");

getch(); /* wait for key */
SetRaw (STANDARDIN) ; /* Console driver into RAW mode */

TestOutput () ;

while (kbhit()) /* in the meantime remove key codes from */
getch(); /* keyboard buffer */

printf (*\nThe console driver is now in COOKED mode. ");

printf ("Control keys such as\n<CTRL-S> are recognized during ");
printf ("output and answered accordingly!\n");

printf("Please press a key to start ...");

getch(); /* wait for key */
SetCooked (STANDARDIN) ; /* Console driver in the COOKED mode */
TestOutput () ;

83



6. The Disk Operating System PC System Programming

6.6

File Management in DOS

The DOS file management functions are among the most basic available to the
programmer. These functions are used to:

. Create and delete files
. Open and close files
. Read from and write to files

Operating systems such as DOS provide the programmer with functions for file
management. For example, DOS provides functions which return special file
information or functions to rename a file. One peculiarity of DOS is that