DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

@) 0O 0O 0O (@) 0O
Plo- THITRULT IO, IHTERLOCK
re oo b VULJ’f ChTE LOGIC
uL RESET
POLLE Tmelever| INSTROCTION 0THERS
L, pr, AR S “Nso * PID
| PRI - PI, - PIg
Lf.@"’h’?g’;z. = ﬁié%f (JKO-,D(¢ cH Rea (No zeLEVANCE)
(jM\lw(, P’Loz«. PIA{,C&.S%Q

Fig to-il

A 531 - bo

- (ONFIGQURATI 8%‘% IHTERLOCU

1, PUL/E ¢ATE L0GIKC
PuLSE ,;,M%Ptztf&vm
Twae Lever | InsTRueTION OTHEDS
— S R VAl

FIC* - piars® . panr™

£ s puarst

P . purcF - P1t - PI,
| PRPPT e PraRSF Pl Nz9
{CD 1 O(PRESET - ‘
PK!?:"(e DIIR . pI; . PI%
P« PR "PI% ¢t Nao
[PRESET.
fi¢ 10 -23

H*M 5-31-6e

INTERLDCI LEVELS

tEveL
Time Lev
&l INnsTRLCT I ION OTHERS
1 (S TSD
PIIR SSA«‘R@Q -Tocm?B®
o laveSeq PLIR™® +QuIRT® ssAT ReR . qp
P A&
KIR sgChREA. AT PL°
4
PR’ sstft REQ e
-AET-P1% - XAM
PIA& CH SER
- a
P M SER g
PIIR 5g SH RE<
PILIRY - PRIRIERES g AT Req
P’(' QTSD
. Iccm\es
e PIRTSY - QrIRT*®
. | QIR - QR
PRI RN
R AET
PKIRRK
16 lo-27 | ' B
M bt~ o

I - CONFIGURATION

COLNT

£l

REGI/STER DRIVER LOGI(

PULSE |Memony| RO |dnereT
PULSE; Time Level | n S opl v TRUCTION OTHEDRS
T+ FY o VL VE S . |sTARE £\
Loo ey ot RV L Rl prIRFF
Ful+if £1 |
i1 10-39

YN\ 10-25-60

11-1

11-2

CHAPTER 11
MEMORY ELEMENT .

INTRODUCTION

The primary function of the Memory Element is to store programs and data while they are not

being used.

The Memory Element consists of four separate memories. Three of these are magnetic core
memories (S, T and U). The fourth, or V Memory, is divided into two groups: a static
memory called V== (or VT) which can be altered manually only; and a flip-flop memory

FF
called VFF which can be altered by the machine. The V== Memory consists of several

FF
different devices: plugboards, toggle switch registers, a shaft encoder and a real time
clock. The VFF Memory consists of the A, B, C and D registers in the Arithmetic Element
and the E register in the Exchange Element. The general structure of these memories was

discussed in Chapter L.

There are several units in the Memory Element, each designed to control some aspect of the
over-all memory cycle. The more important of these units are shown in Fig. 11-1. Since
there is more than one memory in the Memory Element, it is necessary to have a unit that
determines which memory is selected and when. Both of these questions are answered by the
Memory Address Selector. There is also the problem of determining which register in the
selected memory is selected. This is determined by the address decoder associated with

each memory. The S, T and U memories each have read-write units that contfol the READ and
WRITE processes in these memories. A Memory Strobe Selector is used to read out the content
of the selected register and similarly a Memory Inhibit Selector is used to write information
into the selected register. Finally, there are two parity check circuits: one on the N

Memory buffer register and the other on the M Memory buffer register.

MEMORY ADDRESS SELECTOR

The function of the Memory Address Selector is to select the proper memory during an
instruction, deferred address, or operand memory cycle. The Memory Address Selector is
made up of the Memory Address Digit Selector and the Memory Address Control. The leftmost
bits in the P and Q registers are used by the Memory Address Control; while the remaining

bits in the P and Q registers are used by the Memory Address Digit Selector.

The Memory Address Digit Selector is made up of 16 similar stages. The i.jth stage is
associated with the 1.jth bits in the P and Q registers. A typical stage is shown in

Fig. 11-2. The output levels (MAS) of each stage of the selector are routed to the address
decoders of the memories. There are usually four outputs from each stage, one for each of
the four memories, S, T, U and V. The exception is that not all 16 bits in the P and Q
registers are used by each memory. The S Memory uses 16 bits; the T and U memories each

use 12 bits; and the V Memory uses only 7 bits.

March 1961 11-3

197,82

11-7.3

1174

11-7.5

11-7.6

March 1961

TOGGLE SWITCH STORAGE. The toggle switch storage contains 24 registers of 37 bits

each. The register selection logic is shown on Fig. 11-29. The registers are

divided into three groups of eight registers. VMD;EE selects registers O through
T3 VMDégé selects registers 10 through 17; and VMD%gé selects registers 20 through

27. The specific register within the group is selected by VMDXXO through XX7.

Note that only registers 0-17 currently exist.

SHAFT ENCODER. The Shaft Encoder is a device which converts an analog input into
a digital electrical representation by means of a dual brush-disc device. The
output of each Shaft Encoder represents a 9 bit binary number. Four Shaft Encoders
generate a 36 bit number. A toggle switch is used for the meta-bit.

The output of the Shaft Encoder is selected by the VMﬁozo level as shown on Fig.
11-30.

REAL TIME CLOCK. The Real Time Clock is a 36 bit counter plus a meta-bit. The

output of the Real Time Clock is selected by the VMD%%?

level as shown on Fig. 11-31.
The counter is divided into four quarters. A car}y occurs from one quarter to the

next with an end-around carry from the fourth quarter into the first quarter.

The inputs to the counter are a clear pulse, beta clock pulse, and 100 kilocycle
pulse.

The outputs of the counter are combined in an output mixer with the VMI%;?
from the V Memory decoder to form 36 VMDCK levels. The VMD level is set by

level

CK k.10
a toggle switch.

INPUT MIXER. The output levels of the various VfF-memories are routed through a
central input mixer. The output of the mixer then communicates with the M and N
registers in the central computer in the same manner the Memory Element sense

amplifiers do. There is one input mixer stage for each bit, making a total of 38

such stages. A typical stage and its inputs are shown on Fig. 11-32.

VFF MEMORY. The VFF Memory consists of the A, B, C and D registers in the Arithmetic
Element and the E register in the Exchange Element. Read-out from these memory

registers is non-destructive.

When an instruction or a deferred address word is read-out, the contents of the
selected register are transferred into the N register via the E register as shown
in Fig. 11-33. Similarly, when an operand word is read-out, the contents of the
selected register are transferred into the M register via the E register as shown

in Fig. 11-3k.

11-9

JInt FF OLbglg

REQ/TERDRIVER LB GLC ELAY Ty L rE GATE LUkl C
oL sE 55 r 1< ,
p%ﬁc'ﬁll\&l{VtL /’\ﬁll\Dﬂ-Y 6 Tﬂ’tu D_t,""f’\i | 'Wr\f; ic"'f‘-J’/\f noRy bTHELS
et et © SMOEFT - [IREET
el A | QU - RUMS - QUIR'AP . SR T - |PREET.
QL - RUAS - QLIRS Suorfo-PRey .
PIL®™™ « DILA®
v
ILDIH!# RILM™ - guA®

bedizo /- ATAORY THEVBIT fFLIP-FLOD CONTROL Lb&IC

Tie N-

th 9-2-6o

. e WAy
VA3 —

ToTAL 0% 38 STALES whetre: A =(1—-> 4).

AND ? :(1-—“0)

TYDPIL(AL JTAGE DF V-ATAOLY
Frpor NXTR

Fog 11-32
R 9-7-60
sp81826

EVEN L

ohp €V EN

L Ceece Parrty Levew
op
PSS

232} » 'A 6DD

HEM £yer

¢

g

b éEVF"x/C""”"‘ Pariry Lever

IN HM, AP L

P< P P
9 o 2 12 4 3
3ls BB 2[4 |28 2 !

o~ TRB + SN

opd | << l ¢ Aa
‘4 0

p<
9, Evens My,,* SMB-SH!
HERED

£VEN

DD
TEVEN
“ovd

{

PC D¢ p< :
‘FT?') {
<] s oo

o ot o
O P

o tO 1 A CE Nomgdl

2.5 410 49 48 47 446 £nom MYRIAID
oF PC CiRenTs

UsinG
Brrs4g-1d
(BT 2./0 ExcLupep)

A-0MLITY (OORT WITH /, T & U AEADLY EJ

Fie -3¢ #A 9- Vo -bo

12-2.9

March 1961

logic covers the situation when this is desired. The set pulse occurs at PK;ha
and PK?6a during a SKX; at PK?sa during a JX type instruction; at prla for all
QKIRlX type instructions; and at QKpla and QK;Oa for AUX and ADX. In the case of
the last two instructions, the pulse initiated at QKloa is required since the

(o
contents of N are not set up until after QKpla. XAC is also set at CSK.Ol .

2,1

XAC is automatically cleared 0.4 microsecond after it is set.

While the sum of a base address in N and an index register in X is being formed

2,1
between PK™S and PK?Q, the X Adder carry circuit is forced into a "set" condition.
This causes the sum of an 18 bit number and its 18 bit ONE's complement to be all
ZEROS, rather than all ONES, if this sum should be formed. The computed address of
an operand, deferred address, or next instruction then becomes the first register
of the S Memory (address 0), rather sHan e lash register of the V Memory

(address 377 777 (octal)), when, for example, the base address is 000 OO4 and the
index is 777 773. The logic for obtaining this result simply uses the PK136 0.4
microsecond time level to set the X Adder carry circuit at the time that XAC would

ordinarily have been used to clear it.

It should also be noted that the N2 9 bit is presented as an input to the X Adder
only when no deferred address cycles are called for. When PI;, the input to the

X Adder from the N2 9 position is forced to appear as a ZERO.

OP REGISTERS REGISTER DRIVER LOGIC. The operation registers are PKIROP, QKIROP
and AKIROP. These registers are used during the process of interpreting an
operation code.

12-2.9.1 PKIROP REGISTER DRIVER LOGIC. This logic is shown on Fig. 12-15. The
contents of N, 3. 3.7 (OP bits) are jam-transferred into PKIR, at P,
Simultaneously the content of N 9 (hold bit) is transferred into PKIR, -
12-2.9.2 QKIRO REGISTER DRIVER LOGIC. This logic is shown on Fig. 12-16. The
e oa START
content of PKIROP is jam-transferred into QKIROP at QKQ when the QI

interlock permits the QK counter to start.

12-2.9.3 AKIROP REGISTER DRIVER LOGIC. This logic is shown on Fig. 12-17. There

are two paths over which information can be jammed into the AKIROP
register. The first path is from the N register. During an ACP instruc-

o
tion, the six bits in N2 € - .y 2¥e Jjam-transferred into AKIROP at PKTQ5

(providing that AK is in A% ot this time). The second path is from
the QKIROP

register. The content of QKIR is jam-transferred into AKIR
30 AK (0]
at QK; during QKIR ~ type instructions.

OoP

129

March 1961

Note that

the quarter is "active" when the controlling QKIRCF flip-flop is a ZERO,

and "latent" (i.e., not active) when the flip-flop is a ONE.

During AK

AKIR . -

information in QKIR

cycles, the quarter activity of the Arithmetic Element is defined by
Note that usually the information in AKIRCF?-M is a copy of the
CF7-4"
TABLE 12-4
al
AKIR o ACTIVITY (AKIR™i)
CF, CF_ CF
(CF, CFy CF)
1
X x &% 0Q ay
x x 0 x aé
1
x 0 x x a
3
1
0 x % x a),

12-6.3.1

EXTENDED ACTIVITY. Subwords can be defined in which not all the quarters
of the subword are active. These are referred to as partially active
subwords. An example of a partially active subword is given in Fig. 12-41.
In this example only one quarter of an 18 bit subword is active. Activity
extension is the process by which an entire subword is made active if the
subword is partially active, i.e., activity is extended into the inactive
(latent) quarters in the subword. When the subword form has an influence
upon the execution of an instruction, as in an ADD or MUL, the partially
active subwords are usually made fully active. This is done by nets

which extend the activity of quarters of a partially active subword to

all quarters of the subword. The result is that the subwords are either

wholly active or wholly inactive.

Activity is extended in preparation for sign extension operations in the
Exchange Element. Partially active subwords have inactive quarters filled

by the sign digits of active quarters.

Fig. 12-42 illustrates sign extension for all four subword forms. In
each case the second quarter is active. For an f, (36) subword form, the
activity is extended through the third and fourth quarters and then
around through the first quarter. For an f2 (18,18) subword form, the
activity is extended around through the first quarter. The subword
containing the third and fourth quarters are not influenced. For an f3
(27,9) subword form, the activity is extended through the third and fourth
quarters. The subword containing the first quarter is not touched. For

an fh (9,9,9,9) subword form, the activity cannot be extended since each

12-23

QK '8 1 QK 18
P TINE | Paenx | TivE ,
PULSE || | cveL ’ INSTRUCTION| CF Bir Conypown D:;;:; :steg_ See Fie 13=5

0, My o
1€, Mano

(GK'SQ . xR) .(PK’RC.F.&' PK)ZCOFI) MPR + ax'®.(ls Ma,3,2,1)

(-‘ﬁ* Pitte e ""‘) 0(PKIR f Fy e Pxi QCF:) s m

e, Pt (=— Pitle ——) ‘(PK’?chz + Peiges,) NPA

L Ej

i

i

'(d_m_w. Ditls —w‘"‘"‘““"‘) ¢ (PK“?“!:. : PKH’?CE)

(.4___,, S2ho) ' (PK)Ec}rz 2 ?ZJ?:;F:)

Fie. 13-3 Ciear, Compimeny AQND SET Kesurer DRivER
ContRon. OF M Quno B Rreaisiees For SKM

INST RUCTION .

13-3.6

March 1961

Several observations can be made by looking at the individual terms for directly
and inversely permuting the quarters of E. First observe that most of the in-

. < : QK;lB QK135 QK;SB :
structions are included in the s and terms. However, while the
load and store type instructions go through QKllB and QK13B, they do not go

8
through QKl 6. Thus,gthe QKl86 term will include far fewer instructions than the
factor ANDed with QKl B. Note that, in most configured instructions, both an

inverse and direct permutation will occur.

CLEAR AND COMPLEMENT E REGISTER. These operations are involved in combination in
the process of sign extension (see Fig. 13-11). The logic involved in extending
the sign of an active quarter into the inactive quarters of a partially active
subword causes the inactive quarters to be cleared at Qtha. If the sign bit of
the active quarter is a ONE, the inactive quarters are then complemented at QK;MB.
The sign extension control term of the register driver logic includes factors which

take into account the activity and coupling involved in the instruction.

b
In the case of the COM instruction, the sign is extended &t QKl ﬁ, and then the
active quarters themselves are complemented at QKlSB. During an INS or ITA
instruction, the content of the entire E register is complemented as a basic step

in the execution of the instruction.

Earlier in the chapter, it was mentioned that the content of XA is copied into
E2,l at QKlla, during the execution of X Memory type instructions (RSX, ADX, EXX
or DPX). 1If the sign bit in XA (x2_9) is a ONE, B, 3 will be complemented at
QKlOB as part of the sign extension logic in the E ;egister. Effectively, the

content of the X register is extended to fill the E register.

Certain miscellaneous instructions require that the E register be cleared before

a data transfer into the E register can take place. This occurs:

1) For most instructions using QKlO in an operand cycle.
1
2 i <3 A
) As a preliminary step to N3.6 _ 3.1————-E3.6 - 3.17 during an IOS when

P}QRCFl is a ONE.

3) For all instructions involving the VfF Memory, except when the instruction
is placed in E.

4) As a preliminary step to placing data in E, during & deferred address
cycle.

5) As a preliminary step to placing the contents of Q in E, during a JMP

instruction when the PKIRCF bit is a ONE.
L

13-9

2)

3)

During the execution of an ITE instruction, the ZEROS of M are transferred
fo
into E at QK;3 , but not the ONES.

Broadside Transfers. A jam transfer from M to E will occur for most store

type instructions at QK?la and for most load type instructions at QK?sa.

o

COM, SPF, SPG or a TSD in the ASSEMBLY mode causes a jam transfer to
occur from M to E at QKl3a.
In addition to the above, a jam transfer from M to E occurs whenever the
VFF Memory is involved.

s ; K;la ;
Finally a jam transfer from M to E occurs at P during a deferred

address cycle.

"Exclusive or" Transfer between M and E Under Permuted Control. This

transfer occurs twice during an SED instruction. The second transfer has
the effect of restoring the E register to its original state because of

the logical characteristics of the "exclusive or".

13-3.2 ARITHMETIC ELEMENT TO E TRANSFERS. The register driver logic for these transfers

is shown in Fig. 13-8. Two cases exist: either the V__, Memory is or is not

13-3.3

March 1961

FF

involved in the instruction.

1)

2)

In the first case, if an instruction is stored in either the A, B, C or
D registers, the instruction word will be read into the E register at
PK;oa. Note that if the Arithmetic Element is busy, PK will not get to
PK;Oa until the AEB condition is satisfied. If an operand is stored in
the Arithmetic Element and that element is not busy, the operand will be
read into E at QKp3a.

The second case includes load and store type instructions involving the
Arithmetic Element registers. 1In the case of INS, ITA and UNA, data is

transferred specifically from the A register to the E register.

IOBM TO E TRANSFERS. During the execution of a TSD in the IN mode or during the

execution of an IOS when PKIRc

7 is a ONE, a jam transfer occurs from the selected
1

IOBMi (In-Out Buffer Mixer) to E. The register driver logic for this transfer is

shown in Fig. 13-9.

131

13-2.2 E TO M TRANSFERS. The register driver logic tabulated on Fig. 13-5 indicates the

March 1961

various conditions under which E to M transfers take place. The conditions are
determined by: the OP decoder class levels, which indicate in what instruction or
type of instruction the transfer occurs; the time levels, which determine when the
transfers occur; and the levels reflecting configuration control, sign extension

control, parity, alarm control, etc.

. Certain IOCM (In-Out Control Mixer) level logic associated with the TSD instruction

is found on Fig. 13-5. This logic is discussed in detail in Chapter 15. Fig..l3—h
summarizes the aspects of this logic that are important in the discussion that
follows. Note that only the IOCMIN logic (which indicates a TSD is transferring
data between the In-Out Element and the central compufer) is involved. Data may

be transferred in both the NORMAL and ASSEMBLY mode during a TSD., In the NORMAL
mode, data from the In-Out Element is transferred from E to M under configuration
control, while in the ASSEMBLY configuration control is not used. Instead the data
is cycled (shifted) one place to the right if an IOCMRIGHT level is present, or to
the left if, an IOCMRIGHT level is present, during the E to M transfer.

13-2.2.1 ﬁL’-Mﬂ 3,2,1° This clear pulse occurs whenever the parity alarm inhi-
225
bition is absent (MPA) and any one of the following three conditions is

satisfied:

1) The instruction is a TSD in the ASSEMBLY mode.
2) The instruction is an SKM and PKIRCF is a ONE. (Note that this
3

condition is not sufficient to clear Mh.lo')
3) All instructions having an operand cycle will normally clear the
M register at QKQ9G’ except those using the VfF Memory during
the operand cycle. Thus, TSD and SKM may clear the M register
twice during the QK cycle.
13-2.2.2 E —l—>M AND E-—l> M. Conditions 1 and 2 above, which cleared M at
CYL CYR
QKlBa, also cycle E into M at QKl9a. The only difference in the clear
and cycle logic is the parity alarm condition and the added control logic
for determining whether the shift is to the right or left. (See Fig.
13-6.)
13-2.2.3 E-—Ql}LD-M. There are three categories of conditions under which this

transfer takes ﬁlace:

1) Broadside Transfers. Certain types of instructions transfer the

ZEROS and ONES of all the quarters of E into the corresponding

quarters of M simultaneously. These instructions include FLF,

FLG, COM, and instructions involving the VFF Memory.

13-5

2)

3)

The following instructions may temporarily store data in the E register during a

PK cycle for reuse at a later time in the instruction:

108
JMP
JPX and JNX

Data may also be stored temporarily during deferred addressing (PK) and during a

change of sequence (CSK).

During the execution of the SPF, SPG, FLF and FLG (F Memory) instructions, the

FK counter initiates several data transfers in the Exchange Element.

13-2 M REGISTER (OPERAND MEMORY BUFFER)

Data is transferred into the M register from either the E register or the Memory Element.

There are no other transfer paths into the M register.

13-2.1 OPERAND MEMORY STROBE. Fig. 13-1 shows the logic involved in strobing a word out

March 1961

of the Memory Element. The strobe logic for M and N are similar and is covered in
greater detail in Chapter 11. The data may be transferred from a given memory

sense amplifier into either the M or N register. If an instruction word is involved,
it will be placed in the N register during a PK cycle. In the case of an operand,

the word is placed in the M register during a QK cycle.

The operand strobe pulse logic is shown in Fig. 13-2. This logic consists of an
operand memory selection level and a QK time level. The operand is strobed at
QK;lﬁ. In the case of the S Memory, the strobe pulse is routed through a "ripple"
delay line. Thus, although the pulse is initiated at QKlOB, it does not finish
strobing until QK;lB.

13-2.1.1 PARITY BIT (2.10). The parity bit is read out of memory into the M
register along with the other operand bits. However, it is not written

into memory with the other M register bits.

Before the content of the M register is written into memory, the parity
of the word in the M register is computed. The output of the compute
parity circuit is written into memory in place of the Mé 10 bit. Once

the M register is cleared, the original parity bit is permanently lost.

During a normal load type instruction, the output of the check parity
circuit will be equal to the M2 10 bit if there is no read error. However,
if a bit of the word is lost during the memory strobe, a parity alarm
flip-flop (MPAL) will be set, since the check parity will not equal the
value of the M2.1o bit in this case.

13-3

ATRER
PPPATES S ——d]
+)
AT REQ
pppa*‘f,.__,“ Rt < oss:‘”’-““
o*
. 55'?1’5&&
' |

]Mm—r L
I %9 1

DISINSS ° e
Flagy

(o]

SFLAG, “"“"‘““"“*‘W’J

ND “Dﬁ

— IN - 00T
UNIT

JEQUERCE SELECTOR JTAGE (Hg0)
&\ 'FLA'(f La(f‘(f—“r 12-49 KN 1-13-60

e ————

EXT AT
o ACT o
. 1L o R R - '
2ot - aun e
A XTACTS
C . ACTA s QLR S D) e "
Ls-—a—;o't' QK,Q A ‘?b b4
WheRe Sy o

+ ! Fa

A + Eay - quin

A AKIR® & &) - akin® + B
s,z e ekt e, akintE

D

- qriefrh. £y0" Qi

wHeRt PR T ’
A= D ARIRN™ + B o iR *T*
Bz (A+ariR?™) . (&), + le&‘“‘) VI
C = (& +A-QKJK*‘>. QK IRAT + -'E-;‘,‘ &KIR“TL
p=(c+ azm”“")-(a-;, + AKM"""’)
!
A P fe C P b
oy
‘F‘S
¥ v ¢ v ll
1y} C Aty B A
T Té Al (L 1"‘:'(
’ I Leeid 5
& Lot Jploel J '

JIen EXTERILON LOGIC ARD WET/

Fie 12- 47 WA \2-2(-60

Mlice REGISTER JPECIFIES THE CONFIGURATION

QLI e REGISTEL ool lolO0OO

e
pi o

\nc N

52 B3
L - e ¥ >
St Sar%
o 3 J o,
nd, R9NE

"

cusNory FSUN NN,

N\ A w4
2 A4

INALTIVE QUAATERS ACTIVE
AUALT &R,

PALTIALLY ACTIVE SUiBVOLTD

36~ B4 T JUBWORLD WI)ITH ONLY
QU ALTER 4 ACTIvVvE
Flg lu-41

H#A 12-21-60

B-LeqisTen Llj wwe J],

ol

DL Hlo,, i
AL R,
ML Lap &
1T LtyeL DECODER TLEVEL pEOADER \$T LEVEL NE(0TER
00 DECODER 0P NECANER 0P NELODER
b0 CLASS 0P (LASS 0F (LASS
PECHOENR PECOMDER PECOGCAL

DD[’MUM (0DF MLOCIL DIAGRLAA
Fre 12-35 N 8-3- 60

ﬂmu P PO ‘
PILIR ¢ I

A

4
£

L
\L'_& ,{gmm l;}> eF-NENDRY

Cf

VAN

wen UJ ?
Ot &J ATV (TY 'fM\-g &M(Qc_;_ 2
r
Exctangt j
TLEmENT A J
[——
" ‘ — ‘ [e st TR
‘\/'

&= DECODING
AND ConNTROL

(F-AEMORY SYSTEN

HM D-21- 60
i 12~ 31

“L,E’

PARTIM
koo

Nes Xo 7o vanTiAL Hs ",.,.. PARTIAL [Hia | FoncE |
. ALY YY) o | canax IVERTEL
x1.5 "1.;0 x:_5 xtg ..-xl.‘

K, 5® sy
" camy 9 o o (AR ‘
X< 0T JOM 'Iﬂvtktftf’_‘ (o bor = I(MLM
: INELTER [ore _;}gﬁ” ,}
CARRY I EnanLt r:-o_L saads
™ NEYT 1oR Wit
{jfwf CARLDY O
3 N, o /ELECTon N, < JELECTON
« I%J T 1T
7
P3P PRIVEL ,[T A— (ff 25 mIvER fTAr(Tt 2'4
. | | |}
0 $
o o XX , X4 XK
e I A XA/ S o a
140,4:
["—‘ ‘% XA (ORTROL DNIT
f£i1¢ 12-29
TYPICAL X-AEADRY ADDER fTMGts !
. #A T-27-060

(STaGES 2.4 AND 2.5 stowiH)

X-NEADRY LoGl(

—_— Rl /TR0 PRIV EL LYELCTELAY TLLsSE ATE LOGIC
BV [TineL wven| TNSTAU (T 1 o8 0 THeR. Detay |Tine Lever [ThrTrycTio Or4eL
P[{“""
(!MOI.‘
L'y xa o lpetser Y ks

aklg" » Qu‘m*ux
W a1 SR VAT

’ lPILe-.r!r'r c+
leaxu

0.0bps X n'

X-ACAOLY RLEMD LG

Fle2-27
tA 12-20-60

- Wt E "
éﬂ&%ﬁmmw T.)(INEL 4

u UTE
o,

b hemoQy REGISTER
[ELECTHL

3 1
N7 -
& e 4lfTE
D —oc[_‘x-wuﬁm —/ ! "
e) o 1
) “:k ——] S P I
m(T_lT\\)mnmér—P — DLt T WIBT IR

e

5
_‘ "

oby

XRB(IJ-z’o

N.?

I | | =
X::} i | | ml {X] (3;{:2@

RELDY Amp b v =p & 0
Dty B 1

TYPYCAL X-ATADLY Vi T (HEQDET JThet

(1,,& BrvT oF REG)y sTET W DO LLLD:T&AT-&»)

Sl \2-25 Fm =17 b0

AE Teo E Teansegpg
BF N AF SPECIAL ’
RD Puise Y S TRUCTIENG REGIS TFIL INSTS. Huks, WBana,
T INST Tine o] T i T
Le:; Hemop X L;:a. HP::::;’ SRR Gy LE.:EEL RS L:vztl, e L Lv:it INST
ol —_— x%4
A, == E, | [PE™ e pkn'™ + Q™™ qxn"™ REg 1+ vhD ' +]ak™erie®J+Har"t @rir ™ hlor™ e
Aoy L Eyy | L= Dirve #] cvms™ +[e)
B,y —— E., D116 1 evmp© ™ ore? |
s
Byy —— Ea3 Dirre »] - vhp" tL oirre]
xé
¢,y > E,, e Dirrs »1 vmp™" 1 lend™ @riet |
Copy =1> Eg3 | D776 =] «VMD™ {are™ orie®]
Diy —» By | [+————Dire =1 - VDY +[6ne™ ore®
Doy —=Ey3 | L DiTT6 >]+ VMD™? t [orir® oxig)
£ 13-8 Deitnmene Eiement RegisteERs To E
RD ConTeROL

1h-2.4

14-2.5

March 1961

Logical Sum (or "partial add"): A ® D — A
Accumulated logical product (carry): C + (A * D) — = C
Suppose that a DSA is executed with the following data:

Before Processing Data

61 0 1 1 D
0 1 1 0o 1 A Operand Data
0 0 0 0 O (e

The DSA instruction leaves the D register unaltered and the A and

C with the following results:

After Processing Data

01 0 1 1 D
6 01 X2 o A Result
01 0 o0 1 ¢C

ASK TYPE INSTRUCTIONS. These instructions are characterized by an operation or

series of operations which (somewhere in the execution of the instruction) are

repeated a finite number of times. The usual function of the ASK counter is to

keep track of the number of iterations. Because of this iterative characteristic,
the execution of the instruction generally requires considerably more than the

usual instruction time.

COUNT IN D TYPE INSTRUCTIONS. This subclass is made up of the MUL and DIV in-
struction. In these instructions all the Arithmetic Element registers are used as

well as the Y and Z flip-flops.

14-2.5.1 MULTIPLICATION. In this instruction, the multiplicand, which is the
operand from memory, is loaded into D. The multiplier is the data left

in A from a previous instruction.

Early in the execution of the instruction, the multiplier is transferred
from A into B and A is then cleared. ‘There then begins an iteration of
"partial add - multiply step" cycles. It is the function of the ASK
counter to see that the correct number of iterations occur. The actual

number depends on the size of the subwords used, i.e., on the fracture.

1k-9

The effect on the Arithmetic Element registers of following the PAD
described above with an MS (multiply step) is as follows:

After MS

» [T111]
¢ [E110]

4 [00071] B

This process is iterated the correct number of times and then the carries
CRY)

Note that this complete carry is performed only once during the execution

left in C are absorbed into the A register by a carry pulse (

of the MULtiply instruction. At the end of the instruction, AB contains
the product. The major half of the product (most significant bits) is in
A and the minor half of the product (least significant bits) is in B.

The fracture (f) specified in the MULtiply instruction determines the AB
subword length. The AB possibilities are shown in the table on Fig. 1b4-3.
For example, if an f, (18,18) fracture is specified, two independent
products will be formed if there is more than one active subword ‘involved.
A 36 bit product will be contained in Ah - A3 - Bh - B3 with Ah the sign
quarter. At the same time, a 36 bit product will be formed in A2 - A1 -

B2 - Bl with A2 the sign quarter. However, in the case of f3 (27,9), the

9 bit subword product will not be correctly generated.* The f) (9,9,9,9)

form must be used to obtain the correct product in the right quarter.

14-2.5.2 DIVISION. In this instruction, the divisor, which is the operand, is
loaded into D. The dividend is the data left in AB from a previous
instruction. The major half of the dividend is located in A and the
minor half of the dividend is located in B. The dividend must have the
same form as the product left by a MUL.

The C register is used to keep track of the carries involved in the

partial adds, Jjust as in MULtiplication.
At the end of the DIVide instruction, the A register contains the signed

quotient and the B register contains the signed remainder. The sign logic

is based on the following simple algebra:

* At the moment the ASK counter can be used for only one subword length at a time. A modification

will be made so that ASK can count both for 27 and 9 bit subwords simultaneously.

March 1961 14-11

D [010 000 001] ASK = 171

PAD A [1131 111 111

CRY AB J111 111 111) “f111 111 o11]

This process is repeated. Note that in the next iteration, the sign of
A is the same as the sign of D, therefore D is complemented. This is
done so that the PAD pulse always adds terms of unlike signs, i.e., a

subtraction always takes place. Thus,

p [101 111 110] ASK = 172
PAD A Jo10 000 000]
CRY AB [100 000 001] [T11 110 110]
Again the process is repeated. In the next partial add, D, is

i.9

"carried" into A because a final "fix up" pad is executed on the basis

of the sign bit in A being ZERO (i.e., positive). Thus,

b J101 113 1190] ASK = 002
A (111 111 111]
A [111 111 111] [To0 o000 000]

A and B are now interchanged, so that the quotient is now in A and the

remainder is in B.

AB 100 000 000] (111 111 111

Up to this point both Y and Z have been in the ZERO state. Several

things now occur simultaneously:
1) Since Z is ZERO, B is complemented.
2). Since Z = Y, A is not complemented.

3) Since A, 9 is ONE, Z is set to ONE (indicating an overflow).
i

Thus,

. AB[ioo 000 000] fooo o000 000]

March 1961 14-13

March 1961

1h-2.6.2

In the case of the right subword, shifting right should fill up the
left end of the subword with ZEROS, if the sign bit is ZERO and ONES if
the sign bit is 1. Shifting the sign bit (A2.9) into the left end
(AQ.B) accomplishes just this result.’

Now consider Case 2. Here the overflow indicators Zh and Z2 have
both been left set to ONE by the previous instruction, i.e., an over-
flow has occurred. The overflow has caused an error in the sign, there-
fore the sign must be complemented before the data is shifted. The
mechanics of the instruction are then the same as in Case 1. The ONES
in Zh and Z2 are cleared to ZERO by the SAB instruction, since the

overflow is taken care of by the instruction.

Fig. 14-7 shows an example of a CYcle AB instruction (CAB) in which the
same operand, data, fracture and overflow conditions are used as were
used in the SAB example. The example illustrates the basic differences

between the two types of instructions.

In the case of CAB, the entire subword is shifted in a closed ring.

The sign bits are given no special treatment. In Case 2, in which the
overflow indicators have been set to ONE by a previous instruction,

the CAB instruction does not affect and is not affected by the state of
the Z flip-flops.

In both SCale and CYcle instruction ASK performs no useful function
during the execution of the instructions. It simply is indexed once
each time a shift occurs. The number of shifts which take place are

determined by the D counter.

NOA AND NAB. These instructions take the data left in A or AB and
multiply it by that positive or negative power of 2 required to make
the value of the data lie between 1/2 and 1. The sign quarter of D
counts the number of shifts to the left or right required to do this.
Effectively, the number of shifts to the left required is subtracted
from the sign quarter of the operand brought from memory and placed in
D.

In this instruction ASK prevents unlimited shifting from occurring when

A or AB contains all ZEROS or all ONES.

Overflows are handled exactly as they were in the SAB instruction

previously described.

14-15

The following truth table shows all the possible effects of the Multiply Step

operation on the A and C register:

Before MS After MS

A, . c. . A, c._.
1-(3+1) i ij e
0

H O H Ofr
o H B O}
H O O O|#

0
kS
1

Note that Ai'j and Ci'j are never both left in the ONE state by the Multiply

Step operation.

From the arithmetic point of view, the partial addition logic adds the contents
of A and D bitwise, leaving the carries in the C register. No inter-bit logic
occurs in this partial addition. The Multiply Step operation performs a partial
addition between the content of the C register (i.e., the carries left in the C
register) and the content of the A register. The carries from this partial
addition are placed in the C register and the content of the A register are

shifted to the right.

14-3.3 D REGISTER COUNTER. Fig. 14-15 shows the operation of the D register counter.
As pointed out earlier, the D register is always preset to a negative number and
then counts up to a negative zero, i.e., all ONES. The counter logic says that
Di 3 will not be complemented unless all the bits to the right of Di'j (e,
D the rough D . are ONES.

i1 gh D, (y4))

14-3.4 SHIFTING OPERATION. Fig. 1L-16 shows the circuitry arrangement for shifting left

and right. The A register shift circuits are shown in Fig. 14-16 (the B register

shift circuits are similar in arrangement).

The shift circuits must have sufficient flexibility to accommodate all the possible
fractures and instructions. To provide this flexibility, the quarters are designed
with "shift coupling units" at the ends. The shift operation involves a bit-wise

jem transfer.

Note that the shift right circuitry has a coupling unit at the left end. This
unit determines what bit (if any) will have its content shifted into Ai-9 when
the L§E§-A pulse is fired. There are eight possible transfer paths into Ai'9:
By oy —F— Ai'9 (K =1, 2, 3, 4) and (in AB type coupling) By, —3» Ai-9
(K =1, 2, 3, 4). Which of the eight possibilities used is determined by the
fracture and the instruction. The coupling unit contains the necessary logical

circuityry for making the decision.

March 1961 1k-19

14-4 ARITHMETIC ELEMENT LEVEL LOGIC

This section will discuss the interpretation of the control information found in the

AKIROP and AKIRCF registers. It will also discuss in detail some of the special level

logic nets found in the Arithmetic Element. For example, the logic details of the shift

and carry circuits will be examined.

1h-4.1 AKIROP AND AKTIR _ REGISTERS. The Arithmetic Element receives instruction control

March 1961

CF

commands for AK type instructions from the AKIR P and AKIRCF registers. These

registers are actually located in the Program Eiement. Chapter 12 describes how
the AKIROP and AKIRCF registers ére set up. This chapter discusses the decoding
of these registers. Note that AK type instructions which use the Arithmetic
Element are controlled by QKIROP and QKIRCF. These two registers are also dis-

cussed in Chapter 12.

1b-k.1.1 AKIR 1, DECODING. The AKIROP register is decoded into AKIR§§ levels by
1st level decoders. Fig. 14-18 shows the names of the decoded lines.

Fig. 14-19 shows how OP decoders in turn combine the outputs of the lst
level decoders to generate OP code lines. TFor example, AKIRDIV is
generated by a net that ANDs AKIR7X and AKIRX7. Note that not all the
Arithmetic Element instructions are decoded in this way, e.g., SUB (77)
is decoded, but ADD (67) is not.

Still another set of levels is generated in the AKIR decoding process

oP
by class decoder nets. These class levels group the Arithmetic Element
instructions by common characteristics. For example, one level can be

used to indicate a class of instructions in which shifting takes place.

Fig. 14-20 tabulates the logic used to generate the class levels. The
significance of these levels will become apparent when the logic which
uses them is discussed. For reference purposes, a brief description of

each class level is given below:

AKIRSH - is generated when any one of the CYcle or SCale
instruétions is specified. These instructions shift data
in A, B or AB as specified by the sign quarters of the

operand in D.

AKIRSHA AND AKIRS

necessary condition for their generation is that shifting

HB SH

- are both subclasses of AKIR The

occur in register A or B, respectively. Note that if
SH SHA
either CAB or SAB is specified, both AKIR , AKIR and

AKIRSHB are generated.

1h-21

AQOP "
AKTR - 1is generated whenever an undefined AOP instruction is

specified. Note that currently the defined AOP instructions are
limited to the Arithmetic Element instructions, hence the same

OCSA 5
logic that generates AKIR % also generates AKIRAOP

1h-b.a1.2 AKIRCF DECODING. The AKIRCF register is decoded to generate fracture

(£) and activity (a) levels. Bits AKIR . determine the activity,
7-4
and bits AKIRCF determine the fracture. The table on Fig. 14-21
9-8
shows the AKIRCF decoding. Note that a quarter is activated by an a}
= 1

level and that the a; level is in turn generated by an associated

AKIRO level.
CFJ

Fracture decoders use the a's and f's as inputs to generate Roman
numeral levels. The unsubscripted Roman numerals (RN) indicate the
sign quarter of a subword which contains at least one active quarter.
For example, II indicates that quarter 2 is a sign quarter and that it

is part of a subword which is at least partially active.

The subscripted Roman numerals (RNi)Vindicate that the i-th quarter is
active under a certain special condition. This condition is that the
i-th quarter is part of a subword whose sign quarter is given by the
Roman numeral. For example, IVl indicates that quarter 1 is active and

is part of a subword which has quarter 4 as its sign quarter.

A pictorial representation of these Roman numeral levels is shown in

Fig. 14-21. The conditions for generating these levels are:

Roman Numeral I. The only occasion when quarter 1 is the leftmost
quarter of a subword which contains at least one active quarter is
when quarter 1 itself is the subword. Thus, T = Il. (Note this
same argument makes III = III3.) I is generated in both the f3

(27,9) and 1), (9,9,9,9) fractures when quarter 1 is active
1
(a])-

Roman Numeral II. A threefold possibility exists: either the

first quarter is active and there is an f, (18,18) fracture, or
the second quarter is active and there is an f2 (18,18) or fh
(9,9,9,9) fracture.

Roman Numeral IIT and IV. The logic here is similar to that

1
described for I and II. Note that IVu = ah.

March 1961 1423

March 1961

Fig. 1&-30 gives the anticipatory logic for generating the '—0—0 AEP level. The
first term in this logic is concerned with the NOrmalize instructions. In these
instructions the data in the subword is shifted until thé value of the data lies
between 1/2 and 1, i.e., the left-most bits in the sign quarter must be 01 or 10.
If the sign quarter contains neither all ZEROS nor all ONES, the greatest number
of shifts that can occur before the data is normalized is eight. For example,

suppose the subword contains the following data:

SIGN QUARTER
[fIi1i1110 | XXXXXXXXX]

If a NOrmalize instruction is executed, after seven shifts the data will be

normalized, i.e., the sign quarter will look as follows:

[10XXXXXXX]

The example just given was a "worst condition" case. The data to be normalized

might have been:

[110XXXXXX]

In this case only one shift is required to normalize the data.

Note that if the sign quarter is quafter 1, then a Roman numeral I will be
generated, and it is necessary to know only that this quarter does not contain
all ZEROS or all ONES to know that a maximum of seven shifts will occur before

the data is normalized.

In the case where the subword contains the following data,

SIGN QUARTER
[Tz1721111311 [111110XXX]|

0
six shifts occur before the |O—QAEP level is generated. AEP then indicates
that a maximum of seven additional shifts will follow before the data is fully

normalized.

The second term in the Lo——o AFP logic is concerned with the SH instructions
(i.e., CYcle and SCale). Since the D counter always counts up to zero from some
negative value in these instructions, it is always possible to know how long the
count will take to complete from an arbitrary but predetermined counter state.
LAD is used as the reference evenf in the count. LADi anticipates how long it
will take to complete the count in the i-th quarter of D. If a Roman numeral II
is generated, we are interested in the LAD2 level, etc. The logic here is very

similar to that for the NOR instructions.

1Lh-27

1h-5.2

March 1961

1L
In the SH type instructions (CYcle and SCale), counting is initiated at AK, 3
Overflow control occurs at AK; 3 and then AK counts on to AKi e The najor

portion of the counting in D then occurs in AKé 5

In the TLY instruction, D counts the ONES that appear in the sign bit of A at
AKé , 88 the subvord is cycled (rotated).
During the NOrmalize instructions, D counts, i.e., continues to normalize, as

long as Ai = Ai g This equality is indicated by the ¢ (sigma) levels.

9
Note that ASK can override the D counters by forcing AK into a new time state
even though the D counter register driver logic is not satisfied. D then stops

counting, even though the FDi levels are not generated.

A REGISTER SHIFT RD LOGIC. (See Fig. 14-34). During a TLY instruction, shifting
to the right occurs in all the active quarters of A. The shift decision is

independent of any fracture considerations.

During a NOrmalize type instruction, the active quarters of a subword are shifted
to the right if the Z flip-flop in the sign quarter of the subword indicates an
overflow. Note that there are three possibilities that can cause a shift right
to occur in A.

Zl O Quarter 1 is active and is also the sign quarter. Zi L
indicates that quarter 1 is part of a subword in which an

overflow condition exists.

Z; : II1 Quarter 1 is active and the sign quarter is quarter 2. Z; d II1
indicates that quarter 1 is part of a subword in which an over-
flow condition exists.

Zi - IVl Quarter 1 is active and the sign quarter is in gquarter L,

Zi . IV1 indicates that quarter 1 is part of a subword in which

an overflow condition exists.

The shift right logic for the other quarters of A during NOrmalize type instruc-
tions is similar to that just described. The shift left decision is made if
A, 5 = A, g @s indicated by the o~ (sigma) levels.

. is

~

l £
Note that if there is to be a shift right it will occur at AK, X At the com-

pletion of the shift right, Ai 9 % Ai 8 (see Fig. 14-43 for the NOR logic that
complements Ai 9 at AKé 2), therefore the o~ (sigma) levels will be absent and
no shift left will occur at AKa L

14-29

14-5.13

14-5.14

March 1961

Now consider the balance of the ¢ logic. Remember that AKIRADD covers both the
ADD and SUB instructions. In a SUB instruction the active quarters of D are
complemented at AKé,g' At AKé.9, the active quarters of the subword in D are
complemented in the ADD and SUB instruction, if the sign of the subword at this

time does not equal Y, i.e., Yi # Di Note that in SUB D is complemented twice;

9’

whereas in ADD D is complemented just once.

In the DIV instruction, the data in the D register is always made opposite in
sign to the data in the A register before the partial addition occurs, i.e., D
is complemented if Di = Ai at AKé o* Remember that the PAD pulse is fired

.9 .9
off both at AKl and AKl . Therefore, D is complemented at AKl
B.3 B.9 1 .9

as part of the sign control logic

for the same
reason. Finally, D is complemented at AKa 11

55 Yl # Di 9° This makes the sign of D equal to its original value.

1

I
In the MUL instruction the D register is complemented at AK; 5 if the subword in
2 1)
D is negative, i.e., if Yi. The D register is complemented again at AKa 9 it

Yi in order to restore D to its original value.

E—w» A, B, C AND D RD CONTROL. (See Fig. 14-45). The only way that data can
be placed in the A, B, C and D registers in the Arithmetic Element is via the
Exchange Element, more specifically via the E register. This occurs in the

following situations:

1) During LD type instructions, when the A, B, C or D registers are

21
specified, the transfer occurs at QK .

2) TIn the execution logic of the ITA and UNA instructions, the data found

230

in E at QK 3 is transferred into the A register.

3) If a STORE instruction involving the VFF Memory specifies one of the
Arithmetic Element registers, data is transferred from E into the

230
register at QK 3 .

As we saw earlier in the chapter the data that is transferred from Ei 9 into

Di 9 is also transferred by the same register driver pulse into Yi.

A—3-» B AND B —5—» ARD CONTROL. (See Fig. 1L4-L6). Note that these
transfers are of the jam type. They occur in the MUL and DIV instruction under

the following circumstance:
1) One of the first things that happens in a MUL instruction is that the

data in the active quarters of A (left from a previous instruction) is

1L
transferred into the corresponding quarters of B. This occurs at AKa 1

14-35

o 2 Ovearow Magle Z i Z
L" 2 Useo For Generaren | lerr Curnren | Lesr Unenangeo
% —»A S1an il @ BY WSTRocHoN | BY MST
“ bg&hmuﬂ ControL ‘2
QDD X X
LB X
PSA X
MUL X X X
DIV X X X
TLY X
£Y=
SCB
SCh,SAB X
NOA, NAR X X

pt\a 14-4 Efrect oF Ak Tyee 1NS TRUCT 1ONS

ON

Z FLIP’FLOP

Sien QuagTer Ner Useo Son Quasrer Nov Useo
y SR PSS
Y Yo — 0 OpreAND
Olt1—| P
- 5 SPECIFIES - 1 IN
. SPECIFIES —y oy SMET RigaT Q DLi D >
MET Leer 3 = 4 S J— . D
T R LXK oo X XK Xaaom oKW
| SPECIFIES Np, OF SHIFTS) L__ SPUIFIES Np. 6F SHIETS
(GrigmaL OPERAND Compie yenTED (OriGiNAL 6PERARD, Since
Becavse Orniginar SPERAND was Pagrive origINAL OPERANL WAL QL?"‘D\(NEecanive J
e ¥q:0) e Yo =1)
g8 . X _—
Do hs By By Ny QL . Y Y _
v .) " T XX 4 Coiest v Case 1
ij\\S‘GN Bt PATA .,
Ovem:gow Twoation (From Prsv INST) Ovsuww sieanen Fem Prew, s Z H‘&
‘ < ? :2 &
Qq.q (S.éf" 8l7>_+ Bl-’ Qi ﬁ (S'éﬂ” B'r) 9; 2 (I . 3)
. : A uev .
Qq.b > Q#.‘i ;Q"E- Ng.g 18 lost t)\)"»wa 5L'£+') B 72 917 (e B" < 'p“+ d\)/\ sh. f)\)
' Aa. B —»
A4 —=> Ha.g b&w —
Qq A3 Qa4 BL =
| oL L ot } VIR, Lo WM%‘W__’L CASE 2]
LA c
I Sicn Bor - Conm»smso Gerone Swpr 6N Bir -Compuenenten Deroge SwieT DATA
Becavse oF OvERFLow INDICATION . Secause oF OveRFow iNoKaiow fg
Z Z
4 By MRS T P SIp— * OveEprwow INPIATION (Fppm Pogy iNST), 2422, =1
Wit Be Cieneep BY Cuppent SAR ST, Wik Be Ciearen By (uzeenr $AB INGTS (fem s)

Qq,s(aw\p,lmn‘v\/ of eré»—vi a) Soa.q b:")—‘) 8&.) Hz", (CW{M\IL o{ ol‘pa,....‘d,/»d—va.. L‘)‘)'—" Dng
Qq.g-ﬁ 94‘9 B|| —7‘-" 0243
Pigtd=-4 <p ExamPLE

\3\'1—" B b
Ras » DQ-? ShowR FOR f sactvre éq;osr}-w

‘é ! ‘0‘; VJ Aeéa‘)nﬂ oPAq bJQU*WOf()}

RSk D COUNTER
sk COUNTE . .
INSTRUCTIENS R R [1‘. s-&nzuuf‘eb of achve 5u]>wo(‘J]
HuL / //’/ P
PIv Coumts NumBeER of HuuT Ster- o :E-;:A'naus / / o ’
P f{////.::/xf'
3¢ Counts OuT NUMBER oF SwmErs sescimepd By
Y- OPERAND . LOUNTS LP TO ZERo FROM PRESET
NEGATIVE VALUVE,
» SUBTRACTS NUMRER oF SHIFTS Rea'n To NermbLine
NO~- Lours NumBpe ofF Smirs IN Cases Wapee PATA Foom Opezand BRrovWr FRom Memosy - Data 1
Sogwors Contams Aue Zmroes or B Ouey NormALIzEp WheN B oa AR ties Berweew VaPuwl
Counts Nuhger oF swiFrs Rea'n To Gompusrey Recumurares Nomoez oF 1S ApPeagiNG N
LY " 5 Darn ExtmiNeD Accumuiarion 1S Asoep T3
oTATE Sugword. Previovy ContEnTS oF D Regsten

- -

Fie 14~8 Funawu oF

IN AsK TTyree

RSE and D CountERS

INSTRUCT IONS

'
> Dug)
Dl.
> o
34
St Ao phg
SO-6110) CARRY

L>__ evo, T INPVTY

<D— (Y0,
S (YO,
Ko (Y0,

try Cu,

t¥o,
€Y0;.

WACTAY

Seweern
"L LTS
X

LRV CV, | 0,
5

Cagey ' Catr(

Coupt.ms > \NPD

T {om
Unir

ceeey, '

H(O.
jo— (Y0,

s_..._.CYO_;

P—
I Dpvtm,}
£,

e e i,

SELEﬂw

WPVTY

Loetcar Riper Dumngerrt |
Fie 14517 R ReecisTER CARRY logic

O O O O O O O

. Z Porse GATE Losic
Z W —— Brock Snew Cme 14
P i RD P RD PuusE N
N PUT (';?E gﬂ:‘:) Gating LOGIc “(S: B:):is) GATING Logic (See Be’:w) GL;::C:. Y = —
e 0 \ : . Z losic 8r80
L9_> Zo [L.o_p—ZI] + [BE_S_!I?‘ g (D|.q' QH*D,,Q‘ Q,.q)] -l' [Lgﬁ-sﬂ 21 ¢ Ql‘?] 'EN
o, % | [lo, 2,1 [Reser2, < (D)0 Mrs + D, - Rip)] + [linatey 2, gy,] e
eo 2| [lay 3] IR R SIRTROY I | R
IQ—P ?1 [L&—’- Z‘J ‘.M Zf ’(D:-‘i' Q:ﬁ T D4'.1 d Q‘;ﬁ)] + L'&i&i‘ka i A:ﬁ]
]
12 U—Pﬁ‘-)v 2 '(D:-f' 9?.7"‘ Dll-q ‘ anq)] t {L_L-M' Sen, 2 * l%‘i) e 1441
') 16
2. | Pan 2, + (O Nog + D .p,)] bl lhussey 2,0 By])
By (Leag 2, Joq :S 2? b l? Z Puse Gare § RD Lesic
U——xfﬁ {LEA_L)» 2y * (D:.s‘ 94,; t+ D-H . ﬂ;_ﬁ)] + [|_|-‘;lq_$_.“ Z; 0 QM]
o °]
1y 2, | llean, 24 ' (D45 * R4.g +D1‘ﬁ'n“"7)] + UbaSeyz,” f,)
'RD] 2 ?D Loc.lc‘ 2D 2 Kb logic) Z ED Lﬁog;(rﬁ —
PULSE cﬁ?« ADD, SLBR PuLSE | B® APP, SUS PULSE oW MU L _
(Ser adowt) Puise LT;:‘,:L INST. \omm (Ser aboe) ?’:‘fa I.Tr;::;_ ST |omer] (Set abene) The L_Lvms INST |ormed ‘{;"‘,EL INST. | omhee
P2, | o [Ar;,sganfz""“]-l Reser, 2. o |LAKGq-AKIR®®T-T Jlaase, 7 | d [k, 4K,) a0+l prig™ 1o 1
Leagz, || g |{ Al 10T | Resz 9 (L A 100§\ S Al U 4 10+l 4% 1-XT
LPad, 7 | % L M 10 | lReser, 2! g | 4# -0 [ty | 9| L M 1M+l Lo 1T
ooz v U dth 1T |mealy || 4 T Tlaiey |2 |L A% 1Tt 1T
ADD, SUE My | sch,seB r}, _NOA, NAR
: LEVE | nsT [ermee T'”E’ LEVE‘-ﬁl l INST l“"'“' N INST | omee Tine Lrved] NST | otneg
lo gy |4 L8Gem@®]I t (@K + 05,0)» AR DTk, « (AoR* !+ Aair**e)]s T +L Ak, + AR T
V| ; ; 2,
o o2 |4 L ﬁ Iy +L AL 1T+ ,Zz/é I+ £} ;’i{,ﬁ 1T
eoly U Ak 1mel A B Y 1.0 +U 4l 1T
Lo, 32, L U Al 1m YL Al lwtt Al V¥ oL AL 1w
i

15-4.2 CONTROL FLIP-FLOPS. These flip—flops'determine the logical operation of the

15-4.3

March 1961

In-Out unit. The standard In-Out control flip-flops are:

C (Connect Flip-Flop). The In-Out unit is logically connected to the

computer by setting the C flip-flop to ONE. This is done by an I0S
"connect” instruction. Cl gates the RAISE FLAG signals and, usually,
certain other signals such as those caused by the Equipment Inability
Alarm (EIA) flip-flop and the MISINDication flip-flop being set.
Almost all In-Out units have a connect flip-flop.

ST (STatus Flip-Flop). When this flip-flop is set to ONE, it is

permissible for the computer to perform a TSD in the unit's program
sequence. The STatus flip-flop is set to ONE by the In-Out unit
generating a "completion pulse", indicating that the unit is ready

for another TSD. Almost all In-Out units have a STatus flip-flop.

EIA (Equipment Inability Alarm Flip-Flop). This flip-flop is set to

ONE as a result of some difficulty such as overheating, low paper
supply, etc., in the associated In-Out unit. Not all units have an
ETA flip-flop.

MISIND (MISINDication Flip-Flop). This flip-flop is only found in

free-running units such as the Magnetic Tape unit. When MISIND is
set to ONE, it indicates that the unit is getting ahead of the

computer, i.e., a line of data has been missed by the computer.

‘M (Maintenance Circuit). This is not a flip-flop, but rather a circuit

which may include a manually operated maintenance switch. A "fail- safe"
design has been incorporated in the circuit, so that an M (Maintenance)'
level is geperated when any one of several conditions occur. Thus an
M level is generated when the switch is open, the unit is not powered
or the unit is physically disconnected. The transition of this level

does not have to be synchronized.

SYNCHRONIZER. Normally when an In-Out unit has completed its cycle, it will
generate a completion pulse. This pulse indicates that the unit is ready for the
central computer to execute another TSD. These completion pulses occur
asynchronously, since in many cases they occur as a function of the mechanical
cycle of the data conversion device itself.‘ The central computer synchronizes
these asynchronous events by means of IOI clock pulses and a synchronizer. As

we shall see later in the chapter, the output of the synchronizer becomes the
synchronous RAISE FLAG signal that is transmitted to the central computer. The
function of the synchronizer is to insure that the In-Out buffer state will not

change until the central computer has completed its communication with the buffer.

15-7

	TX-2v2
	TX-2v2b
	TX-2v2c
	TX-2v2d
	TX-2v2e
	TX-2v2f
	TX-2v2g
	TX-2v2h
	TX-2v2i
	TX-2v2j
	TX-2v2k
	TX-2v2l
	TX-2v2m
	TX-2v2n
	TX-2v2o
	TX-2v2p
	TX-2v2q
	TX-2v2r
	TX-2v2s
	TX-2v2t
	TX-2v2u
	TX-2v2v
	TX-2v2w
	TX-2v2x
	TX-2v2y
	TX-2v2z

