
COMPUTER TECHNOLOGY

p-System
Editors
Pascal

Assembler

35 NORTH EDISON WAY, SUITE 4· RENO, NEVADA 89502· (702) 322-6868

Contributors at SofTech Microsystems:

Software Development:

Mark Allen, Gail Anderson, David Berger, Barry Demchak, William Franks, Rich
Gleaves, Dean Jacobs, Richard Kaufmann, Stephen Koehler, Mark Overgaard, Stan
Stringfellow.

Documentation:

Randy Clark, Barry Demchak, Rich Gleaves, C.A. Irvine, Bruce Sherman, Stan
Stringfellow.

End-user Support:

H. Blake Berry, Jr., David Barto, Carolyn Chase, Randy Clark, Karen Fraser,
Nancy Lanning, Bruce Sherman, George Symons, John Tennant.

And thanks too to all the people not named here, at SofTech Microsystems or
elsewhere, including the people at Courseware who prepared the illustrations.

· DISCLAIMER:
These documents and the software they describe are subject to change
without notice. No warranty express or implied covers their use. Neither
the manufacturer nor the seller is responsible or liable for any consequences
of their use.

SofTech Microsystems provides telephone and mail support for those users
who have purchased their system from either SofTech Microsystems or UCSD
(version 1.5 or later). This includes users who purchased their system from
retail outlets of SofTech Microsystems. All other users of UCSD Pascal or
the UCSD p-System should <;ontact their supplier for support. SofTech
Microsystems does not have the resources to support users who purchased
their software from other vendors.

ACKNOWLEDGEMENTS:
The UCSD Pascal project was initiated and guided by the director of the
Institute for Information Systems, Professor Kenneth L. Bowles.

While at UCSD, the project was supported by a variety of generous
contributions, both of money and personal time.

Development has continued at SofTech Microsystems under the leadership of
Mark Overgaard.

This document was collected, edited, and contributed to by Keith Shillington
and Gillian Ackland at UCSD. Randy Clark has continued their work at
SofTech Microsystems.

A signi ficant part of the project has always been its user support. Special
thanks are due Tracy Barrett at UCSD.

More complete acknowledgements appear on the following two pages.

Contributors at UCSD:

Software Development:

Mark Allen, Lucia A. Bennett, David Berger, Marc Bernard, J. Greg Davidson,
Barry Demchak, Gary J. Dismukes, William P. Franks, Julie E. Erwin, Rich
Gleaves, Robert J. Hofkin, Albert A. Hoffman, Richard S. Kaufmann, Peter A ..
Lawrence, Joel J. McCormack, Robert A. Nance, Mark D. Overgaard, David A.
Reisner, Keith A. Shillington, David M. Steinore, Roger T. Sumner, Steven S.
Thompson, David B. Wollner.

Documentation:

Gillian M. Ackland, S. Dale Ander, Lucia A. Bennett, Raymond S. Causey, Charles
"Chip" Chapin, J. Greg Davidson, Gary J. Dismukes, Julie E. Erwin, Shawn M.
Fanning, Mary K. Landauer, J. Raoul Ludwig, Joel J. McCormack, Mark D.
Overgaard, Keith A. Shillington, David A. Smith, Roger T. Sumner, Dennis J.
Volper.

Gifts of Equipment, Funds, and Time:

United States Navy Personnel Research and Development Center, Sperry Univac
Minicomputer Operations, EDUCOM, Digital Equipment Corporation, Processor
Technology, Inc., Springer-Verlag, Terak Corporation, General Automatio,?
Corporation, The UCSD Computer Center, grants from the University of Californi~
Instructional Improvement Program, Tektronix Corporation, Micropolis, Inc., Philips
Research Labs, Lawrence Livermore Labs, Pascal Computing.

DISCLAIMER:
~~ This document and the software it describes are subject to change without

notice. No warranty expressed or implied covers their use. Neither the
manufacturer nor the seller is responsible or liable for any consequences of
their use.

ACKNOWLEDGEMENTS:
This document was written by Stan Stringfellow at SofTech Microsystems.
Special thanks are due to Dan LaDage of LaDage Computer Systems, as well
as Gail Anderson, Blake Berry, and Randy Clark of SofTech Microsystems,
for providing information and assistance. Also, thanks are due to Texas
Instruments Incorporated, for providing useful information.

iii

PREFACE

"Toto, I've a feeling we're not in Kansas any more." -- The Wizard of Oz

The many incarnations of the "1st edition" of this manual reflect the growth of
the UCSD p-System. In this edition, we have tried to unify the material, to
motivate it and supply some background, to be a bit more supportive of the novice
user. At the same time, we have tried to be as concise as possible. Our various
aims have sometimes been in conflict, and we have resolved them as best we
could. It is our hope that this new manual is much clearer and more usable than
its predecessors.

IV.O itself is a unified version of our System -- somewhat simpler, and a great
de al more powerful. Separate compilation is easier than before, and concurrent
processes are now a reality. Watching IV.O develop has been enjoyable; hopefully
this manual does it justice.

This is a Users' manu ale Internal information has been banished to a different
document. That should make it easier to use for the majority of users; systems
users will benefit from the greater detail included in the Internal Architecture
Guide.

A lot of things have been maturing: this book, the System, the community of
Pascal and p-System users, the international standards for Pascal. Even though the
task is endless, the creators of this system and this document will attempt to keep
pace with all of these things. In this light, our System and its documentation are
one half of an ongoing dialog -- your response is the other half; your opinions are ~
not only welcome but needed.

We are no longer where we were when we started. Thank you for joining us in
our ventures and explorations, and thank you for contributing your own time and
your own discoveries.

R.C.
San Diego
4 November 1980

v

T ABLE OF CONTENTS

SECTION PAGE

PREFACE v

INTRODUCTION

1 How to Use this Manual · · · · · · · · · · · · · 1
2 Overview. · . · · · · · · · · · · · · · 3

1 System Rationale and Organization. 3
2 File Organization. · · · · · · · · · · 7

1 System Files · · · · · · · · · 7
2 User Files. · · · · · · · · · · · · 9
3 The Workfile · · · · · · · · · · · 10

3 Device and Volume Organization 12
4 Program and Library Organization · · · · · · · · · 16

3 A Note on Bug Reporting · · · · · · · · 20

II THE SYSTEM COMMANDS

1 Promptlines · · . . · 24
2 Disk Swapping. · · . · · 26
3 Execution Option Strings • · · · · · · · · · 27

1 Alternate Prefixes and Libraries · · · · 28
2 Redirection · · · · · · · · · · · · · · · · · · · . 29

1 Individual Commands Alphabetically. · · · · · · · · 32
0 Prompts for Filenames. · · · · · · . · 32
1 ASSEMBLE · · · · · · · · . · · · · · · · · 33
2 COMPILE · · · . · · · · . 34
3 EDIT. · · · . · · · . . · · . · 35
4 FILE. · · · · · · · . . · · 36
5 HALT · · · . · . . · · 37
6 INITIALIZE 38
7 LINK. · . · · . . · · 39
8 MONITOR · · · · . · · · . 40
9 RUN. · . · · 41

10 USER RESTART · · · · . . · · · · · 42
11 EXECUTE · · · · · · · · 43

vii

viii

HI FILES AND FILE HANDLING

1
2
3
4
5
6

Types of Files
File Formats.
Volumes
The Workfile.
Filenames
Using the Filer
1
2

3

4

Prompts in the Filer • • • • •
Names of Files
1 General Filename Syntax
2 Wildcards
Filer Commands
1 B(ad blocks • • • • • •
2 C(hange.
3 D(ate
4 E(xtended list.
5 G(et •••
6 K(runch
7 LOst directory
8 M(ake ••••••
9 N(ew.

10 P(refix
11 Q(uit ••••••
12 R(emove.
13 S(ave •••
14 T(ransfer
15 V(olumes.
16 W(hat
17 eX(amine
18 Z(ero •••
Recovering Lost Files
1 Lost Directories

45
45
46
47
48
51
51
52
52
52
55
56
57
60
61
62
63
64
67
68
69
70
71
73
74
79
80
81
82
84
86

IV THE SCREEN ORIENTED EDITOR

V

o

1

2

3

Introduction ••••••••••
1 The Concept of a Window into the File •
2 The Cursor • • • • • •
3 The Promptline • • • • • • • • • •
4 Notation Conventions. • • • • • •
5 The Editing Environment Options.
Get ting Started • • • • • • • • • • • • •
1 Entering the Work file and Getting a Program.
2 Moving the Cursor
3 Using Insert • • • • • • • • • •
4 Using Delete
5 Leaving the Editor and Updating the Workfile
Using the Editor
1 Command Hierarchy ••••••
2 Repeat Factors
3 The Cursor
4
5
6

Direction
Moving the Cursor
Entering Strings in FOnd and R(eplace.

Screen Oriented Editor Commands
1 A(djust ••
2 C(opy
3 D(eIete ••
4 FOnd.
5 l(nsert.....
6 J(ump
7 K(olumn
8 M(argin •••••••••
9 P(age •••

10 Q(uit •••
11 R(eplace ••
12 S(et.....
I} V(eri fy • • •
14 eX(change
15 Z(ap

Y ALOE -- YET ANOTHER LINE ORIENTED EDITOR

1 Special Key Commands · . · · · · · . 2 Command Arguments • · · · . . 3 Command Strings · · · · · · 4 The Text Buffer. .
5 The Cursor. · · . · · · · 6 Input/Output Commands · · . · . .
7 Cursor Relocation Commands · · · · . 8 Text Modification Commands · · ·
9 Other Commands · · . . · · · ·

.

.

89
89
89
90
90
90
91
91
92
93
95
96
97
97
97
98
98
98
100
101
102
103
105
107
109
112
113
114
116
117
119
121
124
125
126

("yah-loo-ee")

128

· · . . 130
131
132

· · . 133

· · 134
. . . . 136

138

· · . . 140

ix

x

VI THE UCSD PASCAL LANGUAGE

1 The UCSD Pascal Implementation ••.•.••••••••••
1 An Introduction to the UCSD Implementation ••••••••
2 Differences between UCSD' Pascal and Standard Pascal

1 Strings....... • • • • • •
2 I/O Intrinsics • • • • • • • • •

1 End of File -- EOF • •

3

4
5

2 End of Line -- EOLN • •
3 Files •••••••••

4
5
6
7

1 Interacti ve Files. • • • • • • •
2 Untyped Files • • • •
3 Random Access of Files • • • •
4 Files as Elements of Records or Arrays ••••
READ and READLN. • • • • • • • • • • • • • •
RESET ••••••••••
REWRITE •••••••••
WRITE and WRITELN • •

Separate Compilation and Memory Management
1 Memory Allocation ••••
2 Segment Routines
3 Units.......
4 External Routines
Concurrent Processes
Miscellaneous Differences ••
1 CASE Statements • • • •
2 Comments ••••••••
3 Extended Comparisons. • • • • • •
4 GOTO and EXIT Statements • • • • • • • •
5 Long Integers ••• • • • • • • • • • •
6 Packed Variables. • • • •••

7
8
9

10
11

1 Packed Arrays. • • • • •
2 Packed Records • ,. •
3 Restrictions on Packed Variables
Parametric Procedures and Functions
Program Headings • • • • •
Sets
Transcendental Functions
Size Limitations ••••••

143
144
145
145
149
150
151
152
152
154
155
157
158
160
161
162
163
163
164
165
167
168
169
169
170
171
172
175
178
178
180
182
183
184
185
187
188

2

3

UCSD Intrinsics
1 ATTACH •••
2 BLOCKREAD
3 BLOCK WRITE
4 CHAIN ••
5 CLOSE ••
6 CONCAT •
7 COpy \
8 DELETE .••
9 EXCEPTION.....

10 FILLCHAR ••••••
11 GOTOXY.
12 HALT
13 INSERT
14 IORESUL T • • • • • •
15 LENGTH.
16 MARK
17 MEMAVAIL •.••
18 MEMLOCK' ••
19 MEMS\VAP...........
20 MOVELEFT
21 MOVERIGHT •.••••
22 POS •••••••••
23 PWROFTEN ••••
24 REDIRECT •••
25 RELEASE
26 SCAN
27 SEEK.
28 SEMINIT.
29 SIGNAL
30 SIZEOF ••
31 START
32 STR
33 TIME.
34 UNITBUSY
35 UNITCLEAR ••
36 UNITREAD
37 UNITSTATUS
38 UNITWAIT ••
39 UNITWRITE.....
40 VARAVAIL ••
41 VARDISPOSE • • • • • • • • • • • •
42 VARNEW •.••
43 WAIT •••••
Using the Compiler • • • • • • • • •
1 Compile-time Options •.••
2 Condi tional Compilation • • • •

. ..

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
236
244

xi

VII THE ADAPT ABLE ASSEMBLER

0 Introduction · · · · . · · . · 247
1 Assembly Language Definition ••• · · · · · · . · 247
2 ,Ll,ssembly Language Applications 248

1 General Programming Information. · · . . · · · · 249
1 Object Code Format • · · · · . · · · . · 249

1 Byte Organization · · 249
2 Word Organization • · · · . . 249
3 Memory Organization · · · . . · · · · 249

2 Source Code Format • · · · · 251
1 Character Set · · · · · · · 251
2 Identi fiers • · · · · · · · · · · · . . · 251
3 Character Strings · · · · · · . · · · · · · 252
4 Constants. · · · · · · · . · · · · 252
5 Expressions · · . · · · · · . · · · · 254

3 Source Statement Format · · · · · · · · · · · · · · 258
1 Label Field • · · · · · . . · · · · · · · 258
2 Opcode Field • · · · · · . 259
3 Operand Field · · · · . · · · · · · · · · · · · 260
4 Comment Field. · · · . . · · · · . 260

4 Source File Format. · · · · · · 261
1 Assembly Routines. · · 261
2 Global Declarations 261
3 Absolute Sections · · · · · · . · . · · 262

2 Assembler Directives • · · · · · . . · · · · · · · · · · · 264
1 Procedure-Delimiting Directives. · · · · · · · · · 266
2 Data and Constant Definition Directives. · · · · 270
3 Location Counter Modification Directives · · · · 273
4 Listing Control Directives • · . · · · · · · · 274
5 Program Linkage Directives. · · . · · . . 280
6 Conditional Assembly Directives 283
7 Macro Definition Directives. · · · . · · · · . 284
8 Miscellaneous Directives. · 285

3 Conditional Assembly • · · . 288
1 Conditional Expressions · . · · 289
2 Example. . . . · · · · · · · 290

4 Macro Language •• · · . · . . . 291
1 Macro Definitions. · · · · · · · . · 292
2 Macro Calls • • • · . · · . · · · . · 293
3 Parameter Passing ! · . . . · . . . · · . . 294
4 Scope of Labels in Macros · · . . · 296

5 Program Linking and Relocation. · · · . . · . . . 298
1 Program Linking Directives · · · · · · . . . 299

1 Pascal Host Communication Directives · · · . 301
2 External Reference Directives 302
3 Program Identifier Directives •• · 303

xii

6

7

8-

2 Linking Program Modules • • • • • • • • •
1 Linking with a Pascal Host Program.

1 Parameter Passing Conventions ••
1 Variable Parameters ••••••
2 Value Parameters • • • • • • • • • • ••

2 Example of Linking to Pascal Host • • ••
3 Stand-Alone Applications • • • • • •

1 Assembling.................
2 Loading and Executing Absolute Codefiles •
3 Byte Sex Considerations • • •••

Operation of the Assembler • • • . • • • •••
1 Support Files • • • • • • • • • • • • • • • •
2 Setting Up Input and Output Files ••••••••••
3 Responses to Listing Prompt • • • • • • •
4 Ou tput Modes • • • • • • • • • • • • • • • •
5 Responses to Error Prompt • . ••

1 Miscellany..
Assembler Output • • •••
1 Source Listing.
2 Error Messages
3 Code Listing •

1 Forward References ••••
2 External References ••
3 Multiple Code Lines •

4 Symbol Table • • • • • •••
5 Example ••••••••••
Machine-Specific Information
1 LSI-Il/PDP-ll Assembler
2 Z80 Assembler • • • • •
3 6500 Assembler ••
4 6800 Assembler • • • • • • • • •
5 8080 Assembler •
6 9900 Assembler.
7 6809 Assembler •
8 Z8 Assembler • • •

Vlli SEGMENTS, UNITS, AND LINKING

1

2
3
4

5

Overview. • • • • • • • • • • • • • •
1 Main Memory Management
2 Separate Compilation. • ••••
3 General Tactics. •
Segments. • • • • • ••
Units •• ! • • • • • • • • •••

The Linker •••••••
1 Using the Linker
The Utility LIBRARY.
1 Using LIBRARY. •

304
304
305
306
306
308
310
310
310
311
312
312
313
314
315
316
317
318
318
319
320
320
320
320
322
323
325
325
326
327
329
331
332
333
334

335
335
336
338
340
342
347
348
350
350

xiii

IX CONCURRENT PROL

1 Introduction . · · · · · · · · · · · · · · · · 353
2 Semaphores . · · · · · · · · · · · · 356
3 Mutual Exclusion · · · · · · · · 358
4 Synchronization · · · · · · · · · · · · 359
5 Interrupt Handling. · · · · · 360
6 Other Features · · · · · · · · · · · · · · · · · · 361

X UTILITIES

1 Preparing Assembly Codefiles • • • • • • • · · · · · · · · · · 364
1 Preparing Codefiles for Compression. · · · · · · · 364
2 Running COMPRESSOR · · · · · 365
3 Action and Output Specification · · · · · · · · · 366

2 PATCH. . . . · · · · · · · · · · · · · · · · · · 368
1 EDIT Mode · · · · · · · · · · · · 369
2 TYPE Mode. · · · · · · · · · · · · · · · 371
3 DUMP Mode. · · · · · · · · · · · · · · · 373
4 A Note on Prompts · · · · · · · · · · · 375

3 DECODER •• · · · · · · · 376
4 Duplicating Directories. · · · · · · · · · 383

1 COPYDUPDIR • · .' . · 383
2 MARKDUPDIR · · · 383

5 Procedural Cross-Referencer -- XREF 385
1 Introduction • · · · · · · . · · · · · · 385
2 Referencer's Output · · · · · · · · · · · · · 385
3 Using Referencer • · 388
4 Limitations · · · · · · · · · · · · · · 390

6 The Debugger · · · · · · · · · · · · 391
1 Introdu ction • · · · · · · · 391
2 Invoking and Exiting the Debugger 391
3 Displaying and Altering Memory · · · · 392
4 Further Single-Stepping Options. · 394
5 Example of Debugger Usage. · · · · 395
6 Summary of the Commands • · · · · 396

7 The RECOVER Utility · · · . · · 398

xiv

Xl APPENDICES

A
B
C
D
E
F
G
H
I
J
K

Execution Errors
I/O Results • • •
Device Numbers
Reserved and Predeclared Words
Assembler Syntax Errors • • • • • •
Summary of Differences from Standard Pascal
Summary of Differences Between Versions •••
Converting Programs to Run under Version IV.O

Railroad Diagrams for UCSD Pascal •••••••
Pascal Syntax Errors • • • • • • • • • • • • • • • •
American Standard Code for Information Interchange

401
402
403
404
407
412
421
425
436
451
455

xv

I. INTRODUCTION

1.1 How to use this Manual

Users' Manual
Introduction

This is the basic reference ta the UCSD p-System and UCSD Pascal. It shauld
cantain answers ta yaur questians cancerning the System .once it is up and running,
but it is nat meant ta be a tutarial abaut the use .of the System. If yau have
never used the UCSD p-System befare, yau shauld cansult Ken Bawles' Beginners
Guide far the UCSD Pascal System. If yau have not reached the point .of actually
bringing yaur system up (what we call "baatstrapping" it) yau shauld cansult the
Installatian Guide, .or the dacumentatian that is pravided with yaur particular
hardware.

Althaugh this Manual is nat a tutarial, this intraductian is designed as a descriptian
.of the .overall structure .of .our System, and yau shauld read it befare daing any
extensive wark. Once' yau have warked thraugh Bawles' baok and gained same
experience, especially a feel for our Text Editor and file-handling, then you shauld
appraach this manual. Read the remainder .of this chapter, the fallowing chapter
on System cammands, and whichever discussians are mast apprapriate ta your wark
-- whether chapters on Pascal, the Adaptable Assemblers, .or less general-purpase
matters. The chapters an the Filer and the Screen O:riented Editar will alsa prave
useful. If yau intend ta wark with large pragrams, yau shauld definitely read
Chapter VllI: Segments, Units, and Linking.

Much .of the Manual -- e.g., sectians an utilities, YALOE, and the appendices -- is
best used as a reference when yau need some specific infarmatian, such as the use
.of a utility, the meaning .of a particular errar message, and sa farth.

Other high-level languages, such as FORTRAN and BASIC, are described in manuals
.of their awn.

I t is best to start slawly. If yau da that, your pragress will in fact be rapid; it is
most canfusing ta try ta da taa much at .once. The System is designed far easy
use, and yau will find that mast tasks can be accamplished with relatively few
simple cammands.

In any case, we believe that the best way ta learn .our System is ta temper use .of
all this dacumentatian with liberal use .of the saftware while it is running -­
whether yau begin with rudimentary but useful pragrams, .or .out-and-out play. This
is the .only way ta develap a persanal feel far .our environment, which will allaw
yau ta develap yaur awn ways of using the System. In time yau will learn ta use
subtler farms .of the cammands, and develap yaur awn shartcuts.

1

Users' Manual
Introduction

We hope that you are creative in your use of our System, since such work is
capable of benefitting all of us, and since enjoyment and productivity go hand in
hand.

NOTE: we have tried to keep this manual free from arcane conventions. A couple
of things seem worth mentioning, however. Angle brackets ('<' and '>') are used
throughout in their common sense of indicating a meta-object or the generic name
of something; thus, single keystrokes with long names are represented this way
«return> or <escape», and names of things within a liter~ll description are
represented this way as well:

IF <Boolean expression> THEN <statement> ELSE <statement>

and so forth. Also, ranges of numbers are shown as in Pascal syntax, with a
two-dot (rather than three-dot) ellipsis, for example:

0 •• 9 -32768 .• 32767 5 •• 70 -1.999 •• +1.999

2

1.2 Overview

Users' Manual
Introduction

This section discusses the general organization of the System, its file and device
structures, and general mechanisms for organizing programs. This is not an
introduction to using the System, but it should give you a perspective on the
System's aims and rationales.

1.2.1 System Rationale and Organization

The UCSD System was initially designed as a program development system for
microcomputers. Originally it was used to teach programming, but was soon put
to a variety of uses, including its own development. The current system contains
many functions and capabilities that were not present in the original, but many of
the original design assumptions still remain: a simple, menu-driven operating
system, a relatively small main memory, an interactive terminal (typically, a CRT),
and relatively low-capacity on-line storage media (typically, a floppy disk or two).

The si mplest of machines running the UCSD p-System will have a box with the
central processor, a CRT (a line-oriented terminal will serve, but is inconvenient),
and a floppy disk drive. The floppy drive will contain a disk with the system
software, and some number of user files. The user files might be source
programs, object programs, raw data, or docu ment text.

This si mple system. can be and usually is extended' with' such things as more or
bet ter disk drives, a printer, and other devices. All the same, it will be used by
a single 'user sitting at the CRT and either developing programs or running existing
ones. The System is geared toward this, interacti ve' ,environment.

The Operating System, Filer, and Editor are all "menu-driven" -- a promptline is
continually displayed at the top of the screen with all (or nearly all) of the
current commands visible~' These commands are invoked by a single keystroke, and
the organization is hierarchical. That is, typing a key generally causes either an
action to be performed, or another promptline to be displayed which details new
commands at a 'different and "lower" level. . .

This document, p'articularly Chapte'r 11, talks 'about the "command level'''.' That IS
the highest level of the Operating System, and the one visible to the' user as the
promptline which appears when the system is first booted. The commands at this
level are straightforward and self-explanatory: R(un, C(ompile, E(dit, FCile, and so
forth. Some of them, such as R(un and C(ompile, cause actions to be performed
directly on a file. Others, such as E(dit and FCile, invoke those particular
programs, which are themselves menu-driven.

The Filer and Linker and certain utilities perform functions traditionally performed
by larger operating systems. In the UCSD System they are treated as separate

3

Users' Manual
Introduction

programs (just as user programs are), and so are not properly part of the -Operating
System. Below the "outer" or "highest" command level, the Operating System is
not visible to the user, but remains an important component of the System by
being available for continual monitoring and control of running programs and 1/0
devices.

When first bringing up the System, the user may have to contend with some
low-level details, depending on the hardware involved. This aspect of the System
is outside the scope of the Users' Manual, and if you are interested in it, you
should consult the Installation Guide.

Bringing up the System starts the System's Emulator (also called the Interpreter)
which executes all programs written in high-level language. While the Adaptable
Assemblers generate machine language for particular target machines, the System's
high-level languages such as Pascal, FORTRAN, and. BASIC are compiled to an
intermediate language called P-code. This code is in the form of machine code
for an idealized liP-machine". To execute it on an actual processor, the P-machine
must be emulated: either by an interpreter that processes operations at runtime, by
a code generator that performs the translation prior to runtime, or by a hardware
implementation that executes P-code directly. All of these methods are in use,
but most current installations use an interpreter; this is the method first employed
at UCSD. More information on the P-machine can be found in the Internal
Architecture Guide.

This introduction has now enumerated all of the components of the System, albeit
in a very cursory way. The following two Ulustrationsshould clarify the relation
between the Operating System and the remaining System components. Figure 1
shows a tree which represents the command structure: typing various commands
within the System amounts to a traversal of this tree. Figure 2 is a more
detailed picture of various major components and their interrelationships.

For more detailed information on the various System commands, refer to Chapter
11.

All components of the System exist as files which are usually stored on floppy
disks. The same is true for all user-generated software. The logical next step,
then, is to examine the System's treatment and organization of files.

4

----, ---_ ----__ ---., __ •• __ , _____ "" ~v w." "' •• " ••••

\11
FIGURE 1

C
~fIIt
:::I CD " flit

o '
~~
n ID
"":::1 ... ·C
olD
:::1-

Users' Manual
Introduction

o Po,table

6

Rewritten for
new CPU

FIGURE 2

Tailored for new
Display Control

1.2.2 File Organization

Users' Manual
Introduction

A file, to the UCSD System, is a collection of data. It may reside on a disk, and
be brought into main memory only when it is being directly used by thE! System or
a user program. It may be data that a program reads from a peripheral device,
or sends to a peripheral device.

A file may contain any sort of data and be organized in any way, but the System
will treat certain files in very specific ways, and there are naming conventions
which support this special treatment. The naming conventions inform the System
how to treat a given file, and also serve as mnemonics for the user.

Before discussing the individual file types, it should be mentioned that "disk files"
are stored on some random access medium, usually a floppy disk. Each such disk
contains a directory which describes up to 77 files. File size varies, and the
limits depend upon particular hardware (more information along these lines is given
in the Installation Guide).

File manipulation is usually done with the Filer. The Filer is a program which is
invoked at the outer command level. It provides a variety of commands which
allow for the creation, naming, and renaming of files, their removal, and their
transfer between different devices (disk drives, printers, CRTs, and the like). It
also provides for some management of storage units themselves. More information
on this is provided below in Section 1.2.3, and the Filer is described thoroughly in
Chapter 111.

Note: bootstrapping the System involves reading files off of a particular disk.
Th a t disk is called the "System disk", "default disk", or "bootstrap disk." In the
System's syntax for filenames, it is called '*', and when a disk name is shown
preceded by a star (e.g., *SYSTEM.PASCAL), that means the file is on the
bootstrap disk. This convention is used throughout this Manual. More information
on device names and filenames appears in Chapter 111.

1~2.2.1 System Files

The files which comprise the major portions of the System itself are identified by
the prefix 'SYSTEM.'. Thus, important files are SYSTEM.PASCAL,
SYSTEM.EDITOR, SYSTEM.ASSMBLER, and so forth. Whi'ch :files are actually
shipped with a given system, and on which disks, is discussed in the Installation
Guide. This section gives a general description of the names of the major pieces
of the System. -

On some implementations of the p-System, many System files will reside in ROM
(Read Only Memory) rather than on any disk.

7

Users' Manual
Introduction

The Operating System itself is SYSTEM.PASCAL. Some of its major pieces are:

SYSTEM.FILER
SYSTEM.EDITOR
SYSTEM.LINKER
SYSTEM.COMPILER
SYSTEM.ASSMBLER (note the missing 'E')

••• all of these are programs are directly called by single-letter commands at the
outer command level.

SYSTEM.SYNT AX

••• contains all the Compiler's error messages.

SYSTEM.COMPILER is not necessarily Pascal -- it could contain any of the
available compilers (currently, Pascal, FORTRAN, or BASIC). In this way, by
changing file names a user may change the compiler that is accessed by one
keystroke.

Similarly, SYSTEM.EDITOR is shipped as the Screen Oriented Editor, and usually
contains that code. But should you be constrained to using a line-oriented
terminal, you might change YALOE (Yet Another Line Oriented Editor) to
SYSTEM. EDITOR, because it would better suit your needs.

SYSTEM.LIBRARY

••• contains previously compiled or assembled routines to be linked in with other
programs.

SYSTEM.5T ARTUP

is an executable codefile. If a file with this name exists when the System is
bootstrapped or I(nitialize'd, it is executed before the main System promptline is
displayed. This is aimed at providing a turnkey environment for users who desire
one.

8

SYSTEM.MISCINFO

Users' Manual
Introduction

is a data file containing miscellaneous data items about an individual system -­
most of it is devoted to terminal-handling information.

The emulators have various names, usually machine-specific. The most widely
distributed ones are •••

SYSTEM.PDP-II and
SYSTEM.MICRO

There are three other SYSTEM. files that are commonly, though not always,
present. These are the files that make up the user's workfile, and since they are
handled in a special way, and relate directly to individual use of the System, they
are discussed separately in Section 1.2.2.3 below. Before discussing workfiles, we
will talk about more ordinary user files.

When the System is bootstrapped, certain System files must be on the disk it is
bootstrapped from (or in ROM, for ROM-based implementations). Other System
files may be anywhere. The System will search for them whenever it is
bootstrapped or ICnitialized (see Chapter 11), and whenever it needs them and they
are not on the device where it previously found them. First the System will
search the System disk, and then any other disks that are on-line. A description
of what files must be present on a disk that bootstraps is found in the
Installation Guide, Chapter IV.

1.2.2.2 User Files

User files are generally one of three things: program or document text, compiled
or assembled program code, or other data in any sort of user-defined format.
Some naming conventions cover these files as well, and in particular, correspond to
these three types -- the suffix of a filename indicates which type of file it is •

• TEXT files, such as SORTER.TEXT, NONSENSE.TEXT, or even
SYSTEM.WRK.TEXT, are human-readable files, formatted for use by the System's
Editor (typically the Screen Oriented Editor). They include a header block, and
follow certain internal conventions •

• CODE files, such as SORTER.CODE, FISBIN.I.CODE, or SYSTEM.WRK.CODE, are
either P-code or 'native code'. P-code is the code generated by the System's
compilers and executed on the P-machine. Native code refers to code that is

9

Users' Manu al
Introduction

ready to run on some particular processor, such as a PDP-ll, 6502, or Z-BO, to
name a few. .CODE files are typically the output of a compiler or an assembler;
they may also be generated by the Linker from a group of previously existing
codefiles •

• DA T A files such as FOR.SORT.DATA contain information for user programs, in
some format known to the user.

These naming conventions in general do not matter to the Filer; Filer commands
refer to any file regardless of name. The exceptions to this are the G(et, S(ave,
and N(ew commands, which deal with the workfile -- these are described below.

These naming conventions do matter to certain other System programs -- for
example, the Editor will onlyedit .TEXT files. A codefile must be created with
the .CODE suffix; once it is created, the name can be changed to something else,
and it will still be eX(ecute'able. The compilers and assemblers automatically
append .CODE to the names of output files you specify. This Manual describes
these and other such conventions wherever they are relevant.

Other suffixes you may encounter include .BACK files, which are backups of .TEXT
files, and .BAD files, which are immobile files used to cover physically damaged
portions o"f a disk.

More details about file formats are given at the beginning of Chapter Ill.

1.2.2.3 The Workfile

The user· may designate a 'workfile', which can be thought of as a scratchpad area
for keeping new and unnamed material. Many System programs assume you are
working on the workfile unless you specify otherwise. The workfile may be
created by designating existing files, or by creating a new file with the Editor.

Modifying the workfile can cause temporary copies to be generated, which (until
they are saved) are named:

SYSTEM. WRK. TEXT
SYSTEM. WRK.CODE and
SYSTEM.LST. TEXT

SYSTEM. WRK. TEXT can be created upon leaving the Editor; if it happens to
contain a program, then a successful C(ompile or R(un will create
SY STEM. WRK.CODE. If the compilation is successful, the R(un command goes on
to execute the code immediately. SYSTEM.LST.TEXT may optionally be created
by the Compiler.

10

Users' Manual
Introduction

Whenever a program contained in SYSTEM.WRK.TEXT is altered by the Editor,
R(un will recompile it in order to keep SYSTEM. WRK.CODE up to date.

The Filer can S(ave these files under permanent names. The Filer is also used to
designate a new workfile with the G(et command, or remove an old one with N(ew.

The ways in which you can use a workfile will become more apparent from using
Ken Bowles' Beginner's Guide, reading the chapters on System commands and the
Filer, and of course, playing with the System yourself.

II

Users' Manual
Introduction

1.2.3 Device and Volume Organization

The various peripherals that the System may use are referred to as "devices".
When this document refers to a "volume", it means the "contents" of a device. A
single disk drive (a device) may be the home for several floppy disks (volumes).

The System distinguishes between block-structured and non-block-structured devices.
Block-structured devices are usually disks. They contain removable volumes which
each contain a directory and various files. Internally a volume is organized into
randomly accessible fixed-size areas of storage called "blocks"; a block is 512
bytes. Files may be of variable size, but are always allocated an integral number
of blocks. Non-block-structured devices include printers and keyboards and remote
lines. They have no internal structure, and deal with serial character streams.
Non-block-structured devices may perform input, output, or both; the physical
interface to them may be either serial or parallel.

A device or a file may be either a source of data or a sink for data. Many of
the Filer's data transfer operations apply to devices as well as to files.

The System and its intrinsics refer to devices by both name and number. Standard
devices have standard names, and removable volumes like floppy disks have their
names recorded on them. Names and numbers are usually interchangeable. Device
names are followed by a ':' (e.g., PRINTER:) to distinguish them from file names,
and so they can be prefixed to filenames (e.g., SYSTEM:SAVEME. TEXT).

The name of a device that contains removable volumes (such as a floppy drive) is
the name of the volume it contains at any given time. The number of that device
never changes.

T he name of a disk file inclu des (as a prefix) the disk it resides on. The System
always has one default prefix (when the System is booted it is '*', the System
disk) so that the user need not type out the prefix every time a file is needed.

For example, SYSTEM:SAVEME.TEXT and TABLES:SAVEME.TEXT name two
di fferent files on two different disks (both files are called SAVEME). These might
also be specified as 114:SAVEME. TEXT and 115:SAVEME. TEXT. If the default prefix
had been changed by the user to TABLES:, then typing SAVEME.TEXT would be
understood to mean TABLES:SAVEME.TEXT.

12

Users' Manual
Introduction

Here is the complete list of predefined device numbers and names:

Device Number Volume Name

1
2
3
4
5
6
7
8
9 •• 12

c:x:NSCl..E:
SYSTERIVt:
rnAPHIC:

<disk name>:
<d i sk name>:

PRINTER:
REJv1IN:
RE!vOJT:

<disk name>:

Description

screen and keyboard with echo
screen and keyboard without echo
the screen when used for graphics
the system disk
the alternate disk
a line p r in t e r
a serial input line
a serial output line
additional disk drives

This table is given, with some further exposition, in Chapter III on the Filer. Note
that REMIN: and REMOUT: often refer to the same device (for example, a phone
line with a MODEM).

This summarizes the System's treatment of devices. Most use of the System does
not require more hardware knowledge than that outlined here. From time to time,
however, it may be necessary to do some direct device control, some modification
of device characteristics, or some messy on-disk file manipulation (such as rescuing
partially bad files).

The System accomplishes device control through a portion of the emulator. On
most implementations this is called the BIOS (for Basic 1/0 Subsystem). The BIOS
contains device dri vers, and a subset of it, called the -58105 (you guessed it:
Si mplified BIOS) is modifiable by users who have an Adaptable System. Methods
and suggestions for modifying the SBIOS are contained in the Installation Guide.
Still more detailed information may be found in the Internal Architecture Guide.

Also described in the Installation Guide are ways to control the System terminal
(CONSOLE:). The System's knowledge of CONSOLE: comes from a file named
SYSTEM.MISCINFO and a procedure within the Operating System called GOTOXY.
SYSTEM.MISCINFO can be modified using a utility program called SETUP, and
GOTOXY can be rewritten and bound into the Operating System using the utility
LIBRARY.

The System's standard input and output come from CONSOLE:. A user sits at the
console, types commands and other input, and watches the console's screen for
promptlines and other information from the System. The Filer can communicate
wi th other devices, and so can a user's program (either using a language's standard
1/0 routines, or using special p-System intrinsics which can be much more
efficient).

13

Users' Manual
Introduction

It is also possible to temporarily redirect the input or output of a program or the
System itself: using either files other than the standard ones, or scratch buffers in
main memory. This feature allows programs to be used as file "filters", and
programs or the System itself to be driven by script files (a useful test too!).
Refer to the e(Xecute and M(onitor commands in Chapter II, and the UCSD
intrinsics REDIRECT, EXCEPTION, and CHAIN (in Chapter YO.

To complete this section, Figure 3 shows a typical hardware configuration, with
device names and a sketch of the Operating System's 1/0 interface.

Note: before the term UNIT was used in our System to denote a separately
compiled portion of a program, devices/volumes were often called units as well. We
have tried to rectify our terminology, but certain device-handling intrinsics are still
named UNITREAD, UNITWRITE, and so forth. You should understand that these
refer to device control and have nothing to do with program structure (discussed
below). This confusion is unfortunate, but to change the names of the intrinsics
would invalidate many programs now running in the field.

14

.......
VI

Q)

::c
~

8.

....
c
Q)

"0
C

!.
Q)

"0
cb
c :c
(,,)
C'O
E

UCSD PASCAL I/O HIERARCHY

application" or system program

host processor with peripherals

A SAMPLE SYSTEM

PRINTER:

CONSOLE:

MYMESS:

SYSTEM 1:

FIGURE 3

c:
_CII
;:, CD ,.....,
.., CII
o "
~~
n Q)
,...;:, ... ·c o Q)
;:,

Users' Manual
Introduction

1.2.4 Program and Codefile Organization

A reasonably long program can fit into a single text file, be compiled in one
piece, and executed as one block of code. But since many users require programs
of substantial size, and since the UCSD p-System is a system for microprocessors,
which have limited storage, it is frequently necessary to break a program up and
compile it in two or more pieces.

There are other advantages to separate compilation. A single procedure may be
used by several different programs, and so it might be most convenient to compile
that procedure once and use it several times. The same might be true of a
collected set of procedures, or some particular data structure. Judicious use of
separate compilati on can contribute to the organization of a large programming
project.

The $Include option of the Compiler allows a programmer to store parts of
program text in separate files. The Compiler reads them and compiles the entire
program at one time. This is often a useful thing to do, especially if the included
portions are not too long, and shared by more than one program. But using
$Inclu de does not address the problem of creating a program which is too large to
compile in one piece.

Furthermore, it may be advantageous to embed procedures of a different language
wi thin a host program. This is the case when a program is not generally time­
critical, but contains some time-critical sections -- the real-time sections may be
isolated and written as assembly language routines.

This section and the rest of the Manu-al use the term "routine" to mean a
procedure, function, or process, and the term "comp.ilation unit" to refer to a
program or UNIT. A compilation unit which uses separately compiled routines is
called a "host compilation" or "client".

Note: Thou gh this secti on uses Pascal for its program examples, the separate
compilation and memory-management features available in Pascal have their
analogs in the other high-level languages provided with the p-System. See
documentation for the appropriate language.

A UNIT is a collection of routines and data .structures. It may also contain
initialization and termination code. Like a program, it may be compiled by itself,
but unlike a program, it cannot be executed, except when invoked from a program.
Programs and other UNITs may use UNITs that have already been compiled.

In the p-System, a codefile is organized into "segments". A compilation unit
contains at least one segment -- the routines and data of the compilation unit
itself. This segment is called the "principal segment". If the compilation unit
contains SEGMENT routines (see below), each segment routine will be a "subsidiary

16

Users' Manual
Introduction

segment" that accompanies the principal segment. If the compilation unit
references separately compiled UNITs, those are not considered subsidiary segments,
but are named in a list of segment references that accompanies the principal
segment. Segments are the basic unit of transfer when code is read from a disk
or removed from memory.

The utility LIBRARY may be used to group compilation units together in a single
codefile, and modify the organization of existing codefiles. Codefiles are often
referred to as "libraries", especially when they don't .contain a program.

When a host program that uses other units is executed, the System searches for
the proper code, using the host segment's segment reference list.

The user may maintain one or more "library text files", which are files that
contain a list of codefiles that a host compilation may need. When the System
searches for a needed unit, it looks first (in order) at the codefiles named in the
user's default library text file, and if that search fails, it l.ooks in
*SYSTEM.LIBRARY. The default name for the user's library text file is
*USERLIB. TEXT; this can be changed by an execution option (see Chapter II). A
compilation unit can also specify the library it needs by using the $U Compiler
option (see Section VI.3). Libraries are discussed in detail in Chapter VIII.

In the source code, a "client" compilation unit specifies that it needs a certain
UNIT (or more UNITs) by a declaration immediately after the program (or UNIT)
identification. For example:

PROGRAM W CONTROL;
USES SYNCHPROCS, TREES;

A UNIT itself may be outlined in the following way:

UNIT I':"AM_A_SAMPLE;

INTERFACE
••• {data declarations and procedure declarations}

1M PL EMENT A TI0N
••• {data dec-larati ons and procedure code}

begin {initialization and termination block}
••• {initialization code}
*** •
••• (termination code}

end.

17

Users' Manu al
1 ntroduction

There are two main parts. The INTERFACE part contains declarations of
procedures and data that may be used by the client. The IMPLEMENTATION part
contains code for the procedures declared in the INTERFACE part, as well as data
declarations and other procedures that are used by the procedures declared in the
INTERF ACE part, but which may not be used by the client. Finally, there is an
optional section of Pascal code which contains two parts: an initialization part,
which is code that is executed before any of the main body of the host program is
executed, and a termination part, which is code executed after the host program's
code has completed. These 'two parts are separated by '**~

When routines are assembled rather than compiled, they are declared EXTERNAL
in the host program, e.g.:

PROCEDURE HANDSHAKE (VAR WHICH: STRING; SEM: INTEGER); EXTERNAL;

The assembled routines must carefully adhere to Pascal's calling and parameter­
passing .. conventions, and respect System constraints on the use of machine
resources such as registers. See Chapter VU.

External" routines (assembled code) must be bound into a host by the Linker; once
bound in, they remain part of the program. If the host program uses external
r ou tin es contained in codefiles other than SYSTEM.LIBRAR Y, the Linker must be
run explicitly (using the LCink command).

To partition a program or UNIT into separate pieces that are independently loaded
from disk as needed, the user may designate routines as SEGMENT routines, for
example:

SEGMENT PROCEDURE FILL CORE;
SEGMENT FUNCTION MUDDLE (MEDDLE, MIDDLE: INTEGERS): REAL;
SEGMENT PROCESS RUNAWAY (LOCK_IT: SEMAPHORE);

Each segment routine occupies one subsidiary segment in a codefile.

While a program is running, all code segments, both principal and subsidiary,
compete for main memory ona dynamic basis. (The one exception to this is
nati ve code segments, which may have to be memory-resident. See Chapter Vll.)
Segments are loaded only when they need to be executed. When they are no
longer needed, they remain in memory until the space they occupy is needed for
some other use.

Using segment routines allows the System to better allocate memory, since only
those segments that are being used need be in memory at any given time. The
intrinsics MEMLOCK and MEMSWAP can be used to directly control the residence
of a segment (see both Chapter VI, and the Internal Architecture Guide).

18

Users' Manual
Introduction

Such things as a program's routines for initialization and termination are prime
candidates for· declaring as SEGMENTs, since they are often bulky, and are called
only once. There is no need for them to take up memory space after (or before)
they have served their purpose.

Programs may be "chained", that is, a program may designate another program to
be executed when the "chaining" program has finished executing. See the intrinsic
CHAIN (in Chapter VI).

Using the p-System, standalone assembly language programs can be created, linked,
loaded, and run. See Chapter Vll on assemblers, and Section X.I on the
COMPRESSOR utility.

A fuller discussion of the questions of separate compilation, linking, and memory
management, is given in Chapter VIlle

19

Users' Manual
Introduction

I.J Note on Bug Reporting

Reporting problems is a practice that benefits everyone. Customers can learn that
the problem or bug has already been solved, and what the fix is, or that it was
previously unknown, and that steps will be taken to fix it in future versions.
Soft ware authors benefit from the reports -- not everyone is familiar with all the
problems which users discover, nor all the applications for which the System might
be used. New uses lead to new problems, which lead in turn to new
improvements.

Some users try to fix problems on their own, without consulting their supplier.
There is no need to be a martyr -- we ask that you do report problems, even if
you think they may already be known (it's not necessarily true), or if you have
found some private solution (the solution you find may be something your supplier
would like to know).

What is required in a bug report? A phone call, or letter, or a Problem Report
mailed to the appropriate support office, may all be adequate, but only if they
contain certain information. Bug reports are like UFO sightings: one report with
no evidence is regarded with suspicion, many reports with no evidence will
nevertheless spark an investigation, and a single report which contains evidence and
a thorough description will be believed and closely pursued.

There is a pragmatic difference between a "bug" and a "glitch" -- a bug is
dependable, a glitch is intermittant. If a problem can be duplicated, then it is a
bug, and much more time which is much more productive will be spent on tracking
it down. That is why we encourage you to send thorough problem reports.

We do ask that you be aware of the difference between a bug report and a

suggestion. Some people will inevitably object to things that are intended
"features" of the System. There is nothing wrong with that -- the design process
itself involves debate and compromise. If you have a suggestion, please report it
-- only through feedback can the System improve. But please don't claim that
your suggestion reports a bug -- that only confuses the issue. Your standard here
is the Users' Manual. It attempts to describe the p-System that is sent out. If
there are discrepancies between the manual and your software, then you should
submit a problem report. If the manual accurately describes the situation you
object to, then report your dissatisfaction, but realize that the way the System
operates is already known.

When you report a problem, the rule of thumb is: the more information, the
better. These are the things that should be specifically stated:

environment: what part of the system was running?
what version of Pascal were you using?
what processor do you use?

20

actions: what were you trying to do?
what were you doing immediately before

the problem appeared?
what exactly happened that was a problem?

and in what order?

reactions: have you figured out a workaround?
how seriously does the problem affect your work?
have you had this problem before (even transiently)?

Users' Manual
Introduction

If you think it would help, you might include a listing with your report.
Sometimes a listing will be needed to understand a problem.

Remember that debugging is the slowest part of any software development, so do
not expect problems to disappear overnight. Nonetheless, we fully appreciate the
time you take to fill out a useful report. Your concern for the System is what
keeps it maturing.

Details of who to contact for support assistance should be included with the
System you re-ceive. If you receive your p-System through some supplier other
than SofTech Microsystems, then you should always contact that supplier directly,
unless you have been specifically instructed otherwise.

21

Users' Manual
System Commands

22

11. THE SYSTEM COMMANDS

Users' Manual
System Commands

This chapter includes a discussion of the commands at the System level, and a full
description of each command. This is the outer level of System control, and these
commands invoke basic System functions such as calling the Compiler, the Editor,
the Filer, etc.

You may think of the System command level (the "outer" level) as the chief
control for the entire System, which indeed it is -- you have already (in Figure 1)
seen the System diagrammed as a tree of command levels, with the System
commands as the outer level available from the root node.

I t is also convenient, and in some ways more useful, to think of the System level
as the communications interface between the sub-modules. Thus, the Filer
ini tializes a workfile which the Editor uses to create a textfile which the Compiler
uses to create a piece of a program which the Linker uses to create a runnable
file which the eX(ecute command sets into operation. This sequence of events is
controlled by the System commands. It is done "by hand", since the System was
from the start conceived as an interactive environment. The point is that the
System commands are what you must use to accomplish interaction between the
various System components.

23

Users' Manual
System Commands

1I.l Promptlines

The promptline (sometimes called a menu) shows the command options at any given
level of the System. Each command is invoked by a single letter -- 'E' for Edit,
's' for Save, and so forth. Some things all promptlines have in common are:

••• the name of the 'level' or System module at the beginning;

••• a list of available commands, with the calling letter
capitalized and separated from the rest of the word by '(';

••• the version number of the program at the end of the line,
in square brackets.

Here are a few representative promptlines:

Command: E(dit, R(un, F(ile, C(omp, L(ink, X(ecute, A(ssem, ? [IV.O]

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, OCate, Q(uit ?[A

>Edit: A(djust C(py O(lete F(ind l(nsrt J(mp R(place Q(uit X(chng Z(ap [E.6]

Anywhere in the p-System, a promptline will almost always be displayed at the top
of the screen, and let you know what your options are. It is not always visible
when you are using the Editor to insert text, and it is never visible while a user
program is running. Typing unintelligible commands at any level may cause the
promptline to go away; in this case, a space (' ') will cause the screen to be
cleared and the correct promptline to be displayed.

Some promptlines include a '?'. There are often more commands than can fit onto
one line, and typing '?' will display those commands. For example:

Filer: B(ad-blks, E(xt-dir, K(rnch, M(ake, P(refix, V(ols, X(amine, Z(ero

••• is the remainder of the Filer's menu. (This feature is particularly useful if
your console's screen is less than 80 characters wide.)

At the System command level, typing a command letter does one of four things: it
calls a program such as the Filer, it does an operation on the workfile (such as
C(ompile or R(un), it begins a file operation which will prompt you directly for one
or more filenames (such as eX(ecute or LCink), or it somehow alters the System
state (such as H(alt). When you are prompted for filenames, you can usually omit
the conventional suffix. For example, you wish to run GRISWICH.CODE. Type
'X' for eX(ecute. You will then be prompted:

Execute what file?

24

Users' Manual
System Commands

••• and you type 'GRISWICH'<return>. The '.CODE' will be assumed.

You may have already seen the System promptline and screen as it appears after
booting, and may have played with the System on your own or in conjunction with
Ken Bowles' book. This is all the familiarity with promptlines that you need in
order to start productively using the various Systemcohimands.

If y'ou are using a line-oriented terminal (such as a teletype), then you can set
HAS SLOW TERMINAL to True in your SYSTEM.MISCINF'tj file; and the System
will abbreviate most promptlines. If·· you have a CRT with narrow lines (less than
80 characters wide), then set SCREENWIDTH in SYSTEM.MISCINFO to the
appropriate value. The System will display as much of a promptline as will fit on
a line, and typing '?' causes it to display the remaining commands. Refer to the
Installation Gu ide for details of modifying SYSTEM.MISCINFO with the SETUP
utility.

25

Users' Manual
System Commands

1I.2 Disk Swapping

Since the IV.O Operating System does a good deal of swapping code segments into
and out of main memory during the execution of a program, and since the user
may change disks at various times (especially while running the System itself), the
Operating System has various checks to aid disk handling, and reduce the possibility
of error.

When a program requires a code segment that is on disk, and it is no longer on
the disk in the drive from which it was originally read, the Operating System will
display a prompt that looks something like this:

Segment not found on device II 5
Please replace volume USERI
type <space> to continue

in this example, the System requests the disk USER 1:, and will wait until the
user types <space>. (If the user types <space> but .has not replaced USER1:, the
System will redisplay the prompt.)

If at any time during the execution of a program, a device is found to contain a
v olu m e that the System did not expect, the System considers that device
"qu estionable" for the remainder of that program's execution. All subsequent reads
and writes that the Operating System does to that device will check to see that
the volume name is correct (provided the correct volume name is known). If the
volume name is deemed incorrect, the System displays a prompt of the following
sort:

Please replace volume USER2 in device II 5
type <space> to continue

in this case, the System expected the disk USER2:, did not find it, and
therefore requested it.

These situations should not often arise, but will occur when a program requires
more disk storage space than is available from on-line disk drives.

This sort of checking is not done for explicit UNITREADs and UNITWRITEs that
may appear in a user program.

26

Users' Manual
System Commands

11.3 Execution Option Strings

The eX(ecute command allows the user to specify some options that modify the
System's environment. These include redirecting standard program 1/0 or standard
System I/O, changing the default prefix (i.e., the volume name part of a filename;
see Chapter III or Section 1.2.3), and changing the default library text file ,(see
Section 1.2.4 or Chapter VII!). These options are also available from within a user
program.

All of these options are specified by means of "execution option strings". An
execution option string is a string that contains (optionally) one filename, and zero
or more option specifications. An option specification consists of one or two
letters followed by an equals sign ('='), possibly followed by a filename or literal
string.

These are the possible execution options, with a summary of their uses:

L=
p=

PI=
PO=
1=
0=

change the default library text file
change the default E....!'efix

redirect EJogram input
redirect E....!'0gram ~tput
redirect System input
redirect System output

either capital or lower-case letters may be used.

Several different execution options may be entered at a single time. If thi-s is the
case, they must be separated by one or more spaces. There may optionally be a
single space between the ' =' and the following filename or string.

These options are described in full, detail below. They may be invoked by USing
the eX(ecute command. Causing redirection from within a user program requires
the use of the REDIRECT intrinsic (and possibly the EXCEPTION intrinsic); refer
to the descriptions of these intrinsics in Chapter VI. The intrinsic CHAIN also
makes use of execution option strings.

Redirecting System input to come from a file or main memory amounts to driving
the System from a script '. of commands.' This is a useful tool, especially in testing
or turnkey applications. One way to create a script for the System is to use the
M(onitor command, which records keystrokes by writing them to' a file while they
are performed. M(onitor is described in Section II.4.8.

Note: Redirection applies only to the standard files 'input' and 'output', and
therefore has no effect on low-level device I/O intrinsics such as UNITWRITE,
BLOCKREAD, etc.

27

Users' Manual
System Commands

II.3.1 Alternate Prefixes and Libraries

The user can change the default prefix with the P= execution option string. After
this is done, all filenames that do not explicitly name a volume will be prefixed by
the default prefix. This is equivalent to using the PCrefix command in the Filer
(see Ch apter 111).

Example (user inputs are underlined):

Type 'X':

Execute what file? p=zoom

the default prefix is now ZOOM:.

In a similar fashion, the default "library text file" can be changed. The library
text file is a file that contains the names of a number of user libraries. When a
program with separately compiled units is run, the System searches for them first
in the files named in the library text file; and then in *SYSTEM.LIBRARY. When
the System is booted, the default library text file is *USERLIB. TEXT. More
information about libraries may be found in Chapter VIlle

To change the default library text file, use the execution option string L=.

Examples:

Execute what file? L=mylib

makes the file MYLIB. TEXT the new default library text file.

Execute what file? advent l=mylib

makes the file MYLIB.TEXT the new library text file, and executes the file
ADVENT.CODE.

Important note: The order in which execution options are performed is:

28

1) Change prefix (if the P= option is present);
2) Change library text file (if the L= option is present);
3) Do the I/O redirections (if any present)(the order of redirection

options is irrelevant).

1I.J.2 Redirection

The following execution option strings control redirection:

PI=<filename>
PI=<string>
PO=<filename>
I=<filename>
I=<string>
O=<filename>

Users' Manual
System Commands

PI= redirects E,rogram .!.nput. PI=<filename> causes the input to a program to come
from the file named. PI=<string> causes the input to a program to come from the
program's scratch input buffer, and appends the string given to the scratch input
buffer (scratch input buffers are discussed below).

PO= redirects Erogram £utput. PO=<filename> causes program output to be sent
to the file named.

PI = overrides any previous input redirection. Likewise, PO=overrides any previous
output redirection. Using PI= (PO=) wi thout a filename makes program' input
(output) the same as System input (output).

1= redirects System .!.nput. I=<filename> causes System input to come from the file
named. I=<string> causes System input to come from the System's scratch input
buffer, and appends the string to the scratch input buffer.

0= redirects System output. O=<filename> causes System output to be sent to the
file named. -

Like PI=, 1= overrides any previous 1=, and like PO=, 0= overrides any previous 0=.
Using 1= without a filename resets System input to CONSOLE:. Using 0= without a
filename resets System output to CONSOLE:.

For PI=<filename> and I=<filename>, the <filename> may specify either a disk file
or an input device that sends characters. If the file is a disk file, redirection
ends at EOF; the System performs the equivalent of an input redirection with no
filename, thus resetting input. If the file is a device, redirection continues until
explicitly changed by the user. This allows a user to control the System from a
remote port (such as REMIN:).

For PO=<filename> and O=<filename>, the <filename> may speci fy either a disk file
or an output device that receives characters. If the file is a disk file, it is
named literally as shown (i.e., to make it a textfile, the user must explicitly type
• TEXT). Whenever output redirection is changed, the file is closed and locked.

29

Users' Manu al
System Commands

For PI=<string> and I=<string>, the <string> may be any sequence of characters
enclosed in double quotes (''''). Any double quote embedded in the string must be
typed twice. Scratch input buffers are located in main memory. Program or
System input may be redirected to come from both a file and the appropriate
scratch input buffer, but if this is the case, the scratch buffer will be used first
(u ntil it is empty). Strings are always appended to scratch input buffers, so that
they are read in order (i.e., first in, first out). Commas in scratch input buffers
are treated as carriage returns «return».

Program redirection ends when the program terminates. If there are still
characters in the program's scratch input buffer, they are lost.

System redirection ends when the System terminates with a Halt or a runtime
error. An ordinary l([litialize will not alter System redirection. The System's
scratch input buffer is lost.

Note th at redirection applies only to the standard files called 'input' and 'output'
in Pascal (which have their analogs in the p-System's other high-level languages).
It affects file-level operations and intrinsics, but not device-level intrinsics such as
UNITREAD, UNITWRITE, BLOCKREAD, BLOCKWRITE, and so on. It also cannot
affect calls of the form:

REWRITE(MY FILE,'CONSOLE:');
WRITE(MY y"IIE, LOTS_OF _TEXT)

and so forth, because these calls do not involve the standard input and output
files.

A user program can also take advantage of redirection with the intrinsic
REDIRECT, and clear redirection with the intrinsic EXCEPTION. The CHAIN
intrinsic allows the user to "queue" an execution option string for execution after
the program that contains it has finished executing. All these routines are
described in Chapter VI.

30

Users' Manual
System Commands

Examples:

Execute what file? YEEN PI=IN PO=OUT

Execute what file? PO= OUT PI= IN yeen

both redirect program input to the file IN, and program output to the file OUT.
The program is YEEN.CODE.

Execute what file? 1=

stops System input redirection.

Execute what file? PO= storeme.text PI= l="fgRUNME,gr" P=WORK2

this would:

make the default prefix WORK2:;
redirect program output to the file WORK2:STOREME.TEXT;
turn off program input redirection;
cause the System to follow the script "fgRUNME,qr", which would:

f: enter the Filer;
gRUNME,: G(et the workfile WORK2:RUNME. TEXT

and WORK2:RUNME.CODE;
(note that the comma acts as a carriage return)

q: Q(uit the Filer, and •••
r: R(un the program WORK2:RUNME.CODE

(note that its output has been redirected) •

••• this was admittedly an elaborate, though not inconcievable, example. The
following is a slightly different example that would do the same thing:

Execute what file? PO= store me. text PI= 1="fpWORK2:,gRUNME,gr"

al thou gh usi ng the Filer to change the default prefix is probably a waste of
ti me and space.

31

Users' Manual
System Commands

Il.4 Individual Commands Alphabetically

1l.4.0 Prompts for Filenames

Several of the System commands prompt for filenames. The conventions are the
same for all responses to filename prompts throughout the System. A filename is
typed in as letters, and followed by a <return>. Before <return> is typed, the
name may be corrected by using <backspace> or <delete line> and re-typing.
Prompts often expect .TEXT or .CODE files, and these standard suffixes may be
omitted from the filename -- the System programs will append them automatically.
To prevent this automatic appending, follow the filename with a'.'.

When a program (such as a compiler) requires both a source and a code file name,
the codefile name may be given as '$', which is the same name as the source file
with .CODE appended, or as '$.', which is the source file name only.

Example (underlined portions are user input):

Assemble what file? GRISWICH
Code file name? 1

causes the file GRISWICH. TEXT to be assembled, and the resulting code placed
in GRISWICH.CODE.

Device names may also be used.

Example:

Listing file? PRINTER:

Responding to a filename prompt with just <return> causes some default filename
to be use d (e.g., *SYSTEM. WRK.CODE). If there is no default value, the program
will go on to the next action (or abort, because there is nothing left for it to do).

32

1l.4.1 ASSEMBLE

On the promptline: A(ssem.

ASSEMBLE
Users' Manual

System Commands

Causes SYSTEM.ASSMBLER (note no 'E') to be executed. If a workfile is present,
then either *SYSTEM.WRK.TEXT or the designated .TEXT file is assembled to a
file of a gi ven native code (depending on which of the assemblers has been named
SYSTEM.ASSMBLER). If there is no workfile, the user is prompted for a source
file. The user is also prompted for a codefile and a listing file; the defaults for
these are *SYSTEM. WRK.CODE and no listing file.

If the Assembler encounters a syntax error, it displays the error number, the
source line in question, and (if the file *xxxx.ERRORS is present, where xxxx is
the correct processor name, e.g., ZBO.ERRORS) an error message; finally, it
displays the promptline:

Line 1111, error 111111: <sp>(continue), <esc>(terminate), E(dit

The user has the choice of continuing assembly «space», aborting assembly
«escape», or returning directly to the Editor to correct the source file ('E').

Chapter VB describes the Assemblers in detail.

33

COMPILE
Users' Manual
System Commands

1l.4.2 COMPILE

On the promptline: C(omp.

Causes SYSTEM.COMPILER to be executed. If a workfile is present, then either
*SYSTEM.WRK.TEXT or the designated .TEXT file is compiled to P-code. If there
is no workfile, the user is prompted for a source file. The user is also prompted
for a codefile name; the default for this is *SYSTEM. WRK.CODE.

If the Compiler encounters a syntax error, it displays the error number, the source
line in question, and the promptline:

Line 1111, error 111111: <sp>(continue), <esc>(terminate), E(dit

The user has the choice of continuing compilation, aborting compilation, or
returning directly to the Editor to correct the source file. In the latter case, the
cursor will be positioned at the point of error detection, and if the file
*SYSTEM.SYNT AX is present, an error message will be displayed.

Chapter VI describes the Pascal Compiler in detail. FORTRAN and BASIC are
described in separate manuals.

34

11.4.3 EDIT

On the promptline: E(dit.

EDIT
Users' Manual

System Commands

Causes SYSTEM.EDITOR to be executed. If a .TEXT workfile is present, this is
displayed and available for editing. If no workfile is present, the user is prompted
for a filename, with the additional options of either <esc)aping the Editor, or
entering the Editor with no file at all (with the intent of creating a new one).

The Editor is used for creating program or document textfiles, or altering and
adding to existing ones. It is described in detail in Chapter IV. Some users use
Y ALOE as SYSTEM.EDITOR; Y ALOE is described in Chapter V.

35

FILE
Users' Manual
System Commands

11.4.4 FILE

On the promptline: F(ile.

Causes SYSTEM.FILER to be executed. The Filer provides commands for
maintaining the workfile, moving files, and maintaining disk directories. It is
described in detail in Chapter Ill.

36

1l.4.5 HALT

On the promptline: H(al t.

HALT
Users' Manual

System Commands

Causes the System to stop execution. On some implementations, follows this halt
wi th a bootstrap. On most implementations, the only way to restart the System
after a H(alt is by doing a hardware bootstrap.

37

INITIALIZE
Users' Manu a1
System Commands

11.4.6 INITIALIZE

On the promptline: l(nit.

Causes the file *SYSTEM.STARTUP, if present, to be executed.
SYSTEM.STARTUP must be a codefile; it is executed automatically after a
bootstrap or an 'I' command.

A SYSTEM.STARTUP may come with the System; if it does, it gives advice on
getting started; once you have followed the advice, you may delete the
SYSTEM.ST ARTUP (possibly saving a copy for future reference).

You may also create your own SYSTEM.STARTUP. Some applications of this
might be displaying reminders for the next session with the System, or creating a
program to run in a turnkey mode. To create a SYSTEM.STARTUP, you must
create a .CODE file, and then change its name to SYSTEM.ST ARTUP.

All runtime errors that are not "fatal" (see Appendix A) cause the System to do an
initialize. At initialize time, much of the System's internal data is rebuilt, and
SYSTEM.MISCINFO is reread.

An l(nitialize will not clear any redir.ections (see Section 11.3), but any runtime
error will.

38

11.4.7 LINK

On the promptline: LCink.

LINK
Users" Manual

System Commands

Causes the file SYSTEM.LINKER to be executed. The Linker allows you to link
native code (assembled) routines into host compilation units (compiled from a high­
level language). It also allows you to link native code routines together. It is
described in detail in Chapter VIll, particularly Section VllI.4.

39

MONITOR
Users' Manual
System Commands

11.4.8 MONITOR

On the promptline: M(on.

Redirecting the System's input (see Section 1l.3) amounts to driving the System
with a script; one convenient way to create such a script is to use M(onitor.
While in M(onitor mode, the user may use the System in a normal manner, but all
user input is saved in a file. Thus, to automate a sequence of System commands,
the user B(egins a monitor, and goes through all the commands that are to be
remembered. Then the user E(nds the monitor, and all user input is saved as a
file. This file can be used by redirecting System input to the monitor file with
the 1= execution option string.

When 'M' is typed to enter M(onitor, the following prompt is displayed:

Monitor: B(egin, E(nd, A(bort, S(uspend, R(esume

B(egin starts a monitor. The user is prompted for a filename, and then returned
to the System promptline. If a monitor file has already been opened, an error
message is displayed.

E(nd ends a monitor, saves the monitor file, and returns the user to the System
promptline. If no monitor file is open, an error message is displayed.

A(bort ends a monitor and returns to the System promptline, but does not save the
monitor file.

S(uspend turns off monitoring but does not close the monitor file. In other words,
the user is returned to the System promptline and can now type commands without
recording them, but the monitor file remains open, and more can be added to it by
using R(esume.

R(esume starts monitoring again, and returns the user to the System promptline.
If monitoring had not been S(uspend'ed, nothing will happen.

The monitor file can be either a .TEXT file or a datafile. If it is .TEXT, the
user can use the Editor to alter it -- but not if the monitoring has recorded
special characters which the Editor does not allow a user to type.

The M(onitor command itself can never be recorded in a monitor file.

40

11.4.9 RUN

On the promptline: R(un.

RUN
Users' Manual

System Commands

Causes the current workfile to be executed. If there is no current codefile in the
workfile, R(un calls the Compiler, and if the compilation is successful, runs the
resulting code. If there is no workfile at all, R(un calls the Compiler, which then
prompts for the name of a textfile to compile.

If th e codefile requires linking to one or more external codefiles, then the Linker
is automatically called, and searches *SYSTEM.LIBRARY. If the external files
cannot be found there, an error results.

41

USER RESTART
Users' Manual
System Commands

1l.4.10 USER REST AR T

On the promptline: U(ser restart.

Causes the last program executed to be executed over again, with all file
parameters equ al to what they were before. U(ser restart will not restart the
Compiler or Assembler. Other than that, it is useful for multiple runs of a user
program, returning to the Editor after a workfile U(pdate, and so forth.

42

11.4.11 EXECUTE

On the promptline: X(ecute.

eX(ecute displays the following prompt:

Execute what file?

EXECUTE
Users' Manual

System Commands

and the user should respond with an execution option string (see Section 11.3,
above). In the simplest case, this string contains nothing but the name of a
codefile to be executed (as described in Section 11.4.0).

If th e codefile cannot be found, the message 'Can't find file' is displayed. I f all
the code necessary to execute the codefile has not been linked in, the message
'Must LCink first' is displayed. If the' codefile contains no program (i.e., all its
segments are units or segment routines), the message 'No program in '<filename) is
displayed.

If the execution option string contains only option specifications, they are treated
as described in Section 11.3, above. If it contains both option specifications and a
codefile name, the options are handled first, and then the codefile is executed
(unless one of the errors named in the preceding paragraph occurs).

eX(ecute is commonly used to call programs that have already been compiled. It
may also be used simply to take advantage of the execution options.

The codefile must have been created with a .CODE suffix, even if its name h9s
subsequently beenchanged.

43

Users' Manual
File Handling

44

111. FILES AND FILE HANDLING

111.1 Types of Files

Users' Manual
File Handling

A file is a collection of information which is stored on a disk and referenced by a
filename. Each disk has a directory which contains the filename and location of
each file on the disk. The Filehandler, or Filer, uses the information contained in
the disk directory to manipulate files.

One of the attributes of a file is its type. The type of the file determines the
way i n w h i chi t can b e use d. File t y pes are i n d i cat e d by the su f fix to th e
filename (if one is present; the directory maintains a filetype field for each file).
Reserved type suffixes for filenames are:

.TEXT
• BACK

.CODE

• DATA

• FOTO

.BAD

Human readable text, formatted
for the editors •

Executable code, either P-code
or machine code.

Data in a user-specified format •

A file containing one graphic screen image •

An unmovable file covering a physically
damaged area of a disk.

111.2 File Formats

• TEXT and .BACK files contain a header page followed by the user-written text,
interspersed with blank-compression codes. The header page contains internal
i nf ormation for the editors. The Filer will transfer the header page from disk to
disk, but never from disk to an output device (e.g., PRINTER: or CONSOLE:).

Note that all files created with a suffix of • TEXT will have the header attached
to the front~nd so they will be treated as textfiles throughout their life.

The header page is two blocks long (1024 bytes), and the remainder of the file is
also organized into two-block pages. A page contains a series of complete text
lines, and is padded with NULs. A complete text line is 0 •• 1024 characters -- the
last of those characters must be a <return> (ASCll CR), and the first two may be
a blank-compression pair. The optional blank-compression pair consists of an ASCll
OLE followed by a byte whose value is 32+n, where n is the number of characters
to indent. Text lines are typically 0 •• 80 characters in length, so as to fit on
standard terminals.

45

Users' Manual
F He Handling

Textfiles are considered to be unstructured files, and so the intrinsic SEEK will not
work with them (SEEK is described in Chapter VI) •

• CODE files contain either compiled or assembled code. They begin with a single
block called the segment dictionary, which contains internal information for the
Operating System and Linker. Codefiles may also contain embedded information.
They are described in detail in the Internal Architecture Guide •

• DA T A files have any format that their creator chooses. The System knows
nothing about the internals of a datafile •

• FOTO files are declared as follows:

type screen = packed array [0 •• 239, 0 •. 319] of Boolean;
var fotofile: packed file of screen;

and are applicable only -- to screens that allow bit-mapped graphics of those
dimensions.

111.3 Volumes

A volume is any 1/0 device, such as the printer, the keyboard, or a disk. A
block-structured device is one- that can have a directory and files, usually a disk of
some sort. A non-black-structured device does not have internal structure; it
si mpl y produces or consumes a stream of data. The printer and the keyboard, for
example, are non-block-structured. The table below illustrates the reserved volume
names used to refer to non-block-structured devices, the device number associated
with each device, and the device names associated with the System disk and other
peripherals.

46

Users' Manual
File Handling

===
Device Number Vol ume 10 Description

===

1
2
3
4
5
6
7
8

9-12

CXl\ISOLE:
SYSTEPM:
ffiAPHIC:

<volume name>:
<vo I ume name>:

PRINTER:
REMIN:
R8vOJT:

< v 0 I ume n ame > :

screen and keyboard with echo
screen and keyboard without echo
the screen when used for graphics
the System disk
the alternate disk
the line printer
serial 1 ine input
serial 1 ine output
additional disk drives

===

TABLE 111.1

Note that device 113 (GRAPHIC:) only applies to users of Terak machines.

11l.4 The Workfile

The work file is described in Section 1.2.2.3. It is a 'scratchpad' for creating files,
and testing those files if they contain program text. The workfile is often stored
temporarily in the files SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE. These may
be ei ther newly-created files, or copies of existing disk files which have been

designated as the new workfile.

The Filer is the means of saving a workfile under permanent filenames (the S(ave
command), designating existing files as the current workfile (the G(et command), or
clearing a workfile for new work (the N(ew command). More detail on these
functions is provided in the description of each of these commands, and you should
refer to those discussions below.

47

Users' Manual
File Handling

111.5 Filenames

Many Filer commands, System prompts, and System lntrinsics require the user to
respond wi th at least one file specification. The diagram below illustrates the
syntax of file specification.

48

<file specification)

volume ID

positive
integer

FIGURE 4

Volume i.d. syntax can be expanded thusly:

volume
name

FIGURE 5

Users' Manual
File Handling

As shown in the table above, the volume name (e.g., 'CONSOLE:') and the physical
device number (e.g., 'Ill:') may both be used, and are in fact interchangeable.

Volume names for block-structured volumes can be assigned by the user. A
volume name must be 7 characters long or less and may not contain '=', '$', '?' or
,. R ese rv e d volume names for non-block-structured devices are given in Table

lll.l. The character '*' is shorthand for the volume 10 of the System disk. The
character ':' is shorthand for the volume 10 of the default disk. The System disk
and default disk are equivalent unless the default prefix has been changed. This
can be done with the P(refix command (see below). The System disk is also called
the 'root disk' here and there. 'lI<device number>' is equivalent to the name of
the volume in the drive at that time.

A legal filename can consist of up to 15 characters, including the • TEXT and
.COOE suffixes, which are appended to a filename when the file is created, and
reflect the internal organization of the file. Lower-case letters are translated to
upper-case, and blanks and non-printing characters are removed from the filename.
Legal characters for filenames are the alphanumerics and the special characters ' -',
'I', ' " ' " and '.'. These special characters may be used as mnemonics to indicate
relationships among files and/or to distinguish several related files of different
types.

49

Users', Manual
FHe Handling

Filenames must not contain the following special characters: '$',
','. The reason will become apparent in the next section.

, '.~

50

'. ' . , =, '7', and

111.6 Using the FileI'

Users' Manual
File Handling

Filer commands are described in detail below, in Section 111.4.3. They are listed
one to a page, in alphabetical order. It is recommended that you read the
following two sections as background for using the Filer commands; this entire
chapter is meant to serve both as instruction and as a reference.

111.6.1 Prompts in the Filer

Type "F" at the Command level to enter the Filer. The following prompt is
displayed:

Filer: G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans, O(ate, Q(uit [A]

Typing '7' in response to this prompt displays more filer commands:

Filer: B(ad-blks, E(xt-dir, K(rnch, M(ake, P(refix, V(ols, X(amine, Z(ero

The individual Filer commands are invoked by typing the letter found to the left
of the parenthesis. For example, 's' would invoke the Save command.

In the Filer, answering a Yes/No question with any character other than 'Y'
consti tutes a 'No' answer. Typing an <esc> will return the user to the outer level
of the Filer.

Many commands will prompt you for a filename. The full syntax for a file
specification (which is either a single filename or an expression using wildcards) is
gi ven in Figures 4 and 5 above. Always follow file specifications with a <return>.
For a description of wildcards, see below.

Should you speci fy a file on a volume (or just a volume) that the Filer cannot
find, it will respond with:

No such vol on line

If more than· one volume on line has the same name, the Filer will continually
display a warning to that effect. The user must be careful to specify which
volume a file is on (usually using device numbers, e.g., 114, 115) in order to avoid
confusion. The situation is especially confusing when both disks are System disks.
In general, although it may sometimes be necessary to have two volumes with the
same name on line together, the user should try to a void this situ ation.

Whenever a Filer command requests a file specification, the user may specify as
many files as desired, by separating the file specifications with commas, and
terminating this 'file list' with a <return>. Com,mands operating on single

51

Users' Manual
File Handling

filenames will keep reading filenames from the file list and operating on them
until there are none left. Commands operating on two filenames (such as C(hange
and T(rans) will take file specifications in pairs and operate on each pair until only
one or none remains. If one filename remains, the Filer will prompt for the
second member of the pair. If an error is detected in the list, the remainder of
the list will be flushed.

111.6.2 Names of Files

111.6.2.1 General Filename Syntax

For the Filer, filename syntax is the same as for the System in general, as
described above in Section 111.5. In addition, a filename may be followed by a size
specification of the form '[nJ' where n is an integer specifying the number of
blocks that the file must occupy. Size specifications are dealt with below, in the
description of those commands that are affected by them.

All of th e Filer commands except G(et and S(ave require full filenames, including
suffixes such as .TEXT and .CODE. G(et and S(ave supply these suffixes
automatically, so that using the workfile will be convenient.

111.6.2.2 Wildcards

The wildcard characters, '=' and '?', are used to specify subsets of the directory.
The Filer performs the requested action on all files meeting the specification. A
file specification containing the subset-specifying string 'DOC=TEXT' notifies the
Filer to perform the requested action on all files whose names begin with the
string 'DOC' and end with the string 'TEXT'. If a '?' is used in place of an '=',
the Filer requests verification before performing the command on each file meeting
the specified criteria. A subset specification of the form '=<string)' or '<string)='
or even '=' is valid. This last case, where both subset-specifying strings are
empt y, is understood to specify every file on the volume, so typing , =' or '?' alone
causes the Filer to perform the appropriate action on every file in the directory.

52

EXAMPLE:

Given this directory for the volume tv1VDISK:

NAL..JG-ITYBITS
NOLO. TEXT
USELESS.ernE
tvOLD.CXDE
NEVERvDRE.TEXT
GCO\JS

Prompt: Remove what file?

6 23-Jun-54
4 29-Jun-54

10 19-May-54
4 29-Jun-54

12 5-Apr-54
5 10-Sep-52

Response: Typing 'N=' generates the message:

MMDISK:NAUOHTYBITS
MMDISK:NEV~E.TEXT
Update directory?

removed
removed

Users' Manual
File Handling

(A t this point the user can type 'Y' to remove or type 'N', in which case the files
will not be removed. The Filer always requests verification on removes.)

Typing 'N?' generates the message:

Remove NAUGHTYBITS: ?

After, the user types a response, the Filer asks:

Remove NEVERMORE.TEXT: ?

EXAMPLE:

Prompt: Dir listing of what vol ?

Response: Typing , = TEXT' causes the Filer to list

MOLD. TEXT 4
NEVERMORE. TEXT 12

29-Jun-54
5-Apr-54

The subset-specifying strings may not 'overlap'. For example, GOON=NS would not
, specify the file GOONS, whereas GOON=S would be a valid (although pointless)

speci ficati on.

53

Users" Manual
File Handling

In any filename pair, the character '$' may be used to signify the same filename
as the first name, perhaps with a different volume id or size speci fication.

EXAMPLE:

Prompt: Transfer what file?

Response: '1I5:RE.USE. TEXT, *$'
. ~ .. ,~

transfers the file RE.USE.TEXT on device 115 (a disk drive) to the System disk
('*', which is also device 114). The name is not cha'nged. The Filer would reply
with:

WORKSET:RE.USE. TEXT -> SYSTEM:RE.USE. TEXT

54

111.6.3 Filer Commands

Users' Manual
File Handling

This section contains complete descriptions of all Filer commands, together with
examples of their use. Com mands are listed in alphabetical order, each new
command beginning on a new page. The text is meant to be used both as
instru ction and as a reference.

/ 55

B(ad blocks
Users' Manual
F He Handling

1l1.6.3.1 B(ad blocks

Scans the disk and detects blocks that are unusable for some physical reason
(fingerprints, warping, dirt, etc.).

This command requires the user to type a volume ID. The specified volume must
be on-line.

Prompt: Bad block scan of what vol?

Response: <volume ID>

Prompt: Scan for 494 blocks ? <yIn>

Response may be "V" for yes if you want to scan for the entire length of the
disk. It" you only wish to check a smaller portion of the disk, type "N" and you
will then be prompted for the number of blocks you want the Filer to scan for.
The purpose of this part of the command is for disks where the Filer has no idea
of how 'long' the device is.

Checks each block on the indicated volume for errors and lists the number of each
bad block. Bad blocks can often be fixed or marked (see eX (amine).

56

111.6.3.2 C(hange

Changes file or volume name.

C(hange
Users' Manual
File Handling

This command requires two file specifications. The first of these specifies the file
or v olume name to be changed, the second, the new name. The first specification
is separated from the second specification by either a <return> or a comma (',').
Any volume 10 information in the second file specification is ignored, since
obviously the 'old file' and the 'new file' are on the same volume! Size
speciHcation information is ignored.

Actual movement of files from volume to volume is done with the T(ransfer
command.

Given the example file F5. TEXT, residing on the volume occupying device 5:

Prompt: Change what file?

User Response: . 115:F5.TEXT,HOOHAH

changes the name in the directory from 'F5.TEXT' to 'HOOHAH'. Filetypes are
originally determined by the filename; the C(hange command does not affect the
filetype. In the above case, HOOHAH would still be a textfile. However, since
the G(et command searches for the suffix '. TEXT' in order to load a textfile into
the workfile, HOOHAH would need to be renamed HOOHAH. TEXT in order to be
loaded into the workfile.

The user response '1I5:F5=,HOOHAH=', on the other hand would preserve the. TEXT
suffix.

Wildcard specifications are legal in the C(hange command. If\a wildcard character
is used in the first file specification, then a wildcard must be used in the second
file specification. The subset-specifying strings in the first file specification are
replaced by the analogous strings (henceforthcalle:dteplace:ment striHg's) given in
the second file specification. The Filer will not change the filename if the change
would have the effect of making the filename too long· (>15 characters)~

• t
•. -':: t
< :.,

57

Users~ Manual
File Handling

EXAMPLE:

Given a directory of example disk NOTSANE: containing the files:

POEMS.TEXT
MAUNDER. TEXT
MALPRACTICE
MAKELISTS. TEXT

Prompt: Change what file?

User response: NOTSANE:MA= TEXT ,XX=GAACK
causes the Filer to report

NOTSANE:~UNDER.TEXT
NOTSANE:~ELISTS.TEXT

-> XXJl\()ER. GAACK
-> XXKELISTS.GAAO<

The subset-speci fying strings may be empty, as may the replacement strings. The
Filer considers the file specification '=' (where both subset-specifying strings are
empty) to specify every file on the disk. Responding to the C(hange prompt with
'=~Z=Z' w,Qul d cause every filename on the disk to have a 'z' added at front and
back. Responding to the prompt wi th 'Z=Z,=' would replace each terminal and
initipl' 'z', with. nothing.

EXAMPLE:

Given the filenames:

THIS.TEXT
THAT.TEXT

Pr'ompt: Change what file?

Uaer Response: T = T ,=

The result would be to change 'THIS.TEXT' to 'HIS.TEX", and "THAT.TEXT" to
'HAT.TEX'.

The volume name may also be changed by specifying a volume 10 to be changed,
and a volume 10 to change to.

58

EXAMPLE:

Prompt Change what file?

User Response: NOTSANE:, WRKDlSK:

NOT SANE: - > V\RKD 1 SK:

Users' Manual
File Handling

59

D{ate
Users' Manual
File Handling

111.6.3.3 D(ate

Lists current system date, and enables the user to change the date.

Prompt: Date Set: <1 •• 31>-<JAN .• DEC>-<OO •. 99>
Today is 19-Aug-78
New date?

The user may enter the correct date in the format given. After typing <return>,
the new date will be displayed. Typing only a return does not affect the current
date. The hyphens are delimiters for the day, month and year fields, and it is
possible to affect only one or two of these fields. For example, the year could be
changed by typing '--79', the month by typing '-Sep', etc. The entire month-name
can be entered, but will be truncated by the Filer. Slash ('/') is also acceptable
as a 'delimiter. The most common input is a single number, which is interpreted
as a new day. For example, if the date shown is the 19th of August, and today is
the 20th, the user would type '20'<return>; this would have the desired effect of
changing the date to the 20th of August. The day-month-year order is required.

This date w ill be associated with any files saved or created during the current
session and will be the date displayed for those files when the directory is listed.

The date is saved in the directory of any disk that has been placed in the booted
device. It remains the same until it is changed by using the D(ate command
again.

60

lU.6.3.4 E(xtended list

Lists the directory in more detail than the L(dir command.

E (xtended list
Users' Manu al
File Handling

All files and unused areas are listed along with (in this order) their block length,
last modification date, the starting block address, the number of bytes in the last
block of the file, and the filetype. All wildcard options and prompts are as in the
L(dir command.

Since this command shows the complete layout of files and unused space on the
disk, it is useful in conjunction with the M(ake command. Refer to Section
111.6.3.8, and Section 111.6.4 on recovering lost files.

An E(xtended list is often longer than will fit on one screen. In this case, the
Filer displays one full screen and then prompts:

Type <space> to continue

at this point, a <space> causes the rest of the directory to be listed, and an
<esc> aborts the listing.

EXAMPLE:

MVDlSK:
FILE:RCX::X:2.TEXT 28 I-Sep-78 6 512 Textfile
AB SLRD • COOE 18 I-Sep-78 34 512 ,Codefile
<LNJS ED > 10 52
ABSLRD 4 I-Sep-78 62 512 Oatafile
HYTVPER.CCDE 12 1-Sep-78 66 512 Codefile
STASIS.TEXT 8 1-Sep-78 78 512 Textfile
LETTERl.TEXT 18 I-Sep-78 86 512 Textfile
AS SEJv[)(X:-. TEXT 20 I-Sep-78 104 512 Textfile
FILE:RIXX:1.TEXT 24 1-Sep-78 124 512 Textfile
<LNJSED> 200 148
STASIS.CCDE 6 1-Sep-78 348 512 -Codefile
<LNJSm> 154 354
10 110 f i 1 es < 1 i s t e dl i n - d i r > , 138 blocks used, 356 unused, 200

in large~t

61

G{et
Users' Manual
F ileHandHng

111.6.3.5 G(et

Loads the designated file into the workfile.

The e'ntire file specification is not necessary. If the volume 10 is not given, the
default disk is assumed. Wildcards are not allowed, and the size specification
option is ignored.

EXAMPLE:

Given the directory:

FILERDOC2. TEXT
ABSURD.CODE
HYTYPER.CODE
ST ASIS. TEXT
LETTERl.TEXT
FILER.DOC. TEXT
ST ASIS.CODE

Prompt: Get what file?

Responset STASIS

The Filer responds with the message

'Text & Code file loaded'

since both text and code file exist. Had the user typed 'STASIS. TEXT' or
'STASIS.CODE', the result would have been the same -- both text and code
versions would have been loaded. In the event that only one of the versions
exists, as in the case of ABSURD, then that version would be loaded, regardless of
whether text or code was requested. Typing 'ABSURD. TEXT' in response to the
prompt would generate the message: 'Code file loaded'. Working with the file may
cause the files SYSTEM.WRK.xxxx to be created, as part of the workfile. These
files will go away when the S(ave command is used. If the System is rebooted
before the S(ave command is used, the name of the workfile will be forgotten.

62

111.6.3.6 K(runch

K(runch

Users' Manual
File Handling

Moves the files on the speci fied (disk) volume so that they are adjacent, and
unused blocks are combined into one large area.

K(runch first prompts for the name of a volume. It then asks if it should crunch
fro m the end of the disk. This leaves all files at the front of the disk, and one
large unused area at the end. If the user answers no to this prompt, K(runch asks
which block the crunch should start from. Doing a K(runch from a block in the
middle of the disk leaves the large unused area in the middle of the disk, with
files clustered toward either end (as space permits).

As each file is moved, its name is displayed on the console.

I f the disk contains a bad block that has not been marked (see B(ad and eX(amine),
K (ru nch may wri te a file on top of it -- that file is then irrecoverable.· It is
generally a good idea to scan for bad blocks with B(ad before doing a K(runch,
unless all files are also backed up on a different disk.

If K(runch must move SYSTEM.PASCAL, it wifl then display a prompt which asks
you. to reboot the System. Do not do anything else until you have done so. If you
do, the information on your disk may be irretrievably garbled. .-

EXAMPLE:

Prompt: Crunch what vol?

Response: MYDISK:

••• if MYDISK: is on-line, K(runch then prompts:

Prompt: From end of disk, block 494 ? (yIn)

Response: A 'Y' starts the K(runch, an 'N' causes the prompt:

Prompt: Starting at block /I ?

Response: The block number at which you wish the K(runch to start.

63

L(dir
Users' Manual
File Handling

111.6.3.7 L(dir

Lists a disk directory, or some subset thereof, to the volume and file specified
(default is CONSOLE:).

Each filename is followed by the file's length in blocks, and the date of its last
modification. (A block is 512 bytes).

The user may list any subset of the directory, using the wildcard option, and may
also write the directory, or any subset thereof, to a volume or filename other than
CONSOLE. The first specification is the source file specification and the second
is the output file specification

Source file specification consists of a mandatory volume 10, and optional subset­
spe ci fying strings, which may be empty. Source file specifications are separated
from destination file specifications by a comma (',').

Destination file specification consists of a volume 10, and, if the volume is a
block-structured device, a filename.

The most frequent use of this command is to list the entire directory of a volume.

If the directory listed is too long to fit on one screen, the Filer lists as much as
it can, and then prompts:

Type <space> to continue

typing a <space> causes the rest of the directory to be listed; typing an <esc>
aborts the listing.

EXAMPLE:

The following display, which represents a complete directory listing for the
example disk MYD1SK, would be generated by typing any valid volume 10 for
MYDISK (see Figure 5) in response to the prompt,

64

Dir listing of what vol?

rvTYDl SK:
F 1 LEREXX:2. TEXT
AB SLRD • CODE
HYTYPER.CCDE
STASIS. TEXT
LETTER1.TEXT
ASS8v1JCX:.TEXT

38
18
12

8
18
20

I-Sep-78
1-Sep-78
1-Sep-78
1-Sep-78
1-Sep ... 78
1-Sep-78

FIL~l.TEXT 24 1-Sep-78
STASIS.CODE 6 1-Sep-78

U8ers~ Manual
File Handling

10/10 files <listed/in-dir>, 144 blocks used, 350 unused,
200 in largest

The bottom line of the display informs the user that 10 files out of 10 files on
the disk have been listed, that 144 disk blocks have been used, that 350 disk
blocks remain unused, and that the largest area available is 200 blocks.

L{dir transaction involving wildcards:

Prompt: Dir listing of what vol ?

User response: #4:FIL=TEXT

generates the following display:

MYDI SK:
FILEROOC2.TEXT 38 I-Sep-78
FILERDOCl.TEXT 24 1-Sep-78
2/10 files <listed/in-dir>, 62 blocks used, 432 unused,

200 in largest

EXAMPLE:

L(dir transaction involving writing the directory subset to a device other than
CONSOLE:

Prompt: Dir listing of what vol ?

User response: *FIL=TEXT ,PRINTER:<return> causes

tv1YDI SK:
FILEROOC2.TEXT 38 1-Sep-78
FIL~l.TEXT 24 1-Sep-78
2/10 files <listed/in-dir>, 62 blocks used, 432 unused,

200 in largest

000 to be written to the printer.

65

EXAMPLE:

LCdir transa~'~ion involving'; writing the dire~to~y subs'~t [to a block~~tn~rt\-l.E~d:device::~
Prornpt:Dir: listing ;of, ,what vol?

User resp,onse: }14:F1L~tE:XT ,115:tRASfL'createsthe 'tile ,TRASH on the,
volume associated with device 5. 'TRASH would contatrl:

MYDI SK:
F 1 LERIXX:2. TEXT 3 8 :;3i~'S:ep -78
F 1 LERDCX::1 • TEXT 24 lc- SE3P .. Ja 'i
2 / 10 f i 1 e s < 1 i s ted / i n - d i r')', '-6 Z'

200 in largest

~' . : :)

. \/ .~ [J ',-' 1 .. , j

66
~' (;

Users~ Manual
File Handling

111.6.3.8 M(ake

Creates a directory entry with the specified filename.

This' command requires the user to type a file specification. Wildcard characters
are not allowed. The file size specification option is extremely helpful, since, if
it is omitted, the Filer creates the specified file by consuming the largest unused
area of the disk. The file size is determined by following the filename with the
desired number of blocks, enclosed in square brackets '[' and 'y. Some special
cases are:

[0] - equivalent to omitting the size specification.

The file is created in the largest unused area.

[*] - the file is created in the second largest area,
or half the largest area, whichever is larger.

T extfiles must be an even number of blocks, and the smallest possible textfile is
four bloci<Slong (two for the header, and two for text). M(ake enforces these
restrictio'ns: if the user tries to M(ake a textfile with an odd number of blocks,
M(ake will round the number down. .

M(ake can be used to create a file (with garbage data) for future use, to extend
the size of a file (using the size specification), or to recover a lost file (see
Section 111.6.4).

EXAMPLE:

Prompt Make what file?

Response : MYDISK:F ARKLE. TEXT[28]

U:reates the file F ARKLE. TEXT on the volume MYDISK: in the
first unused 28-block area encountered.

67

N(ew
Users' Manual
File Handling

111.6.3.9 N(ew

Clears the workfile and creates a blank, unnamed workfile, which remains unnamed
until it is saved.

If there is already a workfile present, the user is prompted:

Throwaway current workfile?

Response: 'y' clears the workfile, while 'N' returns the user to the outer
level of the Filer.

If <workfile name).BACK exists, then the user is prompted:

Remove <workfile name).BACK ?

Response: 'Y' removes the file in question, while 'N' leaves the .BACK file
alone, but does create a new workfile.

A successful N(ew returns the message:

Workfile cleared

68

111.4.3.10 P(refix

Changes the current default volume to the <volume name> specified.

P(refix
Users' Manual
File Handling

This com mand requires the user to type a volume 10. An entire file specification
may be entered, but only the volume 10 will be used. It is not necessary for the
specified volume to be on-line.

If the user specifies a device nu mber (say, '115'), then the new default prefix is the
name of the volume (e.g., 'CHROME:') in that device. If no volume is in the
device when prefix is used, the default prefix remains the device number (e.g.,
'115:'), and thereafter, any volume in the default device is the default volume.

To determine the current default volume, the user may respond to the prompt with
':' (see also the V(olume command). To return the prefix to the booted or "Root"
volume, user may respond with "*".

69

9(uit
Users' Manu al
F He Handling

111.6.3.11 Q(ui t

Returns the user to the System (outermost) command level.

70

11l.6.J.12 R(emove

Removes file entries from the directory.

R(emove
Users' Manual
File Handling

This command requires one file specification for each file the user wishes to
remove. Wildcards are legal. Size specification information is ignored.

EXAMPLE:

Given the example files (assuming that they are on the default volume):

AARDVARK.TEXT
ANDROID. CODE
QUINCUNX. TEXT
AMAZING.CODE

Prompt: Remove what file?

User Response: AMAZING.CODE

removes the file AMAZING.CODE from the volume directory.

Note: To remove SYSTEM.WRK.TEXT and/or SYSTEM.WRK.CODE, the N(ew
command should be used, not R(emove, or the System may get confused.
Fortunately, before finalizing any removes, the Filer prompts the user with

Prompt: Update directory?

Response: 'Y' causes all specified files to be removed. 'N' returns the
user to the outer level of the Filer without any files having been removed.

As noted before, wildcards in R(emove commands are legal.

71

Users' Manual
File Handling

EXAMPLE:

Prompt: Remove what file?

User Response: A=CODE

causes the Filer to remove AMAZING.CODE and ANDROID.CODE.

Typing the wildcard '?' causes R(emove to prompt for the removal of each file on
a volume. This is useful for 'cleaning out' a directory, and for removing a file
which has (inadvertantly) been created with a nonprinting character in its name.

Warning: Remember that the Filer considers the file specificatiol'"l '=' (where both
subset-specifying strings are empty) to specify every file on the volume. Typing an
, = ' a Ion e w i llc au set h e F i I e r tor e m 0 vee ve r y file 0 n you r d ire c tor y !
(Fortunately, typing 'N' in response to the 'Update directory?' prompt will save
your disk from this fate.)

72

11l.6.J.IJ S(ave

Saves the workfile under the filename specified by the user.

Slave
Users' Manual
File Handling

The entire file specification is not necessary. If the volume 10 is not given, the
default disk is assumed. Wildcards are not allowed, and the size specification
option is ignored.

EXAMPLE:

Prompt: Save as what file?

Response: Type a filename of 10 characters or less. This causes the
Filer to automatically remove any old file having the given name, and to save the
workfile under that. name. For example, typing "X" in response to the prompt
causes the workfile to be saved on the default disk as X.TEXT. If a codefile has
been compiled since the last update of the workfile, that codefile will be saved as
X.CODE.

If a file already exists with the name given, S(ave will respond: 'Destroy old
<filename>?'. A 'V' response causes the old file to be replaced, any other reply
exits the S(ave.

The Filer automatically appends the suffixes .TEXT and .CODE to· files of the
appropriate type. Explicitly typing AFILE.TEXT in response to the prompt will
cause the Filer to save this file as AFILE.TEXT.TEXT. Any illegal characters in
the filename will be ignored, with the exception of ':'.. If the file specification
inclu des a volume id, the Filer assumes that. the user wishes to save the workfile
on another volume. For example, typing:

RED:EVE

in response to 'Save as what file?' will generate

MYDlSK:SYSTEM. WRK. TEXT -> RED:EYE. TEXT

T3

T:(ransfer
Users' Manual
File Handling

111.6.3.14 T(ransfer

Copies the specified file or volume to the given destination.

This com mand requires the user to type two file specifications: one for the source
file, and one for the destination file, separated by either a comma or <return>.
Wildcards are permitted, and size specification information is recognized for the
destination file. .

EXAMPLE:

Assume that the user wish.es to transfer the file FARKLE.TEXT from the disk
MYDISK to the disk BACKUP.

Prompt: Transfer what file ?

User Response: MYDISK:F ARKLE. TEXT

Prompt: To where?

Note: On a one-drive machine, do not remove your source disk until you" are
prompted to insert the destination disk.--

User Response: BACKUP:NAME. TEXT

Prompt: Put in BACKUP:
Type <space> to continue

The user should remove the source disk, insert the destination disk and type a
<space>. The Filer then notifies the user:

MYDISK:F ARKLE. TEXT· . ~>' BACKUP:NAME: TEXT·

The Filer has made a copy of F ARKLE and' ha~l w'ritten, it to the disk BACKUP
giving it the name NAME.TEXT. If the specified file is large, the user may be
prompted to alternately insert the source and destination disks until the transfer is
completed.

74

Users' Manual
File Handling

It is often convenient to transfer a file without changing the name, and without
retyping the filename. The Filer enables the user to do this by allowing the
character '$' to replace the filename in the destination file specification. In the
above example, had the user wished to save the file F ARKLE. TEXT on BACKUP
under the name F ARKLE. TEXT, she could have typed:

MYDISK:F ARKLE. TEXT ,BACKUP:$

Warning: Avoid typing the second file specification with the filename
completely omitted! For example, a response to the Transfer prompt of the form:

MYDISK:F ARKLE. TEXT ,BACKUP:

generates the message:

Destroy BACKUP: ?

••• a 'Y' answer causes the directory of BACKUP to be wiped out! See Section
111.6.4 for a way to recover.

Also note: If the file you are T(ransfer'ring is two blocks long or less, you will
not even receive the warning prompt.

Files may be transferred to volumes that are not block structured, such as
CONSOLE: and PRINTER:, by specifying the appropriate volume 10 (see Figure 5)
in the destination file specification. A filename on a non-black-structured deVice
is ignored. It is generally a good idea to make certain beforehand that the
destination volume is on-line.

75

Users' Manu at
File Handling

EXAMPLE:

Prompt: Transfer what file?

User Response: F ARKLE. TEXT

Prompt: To where?

User Response: PRINTER:

causes F ARKLE. TEXT to be written to the printer.

The user may also transfer from non-block-structured devices, provided they are
input devices (the source file must end with an <eof> (ASCll ETX) or the Filer will
not know when to stop transferring!). Filenames accompanying a non-block­
structured device 10 are ignored.

The wildcard capability is allowed for T(ransfer. If the source file specification
contains a wildcard character, and the destination file specification "involves a
block-structured device, then the destination file specification must also contain a
wildcard character. The subset-specifying strings in the source file specification
will be replaced by the analogous strings in the destination file specification
(henceforward known as replacement strings). Any of the subset-specifying or
replacement strings may be empty. Remember that the Filer considers the file
specification ' =' to specify every file on the volume.

76

EXAMPLE:

Users' Manual
File Handling

Gi ven the volume MYDISK containing the files PAUCITY, PARITY and PENALTY,
and the destination ODDNAMZ:

Prompt: Transfer what file?

User Response: P= TY ,ODDNAMZ:V=S

would cause the Filer to reply:

MYDISK:PAUCITY
MYDISK:PARITY ,
MYDISK:PENAL TY

-> ODDNAMZ:VAUCIS
-> ODDNAMZ:VARIS
-> ODDNAMZ:VENALS

Using '=' as the source filename specification will cause the Filer to attempt to
transfer every file on the disk. This will probably overflow the output buffer.
(There are easier ways to transfer whole disks. If you wish to do this, please
refer to the material in th,is section on volume-to,;..volume transfers.)

Us i n g , =' as the destination filename specification will have the effect of replacing
th e su bset-speci fyi ng stri ngs in the source speci fication with nothing. A brief
reminder: '?' may be used in place of '='. The only difference is that '?' causes
the user to be asked for verification before the operation is performed.

A file can be transferred from a volume to the same volume by specifying the
same volume 10 for both source and destination file specifications. This is
frequently useful when the user wishes to relocate a file on the disk. Specifying
the nu mber of blocks desired will cause the Filer to copy the file in the first-fit
area of at least that size. If no size specification is given, the file is written in
the largest unused area. .

If the user specifies the same filename for both source and destination on a same­
disk transfer, then the Filer rewri tes the file to the size-specified area, and
removes the older copy.

77

Users' Manual
F ileHandling

EXAMPLE:

Prompt: Transfer what file?

User Response: 1!4:QUIZZES. TEXT ,1I4:QUIZZ~S. TEXT[20]

causes the Filer to rewrite QUIZZES.TEXT in the first 20-block area
encou-ntered (counting from block 0) and to remove the previous version of
QUIZZES. TEXT.

It is also possible to do entire volume-to-volume transfers. The file specifications
for both source and destination should consist of volume 10 only. Transferring a
block-structured volume to another block-structured volume causes the destination
volume to be 'wiped out' so that it becomes an exact copy (including directory) of
the source volume.

Note that some disks have areas which are not accessible by the System. Those
areas cannot be transferred by the Filer. Bootstraps, in particular, may have to
be transferred with the utility BOOTER. See the Installation Guide for more
details.

EXAMPLE:

Assume that the user desires an extra copy of the disk MYDISK: and is willing to
sacri fice disk EXTRA:

Prompt: . Transfer what file?

User Response: MYDISK:,EXTRA:

Prompt: Destroy EXTRA: .?

Warning: If the user types 'V', the directory of EXTRA: is destroyed!
An 'N' response returns the user to the outer level of the Filer, and a'Y' caus'es
EXTRA to become an exact copy of MYDISK. Often this is desirable for backup
purposes, since it is relatively easy to copy a disk this way, and the volume name
can be changed (see C(hng) if desired.

Al thou gh it is possible to transfer a volume (disk) to another using a single disk
drive, it is a tedious process, since the transfer in main memory reads the
information in rather small chunks, and a great deal of disk juggling is necessary
for the complete transfer to take place.

78

111.6.3.15 V(olumes

V(olumes
Users' Manual
File Handling

Lists volumes currently on-line, with their associated volume (device) numbers.

A typical display might be:

Volumes on-line:
1 CONSOLE:
2 SYSTERM:
4 /I tv1YDi SK:
6 PRINTER:
7 REMIN:
8 REJvOJT:
9 /I BIG:

Root vol is - MMDISK:
Prefix is - MMDISK:

The system volume ('Root vol') is the default volume unless the prefix (see P(refix)
has been changed. Block-structured devices are indicated by '11'.

79

W(hat
Users' Manual
File Handling

111.6.3.16 W(hat

ldenti fies the name and state (saved' or not) of the workfile.

EXAMPLE:

Workfile is DOCl:STUFF

80

111.6.3.17 eX(amine

Attempts to physically recover suspected bad blocks.

The user must specify the name of a volume that is on-line.

EXAMPLE:

Prompt Examine blocks on what volume?

Response : <volume 10> generates the

Prompt: Block-range ?

eX (a,mine

Users" Manual
File Handling

The user should have just done a bad block scan, and should enter the block
number(s) returned by the bad block scan. If any files are endangered, the
following prompt should appear:

Prompt: File(s) endangered:
<filename>
Fix them?

Response: 'Y' will cause the Filer to examine the
blocks and return ei ther of the messages:

Block <block-number> may be ok

in which case the bad block has probably been fixed, or

Block <block-number> is bad

in which case the Filer will offer the user the option of marking the block(s)
BAD. Blocks which are marked BAD will' not be' shifted during a K'(runch, and will
be rendered unavailable and effectively harmless (though they do reduce the
amount of room on your disk). '

An 'N' response to the 'fix them?' prompt returns the user to the outer level of
the Filer.

Warning: A block which is 'fixed' may contain garbage. 'May be ok' should be
translated as 'is probably physically ok'. Fixing a block means that the block is
read, is written back out to the block and is read again. If the two reads are the
same, the message is 'may be ok'. In the event that the reads are different, the
block is declared bad and may be marked as such if so des'ired.

81

Zfero
Users' Manual
File Handling

11l.6.3.1B Z(ero

Sets up an empty directory on the specified volume. The previous directory is
rendered irretrievable.

EXAMPLE:

Prompt: Zero dir of what vol ?

Response: <volume 10>

Prompt: Destroy <volume name> ?

Response: A 'Y' response generates

Prompt: Duplicate dir ?

Response: If a 'Y' is typed, then a duplicate directory will be maintained.
This is advisable because, in the event that the disk directory is destroyed, a
utiU ty program called COPYDUPDIR can use the duplicate directory to restore the
disk.

The following two pr,ompts only appear if there" was a directory on the disk before
the Z(ero command was used:

Prompt: Are there 494 blks on the disk ? (yIn)

Response: 'N' generates •••

Prompt: /I of blocks on the disk ?

(•.•• which also appears if the disk was blank.)

Response: User types the number of blocks desired. This number varies
depending on the hardware used.

'Y' generates •••

" Prompt: New vol name ?

Response: User types any valid volume name.

Prompt: <new volume name> correct ?

82

Users' Manual
File Handling

Response: 'Y' causes the Filer, if it succeeds in writing the new
directory on the disk, to respond with the message:

<new volume name> zeroed

Z(ero writes a directory of the same byte sex as the processor that is running
Filer. This is true even if the disk had a prior directory of opposite byte sex.
All other Filer commands leave the directory's byte sex unchanged. More
information on byte sex may be found in the Installation Guide.

-' ..

83

Users' Manual
File Handling

111.6.4 Recovering Lost Files

Sometimes a file is removed by accident, or its directory entry is written over for
one reason or another. While the initial response of the user is typically a
scream, there are often ways to recover the information that has apparently been
lost. This section outlines some of the ways to recov~r files that have been lost,
and also describes what may be done if the user loses an entire directory.

When a file is removed, it is still on disk, but no longer in the directory. The
information that it contained remains there until another file is written over it
(which could happen at any time, since the Filer considers it usable space). If a
file is accidentally removed, the user must be careful not to perform any actions
(whether from the System or from a user program) that write to the disk, since it
is possible they will overwrite the lost file. The K(runch command is virtually
guaranteed to do this: avoid it.

The E(xtended list command in the Filer will display both files in the directory and
<UNUSED> blocks that have once contained files. Usually, by looking at the
length of an unused portion and its location in the directory, the user will be able
to tell where the lost file is; using the M(ake command to re-create a file in the
same location will recover the lost file.

To recover a lost file with M(ake, the size specification should be equal to the
size of the file that was lost. If the user remembers this, or if the lost file was
adjacent on both sides to files that are still listed in the directory, this presents
no difficulty. If the u'ser does not remember where the file was or how large it
was, see below.

Since M (ake makes a file of the specified size in the first available location, it
may be necessary to M(ake dummy files that fill up unused (and unwanted) space
which precedes the location of the file that was lost. These dummy files may
later be removed.

EXAMPLE:

V\ORK:
SYSTE1v1.Ml SCINFO 1 5-Aug-80 6 512 Datafile
< LNJSED > 1 7
SYSTEM. SYNTAX 14 5-Aug-80 8 512 Datafile
RElVI. \'I.RK • CODE 4 5-Aug-80 22 512 Codefi Ie
< LNJSED > 75 26
NIYF 1 LE. TEXT 20 9-Nov-80 101 512 Textfile
< LNJSED > 373 121
4/4 fi les<listed/in-dir>, 45 blocks used, 449 unused, 373 in largest

84

15

Users' Manual
File Handling

If MYFILE.CODE was 4 blocks long and used to be located just after
MYFILE. TEXT, it can be re-created by M(aking FILLER[75] in order to fill up the
75-block unused space on the disk. Next, M(ake MYFILE.CODE[4]. MYFILE.CODE
will again be located immediately following MYFILE.TEXT. Finally, R(emove
FILLER from the directory. The resulting E(xtended directory listing is:

\AAJRK!
SYSTEM.MISCINFO 1 5-Aug-80 6 512 Datafile
< lNJSED > 1 7
SYSTEJvt. SYNTAX 14 5-Aug-80 8 512 Da t af i Ie
REM.WRK.COOE 4 5 -Au g -80 22 512 Cod e f i Ie
< LN.JSED > 75 26
MYFILE.TEXT 20 9-Nov-80 101 512 Textfile
MYF I LE. COOE 4 9-Nov-80 121 512 ~odefjle

< lNJSED > 369 125
files<listed/in-dir>, 49 blocks used, 445 unused, 369 i n largest

One further.· note: in" order t~ ,eX(ecute a. codefile" i~ is necessary that the codefile
was created with a .CODE suffix; the codefile's name may later be changed. If
the user has lost a codefile that does not have a .CODE suffix (for example,
SYSTEM.FILER), the M(ake command shouldremake the file with the .CODE suffix
(e.g., F1LER~CODE),. and then ,change the name back (e.g., to SYSTEM.F1LER
again). If this is not done, it will be illlpossible .to .eX(ecute the. re-created file.

If th e user cannot determine or remember where the file was located on the disk
the RECOVER program should be used. RECOVER will scan .the directory ,for
entries which look valid. If that search does not yield the desired file, it will
at tempt ·to read the .entiredisk looking for areas: which· resemble. files, and ask the
user if it should attempt to re-create them. RECOVER is described .in detail in
Sectiol"J X.7 of this, doeu mente

If RECOVER fails to find desired information, the user's last resort is to use the
PATCH utility to ~ manually~earch through, the disk. Once ,9ata h'as been found, a
Pascal program may be written to read data ·with the UNIT READ or BLOCKREAD
intrinsics, and write it. to a ~ newly created nle.

If a directory entry seems erroneous or inexplicable, the PATCH utility may be
used to ,examine the exact: contents of the· directory. Similarly~ if the user desires
to examine a particular block on a disk to determine whether it is part of a lost
file, the PATCH utility may be used. A detailed description of PATCH appears in
Chapter X. The following paragraph outlines. the use of PATCH in this particular
context; the reader should also refer to Section X.2.

85

Users' Manual
F He Handling

In order to look at a directory using PATCH, the user should eX(ecute PATCH,
then type a <return) in response to PATCH's G(et command. PATCH then
prompts for the device number of the disk inquestinn. Answer this prompt, then
R(ead block 2: this is the beginning of the directory., In order to see the
directory printed out in characters (as opposed to hex, octal, or decimal digits,
which in this context are not very useful!), type MCix V(iew. In order to examine
the remainder of the directory, use the F(orward command. The directory spans
blocks 2, 3, 4, and 5. If a duplicate directory is present, it occupies blocks'
6 •• 10. '

Examining other blocks of a disk is a routine use of PATCH, described fully ,in
Sectinn X.2

111.6.4.1 Lost Directories

Losing a disk directory can prove even more frustrating than losing a single file.
If there were no software tools for doing so, 'many hours could be spent trying to
recreate a lost disk. This section describes some of the things that can be done,
and should help ease the pain of re-creating a directory that has been lost.

Recovering a disk is simplest when the disk contains a duplicate directory. The
directory spans blocks 2 •• 5 on a disk. If a duplicate directory is present, it spans
blocks 6 •• 9. Every time the directory is altered, the duplicate directory is updated
as well, thus providing a convenient backup.

If a directory is lost on a disk that has a duplicate directory, the COPYOUPDIR
utility may be used to simply move the duplicate directory to the location of the
standard disk directory. This should be all the recovery that is necessary.

1 f after reading this you decide to put duplicate directories on all of your disks,
there are two methods available. The first is to use the Z(ero command when
first creating a disk with the FCiler. When the prompt 'Duplicate dir?" appears,
answer ~Y' for yes.

If a disk is already in use -and contains only one'directory, the utility
MARKO'UPDIR will create a duplicate directory. However--, caution must be
exercised when using this utility: blo'cks6 •• 9 of ,the disk (the location of the
duplicate directory) must be unused, or file information will be lost.

The use of COPYDUPDIR and MARKDUPDIR is fully described in~ Section X.4.

In the unhappy event that a directory is lost, and no duplicate directory was
present, the user should use the RECOVER utility already mentioned. RECOVER
is described in Section X.7

86

Users' Manual
File Handling

If the Filer E(xtended list or LOst commands are used, and specify an optional
output file, and the filename given for the output file is a disk volume without a
filename, the directory is destroyed.

EXAMPLE:

LOst directory will prompt:

Dir listing of what vol ?

Response: MYDISK:, MYDISK: <return>
Response: MYDISK:,: <return>

either of these responses cause the first few blocks (aproximately 6) of
MYDISK: to be overwritten with a listing of the directory of MYDISK:.

Response: MYDISK:, DISK2:

causes the directory of DISK2: to be overwritten.

In the latter case, the disk recovery methods already described must be used. In
the first two cases, recovery is not so difficult, even if there was no duplicate
directory, since MYDISK:'s directory has been overwritten with what is essentially
a copy of itself.

First, get a copy of the directory listing of MYDISK:. (If MYDISK: was your
System disk, you will have to boot another System.) Use the Filer to T(ransfer
'MYDISK:' to an output device: PRINTER:, REMOUT:, or CONSOLE:.

Once you have a hard copy of the directory Of you transferred to CONSOLE:,
write it down!), use the Filer to Z(ero MYDISK:. The Z(ero command will not
al ter the contents of MYDISK:, only the directory itself. Now use the M(ake
command to remake all of the files on the disk (as described above).

87

Users' Manual
File Handling

88

IV. THE SCREEN ORIENTED EDITOR

IV.O Introduction

Users' Manual
Screen Edi tor

This introduction describes the general environment of using the Screen Oriented
Editor (called the Editor throughout this chapter). Section IV.l is a tutorial for
the novice, Section IV.2 describes general conventions of the Editor, and Section
IV.3 contains a detailed description of each command, with examples, in
alphabetical order.

Ken Bowles' Beginner's Guide is another good introduction to the Screen Oriented
Editor, and we recommend that you use it.

Before the Screen Oriented Editor 'can be used, the System must first hav'e been
configured· for a particular terminaL The details of this are given in the'
Installation Guide, which you should refer to.

IV.D.I ' The C'oncept of a Wlndow 'into the File

The Screen Oriented Editor is specifically designed for use with Video Display
Terminals (or Cathode Ray Tubes -- CRTs). On entering any file, the Editor
displays the start of the file on the second line of the screen.; If the file is toq
long for the screen, only the first lines of 'it'a're'diS'played. . Most 'streens have 24
lines, and in the Editor one line is used for the prompts; thus,'the Editor typically
displays only 23 lines of' a file at anyone time.' This is the concept of a
"window." The whole file is there and is accessible through Editor commands, but
only a portion of it can be seen through the "window" of the screen. When any
Editor command takes the user to a position in the file which is' not already
displayed, ,the window is updated to show that new portion of the file.

IV.0.2 The Cursor

The cursor represents the user's exact position in the file, and can be moved to
any position. The window shows the portion of the file that surrounds the cursor;
to see another portion of the file, move the cursor. Action always takes place at
the cursor. Some of the commands permit additions, changes or deletions of such
length that the screen cannot hold the whole portion of the text that has been
changed. In these cases, the portion of the screen where the cursor finally stops
is displayed. In no case is it necessary for the user to operate on portions of the
text not seen on the screen, but in some cases it is optional.

In this chapter,all text examples are shown in upper case, and the cursor is
denoted by an underline or a lower case character.

89

Users' Manual
Screen Editor

IV.0.3 The Promptline

The Edi tor displays a promptline to remind the user of the current command and
the options available for that command. Only the most commonly used options
appear on the promptline. The promptline is always displayed at the top of the
screen, and the Editor's outer promptline looks like this:

>Edit: A(djust C(py D(lete FOnd l(nsrt J(mp R(place Q(uit X(chng Z(ap [E.6]

IV.0.4 Notation Conventions

The notation used in this chapter corresponds to the notation used by the Editor to
prompt the user. Any input that is enclosed between '(' and '>' is requesting that
a particular key be used, not that the particular word be typed out. For example,
(RET> or (return> means that the return key should typed at that point. When- a
particular sequence of key strokes is required they will be contained within quotes.
For example, 'FILENAME'(return> represents typing the sequence 'FILENAME' and
then typing the return key. Either lower or upper case may be used' when typing
Editor commands.

1 V.0.5 The Editing Environment Options

The Editor nas two chief .environments: one for entering and modifying programs,
and one for entering and modifying English (or language of your. choice) text. The
first mode includes automatic indentation and search for isolated tokens, the
second mode includes automatic text filling. For more detail on these two
options, see the description below of the E(nvironment option of the S(et command.

90

IV.I Getting Started

Users' Manual
Screen Editor

The Editor is designed to handle any textfiles, whether programs, data, or
documents. This tutorial section uses a sample program to illustrate the use of
the most basic Editor commands. You may find it easier to follow if you have
the System running in front of you, and can duplicate the examples on your own.

IV.I.I Entering the Workfile and Getting a Program.

When you enter the Editor, the text of the workfile is read and displayed. If you
have not already created a Workfile, then this prompt appears:

No workfile is present. File? (<ret> for no file <esc> to exit

There are three ways to answer this question :

1) With a name, for example 'STRINGl'<ret>. The file named STRINGl.TEXT "will
now be retrieved. The file STRINGI could contain a program, also called
STRINGl, as in Figure IV.l. After typing the name, a copy of the text of the
first part of the file appears on the screen.

Figure IV.l
===
ffiCX?f{AM S TR II'G 1 ;
BEGIN

WRITE('TOO WISE');
\AR IT E (, YCU ARE');
Vvf~1 TELN(, , ' };
WRITELN('TOO WISE');
WRI TELN('YCD BE')

Et-D.
===

2) With a <return>. This implies that a new file is to be started. The only thing
visible on the screen after doing this is the Editor promptline. A new workfile is
opened and currently has nothing in it. Type 'I' to begin inserting a program or
text.

3) With <escape>. This causes the Editor to quit and return you to the System
command level. Useful when you didn't mean to type 'E'.

91

Users' Manu al
Screen Editor

I V.1.2 Moving the Cursor

In order to edit, it is necessary to move the cursor. On the keyboard are four
keys with arrows: these move the cursor. The <up-arrow> moves the cursor up one
line, . the <right-arrow> moves the cursor right one space, and so forth. On
terminals which do not have arrow keys, the System will have to be set up with a
set of control keys to act as cursor keys. To configure the System for use with a
particular terminal, please refer to the Installation Guide.

The cursor cannot be moved outside the text of the program. For example, after
the 'N' in 'BEGIN' in Figure IV.2, push the <right-arrow> and the cursor will move
to the 'w' in 'WRITE'. Similarly, at the 'w' in "WRITE('TOO WISE ');", use <left-'
arrow> to move to after the 'N' in 'BEGIN'.

Figure IV.2
= == = = = = = = = = = = = = = = = = = = ='= = = :;: = = =,.= = = = = = = ='= = = = = = = ='= =
BEGIN

WRITE('TOO WISE ');

BEGIN
wRITE('TOO WISE ');

===

If it is necessary to change the "VJRITE('TOO \VISE ');" found in the third line to a
"WRITE('TOO SMART ');", the cursor must first be moved to the right spot.

For example: if the cursor is at the 'P' in 'PROGRAM STRINGl;', go down two
lines by pressing the down arrow twice. To mark the positions the cursor
occupies, labels a,b,c are used in Figure IV.3. 'a' is the initial position of the
cursor; 'b' is where the cursor is after the first <down-arrow>; 'c', after the
second <down-arrow>.

Figure IV.3
===
aRCX?RAM STRIl\Gl
bEGIN
c WRITE('TOO WISE ');
===

Now, using the <right-arrow>, move the cursor until it sits on the 'w' of 'WISE'.
Note that wi th the use of <down-arrow> the cursor appears to be outside the text
(c). Actually it is at the 'w' in 'WRITE', so do not be surprised when on typing

92

Users'" Manual
Screen Editor

the first <left-arrow> the cursor jumps to the 'R' in 'WRITE'. The point is that
when the cursor is displayed outside the text, it is conceptually on the closest
character to the right or left.

I V.1.3 Using Insert

The Edi tor promptline shows that you may l(nsrt (insert) text by typing '1'. The
cursor must be in the correct position before typing '1'. Earlier, the cursor was
moved to the 'w' in 'TOO WISE'; now, on typing '1', an insertion will be made
before the 'W'. The rest of the line from the point of insertion will be moved to
the right hand side of the screen. If the insertion is lengthy, that part of the line
w ill be moved down to allow room on the screen. After typing '1' the following
promptline will appear on the screen:

>Insert: text {<bs> a char, a line} [<etx> accepts, <esc> escapes]

1 f this promptline does not appear at the top of the screen, then you may have
accidentally typed some character other than '1'.

1 f th e cursor is at the 'w' in 'WISE', and typing '1' causes the insert promptline to
appear, 'SMART' may be inserted by typing those five letters. They will appear
on the screen as they are typed.

There remains one more important step. The choice at the end of the prompt line
indicates that pushing the <etx> key accepts the insertion, while pushing the <esc>
key rejects the insertion and the text remains as it was before typing '1'.

93

Users' Manual
Screen Editor

Figure IV.4 (Screen after typing 'S~T')
==
BEGIN WRITE('TOO S~T WISE ');
==

Figure IV.5 (Screen after <etx»
===
BEGIN

VvRi TE ('TOO S~TWI SE ');
===

Figure IV.6 (Screen after <esc»
===
BEGIN

VvRITE('TOO WISE ');
===

I t is possible, and indeed often necessary, to insert a carriage return. This is done
by . typing <return> while in I(nsert. This causes the Editor to start a new line.
Notice that a carriage return starts a ·new line with the same indentation as the
previous one. This is intended as a programming aid~

94

IV.1.4 Using Delete

Users' Manual
Screen Edi tor

O(elete works like I(nsert. Having inserted 'SMART' into the STRINGI program
and ha vi ng pushed <etx>, 'WISE' must be deleted. Move the cursor to the first of
the items to delete and type '0' to use the O(elete command. The following
promptline should appear:

>Oelete: < > <Moving commands> {<etx> to delete, <esc> to abort}

Each time <space> is typed a letter disappears. In this example typing 4 spaces
will cause 'WISE' to disappear. The <backspace> character will undo the deletion
one character at a time. Now the same choice must be made as in I(nsert. Type
<etx> and the proposed deletion is made or type <esc> and the proposed deletion
reappears and remains part of the text.

It is possible to delete a carriage return. At the end of the line, enter O(elete,
and <space> until the cursor moves to the beginning of the next line.

These commands alone are sufficient to edit any file desired. The next section
describes many more commands in the Editor which make editing much easier.

95

Users' Manual
Screen Editor

I V.1.5 Leaving the Editor and Updating the Workfile

When all the changes and additions have been made, exit the Editor and save a
copy of the modified program. This is done by typing 'Q' which will cause the
prompt shown in Figure IV. 7.

Figure IV.7
===
>Quit:

U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a fi Ie name and return

===

The most elementary way to save a copy of the modified file on disk is to type
'u' for U(pdate which causes the workfile to be saved as SYSTEM.WRK.TEXT.
Wi th the workfile thus saved, it is possible to use the R(un command, provided of
course the file is a program. It is also possible to use the S(ave option in the
Filer to save the modified workfile under a different name before using the Editor
to modify or create another file.

Section IV.3.10 explains in greater detail the options available at Q(uit.

96

IV.2 Using the Editor

IV.2.I Command Hierarchy

Users' Manual
Screen Editor

Some commands in the Editor perform a function directly, but most constitute a
"second level" of command. These are commands which display a promptline of
their own, with another set of commands you may use. All of these subordinate
commands, even Q(uit, allow you to return to the outer Editor level, either after
performing some special function, or without having affected anything (possibly as
an escape from accidentally invoking the command).

Each description of a second level command includes a sample of the secondary
promptline. Some commands, like S(et, even have third level prompts. In all
cases, you may move both down the command tree and up it, returning to the
"root" of the outer Editor prompt. This root is itself just one branch of the
System command tree, as pictured in Chapter 1.

This is a possibly too-wordy description of a concept which is very easy to
visualize if you are sitting at a terminal and using the Editor.

IV.2.2 Repeat Factors

Most of the commands allow repeat factors. A repeat factor is applied to a
command by typing a number immediately before the command's letter. The
command is then repeated for the number of times indicated by the repeat factor.
For example: typing '2'<down-arrow> will cause the <down-arrow> commmand to be
executed twice, moving the cursor down two lines. Commands which allow a
repeat factor assume the repeat factor to be 1 if no number is typed before the
command. A'j' can be used as a repeat factor, and means repeat the command
until the end (or beginning) of the textfile is encountered.

97

Users' Manual
Screen Editor

IV.2.3 The Cursor

The cursor is displayed "on top of" a character, but it is conceptually in front of
that .character. In other words, the cursor is never "at" a character, but always
bet ween two characters. This is a convention which you must remember in order
to use the I(nsert and D(elete commands.

I V.2.4 Direction

There is a global direction for all commands in the Editor. It affects' certain
commands, and certain methods of cursor movement. This direction is indicated
by the first character in the promptline: either > or <, for forward and backward,
respectively. The direction can be changed by the characters indicated in the next
section below.

When the Editor is first entered, the global direction is forward.

IV.2.5 Moving the Cursor

The Cursor can be moved by a number of means. One obvious method is to use
the cursor keys -- either a vector pad, or a set of control characters that you
ha ve chosen yourself (see the sections concerning SETUP in the Installation Guide).
Another method is to use traditional typewriter characters, i.e., <space bar>,
<return>, <tab>, and <backspace>. The former three are affected by the global
direction. The arrow keys and <backspace> are not.

Typing an '=' causes the cursor to jump to the beginning of the last section of

text which was inserted, found, or replaced, and sets the 'equals mark' to the
cursor's location. Equals works from anywhere in the file and is not affected by
the global direction. An I(nsert, FOnd, or R(eplace causes the position (within the
workfile) of the beginning of the insertion, find, or replacement to be saved.
Typing '=' causes the cursor to jump to that position, and saves the cursor
location. If a C(opy or a D(elete has been made between the beginning of the file
an d th a t absolute position, the cursor will not jump to the start of the insertion,
as that absolute position will have been lost.-

Two alphabetic commands are meant explicitly for moving the cursor. J(ump will
move it to the beginning or end of the file, or to a marker which the user has
previously defined. P(age moves the window forward (or backward) one screenful,
and posi tions the cursor at the beginning of the line. Refer below to the full
descriptions of these commands.

A variety of other commands reposition the cursor in addition to performing their
specific actions. Thus, A(djust moves the cursor along with the entire ,1~ne,. C(opy

98

Users' Manual
Screen Edi tor

and l(nsert move the cursor to the end of their insertions, FCind and R(eplace leave
the cursor after their last successful hit, and V(erify places the cursor in the
middle of the screen. Full details of all these actions are found below.

The following is a summary of cursor-moving characters:

Not sensiti ve to the current global direction:

<down-arrow> Moves cursor down
<up-arrow> Moves cursor up
<right-arrow> Moves cursor right
<left-arrow> Moves cursor left
<backspace> Moves cursor left

'<' or or ' , Changes the global direction to backward , -
'>' or ' , . or '+' Changes the global direction to forward

Sensi ti ve to the global direction:

<space>
<tab>

<return>

Moves cursor one space in the global direction
Moves cursor to the next tab stop;
tab stops are every 8 spaces, starting
at the left of the screen
Moves cursor to the beginning of the next line

Note: The period and the comma can also be used to change direction because on
many standard keyboards, '.' is lower-case for '>' and ',' is lower-case for '<'.

Repeat factors can be used with any of the above commands.

For user convenience, the Editor maintains the column position of the cursor when
using <up-arrow> and <down-arrow>. When the cursor is outside the text, the
Editor treats the cursor as though it were immediately after the last character, or
before the first, in the line.

99

Users' Manu al
Screen Editor

1 V.2.6 Entering Strings in FOnd and R(eplace

Both FOnd and R(eplace operate on delimited strings. The Editor has two string
storage variables. One, called <targ> by the promptlines, is the target string and
is used by both commands, while the other, called <sub> by R(eplace's promptline,
is the substitute stri!lg and is used only by R(eplace.

These strings are entered when you use FOnd or R(eplace. Once entered, they are
saved by the Editor and may be re-used.

When you enter a string, it must be delimited by two occurrences of the same
character. For example, '/fun/', '$work$', and '"gismet'" represent the strings
'fun', 'work', and 'gismet', respectively'. The Editor allows any character which is
not a letter or a number to be used as a delimiter.

There are two search modes -- Literal and Token. These modes are stored by the
5(et E(nvironment command, and can be changed by it (see below), or they may be
temporarily overriden when you use FOnd or R(eplace (refer to descriptions of
these commands).

In Literal mode, the Editor looks for any occurrences of the target string. In
Token mode the Editor looks for isolated occurrences of the target string. The
Editor considers a string isolated if it is surrounded by spaces or other punctuation.
For example, in the sentence 'Put the book in the bookcase.', using the target
string 'book', Literal mode will find two occurrences of 'book' while Token mode
will find only one -- the word 'book', isolated by <space><space>.

In addition, Token mode ignores spaces within strings, so that both '(",")' and
'(" ,")' are considered to be the same string.

When using either FOnd or R(eplace, you may use the strings you have previously
entered by typing '5'. For example, typing 'R5/'<any-string>'/' causes the R(eplace
mode to replace the previous target string, while typing 'R/'<any-string>'/S' causes
the target string to be replaced with the previous substitute string.

To see what the <targ> and <sub> strings are at any given time, use the 5(et
E(nvironment command.

More speci fic information on this topic is given below under the descriptions of
FOnd, R(eplace, and 5(et E(nvironment.

100

IV.3 Screen Oriented Editor Commands

Users' Manual
Screen Edi tor

Each command (and its sub-commands, if any) is fully described below. Commands
are listed in alphabetical order, and the descriptions, which include examples, are
meant to be used both for reading and for reference.

101

A(di~st
Users' Manual
Screen Editor

IV.3.1 A(djust

On the promptline: A(djst.

Repeat factors are allowed.

A(djust displays the following prompt:

>Adjust: L(just R(just C(enter <left,right,up,down-arrows> {<etx> to leave}

A(djust is used to adjust indentation. The <right-arrow> and <left-arrow>
commands move the line on which the cursor is located. Each time a <right­
arrow> is typed the whole line moves one space to the right. Each <left-arrow>
moves it one space to the left.

To adjust a whole sequence of lines, adjust one line, then use <up-arrow> (or
<down-arrow» commands and the line above (beloW) will be automatically adjusted
by the same amount.

This feature can be used to align a whole set of lines. If you adjust a line
horizontally, then using <up-arrow> (or <down-arrow» now causes the line above
(below) to be adjusted by the sum of previous adjustments. In other words, the
horizontal offset accumulates until A(djust is exited with <etx>.

The character 'L' justifies the line to the left margin, 'R' justifies it to the right
margin, and 'c' centers the line between the margins. <up-arrow>s and <down­
arrows> can be used to duplicate the adjustment on preceding (succeeding) lines, as
above. .

The margins can be altered with the S(et E(nvironment command. See Section
IV.3.12.2.

The cursor is repositioned at the beginning of the last line adjusted. <etx> is the
only way to exit the A(djust command; <esc> will not work.

102

IV.3.2 C(opy

On the promptline: C(py.

Repeat factors not allowed.

C(opy displays the following promptline:

>C(opy: S(uffer F(ile <esc>

C(opy
Users' Manual
Screen Edi tor

To copy the text in the copy buffer, type '8'. The Editor immediately copies the
contents of the copy buffer into the file, starting from the location of the cursor
when 'c' was typed. Use of the C(opy command does not change the contents of
the copy buffer.

After the C(opy, the cursor is placed immediately after the text which was copied.

The copy buffer is affected by the following commands:

1) O(elete: On accepting a deletion, the buffer is loaded with th~ deletion;
on escaping from a deletion, the buffer is loaded with what would have been
deleted.

2) I(nsert: On accepting an insertion, the buffer is loaded with the insertion;
on escaping from an insertion, the copy buffer is empty.

3) Z(ap: If the Z(ap command is used, the buffer is loaded with the deletion.

The copy buffer is of limited size. Whenever the deletion is greater than the
buffer available, the Editor will issue the following warning:

There is no room to copy the deletion. Do you wish to delete anyway? (yIn)

A 'y' or 'y' is a yes answer; any other character escapes O(elete.

103

Users' Manual
Screen Editor

To copy text from another file, type 'F' and another prompt appears:

>C(opy: FROM WHAT FILE[MARKER,MARKER]?

Any file may now be specified; • TEXT is assumed. The markers (in brackets -­
'[]') are optional, and used for copying only part of a file.

To copy part of a file, markers must be preset in that file to bracket the desired
text. Two markers can be used, or the file's beginning or end may be part of the
bracket. If [,marker] or [marker,] is used in C(opy, the file will be copied from
the start of the file to the marker, or from the marker to the end of the file.
Use of C(opy does not change the contents of the file being copied from.

104

IV.3.3 D(elete

On the promptline: O(Iete.

Repeat factors not allowed.

After entering O(elete, the following promptline appears:

>Oelete: < > <Moving commands> {<etx> to delete, ,<esc> to abort}

D(elete
Users' Manual
Screen Edi tor

The cursor must be positioned at the first character to be deleted. On typing '0'
and entering O(elete, the Editor remembers where the cursor is. That position is
called the anchor. As the cursor is moved from the anchor using the normal
moving commands, text in its path disappears. Within O(elete, all cursor-moving
commands are valid, including repeat factors and changes of direction.

Backing up over portions of the deletion restores those characters to the textfile.

To accept the deletion, type <etx>; to escape, type <esc>.

105

Users' Manual
Screen Editor

EXftMPLE:

Figure IV.8
===
PRCBRAM S TR II'G 2 ;
BEGIN

WRITE('TOO WISE ');
VRITELN('TO BE.')

EI'D.
===.==

Figure IV.9
===
PRCBRAM S TR II'G2 :
BEGIN
EI'D.
===

In Figure IV.8:
1) Move the cursor to the 'E' in ENO.
2) Type '<' (This changes the direction to backward)
3) Type '0' to enter O(elete.
4) Type <return><return>. After the first return the cursor moves to

before the 'w' in WRITELN, and 'WRITELN('TO BE.');' disappears.
After the second return the cursor is before the 'w' in WRITE,
and that line has disappeared.

5) Now press <etx>. The program after deletion appears as shown
in Figure IV.9.

The two deleted lines have been stored in the copy buffer and the cursor has
returned to the anchor position. Now C(opy may be used to copy the two deleted
lines at any place to which the cursor is moved.

106

IV.3.4 FOnd

On the promptline: FOnd.

Repeat factors are allowed.

F(ind
Users' Manual
Screen Edi tor

On entering Find, one of the promptlines in Figure IV.IO appears:

Figure IV.IO
==============================
>Find[n]: L(it <target> => { Which line appears depends

on the global mode (see S(et) }
>Find[n]: T(ok <target> =>
==============================

(Where 'n' is the repeat factor given before typing 'F' for FCind; this number is
one if no repeat factor was given.)

FOnd finds the n-th occurrence of the <target> string, starting from the cursor's
position and moving in the global direction (shown by the arrow at the beginning of
the promptline). The cursor is positioned immediately after this occurrence.

If you desire to search in other than the global mode (either Token or Literal),
type the appropriate character (either 'L' or 'T', respectively), before you enter
the target string.

If the string is not present, the prompt:

ERROR: Pattern not in the file. Please press <spacebar> to continue •

••• appears.

107

Users' Manual
5 creen Edi tor

,Example 1: In the STRING 1 program (shown in Figure IV.II), with the cursor at
the first 'P' in 'PROGRAM STRINGI', type 'F'. When the prompt appears type
"'WRITE'''. The single quote marks must be typed. The promptline should now be:

>Find[l]: LOt <target> =>'WRITE'

Immediately after typing the last quote mark, the cursor jumps to the character
following the 'E' in the first 'WRITE'.

Example 2: In the STRINGI program with the cursor at the 'E' of 'END.' type:
, < 3F'. This will find the third occurrence of the pattern in the reverse direction.
When the promptline appears type ' /WRITELN/'. The promptline should read:

<Find[3]: LOt <target> =>/WRITELN/

The cursor will move to immediately after the 'N' in WRITELN.

Figure IV.II
===
PRCXRftM S TR II\G 1 ;
BEGIN

\\R.I TE ('TOO WI SE ');
VoRl TE('YOJ ARE');
\\R.ITELN(',');
~I TELN('TOO WI SE ');
\\R.ITELN('YOU BE.')

E~.

{

cursor ends here in Example Ij
cursor ends here in Example 3
cursor ends here in Example 2

{cursor starts here in Example 2}
===-==

Example 3: On the first find we type 'F /WRITE/.'. This locates the first 'WRITE'.
Now typing 'FS' will make the promptline flash:

>Find[I]: LOt <target> =>5

••• and the cursor will appear after the second WRITE.

108

IV.3.5 l(nsert

On the promptline: I{nsrt.

Repeat factors not allowed.

On entering I{nsert, the following promptline appears:

I (nserf
Users' Manual
Screen Edi tor

>Insert: Text {<bs> a char, a line} [<etx> accepts, <esc> escapes]

Characters are entered into the textfile as they are typed, starting from the
position of the cursor. This includes the character <return>. Non-printing
characters are echoed with the non-printing character symbol (usually a '?'; this
can be changed by using SETUP). To make corrections while still in I(nsert, use
<backspace> «bs» to remove one character at a time, or <rubout> «del» to
remove an entire line. If you try to backspace past the beginning of the insertion,
you will receive an error message.

The textfile that is actually created as you use I{nsert is to some extent dependent
on the modes you have selected with the SCet E(nvironment commands. SCet
E(nvironment is the means for selecting the Auto-indent and the Filli~g options.

IV.3.5.1 Using Auto-indent

If Auto-indent is True, a <return> causes the cursor to start the next line with an
indentation equal to the indentation of the line above. If Auto-indent is False, a
<return> returns the cursor to the first position of the next line. If Filling is
Tru e, the first position is the left marg.in Cor the paragraph margin; see
immediately below), otherwise. it is the left-hand side of the screen.

109

Users' Manual
Screen Editor

IV.3.5.2 Using Filling

If Filling is True, the Editor forces all insertions to be between the right and left
margins. It does this by automatically inserting <return>'s between "words"
whenever the right margin would have been exceeded, and by indenting to the left
margin whenever a new line is started. The Editor considers anything between two
spaces, or between a space and a hyphen, to be a word.

A new paragraph is created when two <return>'s are typed in succession. In other
words, a paragraph is a block of text delimited by blank lines (or command lines
(see S(et), or the beginning or end of the textfile). The first line of a paragraph
may be indented differently than the remaining text (see S(et E(nvironment).

If both Auto-indent and Filling are True, Auto-indent controls the Left-margin
while Filling controls the Right-margin. The level of indentation may be changed
by using the <space> and <backspace> keys immediately after a <return>.
Important: This can only be done immediately after a <return>.

Example 1: With Auto-indent true, the following sequence creates the indentation
shown in Figure IV.12.

'ONE'<return><space><space>'TWO'
<return> 'THREE' <return><backspace> 'FOUR'

Figure IV.12
===
ONE
~
ll-fREE

Fa..R

original indentation
indentation changed by <space> <space>
<return> causes auto-indentation to level of line above
<backspace> changes indentation from level of line above

------------------~-------------------~--------------- --

110

Users' Manual
Screen Edi tor

Example 2: With Filling True (and Auto-indent False) the following sequence
creates the indentation shown in Figure IV.13:

'ONCE UPON A TIME THERE- WERE'.

(Very narrow margins have been used for simplicity.)

Figure IV.13
===
ONCE UPCN A
TIME THERE­
WERE

Auto-returned when next word would exceed margin
Auto-returned at hyphen

Level of left margin
===

The cursor may be forced to the left margin of the screen by typing <control-Q>
(ASCll DCl).

Filling also causes the Editor to adjust the margins on the portion of the paragraph
following the insertion. Any line beginning with the Command character (see S(et)
is not affected by this adjustment, and such a line is considered to terminate a
paragraph.

A filled paragraph may be re-adjusted by using the M(argin command. See Section
IV.3.8. This may be very useful if the user wishes to change the margins of a
document (which may be done with S(et E(nvironment).

The global direction does not affect I(nsert, but is indicated by the direction of
the arrow on the promptline.

If an insertion is made and accepted, that insertion is available for use in C(opy.
However, if <esc> is used, there is no string available for C(opy.

III

J(ump
Users' Manual
Screen Editor

IV.3.6 J(ump

On the promptline: J(mp.

Repeat factors not allowed.

On entering J(ump, the following promptline appears:

>JUMP: 8(eginning E(nd M (arker <esc>

Typing '8' (or 'E') moves the cursor to the beginning (or the end) of the file.
Typing 'M' causes the Editor to display the promptline:

Jump to what marker?

Markers are user-defined names for positions in the textfile. See the M(arkers
option of the S(et command for more details.

112

IV .3. 7 K(olumn

Not on the promptline; type 'K' for K(olumn.

Repeat factors are not allowed.

K(olumn displays the following prompt:

>K(olumn: <vector keys> {<enter> to leave}

K(olumn
Users' Manu al
Screen Editor

All of a line to the right of the cursor may be moved left or right by using <left­
arrow> and <right-arrow>. Using <up-arrow> or <down-arrow> applies the same
column adjustment to the line above (below). <enter> (that is, <etx» must be
used to leave K(olumn; <esc> will not work.

Any characters at the cursor when K(olumn is used will be deleted by a <left­
arrow>. The user-should be careful not to delete things unintentionally.

113

M(argin
Users' Manual
Screen Editor

IV.3.8 M(argin

Not on the promptline; type 'M' to use M(argin (which is also called M(unch).

Repeat factors not allowed.

M(argin realigns the paragraph where the cursor is located to fit within the current
margins. All of the lines within the paragraph are justified to the left margin,
except the first line, which is justified to the paragraph margin. All these global
margins may be set with the S(et E(nvironment command.

When you type 'M', the cursor may be located anywhere within the paragraph.

Example: The paragraph in Figure IV.14 has been M(argin'ed with the parameters
on the left while the same paragraph in Figure IV.IS has been M(argin'ed with the
parameters on the right.

Left-margin 0
Rig h t -rna r gin 72
Paragraph-margin 8

Figure IV.14

L eft - ma r gin 1 0
Right-margin 70
Paragraph-margin 0

==

This quarter, the equipment is different, the course materials
are substantially different, and the course organization is different
from previous quarters. You will be misled if you depend upon a friend
who took the course previously to orient you to the course.

======.==

Figure IV.IS
==

This quarter, the equipment is different, the course materials are
substantially different, and the course organization is
d iff ere n t from pre v i 0 u s qua r t e r s • Yo u w i I I b e m ~ s led i f
you depend upon a friend who took the course previously to
orient you to the course.

==

114

Users' Manual
Screen Editor

A paragraph is any block of text delimited by blank lines or the beginning or end
of the textfile. If the textfile or the paragraph is especially long, the screen may
re main blank for several seconds while M(argin completes its work. When M(argin
is done, the screen is redisplayed. M(argin never splits a word; it breaks lines at
spaces or at hyphens.

I V.3.8.1 Command Characters

A line can be protected from being M(argin'ed by using the Command Character.
The Command Character must be the first non-blank character in the line.
M (argin (like Auto-fill) treats lines beginning with the Command Character as blank
lines. The Command Character itself is any character so designated using the S(et
E(nvironment command.

Warning: If you use the M(argin. command when in a line beginning with the
Command character, M(argin will ignore the CommandCharacter and M(argin the
whole line, along with whatever is adjacent to it.

115

P(age
Users' Manual
Screen Editor

IV.3.9 P(age

Not on the promptline; type 'P' to use PCage.

Repeat factors are allowed.

Moves the cursor one screenful in the global direction. The cursor remains on the
same line on the screen, but is moved to the start of the line.

116

IV.3.10 Q(uit

On the promptline: Q(ui t.

Repeat factors not allowed.

Q(uit displays the following prompt:

Figure IV.16

9(uit
Users" Manual
Screen Edi tor

===
)Quit:

U(pdate the workfile and leave
E(xit without updating
R(eturn to the editor without updating
W(rite to a file name and return

==============~======================================= ===========

One of the four options must be selected by typing U, E, R, or W. All other
characters are ignored.

U(pdate:

Stores the file just modi fied as SYSTEM. WRK. TEXT, then leaves the Editor.
SYSTEM.WRK.TEXT is the text portion of the workfile, and can be used as
described in Section 1.2.2.3, and chapters nand lIl.

E(xi t:

This leaves the Editor immediately. Any modifications made since entering the
Edi tor are not recorded in the permanent workfile. All editing during the session
is irrecoverably lost, unless you have already used the W(rite option of Q(uit to
save your work.

R(eturn:

Returns to the Editor without updating. The cursor is returned to the exact place
in the file it occupied when "Q" was typed. This command is often used after
unintentionally typing "Q". It is also useful when you wish to make a backup to
your file in the middle of a session with the Editor.

117

Users' Manual
Screen Editor

W(rite:

This option puts up a further prompt:

Figure IV.17
===
>Qu it:
Name of output file «cr> to return) ->
===~ ===========

The modi fied file may now be written to any filename. If it is written to the
name of an existing file, the modified file will replace the old file. You may
specify '$', which will update the file you have been editing. Q(uit can be aborted
at this point by typing <return> instead of a filename; you will return to the
Editor. If the file is written to disk, the Editor· displays the following:

Figure IV.lS
===
>Quit
Wr i tin g •••••
Your file is 1978 bytes long.
Do you want to E(xit from or R(eturn to the Editor?
=.==

Typing 'E' exits from the Editor and returns to the System command level, while
typing 'R' returns the cursor to the exact position in the file as when 'Q' was
typed. Q(uit W(rite to '$' followed by R(eturn is a good way to back up your
textfiles while you are working on them.

118

IV.J.ll R(eplace

On the promptline: R(place.

Repeat factors are allowed.

R(eplace
Users' Manual
Screen Editor

On entering R(eplace one of the two promptlines in Figure IV.19 appears. In this
example, a repeat factor of four is assumed:

Figure IV.19
======================================
>Replace[4]: L (it V (fy <targ> <sub> => { Which one i s used

depends on the global
>Replace[4]: T(ok V (fy <targ> <sub> => mode (see S(et) }
==============~=======================

R(eplace finds the target string «targ» exactly as FCind would, and replaces it
with the substi tution string «sub».

The veri fy option ('V(fy') permits examination of each <targ> string found in the
text (up to the limit set by the repeat factor) so the user can decide if it is to
be replaced. To use this option, type 'V' before typing the target string.

The following promptline appears whenever R(eplace has found the <targ> pattern
in the file and veri fication has been requested:

>Replace: <esc> aborts, 'R' replaces, ' , doesn't

Typing an 'R' at this point causes the replacement to take place, and the next
target to be searched for. Typing a space causes the next occurrence of the
target to be searched for. An <esc> at any point aborts the R(eplace.

With V(erify, this operation continues until the repeat factor is reached, or the
target string can no longer be found.

119

Users' Manual
Screen Editor

Witbt R(eplace in general, if the target string cannot be found, the prompt:

ERROR: Pattern not in the file. Please press <spacebar> to continue •

••• appears.

R(eplace places the cursor after the last string which was replaced.

Example 1: Type 'RL/QX/ /YZ/'; the promptline appears as:

>Replace[l]: LOt V(fy <targ> <sub> =>L/QX/ /YZ/

This com mand will change: 'VAR SIZEQX:INTEGER;' to 'VAR SIZEYZ:INTEGER;'.
Literal is necessary because the string QX is not a token, but part of the token
SIZEQX.

Exal11Rle 2: In Token mode, R(eplace ignores spaces between tokens when finding
patterns to replace. For example, given the lines on the left-hand side of Figure
IV.20, type "2RT /(', ')/.LN." The promptline appears as:

>Replace: LOt V(fy <targ> <sub> =>/(',')/.LN.

Immediately after the last period was typed the two lines on the left of Figure
IV.20 would change to those on the right-hand side.

Figure IV.20
===

V\R I TE (' '). , . ,
\loR I TE (',');

V'RITELN;
V'RITELN;

===

120

IV.J.12 S(et

Not on the promptline; type '5' to use 5(et.

Repeat factors not allowed.

On entering S(et, the following promptline appears:

>Set: M(arker E(nvironment <esc>

IV.J.12.l S(et M(arker

S(et
Users' Manual
Screen Edi tor

When editing, it is particularly convenient to be able to jump directly to certain
places in a long file by using markers set in the desired places. Once a marker is
set, it is possible to jump to it using the M(arker option in J(ump.

Move the cursor to the desired marker position, enter 5(et, and type 'M' for
M(arker. The following promptline appears:

Name of marker?

Markers may be given names of up to 8 characters followed by a <return>. Marker
names are case-sensitive, so that lower and upper cases of the same letter are
considered to be different characters. The marker will be entered at the position
of the cursor in the text. If you use the .name of a marker which already exists,
it will be repositioned.

Only ten markers are allowed in a file at 'anyone time. If on typing "5M", the
prompt:

Figure IV.21
===
Marker ovflw.
Which one to replace.
0) namel
1) name2

.
9)name1D
===

••• appears, it is necessary to eliminate one marker in order to replace it. Choose
a number 0 thru 9, type that number, and that space will now be available for use
in setting the desired marker.

121

Users' Manual
Screen Editor

If a copy or deletion is made between the beginning of the file and the position of
the marker, a J(ump to that marker may not subsequently return to the desired
place, as the marker's absolute position has changed.

IV.3.12.2 SCet E(nvironment

The editing environment can be set to a mode which is most convenient for the
edi ting being done -- whether on program text, document text, or data before
processing. When in S(et type 'E' for E(nvironment; the screen display is replaced
with the following prompt:

Figure IV.22
===
>Environment: {options} <etx> or <sp> to leave

A(uto indent True
F(ill ing False
L(eft margin 1
R(ight margin 80
P(ara margin 6
C(omnand ch
T(oken def True

7436 bytes used, 12020 available

Patterns:
<target>= 'xyz', <subst>= 'abc'

Date Created: 4-13-55 Last Used: 12-28-78

--
(The parameters in this menu are samples, and will vary from file to file. The
parameters shown for the letter options (e.g., C(ommand ch) are the default
values.)

By typing the appropriate letter, any or all of the options may be changed.

122

IV.3.12.2.1 E(nvironment Options

A(uto indent:

Users' Manual
Screen Edi tor

Auto-indent affects only insertions. Refer to the section on I(nsert. Auto-indent is
set to True (turned on) by typing 'AT' and to False (turned off) by typing , AF'.

FOIling:

Filling affects l(nsert and M(argin. You should refer to those sections. Filling is
set to True (turned on) by typing 'FT' and to False by typing 'FF'.

L(eft margin
R(ight margin
P(ara margin:

When Filling is True, the margins set in E(nvironment are the margins which affect
I(nsert and M(argin. They also affect the Center and justifying commands in
A(djust. To set a margin, type L, R, or P, followed by a positive integer and a
<space>. The positive integer typed replaces the previous value. Margin values
must be four digi ts or less.

C(ommand ch:

The Command character affects the M(argin command and the Filling option in
I(nsertx. Refer to those sections. Change the Command character by typing 'c'
followed by any character. For example, typing 'C*' will change the Command
character to '*'. This change will be reflected in the prompt. The Command
Character was principally designed as a convenience for users of text formatting
programs whose commands are indicated by a special character at the beginning of
a line.

T(oken def:

This option affects FOnd and R(eplace. Token is set to True by typing "TT" and
to False by typing "TF". If Token is True, Token is the default and if Token is
False, Literal is the default. See Section IV.2.6 for more information.

123

V (erify
Users' Manual
Screen Editor

IV.3.13 V(erify

Not on the promptline; type 'V' for V(erify.

Repeat factors not allowed.

The current window is redisplayed, and the cursor is repositioned at the center of
the text on the screen.

124

IV.3.14 eX(change

Not on the promptline; type 'X' for eX(change.

Repeat factors not allowed.

On entering eX(change the following promptline appears:

>eXchange: TEXT {<bs> a char} [<esc> escapes; <etx> accepts]

eX(change
Users' Manual
Screen Edi tor

Starting from the cursor position, eX(change replaces characters in the file with
characters typed.

For example, in the file in Figure IV.23, with the cursor at the 'w' in WISE,
typing 'XSM' replaces the 'w' with the'S' and then the '1' with the 'M', leaving
the line as shown in Figure IV.24, with the cursor before the second'S'.

Figure IV.23 Figure IV.24
==================== ===================
VvR I T E (, TOO w I S E '); WRITE('TOO SM~E ');
==================== ===================

<etx> accepts the actions of eX(change, while <esc> leaves the command with no
changes recorded in the last line altered.

eX(change ignores the global direction -- e'xchanges are always forward.

The arrow keys, <backspace>, <return>, and <tab> may be used to move the cursor
abou t the screen. eX(changes move forward from wherever the cursor is moved
to.

While in eX(change, the terminal's KEY TO INSERT CHARACTER inserts one
space at the cursor's location, and KEY TO DELETE CHARACTER deletes a single
character at the cursor's location. These keys may be specified with SETUP (see
the Installation Guide).

125

leap
Users' Manual
Screen Editor

IV.3.15 Z(ap

On the promptline: Z(ap.

Repeat factors not allowed.

Deletes all text between the start of what was previously found, replaced, or
inserted and the current position of the cursor. This command is designed to be
used immediately after a FOnd, R(eplace or I(nsert. If more than 80 characters
are being zapped, the Editor asks for verification.

The position of the cursor after the previous FOnd, R(eplace, or I(nsert is called
the "equ als mark". Typing' =' will place the cursor there.

Whatever was deleted by using the Z(ap command is available for use with C(opy,
unless there is not enough room in the copy. buffer. If this is the case, the Editor
will ask if you want to Z(ap anyway.

After certain commands which might scramble the buffer, Z(ap is not allowed.
These commands are: A(djust, D(elete, K(olumn, and M(argin.

126

Users' Manual
YALOE

v. YALOE -- YET ANOTHER LINE ORIENTED EDITOR

This text editor is intended for use on systems that do not have powerful screen
terminals. It was designed to be very similar to the text editor which
accompanies DEC's RT -11 system. Its name is pronounced: Yah-Ioo-ee.

To use Y ALOE, the user may eX(ecute Y ALOE.CODE. If extensive use of
Y ALOE.CODE is planned, it is easier to use the Filer to C(hange SYSTEM.EDITOR
to SCREEN. EDITOR (or some other name), and. then C(hange YALOE.CODE to
SYSTEM.EDITOR.

If there is a current workfile when Y ALOE is executed, it displays 'workfile
STUFF read in'. If it does not find a workfile, it proclaims 'No work file read
In. This means that you entered YALOE with an empty workfile. From this
point you may create a file in YALOE, and when you exit by typing 'QU', your
workfile will no longer be empty.

Y ALOE operates in one of two modes: Command Mode or Text Mode. In
command mode, all keyboard input is interpreted as commands instructing YALOE
to perform some operation. When you first enter YALOE you will be in the
Command Mode. The Text Mode is entered whenever the user types a command
which must be followed by a text string. After the commands FOnd, G(et, I(nsert,
M(acro define, R(ead file, W(rite to file, or eX(change all succeeding characters
are considered part of the text string until an <esc> is typed. Note: when typed,
<esc> echoes a '$'. The <esc> terminates the text string and causes YALOE to
re-enter the Command Mode, at which point all characters are again considered
commands.

Note: terminate com mand strings in YALOE with <esc><esc> to execute them.
(This is unlike the rest of the System's 'immediate' commands.)

127

Users' Manual
YALOE

V.1 Special Key Commands

Various characters have special meanings, as described below. Some of these apply
only in Y ALOE. Many have similar effects in the rest of the System; for these
the ASCll code to which the System responds as indicated can be changed using
the program SETUP, described in the Installation Guide.

128

<esc>

RUBOUT
<linedel>

CTRL H
<chardel>

CTRL X

Echoes a '$'. A single <esc> terminates
a text string. A double <esc> executes
the command string.

Deletes current line. On hardcopy
terminals, echoes '<ZAP'<return>. On
others, it clears the current line on the
screen. In both cases, the contents of
that line are discarded by Y ALOE.

Deletes character from the current line.
On hardcopy terminals it echoes a '0/0',
followed by the character deleted. Each
succeeding CTRL H typed by the user deletes
and echoes another character. A final
, 0/0' is printed when a key other than
CTRL H is typed. This erasure is done
right to left, up to the beginning of the
command string. CTRL H may be used in
both Command and Text mode.

Causes YALOE to ignore the entire
command string currently being entered.
YALOE responds with <return>* to
indicate that the user may enter another
command. For example:

*IDALE AND
KEITH<CTRL X>

*
A <linedel> deletes only KEITH;
CTRL X erases the entire command.

CTRL 0 Swi tches you to the optional character
set (i.e., bit 7 is turned on). This only .
works on the TERAK 8510A. CTRL 0 toggles
between the character sets. NOTE: You
may find while in Y ALOE that weird
characters are showing up on the terminal
instead of normal ones. Perhaps you
accidentally typed CTRL o. To get back,
just type CTRL 0 again.

All other control characters are ignored and discarded by Y ALOE.

Users' Manual
YALOE

129

Users' Manual
VALOE

V.2 Command Arguments

A commmand argument precedes a command, letter and is used either to indicate
the number of times the command should be performed, or to specify the
particular portion of text to be affected by the command. With some commands,
this specification is implicit and no argument is needed. Other commands, however,
require an argument.

Command arguments are described as follows:

130

n n stands for any integer. 1 t may be
preceded by a + or -. If no sign precedes· n,
it is assumed to be a positive number.
Whenever an argument is acceptable in a
command, its absence implies an argument of
1 (or -1 if only the - is present).

m m is a number 0 •• 9.

o '0' refers to the beginning of the current
line.

/ '/' means 32700. '-/' means -32700. It
is useful as a large repeat factor.

= '=' is used only with the J, 0 and C
commands, and represents -n, where n is
equal to the length of the last text
argument used, for example: *GTHIS$=D$$
finds and removes THIS.

V.3 Command Strings

Users' Manual
YALOE

All EDIT command strings are terminated by two successive <esc>s. Spaces,
carriage returns and tabs (CTRL 1) within a command string are ignored unless
they appear in a text string.

Several commands can be strung together and executed in sequence.

For example:

*B GTHE INSER TED$ -3CING$ 5K GSTRING$$

The "B" sets the cursor position.

The "G" looks for the string "THE INSER TED" and places the cursor on the
character which follows the "0".

The "-3CING" replaces the string "TED" with "ING".

The "5K" deletes text from the cursor to the 5th successive end-of-line.

The "GSTRING" finds the first occurance of "STRING" in the file and places the
cursor just after the G.

As a rule, commands are separated from one another by a single <esc>. This
separating <esc> is not needed, however, if the command requires no text.
Commands are terminated by a single <esc>; a second <esc> signals the end of a
command string, which will then be executed. When the execution of the
command string is complete, Y ALOE prompts for the next command with '*'.

If an error is encountered at any point while executing the command, the command
is terminated immediately. Any prior commands in the string will have already
taken place.

131

Users' Manual
YALOE

V.4 The Text Buffer

The current version of the text is stored in the Text Buffer. This buffer's area is
dynamically allocated; its size and the room left for expansion may be ascertained
by using the ? command.

Y ALOE can only work on files that fit entirely within the Text Buffer.

132

V.5 The Cursor

Users' Manual
YALOE

The "cursor" is the position in your text where the next command will be
executed. In other words it is the current "pointer" into the Text Buffer. Most
edit commands refer to the cursor:

A,B,F ,G,J: Moves it.
D,K: Remove text from where it is.
U,I,R: Add text to where it is.
C,X: Remove and then add text at it.
L, V: Print the text on the terminal from it.

133

Users' Manual
YALOE

V.6 INPUT/OUTPUT COMMANDS

lOst, V(erify, W(rite, R(ead, Q(uit

The lOst command prints the specified number of lines on the console terminal
without moving the cursor.

*-2l$$

*4l$$

*Ol$$

Prints all characters starting at the second
preceding line and ending at the cursor.

Prints all characters beginning at the cursor
and terminating at the 4th <cr>.

Prints from the beginning of the current .line
up to the cursor.

The V(erify command prints the current text line on the terminal. The position of
the cursor within the line has no effect and the cursor is not moved. Arguments
are ignored. The V(erify command is equivalent to a Oll (list) command.

The W(rite command is of the form

*W<filename>$

<filename> is any legal filename as decribed in Section 1.2, without the file type
suffix. YALOE automatically appends a '.TEXT' suffix to the filename given,
unless it ends with '.', 'J', or '.TEXT'. If the filename ends in a '.', the dot will
be stripped from the filename. Refer to Figure 4 (in Section 111.5) for details on
filename specifications.

The W(rite command writes the entire Text Buffer to a file with the given
filename. It does not move the cursor or alter the contents of the Text Buffer.

If there is no room for the Text Buffer on the volume specified in the filename,
the message:

OUTPUT ERROR. HELP!

will be printed. It is still possible to write the Text Buffer by writing it to
another volume.

134

Users' Manual
YALOE

The R(ead command is of the form

*R <file ti tle>$

Y ALOE attempts to read the file title as given. In the event no file with that
title is present, a '.TEXT' is appended and a new search is made.

The R(ead command inserts the specified file into the Text Buffer following the
cursor. The cursor remains in the Text Buffer before the text inserted. If the
file read in does not fit into the main memory buffer, the contents of the entire
Text Buffer will be undefined, i.e. this is an unrecoverable error.

The Q(uit command has several forms

QU Quit and update by writing out a new SYSTEM. WRK. TEXT
QE Quit and escape session; do not alter SYSTEM. WRK.TEXT
QR Don't quit; return to YALOE
Q A prompt will be sent to the terminal giving all the

above choices; enter option mnemonic (U, E, or R) onlyo

Executing the QU command is a special case of the write command, and the
attempt to write out SYSTEM.WRK.TEXT may fail. In this case use the W
command to write out your file and then QE to exit Y ALOE.

The QR command is used on the occasions when a Q is accidentally typed, and you
wish to return to Y ALOE rather than leave it.

135

Users' Manual
YALOE

v .7 Cursor Relocation Commands

J(ump, A(dvance, B(eginning, G(et, FOnd

When using character and line oriented commands, a positive (n or +n) argument
specifies the number of characters or lines in a forward direction, and a negative
argument the number of characters or lines in a backward direction. The Editor
recognizes a line of text as a unit when it detects a <return> in the text.

Carriage return characters are treated the same as any other character. For
example, assume the cursor is positioned as indicated in the following text e'
represe nts the current position of the cursor, and does not appear in actual use.
It is shown here for clarification):

THERE WAS A CROOKED MAN"<CR>
AND HUMPTY DUMPTY FELL ON HIM<CR>

The J(ump command moves the cursor over the specified number of characters in
the Text Buffer. The edit command -4J moves the cursor back 4 characters.

THERE WAS A CROOKED" MAN<CR>
AND HUMPTY DUMPTY FELL ON HIM<CR>

The command 10J moves the cursor forward 10 characters and places it between
the 'H' and the 'U'.

THERE WAS A CROOKED MAN<CR>
AND H"UMPTY DUMPTY FELL ON HIM<CR>

The A(dvance command moves the cursor a specified number of lines. The cursor
is moved to the beginning of the last line.

Hence, the command OA moves the cursor to the beginning of the current line.

THERE WAS A CROOKED MAN<CR>
"AND HUMPTY DUMPTY FELL ON HIM<CR>

The command -IA (or -A) moves the cursor back one line.

"THERE -WAS A CROOKED MAN<CR)
AND HUMPTY DUMPTY FELL ON HIM<CR)

The B(eginning command moves the cursor to the beginning of the Text Buffer.
Use / J to move to the end of the buffer.

136

Users' Manual
YALOE

Search commands are used to locate specific characters or strings of characters
within the Text Buffer.

The G(et and FOnd commands are synonymous. Starting at the position of the
cursor, the current Text Buffer is searched for the nth occurrence of a specified
text string. A successful search leaves the cursor immediately after the nth
occurrence of the text string if n is positive, and immediately before the text
string if n is negative. An unsuccessful search generates an error message and
leaves the cursor at the end of the Text Buffer for n positive, and at the
beginning for n negative.

*BGSTRING$=J$$ This command string will look for the string
STRING starting at the beginning of the Text
Buffer; and if found it will leave the cursor
immediately before it.

137

Users' Manual
YALOE

V.8 Text Modification Commands

I(nsert, D(elete, K(ill, C(hange, eX(change

The I(nsert command causes the Editor to enter the TEXT mode. Characters are
inserted immediately following the cursor until an <esc> is typed. The cursor is
posi tioned immediately after the last character of the insert. Occasionally, with
large insertions, the temporary insert buffer becomes full. Before this happens, a
message is printed on the console: 'Please finish'. In response, type two successive
<esc>s. To continue, type I to return to the Text mode.

Note: If you forget to type the I command, the text you enter will be treated as
commands!

The D(elete command removes a specified number of characters from the Text
Buffer, starting at the position of the cursor. Upon completion of the command,
the cursor's position is at the first character following the deleted text.

*-20$$ Deletes the two characters immediately preceding
the cursor.

*B$FHOSE $=0$$ Deletes the first string 'HOSE ' in the Text
Buffer, since =0 used in combination with
a search command will delete the indicated
text string.

The K(ill command deletes n lines from the Text Buffer, starting at the position of
the cursor. Upon completion of the command, the cursor's position is the

beginning of the line following the deleted text.

*2K$$

*/K$$

Deletes characters starting at the current
cursor position and ending at (and including)
the second <CR>.

Deletes all lines in the Text Buffer after the
cursor.

The C(hange command replaces n characters, starting at the cursor, with the
specified text string. Upon completion of the command, the cursor immediately
follows the changed text.

*OCAPPLES$$

138

Replaces the characters from the beginning of
the line up to the cursor with 'APPLES',
(equivalent to using OX).

*BGHOSE$=CLIZARO$$ Searches for the first occurrence of
'HOSE' in the Text Buffer and replaces it
with 'LIZARD'.

Users' Manual
YALOE

The eX(change command exchanges n lines, starting at the cursor, with the
indicated text string. The cursor remains at the end of the changed text.

*-5XTEXT$$

*OXTEXT$$

*IXTEXT$$

Exchanges all characters beginning with the
first character on the 5th line back and ending
at the cursor with the string 'TEXT'.

Exchanges the current line from the beginning to
the cursor with the string 'TEXT', (equivalent
to using ~C).

Exchanges the lines from the cursor to the end
of the Text Buffer with the text 'TEXT',
(equi valent to using IC or 101).

139

Users' Manual
YALOE

V.9 Other Commands

S(ave, U(nsave, M(acro, N (macro execution) and '7'

The S(ave command copies the specified number of lines into the Save Buffer,
starting at the cursor. The cursor position does not change, and the contents of
the Text Buffer are not altered. Each time a S(ave is executed, the previous
contents of the Save Buffer, if any, are destroyed. If executing the S(ave
command threatens to overflow the Save Buffer, the Editor generates a message to
this effect, and does not perform the save.

The U(nsave command inserts the entire contents of the Save Buffer into the Text
Buffer at the cursor. The cursor remains before the inserted text. If there is
not enough room in the Text Buffer for the Save Buffer, the Editor generates a
message to this effect, and does not execute the unsave.

The Save Buffer may be cleared with the command OU.

The M(acro command is used to define macros. A maximum of ten macros,
identified by a digit in 0 •• 9 preceding 'M', are allowed. The default number is 1.
The. M(acro command is of the form:

mM o/~ommand string %

This says to store the command string into Macro Buffer number m, where m is
th e optional digi t 0 •. 9. The delimiter, '%' in this example, is always the first
character following the M command and may be any character which does not
appear in the macro command string itself. The' second occurrence of the
delimiter terminates the macro.

All characters except the delimiter are legal Macro command string characters,
including single <esc>s. All commands are legal in a macro command string.
Example of a macro definition:

*5M O/oGBEGIN$=CEND BEGIN$V$ 0/0$$

This defines macro number 5. When macro number 5 is executed, it will look for
the string 'BEGIN', change it to 'END BEGIN', and then display the change.

If an error occurs when defining a macro, the message

'Error in macro definition'

is printed, and the macro must be redefined.

140

Users' Manual
YALOE

The execute macro command, N, executes a specified macro command string. The
form of the command is:

nNm$

Here n is simply any command argument as previously defined; m is the macro
nu mber (a digit 0 •• 9) to be executed. If m is omitted, 1 is assumed. Because the
digit m is technically a command text string, the N command must be terminated
by an <esc>.

A ttempts to execute undefined macros cause the error message 'Unhappy macnum'.
Errors encountered during macro execution cause the message 'Error in macro'.
Errors encountered in macro command syntax cause the message 'Error in macro
definition'.

The ? command prints a list of all the commands and the sizes of the Text
Buffer, Save Buffer, and available memory left for expansion. It also lists the
numbers of the currently defined macros.

',141

Users' Manual
YALOE

142

VI. THE UCSD PASCAL LANGUAGE

VI.l The UCSD Pascal Implementation

Users' Manual
UCSD Pascal

This section is a summary and reference which describes the areas in which UCSD
Pascal differs from "standard" Pascal, or specifies details of topics (such as
packi ng) which are normally implementation-dependent. For a full description of
the Pascal language, the user is referred to other appropriate references. The
standard Pascal referred to in this section is defined by the PASCAL User Manual
and Report (2nd edition) by Kathleen Jensen and Niklaus Wirth (New York:
Springer-Verlag, 1975).

The reader may already be aware that there is an active effort underway to
produce a formal international (as well as American) standard for Pascal. This
effort is co-ordinated internationally by the ISO (International Standards
Organization) and domestically by ANSI (the American National Standards Institute).
As the details of this standard solidify, andlts use becomes more widespread, it
will replace Jensen and Wirth as the reference for Pascal, and become the basis
for comparisons with UCSD Pascal. UCSD Pascal will continue to evolve in the
direction of a commonly adopted standard, and will eventually comply with it.

It is recommended that the reader read all of Section VI.l.l, then use the
information gained there to refer to the relevant parts of Sections VI.1.2 and VI.2.
Section VI.l.2 covers variations from the standard, including differences in the
implementation of standard procedures and functions -- special attention should be
paid to these. Section VI.2 lists, in alphabetical order, the various intrinsic
functions which are not part of the standard language, but which have been
included in this implementation. Some of these are esoteric, but most are
generally useful.

143

Users' Manual
UCSD Pascal

VI.I.I An Introduction to the UCSD Implementation

There are five general areas in which the UCSD implementation differs from other
implementations of Pascal: .

1) String Handling: The type STRING has been added to the language, along with a
number of intrinsic functions for manipulating strings.

2) 1/0 Intrinsics: A number of intrinsics have been added to facilitate handling of
files and peripheral devices. The standard Pascal 1/0 intrinsics have been slightly
modi fied to make them more useful in an interacti ve environment.

3) Separate Compilation and Memory Management: The language has been extended
by the addition of SEGMENT rOutines, which facilitate swapping of program code
at execution time, and UNITs, which allow separate compilation of Pascal routines
and data structures.

4) Co!:!£urre!:!£l: Some syntax extensions have been made, and a few intrinsics
added, to support the use of concurrent processes.

5) Miscellaneous: There are a number of small deviations and extensions to Pascal
syntax, and limitations imposed by the microprocessor environment.

The sections below on strings, memory management, and concurrency (Vl.1.2.1,
V1.1.2.3, Vl.1.2.4, and Chapter IX), need only be read by users interested in those
particular features. It is recommended that you do read the sections on 1/0
intrinsics and on miscellaneous deviations (Vl.1.2.2 and Vl.1.2.5), because these
sections detail ways in which the UCSD use of Pascal may differ from a version
you are familiar with. Section Vl.1.2 also points out the various UCSD intrinsics
th at are relevant to each particular area; non-standard intrinsics are described in
alphabetical order in Section Vl.2.

144

Users' Manual
UCSD Pascal

VI.I.2 Differences between UCSD Pascal and Standard Pascal

VI.I.2.I Strings

UCSD Pascal has an additional predeclared type STRING. A variable or constant
of type STRING is a sequence of characters. In a string variable, the length of
the sequence can vary dynamically during the execution of a program.

A STRING variable has a maximum length (also known as the static length). The
default maximum length of a STRING variable is 80 characters. This can be
overridden in the declaration of a STRING variable by following the predeclared
type identifier STRING with the desired maximum length enclosed in square
brackets ([]).

Strings can be manipulated by either standard Pascal syntax, or by the special
string-handling intrinsics in UCSD Pascal. The UCSD intrinsic function LENGTH
may be used to learn the dynamic length of a string.

Examples of STRING decl?rations: .

TITLE: STRII\G; (* defaults to a maximum length *)
(* ... of 80 characters *)

~E: STRII\G[20]; (* defines the STRII\G with a *)
(* ma x i murn 0 f 20 c h a r act e r s *)

The maximum length a STRING variable may have is 255 characters. The empty
string (LENGTH = 0, represented by") is allowed.

Values may be assigned to STRINGs using assignment statements, UCSD STRING
intrinsics, or READ (READLN) statements.

Examples:

TITLE:=' THIS IS A TITLE
or

READLN(TITLE);
or

N.Alv1E·: = COpy (TIT L E , 1 , 2 0) ;

The individual characters within a STRING are indexed as a PACKED ARRAY OF
CHAR would be indexed, from 1 to the LENGTH of the STRING.

145

Users' Manual
UCSD Pascal

F or example:

LETTERS[l]:= 'A';

LETTERS [LENGTH(LETTERS) J.- 'Z'· . - ,

A variable of type STRING may not be indexed beyond its current dynamic
LENGTH when range-checking is turned on. (Beware of strings of length zero!)
The following sequence will result in an 'Invalid Index' runtime error:

TITLE:= '1234';
TITLE [5] : = ' 5 ' ;

Variables of type STRING are compatible for assignment and comparison with any
other string constant or variable regardless of either static or dynamic length. A
string may also be compared with a PACKED ARRAY OF CHAR. String
comparisons return a result based on lexicographical ordering (i.e., lower case >
upper case).

146

Example:

PR~ COMPARESTRINGS;
VAR S: STRII\G;

T: STRING[40] ;

BEGIN
S: = ' SovtETHING' ;
T:= 'SOMETHING BIGGER';
IF S = T THEN

WRITELN('Strings do not work very well')
ELSE

IF S > T THEN
WRITELN(S,' is greater than ',T)

ELSE
IF S < T THEN

WRITELN(S,' is less than ',T);
IF S = 'SOMETHING' THEN

WRITELN(S,' equals ',S);
IF S > 'SAMETHING' THEN

WRITELN(S,' is greater than SAMETHII\G');
IF S = 'SOMETHING ' THEN

WR I TELN (, BLANKS IJC]\J" T CaNT')
ELSE

Users' Manual
UCSD Pascal

WR I TELN(, BLANKS APPEAR TO MAKE A 0 I FFEREI\CE ') ;
S: = 'XXX' ;
T : = ' ABCDEF ' ;
IF S)T THEN

WR I TELN (S " i s g rea t e r t h a h " T)
ELSE

WR I TELN (S " i s I e sst han " T) ;
EI'D.

The above program produces the following output:.

SOMETHING is less than SOMETHING BIGGER
SOMETHING equals SOMETHING
SOMETHING is greater than SAMETHING
BLANKS APPEAR TO MAKE A DIFFEREI\CE
XXX is greater than ABCDEF

147

Users' Manual
UCSD Pascal

One of the most common uses of STRING variables in UCSD Pascal is reading file
names from the CONSOLE: device:

PRa?RflM LISTER;
VAR BUFFER: PACKED ARRAY[O •• 511] OF CHAR;

FILEN~E: STRING;
F: FILE;

BEGIN
WK I T E (, En t e r f i len ame oft h e f i let abe lis ted - - > ') ;
READLN(FILE~) ;
RESET(F,FILE~E);
WHILE NOT EOF(F) 00

BEGIN

EN);
EN).

When a STRING is to be read by the Pascal intrinsics READ or READLN,
characters are read into that STRING variable one at a time, up to but not
inc lu di ng the EOLN «return». Thus, only one STRING can be read, per line of
the input file.

For example, the single statement RtADLN(S1,S2) is equivalent to the two
statement sequence READ(Sl); READLN(S2). In both cases the STRING variable S2
will be assigned the empty string. (READ and READLN are described in Section

. '\11.1.2.2.4.)

The string-handling intrinsics are: CONCA T, DELETE, INSERT, LENGTH, and POSe
You should refer to the descriptions of these intrinsics in Section Vl.2 below.

148

VI.l.2.2 I/O Intrinsics

Users' Manual
UCSD Pascal

In addition to the divergences from standard Pascal described in this section, the
reader should also refer to the 1/0 intrinsics which have been added to the UCSD
implementation. These are BLOCKREAD, BLOCKWRITE, CLOSE, 10RESUL T,
UNITBUSY, UNITCLEAR, UNITREAD, UNITSTATUS, UNITWAIT, and UNITWRITE.
They are all described in Section VI.2 below.

149

EOF
Users' Manual
UCSD Pascal

VI.l.2.2.1 End of File - EOF

To set EOF TRUE for a textfile being entered from the CONSOLE:, the user must
type the EOF character. The EOF character is often called <etx> and often set
to control-C. The utility SETUP may be used to find out what character has been
defined as <etx> in your System; it may also be used to change that setting.
Refer to the section on SETUP in the Installation Guide.

If a file F is closed, EOF(F) will return the value TRUE. For a TEXT file,
EOF(F) = TRUE implies that EOLN(F) is also TRUE. After a RESET(F), EOF(F) is
FALSE. If EOF(F) becomes TRUE during a GET(F) or a READ(F , ...) the data
obtained thereby is not valid.

When a user program starts execution, the system performs a RESET on the
predeclared files INPUT, OUTPUT, and KEYBOARD. The predeclared file
KEYBOARD is described in Section VI.l.2.2.4.

EOF and EOLN refer to the file INPUT unless the name of another file is given as
their first parameter (this corresponds to Jensen and Wirth).

150

VI.l.2.2.2 End of Line -- EOLN

EOLN
Users" Manual
UCSD Pascal

EOLN(F) is defined only if the contents of F are of type CHAR. EOLN(F)
becomes TRUE only after reading a <return> from file F. As with EOF, if the
first parameter is not the name of a file, EOLN refers to the standard file INPUT.

The following example is meant to show the importance of typing a <return> at
the proper time:

PR~ ACDL I NE 5 ;
VAR K, SL.M: INTEGER;

BEGIN
WHILE NDT EOF(INPUT) DO

BEGIN
SLM: =0;
READ (INPUT ,K) ;
WHILE NOT EOLN(INPUT) DO

BEGIN
SLM: = SLM+K ;
READ (INPUT ,K) ;

EI\D;
VtRi TELN(a.JTPUT) ;
WRITELN(a.JTPUT,'THE SLM FOR THIS LINE IS' SLM);

EI\D;
ENJ.

In order for EOLN(F) to be TRUE in the- above program, <return> must be typed
immediately after the last digit of the last integer on that line. If instead a
space is typed followed by <return>, -EOLN will remain FALSE, and another READ
will take place. -

151

Users' Manual
UCSD Pascal

Vl.l.2.2.J Files

Vl.l.2.2.3.1 Interactive Files

Files of type INTERACTIVE are composed of characters, just like files of type
TEXT. INTERACTIVE files differ from TEXT files in their behavior when they are
use d by th e intrinsics READ, READLN, and RESET. This behavior is intuiti ve in
an interactive environment.

Typed files that are not INTERACTIVE behave exactly as described in Jensen and
Wirth.

The standard predeclared files INPUT and OUTPUT are defined to be of type
INTERACTIVE. The file KEYBOARD (which is predeclared in UCSD Pascal) is also
INTERACTI VEe

INPUT defaults to CONSOLE:. The statement READ(INPUT,CH) where CH is a
character variable, will echo the character typed from CONSOLE: back to
CONSOLE:.

WRITE statements to OUTPUT will, by default, cause the output to appear on
CONSOLE:.

KEYBOARD is the non-echoing equivalent to INPUT. For example, the two
statements:

READ(KEYBOARD,CH);
\fIR I TE (OJTPUT ,0-0 ;

••• are equivalent to the single statement READ(INPUT ,CH).

For a way to "redirect" the standard files INPUT and OUTPUT, see Section lI.3.

Given the following declarations:

VAR CH:D-iAR;
F: TEXT; (* TYPE TEXT = FILE OF CHAR *)

••• the statement READ(F ,CH) is defined by Jensen and Wirth to be equivalent to
the two-state'ment sequence:

0;: =FA ;
GET (F); I J&W

method

In other words, the standard definition of READ requires that opening a file must
load the "window variable" FA with the first character of the file. In an

152

Users' Manual
UCSD Pascal

interactive programming environment, it is not convenient to require a user to type
in the first character of the input file at the time the file is opened. If this
were the case, every program using files would "hang" until a character was typed,
whether or not the program performed any input operations at all.

In order to overcome this problem, READ(F ,CH) on an INTERACTIVE file is the
reverse of the sequence specified by the standard definition for files of type
TEXT:, i.e.,

GET (F);
G-I: =F" ; ! L£SD Pascal }

method }

~ .

This difference affects the way in which EOLN must be used when reading fl'om a
te-xtfile of type INTERACTIVE. As described above, EOLN becomes TRUE only
after re.ading the end af line character «return». When a ~return> is read, EOLN
is TRUE, and the character returned as -a result of the -READ will be a blank •.

On a standard file, RESET(F) performs an immediate GET(F). This does not take
place if the file is INTERACTIVE. Thus, on an INTERACTIVE file, the equivalent
of a standard RESET would -be the two-statement sequence:

RESET (F) ;
GET(-F); . ! makes INTBRACTiVE

look I i keTEXT

Refer to Section -VI.l.-2.2.4 on READ and READLN,' and Section· VI.h2.2.5 on
RESET for more details.

153

Users' Manual
UCSD Pascal

Vl.l.2.2.J.2 Untyped Files

UCSD Pascal allows files to be declared without a type.

An untyped file F can be thought of as a file without a window variable FA. With
such a file, all I/O must be performed using the functions BLOCKREAD and
BLOCKWRITE. BLOCKREAD and BLOCKWRITE are UCSD intrinsics (refer to
Section VI.2 below). Any number of blocks can be transferred using either
BLOCKREAD or BLOCKWRITE. The functions return the number of blocks
transferred.

/::xample:

154

PRa?PvAM F I LEDEJvO;

VN{
BLcx::J<N...MBER , BLexxSTRANSFERRED: INTEGER;
BAD I a :: BOOLEAN; .
G,F~·~lLE; .
BUFFER: PACKED ARRAY[O •• 511] OF mAR;

(* This program reads a diskfile called 'Sa...RCE.DATA' and
copies the file into anotherdiskfile called 'DESTlNATlCN'
using untyped fi les and the intrinsics, BLCJO<READ and
BLcx:::J<\hR I TE *) .

BEGIN
BADIO:=FALSE;
RESET(G,'SOURCE.DATA');
REWRITE(F,'DEST1NATION');
BLOO<NJv1BER: =0;
(*$1-*) {thiS turns off I/O checking}
BLCD<STRANSFERRED:=BLcx:KREAD(G,BLFFER,l,BLOO<NJv1BER);
Vv1-II L E (\\oT EOF (G)) AN) (lORE SUL T = 0) Af\D ([\[)T BAD 10) AN)

(BLCXJ<STRANSFERRED=l) DO
BEGIN

BLOCKSTRANSFERRED:=BLcx:::J<\hRITE(F,BUFFER,l,BLOCKNUMBER);
BADIO:=«(BLOOKSTRANSFERRED<l) OR (IORESULT<>O»;
BLOCKNUMBER:=BLOCKNUMBER+l;
BLOCKSTRANSFERRED:=BLOCKREAD(G,BUFFER,l,BLOCKNUMBER);

E~;
CLOS E (F ,LCD<) ;

ENJ.

VI.l.2.2.3.3 Random Access of Files

Users' Manual
UCSD Pascal

Files may be randomly accessed by use of the UCSD intrinsic SEEK. SEEK
expects two parameters: the file identifier, and an integer specifying the record
number to which the window should be moved. The first record of a structured
file is record nu mber O.

A ttempts to PUT records beyond the physical end of file will set EOF to the value
TRUE. (The physical end of file is the point where the next record in the file
would overwrite another file on the disk.) ,SEEK always sets EOF and EOLN to
FALSE. The subsequent GET or PUT wHI set these conditions as i-s appropriate.
SEEK is described in Section Vl-.1.

155

Users' Manual
UCSD Pascal

The following sample program demonstrates the use of SEEK to randomly access
and update records in a file:

156

PRCXR.AM RANXJvtL\CCE S S ;
VAA

RECNUMBER: INTEGER;
a-; : D--lAR ;
DISK: FILE OF RECORD

N~E: STRING[20];
DAY·, rvrnTH , YEAA : 1 NTEGER ;
ADORES S: PACKED AARAY [O •• 49] OF CHAR;
AL 1 VE: BOOLEAN

END;
BEGIN

RESET(DISK,'RECORDS.DATA');

END.

w-t 1 L E I\OT EOF (1 NPUT) 00
BEGIN

WRITE(OUTPUT,'Enter record number --)');
READ(INPUT,RECNUMBER);

SEEK(DISK,RECNUMBER);
GET (01 SK) ;

WI TH 01 SK" DO
BEGIN

IF NOT EOF(DISK) THEN
VRITELN(CUTPUT,NPME,DAY,rvrNTH,YEAA,ADDRESS)

ELSE
WRITELN('New Record');

WRITE(OUTPUT,'Enter correct name --)');
READLN (INPUT ,NPME) ;

END;

(* Must point the window back to the record
since GET(DISK) advances the window to
the next record after loading DISK" *)

SEEK(DISK,RECNUMBER);
PUT (01 SK) ;

END;

VI.l.2.2.3.4 Files as Elements of Records or Arrays

Users' Manual
UCSD Pascal

UCSD Pascal does not allow files to be declared inside structured variables (i.e.,
arrays or records). One consequence of this is that file variables cannot be stored
on the heap. This restriction is imposed so that the Compiler can easily emit
hidden code to open and close an internal file at the proper limits of its scope.

~ ;. .

:,~-~ ~;.'¥';~

" r; ~ 5".!~~ . : ~V
,C·

)'

·157

READ and READLN
Users' Manual
UCSD Pascal

VI.l.2.2.4 READ and READLN

Strings are read character-by-character, until terminated by a <return>.

When integers are read, leading blanks and end-of-lines are flushed until a non­
blank ch aracter is read. An integer is terminated by a space (' '), a character
that is not a digit, or a <return>. Before it has been completely read, it may be
corrected by <backspace>'ing over it and re-typing.

Reals are read in the same way as integers.

Booleans may not be read. Neither may any structured type.

The behavior of READ and READLN conforms to the definition in Jensen and
Wirth, except when handling files that are INTERACTIVE. The standard file
INPUT is defined to be INTERACTIVE. The action of READ on an INTERACTIVE
file is described in Section VI.1.2.2.3.1 and illustrated below.

In the following example, the left fragment is taken from Jensen and Wirth; only
the RESET and REWRITE statements have been altered. The program on the left
will correctly copy the textfile represented by the file X to the file Y. The
program fr~gment on the right performs a similiar task, except that the source file
be i ng copied' is INTERACrlVE, thus forcing a slight change in the program in order
to produce the desired result.

PRCDRflM JMDN;
VAR X,Y:TEXT;

Cl-i : D-iAR ;
BEGIN

RESET(X, 'SOURCE. TEXT');
REWRITE(Y,'SOMETHING.TEXT');

WHILE NOT EOF(X) DO
BEGIN

WHILE NOT ECl..N(X) 00
BEGIN

READ(X,O-i) ;
~l TE (Y ,a-I) ;

EN);
READLN(X) ;
'ARI TELN(Y) ;

EJ\D;
CLOSE (Y, LOO<);

EW.

158

PR~ UCSDVERSION;
VAR X,Y:INTERACTIVE;

D-i:a-tAR ;
BEGIN

RESET(X,'CONSOLE: ');
REWRITE(Y,'SOMETHING.TEXT');
READ (X , D-I) ;
WHILE NOT EOF(X) 00

BEGIN
WHILE NOT EOLN(X) 00

BEGIN
mITE(Y,O-O;
READ (X ,0-1) ;

Ef\D;
READLN(X) ;
~lTELN(Y) ;

ENJ;
CLOSE (Y, LOO<) ;

EN:>.

Users~ Manual
UCSD Pascal

Note that the textfiles X and Y in both programs had to be opened by using the
UCSD extended form of the standard procedures RESET and REWRITE.

The CLOSE intrinsic (a UCSD intrinsic; see Section VI.2) was applied to the file Y
in both versions of the program in order to make it a permanent file in the disk
directory called 'SOMETHING. TEXT'. Likewise, the textfile X could have been a
diskfile instead of coming from CONSOLE: in the right-hand version of the
program.

159

RESET
Users' Manual
UCSD Pascal

VI.l.2.2.5 RESET

The standard procedure RESET(F) resets the file window to the beginning of the
file F. The next GET(F) or PUT(F) affects record number 0 of that file. An
immediate GET(F) is also performed within RESET (thus GETting the first record
of the file), unless the file F is of type INTERACTIVE.

Thus, for INTERACTIVE files, the UCSo equivalent of the standard definition· of
RESET(F) is the two-statement sequence:

RESET (F) ;
GET (F) ; I makes INTERACTIVE

look like TEXT I
(Except for this stipulation about INTERACTIVE files, the behavior of RESET
conforms to Jensen and Wirth.)

The UCSo implementation also allows RESET to have a second parameter, which is
the name of an existing disk file or device, contained in a string constant or string
variable. The disk file (or device) is referred to as an "external" file; the file
that is a data object in the Pascal program is called an "internal" file.

F or example:

RESET(F, 'ODD. TEXT')

RESET(F, FN,AME)

.•• are statements that associate the internal (Pascal) file F with the external
(disk) file 'O~~' or the disk file named in FNAME.

Trying to RESET a nonexistent external file, or an internal file that is already
open, will cause an 1/0 error. Trying to RESET a write-only device (such as
PRINTER:) will cause an 1/0 error, since the device is not an input device, and
the GET that RESET implicitly performs will attempt to read the device.

External files that are opened by a program with RESET or REWRITE may be
closed with the UCSD intrinsic CLOSE. See Section VI.2.

160

VI.1.2.2.6 REWRITE

Users' Manual
UCSD Pascal

The intrinsic REWRITE "clears" a file by setting F to the empty file, and EOF(F)
to TRUE. A call to REWRiTE may also be used to open a new file.

In UCSD Pascal, the REWRiTE intrinsic may be called with a second parameter.
The second parameter is the name of a disk file (as in RESET), contained in a
string constant or a string variable.

If the disk file is named, it may be either an existing file, or a new file. If it is
new, a file of the appropriate type is created on disk. if it already exists,
REWRi TE creates a temporary file which can either supplant the old file, be saved
under a new name, or discarded -- see the CLOSE intrinsic (in Section Vi.2).

if th ere is no second parameter, then REWRiTE(F) is equivalent to REWRiTE('F')
(only for the first 8 characters).

Trying to REWRiTE an already open internal file causes an 1/0 error.

Aside from the provision for binding an internal file to an external filename,
REWRiTE behaves as defined in Jensen and Wirth.

1.61

WRITE and WRITELN
Users' Manual
UCSD Pascal

VI.l.2.2.7 WRITE and WRITELN

WRITE and WRITELN can write values of type INTEGER, REAL, STRING, and
PACK ED ARR A Y OF CHAR. Booleans, other types of arrays, and other
structured types, cannot be output.

UCSD's WRITE and WRITELN can write an entire PACKED ARRAY OF CHAR in
a single WRITE statement:

VAR BUFFER: PACKED ARRAY[O •• lO] OF CHAR;
BEGIN

BUFFER:= 'HELLO THERE';
(* contains exactly 11 characters *)

WRITELN(OUTPUT, BUFFER);
END.

Field width specifications work for STRINGs as well.

Example:

PR~ WRITESTRINGS;
VAR S: STRII\G;

BEGIN
S:='THE BIG BROWN FOX JUMP8D ••• ';
V\R I T ELN (5) ;
~ I TELN (5 : 3 0) ;
V\R I T ELN (5 : 1 a) ;

E!\D.

produces the following output:

THE BIG BROWN FOX JUMPED •••
THE BIG BROM\I FOX JUv1PED •••

THE BIG BR

When a string variable or constant is written without specifying a field width, the
actu al number of characters written is equal to the dynamic length of the string.
If th e field width specified is longer than the dynamic length of the string, leading
blanks are inserted and written. If the field width is smaller than the dynamic
length of the string, the excess characters are truncated on the right •

. 162

VI.l.2.3 Separate Compilation and Memory Management

Users' Manual
UCSD Pascal

Separate compilation, memory management, and the management of codefiles are
topics discussed thoroughly in Chapter VUl: 'Segments, Units, and Linking'. This
section will only show the syntax of particular extensions.

VI.l.2.3.1 Memory Allocation

The standard procedures DISPOSE and NEW are impLemented. The
MARK/RELEASE mechanism used in earlier versions of UCSD Pascal is still
supp·orted. In addition, the following UCSD intrinsics are provided as aids to
memory management: MEMAVA1L, VARAVAIL, VARD1SPOSE, VARNEW. These are
described -in Section VI.2. If you intend to make much use of direct co.ntrol of
memory resources, you Should refer to the Internal Architecture Gui-de.

Important: if you NEW a record with a particular variant record, you must
DISPOSE that record using the same variant -- otherwise, you risk damaging the
heap and hence crashing the System. Similarly, -it is crucial that MARKs and
RELEASEs be properly paired: the contents of a MARKed pointer must not be
altered un t it the matching cail to RELEASE has been performed, and RELEASEs
muston!y be performed on variables that are MARKed but not yet RELEASEd.

163

Users' Manual
UCSD Pascal

VI.l.2.3.2 Segment Routines

Routines (i.e., procedures, functions or processes) normally occupy the same code
segment as the compilaton unit in which they appear. . A segment routine' occupies
a code segment of its own. Code is swapped into memory a segment at a time,
and the space a segment occupies in niemory- becomes available to other programs
as soon as it is no longer in use. Thus, declaring some routines (such as a
program's initialization and termination routines, for instarlce)as segment routines
may improve a program's utilization of main memory.

A routine is made a s,egment routine by preceding its declaration with the reserved
word 'SEGMENT'.

Example:

S EGv1ENT PROCEDLRE O\lE;
BEGIN ,

PR I NT (, 5 EGv1ENT I'Uv13ER ONE');.
EN);

More informa'tion about' segment routines' On particular, some restrictions' on the
way they must be declared) appears in Chapter VIlI.

164

VI.l.2.3.3 Units

Users' Manual
UCSD Pascal

UNITs are a mechanism for compiling Pascal routines and data structures
separately from the main program. This is useful in preparing long programs that
compile slowly, or in co-ordinating the efforts of several programmers by using
common facilities. UNITs are described fully in Chapter VUI.

A UNIT may be compiled by itself, or it may be declared within a program source
file.

A program or unit (the "client" or· ':'host") may use'~ another' unit by naming it in a
USE S declaration. The USES clause immediately follows the program heading, or
appears in a UNIT at the beginning of either the INTERFACE or
IMPLEMENT ATION sections.

Example:

PRCDRAlvl S PftM ;
USES VI KI t\GS ;

The UNIT itself consists of two main parts: an INTERFACE part which contains
data declarations and procedure headings, and an IMPLEMENTATION part which
contains more declarations and procedure bodies. The IMPLEMENTATION part is
strictly private to the UNIT. The data structures andi>toutines declared in the
INTERF ACE part of a UNIT may be used by a client as if they were declared in
the client itself.

A UNIT may also contain an optional section of Pascal code, following the
INTERF ACE and IMPLEMENTATION parts. This is itself divided into two parts:
initialization code, and termination code, separated by '***;'. The initialization
code is executed before any host program code is executed, and the termination
code is executed after the host program has completed execution.

165

Users' Manual
UCSD Pascal

The general outline of a unit is as follows:

166

LNIT EASE;

INTBRFACE {this is a UCSD reserved word}
USES ••• ; {optional}
{declarations and procedure headings}

IMPLBMENTATION {also a reserved.word}
USES ••• ; {optional}
{declarations and procedure code}

BEGIN
{initialization code}
* * +(•• ,
{termination code}

Ef'D { 0 f EA S E} ;

Users'" Manual
UCSD Pascal

VI.l.2.3.4 External Routines

A Pascal host may use a separately assembled routine. The host must include .a
Pascal routine heading (with parameters, if there are any), and designate it
EXTERNAL.

Examples:

FUNCTION FAST AND DIRTY (SPEED: INTEGER): BOOLEAN; EXTERNAL;
PROCEDURE WRITE_O-UT; EXTERNAL;

Assembled routines that are meant to be used by a Pascal host must strictly
-adhere to Pascal calling. conventions and System constraints on the, use of resources
such as memory and registers. See Chapter VIl for more. det,ails. 'Befocrea host
which uses external routines may be run, the routines must be bound to the host's
code by using the Linker. The'Linker is described in Chapter VIlI • .,

.'

167

Users' Manual
UCSD Pascal

VI.l.2.4 Concurrent Processes

In UCSD Pascal, the user may declare a PROCESS. A process declaration is
similar to a procedure declaration, for example:

PROCESS GOLUX (V AR TODAL: REAL);

A process is a routine whose execution appears to proceed at the same time as
(i.e., concurrently with) the main program. Processes are initiated by the UCSD
intrinsic START (see Section VI.2), for example:

START (GOLUX(5.417));

ST AR T has a few optional parameters which allow the user to speci fy the space
allocation and the priority of a process.

The predeclared type. SEMAPHORE allows concurrent processes to communicate
with each other. Semaphores are initialized by the UCSD intrinsic SEMINIT, and
managed by the UCSD intrinsics SIGNAL and WAIT. In addition, a semaphore may
be associated with an external (i.e., hardware) interrupt by using the UCSD
intrinsic A TT ACH.

All of these intrinsics are described in Section VI.2, and the use of concurrent
processes is discussed more fully in Chapter IX.

-168

VI.I.2.5 Miscellaneous Differences

VI.I.2.S.I CASE Statements

CASE
Users' Manual
UCSD Pascal

In UCSD Pascal, CASE statements "fall through" if there is no label equal to the
case selector. The statement following the CASE statement is executed next.

For example, the following sample program will only output the line "THAT'S ALL
FOLKS" since the case statement will "fall through" to the WRITELN statement
following the case statement:

PRc:GRAM FALL TI-R~;
V ftR. CH: CHAR ;
BEGIN

CH:='A';
CASE CH OF

, B': VvR I TELN (OJTPUT , 'H I THERE');
'C': VvR 1 TELN (OUTPUT, ' THE D-lARACTER 1 SA' 'c' , ,)

EI'D;
.VE{ 1 TELN (OUTPUT, ' THAT' , S ALL FOLKS');

ENJ.

169

Comments
Users' Manual
UCSD Pascal

VI.l.2.5.2 Comments

The Compiler recognizes any text appearing between either the symbols '(*' and
'*)' or the symbols '{' and '}' as a comment. Text appearing between these
symbols is ignored by the Compiler unless the first character of the comment is a
dollar sign, in which case the comment is interpreted as a Compiler control
comment. These control comments are described in Section VI.3.

I f the beginning of the comment is delimited by the '(*' symbol, the end of the
comment must be delimited by the matching '*)' symbol, rather than the '}'
symbol. When the comment begins with the '{' symbol, the comment continues
until the matching '}' symbol appears. This feature allows a user to "comment
out" a section of a program which itself contains comments. For example:

{ XCP : = XCP + 1; (* ADJUST FOR SPECIAL CASE ••• *)

The Compiler does not keep track of nested comments. When a comment symbol is
encountered, the text is scanned for the matching comment symbol. The following
text will result in a synta)(error:

(*THIS IS A COVtv1ENT (*NESTED COvtvENT*) END OF FIRST COvtvlENT *)
"error here.

170

Vl.l.2.5.J Extended Comparisons

Users' Manual
UCSD Pascal

UCSD Pascal allows = and <> comparisons of any array or record structure.

171

GOTO and EXIT
Users' Manu al
UCSD Pascal

VI.l.2.5.4 GOTO and EXIT Statements

A GOTO statement causes a "jump" in the flow of control of a program. The
next statement executed is the statement with the label named in the GOTO
statement, and execution proceeds from that point. The label and the GOTO
statement must be within the same routine (or within the same main program
block). Thi~ a more restricted form of the GOTO statement than that in the
standard language.

EXIT is a UCSD extension which accepts as its single parameter the identifier of a
rou tine to be exited, the identifier of a program, or the reserved word PROGRAM.
EXIT causes the routine or program it names to be terminated immediately (but
cleanly).

The use of an EXIT statement to exit a FUNCTION can result in the FUNCTION
returning undefined values: this happens if no assignment has been made to the
FUNCTION identi fier prior to the execution of the EXIT statement •

. 172

An example of the use of the EXIT statement:

PRCGRf1lv1 EX I TDEtvO ;
VAR T: STRINJ;

()\.J: INTEGER;

PROC8DURE Q; FORWARD;

PROCEDURE P;
BEGIN

READLN (T) ;
VvRITELN(T) ;
IF T[I]='#' THEN EXIT(Q);
WRITELN('LEAVE P');

ENJ;

PROCEruRE Q;
BEGIN

P;
WR I TELN('LEAVE Q');

ENJ;

PROCEDURE R;
BEGIN

IF ()\.J <= 10 THEN Q;
WRITELN('LEAVE R');

ENJ;

BEGIN
()\.J: =0;
~ILE NJT EOF DO

CNJ.

BEGIN
()\.J:=()\.J+l;
R;
WRITELN;

ENJ;

Users' Manual
UCSD Pascal

173

Users' Manual
UCSD Pascal

If the above program is supplied the following input

THIS IS THE FIRST STRING
/I
LAST STRING

••• the following output results:

THIS IS THE FIRST STRING
LEAVE P
LEAVE Q
LEAVE R

/I
LEAVE R

LAST STRING
LEAVE P
LEAVE Q
LEAVE R

The EXIT(Q) statement causes the PROCEDURE P to be terminated followed by
the PROCEDURE Q. Processing continues following the call to Q inside
PROCEDURE R. Thus, the only line of output following '11' is 'LEAVE R' at the
end of PROCEDURE R. In the two cases where the EXIT(Q) statement is not
executed, processing proceeds normally through the terminations of proceduresP
and Q.

If the procedure identi fier passed to EXIT is a recursive procedure, the most
recent invocation of that procedure will be exited. If, in the above example, one
or both of the procedures P and Q declared and opened some local files, an
implicit CLOSE(F) is done when the EXIT(Q) statement is executed, as if the
procedures P and Q terminated normally.

The E X ITs tat e men t may a Iso be use d toe x ita Pas c -a I pro g ram b y
EXIT(PROGRAM) or EXIT(programname).

The addition of the EXIT statement to UCSD Pascal was inspired by the occasional
need for a straightforward means to abort a complicated and possibly deeply nested
series of procedure calls upon encountering an error. Excessive use of the EXIT
statement is discouraged.

'174

VI.l.2.5.5 Long Integers

Long Integers
Users' Manual
UCSD Pascal

With the predeclared type INTEGER, a length attribute may optionally be included.
INTEGERs declared in this way are called LONG INTEGERs. The LONG INTEGER
is intended for business, scientific, or other applications which need extended
number lengths with complete accuracy.

This extension supports the four basic standard INTEGER arithmetic operations
(addition, subtraction, multiplication, and division), as well as routines that
facilitate conversion to strings and standard INTEGERs. Input/Output, in-line
declaration of constants, and inclusion in structured types, are all fully supported
and are analogous to standard INTEGERs.

LONG INTEGERs are declared using the standard identi fier INTEGER followed by a
length attribute in square brackets. This length is an unsigned number no greater
than 36.

The length attribute specifies the minimum number of decimal digits the LONG
INTEGER must be able to represent.

Example:

VAR X: INTEGER[8];

is an integer with a minimum of eight digits.

Constants are defined in the normal. manner:

CaNST RYDBERG = 10973731;

In the above example RYDBERG would be by default (because of its magnitude) a
LONG INTEGER, and could be used anywhere a LONG INTEGER could be used.

In general, LONG INTEGERs may be used anywhere it is syntactically correct to
use REALs. However, care must be taken to ensure that sufficient words have
been allocated by the declared length attribute for storage of the result of
assignment or arithmetic· expression statements. INTEGER expessions are implicitly
converted to LONG INTEGERs as required by the space demands of an operation
or assignment. The reverse is not true.

175

Users' Manual
UCSD Pascal

Examples:

VAA I: INTEGER;
L : I NT EGER [N]; {w her e N i san i n t e g e r con s tan t

< = 36 }
S: REAL;

I : = L;
L:=-L;
L: = I;
L:= S;
S:= L;

I

syntax error, see TRUNC(L) below}
correct}
always correctj
never accepted

Ari thmetic operations which may be used in conjunction with LONG INTEGERs are:
+, -, *, DIV, unary plus/minus. On assignment, the length of the LONG INTEGER
is adjusted (during execution) to the declared length attribute of the destination
variable. Overflow may result if the destination variable is not large enough to
hold the source.

Overflow checking and storage allocation for long integers both depend on two
aspects of the way long integers are implemented:

1) an integral number of words is always assigned to a long integer, and

2) the internal representation of the long integer is implementation-dependent.
(Binary integers, packed BCD, and radix 100 formats have an been used to
represent long integers on various p-System implementations.)

The Compiler determines how much memory to allocate a long integer, and
assumes the worst case about the storage efficiency of the representation.
Overflow errors occur when the number of words required to represent the source
long integer is greater than the space available in the destination long integer -­
this may vary from machine to machine.

The comparisons =, <, >, <=, >=, and <> may be used in expressions' 'that contain
both LONG INTEGERs and INTEGERs.

The function TRUNC(L), where Lis a LONG INTEGER, converts L to an INTEGER
(i~e. TRUNC accepts both LONG lNTEGERs and REALs as arguments). Overflow
will result if L is greater ,than ty1AXINT or less than -MAXINT.

The procedure STR(L,S) converts the INTEGER'or':LONG INTEGER L, into a string
(complete with minus sign if needed), and places it in the STRING S. The
following program fragment illustrates a suitable "dollar and cent" routine:

STR(L,S); INSERT('.',S,LENGTH(S)-l); WRITELN(S);

,176

Users' Manual
UCSD Pascal

Pascal syntax requires that parameter types be specified by type identifiers.
Therefore, an attempt use an 'lNTEGER[<length>]' style declaration in a parameter
list will result ina syntax error, which may be circumvented by declaring an
appropriate type identifier. For example:

TYPE LONG = INTEGER[18];
PROCEDURE BIGNUMBER(BAt'-JKACCT: LONG);

177

Users' Manu al
UCSD Pascal

Vl.l.2.5.6 Packed Variables

Vl.l.2.5.6.1 Packed Arrays

UCSD Pascal will perform packing of arrays and records if the ARRAY or
RECORD declaration is preceded by the word PACKED. For example, consider
the following declarations:

.~: ARRAY [O •• 9] OF Q-iAR;

B: PAO<ED ARRAY[O •• 9] OF D-iAR;

The array A will occupy ten 16-bit words of memory, with each element of the
array occupying 1 word. The PACKED ARRAY B, on the other hand, will occupy
a total of only 5 words, since each 16-bit word contains two 8-bit characters. In
this manner each element of the PACKED ARRAY B is 8 bits long.

PACKED ARRAYs need not be restricted to arrays of type CHAR.
For example:

C: PACK~D ARRAY{0 •• 1] OF 0 •• 3;

D: PAo<ED ARRAY[I •• 9] OF SET OF 0 •• 15;

D2: PACKED ARRAY[0 •• 239,0 •• 319] OF BOOLEAN;

Each element of the PACKED ARRAY C is only 2 bits long, since only 2 bits are
needed to represent the values in the range 0 •• 3. Therefore, C occupies only one
16-bit word of memory, and 12 of the bits in that word are unused. The PACKED
ARRA Y D is a 9-word array, since each element of D is a SET which can be
represented in a minimum of 16 bits. Each element of a PACKED ARRAY OF
BOOLEAN, as in the case of D2 in the above example, occupies only one bit.

The following two declarations are not equivalent:

E: PACKED ARRAY[O •• 9] OF ARRAY[0 •• 3] OF CHAR;

F: PAO<ED ARRAY[0 •• 9,0 •• 3] OF CHAR;

T he second occurrence of the reserved word ARRAY in the declaration of E causes
the packing option in the Compiler to be turned off, so that E becomes an
~!:!packed array of 40 words. On the other hand, the PACKED ARRAY F occupies
20 total words, because the word ARRAY occurs only once in the declaration. If
E had been -declared as:

E: PACKED ARRAY[0 •• 9] OF PACKED ARRAY[0 •• 3] OF CHAR;

178 '

••• or as

E: ARRAY[o .. 9'] OF PACKED ARRAY [o .. 3] OF G-IAR;

••• F and E would have had identical configurations.

Users' Manual
UCSD 'Pascal

PACKED only has true significance before the last appearance of the word ARRAY
ina declaration of a PACKED ARRAY. When in doubt, a good rule of thu mb is
to place the word PACKED before ~~~ appearance of the word ARRAY, to
ensure that the resulting array will be PACKED.

The resulting array will only be packed if the final type of the array is a scalar,
subrange, or set which can be represented by 8 bits or less. The following
declaration will result in no packing whatsoever, because the final type of the
array cannot be represented in a field of 8 bits:

G: PACKED ARRAY [O •• 3] OF 0 •• 1000;

••• G will be an array which occupies 4 16-bit words.

Packing never occurs across word boundaries. This means that if the type of the
element tObe packed requires a number of bits that do not divide evenly into 16,
there will be some unused bits at the high order end of each of the words which
comprise the array.

Note that for the purposes of assignment and comparison, a string constant is
compatible with a PACKED ARRAY OF CHAR (but not an unpacked ARRAY OF
CHAR). In a similar fashion, no packed array or record may be assigned to or
compared with an unpacked version (of the corresponding type).

Initialization of a PACKED ARRAY OF CHAR can be accomplished very
efficiently by using the UCSD i'ntrinsics FILLCHAR and SIZEOF:

PRCDRflM FILLFAST;
VAR A: PACKED ARRAY[O •• lO] OF CHAR;
BEGIN

F I LLD-iAR (A[0] , S I ZEOF (A) " ');
E(\D.

The above sample prQgram fills the entire PACKED ARRAY A with blank. ~'::!fer
to the descriptions of FILLCHAR and SIZEOF in Section VI.2.

179

·Users' Manual
UCSD Pascal

VI.l.2.5.6.2 Packed Records

The following RECORD declaration declares a RECORD with 4 fields. The entire
RECORD occupies one 16-bit word, because it is declared as a PACKED RECORD.

VAR R: PACKED RECORD
1,J,K: O •• 31;
B: BOOLEAN

EI\O;

The variables 1, J, K each take up 5 bits in the word. The Boolean variable B is
allocated the 16 'th bi t of the same word.

In much the same manner that PACKED ARRAYs can be multidimensional
PACKED ARRAYs, PACKED RECORDS may contain fields which themselves are
PACKED RECORDS or PACKED ARRAYS. Again, slight differences in the way in
which declarations are made will affect the degree of packing achieved. For
example, note that the following two declarations are not equivalent:

VAR A:
PACKED RECORD

END;

C: INTEGER;
F:PACKED RECORD

R: D-IAR;
K: BOOLEAN

END;
H:PACKED ARRAY[O •• 3] OF CHAR

VAR B:
PACKED RECCRD

C: INTEGER;
F:RECORD
R:D-IAR;
K:BOOLEAN

END;
H: PACKED ARRAY [O •• 3] OF CHAR

END;

As with packed arrays, the word PACKED must appear with every occurrence of
the reserved word RECORD in order for the PACKED RECORD to retain its
packed qualities throughout all fields of the RECORD. In the above example, only
RECORD A h as all of its fields packed into one word. In B, the F field is not
packed and therefore occupies two 16-bit words. It is important to note that a
packed or unpacked ARRAY or RECORD which is a field of a PACKED RECORD
will always start at the beginning of the next word boundary. This means that in
the case of A, even though the F field does not completely fill one word, the H
field starts at the beginning of the next word boundary.

When a record (whether packed or not) contains a case variant, the field is
allocated enough space to contain the largest variant. Consider the following
example:

180

VAR K: PACKED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF

TRUE: (Z: INTEGER) ;

Users' Manual
UCSD Pascal

FALSE: (M: PACKED ARRAY[D .. 3] OF CHAR)
END

END;

In the above example, the Band F fields are stored in two bits of the first 16-bit
word of the record. The remaining 14 bits are not used. The size of the case
variant field is always the size of the largest variant, so in the above example,
the case variant field will occupy two words. Thus the entire PACKED RECORD
will occupy 3 words.

181

Users' Manual
UCSD Pascal

VI.l.2.5.6.3 Restrictions on Packed Variables

No element of a PACKED ARRAY or field of a PACKED RECORD may be passed
as a variable (call-by-reference) parameter to a routine. Packed variables may,
however, be passed as value parameters. This conforms to Jensen and Wirth.

UCSD Pascal does not support the standard procedures PACK and UNPACK
(defined in Jensen and Wirth). If a type or variable is declared as packed, the
packing and unpacking is implicit.

182

VI.I.2.5.7 Parametric Procedures and Functions

Users' Manual
UCSD Pascal

UCSD Pascal does not allow PROCEDURES or FUNCTIONS to be declared as
formal parameters in the parameter list of a PROCEDURE or FUNCTION.

183

Users' Manu al
UCSD Pascal

VI.l.2.5.8 Program Headings

Al th ou gh th e UC SD Pascal Compiler will permit a list of file parameters to be
present following the program identifier, these parameters are ignored by the
Compiler and will have no effect on the program being compiled. As a result the
following two program headings are equivalent:

••• and •••
PROGRAM DEMO(INPUT ,OUTPUT);

PROGRAM DEMO;

Wi th ei ther of the above program headings, a user program will have three files
predeclared and opened by the System. These are: INPUT, OUTPUT, and
KEYBOARD and are defined to be of type INTERACTIVE. If the programmer
wishes to declare any additional files, these file declarations must be declared
together with the program's other VAR declarations.

184

VI.l.2.5.9 Sets

Sets
Users' Manual
UCSD Pascal

Sets are defined as in Jensen and Wirth. Sets of subranges of integers are limited
to the positive integers. The ordinal value of the upper bound of a set declaration
must be no greater than 4079. Note that the ordinal value of the lower bound of
the set declaration does not affect this limit.

Comparisons and operations on sets are" allowed only between sets which are either
of the same base type or subranges of the same underlying type. For example, in
the sample program below, the base type of the set S is the subrange type 0 •• 49,
while the base type of the set R is the subrange type 1..100. The underlying type
of both sets is the type INTEGER, which by the above definition of compatibility,
implies that the comparisons and operations '-on the sets Sand R in the following
program are legal: .

PRCDRflM S ETCOV1PARE ;
VAR S: SET OF 0 .. 49;

R: SET OF 1 •• 100;

BEGIN
S:~ [0,5,10,15,20,25,30,35,40,45];
R:= [10,20,30,40,50,60,70,80,90];
IF S = R THEN

VR 1 TELN (, • •• 0 op s •.• ')
ELSE

VRITELN('sets work');
S := 5 + R;

ENJ.

185

Users' Manual
UCSD Pascal

1 n th e following example, the construct 1 = J is not legal, since the two sets
are of two distinct underlying types.

186

PRCXRftM 1 LLEGL\LSETS;
TYPE STUFF=(Z8RO,ONE,TWO);
VAR I: SET OF S~FF;

J: SET OF 0 .. 2;

"BEGIN
I : = [ZERO];
J:= [1,2];
IF 1 ::; J THEN

EI'D.
«« error here

> "" "~ ."

Vl.l.2.5.10 Transcendental Functions

The arctangent function may be called by either AT A.N or ARCTAN.

Users' Manual
UCSD Pascal

Since Pascal has a rather limited set of transcendentals, the following list of
formulas may prove useful:

asin(x)
acos(x)
acot(x)

= atan(x / sqrt(1 - x*x))
= pl/2 - asin(x)
= pi/2 + atan(-x)

i f x >= o ,
asec(x) = atan(sq r t (x*x - 1)

else
asec(x) = atan(sq r t (x*x - 1)

acsc(x) = asec(x / sqrt(x*x - 1))

- pi

187

Users' Manual
UCSD Pascal

VI.l.2.5.11 Size Limitations

The following is a list of size limitations that apply to the current implementation
of UCSD Pascal (Version IV.O):

1. Local variables in a PROCEDURE or FUNCTION can
occupy a maximum of 16383 words of memory.

2. Maximum number of characters in a STRING variable is 255.

3. Maximum number of words allocated to a SET is 255. Therefore,
the maximum number of elements in a set is (255*16)=4080.

4. Maximum number of routines within a segment is 256.

188

VI.2 UCSD lntrinsics

Users' Manual
UCSD Pascal

This section contains descriptions of all the non-standard intrinsic procedures and
functions that are part of the UCSD System and are callable from UCSD Pascal.
The intrinsics are listed in alphabetical order. While there are many new
intrinsics, most users will find themselves using only a subset of the available
routines, expanding that subset as they become more fluent with the System, or
embark on more sophisticated (or larger!) projects.

Many indications as to the use of these intrinsics are given in Section Vl.1.2.

Many of the intrinsics were created to provide necessary capabilities for System
internals. As su ch, they were designed for speed and knowledgeable use, and
therefore provide little or nothing in the way of parameter checking. Necessary
range or validity checks are the responsibility of the user. Since some of these
intrinsics do no checking for range validity, they may easily cause the System to
di e a horrible death. Those intrinsics which are particularily dangerous are noted
as such in their descriptions.

Required parameters are listed along with the function/procedure identifier.
Optional parameters are in [square brackets]. The default values for optional
parameters are described in the text.

1:89

ATTACH
Users' Manual
UCSD Pascal

VI.2.l PROCEDURE A TT ACH (SEM: SEMAPHORE; VECTOR: INTEGER)

Associ ates a semaphore with an external interrupt. When the hardware raises that
interrupt it causes SEM to be SIGNAL'ed. See Chapter IX.

To de-attach an interrupt vector from a semaphore, the user may call ATTACH in
the following way:

ATTACH (NIL, <vector number>)

where <vector number> is the appropriate integer.

The exact value of a vector, and the hardware state it represents, is extremely
hardware-dependent. These issues (for particular processors) are discussed in the
Installation Guide.

190

VI.2.2 FUNCTION BLOCKREAD

BLOCKREAD
Users' Manual
UCSD Pascal

(FILEID, ARRAY, BLOCKS, [RELBLOCK]) INTEGER;

FILEID is an untyped file (see Section VI.1.2.2.3.2).

ARRA Y can be any sort of array. (It can actually be any sort of variable, since
BLOCKREAD does no checking.)

BLOCKS is an integer.

BLOCKREAD reads BLOCKS number of blocks from FILEID into ARRAY, and
returns the number of blocks actually read.

If the value returned does not equal BLOCKS, then either the end of file was
encountered, or a read error occurred.

If the end of file is encountered, EOF will be TRUE.

If the optional parameter RELBLOCK is not -present,· records are read sequentially.
Immediately after FILEID has been· initialized with RESET or REWRITE,
BLOCKREAD starts from block O. Successive BLOCKREADs continue to read
sequential records, unless RELBLOCK is used, or FILEID re-initialized with RESET
or REWRITE.

IfRELBLOCK is present, it is the number of the block BLOCKREAD will start
reading from, relative to block o.

If the parameter ARRAY contains an index (e.g., BIG TABLE[1024J),~ then
BLOCKREAD will fill ARRAY starting with that element. This does not work for
packed arrays other than PACKED ARRAYs OF CHAR. If ARRAY -rs-in fact a
record, it may contain a field specification -- fillil1g will start fr·om there (and the
record must not be packed).

Some machines require that data be addressed 011 a word boundary, and so the user
must be careful when dealing with sequences of type CHAR.

This is a ~!!.!!gerous intrinsic, as the bounds of ARRAY are not checked. The user
is responsible for seeing that no valuable memory is destroyed.

191

BLOCKWRITE
Users' Manual
UCSD Pascal

VI.2.3 FUNCTION BLOCKWRITE
(FILEID, ARRAY, BLOCKS,[RELBLOCK]) INTEGER;

FILEID is an untyped file (see Section VI.1.2.2.3.2).

ARRAY can be any sort of array. (Or anything else, as indicated in
BLOCKREAD.)

BLOCKS is an integer.

BLOCKWRITE writes BLOCKS number of blocks from ARRAY into FILEID, and
returns the number of blocks actually transferred.

If the value returned does not equal BLOCKS, the end of file was encountered, or
a write error occurred.

If the end of file is encountered, EOF will be TRUE.

I f the optional parameter RELBLOCK is not present, blocks will be transferred to
FILEID sequentially. After FILEID is initialized with RESET or REWRITE,
BLOCK WRITE starts with block O. Successive calls to BLOCKWRITE continue
writing sequentially, unless RELBLOCK is used, or FILEID is re-initialized with
RESET or REWRITE.

If RELBLOCK is present, it is an integer indicating which block to start writing
to, relative to block O.

As with BLOCKREAD, a subscript on the parameter ARRAY causes the transfer to
start with that element of ARRAY. Also as with 8LOCKREAD, a record may
have a field specification, and neither records nor arrays may be packed (except
for PACKED ARRAYs of CHAR).

Some machines require that data be addressed on a word boundary, and so the user
must be careful when dealing with sequences of type CHAR.

Also as wi th BLOCKREAD, this is a !!!!!!gerous intrinsic, because of its lack of
checking.

192

VI.2.4 CHAIN (EXEC_OPTIONS: STRING)

CHAIN
Users' Manual
UCSD Pascal

EXEC_OPTIONS is an execution option string as defined in Section 11.3.

A call to CHAIN causes the System to eX(ecute EXEC OPTIONS after the calling
program (the "chaining program") has terminated. The-effect is that of manually
typing 'X' for eX(ecute, and then entering the characters in EXEC OPTIONS.
Neither the System promptline nor the eX(ecute prompt are displayed; the System
goes on to immediately perform the actions indicated by EXEC_OPTIONS.

I f a program (or sequence of programs) contains more than one call to CHAIN, the
EXEC OPTIONS are saved in a queue, and performed in a first-in-first-out fashion
before-control of the System is returned to the user.

A call to CHAIN with an empty string (e.g., "CHAIN(");") clears ~he queue.

An execution error or an error in an EXEC OPTIONS string clears the queue, and
returns the System to the: user. A call to ~XCEPTION may also clear the queue;
see the intrinsic EXCEPTION.

CHAIN is a procedure in, the Oper.ating System's COMMANDLO unit; .to use it, a
program or unit must de"clare "USES COMMANDIO\

193

CLOSE
Users' Manual
UCSD Pascal

VI.2.5 PROCEDURE CLOSE (FILEID [OPTION]);

FILEID is the name of an internal file. Typically, it is a file that was opened
with a previous RESET or REWRITE, and at that time associated with an external
file in the p-System (usually a disk file). See sections VI.1.2.2.5 and VI.1.2.2.6 on
RESET and REWRITE.

OPTION need not be present. If it is present, it may be: " LOCK', or
" NORMAL', or " PURGE', or " CRUNCH'. (Note the commas!)

I f OPTION is not present or is NORMAL, then CLOSE simply sets the file state to
closed. If the file was opened using REWRITE and is a disk file, it is deleted
from the directory.

If the file associated with FILEID is on a block-structured device (such as a disk)
and was opened wi th a REWRITE, the LOCK option makes it permanent in the
directory; otherwise, a NORMAL close is done.

If the file associated with FILEID is on a block-structured device, the PURGE
option de,·l.et~sit from the directory. If the file associated with FILEID was a
device an~t nbt a block~s.tructured volume, the device goes off-line. If no physical
file or device was associated with FILEID, a NORMAL close is done.

The CRUNCH option LOCKs the file and truncates it at the point of last access.
That is, the posi tion of the last GET or PUT to the file is now the end of file.

All CLOSEs regardless of the option mark the file as closed and make the implicit
variable FILEID" undefined. CLOSE on a CLOSE"d file does nothing.

194

VI.2.6 FUNCTION CONCA T (SOURCEs) : STRING

CONCAT
Users'" Manual
UCSD Pascal

SOURCE is a string variable or constant or literal value. There may be any
number of SOURCE strings separated by commas.

This function returns a string which is the concatenation of all the strings passed
to it.

Example:

SHORTSTRING := 'THIS IS A STRING';
LONGSTRING := 'THIS IS A VERY LONG STRING.';
LONGSTRING := CONCAT('START ',SHORTSTRING,'-',LONGSTRING);
WRITELN(LONGSTRING);

Prints:

START THIS IS A STRING-THIS IS A VERY LONG STRING.

195

COpy
Users' Manual
UCSD Pascal

VI.2.7 FUNCTION COpy (SOURCE, INDEX, SIZE) STRING

SOURCE is a string, INDEX and SIZE are integers.

This function returns a string containing SIZE characters copied from SOURCE
starting at the INDEX th posi tion in SOURCE.

Example:

TL := 'KEEP SOMETHING HERE';
KEPT := COPY(TL,POS('S',TL),9);
'AR.I TELN(KEPT) ;

Will print:

SOV1ETHIf\.G

196

DELETE
Users' Manual
UCSD Pascal

VI.2.8 PROCEDURE DELETE (DESTINATION, INDEX, SIZE)

DESTINA TION is a string, INDEX and SIZE are integers.

This procedure removes SIZE characters from DESTINATION starting at the INDEX
speci fied.

Example (see the descripti on of POS):

OVERSTUFFED : = 'THI S STRII\G HAS FAR TOO MA.NY D-lARACTERS IN IT.';
DELETE(OVERSTUFFED,POS('HAS',OVERSTUFFED)+3,8);
WRITELN(OVERSTUFFED);

Will print:

THI S STRII\G HAS MA.NY D-lARACTERS IN IT.

197

EXCEPTION
Users' Manual
UCSD Pascal

VI.2.9 PROCEDURE EXCEPTION (STOPCHAINING: BOOLEAN)

EXCEPTION turns off all redirection. If STOPCHAINING is TRUE, then the queue
of EXEC_OPTIONS created by CHAIN is also cleared (see the intrinsic CHAIN).

Whenever an execution error occurs, an EXCEPTION(TRUE) call is made (to leave
redirection on after an error would leave the System in an indeterminate state).

See Section 11.3 for more information on redirection.

EXCEPTiON is a procedure in the Operating System's COMMA NOlO unit; to use it,
a program or unit must declare 'USES COMMANOIO'.

198

VI.2.10 PROCEDURE FILLCHAR
(DESTINATION, LENGTH, CHARACTER);

FILLCHAR
Users' Manual
UCSD Pascal

DESTINA TION may be any sort of array. It may be subscripted. (It may also be
any other sort of variable, at the user's risk. If it is a record, it may have a
field specification.)

LENGTH is an integer.

CHARACTER is a character.

FILLCHAR fills DESTINATION with LENGTH instances of the character
CHARACTER.

This could also be done (arcanely) by:

A[O] := <character>;
MOVELEFT(A[O],A[l],LENGTH-l);

but FILLCHAR is twice as fast, as no memory reference is needed for a
source. It is also more readable!

If DESTINATION is subscripted, FILLCHAR begins filling from the subscripted
element. The same applies if DESTINATION is a record with a field specification.

FILLCHAR is a da~erous intrinsic, and does no checking. Use it with caution.

199

GOTOXY
Users' Manual
UCSD Pascal

VI.2.II PROCEDURE GOTOXV(XCOORD , VCOORD: INTEGER);

This procedure sends the CONSOLE:'s cursor to the coordinates specified by
(XCOORD, YCOORD). The upper left corner of the screen is assumed to be (0,0).

A version of GOTOXY meant to run on all terminals is shipped with the System,
but it is very slow. An effective GOTOXY is one tailored to a particular type of
terminal. The user may write a GOTOXY and bind it in to the System using the
utility LIBRARY. More information on this is given in the Installation Guide.

200

VI.2.12 PROCEDURE HALT;

HALT
Users' Manual
UCSD Pascal

This procedure generates a HALT, which causes a runtime error to occur. The
effect is similar to hitting the <break> key while a program is running. The
console displays an error message saying that the program has halted itself:
'Programmed HALT or user break'.

If the DEBUGGER utility (see Section X.6) is active while a program is running, a
HAL T transfers control to the DEBUGGER, and allows the user to inspect or
modi fy the state of the program. .

201

INSERT
Users' Manual
UCSD Pascal

VI.2.I3 PROCEDURE INSERT (SOURCE, DESTINATION, INDEX)

This inserts the string SOURCE into the string DESTINATION at the INDEXth
position in DESTINATION.

Example:

10 := 'INSERTIONS';
MORE := ' D8MDNSTRATE';
DELETE(MDRE,L8NGTH(MDRE) ,1);
INSERT (MJRE, 10, POS (, 10' , 10)) ;
\AR 1 TELN(10) ;

Will print:

INSERT D8MONSTRATIONS

202

Vl.2.14 FUNCTION IORESUL T : INTEGER;

IORESULT
Users' Manual
UCSD Pascal

A fter any I/o operation, IORESUL T returns an INTEGER value corresponding to the
values shown below.

Usu ally, the Compiler generates test code after each I/O operation, to see if the
operation has failed, and abort the program if it has. I/o checking may be turned
off -- see Section VI.3. Rather than allowing the program to fail, the user may
wish to turn off I/o checking, and use 10CHECK to see if an I/O operation has
failed; if it has, the program itself may take corrective action (such as re­
displaying a prompt, for example).

Since any I/o operation will affect IORESUL T (unless checking is turned off), doing
a WRITELN(IORESUL T) is not an informati ve diagnostic. The following code
achieves the desired effect:

D-IEO< RE Su.. T : = lORE Su.. T ;
WRITE[N(D-IECK~RESULT);

I/o checks are never generated for the procedures UNITREAD or UNITWRITE.

These are the possible values of 10RESUL T:

1 = parity error (CRe)
2 = illegal device /I
3 = illegal 10 request
4 = data-com timeout
5 = vol went off-line
6 = file lost in dir
7 = bad file name
8 = no room on vol
9 = vol not found

10 = file not found
11 = dup dir entry
12 = file already open
13 = file not open
14 = bad input information
15 = ring buffer overflow
16 = write protect
1 7 = illegal block
18 = illegal buffer

The IORESUL T value is stored in a single System-wide variable. This means that

203

Users' Manual
UCSD Pascal

the user should be careful if there are concurrent processes which use IORESUL T:
the I/O performed by one process could change the information expected by
another. The user should be extremely cautious with processes that are
synchronized by attached semaphores, since their behavior is hard to predict; in
other multiprocess situations, switching occurs at explicit SIGNAL and WAIT points,
and problems with IORESUL T are easily avoided. I/o done by the System itself
does not affect a user program's IORESUL T.

The table of 10RESUL T values also appears in Appendix B.

204

VI.2.I5 FUNCTION LENGTH (SOURCE: STRING) : INTEGER

Returns the integer value of the dynamic length of SOURCE.

Example:

GEESTRING := '1234567';
WRITELN(LENGTH(GEESTRING),' ',LENGTH("));

Prints:

7 0

LENGTH
Users' Manual
UCSD Pascal

205

MARK
Users' Manual
UCSD Pascal

VI.2.16 PROCEDURE MARK (VAR HEAPPTR: "'INTEGER)

Allocates a Heap Mark Record (HMR) on top of the Heap.

HEAPPTR must be a pointer. It is conventional to make it a "INTEGER. The
HMR contains valuable System information, so HEAPPTR must not be used as a
pointer to available data space. To allocate memory, use the standard Pascal
procedure NEW, or the UCSD intrinsic VARNEW.

See the Internal Architecture Guide for more details.

"206

VI.2.17 FUNCTION MEMAVAIL: INTEGER;

Returns the number of unallocated words in memory. This is:

MEMAVAIL
Users' Manual
UCSD Pascal

(the number of words between the Code Pool and the Stack) plus
(the number of words available in the Heap).

Note that MEMAVAIL does not return the available memory space, since there may
be segments in main memory that could be overwritten if necessary. The intrinsic
VARAVAIL should be used to determine space availability.

See the Internal Architecture Guide for more details.

207

MEMLOCK
Users' Manual
UCSD Pascal

Vl.2.1B PROCEDURE MEMLOCK (SEGLIST: STRING)

SEGLIST must contain a list of segment names, separated by commas.

Loads the designated segments and "locks" them into main memory.

See the Internal Architecture Guide for more details.

208

VI.2.19 PROCEDURE MEMSWAP (SEGLIST: STRING)

MENSWAP
Users' Manual
UCSD Pascal

SEGLIST must contain a list of segment names, separated by commas.

Swaps the designated (locked) segments out to disk.

See the Internal Architecture Guide for more details.

109

MOVELEFT
Users' Manual
UCSD Pascal

VI.2.20 PROCEDURE MOVELEFT (SOURCE, DESTINATION, LENGTH);

SOURCE and DESTINATION are any sort of arrays. Or (as with
BLOCKREAD/WRITE and FILLCHAR) they may be of any other type, as well. If
either is an array, it may be subscripted, and if either is a record, it may have a
field specification.

LENGTH is an integer.

Moves LENGTH bytes from SOURCE into DESTINATION, starting at the left.

MOVELEFT and MOVERIGHT are implemented as fast intrinsics. They are rapid,
but do no range checking. BE CAREFUL!

The rationale for having both MOVELEFT and MOVERIGHT is to facilitate the
transfer of bytes within a single array.

See MOVERIGHT for an example.

210

MOVERIGHT
Users' Manual
UCSD Pascal

VI.2.21 PROCEDURE MOVERIGHT (SOURCE, DESTINATION, LENGTH);

SOURCE ~nd DESTINA TION are any sort of arrays. As with MOVELEFT, they
may be any other type, as well. Either may have a subscript (or if declared as a
record, a field speci fication).

LENGTH is an integer.

Moves LENGTH bytes from SOURCE into the DESTINATION, starting at the right
(the last byte, then the next-to-Iast, etc.).

This procedure is the counterpart to MOVELEFT. It does -no range checking, so
use caution.

Example of both MOVELEFT and MOVERIGHT:

V AA AAA Y: PAO<ED P-PRA Y' [1 •. 30] OF D-IAR;

(*123456789a123456789b123456789c*)
ARAY: THIS IS THE TEXT IN THIS ~Y

MDVERIGHT(AAAY[lO],ARAY[l],lO);
ARAY: NE TEXT INE TEXT IN THIS ~Y

MDVELEFT(ARAY[1],ARAY[3],lO)
ARAY: NENENENENENETEXT IN THIS ~Y

MDVELEFT(ARAY[23],ARAY[2],8);
ARAY: NI S AARAYENETEXT IN THI S AR.RAY

211

POS
Users' Manual
UCSD Pascal

VI.2.22 FUNCTION POS (STRING , SOURCE) : INTEGER

STRING and SOURCE are string variables or constants.

POS attempts to match STRING to a substring of SOURCE. If STRING is
matched, POS returns the location of the first character of the matched pattern.
If STRING is not matched, POS returns zero.

Example:

STUFF := 'TAKE THE BOTTLE WITH A METAL CAP';
PATT~ := 'TAL';
WRITELN(POS(PATTERN,STUFF»;

prints:

26

PATTERN := 'CZECHOSLOVAKIA';
WRITELN(POS(PATTERN,STUFF»;

prints:

o

212

PWROFTEN
Users' Manual
UCSD Pascal

VI.2.23 FUNCTION PWROFTEN (EXPONENT: INTEGER) : REAL;

This function returns the value of 10 to the EXPONENT power.

The legal range of EXPONENT varies from implementation to implementation,
depending on the representation of floating point numbers. See the Installation
Guide or the supplement for your hardware to find the limits.

213

REDIRECT
Users' Manual
UCSD Pascal

VI.2.24 FUNCTION REDIRECT (EXEC_OPTIONS: STRING): BOOLEAN

EXEC OPTIONS is an execution option string as defined in Section 1l.3. It should
contain only option specifications, and not the name of a file to execute (to
execute a program from another program, seethe CHAIN intrinsic).

REDIRECT causes redirection by performing all the options specified in
EXEC OPTIONS. If all goes well, it returns TRUE. If an error occurs, it returns
FALSE-:

If an error occurs during a call to REDIRECT, the state of redirection is
indeterminate; this is a dangerous condition. If REDIRECT returns FALSE, the
user's program should follow it with a call to EXCEPTION, in order to turn off all
redirection. If the user does not do this, the results are unpredictable. See the
intrinsic EXCEPTION.

REDIRECT is a procedure in the Operating System's COMMANDIO unit; to use it,
a program or unit must contain the declaration 'USES COMMANDIO'.

More information about redirection may be found in Section 11.3.

VI.2.25 PROCEDURE RELEASE (VAR HEAPPTR: "'INTEGER);

RELEASE
Users' Manual
UCSD Pascal

Cuts back the Heap from the current Heap Mark Record (HMR) to the HMR
designated by HEAPPTR (HEAPPTR must have been ini tialized by a call to
MARK). --

MARKs and RELEASEs must be matched properly. See the warning in Section
VI.l.2.3.1. --

See the Internal Architecture Guide for more details.

215

SCAN
Users' Manual
UCSD Pascal

VI.2.26 FUNCTION SCAN (LENGTH, PARTIAL EXPRESSION, ARRAY):
INTEGER;

LENGTH is an integer, ARRAY is usually a PACKED ARRAY OF CHAR, and
PARTIAL EXPRESSION is a '<>' or a '=' followed by a single character in quotes.

SCAN scans ARRA Y for LENGTH characters, or until it finds a character that
satisfies the PARTIAL EXPRESSION (whichever comes first). It returns the offset
from the position in ARRAY to the point at which it stopped.

In other words, if the position in ARRAY at which SCAN starts satisfies the
PARTIAL EXPRESSION, SCAN returns zero. If the PARTIAL EXPRESSION is not
satisfied, SCAN returns LENGTH. And if the PARTIAL EXPRESSION is satisfied
at some intermediate location, SCAN returns the offset from the starting position
to that location.

LENGTH may be negative, in which case SCAN will scan from right to left, and
return a negative value.

ARRAY may be subscripted, in which case SCAN will scan starting at that
location. (ARRA Y may in fact be of any type, but the user should exercise
caution.)

Examples:

DEM := ' ••••. THE TERAK IS ,~ MEMBER OF THE PTERODACTYL FAMILY.';

·216

SCAN(-26,=':' ,DEM[30]);

SCAN(lOO,<>'.',DEM);

SCAN(15,=' ',DEM(O]);

••• returns -26

returns 5

returns 8

VI.2.27 PROCEDURE SEEK (FILEID, INDEX);

SEEK
Users' Manual
UCSD Pascal

FILEID is a file of any "structured" type. A file is considered structured if it is
not a textfile (i.e., TEXT, INTERACTIVE, or FILE OF CHAR) or an untyped file.

INDEX is an integer.

SEEK moves the file window F" to the INDEXth record in FILEID (indexing from
zero). EOF and EOLN are set to False.

A GET or PUT must be made between two SEEKs, otherwise the window contents
wil1_ be unpredictable.

'217

SEMINIT
Users' Manual
UCSD Pascal

VI.2.28 PROCEDURE SEMINIT (VAR SEM: SEMAPHORE; SEM COUNT:
INTEGER) -

Initializes the semaphore SEM to the value SEM COUNT and establishes an empty
queue. See Chapter IX.

Warning! Failure to initialize a semaphore before using it in a SIGNAL or WAIT
will put the System in an indeterminate state.

218

VI.2.29 PROCEDURE SIGNAL (VAR SEM: SEMAPHORE)

SIGNALs the semaphore SEM.

SIGNAL
Users' Manual
UCSD Pascal

If no processes are wai ti ng for SEM, the count associated with SEM is simply
incremented. If one or more processes are waiting for SEM, then SEM is not
incremented, and the process at the head of SEM's queue (the process with the
highest priority) is added to the ready queue, where it competes with other ready
processes for processor time. See Chapter IX.

219

SIZEOF
Users' Manu al
UCSD Pascal

VI.2.30 FUNCTION SIZEOF (VARIABLE OR TYPE IDENTIFIER):
INTEGER;

Returns the number of bytes that the variable or type has been allocated.

This is particularly useful for use as a parameter to FILLCHAR, MOVELEFT, or
MOVERIGHT.

220

VI.2.31 PROCEDURE START (PROCESS CALL
[, PROCESSID
[, ST ACKSIZE
[, PRIORITY]]])

Starts a process.

START
Users' Manual
UCSD Pascal

PROCESS CALL is a call to a process "7- it looks the same. as a call to a
procedure. PROCESSIO is a variable of type PROCESSIO, ST ACKSIZE is an
integer, and PRIORITY is in the range [0 •• 255J. These latter three parameters are
optional.

If no ST ACKSIZE parameter appears, the default ST ACKSIZE is 200.' If no
PRIORITY parameter appears, the process's priority is the same as the priority of
the parent process (i.e., the process that calls START).

Examples:

start(PLOP);
start(REO(l,J), PIO);
start(FRAMUS(4), 10, 500);
start(REO(6,21), PIO, SSIZE, 10);

Process declarations are similar to procedure declarations. See Chapter IX.

Every process invocation (i.e., every call to START) is assigned a processid. This
parameter, if present, is set to the processid value. Processid's are intended for
the System's use.

ST ACKSIZE, if present, allocates stack space to the process. ST ACKSIZE defaults
to 200 words. A process needs 4 words + the amount occupied by local variables
+ room for acti vation records of procedures started by the process + (on most
machines) space for the evaluation stack. If a process is allocated less memory
than it needs, the program will die with a stack overflow.

PRIOR 1 TY, if present, specifies the priority of the process. Priorities determine
(1) the ordering of a queue waiting for a semaphore, and (2) the ordering of the
"ready queue" (i.e., the queue of all processes that are ready to run). Priority
defaults to the priority of the START'ing process.

221

STR
Users' Manual
UCSD Pascal

VI.2.32 PROCEDURE STR (LONG, DESTINATION)

LONG is either an integer or a long integer. DESTINATION is a string.

STR converts LONG into a string, and places it in DESTINATION. This intrinsic is
chiefly used to format long integers for output.

See Section VI.1.2.4.5 for more about Long Integers.

Example:

INTLONG := 102039503;
STR(INTLONG,INTSTRING);
INSERT('.' ,INTSTRING ,PRED(LENGTH(INTSTRING)));
WRITELN('$',INTSTRING);

••• prints:

$1020395.03

222

TIME
U.sers' Manual
UCSD Pascal

VI.2.33 PROCEDURE TIME (VAR HIWORD, LOWORD: INTEGER);

Returns the value of the system's clock in 60ths of a second, stored in
HIWORD LOWORD as one 32-bit unsigned integer. (Beware of LOWORD being
treated as a negative two's-complement integer!)

TIME is dependent on there being a hardware system clock, and 16~bit integers,
therefore it may not be available on all systems •.

No conventions exist that would allow the user to treat the value returned by
TIME as the time of day. TIME is usually used for incremental time
measurements, such as calculating benchmarks for a program.

223

UNITBUSY
Users' Manual
UCSD Pascal

VI.2.34 FUNCTION UNITBUSY (UNITNUMBER) : BOOLEAN;

UNITNUMBER is an integer that is the number of a device (see Section 1.2.3 or
Section 1l1.3).

UNITBUSY returns a Boolean value indicating whether the device UNIT NUMBER is
waiting for an I/o transfer to complete.

Example:

UNITREAD(2{non-echoing keyboard},CH[O],
I{ for one character},{no block no.},I{asynchronous});

WHILE UNITBUSY(2){While the READ has not been completed} DO
WRITELN(OUTPUT,'I am waiting for you to type something');

WRITELN(OUTPUT ,'Thank you for typing a ',CH[O]);

••• this program fragment will continuously type out the line '1 am waiting for you
to type something' until a character is struck on the keyboard. Suppose a '!' were
typed. The message 'Thank you for typing a !' will then appear, and program
execution will proceed normally.

Currently implemented only on PDP-II and LSI-II computers. On all other
systems, it always returns FALSE.

224

VI.2.J5 PROCEDURE UNITCLEAR (UNITNUMBER);

UNITCLEAR
Users' Manual
UCSD Pascal

UNIT NUMBER is an integer that is the number of a device (see Section 1.2.3 or
Section 111.3).

UNITCLEAR cancels all 1/0s to the specified unit and resets the hardware to its
power-up state.

The function 10RESUL T can be used to determine if an error occured (this must
be explici tly checked by the program, it will not be generated automatically).
10RESUL Ts are listed in this section (see 10RESUL nand Appendix B.

225

UNITREAD
Users' Manual
UCSD Pascal

Vl.2.36 PROCEDURE UNITREAD
(UNITNUMBER, ARRAY, LENGTH,
[BLOCKNUMBER], [INTEGER]);

UN IT NUMBER is an integer that is the nu mber of a device (see Section 1.2.3 or
Section IlI.3).

UNIT READ reads LENGTH bytes from the device UNITNUMBER into ARRAY
(ARRA Y may be of any type, but is usually a PACKED ARRAY OF CHAR).

UNITREAD is a low-level intrinsic, and should be used with extreme caution. It
performs no I/O checking of any sort, and receives all characters sent by the
device, including protocols, blank-compressions, and the like.

ARRAY may be subscripted, in which case it will be filled starting from that
element. CAUTION: some machines require that the starting position lie on a
word boundary, so a program may not work on all machines if it reads bytes on an
odd boundary.

BLOCKNUMBER is only meaningful if UNITNUMBER is a block-structured device.
If it is present, it is the number of the block (zero-based) from which the read
will start. BLOCKNUMBER defaults to zero.

If INTEGER is present and equal to one, the transfer is done asynchronously
(provided the hardware can support this). INTEGER defaults to zero, which
indicates a synchronous transfer. If you wish to include the INTEGER parameter
without the BLOCKNUMBER parameter, simply separate it from LENGTH by two
commas, rather than one.

Example:

t. ;"'lTREAD(6,FILLME,BO,,1)

reads 80 characters asynchronously from REMIN: into FILLME; FILLME must be
e", least 80 characters long, or other data will be destroyed.

Because it references a device directly, input from UNITREAD cannot be
redirected.

226

UNISTATUS
Users' Manual
UCSD Pascal

VI.2.37 PROCEDURE UNITSTATUS (UNITNUMBER, STATUS_REC,
CONTROL)

UNITNUMBER is an integer that is the number of a device (see Section 1.2.3 or
Section 111.3).

ST ATUS REC may be of any type; it should be an area of 30 words.

CONTROL is an integer. It should be equal to either 0 or 1.

UNITSTATUS returns information in STATUS REC. If CONTROL=O, the
information refers to output. If CONTROL=l, the information refers to input.

If the device in question is a character-oriented device (such as PRINTER:,
REMOUT:, etc.), UNITSTATUS changes only the first word of STATUS REC, and
sets it equal to the number of characters waiting to be read or written:- If there
are no characters waiting, or UNITST ATUS cannot determine the device's state, it
returns o.

If the device is a block-structured device (such as a floppy disk), UNITSTATUS
changes the first four words of STATUS _ REC:

word 1: The number of characters waiting (as with a serial device);

word 2: The number of bytes per sector on the device;

word 3: The number of sectors per track;

word 4: The number of tracks.

While the remainder of STATUS REC is not affected, these locations are reserved
for possible future use.

UNITST ATUS is available on Adaptable Systems, but not a! other implement[s;
see the Installation Guide or the supplement for your hilrclw~ re for details.

227

UNITWAIT
Users' Manual
UCSD Pascal

Vl.2.38 PROCEDURE UNITW AIT (UNITNUMBER);

UNIT NUMBER is an integer that is the number of a device (see Section 1.2.3 or
Section llI.3).

UNITWAIT waits for the speci fied device to complete the 1/0 in progress. It can
be simulated by:

WHILE UNITBUSY(n) DO {waste a small amount of time};

Currently implemented only on PDP-II and LSI-II computers. On all other
systems, it always returns FALSE.

VI.2.39 PROCEDURE UNITWRITE
(UNITNUMBER, ARRAY, LENGTH,
[BLOCKNUMBER], [INTEGER]);

UNITWRITE
Users' Manual
. UCSD Pascal

UNIT NUMBER is an integer that is the number of a device (see Section 1.2.3 or
Section 111.3).

UN1TWR1TE writes LENGTH characters from ARRAY to the device UN1TNUMBER.

As with UN1TREAD, no 1/0 checking is done, nor are any of the transmission's
characters added or modified. UN1TWR1TE is a low-level intrinsic, therefore it is
fast but dangerous.

ARRAY may have a subscript, in which case the transfer will begin with that
element. As with UN1TREAD, word boundaries must be enforced on some
processors.

BLOCKNUMBER applies only to block-structured devices, and if present, indicates
the number of the block (zero-based) where the write will start. BLOCKNUMBER
defaults to zero.

INTEGER, if present and equal to one, indicates an asynchronous transfer.
INTEGER defaults to zero. If you wish to include INTEGER but not
BLOCKNUMBER, separate it from LENGTH by one rather than two commas (as
with UNITREAD).

Because it references a device directly, output from UNITWRITE cannot be
redirected.

·229

VARAVAIL
Users' Manual
UCSD Pascal

VI.2.40 FUNCTION V ARA V AIL (SEGLIST) : INTEGER

SEGLIST is a string containing a list of segment names separated by commas. If a
segment name is not recognized by the Operating System, it is ignored.

V ARAVAIL returns the number of words in main memory available for allocation,
assu m i ng the segments listed are in memory, and all memory-locked segments are
in memory.

See the Internal Architecture Guide for more details.

230

VI.2.41 PROCEDURE VARDISPOSE (POINTER, COUNT)

VARDISPOSE
Users' Manual
UCSD Pascal

Does a DISPOSE on COUNT words. If COUNT is incorrect, VARDISPOSE will
destroy the Heap's integrity, so use extreme caution.

POINTER is to an arbitrary pointer type.

See the Internal Architecture Guide for more details.

231

VARNEW
Users' Manual
UCSD Pascal

VI.2.42 FUNCTION VARNEW (POINTER, COUNT): INTEGER

Does a NEW on COUNT words.

POINTER is to an arbitrary type.

VARNEW returns the number of words actually allocated: if COUNT words are
available, VARNEW should return COUNT, but if COUNT words are not available,
VARNEW returns 0, and no words are allocated. -

See the Internal Architecture Guide for more details.

232

VI.2.4J PROCEDURE WAIT (VAR SEM: SEMAPHORE)

WAIT
Users' Manual
UCSD Pascal

If the cou nt of SEM is greater than zero, it is decremented. The process that
called WAIT continues.

If the count of SEM is zero, the process using WAIT waits until SEM is again
available.

See Chapter IX for examples.

233

Users' Manual
UCSD Pascal

VI.3 Using the Compiler

The UCSD Pascal Compiler is a recursive descent based on the P2 portable
co mpi ler from the Eidgenossische Technische Hochschuele, Zurich. It is invoked by.
usi ng the C(ompile or R(un command of the outermost level of the System. If a
workfile exists, it is compiled. Otherwise, the user is prompted for a source file
name. The Compiler generates P-code, which is executed by some P-machine
emulator (whether hardware or software).

While the Compiler is running, it displays a report of its progress on the
CONSOLE:.

Example:

Pascal compiler - release level IV.O
< 0> •••••••••••••••••••
INITIALIZE
< 1 9> •••••••••••••.••••••••••••••••••••••••••••
CDJFOFF
< 61>
< Ill>•.
TEST
< 119>

237 lines compiled

INITIALI
TEST

In the first pass, the Compiler displays the name of each routine: the numbers
enclosed within < > are the current line numbers, and each dot on the screen
represents 1 source line compiled. In the second pass, each name is the name of
a segment, and each dot represents one routine.

This output can be suppressed in two ways -- for a given compilation, by using the
Q+ Compiler option (see Section VI.3.1 below), or by setting HAS SLOW TERMINAL
to TRUE in SYSTEM.MISCINFO (see the section on SETUP in the Installation
Guide).

If the compilation is successful, that is, if no compilation errors were detected,
the Compiler writes a codefile called *SYSTEM. WRK.CODE. This is the codefile
whi ch may be executed by the R(un command. See Chapter 11 for a description of
System commands.

234

Users' Manual
UCSD Pascal

When the Compiler detects a syntax error, the text surrounding the error is
displayed, along with an error number and '«« ' pointing to the offending symbol.

If both the Q and L options are set, the compilation continues, the syntax error is
reported in the listing file, and CONSOLE: remains undisturbed.

1 f Q and L are not both on (this is the default) the Compiler gi ves the user the
option of typinga space, an <esc> or 'E'. Typing a space continues the
compilation, <esc> terminates the compilation, and 'E' calls the Editor, which
places the cursor at the symbol where the error was detected.

The syntax errors detected by the UCSD Pascal Compiler are listed in Appendix 1.
All error numbers. are accompanied by a textual message after entering the Editor,
provided *SYSTEM.SYNT AX is on disk. This error message also appears in the
listing.

235

Users' Manual
UCSD Pascal

VI.3.1 Compile-Time Options

The user may direct some of the Compiler's actions by the use of compile-time
options embedded in the source code. Compile-time options are a set of
commands that may appear within "pseudo-comments." A pseudo-comment is a
comment with a dollar sign immediately following the left-hand delimiter, for
example:

{$l+}
(*$U MOLD.CODE*)
{$I+,S-,L+}
(*$R"'*)

are all correct pseudo-comments. There are two kinds of options: "switch"
options, and "string" options. A switch option is a letter followed by a '+', '-', or
'''''; a string option is a letter followed by a string. A pseudo-comment may
contain any number of switch options (separated by commas), and zero or one
string options. If a string option is present in a pseudo-comment, it must be the
last option: the string is delimited by the option letter and the end of the
comment.

If the pseudo-comment uses '(* *)' brackets, the string in a string option may not
contain a '*'.

Some options may appear anywhere within a source file; others must appear at the
front of the file (before the reserved word PR.OGRAM or UNIT).

String options use the string given them. Switch options are either toggles or
stack options. If a switch option is a toggle, a ' +' turns it on, and a ' -' turns it

off. The options and R are "stack options", as are the conditional compilation
flags (see below).

With each stack option, the current state (either '+' or '-') is saved on the top of
a stack (up to 15 states deep). The stack may be "popped" by a ,..., (thus re­
enabling the previous state of that option). If the stack is "pushed" deeper than
15 states, the bottom state of the stack is lost; if the stack is popped when it is
empty, the value is always ' ,

236

Example:

{ $I-} current value is

{$I+ } current value is
...
{$I"} current value is ...
t$l"j current value is
$l" current value is

' , no I/O checking -
' +'

'-' again

' +', because this was the
' , because stack is now -

default
empty

Users" Manual
UCSD Pascal

Individual options are listed below in alphabetical order. The default options for a
compilation are:

these remain in effect unless the user overrides them. The Q option defaults
to the opposite of the HAS SLO\V TERMINAL data item in SYSTEM.MISCINFO (see
the Installation Gu ide).

Conditional compilation is also controlled by compile-time options: see Section
VI.3.2 below.

B:

B is a string option. Begins a section of conditionally compiled source code. See
Section VI.3.2.

C:

C is a string option. Places all of the string directly into the copyright field of
. the codefile's segment dictionary. The purpose of this is to have a copyright

notice embedded in thecodefile.

D:

D is a string option. Used to declare or alter the value of a co'nditional
compilation flag. See Section VI.3.2.

237

Users' Manual
UCSD Pascal

E:

E is a string option. Ends a section of conditionally compiled source code. See
Section VI.3.2.

I:

There are two options named by 'I': one is a stack switch option (IOCHECK), and
one a string option (INCLUDE).

IOCHECK OPTION

Default value: 1+

1+: instructs the Compiler to generate code after each I/o
statement, in order to check that the 1/0 operation
was successful. If not, the program terminates
with a runtime error.

1-: instructs the Compiler not to generate any I/O checking
code. In the case of an unsuccessful 1/0 operation, the
program merely continues.

The 1- opti on is useful when the user wishes to test 10RESUL T (see Vl.2) when
there is the chance of an 1/0 failure but the program should not be aborted. If l­
is used and the programmer does no! test IORESUL T, the effects are
unpredictable.

10RESUL TS are listed in Section Vl.2 and Appendix B.

INCLUDE FILE MECHANISM

The string (delimited by the letter '1' and the end of the comment) is interpreted
as the name of a file. If that file can be found, it is included in the source file
and compiled.

Example:

{$I FOON}

includes the file FOON. TEXT in the program's source.

238

Users' Manual
UCSD Pascal

If the initial attempt to open the include file fails, the Compiler concatenates a
'. TEXT' to the filename and tries again. If this second attempt fails, or an 1/0
error occurs while reading the include file, the Compiler responds with a fatal
syntax error.

In order that included source may carry its own declarations, an include file may
contain CONST, TYPE, and VAR declarations, oRtionally followed by routine
declarations. If this is the case, then the {$l ••• } comment must precede any
routine declarations in the main program. Otherwise, the include file must follow
normal Pascal ordering.

Include files may be nested up to three files deep (but no deeper).

Note that if a filename begins with a ' +' or ' -', a blank must be inserted between
the letter 1 and the string.

Example:

(*$1 +F ARKLE.STUFF*)

L:

L may be used either as a toggle switch option or a string option.

The default is L-. An L+ enables listing. If no listing file is named, the
Compiler writes to *SYSTEM.LST.TEXT. The user may specify a different name
for a listing file by using L as a string option, for example:

(*$L DEMOl.TEXT*)

this would write to DEMOl. TEXT on the default disk.

Note that listing files which are sent to the disk may be edited as any other
textfile, provided they are created with a .TEXT suffix. Without the .TEXT
suffix, the System will treat the listing as a datafile.

2'39

Users' Manual
UCSD Pascal

Here is a sample portion of a listing:

393 10 10:0

I

comnented out
comnented out
comnented out

397 10 10:0
398 10 10:0
399 10 10:1
400 10 10:2
401 10 10:3
402 10 10:3
403 10 10:2
404 10 10:0
405 10 10:0
406 10 11:0

1 Procedure iocheck;

:;: !{fhiS procedure will check the i/o operations of the
';' index as it is in the process of rebuilding

1 }
o Begin
o If ioresult <> 0 Then
6 Begin
6 pIA := 'index 1/0 failure.';

3 2 P ramp t (err 0 r lin e) ;
38 End; f if ioresult <> 0 then}
38 End; { i ocheck }
50

1 Procedure dropindex(position: isamcoverage);

On those lines that are not {commented out ';'} (which is intended to warn you
that a comment may have accidentally swallowed some Pascal code), the numbers
that precede a source line are:

the line number,

the segment number,

the routine number:lex level, and

the number of words of datA or code storage
which the routine requires at that point.

Rather than a lexical level, lines of declarations show a '0' following the
procedure number.

240

Here is a portion of a listing with errors:

Users' Manual
UCSD Pascal

596 10 1:5 228 lastpageitem := min(lastentry,lastentry);
---> Error #104 <---

597 10 1:5 239
598 10 1:5 239
599 10 1:5 239
600 10 1:5 242

{ loop through the page}
Pagelnx := 0;

601 10 1:5 242
602 10 1:6 242

{ function returns next greater}
Repeat {unti 1 found or (Pagelnx > lastentry)}

Assert(Pagelnx < lastpageitem,'bad Pagelnx');
---> Error #104 <--­

The previous error
607 10 1:6 271

i son 1 i n e 59'6
found := (data[Pageinx].key > key);

Error messages indicate the position of the previous error. The Compiler also lists
readable error messages from *SYSTEM.SYNT AX, provided it is on line.

Whether or not the compilation is completed, the listing is saved.

P:

P is a switch option. P- turns off pagination in the listing, P+ turns it on again,
and a P by itself starts a new page in the listing.

Q:

The 'quiet compile' option. This is used to suppress the Compiler's output to
C-ONSDLE:.

Default value:
the value of SLOWTERM in *SYSTEM.MISCINFO
(see SETUP in the Installation Guide).

Q+: causes the Compiler to suppress output to CONSOLE:.

Q-: causes the Compiler to send progress information
to CONSOLE:.

241

Users' Manual
UCSD Pascal

R:

R is a stack switch option.

Default value: R+

R+: turns range checking on.

R-: turns range checking off.

Programs compiled with the R-option set will run slightly faster; however, if an
invalid index occurs or a invalid assignment ls made, the program will not be
terminated with a runtime error, and the results are exceedingly hard to debug.
Until a program has been completely tested, it is strongly advised to compile with
the R+ option left on.

T:

T is a string option. The string becomes the new title of pages in the listing file.

U:

There are two options indicated by U: one is a toggle switch option (USER
PROGRAM), and one is a string option (USE LIBRARY).

USER PROGRAM OPTION

This option determines whether this compilation is a user program compilation, or
a co mpilation of a System program. If present, it must appear before the heading
(i.e., before the reserved word PROGRAM or UNIT).

Default value: U+

U+: speci fies user source.

U-: allows compilation of units with names that are
predeclared in the System. Also sets R- and 1-.

The average user will never use this option, except when compiling GOTOXY (see
the Installation Guide).

242

USE LIBRARY OPTION

This is a string option: the string is interpreted as a filename.

Users' Manual
UCSD Pascal

If the file named in the U option can be found, the Compiler will search it for
the code of UNITs named in subsequent USES declarations. If a UNIT is not found
there, the Compiler then searches *SYSTEM.LIBRARY.

I f a program contains USES declarations but no U option, the Compiler will look
forlhe USEd UNITs first in the source file itself, and in *SYSTEM.LIBRARY.

Following is an example of a valid USES clause using the 'u' option:

USES UNITl,UNIT2, { Found in *SYST~.LIBRARY }
{$U A.CffiE}

LNIT3,
{$U B.LIBRARY}

UNIT4,UNIT5;

243

Users' Manual
UCSD Pascal

VI.3.2 Conditional Compilation

Portions of source code may be conditi,onally compiled. Whether they are compiled
or not depends on the value of a flaglhat is declared by a compile~time option at
the beginning of the source file.

A section of source code to be conditionally compiled must be delimited by the
options Band E. Both these options must name the flag which determines
whether the code is compiled. The flag itself is declared by a D option at the
beginning of the source; D options may be used at other locations in the source to
change the value of an existing flag.

Example:

{$D DEBUG} {declares DEBUG and sets it TRUE}
PRCXRAM S I MPL E ;

BEGIN

{$B DEBUG} {if DEBUG is TRUE, this section is compiled}
WRITELN('There is a bug.');
{$E DEBUG} {this ends the section}

...
{$B DEBUG-} {if DEBUG is FALSE, this section is compiled}
WRITELN('Nothing has failed.');
{$E DEBUG} ...

END {S IMPLE} •

Each flag in a program must appear in a D option before the source heading. The
name of a flag follows the rules for Pascal identifiers. If the flag's name is
followed by a '-', that flag is set FALSE. The flag may be followed by a '+',
which sets it TRUE. If no sign is present, a flag is TRUE. The flag's name may
also be followed by a ""': see below.

The state of a flag may be changed by a D option which appears after the source
heading, but if the flag has not been declared, an error will result.--

The Band E options delimit a section of code to be conditionally compiled: when
the Compiler encounters a B option, it scans for an E option which names the
same flag, and resumes compilation from that point. The B option may follow the
flag's name with a '-', which causes the delimited code to be compiled if the flag
is FALSE. In the absence of a '-', the code is compiled if the flag is TRUE.

244

Users' Manual
UCSD Pascal

The flag's name may also be followed by a ' +' or '''': these are ignored. In an E
option, the flag's name may be followed by a '+', '-', or "": these symbols are
ignored.

The state of each flag is saved in a stack, just as the state of a stack switch
option is saved. Thus, using a D option with " .. , yields the previous value of the
flag. Each flag's stack is 15 values deep. If a 16th value is pushed, the bottom
of the stack is .lost; if an empty stack is popped with "", the value returned is
always FALSE.

If a section of code is not compiled, then any pseudo-comments it may contain are
ignored as well.

Example:

{$D DEBLG-} {declares DEBLe and sets it FALSE}
PRCXRMv1 SIMPLE;

BEGIN
{$D DEBUG+} {changes DEBLG to TRUE}

{$B DEBUG} {if DEBUG is TRUE, this section is compiled}
WRlr£LN('There is a bug.');
{$E DEBLe} {this ends the ~ection}

{$o DEBLD"} { res tor e s pre v i -0 U S val u e 0 f DEBUG }
. .. i nth i s cas e, F AL 5 E }

{$8 DEBLC-} i fDEBLG is FALSE_, this section is compiled}
WRITELN('Nothing has failed.');
{$E DEBLe}

EI'D {S IMPL£} •

-245

Users' Manual
UCSD Pascal

246

~.~. :

VU. THE ADAPT ABLE ASSEMBLERS

Vll.O.l Assembly Language Definition

Users' Manual
Assemblers

An assembly language consists of symbolic names which can represent machine
instru ctions, memory addresses, or program data. The main advantage of assembly
language programming over machine coding is that programs can be organized in a
more readable and hence easier to understand fashion.

An assembly language program (called source code) is translated by an assembler
into a sequence of machine instructions (called object code). Assemblers can
create either relocatable or absolute object code. Relocat~ble code includes
information that -allows a loader to place it in any available area of memory, while
absolute code must be loaded into a ~pecific area of memory. Symbolic addresses
in programs that are assembled to relocatab1e object code are called relocatable
addresses.

247

Users' Manual
Assemblers

VIl.D.2 Assembly Language Applications

Users of the UCSD Pascal system are interested in developing assembly language
programs for one of two purposes:

a) assembly language procedures running under the
control of a host program in Pascal or another
high level language (such as FORTRAN or BASIC).

b) stand-alone assembly language programs for use
outside of the operating system's environment.,

The UCSD, Adaptable Assembler, jn conjunction wit,h the. system linker and some
support programs, has been designed to meet. these needs. The assembl~r is
adaptable in the sense that different versions built around one adaptable k~roel
exist for each processor supported by the UCSD Pascal system; new versions can
be quickly generated for any new 8 or 16 bit processors that are introduced.

The Adaptable Assembler is a one pass assembler modeled after The Last
Assembler (TLA) developed at the Uni versity of Waterloo. The basic concept
behind both the TLA and the UCSD Adaptable Assembler is the use of a central
machine independent core that is common to all versions of the assembler. This
central core is augmented with machine specific modules to handle the architecture
of each target machine.

This document is intended to be used in conjunction with the processor software
manu al of the user's machine. For information conceTning differences from the
processor's standard software syntax, see Section VIl.8 (all section references in
this chapter refer to this chapter alone).

248

Vll.I General Programming Information

VII.I.I Object Code Format

Vll.I.I..I Byte Organization

Users' Manual
Assemblers

A byte consists of eight bits. The bits may represent eight binary values, or a
single character of data. The bi ts may also represent a one byte machine
instruction or a number which is interpreted either as a signed two's complement
number in the range of -128 to 127 or an unsigned number in the range of 0 to
255.

Vll.l.I.2 -Word Organization

A word consists of sixteen bits, or two adjacent bytes in memory. A word may
contain a one word machine instruction, any combination of byte quantities, or a
number which may be interpreted either as a signed two's complement number in
the range of -32,768 to 32,767 or an unsigned number in the range of 0 to
65,535.

Vll.I.I.3 Memory Organization

Vll.I.l.3.I Byte Versus Word Addressing

The Adaptable Assembler kernel is designed to accommodate byte addressed, word
addressed, and byte addressed/word oriented processors - the instructions and
data words of the latter two processor types are constrained to word boundaries.
A word boundary on a word oriented processor is defined as an even byte
address.

Word alignment is enforced throughout word addressed versions of the assembler by
defining all data directives to emit integral numbers of words. With word oriented
assemblers, the programmer is responsible for maintaining word alignment of
instructions and data words; failure to do so will be flagged with an error
message. Nonalignment occurs when a directive creates an odd number of data
bytes ..

Vll.I.I.3.2 Byte Sex

The two bytes that make up a 16-bit word are termed the least-significant and
most-significant byte, or LSB and MSB respectively. Unfortunately, the various

249

Users' Manual
Assemblers

manufacturers of processors have different conventions for whether the first (or
lower addressed) byte of a word is used as the LSB or the MSB; hence, the 'byte
sex' question has arisen. See Section VIl.S to determine the byte sex of processors
supported with Adaptable Assembler versions.

The assemblers generate code of the proper byte sex, regardl~ss of the sex of the
machine on which they are run.

250

VlI.I.2 Source Code Format

VIl.I.2.I Character Set

The following characters are used to construct source code:

- upper and lower case alphabetic: A •• Z, a •• z

- numerals: 0 •• 9

- special symbols: j @ /I $ % ,. -& * () <
) -(] / .•• u'+ __ ? ., ,... - ~

- space (' ') character and tab character

VIl.I.2.2 Identifiers

Users' Manual
Assemblers

Identi fiers consist of an alphabetic character followed by a series of alphanumeric
char a c ters and/or underscore characters. The underscore' character is not
significant. This definition of identifiers is equivalent to the Pascal definition.

Identifiers are used in:

- label and constant definitions.

- machine instructions, assembler directives, and macro'
identi fiers.

label and constant references.

Example: FormArray
FORM ARRAY
formarray

••• all denote the same item.

251

Users' Manual
Assemblers

VII.I.2.2.I Predefined Symbols and Identifiers

Predefined identifiers are reserved by the assembler as symbolic names for machine
instructions and registers. They may not be used as names for labels, constants,
or procedures. Each assembler also has a predefined location counter symbol.
This is a character which, when used in an expression, represents the current
value of the locati"on counter in the program. Section VIl.S lists the location
counter character for each assembler version.

VII.l.2.3 Character Strings

A character string is written as a series of ASCII characters delimited by double
quotes. A string may contain up to eighty characters, but cannot cross source
lines. A double quote may be embedded in a character string by entering it
twice, e.g., "This contains ""embedded"" double quotes". The assembler directive
• ASCll requires a character string for its operand. Strings also have limited uses in
expressions.

VII.l.2.4 Constants

VII.l.2.4.1 Binary Integer Constants

A binary integer constant is a series of bits or binary digits (0 •• 1) followed by the
letter 'T'. The range of values is 0 to 11111111, or 0 to 1111, if a byte constant.

Examples: OT 01000100T 11101T

VlI.l.2.4.1 Decimal Integer Constants

A decimal integer word constant is written as a series of numerals (0 •• 9) followed
by a period. Its range of values is -32768 to 32767 as a signed two's complement
number. As a byte constant, its range of values is -128 to 127 as a signed two's
complement number or 0 to 255 as an unsigned number.

Examples: 001. 256. -4096.

252

Vll.l.2.4.2 Hexadecimal Integer Constants

Users' Manual
Assemblers

A hexadecimal integer word constant is written as a series of up to four
significant hexadecimal numerals (0 •• 9, A •• F) followed by the letter 'H'. The
leading numeral of a hex constant must be a numeric character. The range of
values is 0 to FFFF. These are examples of valid hex constants:

OAH
100H
OFFFEH ; leading zero is required here

Byte constants possess similar syntax, but can have at most two significant hex
numerals, with a range of 0 to FF.

Vll.l.2.4.3 Octal Integer Constants

An octal integer word constant is written as a series of up to six significant octal
numerals (0 •• 7) followed by the letter 'Q'. Its range of values is 0 to 177777.
Byte constants can have at most three significant octal numerals, with a range of
o to 477.

Examples: 17Q 457Q 177776Q

Vll.l.2.4.4 Default Radix Integer Constants

The radix of an integer constant lacking a tra"iling radix character is set to the
assembler's current default radix. Initial default radices for all assemblers are
listed in Section VIl.B.

VII.l.2.4.5 Character Constants

Character constants are special cases of character strings and may be used in
expressions. The maximum length is two characters for a word constant, and one
character for a byte constant.

Examples: "A" "BC" "V A"

Vll.l.2.4.6 Assembly time Constants

An assembly ti !"ne'- constant is written as an identifier that has been assigned a
constant value by the .EQU directive (Section VIl.2~2). Its value is completely

253

Users' Manual
Assemblers

determined at assembly time from the expression following the directive.
Assembly time constants must be defined before they may be referenced.

VIlDI.2.5 Expressions

Expressions are used as symbolic operands for machine instructions and assembler
directives. An expression can be:

- a label, which might refer to a defined address
or an address further down in the source code
(implying that the label is presently undefined),
an externally referenced address, or an
absolute address.

- a constant.

- a series of labels or constants separated by
arithmetic or logical operators.

- the null expression, which evaluates to a constant
of value O.

VII.I.2.5.l Relocatable and Absolute Expressions

An expression containing more than one label is valid only if the number of
reloc atable labels added to the expression exceeds the number of relocatable labels
subtracted from the expression by zero or one. The expression result is absolute if
the difference is zero, and relocatable if the difference is one. Subexpressions that
evaluate to relocatable quantities may not be used as arguments to a
multiplication, division, or logical operation. Unary operators may not be applied
to relocatable quanti ties.

In relocatable programs, absolute expressions may not be used as operands of
instructions which require location-counter-relative address modes.

254

Vll.l.2.5.2 Linking and One Pass Restrictions

Users' Manual
Assemblers

An expression may contain no more than one externally defined label, and its value
must be added to the expression. An expression containing an external reference
may not contain a forward referenced label, and the relocation sum of any other
relocatable labels in the expression must be equal to zero.

An expression may contain no more than one forward referenced identifier. A
forward referenced identifier is assumed to be a relocatable label defined further
down in the source code; any other identifiers must be defined before they are
used in an expression. An expression containing a forward referenced label may
not contain an externally defined label.

Vll.l.2.5.3 Arithmetic & Logical Operators

The following operators are available for use in expressions:

unary operations:
, +' plus
" minus (two's complement negation)

logical not (one's complement negation)

binary operations:
, +' plus

minus
exclusi ve or

'*' multiplication
, /' signed integer division (DIV)
,/ /' unsigned integer division (DIV)
'0/0' unsigned remainder division (MOD)
'1' bitwise OR
, &' bitwise AND

The following operators are available for use only with conditional assembly
directi ves:

" equal
'<>' not equal

The following symbols may be used as alternatives to the single character
d ef i ni tions presented above. Occurrences of these al ternati ve definitions require at
least single blank characters as delimiters.

.OR

.AND
=
=

'1 '
, &'

255

Users' Manual
Assemblers

.NOT

.XOR

.MOD

=
=
= , 0/0'

The assembler performs left to right evaluation of expressions; there is no operator
precedence. All operations are performed on word quantities. Usage of unary
operators is limited to constants and absolute addresses. Angle brackets must
enclose subexpressions which contain embedded unary operators.

Vll.l.2.5.4 Subexpression Grouping

A ngle brackets (' <' and ')') may be used in expressions to override the left to
right evaluation of operands. Subexpressions enclosed in angle brackets are
completely evaluated before inclusion in the rest of the expression.

256

Users' Manual
Assemblers

Vll.l.2.5.5 Examples

The following are examples of valid expressions. The default radix is decimal.

MARK+4

BILL-2

2-BARRY

3*2+MACRO

OAVIO+3*2

650/2-RICH

-4*12+<6/2>

85+2+<-5>

The sum of the value of identifier MARK plus 4

The result of subtracting 2 from the value
of identifier BILL.

The result of subtracting the value of
identifier BARRY from 2. BARRY must be
absolute.

The sum of the value of identifier MACRO plus
the product of 3 times 2.

2 times the sum of the identifier DAVID
and 3. DAVID must be absolute.

The result of dividing 650 by 2 and sub­
tracting the value of identifier RICH from
the quotient. RICH must be absolute.

Null expression: result is constant O·

evaluates to -45 (decimal)

evaluates to 82 (decimal)

evaluates to 1

o .OR 1 .AND <.NOT 0> ; is the same expression (result is 1)

257

Users' Manu al
Assemblers

Vll.l.3 Source Statement Format

An assembly language source program consists of source statements which may
contain machine instructions, assembler directives, comments, or nothing (a blank
line). Each source statement is defined as one line of a textfile. Assembly
langu age identifiers are restricted to upper case alphabetic characters, but lower
case characters may be used in the comment field.

Vll.l.3.1 Label Field

The assembler supports the use of both standard labels and local (i.e., reuse able)
labels. The label field begins in the leftmost character position of each source line.
Macro identifiers and machine instructions must not appear in the start of the
label field, but assembler directives and comments may appear there.

Vll.l.3.1.1 Standard label usage

A standard label is an identifier that appears in the label field of a source
statement. It maybe terminated by an optional colon character, which is not
use d when referencing the label. As in Pascal, only the first eight characters of
the label are important; the rest are ignored by the assembler. As in Pascal, the
underscore character is not significant.

Example:

BIOS
L3456:
The Kind
LONG label

; referenced as 'L3456'

; last character is ignored

A standard label is a symbolic name for a unique address or constant; it may be
declared onl yonce in a source program. A label is optional for machine
instructions and for many of the assembler directives. A source statement
consisting of only a label is a valid statement; it has the effect of assigning the
current value of the location counter to the label. This is equivalent to placing
the label in the label field of the next source statement that generates object
code. Labels defined in the label field of the .EQU directive (Section Vll.2.2) are
assigned the value of the expression in the operand field.

Vll.l.3.1.2 Local Label Usage

258

Users' Manual
Assemblers

Local labels allow source statements to be labeled for reference by other
instructions without taking up storage space in the symbol table. They can
contribute to the cleanliness of source program design by allowing the creation of
nonmnemonic labels for use by iterative and decision constructs, thus reserving the
use of mnemonic label names for demarking conceptually more important sections
of code.

Local labels must have "$" in the first character pO,sition; the remaIning characters
must be digits. As in regular labels, only the first eight digits are significant.
The scope of a local label is limited to the lines of source statements between the
declaration of consecutive standard labels; thus, the jump to label $4 in the
following example is illegal:

LABELl
LOA 3

$3 STA 4
JP NZ, $3 legal use of local label
NOP
JP $4 illegal use

LABEL2
LOA 5

$4 STA 6

Up to 21 local labels may be defined between 2 occurrences of a standard label.
On encountering a standard label, the assembler purges all existing local label
definitions; hence, all local label names may be redefined after that point. Local
labels may not be used in the label field of the .EQU directive (Section VlI.2.2).

VIl.l.3.2 Opcode Field

The opcode field begins with the first non-blank character following the label field,
or with the first nonblank character following the leftmost character position when
the label is omitted. It is terminated by one or more blanks. The opcode field
contains an identifier which can be of the following types:

- machine instruction

- assembler directive

- macro call

259

Users' Manual
Assemblers

VIl.l.3.3 Operand Field

The operand field begins with the first nonblank character following the opcode
field, and is terminated by zero or more blanks. It can contain zero or more
expressions, depending on the requirements of the preceding opcode.

Vll.l.3.4 Comment Field

The comment field can be preceded by zero or more blanks, begins with a
semicolon (';'), and extends to the end of the current source line. It may contain
any printable ASCll characters. The comment field is listed on assembled
listings, and has no other effect on the assembly process.

260

Vll.l.4 Source File Format

Users' Manual
Assemblers

Assembly source files are generated using the system editor and saved as files of
type TEXT. A source file is constructed from the following entities:

- assembly routines (procedures and functions).

- global declarations.

Vll.l.4.1 Assembly Routines

A source file may contain more than one assembly routine; in this case, a routine
ends upon the occurrence in the source code of another program delimiting
directive (i.e., the start of the following routine). Each routine in a source file
is a separate entity; it contains its own relocation information and may be
individually referenced by a Pascal host program during linking.

Assembly routines must begin with a .PROC, .FUNC, .RELPROC, or .RELFUNC
directi vee The last routine in the source file must be terminated by the .END
directive. Section VIl.S gives a detailed description of these directives.

At th e end of each routine, the assembler's symbol table is cleared of all but
predefined and globally declared symbols, and the location counter (LC) is reset
to zero.

Vll.l.4.2 Global declarations

An assembly routine may not directly access objects declared in another assembly
routine, even if the routines are assembled in the same source file; however,
occasions arise when it is desirable for a set of routines to share a commmon
group of declarations. Therefore, the assembler allows global data declarations.

Any objects declared before the first occurrence of a .PROC or .FUNC directive
ina source file may be referenced by all subsequent assembly routines. No code
may be generated before the first procedure delimiting directive; hence, the
, global' ob je cts are Ii mi ted to the non-code-generating directives (.t:QU, .REF,
.DEF, .MACRO, .LIST, etc.).

261

Users' Manual
Assemblers

any non-code­
generating
operations

code-generat i n 9
or non-code generating

operations and directives

Vll.l.4.3 Absolute Sections

Assembly language programmers often find it necessary to access absolute
addresses in memory, regardless of where an assembly routine is loaded in memory.
For instance, a program may need to access ROM routines. Absolute sections
allow the user to define labels and data space using the standard syntax and
directives, but with the extra ability to specify abso'lute (nonrelocatable) label
addresses starting at any location in memory.

Absolute sections are initiated by the directive .ASECT (for absolute section) and
terminated by the directive .PSECT (for program section, which is the default
setting during assembly). When the .ASECT directive is encountered, the absolute
section location counter (ALC) becomes the current location counter. The .ORG
directive can be used to set the ALC to any desired value. Label definitions are
nonrelocatable and are assigned the current value of the ALC. The data directives
.WORD, .BLOCK, and .BYTE cause the ALC (instead of the regular LC) to be
incremented.

Data directives in an absolute section cannot place initial values in the locatir"

262

Users' Manual
Assemblers

specified as they can when used in the program section; thus, the absolute section
serves as a tool for constructing a template of label - memory address
assignments.

The equate directive (.EQU) may be used in an absolute section, but the labels are
restricted to being equated only to absolute expressions. The only other directives
allowed to occur within an absolute section are .LIST, .NOLIST, .END, and the
condi tional assembly directives.

Absolute sections may appear as global objects.

The following is a si mple example of an absolute section:

• ASECT

.ORG ODFOOH

DSKaJT • BYTE
DSKSTAT • BYTE
CONS .V\ORD
BLAGJE .BLcx::K 4
REJvU.JT .V\ORD ;
OFFSET .EQJ REJvU.JT+2;

.PSECT

start absolute section

set ALC to DFOO hex

note - no data values assigned
label assignments below

DSKClJT = DFOO
DSKSTAT = DFOI
CCl\IS = DF02
BLAGUE = DF04 (4 bytes)
REJvOJT = DF08
CFFSET = DFOA

263

Users' Manual
Assemblers

VIl.2 Assembler Directives

Assembler directives (sometimes referred to as pseudo-ops) enable the programmer
to supply data to be included in the program and exercise control over the
assembly process. The following directives are common to all assembler versions.
Assembler directives appear in the source code as predefined identifiers preceded
by a period (.).

The following metasymbols are used below in the syntax definitions for assembler
directi ves:

- special characters and items in capital letters
must be entered as shown.

- items within angle brackets «» are defined by
the user.

- items within square brackets []) are optional.

- the word 'or' indicates a choice between two items.

- items in lower case letters are generic names for
classes of items.

The following terms are names for classes of items:

264

b =

integer =

label =

the occurrence of one or more blanks.

any legal integer constant as defined in
Section Vll.1.2.4.

any legal label as defined in Section Vll.1.3.1.

expression =

value =

any legal expression as defined in Section Vll.1.2.5.

any label, constant, or expression.
Its default value is O.

valuelist =
a list of zero or more values delimited by
commas.

identi fier =

idlist =

a legal identifier as defined in Section Vll.1.2.2.

a list of one or more identifiers delimited by
commas.

id:integer list =
a list of one or more identi fier-integer pairs
separated by a colon and delimited by
a comma. The colon:integer part is
optional; its default value is 1.

comment =
any legal comment as defined in Section Vll.1.3.4.

character string =
any legal character string as defined in
Section Vll.1.2.3.

file identifier =
any legal name for a Pascal text file.

Example:

[<label>] [b] .ASCll b <character string> [<comment>]

Users' Manual
Assemblers

indicates that a label may be included in the label field (but is not necessary),
and that a character string must be included as an operand.

Small examples are included after each definition to supply the user with a
reference to the specific syntax of the directive.

265

Users' Manual
Assemblers

VIl.2.I Procedure-Delimiting Directives

Every source program (including those intended for use as stand-alone code files)
must contain at least one set of procedure-delimiting directives. The most
frequent use of the assembler is in assembling small routines intended to be linked
with a host compilation unit. The directives .PROC and .FUNC identify and
delimi t assembly language procedures. .RELPROC and .RELFUNC identify and
delimit dynamically relocatable procedures. Dynamically relocatable procedures
may reside in the code pool, and are subject to more of the System's memory
management strategies. Section Vll.5 has a more detailed description of the use
of these directives.

266

.PROC Identifies the beginning of an assembly language
procedure. The procedure is terminated by the
occurrence of another delimiting directive in
the source file.

Users' Manual
Assemblers

FORM: [b] .PROC b <identifier> [,<integer>] [<comment>]

<identifier> is the name associated with
the assembly procedure.

<integer> indicates the number of words
of parameters passed to this routine.
The default is O.

EXAMPLE: .PROC DLDRIVE,2

.FUNC

FORM:

Identifies the beginning of an assembly language
function, which is expected (by the host compilation
unit) to return a function result on top of the stack;
otherwise, equivalent to the .PROC directive.

[b] .FUNC <identifier>[,<integer)] [<comment>]

<identifier> is the name associated with
the assembly procedure.

<integer> indicates the number of words
of parameters passed to this routine.
The default is O.

EXAMPLE: .FUNC RANDOM

267

Users' Manual
Assemblers

.RELPROC

FORM:

Identi fies the beginning of a dynamically
relocatable assembly language procedure. Such
assembly procedures must be position-independent
(see Section VIl.5). The procedure is terminated
by the occurrence of another delimiting directive
in the source file.

[b] .RELPROC b <identi fier> [,<integer>]
[<comment>]

<identifier> is the name associated with
the assembly procedure.

<integer> indicates the number of words
of parameters passed to this routine.
The default is O.

EXAMPLE: .RELPROC POOF,3

.RELFUNC

FORM:

Identifies the beginning of a dynamically
relocatable assembly language function which is
expected (by the host compilation unit) to return
a function result on the stack; otherwise,
equivalent to the .RELPROC directive.

[b] .RELFUNC <identifier>[,<integer>]
[<comment>]

<identifier> is the name associated with the
assembly function.

<integer> indicates the number of words of
parameters passed to this routine.
the default is o.

EXAMPLE: .RELFUNC POOOF

268

.END Marks the end of an assembly source file.

FORM: [<label>] [b] .END

Users' Manual
Assemblers

Users' Manual
Assemblers

Vll.2.2 Data and Constant Definition Directives

.ASCll Converts character strings to a series of ASCll byte

FORM:

constants in memory. The bytes are allocated in the
order that they appear in the string. An identifier
in the label field is assigned the location of
the first character allocated in memory. If an
odd number of data bytes are generated on a
word addressed assembler version, an extra zero
byte will be emitted to word align the LC.

[<label>] [b] .ASCII b <character string>
[<comment>]

<character string> is any string of printable
ASCII characters delimited by double quotes.

EXAMPLE: .ASCII "HELLO"

.BYTE Allocates and initializes values in one or more

270

bytes of memory. Values must be absolute byte
quantities. The default value is zero.
An identifier in the label field is assigned the
location of the first byte allocated in memory.

FORM: [<label>] [b] .BYTE b [valuelist] [<comment>]

EXAMPLE: TEMP .BYTE 4 ; code would be: 04 hex

TEMPl .BYTE ; code would be: 00 hex

.BLOCK Allocates and initializes a block of consecutive
bytes/words in memory (bytes for byte addressed
processors, words for word addressed processors).
A byte value must be an absolute quantity.
The default value is zero. An identifier in the
label field is assigned the location of the first
byte/word allocated.

FORM: [<label>] [b] .BLOCK b <length>[,<value>]

EXAMPLE:

[<comment>]

<length> is the the number of bytes to allocate
with the initial value <value>.

TEMP .BLOCK 4,6H

the output code would be:

Users' Manual
Assemblers

06 06 06 06 ;four bytes with value 06 hex

Users' Manual
Assemblers

• WORD Allocates and initializes values in one or more
consecutive words of memory. Values may be
relocatable quantities. The default value is zero.
An identifier in the label field is assigned the
location of the first word allocated.

FORM: [<label>] [b] • WORD b <valuelist> [<comment>]

EXAMPLE: TEMP .WORD 0,2,,4

the output code would be:
0000
0002
0000 this is a default value.
0004

Ll .WORD L2

the output code would be a word
containing the address of the label L2 •

• EQU Equates a value to a label. Labels may be equated

272

to an expression containing relocatable labels,
externally referenced labels, and/or absolute
constants. The general rule is that labels equated
to values must be defined before use. The exception
to this rule is for labels equated to expressions
containing another label. Local labels may not appear
in the label field of an equate statement.

FORM: <label> [b) .EQU b <value> [<comment>]

EXAMPLE: BASE .EQU R6

Vll.2.3 Location Counter Modification Directives

Users' Manual
Assemblers

These directi ves affect the value of the location counter (LC or ALC) and the
location in memory of the code being generated •

• ORG If used at the beginning of an absolute assembly
program, .ORG initializes the location counter to
<value>. Used anywhere else, .ORG will generate
zero bytes until the value of the location counter
equals <value>.

FORM: [b] .ORG b <value> [<comment>]

EXAMPLE: .ORG lOOOH

.ALIGN Outputs sufficient zero bytes/words to set the
location counter to a value which is a multiple of
the operand value (bytes are emitted for byte
addressed processors, words are emitted for word
addressed processors~

FORM: [p] .ALIGN b <value> [<comment>]

EXAMPLE: .ALIGN

On a byte addressed processor, this would align the LC
on a word boundary.

273

Users' Manual
Assemblers

Vll.2.4 Listing Control Directives

These directi ves allow the user to exercise control over the format of the
assembled listing file generated by the assembler. No code is generated by these
directi ves, and their source lines do not appear on assembled listings. See Section
Vll.7 for a more detailed description of an assembled listing.

.TITLE Changes the ti tIe printed on the top of each page
of the assembled listing. The title may be up to

FORM:

80 characters long. The assembler will change the
ti tIe to 'SYMBOL TABLE DUMP' when printing a symbol
table; the title reverts back to its former value
after the symbol table is printed. The default
value for the title is ' '.

[b] • TITLE b <character string> [<comment>]

EXAMPLE: • TITLE "P-CODE INTERPRETER"

.ASCllLIST Print all bytes generated by the .ASCll directive in
the code field of the list file, creating multiple
lines in the list file if necessary. Assembly b~gins
with an implicit .ASCIILIST directive.

FORM:

EXAMPLE:

274

[b].ASCllLIST [<comment>]

.ASCllLIST

.NOASCllLIST Limit the printing of data generated by the .ASCII
directi ve to as many bytes as will fit in the code
field of one line in the list file.

FORM: [b] .NOASCIILIST [<comment>]

EXAMPLE: .NOASCIILIST

.CONDLIST List source code contained in the unassembled
sections of conditional assembly directives.

FORM: [b] .CONDLIST [<comment>]

EXAMPLE: .CONOLIST

.NOCONDLIST Suppress the listing of source code contained in
the unassembled sections of conditional assembly
directi ves. Assembly begins with an implicit
.NOCONDLIST directive.

FORM:

EXAMPLE:

[b] .NOCONDLIST [<comment>]

.NOCONDLIST

Users": Manual
Assemblers

275

Users' Manu al
Assemblers

.NOSYMT ABLE Suppress the printing of a symbol table after each
assembly routine in an assembled listing.

FORM:

EXAMPLE:

[b] .NOSYMT ABLE [<comment>]

.NOSYMT ABLE

.PAGEHEIGHT Control the number of lines printed in an assembled
listing between page breaks. Assembly begins with an
implicit .PAGEHEIGHT 59 directive.

FORM: [b] .PAGEHEIGHT <integer> [<comment>]

EXAMPLE: .PAGEHEIGHT

.NARROWPAGE Limit the width of an assembled listing to 80
columns. The symbol table is printed in a narrow
format, source lines are truncated to a maximum of 49
characters, and trtle lines on the page headers are
truncated to a maximum of 40 characters.

FORM: [b] .NARROWPAGE [<comment>]

EXAMPLE: .NARROWPAGE

276

.PAGE Continue the assembled listing on the next page by
sending an ASCll form feed character to the
asserllbled listing.·

FORM: [b] .PAGE

EXAMPLE: .PAGE

.LIST Enables output to the list file, if a listing is not
already being generated. .LIST and .NOLIST can be
used to examine certain.sections:of source and object ...
code with,out dreatingan assembled listing of the
entire program. Assembly begins with an. implicit
.LIST directive.

FORM: [b] .LIST

EXAMPLE: .LIST

.NOLIST Suppresses output to the list file, if it is not
already ·'Off~ , .; ..

FORM: [b] .N0L.!IST
-.., ',' .. '~

EXAMPLE: .NOLIST

Users' Manual
Assemblers

.277

Users' Manual
Assemblers

.MACROLIST Specifies that all following macro definitions
will have their macro bodies printed when they are
invoked in the source program. Assembly begins

FORM:

with an implicit .MACROLIST directive. Section Vll.4
has a detailed description of macro language.

EXAMPLE:

[b] .MACROLIST

.MACROLIST

.NOMACROLIST Specifies that all following macro definitions
will not have their macro bodies printed when
they are invoked in the source program. Only the
macro identifier and parameter list are included
in the listing.

FORM: [b] .NOMACROLIST

EXAMPLE: .NOMACROLIST

.PA TCHLIST List occurences of all back patches of forward
referenced labels in the list file. Assembly

278

FORM:

begins with an implicit .PATCHLIST directive. Section
VU.7 has a detailed description of back patches.

EXAMPLE:

(b] .PA TCHLlST

.PATCHLlST

.NOPA TCHLlST Suppress the listing of back patches of
forward references.

FORM: [b] .NOPATCHLlST

EXAMPLE: .NOPATCHLlST

Users' Manual
Assemblers

Users' Manu al
Assemblers

VIl.2.5 Program Linkage Directives

Linking directives enable communication between separately assembled and/or
compiled programs. Section VIl.S has a detailed description of program linking •

• CONST Allows access to globally declared constants in
the host compilation unit by the assembly procedure.

FORM: [b] .CONST <idlist> [<comment>]

EXAMPLE:

Each <id> is the name of a global
constant declared in the Pascal host.

.CONST LENGTH

.PUBLIC Allows variables declared in the global data

280

segment of the host compilation unit to be referenced
by an assembly language routine.

FORM: [b] .PUBLIC <idlist> [<comment>]

EXAMPLE:

Each <id> is the name of a global
variable declared in the Pascal host.

.PUBLIC 1,J,LENGTH

.PRIVA TE Allows an assembly language routine to store
variables in the global data segment of the host
compilation unit that are accessable only to the
assembly language routine.

FORM: [b] .PRIVA TE <id:integer list> [<comment>]

EXAMPLE: .PRIVATE PRINT,BARRAY:9

Each <id> is treated as a label defined in the
source code. <integer> determines the number
of words of space allocated for <id> •

.INTERP Allows an assembly language procedure to access
code or data in the P-code interpreter. .INTERP
is a predefined symbol for a processor dependent
location in the resident interpreter code; offsets
from this base location may be used to access any
code in the interpreter. Correct usage of this
feature requires a knowledge of the interpreter's
jump vector for this location. Its domain is
generally restricted to systems applications.

FORM: valid when used in <expression>

EXAMPLE:

Users' Manual
Assemblers

EXECERR .EQU 12 ; hypothetical routine offset

BOMBINT .EQU
JMP

.INTERP+EXECERR
BOMBINT

·281

Users' Manual
Assemblers

.REF Provides access to one or more labels defined in other
assembly language routines.

FORM: [b] .REF <idlist> [<comment>]

EXAMPLE: .REF SCHLUMP

.DEF Makes one or more labels to be defined in the current

282

routine available to other assembly language routines
for reference.

FORM: [b] .DEF <idlist> [<comment>]

EXAMPLE: .DEF FOON,YEEN

Vll.2.6 Conditional Assembly Directives

Users' Manual
Assemblers

Section Vll.3 has a detailed description of conditional assembly features •

• IF Marks the start of a conditional section of source
statements.

FORM: [b] .IF <expression> [= or <> <expression>]

EXAMPLE: .IF Z80

.ENDC

FORM:

Marks the end of a conditional section of
source statements.

[b] .ENDC [<comment>]

EXAMPLE: .ENDC

.ELSE

FORM:

Marks the start of an alternative section of
sour8e statements.

[b] .ELSE [<comment>]

EXAMPLE: .ELSE

[<comment>]

283

Users' Manual
Assemblers

VIl.2.7 Macro definition directives

Section Vll.4 has a detailed description of macro language •

• MACRO Indicates the start of a macro definition

FORM: [b] .MACRO <identifier> [<comment>]

<identifier> is used to invoke
the macro being defined.

EXAMPLE: .MACRO ADDWORDS

.ENDM Marks the end of a macro definition.

FORM: [b] .ENDM [<comment>]

EXAMPLE: .ENDM

284

Users' Manual
Assemblers

Vll.2.B Miscellaneous Directives

.INCLUDE Causes the assembler to start assembling the
file named as an argument of the directive; when
the end of this file is reached, assembling
resumes with the source code that follows the
directi ve in the original file. This feature is
useful for including a file of macro definitions
or for splitting up a source program too large to
be edited as a single text file. .INCLUDE may not
be used in an included source file (i.e., nested
use of the directive) and may not be used in a macro
definition.

FORM: [b] .INCLUDE <file identifier> [b <comment>]

The comment field of the .INCLUDE directive must
be separated from the file identifier by at least
one blank character •

EXAMPLE: • INCLUDE MYDISK:MACROS

.ABSOLUTE Causes the following assembly routine to be
assembled without relocation information. Labels
become absolute addresses and label arithmetic is
allowed in expressions. Usage is valid only before
the occurrence of the first procedure delimiting
directive. .ABSOLUTE must not be used when creating
a Pascal external procedure. Section Vll.5 has a
detailed description of absolute code files.

FORM: [b] .ABSOLUTE [<comment>]

EXAMPLE: .ABSOLUTE

285

Users' Manual
Assemblers

.ASECT

.PSECT

286

Speci fies the start of an absolute section.
Section Vll.l.4.3 has a detailed description of
.ASECT.

FORM: [b] .ASECT [<comment>]

EXAMPLE: .ASECT

Specifies the start of a program section, and is used
to terminate an absolute section. Section Vll.l.4.3
has a detailed descripti on of .PSECT.

FORM: [b] .PSECT [<comment>]

EXAMPLE: .PSECT

.RADIX

, 1), ',y !:

Sets the current default radix to the value of the
operand. Allowable operands are: 2 (binary),
B (octal), 10 (decimal), and 16 (hexadecimal).
Section Vll.1.2.2.4 has a detailed description of
radices. Initial defaults for each assembler version
are listed in Section VIl.B.

FORM: [b] .RADIX <integer> [<comment>]

Users' Manual
Assemblers

EXAMPLE: .RADIX 10 ; decimal default radix

287

Users' Manual
Assemblers

VIl.3 Conditional Assembly

Conditional assembly directives are used to selectively exclude or include sections
of source code at assembly time. Conditional sections are initiated with the .IF
directi ve and terminated with the .ENDC directive, and may contain the .ELSE
directive. Control over the inclusion of conditional sections is determined by the
use of conditional expressions. Conditional sections may contain other conditional
sections.

When the assembler encounters an .IF directive, it evaluates the associated
expression to determine the condition value. If the condition value is false, the
source statements following the directive are discarded until a matching .ENDC
or .ELSE is reached. If the .ELSE directive is used in a conditional section,
source code before the .ELSE is assembled if the condition is true, and source
code after the .ELSE is assembled if the condition is false.

Overall syntax for a conditional section (using the metalanguage described in
Section Vll.2) is as follows:

288

.IF <conditional expression>
<source statements>
[.ELSE
<source statements>]
.ENDC

Vll.J.l Conditional Expressions

Users' Manual
Assemblers

A conditional expression can take one of two forms: a single expression, or
comparison of two character strings or expressions. The first form is considered
false if it evaluates to zero; otherwise, it is considered true. The second form
of conditional expression is comparison for equality or inequality (indicated by the
symbols. ' =' and ' <>', respectively).

289

Users' Manual
Assemblers

Vll.3.2 Example

290

• 1 F

• IF

LABELI-LABEL2 ; arithmetic expression

This code is assembled only if
difference is zero

0/01 = "S TUFF" compari~on expression

This code is assembled only if outer condition
is true and text of first macro parameter
is equal to "STUFF" •

• ENDC ; terminate nested section

.ELSE

This code is assembled if outer condition
is true

This code is assembled if first condition
is false

.ENDC terminate outer section

Vll.4 Macro Language

Users' Manual
Assemblers

The assembler supports the use of a macro language in source programs. A macro
language allows the programmer to associate a set of source statements with an
identi fying symbol; when the assembler encounters this symbol (known as a macro
identifier) in the source code, it substitutes the corresponding set of source
statements (known as the macro body) for the macro identifier, and assembles the
macro body as if it had been included. directly in the source program. A carefully
designed set of macro definitions can be used in all source programs to simplify
the development of assembly language routines.

Macro language is enhanced by including a mechanism for passing parameters
(known as macro parameters) to the macro body while it is being expanding,
allowing a single macro definition to be used for an entire class of subtasks.

Here is a si mple example:

• f\lti\ffiO S TR 1 f\G

• BYTE 0/02
• ASCII Dial
.ENlvl

macro defInition •••
macro identifier is STRlf\G
macro body
o/~ and o/~ are parameter declarations
2nd parameter is length byte
1st parameter is argument
end macro definition

Further down in the source code •••

STRlf\G "VvR.ITE",5. 1st macro call
par arne t e r s are ' "VvR.I TE'" and ' 5. '

STRlf\G "TYPE SPACE",10. 2nd macro call

This is what gets assembled •••

• BYTE 5 •
• ASCII "\ARI TE"

• BYTE 10.
• ASC I I "TYPE SPACElI

parameters are '''TYPE SPACE'"
and '10.'

data string declarations

291

Users' Manual
Assemblers

VIl.4.1 Macro Definitions

Macro definitions may occur anywhere in a source program and are delimited by
the directi ves .MACRO and .ENOM. The macro identifier must be unique to the
source program, except when the programmer is redefining a predefined machine
instruction name as a macro identifier. A macro definition may not include
another macro definition; however, it may include macro calls. Macro calls may
be nested to a maximum depth of five levels. A macro definition must occur
before any calls to that macro are assembled, but macro calls may be forward
referenced within the bodies of other macro definitions.

292

Vll.4.2 Macro Calls

Users' Manual
Assemblers

Macro calls may occur anywhere in a source program that code may be generated.
A macro call consists of a macro identifier followed by a list of parameters. The
parameters are delimited by commas and terminated by a carriage return or
semicolon. Upon encountering a macro call, source code is read from the text
of the correspunding macro body. Macro parameters within the macro body are
substituted with the text of the matching parameter listed after the macro
identi fier which initiated the call.

·29-:;

Users' Manual
Assemblers

Vll.4.J Parameter Passing

M aero parameters are referenced in a macro body by using the symbol ' o/dl' in an
expression, where 'n' is a single nonzero decimal digit. Upon scanning this symbol,
the assembler replaces it with the text of the n'th macro parameter. Please note
that macro parameters are not expanded within the quotes of an ASCll data string.

Three cases are possible:

1) The parameter exists - make the substi tution.

2) The n'th parameter doesn't exist in the parameter list
being checked (less than n parameters were passed); a
null string is substituted.

3) Another symbol of the form ' a/om' is encountered in the
parameter list. If nested macro calls exist, the text
of the m'th parameter at the next higher level of macro
nesting is substituted; otherwise, the symbol itself
is assembled.

Parameters are passed without leading and trailing blanks. All assembly symbols
except macro calls may be passed as parameters.

294

Users' Manual
Assemblers

The following is an example of parameter passing in macros:

.tvtL\CRO ooS
UNO 0/& ,LN
SRL 0/&
.EI'DVI

.tvtL\CRO lJ\KJ
rvov o/al ,0/02
SLA 0/03
.EI'ilvl

In a program, the macro

DOS TROI S ,DEUX

assembles as ...

rvov

SLA
SRL

DEUX,LN

DEUX

call .••

UNO got UN directly, but had to
use DOS's 2nd param
3rd param doesn't exist
DOS used its own 2nd param

295

Users' Manual
Assemblers

VIl.4.4 Scope Of Labels In Macros

A problem arises in the use of macro language when the definition of a macro
body requires the use of branch instructions and thus the presence of labels.
Declaring a regular label in a macro body is incorrect if the macro is called more
than once, for the label would be substituted twice into the source program and
flagged by the assembler as a previously defined label. Location-counter-relative
addressing can be used, but is prone to errors in nontrivial applications. The
solution is to generate labels that are local to the macro body; the assembler's
local labels have this capability.

Local label names declared in a macro body are local to that macro; thus, a
section of code that contains a local label $1 and a macro call whose body also
has the local label $1 will assemble without errors (contrast this with what happens
when two occurrences of $1 fall between two regular labels). This feature allows
local labels to be used freely in macros without fear of conflicts with the rest of
the program.

Note - the maximum of 21 local labels active at any instant still applies.

Vll.4.4.1 Local Labels As Macro Parameters

The passing of local labels as parameters has a special property. Unlike other
macro parameters, local labels are not passed as uninterpreted text. The scope
of a local label passed in a macro call does not change as it is passed through
increasing levels of macro nesting, regardless of naming conflicts along the way_
One use of this property is passing an address to a macro which simulates a
conditional branch instruction.

296

Users' Manual
Assemblers

The following is an example of passing local labels as macro parameters:

• tvtA.ffiO E I N
BEQ $1
BNE o/al

$1
.Ef\DV1

In a program, the code •••

TWIE
tvOv
EIN
RTS

$1

IO-fl ,NI
$1

JSR SAN

assembles as •••

lWIE
lVOV

$1

$1

BEQ
BNE

RTS

JSR

IG11,NI

$1
$1

SAN

looks confusing, but if listing
was 0 f f, res u 1 tis wh a t pr 0 g r amne r
meant to occur
this references macro local label
this references outside $1
rna c r 0 I 0 c a I I abe 1

outside $1

297

Users' Manual
Assemblers

Vll.5 Program Linking and Relocation

The Adaptable Assembler produces either absolute or relocatable object code that
may be linked as required to create executable programs from separately assembled
or compiled modules.

Program linking directives generate information required by the System Linker to
IJnk modules. Some of the advantages of linking are:

Long programs can be divided into separately assembled
modules to avoid a long assembly, reduce the symbol table
size, and encourage modular programming techniques.

Modules can be shared by other linked modules.

Utility modules can be added to the System Library for use
as external procedures by a large number of programs.

Pascal programs can directly call assembly language
procedures.

The assembler generates linker information in both relocatable and absolute code
files. The System Linker accesses this information during the linking process and
removes it from the linked code file.

Relocatable code includes information that allows a loader program to place it
anywhere in memory, while absolute (also called core image) codefiles must be
loaded into a specific area of memory to execute properly. Assembly procedures
running in the Pascal system environment must always be relocatable; the loading
and relocation process is performed by the interpreter at a load address determined
by the state of the System.

Absolute code will not run under the p-System environment (under which high-level
programs must run). Relocatable code can run under the p-System. Code segments
which contain statically relocatable code remain in main memory throughout the
Ii f eti me of their host program (or unit), and are position-locked for that duration.
Thus, relocatable code may maintain and reference its own internal data space (or
spaces). In addition, statically relocatable code saves some space because its
relocation information does not have to remain present throughout the life of the
program.

The directi ves .PROC and .FUNC designate statically relocatable routi nes;
.RELPROC and .RELFUNC designate dynamically relocatable routines. Code
segments which contain dynamically relocatable code do not necessarily occupy the
same location in memory throughout their host's lifetime, but are maintained in

298

, i I

Users' Manual
Assemblers

the code pool along with other dynamic segments (mostly P-code), and may be
swapped in and out of main memory while the host program (or unit) is running.
Thus, dynamically relocatable code cannot maintain internal data spaces -- data
which is meant to last across different calls of the assembly routine must be kept
in host data segments using .PRIVATEs and .PUBLICs. (It is the programmer's
responsibility to make sure that this is the case.)

EXAMPLES:

1. Data space is embedded in the code, but the code does not move:

.PROC

.WJRO

• EI\D

FCXJN
SPACE

2. The code moves, but data space is allocated in the host compilation unit's
global data segment:

.RELPROC
• PRIVATE

• Et'D

FCXl'J
SPACE

3. Wrong: The code moves, and the data is embedded in the code, so the data
is destroyed:

.RELPROC

• 'JIlRD

• EN)

FCXl'J
SPACE

Code pool management is described in the Internal Architecture Guide.

Vll.5.1 Program Linking Directives

This section describes overall usage of linking directives. All linking of assembly
procedures involves word quantities; it is not possible to externally define and
reference data bytes or assembly time constants. Arguments of these directives
must match the corresponding name in the target module (a lower case Pascal
identi fier will match an upper case assembly name, and vice versa) and must not

·299

') ')-'

Users' Manual
Assemblers

have been used before their appearance in the directive; all following references to
the arguments are treated by the assembler as special cases of labels. These
external references are resolved by the linker and/or interpreter by adding the link
ti me and ru n time offsets to the existing value of the word quantity in question;
thus, any ini ti al offsets generated by the inclusion of external references and
constants in expressions are preserved. .

300

Vll.5.1.1 Pascal Host Communication Directives

Users' . Manual
Assemblers

The directives .CONST, .PUBLIC, and .PRIVATE allow the sharing of constants and
data between an assembly procedure and its host compilation unit. See Section
Vll.6.2.1 for examples •

• CONST Allows an assembly procedure to access globally
declared constants in the host compilation unit.
All references to arguments of .CONST are patched
by the Linker with a word containing the value
of the host's compile time constant •

• PUBLIC Allows an assembly procedure to access globally
declared variables in the host compilation unit.
Note - this directive can be used to set up
pointers to the start of multi-word
variables in host programs; it is not limited
to single word variables •

• PRIVATE Allows an assembly procedure to declare variables
in the global data segment of the host compilation
unit that are inaccessable to the host. The
optional length attribute of the
arguments allows multi-word data spaces to be
allocated; the default data space is one word.

301

Users' Manual
Assemblers

VIl.5.1.2 External Reference Directives

The directi ves .REF and .DEF allow separately assembled modules to' share data
space and subroutines. See Vll.S.2.2 for examples.

.DEF

.REF

302

declares a label to be defined in the current
program as accessable to other modules. One
restriction is imposed on usage - it is invalid
to .DEF a label that has been equated to a
constant expression or an expression containing
an external reference.

declares a label existing and .DEF'ed in another
module to be accessable to the current program.

Users' Manual
Assemblers,

Vll.5.1.3 Program Identifier Directives

The directives .PROC, .FUNC, .RELPROC, .RELFUNC, and .END serve as
delimiters for source programs. Every source program (relocatable or absolute) must
contain at least one pair of delimiting directives (see Section Vll.1.4.1).

The identifier argument of the .PROC or .RELPROC directive serves two
functions: it is referenced by the Linker when linking an assembly procedure to its
corresponding host, and it can be referenced as an externally declared label by
other modules. Specifically, the declaration:

• PROC FCXJN ; procedure heading

in a source program is functionally equivalent in the assembly environment to
the following statements:

.DEF FOO\I
FOON

FOON may be externally referenced
declare FOON as a label

This feature allows an assembly module to call other (external and eventually
linked in) assembly modules by name. The .FUNC and .RELFUNC directives are
used when linking an assembly function directly to a Pascal host program; they are
not intended for uses which involve linking with other assembly modules.

The optional integer argument after the procedure identifier is referenced by the
Linker to determine if the number of words of parameters passed by the Pascal
host's external procedure declaration matches the number speci fied by the assembly
procedure declaration; it is not relevant when linking with other assembly modules.

303

Users' Manual
Assemblers

Vll.5.2 Linking Program Modules

For inf ormation on linking with the p-System's other high-level languages, please
refer to the documentation on that particular language.

Vll.5.2.1 Linking With A Pascal Host Program

External procedures and functions are assembly language routines declared in Pascal
programs. In order to run Pascal programs with external declarations, it is
necessary to compile the Pascal program, assemble the external procedure or
function, and link the two codefiles. The linking process can be simplified by
adding the assembled routine to the system library with the librarian program.

A host program declares a procedure to be external in a syntactically similar
manner to a forward declaration. The procedure heading is given (with parameter
list, if any), followed by the keyword 'EXTERNAL'. Calls to the external
procedure use standard Pascal syntax, and the Compiler checks that calls to the
external procedure agree in type and number of parameters with the external
declaration. All parameters are pushed on the stack in the order of their
appearance in the parameter list of the declaration; thus, the rightmost parameter
in the declaration will be on the top of stack. Section Vll.5.2.1.1 has a detailed
description of parameter passing conventions.

1 t is the programmer's responsibility to assure that the assembly language routine
maintains the integrity of the stack. This includes removing all parameters passed
from the host, preserving any machine resources in use by the interpreter , and
making a clean return to the Pascal run time environment using the return address
originally passed to it. The price of nonconformance in these matters is a
potentially fatal system crash, as assembly routines are outside the scope of the
Pascal environment's run time error facilities. Section VIl.S has a detailed
description of Pascal/assembly language protocols for all machines.

An external function is similar to a procedure, but with some differences that
affect the way in which parameters are passed to and from the Pascal runtime
environment; first, the external function call will push one or two words on the
stack (two for a function of type real, one for all other types) before any
parameters have been pushed. The words are part of the P-machine's function
calling mechanism, and are irrelevant to assembly language functions; the assembly
routine must throw these away before returning the function's result. Second, the
assembly routine must push the proper number of words (2 for type real, 1
otherwise) containing the function result onto the stack before passing control back
to the host.

Vll.5.2.1.1 Parameter Passing Conventions

304

Users' Manual
Assemblers

The ability of external procedures to pass any variables as parameters gives the
assembly programmer complete freedom to access the machine dependent
representations of machine independent Pascal data structures; however, with this
freedom comes the responsibility of respecting the integrity of the Pascal run time
environment. This section attempts to enumerate the P-machine's parameter passing
conventions for all data types in order that the programmer may gain a better
understanding of the PascalI assembly language interface; it does not actually
describe data representations. Machine dependent data representations are described
in another section of the user manual.

Parameters may be passed either by value or by name (also known· as variable
parameters). For purposes of assembly language manipulation, variable parameters
are handled in a more straightforward fashion than value parameters.

The word 'to~' i~ used in the following sections as an abbreviation for 'top of
stack'.

305

Users' Manual
Assemblers

Vll.S.2.1.1.1 Variable Parameters

Variable parameters are referenced through a one word pointer passed to the
procedure. Thus, the procedure declaration:

procedure pass_by_name(var i,j : integer;
var q : some_type); external;

••• would pass 3 one word pointers on the stack; tos would be' a pointer to q,
followed by pointers to j and i.

A Pascal external procedure declaration is allowed to contain variable parameters
lack i ng the usual type declaration; this enables variables of different Pascal types
to be passed through a single parameter to an assembly routine. Untyped
parameters are not allowed in normal Pascal procedure declarations.

The procedure' declaration:

procedure untyped var(var i; var q some_type);
external; -

••• contains the untyped parameter i.

vn;'S.2.1.1.2 Value Parameters

Value parameters are handled in a manner dependent upon their data txpe. The
following types are passed by pushing copies of their current values directly on the
stack: boolean, char, integer, real, subrange, scalar, pointer, set, and long integer.
Othe r sections of the user- manual describe the number of words per data type and
the internal data format. For instance, the declaration:,

procedure pass_by _value(i : integer; r : rea!); external;

••• would pass 2 words on tas containing the value of the real variable r followed by
one word containing the value of the integer variable i.

Variables of type record and array are passed by value in the same manner as
variable parameters; pointers to the actual variable are pushed onto the stack.
Variables of type PACKED ARRAY OF CHAR and STRING are passed by value
with a segment pointer (described in Section Vll.5.2.1.1.2.1).

306

Users' Manual
Assemblers

Pascal procedures protect the original variables by using the passed pointer to copy
their values into a local data space for processing; assembly procedures should
respect this convention and not alter the contents of the original variables.

VIl.5.2.1.1.2.1 Accessing Byte Array Parameters with a Segment Pointer

A segment pointer consists of two words on the stack. The first word (tos)
contains either NIL (an implementation-dependent value) or a pointer to a segment
environment record.

(In a future release, the use of NIL will be replaced by use of the value zero, in
order to eliminate this implementation dependence.)

If the first word is NIL, then the second word (at tos-l) points to the parameter.

If the first word is not NIL, then to find the parameter it is necessary to chain
through some records.' The first word is a pointer and the second word is an
offset. The first word points to a segment envLi-onment record. The second word
of this record contains a pointer to a pointer to the base of the segment where
the parameter resides. The exact location of the parameter is given by the
second word on the stack (tos-I), which is an offset into the code segment.'

This address chain may be described as follows (offsets are word offsets):

(first_word + I)"" + <contents of second_word>

-A full description of these mechanisms maybe -found in the Internal Architecture
Guide.

307

Users' Manual
Assemblers

VIl.5.2.2 Example Of Linking To Pascal Host

Note that in the following example the host program passes' control to the
beginning of an assembly procedure whether or not machine instructions are present
there; therefore, all data sections allocated in the procedure must either occur
after the end or the machine instructions or have a jump instruction branch
around them.

PRCXRAM EXftlvlPLE; { Pascal host program}
canst size = 80;
var i,j,k: integer;

lstl : array [0 •. 9] of char;
{ PRT and LST2 get allocated here' }

procedure do nothing; external;
function nuIT_func(xxyxx,z~ integer): integer; extern~l;

begin
k := 45;
do nothing;
j 7= null func(k,size);

end. -

308

·PROC

• CXJNST
.PUBLIC
.DEF

POP

DC:NJTH I f\C

SIZE
I , LST 1
TEMPI

RETADR

; does nothing

PUSH
RETURN

RETADR

Users' Manual
Assemblers

underscores are not significant
in Pascal

can get at size constant in host •••
and also these two global vars
this allows NULLFUNC to get at tempI
code starts here •.•
assume return addr pushed on stack

set up stack for return

RETADR
TEMPI

; data area
• EGU TEMPI
.\t\ORD

end of procedure DONOTHING

.FUNC NULLFUNC,2

.PRIVATE PRT,LST2:9 ; 10 words of private data

.REF TEMPI references data temp in DDNOTHIf\C
code starts here

POP RETlRN

POP PRT
POP LST2+4

POP TEMPI

performs nu I I

PUSH
PUSH
RETlRN

REllRN . \.I\CRD

• EN)

LST2+4
RETLRN

save return address

get parameter ' z '
get parameter 'xxyxx'

toss 1 word of junk

action

return xxyxx as result
restore subr link
return to calling program
data starts here •••

end {)f assembly

309

Users' Manual
Assemblers

Vll.5.2.3 Stand-alone Applications

The Adaptable Assemblers were originally developed to allow the Pascal project to
maintain all interpreters and I/o systems on the Pascal System in order to be
completely self-supporting; thus, in their current configuration, the assemblers have
the capability to produce absolute (cor.e image) codefiles for use outside of the p­
System's runtime environment.

The p-System does not include a linking loader or an assembly language debugger,
as the P-machine architecture is not conducive to running programs (whether high
or low level) that must reside in a dedicated area of memory. The user is
responsible for loading and executing the object codefile; this can be done using
the p-System, with the understanding that the existing runtime environment may be
jeopardized in the process. Section Vll.5.2.3.2 provides some ideas'on how to
create a Pascal loader program.

The utility COMPRESSOR is a much easier and more versatile way of doing this
task. It allows for relocation and compaction of code. Refer to Section X.I.

Vll.5.2.3.1 Assembling

The .ABSOLUTE and .ORG directi ves are used' to create an object codefile
sui table for use as an absolute core image. .ABSOLUTE causes the creation of
nonrelocatable object code, and .ORG may be used to initialize the location
cou nter to any starting value. A source file headed by .ABSOLUTE should not
have more than one assembly routine; sequential absolute routines do not produce
continuous object code and cannot be successfully linked with one another to
produce a core image.

The codefile format consists of a 1 block codefile header followed by the
absolute code, and is terminated by one block of linker info; thus, stripping off
the first and last block of the codefile will leave a core image file. The use of
.ABSOLUTE should be limited to one routine; though linker information is
generated, it is difficult to link absolute codefUes so as to produce a correct core
image file.

Vll.5.2.3.2 Loading And Executing Absolute Codefiles

The following section describes one method of loading and executing absolute
codefiles using the UCSD p-System. The program outlined is not the only solution.
It is also feasible to use the system intrinsics to read and/or move the codefile
into the desired memory location, but this requires a knowledge of where the
interpreter, operating system, and user program reside in order to prevent
system crashes by accidentally overwriting them. The program outlined below

31.0

Users' Manual
Assemblers

allows the most freedom in loading core images; the only constraint is that the
assembly code itself is not overwritten while being moved to its final location.
This possiblity can be detected before loading proceeds.

It must be emphasized that in most cases loading object code into arbitrary
memory locations while a Pascal system is resident will adversely affect the
system; the absolute assembly language program is then on its own, and rebooting
may be necessary to revive the Pascal system.

The loader program consists of:

1) A Pascal host program that calls two external procedures.

2) One or more linkable absolute codefiles to be loaded.
(.RELPROCs are not allowed.)

3) A small assembly procedure MOVE AND GO that moves the
above object codefiles from their-system load address
to their proper locations and transfers control to them.

4) A small assembly language procedure LOAD ADDRESS that
returns the system load addresses of the aforementioned
assembly code to the host program.

The absolute codefiles are assembled to run at their desired locations, and
MOVE AND GO contains the desired load addresses of each core image. Both
LOAD -ADDRESS and MOVE AND GO have external references to the core images;
these -are used to calculate -the system load address and code size of each image
file. The whole collection is linked and executed, with the Pascal host performing
the following actions:

Print the result of calling LOAD ADDRESS to determine whether the area of
memory in which the Pascal system-loaded the assembly code overlays the known
final load address of the core images. Issue a prompt to continue, so that the
program can be aborted if a conflict does arise.

Call MOVE AND GO.

Vll.5.2.3.3 Byte Sex Considerations

All assembler versions and the System Linker are designed to produce assembly
codefiles with the correct byte sex of the target processor, regardless of the byte
sex of the machine underlying the Pascal system in use; thus, there is no need
for 'code flipping' software.

311

Users' Manual
Assemblers

Vll.6 Operation of the Assembler

The system assembler is invoked by typing 'A' at the command level of the
operating system. This command will execute the file named SYSTEM.ASSMBLER
(note the missing 'E' in the file name; this is required for conformance with the
file system's restrictions on file name lengths); if this is not the name of the
desired assembler version, be sure to save the existing file 'SYSTEM.ASSMBLER'
under a different name before changing the desired assembler's name to
'SYSTEM.ASSMBLER'. Assemblers that are not in use are usually saved with the
file name ' ASM <processor II>.CODE' (e.g., ' ASM6809.CODE').

Vll.6.1 Support Files

Each assembler version has two associated support file: an opcodesfile and an
error file. These should always be stored along with the assembler code file.

In order for the assembler to run correGtly, it is necessary that the proper opcodes
file be present on some on-line disk; the assembler will search all units in
increasing order of the unit number until it finds it. The opcode file must have the
name '<processor II>.OPCODES', where <processor II> matches the processor of the
current system assembler. The opcode file contains all predefined symbols
(instru ction and register names) and their corresponding values for the associated
assembly language. If the proper opfile is not on-line, the assembler will write
'<opfilename> not on any vol' and abort the assembly.

Each assembler also has its own error file which contains a list of machine
specific error messages. The error file must have the name '<processor
.fI>.ERRORS', where <processor II> matches the processor of the current system
assembler. The presence of an error file is not necessary for running the
assembler, but it can greatly aid the chore of squeezing the syntax errors out of
a freshly written program.

312

Vll.6.2 Setting Up Input And Output Files

Users' Manual
Assemblers

When the assembler is first invoked from the prompt line, it will attempt to open
the work file as its input file; if a work file exists, the first prompt will be the
listing prompt described in Section Vll.6.3 and the generated code file will be
named 'SYSTEM. WRK.CODE'. If not, this prompt will appear:

Assemble what text?

Type in the file name of the input file followed by a carriage return. Typing only
a carri age re turn w ill abort the assembly; otherwise, the next prompt will then
appear:

To what codefile?

Type in the desired name of the output code file followed by a carriage return.
Typing only a carriage return here will cause the assembler to name the output
'*SYSTEM. WRK.CODE', but typing '$' will cause the code file to be created with
the same filename prefix as the source file. The assembler will then display its
standard listing prompt.

313

Users' Manu al
Assemblers

VIl.6.3 Responses To Listing Prompt

Before assembling begins, the following prompt will appear on the console:

xxxx Assembler [yy J
Output file for assembled listing: «CR> for none)

xxxx is the processor number and yy is the release level of the assembler. At
this point, the user may respond with one of the following:

0) The escape key will abort the assembly and return
the user to the operating system prompt.

1) 'CONSOLE:' or 'Ill:' will send an assembled listing
of the source program to the screen during assembly.

2) 'PRINTER:' or '116:' will send an assembled listing
to the printer unit.

3) 'REMOUT:' or '118:' will send an assembled listing
to the REMOTE unit.

4) A carriage return will cause the assembler to suppress
generation of an assembled listing and ignore all
listing directi ves.

5) All other responses will cause the assembler to write
the assembled listing to a text file of that name; any
existing textfile of that name will be removed in the
process. For instance, the following responses will
cause a list file named 'LISTING. TEXT' to be created
on disk unit 5:

115:listing. text
115:listing

In all cases, it is the responsibility of the user to ensure that the specified unit is
on-line; the assembler will print an error message and abort if it is requested to
open an off-line 1/0 unit.

314

Vll.6.4 Output Modes

Users', Manual
Assemblers

If the user sends an assembled listing to the console, logic dictates that this is
what will be displayed on the screen during the assembly process; however, if the
listing is sent to some other unit or if no listing is generated, the assembler writes
a running account of the assembly process to the screen for the user's benefit.
One dot is written to the screen for every line assembled; on every 50'th line, the
number of lines currently assembled is written on the left hand side of the screen
(delimited by angle brackets).

When an include file directive is processed by the assembler, the console displays
the current source statement:

.INCLUDE <file name>

This allows the user to keep track of which include file is currently being
assembled.

At the end of the assembly, the console displays the total number of lines
assembled in the source program and the total number of errors flagged in the
source program.

315

Users' Manual
Assemblers

Vll.6.5 Responses To Error Prompt

When the assembler uncovers an error, it will print the error number and the
current source statement 0 f applicable to the error; this does not apply to
undefined labels and system errors). It then attempts to retrieve and print an
error message from the errors file. If the errors file cannot be opened (file is
nonexistent or lack of memory), no message will appear. This is followed by the
prompt:

E(dit, (space>, <esc>

Typing an 'E' will invoke the editor, a space will continue the assembly, and an
escape character will abort the assembly. Some restrictions exist when either
invoking the editor or attempting to continue:

316

1) In most cases, typing a space character restarts the
assembly process with no problems; since assembly language
source statements are independent of one another with
respect to syntax, it is not a difficult task for the
assembler to continue generating a code file. Thus, a
code file will exist at the end of an assembly if the user
types a space for every (nonfatal) error prompt that
appears; of course, the code produced may not be a correct
translation of the user's source program. Certain system
errors are considered fatal by the assembler; these
errors will abort the assembly regardless of the response
gi ven to the above prompt.

2) If an 'E' is typed, the system automatically
invokes the editor7- which opens the file c,ontaining the­
offending error and positions the cursor at the location
where the error occurred. This feature will always work
correctly when the source program is wholly contained in
one file; however, when include files are used, the user
should set up the input and output files manually (see
Section Vll.6.2) in order for the editor to position the
cursor in the file that contains the error.

Vll.6.5.1 Miscellany

Users' Manual
Assemblers

At the end of an assembly, an error message for each undefined label is printed.
In some cases, occurrences of undefined labels can be ignored by the user if the
labels in question are semantically irrelevant to the desired execution of the code
file; the resulting code file will be perfectly valid, but the references to the
nonexistent labels will not be completely resolved.

In addition to generating a codefile, the assembler makes use of a scratch file,
which is always removed from the disk 'upon normal termination of the assembly.
Occasionally though, a system error may occur that will prevent the assembler
from removing this file; if this happens, a new file may appear named
'LINKER.lNFO'. It may be removed without anxiety, as it is entirely useless
outside of the assembler's domain. This should be a rare (if not nonexistent)
phenomenon.

317

Users' Manual
Assemblers

VIl.7 Assembler Output

The assembler can generate two varieties of output files. A codefile is always
produced, but the user controls whether an assembled listing of the source file is
produced.

An assembled listing displays each line of the source program, the machine code
generated by that line, and the current 'value of the location counter. The listing
may display the expanded form of all macro calls in the source program. Any
errors that occur during the assembly, process have messages printed in the listing
file, usually. immediately following the line of source code that cause'd the error.
A symbol table is printed at the end of the listing; it serves as a directory for
locating all labels declared in the source program. '
. , .

An assemble'd listing of a source program printed on hard copy is one of the most
effecti ve debugging aids available for assembly language programs; it is equally
useful for off-line, 'mental' debugging and in conjunction with system debuggers.

A description of the codefile format is beyond the scope of this document.

VIl. 7.1 Source Listing

A paginated assembled listing is produced when the user responds to the
assembler's listing prompt with a listfile name. The default listing is 132
characters wide and 55 lines per page. Each line of a source program is included
in the assembled listing, except for source lines that contain list directives.
Source statements that contain the equate directive .EQU have the resulting value
of the associated expression listed to the left of the source line.

Macro calls are always listed, including the list of macro parameters and the
comment field, if any. The macro is expanded by listing the body (with all formal
parameters replaced by their passed values) if the macro list option was enabled
whe n the macro was defined. Macro expansion text is marked in the assembled
listing by the character '11' just to the left of the source listing. Comment fields
in the definition of the macro body are not listed in macro expansions.

Source lines with conditional assembly directives are listed; however, source
statements in an unassembled part of a conditional section are not listed.

318

VU.7.2 Error Messages

Users' Manual
Assemblers

Error messages in assembled listings have the same format as the error messages
sent to the console (see Section Vll.6), except that the user prompt is not included.

319

'/ 1/", l" •

Users' Manual
Assemblers

vu. 7.3 Code Listing

The code field lies to the left of the source program listing. It always contains the
current value of the location counter, along with either code generated by the
matching source statement or the value of an expression occuring in a statement
th a t in eludes the equate directi ve .EQU; all are printed in the default list radix of
the assembler version being used (either hex or octal - see Section Vll.B).
Separately emitted bytes and words of code on the same line are delimited by
spaces.

VU.7.3.1 Forward References

When the assembler is forced to emit a byte or word quantity that is the result of
evaluating an expression that includes an undefined label, it lists a '*' for each
digit of the quantity printed (e.g., an unresolved hex byte is listed as '**', while
an unresol ved octal word appears as '******'). If the .PATCHLIST directive is
used, the assembler lists patch messages every time it encounters a label
declaration that enables it to resolve all occurrences of a forward reference to
that label. The messages (one for every backpatch performed) appear before the
source statement that contains the label in question, and are of the form:

<location in codefile patched>* <patch value>

With this feature, the listing describes the contents of each byte or word of
emitted code; if neatness of the assembled listing is more desirable, the
.NOPA TCHLIST directi ve will suppress the patch messages.

VU. 7.3.2 External References

When the assembler emits a word quantity that is the result of evaluating an
expression that contains an externally referenced label, the value of that label
(which cannot be determined until link time) is taken as zero; therefore, the
emitted value will reflect only the result of any assembly time constants that were
present in the expression.

VU. 7.3.3 Multiple Code Lines

Sometimes, it is possible for one source statement to generate more code than will
fit in the code field; in most cases, the code is listed on successive lines of the
code field (with corresponding blank source listing fields). Three exceptions are the
.ORG, .ALIGN, and .BLOCK directives; because most uses of these directives

320

Users' Manual
Assemblers

generate large numbers· of uninteresting byte values, the code field for these
arguments is limited to as many bytes as will fit in the code field of one line.

321

Users' Manual
Assemblers

VIle 7.4 Symbol Table

The symbol table is an alphabetically sorted table of entries for all symbols
declared in the sou rce program. Each entry consists of three fields; the symbol
identifier, the symbol type, and the value assigned to that symbol. The symbol
identifiers are defined in a dictionary printed at the top of the symbol table.
Symbols equated to constants have their constant values in the third field, while
program labels are matched with their location counter offsets; all other symbols
have dashes in their value field, as they possess no values relevant to the listing.

322

VU. 7.5 Example

Users' Manual
Assemblers

The following is a small example of an assembled listing:

00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
10001
10001
10041
10071
100BI
100EI
10121
10151
10181
1002*
10181
10181
1019]
101AI
101CI
101EI
10201
10221
10231
10251
1009*
10251
10251
10261
10271
10291

OBFO
9000
9000
1708
1710
1718

FO 21 ****
OJ FOOB
FO 21 ****
OJ FOOB
FO 21 ****
OJ FOOB
C3 0090

1810

00
OA
0090
0002
0000
0010
00
0817

2510

00
OA
0093
0002

FLOPPY
SEOv1EJv1
5 ECENT
5 ECOSK
BI0SK
B20SK

PRIMARY

SECREAD

B1READ

. ABSOLUTE

.PROC PRl~YZ

• EQ.J OBFD-1
.EQ.J 9000H
.EQ.J 9000H
.EQ.J 08H + 1700H
.EQ.J 10H + 1700H
.EQ.J 18H + 1700H

• eRG

LO
CALL
LO
CALL
LO
CALL
JP

.BYTE

. BYTE
• \\ORO
.vrno
• \A.ORD
.Vl:FD
• BYTE
.Vl:FD

1000H

IY,SECREAD
FLOPPY
lY,BlREAD
FLOPPY
IY,B2READ
FLOPPY
5 ECENT

OAH
SEOV£N
200H

PRIMARY

SEOJSK

• BYTE
.BYTE OAH
.WORD SEOMEN+300H
.vrno 200H

;Rom-based floppy driver
;First location in memory
;Entry point of bootstrap
;Sector start of 2nd bootstrap
;Sector start of BIOS part 1
;Sector start of BIOS part 2

;Primary boot for GRISWlCH DOS

;Get block for second bootstrap

;Get block for part 1 of BIOS

;Get block for part 2 of BIOS

;Jump into second bootstrap

;Unused
;Read conmand
;Memory loco for second boot
;Number of bytes in boot
;Completion return address
;Error in return address
;Compietion result code
;Disk block of second boot

;Unused
;Read conmand
;Memory location or BIOS part 1
;Number of bytes in BIOS part 1

323

Users' Manual
Assemblers

102BI 0000
10201 0010
102FI 00
10301 1017
10321
1010* 3210
10321
10321 00
10331 OA
10341 0095
10361 0002
103S1 0000
103AI 0010
103CI 00
10301 1817
103FI
103FI

.VvORO
• VvORD PRIML\RY
.BYTE
.WJRO B10SK

B2RE.DD
.BYTE
. BYTE OAH
.VvORO SEOv1EN+500H
.WJRO 200H
.V\ORO
• VvORD PRIML\RY
. BYTE
.'.\ORD B2DSK

. END

;Completion return address
iError return address
iCompletion result code
;Di sk block of BIOS part 1

jUnused
;Read cornnand
iMelTIory location of BIOS part 2
iNumber of bytes in BIOS part 2
;Completion return address
;Error return address
i C omp '1 e t ion result code
iDi sk block of BIOS part 2

PAGE- 2 PR ItvlAR'lZ FILE: 115: PR IML\RY. Z SYMBOL TABLE DJV1P

AB - Absolute LB - Label LD - Undefi ned rvc - Macro
RF - Ref DF - Oef PR - Proc FC - Func
P8 - Publ i c PV - Private CS - Constant

BI0SK AB 17101 BIREAD . lB 10251 B2DSK AB 171S1 B2RE.DD LB 10321
FLOPPY AB OBFOI PRIMARY LB 10001 PRlMARYZ PR --I SECOSK AB 17081
SECENT AB 90001 SEOv1EM AB 90001 SECRE.DD LB 101S1

324

VIl.B Machine-Speci fic Information

Users' Manual
Assemblers

This section is intended to be used in conjunction with processor manuals
distributed by the manufacturers of the various processors. These manuals provide
syntax conventions for the instruction sets and address modes used by the
corresponding Adaptable Assembler versions. The company chosen as a base for
syntax -conventions is listed for each version, along with a list of deviations from
that company's syntax conventions.

VIl.B.I LSI-II/PDP-II Assembler

VIl.B.I.I Syntax Conventions

The 11 assembler adheres to DEC standard syntax for opcode fields, register
names, and address modes. The location counter symbol is an asterisk '*'.

VIl.B.I.2 Sharing of Machine Resources with Interpreter

The return address to the system is passed on the stack. Registers 0 and 1 are
available to the assembly routine; other registers must be saved on entry and
restored on exit.

VIl.B.I.3 Memory Organization

The 11 processor is byte addressed and word oriented; machine instructions. and
data words must be aligned to start on an even byte boundary. The byte sex is
least-signi ficant-byte-first.

Vll.B.I.4 Default Constant and List Radices

The default constant radix and default list radix are octal.

325

Users' Manual
Assemblers

VIl.B.2 ZBO Assembler

VIl.B.2.1 Syntax Conventions

The Z80 assembler adheres to Zilog standard syntax for opcode fields, register
names, and address modes. The following conventions may deviate from this
standard:

the syntax for exchanging the register pair AF and
the alternate register pair AF' is the following:

EX AF

The location counter symbol is a dollar sign '$'.

VB.B.2.2 Sharing of Machine Resources with Interpreter

The return address to the system is passed on the stack. All registers are available
for use in the assembly routine.

VB.B.2.3 Memory Organization

The Z80 processor is byte addressed and byte oriented. The byte sex is least­
signi ficant-byte-first.

VIl.B.2.4 Default Constant and List Radices

The default constant radix is decimal and the default list radix is hexadecimal.

326

VlI.8.J 6500 .Assembler

VlI.8.J.l Syntax Conventions

Users' Manual
Assemblers

The 6500 assembler adheres to Rockwell standard syntax for opcode fields and
register names. The following conventions may deviate from this standard:

immediate operands are specified by using a preceding
pound sign '11' character:

LABEL
LOA

.EQU 5
IILABEL ; immediate

- zero-page addressing is achieved only by using absolute
operands (i.e., assembly time constants) with values
between 0 and 255:

LABEL
LOA

.EQU 5
LABEL ; zero-page

- indirect addressing has the following form:

LOA
LOA
JMP

@LABEL,X
@LABEL,Y
@LABEL

; indexed-indirect (preindexing)
; indirect-indexed (postindexing)
; indirect jump

The location counter symbol is an asterisk '*'.

VIl.8.J.2 Sharing of Machine Resources with Interpreter

The return address to the system is passed on the stack. All registers are available
for use in the assembly routine.

VlI.8.3.3 Memory Organization

The 6502 processor is byte addressed and byte oriented. The byte sex is least­
signi ficant-byte-first.

327

\

Isers' Manual
Assemblers

Vll.8.3.4 Default Constant and List Radices

The default constant radix and default list radix are hexadecimal.

328

Vll.8.4 6800 Assembler

VIl.8.4.1 Syntax Conventions

Users' Manual
Assemblers

The 6800 assembler adheres to Motorola standard syntax for opcode fields and
register names. The following conventions may deviate from this standard:

- all instructions which can speci fy the A and B
registers have the register name separated from
the opcode field:

LOA
LOA
LOX
STA
PUL
ASL

A,LABEL
A,O,X
O,X
A,14,X
A
B

(instead of LOA
(instead of LOA

A,X)
X)

immediate operands are specified by using a preceding
pound sign '11' character:

LABEL
LOA

.EQU 5
A,IILABEL ; immediate

- zero-page addressing is achieved only by using absolute
operands (i.e., assembly time constants) with values
between ° and 255:

LABEL
LOA

.EQU 5
B,LABEL ; zero-page

- numbers in hex must always contain four digits (yes, even
for bytes):

.BYTE n002H,OOA 9H specifies the quantity 02A9 base 16

The location counter symbol is an asterisk '*'.

329

Users' Manual
Assemblers

Vll.8.4.2 Sharing of Machine Resources with Interpreter

The return address to the system is passed on the stack. All registers are available
for use in the assembly routine.

Vll.B.4.3 Memory Organization

The 6800 processor is byte addressed and byte oriented. The byte sex is most­
signi ficant-byte-first.

Vll.8.4.4 Default Constant and List Radices

The default constant radix is decimal and the default list radix is hexadecimal.

330

Vll.B.5 BOBO Assembler

Vll.B.5.1 Syntax Conventions

Users' Manual
Assemblers

The 8080 assembler adheres to Intel standard syntax for opcode fields, register
names, and address modes. The location counter symbol is a dollar sign '$'.

VIl.B.5.2 Sharing of Machine Resources with Interpreter

The return address to the system is passed on the stack. All registers are available
for use in the assembly routine.

Vll.B.5.3 Memory Organization

The 8080 processor is byte addressed and byte oriented. The byte sex is least­
si gni ficant-b yte-firs t.

VII.B.5.4 Default Constant and List Radices

The default constant radix is decimal and the default list radix is hexadecimal.

331

Users' Manual
Assemblers

VIl.8.6 9900 Assembler

VIl.8.6.1 Syntax Conventions

The 9900 assembler adheres to Tl standard syntax for opcode fields, register
names, and address modes. The following conventions may deviate from this
standard:

- in operand fields, the lack of an address mode
character (i.e., a '@' or '*' preceding the operand)
defaults to '@'.

The location counter symbol is a dollar sign '$'.

VIl.8.6.2 Sharing of Machine Resources with Interpreter

The return address to the system is passed in register 11. Registers 0 thru 5 are
available to the assembly routine; other registers must be saved on entry and
restored on exit.

Vll.8.6.J Memory Organization

The 9900 processor is byte addressed and word oriented; machine instructions and
data words must be aligned to start on an even byte boundary. The byte sex is
most-significant-byte-first.

Vll.8.6.4 Default Constant and List Radices

The default constant radix is decimal and the default list radix is hexadecimal.

332

Vll.8.7 6B09 Assembler

VB.8. 7.1 Syntax Conventions

Users' Manual
Assemblers

The 6809 Assembler adheres to Motorola standard syntax for opcode fields and
register names. The following conventions may deviate from this standard:

- immediate operands are speci fied by using a preceding '11':

ANOCC 1101

- indirect addressing is speci fied by a single leading at-sign
('@') instead of square brackets ('[]'):

LOX @THERE,PCR

- zero-page addressing is achieved only by using operands that
are absolute (i.e., not labels) and less than 256:

ZEROPAGE
LOB

.EQU 15
ZEROPAGE

Vll.B.7.2 Sharing of Machine Resources with Interpreter

No interpreter is currently available for the 6809.

Vll.B. 7.3 Memory Organization

The 6809 processor is byte-addressed and byte-oriented. The byte sex is most­
signi ficant-byte first.

VIl.8. 7.4 Default Constant and List Radices

The default constant radix is decimal and the default list radix is hexadeci mal.

333

Users' Manual
Assemblers

VII.B.B Z8 Adaptable Assembler

VII.B.B.I Syntax Conventions

VII.B.B.I.I Symbols

The Z8 Adaptable Assembler adheres to Zilog standard syntax (refer to the Z8
PLZ/ASM Assembly Language Programming Manual) for opcode fields, register
names, and addressing modes.

VII.B.B.l.2 Numeric Constants

The Z8 Assembler follows the constant conventions of other Adaptable Assemblers,
except that octal constants are indicated by a radix switch character of '0' rather
than 'Q', and binary constants are indicated by a radix switch character of '8'
rather than 'T'.

Example: 011101B OB 14670 111100

VII.B.B.l.3 Predefined Constants

There are no predefined constants in the Z8 Assembler. Specifically, the constants
'o/aL', '%T', '%R', '%P', '%%', and 'o/oQ' in Zilog syntax are NOT allowed.

VII.B.B.2 Sharing of Machine Resources with Interpreter

No interpreter is currently available for the 6809.

VII.B.B.3 Memory Organization

The Z8 processor is byte-addressed and byte-oriented. The byte sex is least­
signi ficant-byte-first.

Vll.B.B.4 Default and List Radices

The default constant radix is decimal and the default list radix is hexadecimal.

334

VB.B.7 6809 Assembler

VB.B. 7.1 Syntax Conventions

Users' Manual
Assemblers

The 6809 Assembler adheres to Motorola standard syntax for opcode fields and
register names. The following conventions may deviate from this standard:

- immediate operands are specified by using a preceding '/I':

ANOCC /101

- indirect addressing is specified by a single leading at-sign
('@') instead of square brackets ('[]'):

LOX @THERE,PCR

- zero-page addressing is achieved only by using operands that
are absolute (i.e., not labels) and less than 256:

ZEROPAGE
LOB

.EQU 15
ZEROPAGE

VB.B.7.2 Sharing of Machine Resources with Interpreter

No interpreter is currently available for the 6809.

VIl.B. 7.3 Memory Organization

The 6809 processor is byte-addressed and byte-oriented. The byte sex is most­
signi ficant-byte first.

Vll.B.7.4 Default Constant and List Radices

The default constant radix is decimal and the default list radix is hexadecimal.

333

Users' Manual
Assemblers

VlI.8.8 Z8 Adaptable Assembler

VIl.8.8.1 Syntax Conventions

VlI.8.8.1.1 Symbols

The Z8 Adaptable Assembler adheres to Zilog standard syntax (refer to the Z8
PLZ/ASM Assembly Language Programming Manual) for opcode fields, register
names, and addressing modes.

VIl.8.8.1.2 Numeric Constants

The Z8 Assembler follows the constant conventions of other Adaptable Assemblers,
except that octal constants are indicated by a radix switch character of '0' rather
than 'Q', and binary constants are indicated by a radix switch character of '8'
rather than 'T'.

Example: 0111018 DB 14670 111100

VIl.8.8.1.3 Predefined Constants

There are no predefined constants in the Z8 Assembler. Specifically, the constants
'%L', '%T', '%R', '%P', '%Dfc{, and 'o/oQ' in Zilog syntax are NOT allowed.

VlI.8.8.2 Sharing of Machine Resources with Interpreter

No interpreter is currently available for the 6809.

VlI.8.8.3 Memory Organization

The Z8 processor is byte-addressed and byte-oriented. The byte sex is least­
signi ficant-byte-first.

VlI.8.8.4 Default and List Radices

The default constant radix is decimal and the default list radix is hexadecimal.

334

VIl.8.7 6809 Assembler

Vll.8. 7.1 Syntax Conventions

Users' Manual
Assemblers

The 6809 Assembler adheres to Motorola standard syntax for opcode fields and
register names. The following conventions may deviate from this standard:

- immediate operands are specified by using a preceding '11':

ANOCC 1101

- indirect addressing is speci fied by a single leading at-sign
('@') instead of square brackets ('[]'):

LOX @THERE,PCR

- zero-page addressing is achieved only by using operands that
are absolute (i.e., not labels) and less than 256:

ZEROPAGE
LOB

.EQU 15
ZEROPAGE

VIl.8.7.2 Sharing of Machine Resources with Interpreter

No interpreter is currently available for the 6809.

VIl.8. 7.3 Memory Organization

The 6809 processor is byte-addressed and byte-oriented. The byte sex is most­
signi ficant-byte first.

VIl.8. 7.4 Default Constant and List Radices

The default constant radix is decimal and the default list radix is hexadecimal.

333

Users' Manual
Assemblers

VII.B.B Z8 Adaptable Assembler

VIl.B.B.I Syntax Conventions

VII.B.B.I.I Symbols

The Z8 Adaptable Assembler adheres to Zilog standard syntax (refer to the Z8
PLZ/ASM Assembly Language Programming Manual) for opcode fields, register
names, and addressing modes.

VIl.B.B.I.2 Numeric Constants

The Z8 Assembler follows the constant conventions of other Adaptable Assemblers,
except that octal constants are indicated by a radix switch character of '0' rather
than 'Q', and binary constants are indicated by a radix switch character of '8'
rather than 'T'.

Example: 0111018 DB 14670 111100

VIl.B.B.I.3 Predefined Constants

There are no predefined constants in the Z8 Assembler. Specifically, the constants
'%L', '%T', '%R', '%P', '%%', and 'o/oQ' in Zilog syntax are NOT allowed.

VII.B.B.2 Sharing of Machine Resources with Interpreter

No interpreter is currently available for the 6809.

VIl.B.B.3 Memory Organization

The Z8 processor is byte-addressed and byte-oriented. The byte sex is least­
signi ficant-byte-first.

VII.B.B.4 Default. and List Radices

The default constant radix is decimal and the default list radix is hexadecimal.

334

TECHNOLOGY·

linker
p-System Supplement

35 NORTH EDISON WAY, SUITE 4· RENO, NEVADA 89502· (702) 322-6868

VIII. SEGMENTS, UNITS, and LINKING

VIII.I Overview

Users' Manual
Segments &: Units

Segments, units, and linking are three major facilities which help the user manage
program files and the use of main memory. These facilities permit the
development of very large programs in a microsystem environment, and in fact
have been used extensively in the development of the System itself.

The techniqu es offered by the System fall broadly into two categories: run-time
main memory management, and separate compilation.

VIII.I.I Main Memory Management

Not all of a program need be in main memory at runtime. Most programs can be
described in terms of a "working-set" of code which is required over a given period
of ti me. For most (if not all) of a program's execution time, the working-set is a
su bset of the entire program -- sometimes a very small one. Portions of a program
which are not part of the working-set can reside on disk, thus freeing main
memory for other uses.

When the p-System executes a codefile, it reads code into main memory and runs
it. When the code has finished running, or the space it occupies is needed for
some action of higher priority, the space it occupies may be overwritten with new
code or new data. Code is "swapped" into main memory a segment at a time.

In its simplest form, a code segment includes a main program and all of its
routines. A rou tine may occupy a segment of its own: this is accomplished by
declaring it a SEGMENT routine. SEGMENT routines may be swapped
independently of the main program; declaring a routine to be a SEGMENT is a
useful means of managing the use of main memory.

Routines which are not part of a program's main working-set are prime candidates
for occupying their oWn segment. Such routines include initialization and wrap-up
procedures, and routines that are used only once or only rarely while a program is
executing.

Reading a procedure in from disk before it is executed does take time, and so the
selection of which procedures to make disk-resident should be done judiciously.

The other high-level languages in the p-System use their own syntax for creating
separate segments: refer to each particular language's manual for details.

335

Users' Manual
Segments &: Units

VIll.1.,2 Sep~rate Compilation

Separate compilation, also referred to as "external compilation", is a technique
whereby portions of a program are compiled separately from each other, and
subsequently executed as a co-ordinated whole.

Many programs are too large to compile within the memory confines of a
particular microcomputer. Such programs might comfortably run on the same
machine, especially if they are segmented as described above. The Operating
System is a case in point. Compiling small pieces of a program separately is the
way to overcome such a memory problem.

Separate compilation also has the advantage of allowing only small portions of a
program to be changed without affecting the rest of the code. This saves much
ti me and is less error prone. Libraries of correct routines may be built up and
used in the development of other programs. This capability is important if a large
program is being developed, and invaluable if the project involves several
programmers.

These considerations also apply to assembly language programs. Large assembly
programs (such as P-machine emulators) can often be more effectively maintained
in several separate pieces. When all these pieces have been assembled, a "link
editor" (the System's Linker) stitches them together by installing the linkages that
allow the various pieces to reference each other and function as a uni fied whole.

It may also be desirable to reference an assembly language routine from a higher­
level language host program (e.g., Pascal or FORTRAN). This may be necessary
for performance reasons, or to provide low-level machine-dependent or device­
dependent handling.

The p-System allows assembly language routines to be linked in with other
assembly routines, or into higher-level hosts (programs or units). Refer to Chapter
Vll on the Adaptable Assembler.

In UCSD Pascal, separate compilation is achieved by the UNIT construct. A UNIT
is a group of routines and data structures. The contents of a UNIT usually relate
to some common application, such as screen control or datafile handling. A
program or another UNIT (called a "client module" or "host") may use the routines
and data structures of a UNIT by simply naming it in a 'USES' declaration. A
unit consists of two main parts: the INTERFACE part, which can declare constants,
types, variables, procedures, processes, and functions that are public (available to
any client module), and the IMPLEMENTATION part, in which private declarations
can be made. These private declarations are available only within the UNIT, and
not to client modules. Units can either be embedded in a host, or compiled
separately.

336

Users' Manual
Segments &: Uni ts

The code for a UNIT that is used by a program may reside in *SYSTEM.LIBRARY,
or in another codefile. If it is in another codefile, the programmer may inform
the Compiler of this by using the $U compile-time option (see Section VI.3), and
inform the Operating System by including the codefile's name in a "library text
file." The default library text file is *USERLIB. TEXT, but can be changed by an
execution option. See Sections VIII.3 and 1I.3.

The other high-level languages in the p-System use their own syntax for separate
compilation: refer to each particular language's manual for details.

337

Users' Manual
Segments &: Units

Vlll.1.3 General Tactics

This section offers some advice on the use of SEGMENTs and UNITs. It presents
a scenario for the design of a large program, with some strategies that might be
used. UNITs and SEGMENTs are useful means of decomposing large programs into
independent tasks.

On microprocessor systems, the main bottlenecks in the development of large
programs are: (1) a large number of variable declarations that consume space while
a program is compiling, and (2) large pieces of code using up memory space while
the program is executing. UNITs address the first problem by allowing separate
compilation, and minimizing the number of variables that are needed to
com mu ni cate between separate tasks. SEGMENTs address the second problem by
allowing only code that is in use to be present in main memory (while unused code
is disk-resident) at any gi ven ti me.

A program can be written with runtime memory management and separate
compilations already planned, or it can written as a whole and then tuned to fit a
particular system. The latter approach is feasible when one is unsure about the
necessi ty of using SEGMENTs, or is quite sure that they will be used only rarely.
The former approach is preferred, and is usually less painful to accomplish.

A typical scenario for the construction of a relatively large application program
might be as follows:

1) Design the program (user and machine interfaces).

2) Determine needed additions to the library of utili ties
-- both general and applied tools.

3) Write and debug utilities, and add to libraries.

4) Code and debug the program.

5) Tune the program for better performance.

During the design, one should try as much as possible to use existing procedures,
so as to decrease coding time and increase reliability. This strategy can be
assisted by the use of UNITs.

To determine segmentation, the programmer should consider the expected execution
sequ ence, and attempt to group routines inside SEGMENTs so that the SEGMENT
routines are called as infrequently as possible.

1 t is also important that SEGMENT routines be independent. They should not call

338

Users' Manual
Segments &: Uni ts

routines in different segments (including non-SEGMENT routines); if they do, then
both segments must be in memory at the same time: this eliminates the advantage
'Of segmentation.

While designing the program, one should also consider the logical (functional)
grouping of procedures into UNITs. As well as making the compilation of a large
program possible, this can aid the program's conceptual design (and therefore the
testing of it). UNITs may contain SEGMENT routines, so the two techniques may
be combined.

The programmer should be aware that a UNIT occupies a segment of its own
(except possibly for any SEGMENT routines it may contain). The UNIT's segment,
like other code segments, remains disk-resident except when its routines are being
called.

Steps (2) and (3) are aimed at capturing some of the new routines in a form which
will allow them to be used in future programs. At this point the design should be
reviewed (and perhaps modified) with the objective of identifying those routines
which might be useful in the future. Needed routines might be made somewhat
more general, and put into libraries.

I t is usually a good practice to program and test such utilities before moving on to
programming the remainder of the program. Doing so tends to ensure that more
generally useful procedures are added to the library, since it helps one avoid the
tendency to tailor them to the particular program being developed.

The INTERFACE part of a UNIT should be completed before the
IMPLEMENT ATION part, especially if several programmers are working-on the
same project.

Tuning a program usually means performance tuning. Since SEGMENTs offer
greater memory space at reduced speed, it may be that performance is improved
by turning routines into SEGMENT routines, or by turning SEGMENT routines back
into normal routines. Either route is feasible. Some attention must be paid to
the rules for declaring SEGMENTs: see the next section of this chapter.

Sections VllI.2 and VIll.3 of this chapter describe the syntax of using UNITs and
SEGMENT routines in Pascal. For information on other languages, refer to the
appropriate manu ale

339

Users' Manual
Segments &: Units

VllI.2 Segments

The declaration of a segment routine is no different from other routine
declarations (i.e., procedures, functions, and processes), except that it is preceded
by the UCSD reserved word 'SEGMENT'.

For example:

SEGMENT PROCEDURE INITIALIZE;
BEGIN

{ Pascal code here }
END;

Declaring a routine as a segment routine does not change the meaning of the
Pascal program, but affects the time and space requirements of the program's
execution. The segment routine and all of its nested routines (except a nested
routine that is itself a segment routine) are grouped together in what is called a
"code segment".

A program and its routines are all compiled as a single code segment, unless some
rou tines have been declared as SEGMENTs. Since a code segment is disk-resident
until it is used, and since the space it occupies in memory may be overwritten
when it terminates, declaring once-used or little-used routines as SEGMENTs may
improve a program's utilization of main memory.

Up to 255 segments may be contained within one program. The "bodies" (that is,
the BEGIN-END blocks) of all segment routines must be declared before the bodies
of all non-segment routines within a given code segment. This applies to both
segment routines and main programs. If a segment routine calls a non-segment
rou tine, the non-segment routine must be forward-declared, because its body cannot
precede the body of any segment routine (including its caller).

No SEGMENT routines may be declared in the INTERFACE section of a UNIT;
they may be declared in the IMPLEMENT A TION section.

No EXTERNAL routine may be a SEGMENT routine.

Outside of these restrictions, any routine may be declared a SEGMENT.

340

Users' Manual
Segments & Uni ts

Example:

PRCDRAlVl mlE;

S EQv1ENT PROCEDLRE S TREf\GAl ;

BEGIN

Et'D;

PROCEDURE MMNDAl (FLAK: INTEGER); FORWARD;

{ tvlYN)Al is not a SEQv1ENT routine, and
therefore must be declared FORWARD }

S EQv1ENT FUl\CT I CN tvOAD (PART, VvHOlE : REAL):' . I NT EGER ;

BEGIN

Et'D;

PROCEDURE MMNDAl;

BE-GIN ...

PROCED...RE EARL V (I: U\REAl);

SEGMENT PROCEDURE lATE (J: IMAGI~Y);

BEGIN
{ note that this may b ea·- s, e gme n t f

i t pre c e des all cod e bo di e s . wit h in·"
the en c los i n 9 cod e s e.gme n t
(i . e., GOlE) > • }

Et\D {lA TE} ;

BEGIN

Et'D {EARL V};

BEGIN

EN) {MMNDAL};

EI\D {mLE}.

341

Users' Manual
Segments &: Units

Vlll.J Units

A UNIT is a group of interdependent procedures, functions, processes, and
associated data structures, which are usually related to a common area of
application. Whenever a UNIT is needed within a program, the program declares it
in a USES statement. A UNIT consists of two main parts: an INTERF ACE part,
which declares constants, types, variables, procedures, functions, and processes that
are public and can be used by the host (program or other UNIT), and an
1M PL EM ENT A TION part, which declares labels, constants, types, variables,
procedures, functions, and processes that are private, not available to the host, and
used only within the UNIT. The INTERFACE part declares how the program will
communicate with the user of the UNIT, while the IMPLEMENTATION part defines
how the UNIT will accomplish its task.

The syntax of a UNIT may be sketched as follows (full syntax railroad diagrams
may be found in Appendix H):

UNIT <unit identifier>;

INTERFACE
USES <unit identifrerlist>;
<constant definitions>;
<type definitions>;
<variable declarations>;
<routine headings);

IMPLEMENTA TION
USES <unit identifier list>;
<label declarations>;
<constant definitions>;
<type definitions>;
<variable declarati-ons>;
<routine declarations>;

[BEGIN

END

<initialization statements->
***. ,
<termination statements>]

The INTERFACE part may only contain routine headings -- no bodies. The oodies
of routines declared in the INTERFACE part are fully defined in the
IMPLEMENT ATION part, much as FORWARD procedures are fully defined apart
from their original declaration.

342

Users' Manual
Segments &: Uni ts

An INTERFACE part is terminated by the UCSD reserved word IMPLEMENTATION.

An INTERFACE part may not contain $Include files (see Section VI.3). An
INTERF ACE part may be contained within an $Include file, provided that all of the
INTERF ACE is in the $Include file; i.e., an INTERFACE part may notcross an
$Include file boundary. Note that IMPLEMENTATION terminates an INTERFACE
part, so that if an INTERFACE part is contained in an $Include file, the $Include
file must contain both the reserved words INTERFACE and IMPLEMENT A TION.

Example:

LNIT GOLEl;
INTERFACE

{$I INTER DECS}
IMPLEMENTATICN

EN);

LNIT GOLE2;
{$I INTER PART}

IMPLEMENTATICN

EN);

are not legal forms of a UNIT, while the following outline is:

LNI T GOLE3;
{$I V\HOLE_UNIT}

The <initialization statements> and <termination statements> are optional sections
of code. Initialization statements, if present, are executed before any of the code
in a host that USES the UNIT is executed, and termination statements, if present,
are executed after the host's code has terminated.

Initialization statements are separated from termination stat'ements by the line
'***;'. Ei ther the section of initialization statements, or the section of
termination statements, or both, may be empty.

The constru ct '***;' is adapted from the Pascal dialect called Pascal Plus: see
"Pascal Plus -- Another Language for Modular Multiprogramming," by J. Welsh and
D. W. Bustard, in "Software -- Practice and Experience," Vol. 9, No. 11, November,
1979, pp. 947-957. In Pascal Plus, '***' has the full status of a statement, while
in UCSD Pascal, '***;' may ~ be used to separate initialization code from
termination code within the statement section of a UNIT.

343

Users' Manual
Segments & Units

Example:

The following are all legal code bodies of a UNIT:

END {there is no initialization or termination code};

BEGIN
{this is initialization code}
INIT ARRAYS;
FLAG := FALSE;
COUNT := 23;
***. ,
{this is termination code}
SEMINIT (LIGHT, 0);

END {UNIT};

B-EGIN
***. ,
{this is all termination code}
INIT ARRAYS;
FLAG := FALSE;
COUNT := 23;
SEM-lNIT (LIGHT, 0)

END {UNIT};-

BEGIN
{this is all initialization code}
INIT ARRAYS;
FLAG := FALSE;
COUNT := 23;
SEMINIT (LIGHT, 0)

END {UNIT};

344

Users' Manual
Segments & Units

The statement part of a UNIT should not contain GOTO statements which branch
around the '***;' separator: the effect--of executing such statements is not fully
predictable.

A UNIT's statement part may contain statements of the form: EXIT(PROGRAM)
(EXIT(<unitname» is not allowed). An EXIT(PROGRAM) in the initialization code
has the effect of skipping the remainder of the initialization code (if any) and the
host's code: execution proceeds with the UNIT's termination section. An
EXIT(PROGRAM) in the termination code skips the remainder of the termination
code (there may be termination code from other hosts still waiting to execute
the EXIT does not abort the execution of these other termination sections).

To use one or more UNITs, a program must name them in a USES declaration
immediately following the program heading (before the <block». Upon
encountering a USES declaration, the Compiler references the INTERFACE part of
the UNIT as though it were part of the host text itself. Therefore all identifiers
declared in the INTERFACE part are global. Name conflicts may arise if the host
defines an identifier already defined in the UNIT.

A UNIT may also USE another UNIT. In this case, the USES declaration may
ap pe ar at the beginning of either the INTERFACE part or the IMPLEMENT A TION
part. Since USES may be nested, if they appear in the INTERFACE part, the
ordering of a USES declaration may be important: if UNIT _ A USES UNIT _B, then
the host must specify that it USES UNIT _B before it USES UNIT_A.

Routines declared in the INTERFACE part must not be SEGMENT routines, but
SEGMENT routines can be declared in the IMPLEMENTATION part. (Declaring
SEGMENTs within UNITs is subject to the same ordering as within a main program;
see above, Section Vll1.2.)

F or purposes of listing a program, the Compiler treats a INTERFACE section as an
include level. Thus, $Includefile nesting is restricted within the scope of a USES
declaration.

The UCSD System will compile a Pascal program, a single UNIT, or a string of
UNITs (separated by semicolons). A Pascal program may define a UNIT in-line.
An in-line UNIT definition must appear between the program heading and the
<block>. This has the advantage of simplicity, but if changes are made to either
the program or the UNIT, both must be recompiled.

Unlike former versions of the System, UNITs need not be explicitly linked together.
At compile-time a USEd UNIT's INTERF ACE part must be referenced by the
Compiler. If the UNIT's source is in the host program's source, or if the UNiT's
code is in *SYSTEM .LIBRAR Y, nothing more need be specified. If the· UNIT's
code resides in 8 dfferent file (a "user library"), the $U Compiler directive must
be used to specify which file (see Section VI.3).

345

Users' Manual
5 egments & Units

At runtime, the code (all code, in fact) must be in either the user program,
*SYSTEM.LIBRARY, a user library, or the Operating System. If a unit is in a
user library, the name of the library file must appear in a "library text file." To
find a UNIT's code, the System searches first the files named in a library text file
(in order), and then *SYSTEM.LIBRARY. If no library text file is present, the
System searches *SYSTEM.LIBRARY alone. The default library text file is called
*USERLIB. TEXT; this default may be changed by an execution option (see Section
1I.3).

Example:

The following might be the contents of a library text file:

FUN:ADVENT .LIB
curve
tg: graphics
PLAY

for each UNIT encountered in the host, the System searches first ADVENT. LIB
(which must reside on the volume FUN:), then CURVE.CODE (which must reside on
the default volume), and so forth. Failing to find a UNIT in these four. files, the
System searches *SYSTEM.LIBRARY.

As indicated in the example, specifying the .CODE suffix to a filename is optional
in the library text file's list.

The name *SYSTEM.LIBRARY may be included in a library text file. If this is
the case, it is searched on order, as it appears •

. Changes in a host program require only that the user recompile the program.
Changes in the IMPLEMENTATION part of a UNIT only require the user to
recompile the UNIT. Changes in the INTERFACE part of a UNIT require that the
user recompile both the UNIT and all hosts that USE that UNIT.

Earlier versions of· UCSD Pascal had several varieties of UNITs with different
internal implementations. Declarations for these old UNIT types (SEPARATE and
INTRINSIC) are still accepted by the Compiler, but now the same implementation
is used for all.

The use of UNIT -style mechanisms in the System's other high-level languages is
discussed in the documentation for each particular language. External linkages
involving assembled routines are discussed in Chapter VII, and in the next section.

346

VIll.4 The Linker

Users'" Manual
Segments & Units

The Linker is a System program (accessed by the LCink command at the System
level) which allows EXTERNAL code to be linked in to a Pascal (or FORTRAN, or
BASIC) program. EXTERNAL routines are routines (procedures, functions, or
proc esses) that are wri tten in an assembly language and conform to the p-System's
calling and parameter-passing protocols. They are declared EXTERNAL in the host
program, and must be linked before the program is run. The Linker may also be
used to link together separately assembled pieces of a single assembly program.

The Linker is a program of the sort called a "link editor". It stitches code
together by installing the internal linkages that allow various pieces to function as
a unified whole.

When a program which must be linked is R(un, the Linker will automatically search
*SYSTEM.LIBRARY for the necessary external routines. In all other cases (i.e.,
the user used eX(ecute instead of R(un, or the library is not SYSTEM.LIBRARY),
the user is responsible for "manually" linking the code beforeexecuting it.

When the Linker is called automatically and cannot find the needed code in
*SYSTEM.LIBRARY, it will respond with an error message:

Proc,
Func,
Global,

or Public <i denti fi er> undefined

To link code "by hand", call the Linker by typing 'L' at the command level.

347

Users' Manu al
Segments & Units

Vlll.4.1 Using the Linker

The Linker prompts for several filenames, and as it reads and links code together,
displays the names of what it is linking. The prompts are, in order:

Host file?

the hostfile is the file into which the external routines are to be linked.
Filename conventions apply here (.CODE is automatically appended to all filenames
except '*<return>' or any filename that ends in a '.'). The response '*<return>' or
si mply <return> causes the Linker to open *SYSTEM. WRK.TEXT. The Linker then
asks for the names of library files in which external routines are to be found:

Lib file?

any number of library files may be speci fied. The prompt will keep reappearing
until <return> is typed. Responding '*<return>' opens *SYSTEM.LIBRARY. The
success of opening each library HIe is reported.

Example (underlined portions are user input):

Lib file? *<return>
Opening *SYSTEM.LIBRARY
Lib file? FIX.S<return>
No file FIX.S.CODE
Type <sp>(continue), <esc>(terminate)
Lib file? FIX.9<return>
Opening FIX.9.CODE
bad seg name
Type <sp>(continue), <esc>(terminate)
Lib file?

••• and so forth

When the names of all library files have been entered, the Linker reads all the
necessary routines from the designated codefiles. It then asks for a destination
for the linked code output:

Output file?

this is a codefile name (often the same as the host file). The .CODE suffix
must be included. If the user types just <return>, output will be to the workfile
(*SYSTEM. WRK.CODE).

348

Users' Manual
Segments & Units

A fter this last prompt, the Linker commences actual linking. During linking, the
Linker displays the names of all routines being linked. A missing or undefined
routine causes the Linker to abort with the '(identifier) undefined' message
described above.

If linking is successful, the user has a uni fied codefile that may be eXCecuted.

The user should note that, since the files may be assembled files, they may be of
either byte sex. All files linked together must be of the same byte sex, but the
Linker will produce a correct codefile regardless of which byte sex that is, or
whether it is the same as the machine on which the Linker is running. More
information on byte sex is given in the Installation Guide.

The codefile produced by the Linker contains routines in the order in which they
were given as contained in the library files. This is important to note if the
program is an all-assembly file. The codefile contains first routines from the host
file, and then library file routines, all in their original order.

The next section contains more information on libraries.

349

Users' Manual
Segments & Units

Vlll.5 The Utility LIBRARY

LIBRARY.CODE is a utility program that allows the user to group separate
compilatons (UNITs or programs) and separately assembled routines into a single
file. A library is a concatenation of such compilations and routines. Libraries are
a useful means of grouping the separate pieces needed by a program or group of
programs. Manipulating a single library file takes less time than if the various
pieces it contains were each within an individual file. Libraries generally contain
rou ti nes relating to a certain area of application; they can be used for functional
groupings much as UNITs can. Thus, a user might want to maintain a math
library, a datafile-management library, and so forth -- each of these libraries
containing routines general enough to be used by many programs over a long period
of time.

Individual programs might also take advantage of the library construct. If a
program uses several UNITs suitable for compiling separately, but the UNITs
themselves are too small to warrant putting each into its own file, the user would
want to construct a single library containing all of those UNITs.

Even if a file contains only a single UNIT or routine, it is treated as a library
when the UNIT or routine is used by some external host.

LIBRARY is useful for putting UNITs into SYSTEM.LIBRARY or other libraries,
grouping assembly routines together, and so forth.

This section uses the term "compilation unit". A program or UNIT and all the
SEGMENTs declared inside it are called a compilation unit. The SEGMENT for the
program or UNIT -is called the host segment of the compilation unit. SEGMENT
routines declared inside the host are called subsidiary segments. UNITs used by
the host are not considered to be segments belonging to that compilation unit.
UNITs used by the compilation unit generate information in the host segment
called segment references ("seg refs" for short). The seg refs contain the names
of all segments referenced by a compilation unit, and the Operating System uses
this information to set up a runtime environment.

Some routines called from hosts exist in UNITs in the Operating System, and
therefore appear in seg refs, even though there is no explicit USES declaration.
For example, WRITELN resides in the Operating System UNIT PASCALIO, so the
name PASCALIO will appear in the seg refs of any host that calls WRITELN.

Vlll.5.1 Using LIBRARY

When LIBRARY is executed, a prompt asks for an output filename. The filename
must end in .CODE. LIBRARY will remove an old file with the same name as the
new library.

350

Users' Manual
Segments & Units

LIBRARY then prompts for the input filename. .CODE is automatically appended.

EXAMPLE:

The user· specifies SCREENOPS.CODE as an input file. LIBRARY displays the
following:

ibrary: N(ew, 0-9(slot-to-slot, E(very, S(elect, C(omp-unit, F(ill,?

nput file? SCREEI\OPS<return>
o u SCREEf\UP 92 1 8
1 s SEGSCINI 416 9
2 10
3 11
4 12
5 13
6 14
7 15

'r i t e
o
1
2
3
4
5
6
7

to what file? NEW.CODE<return>
8
9
10
11
12
13
14
15

... the display shows that the file SCREENOPS consists of a UNIT and a SEGMENT
rou tine. There are four possible types of code that can occupy the 16 "slots" in a
library: units, I!rograms, !egment routines, and !ssembled routines. LIBRARY
displays the type, along with the name and length (in words) of each module.

LIBRARY's promptline shows the various commands available.

N(ew prompts for a new input file.

A(bort stops LIBRARY without saving the output file.

Q(uit stops LIBRARY and does save the output file. When the user Q(uit's
LIBRAR Y, it prompts 'Notice?' at the bottom of the screen. A copyright notice

351

Users' Manual
Segments & Units

to be placed in the output file's segment dictionary may be typed in (followed by
<return». Simply typing <return> exits LIBRARY without writing a copyright
notice.

T(og toggles a switch which determines whether or not INTERFACE parts of UNITs
are copied to the output file.

R(efs lists the names of each entry in the segment reference lists of all segments
currently in the output file. The list of names also includes the names of all
compilation units currently in the output file, even though their names may not
occur in any of the segment references.

The remaining five commands allow code segments to be transferred from the
input file to the output file.

A given "slot" can be transferred to the output file by typing a digit (0 .. 9).
LIBRAR Y then prompts: 'Copy from slot 1/ ?' and displays the digit just typed. If
that is the name of the slot, type <space>. If that is the first digit of a two­
digit slot number, type in the second digit and follow it with a <space>.
LIBRAR Y confirms your entry before actually copying code. <backspace> may be
used to correct errors. If <return> is typed when no number is shown, the copy
does not happen and LIBRARY's promptline is redisplayed.

I f the destination slot in the output file is already filled, a wa,rning says so and no
cop y takes place. If an identical code segment is already present anywhere in the
output file, the new code segment is copied anyway.

E(very causes all of the code in the input file to be copied to the output file. If,
for any code segment, the corresponding slot in the output file is alread filled,
then LIBRAR Y searches for the next available slot and places the code there. If,
for any code segment, an" identical code segment already exists in the output file,
that segment is not copied over.

S(elect causes LIBRARY to prompt the user for which code segments to transfer.
F or each code segment not already in the output file, LIBRARY prompts: 'Copy
from slot II ?'. A 'Y' or 'N' causes the segment to be copied or passed by, an 'E'
causes the-remainder of the code segments to be transferred (as in E(very), a
<space> or <return> aborts the S(elect. If the corresponding slot in the output file
is filled, LIBRARY searches for the next available slot and places the code there.

C(omp-unit causes LIBRARY to prompt: 'Copy What compilation unit?'. The
compilation unit named is transferred along with any segment procedures that it
references. Procedures already present in the output file are not copied.

FCiIl does the equivalent of a C(omp-unit command for all the compilation units
referenced by the segment references in the output file.

352

IX. CONCURRENT PROCESSES

Users' Manu al
Concurrency

UCSD Pascal allows the user to declare and initiate concurrent processes. A
process is a procedure whose execution appears to proceed at the same time as
(i .e., concurrently with) the main program. Processes are declared as procedures
are declared, and set into action by the intrinsic ST ART. Thus, more than one
process may run at once, and the same process may be START'ed several times.

On machines which have only one, processor (this includes the vast majority of
UCSD Pascal installations) the System shares the (physical) processor between
various (Pascal) processes. This switching may lead to an overall increase in
program execution time. Processes are nonetheless useful in a variety of
applications, particularly interrupt handling.

IX.l Introduction

A process is declared exactly as a procedure would be, with the (UCSD) reserved
word PROCESS replacing the reserved word PROCEDURE.

Examples:

PROCESS ZIP;
BEGIN ••• END;

PROCESS DINNER (var SPLIT, BLACKEYED peas);
begin ••• end;

A process is started by the UCSD intrinsic START. The principal parameter
passed to START is a call to a process, e.g., START(ZIP) or
ST AR T(DINNER (7,2 34». START also takes three optional parameters, which are
explained after the following example:

353

Users' Manual
Concurrency

PR~~ DUFFER;
var PID : processid;

1, J: integer;

PROCESS BLUE;
begin

end;

PROCESS RED (X, Y
begin

end;

begin
start(BLUE);
I := 1; J:= 2;

integer);

s tar t (RED (I, J));
start(RED(3, 4), PID);
start(RED (5, 5), PID, 300);
start(RED (J, 1), PID, I+J, 10);

end.

In the example above, program DUFFER starts processes RED and BLUE. In fact,
RED is started several times. The five processes started will each run to
completion, as will the main program, and the (physical) processor wQl share time
among them. Note that the four invocations of RED result in four different
versions of RED being started, each (in this example) with different parameter
values.

Each invocation of a process is assigned an internal PROCESSID. PROCESSID is a
UCSD predeclared type. The user may learn what processid has been assigned a
given process invocation by using an optional second parameter. Thus, in
ST ART(RED(3,4), PID); the variable PID is set to a new PROCESSID value.
Processids are chiefly for the use of the System and system programmers.

The optional third parameter to START is the stacksize parameter. It determines
how much memory space is allocated to the process invocation (the default is 200
words).

354

Users' Manual
Concurrency

The optional fourth parameter to START is a priority value. This determines the
proportion of processor time that the process will receive before it is completed.
The priorities assigned to processes are used by the System to decide which active
process gets to use the available processor. Higher priority processes are given
the processer more often than lower priority processes. If no priority value is
given in START, the new process inherits the priority value of its caller.

See START in Section Vl.2.26 for more details.

355

Users' Manual
Concurrency

IX.2 Semaphores

Semaphores may be used in two basic ways:

(1) for mutual exclusion problems: controlling access to "critical seGtions" of code;

(2) for synchronizati on between "cooperati ng processes".

An extremely common application employing both of these capabilities is resource
allocation. In UCSD Pascal it is also possible to associate semaphores with
hardware interrupts and use them to write interrupt handlers in Pascal. We shall
discuss these uses below.

The name "semaphoreH was coined by E. W. Dijkstra as an analogy to a railroad
traffic signal. The railroad semaphore controls whether or not a train may enter
the next section of track; a train passing the semaphore when it is "green"
automatically switches it to "red", preventing further trains from entering that
section of track until the privileged train has exited, at which time the semaphore
is switched to "green" again.

Semaphores themselves may be divided into two classes: Boolean and counting
semaphores. A semaphore which has only two states (e.g., red and green) is
referred to as a Boolean semaphore. If more than two states are allowed, it is
c ailed a counting semaphore. In UCSD Pascal, counting semaphores may span the
range [O •• maxint]. The zero is analogous to the "red" or stop value. It is possible
to use counting semaphores as Boolean semaphores if one is careful to restrict
oneself to only the values a and 1.

Gi ve n a set of concurrent processes and a single semaphore variable which they
test, we can imagine that each process (or "trainlt) is running on a private
processor ("track") with separate indicators of the semaphore value under some
central control. For example, there may be a section of track which must be
shared by all the trains, but only a single train is to be allowed in that section
at a time. When the value of the semaphore is zero, the central -control will
cause any trains that approach the semaphore to stop and wait until they are
indi vidually signalled to proceed. When the central control determines that it is
safe for a train to continue (i.e. when some other train has left the common
section of track) it will select one (only) of the trains waiting and signal it to go
on.

The UCSD intrinsics which manipulate semaphores are SEMINIT, WAIT, SIGNAL,
and ATTACH. They are described fully in Section VI.2.

SEMINIT initializes a semaphore by assigning it a count and an empty queue. All
semaphores must be initialized in this way, or their value (and hence the results of

356

a program!) is unpredictable.'

Users'. Manual
Concurrency

WAIT causes a process to wait for a given semaphore, and SIGNAL informs the
System that a semaphore is again available.

A TT ACH associates a semaphore with an external interrupt. When that interrupt
occurs, the semaphore is signalled. A process may synchronize with the interrupt
by waiting on the semaphore.

The use of these intrinsics is demonstrated in examples below.

357

Users' Manual
Concurrency

IX.3 Mutual Exclusion

When concurrent processes must share resources, it may often be essential for only
one process to access a particular resource at a given time. This is known as
"mutual exclusion". It may be achieved by allowing the resource to be accessed
only in "critical sections" of code to which the mutual exclusion criteria are
applied.

Suppose, for example, that two processes must both display information on the
console and request input from the operator, but only one process may be allowed
to do so at a time. These two processes must therefore practice mutual exclusion
with respect to the operator's console.

Cri tical sections may be implemented using Boolean semaphores by enclosing the
cri tical section between WAIT(sem) and SIGNAL(sem). The semaphore should
be initialized to 1.

Example:

I nit ia liz e: 5 Elvll NIT (b rid g e _emp t y, 1);

C ri tic a I 5 e c t i off':
Procedure CROSSBRl-OOE;

begin
WAIT(br i dge_empty);

.
{critical section code}

- .
SlGNAL(bridge empty);

end (* CROSSBRloGE *);

In this example, processes (e.g., "trains") seeking to use the critical section (e.g.,
to cross a bridge that holds only one train at a time) will simply call
CROSSBRIDGE, which takes care of mutual exclusion internally vIa the global
sem-aphore bridge_empty.

358

IX.4 Synchronization

Users' Manual
Concurrency

When concurrent processes are cooperating, the programmer will frequently want
one process to wait at a certain point in its execution until another process has
caused some event to occur, such as filling a buffero A counting semaphore may
be used as an "eventname" in this case. In the following example, two distinct
"events", the filling or emptying of a buffer, are used to synchronize two
concurrent processes.

Example:

PRCGR.AM BLUFF;
con s t N = (* Nu mb e r 0 f a v ail a b 1 e b u f fer s *);
v-a r b u f f f u 1 1, b u f f a va i 1 : s ema ph 0 r e ;

PROCESS FILL_BUFFER;
begin

repeat
waite buff_avail);

(* Sel-ect and fill a buffer *)

signal(buff fu11
until false; -

end;

PROCESS SEI\D_BUFFER;
begin

repeat
waite buff full);

(* Select and send a buffer *)
.
signal(buff avail

until false; - .
end;

begin (* BLUFF *)
seminit(buff full, a);
s em i nit (b u f f a v ail, N);
start(FILL BUFFER);
start(SEND-BUFFER);

end.

359

Users' Manual
Concurrency

IX.5 Interrupt Handling

A primary goal in providing this collection of concurrency primiti ves has been to
make possible the handling of hardware interrupts with Pascal procedures. A
simple example is shown below which attaches a semaphore to a line clock
interrupt vector and sounds the bell once every 60 ticks.

PRcn=tAM TOO<;

360

const clockvector = 64;
tick semaphore;
Ipid : processid;

var

PROCE SST lMER ;
const bell = 7;
var ticks: integer;
begin

ticks := 0;
repeat

wa i t (tic k);
ticks := ticks+I;
if ticks >= 60 then

begin
ticks := 0;
write(chr(bell))

end
un-til false

end (* TlfV1ER *)

begin (* TOO< *)
set priority(100);
semi nit (t ic k, a);

(* PDP-II *)

attach(tick, clockvecto~ };
start(timer, Ipid, 32, 200); {32 word stack,priority=200}
repeat until false

end.

IX.6 Other Features

Users' Manual
Concurrency

As noted above, there is a predefined type PROCESSID; a value of type
PROCESSID may be returned upon the invocation of a process. In the present
implementation, processid's are not considered a user-oriented feature, but are used
for Operating System work. Variables of type processid may be used in
expressions in the same way as pointer variables. That is, only the operators <>,
=, and := are legal.

All processes must be declared at the outer (global) block of a program. They
may not be declared within a procedure or another process. Process initiation
must occur in the principal task of a program. That is, a process may not be
started from any of a program's subsidiary processes.

Users interested in using processes at a fairly low level, especially using them in
conjunction with the System's facilities for memory management and Heap control,
should refer to the Internal Architecture Gu ide for further details.

361

Users' Manual
Utilities

362

(

x. UTILITIES

Users' Manual
Utilities

The UCSD System's utilities are various precompiled programs that ·may be run
with the eX(ecute command. They supply some functions that are sufficiently
useful to be included in the System, yet not used frequently enough to warrant
their being included among the System commands.

The location of the various utilities on disks as shipped is given in the Installation
Guide.

363

Users' Manual
Utilities

X.I Preparing Assembly Codefiles For Uses Outside Of The System

The utility program COMPRESSOR inputs codefiles consisting of one or more linked
assembly procedures, and produces object files suitable for applications outside of
the UCSD p-System's runtime environment.

COMPRESSOR can produce either relocatable or absolute object files. Absolute
codefi les are relocated to the base address specified by the user, and contain pure
machine code. Relocatable codefiles include a simplified form of relocation
information (a description of its format is in a following section). Both kinds of
output files are stripped of all file information normally used by the System, and
must be loaded into memory by the user (or a user program) in order to execute
properly.

X.I.I Preparing Codefiles For Compression

The assembly procedure(s) must be assembled with the UCSD Adaptable Assembler,
and linked with the Linker (see Chapter VII, and Section VIII.4). Codefiles
containing anything other than one segment of linked assembly code will cause
COMPRESSOR to abort. Routines to be compressed should not contain any of the
following assembler directives:

.ORG .ABSOLUTE .PUBLIC .PRIVATE .CONST .INTERP

.ORG and .ABSOLUTE are intended for producing absolute codefiles directly from
the assembler (see sections Vll.2.3 and Vll.2.8). .ABSOLUTE'd codefiles can be
compressed, but the code produced will be incorrect.

.PUBLIC, .PRIVATE, .CONST and .1NTERP are expressly designed for
com mu nication between assembly procedures and a host compilation unit (whether
Pascal or some other language). These have no intended uses outside of the
System's runtime environment. Their inclusiorl in an assembly program generates
relocation information in formats that will cause COMPRESSOR to abort.

364

X.l.2 Running COMPRESSOR

Users' Manual
Utilities

The codefile name is COMPRESSOR.CODE. At the command level, eX(ecute
COMPRESSOR. It will respond with the following prompt:

Assembly Code File Compressor <release version>

Type '!' to escape

Do you wish to produce a relocatable object file? (YIN)

If the characters 'Y' or 'y' are typed, the following prompt appears:

Base Address of relocation (hex) :

This is the starting address of the absolute codefile to be produced. It should be
entered as a sequence of 1 to 4 hexadecimal digits followed by a <return>. The
prompt will reappear if an invalid number is entered.

The following prompts always appear:

File to compress :

Enter the name of the file to be compressed. It is not necessary to type
the '.CODE' suffix. If the file cannot be found, the prompt will reappear.

Output file «ret> for same) :

Enter the name of the output file, which can be any legal filename
(COMPRESSOR does not append a .CODE suffix). Typing a <return> here
causes the output file to have the same name as the input file, thus
eliminating the input file. If the file cannot be opened, COMPRESSOR will
print an error message and abort.

In all the previous prompts, typing the character '!' causes COMPRESSOR to abort.

After receiving information from the prompts, COMPRESSOR reads the entire
source file, compresses the procedures, and writes out the entire destination file.
Large codefiles may cause COMPRESSOR to abort, if the system does not have
sufficient memory space.

While running, COi"ipRESSOR displays for each procedure the starting and ending
addresses (in hex), and the length in bytes. After finishing, the total number of

365

Users' Manual
Utilities

bytes in the output file is displayed. If an absolute codefih~ was produced, the
highest memory address to be occupied by the loaded codefile is displayedo

The output of COMPRESSOR is a file of pure code, which must be loaded and
executed directly by user software.

X.I.3 Action and Output Specification

COMPRESSOR removes the following information from input files:

The segment dictionary (block 0 of codefile).
Relocation list and procedure .dictionary pointers.
Symbolic segment name and code sex word.
Embedded procedure OAT ASIZE and EXITIC words.
Procedure dictionary and number of procs word.
Standard relocation list.

Procedure code in the output file is contiguous, except for pad bytes which are
emitted (when necessary) to preserve the word-alignment of all procedures.
Codefiles contain integral numbers of blocks of data; space between the end of the
actu al code and the end of the codefile is zero-filled.

Relocatable object files have the following format:

366

The relocatable code is immediately followed by relocation information. The
last word in the last block of the codefile contains the code-relative word
offset of the relocation list header, e.g.:

<starting byte address of loaded code> + <word offset * 2>
= <byte address of relocation list header word>

The list header word contains the decimal value 256. The next-Iower­
addressed word contains the number of entries in the relocation list. This
word is followed (from higher addresses to lower addresses) by the list of
relocation entries.

Beneath the last relocation entry is a zero-filled word which marks the end
of the relocation info. Each relocation entry is a word quantity containing
a code-relative byte offset into the loaded code, e.g.:

<starting byte address of loaded code> + <byte offset>
= <byte address of word to be relocated>

Each byte address pointed to by a relocation entry is a word quantity which
is relocated by adding the byte address of the front of the loaded code.

Users' Manual
Utilities

Important Note: If you are relocating your file towards the high end of the 16-bit
address space, you must ensure that the relocated file will not wrap around into
low memory (i.e., <relocation base address>+ <codefile size> must be less than or
equal to FFFF(hex)). COMPRESSOR performs no internal checking for this case.

367

Users' Manual
Utilities

X.2 Patch

PA TCH is a utility which allows hands-on viewing and altering of files. PATCH is
meant for bit-diddling and other such messy but sometimes useful tasks. It was
wri t ten as a personal utility, but was quickly incorporated into the standard set of
System tools.

PATCH is meant to be used interactively with a CRT. It uses the Screen Control
Module (see the Internal Architecture Guide) to accomplish this, and is therefore
terminal-independent (within the usual limitations -- again, refer to the Internal
Architecture Guide).

There are two main facilities in PATCH: a mode for editing files on the byte
level, and a mode for dumping files in various formats.

The byte-editing capability allows the user to edit not only textfiles, but also to
do quick fixes to codefiles and create specialized test data.

The du mp capability provides formatted dumps in various radices. It also allows
dumps from main memory.

368

X.2.I EDIT Mode

Users' Manual
Utilities

When PATCH is first eX(ecuted, the user is in EDIT mode. DUMP is reached by
typing '0'. No information is lost in toggling back and forth between the two
modes.

EDIT allows the user to open a file or device, read selected blocks (specified by
relative block number) into an edit buffer, then either view that buffer, or modify
it (with TYPE) and write the modified block back to the file. Buffers are
displayed on the screen in desired format, and edited in a manner similar to the
Screen Oriented Editor.

The individual commands of EDIT are explained in some detail below. When it is
impossible to perform a command, PATCH responds with self-explanatory error
messages.

The promptlines for EDIT are :

ED IT: 0 (ump, G (e t, R (e ad, 5 (a v e, M (ix, T (y p e, 1 (n fa, F (or,
B(ack, ?

EDIT: V(iew, W(ipe, Q(uit, ?

D(ump - calls DUMP.

G(et opens the file or device that one wishes to use,
and reads block zero into the buffer.

R(ead - reads a specified block from the current file.

S(ave - writes the contents of the buffer out to the
current block.

M(ixed changes the display format for the current
block. Typing 'M' toggles between the
two formats:

Mixed - displays printable ASCll
characters, and the hexadeci mal
equivalent of nonprintable characters;

Hex - displays the block in hexadecimal digits.

369

Users' Manual
Utilities

l(nformation - displays information about the current file.
This includes:

the filename,
the file length,
the number of the current block,
whether the file is open,
whether UNIT READs are allowed,
the device number (-1 if UNITIO is False),
the byte sex of the current machine.

F(orward gets the next block in the file.

B(ackward - gets the preceding block in the file.

V(iew - displays the current block. (see M(ixed)

WCipedisplay - clears the display of the block off the screen.

Q(uit - quits the PATCH program.

T(ype - goes into the typing mode, which allows the
buffer to be edited. (described immediately below)

370

X.2.2 TYPE Mode

Users' Manual
Utilities

TYPE, like the Screen Oriented Editor, allows the information on the screen to be
modified by moving the cursor around and typing over existing information. If you
make errors while using TYPE, do not S(ave the buffer while in EDIT mode, but
R(ead the block over and try again.

The promptline for TYPE is:

TYPE: C(har, H(ex, F(ill, U(p, D(own, L(eft, R(ight, <vector arrows>,
Q(u it

C(haracter - exchanges bytes in the buffer for ASCll
characters as they are typed, starting from
the cursor and -continuing until an <etx> is typed.
Only printable characters are accepted.

H(ex - exchanges bytes in the buffer for
hex digits as they are typed, starting from
the cursor and continuing until a 'Q' is typed.
(Hex digits can be either upper or lower case.)

FOIl - fills a portion of the current block with· the
same byte pattern.
Accepts either ASCll -characters or hexadecimal
digits for the pattern. When finished, the
cursor will be positioned after the last
byte filled.

The following commands move the cursor around within the block of data being
displayed. The cursor is always at a .particular byte. Rather than moving off the
screen, the cursor wraps around from side to side and from top to bottom.

U(p - moves the cursor up one row

D(own - moves the cursor down one row

L(eft - moves the cursor left one column

R(ight - moves the cursor right one column

<vector arrows> - these are the vector arrows as used in the
Screen Editor. They will do the same
respective actions as U,D,L,R.

371

Users' Manual
Utilities

Q(uit quits the TYPE mode and returns to the
EDIT mode.

: 372

X.2.3 DUMP Mode

Users' Manual
Utilities

Dumps can be generated in the following formats: decimal, hexadecimal, octal
words, ASCll characters (if printable), decimal bytes (BCD), and octal bytes.

DUMP is also capable of flipping the bytes in a word before displaying it, or
simultaneously displaying a line qf words in both flipped and non-flipped form.

Input to DUMP can be from a diskfile specified by the user, or directly from main
memory (this is primarily used to examine the Interpreter and/or the BIOS).

The width of the output can be controlled; a line may contain any number of
machine words. 15 words fill an 132-character line, and 9 fill an 80-character line.

When the user enters DUMP, the screen shows a brief promptline - 0(0 it and
Q(u it, and a lengthy menu of format specifications which are modifiable by typing
the letter of the item and then entering the specification.

The Specifications:

A): the input: a disk file or device.

B): the number of the block from which dumping starts.
If (A) is a device, this number is not range-checked.

C) the number of blocks to print out.
If this is too large, DUMP merely stops when there are
no more blocks to output.

D): Typing '0' starts the dump.

E): a toggle: if True, then reads from main memory,
if False, reads from the file in (A).

F): an offset: the dump may start with a byte that
is past byte zero. 0 <= (F) <= maxint.

G) the number of bytes to print. 0 <= (G) <= maxint.

H) the output file, opened as a text file.

1): the width of the output line, in machine words.
1 <= (1) <= 15.

373

Users' Manual
Utilities

The following six items have three associated Booleans tha~, must be specified:
USE, FLIP, and BOTH.

USE tells DUMP whether or not to use the format associated with that item.

FLIP tells DUMP whether or not to flip the bytes before displaying words in that
format.

BOTH tells DUMP to simultaneously display both Flipped and non-Flipped versions
of the line. If BOTH is True, the value of FLIP does not matter.

J): display each word as a decimal integer

K): display each word as hexadecimal digits in byte order

L): display each word as an octal integer. This is the octal
equivalent of (J).

M) display each word as ASCll characters in byte order.
Unprintable characters are displayed as hex digits.

N) display each word as decimal bytes (BCD) in byte order.

0) display each word as octal digits in byte order.

Q) typing 'Q' returns to EDIT mode. DUMP remembers the
current specifications.

S): put a blank line after the non-Flipped version of a line.

T): put blank lines between different formats of a line.

80th EDI T and DUMP modes remember all their pertinent information when the
other mode is operating.

374

X.2.4 A Note on Prompts

Users'" Manual
Utilities

All user-supplied numbers used by PATCH are read as strings and then converted
to integers. Only the first five characters of the string are considered. If there
are any non-nu meric characters in the string, the integer defaults to zero. If
integer overflow occurs, the integer defaults to maxint. (Since integer overflow can
only be detected by the presence of a negative number, integers in the range
65536 •• 98303 will come out modulo 32768.)

375

Users' Manual
Utilities

X.3 The Decoder Utility

The Decoder utility, called DECODE.CODE, replaces the Disassembler and Libmap
utilities used in previous versions. It provides access, in symbolic form, to all
useful items contained in codefiles. Among the information available is the
following:

1) Names, types, global data size, and other general
information about all code segments in the file;

2) INTERFACE section text (if present) for all UNITs
in the file;

3) Symbolic listing of any (or all) P-code procedures
in any (or all) segments of the file;

4) Segment references and linker directi ves associated
wi th code segments.

Decoder should be used whenever detailed knowledge of the internal contents of a
codefile are desired (for instance, an implementor of a P-machine would decode
test programs so that step-by-step execution of the object code could be done
easily). The Internal Architecture Guide may be useful reading if detailed use of
Decoder is planned.

If a program USES a UNIT, the UNIT will only be decoded if it is within the host
file; Decoder will not search the disk for UNITs to decode. Assembly routines
linked into a higher-level host will not be disassembled when the host is decoded.

When Decoder is eX(ecuted, the first prompt asks for the input codefile (the suffix
.CODE is automatically appended if necessary). The next prompt asks for the
name of a listing file to which Decoder's output may be written. This may be
CONSOL E: (indicated by typing <return», .REMOTE:, PRINTER:, or a disk file. The
following prompt is then displayed:

Segment Guide: A(ll), lI(dct index), D(ictionary), Q(uit)

The D(ictionary option displays the code file's segment dictionary. A(ll
disassembles all segments. A number of a dictionary index followed by <return>
disassembles a given segment (if present), and Q(uit leaves the Decoder.

376

EX,L\MPLE:

Gi yen the f 01 low i ng

1 O:d 1
2 l:d 1
3 l:d 1
4 l:d 2
5 l:d 2
6 3 1:0 0
7 3 1:1 0
8 3 1:0 5
9 3 1:0 7

10 2 1:0 0
11 2 1 : 1 0
12 2 1:1 4
13 2 1:2 4
14 2 1 : 1 7
15 : 0 14

Pascal program:

{$L LIS T 1 • TEXT}
PRCDR.AM OEM);
VAR I: INTEGER;

SEGMENT PROCEDURE
BEGIN

1:=1+1;
Ef\O;

BEGIN
1:=50;
REPEAT

ADDI;
LNTIL 1=400;

Ef\O.

ADDI;

Users' Manual
Utilities

••• Decoder would prompt for input and output filenames. Then, if DCictionary was
typed, the following would be displayed:

377

Users' Manual
Utilities

l~EX NAv1E STMT SIZE VERS I CN tv1 TYPE SGII SEG TYPE RL FMY' NAtv1E 0 r

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(C) :

OE/VO
mOl

2
1

20
14

I V. 0
I V. 0

tv1 PSElDO 2
tv1 PSEUOO 3

Sex: LEAST significant byte first

PRCE SEG R
PRO:::: 5 EG R
NO SEG
NJ-SEG
NO SEG
NJ-SEG
NO-SEG
NJ-SEG
NO-SEG
NJ-SEG
NO-SEC
I'D-SEC
NO-SEC
I'D-SEC
NO-SEC
NO-SEC

Segment Cuide: A(ll, #(index of dictionary entry, Q(uit

378

OSI ZE srnF HI SG
1 10 4

OE/VO

/

Users' Manual
Utilities

••• and Decoding A(ll of this program would produce the following disassembly:

DATA POCL: SECJv£NT=08vO PRCCEDLRE= 1 BLCXJ<= 2 BLCXJ< OFFSET= 0

0:0013. I 0000. 4544.EOI 4F40.0V11 2020. I 2020. I ODIE. I 0000.

block 1/ 2 offset in block= 16
OFFSET HEX ernE
0(000): LOCB 50 8032
2 (002) : SRO 1 A501
4(004): CXG 3 1 940301
7(007): SLDO 1 30
8(008): LOCI 400 819001

11(00B): EQJl BO
12 (DOC) : FJP 4 04F6
14(00E) : CXG 4 2 940402
17(011): RPU 0 9600

DATA POOL: SEGv1ENT=,A[X)I PROCECURE= 1 BLCXJ<= 1 BLCXJ< OFFSET= 0

O:OOOd. I 0000. 4441.0AI 4944.1DI 2020. 2020. I 0015. I 0000.

block 1/ 1 offset in block 16
OFFSET HEX CCDE
0(000): SLDO 1 30
1(001): SLOO 1 30
2(002): ADI A2
3(003): SRO A501
5(005): RPU 9600

Decoder's D(ictionary display is a pretty format of the codefile's segment
dictionary. The following information is given:

INDEX is Decoder's name for each segment. Individual segments may be
disassembled by typing their number followed by (return>; e.g., 'O'(return> for this
sample would cause only DEMO to be disassembled.

NAME contains the names of each segment.

ST ART contains each segment's starting block (relative within the codefile).

SIZE is the length (in words) of each segment.

VERSION is the UCSD p-System version number of the segment.

379

Users' Manual
Utilities

M TYPE is the machine type. Usually this is M PSEUDO, indicating a P-code
segment, but assembled segments will indicate a given machine. Other possible
values for M TYPE are: M 6809, M PDP, M 8080, M Z 80, M GA 440, M 6502,
M_6800, and M-=..9900. - - - - - - - -

SEG TYPE can be: NO SEG, PROG SEG, UNIT SEG, PROC SEG, or SEPRT SEG.
NO SEC is an empty segment "slot",-PROG SEG-is a program segment, UNIT SEG
is a UNIT segment, PROC_SEG is a SEPARATE routine segment, and SEPRT-SEG
is an assembled segment.

The RL columns indicate whether or not the segment is relocatable, and whether it
needs to be linked. An 'R' indicates a relocatable segment. An 'L' indicates a
segment that must be linked.

If the segment is declared within a program or unit, then the FMY NAME column
w ill contain its "family name", i.e., the name of the program or unit. Otherwise,
the DSIZE SGRF HISG columns are displayed, and contain respectively the
compilation module's data size, segment references, and maximum number of
segments.

At the bottom of the screen, '(C):' is followed by whatever copyright notice the
codefile may have.

The next line indicates the byte sex of the codefile.

The promptline is the last line on the screen.

The first line of the disassembled listing shows the segment name, procedure
number, block number and block offset of the code for that segment and
procedure.

The next line contains a variable number of words. Each word is displayed as a
hexadecimal number, most-significant-byte-first, and is followed by a period. After
the period is a character representation of the word (if printable). The first word
is the PROCEDURE DICTIONARY POINTER, followed by the RELOCATION LIST
POINTER, and then the eight byte segment name. After the segment name is a
variable number of words. The next-to-Iast word is the segment's EXITIC,
followed by its DA T ASIZE. If the codefile is 'for a least-significant-byte-first
machine, the ordering of characters may be reversed. The information represented
here is described more fully in the Internal Architecture Guide.

The disassembled code itself is displayed in blocks. The OFFSET column shows the
offset in bytes from the front of the procedure (the count is in both decimal and
hex). Then the P-code mnemonic is displayed, followed by the operands, if any,

380

and finally the HEX CODE for that particular instruction.

Users' Manual
Utilities

The OFFSET column corresponds to the fourth column in a compiled listing.'

Jump operands are displayed as offsets relative to the start of the procedure,
rather than IPC-relative (IPC = instruction program counter). This is to make the
disassembly more readable. Thus, the operand shown is the offset of some line; in
the example, the false jump (F JP) on line 12 shows 4, which means line 4 -- the
CXG 3 1 instruction; the HEX CODE indicates that the offset is actually F6 (= -
10) (which is IPC-relative).

1 f a si ngle segment were to be disassembled (rather than using the A(ll) command),
a line similar to the following would be displayed:

There is 1 procedure in segment DEMO.
Procedure Guide: A(ll), !I(of procedure), L(inker info),

S(egment references), I(nterface text), Q(ui t)

Selecting A(ll) will disassemble all of the procedures in the segment (in the
example there is only one). Typing a number of a procedure followed by return will
disassemble that procedure. L(inker information, S(egment references and I(nterface
text may also be displayed if they are present.

For example, if the segment were a unit with interface text and '1' was typed, the
following might be displayed:

Interface text for segment SOMEUNIT:

PROCEDURE A PROC;
PROCEDURE ANoTHER PROC(I:INTEGER);
FUNCTION A_FUNCTION:BOOLEAN;
IMPL~ENTATION .

If the segment had references to other segments and'S' was typed, the following
might be displayed:

Segment references list
14: ***
13: CONCURRE
12: PASCALIO
11: HEAPOPS
10: STRINGOP

for segment KERNEL:
5: SYSCMND
4: DEBUGGER
3: FILEOPS
2: SCREENOP
0:

If the segment had linker information and 'L' was typed, the following might be
displayed:

381

Users' Manual
Utilities

Linker information for segment SOMESEG:

SOMEPROC EXTPROC srcproc=4 nparams=O koolbit=false

382 (

X.4 Duplicating Directories

Users' Manual
Utilities

I t is a sometimes worthwhile precaution to keep a duplicate directory on a disk.
In certain situations, this may help rescue directory information that is lost or
garbled, and help restore a disk or the files on it to some desired state. The
Z(ero command of the Filer will create a duplicate directory, and so will the
MARKDUPDIR utility described below. Once a duplicate directory has been
created, the Filer maintains it along with the primary directory. The
COPYDUPDIR utility copies a duplicate directory into the primary directory
location.

X.4.1 COPYDUPDIR

This program copies the duplicate directory of a disk into the· primary directory
location. EX(ecute COPYDUPDIR. It asks for the drive in which the copy is to
take place (4 or 5). If the disk is not currently maintaining a duplicate directory,
COPYDUPDIR tells you so. If the duplicate is found, then COPYDUPDIR asks if
you are sure you want to destroy the directory in blocks 2-5. A 'Y' executes the
copy; any other character aborts the program.

X.4.2 MARKDUPDIR

MARKDUPDIR marks a disk that is not currently maintaining a duplicate directory
so that it will.'

The user must be sure that blocks 6 .. 9 are free for use. If they are not, the user
must re-arrange the files on the disk so as to make blocks 6 •• 9 free. One can tell
if they are available by doing an E(xtended listing in the Filer and checking to see
where the first file starts. If the first file starts at block 6 or the first file starts
at block 10 but there is a 4-block unused section at the top, then the disk has not
been marked. If, however, the first file starts at block 10 and there are no
unused blocks at the beginning of the directory, then the disk has already been
marked, and a duplicate directory may already exist.

383

Users' Manual
Utilities

Example:

OR

SYSTEJv1.PASCAL

<unused>
SYSTEJv1.PASCAL

31

4
31

30-Aug-78

30-Aug-78

6

6
10

Codefile

Codefile

••• both of the above cases indicate disks that have not been marked. Below is the
directory of a properly marked disk:

SYSTEJv1.PASCAL 31 30-Aug-78 10 Codefile

To execute this program, e(Xecute MARKDUPDIR. It will ask which drive
contains the disk to be marked (4 or 5). MARKDUPDIR checks to see if blocks 6-
9 are free. If they seem to not be free, it asks if you are sure they are free?
Typing 'Y' executes the mark, any other character aborts the program. Be sure
that the space is free before marking it as a duplicate directory, otherwise file
information will be irretrievably lost.

384

Users' Manual
Utilities

X.5 XREF -- The Procedural Cross-Referencer

X.S.l Introduction

The Procedural Cross-Referencer is a software tool to assist programmers in
finding theiI7 way around Pascal program listings of non-trivial size. In keeping with
a basic philosophy that software tools should have distinct and clear purposes, the
function of the Referencer is to provide: a compact summary of the procedure
nesting in a program; a list of the procedures and, for each, the procedures which
call them; and a table of calls made by each procedure along with all non-local
variable references. It thus provides information about the inter-procedural
dependencies of a program.

XREF is an adaptation of a cross-referencer written by Arthur H.J. Sale of the
University of Tasmania (it was published in "Pascal News", March, 1980). His
program in turn was based on a program by A.J. Currie of the University of
Southhampton.

X.S.2 Referencer's Output

The Referencer produces five tables and an optional warnings file:

1. Lexical Structure Table: Static procedure nesting.

2. Call Structure Table: Procedures and the procedures that they
call.

3. Procedure Call Table: Procedures and the procedures that call
them.

4. Variable Reference Table: Each procedure and the variables it
references.

5. Variable Call Table: Each variable and the procedures which
reference or modify it.

6. Warnings File {if desired }: Indicates possible problems in the
source program.

385

Users' Manual
Utilities

X.5.2.1 Lexical Structure Table

The first table displays the lexical structure and the procedure headings. (The term
procedure means procedure, function, process or program in this document unless
otherwise stated.) As the input program is read, each heading is printed out with
the line nu mbers of the lines in which it occurs. The text is indented so as to
display the lexical nesting. (This indentation must sometimes be 'crunched' to fit
on an output line.)

Referencer considers a procedure heading to be any text between the words
'Procedure', 'Function', 'Process', or 'Program', and the following semicolon. This
isn't the Pascal definition, but is more useful in debugging programs. If these
reserved words are embedded within comments, they are ignored.

X.5.2.2 The Call Structure Table

The second table is produced after the program has been scanned completely, and
is the result of examining the internal data. For each procedure listed in
alphabetical order, the table holds:

386

- The line-number of the line on which its heading starts.

- Unless it was EXTERNAL or formal (and had no corresponding
block), the line number of the BEGIN that starts it's statement­
part.

- The characters 'ext' if the procedure has an external body
(declared with a directive other than FORWARD), the
characters 'fml' if it is a formal procedural or functional
parameter, or 'eh?' if it is declared forward with no associated
forward block or BEGIN. If a number appears, the procedure
h as been declared FORWARD and this is' the line number of the
line where the block of the procedure begins (i.e., the second
part of: the tvyo-part declaration).

- A list of all user-declared procedures directly caned by this
procedure .. (In other words, their call is contained in the
statement-part.) The list is in order of occurrence in the text;
a procedure is not listed more than once.

- A list of variables referenced by this procedure, and (if non­
local) the procedure in which they were declared. If a variable
is modified by an assignment, then it is printed with a leading
'*'.

X.5.2.J The Procedure Call Table

Users' Manual
Utilities

This is a list of procedures, in alphabetical order, and, for each procedure, the
procedures which call it.

X.5.2.4 Variable Reference Table

This is a list of procedures, in alphabetical order, and for each procedure, the
variables which that procedure examines or modifies in any way. If the variable is
not local to the procedure in question, then the procedure in which it was declared
is listed.

Variable references are shown in three forms:

<variable name> ::= a local variable

<procedure name> <variable name> ::= a variable defined
in <procedure> which is used but not modified

<procedure name>*<variable name> ::= a variable defined
in <procedure> which is modified.

X.5.2.5 Variable Call Table

This table is of the form:

<procedure name> <variable name>: <procedure name> [<procedure name>]

The first procedure name is the procedure which owns the variable name, and the
following procedure(s) either examine or modify that variable.

X.5.2.6 Warnings File

A file of warning messages. There are three types of warnings:

'Symbol' may be undeclared linell xxxx
'Symbol' may not be initialized linell xxx x
Not standard, Nested comments linell xx'xx

'Symbol' is an identifier, and xxxx is the number of the line on which it occurs.

Referencer only catches initializations done by replacement statements (':='), so

387

Users' Manual
Utilities

variables which are initialized by procedure calls (including READ, etc.) will be
flagged as possibly uninitialized. There may be a surplus of such warning
messages, depending on the program.

The 'Not standard, Nested comments' warning refers to the nesting of comments of
different bracket types: (* like this { verstehen Sie? } *), which is accepted by the
UCSD Pascal Compiler, but not the current ISO draft standard.

The warnings file may only be generated if the Variable Reference Table is also
generated.

X.5.3 Using Referencer

The Referencer has options that are user-defined at runtime. When the user
eX(ecute's XREF, Referencer prompts for answers for the following questions:

388

- Length of the output line [40 .. 132]:
This is the length of the output line for the terminal/printer
that you have available. Suggested output width is 80
characters.

- Input File:
The name of the text file that contains the Pascal program to
be Referenced. If the specified file cannot be successfully
opened, the prompt is repeated until the user either types a
valid input file name, or simply <return>. Typing an empty
filename «return» exits Referencer.

- Is this a compiled listing? [yin]:
The program will read ei ther . TEXT files containing Pascal
source programs, or listing files generated by the Compiler.
Using a compiled listing as input assures the user that the line
numbers referenced will be synchronized with the line numbers
generated by the Compiler.

- Do you want intrinsics listed? [yin]:
This allows identifiers such as 'WRITELN', 'PRED', 'GET', to be
acc epted as valid symbols. These are then cross- referenced as
procedures listed outside the lexical nesting and therefore are
not expected to have a 'BEGIN' associated with them. This
includes the special UCSD intrinsics listed in the UCSD Pascal
Users' Manual.

- Do you want initial procedure nestings? [yin]:
This causes the Lexical Structure· Table to be generated. This

Users' Manual
Utilities

table shows the procedure headings and, for each procedure, the
list of procedures which it calls.

- Do you want procedure called by trees? [yIn]:
This option is offered only if the Lexical Structure Table is
desired. A 'y' causes both the Call Structure Table and the
Procedure Call Table to be generated. The Procedure Call
Table lists each procedure, and all of the procedures which call
it. (A warning is displayed if less than 10000 words of memory
are available to generate these trees; no provision is made for
possible stack overflow.)

- Do you want variables referenced? [yin]:
A 'y' causes the Variable Reference Table to be generated.

- Do you want variable called by trees? [yin]:
A 'y' causes the Variable Call Table to be generated.

- Do you wish warnings? [yin]:
'y' causes the Warnings File to be generated. This option is
offered only if the preceding selection was made.

- Please enter the name of the warning file:
I f warnings are selected, then you have the option of directing
them to any file. If the file is a disk file, the name should
have '.TEXT' appended to it.

- Output File:
The name of the file to which you would like the output
directed. If the file is a disk file, the name should have
'.TEXT' appended to it.

The referencer expects to read a complete and syntactically correct Pascal
pro 9 ram. A I tho ugh res u 1 t s wit h syntactic ally incorrect programs are not
guaranteed, Referencer is not sensitive to most flaws. It cares about procedure,
function, and program headings, and about proper matching of BEGINs and CASEs
with ENDs in the statement-parts.

Referencer does not try to format procedure and function headings; it leaves them
as they were entered in the program, except for indentation alignment.

The tables are all as wide as the output line length (as specified by the user).
Eighty characters is usually sufficient. For large programs, the first table (Lexical
Structure Table) will be clearer with a larger print line.

389

Users' Manual
Utilities

X.S.4 Limitations

As mentioned before, the behavior of Referencer when presented with incorrect
Pascal programs is not guaranteed. However, it has been designed to be fairly
robust, and there are few flaws that will cause it to fail. The most critical
features, and therefore those likely to cause failure if not correct, are the general
structure of procedure headings, and the correct matching of an END with each
BEGIN or CASE in each statement-part (since this information is used to detect
the end of a procedure).

If an error IS explicitly detected (and Referencer has very few explicit error
checks and mini mal error-recovery)' a message is printed out that looks like this:

FAT AL ERROR - No identifier after prog/proc/func - At Line No. /11111

The line number displayed (ffllll) is where the program ran into trouble; like all
diagnoses this does not guarantee that the correct parentage is ascribed to the
error. Processing continues for a while despite the fatal error, but only the
Lexical Structure Table is produced.

Referencer is believed to accept standard Pascal programs, UCSD Pa~cal Programs,
and UCSD Units, and process each correctly.

390

X.6.1 The Debugger

Users' Manual
Utilities

This section describes the Debugger utility. The Debugger can be used as an aid
to debugging compiled programs. It can be invoked from the main System
promptline, or during the exeution of a program (when a breakpoint is
encountered). Memory may be displayed and altered, P-code may be single­
stepped, Markstack chains may be displayed and traversed, and so forth.

There are no promptlines explaining the Debugger commands because such prompts
would detract from the information displayed by the Debugger itself. (The
com mands are detailed in the sections beloW.) When a command is entered, there
are usually several prompts which may ask for further information such as a
segment name, variable offset etc. If a space is typed for any of these, the
command is exited. The exception to this is the Breakpoint command as described
below. If an inappropriate response is given to any prompt (such as 'proc Num?'
3000) then the response will not be accepted.

In order to properly use the Debugger, it is necessary to be familiar with the
UCSD P-machine architecture. The user should understand the P-code operators,
Stack usage, variable and parameter allocation etc. These topics are discussed in
the Internal Architecture Guide. It is possible to cause the System to die if the
Debugger is used incorrectly. Also, in order to use the Debugger, it is necessary
to have a compiled listing of the program being debugged. This listing is useful in
determining P-code offsets etc., and should be current.

X.6.2 Invoking and Exiting the Debugger

The Debugger may be entered from the main System promptline by typing 'D'.
Whenever the debugger is entered in a 'fresh' state, the prompt, 'DEBUG [version
II]', will appear and a '(' will be displayed on the second line. If the Debugger is
entered in a 'non-fresh' state, only the '(' will appear. Being in a 'fresh' state
means that the Debugger was not previously active and no breakpoints are
currently enabled.

The Debu gger may be exited by typing Q(uit, R(esume or S(tep. If the Debugger
is exited using the Q(u it option, it will be disabled. If it is later re-invoked, it
will be in a 'fresh' state. If the Debugger is exited using the R(esume option,
execution will continue from where it left off and the Debugger will still be
acti ve. If it is then re-i nvoked, it w ill be ina 'non-fresh' state. If the
Debugger is exited by using the S(tep option, a single P-code operator will be
executed and then the Debugger will be re-invoked (in a 'non-fresh' state).

Breakpoints are handled by typing B(reakpoint. After 'B' is typed, one of the
following characters must be typed: S(et, R(emove or LOst. (Note: There are
several two-character commands like this which are used in the Debugger. If,

391

Users' Manual
Utilities

after typing the first character, it is decided to exit from that command, simply
type <space> and the main mode 'of the Debugger will be re-invoked.) If '5' is
typed (after the 'B') then a breakpoint may be set. The user may have, at most,
five breakpoints numbered 0 through 4. The first prompt is 'Set Break /I?': a digit
0 •• 4 should be typed followed by <space>. The next prompt is 'Segname?': the
name of the desired segment should be typed followed by <space>. Then 'Proc II?'
appears: the number of the desired procedure should be typed followed by <space>.
Then 'Offset /I?' appears: the desired offset within the procedure should be typed
followed by <space>. A breakpoint is then set and if, during execution resumption,
that segment, procedure and offset are encountered, the Debugger will be
automatically re-invoked.

When setting a breakpoint, a space may be typed for the break number, segment
name etc. Rather than exiting the breakpoint command (as would happen with
other commands), the previous breakpoint's information will be used. For example,
if it is desired to break in the same segment and procedure but with a different
offset, a space may be typed for everything except the offset.

If, after typing B(reakpoint, an 'R' is typed, a breakpoint may be removed. The
prompt 'Remove break /I?' appears. The number of the breakpoint, 0 •• 4, should be
typed followed by <space>: the indicated breakpoint is removed.

If after typing B(reakpoint, an 'L' is typed, the current breakpoints are listed.

The Debugger may be memlocked or memswapped (see the descriptions of those
intrinsics) by using the M(emory command at the outer level. ML will memlock
and MS will memswap the Debugger.

X.6.3 Displaying and Altering Memory

By typing V(ar, data segment memory may be displayed. This is another two­
character command and may be followed by' G(lobal, L(ocal, I(ntermediate or
P(rocedure. If'G' or 'L' is typed, the prompt 'Offset II?' appears: the desired
offset into the data segment should be typed. If '1' is typed, the 'Delta Lex
Level?' is also prompted. If 'P' is typed, an offset within a specified procedure
may be displayed: 'Segment name?', 'Procedure II?' and 'Offset II?' are all
prompted in sequence.

When any of these options are used, a line similar to the following is displayed:

(g) S=KERNEL Pill VOlIl 2CIA: DB 05 53 43 41 4C 43 61 -SCALCa

••. in this example, a Global (g) segment of memory is displayed. The segment is
KERNEL, procedure 1, variable offset 1 at absolute hex location 2CIA. Following
this, eight bytes are displayed, first in HEX and then in ASCll (a '-' indicates

392

that the character is not a printable ASCll character).

Users' Manual
Utilities

I t is possible to change the frame of reference from which the global, local and
intermediate variables are viewed. This can be done by using the C(hain
command. After 'c' is typed the following three options are available: U(p, D(own
and LOst. If LOst is invoked, all of the currently existing mark stacks will be
displayed, with the most recently created one first. An entry in the list will
resemble the following:

(ms) S=HEAPOPS PII3 01123 msstat=347C msdyn=FOAO msipc=OlDA msenv=FEE8

I f the U(p or D(own options are used, the frame of reference moves up or down
one link and variable listings (using the 'V' command) change accordingly.

A fter a line has been displayed by the V(ar command, a ' +' or - may be typed.
This displays the succeeding or preceding eight bytes of memory. If a '/' is typed,
then the line displayed above it may be altered in hex mode. If a ' , is typed,
then the line displayed above it may be altered in ASCll mode. . When altering in
h ex mode, any characters which are to be left unchanged may be skipped by typing
<space>. In the ASCll mode, any characters to be left unchanged may be skipped
by typing <return>.

393

Users' Manu al
Utilities

X.6.4 Further Single-Stepping Options

When the single-stepping mode (described in Section X.6.2 above) is used, one P­
code operator is executed at a time. When control is returned to the Debugger, it
displays various pieces of information if they are desired. In order to select what
will be displayed, the E(nable mode should be used. After typing 'E', the following
options are available: R(egister, P(code, M(arkstack, A(ddress and L(oad. Any or
all of these options may be enabled at the same time.

If R(egister is enabled, a line such as the following will be displayed after each
single step:

(rg) mp=F082 sp=F09C erec=FEE8 seg=9782 ipc=01C3 tib=0493 rdyq=2EBC

If P(code is enabled, a line such as the following will be' displayed after each
step:

(cd) S=HEAPOPS PII3 01123 LLA 1

If M(arkstack is enabled, a line such as the following will be displayed after each
step:

(ms) S=HEAPOPS PII3 01123 msstat=347C msdyn=FOAO msipc=OlDA msenv=FEE8

If A(ddress is enabled, a line such as the following will be displayed after each
step:

(a) S=HEAPOPS PII3 01123 2C1A: OB 05 53 43 41 4C 43 61 -SCALCa

In order to initialize this address to a given value, there is an A(ddress mode at
the outer level. When 'A' is typed, 'Address ?' appears. An absolute address, in
hex, should be typed in. At this point, eight bytes are displayed starting at that
address. Also, that address is now displayed if the E(nable A(ddress option is on.

Enabling E(very will cause all of the above options to be enabled.

The D (isable mode disables any of the options just described. The LOst mode lists
any of the above options.

Also, at the outer level, there is a P(code option. This option asks for 'Segment
name?', 'Proc II?', 'Start Offset II?' and 'End Offset #?' and disassembles the
indicated portion of code. This may be useful during single-step mode if it is
desired to look ahead in the P-code stream. This mode may be exited before it
reaches the ending offset by typing <break> -- control returns to the Debugger.

394

X.6.5 Example of Debugger Usage

Suppose the following program is to be debugged:

Pascal Compiler IV.O

1 0 O:d
2 2 l:d
3 2 l:d
4 2 l:d
5 2 1:0
6 2 1:1
7 2 1:1

1 {$L LIST.TEXT}
1 PROGRAM NOT_DEBUGGED;
1 V AR I,J,K:INTEGER;
4 Bl,B2:BOOLEAN;
o BEGIN
o 1:=1;
3 J: =1;

Users' Manual
Utilities

8 2 1:1 6 IF K <> 1 THEN WRITELN ('Whats wrong?');
9 2 :0 o END.

End of Compilation.

First we enter the Debugger and set a breakpoint at the beginning of the IF
statement:

(BS) Set break II? 0 Segname? NOT DEBUG
(EP)
(R)

Proc II? 1 Offset II? 6

After setting the break point we enable P-code (EP) and resume (R). Now we
execute the program above, and when it reaches offset 6, the Debugger is entered.
We single-step twice:

Hit break 110 at S=NOTDEBUG Pill 0116
(cd) S=NOTDEBUG Pill 0116 SLDOI
(cd) S=NOTDEBUG Pill 0117 SLDCl
(cd) S=NOTDEBUG Pill 0118 NEQUI

We see that our first single-step did a short load global 1. (Note: This put K on
the stack. K is not global 3; 1 is global 3, J is global 2, and K is global 1.
Every string of variables such as I,J,K is allocated in reverse order. Boolean Bl,
which follows, is at offset 5, and B2 is at offset 4. Parameters, on the other hand,
are alIoc ated in the order in which they appear.) The second single-step did a
short load constant 1 onto the stack. Now we are about to do an integer
comparison «». But this is where our error shows up, so we decide to look at
what is on the stack before doing this comparison:

(LR)
(rg)
(A)

mp=EB62 sp=EB82
Address? EB82

erec= •••

395

Users' Manu al
Utilities

(a) E882: 01 00 C5 14

We list the registers and then look at the memory address that sp points to.
What we discover is a 1 on top of the stack (01 00: this is a least-significant­
byte-first machine) followed by a word of what appears to be garbage. This leads
us to suspect that K was not initialized. Looking over the listing, we quickly
realize that this is the case.

X.6.6 Summary of the Commands

D(ebug

Q(uit
R(esume
S(tep

B(reak point
S(et
R(emove
LOst

V(ariable
GOobal
L(ocal
I(nter
P(roc
E(xtended

C(hain
U(p
D(own
LOst

E(nable
DOsable
LCist

R(egister
P(code
M(arkstack
A(ddress
E(very

A(dress

P(code

396

Enters Debugger from main promptline

Quits the Debugger, 'fresh' state if re-entered
Exits Debugger, Debugger remains active, 'non-fresh'
Single steps P-code and returns to Debugger

Segment, procedure and offset must be specified
Allows a break point (0 through 4) to be set
Allows a break point to be removed
Lists current break points

Displays global memory
Displays local memory
Displays intermediate memory
Displays data segement of given proceudre
Displays varialbes in another segment

Changes frame of reference for V(ariable command
Chains up mark stack links
Chains down mark stack links
Lists current mark stacks

Enables the following to be displayed during single step
Disables the following from being displayed
Lists the following
The registers: mp, sp, erec, seg, ipc, tib, rdyq
Current P-code mnemonic
M ark stack display
A gi ve n address
All of the above

Displays a gi ven address

Dissassembles a given procedure

M(emory
L(ock
S(wap

Memlocks the Debugger
Memswaps the Debugger

Users' Manual
Utilities

397

Users' Manual
Utilities

X.7 The RECOVER Utility

RECOVER is a utility which attempts to re-create the directory of a disk whose
directory has accidentally been destroyed. It is shipped as RECOVER.G.CODE (or
RECOVER. T .CODE for Terak users).

RECOVER displays several yes/no prompts. These must be answered with upper­
case letters: lower-case letters are ignored.

Following is a list of RECOVER's prompts, with a description of appropriate
responses:

RECOVER - Version IV.O.9
ENTER TODAY'S DATE MM-DD-YY

••• the user should enter a valid date, followed by <return>. Entering an
incorrect date may cause RECOVER to abort with a value range error.
Once a hyphen has been typed, it may not be backed over -- previous
portions of the date may not be changed. The date that is entered is
assigned to any files that RECOVER finds, which were not in the directory.

USER'S DISK IN DRIVE:

the user should type the number of the drive which contains the disk to
be RECOVERed (i.e., a number in [4, 5, 9 •• 12] followed by <return».

USER'S VOLUME 10:

••• the user should type a volume name, which is recorded on the disk. The
name should be in upper-case letters. Lower-case letters are accepted, but
then the volume name is recorded with lower-case letters, which contradicts
System standards.

HOW MANY BLOCKS ON DISK?

••• this prompt is only displayed if the number of blocks recorded in the
(damaged) directory is not a valid number. The response depends on the
disk drives used: respond as you would to the Filer's Z(ero command.

A t this point, RECOVER reads each entry in the disk's directory, and checks it for
v ali di t y. Entries with errors are removed. Entries that are valid are saved, and

398

RECOVER displays: 'ENTRY.NAME found' (or something similar).

Users' Manual
Utilities

When all the directory entries have been checked, and either saved or discarded,
RECOVER prompts:

Are there still IMPORT ANT files missing (YIN)?

••• responding 'N' causes RECOVER to prompt:

GO AHEAD AND UPDATE DIRECTORY (YIN)?

••• a 'N' exits RECOVER without doing anything •
••• a 'Y' causes the reconstructed directory to be saved.

RECOVER
displays:

WRITE OK

and then terminates.

On the other hand, a 'Y' response to the 'Are there still IMPORTANT files
missing?' prompt causes RECOVER to search those areas of the disk still not
accounted for by the (partially) reconstructed directory. Textfiles and codefiles
are detected, and appropriate directory entries created for them. If RECOVER
cannot determine the original name of a textfile it has found, it creates a
directory entry for DUMMYIIII.TEXT or DUMMYIIII.CODE (where the 1111 are two
unique digits). If a codefile has a PROGRAM name, it is given that name; if this
would create a duplicate entry in the directory, digits are used (for example,
RECOVER restores first SEARCH.CODE, and then SEARCHOO.CODE).

Data files cannot be detected by RECOVER, since their format is not System­
defined. To recover data files, a user must resort to the PATCH utility (described
in this chapter).

If RECOVER restores a textfile with an odd number of blocks, this probably means
that the end of the textfile was lost: the user should use the Editor to make sure.

RECOVERed codefiles should be L(inked again, if that was originally necessary.

When RECOVER has finished its pass over the entire disk, it prompts:

GO AHEAD AND UPDATE DIRECTORY (YIN)?

••• and so forth, as described above.

399

Users' Manual
Utilities

400

Xl. APPENDICES

XI.A Appendix A -- Execution Errors

o System error ••• F AT AL
1 Invalid index, value out of range
2 No segment, bad code file
3 Procedure not present at exit time
4 Stack overflow
5 Integer overflow
6 Divide by zero
7 Invalid memory reference <bus timed out>
8 User break
9 System I/O error •.• FATAL

10 User I/O error
11 Unimplemented instruction
12 Floating point math error
13 String too long
14 Halt, Breakpoint
15 Bad Block

Users' Manual
Appendices

All runtime errors cause the System to I(nitialize itself; FATAL errors cause the
Syste m to re-bootstrap. Some FATAL errors leave the System in an irreparable
state, in which case the user must re-bootstrap by hand.

401

Users' Manu al
Appendices

XI.B Appendix 8 -- I/O Results

o No error
1 Bad Block, Parity error (CRC)
2 Bad Device Number
3 Illegal 1/0 request
4 Data-com ti meout
5 Volume is no longer on-line
6 File is no longer in directory
7 Bad file name
8 No room, insufficient space on volume
9 No such volume on-line

10 No such file on volume
11 Duplicate directory entry
12 Not closed: attempt to open an open file
13 Not open: attempt to access a closed file
14 Bad format: error in reading real or integer
15 Ring buffer overflow
16 Volume is write-protected
17 Illegal block number
18 Illegal buffer

See also the information in Section VI.2.14, IORESUL T.

402

XI.C Appendix C -- Device Numbers

Device Number
o
1
2
3
4
5
6
7
8
9

10
11
12

Volume Name
<for System use>

CONSOLE:
SYSTERM:
GRAPHIC:

<System disk '*'>
<other disk>

PRINTER:
REMIN:
REMOUT:

<user-defined disks
or other devices>

Users' Manual
Utilities

Devices with numbers 9 .• 12 or greater are user-defined devices. Devices 4 and 5
are usu all y floppies, though they may be other sorts of block-structured devices.
Devices 1..3 are described in Chapter III -- Files and File-handling. REM IN: and
REMOUT: are often set to the same bidirectional port.

More information on devices may also be found in the Installation Guide.

403

Users' Manual
Utilities

XI.D Appendix D -- Reserved Words

Standard Pascal Reserved Words

and
array

begin

case
canst

div
do
downto

else
end

file
for
forward
function

goto

if
in

label

mod

nil
not

of
or

packed
procedure
program

record
repeat

404

set

then
to
type

until

var

while
with

UCSD Pascal Reserved Words

external

interface
implementation

process

segment

Standard Predeclared Identifiers

abs
arctan
atan

Boolean

char
chr
cos

eof
eoln
exp

false

get

input
integer

In

maxint

new

odd
ord
output

[pack]
page
pred
put

read
readln
real
reset
rewrite
round

sin
sqr
sqrt
succ

text
true
trunc

[unpack]

write
writeln

Users' Manual
Utilities

405

Users' Manual
Utilities

UCSD Predeclared

attach

blockread
blockwrite

close
concat
copy

delete

exit

fillchar

gotoxy

halt

insert
interacti ve
ioresult

keyboard

length

mark
memavail
memlock
memswap
move left
moveright

406

Identifiers

pos
processid
pwroften

release

scan
seek
semaphore
seminit
signal
sizeof
start
str
string

time

unitbusy
~ unitclear ~ unitread

unitstatus
unitwait
unitwrite

varavail
vardispose
varnew

wait

XI.E Appendix E -- Assembler Syntax Errors

1: Undefined label
2: Operand out of range
3: Must have procedure name
4: Number of parameters expected
5: Extra garbage on line
6: Input line over 80 characters
7: Not enough i fs
8: Must be declared in ASECT before use
9: Identifier previously declared
10: Improper format
11: EQU expected
12: Must EQU before use if not to a label
13: Macro identifier expected
14: Word addressed machine
15: Backward ORG not allowed
16: Indenti fier expected
17: Constant expected
18: Invalid structure
19: Extra special symbol
20: Branch too far
21: Variable not PC relative
22: Illegal macro parameter index
23: Not enough macro parameters
24: Operand not absolute
25: Illegal use of special symbols
26: Ill-formed expression
27: Not enough operands
28: Cannot handle this relati ve
29: Constant overflow
30: Illegal decimal constant
31: Illegal octal constant
32: Illegal binary constant
33: Invalid key word
34: Unexpected end of input - after macro
35: Include files must not be nested
36: Unexpected end of input
37: Bad place for an include file
38: Only label1s & comments may occupy column one
39: Expected local label
40: Local label stack overflow
41: String constant must be on 1 line
42: String constant exceeds 80 chars
43: Illegal use of macro parameter

Users' Manual
Appendices

407

Users' Manual
Appendices

44: No local labels in ASECT
45: Expected key word
46: String expected
47: Bad block, parity error (CRC)
48: Bad unit number
49: Bad mode, illegal operation
50: Undefined hardware error
51: Lost unit, no longer on-line
52: Lost file, no longer in directory
53: Bad title, illegal file name
54: No room, insufficient space
55: No unit, no such volumn on-line
56: No file, no such file on volume
57: ,Duplicate file
58: Not closed, attempt to open an open file
59: Not open, attempt to access a closed file
60: Bad format, error in reading real or integer
61: Nested macro definitions not allowed
62: ' =' or ' <>' expected
63: May not EQU to undefined labels
64: Must declare .ABSOLUTE before first • PROC

Z-80 based machines
Speci fie error messages:

76: Incorrect operand format
77: Close paren ,,)" expected
78: Comma "," expected
79: Plus "+" expected
80: Open paren "(" expected
81: Stack pointer "SP" expected
82: "HL" expected
83: Illegal "CC" condition code
84: Register "C" expected
85: Register "R" expected
86: Register "A" expected

408

PDP-II based machines
Speci fic error messages:

76: Closing paren "),, expected
77: Register expected
78: Too many special symbols
79: Unrecognizable operand
80: Register reference only
81: First operand must be a register
82: Comma expected
83: Unimplimented instruction
84: Must branch backwards to label

8080 based machines have no speci fic error messages.

6502 based machines
Specific error messages:

76! Index register required
77: "X" or "Y" expected
78: Zero-page address required
79: Illegal use of register
80: Index register expected
81: Ill-formed operand
82: "X" expected for indexed addressing
83: Must use "X" register

Users' Manual
Appendices

409

Users' Manual
Appendices

6800 based machines
Specific error messages:

76: "X" expected for indexed addressing
77: "A" or "B" expected

9900 based machines
Speci fic error messages:

76: Illegal immediate operand
77: Index must be WR
78: Close paren ")" expected
79: Indirect and autoincr must be WR
80: Autoincr must be WR indirect
81: Comma "," expected
82: No operand allowed
83: Illegal map file

410

Z8 based machines
Speci fic error messages:

76: Too many symbols
77: Operand expected
78: Bad data value
79: ,), expected
80: Bad operand type
81: Odd register
82: Unknown instruction
83: Working register expected
84: Indirect or register expected
85: Condition code expected

Users' MalJual
Appendices

411

Users' Manual
Appendices

XI.F Appendix F -- Summary of Differences between UCSD Pascal and
Standard Pascal

1. String Handling

STRING is an intrinsic data type, consisting of a PACKED ARRAY OF CHAR
together wi th a length. Strings may be assigned, passed, and input or output.

The following UCSD intrinsics are for the manipulation of strings:

function CONCA T (source [, source] ••. : string]): string

function COPY (source: string; index, size: integer): string

procedure DELETE (destination: string; index, size: integer)

procedure INSERT (source, destination: string; size: integer)

function LENGTH (source: string): integer

function POS (pattern, source: string): integer

412

2. I/O Intrinsics

Users' Manual'
Appendices'

READ, READLN and WRITE, WRITELN may only be used on files of type TEXT (=
FILE OF CHAR).

In addition to the standard file types, files may be untyped or INTERACTIVE. The
predefined files INPUT, PUTPUT, and KEYBOARD, are INTERACTIVE in UCSD
Pascal.

KEYBOARD is a non-echoing equivalent of INPUT.

If a file is INTERACTIVE

the EOF function is set by input of an <etx> character;
<etx> is defined in SYSTEM.MISCINFO; ..

the EOLN function is set by a <return>;

READ and READLN will perform a GET before' loading the
file's window variable; the effect of this is to require
that a READ or READLN be done on an INTERACTIVE file
before testing EOF or EOLN;

RESET does not load the file's window variable.

If a file is untyped •••

all I/o to that file must use the BLOCKREAD and BLOCKWRITE
intrinsics.

RESET and REWRITE generally behave as standard intrinsics, but they both may
take an optional second parameter that is a disk filename -- this makes the Pascal
file equivalent to the physical disk file.

The intrinsic SEEK does random access on files. The intrinsic CLOSE controls the
fate of a disk file. UNITREAD, UNITWRITE, and other UNITxxx intrinsics are for
direct control of peripheral devices. IORESUL T returns the status of an 1/0
operation.

WRITE and WRITELN are incapable of writing Booleans or record variables.
STRINGs and PACKED ARRAYs OF CHAR may be output in a single WRITE.

413

Users' Manual
Appendices

These are the UCSD intrinsics that handle devices and files:

function BLOCKREAD (fileid: {untyped} file;
buffer: packed array of char;
blocks [, relblock]: integer): integer

function BLOCKWRITE (fileid: {untyped} file;
buffer: packed array of char;
blocks [, relblockJ: integer): integer

procedure CLOSE (fileid: {any sort of} file; <option>)
<option> ::= , LOCK I , NORMAL I , PURGE I , CRUNCH

function lORESUL T : integer

procedure SEEK (fileid: {any sort of} file, recnu m: integer

function UNITBUSY (unitnumber: integer): Boolean

procedure UNITCLEAR (unitnumber: integer

procedure UNIT READ (unitnumber: integer;
buffer: packed array of char;
length
[, [blocknumber] [, option]]: integer)

procedure UNITWAIT (unitnumber: integer)

procedure UNITWRITE (unitnumber: integer;

414

buffer: packed array of char;
length
[, [blocknumber] [, option]]: integer)

3. Memory Management

Users' Manual
Appendices

A SEGMENT PROCEDURE behaves as any other procedure, but is disk-resident and
present in main memory only when it is being executed.

A UNIT is a separately compiled collection of procedures and data structures.
This is an outline of a UNIT:

UNIT <unitname>;

INTERFACE

!declarations and procedure headings appear here}
these and only these may be used by the host}

IMPLEMENT A TION

!declarations and procedure code apfear here}
this portion is private to the UNIT

BEGIN
{ initialization code}
***. ,
{ termination code}

END

The initialization code is executed ~efore any host program code. The host
program invokes a unit by:

PROGRAM <program name>;
USES <unitname>~ <more unitnames .•• >;

The standard intrinsics NEW and DISPOSE are implemented.

The following UCSD intrinsics are meant for memory management:

procedure MARK (var heapptr: "'integer)

function MEMAV All : integer

procedure MEMlOCK (seglist: string)

procedure MEMSWAP (seglist: string)

procedure RELEASE (var heapptr: "'integer

415

Users' Manual
Appendices

function VARAVAIL (seglist: string·): integer

procedure VARDISPOSE (pointer: "'{any type}; count: integer

procedure VARNEW (pointer: "'{ any type}; count: integer)

416

4. Concurrency

Users' Manual
Appendices

A PROCESS is declared as a procedure, and may be STARTed any number of times
by the main program. Processes may be controlled by semaphores. The UCSD
predeclared type SEMAPHORE is a subrange: [O •• maxint]. The UCSD predeclared
type PROCESSID is used only by the System.

Example: PROCESS ZIP;
BEGIN .•. END;

process DINNER (var SPLIT, BLACKEYED: peas);
begin ... end;

The following UCSD intrinsics are for the control of processes:

procedure A TT ACH (sem: semaphore; vector: integer)

procedure SEMINIT (var sem: semaphore; sem _count: integer

procedure SIGNAL (var sem: semaphore

procedure START (<process call>;
[, id: processid;]
[, stacksize: integer;]
[, priority: byterange])

<process call> ::= {a normal procedure call}
type byterange: 0 •. 255

procedure WAIT (var sem: semaphore)

417

Users' Manual
Appendices

5. Miscellaneous

Syntax variations:

418

CASE statements fall through if no label matches the selector.

Comments may be enclosed by either '{ }' or '(* *)';
the two different types may be nested (only one comment deep).

, =' and '<>' may be used. for extended array or record
comparisons.

GaTOs are restricted to labels within the same block.

procedure EXIT (procid: <procedure identi fier>
••• is used to immediately abort a procedure.

A length attribute defines a LONG INTEGER,
e.g.,

var LONG: integer[8];

the length defines the minimum number of digits
in the integer

procedure STR (value: integer[n]; destination: string)
••• converts an integer into a string; usu ally used for the
output of long integers. (The length attribute is optional.)

PACK and UNPACK are not implemented. Packing and unpacking
are done automatically. A PACKED ARRAY OF CHAR may be
assigned, input, and output, as a single entity
(as wi th a STRING).

Packed variables may not be used as call-by-reference (var)
parameters.

Sets of subranges of integers must include only positive
integers.

tJ::f', fS'~ rc'1 B ~··1~.~ nl.~

/\pper'!dieer:

S()[l~) !nusts~ d~~{:H~rsdPtStEfn~~tt~e :tH:ffWe~nd§eh~lItiJ the same underlying
type.

JCSD ~irf~nev.R1iig il9CgDe i~f¥lf=\!Jiit(!:CS §fe1q:rct]E: t~er<:Wc:mdling of large arrays:

-lLLCHARpfoC(!~fIt§ltF(n:!-=L!2}tq~~ (arcr@}ti~atrurnrpacked array of char;
length: integer; chara~th~hi<iilIteger; character: char

,~OV[LEFTpioe@~Grp€h Nilmffi.?ltifDlfl ta§O)up@e~ El~1tWi'a~i>tln {any sort of} array;
length: integer) length: integer)

;JOVEF:ZIG!plfo~~fe8MgWR1m~lfl ta§O)up@e~ Ele1tWla~i>tln {any sort of} array;
length: integer) length: integer)

:A.N (lengt@Acitn~~9~GAN (length: integer;
<partial expression>; <partial expression>;
source: packed array sdLJlclmr ~ck~~ray of char): integer

expression> : ,=part=[a~teM'~e~stOh>ch~r>' =' <char>' I <> '<char>'

~EOF ({arrun~~rcb'PPm~fYRe{ ~~li\iat<fabl~ tfrl'ttt9~e identifier}): integer

3re rni~lCflCjfmwi~Me ~~8treflil~eous UCSD intrinsics:

~OT(JXY (pt<6lc-e:dJfleeOOTbXY (x, y: integer)

~AL T procedure HALT

VROFTEN fur£T~fl'€fr¥3rptwRr[tJfrgtEN): (r@~ponent: integer): real

-lME (varpru~@Sel(JM~: (i~~¢ll.iWord, loword: integer)

Users' Manual
Appendices

419

y

The i

pI

pI

pl

Users' Manual
Appendices

6. Writing a Transportable Program

These are a few hints and suggestions.

A. Avoid the peculiarities of UCSD Pascal detailed above •

. B. Untagged case variant records often cause trouble.
The value of the case tag will be checked only by
the runtime system, or not at all.

C. Assume nothing about variable allocation -- the size of
variables, packing algorithms, representations of real
numbers and of Booleans .§.!l vary from system to system.

D. Make sure variables are unique in the first 8 characters.

E. Don't assume that all of an expression will be evaluated.
Some compilers try to optimize around subexpressions.

420

Users' Manual
Appendices

XI.G Appendix G -- Summary of Differences Between Versions

The UCSD p-Sy'stem (the latest of its names) has gone through a number of
incarnations since its first release to the public. The names it has borne are: 1.3,
1.4, 1.5, 11.,0, 11.1, 111.0, and IV.O. Most changes to the System have expanded its
capabilities. The single-user microprocessor environment, portable code, and
hierarchical operating system are features of the design which have not changed.
Increasing capabilities has led to a proliferation 'and diversification of features -­
this trend has been cou ntered by efforts for standardization and portable code.
The I atest release, IV.O, was designed to incorporate the capabili ties of 11.0, lI.l,
and III.O, while cleaning up some rough edges of the user interface, UCSD Pascal
code, and System internals.

IV.O offers upward compatability at the source code level, introduces multitasking
to interpreter-based implementations of UCSD Pascal, and provides more flexible
and cleaner memory-management techniques than previous versions.

Before detailing new changes, here is a bit of history (may be skipped by the
eager):

A fter a series of releases internal to UCSD and its computer science program, 1.3
w as made available to the general public. It was a very simple and very stable
version of t,he System. Though a screen-oriented editor had existed for some time,
I.3's System editor was YALOE. 1.3 ran on PDP-II's and LSI-II's.

1.4 was the first version to be available on other microprocessors, including 8080's
and Z80's running CP/M. 1.4 also introduced the full Screen Oriented Editor.

1.5 introduced separate compilation and assembly. External' routines and UNITs
could be bound into host programs with the Linker. Still more microprocessors
were supported.

1I.0 was essentially a stabler version of 1.5. It was released by UCSD shortly
before SofTech Microsystems assumed responsibility for its licensing and support.

11.1 is the variety of 1I.0 distributed by Apple Computer Corp. It has the
INTRINSIC UNIT feature, and a number of minor differences.

111.0 is distributed by Western Digital Corp. To run UCSD Pascal on a hardware­
emulated P-machine required many changes, mostly internal. At the level of
Pascal object code, IIl.O introduced concurrent procedures called processes.

IV.O is new, and pulls together the user-level features of the last three versions.

421

Users' Manual
Appendices

A. VERSION IV.O

1. Media -- the logical format of disk directories and disk files has not changed,
so no conversion of text or data is required.

2. Source Code -- Pascal and FORTRAN source from versions 11.0, 11.1, and 111.0
w ill co mpile under IV.O. tv10st programs will then run. Those that will not are
programs dependent on former implementations of the System's data structures and
memory management, or possibly on the memory requirements of a given machine
(i.e., "tight-fitting" programs).

3. Object Code -- old programs must be recompiled. The byte sex of a host
processor no longer matters -- it is detected and properly dealt with by the
Operating System. FliPCODE and FlIPDIR are no longer needed.

4. Pascal -- has been extended with the PROCESS construct for concurrency.
SEPARA TE UNITS and INTRINSIC UNITS are no more, although they will still be
compiled as regular UNITs. UNITs need not be bound in by linker and therefore
may be shared (i.e., they behave as 11.1 INTRINSIC UNITs but are not bound to a
single segment number). The IMPLEMENTATION part of a UNIT may contain
SEGMENT PROCEDUREs. A program may reference up to 256 compilation units,
a compilation unit may reference up to 256 seg~ents,and may contain up to 16
segments.

5. FORTRAN and BASIC are now part of the System.

6. The Editors -- in YAlOE, the E(rase command is gone; otherwise it is
unchanged. The Screen Oriented Editor remains much the same; eX(change is
more flexible, and a K(olumn command has been added.

7. The Assemblers -- no macro parameters are allowed within ASCll strings, the
radix switch characters have changed, alphabetic alternatives to some special
characters are provided, relocatable procedures have been added. Old assembly
la ngu a9 e pr oc e du re s w h i c h use type STRING, and old assembly langu age
FUNCTIONs require some changes to run under IV.O.

8. Memory Management -- SEGMENT routines may be declared (as before)~ A
compilation module (program or UNIT) may contain up to 16 segments. The bodies
of all segment routines must be declared before the bodies of any non-segment
routines are declared. The standard Pascal intrinsics NEW and DISPOSE are now
imp Ie mented. UCSD intrinsics MEMlOCK and MEMSWAP, and VARAV All,
V ARNEW, and V ARDISPOSE have been added.

9. External Compilation -- there is now only one type of UNIT. INTRINSIC and
SEPARATE UNITs which exist in old programs will be comp'iled into regular IV.O

422

Users' Manual
Appendices

UNITs. A IV.O UNIT is like an old II.l INTRINSIC UNIT in that it need not be
linked, and may be shared, but unlike an INTRINSIC UNIT in that it does NOT
have a fixed segment number. UNITs may now contain SEGMENT routines (they
must be declared in the IMPLEMENT A TION part).

10. Concurrency -- is as in Version III.D. The user may declare a PROCESS
which is declared like a procedure, but is started by the UCSD intrinsic START.
Once a process is START'ed, it appears to run simultaneously with the host
program and (possibly) other processes, until it has completed. The predeclared
type SEMAPHORE has been introduced to aid in process synchronization;
SEMAPHOREs can be manipulated with the intrinsics SIGNAL and WAIT.

11. Internals -- the P-codes have been slightly modified, and runtime memory
management has changed. Rather than being placed on the Stack, procedure code
now resides in a "code pool" which resides between the Stack and the Heap, and is
relocatable. The code pool is a highly flexible structure, and allows for much
runti me swapping. In addition, the following UCSD intrinsics have been created to
aid in system-level memory management: MEMLOCK, MEMSWAP, VARAVAIL,
VARNEW, V ARDISPOSE.

12. Disk Swapping -- since code is swapped more frequently in IV.O, a number of
prompts have been added which request that the user insert a needed volume.

13. Inc 0 mp a tibilities -- the following practices (which run under 11.0, II.l, or II1.0)
require modification before a program can run under Version IV.O:

System Data Structure Dependencies

Many System data structures have changed. Therefore, programs
which directly access such things as SYSCOM, SIB's, etc.,
will have to be modified -- refer to internal documentation.

Heap Storage Utilization

A program cannot assume that the memory immediately following
that obtained by a NEW is unoccupied and available.

Similarly, consecutive calls to NEW do not necessarily yield
a contiguous area of memory. The practice of indexing across
the boundary separating storage obtained by consecutive calls
to NEW will fail under Version IV.O.

Calls to MARK and RELEASE MUST be paired correctly. The pointer
value obtained by calling MARK must NOT be modified prior to

423

Users' Manual
Appendices

calling RELEASE. Furthermore, the pointer obtained from MARK
cannot be used as a base pointer for storage references.

Tightly Fitting Programs

IV.O in general uses more memory at runtime than previous
versions, so programs that have been tailored to fit in main
memory.· will possibly need to be tailored some more. The.
improved memory management in IV.O should make this an easier
task than it has been in the past.

424

XI.H Appendix H -- Converting Pascal Programs to IV.O

1. Introduction

Users' Manual
Appendices

This section describes changes that must be made to Pascal and assembly language
programs in order to run them on the IV.O System. Some of the changes are
concerned with interfaces to the System; others affect various and sundry Version
11 and 111 programming practices.

2. Converting Pascal Programs

2.1 Use (And Misuse) Of The Heap

Version IV is the first version of the UCSD p-System to implement a true heap, as
defined in standard Pascal. For this reason, most of the venerable and hence
treasured programming tricks associated with the rudimentary heap implementations
of past versions must be laid to rest.

Consecuti ve calls to standard procedure NEW no longer guarantee the allocation of
a contiguous area of memory; therefore, the practice of creating variable-sized
buffers using a sequence of NEW's will not work. The UCSD intrinsics VARNEW
and VARDISPOSE should now be usedto allocate variable-sized buffers. The
Version IV heap is as sensitive to range violations as the stack has always been -­
use it with corresponding care.

The standard procedures MARK and RELEASE must be used only for the purposes
for which they were devised. Using a MARK'ed pointer as a pointer to heap data
does not work in Version IV. The contents of a MARK'ed pointer must not be
altered in any way until the matching call to RELEASE has been performed.
RELEASE's must only be performed on vari abIes that have been previously
MARK'ed (and not yet RELEASE'd).

2.2 Code Segment Management

With the code pool scheme, code segments need to be loaded from disk much more
frequently (and less predictably) than in the past. Several System segments may
require loading during the course of a single System call: the System disk must be
on-line to complete the call. This can affect the usefulness of programs which
manipulate the disk volumes (such as the System Filer).

Two solutions address this problem. A program can use the memory management
procedure MEMLOCK to lock into the code pool all code segments required for its
execution. The procedure MEMSWAP can later be used to unlock these segments

425

Users' Manual
Appendices

(segments should not be left locked if they do not need to be; this uses much
space and can cramp the Operating System).

The other solution is more direct (but possibly less efficient). If direct control of
code residency is undesirable, the System will prompt the user to place the proper
disk in a drive so the required code segment may be loaded.

2.3 Compiler Directives

The F (byte-flipping), G (no goto's), and S (segment swapping) compiler directives
have no effect in Version IV and may be removed. Version IV P-code is byte­
asexu aI, so the F option is now irrelevant. Goto restrictions were a carry-over
from the university and are no longer needed (indeed, they conflict with current
Pascal standards). User-controlled segment swapping is no longer necessary; the
Compiler now handles swapping automatically.

Leaving these directives in your source code causes no harm at present. However,
it is not impossible that in the future these letters will acquire new meanings as
co mp i I e r di re ct i v es, so th e m os t pru dent course is to remove them from your
programs.

2.4 Compiling System-Level Programs

Examples pertaining to the following discussion appear at the end of this section.

The outermost (Operating System) lexical level common to versions 11 and 111 no
longer exists. The user program directive U- sets the compiler options R- and 1-,
and allows units to be compiled with reserved System names (see the section below
for deta.ils on Version IV units); however, it does not affect the lexical level of
programs or units. This change has the following effects on existing System-level
programs:

426

The outermost dummy lex level is invalid and must be removed. There
being no distinction between a System and a user program, the segment
procedure declaration for the System program in question must be replaced
with a normal program declaration. The dummy parameters associated with
the segment declaration are no longer necessary. Also, the dummy body at
the end of existing System programs which corresponds to the old System
lexical level must be removed.

Dummy segment procedure declarations are unnecessary and may be
removed, as Version IV segment numbers are not System-wide resources;
their scope onl y extends to the enclosi ng program or· unit. Failure to
remove the dummy declarations will not affect the execution of a program,

Users' Manual
Appendices

but will cause an unnecessary increase in the size of its codefile.

The Version IV System globals reside in the interface section of the
Operating System's KERNEL unit. System-level programs which include the
file GLOBALS.TEXT must now use unit KERNEL. The version of the kernel
unit contained in the standard SYSTEM.PASCAL does not contain an
interface section, so a separate codefile containing the unit with its
interface section is supplied.

The System-level variables and data type declarations in the kernel unit are
almost identical to those of the older System globals. The only objects
missing in Version IV are the variable DEBUGINFO in the System variables
and the BUGST A TE and SEGT ABLE fields in SYSCOM (the reasons being
that the Version IV debugger doesn't need the debug fields, while the
segment environment is handled in a very different manner). All other
variables and data types have the same identi fier names.

Programs which use modified versions of GLOBALS. TEXT to access a subset
of the old System globals c an do so in Version IV by moving their own
global declarations into a stubbed version of the kernel unit's interface
section. This is done by declaring a kernel unit containing the appropriate
declarations in its interface section and using it in the manner described
below. This dummy kernel unit must be compiled with the U- option, and
the unit name must be KERNEL. Care should be taken to ensure that the
subset declarations correspond with the Version IV System globals.

Programs which require direct (as opposed to compiler-generated) accesses to
Operating System procedures must explicitly use the Operating System unit
containing the needed routines. This is done in a manner similar to use of
the kernel unit described below. A description of the Operating System unit
names, interfaces, and file names can be found in the Internal Architecture
Guide.

Programs which reference the System globals to gain access to the screen
control characters and date that reside in SYSCOM will work correctly in
Version IV for the time being; however, the data within SYSCOM is
currently also contained in the screen control unit (described in Section 111.6
of the Installation Guide). The screen control unit will replace SYSCOM in
the near future, so it is desirable to make the extra effort now to move
user and System programs away from SYSCOM dependencies.

427

Users' Manual
Appendices

Examples:

Beforel

428

(*$U-*)
program System_level;

(*$1 GLOBALS.TEXT*)

segment procedure 1l_style(duml,dum2:integer);

segment procedure dummy2;
begin
end;

segment procedure dummy9;
begin
end;

segment procedure mysegment;
begin

end;

begin (*ll_sty le*)

mysegment;

end;

begin (*dummy outerblock*)
end.

Afterl

Users' Manual
Appendices

In this example, KERNEL.CODE is the file containing the kernel unit's interface
section.

program I V sty Ie;
uses (*$U KERNEL.CODE*) kernel;

segment procedure mysegment;
begin

end;

mysegment;

end.

429

Users' Manual
Appendices

Before2

430

(*$U-*)
program System level;
type myuserinforec = record

stub: integer;
end;

var filler: array 0 •• 6 of integer;
userinfo: myuserinforec;

segment procedure 1l_style(duml,dum2:integer);

segment procedure dummies2to9;
begin
end;

segment procedure mysegment;
begin

end;

mysegment;

end;

begin (*dummy outerblock*)
end.

After2

(*$U-*)
program IV_style_I;

unit kernel (*dummy*);
interface
type myuserinforec = record

stub: integer;
end;

var filler: array 0 •• 6 of integer;
userinfo: myuserinforec;

implementation
end;

uses kernel;

segment procedure mysegment;
begin

end;

mysegment;

end.

Users' Manual
Appendices

431

Users' Manu al
Appendices

2.4 Architectural Ramifications (Dirty Tricks)

The physical in-memory relationship between parameters and declared variables has
changed in Version IV; therefore, programs which depend on the old architecture
must be changed. The following is an example (courtesy of the Version 11 Filer) of
this problem:

procedure GetAddr (var MyV'ar: MyType);
var TrickArray 0 •. 0 of integer;
AddressOf ActualParameter: "MyType;

begin
(*$R-*)
AddressOf A"ctualParameter .- TrickArray -1
(*$R+*)

end;

This procedure could obtain the memory address of a variable of type MyType by
making the assumption that local variables are allocated in memory immediately
following the procedure's parameters. This. assumption is true in. version 11, but
false in Version IV. Programs infected with machinations of this 11k will need to
be modified.

2.5 Dummy Segment Procedures And The System Librarian

In ve rs ions 11 and 111, it is possible to create and maintain programs larger than
can be compiled in one shot (due to memory constraints) by compiling each
segment of the program separately. The tools used for this task are the System
Librari an and a collection of programs, each of which contains only the necessary
variable declarations; a single segment procedure, and $ufficient dummy segment
procedure declarations to assign the correct segment number to the real code
segment.

It is assumed that the above description is sufficient to elicit either a nod of
recognition from the experienced System user or a squawk of delight from the user
who was previously unaware of this practice; in both cases, the party is over!
Because the IV.O compiler performs on-the-fly assignment of local segment numbers
to a program (standard and System procedure calls get local segment numbers), the
replacement of a code segment by a dummy body may cause a different segment
nu mber to be assigned to the target segment procedure. There exists no simple
method for determining the local segment number assigned to most segment
procedures in a program containing multiple segment procedures, explicitly used
units, and implicitly used Operating System units.

To wi t, using LIBRARY to combine the separately compiled segment procedures
will not produce executable codefiles. Version IV presents an elegant solution to

432

Users' Manual
Appendices

programs which have required this treatment in the past: modularize the program
by splitting it into a collection of separately compilable Version IV units.

2.6 Compiling Units

Version IV accepts the syntax for regular, separate, and intrinsic units as input, but
maps them all into a single unit scheme. The Operating System unit names are
reserved for System use only; this feature is enforced in the Compiler by allowing
the compilation of units with reserved names only when the U- Compiler option is
used. A list of the reserved unit names may also be found in the Internal
Architecture Guide.

Reserved Unit Names

KERNEL
HEAPOPS
CONCURRENCY
STRINGOPS
REALOPS
LONGOPS
FILEOPS
COMPUNIT

PASCALIO
OSUTIL
GOTOXY
SCREENOPS
EXTRA HEAP
EXTRAIO
DEBUGGER
SOFTOPS

Version IV units must contain an interface and an implementation section, even if
one or the other iSempty. Intrinsic data units from version 11.1 may reqUire the
insertion of the reserved word 'implementation' before the 'end' in order to
compile successfully.

2.6 Program Headings

Contrary to past versions of the UCSD Pascal Compiler, program or unit headings
(i.e., Program stuff; or Unit stuff;) are mandatory. The Compiler will give an error
for programs lacking a heading.

2.7 Standard Real-Valued Functions

Version IV does not require the statement 'uses transcendentals' when a program
uses standard real-valued functions such as SIN and COS; if present, it must be
removed before you compile the program under IV.D. (This is true for all the IV.D
implementations.)

433

Users' Manual
Appendices

3. Converting Assembly Language Programs

3.1 Macro Parameters and ASCn Strings

Macro parameters are not expanded within ASCll strings in the Version IV
Adaptable Assemblers; this is not compatible with previous assemblers. It was
necessary to sacrifice the calf of flexibility on the altar of reliability. (P.S. -
apologies are due to those who liked and used this feature.)

3.2 Assembler Identifiers

Two changes have occurred to assembly language identifiers in Version IV. First,
lower-case alphabetic charqcters are allowed in identifiers; as in Pascal, they are
internally mapped into their upper-case equivalents. Second, the underscore
character ' , is no longer significant in identifiers; this too is consistent with
Pascal usage:-

Example of equivalent assembly language identifiers:

readloop
Read Loop
READLOOP

3.3 PascalI Assembly Language Procedure Interface

Byte-array variables (types string and packed array of char) passed as value
parameters are handled differently in Version IV. A two-word string descriptor is
passed in place of the old one word pointer; its processing will require some extra
assembly code.

Consult Chapter Vlli for more details.

The order and number of parameter words pushed on the stack prior to an
assembly procedure/function call is different for Version IV. The function return
words are now beneath all parameters on the stack, rather than being on TOS.
Assembly procedures have 0 words of function return space on the stack, real­
valued functions have 2 words of return space, and all other functions have 1 word
of return space. As in previous versions, these words must be popped from the
stack by the assembly routine before the function return value is pushed.

Again, you should consult Chapter VIlle

434

3.4 Assembly Level Stack Manipulation

Users' Manual
Appendices

Assembly routines which allocate memory above the hardware stack pointer for
data space may require changes. In Version IV, the code pool can be as close as
40 words to the hardware top of stack; because assembly routines cannot determine
the code pool's location, the routines must use the stack sparingly in order to
prevent later System crashes.

3.5 Radix Switch Characters

All versions of the Adaptable Assembler now use the same characters to indicate
the radix of a number; thus, source code for some versions may require changes.
The two most significant changes are:

Binary integer constants are defined with the radix switch character 'T'.

Octal integer constants are defined with the radix switch character'Q'.

Refer to Chapter Vlli for more details.

435

Users' Manual
Appendices

XI.I Appendix 1 -- Railroad Diagrams for UCSD Pascal Syntax

These railroad diagrams are provided as an aid to understanding UCSD Pascal
syntax. They show the full syntax, but do not attempt to represent the internal
workings of the Compiler.

436

< compilation>

block

unit
definition

uses
clause

unit
definition

Users' Manual
Appendices

437

Users' Manual
Appendices

438

<unit definition>

unit
identifier

interface
part

implementation
part

statement

<block>

label
declaration

constant
definition

type
definition

variable
declaration

routine

statement

Users' Manual
Appendices

439

Users' Manu al
Appendices

440

<uses clause)

< interface part>

uses
clause

constant
definition

type
definition

variable
declaration

routine
heading

unit
identifier

< implementation part>

uses
clause

label
declaration

constant
definition

type
definition

variable
declarati on

routine

<routine heading)

PROCEDURE

PROCESS

FUNCTION

<label declaration)

LABEL

-"'(constant definition)

CONSTANT

identifier

identifier

unsigned'
integer

identifier

'.

parameter
list

parameter
list

Users' 'Manual
Appendices

constant

type
identifier

441

Users' Manu al
Appendices

< type definition>

TYPE

< variable declaration>

VAR

442

identifier type

identifier type

ype)

PACKED

FILE

. SET

PACKED'

simple type

type identifier

type

constant

simple type

type

Users' Manual
Appendices

simple type ~----------~~

field list

443

Users' Manual
Appendices

< field list >

constant

< simple type>

(

444

identifier

identifier

type identifier

identifier

,

constant ••

type 1----,._-1&-----.,.. ..

type identifier

field list

"
.

) .1II1II ,

constant

<routine)

PROCEDURE

identifier

PROCESS

. ·FUNCTION identifier

FORWARD

EXTERNAL

block

parameter
list

parameter
list

type
jdentifier

Users' Manual
Appendices

445

Users' Manual
Appendices

446

(statement)

unsigned integer

variable

function
identifier

procedure
identifier

constant

,

expression

statement

variable
identifier

expression

expression

statement

statement

expression

statement

statement

unsi gned integer

< expression>

simple expression

~ .

< simple expression>

< parameter list>

identifier

simple expression

type identifier

Users' Manual
Appendices

447

Users' Manual
Appendices

< factor>

< term>

448

function identifier

(

expression

factor

unsigned constant

variable
identifier

expression

,

expression

)I-------'l

expression

<constant)

< unsigned number)

unsigned integer

constant identifier

unsigned number

character

unsigned integer

Users' Manual
Appendices

449

Users' Manual
Appendices

< unsigned integer>

-~(---..!·c digit)J----"-J~~ ..

<identifier>

NOTE: The underscore character' -' is accepted but not significant

< unsigned constant>

constant identifier

unsigned number

character

450

XI.J Appendix J -- Pascal Syntax Errors

1: Error in simple type
2: Identifier expected
3: un'implemented error
4: ')' expected
5: ': ' expected
6: Illegal symbol (terminator expected)
7: Error in parameter list
8: 'OF' expected
9: '(' expected
10: Error in type
11: " expected
13: 'END' expected
14: ';' expected
15: Integer expected
16: ' =' expected
17: 'BEGIN' expected
18: Error in declaration part
19: error in <field-list>
20: '.' expected
21: '*' expected
22: 'INTERFACE' expected
23: 'IMPLEMENTATION' expected
24: 'UNIT' expected

50: Error in constant
51: ': =' expected
52: 'THEN' expected
53: 'UNTIL' expected
54: 'DO' expected
55: 'TO' or 'DOWNTO' expected in for statement
56: 1F' expected
57: 'FILE' expected
58: Error in <factor> (bad expression)
59: Error in variable

60: Must be of type 'SEMAPHORE'
61: Must be of type 'PROCESSID'
62: Process not allowed at this nesting level
63: Only main task may start processes

101: Identifier declared twice

102: Low bound exceeds high bound

Users' Manual
Appendices

451

Users' Manual
Appendices

103: Identifier is not of the appropriate class
104: Undeclared identifier
105: sign not allowed
106: Number expected
107: Incompatible subrange types
108: File not allowed here
109: Type must not be real
110: <tagfield> type must be scalar or subrange
Ill: Incompatible with <tagfield> part
112: Index type must not be real
113: Index type must be a scalar or a subrange
114: Base type must not be real
115: Base type must be a scalar or a subrange
116: Error in type of standard procedure parameter
117: Unsatisified forward reference
118: Forward reference type identifier in variable declaration
119: Re-specified params not OK for a forward declared procedure
120: Function result type must be scalar, subrange or pointer
121: File value parameter not allowed
122: A forward declared function's result type can't be re-specified
123: Missing result type in function declaration
124: F -format for reals only
125: Error in type of standard procedure parameter
126: Number of parameters does not agree with declaration
127: Illegal parameter substitution
128: Result type does not agree with declaration
129: Type conflict of operands
130: Expression is not of set type
131: Tests on equality allowed only
132: Strict inclusion not allowed
133: File comparison not allowed
134: Illegal type of operand(s)
135: Type of operand must be Boolean
136: Set element type must be scalar or subrange
137: Set element types must be compatible
138: Type of variable is not array
139: Index type is not compatible with the declaration
140: Type of variable is not record
141: Type of variable must be file or pointer
142: Illegal parameter solution
143: Illegal type of loop control variable
144: Illegal type of expression
145: Type conflict
146: Assignment of flIes not allowed
147: Label type incompatible with selecting expression
148: Subrange bounds must be scalar

452

149: Index type must be integer

150: Assignment to standard function is not allowed
151: Assignment to formal function is not allowed
152: No such field in this record
153: Type error in read
154: Actual parameter must be a variable
155: Control variable cannot be formal or non-local
156: Multidefined case label
157: Too many cases in case statement
158: No such variant in this record
159: Real or string tagfields not allowed
160: Previous declaration was not forward
161: Again forward dec-Iared
162: Parameter size must be constant
163: Missing variant in declaration
164: Substition of standard proc/func not allowed
165: Multidefined label
166: Multideclared label
167: Undeclared label
168: Undefined label
169: Error in base set
170: Value parameter expected
171: Standard file was re-declared
172: Undeclared external file
173: FORTRAN procedure or function expected
174: Pascal function or procedure expected
175: Semaphore value parameter not allowed

182: Nested UNITs not allowed
183: External declaration not allowed at this nesting level
184: External declaration not allowed in INTERFACE section
185: Segment declaration not allowed in INTERFACE section
186: Labels not allowed in INTERFACE section
187: Attempt to open library unsuccessful
188: UNIT not declared in previous uses declaration
189: 'USES' not allowed at this nesting level
190: UNIT not in library
191: Forward declaration was not segment
192: Forward declaration was segment
193: Not enough room Tor this operation
194: Flag must be declared at top of program
195: Unit not importable

201: Error in real number - digit expected
202: String constant must not exceed source line

,Users' Manual
Appendices

453

Users' Manual
Appendices

203: Integer constant exceeds range
204: 8 or 9 in octal number
250: Too many scopes of nested identifiers
251: Too many nested procedures or functions
252: Too many forward references of procedure entries
253: Procedure too long
254: Too many long constants in this procedure
256: Too many external references
257: Too many externals
258: Too many local files
259: Expression too complicated

300: Division by zero
301: No case provided for this value
302: Index expression out of bounds
303: Value to be assigned is out of bounds
304: Element expression out of range
398: Implementation restriction
399: Implementation restriction

400: Illegal character in text
401: Unexpected end of input
402: Error in writing code file, not enough room
403: Error in reading include file
404: Error in writing list file, not enough room
405: 'PROGRAM' or 'UNIT' expected
406: Include file not legal
407: Include file nesting limit exceeded
408: INTERFACE section not contained in one file
409: Unit name reserved for system
410: disk error

500: Assembler error

454

XI.K

0 000
1 001
2 002
3 003
4 004
5 005
6 006
7 007
8 010
9 011

10 012
11 013
12 014
13 015
14 016
15 017
16 020
17 021
18 022
19 023
20 024
21 025
22 026
23 027
24 030
25 031
26 032
27 033
28 034
29 035
30 036
31 037

Users' Manual
Appendices

Appendix K -- American Standard Code for Information Interchange

00 NJL 32 040 20 SP 64 100 40 @ 96 140 60
01 SG-I 33 041 21 65 101 41 A 97 141 61 a
02 STX 34 042 22 " 66 102 42 B 98 142 62 b
03 ETX 35 043 23 /I 67 103 43 C 99 143 63 c
04" EaT 36 044 24 $ 68 104 44 0 100 144 64 d
05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e
06 AD< 38 046 26 & 70 106 46 F 102 146 66 f
07 BEL 39 047 27 71 107 47 G 103 147 67 9
08 BS 40 050 28 (72 110 48 H 104 150 68 h
09 HT 41 051 29) 73 III 49 1 105 151 69
OA LF 42 052 2A * 74 112 4A J 106 152 6A j
DB VT 43 053 2B + 75 113 4B K 107 153 6B k
DC FF 44 054 2C 76 114 4C L 108 154 6C 1
00 CR 45 055 20 77 115 40 M 109 155 60 m
OE so 46 056 2E . 78 116 4E N 110 156 6E n
OF 51 47 057 2F / 79 117 4F a III 157 6F 0

10 OLE 48 060 30 0 80 120 50 P 112 160 70 P
11 OCI 49 061 31 1 81 121 51 Q 113 161 71 q
12 OC2 50 062 32 2 82 122 52 R 114 162 72 r
13 OC3 51 063 33 3 83 123 53 5 115 163 73 s
14 OC4 52 064 34 4 84 124 54 T 116 164 74 t
15 NAK 53 065 35 5 85 125 55 U 117 165 75 u
16 SYN 54 066 36 6 86 126 56 V 118 166 76 v
17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
18 CAN 56 070 38 8 88 130 58 X 120 170 78 x
19 EJv1 57 071 39 9 89 131 59 Y 121 171 79 y
lA SUB 58 072 3A 90 132 5A Z 122 172 7A z
IB ESC 59 073 3B ; 91 133 5B [123 173 7B {
1C FS 60 074 3C < 92 134 5C \ 124 174 7C I
10 GS 61 075 3D = 93 135 50] 125 175 70 }
IE RS 62 076 3E > 94 136 5E 126 176 7E
IF US 63 077 3F ? 95 137 5F 127 177 7F DEL

455

Users" Manual
Appendices

456

INDEX

Users' Manual
Index

N ate: In the following index, IG refers to the Installation Guide, and AG to the
Internal Architecture Guide. Users interested in certain topics should refer to
those manu als as well; this index does not attempt to reference them in detail
(sorry). Users interested in FORTRAN or BASIC should refer to the appropriate
manual.

Boldface indicates the principal description of an item.

Adaptable System
A(djust
array

ASCII
A(ssemble
assembled code and assemblers

ATTACH

bad blocks
B(ad blocks
BIOS
block-structured device
BLOCKREAD
BLOCK WRITE
bootstrap
byte sex

CASE statement
chaining
CHAIN
C(hange
CLOSE
code segment
codefile

commands

comments
C(ompile
compiled listing

13, 227, IG
98, 102, 126
145, 146, 157, 162, 171,
178-179, 191, 192, 199, 210,
211, 216, 226, 227, 229
455
33
1, 4, 18, 19, 39, 42, 167,
247-334, 346, 349, 407-411, AG
168, 190, 356, 357, IG

10, 56, 81
56
13, AG, IG
12, 46, 66, 79, 194
27, 30; 85, 149, 154, 191
30, 149, 154
1, 7, 9, 37, 63, 78, IG
83, 249-250, 311, 349, IG, AG

169
19
14, 19, 27, 30, 193, 197, 214
52, 57-59
149, 159, 160, 161, 174, 194
see segment
9-10, 16-19, 32, 38, 41, 43,
45, 46, 62, 73, 85, 310-311,
313, 318, 335, 348-352,
364;..367, 368, 376-382, AG
3, 23, 24, 32-43, 55-87,
97, 121-126, 128-141
170, 260
3, 10, 24, 34
34, 239-241

457

Users' Manual
Index

Compiler

compile-time options
COMPRESSOR
CONCAT
concurrent processes
condi tional assembly
conditional compilation
CONSOLE:

control characters
converting old source
C(opy
COpy
COPYDUPDIR
CP/M
cross-referencer
cursor

D(ate
D(ebug
DEBUGGER
DECODER
default disk
D(elete
DELETE
device numbers
devices
directives
directory

disassembly
disks
disk size
disk space
DISPOSE
OLE

E(dit
Editor

EOF
EOLN

458

8, 16, 23, 32, 34, 41, 42, 157,
170, 203, 234-245, 345
16, 17, 170, 236-245
19, 310, 364-367
148, 195
144, 168, 353-361, 417
288-290
237, 238, 244-245
13, 29, 47, 49, 63, 64, 75, 87,
148, 150, 152, 234, 235,
241, 315, 376
92, 98-99, Ill, 150, IG
425-435
98, 103-104, 106, 126
196
86, 383
IG
see XREF
89, 92, 98-99, 102-126, 133, IG

60, AG
see DEBUGGER
201, 391-397
376-382
7, 12, 27, 28, 30, 49, 69, 79
95, 98, 103, 105-106, 126
148, 197
12, 13, 26, 79, 403
12-15, 26
264-287, 301-302
12, 36, 52, 53, 57, 58, 60, 61,
62, 64-66, 67, 71-72, 82-83,
84-87, 383-384, AG
see DECODER
see floppy disks
IG
IG
163
45, IG

3, 35
1, 3, 8, 9, 10, 23, 24, 33, 35,
40, 42, 89-126, 316,
also see Y ALOE
29, 150, 155, 161, 191, 21 7
148, 151, 155, 217

Emulator
eX(amine
EXCEPTION
eX(change
eX(ecute

execution errors
execution option strings
EXIT
expression
E(xtended list
EXTERNAL
external routines

file

file-handling
filenames
F(ile
Filer

FILLCHAR
FOnd
floppy disks

FUNCTION

G(et
GET
GOTO
GOTOXY

H(alt
HALT
heap

identi fiers
implementation
IMPLEMENT A TION

include
indentation
indentation code
ICni tialize
initialize disks
input

Users' Manual
Index

see Interpreter
56, 81
14, 27, 30, 198, 214
125
10, 14, 23, 24, 27, 28, 31,
43, 127, 193, 363, 376
401, AG
27-31, 43, 193, 197, 214
172-174, 345

61, 84, 87
18, 167, 304, 340, 346, 347
18, 167, 304, 346, 347, AG

4, 7-11, 45-87, 152-157,
194, 217, AG
1, 36, 45-87, 194, AG
7, 9, 32, 45, 48-50, 52-54, 90
3, 36
3, 7, 10, 11, 12, 13, 23, 24,
30, 36, 45, 47, 51-87, 398
199, 210, 220
98, 99, 100, 107-108, 123, 126
3, 4, 7, 9, 12, 26, 56, 63, 67,
383-384, 398-399, IG
see routine

10, 11, 30, 47, 52, 57, 62
150, 152, 153, 155-156, 160, 217
172, 345
13, 200, IG

24, 30, 37
30, 201
206, 207, 215, 231, 361, AG·

251
143, 176, IG, AG
17-18, 165-166, 339, 340,
342-346
16, 238-239, 343

45, IG
8, 9, 30, 38
82-83
12-15, 27, 29-31, 40, 144,

459

Users' Manual
Index

INPUT
ICnsert

INSERT
INTERACTI VE
INTERFACE

Interpreter
interrupts
intrinsics

INTRINSIC UNIT
I/O errors
IORESUL T

J(ump

KEYBOARD
K(olumn
K(runch

L(dir
LENGTH
LIBMAP
library
LIBRARY
library text file
limitations (size)
LCink
Linker

list directory
log
long integers
lost files
LSI-II

macro
M(ake
M(argin
MARK
MARKDUPDIR
markers
MEMAVAIL
MEMLOCK

460

149-162, 224-229, 413-414
27, 29-31, 40, 150, 151, 152, 184
91, 93-94, 98, 99, 103,
109-111, 126, 123
148, 202
152-153, 158, 160
17-18, 165-166, 339, 340,
342-346, 376
4, 9, AG
AG, also see A TT ACH
13, 143, 144, 148, 149, 168,
189-245
346
402, AG
149, 203-204, 225, 238, 402

98, 112, 121

46, 150, 152, 184
113, 126
63, 84

64-66, 87
148, 205
see DECODER
17, 346, 350-352, AG
13, 17, 199, 350-352
17, 27-28, 346.
188
18, 24, 39, 43
3, 10, 18, 23, 39, 41, 46, 167,
298, 310, 336, 347-349, AG
6:1, 64-66, 84, 87
see M(onitor
175-177
84-87, 383-384, 398-399
224, 228, 325, IG

140-141, 261, 291-297
61, 67, 84-85, 87
114-115, 123, 126
163, 206, 215
86, 383
see J(ump and S(et
163, 207
18, 208,AG

memory allocation and management

MEMSWAP
M(onitor
MOVELEFT
MOVERIGHT
M(unch

native code
N(ew
NEW

Operating System

options
output

OUTPUT

PACK
packed variables
P(age
Pascal

PATCH
P-code
PDP-II
POS
P-machine
P MACHINE
predeclared words
prefix
P(refix
prefix disk
priority
PRINTER:

PROCEDURE
program headings
PROCESS
PROCESSID
promptline
pseudo comments
pseudo-ops

Users' Manual
Index

18, 19, 144, 163-166, 206-209,
230-232, 335, 338-339,
415-416, AG
18, 209, AG
14, 27, 40
210, 211, 220
210, 211, 220
114-115

see assemblers
10, 11, 47, 68
163, 206, 232

3, 4, 8, 26, 46, AG,
also see System
see execution options
12-15, 27, 29-31, 144, 149-162,
224-229, 315, 318, 413-414
27, 29-31, 150, 152, 184

182
178-182, AG
98, 116
4, 16, 18, 20, 143-245,
304-309, 339, 345, 346, 353,
412-420
85-86" 368-375
4, 9, 376-382, 391-397, AG
10, 224, 228, 325, IG
148, 212
4, 304-309, 310, 391, AG
AG
405-406
12, 27-28, 69
28, 69
12, 28
AG, also see concurrent processes
12, 13, 32, 46, 47, 65, 75, 87,
160, 376
see routine
184
221, 353-361, also see routine
see START
3, 8, 24-25, 51, 90, 391
170, 236

461

Users' Manual
Index

PUT
PWROFTEN

quiet
Q(uit

range checking
READ
READLN
RECOVER
recovering lost files
REDIRECT
redirection
RELEASE
RELOC
R(emove
R(eplace
reserved words
RESET

residence (in memory)
REWRITE
routine

RT-ll
R(un

S(ave
SBIOS
SCAN
screen control
Screen Oriented Editor
SEEK
segment

SEGMENT

segment routine

semaphores
SEMINIT
separate compilation

SEPARA TE UNIT
set
S(et

462

155-156, 160, 217
213

see compile-time options
30, 70, 96, 97, 117-118, 135

242
148, 151, 152, 158-159
148, 152, 158-159
85, 86, 398-399
84-87, 383-384, 398-399
14, 27, 30, 214
14, 27, 29-31, 38
163, 215
see COMPRESSOR
71-72
98, 99, 100, 119-120, 123, 126
404
150, 152, 153, 158, 159,
160, 161, 191, 192
see memory allocation
30, 158, 159, 161, 191, 192
16, 143, 172, 183, 335-361,
385-390
127, IG
3, 10, 11, 24, 30, 41, 234

10, 11, 52, 62, 73
13, AG, IG
216
IG, and see terminal handling
see Editor
46, 155-156, 217
16-17, 18-19, 164, 208, 209,
230, 335, 340, 350, 352, AG
16-17, 18-19, 164,
335, 340-341
164, 335, 338-339, 340-341,
345
190, 218, 219, 233,-356-360

. 168, 218, 356, 357
16-19, 144, 163-166,
336-337, 342-346
346
185-186
97, 100, 102, 109, 110, Ill,

SETUP
SIGNAL

SIZEOF
size limitations (general)
size specification (files)
SQUISH
stack
START
STR
strings

swapping

syntax diagrams
syntax errors:

assemblers
Pascal

System

SYSTEM.ASSMBLER
SYSTEM.COMPILER
SYSTEM. EDITOR
SYSTEM.FILER
SYSTEM.LIBRARY

SYSTEM.LINKER
SYSTEM.LST. TEXT
SYSTEM.MISCINFO
SYSTEM.PASCAL
SYSTEM.STARTUP
SYSTEM.SYNT AX
SYSTEM. WRK.CODE

SYSTEM. WRK. TEXT

terminal handling

text
text editing
textfiles

Users' Manual
Index

112, 114, 115, 121-123
13, 109, 125, 128, 150, 234, IG
168, 190, 204, 218,
219, 356, 357, 358
220
188
52, 67
see COMPRESSOR
304-309, AG
168, 221, 353-355
176, 222
100, 144, 145-148, 162, 195,
196, 197, 202, 205, 212, 222,
252, 412
26, AG,
and see memory allocation
436-450

407-411
451-454
3, 7-9, 10, 11, 12, 13, 20-21,
23-43, 46, 48, 63, 193, 200,
335, 347, 361, 363, 391, AG, IG
7, 8, 33, 312, AG, IG
8, 34, AG, IG
7, 8, 35, AG, IG
8, 36, AG, IG
8, 17, 18, 28, 41, 243, 337,
346, 347, 350, AG, IG
8, 37, 347-349, AG, IG
10, AG, IG
9, 13, 38, 234, 237, 241, AG, IG
7, 8, 63, AG, IG
8, 38, AG, IG
8, 34, 235, AG, IG
10, 32, 34, 47, 71, 234, 313,
348, AG, IG
10, 33,34, 47, 71, 11 J, AG, IG

9, 13, 25, 89, 92, 109, 125,
200, 368, IG
152-153
see Editor
9, 10, 16, 29, 32, 33, 35, 40,
41, 45-46, 67, 73, 109, 115,
150, 368

463

Users' Manual
Index

TIME
transcendental functions
T(ransfer
transportability
TRUNC

U(ser restart
UNIT

unit numbers
UNITBUSY
UNITCLEAR
UNITREAD
UNITSTATUS
UNITWAIT
UNIT WRITE
UNPACK
untyped files
updating (a workfile)
user library
USERLIB. TEXT
USES
utilities

VARAVAIL
VARDISPOSE
VARNEW
V(erify
versions of the System
volume

volume names

volume numbers
V(olumes

WAIT

W(hat
wildcards
workfile

WRITE

464

223
187
52, 74-78
420, 425-435
176

42
14, 16-17, 165-166, 243, 335,
336-339, 342-346, 350, 351,
352, 376
see device numbers
149, 224
149, 225
14, 26, 30, 85, 149, 203, 226
149, 227
149, 228
14, 26, 27, 30, 149, 203, 229
182
154, 191, 192
117-118

17, 28, 337, 346
243, 345, 376
363-399, IG

163, 207, 230, AG
163, 231, AG
163, 206, 232, AG
99, 124
421-424
12-15, 46, 49, 51-52, 56, 57,
63, 64, 67, 69, 74-78, 79, 81,
IG
12-15, 49, 51-52, 56, 57, 63,
64, 67, 69, 73, 74-78, 79, 81
see device numbers
69, 79

168, 204, 218, 219, 233,
356, 357, 358
80
52-54, 57, 71-72, 74, 76-77
9, 10-11, 31, 33, 34, 35,
36, 41, 47, 62, 68, 73, 80,
91, 96, 117, 127
30, 108, 152, 162

WRITELN

eX(amine
eX(change
eX(ecute

XREF

YALOE

Z(ap
Z(ero
Z8
Z80

6502
6800
6809
8080
9900

106, 108, 162,

56, 81
125

169

Users' Manual
Index

10, 14, 23, 27, 28, 31,
43, 85, 86, 127, 193, 363, 376
385-390

1, 8, 35, 127-141

103, 126
82-83, 86, 87, 398
334, IG
10, 326, IG

10, 327-328, IG
329-330, IG
333, IG
331, IG
332, IG

465

NOTES

(

UCSD p-System ™ PROBLEM REPORT Date ______ _

Reportedby---

Address __ ___

Phone (x Registration # _____________________________ _
Notice: Your registration number is required in order for us to get a reply to you concerning the reported error.

Please be as explicit as possible in describing the reported error, and if applicable, please attach a listing.
Thank you.

D Please check here if a reply is not necessary.

Is this report a ___ software problem? ___ document problem? ___ design suggestion?

Documentpage#-----------

Program affected (circle as many as apply): Version ____________ (e.g. 11.0.A.3)

Editor, Filer, Operating System, Compiler (which language) ______________________ _

Linker, Assembler (which processor) _________________ , Other (specify) _________ _

Did the system report an execution error? If so, what was the error #? ____________________________ _

~hatwasthetextoftheerrormessage?--____ ~

... and the P-code coordinates: S# ___ P# ___ I# ___ ?

~hat is the processor for your system? (Z-80, LSI-11, etc.) ____________________________________ _

~hoisthemanufacturerofyourhardware? ____________________ ~ ________________________ _

~hat terminal do you use? ______________________________ ~__._-----------------------

~hat is the problem?

~hat steps preceded the appearance of the problem?

~hat can we do to duplicate it?

Have you found a way to avoid the problem, and if so, what is it?

How seriously does this problem affect your projects?

Please feel free to add more pages if you run out of room.

9494 Black Mountain Rd., San Diego, CA 92126 (714) 578-6105 TWX: 910-335-1594

For SofTech Microsystems' Use

Report number: . _________ Impact: ________ Versions affected: _______ _

Symptom:

Error Description:

Problem:

Temporary Solution:

Fix:

Routing (for SofTech Microsystems' use)

o to, ______ ~ ______ for _____________ Initial, ______ _

2 0 to, _____________ for _____________ Initial, ______ _

3 0 to' _____________ for _____________ Initial, ______ _

-ALL-PURPOSE COUPON-

Pascal User's Group, c/o Rick Shaw
P.O. Box 888524

Atlanta, Georgia 30338 USA

NOTE

• Membership fee and All Purpose Coupon is sent to ybur Regional Representative.

(15-Sep.-80)

• SEE THE POLICY SECTION ON THE REVERSE SIDE FOR PRICES AND ALTERNATE ADDRESS if you are
located in the European or Australasian Regions.

• Membership and Renewal are the same price.

• Note the discounts below, for multi-year subscription and renewal.

• The U.S. Postal Service does not forward Pascal News.

USA
o Enter me as a new member for: 0 1 year $10.

o Renew my subscription for: 0 2 years $18.

o 3 years $25.

o Send Back Issue(s)

o My new address/phone is listed below

Europe
£ 6.

£10.

£14.

Aust.
A$ 8.

A$15.

A$20.

o Enclosed please find a contribution, idea, article or opinion which is submitted for publication in the Pascal
News.

o Comments: ________________________________ _

$
ENCLOSED PLEASE FIND: A$

£--.--
CHECK no. _____ _

NAME ___ _

ADDRESS __ ___

PHONE __________ _

COMPUTER ______________ _

DATE ________________ _

JOINING PASCAL USER'S GROUP?

• Membership is open to anyone: Particularly the Pascal user; teacher, maintainer, implementor, distributor, or~
just plain fan.

• Please enclose the proper prepayment (check payable to "Pascal User's Group"); we will not bill you.

• Please do not send us purchase orders; we cannot endure the paperwork!

• When you join PUG any time within a year: January 1 to December 31, you will receive all issues of Pascal
News for that year.

• We produce Pascal News as a means toward the end of promoting Pascal and communicating news of events
surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves and prefer
to share it through Pascal News. We desire to minimize paperwork, because we have other work to do.

• American Region (North and South America): Send $10.00 per year to the address on the reverse side. Interna­
tional telephone: 1-404-252-2600.

• European Region (Europe, North Africa, Western and Central Asia): Join through PUG(UK). Send £5.00 per year
to: Pascal Users Group, clo Computer Studies Group, Mathematics Department, The University, Southampton
S09 5NH, United Kingdom; or pay by direct transfer into our Post Giro Account (28 513 4000); International
telephone: 44-703-559122 x700.

• Australasian Region (Australia, East Asia-incl. Japan): PUG(AUS). Send $A 10.00 per year to: Pascal Users
Group, c/o Arthur Sale, Department of Information Science, University of Tasmania, Box 252C GPO, Hobart,
Tasmania 7001, Australia. International telephone: 61-02-23 0561 x435

-~---

PUG(USA) produces Pascal News and keeps all mailing addresses on a common list. Regional representatives
collect memberships from their regions as a service, and they reprint and distribute Pascal News using a proof
copy and mailing labels sent from PUG(USA). Persons in the Australasian and European Regions must join
through their regional representatives. People in other places can join through PUG(USA).

RENEWING?

• Please renew early (before November and please write us a line or two to tell us what you are doing with
Pascal, and tell us what you think of PUG and Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

• Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year means
that we eliminate many requests for back issues ahead of time, and we don't have to reprint important informa­
tion in every issue-especially about Pascal implementation!

• Issues 1-8 (January, 1974-May 1977) are out of print. (A few copies of issue 8 remain at PUG(UK) available for
£2 each.)

• Issues 9-12 (September, 1977-June, 1978) are available from PUG(USA) all for $15.00 and from PUG(AUS) all
for $A15.00

• Issues 13-16 are available from PUG(UK) all for £10; from PUG(AUS) all for $A 15.00; and from PUG(USA) all
from $15.00.

• Extra single copies of new issues (current academic year) are: $5.00 each-PUG(USA); £3 each---,-PUG(UK);
and $A5.00 each-PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

• Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con
ference announcements, reports, implementation information, applications, etc. are welcome. Please sene
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5 cm. wide) form.

• All letters will be printed unless they contain a request to the contrary.

NOTES

NOTES

