
II ·
me '

A,fificiallnfelligence
Sysfen1s

Lisp User Packages

- ---.. -~--' - --- ~ -

.~

en·VOs

LISPUSERS' MODULES MANUAL

309000
Medley Release
September 19?8

Address comments to:
Envos Corporation
1157 San Antonio Road
Mountain View, CA 94043

LlSPUSERS' MODULES MANUAL

309000

Medley Release

September, 1988

Copyright @ 1988 by Envos Corporation.

All rights reserved.

Envos is a trademark of Envos Corporation

Xerox@ is a registered trademark of Xerox Corporation.

UNIX@ is a registered trademark of AT&T Bell Laboratories.

Copyright protection includes material generated from the software
programs displayed on the screen, such as icons, screen display looks,
and the like.

The information in this document is subject to change without notice
and should not be construed as a commitment by Envos Corporation.
While every effort has been made to ensure the accuracy of this
document, Envos Corporation assumes no responsibility for any errors
that may appear.

en-vas TABLE OF CONTENTS

TABLE OF CONTENTS

ACE ... 1
ADDRESSBOOK .. 8
AIREGIONS .. 11
ANALYZER ... 19

- BACKGROUNDIMAGES .. 20
BACKGROUN OM ENU ... 23
BITMAPFNS ... 26
CALENDAR .. 27
CANVASCONVERTER .. 34
CO 36
CHATE MACS ... 38
CHATSERVER .. 40
CH ECKPOINT ... 43
CL-TTYE DIT 44
COM PARE SOURCES .. 45
COMPARETEXT ... 48
COMPILEBANG ... 50
COURIERDEFS ... 51
COURIEREVALSERVE .. 52
COURI ERI MAG ESTREAM .. 53
COURIERSERVE ... 55
CROCK •.......•..•.•.....•. 58
DATE FORMAT -EDITOR ..•..•. 60
DEFAUL TSUBITEMFN•...••...•... 62
DIGI-CLOCK •..•....... 63
DOC-OBJECTS ... 65
DONZ 68
DSPSCALE ... 70
EDITBG •.•.....................................•.......•...••....•. 72
E DITKEYS .. 73
EQUATIONS .. 74

EQUATION EDITOR PROGRAMMERSGUIDE ... 77
EQUATIONEXAMPLES ~ .. 85

ETH E RBOOT .. 87
FILEWATCH ... 89
FILLREGION ... 92
FTPSERVER-MULTI-CONNECTIONS .. 94
GRAPH CALLS .••.•..•.••........•.....•................•.........•................•.......••........••....••.....•.•. 95
GREP .•..•.•••...•........•...•.••....•...................................•.............•................................ 100
GRID-ICONS .. 101

en·vos TABLE OF CONTENTS

HANOI •...•..•.•.•...•...••..•.................•.•...•.••....•..•..•...........•..•....•........•........•......•.••... 104
HASH BUFFER •..••..••.•.....••........•................••..•..................•...•......•.............•...•..•... 105
HASHDATUM ...••..••........•.•....••..........•.•..•..•...........•........•...••........•....••......•...••.... 107
HEADLINE ..••..•..•....••.•..••.........•.........•..•.•.....••.•.........••.........•.....•........................ 108
HPGL .•...•...•.••....•.•.....•.•.•...•...••...............•.....•..•.........•...........•....•.............•......•... 109
IDLEHAX•.....•.•.••......•......................•.......•.........••...•..............•.•................•..... 111
INSPECTCODE-TEDIT•.......................•.....•............................•....................•.... 113
KEY OBJ•....••.......••...••......................•.....•............••.•......•....................•.........• 115
KINETiC•.....•.....•.•......•......•..............•.....•.........•.......••...•.•.•..•••...•.••.•..•.•..•..... 116
KOTOLOGO••..................................•.......................•...•..........•..........••..• 117
LI FE .•............•.................•.••...........................••................•......................•......•...... 118
LOADMENUITEMS•...........•..........................••.......•....•.....................• 119
LOGIC•.....•..............•.•.....................•....•....•..................•...............•............. 122
LOOKUPINFILES•....•...........................•..•... 130
MAGNIFIER .•...•.•.................................•.........•.....................................•............... 132
MAKEGRAPH•..........•...•.........................•........................•............................. 133
MANAGER•..........................•................•.................................... 137
MATHTONS•.....................•....•...•.......•... 143
MICROTEK•............................•...........•.......................•............ 144
MONITOR•......................•.....................•....•... 152
NEATICONS ...•... 154
NOTEPAD•...•... 158
NSCOPYFILE ...•...........................•.................. 161
NSDISPLA ySIZES ..•.................. 162
NSPROTECTION ...•.................. 164
PAGEHOLD ... 169
PIECE-MENUS ..•..................•....................................... 172
PLOT ..•..•.......................................•.................. 174

PLOTEXAM PLES•...................•...........•.. 188
PLOTOBJECTS•.. 189
PLOTOBJECTS1 ...•... 194

POSTSCRIPT•.....................................•..•.......................•............................... 196
PS-SEND•.............•....•..............•.. 200
PS-TTy••...•.......................................•..•.......................•............................... 201
PREEMPTIVE ...••....•........•.............•...........•...........................•....•......................... 202
PRESSFROMNS .•..•..•............ 203
PRETTYFILEI N DEX•.................................•... 206
PRINTERMENU .•.•....••......•.......•...................•... 215
PROGRAMCHAT •..........••.........................•......................................•...............•... 216
PROMPTREMINDERS•.........................•..............•.. 217
PROOFREADER •..•................. 220
QEDIT•.........•.•...•........................ 223
READAIS•..•.....................................•.....•............. 226

2

en·vos TABLE OF CONTENTS

READAPPLEFONT ..•..... 228
READBRUSH .. 229
READDATATYPE•..•..... 230
READDISPL.A YFONT ...•..............•..... 231
REGION ..•..... 232
REMOTEPSW .. 234

_ RPC .. 235
SCREENPAPER ... 244
SEDIT -MENU-ALWAYS ... 245
SETDEFAULTPRINTER ... 246
SHOWTIME ... 247
SIMPLECHAT ... 249
SOLID-MOVEW ... 250
SOLITAIRE ... 252
STARBG ... 253
STEP-COMMAND-M ENU ... ~ 255
STORAGE .. 256
SYSTATS ... 258
TALK .. 259
TCPTIM E .. 265
TEDITKEY .. 267
TILED-SEDIT .. 273
TRAJECTORY -FOLLOWER ... 275
TRICKLE ... 276
TURBO-WINDOWS ... 277
TWODGRAPHICS .. 281
UNBOXEDOPS ... 285
UUENCODE ~ ... 288
VSTATS ... 289
WDWHACKS ... 293
WHO-LINE ...•...................•....................................•.........•.................................... 294
WHOCALLS ..•...............•..•....•....................•................• 299
XCL-BRIDGE ..•..•..................•....... 300

3

en·vos TABLE OF CONTENTS

[This page intentionally left blank]

4

en·vos

ACE

By: Michel Denber (Denber.wbst@Xerox.com) Compiled for Medley by Larry Masinter
(Masi nter. PA@Xerox.COM)

Files: ACE.LCOM

ACE

Data files: ACE-APPLEDEMO.ACE, ACE-BOUNCINGBALL.ACE, ACE-FOUETTE.ACE

Animation Compiler and Environment

Introduction

ACE is a system for computer-assisted ani mation. It is based on the traditional eel-oriented
animation process with the computer taking over many of the tedious jobs. You enter a succession
of frames which represent a sequence. The system then plays back your frames to create the
animated effect. It lets you draw pictures, enter text, and edit your work. The animated images
you make are displayed on the screen in real-time. The two main parts of ACE system are a frame
compiler and an environment. The environment provides the editing tools, frame manipulation,
and display capabilities. The compiler operates automatically to produce a compressed-storage
representation for frames.

You can also use the graphic editing features in ACE to make individual pictures, whether or not
they're intended to be used for animation. Finally, you can use the compiler directly to compress
any bitmap image so that it take up less space on your disk.

The majority of the code for ACE was originally written by Paul Turner, a student at the University
of Rochester. I am currently maintaining the system. Please send all bug reports, comments, and
suggestions directly to me, Denber.WBST, or Denber.WBST@Xerox.COM (Arpanet). This document
describes the features available in ACE version 2.1.

Background

In this document: holding the mouse on a menu selection means to press down a mouse button on
a menu item (inverting the item) and keeping it down for about 1.5 seconds (at this point, you can
release the button or move to another selection). Clicking the mouse means pressi ng a mouse
button down and releasing it. Unless otherwise stated, the left mouse button is used for selecting
items from menus and to click at objects.

In addition to the mouse, ACE supports a graphics tablet (Summagraphics MM1201). [LMM: The
graphics tablet hasn't been tested in Medley.] The tablet is more convenient for doing free-hand
drawing; in fact, most commercial animation systems include a graphics tablet. The pen has two
buttons: the stylus tip (which is activated by pressing down on it) and a blue button on the barrel
of the pen (activated by pressing with the forefinger). We have adopted a convention with regard
to the tablet: the stylus button acts like the left button on the mouse and the barrel button acts
like the middle button on the mouse.

en·vos ACE

Terms and System Organization

A region is simply a rectangular area.

A frame is a region that contains one complete "picture" in an animation sequence; it is a
rectangular bitmap with a fixed width and height.

A sequence is a collection of frames defining one complete animated segment.

The current frame is the frame in a sequence to which operations will be applied. As all the frames
in any given sequence are the same size, you may say that one characteristic of a sequence is a
region of a particular size. Frames are referred to by number for convenience; the numbering is
from 1 to n.

There are two principal windows used in ACE. The sequence window is the window on the screen
where a particular sequence will be created, edited and displayed. Typically, you define the shape
of the sequence window to give you just the area you want to work in, although a sequence can
also be edited and displayed in any existing window.

The ACE Control Window holds a menu of commands and displays animation state, prompt, and
help information. The upper left region in the control window, referred to as the status region,
tells which frame is currently being displayed (which frame is the current frame); which device
(mouse or tablet) is being used in line art and painting operations; what operation is currently
being performed; and, the size of a region (width, height) or the location (x, y) of the cursor within
the sequence. The upper right portion of the control window is the prompt region; it is used to get
user input and display helpful information. The bottom part of the control window is a menu of
animation functions.

GETTING STARTED

Load ACE.LCOM from your lispusers directory (e.g., (FILESLOAD (SYSLOAD) ACE). When this is
complete, type:

(ACE)

At this point an Ace control window will appear by the cursor. You can place it wherever you wish
on the screen. The window initially contains a prompt "Animation Directory?" asking for a default
directory to use for storing and retrieving animation files (The default selection is your login
directory. Just press the return key to accept the default.) The control window can be moved
around just like any other window. While you never need to "quit" from ACE, if you close the
control window with the right mouse button menu it permanently aborts ACE; if you then re-type
(ACE), the animation system will be restarted from scratch.

2

en-vas

.ACE v, 2,1 Control Vy'indow

ACE Commands

Main Menu

nima tion Directory? {ICE) (DENBER)LISP)

ACE Control Window at start-up

ACE

The menu selections from the control window will now be described; an example of using ACE is
given in the next section. The main menu is divided into three columns. The left-most one contains
commands that affect the entire sequence, the middle column operates on frames, and the
right-most column contains utility commands.

Get Sequence
Put Sequence
New Sequence

Reset Sequence
Change compression %

Edit Frarne
New Frame

Delete Frarne
Adjust Timing Delays
ChanQe Input Device

Run Sequence)-
Incrernent Frarne
Decrernent Frame

Initialize rvlh,'11201 Tablet
C:':!uit

Sequence commands (left column)

Get Sequence Loads a sequence-file from a file server or local disk. You are prompted for the
name of the file; incomplete file names will be completed from the directory given as the default
ACE directory. You will then be prompted for a window specification. Unless you want to display
the sequence in a particular window, select 'create window automatically'.

Put Sequence Saves the current sequence to a file. You will be asked for a file name and given the
option to overwrite the existing version of the file (if any) or create a new version.

New Sequence Discards the current sequence (if any), and prompts you for a new sequence by
requesting a size for the new sequence. Dragging out a rectangular region with the mouse; the
exact size of the region is displayed in the status region of the control window. A blank first frame
is created, ready for editing.

Reset Sequence "Rewinds" the current sequence to the beginning (i.e. there is no current frame
and the next frame to be displayed will be the first frame).

Change compression % This can be used to change the amount of space compression performed
by the animation compiler. For general use, there is no need to ever call this command.

Frame commands (middle column)

3

en-vas ACE

Edit Frame Allows editing on the current frame. Brings up a menu of editing options, described in
the next section.

New Frame Inserts a new frame after the current frame (ie. before the next frame). The frame
editor is then automatically invoked.

Delete Frame Deletes the current frame. The current frame is removed and the previous frame
become the current frame. The first frame can not be deleted.

Adjust Timing Delays Lets you set the amount of time (in milliseconds) that any particular frame is
displayed; for example, a delay of 50 on the 5th frame would mean that the 5th frame will be
visible for 50 milliseconds before the 6th frame is put up. You can change the entire sequence or a
single frame at a time. For individual frame setting, you get a menu of frames and their current
delays. Holding down a selection will display that particular frame in the sequence window (this is
also a convenient way to rapidly move to an arbitrary frame); if you select a frame you will be
prompted for a new delay value. When new frames are created, they always get a default delay
timeofO.

Change Input Device Lets you select either 'mouse' or 'tablet' from a menu. This sets the device to
be used for line art and painting operations. The status (upper left) region of the control window
always shows which device is active. All menu selections have to be done with the mouse, even
when the tablet is bei ng used for drawi ng

Utility commands (right column)

Run Sequence Runs the remainder of the sequence. To run the entire sequence, select Reset
Sequence before Run. This command has a submenu with two additional commands:

Loop Runs the entire sequence in a continuous loop. To stop the loop, hold down the space bar.
This is checked only at the end of the sequence, so just tapping the space bar may not stop the
loop.

Loop part Runs a portion of the sequence in a continuous loop. You can specify the starting and
ending frame numbers. To stop the loop, hold down the space bar, as in Loop above.

Increment Frame Displays the next frame and makes it the current frame.

Decrement Frame Goes back to the preceeding frame and makes it the current frame.

Initialize MM1201 Tablet This performs the necessary RS232 port initializing, sets the baud rate,
activates the tablet, etc. This must be called after the tablet is plugged in and before it is used. If
your tablet doesn't seem to be responding, it may need to be reinitialized.

Edit Frame Submenu

For the commands described below, it is sometimes useful to know the exact coordinates at which
a drawing operation will take place. If you hold the T key down, ACE will put the current _
coordinates in the status window. Release the key to stop this function.

When you select Edit Frame, a sub-menu of editing options appears. Their functions are as
follows:

Paint This lets you to paint on and erase bits from the current frame. The painting operation is the
standard Interlisp-D window paint command. Either the mouse or tablet can be used (which ever
device is currently selected). Pressing the left mouse button or pen stylus draws; the middle mouse
or pen barrel button erases. Pressing the left shift key brings up a menu. From this menu, you can

4

en·vos ACE

quit painting, change the brush size or shape, and the color or texture of the "paint brush". Note:
selecting items from this menu requires using the mouse (unfortunately, the tablet cannot be used
for menu selecting). For more information on the paint command, please see page 19.20 in the
Interlisp manual.

Line Art This lets you add straight lines to a frame by selecting one vertex, dragging out a line, and
then selecting another vertex. In this way, an arbitrary string of connected line segments can be
created. The left mouse button or pen stylus will" put down" vertices, the middle mouse button or

- pen barrel stops the line dragging. The right mouse button brings up a menu of line art options
(paint or invert drawing; several line width choices); as with all menus, the menu selection must be
made with the mouse.

Edit Bits This lets you use the Interlisp-D bitmap editor on the selected frame. The mouse is used to
turn specific bits on or off (the tablet is not used as it isn't helpful for this application). A complete
description of the the bitmap editor is given in the Interlisp Reference Manual. Always exit the
editor by selecting OK:

Text Lets you put text into a frame. After selecting the 'Text' option, you will be prompted for
font characteristics. Then you point (with the mouse) to where the text should begin and click the
left mouse button. You may now type in text from the keyboard and it will show up in the frame.
A press of the return key ends text entering (the return is NOT included in the text).

Move Region Lets you move an arbitrary rectangular region in the current frame. You first drag
out the region to be moved, then you will be asked what to do with the old image (i.e. leave it
alone, erase it). At this point, a ghost image will attached to the cursor and you can position the
image in its new location. Clicking the mouse will set the position for the image and then you will
be asked how to combine the image (i.e. paint it in, exclusive-or it in).

Combine Region This is similar to move region, except that you can select any region on the screen
(not just inside the current frame). After selecting the region, bringing the mouse within the
sequence window will show a ghost image; the rest of the procedure is the same as for Move
Region. This command is extremely useful for bringing images created elsewhere into your frame.
For example, you might have a drawing made using Sketch or an AIS file.

Texture Area Fill This lets you fill in an arbitrary closed curve with a texture pattern. You are first
prompted to select a bounding region. This reepresents a maximum area beyond which texturing
will not occur, in the event that the texture "spills" outside the region being shaded. Next, select a
starting point anywher inside the desired region. You will then be offered a menu of predefined
textures. You can choose one of these, or create your own by selecting * Other *. The area is then
filled with that texture. You can then confirm that the right thing happened by clicking left. Click
any other button to undo the operation.

Texture Region Fill This is like Texture Area Fill, except that it is used to create filled-in rectangular
boxes, rather than arbitrary areas.

Scale Region Lets you change the size of any rectangular area. You first select a region, and then
indicate the shape of the scaled area by sweeping it out on the frame. Useful if you know how big
you want the result to look but not what percent of the original it is. This command has a
submenu:

To a new region Same as the top level Scale Region.

5

en·vos ACE

In x and y You first select a region as in To a new region, and then indicate the percentage of the
original size to scale by, much like selecting reduction or enlargement on a copier. You can set the
x and y scale factors independently.

In x only Use this if you only want to scale in the x direction, leaving y unchanged.

In y only Use this if you only want to scale in the y direction, leaving x unchanged.

Clear Region For clearing regions to white quickly. If you select a region within the sequence, it is
immediately erased. There is no UNDO for this operation.

Quit· Compile This is the usual way of exiting the editor. This keeps the changes made to the
frame and calls the compiler, resulting in adding the frame to the current sequence.

Quit· ABORT Exits the editor but does not update the frame. The sequence will be as it was before
you selected Edit. Any changes made to this frame are lost.

CONCLUSION

Examples

You might want to see an existing animation before creating one of your own. There are several
animation demos included in the Lispusers distribution of ACE: ACE-APPLEDEMO,
ACE-BOUNCINGBALl, AND ACE-FOUETTE. The simplest one, BOUNCINGBALL, contains five frames
showing a bouncing ball. To see this, start ACE running and select Get Sequence from the main
menu. Type the name of the file, including the file server and directory if they are different from
your current animation directory. Once the file is loaded ACE will let you position the sequence
window. Then select Run Sequence. The system will display the five frames and then stop. To see
the ball bounce continuously, select LOOP from the submenu on the Run Sequence command. The
ball will now bounce until you hold the space bar down.

The file ACE-APPLEDEMO is a 125 frame sequence which shows an apple getting shot.
ACE-FOUETTE is a six frame cycle of a ballet dancer performing a fouette turn.

Animation Hints

Remember that ACE is just a tool - it will not do any animating for you. Our goals were to provide a
system that simplified the frame creation process and let you create animation on the computer
without having to learn a special animation programming language. However, animation is an art
form in itself. Experience is gained only through practice and experimentation.

Avoid moving objects too far between frames or the motion will appear jerky. The D machines
screens are designed to mimimize flicker through the use of a long persistence phosphor.
Unfortunately, this results in trailing streaks of light behind rapidly moving objects. Sometimes
you can use this to artistic effect. It can be reduced by moving dark objects over a light
background, rather than the reverse.

Sometimes you can simplify the animation process by creating frames out of order, especially for­
cyclic animation. For example, the bouncing ball was created by drawing frame 1 and then making
a new frame (which is by default a copy of frame 1). Then we backed up to frame 1 and added a
new frame between 1 and 2, showing the ball half-way down. Then this frame was copied,
yielding four frames. Backing up again and adding the middle frame gave a symmetrical bounce
sequence with frames 1, 5 and 2,4 being identical.

6

en·vos ACE

It's often convenient to keep a snapshot of the object you're animating handy in a window next to
the sequence window. It can then be brought into the frame whenever needed, for example in the
case where it is being modified in some way. You are not limited to editing images with the ACE
editor. In particular, you may want to use the Sketch editor (an Interlisp-D library package) to
modify images, and then bring them into the sequence window for compilation.

References

- Denber, Michel, Paul Turner, "A differential compiler for computer animation", to appear in
Computer Graphics, 20:3, 1986 (Proc. SIGGRAPH '86)

Fox, David, Mitchell Waite, Computer Animation Primer, McGraw-Hili, N.Y. 1984

Magnenat-Thalmann, Nadia, Daniel Thalmann, Computer Animation: Theory and Practice,
Springer-Verlag, Tokyo, 1985

7

en·vos

INTRODUCTION

ADDRESSBOOK

By: dgb (Bobrow.pa@Xerox.com)

Requires: LOOKUPINFILES

· · ·
~ · · · · · J.

ADDRESSBOOK

The ADDRESSBOOK package provides quick and easy access to on-line address books or phone
directories. It allows you to copy (shift select) from entries found in the book, for example, for use
as a letter or electronic mail address. When you load the ADDRESSBOOK package, the icon shown
above will appear on your screen. Opening this icon will provide a window interface to a simple
search process. To find an entry containing any string in one of your *AddressBookFiles*, type the
string followed by a return. The ADDRESSBOOK program will quickly search through the files and
show you an occurrence of the string typed. The located string is shown in inverse video. The title
of the window will contain the name of the file in which the entry was found. You can use a name,
part of the address or any keywords to locate the appropriate part of the text. The search ignores
case; e.g. "bobrow" matches "Bobrow". The text of the document is scrollable, and any portion
can be shift selected into another document.

If the portion of the file found was not the one desired, either type carriage return or click on Next
Occurrence to search further in the files for the same string. If no (further) occurrences are found,
the text window will display a message indicating the failure. Clicking Next Occurrence again after
failure will restart the search from the beginning of all the files, using the same lookup string.
Typing a new string can be repeated as many times as you like. When you are done, just SHRINK
the window back to its icon.

8

en· v oS ADDRESSBOOK

lookup String: stefik
lookup String:

Next Occurrence
looking in: {phylum} <bobrow)lisp >addresses. ted

Dr. Mark. J. om
Xerox Palo Alto Research Ctr.
Knowledge Systems Area
33:3 3 Coyote Hill Road
Palo Alto, CA 94304
Residence:

Example ADDRESSBOOK window

REQUIRED FilES

This package automatically loads LOOKUPINFILES.

VARIABLES

* AddressBookFiles* [Variable]

* AddressBookFiles* is a list of files that contain entries to be searched. This is usually set in the
INIT.LlSP file. In the ADDRESSBOOK package it is initially set to PHONELISTFILES, to make it
backwards compatible with PHONE-DIRECTORY. The *AddressBookFiles* can be any unformatted
or TEDIT formatted files, with any number of lines per entry. A typical value for PARC users (as
defined for PHONELISTFILES in PARC-INIT) is
({INDIGO}<REGISTRAR)PARCPHONELIST.TXT

{INDIGO}<REGISTRAR)ISDNORTHPHONELIST.TXT).

* Address-Book-Pos* [Variable]

* Address-Book-Pos* is the initial POSITION for the ADDRESSBOOK icon. This is defined as an
INITVAR in the file, so you can set it before loading the file. The default value is
(create POSITION XCOORD ~ 970

YCOORD ~ (DIFFERENCE SCREENHEIGHT 90».
This places the icon in the upper right corner of the screen.

* Address-Book-Region* [Variable]

Address-Book-Region is the initial REGION for the ADDRESSBOOK window. This is defined as
an INITVAR in the file, so you can set it before loading the file. The default value is
(CREATEREGION 300 (DIFFERENCE SCREENHEIGHT 500) 400 200).
This places the window in the middle of the screen.

9

en·vos ADDRESSBOOK

NOTES

Caching Files

When you first open the ADDRESSBOOK window, the program will copy the *AddressBookFiles* to
{CORE}, significantly speeding up queries. Bugging in the title of the ADDRESSBOOK window with
the left or middle mouse button will produce a menu with an option to recache the files on
* AddressBookFiles*.

Editing Your Files

To edit the file in which an entry is found, bug in the title of the ADDRESSBOOK window, and
select the option "Edit File". You will be requested to confirm that you want to edit the file. If you
confirm, a TEDIT process editing the file will be set up. This process is independent of the lookup
process. To make editing changes visible to the lookup process, PUT the file in TEDIT; when it is
done, recache the *AddressBookFiles* as specified above. To recache just the file edited, (the one
specified in the title bar of the window), select the option "Recache just this file" in the title bar
menu.

Adding to the List of Files

To add to the list of files being used for lookup, select the option "Add new file" in the title bar
menu. This file will be added, and cached in core.

10

en·vos

INTRODUCTION

AIREGIONS

(Active Irregular Regions)

By: Greg Wexler (Wexler.pasa@Xerox)

and

By: Jim Wogulis (Wogulis@ICS.UCI.EDU)

New Owner: James Turner (Turner.Lexington@Xerox.com)

Uses: FILLREGION, AIREGIONS-DEMO

AIREGIONS

The purpose of this package is to provide menu-like operations on irregularly shaped .regions
within a window and make available general functions that allow users to create their own
applications using irregularly shaped active regions. An added feature of AIRegions is that multiple
IREGIONs may be activated by selecting the intersecting area of those IREGIONs. (Throughout this
document an irregularly shaped region will be referred to as an IREGION)

DESCRIPTION

Virtually all of the features of menu selection have been implemented in this package: ease of
menu creation, item-selected shading, quick response to selection, and execution of an associated
function. Yet, this package adds one additional feature without any degradation to the quality
and efficiency of menu implementation: the selection of any irregularly shaped region from any
point within that region, and without any unsightly cosmetic change.

In describing the package by means of an example, picture a map of the world, or better yet, of a
particular country broken up into its individual states and/or provinces. Suffice it to say that these
regions are not square but irregular in shape and that they are bordered by solid lines, as they are
on a common map. Unlike the menu package or ACTIVEREGIONS package, AIRegions allows you
to select any of these pre-set states/provinces just as if your are making a menu selection of an
item. One of the nice aspects of this package lies in the fact that the package does NOT make any
costmetic changes to the irregularly shaped region, like providing some small box within the
region to button in. Simply button your mouse within the solidly bordered region, anywhere in
the region, and it will shade it to your particular shade and execute your defined function.

Functional ity provided:

The functions in this package allow the user to work with familiar concepts: creating and
implementing windows and menus. The examples provided within this documentation should be
sufficient for the user to begin setting up irregularly shaped regions.

(CREATEIR window shade buttoneventfn he/pstring region pos/ist)

window: the window which will contain the irregular region.

[Function]

shade: can be either a number between 0 and 65535 for a 4 by 4 shading or a 16 by 16 bitmap (if
shade is NIL then the default is black, 65535).

11

en·vos AIREGIONS

buttoneventfn: the function called when the region is selected. The arguments that are passed
to the function are: the window containing the IREGION, the IREGION record itself, and the
button which selected the IREGION.

helpstring: the string that is placed in the PROMPTWINDOW when the mouse is held over the
item for a few seconds.

region: if specified, will be the region relative to window in which the IREGION can be found. (If
region is NIL, the user will be prompted to sweep out a region within window.)

poslist: If specified, will be either a position or list of positions relative to window that are the
starting points for the FILLREGION routine (Le. a point within the desired IREGION). (if poslist
is NIL, the user will be prompted for a position until he/she selects outside of region.)

Description of use: This is the first function that is called when actually setting up an irregularly
shaped region to become sensitive to button activity. If the region argument is not set, then the
cursor changes its shape and prompts for a region to completely surround the IREGION within
the desired active window.(Note: That it is best to surround the desired IREGION as close as
possible since this will save on execution time and memory useage.) A thin box will appear
temporarily where the IREGION was scanned. If poslist is NIL, then the cursor changes into a
TARGET symbol. The user should left-button mouse within desired active IREGION. Note: the
IREGION must be surrounded by a border that FILLREGION can use to define the active area. Any
gaps in the IREGION wi" cause the next routine to fill the region and anything outside with the
shade provided. Mistakes can be corrected by using the REMOVE.IREGION function described
below and PAINTing in the gap to retry. After left-buttoning within the desired active IREGION,
the cursor continues to remain in its TARGET state. If the IREGION is split up into many different
parts, those parts may be selected with the left-button also making them all active concurrently.
However, when one is finished activating that one IREGION, then she/he should left-button
outside of region. This function must be called for each desired IREGION.

Examples:

(CREATEIR window 21930 'myfunction "This is the helpstring")

(CREATEIR (WHICHW) 1234 'MY.SELECTED.FN "This is the helpstring"
'(0 0 20 30) '«12 . 15)(2 . 29»

(SURROUNDIR window shade buttoneventfn helpstring pos/ist inside.pos)

window: the window which will contain the irregular region.

[Function]

shade: can be either a number between a and 65535 for a 4 by 4 shading or a 16 by 16 bitmap (if
shade is NIL then the default is black, 65535).

buttoneventfn: the function called when the region is selected. The arguments that are passed
to the function are: the window containing the IREGION, the IREGION record itself, and the
button which selected the IREGION.

he/pstring: the string that is placed in the PROMPTWINDOW when the mouse is held over the
item for a few seconds.

pos/ist: If specified, a list of positions relative to window that are the edge points for the
FILLREGION routine. If NIL, the user will be prompted to define the outer border of the
region desired to be active. Holding the SHIFT key will define the last point used in defining
the edge. If this field is non-nil, Inside.pos must be specified.

12

en·vos AIREGIONS

Inside.pos: If specified, this would be the inside position in which the Fillregion routine would
begin filling from. If poslist is non-nil, then this field must be specified.

Description of use: Like the CREATEIR function, this function creates IREGIONS. However, the
functionality of this routine is quite different. There are times when you do not care what is
within a particular region. Say, for example, you have a map of some country and you wish to
surround a particular region of the country with an IREGION as you wish to denote an area rich
in some mineral deposit or some other characteristic. Such a characteristic is oblivious of the
borders of the country's states or provinces, streams, rivers,etc., yet you would like to make
active a very general area. Upon calling this function, you are prompted to button around the
area of interest. And so, in viewing the crosshairs cursor, you begin buttoning about specifying
the border of the area you wish to make active, independant of what is inside it. To stop being
prompted for the next edge, simply hold the SHIFT key on the keyboard, (either one will do), as
you make your last button selection. At this point, the lisp DRAWCURVE function will take
effect and draw the closed region you've defined. Note that the first and last points do not have
to touch as the DRAWCURVE routine will connect them for you. You will also be prompted to
button within the region you've marked. It is here that the Fillregion routine will begin filling
your region from. When complete, this function adds the IREGION to the window and returns
the iregion added.

Examples:

(SURROUNDIR window 21930 'myfunction "This is the helpstring")

(SURROUNDIR (WHICHW) 1234 'MY.SELECTED.FN "This is the helpstring"
'«5 . 5)(6 . 50)(50 . 50)(50 . 7» '(10 . 10»)

(ADD.IREGION window iregion) [Function]

window: the window to which the iregion is to be added.

iregion: the IREGION to be added to window.

Description: This function will add iregion to window which will then allow mouse selection of
that IREGION.

(REMOVE.IREGION window iregion) [Function]

window: the window in which the iregion exists.

iregion: the IREGION you wish to remove from window.

Description: This function removes the region from a list of active irregular regions which is
stored as a window property of the window. The list of irregular active regions can be found by
evaluating: (ALL.IREGIONS window».

(INTERSECTING.IREGIONS? window fig)

window: a window.

fig: either T or NIL

[Function]

Description: This function sets up window to allow selection of intersecting iregions. If two or
more iregions overlap and this function had been called with fig = T, then when the
overlapping region is selected, all of those iregions will be high-lighted and each IREGIONs,
BUTTONEVENTFN will be called. If fig is set to NIL, then the last IREGION created in that
intersection of iregions will be selected. {Please be aware that intersecting iregions might

13

en·vos AIREGIONS

generate effects that you do not wish to have. That is, if you leave the iregion "ON" (the exact
same thing you see when you hold the mouse button down on the iregion, done by inverting
that iregion) and create another iregion intersecting with the first, then the mask of the second
would have a partial image of the first. At this point, buttoning in an area where both regions
interesect might show everything but the intersection of those regions. Sometimes, it all
depends on the order that they are created and what iregion's mask is left on or off. Shades that
are "negatives" or "equals" of one another might make matters more complex than necessary
when they are intersected. It is recommend that you play with this function in order to
understand how it actually works so that when you work it into your application you'll have a
better idea of the functionality and end-results). If this becomes a problem, an EDIT.MASK
function has been provided so that you may edit the mask of the iregion by hand. Currently,
there are no programmatic methods for doi ng this.

(ALL.IREGIONS window)

window: a window containing IREGIONS.

Description: This function returns a list of all the IREGIONS attached to window.

(DOSELECTED.IREGION window iregion button)

window: the window associated with iregion.

iregion: the iregion to be activated

button: the button which selected iregion.

(Function)

(Function)

Description: Applied iregions BUTTONEVENTFN to window, iregion and button. This provides a
programmatic way of activating a given IREGION. This does not invert the iregion.

(EDIT.MASK iregion) (Function)

iregion: the IREGION whose mask you want to edit.

Description: This function is provided for buttoning in places where the MASK is not set. More
explicitly, TARGETing a region (while creating the regions) specifies the places where the
FILLREGION routine is to create a mask. For example, if a US state contains many rivers one pixel
wide, the FILLREGION routine will fill around the river, but not the river itself. This means that
when the mouse is positioned on the river, the region will not shade because the mask does not
have that bit turned on. However, if the mask is edited and the rivers filled in, buttoning on
those rivers will activate the IREGION.

(INVERT.IREGION window iregion) (Function)

window: the window in which the iregion exists.

iregion: the IREGION targeted for shading.

Description: This will highlight the iregion with that iregions shade. Calling it a second time will­
low-light it.

14

en·vos AI REGIONS

(IREGIONP iregion) (Function)

iregion: the IREGION to be tested.

Description: This function returns NIL if iregion is not an IREGION datatype and returns iregion
if it is an IREGION.

(IREGIONPROP iregion prop newvalue) (Function)

iregion: the region of which you are setting/requesting the property.

prop: the property in which you are interested.

newvalue: the new value to be assigned to prop.

Description: As with WINDOWPROP, if newvalue is not specified, it will return the current value
of the iregion's property. If newvalue is specified, then the property will be reassigned with that
value. If a prop name is not one of the fields of an IREGION record, it will be stored in
property-list format on the USERDATA field of the iregion record.

IREGION fields:
BUTTONEVENTFN - function called when iregion is selected.
USERDATA - property list format for user properties (similar to WINDOWPROP).
REGION - region relative to the window that surrounds the iregion.
MASK - a bitmap the same size of REGION that is blackened where the iregion is active.
SHADE - the shade number or bitmap used to shade the region.
HELPSTRING - the string that is printed in the PROMPTWINDOWwhen a region is held.

Examples:

(IREGIONPROP iregion 'SHADE) -- returns shade of iregion

(IREGIONPROP iregion 'SHADE 21930) - assigns new shade to iregion.
(SHOW.ALl.IREGIONS window shade delay) (Function)

window: the window in which the IREGIONs exist.

shade: the shade with which the iregions will be shown.

delay: the time (in milliseconds) between which each IREGION is displayed. (if delay is NIL, then
a default of 500 is used.)

Description: This function will shade and unshade in shade (black is used if shade is NIL), each
IREGION that has been created in the particular window. This is especially useful when the user
has lost track of the number of IREGIONS within a window.

(WHICH.IREGIONS window posorx y) (Function)

window: the window in which the IREGIONs lie. (if window is NIL, default is window to which
mouse points).

posorx, y: the location within the window where the IREGIONs can be found. These points must
be local to the window's coordinates ... not the screen. (if posorx is a position, then it will be
used, otherwise if x or yare not numbers then the current mouse position is used.)

Description: Will return either NIL or the list of IREGIONs found in window and specified by
posorx, y.

15

en·vos

Examples:

(WHICH.IREGIONS)
(WHICH.IREGIONS MY.WINDOW 50 23)

(WHICH.IREGIONS MY.WINDOW '(50. 23».

Saving IRegions

AIREGIONS

IREGIONS can be saved on a file by setting a variable to be the value returned by ALL.IREGIONS.
This variable can be saved by using the file package command, UGLYVARS.

Example:

(SETQ IRS (ALL.IREGIONS (WHICHW»)
(SETQ SAVEIRSCOMS '«UGLYVARS IRS»)
(MAKEFILE 'SAVEIRS)
The file SAVEIRS can be loaded and IRS will be set. You can then add IRS to a window by doing:

(WINDOWPROP (WHICHW) 'IREGIONSLIST IRS)
(WINDOWPROP (WHICHW) 'BUTTONEVENTFN 'IN.CURSOR.REGION)
Caution: Some properties on the USERDATA field of an IREGION might not be saved correctly
such as a window which can not be saved on a file.

Window images can be saved on a file by creating a bitmap the same size as the window, BITBLT
from the window to the bitmap, and then saving the bitmap with the file package command
VARS.

Example use of the AI Regions package:

1. Open a window ... about 1/4 of a screen.

2. Use the paint function provided when you right-button in the window and paint a picture.

3. With your mouse in this painted window, type in:
(CREATEIR (WHICHW) 21930)

4. The cursor changes shape and prompts for creating a region similar to the prompt for creating a
window. In this case, span a region that contains California.

16

en-vas AIREGIONS

s. When you are done, and the mouse button is released, the region spanned will remain
temporarily on the screen. The cursor changes into a target and now prompts for a left-button
within the region. Select somewhere in California. When done, left-button the mouse outside
and away from the temporarily blocked off region. (If you want to continue selecting areas of
the same irregular region, in this example, the upper left corner of California, then button that
area within the squared off region. As you can see, your irregular region does not necessarily
have to be connected).

- 6. To test it out, simply button anywhere in California and it will fill to a nice shade of grey, as we
have just set it up to do:

7. To create more active irregularly shaped regions, follow steps 3 through S above. If you want to
set the selection of one of the regions to activate the execution of some function that calls
RINGBELLS, and have the region shade to black upon selection, type in the following in the top
level typescript window keeping the mouse within the painted window.

(CREATEIR (WHICHW) 65535 'IR.TESTFN)

(DEFINEQ (IR.TESTFN (LAMBDA (WINDOW IREGION BUTTON)
(If (EQ (QUOTE LEFT) BUTTON}

then (RINGBELLS 2»}»

Span the cursor out over another state/region and repeat steps 3-S above. When you button in
this IREGION, the IREGION will temporarily shade black, and call the RINGBELLS function. Note
that like menu selection, the function is called only when you release the button within the
region. If the mouse button is held down and you move over the created IREGIONs, they will
shade and unshade as you enter and exit them.

Note: if you wish to create your own shades but don't know what shades correspond to which
numbers, call the function (EDITSHADE) and begin selecting points that you want shaded.
When you are done, the function will return the appropriate shade number. You can also use
16x16 bitmaps for the shade of an IREGION (try (EDITBM (BITMAPCREATE 16 16»)

DEMO PACKAGE: To run the demo package, load AIRegions-Demo.

Intersecting Iregions

1. Create a window and paint in the following:

17

'" z
Q
\!)
w
0:: «

rt.l
10
> • = Q.)

"0'"
c.t:
to .~
CU '­

- CU
~.t: .- ...
v '-
~~
~ '"
cu:C
.t:'"
"0 to
C CU
:::J Q. o CU
,-0:::
'- .
::3=
"''+=
"0 to
C CU
to '­

..... to

"" CUt:
"" ...
'4-'-
o~
CIJ to

"OCU
to '­

.t: to
"'Cl'
to c
"OtJ
c CU
to '" :> '- • ;>CU­o ... a.n
"O.~ ~
C:CUN
.- .t: "" ~ ... >.
'" c: to
E·-~
..... ~ CU
C:-"O
.- to to
Cl' "0 ..c:
c: c: '" ·Vi to
'" CU c: to _ CU
Q.V'-'- Q)

0::: .- '+­
_V,+-
w ... ·­
I-tO"O
«.t:tO
w"'CU
o:::CU'"
U"O:::J
=.~ ~
to .- .0
v ...
:> v CU
;>CU-V
0- '-
Z CU·-

'" V

N

-I-

~
:r:
U
:r:

~ ,...
'" Z
o
l!)
w
0:::
-:
l!)';;
z CU
-Cl'

t~
W :::J
"'0 O:::.t:
w'"
I- :::J
Z 0
.;:::.>.
c: ..
o ~
·B -e
c·­:::J V

'+- 0
CU ~

.t: ...
... CU
=.t:
to ...
V,+-

.. 0
~ c o 0

""C .­
ct)
.- Q)
~ ~
Q) Q)

..c:+-'
+-' c .:: ·w
Q).t: ",+-'
::J c:
0·-
E g
'-'" :::J'" o ::J
>..0

..c: :::J
... 0 .- >.
~ c:

.. CU
~.t:
~~
M

z
u.
I­
Z
W

>
W
Z o
t=
:::J
al

'" Z
o
l!)
W
0:::

..c:
+-' o
.0
C: ..
o
Cl' Q)
'-

O'l
c:

.+=i
V
Q)
'" "-Q)
+-' c:
Q)

..c:
+-'
'+-o
Q)

""C
·Vi
c:

""C
Q)
'" to Q)

OJ
'-

'"
S{
::J o .
E]
cu­
..c:e
+-' CU
C.o CU_
.s::::.::
~ ~

""

<1i
E
o
u

Qj
3:
Q)
"-
to

'" c:
o

.+=i
'" Q)
Cl'
Cl'
::J

'" ""C
c:
to

'" +-' c:
Q)
E
E
o
U

co

en·vos ANALYZER

Analyzer

By: Maxwell (Maxwell.pa@Xerox)

-INTRODUcnON

The Analyzer package is used by the Proofreader (see PROOFREADER). It defines a class of
analyzers, of which the proofreader is but one. Later, analyzers will be developed for languages
other than English.

19

en-vas

BACKGROUNDIMAGES

By: Burwell (Burwell.pa@Xerox.com)

Accessory files:

Background-DurerCat.bitmap
Background-Parc.press

Background-Rhine.press
Background-Steinheim.press
Background-TwoDollar.press

BackgroundMenu.dfasl
BitMapFns.lcom

This document last edited on September 8, 1988.

INTRODUCTION

BACKGROUNDIMAGES

Backgroundlmages is a module which makes it easy to apply graphically interesting static images
to the background of one's Lisp screen. To use the package in the simplest way, load it and call

(BACKGROUND.SETUP) [Function]

This will put an entry called II Background II on your background menu (in a manner compatible
with the module BACKGROUNDMENU), so that it will look something like this:

rvl a.n a!~ e r
Slarn\'Vs
.~R Edit

File8ro\I\o'ser
CH.~T

Idle
:3a.··.··e\lrvl

Sn;'3.p
Hardcopy

E):::EC

If (as shown) you select one of the subitems of "Background>Change, " your background will be
painted with th~ image whose name you selected. The background images currently available are

DurerCats:
Parc:

a reflected picture of a cat from an engraving by Albrecht Durer
a picture of the Xero'x Palo Alto Research Center

20

en·vos

Rhine:
Steinheim:
TwoDollar:

a picture of a village on the Rhine river
a picture of a relatively unfortified castle
a picture of part of a two dollar bill

BACKGROUNDIMAGES

If the image you select is a different size than your screen, you may want to control how the image
is applied. There are three different image painting modes: II Center, II which centers the image on
the screen and paints gray in the remaining space; "Tile, II which tiles the screen with the image;
and II Reflect, II which tiles the screen with edge-matched reflections of the image. (This last mode

- is particularly effective with the DurerCats image.) To change the mode, select one of the subitems
of II Background >Mode. 1I To the currently set mode, just select IIBackground >Mode" itself. Note
that once you have changed the mode, to see its effect, you must reapply the background image
(by sel ecti ng II Backgrou nd > Change> ImageName ").

If you want a less busy background, you can use a plain gray. To apply it, just select "Background."
To change the shade of gray, select "Background >Shade." Again, to see the effect of the shade
change, you must reapply the background shade (by selecting" Background ").

DETAILS

Background images to be used with this module must be represented in files that can be read by
either HREAD or READPRESS. For convenience, they should be named according to the
conventions mentioned below under BACKGROUND.FILES.

Backgroundlmages does take some pains to reduce user wait time. First, it is very lazy about file
interactions, and defers them until it is quite clear they cannot be avoided. And second, when one
selects a background, it is cached so that changing back to it will be significantly faster than
fetching it the first time. Since the cached background bitmaps consume quite a bit of space, they
can be removed by the GAl NSPACE mechanism.

The public interface to this package, more fully described, is as follows:

(BACKGROUND.SETUP NAMES) [Function]

Puts an entry on the background menu which enables users to change backgrounds easily. The
entry will be labeled "Backgrounds" and if invoked will turn the screen background gray. The
entry will have several subitems, each labeled with the name of the background image it will, if
selected, put on the screen. The argument NAMES is meant to specify the names of the images; it
must be a list either of dotted pairs (whose CAR is the name of an image and whose CDR is the
name of the file in which a representation of that image can be found) or of atoms (each of which
is the name of an image). If NAMES is NIL, BACKGROUND.SETUP will call {BACKGROUND. FILES) to
generate a set of background image names.

(BACKGROUND.FILES WHICH) [Function]

Returns a list of dotted pairs whose CAR is the name of an image and whose CDR is the name of the
file in which a representation of that image can be found. Generates this list by looking on
LlSPUSERSDIRECTORIES for files of the form IIbackground-* .bitmap" or "bf)ckground-* .press"; all
such files are taken to be representations of background images. Image representation files that
are not named and located according to this convention will have to be specified directly to
BACKGROUND.SETUP. If WHICH is T, it will search all the LlSPUSERSDIRECTORIES; otherwise it will
search till it finds the first directory with background images in it.

21

en·vos BACKGROUNDIMAGES

(BACKGROUND.FETCH NAME FILENAME MODE) . [Function]

Causes the image whose name is NAME, and for which there is a representation in file FILENAME,
to be applied to the screen background. It is this function which the background menu subitems
call to apply new images. If FILENAME is not specified, BACKGROUND.FETCH will attempt to find
an image representation file whose name is either Ibackground-NAME.bitmap" or
"background-NAME.press" on any of the LlSPUSERSDIRECTORIES. MODE specifies how the image
will be applied to the background if it is a different size than the screen. MODE should be one of
the atoms CENTER, TILE, or REFLECT; it defaults to CENTER. CENTER causes the image to be
centered with a white border around it; TILE causes the image to tile the screen; and REFLECT
causes the image to tile the screen such that each tile is a reflection of those adjacent to it.

(BACKGROUND.MODE MODE) [Function]

Sets and accesses the mode (as described above) which will be passed to BACKGROUND.FETCH
when the latter is invoked from the background menu subitems. MODE, if provided, gives the new
mode setting. Returns the previous mode setting.

(BACKGROUND.SHADE NEWSHADE)

Changes the default background shade.

(BACKGROUND.CENTER BITMAP)

[Function]

[Function]

Returns a screen-sized bitmap with BITMAP centered in it with a border colored with the default
background shade.

(BACKGROUND.TILE BITMAP)

Returns a screen-sized bitmap that is tiled with BITMAP with one of the tiles centered.

(BACKGROUND.REFECT BITMAP)

[Function]

[Function]

Returns a screen-sized tiled bitmap such that each tile is a reflection of those adjacent to it and
such that the center tile is a copy of BITMAP.

22

en·vos BACKG ROU N DM E N U

BACKGROUNDMENU

By: Mike Dixon
New Owner: Burwell (Burwell.pa@Xerox.com)

INTRODUCTION

If you love to load all those fun LispUsers packages but can't deal with background menus that
look like this:

Inspecticide
Sketch
Dlnfo

VStats
DunlpCache

AA Edit "
FileBrowser

SaveVM
Hardcopy ~
SendMaii

Idle ~
Snap

lisp listener ~
Chat
PSW
TEdit

Keyboard ~

don't despair! With just a few quick calls you can have a background menu that looks like this:

Idle ~
Snap
Exec t.-:­

Ghat
PSW
TEdit

(don't worry, they didn't disappear, they're just hiding under "Exec").

DESCRIPTION

BackgroundMenu defines several functions for rearranging your background menu to suit your
taste.

23

en-vas

(BkgMenu.rename.item item newname)

changes the name of a background menu entry

(BkgMenu.move.item item superitem atend)

BACKGROUNDMENU

[Function]

[Function]

makes item a subitem of superitem. If atend it is placed after any subitems of superitem;
otherwise it is placed before them. If superitem is NIL item is placed at the top level of the menu.

(BkgMenu.reorder items superitem atene/) [Function]

just like BkgMenu.move.item but moves a list of items. Useful for changing the order of the items
ina menu.

(BkgMenu.remove.item item)

throws item out of your background menu.

(BkgMenu. fixup)

BackgroundMenuTopLevelltems

BackgroundMenuFixupMode

[Function]

[Function]

[Variable]

[Variable]

each top level item which isn't on the global BackgroundMenuTopLevelltems is made a subitem of
BackgroundMenuSuperltem. If BackgroundMenuFixupMode is 'top they're added before any
subitems of BackgroundMenuSuperltem, if it's 'bottom they're added after, and if it's NIL items
moved from the top are added at the top and items moved from the bottom are added to the
bottom.

(BkgMenu.subitems item)

returns a list of the subitems of item (or the top level items, if item is NIL).

(BkgMenu.add.item item superitem atend)

[Function]

[Function]

adds a new menu item item as a subitem of superitem. If atend it is placed after any subitems of
superitem; otherwise it is placed before them. If superitem is NIL item is placed at the top level of
the menu

EXAMPLES

As an example of using BackgroundMenu, this is what I've got in my init file (which produces the
changes shown above) (note that i've already loaded LISTEN):

(BkgMenu.rename.item "Lisp Listener" II Exec ")
(* "Lisp Listener" is just too long. the blanks before and after Exec are just there to
improve the spacing)

(SETQ BackgroundMenuTopLevelItems '(Idle Snap II Exec II Chat PSW
TEdit»

(SETQ BackgroundMenuSuperltem II Exec ")

(BkgMenu.fixup)
(* Push everything i don't use regularly under the now-renamed Lisp Listener)

(BkgMenu.reorder.items BackgroundMenuTopLevelltems)
(* and put the top level items in the order i prefer)

24

en·vos BACKGROUNDMENU

If I later add more packages which add junk to the top level of my background menu, just calling
(BkgMenu.fixup) again will hide anything new under" Exec" with the rest of the junk.

When any of the above functions (except BkgMenu.add.item) require you to specify an item, you
can usually just give a string with the menu entry (or an atom, which is coerced to a string). The
case has to be correct, and blanks have to be in the right place. The function will do a breadth first
search of the background menu and all its submenus to find such an entry. If for some reason you
have the same entry in more than one menu, you'll have to disambiguate it. To do this, you pass a

-list for the item, where the first thing in the list is the menu entry, and the rest of the list is a path
through the tree to find it. For instance, the item (one two three) means find an entry whose text
is "three", then find an entry in the tree underneath it whose text is "two", and the find an entry
under that whose text is "one".

The item argument to BkgMenu.add.item is a standard menu item, i.e. a list of (label form
help.string).

All of the functions return T if they were able to do as asked and NIL otherwise (you tried to do
something with a menu entry which isn't there, or you tried to make a circular menu structure).
The only exception to this rule is BkgMenu.subitems, which as previously mentioned returns a list
of the subitems, or the atom NotAnltem if it's given a nonitem.

25

en·vos BITMAPFNS

BITMAPFNS

By: Larry Masinter (Masinter.PA@Xerox.COM)

This document last edited on 4-mar-87

(READBINARYBITMAP WIDTH HEIGHT FILE) [Function]

reads a series of bytes from FILE and creates a WIDTH times HEIGHT bit map with contents. Note
that each scanline ~f the bit map is rounded up to the nearest multiple of 16 bits (two bytes).

(WRITEBINARY BITMAP BITMAP FILE) [Function]

writes out BITMAP to FILE in format read by READBINARYBITMAP. Please note that
READBINARYBITMAP must be supplied with width and height.

(WRITEBM FILE BITMAP) [Function]

writes BITMAP on FILE first preceding with width and height (in binary) such that it can be read in
with READBM.

(READBM FILE)

reads width, height, and then appropriate size bit map.

(WRITEBMLST FILE LSn

writes a list of bit maps on FILE.

(READBM LST FILE)

reads a I ist of bit maps.

The following functions open and close FILE.

(READPRESS PRESSFILE)

[Function]

[Function]

[Function]

[Function]

reads press file PRESSFILE and returns a bit map. Can only handle press files generated by
PRESSBITMAP and a couple of other utilities. Has no smarts, and is not easily extended.

(WINDOWBM BITMAP POSITION) [Function]

creates and returns a window containing image of BITMAP. Will be at POSITION or (GETPOSITION). _

26

en·vos CALENDAR

CALENDAR

By: Michel Denber (Denber.WBST @ Xerox.COM)

Uses: TABLEBROWSER, TEDIT

INTRODUCTION

CALENDAR is a program which can be used to display a calendar on your screen, and keep track
and remind you of events and appointments. Calendar 2.04 (the current distributed version) runs
in the Koto or Lyric releases of Lisp. The version number appears in the title bar of each Calendar
window. Calendar needs the Lisp Library package TABLEBROWSER, which it loads automatically. It
also uses TEd it. Various font sizes (from 8 to 36) in the families TimesRoman and Helvetica may be
needed, depending on the size chosen for month windows. Reminder files created by earlier
versions of Calendar are incompatible with this version.

I. STARTING CALENDAR

Load CALENDAR.LeOM from your favorite LispUsers directory, ego

LOAD ({ERIS} < LlSPUSERS >CALENDAR. LCOM]

and then type (CALENDAR). You will get a menu of years (the menu always shows five years
starting with last year). If you select a year with Left, it will create a Year window containing a
calendar for that year. Each month in the Year window is also a menu item. If you now select a
particular month with Left, CALENDAR will create a Month window showing a calendar for that
month. You can now select a particular day within the month to bring up a Day browser (described
in the next section). The Month window also shows small calendars of last month and next month.
You can bring up those months in the current month window by selecting them with Left. If you
select them with Middle, the program will create a new window for that month. The Year menu
has an entry labelled "Other". If you select this, it will prompt you to type in a year, if you want
one that isn't on the menu.

You can have as many year and month windows open at the same time as you like. Month and day
windows can also be reshaped to occupy less room on the screen. You can Shrink any of the
CALENDAR windows to an appropriate icon, or close them when they are not needed. The
reminder facility remains active. If you close your last year window, call (CALENDAR) again to get a
new one. CALENDAR uses the Lisp Prompt Window to display informative messages.

Please send your comments, suggestions, and bug reports to me - Denber.WBST (ARPA:
Denber. WBST@Xerox.eOM). Thanks.

II. REMINDERS

The Day Browser

Clicking left in any day in a month window will open a browser on that day. The browser displays
each reminder for the day, along with its event time if it is a timed reminder. You may have more
than one browser open at the same time. When you close a month window, it will automatically

27

en·vos CALENDAR

close all day browsers for that month. There is a menu across the top of the browser with the
following items:

Add: Lets you create a new reminder in this day. If you select Add, the program will bring up a
TEd it window containing a template for the new reminder. The template contains several fields
you can select and fill in. These are described in Creating Reminders, below.

Display: Brings up the full contents of the reminder in a TEdit window.

Delete: Useful for deleting reminders that you no longer need. By default, timed reminders are
deleted automatically after they "fire"; untimed reminders do not fire and are never deleted
automatically. Calendar will immediately remove reminders which you delete from the month
window (and the reminder's line in the day browser is crossed out), however it will leave reminders
that have fired visible in the month window until you redisplay it (eg. September is visible, you
select Redisplay from the right-button menu in the title bar or select September again in the Year
window, and all fired September reminders will be purged from the month window when it
redraws).

Update: Saves your reminders to disk (see the section on Saving reminders below).

Send Mail: Prompts you for a name to send to. The selected reminder will be mailed to that person
when it activates, rather than displaying on your screen. Note that no validity checking is done
when you enter a name, so your message could conceivably not be delivered if you typed the name
wrong, for example. The message is mailed when the time arrives. Of course, this assumes that
your system is running at that time, that you have Lafite active, and that Lafite is running in the
mode (GV or NS) corresponding to your intended recipients.

Period: Brings up a menu with the choices Daily, Weekly, Monthly. The selected reminder will be
made periodic and will appear at the selected intervals.

Creating Reminders

You can create a new reminder either by clicking Add in a day browser, or by clicking the middle
button in a day box in the month window. This opens a new reminder form with the following
fields:

Title: The reminder title should not exceed one line in length. This field will be displayed in the
Day browser and the month window. This field may not be omitted; all others are optional.

Event time: The scheduled time for the event. By default, this is also the time at which the
reminder will be activated. If this field is omitted, the reminder is "untimed". Untimed reminders
do not alert you. When a timed reminder activates, it beeps and brings up a TEd it window
containing the full reminder text.

Alert time: The time at which you would like the reminder to activate. You might want to be
reminded of a meeting 10 minutes early, for example. The alert time can be set to any time, before
or after the event time, as long as it is in the same day. If this field is omitted, it defaults to the -
value of the event time.

Alert: Edit this field to contain just the word Yes or No. If you choose No, the reminder will not
alert you, even if it is a timed reminder. If this field is omitted, it defaults to the value set in the
Options menu (see Programming below).

Duration: The expected length of the event. Version 2.04 makes no use of this field.

28

en·vos CALENDAR

Message: The actual message you want to save. This may be any TEdit text or omitted entirely.

The new reminder form includes a menu with the choices Save and Abort. After filling in the fields
you want, clicking Save will add the reminder to the system and close the form. Clicking Abort at
any point cancels the reminder being created.

The time can be entered in almost any reasonable format, ego 9:00 AM, 9 AM, 9 a.m., 2:30 PM, 2:30
P.M., 1430, or can be left out by skipping over the field. Times are "AM" by default, so if you only
type 8:30, it will assume 8:30 AM. A heuristic is included to ask "Are you sure?" if you type a time

- earlier than 9 without an AM/PM qualifier (this value is controlled by CALDAYSTART, see
Programming, below). Times of noon and midnight are special cases. There is no generally
accepted meaning for the expressions "12:00 AM" and "12:00 PM". If you want a reminder at
noon, enter the time as "12:00" or just "1200". Because reminders are added to a particular day,
midnight is ambiguous; there is no provision for entering a time of midnight.

If you add a reminder for a time that is already in the past (for example, to keep a historical record
of an event after the fact), the program will save the reminder but will warn you that the reminder
time has already passed.

Expired timed reminders are automatically deleted upon expiration by default. Setting the
variable CALKEEPEXPIREDREMS (see Programming, below) will cause timed reminders to be
retained after firing.

Reminders which are scheduled for a time when your machine is not running will not be activated
the next time you login. This avoids having a possibly long sequence of "dead" reminders popping
up at login time.

Saving and loading reminders

You can save your reminders in a file at any point. The first time tou start Calendar, it will ask you
to provide a default host and directory for reminder files. You should enter this in the usual
format, for example {DSK}< Lispfiles> or {ERIS}<your-name>LlSP>. This will become the new
value of CALDEFAULTHOST&DIR (it is initially NIL). To save your reminders, select Update from any
day browser. This will open a pop-up menu of currently loaded files, plus an "other" item for
giving a new file name. If you enter a new name, all currently unsaved reminders will be stored
under that name. If you select an existing file, the contents of that file will be updated and any
new reminders created since the last update will be added to it. If you abandon your sysout or if
your machine crashes, you can have Calendar automatically reload your reminders file when you
restart (see CALDEFAULTHOST&DIR and CALLOADFILE in Programming, below). You can also load
a reminder file at any time by holding the middle button down in the title bar of a month window.
This will open a pop-up menu of files that have already been loaded, plus an "other" item to
specify a new file. In this version of Calendar there is never any need to load a reminder file more
than once. The menu is useful, however, to show which files have already been loaded.

An "almanac" reminder file is distributed along with Calendar. It contains a variety of holidays and
notable dates for the year. The file is called CALMANACnn, where nn is the last two digits of the
year. For example, the file for 1986 is called CALMANAC86. You can load this file by selecting
Other from the middle button menu and typing CALMANAC86.

By default, the program will only save your reminders when you select Update. You may control
file updating by changing the Auto File Update option available under the Options menu item in
the month window. See Programming, below.

29

en·vos CALENDAR

III. PROGRAMMING

A programmatic interface is provided to let you create day, month, or year windows from your
own programs.

If your reminder text isa Lisp list (anything inside parentheses), when the reminder fires the
program will evaluate the list rather than displaying the reminder in a window and beeping.

Functi9ns

(CALENDAR m d yr) [Function]

m, d, and yr are integers specifying a month, day, and year, respectively. Arguments are specified
as follows:

If only yr (must be 4 digits) is supplied, brings up a year window for that year and returns yr.

If m and yr are supplied, brings up a month window for that month and returns m.

If m, d, and yr are supplied, brings up a day window for that day and returns d.

For invalid combinations (missing yr, d and yr only), returns NIL. Also returns NIL if yr is out of
range (the calendar algorithm is only valid for years between 1700 and 2100).

Examples:

(CALENDAR NIL NIL 1984) shows a calendar for 1984 and returns 1984.

(CALENDAR 10 NIL 1984) shows a calendar for October 1984 and returns 10.

(CALENDAR 10 NIL 84) returns NIL (out of range).

(CALENDAR 1021 1984) shows October 21st, 1984 and returns 21.

You can also call Calendar with the keywords TODAY, THISMONTH, and THISYEAR.

Examples:

(CALENDAR'THISYEAR) shows a Year window for 1986, if this year is 1986. This might be
used in an init file, to always start a Calendar of "this year".

(CALENDAR 'TODAY) opens a Day browser for today, containing all of today's active
reminders.

(CALLOADFILE file-name) [Function]

Loads the file file-name into the reminder system and returns T. Returns NIL if the file is not found
or is not a valid reminder file.

Example:

(CALLOADFILE '{DSK}< LlSPFILES>CALREMINDERS)

Variables

CALALERTFLG [Variable]

Initially T. This controls whether or not reminders whose Alert field is not specified should alert
you when they fire. T means they will. NIL means they won't.

30

en·vos CALENDAR

CALDA YDEFAU L TREG ION [Variable]

Initially (32 200 350 100). This specifies the default size for day browsers. The location is only used
for day browsers opened programatically.

CALDA YST ART [Variable]

Initially 900. This represents the time (in 24 hour format) at which your regular day starts. The
system will use it to confirm times you enter without a "PM" indicator if they are less than this

-value. For example, it is more likely that 4 means 4 PM than 4 AM.

CALDEFAU L TALERTDEL T A [Variable] .

Initially O. This represents the time (in minutes) before or efater the event time you want
reminders to be activated, if no explicit alert time was given for them. To be reminded before the
event, make this value negative. The resulting time must still be in the same day as the event.

CALDEFAULTHOST&DIR [Variable]

Initially NIL. This is the host and directory on which your reminder files will be saved if you type the
file name without a directory specification. The system will prompt you to enter a value for this the
first time you start it.

CALFLASHTIMES [Variable]

Initially o. Specifies the number of times to flash the destination given by CALFLASHTYPE when a
reminder is activated.

CALFLASHTYPE [Variable]

Initially 'None. Specifies which window should be flashed when a reminder is activated. Can be set
to 'WINDOW, to flash the reminder display window, or 'SCREEN to flash the entire screen.
CALFLASHTIMES (above) should be set to the desired number of flashes.

CALFONT [Variable]

Initially 'TimesRoman36. This variable controls the font used to display the Month Window. You
can change it for example, by saying (SETQ CALFONT (FONTCREATE 'HELVETICA 18». The change
takes effect the next time you display a month. If you reshape a month window, the program will
try to find a smaller font to fit the new window size, but the value of CALFONT will not be
changed.

CALHARDCOPYPOM FLG [Variable]

Initially T. This variable controls the printing of the phase-of-the-moon icons when you hardcopy a
month window. Setting it to NIL suppresses this printing. Month windows are hardcopied at
printer resolution in Koto, screen resolution in Lyric.

CALHILITETODAY [Variable]

Initially 'CIRCLE. This variable determines how today's date will be highlighted in a month
window. The default is to draw a circle cround it. If you set this to 'BOX, a light gray grid will be
placed over the date. Setting this to NIL suppresses all date highlighting.

31

en·vos CALENDAR

CALKE EPEXPI RE DREMSFLG [Variable]

Initially NIL If you set this to T, Calendar will not automatically delete reminders when they fire
(they can still be deleted using the Delete menu command, above). The default action is to delete
reminders when they fire, although they will remain visible until the window is redisplayed.

CALMONTHDEFAULTREGION [Variable]

Initially (32 32 868 700). This specifies the default position and size for month windows. If you set
the size to a value small enough to allow several month windows side by side, the windows will tile
left to right, bottom to top.

CALREMDISPLA YREGION [Variable]

Initially (200 400 300 400). This specifies the default position and size for reminder display
windows.

CALTUNE [Variable]

When a reminder is activated, it will play the tune stored here (in PLA YTUNE format).This is initially
a two-note "ding-dong". Set this to NIL if you want no audible warning. 1100's and 1132's have
no hardware for sound.

CALU PDA TEONSH RI N KFLG [Variable]

Initially 'Never. This means that Calendar will save your reminders on a file only when you
explicitly click Update from a Day Browser. If set to 'Shrink, it will cause Calendar to save your
reminder file automatically only when you shrink the Month window. This is useful when you are
entering many reminders at the same time, but it means you must remember to explicitly shrink
the month window or your reminders will be lost if your machine dies. If set to 'Always, causes
Calendar to immediately save each reminder as soon as it is created.

You can also set these variables interactively by clicking on the box marked "Options" in any
Month window. This brings up a freemenu similar to the TEdit expanded menu.

Calendar Options
Alert: _ No
Keep expired rerns.: _ No
Auto. file update: A 11",1 a y s 8 h r' ink 1~14~'§J'
Alert delta: 0
Host & dir.: {D8K}< L I 8PF I LES)
Apply!

Alert: Specifies the default for the Alert field in the new reminder form. Sets the value of
CALALERTFLG (described above).

Keep expired rems.: If set to No, the system will automatically delete reminders when they fire
(although they remain listed in the month window until the next time you redisplay it). Sets the
value of CALKEEPEXPIREDREMSFLG.

Auto. file update: Always means that the system will update the reminder file every time you
create a new reminder. Shrink means update only when a month window is shrunken. Never
means updates will be done only when you explicitly select Update from a Day browser. Sets the
value of CALDUPDATEONSHRINKFLG.

32

en·vos

Alert delta: Sets the value of CALDEFAULTALERTDELTA.

Host & dir.: Sets the value of CALDEFAULTHOST&DIR.

CALENDAR

After you have made the selections you want, click Apply! This sets the selections and closes the
menu. If you don't want to make any changes, just close the menu (like closing any window). This
preserves the previous settings even if you changed them in the menu. Any changes you make to
these variables are not saved automatically in reminder files.

iV. LIMITATIONS

Day groups must begin and end in the same month.

The calendar algorithm is valid only for years between 1700 and 2100.

V. KNOWN BUGS

Today-circling function occasionally fails to erase the old day.

VI. FUTURE PLANS

Automatic scheduling.

Automatic communication with other Calendars.

33

en·vos CANVASCONVERTER

CANVASCONVERTER

By: Stephen Knowles (Stephen Knowles:49/89/636/13:Siemens AG)

Partly based on work by:
Matthias Schneider-Hufschmidt (Matthias Schneider-Hufschmidt:ZTISOF:SIEMENS)

Giselbert Schramm (Giselbert Schramm:ZTISOF:SIEMENS)

Uses: BITMAPFNS

This document last edited on 19-5ep-88 13:32:21.

INTRODUCTION

This module enables the transfer of bitmaps between the Envos lisp and Xerox ViewPoint
environments. The medium used for the transfer is an NS file server (i.e. a file drawer which can be
accessed by both environments). The possibility of transferring Lisp bitmaps into the ViewPoint
environment is particularly useful for documenting Lisp applications.

MODULE EXPLANATIONS

There are essentially two major functions:

(Il:WRITECANVAS BITMAP FILE) [Function]

This function writes the BITMAP on to FILE and makes FILE of type ViewPoint Canvas, whereby FILE
must be on an NS file server.

(Il: FETCHCANVAS FILE) [Function]

This function reads FILE into a lisp bitmap, whereby FILE must be on an NS file server.

Additionally there are two auxiliary functions to aid in the use of the above two functions.

(ll:SNAPBM) [Function]

and

(ll:CANVAS-FROM-WINDOW WINDOW FILE)

EXAMPLES

All examples must be typed into an INTERLISP exec.

To write a canvas of a Lisp screen region:

(WRITECANVAS (SNAPBM)

34

[Function] -

en·vos CANVASCONVERTER

'{NSFileServer:Domain:Organization}<FileDrawer>Folder>TESTFILE)

To write a canvas of a Lisp window:

(CANVAS-FROM-WINDOW (WHICHW)

'{NSFileServer:Domain:Organization}<FileDrawer>Folder>TESTFILE)

To read a canvas into a Lisp bitmap:

-(SETQ X (OPENSTREAM

'{NSFileServer:Domain:Organization}<FileDrawer>Folder>TESTCANVAS 'INPUT»

(EDITBM (SETQ LISPBITMAP (FETCHCANVAS X»)

(CLOSEF X)

CAVEAT

When fetching a canvas, there is a 50-50 chance that the Lisp bitmap will be O.K. It could, however,
come out distorted (this is due to the differing ways in which ViewPoint and Lisp handle bitmaps,
Lisp uses 16 complement, ViewPoint 32 complement - or something like that). If this should be the
case, simply increase the canvas width in ViewPoint by 5 millimeters (approx. 16 pixels) and repeat
the fetchi ng process.

Unfortunately in the Lyric version if one repeatedly wrote a canvas with the same name, the file
server somehow got mixed up and set the file-info of the folder above the canvas into "type =
canvas"! One could put this right with the (SETFILEINFO ...) function in Lisp, although under normal
circumstances one does not write out a canvas repeatedly with the same name any way. I have
been unable to test the behaviour in MEDLEY.

Compatibility has only been tested up to ViewPoint 1.1.

35

en-vas

CD

By: Henry Thompson (HThompson.pa@Xerox.com)

This document last edited July 6, 1988.

INTRODUCTION

CD

The file CD implements a UNIX· -style facility for manipulating the connected directory. It also
insures that the connected directory is always displayed.

CD PATTERN [Exec command]

MODULE EXPLANATIONS

CD is defined as a command which allows low-overhead means of effecting many common
changes of connected directory. Its behaviour is partly conditioned by three global variables:

CD.DEFAU L T.HOST

CD.DEFAU L T.PREFIX

CD.DEFAULT.USER

[Variable]

[Variable]

[Variable]

CD.DEFAULT.HOST defaults to DSK. CD.DEFAULT.PREFIX defaults to the name (e.g. DSK) of the
local disk volume on a Dandelion, otherwise NIL. CD.DEFAULT.USER defaults to the value of
USERNAME, and is updated automatically after GREETing.

The value of CD is always a CONS-pair of the old and new connected directories.

On hosts which support some form of sub-directory, CD needs to know the character which is used
to separate sub-directories. The table CD.OS.SEPRS is an a-list which determines this mapping - it is
initialised to map UNIX· and VMS to "/" and DSK, NS and IFS to ">". To enter this table it looks up
the host first in CD.OS.SEPRS directly, then via NETWORKOSTYPES. In the documentation which
follows, ">" means whatever the separator is for the relevant host.

The possibilities for pattern are as follows:

empty

Connects to the directory determined by the conjunction of CD.DEFAULT.HOST,
CD.DEFAULT.PREFIX and CD.DEFAULT.USER.

{anything

Interprets pattern as a complete directory specification, and connects to it.

<anything

Interprets pattern as a directory specification to be qualified by CD.DEFAULT.HOST and
CD.DEFAULT.PREFIX, and connects to it. For example if CD.DEFAULT.HOST is {server} and
CD.DEFAULT.PREFIX is NIL, then CD <dir>sdir> is equivalent to CD {server}<dir>sdir>, whereas

36

en·vos CD

if CD.DEFAULT.PREFIX was /user and server was known to be running UNIX*, then CD <dirlsdir>
would be equivalent to CD {server} </user/dirlsdir> .

. > rest

Equivalent to CD rest. This is purely for compatability with UNIX* .

.. >rest

-Equivalent to peeling off one <sub-)directory from the currently connected directory, followed by
CD rest. For example, if connected to {server}<dir>sdir>, then CD .. >sdir1 is equivalent to CD
{server}<dir>sdir1 >. Note that because of common lisp reader pecularities, you cannot use ..
alone under a common lisp read-table. The synonym < < can be used instead.

otherwise

Treat pattern as a further specialisation of the current directory, and connect to the resulting
sub-directory. For example, if connected to {server}<dir>sdir>, then CD ssdir is equivalent to
CD{server} < di r >sdi r >ssdir >.

Note that throughout, the closing" >" is optional.

Menu Interface

At any time you can left button in the window displaying the current connected directory, and see
a menu of all the directories you have yet been connected to. Selecting one will move you there.
You can also shift-select out of this menu into the current input stream. This latter is very useful
when typing file names.

Middle buttonning in the directory display window will give you a menu of directories, followed by
a menu of Connect/Browse/Delete. Connect does so, Browse brings up a file browser and Delete
removes the directory from subsequent menus.

*UNIX is a trademark of Bell Laboratories.

37

en·vos CHATEMACS

CHATEMACS

By: Randy Gobbel (Gobbel.pa)

requires: CHAT, chatemacs.elc (GnuEmacs Lisp program)

This document last edited on August 24, 1987

INTRODUCTION

ChatEmacs, in conjunction with the chatemacs.elc module for Gnu Emacs, enables use of the
mouse for scrolling and selection in GnuEmacs. It also allows use of the META key for escape-prefix
commands and automatically switches Chat in and out of Emacs mode when entering and leaving
the editor.

DETAILS

After loading ChatEmacs, typing META-char will send an ESCAPE character, followed by the vanilla
character. CTRL-META-char sends an ESCAPE followed by CTRL-char. Once ChatEmacs is active,
most Emacs commands should require only one keystroke. Since Emacs was originally designed for
terminals with a META shift key, this makes the Emacs command set somewhat more regular and
easier to remember. For example, scrolling forward and backward will be on CTRL-V and META-V,
respectively.

In order to enable mouse actions, first load CHATEMACS.LCOM into Interlisp. After opening a Chat
connection and running GnuEmacs, either load chatemacs.elc manually (by giving the i Xload
command), or add the following line to your Gnu Emacs init file (.emacs):

(load "chatemacs")

After loading chatemacs.elc, the title bar on your Chat window should say II Emacs ON ". If not,
middle-buttoning the" Emacs" menu item in your Chat window will enable mouse events to be
sent to Emacs. After ChatEmacs has been activated for the first time, the Chat window's title bar
will always indicate whether Emacs mode is on or off. If your mouse clicks don't seem to be taking
effect, check the title bar first!

Automatic switching frees the user from having to manually turn ChatEmacs on and off when
using Emacs. In most circumstances (see exceptions below) automatic switching will not interfere
with other Chat operations, and can be left enabled. Auto-switching is controlled by:

CHATEMACS.SWITCH.ENABLED [Variable] _

When this variable is non-NIL, Chat will respond to a sequence of two consecutive ESCAPEs by
toggling the flag that controls mouse event sending. The state of the flag is noted in the window's
title bar, just as if the menu command had been executed. CHATEMACS.SWITCH.ENABLED is
defaulted to NIL

38

en·vos CHATEMACS

auto-switch-enabl ed [GnuEmacs Variable]

This variable controls auto-switching on the GnuEmacs side of the Chat connection. If it is non-nil,
GnuEmacs will send a switch command when chatemacs.elc is loaded, and another when exited via
a i X- i C command.

Using Emacs with the mouse

The chatemacs.elc module, at the GnuEmacs end of the connection, determines the interpretation
- of mouse clicks. The current user interface is more complicated than I would like, and suggestions
for improvements are welcome.

The most basic operations are fairly simple: left button in a text buffer moves the Emacs "point" to
wherever the cursor is pointing. Right button moves the mark (the typein cursor will move for a
couple of seconds just to show you where you've just put the mark), and copies the new region to
the kill buffer (for use with "shift-select," see below).

Scrolling with the mouse works more or less as in Interlisp, with the scrollbar being the right-hand
part of the screen past column 80. Alternatively, holding down the META key makes the entire
text area act as a "scrollbar". As in most Envos environments, left button scrolls the line that the
mouse is pointing to to the top of the window, right button moves the top line down to the mouse
cursor, and middle button "thumbs", taking the vertical displacement of the mouse cursor as an
offset into the file (i.e., top line = beginning of file, bottom line = end of file).

Shift- and control- mouse clicks perform editing operations: shift-left copies the contents of the kill
buffer to wherever the mouse is pointing (the closest thing to Interlisp shift-select I could come up
with). Control-left and control-right kill from point to where the mouse is pointing (sort of like
control-select). Control-shift-Ieft moves the mark without copying anything to the kill buffer.

Mouse clicks in the mode line and mini buffer do things that were inherited from ii-mouse's
ancestor, a package for the BBN Bitgraph terminal. Maybe you will find them useful. They are:
The modeline acts like a sideways scrollbar, left = top. In the minibuffer, left button is equivalent
to typing META-X, middle button evals an expression you type in, and (beware!) right button
suspends Emacs (equivalent to typing i X i Z).

As mentioned above, the current user interface is sort of, how shall I say, "gnarly." If you have
better ideas, please let me (Gobbel.pa) know.

39

en·vos

CHATSERVER

By: Larry Masinter (Masinter.PA@Xerox.COM)

This document last edited on September 7, 1988.

REQUIREMENTS

CHATSERVER-NS Requires: CHATSERVER and COURIERSERVE.

CHATSERVER

CHATSERVER-RS232 requires: CHATSERVER and (DL TTY or DLRS232C). As of this date,
CHATSERVER-RS232 hadn't been tested with Medley.

CHATSERVER-TCP requires: CHATSERVER and TCP. As of this date, CHATSERVER-TCP is unreliable:
the chat server sometimes leaves open the connection and will not open another one.

In general, a protocol chatserver requires CHATSERVER and a a protocol converter. Sources for TCP
server available.

CHATSERVER also loads LispUsers modules CL-TTYEDIT and SIMPLECHAT.

The module PREEMPTIVE is useful in conjunction with CHATSERVER but not required.

INTRODUCTION

CHATSERVER is a general facility that allows a Lisp workstation to be controlled from a dumb
terminal. In addition to CHATSERVER, you will need a protocol driver: something that connects the
CHATSERVER to a communication protocol. The various protocol drivers are the mechanism by
which CHATSERVER can be controlled; versions include using XNS via CHATSERVER-NS, TCP/IP
TELNET protocol via CHATSERVER-TCP, and RS232 via CHATSERVER-RS232. CHATSERVER-NS is the
most reliable, although CHATSERVER-RS232 has worked reliably in the Lyric release.

The server implements password protection using the same mechanism as IDLE. There is another
variable, CHATSERVER.PROFILE, which gets searched first for ALLOWED.LOGINS so that you can
have a different setting.

IL:CHATSERVER.PROFILE [Variable]

The value of the variable CHATSERVER.PROFILE appended to the front of IDLE.PROFILE when
determining login options etc for the chatserver. The property IDLE.ONLY is also consulted; if T,
chatserver only allows connections when machine is in idle mode.

Example:

(SETQ CHATSERVER.PROFILE '(ALLOWED.LOGIN (T) IDLE.ONLY T»

means to allow only the previously logged in user, and then, only when in IDLE mode.

QUIT [Exec Command]

The QUIT exec command exits a chatserver session. It signals an error if you are not running in a
chatserver session.

40

en·vos CHATSERVER

Documentation for CHATSERVER-NS:

CHATSERVER-NS implements the Xerox Network Systems GAPTELNET protocol. It allows
connection to a machine running Medley from other machines that implement this protocol,
including Viewpoint (using ViewpointChat), External Communication Service servers (which allow
dial-in from remote terminals into an XNS network), XDE workstations and other Interlisp-D
implementations (Koto, Lyric, Medley.)

Gaptelnet is a courier server program, and so requires the COURIERSERVE lispusers module (which
-it loads automatically). The following function is part of caURIERSERVE

(cau RI ER.START.SERVER) [Function]

This "starts" the courier server process which listens for connection attempts. It is necessary to call
this (once) before you can CHAT to your Lisp workstation. (If the process dies for some reason, you
will not be able to CHAT until you restart the process.)

Documentation for eHATSERVER-Tep:

This module was an attempt to implement a TCPITELNET server. Unfortunately, the mechnaism by
which it waits for a connection is buggy, and it does not negotiate terminal characteristics properly
with the client calling workstation. It is therefore unreliable & may need to be restarted. Using
tel net from a Sun to Lisp I've found it was necessary to explicitly tell the Sun not to echo, to send
character at a time, etc.

(TCPCHATSERVER)

It is necessary to call this function to spawn the process that waits for TCP connections.

Documentation for CHATSERVER-RS232:

[Function]

The CHATSERVER-RS232 module attempts to allow for connections on the RS232 or TTY port on an
1186 or 1108. It uses DLRS232.

(RS232CHATSERVER) [Function]

Spawns a process waiting for a character to be typed on the RS232 port, and then starts a
chatserver session.

Other notes:

The server runs a standard (XCL) exec. Note that you can't do graphics; the debugger will not
attempt to open a window, only the type-in commands are available, ED will give you the
"teletype" editor. Interrupt characters enabled are fE, f 0, DEL, f S, f Hand fT. (Note that
currently interrupts are only processed when they are read, and there is no way to interrupt a
run-away process.)

Typeout uses a "---more---" style: after (PAGEHEIGHT) lines, the system will prompt you with a
"---more---". Type any character, and the more will be erased.

Chatserver assumes you are chatting from a DM2500 emulator, and treats font changes as a switch
between bold and regular as appropriate.

The PREEMPTIVE Lispusers module is useful when running chatserver, because it will keep the
running process from blocking out the typein process. For some protocol drivers (and the NS server
in particular), this is necessary to avoid timeouts.

41

en·vos CHATSERVER

CHATSERVER advises various facilities in the environment that normally create menus to check to
see if the "controlling" keyboard is not the workstation console; these facilities include TIVIN, the
editor, the debugger, CHAT. Thus, calls to the editor use the teletype-style editor from Interlisp,
while FIX does not generally allow character editing.

42

en·vos CHECKPOINT

CHECKPOINT

By: Herb Jellinek (Jellinek.pa@Xerox.com)

This document was last edited on January 8, 1988.

INTRODUCTION

CHECKPOINT provides a Cedar-like checkpoint facility to the Envos Lisp system. Performing a
checkpoint freezes the state of virtual memory; if the machine subsequently crashes, or the user
logs out and restarts Lisp again, work will progress from the point at which the checkpoint was
made.

This is different from the effect of SAVEVM in that CHECKPOINT lets you freeze the state of your
system and guarantee that it will remain consistent until you decide otherwise. The effect lasts
across (LOGOUT T), rebooting, and so on.

CHECKPOINT is based on calls to IL:VMEM.PURE.STATE and IL:SAVEVM, but features a convenient
user interface.

USING IT

If you have WHO-LINE loaded, CHECKPOINT will install a "Ckpt" item displaying time of last
checkpoint or "OFF" if no checkpoint is in effect. Clicking this item will pop up a menu asking you
whether to make a new checkpoint or disable the current one, if any. Turning off checkpointing
means that the virtual memory file will proceed to be written once again.

ckpt on/off? [Exec Command]

If the argument on/off? is :ON or NIL, a checkpoint is taken, if :OFF, the checkpoint is disabled, and
if :STAT, the checkpoint status is printed.

·43

en-vas CL-TTYEDIT

CL-ITYEDIT

By: Larry Masinter (Masinter.PA@Xerox.COM)

This document last edited on November 24, 1987.

INTRODUCTION

This file patches the TTY editor so that it is a little more usable in Lyric/Medley for non-Interlisp
sources. In particular, it changes the TTY editor so that EDITRDTBL is no longer used; the read table
in effect at the time is the ttyeditor is invoked is used instead (*READTABLE*).

It patches the main editor loop (EDITCOM) so that the package and case of edit commands are
ignored, i.e., if you type in the P command, it doesn't care whether it is XCL-USER::P or IL:P or Ipl.

It patches EDITFPAT (which takes "find" patterns) so that you can specify patterns with --, &, = =,
ANY in any package, and use --- instead of .. (since symbols consisting entirely of dots are not
allowed in CL readtables.)

This file is especially useful if you are talking to another machine using CHATSERVER and need to
edit something on the remote machine; since the CHAT connection is character only, you can't run
(and the system doesn't attempt to run) SEDIT.

44

en·vos COMPARESOU RCES

COMPARESOURCES

By: Bill van Melle (vanMelle.pa@Xerox.com)

INTRODUCTION

COMPARESOURCES is a program for comparing two versions of a Lisp source file for differences.
The comparison is completely brute-force: COMPARESOURCES reads the complete contents of
both files, and compares all the expressions for differences. The files need not be ones produced
by MAKEFILE, as COMPARESOURCES reads the contents with READFILE; however, the program is
tuned for files of the type produced by MAKEFILE.

HOW TO USE IT

The interface consists of a single function:

(COMPARESOURCES FILEX FILEY EXAMINE DW? LlSTSTREAM) [Function]

Compares the files named FILEX and FILEYfor differences. For each type of file object (function,
variable, record, etc), COMPARESOURCES identifies which objects of that type differ, and for each
such object prints on LlSTSTREAM a comparison using the function COMPARELISTS. If an object
exists on only one of the two files, this fact is noted instead by the message" name is not on file".

If OW? is true, COMPARESOURCES calls DWIMIFY on each function body before performing the
comparison. This is useful for comparing a file made with CLISP prettyprinted with one made
without.

If EXAMINE is true, COMPARESOURCES calls the editor to allow you to more closely examine
expressions that differ. Its value is either T, meaning call the editor in all cases, or an atom or a list
of atoms chosen from among the following:

OLD Call the editor for changed objects that are on both files.

NEW Call the editor for objects that are on only one file.

MISC Call the editor for changed but otherwise unclassified expressions.

In the OLD and MISC cases, the editor is called on a list of two elements, the two expressions. In the
NEW case, the editor is called on just the single new expression.

The value returned by COMPARESOURCES is a list whose elements are of the form (type. names),
listing the names by type of all objects found to be different. Expressions of no particular type are
identified collectively as "(Other --)".

FORM OF THE OUTPUT

The output of COMPARESOURCES is in several sections. First, all functions are compared. Then
expressions of other types (variables, macros, etc) are compared. When a difference is found,
COMPARESOURCES prints the name of the object and calls COMPARELISTS, the same Interlisp
function called by COMPARE and COMPAREDEFS. Finally, expressions inside of DECLARE: forms
are recursively analyzed in a separate section in the same fashion. All DECLARE: forms of the same
applicability (e.g., EVAL@COMPILE DONTCOPY) are handled in the same subsection.

4S

en·vos COMPARESOU RCES

The output of COMPARELISTS takes one of three forms. The usual form is an abbreviated printing
of the two expressions with equal elements in the two structures denoted by "&" or "_n·" for a
subsequence of n identical expressions. Identical elements are printed only for purposes of
establishing the context of differences. For example,

COMPARESOURCES:

(LAMBDA -3- (PROG -16- (for -10- (COND (& (printout & T -4-) -2-»)

(TERPRI --) &»
(LAMBDA -3- (PROG -16- (for -10- (COND (& (printout & -4-) -2-»)

&))

indicates that in the function COMPARESOURCES, an extra argument was added to apr in tau t
form, and a (TERPRI --) expression was added before the final element of the PROG. The first
17 elements of the PROG form were unchanged, as were the first 11 and last 2 of the fa r.

A more abbreviated form of output occurs when the expressions differ only in a global
substitution. In this case, COMPARELISTS prints II (x -) y) II to denote that all occurrences of x in
the first expression were replaced by y in the second expression, and there were no other changes.

Finally, COMPARELISTS prints II SAME II if the expressions are "the same" . Since COMPARESOU RCES
only calls COMPARELISTS when the two expressions are not EQUAL, the output SAME specifically
means that the expressions differ only in the bodies of comments (which COMPARELISTS ignores).

USER EXTENSIONS

COMPARESOURCES already "knows" about several kinds of file package objects, including FNS,
VARS, MACROS, RECORDS, and PROPS. Any expression not identifiable as some particular type is
compared as a vanilla expression. You can extend the set of types it knows about by adding to the
following list:

COMPARESOU RCETYPES [Variable]

The elements of this list are lists of the form

(TYPE PREDICATEFN COMPAREFN IDFN DESCRIPTION)

as follows:

TYPE The file package type of the object (or whatever name you wish to give it in
the case of fictitious object types).

PREDICA TEFN A function of one argument, a single top-level expression as read from the
file, that returns true if the expression is of the desired type.

COMPAREFN A function of three arguments, one expression from each file (both
guaranteed to have satisfied the PREDICA TEFN), and the listing stream.
COMPAREFN should compare the two expressions in some appropriate way,
printing its results to the listing stream. A typical COMPAREFN calls the­
function COMPARELISTS on some subform of the expressions. If COMPAREFN
is NIL, COMPARELISTS is used.

IDFN A function of one argument, an expression, that returns the "name" of the
object described by the expression. Two expressions are assumed to define
the same object if their names are EQUAL. The name corresponds roughly to

46

en·vos COMPARESOU RCES

a file package name. For example, for type VARS it is the variable name; for
type PROPS it is a pair (atom propname). If IDFN is NIL, CADR is used.

DESCRIPTION A string identifying the kind of object, for use in the comparison printout. If
DESCRIPTION is NIL, (L-CASE TYPE T) is used.

47

en-vas COMPARETEXT

COMPARETEXT

By Mike Sanne!la. Tested in Medley by Larry Masinter (Masinter.PA@Xerox.COM)

Uses TEDIT.LCOM, GRAPHER.LCOM

INTRODUCTION

COMPARETEXT is a rather non-standard text file comparison program which tries to address two
problems: (1) the problem of detecting certain types of changes, such as detecting when a
paragraph is moved to a different part of a document; and (2) the problem of showing the user
what changes have been made in a document.

The text comparison algorithm is an adaptation of the one described in the article "A Technique
for Isolating Differences Between Files" by Paul Heckel, in CACM, V21, #4, April 1978. The main
idea is to break each of the two text files into "chunks" (words, lines, paragraphs, ...), hash each
chunk into a hash value, and match up chunks with the same hash value in the two files. This
method detects switching two chunks, or moving a chunk anywhere else in the document.

COMPARING TEXT FILES

Two text files can be compared with the following function:

(COMPARETEXT NEWFILENAME OLDFILENAME HASH. TYPE GRAPH. REGION) [Function]

NEWFILENAME and OLDFILENAME are the names of the two files to compare. The order is not
important, except that in the resulting graph the NEWFILENAME information will appear on the
left, and the OLDFILENAME info on the right.

HASH. TYPE determines how "chunks" of text are defined; how fine-grained the comparison will
be. This can be PARA to hash by paragraphs (delimited by two consecutive CRs), LINE to hash by
lines (delimited by one CR), or WORD to hash words (delimited by any white space).
HASH. TYPE = NIL defaults to PARA.

GRAPH.REGION is the region on the display screen used for the file comparison graph. If
GRAPH. REGION = NIL, the system asks the user to specify a region. If GRAPH. REGION = T, a region
in the lower left corner is used.

COMPARETEXT creates a graph with two columns. Each column contains the file name of one of
the files, and lists the chunks from that file. Each chunk is represented by an atom NNN:MMM,
where NNN is the file pointer of the beginning of the chunk within the file, and MMM is the length
of the chunk. Lines are drawn from one column to the other to show which chunks in one file are­
the same as those in the other file. Chunks with no lines going to them do not exist in the other
file. [Note: a series of chunks in one file which are the same as a series of chunks in the other file
are merged into one big chunk. A series of unconnected chunks is also merged.]

Pressing the LEFT mouse button over one of the chunk nodes causes the node to be boxed, and a
Tedit window to be opened on the file, with the appropriate text selected. If a Tedit window to
the file is already active, the selection is simply moved.

48

en·vos COMPARETEXT

Pressing the MIDDLE mouse button over a chunk node raises a pop-up menu with the items: PARA,
LINE, and WORD. If one of these is selected, COMPARETEXT is called to compare the selected
chunk with the last selected chunk (the one that is boxed), using the hash type selected, and create
a new graph window.

If the mouse is buttoned outside of the PARAlLlNElWORD menu, no comparison is done, but the
selected node is boxed. The PARAlLlNElWORD menu is always brought up a little away from the

_ cursor, so pressing double-MIDDLE-button over a chunk node is a way to change the boxed node
without calling Tedit.

Important note: white space (space, tab, CR, LF) is used to delimit chunks, but is ignored when
computing the hash value of a chunk. Therefore, if two paragraphs are identical except that one
has a few extra CRs after it, they will be considered identical by COMPARETEXT.

49

en·vos COMPILEBANG

COMPILEBANG

By: Nick Briggs (Briggs.pa@Xerox.com)

Required by TRILLIUM

This provides an interface to the compiler that avoids the interview for the common cases of
in-core compilation. It contains a single function COMPILE!, and the Lispx and edit macros C:

(COMPILE! X NOSAVE NOREDEFINE PRINTLAP) [Function]

Calls the compiler to compile X. If X is a litatom, its definition is compiled and stored in the
function cell unless NOREDEFINE, and the old definition if any is saved on the property list unless
NOSAVE. No printing of lap or machine code is done unlessPRINTLAP.

Thus, to simply compile the function BAR, do COMPILE!(BAR).

X may also be a list form. In this case, COMPILE! assumes that the user is interested just in seeing
how that form would compile. The form is embedded in a Lambda expression and. compiled. Of
course, there is no function-cell to be stored into or saved.

C [Lispx Macro]

The LlSPXMACRO C calls COMPILE!, with PRINTLAP on, on the next element of the input line. Thus,
C BAR will compile, redefine, and save the old definition for BAR.

C (CONS) will show how a call to CONS would compile.

The editmacro C calls COMPILE! on the current expression if it is a list, or on the form of which the
current expression is an element.

so

en·vos COURIERDEFS

COURIERDEFS

By: Christopher lane (lane@Sumex-Aim.Stanford.Edu)

_COURIERDEFS contains a procedure-less Courier program, called INTERlISP, which defines several
Envos lisp types as Courier constructed types or as new Courier primitive types (via a COURIERDEF
property) for use with Courier server and client programs. The defined Envos lisp types include:

ATOM Converts to a string on writing and converts to an atom on reading.

FONT Converts a FONTDESCRIPTOR to a record describing the font on writing and convert
the record back to a FONTDESCRIPTOR on reading.

REGION A sequence of INTEGER.

POSITION Converts a POSITION record to two integers on writing and converts back to a
POSITION record on reading.

NUMBER like INTEGER but can also be NIl.

BRUSH Converts the various possibilities for a brush (Nil, INTEGER, BRUSH RECORD etc.) to
a CHOICE record on writing, converts back to original specification on reading.

OPERATION An ENUMERATION of Nil, REPLACE, PAINT, INVERT or ERASE.

TEXTURE Converts a TEXTURE, Nil or T to a CARDINAL on writing, returns a CARDINAL on
reading.

This file is loaded by several other modules that define Courier servers and clients. A Courier
program can use the types defined in the INTERLISP program by using the INHERITS slot in the
Courier program definition.

51

en·vos COURIEREVALSERVE

COURIEREVALSERVE

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

Uses: COURIERSERVE

COURIEREVALSERVE implements both the client and server routines for the simple remote
evaluation server described in the COURIERSERVE documentation.

The module defines two user functions:

(REMOTEEVAL FORM COURIERSTREAM [NOERRORFLGn [Function]

(REMOTEAPPL Y FN ARGS COURIERSTREAM [NOERRORFLG}) [Function]

COURIERSTREAM is obtained by calling COURIER.OPEN to connect with a host that is running the
Courier server and has COURIEREVALSERVE loaded. If the NOERRORFLG is non-NIL, it is returned if
an error is signaled by the remote host, otherwise the functions generate an error.

Due to the removal of ERRORN as of the Lyric release, the error handling is not as informative as in
earlier versions. If you are connected to a pre-Lyric host, errors will work as before, otherwise
instead of signaling the actual remote error (eg. " Undefined car of form") the generic" Remote
evaluation error!" error is raised. This is to maintain backward compatibility in the EVAL Courier
program. Hopefully, this will be replaced by a new version of the EVAL program designed to
correctly remote the new condition-based error handler.

52

en-vas COU RIERIMAGESTREAM

COURIERIMAGESTREAM

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

Uses: COURIERSERVE, COURIERDEFS and BITMAPFNS

COURIERIMAGESTREAM implements a Courier client and server program which allows remote
hosts to do image stream manipulations on other workstations via the network. To do this, it
defines the COURIER virtual image stream type which allows the user to manipulate remote image
streams through local image streams.

THE IMAGESTREAM COURIER PROGRAM

The module defines a Courier program called IMAGESTREAM (which inherits from the INTERLISP
Courier program defined in COURIERDEFS). For each IMAGEOP in the IMAGEOPs definition, there
is an equivalent Courier procedure in the IMAGESTREAM program. The module contains the code
for both the Courier client and server.

OPENING AND CLOSING REMOTE IMAGE STREAMS

Remote image streams can be opened using either the COURIER image stream type or using direct
Courier calls.

The COURIER Image Stream Interface

Remote Courier image streams can be opened using:

(SETQ COURIERSTREAM (COURIER.OPEN HOST)
(OPENIMAGESTREAM COURIERSTREAM 'COURIER OPTIONS)

which returns an image stream. The OPTIONS can include FILE and IMAGETYPE which are passed
to OPENIMAGESTREAM on the remote host and if not supplied, a nameless DISPLAY image stream
is opened. All other options are passed to the remote image stream. The image stream can be
closed using CLOSEF. .

The Courier Procedure Call Interface

Courier image streams can also be opened using Courier procedure calls from any Courier client
with the Courier procedure:

(OPEN 0 (FILE IMAGETYPE) RETURNS (HANDLE) REPORTS NIL)

which is invoked from Lisp by doing:

(COURIER.CALL COURIERSTREAM 'IMAGESTREAM 'OPEN FILE IMAGETYPE OPTIONS)

where FILE, IMAGETYPE and OPTIONS are similar to the arguments to OPENIMAGESTREAM.

This call will return a handle to be used with the remainder of the IMAGESTREAM procedures. To
close an image stream from a Courier client use the Courier procedure:

53

en·vos

(CLOSE 1 (HANDLE) RETURNS NIL REPORTS NIL)

which is invoked from Lisp by doing:

COU RIERIMAGESTREAM

(COURIER.CALL COURIERSTREAM 'IMAGESTREAM 'CLOSE HANDLE)

DIFFERENCES BETWEEN IMAGEOPS AND IMAGESTREAM COURIER PROCEDURES

All of the IMAGEOPs are implemented in the COURIER image stream type as it merely passes the
call to the IMAGEOPs of another image stream type on the remote host. No error checking is done,
so invoking an iliegallMAGEOP will cause a Courier rejection of the call.

The arguments to the IMAGESTREAM Courier procedures are generally in the same order as the
arguments to the various IM* functions which implement an image stream (stream argument first).
An exception is BITBLT (and SCALEDBITBLT) which is defined as follows:

(BITBLT 32 (HANDLE BULK.DATA.SOURCE LEFT BOTTOM WIDTH HEIGHT
SOURCETYPE OPERATION TEXTURE CLIPP~NGREGION)

The BULK.DATA.SOURCE argument is used to transfer the bitmap using WRITEBINARYBITMAP.
This is only relevant to direct Courier calls, the COURIER image stream BITBLT operation hides the
differences.

When using the COURIER image stream type, the STRINGWIDTH, CHARWIDTH etc. IMAGEOPs are
handled locally, not via Courier calls, to improve efficiency.

IMAGESTREAM PROGRAM VERSIONS

The current implementation of the IMAGESTREAM Courier program is version 1. This module also
has the previous version of the program (0) defined as OLDIMAGESTREAM (just the procedure
definitions that differ, it inherits from IMAGESTREAM). This allows the current version of the
program to accept calls from older versions, but not vice-versa. However, the new version of the
IMAGESTREAM Courier program can be loaded and used with the old (pre-Lyric) functions.

54

en·vos COURIERSERVE

COURIERSERVE

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

. COURIERSERVE implements a Courier server process for Envos Lisp allowing other hosts to make
Courier calls into the workstation. The server supports both multiple Courier stream connections as
well as expedited (single packet) and broadcast calls.

STARTING A COURIER SERVER

The Courier server can be started by evaluating:

(COURIER.START.SERVER [RESTART]) [Function]

Once the server is running, it can be invoked by a remote host client using COURIER.OPEN for a
Courier stream connection or by using COURIER.EXPEDITED.CALL or COURIER.BROADCAST.CALL
for expedited calls. The functions for making Courier client calls from Lisp are documented in the
Interlisp-D Reference Manual (pages 31.15-31.26).

(COU RIER.RESET.SOCKET) [Function]

(Re)Opens and closes the Courier socket. Not normally a user routine, this function is called by
COURIER.START.SERVER but it can be called directly if "socket already open!" errors persist on the
Courier socket (5).

DEFINING A COURIER SERVER FUNCTION

Defining a Courier server program is identical to defining a client program except for the
additional field IMPLEMENTEDBY in each procedure in the PROCEDURES section of the Courier
program definition:

PROCEDURES
«LAYOUT 0 (GRAPHNODES ROOTIDS FORMAT FONT MOTHERD PERSONALD FAMILYD)

RETURNS (GRAPH)
REPORTS (LAYOUT.ERROR)
IMPLEMENTEDBY GRAPH.REMOTELAYOUT»

The order of the RETURNS, REPORTS and IMPLEMENTEDBY fields is significant and should be
maintained.

The server function, named in the IMPLEMENTEDBY field, is invoked when a Courier call to the
procedure is made. The server function is applied to the Courier stream, the Courier program and
the Courier procedure followed by the arguments named in the Courier definition. The arguments
for GRAPH.REMOTELAYOUT would be (COURIERSTREAM PROGRAM PROCEDURE GRAPHNODES
ROOTIDS FORMAT ...).

Note that the COURIERSTREAM, PROGRAM and PROCEDURE arguments are not necessarily used,
they are made available for implementing special servers.

55

en-vas COURIERSERVE

RETURNING VALUES FROM A COURIER PROGRAM

Results or errors can be returned by a Courier server function by one of two different methods. In
the usual, simple case, the server function can return as its result a list starting with one of RETURN,
ABORT or REJECT followed by the appropriate values.

For the RETURN result, the tail of the list should be the results as defined in the Courier procedure
definition,eg.(RETURN 23 "John").

For the ABORT result, the tail of the list should contain the reason for the abnormal termination (as
defined in the Courier program), followed by any error arguments, ego (ABORT
NAME.NOT.FOUND "John").

For the REJECT result, the tail of the list should contain the rejection error as defined in the Courier
standard. The only rejection that should occur inside a server function should be UNSPECIFIED if
the program needs to reject for any reason. The other rejection types are handled by the Courier
server.

Alternatively, the server function can return results directly to the Courier stream and return NIL as
its result. To return results directly to the Courier stream use:

(COURIER.RETURN COURIERSTREAM PROGRAM PROCEDURE RESULTLSn

(COURIER.ABORT COURIERSTREAM PROGRAM ERROR RESULTLSn

(COURIER.REJECT COURIERSTREAM ERROR RESULTLSn

EXPEDITED AND BROADCAST COURIER CALLS

[Function]

[Function]

[Function]

The Courier server allows expedited and broadcast Courier calls. The only difference the server
function would see if invoked due to an expedited call is that the Courier stream it is handed is
actually a record containing an XIP packet and a socket. If the server function does not use the
Courier stream directly, then this difference is invisible.

If the server function actually needs a Courier stream to operate (eg. an NS CHAT server), then it
should probably include an USE.COURIER abort error in its definition. If the server function needs a
Courier stream due to bulk data arguments, this will be trapped in the Courier server itself, which
will reject appropriate~y and not invoke the server function.

USING BULK DATA IN A SERVER FUNCTION

If a server function takes a bulk data argument (either BULK.DATA.SINK or BULK.DATA.SOURCE), it
is handed an open bulk data stream for that argument when invoked. If the server function
returns a result by returning one of the RETURN or ABORT forms as its result, the bulk data stream
will be closed automatically. If the server function returns results directly to the Courier stream
using COURIER.RETURN or COURIER.ABORT, then the server function must first close the bulk data
stream using:

(CLOSE.BULK.DATA STREAM [ABORTFLG]) [Function]

The CLOSEF function does not work on the bulk data stream argument and using it will hang the
Courier connection. Only the immediate bulk data transfer type is handled. NULL, ACTIVE or
PASSIVE bulk data transfer types will cause a Courier rejection of type UNSPECIFIED.

56

en·V6S COURIERSERVE

SIMPLE SERVER DEFINITION

Below is the Courier definition for a simple evaluation server. The two functions EVAL.REMOTE
and APPLY.REMOTE are all that would need to be defined to make the server run:

«1105 0)

TYPES (!SEXPR STRING)
FN STRING)
ARGS (SEQUENCE SEXPR»
ERRORN (RECORD (ERROR. NUMBER CARDINAL)

(ERROR.MESSAGE SEXPR»»
PROCEDURES «EVAL 0 (SEXPR)

RETURNS (SEXPR)
REPORTS (REMOTE.EVAL.ERROR REMOTE. READ. ERROR)
IMPLEMENTEDBY EVAL.REMOTE)

ERRORS

RELATED FILES

(APPLY 1 (FN ARGS)
RETURNS (SEXPR)
REPORTS (REMOTE.APPLY.ERROR REMOTE.READ.ERROR)
IMPLEMENTEDBY APPLY.REMOTE»

«REMOTE.EVAL.ERROR 0 (ERRORN)l
(REMOTE.APPLY.ERROR 1 (ERRORN)
(REMOTE.READ.ERROR 2 (ERRORN))

The modules CHATSERVER-NS, COURIERDEFS, COURIEREVALSERVE, COURIERIMAGESTREAM,
MONITOR, REMOTEPSW and NSTALK all define Courier servers and/or Courier type definitions.

57

en·vos CROCK

CROCK

By: Kelly Roach

New Owner: Herb Jellinek (Jellinek.pa@Xerox.com)

CROCK sets up an analog face clock in the user's environment. To use, LOAD CROCK.LCOM and call
(CROCK). CROCK requires that PROCESSWORLD be running (automatic in Fugue or later).

CROCK

Function CROCK has the form

(CROCK REGION) [Function]

The first invocation creates a clock window, CROCKWINDOW, occupying REGION with style
CROCK.DEFAULT.STYLE. If REGION is left NIL, a region will be prompted for. Subsequent
invocations use CROCKWINDOW. Only one clock window may exist at any given time. The clock is
updated once a minute.

STYLE

The clock's style is maintained as a property list and can be found by (WINDOWPROP
CROCKWINDOW 'STYLE). There are four independent boolean properties which the user may
control: HANDS (the hands of the clock), TIMES (time digits printed where the hands end), RINGS
(rings on the clock face), and NUMBERS (12 numbers around the outside of the clock face). The
style first used will be CROCK.DEFAULT.STYLE (bound to '(HANDS T TIMES NIL RINGS NIL NUMBERS
T) when CROCK is first loaded).

CROCK.DA TEFORMAT

The user can control how the date will be printed in CROCKWINDOW. CROCK.DATEFORMAT
should have the form (DATEFORMAT . <tokens» where each <token> is one of NO.DATE,
NO.TIME, NUMBER.OF.MONTH, YEAR.LONG, SLASHES, SPACES, NO.LEADING.SPACES, TIME.ZONE,
or NO.SECONDS. These are all listed on pp23.57-58 of the IRM. Unfortunately, some other
possibilities, such as DAY.OF.WEEK have not been implemented by Interlisp-D yet and are
therefore not available to CROCK yet. The default value for CROCK. DATE FORMAT is
(DATEFORMAT NO.SECONDS). For example,

(SETQ CROCK.DATEFORMAT

'(DATEFORMAT SLASHES NUMBER. OF. MONTH NO.SECONDS»

would make CROCK print a date string like

28/09/8414:53

instead of a date stri ng like

28-Sep-84 14: 53

58

en·vos CROCK

Since CROCK updates itself only once a minute, it is probably a good idea to always include
NO.SECONDS in your CROCK.DATEFORMAT.

CROCK.ALARM AND CROCK.TUNE

The user can set CROCK's alarm via

(CROCK.ALARM DA TESTRING) [Function]

• where DATESTRING is any arg acceptable to Interlisp's IDATE (such as the date CROCK prints in
CROCKWINDOW). CROCK will act appropriately when time reaches DATESTRING. Dandelion users
can set global CROCK.TUNE to a tune to be played by Interlisp's PLA YTUNE when CROCK's alarm
acts.

RECOMMENDED USAGE

The simplest way to call CROCK from your init file or other function is to set your CROCK globals,
then call CROCK:

(SETQ CROCK.DEFAULT.STYLE STYLE)

(SETQ CROCK.DATEFORMAT DATEFORMAn

[Variable]

[Variable]

(SETQ CROCK.TUNE TUNE) [Variable]

(CROCK REGION) [Function]

You supply <style>, <dateformat>, <tune>, and <region>. You only need the SETQs if you
want non-default values. If no < region> is supplied, CROCK will prompt for one.

LEFT MOUSE BUTTON

Buttoning CROCKWINDOW with the left mouse button requests immediate update of the clock.
(Of course, it may take a while for the process scheduler to get to it.)

MIDDLE MOUSE BUTTON

Buttoning CROCKWINDOW with the middle mouse button presents a menu of commands for
modifying the clock's style. Menu item SHOW.STYLE prints the clock's style.

RIGHT MOUSE BUTTON

Buttoning CROCKWINDOW with the left mouse button presents the usual window menu.
RESHAPEing the CROCKWINDOW causes the clock to change its size to fit the new window region.
CLOSEi ng the CROCKWI N DOW del etes the clock process.

59

en·vos DATE FORMAT -EDITOR

DATEFORMAT-EDITOR

By: Johannes A. G. M. Koomen
(Koomen.wbst@Xerox.com or Koomen@CS.Rochester.edu)

This document last edited on February 19,1987.

DESCRIPTION

DATEFORMAT-EDITOR provides a menu-based interface for creating and editing date formatting
lists (see IRM, Section 12.5). The menu is a Free Menu (see FREEMENU in Medley Release Notes),
and looks like:

llll';';';';';'~';';';';';';';';';';';';';';';';';';';1;';1;1;1;1;1;1;1;1;1;1;1;1;1;1;';1;.;I;I;I;I;jll

:::: Qu 1 t Abort :::
:::: :::
l~l~ DATE: G601'[-U4ii non e l11
:::: J ::: ,,,, dd /mon /'y'~l dd mon ~l~l mon d(~, ~\I'~" ,,,
:::: :::
:::: Year: AU-1ii lon9 :::
I',' ','
1:jl~:j, lonth: ~ 131 ph

,3-1 onlJ numer i c :11,1:l:
Weekday: II1&II:. 1 (I n IJ S h 0 r t

~lll leading spaces: _ no W
:::: T I IE : lIuMI"'1Ii"fi h h : m m non e :::
.:': T . Z P!!9!II ':' :':' 1.e one: .:. ""' e s :':
111l:::~::lll

INTERFACE

(EDIT-DATEFORMAT DATEFORMA n [Function]

DATEFORMAT is either NIL or the value returned from a call to the function DATEFORMAT (see
IRM, Section 12.5). EDIT-DATEFORMAT starts by pre-selecting date formatting keys according to
DATEFORMAT, or default ones if DATE FORMAT is NIl. It then enters a busy-wait loop, blocking
until the DateFormat Editor window is closed, or Quit or Abort is selected. EDIT-DATEFORMAT
returns a new value obtained from the function DATEFORMAT given the selected date formatting
keys if Quit was selected, otherwise NIl.

DATEFORMAT-EDITOR-ITEMS [Variable]

A list of items acceptable to the function FM.FORMATMENU (see FREEMENU in the Release Notes).
Unfortunately, some of the date format details are embedded in the DateFormat Editor, rather
than in these items, so leave ID's and LABEL's alone, otherwise mung around to your heart's
content if you desire a different layout for the DateFormat Editor. Initial value is reflected by the
screen snap above.

60

en·vos DATEFORMAT-EDITOR

(GET-DATEFORMAT-EDITOR RECOMPUTE?) [Document Object]

Returns the FreeMenu window of the DateFormat Editor. If RECOMPUTE? is non-NIL, recomputes
the FreeMenu. Use this funciton with argument T if you change the variable
DATEFORMAT -EDITOR-ITEMS.

EXTENDED DATE FORMAT OPTIONS

MONTH.LONG [DateFormat Option]

Provides for full names of months rather than the first three characters. For instance, "20 February
1987" is produced by (GDATE NIL (DATEFORMAT MONTH.LONG YEAR.LONG SPACES NO.TIME».

MONTH.LEADING [DateFormat Option]

Causes the month to appear before the day. For instance, "February 20, 1987" is produced by
(GDATE NIL (DATEFORMAT MONTH.LEADING MONTH.LONG YEAR.LONG NO.TIME».
MONTH.LEADING implies SPACES and disables NUMBER.OF.MONTH .

. 61

en·vas DEFAULTSUBITEMFN

DEFAULTSUBITEMFN

By: Nick Briggs (Briggs.pa@Xerox.com)

The DEFAULTSUBITEMFN module redefines the DEFAUl TSUBITEMFN to permit an extended
specification of menu subitems. If the CAR of the 4th element of a menu item is the keyword EVAl,
the CADR of that 4th element is evaluated and the results used as the subitem specifications.
During the evaluation the variables MENU and ITEM are bound respectively to the menu and item
of which the EVAl subitem spec is a part. This module is only a stopgap measure until it is possible
to easily redefine the BackgroundMenu subitem function, but it will provide this facility on all
menus that do not explicity specify a subitem function.

example menu item entries:

(foo foo.selected "No help for you!" (EVAL dynamic.foo.subitems»

using a variable containing subitems, or

(foo foo.selected "No help for you!" (EVAL (compute.foo.subitems»

using a function to recompute the subitems.

It is prudent to make the expressions used in the EVAL subitems quite efficient, since they will be
called many times.

62

en·vas DIGI-CLOCK

DIG I-CLOCK

By: Keith Mountford (Mountford.AISNorth@Xerox.Com)

- INTRODUCTION

DIGI-CLOCK is a digital clock which allows you to keep track of the time in multiple time zones.

STARTING DIGI-CLOCK

Loading DIGI-CLOCK will kill any existing DIGI-CLOCK process and restart the clock. Once the clock
is loaded it can be restarted by typing (DIG I-CLOCK) or (DIG I-CLOCK T). The second of these restarts
the clock from scratch, rebuilding everything; the first, simply restarts the process and does not
undo any changes made to the clock. left buttoning in the window causes the clock to update
itself. The clock updates itself approximately once a minute.

CHANGING DIGI-CLOCK

The clock font, the time, the local time zone, the alarm, the alarm mode (loud or quite), the clock
mode (12 or 24 hour) are all settable from the middle button menu. This menu also allows you to
add clocks for other time zones. The auxilliary clocks also have middle button menus which allow
you to set the time zone for that window and edit the time zone heading. The default is for all of
the auxilliary clocks have the same font and changing the font in one changes the font in all of
them unless the submenu item "Set Aux Clock Font In Just This Window" is slected. Selecting
"Shape to Fit" will reshape the clock windows to their minimum size.

If the menu font options are not sufficient you can set the global variables *DC-FONT* and
DC-AUXW-FONT. The date format is bound to the variable *DC-DATEFORMAT* and can be
changed by editing or setting this variable. The clock does not deal with seconds gracefully in
12-hour mode and it will not allow NUMBER.OF.MONTH in 12-hour mode. The regional time zones
are stored on the global list *DC-TIME-ZONE-UST*.

SEITING DIGI-CLOCK

Choosing "Set Time" from the middle button menu, brings up a menu which allows you to set the
time.

SETTING THE DIGI-CLOCK ALARM

DIGI-CLOCK includes an alarm clock which can be set to any number of dates in any order. The
alarm stores a brief message to remind you why the alarm was set. To set the alarm choose the
"Set Alarm" middle button option. Once you have set the time, the clock will prompt you for a
message. This message can be longer than the window, but only one line .long. When the alarm
rings, the window will shape to fit the message.

The alarm calls the function RINGBELLS once a minute until the alarm is turned off, which can be
annoying. To run the alarm in quiet mode, select Quiet Alarm from the middle button menu.
Selecting Quiet Alarm changes this menu option to Loud Alarm and sets the alarm to run in quiet
mode. Selecting Loud Alarm will toggle the alarm back to its original noisy setting.

63

en·vos DIG I-CLOCK

To unset the alarm, select II Delete Alarm Setting" from the middle-button menu and then select
the time you want deleted from the pop-up menu. .

To turn the alarm off, select nTurn Alarm Offn from the middle-button menu.

64

en·vos

DOC·OBJECTS

Johannes A. G. M. Koomen
(Koomen.wbst@Xerox.com or Koomen@CS.Rochester.edu)

Uses: TEDIT, IMAGEOBJ,DATEFORMAT-EDITOR

This document last edited on October 27, 1987.

DESCRIPTION

DOC-OBJECTS

DOC-OBJECTS is a generic, extensible interface for including image objects in TEdit documents. It
hooks into TEdit by an extra entry on TEd it's middle button menu, as well as by redefining what
happens on typing CTRL-O. Clicking the menu entry or typing CTRL-O brings up an Objects menu.
Selecting an object causes an instance of the designated object to be inserted in the document at
the position of the caret. Clicking outside the Objects menu has no effect. DOC-OBJECTS comes
with a set of predefined Document Objects, which are described below. Additional Objects can
easily be added to the Objects menu.

Predefined Objects

TimeStamp [Document Object]

A TimeStamp reflects the date the document containing it was last PUT into a file. Each PUT causes
a TimeStamp to be updated. Clicking the middle button over a TimeStamp brings up a DateFormat
editor. The TimeStamp can be given any appearance consistent with the function DATEFORMAT
(see IRM, Section 12.5). The object following the next colon is a TimeStamp object for this file:
15 Sep 88 18: 11 PDT (Thursday) Individual characters of a TimeStamp cannot be altered by TEdit,
but a TimeStamp can be given arbitrary TEdit Looks. The DATEFORMAT-EDITOR package is
automatically loaded by the ~OC-OBJECTS package.

File Stamp [Document Object]

A FileStamp reflects the name of the file into which the document containing it was last PUT. Each
PUT causes a FileStamp to be updated. It cannot be edited. A FileStamp is initially displayed as "_­
not yet filed __ ".

Include [Document Object]

This document object is a dynamic version of the static TEdit Include command, and is intended to
facilitate the unbundling of document chapters and sections, while maintaining the ability to print
the entire document or any portion of it. When an Include object is created, the user is prompted
for a file name. An Include object can be enabled or disabled. If it is enabled, the object shows in
the TEd it window as '@lnclude[MySubFile.TEdit]', and the indicated file will be included during a
hardcopy operation. If it is disabled, then the object shows (both in the TEdit window and on
hardcopy) as '@DoNotlnclude[MySubFile.TEdit]'.

Middle-clicking on an Include object pops up a menu withthe following fields: "New File" (prompt
for a new file name), "Edit File" (TEdit the Include file, or bring it to the top if is already being

65

en·vos DOC-OBJECTS

edited), "Enable" (include the file during hardcopy), and "Disable" (do not include the file during
hardcopy).

Two caveats:

1) For best results, make an Include object the last thing in a paragraph, or put it in a paragraph of
its own, and set the line and paragraph leadings to O. The Include object forces a paragraph break
right after the Include Qbject during hardcopy, to prevent the looks of the paragraph containing
the Include object to mask the looks of the first paragraph in the file being included.
2) A document containing Include objects is best hardcopied from a FileBrowser window, rather
than through the hardcopy command on the TEdit window menu. It will work properly either way,
but it's a bit unnerving to watch TEdit trying to reflect on the display the inclusion of one or more
files before hardcopy and the removal of the included files after hardcopy.

Horizontal Rule [Document Object]

This provides a more user-friendly interface to the HRUlE package (which is automatically loaded
by the DOC-OBJECTS package). Upon selecting it a numberpad is brought up repeatedly, with
which the user can indicate the thickness of alternating black and white lines. The resulting HRuie
object is inserted in the document whenever the numberpad is aborted or returns O. The
DOC-OBJECTS package also modifies the HRuie object such that it can be edited: clicking the
middle button over an HRuie object brings up a structure editor (such as SEdit) on a list containing
the thicknesses of the lines composing the HRule. This list can be altered in any way, as long as the
editor returns another list of numbers (presumably of odd length).

Eval'd Form [Document Object]

Selecting this object causes a type-in window to pop up. The value of the form typed in is assumed
to be an image object. This is what TEdit used to do on typing CTRl-O. For TEd it's purpose, an
image object is a lisp value of type IMAGEOBJ, BITMAP, STRINGP, lITATOM, or REGION. The latter
is assumed to refer to a region of the screen.

Screen Snap [Document Object]

Selecting this object prompts for a region of the screen. A bitmap containing a copy of the given
region of the screen is inserted in the document. This is equivalent to clicking the right button in
the display's background while holding the SHIFT key down.

Extending the Document Objects interface

DocObjectsMenuCommands [Variable]

This variable contains a list of menu items which are displayed in the Document Objects pop-up
menu. It is analogous to the variable BackgroundMenuCommands (cf. IRM, Section 28.8). The lisp
form in each item is assumed to evaluate to an image object (as defined under Eval'd Form
described above).

DocObjectsMenu [Variable]

This variable caches the Document Objects menu. Set it to Nil whenever you alter the variable
DocObjectsMenuCommands.

66

en·vos DOC-OBJECTS

DocObjectsMenuFont [Variable]

This variable contains a font descriptor which is used for displaying the items in the Document
Objects menu. The initial value is (FONTCREATE '(MODERN 12 BOLD». . Set the variable
DocObjectsMenu to NIL whenever you alter DocObjectsMenuFont.

(DOCOBJ-STRING-IMAGEBOX STRING IMAGESTREAM) [Function]

A useful function for Document Objects that wish to display as a string of characters (such as a
- TimeStamp). The Document Object's IMAGEBOXFN can call this function to obtain an image box

with the TEdit Looks that apply to the Document Object taken into account.

(DOCOBJ-WAIT-MOUSE WINDOWSTREAM) [Function]

A useful function for Document Objects that wish to assure that their buttoneventfn takes action
only if the mouse buttons were let up within the Object's region (i.e., the clipping region of the
Object's window stream). It returns T when the mouse buttons go up within the region, or NIL
when the mouse moves out of the region while a button is still down.

Future predefined Document Objects

Watch this space for objects such as Index & Index Entry, Citation & Bibliography, ...

67

en·vos DONZ

DONZ

The Excruciatingly User Friendly Environment

By: Jeff Shrager et al.

Checked out for Medley by Larry Masinter (Masinter.PA@Xerox.COM)

Files: DONZ. DONZ.dfasl DONZ.TEDIT

Descri ption:

loading DONZ starts a background process (DONZ.RUN) which causes your ICONS to become "user
friendly". Telling you what this means would spoil all the fun of discovery.

Customizing DONZ:

The delay between activations of DONZ is done by (DISMISS DONZ.DELA V). Its value defaults to
5000 (5 seconds). When DONZ wakes up, it trys out one window, selected at random, from all the
windows in (OPENWINDOWS). If the selected window is not an ICON, nothing happens and DONZ
wakes up again in 5 more seconds. If that window is an ICON, then DONZ tries to find a message
for it as described below. This method results in DONZ's "friendliness rate" running approximately
in proportion to the ratio of icons to opened windows on your screen. Thus, if you are doing real
work, DONZ won't bug you, but if you just have a screen full of icons, DONZ will be exceedingly
friendly.

The list DONZ.TEST.MESSAGE.ALlST has the form:

(frob 1 frob2 frob3 ...)

where each frob is of the form:

(testfn msgl msg2 msg3 ...)

TESTFN will be called with one argument: the *MAIN* window with which this icon is associated.
That is, for instance, the TEDIT window that the icon will exand to ... NOT the icon window. TESTFN
should decide whether or not this window is of a type that it will handle, and return T or NIL as
appropriate. When one of the TESTFNs returns T, one of the messages in the tail of the associated
frob list will be selected at random and displayed .. .in the way that they are dispiayed ... you'll see! If
none of the frobs accepts responsibility for the present icon, there are a few default messages built -
into DONZ.

The msgs should be lists containing individual words (appropriately capitalized) so that .PARA in
the PRINTOUT can do the appropriate word division.

Notes:

DONZ has to be killed via the PSW. Be gentle.

68

en·vos DONZ

DONZ continues to run during screen idle. This results in fairly funny theatrics on the part of your
icons.

The display is done with PRINOUTwhich does some bogusness to indent, erasing some of the good
parts of the window. This is slightly messy, but otherwise innocuous.

Anyone who can guess the origin of the name of this package belongs on the East Coast.

Acknowledgements:

Thanks to Ros Chast for originating the idea, Mike Kazar and Dave Nichols for their original
implementation of DONZ at CMU.

69

en·vos DSPSCALE

DSPSCALE

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

DSPSCALE allows a program to output to different types of streams (display, Interpress, etc.)
without corrections for scaling. This module provides self-scaling graphics through two different
methods: a virtual self-scaling image stream that overlays a regular image stream and/or new
versions of the various image stream graphic manipulation functions (DRAWLlNE,
DSPTOPMARGIN, etc.). The goal of both methods is to make it possible to modify the normal
scaling factor of an image stream without modification to the program generating the output.

VIRTUAL SELF-SCALING IMAGE STREAM

This module implements a virtual image stream type, called SCALED, which is used to overlay any
other image stream and provide automatic scaling to the natural scale of the image stream or any
user selected scaling factor. The function OPENIMAGESTREAM is used to overlay a scaled image
stream over a regular one. For example, the following will open a scaled image stream on top of
an Interpress image stream:

(OPENIMAGESTREAM (OPENIMAGESTREAM 'TEST.IP 'INTERPRESS) 'SCALED)

The only difference between the virtual stream and a normal image stream is that the SCALE
argument to the DSPSCALE function is active and can be used to change the scale of the stream
(multiplying the scale specified by the standard scaling factor of the stream).

SELF-SCALING GRAPHICS FUNCTIONS

As an alternative to the self-scaling image stream, self scaling versions of the various graphics
functions are provided. For most of the graphic functions, self-scaling versions have been defined
which have an ! (exclamation point) at the end of their name (eg. DRAWLINE vs. DRAWLlNE!):

CENTERPRINTINREGION!
CHARWIOTH!
CHARWIDTHY!
CURSORPOSITION!
BITBlT!
BITMAPBIT!
BlTSHADE!

DSPBACKUP!
DSPBOTTOMMARGIN!
DSPClIPPINGREGIONI

DRAWARC!
DRAWBETWEENI
DRAWCIRClEI
DRAWCURVE!

DRAWElLIPSE!
DRAWLINE!
DRAWPOINT!
DRAWPOlYGON!
DRAWTO!
FIllCIRClE!
FI lLPOL YGON !
FONTPROP!
GETPOSITION!

DSPLEFTMARGIN!
OSPLINEFEED!

MOVETOI
MOVETOUPPERLEFT!

OSPRIGHTMARGIN!

DSPSCALE!
RELORAWTO!
RELMOVETO!
SCALE OBI TBl T!
STRINGREGION!
STRINGWIOTH!

DSPSPACEFACTORI
OSPTOPMARGIN!
OSPXOFFSET!
DSPXPOSITIONI
DSPYOFFSET!
OSPYPOSI TION!

The set includes both output and input functions since it is necessary when getting, for example, a
mouse position, to unscale the position to put it back into the program's virtual coordinate system.
By default, these functions can be used directly in place of their non-! counterparts and they will
automatically scale their arguments to the DSPSCALE of the output stream. Some of the above
functions are not identical with their non-! counterparts, as explained below:

70

en·vos DSPSCAlE

(DSPSCAlE! SCALE STREAM) [Function]

In this version of DSPSCAlE, the SCALE argument is active and will multiply STREAM's normal
scaling factor. If you have a program that draws a cir~le, for example, to a window using the
appropriate! functions, you can cause it to draw a different size circle (larger or smaller) by using
DSPSCAlE! to change the scaling factor of the window without touching the source program.

(CHARWIDTH! CHARCODE FONT STREAM) [Function]

- (CHARWIDTHY! CHARCODE FONT STREAM) [Function]

(FONTPROP! FONT PROP STREAM)

(STRINGWIDTH! STR FONT FLG RDTBL STREAM)

[Function]

[Function]

All of the above functions have one extra argument (as compared to their non-! equivalents) which
is the STREAM in question. This is necessary to do the scaling calculations.

The module also defines a couple of new stream manipulation functions:

(DSPTRANSLA TE! Tx Ty STREAM) or (DSPTRANSLA TE! POSITION STREAM) [Function]

Defines the amount of X and Y translation that should be added to graphic operations to STREAM.
Similar to DSPTRANSLATE but works even if the image stream does not have an IMTRANSLATE
method. The second form of the arguments is for backward (Koto) compatibility.

(DSPUNITS! UNITS STREAM) [Function]

Essentially the inverse of DSPSCAlE!, this function lets you set how many UNITS (pixels or whatever)
the source program generates for each unit pixel on the output stream (multiplied by the output
stream's default scaling).

It is possible to use both the virtual image stream and the self-scaling graphics functions together
as long as the self-scaling graphics functions are applied to the real stream, not the virtual one.

Lisp Data Type Scaling Functions

The routines below are used by the! functions and the virtual image stream for scaling numbers,
positions, regions and other data types and are useful for defining other self-scaling functions:

(DSPSCALE.BRUSH BRUSH STREAM)
(DSPSCALE. DASHI NG DASHING STREAM)
(DSPSCAlE.POINTS KNOTS STREAM)
(DSPSCALE.REGION REGION STREAM [Smash Region])
(DSPSCALE.NUMBER NUMBER STREAM)
(DSPSCALE.POSITION POSITION STREAM [SmashPositionn
(DSPSCALE.XPOSITION NUMBER STREAM)
(DSPSCALE.YPOSITION NUMBER STREAM)
(DSPSCALE.WIDTH WIDTH STREAM)

(DSPUNSCAlE.REGION REGION STREAM [SmashRegion})
(DSPUNSCALE.POSITION POSITION STREAM [SmashPosition)
(DSPUNSCALE.NUMBER NUMBER STREAM [OFFSET])
(DSPUNSCAlE.XPOSITION NUMBER STREAM)
(DSPUNSCALE. YPOSITION NUMBER STREAM)

71

[Function]
[Function]
[Function]
[Function)
[Function]
[Function]
[Function]
[Function]
[Function]

[Function]
[Function]
[Function]

[Macro]
[Macro]

en·vos EDITBG

EDITBG

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

EDITBG is a tool for editing both the background and background border shades. The functions
CHANGEBACKGROUND and CHANGEBACKGROUNDBORDER both take a shade argument but the
shade is interpreted differently. A normal black & white shade consists of 16 pixels (see EDITSHADE
in the Interlisp Reference Manual) as does the border shade, which covers twiGe the area. The
normal shade has 4 x 4 pixels but the border shade has 2 x 8 pixels where the pixels are twice as tall.
WHITESHADE and BLACKSHADE appear the same for both, as does the standard background shade
(shown below) but arbitrary shades do not appear the same.

Background Background Border

34850 =- 2 f 15 + 2 f 11 + 2 f 5 + 2 f 1

(EDITBACKGROUND) [Function]

Brings up an edit tool (also available from the background menu) which lets you edit both a
normal shade and a border shade and see how they combine:

Background Texture Edit Tool

',I " "

1737 • -- --::
i'

"
~

':

~
i-...I -

The bottom half of the window has a background texture editor on the left and a border texture
editor on the right. The top half of the window shows the background texture within the border
texture as it would appear on the screen. Buttoning the small box in the center of the window will
change the background and border textures on the screen to those displayed.

72

en·vos EDITKEYS

EDITKEYS

By: Larry Masinter (Masinter.pa@Xerox.com)

. EDITKEYS provides a set of "logical" keys corresponding to the Dandelion (1108) function keys.
This allows 1132 users to take advantage of interfaces designed for the 1108 keyboard. Calling
(BUILDFNKEYS) builds a window with 8 keys like the one below:

IT.6.LICS
.. :.

These keys can be "pressed" by bugging the mouse (left or middle mouse button) inside the key's
image. The effect of pressing one of these keys is to generate the same character code as the key
generates on the 1108. The state of the shift keys (at the time the mouse is let up) are taken into
consideration, but interfaces that use KEYDOWNP are not affected.

73

en·vos EQUATIONS

EQUATIONS

By: Tad Hogg (Hogg.pa@Xerox.com)

DESCRIPTION

This module provides interactive editing of mathematical equations within TEd it. An equation
consists of a number of pieces of text and possibly one or more special symbols. For many purposes,
such as deletion and copy selection, equations behave as a single (large) character in TEdit.
Operations on their pieces are described below.

To load:

The equation editor and a standard set of equation types is obtained by loading
EQUATIONS.LCOM.

To use:

This section describes the procedures by which equations can be inserted into documents and their
pieces modified.

Adding an equation to a TEdit document:

To add an equation, first move the caret to the desired insertion point and then select" Equation"
from the main TEdit menu (obtained by holding down the middle button in the window's title
bar). This will display a menu of known equation types. Selecting one of these will insert the
corresponding equation into the document at the current location of the caret. To abort the
insertion, click outside the menu. Once the equation is inserted, a subeditor will be created for
each of the equation pieces, one at a time. This can be used to fill in the various pieces of the
equation and its use is described below. Some equation types will prompt for additional
information before inserting the new equation (e.g. inserting a matrix will prompt for the desired
number of rows and columns).

Editing a currently existing equation:

In order to modify a piece of an existing equation (e.g. the numerator of a fraction), the piece must
be selected with the mouse in one of two ways. First, you can point at the piece in the displayed
equation and press the left mouse button. Alternatively, pointing at the equation and pressing the
middle button will display a menu from which the desired piece can be selected. This is useful for
selecting pieces that are too small to conveniently point at with the mouse. In either case, if a piece
is selected, a subeditor will start on that piece. In addition, some equation types may also allow
changes to global properties when no specific piece is selected (e.g. changing the number of rows_
in a matrix).

Using the equation piece subeditor:

The subeditor is attached to the bottom of the main edit window and allows individual pieces of
the equation to .be modified with normal TEdit operations. While a subeditor is active, the
corresponding piece of the equation in the main window is inverted. Since the text in equation

74

en·vos EQUATIONS

pieces must be on a single line, the subeditor will not accept control characters such as carriage
returns. Instead the edit window will flash when such characters are typed.

In the subeditor, the TEd it menu is modified to provide a limited set of TEdit commands as well as
additional commands relevant to equations. The menu appears as

Find
Looks

Substitute
Character Looks

Equation
Exit ~-:.

Selecting Find, Looks, Substitute or Character Looks invokes the corresponding TEdit action.
Selecting Equation acts as described above and allows equations to be embedded inside other
equations. Exit ends the subedit of the equation piece, updates the equation in the main editor
and, if this is a newly inserted equation, automatically starts editing the next piece.

The Exit item also has three possible subitems which are used to exit from the equation editor and
specify a desired follow up action. Specifically, Next Piece ends the edit of the current equation
piece and creates a new editor on the next piece. In this context, the pieces of the equation are
considered to form a circular list so that successive uses of the Next Piece option will edit each
piece of the equation in turn. The second subitem, Finish Eqn, ends the current equation edit and
does not continue with any other pieces of the equation. Finally, Abort ends the current edit
without changing the equation.

When a subeditor is terminated, any TEdit looks or formatting other than character fonts and
sub/superscripting are ignored.

The subeditor can also be terminated by the key normally used to advance to the next fill-in slot in
TEdit (i.e. text of the form "> > ... < < "). Specifically, if there are no remaining slots in the
subeditor, using this key is equivalent to selecting Exit from the command menu described above.
By default, this key is the middle-blank key on Dolphins and Dorados and the OPEN key on DLions.

User Switches:

The global variable EquationFontSpecs is an array of font specifications in order of increasing size
which is used to determine initial fonts for the equation pieces. This can be modified if additional
or different default fonts are desired.

The global variable EQ.UseNSChars determines the kind of characters to use when displaying
equations that use special symbols (e.g. sum or product) on the screen. Specifically, if non-NIL then
symbols from the NS character set are used, otherwise the Sigma 20 font is used. It is initially set to
NIL.

When NS characters are used (on the screen when EQ.UseNSChars is non-NIL, or for Interpress), the
global variable EQ.NSChars determines the particular NS characters to use. It is a property list of
the form (TYPE1 ITEM1 ...) where TYPE is the kind of equation (e.g. SUM, PRODUCT, etc) and ITEM
gives the font and character number to use, e.g. «MODERN 30) 61301) for an INTEGRAL. This
variable compensates for the lack of large symbols in various Interpress fonts.

The file EQUATIONPROGRAM.TEDIT describes how to define new kinds of equations, as well as
how to create equations in a program with function calls.

75

en·vos EQUATIONS

Examples:

Examples of equations are given in the file EQUATIONEXAMPLES.TEDIT. The equation module
must be loaded before reading this file.

Limitations:

• Equations that are larger than the available room in the current TEdit window will not be
displayed.

• The text of each piece of an equation must be on a single line.

• All image objects inserted into equations, as well as the equations themselves, must not have
any kerning, i.e. the XKERN field of all imagebox records must be zero.

Koto Incompatibility:

Due to a change in image object 110, files containing equations written in LyridMedley may not be
readable in Koto.

76

en·vos EQUATIONEDITOR

EQUATIONEDITOR

PROGRAMMER'S GUIDE

By: Tad Hogg (Hogg.pa@Xerox.com)

DESCRIPTION

This document describes how to define new kinds of equations to be used with the equation editor
in TEdit, and how to construct equation image objects by function calls.

User Switches:

The global variable EquationDefaultSelectionFn specifies the default function to be called when an
equation is selected with the middle mouse button. The initial value, EQIO.DefaultSelectFn, allows
the user to select a piece of the equation by selecting from a menu.

The global variable UnknownEquationData is a formated string to use for displaying equations
whose types are not defined.

The global variable Equationlnfo is used to record all currently defined equation types. The
specification information can be obtained by calling

(EQIO.Getlnfo type info) [Function]

which returns the specified info for equations of the given type. Any of the PROPS mentioned
below for EQIO.AddType, or formFn or numPieces, can be used as a value for info to get the
corresponding data for this type of equation. Example: (EQIO.Getlnfo 'fraction 'numPieces) returns
the number of pieces in a fraction.

Individual specification items of an existing equation type can be modified using

(EQIO.Setlnfo type info newValue) [Function]

although the caller must be sure that any new information is consistent with the remaining
properties. For example, (EQIO.Setlnfo 'fraction 'menulabel mylabel) will make the value of
mylabel be used for fractions in the equation type menu.

Defining new kinds of equations:

This module allows new types of equations to be defined. An equation consists of some number of
pieces of text and, perhaps, some extra symbols or lin~s. A method for computing the relative
position of the various pieces must be specified when new equation types are used. The pieces of
equations consist of "formatted strings" which allow font information to be associated with
strings and can also include image objects (which thus allows equations to contain other
equations). Formatted strings are described below. Additional properties can be specified to
determine the particular behavior of the new equation.

Additionally, a function can be provided to allow equations of the new type to be created under
program control. Typically these are named EQ.Make.xxx where xxx = atom specifying the
equation type.

77

en·vos EQUATIONEDITOR

Specifically, a new equation type (or a new definition for an existing type) is created by calling

(EQIO.AddType type formFn numPieces PROPS) [Function]

where

• type is an atom identifying the equation type (e.g. fraction)

• formFn is the name of a function, described in detail below, which specifies the relative
location of the equation pieces and, if requested, draws any extra lines or symbols required by
the equation that are not included in any of its pieces.The formFn can also specify the
selection region to be used for each piece of the equation, i.e. that region of the equation
within which the left mouse button can be used to select the piece.

• numPieces is the number of parts the equation has (e.g. a fraction has two parts: numerator
and denominator). If the equation has a variable number of pieces, then numPieces is the
default initial value.

• PROPS is a prop list of optional properties for the equation which are described below.

The equation form function:

The form function is called with arguments (eqnObj imageStream draw?) and specifies the size of
the entire equation and the location of each piece with respect to the lower left corner of the box.
Furthermore, if draw? is non-Nil, it draws any extra lines or symbols required by the equation that
are not included in any of its pieces. (If draw? is Nil, nothing should be drawn -- the function is
being called only to determine how big the equation is and the relative location of its parts.) The
formFn can also specify the selection region to be used for each part of the equation.

For example, a fraction has two parts (numerator and denominator) and a single extra line
between them. In this case the formFn draws the line and specifies the location of the numerator
and denominator.

Specifically, the formFn should return an equation specification created by a call to

(EQIO.MakeSpec box dataSpecList) [Function]

where box is an IMAGEBOX which specifies the size of the equation; and dataSpecList is a list
containing a piece specification for each piece of the equation. A piece specification is created by a
call to

(EQIO.MakeDataSpec pos selectRegion) [Function]

where pos is the position, relative to the lower left corner of the box, where this piece is to be
displayed and selectRegion gives the selection region to use for this piece (relative to the 1.1. corner
of the equation box). If selectRegion is Nil, then the region within which the piece is displayed will
be used as the selection region. Normally the selectRegion should include the display region inside
it, and is intended to allow selection regions to be larger than just the display region. Note that pos_
specifies where the stream should be positioned before displaying the formatted string defining
the contents of the pi ece.

The ATTACHEDBOX routines, described below, may be useful for constructing the form functions
of new equations since it provides functions to position various regions so that they do not overlap.

Equation type properties:

78

en-vas EQUATION EDITOR

The following properties can be specified for any equation type when it is defined with
EQIO.AddType. Note that all equations of a given type have the same values for these properties.

• changeFn A function with argument (eqnObj) called when the number of pieces in a
variable piece equation is changed. It 'is meant to allow any specific properties such as saved
menus to be adjusted to reflect the change.

• initialData A way to specify the text to be used when equations of this type are
created. It can be either the name of a function or a list. If it is a list, then it should contain a
single integer for each piece of the equation. This number specifies how the font size for that
piece should be changed relative to the initial font size set in TEd it. For example, 0 means use
the default font, + 1 means use the next bigger font, -2 means use a font two sizes smaller,
etc. Missing values default to zero, i.e. the pieces are initially set in the normal size font. The
actual fonts used are specified by the array EquationFontSpecs and any request for a font
larger (smaller) than the largest (smallest) available in the array defaults to using the largest
(smallest). In this case, the initial text will be a single blank.

If initial Data is a function, it is called with arguments (initialFontSpec type numPieces dataList)
when a new equation of this type is created. It should return a list of formatted strings, with each
item in the list to be used for the corresponding piece of the equation. The argument
initialFontSpec will specify the current font when the equation is added; and numPieces will be the
number of pieces in the equation. dataList, if non-NIL, is a list of items to use for each of the pieces
of the equation. The items can be either format strings, or just a string in which case the initialData
function should attach an appropriate font.

• initialPropFn A function with argument (type) called when a new equation of this type is
created. It returns a prop list to be used as properties for this equation. These values are
added to (and override) any props given in objectProps. For example, this allows the user to
specify the number of rows and columns in a new matrix. If the number of pieces is to be
specified, it should be returned as the value of the numPieces prop, and the equation type
should allow a variable number of pieces.

• makeFn A function which constructs an image obj for this type of equation from its
arguments. Generally this will just provide a convenient way of calling EQN.Make.

• menuLabel A label to use for this type in the equation type menu displayed after
selecting Equation in the main TEdit menu. If not given, the type atom is used as the label.

• objectProps A prop list of properties and their initial values that are needed for this
equation. These properties can be used by the formFn to layout the equation and will
typically be modified by the wholeEditFn.

• pieceNames A list of names of the pieces of the equation. This is used by the default
middle button selection function to provide a menu of choices. E.g. ("numerator"
"denominator") for a fraction. If this property is not specified, then the default menu will just
contain the numbers of the pieces. This is generally meant for equations with a fixed number
of pieces.

• specialSelectFn A function with argument (eqnObj) to be called when the equation is
selected with the middle button instead of the default action. It should return the number of
the piece selected, or NIL if no piece of the equation is selected. The selected piece, if any, will
then be edited.

79

en·vos EQUATIONEDITOR

• wholeEditFn A function with arguments (eqnObj window button) called when the
entire equation, rather than a single piece, is selected. This can be used to change global
properties of the equation and should return non-NIL if the object is modified, NIL otherwise.
window is the window which contains the equation and button is the mouse button used to
select it.

• variable? Non-NIL to indicate this equation type allows a variable number of pieces.

Equation data functions:

The functions used with new equation types should make use of the routines provided for
formatted strings as'well as the following functions when using the various equation data:

• (EQIO.EqnType eqnObj) returns the atom specifying the kind of equation eqnObj is.

• (EQIO.EqnDataList eqnObj) returns the list of formatted strings which specify the pieces of
the equation.

• (EQIO.SetDataList eqnObj newDataList) replaces the data list (i.e. the list of formatted strings
corresponding to each piece of the equation) with newDataList. The caller must update the
number of pieces in the equation appropriately. This is useful, for instance, when the
wholeEditFn has made major changes in the equation.

• (EQIO.EqnData eqnObj piece#) returns the formatted string corresponding the the piece of
eqnObj specified by piece#.

• (EQIO.EqnProperty eqnObj prop {newValue}} returns the current value of the specified
property of eqnObj if newValue is not present, otherwise sets the specified property to the
value of newValue even if it is NIL. This can be used to associate arbitrary properties with
individual equations. Currently, the following properties are used by the equation editor and
should not be used for other purposes:

• fontSpec a specification of the current font at the time the equation was created

• numPieces the current number of pieces in a variable-piece equation

• selectionMenu the current default middle-button selection menu for a variable-piece
equation

When equations are copied, any data items that are not atoms, strings or lists are set to NIL.These
items are also PRIN2'ed on files. Thus other data types should only be used to cache values (e.g.
menus) that can be recomputed if necessary from the other properties.

• (EQIO.NumPieces eqnObj {newValue}} returns the current number of pieces in eqnObj if
newValue is not present. Otherwise if eqnObj is a variable-piece equation, it sets the number
of pieces to newValue and adjusts any necessary properties by calling the equation's
changeFn.

Additionally, properties can be associated with the equation type itself by use of

• (EQIO.TypeProp type prop {newValue}} which gets or sets the property prop for equation
type. This can be used to save properties that are the same for all equations of a given type
(e.g. selection menus for equations with a fixed number of pieces).

Equation image objects can be created by a program (and then, for example, inserted into TEdit)
by use of

80

en·vos EQUATIONEDITOR

• (EQN.Make type dataList fontSpec PROPS) which makes a type equation whose arguments are
format strings contained in dataList. fontSpec is an initial font specification and PROPS is a
prop list of equation properties which should include numPieces for equations with a variable
number of pieces.

FORMATSTRINGS

The basic components of equations are represented as formatstrings which allow fonts and
super/subscripting to be associated with strings and can also include image objects. A format string

·is a list of items, each of which is either an imageobject or a list giving a font specification, a string
and an optional shift specifying the number of points to move up when displaying the string. The
following functions can be used to create and display format strings as well as insert and extract
them from TEXTSTREAMs. All formatstrings must be on a single line.

Functions:

For creating and accessing format strings:

(FS.Makeltem fontSpec string shift) [Function]

creates a formatstring item from fontSpec, a font specification such as (Gacha 10), string and shift.
The string can be null.

(FS.ltemFont item)

returns the font associated with item, or NIL if item is an imageobject.

(FS.ltemValue item)

returns item if it is an imageobject, otherwise its associated string.

(FS.ltemShift item)

returns the shift associated with item.

For inserting and extracting from TEXTSTREAMs:

(FS.Extract stream)

[Function]

[Function]

[Function]

[Function]

returns a format string created from the text in the TEXTSTREAM stream. Any unallowed
characters (as determined by FS.AllowedChar) in the stream are ignored. Note that any format
information other than character fonts, super/subscripting and image objects is discarded. The file
pointer associated with the stream is modified.

(FS.lnsert data stream)

inserts the format string data at the current location in TEXTSTREAM stream.

For displaying and manipulating the format strings:

(FS.Box data imageStream)

returns an IMAGEBOX specifying the size of the format string data on imageStream.

(FS.Copy data)

returns a copy of the format string data.

81

[Function]

[Function]

[Function]

en·vos EQUATION EDITOR

(FS.Display data imageStream invert?) [Function]

displays the format string data on imageStream. If invert? is non-Nil, the display is inverted.

(FS.Get fileStream)

reads a formatstring, or list of formatstrings, from the current location on fi/eStream.

(FS.Put data fileStream)

prints the formatstring (or list of formatstrings) data to fileStream.

Additional functions:

(FS.AllowedChar charcode)

returns non-Nil if charcode is allowed in formatstrings.

(FS.ReaIStringP item nul/OK)

[Function]

[Function]

[Function]

[Function]

returns non-Nil if item's value is a string (rather than an imageobject) and either nul/OK is non-Nil
or the string is not the nul string.

ATTACHED BOXES

The following functions place image boxes in specific locations with respect to a main box so that
the added boxes won't overlap. The desired position of a new box is specified by the side of the
main box to place it next to and the position of a point on the side of the new box with respect to a
point on the side of the main box. The placed regions are specified with respect to the lower left
corner of the main box. Sides are specified by one of the atoms top, bottom, left or right and are
with respect to the mai n box.

top

left main box right

bottom

The position of the added box is specified relative to some side of the main box. Specifically, the
location of a reference point on the near side of the added box, the addPt, is given with respect to
a reference point on the side of the main box, the mainPt. The possible points along the side are_
specified by one of the atoms low, high, center or display corresponding to the corner nearest the
lower left corner of the box, the corner farthest from the 1.1. corner of the box, the center of the
side, and the display point of the image box respectively. The location of the addPt with respect to
the mainPt is specified by a distance along the side, the shift, and a distance perpendicular to the
side, the gap. These distances can be positive or negative. A negative value for the gap will cause
the added box to overlap the main box. All boxes are assumed to have no kerning (i.e. XKERN field
is zero).

82

en·vos

Functions:

point on added
box

point on main
box

For creating and accessing format strings:

EQUATIONEDITOR

added box

gap

shift
:>

main box

(AB.PositionRegion mainBox addedRegions side mainPt addBox addPt gap shift clear) [Function]

Positions addBox with respect to mainBox avoiding overlap with previously added regions. The
parameters are: mainBox is an image box specifying the main box; addedRegions is a list of regions
(measured with respect to the lower left corner of mainBox) that have already been placed next to
the main box; side is the side (one of top, bottom, left or right) of the main box next to which the
new box should be placed; mainPt is the reference point along the side of the main box (one of
low, high, center or display); addBox is an image box specifying the box to be placed; addPt is the
reference point along the side of the added box; gap and shift specify the relative positions of the
reference points; and clear is the minimum (nonnegative) distance that the new box is allowed to
be from any of the previously added regions (NIL defaults to zero which prevents any overlap of
the added regions).

The function returns a list of the form (region newAddedRegions) where region is the region, w.r.t.
the lower left corner of mainBox, where addBox was placed and newAddedRegions is the list of
added regions updated to include this newly placed region. If the specified location of addBox
causes it to be within a distance clear of any of the regions in addedRegions, the box is moved
away from the main box in a direction perpendicular to the side (i.e. the gap is increased) until it is
far enough from the previous regions.

(AB.Position2Regions mainBox addedRegions side highBox highPt 10wBox 10wPt highGap lowGap
highShift lowShift clean [Function]

This function places two boxes next to the same side of mainBox. If the two new boxes are within a
distance clear of each other, they are moved apart in a direction parallel to the side next to which
they are placed so that the distance each box moves is proportional to its size. Then these regions
are individually checked for being too close to previously added regions and, if necessary, are
moved away from the main box (i.e. perpendicular to the side). The function returns a list of the
form (highRegion 10wRegion newAddedRegions).

83

en·vos EQUATIONEDITOR

Example:

To place box B to the right of box A such that the low point of the near side of box B is a distance
gap from the center of the right side of A, i.e.

added box

B

main box
....

A -
gap

use (AB.PositionRegion A addedRegions 'right 'center B 'low gap 0) where addedRegions is a list of
previously added regions which should not overlap B.

84

en·V6S EQUATION EDITOR EXAMPLES

EQUATION EDITOR EXAMPLES

By: Tad Hogg(Hogg.pa@Xerox.com)

DESCRIPTION

These are some examples of text formatted using the Equation Editor (contained in the file
EQUA TlONS).

Examples:

2x+5
fraction: a = ~

sum: s ~i =
i= 1

m (m+ 1)

2

1

integral: i x dx = 0.5
o

sub/superscripts:

root: -v' x + 34y + z

maximum: max f(x)
xinS

limit: lim f(x)
x-+O

85

en·vos EQUATION EDITOR EXAMPLES

matrix:

23x+2 4 0

A = -6 8x+4 1

o 0 x

(:) + (:) + •.• + (:) = 2"

Inl {n} [n] (n) {n}

: {:} [:] (:) (:)

x x x

y y y

z z z

86

en·vos ETHERBOOT

ETHERBOOT

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

Uses: Various microcode, germ and boot files.

ETHERBOOT is a Envos Lisp background network server process which allows Dandelions and/or
Doves (other than the one the server is running on) to boot utility programs from the Ethernet (as
an alternative to floppies). On a Dandelion, a 3, 4 or 6 boot from the maintenance panel initiates
an Etherboot; on a Dove the boot icons are used (sometimes in combination with a number key):

Dandelion Dove

0003 F3

0004 F7

0006 F3-1

(ETHERBOOT [LOGFILE))

Boot Type

Ethernet non-diagnostic boot of the Installer

Ethernet diagnostic boot of the Installer

Ethernet boot of experimental software

[Function]

To start the server, (ADD. PROCESS '(ETHE RBOOT)} LOGFILE is an optional argument which
should be an open stream to log transactions in.

BOOTFILEDIRECTORIES [Variable]

The boot files are searched for on the directories in this list which should point to the (possibly
remote) directory where the boot files are kept, initially '({CORE} {DSK}). The server will not
respond to requests for boot files that are not available.

(CACHE.BOOT.FILES [TYPES)) [Function]

Since Lisp can take longer to open a remote file than the timeout on some (simple) requests, this
function can be used to copy some of the boot files listed in ETHERBOOTFILES to the
BOOTFILECACHEDIRECTORY. TYPES defaults to those listed in BOOTFILECACHETYPES.

BOOTFILECACHEDIRECTORY [Variable]

The directory into which CACHE.BOOT.FILES copies boot files, initially {CORE}.

BOOTFILECACHTYPES [Variable]

The default types of files that CACHE.BOOT.FILES copies to the BOOTFILECACHEDIRECTORY,
initialy '(DB GERM).

BOOTFILEREQU ESTTYPES [Variable]

An association list which contains the type numbers of the requests that the boot server handles
along with a description of the request type and the function which handles it. Currently, the
request types are Simple and SPP.

87

en·vos ETHERBOOT

ETHERBOOTFllES [Variable]

The table of boot file numbers and names. Each entry consists of a description of the boot file, the
name of the file and the file number (48 bit) by which the file is requested. Since the boot server is
table driven, different boot files can be substituted. Initially, ETHERBOOTFllES contains:

«"Standard DLion Ethernet Initial Microcode"

("Standard Dlion Diagnostic Microcode"

("Standard DL ion Mesa Microcode"

("Standard DL ion GerM"

("Standard DLion Boot File"

("Standard DLion Diagnostics Boot File"

("Stilndard Dlion Installer Boot File"

("Alternate DLion Ethernet Initial Microcode"

("Alternate DLion Mesa Microcode"

("Alternate DLion Germ"

("Alternate DLion Boot File"

("Standard TriDlion Diagnostic Microcode"

("Standard TriDL ion Mesa Microcode"

("Standard TriDlion Gerll"

("Standard TriDLion Boot File"

("Alternate TriCL ion Mesa Microcode"

("Alternate TriCtion Germ"

("Alternate TriDLion Boot File"

("Standard Dove Ethernet Initial Microcode"

("Standard Dove Diagnostic Microcode"

("Standard Dove Mesa Microcode"

("Standard Dove Germ"

("Standard Dove Boot File"

("Alternate Dove Ethernet Initial Microcode"

("Alternate Dove Diagnostic Microcode"

("Alternate Dove Mesa Microcode"

("Alternate Dove Germ"

("Alternate Dove Boot File"

("Dove Simple Net Exec"

("Dove Conf igurat ion Ut 11 i ty"

("Dove Installer"

("Dove Diagnostics Util ity"

("Dove Rigid Disk Diagnostics Utility"

("Dove Ethernet Diagnostics Utility"

("Dove Keyboard & Display Diagnostics Utility"

EtherInitial.db

MoonBoot.db

Mesa.db

DLion .gerM

SimpleNetExecDLion.boot

EIDiskDLion.boot

InstallerNSDLion.boot

EtherInitialAlt,db

Mesa.db

DL ion. gerM

InstallerNSDLion.boot

Moonboot.db

TridentRavenMesa.db

TriDl ion. germ

SimpleNetExecTriDlion.boot

TridentRavenMesa.db

TriDlion.germ

InstallerNSTriDlion.boot

EtherInitialDove.db

MoonRise.db

MesaDove.db

Dove.germ

SimpleNetExecDove.boot

EtherInitialDove.db

MoonRise.db

MesaDove.db

Dove.germ

InstallerNSDove.boot

SimpleNetExecDove.boot

SysConfigOfflineDove.boot

InstallerNSDove.boot

DiagDiskUtilDove.boot

DiagRDDove. boot

DiagEtherDove.boot

KDMDove.boot

2852126720)

2852126728)

2852126736)

2852126744)

2852126752)

2852127232)

2852127234)

2852126721)

2852126738)

2852126746)

2852126754)

2852126729)

2852126737)

2852126745)

2852126753)

2852126739)

2852126747)

2852126753)

2852128768)

2852128776)
2852128784)

2852128792)

2852128800)

2852128769)

2852128777)
2852128785)

2852128793)

2852128801)

2852128824)

2852128825)

2852128826)

2852128828)

2852128829)

2852128830)

2852128831»

The boot file numbers overlay the host number space so Dandelion/Dove boot file numbers begin
at 25200000000 octal.

KNOWN PROBLEMS

• The server can only handle one connection at a time .

• Due to as yet unknown reasons, a Dandelion running the server is not able to service simple
Dove requests; all other combinations should work.

88

en·V6S FILEWATCH

FILEWATCH

Johannes A. G. M. Koomen
(Koomen.wbst@Xerox or Koomen@CS.Rochester)

This document last edited on October 19, 1987.

INTRODUCTION

FILEWATCH is a facility for keeping an eye on open files. It periodically updates a display showing
each open file stream, its current file pointer location, the total file size, a percentage bar, and a
read/write/both indicator.

DESCRIPTION

Invoking the function FILEWATCH (or selecting the "FileWatch" entry on the BackgroundMenu)
starts up the FileWatch process if not already running, or brings up a FileWatch control menu
allowing you to forget a currently displayed file (i.e., stop displaying the file), recall a previously
forgotten file, close an open file (after mouse confirmation), change some or all FileWatch display
properties, or quit the FileWatch process. The Forget, Recall and Close entries on the FileWatch
control menu have roll-outs to let you perform the operation on several files at once.

FileWatch can be customized by setting the FileWatch properties (see below) using the function
FILEWATCHPROP. Right buttoning any FileWatch window brings up the FileWatch control menu,
with the provision that the Forget and Close commands apply to the file displayed in that
FileWatch window. Middle buttoning any FileWatch window allows you to move the entire
FileWatch display, and left buttoning cause the window to be redisplayed.

DETAILS

(FILEWATCH Command) [Function]

If Command is 'ON and no FileWatch process is already running, starts a process to watch open
files. If Status is 'OFF or 'QUIT and there is a FileWatch process running, kills the process. If
Command is neither one of the above nor one of the FileWatch commands listed below, starts a
process to watch open files if not already running, otherwise brings up the FileWatch control
menu. Returns the process if running, otherwise NIL.

FORGET [FileWatch command]

Brings up a menu of files currently being watched. Select the one you no longer want to have
watched.

FORGET-MANY [FileWatch command]

Repeatedly performs the FORGET command until no other files are being watched or you make a
null selection.

RECALL [FileWatch command]

Brings up a menu of forgotten files. Select the one you want to have watched again.

89

en·vos FILEWATCH

RECALL-MANY [FileWatch command]

Repeatedly performs the RECALL command until all forgotten files are being watched again or you
make a null selection.

CLOSE

Brings up a menu of open files. Select the one you want to have closed.

CLOSE-MANY

[FileWatch command]

[FileWatch command]

Repeatedly performs the CLOSE command until all open files have been closed or you make a null
selection.

MOVE [FileWatch command]

Performs the SET-ANCHOR, SET-POSITION, and SET-JUSTIFICATION commands.

SET-ANCHOR [FileWatch command]

Brings up a menu of four corner names. Select the one on you wish to anchor the FileWatch
display. For instance, selecting Top-Right causes FileWatch windows to be stacked downwards
witht the top right corner of the first FileWatch wi ndow at the FileWatch display position.

SET-POSITION [FileWatch command]

Indicate where the FileWatch display should be positioned by moving the region of the combined
FileWatch windows.

SET-JUSTIFICATION [FileWatch command]

Requests confirmation to turn FileWatch window justification on, i.e., make all FileWatch windows
the same width as the largest one.

(FILEWATCHPROP PropName [PropValue)) [Function]

If PropValue is given, sets the property value accordingly. Always returns the current (old) value of
the property. This is a general facility which you can use for whatever purpose you deem
appropriate. However, there are some properties that have a predefined meaning to FileWatch:

ALL-FILES? [FileWatch property1

If NIL, FileWatch displays only user visible open files; otherwise all open files (including, for
example, dribble and file cacher files) are displayed. Initially set to NIL. Caveat: setting this
property to T will give you access to things that might be dangerous to play with. In particular,
closing certain system files on the Dorado may cause your machine to crash, and may leave the
local file system in an unhealthy state.

ANCHOR [FileWatch property]

Each open file that is being watched gets its own FileWatch window. Multiple windows are
stacked automatically. The total region occupied by this stack is anchored at the corner indicated­
by this property. The only legal values are TOP-LEFT, TOP-RIGHT, BOTTOM-LEFT, BOTTOM-RIGHT.
Initially set to BOTTOM-RIGHT. If the anchor is at one of the bottom corners the stack grows
upward, otherwise downward. If the anchor is at one of the left corners the stack is aligned by left
edge, otherwise by right edge (see also the JUSTIFIED? property).

90

en·vos FILEWATCH

FILTERS [FileWatch property]

A list of file patterns, for example '("{CORE}*.*;*"). An open file that matches any of the patterns
will not be watched. Initially set to NIl. Note that each pattern is expanded to jnclude the HOST
and DIRECTORY equal to that of (DIRECTORYNAME), EXTENSION and VERSION equal to "*", unless
already specified. For example, in my case, the filter "* JUNK*" expands to
"{lce}<Koomen>lisp>*JUNK*.*;*". If you really wanted to filter all junk files, use the filter
"{*}*JUNK*".

. FONT [FileWatch property]

The font used for the FileWatch displays, specified in a form suitable to give to the function
FONTCREATE. Initially set to '(GACHA 8).

INTERVAL [FileWatch property]

The value given to the function BLOCK. This should be either NIL or an integer indicating the
number of milliseconds to wait between FileWatch display updates. Initially set to 1000. Note that
FileWatch generates several FIXP's for large files every time throught the loop, so setting this to NIL
may cause excessive storage allocation and reclamation.

JUSTIFIED? [FileWatch property]

If T all FileWatch windows are aligned along both left and right edges, and are grown or shrunk as
needed to accomodate the maximum filename length currently In use. This is aesthetically more
pleasing but incurs increased overhead due to frequent reshaping of the windows. Initially set to
NIl.

POSITION [FileWatch property]

The location of the anchored corner of the FileWatch display. Initially set to the bottom right
corner of the screen: (CONS SCREENWIDTH 0).

SHADE

The shade used for the FileWatch thermometers. Initially set to GRAYSHADE.

SORTFN

[FileWatch property]

[FileWatch property]

Either NIL or the name of a function taking two filenames as arguments (such as ALPHORDER),
which is used to sort the list of open files being watched. Initially set to NIL (i.e., no sorting).

91

en·vos

INTRODUCTION

FILLREGION

Originally By: Mike Bird (Inference Corp., los Angeles, CA)

Jim Wogulis (Wogulis@ICS.UCI.EDU)

Greg Wexler (Wexler.pasa@Xerox)

New Owner: James M. Turner (Turner.lexington@Xerox.com)

FlllREGION

The Fill region package provides a function which will allow the user to "fill in" arbitrary regions of
a bitmap or window with a shade or bitmap (or any valid shade argument to BITBl T) .. The regions
must be defined by a black or white outline. There are two functions provided to the user:
FilL REGION and AUTO.FllL.

(FllLREGION window.or.bm interior.pos shade) [Function]

window.or.bm: Must be either a window or bitmap otherwise an error occurs.

interior.pos: Must be a position within window.or.bm that is within the interior of the region to
be filled.

shade: Shade can be any valid shade argument that BITBl T will accept.

This will return the window.or.bm with the specified region filled in. The region to be filled is
determined by the pixel specified at interior.pos. If the pixel is black, all the connected black
regions will be shaded, otherwise, if the pixel is white, all the connected white region will be filled.
If the user aborts the function before completion, the orginal window.or.bm will be restored.

(AUTO. Fill shade) [Function]

shade: Shade can be any valid shade argument that BITBlT will accept.

With your mouse pointing inside the appropriate region in a window, this function will fill In the
region with the shade specified. This package only works for one bit per pixel bitmaps, color is not
supported.

Example:

(AUTO. FILL 1234)

92

en·vos FILLREGION

results in:

Comments and suggetions are welcome.

93

en-vas FTPSERVER-MULTI-CONNECTIONS

INTRODUCTION

FTPSERVER-MULTI­
CONNECTIONS

By: Matt Heffron (BEC.HEFFRON@ECLA.USC.EDU)

Requires: FTPSERVER, FTPSERVERPATCH and DPUPFTPPATCH

This package (actually a complimentary pair of files) extends the capabilities of the Lisp Library
FTPSERVER package to support multiple simultaneous connections between Xerox 11 xx series AI
workstati ons.

INSTALLATION

To install this package, load the FTPSERVERPATCH.LCOM file on the 11xx machine(s} that are to be
servers (this will load FTPSERVER if it is not already loaded). Then load the DPUPFTPPATCH.LCOM
file on any of the 11xx machines that are to be clients of these servers. You must set the value of
IL:*FTP.NEGOTIATED.CONNECTION.HOSTS* on each of the client machines to specify the server
machines that support the FTPSERVERPATCH system of multiple simultaneous connections (below).

VARIABLES

IL: *FTP.NEGOTIATED.CONNECTION.HOSTS* [Global Variable]

This variable must be set to specify the server machines that support the FTPSERVERPATCH system
of multiple simultaneous connections. Its value is a list of PUP host numbers. (Specifically, it is a list
of the values of (CAR (BESTPUPADDRESS <SERVER-HOST-NAME») for each of the server
machines.}

HOWITWORKS

This package modifies the DPUPFTP code of the client machines, so that when it is trying to open
an FTP connection BSP stream, it first checks to see if the server host is one of the
IL:*FTP.NEGOTIATED.CONNECTION.HOSTS*, and if so, it sends a message to the modified
FTPSERVER on that system (using PUP type \PT.NEGOTIATED.CONNECTION (= 128) on PUP socket
\PUPSOCKET.NEGOTIATED.CONNECTION (= 63». The server machine creates a socket for this
connection and starts a standard FTPSERVER listener process on this socket, and returns the socket
number to the client. (The process is modified so it will go away when the connection is closed
instead of lingering forever.) The client uses the returned socket number for the connection
instead of \PUPSOCKET.FTP. If the server is NOT on IL:*FTP.NEGOTIATED.CONNECTION.HOSTS*, or
fails to respond within 10 seconds with the new socket number, then \PUPSOCKET.FTP is used. _
When the negotiated connection server is started on the server machine (with the incantation
(FTPSERVER) which is the original FTPSERVER start up), it also will start up a permanent
FTPSERVER listener on \PUPSOCKET.FTP so regular connection requests can be handled.

ACKNOWLEDGEMENTS

Thanks to Tom Lipkis of Savoir for suggesting this sort of scheme.

94

en·vos GRAPHCALLS

GRAPHCALLS

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

Uses: GRAPHER, MSANALYZE (WHERE-IS & HELPSYS optional)

GRAPHCALLS is an extended graphical interface to the Envos Lisp CALLS function. It is to CALLS
what BROWSER is to SHOW PATHS in MASTERSCOPE. It allows fast graphing of the calling
hierarchy of both interpreted and compiled code, whether or not the source is available (see the
CALLS function in the MASTERSCOPE section of the Lisp Library Modules manual), allowing
examination of both user and system functions. The sources of the functions do not have to be
analyzed by MASTERSCOPE fi rst.

Additionally, buttoning a function on the graph brings up a menu of operations that can be done
with the function, such as editing, inspecting, further graphing etc.

(GRAPHCALLS FUNCTION &REST OPTIONS) [Function]

Graphs the calling hierarchy of FUNCTION. Terminal nodes on the graph (those which call no other
functions or are undefined) are printed in a bold version of the graph's font indicating that they
cannot be graphed further:

DATE

,~~:~IME
\UNPACKDATE \OTSCAN

\ISDST?

\USPERROR

SUBSTRING
\OUTDATEw::---NCHARS

ALLOCSTRING
\RPLRIGHT
RPLSTRING

The remainder of the arguments, in keyword format, make up OPTIONS ego

(GRAPHCALLS 'OATE :FONT '(GACHA 10) :OEPTH 4 :FILTER 'FGETO)

Options include:

:STREAM

:FILTER

An image stream to display the graph on. The options list is saved on the stream.

A predicate to apply to the functions when building the graph to test their
eligibility to appear on the graph. The filter can be any defined function; the
default is not to filter. Interesting filters include:

WHEREIS Limits the tree to only functions the user as has loaded and prunes
out system functions and SYSLOADed files. Quite useful.

95

en·vos GRAPHCALLS

FGETD

EXPRP

CCODEP

NO\

Limits the tree to only functions that are actually defined. Thus if
you are perusing the tree for BITBLT and do not have and are not
interested in the color code, FGETD will remove all of the undefined
color bitmap functions.

Limits the tree to interpreted functions. Useful for graphing
functions in the development stage.

Limits the tree to compiled functions.

Keeps low level functions starting with \ (i.e. \OUTDATE) off of the
graph. Useful for getting an overview of system functions and
when advising system functions (as \'ed functions should probably
not be advised).

: DEPTH The calling hierarchy is graphed to depth levels (defaults to 2).

: FORMAT Passed to LAYOUTGRAPH and can be any format specification (LATTICE, VERTICAL,
REVERSE etc.); defaults to (HORIZONTAL COMPACT REVERSE/DAUGHTERS). In the
forest format multiple instances of a function appear on the graph after every
calling function and a boxed node indicates the function appears elsewhere on the
graph, possibly graphed further. In the lattice format each function gets placed on
the graph only once (particularly useful for dynamic graphing, described below),
and boxed nodes indicate recursive functions calls.

:SEARCHFN A function to use to generate the children of a given node. It should return a list
whose first item is a list of the children, the other items in the list are ignore. Using
this feature, it is possible to graph things other than functions. To graph what files
load other files, supply a search function of (LAMBDA (FILE) (LIST
(FILECOMSLST FILE 'FILES») andafilenameforthefunctionargument.

:ADVISE Advises the functions after they are graphed (see Dynamic Graphing below);
recognized values are one or both of the following:

INVERT

COUNT

Visually tracks a running program.

Counts function calls in a running program.

:DELA Y The delay to use in advised graphs; defaults to 500 milliseconds.

: NAMEFN A function to use to generate the node labels on the graph.

:FONT The font to use to display the graph; defaults to (GACHA 8).

:SHAPE A boolean that indicates if the window should be shaped to fit the graph; defaults
to NIL.

:PRIN2FlG A boolean that indicates to use PRIN2 when printing node labels, defaults to NIL. _

:SUBFNDEFFlG A boolean that enables graphing of compiler generated functions; defaults to
T.

:TOPJUSTIFYFlG

:AllOWEDITFlG

GRAPH MENUS

Passed to SHOWGRAPH; defaults to NIL.

Passed to SHOWGRAPH; defaults to NIL.

96

en·vos GRAPHCAllS

The menu that pops up when you left button a function on the graph contains the following
items:

,-. -
HELP

FNTYP

WHERE

EDIT

TYPEIN

BREAK

CCODE

GRAPH

FRAME

Print the arguments to the function, if available.

Calls HElPSYS on the function.

Print the function's FNTYP.

Do a WHEREIS (with FILES = T) on the function.

Calls the editor on the function if available for editing.

BKSYSBUFs the name of the function into the typein buffer.

Applies BREAK to the function. Its subitems are:

BREAKIN Breaks the function only in the context of a particular calling
function. In lattice format, if the function has more than one
function calling it on the graph, the user is prompted to indicate
the caller in which to break the function.

UNBREAKIN Undoes BREAKIN.

UNBREAK Applies UNBREAK to the function.

TRACE Applies TRACE to the function.

TRACEIN Traces the function only when called from inside a particular
function, like BREAKIN above. Use UNBREAKIN to remove the
trace, or else UNBREAK on the window menu.

Calls INSPECTCODE on the function if it is compiled code.

Calls GRAPHCALLS to make a new graph starting with function, inherits the
original graph's options.

Inspect the local, free and global variables of the function. These are the last three
lists of the CALLS function placed into INSPECT windows. Its subitems are:

>FRAME

<FRAME

Like FRAME but for all of the functions on the sub-tree starting at
the selected node and only for FREEVARS and GLOBALVARS.

Like >FRAME but for all of the functions above the function in the
graph, i.e. the FREEVARS and GLOBALVARS in the function's scope.

Buttoning the graph outside a node give you a menu with these options:

UNBREAK

RESET

Does an (UNBREAK), unbreaking all broken functions.

Resets the counters for the COUNT option and redisplays the graph.

DYNAMIC GRAPHING

When the ADVISE option is specified with the value(s) of INVERT and/or COUNT, GRAPHCALlS will
advise all of the functions on the graph (in the context of their parent) to invert their
corresponding node on the graph (as well as delay some to allow it to be seen) and/or follow each
function name by a count of the number of times it has been executed. In invert mode, a node
remains inverted as long as control is inside its corresponding function and it returns to normal

97

en·vos GRAPHCALLS

when the function is exited. The lattice format is best when using the invert feature. Closing the
graph window UNADVISEs the functions on the graph.

An example of this is (GRAPHCALLS 'DATE :ADVISE 'INVERT) and then evaluate (DATE).

GRAPHCALLS will not graph or advise any function in the system list UNSAFE.TO.MODIFY.FNS
when the advise option is used. Functions which are unsafe to advise should be added to this list.

CAVEAT PROGRAMMER! This feature must be used with caution. As a rule, one should not do this
to system functions, but only one's own, use WHEREIS as a filter for this. Advising system code
indiscriminately will probably crash the machine unrecoverablely.

You can, at some risk, interactively break and edit functions on the graph while the code is
executing. Also, creating subgraphs of advised graphs will show the generated advice functions
not the original functions called, as will creating new graphs of functions in advised graphs. You
can create advised graphs of functions already graphed normally on the screen.

COMMAND WINDOW

GraphCalls Command Window

Funct
Include
E::(cluc~e

Clear
(ira

CCodeP
No' .. ·.

Count Re""'erse
Shape \,letticaI1l6111

E c~ it .6. t"!;'1 L i :::t
Prin2 'I.IV~-Iere Is

:3
4
5
6
7

o
1
.j
.::.
'-:0
,_I

6
7
a

10

(GRAPHCALLSW [REBUILD?]) [Function]

Puts up a command window with menus that will interactively set up calls to GRAPHCALLS. The
menus let you set the Invert, Count and Edit flags, select from common filters and formats and set
the depth of the graph. You can also change the amount of delay used in the advised functions
when doing dynamic graphing. If you specify an advised graph (Invert or Count) and do not specify
a WHEREIS filter, you will be asked to confirm with the mouse for your own protection.

More than one item on the filter and flags menus can be selected at a time. Buttoning a selected
item on these menus unselects it. The command menu contains the following:

Function

Include

Exclude

Prompts for the name of a function to graph when the Graph item is selected.

Adds files or functions to the list of items to allow on the graph, see the
Include/Exclude algorithm below.

Adds files of functions to the list of items disallowed on the graph, see the
Include/Exclude algorithm below.

98

en·vos GRAPHCALLS

Clear

Graph

Clears all of the settings on the command window to their defaults. Also clears the
Include/Exclude lists.

Graphs the function by calling GRAPHCALLS with the selected options.

Include and Exclude allow fine tuning of the filter function. If the function passes the filter, then
the following are tried until one determines whether or not the function will be on the graph:

If a set of functions has been explicitly excluded, and the function is
a member of this set, it will NOT appear on the graph.

If a set of functions has been explicitly included, and the function is
a member of this set, it WILL appear on the graph.

If a set of files has been explicitly excluded, and the function is in
one of those files, it will NOT appear on the graph.

If a set of files has been explicitly included, and the function is not
in one of those files, it will NOT appear on the graph.

The function WILL appear on the graph.

The format menu contains two items that are not passed on to GRAPHER but are used to select
alternate NAMEFN options:

ArgList

Wherels

Supplies a NAMEFN that will print the function and its arguments (using
SMARTARGLlST) as the node label.

Supplies a NAMEFN that will print the function followed by the file(s) found by
doing WHEREIS (with FILES = T) if any.

When the command window is open, middle buttoning a node on a GRAPHCALLS graph will bring
up a menu of commands relating to command window and graphs. The menu contains:

EXCLUDE Adds the function to the exclude functions list of the command window. This is the
only way to exclude system functions which get added to the SYSTEM file exclusion
list.

The command window can also be obtained via the background menu. Subsequent calls to
GRAPHCALLSW (either directly or via the background menu) will reuse the old command window
if there is one. If this window is damaged, and redisplay does not help, then setting REBUILD? to T
will build a new command window from scratch.

NOTES

• Function call graphs are constructed using breadth first search but GRAPHER lays out graphs
depth first so functions may be expanded in different places on the graph than expected.

• GRAPHCALLS sysloads GRAPHER and MSANALYZE if they are not already I~aded.

• In dynamic graphs, variables caused by advising show up in the frame inspections.

• The global variable GRAPHCALLS.DEFAULT.OPTIONS contains all of the defaults for
GRAPHCALLS keywords, in property list format.

99

en·vos GREP

GREP

By: larry Masinter (Masinter.pa@Xerox.com)

Requires: BSEARCH

INTRODUCTION

like FGREP of Unix: searches for strings in files.

(GREP STRS FILES) [Function]

STRS is a string or a list of strings. FilES is a file or a list of files. Searches for the given string(s) in the
given file(s), showing each line.

(PHONE name) [Function]

Calls (GREP name PHONElISTFllES). PHONElISTFllES is initialized to NIl. (The PARC init file resets it
to point to the PARC phone list.)

For example,

(GREP (QUOTE ED) (QUOTE {INoIGO}(REGISTRAR)PARCPHONElIST.TXT»

will print:

(from {INDIGO}<REGISTRAR>PARCPHONElIST.TXT;3)

4183 (End i cat t), Fred 35 -13 5 4
4435 (Fiala), Ed35-2166
4598 (RKennedy), Ray 34-78
4839 (McCreight), Ed 35-2146

5759 Pedersen, Jan 32-202
4818 Satterthwaite, Ed * 35-2174
MES Salcz, Edward J. 8* 348-1214
A TAW a h 1 e n me i e r, F red 88 7 - 40 18

100

en·vos

Last edited: September 14, 1987

INTRODUCTION

GRID-ICONS

GRID·ICONS

By: sM L (Lanning.pa@Xerox.com)

Grid-Icons provides the Lisp user with a set of default window icons that resemble those found in
the Viewpoint system. There is an option that the user can set to force these icons to be positioned
on a grid, instead of the unrestricted positioning allowed by Lisp.

USING GRID-ICONS

All that is required is loading the file GRID-ICONS. When the file is loaded, it redefines a number of
standard window icons in the system.

REDEFINED ICONS

GRID·
ICI)~IS.
TEOIT

L':-[Irt1 O(J
li::p'
lJ,o<r::

[TEdit icon]

[Sketch icon]

Note that GRID-ICONS not only redefines TEd it and Sketch icons, it also changes the way that the
icon title is computed: the host and directory informationis removed, so that only the name and
extension remain.

101

en·vos

Pe.FoSe:·
LI!'T

1(:·)"

tt1i ...]~

21.~.~;iO.·~':9

10$:'::'1:'58

GRID-ICONS

[SEdit icon]

[Loops Browser icon]

[Default icon]

In Lyric, it is possible to redefine the standard icon used by the system. GRID-ICONS uses this, and
redefines the standard system icon in LYRIC

[Lafitemail folder icon]

NEW ICONS

GRID-ICONS defines a handy icon for accessing the list of files that have been loaded into you
system.

r~ (FNS

~
Lrzp filH [Lisp files icon]

Buttoning on this icon will pop up a menu of all loaded files (as determined by the value of the
variable FILELST). Selecting a file from this menu will open up an editor on the COMS of that file.
There is an additional item on the menu, "* New file *", that can be used create a new file, and
then edit its COMS. This icon window is stored in the variable LOADEO-FILES-ICON-WINDOW.

USER FUNCTIONS

The user can declare that any given window stick to grid positions.

(GRID-WINDOW window) [Function]

Causes window to pay attention to ENFORCE.ICON.GRID; if the value of ENFORCE.ICON.GRID is
true, the window will make sure that it is centered on a grid location. By default the spy button
and icons produced by the ICONW and TITLEICONW functions pay attention to­
ENFORCE.ICON.GRID.

102

en·vos GRID-ICONS

VARIABLES THAT CONTROL GRID-ICONS

There are a few variables that control how GRID-ICONS works.

ENFORCE.ICON.GRID [Variable]

If ENFORCE.ICON.GRID is true, window icons (and any window declared "gridded" by the
GRID-WINDOW function) will be restricted to be positioned on a grid. The default value of
ENFORCE.ICON.GRID is NIL.

IGNORE.ICON.GRID [Window property]

The IGNORE.ICON.GRID window property provides a way to control icon gridding on an
icon-by-icon basis. If the IGNORE.ICON.GRID window property of an icon is true, the icon will not
be restricted to grid positions. This window property is checked only if ENFORCE.lCON.GRID is true.

ENFORCE. ICON. REGIONS [Variable]

You can enforce icon gridding in individual regions of the screen by using the variable
ENFORCE.ICON.REGIONS. If the value of ENFORCE.ICON.GRID is true, and the icon does not have a
IGNORE.ICON.GRID window property, the proposed new position for the icon is tested against the
value of ENFORCE.ICON.REGIONS. If ENFORCE.ICON.REGION is NIL, gridding is enforced as
described above. Otherwise, ENFORCE.ICON.REGION should be a list of regions; gridding will be
enforced only if the proposed position is within one of these regions. The default value of
ENFORCE. ICON. REGIONS is NIL. [Thanks/blame to Ramana Rao for this.]

ICON.SIZE [Variable]

ICON.SIZE specifies the maximum size of the icons, for use in computing the grid positions of icons.
It is a cons of the maximum width and the maximum height. The default value is (85 . 85), which is
the "correct" value for the icons defined in this utility.

ICON.SPACING [Variable]

ICON.SPACING specifies the gap between icons, for use in computing the grid positions of icons. It
is a cons of the horizontal gap and the vertical gap. The default value is (5. 5).

GRID.OFFSET

GRID.OFFSET specifies origin of the icon grid. The default value is (0.0).

DEFAU LTICONFONT

[Variable]

[Variable]

The value of DEFAULTICONFONT is the default font used by the system when printing titles in
icons. Since the icons defined in GRID-ICONS tend to be smaller then the original icons, you might
want to use a slightly smaller font then the default. Personally, I recommend setting
DEFAULTICONFONT to (FONTCREATE '(HELVETICA 8».

103

en·vos

Hanoi

By: Larry Masinter (Masinter.pa@Xerox.com)

INTRODUCTION

Ancient graphics demo, upgraded to be idle hack. Adds Hanoi to list of idle displays.

OPERATION

(HANOI NRINGS WINDOW FONT ONCE)

HANOI

[Function]

Will display in WINDOW (or HANOIWINDOW, created first time) a towers-of-hanoi problem and
solve it. It periodically blocks so you can run it as a background process. NRINGS is the number of
rings. If NRINGS is a list it is the labels printed on the rings in font FONT. It conforms to the window
shape if you reshape it. It will run indefinitely unless ONCE is non-NIL.

104

en-vas HASHBUFFER

HASHBUFFER

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

Uses: HASH

HASHBUFFER combines hash files with hash arrays in order to improve hash file performance when
keys are accessed multiple times. This module also defines two functions for moving data between
hash files and hash arrays.

The functions below are used in place of the hash file routines. When a hash file is opened, a hash
array is created, of a complimentary size. When requests for keys are made, the array is searched,
and if a value is found, it is returned. If a value is not found, the file is searched and if a value is
found there, it is stored in the array and returned. If a value is not found, a marker is put in the
array so that the file is not searched again.

(OPENHASHBU FFER FILE [ACCESS MINKEYS OVERFLOW HASHBITSFN EQUIVFN]) [Function]

Opens an existing hash file and returns a hash buffer datum which must be given to the other hash
buffer functions. Only the FILE argument is required; the MINKEYS argument is used for the size of
the hash array and if not supplied the size of the hash file is used. Setting MINKEYS smaller than
the size of the hash file allows a fast, small hash array window onto a larger, slower hash file. The
OVERFLOW, HASHBITSFN and EQUIVFN arguments are passed to HASHARRAY.

(CREATEHASHBUFFER FILE [VALUETYPE ITEMLENGTH #ENTRIESA
OVERFLOW HASHBITSFN EQUIVFNJ) [Function]

Like OPENHASHBUFFER but creates a new hash file. The FILE, VALUETYPE and ITEMLENGTH
arguments are passed to CREATEHASHFILE; the OVERFLOW, HASHBITSFN and EQUIVFN arguments
are passed to HASHARRAY. The #ENTRIES argument is used for both the file and array.

(CLOSEHASHBUFFER HASHBUFFER [FILEONL Y?J) [Function]

Closes the hash file and sets the hash array to NIL so that it can be reclaimed. If FlLEONL Y? is
non-NIL then only the hash file is closed, the hash array will be left alone.

(GETHASHBUFFER KEY HASHBUFFER)

(PUTHASHBUFFER KEY VALUE HASHBUFFER)

[Function]

[Function]

Retrieve and store VALUE for KEY in the hash buffer. If the hash file is only open for input, then
storing a key will only affect the hash array. If the hash file is open for output, then storing a key
will put it in both the hash array and hash file. If VALUE is NIL, then a delete is performed.

(HASHARRAY.TO.HASHFILE HASHARRAY HASHFILE [TESTFNn [Function]

Uses MAPHASH to move the contents of HASHARRY into a hash file. If HASHFILE is a file name,
CREATEHASHFILE is called; if HASHFILE is an open hash file datum, it is used and left open. TESTFN,
if supplied, is called before each PUTHASHFILE on (KEY VALUE HASHARRAY HASHFILE) and if it
returns non-NIL, the key and value are copied to the file.

105

en·vas HASHBUFFER

(HASHFILE.TO.HASHARRA Y HASHFILE [HASHARRA Y TESTFNn [Function]

Uses MAPHASHFILE to move the contents of HASHFILE into a hash array. If HASHARRA Y is not
supplied a new hash array is created. TESTFN is called before each PUTHASH on (KEY VALUE
HASHFILE HASHARRAY) and if it returns non-NIL, the key and value are copied to the array.

106

en·vos HASHDATUM

HASHDATUM

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

Uses: HASH

HASHDATUM facilitates storing random Envos Lisp datatypes on hash files using the hashed text
feature of the HASH Lisp Library module. The module defines functions which access an item on a
hash file as a stream of bytes using user supplied input and output functions. Since the items are
stored using text hashing, when rehashing or copying of the file occurs, the data portion of the file
is copied correctly.

(GETHASHDATUM KEY HASHFILE READFN)

(PUTHASHDATUM KEY DATUM HASHFILE PRINTFN)

[Function]

[Function]

Use READFN and PRINTFN to store and retrieve DATUM on HASHFILE. The READFN takes a stream
as its argument, the PRINTFN takes the DATUM and a stream. The put function returns the hash
file text pointer record which contains two byte pointers that indicate where the datum begins and
ends on the file. The get function returns the result of the READFN.

The following macros and functions are also defined using the above functions:

(GETHASHGRAPH KEY HASHFILE)

(PUTHASHGRAPH KEY GRAPH HASHFILE)

[Macro]

[Macro]

Use GRAPHER functions READGRAPH and DUMPGRAPH to store GRAPH on HASHFILE under KEY.

(GETHASHBITMAP KEY HASHFILE) [Macro]

(PUTHASHBITMAP KEY BITMAP HASHFILE)

Use READBITMAP and PRINTBITMAP to store BITMAP on HASHFILE in a text format.

(GETHASHBINARYBITMAP KEY HASHFILE)

(PUTHASHBINARYBITMAP KEY BITMAP HASHFILE)

[Macro]

[Macro]

[Macro]

Use READBM and WRITEBM from BITMAPFNS to store BITMAP on HASHFILE in a binary format.

(GETHASHTEDIT KEY HASHFILE [WINDOW PROPSn [Function]

(PUTHASHTEDIT KEY TEXTOBJ HASHFILE) [Macro]

Use OPENTEXTSTREAM and TEDIT.PUT.PCTB from TEDIT to store TEXTOBJ on HASHFILE, preserving
both the text and formatting information. WINDOW and PROPS are optional and are passed to
OPENTEXTSTREAM. If the WINDOW argument is not supplied, the result of the get function can be
passed to OPENTEXTSTREAM along with a window to display the text.

(GETHASHUGLY KEY HASHFILE)

(PUTHASHUGL Y KEY UGL YVAR HASHFILE)

Use HREAD and HPRINT to store random data, like menus, on HASHFILE.

107

[Macro]

[Macro]

en·vos HEADLINE

HEADLINE

By: D. Austin Henderson, Jr. (AHenderson.pa@Xerox.com)

Last revised: Apri I 1, 1986

HEADLINE contains functions for creating and closing windows which contain headlines ("headline
windows").

(H EADLI N E PHRASE FONT POSITION ALIGNMENT) [Function]

Creates a headline window with PHRASE printed in font FONT at position POSITION aligned as per
ALIGNMENT; the window is just large enough to hold the headline. PHRASE is any Lisp object.
FONT defines a font as per FONTCREATE (eg. (TIMESROMAN 18 BOLD»; if NIL, TimesromanD 36 is
used. POSITION is a position giving the reference point for placing the window; if NIL, the user is
given a chance to position the window with MOVEW. If POSITION is given, ALIGNMENT gives the
alignment of the window with respect to POSITION as (xalignment . yalignment) where xalignment
is one of LEFT, CENTER, or RIGHT and yalignment is one of BOTTOM, CENTER, or TOP; for
convenience, if Position is CENTER then it is taken to mean (CENTER. CENTER), etc.

(HEADLlNE.ARRA Y TITLES ALIGNMENT SEPARATION POSITION) [Function]

Creates a set of vertically arranged headline windows. TITLES is a list of (phrase font) sublists where
phrase and font are as in Headline. ALIGNMENT is one of LEFT, CENTER, or RIGHT, indicating how
the windows are aligned with each other; defaults to CENTER. SEPARATION indicates the spacing
between the bottoms of the windows; defaults to 70. POSITION indicates where the top (first) of
the windows is to appear; defaults to somewhere near the top center of the screen.

(BILLBOARD)

Identical to HEADLlNE.ARRA Y, left in for backward compatibility.

(BANNER PHRASE FONT POSITION ALIGNMENT)

Same as HEADLINE except it prints the phrase vertically.

(BAN N ER.ARRA Y TITLES ALIGNMENT SEPARA TlON POSITION)

Same as HEADLlNE.ARRA Y except it prints the phrases vertically, left to right.

(CLOSE. HEADLINES)

Closes all the active headline windows.

108

[Function]

[Function]

[Function]

[Function]

en·vos HPGL

HPGL

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

_HPGL defines a Lisp image stream type that generates output for plotters (and other devices) which
use the Hewlett-Packard Graphics Language. The module does not define any user functions, the
HPGL streams are accessed via OPENIMAGESTREAM and the hardcopy functions.

PLonERS

Some plotters which use HPGL either as their primary language or as an optional extra:

Hewlett-Packard (most)
Facit 4551

Epson America HI-80 (option)
Western Graphtec MP1000 and FP5301 (option)
Houston Instrument DMP-29 (option) Gould Color-writer 6120 and 6320

Taxan 710 Nicolet Zeta 8 (option)
IBM 7371
Roland DYX-880 and 980 (source: PC. Volume 4. Number 26. December 1984)

The file extensions HPGL and PLOT are recognized by the system as plotter output file types.

OPTIONS

The driver accepts the following in the OPTIONS argument to OPENIMAGESTREAM:

SCALE

ROTATE

PAPER

TERMINATOR

VELOCITY

IMPLEMENTATION

Image scaling; value should be a POSITION record which indicates where the
second scaling point should be placed (the initial scaling point is at 0,0). By
default, uses (SCREENWIDTH . SCREENHE IGHT).

Paper rotation; value should be 0 or 90, defaults to landscape plotting (0).

Paper size; value is a small integer, the HP 7475A accepts 3 (A3) or 4 (A4).

Label terminator character; value should be a character, the default is I i A'.

Pen velocity; plotter specific.

The driver was implemented using an HP 7475A plotter but the plotter output conforms to the
more restrictive HP 9872 syntax to be more widely applicable. The driver uses the following
variables which may need adjustment for other types of plotters:

HPGL.FONTS

HPGL.OPTIONS

HPGL.DASHING

HPGL.FONT.EXPANSIONS

HPGL.TERMINATOR

An ALST of font names and (small integer) plotter font numbers.

An ALST of plotter specific options that can be passed to
OPENIMAGESTREAM and the corresponding HPGL command to print.

An ALST of HPGL line types (small integers) and dashing lists.

An ALST of font face expansions (REGULAR, COMPRESSED and
EXPANDED) and the relative scale of each.

The default end of instruction terminator character, initially';'.

109

en·vos

HPGl.SEPARA TOR

HPGl.TEXT.TERMINATOR

HPGl.CHORD.ANGLE

HPGl.PATTERN.lENGTH

COlORNAMES

DASHING

HPGl

The default parameter separator character, initially','.

The default end of label terminator character, initially' i A'.

The chord angle used by the circle and arc instructions. Defaults to NIL
which causes the plotter's default to be used.

The default pattern length for the hardware dashing. Defaults to Nil
which causes the plotter's default to be used.

System variable used to convert between RGB triples and pen
numbers. The order of entries affects the pen number to color
correspondences.

To minimize the complexity of the driver and maximize the speed of plotting, for operations other
than DRAWLlNE, the driver only uses the built-in dashing types of the plotter. The
correspondences between the dashing style and HPGl line type number are kept in the
HPGl.DASHING variable which can be modified or extended for plotters with different dashing
styles than those displayed below:

1 (1 49)

2 (25)

3 (35 15)

4 (39 5 1 5)

5 (35 5 5 5)

6 -- - - -- - - -- - - -- - - -- - _. (25 5 5 5 5 5)

NIL

If the driver is loaded after SKETCH, the dashing types are added to SKETCH's dashing menu.

110

en·vos IDLEHAX

IDLEHAX

By: Larry Masinter (Masinter.pa@Xerox.com) with contributions by various others.

- INTRODUCTION

This module contains a couple of random demonstration programs, useful as "Idle programs" I
callable from the background menu. The Idle display options includes Lines Warp-Out Radar
Triangles RandAngles Polygons Bubbles and Kaleidoscope.

These are implemented by the following functions:

(POLYGONS W NOBLOCK TIMER) [Function]

Calls (POLYGONS) or (POLYGONS window) to perpetually draw polygons in the given window (it
(re)uses POLYGONSWINDOW if argument is NIL). To run in the background, you can
ADD.PROCESS«POL YGONS (CREATEW]. Controlled somewhat by the global parameters
POLYGONMINPTS (minimum number of vertices), POLYGONMAXPTS (maximum number of
vertices), POLYGONSTEPS (number of steps between min and max), and delays POLYGONWAIT
(time between different polygons) and POLYGONWAIT2 (delay between initial display of
beginning and end and the movement phase.)

If NOBLOCK is T, it doesn't block at all (runs after but can't run in background.) If TIMER is given,
then POLYGONS will stop after TIMER is expired. (Used by the demo system.)

(LINES W N LCNTSTEPS ODDSTEP) [Function]

Similar to POLYGONS in controls, but draws perpetually changing form using line draw. W defaults
a "demo window", but is the window on which the display is drawn, N is the number of endpoints
(e.g., 2 draws lines, 3 draws triangles, 7 draws 7-segment figures), LCNT is the "number of lines on
the screen at anyone time", STEPS is the number of lines to draw between start and end (the
higher this number, the closer together the lines are), and ODDSTEP is a flag: if T, then the odd
endpoints remain the same every other iteration (try (LINES NIL 3 1 40 T).) The background
RandAngles means: (LINES W (RAND 37) (RAND 1 16) (RAND 25 100», while Triangles is (LAMBDA
(W) (L1 N ES W 3 1 40», etc.

(BUBBLES WINDOW) [Function]

Perpetually draws circles. Controlled by BUBBLECNT, which is read at startup as the number of
circles visible at anyone time.

(KAL W PERIOD PERSISTENCE) [Function]

Borrowed from the KAL LispUsers package: draws a random symmetric pattern of dots. Pretty.
Period affects the style of display, while PERSISTENCE affects how many dots are on the screen at
once.

(WARP W) [Function]

Draws a sequence of circular patterns that resemble piles of sand. Or not; you decide.

111

en·vos IDLEHAX

POLYGONS, LINES and BUBBLES adjust themselves to the size of the window, so you can reshape
the window in the middle of the demo.

112

en·vos

INSPECTCODE· TEDIT

By: Matt Heffron (BEC.HEFFRON@ECLA.USC.EDU)
Beckman Instruments, 2500 Harbor X-11

Fullerton, CA. 92634
(714) 961-3128

"STY
TEDIT

INSPECTCODE-TEDIT

The INSPECTCODE-TEDIT package advises the INSPECTCODE facility to have some extended
capabilities when the TEDIT and GRAPHCALLS packages are loaded (i.e. it uses TEDIT and
GRAPHCALLS).

If TEDIT is not defined, then the standard INSPECTCODE will be used. If TEDIT is loaded, then a
read-only TEDIT/INSPECTCODE window will be opened, and will have a special INSPECTCODE
menu for LEFT or MIDDLE buttoning in the titlebar. All of the options, except for Quit, in this
menu use the current selection in the window. You make selections with the mouse buttons in the
standard TEDIT ways. The options in the INSPECTCODE titlebar menu are:

GraphCalis If the GRAPHCALLS package is loaded, then calls GRAPHCALLS on the
current selection.

I nspectCode

Inspect

Pretty Print Value

Quit

Opens a new INSPECTCODE window on the current selection.

Does an INSPECT on the value of the current selection. This item has
SUBITEMS (see below).

Prompts for region to open a window, and prettyprints the value of the
current selection in it. This item has SUBITEMS (see below).

Closes this window and kills the associated TEDIT process. (Closing the
window with the WindowMenu, or by calling CLOSEW on it does the same
thing.)

The Inspect and Pretty Print Value menu options have the following SUBITEMS which affect how
the value of the current selection is determined:

Freely The value of the current selection is determined by any binding that a
free-reference from the INSPECTCODE window menu handling code (i.e by

113

en·vos

Globally

I n Process Context

I NSPECTCOOE-TE OIT

(EVALV selection». This is the default behavior when a menu selection is
made directly from the titlebar menu without using the SUBITEMS menu.

The value of the current selection is determined by its top level (Global)
binding.

The value of the current selection is determined by its binding in the
context of a specified process. A menu of all current processes will be
-brought up to allow you to specify a process.

INSPECTCODE-TEDIT also defines the LlSPXMACRO ICwhich INSPECTCODE's its argument.

114

en·vos KEYOBJ

KEYOBJ

By: Greg Nuyens

Supported by Jan Pedersen (Pedersen.pa@Xerox.com)

KEYOBJ provides a LISP imageobject which mimics a key. The default image looks like this:

~ ----.,~ ! CENTER 1
.. :1:

These keys are pressed by clicking the mouse inside the key's image. The result of pressing a key is
determined (just like the physical key) by the Interlisp-D system function KEYACTION. To enter a
KEYOBJ into TEdit type i o. Inside the window that pops up, call the following function:

(KEYOBJ.CREATE KeyName KeyLabel Abortable) [Function]

KeyName is the key that you want the object to behave like. (CENTER in the example above).
KeyLabel is an optional label other than the key whose action it mimics. If KeyLabel is a list of two
elements, the first is displayed above the second. Abortable is a flag which indicates that no
transitions should be generated if the mouse button is released outside the key image.

KEYOBJ.FONT [Variable]

Determines the font in which the label is created inside the keyobj. Default is Helvetica 10.

115

en·V6S

KINETIC

By: Anon.

Recompiled for Medley by Larry Masinter (Masinter.PA@Xerox.COM)

INTRODUCTION

An ancient graphics hack, converted to work with idle.

OPERATION

(KINETIC WINDOW)

KINETIC

[Function]

to randomly invert rectangles on WINDOW, or on KINETICWINDOW (set up first time). Choosing
the Kinetic on the Idle Choose Display menu will select the KINETIC function as the Idle display.

CHECKSHADE [Variable]

If non-nil, CHECKSHADE is a texture which is used for some of the rectangles sometimes. Defaults
to 63903.

Kinetic 'vVindow

116

en·V6S

KOTOLOGO

By: Masinter (Masinter.PA@Xerox.COM)

Uses: none

This document last edited on August 17, 1988.

INTRODUCTION

Makes a Koto-style logo window.

(KOTOlOGOW string where title angledelta)

KOTOlOGO

[Function]

Works like LOGOW did in Koto. Put string as the main logo name, with title in the window title.
angledelta is the angle at which the little windows go. where is either a position or an old
window. For example (KOTOLOGOW "the string" NIL "the title" 30) produces:

the title

the string

117

en·vas LIFE

LIFE

By various folks, including help from Mike Dixon (MikeDixon.PA@Xerox.COM) and Larry Masinter
(Masinter.pa@Xerox.com)

This Life program is a translation of the Smalltalk-80 version in the book Smalltalk-80: The
Language and its Implementation, by Goldberg and Robson.

Input is a window where the "on" pixels are interpreted as living cells. The window is continually
updated as life goes on.

Now an "idle" hack: LIFE DEMO as a display function plays life with the bits of the screen (in a copy
of them in a window, e.g., it doesn't smash your screen.)

(Lifeldle W N) [Function]

Run Life in window W, using the bits behind W as a starting point. N is optional, and can either be
1,2,4 or 8. Its the magnification of the life window.

(Life W N) [Function]

Like Lifeldle but uses the current contents of the window.

118

en·vos LOADMENUITEMS

LOADMENUITEMS

By: sM L (Lanning.pa@Xerox.com)

INTRODUCTION

Some utility files are so useful that users will always want them in their system: these files are
typically loaded from the users INIT file. A (rather large) number of other utilities are only
sometimes useful. Users are faced with the choice of either loading these files from their INIT files
(slowing down the initialization process and consuming space, whether the utility is needed or not)
or having to remember how to load and initialize these files.

LOADMENUITEMS addresses this problem: it defines a new filepackage command that can be used
to add entries onto the background menu for easy loading of utility files.

[NOTE: All (advertised) symbols in this utility are in the INTERLISP package.]

EXAMPLE

The filepackage command

(COMS
;; Make it easy to load some oft-used utilities
(FILES LoadMenuItems)
(LOADMENUITEMS WritingAids Sketch VirtualKeyboards ProofReader)
(LOADMENUITEMS ProgrammingAids (Spy (SPY.BUTTON»)
(LOADMENUITEMS NIL VStats Calendar»

will add an entry" Load ut i 1 i ty" to the background menu. "Load ut i 1 i ty" will have three
subitems: Mise, ProgrammingAids,andWritingAids:

WritingAids will in turn have three subitems: ProofReader, Sketch, and
Vi rtua 1 Keyboards; Mi sc will have the subitems Ca 1 endar and VStats; P rog rammi ngA ids
will havethesinglesubitem Spy.

119

en-vas LOADMENUITEMS

Selecting any of these final menu items will load the corresponding file. In addition, the Spy menu
item will evaluate the form (SPY. BUTTON) after loading the file Spy.

INTERFACE

(LOADMENUITEMS group uti/Descr1 uti/Deser2 ... J [FilePackageCommand]

Dumps out to the file a form that will add items to the background menu for loading uti/Oeser 1 ,
uti/Deser2, ... Each item will be added to the group subitem of the "Load utility" item on the
background menu; if group is NIL it defaults to "Misc".

In the simplest case, uti/Oeser is a LlTATOM. This is used when you want to load a file without any
extra initialization, and the file is on one of the directories in DIRECTORIES. Selecting the
resulting item will evaluate (DOFILESLOAD 'uti/Oeser) and print'an informative message in the
prompt window when the DOFILESLOAD is finished. The added item will have the label uti/Oeser.

In the general case, uti/Oeser is a list. This is used when you want to specify an initialization form to
be evaluated when the utility is loaded, or when the file description is not a LlTATOM. In this case,
selecting the menu item will evaluate (DOFILESLOAD (CAR' uti/Oeser». If uti/Oeser is a list of two
elements, the CADR of uti/Oeser will be evaluated after the utility is loaded; otherwise an
informative message will be printed in the prompt window. The added item will have as a label
the first UTATOM in the CAR of uti/Oeser; this is the first file that will be loaded when the item is
selected.

In each of the above cases, the item is removed from the background menu after the utility is
loaded and initialized.

When a utility is loaded from the "load utility" menu, the event is added to the history list. This
way you can UNDO loading a utility.

Some illustrative examples:

;; This adds the item "VStats" to the "Misc" subitem
(LOADMENUITEMS NIL VStats)

;; Selecting the "Spy" item will load Spy and call
SPY.BUTTON to bring up the spy button icon

(LOADMENUITEMS ProgrammingAids (Spy (SPY.BUTTON»)

;; This will add the item "GO" to the "Games" group
(LOADMENUITEMS Games (((SYSLOAD FROM {PHYLUM}<Foster>Lisp» GO»)

;; These items are useful for Lafite users, but aren't always
needed

(LOADMENUITEMS MailTools LafiteFind Undigestify MailScavenge)

FUNCTIONS

120

en-vas LOADMENU ITEMS

(Add Load Menu Item group fileDescr startUpForm) [Function]

Add a menu item to the background menu that will load the files. The item will be added under
the top level item "Load utility". group is the submenu name for this file; the default is Misc.
fileDescr is a list that can be passed to DOFILESLOAD to load the files. startUpForm is an optional
form that will be evaluated after the DOFILESLOAD; the default will print a nice message in the
prompt window. The LOADMENUITEMS filepackage command described above expands to calls to
AddLoadMenultem.

AddLoadMenultem is UNDOable.

(PickLoadUtilityltem utility-name &OPTIONAL group-name no-errors-p) [Function]

This is the programatic equivilent of selecting the item named utility-name from the "Load utility"
item on the background menu. If group-name is given, only that group undher the "Load utility"
item is searched for the utility; otherwise the entire menu item is searched. If multiple matching
items are found, a continuable error is signaled. Proceeding from this error will let you pick one of
the items to execute. If no matching items are found, a continuable error is signaled. The
no-errors-p flag controls whether or not these errors are actually signaled: if no-errors-p it true,
PickLoadUtilityltem ignores the errors. PickLoadUtilityltem return T if the utility was loaded, NIL
otherwise.

121

en·vos

LOGIC

By: Roberto Ghislanzoni (" Roberto Ghislanzoni II .MKTRXI@Xerox.com) . -

Uses: TABLEBROWSER

This document last edited on 19-5ep-88 14:03:58.

INTRODUCTION

LOGIC

This package is devoted to people who want to use a logic paradigm in their programming
environment. LOGIC was initially developed in Franz Lisp at the Computer Science Department of
the University of Milan: now a modified part of its kernel is running in Common Lisp, so it is
possible to use it under every machine running CL: within the Lisp environment, some features are
available in order to ease the construction of the programs.

All of the source codes are available: sorry if they are awful! But it's better to have efficiency than
syntactic sugar ...

LOGIC MANUAL

LOGIC is essentially a theorem prover based on Horn clauses: the user is allowed to create many
theories and within these theories to specify some predicates (clauses); as FOL does, it is also
possible to specify some semantic attachements (SA), in order to use all the capabilities of the
environment: in our implementation, these SAs are expressed in Lisp. A goal proof is performed
within specifed theory(es); the user is allowed to dinamically change the theories involved.
These are the elements of the language:

• a variable is an atom beginning with '?'

• an atomic formula is a list beginning with the name of the predicate and followed by the terms:
(on table book)

(mother ?x ?y)

• a clause is a list beginning with the consequent, followed by the special symbol ':-', and by the
sequence of the antecedents:

«grandfather ?x ?y) :- (father ?x ?z) (father ?z ?y»

• a set of clauses is the defi niti on of a predicate

«(append () ?a ?a» «append (?a . ?b) ?c (?a . ?d» :- (append ?b ?c ?d»)

• a theory is a set of the definitions of some predicates

122

en·vos LOGIC

HOW TO LOAD AND INIT LOGIC

In order to use LOGIC, load the files LOGIC and UNIFIER. From within the Envos Lisp Environment,
you can also load the development environment LOGIC-DEVEL.DFASL. After loading the files, call
the functions:

• (CREATE-BACKGROUND-THEORY): this function creates the main theory reading the data it
needs from the file MAIN.LGC.

• (CREATE-VARIABLES): this functions creates and initializes the variables used by the unificator; it
takes a few time to perform its job.

These are the functions available from the top-level executive of Lisp:

(ALL VARS CON) THS) [Function]

Returns the vars that satisfies the goal (conj) in the list of theories (ths): the background theory is
always used.For example you can ask the system to prove:
(ALL '(?a ?b) '«append ?a ?b (1 2 3») '(append-theory»
--> «NIL (1 23» «1) (23» «1 2) (3»)(1 23) NIL»

(ANY HOW-MANY VARS CON) THS)

Returns how-many vars that satisfies the goal:
(any 2 '?a '«append?a?b (1 23)) '(append-theory»
-- > (N I L (1 »
(ATTACH SA-NAME DEFINITION THEORY-NAME)

Allows to create semantic attachments:
(ATTACH 'createw '(lambda (name) (IL:CREATEW 0 name)) 'my-theory)
and now:
(ANY 1 () '«createw "Kiss me on my lips"» '(my-theory)
-->
Kiss me on my lips

(CREATE-THEORY THEORY-NAME)

[Function]

[Function]

[Function]

Creates a brand-new theory with that name: return the name of the theory created, not the theory
itself.

(L1ST-ALL-THEORIES)

Return a list of the defined theories, currently available.

(LOAD-THEORY THEORY-NAME)

[Function]

[Function]

Loads from the current directory the specified theory-name; the name of the theory file has the
extension .LGC, and it must be previously created by the corresponding function SAVE-THEORY

123

en·V6S lOGIC

(lOGIC-ADDA PRED CLAUSES THEORY-NAME) [Function]

Adds to the definitions of the predicate pred the specified clauses, that holds in the theory
theory-name: the clauses are put in front of the already existing clauses:
(lOGIC-ADDA 'C '«(C 1» «C ?x) :- (A ?x») 'my-theory)

(lOGIC-ADDZ PRED CLAUSES THEORY-NAME) [Function]

Adds to the definitions of the predicate pred the specified clauses, that holds in the theory
theory-name: the clauses are put at the end of the already existing clauses:
(lOGIC-ADDZ 'C '«(C 2» «C ?x) :- (A ?x) (8 :y») 'my-theory)

(lOGIC-ASSERT PRED CLAUSES THEORY-NAME)

Replaces all previous definitions of the predicate pred with clauses.

(lOGIC-DELETE PRED-OR-SA THEORY-NAME)

[Function]

[Function]

Erases from the theory theory-name the definition of pred-or-sa, that may be either a predicate or
a semantic attachment

(lOGIC-DElETE-FACT fACT-NAME fACT-CLAUSE THEORY-NAME) [Function]

Erases from the definition of the clauses on the predicate fACT-NAME the specified clause
fACT-CLAUSE, within the theory THEORY-NAME.

(M ERGE-THEORIES NEW-THEORY-NAME &REST LlST-Of-THEORIES) [Function]

Creates the new theory NEW-THEORY-NAME made up by all the predicates and sas that hold in all
the theories LIST-Of-THEORIES: now no control is performed on the consistency in the merging of
the theories

(PROVE CON) THS) [Function]

Calls the prover on the specified goals conj. THS is a list of the theory(es) used. PROVE returns only T
or Nil

(SAVE-TH EORY THEORY-NAME) [Function]

Writes on the local directory the contents of the theory theory-name. You will find later a file
whose name is composed by the theory name and the extension lGC.
The format of the contents of the file is the following:
theory-name
number of semantic attachments
<sa name1) <sa definition)

<sa nameN) <sa definition)
number of predicates
<predicate name 1) <clauses for predicate 1)

<predicate name N) <clauses for predicate N)
A theory file (with .lGC extension) may be created by the user employing a text editor like Emacs or
VI (on Symbolics, SUNs etc.), avoiding the saving of the theory every change he performs.

(SHOW-DEFINITION ELEMENT THEORY-NAME) [Function]

Shows the definition of element, either a predicate or a semantic attachment.

124

en·vas LOGIC

(SHOW-THEORY THEORY-NAME &OPTIONAL VERBOSE) [Function]

Shows the contents (name of predicates and sas) of the theory theory-name; if verbose is T, all the
definitions are shown.

THE BACKGROUND THEORY

In the background theory, many interesting primitive predicates are available:

[Predicate]

The cut predicate, well-known to the PROLOG programmers: a tipical example of its use can be the
definition of the predicate NOT:
«(not ?formula) :- (wff ?formula) ! (fail»
«not ?formula»)

(TRUE)

This predicate always succeds

(FAIL)

The predicate that never succeds

(PRINT ?arg)

Prints the argument ?arg passed by

(EVAL&PRINT ?arg)

This predicate evaluates and print the result of evaluation of the form ?arg:
(prove '«eval&print (+ 34») '(my-theory»
7
T

[Predicate]

[Predicate]

[Predicate]

[Predicate]

(LOGIC-ADDA ?PREDICATE-NAME ?CLAUSES ?THEORY-NAME) [Predicate]

Adds in front of the clauses that define the predicate ?PREDICA TE-NAME in the theory
?theory-name the other clauses ?CLAUSES

(LOGIC-ADDZ ?PREDICATE-NAME ?CLAUSES ?THEORY-NAME) [Predicate]

Adds to the end of the clauses that define the predicate ?PREDICATE-NAME in the theory
?theory-name the other clauses ?CLAUSES

(LOGIC-ASSERT ?PREDICATE-NAME ?CLAUSES ?THEORY-NAME) [Predicate]

Replaces all definition for the predicate ?PREDICATE-NAME in the theory ?THEORY-NAME with the
new clauses ?CLAUSES

(LOGIC-DELETE ?PREDICATE-OR-SA--NAME ?THEORY-NAME) [Predicate]

Deletes all definition for predicate (or sa) ?PREDICATE-OR-SA-NAME in the theory ?THEORY-NAME

(LOGIC-DELETE-FACT ?FACT-NAME ?FACT-CLAUSE ?THEORY-NAME) [Function]

Erases from the definition of the clauses on the predicate FACT-NAME the specified clause
FACT-CLAUSE, within the theory THEORY-NAME.

125

en·vos LOGIC

(SET 7var value) [Predicate]

With this predicate it is possible to set a variable within the demonstration (remind that a variable
always starts with a'?'):
(prove '«set ?x (list 'a 'b 3»(print ?x» "(my~theory»
--> (a b 3)
T

(RETRACT ?theory-name) [Predicate]

Tells the interpreter that it must use no more the theory ?theory-name during the ongoing
demonstration; this elision is made only on the current active node of the demonstration tree

(USE-THEORY ?theory-name) [Predicate]

Tells to the interpreter that it must use the theory ?theory-name for the ongoing demonstration.

(WFF 7formula) [Predicate]

This is a second order predicate that allows you to prove the truth value of the well formed
formula 7formula

If you load only the LOGIC files, this is the environment you have. On Xerox machines, you can also
load the file LOGIC-DEVEL, that allows you to have the development environment: a new entry in
your background menu is created, and so you are able to open a logic demonstration window.
This is the control menu:

Control menu
St-IO',.,",·' profile

Truth "la.lue only)·
S h 0 ",'v(.A, X ion-I) }.
ECjit(,A,xiorn))

[) e I ete (.i:.. ::(i ':' r-rl) ~~::.

Set ~,,"'ocje(Fir:3t))
Trace unifier 1~::'
Trace :3olvet· jl::'

C t·e ate trl e 0 ry
Delete trleot·y }.

r'",', e r!~ e trl e 0 ri e :3
LO.3.d theot·y
Sa'",'e tt-Ieory
Era:3e env

_ E::o::it

SHOW-PROFILE: shows the current profile: the MODE of demonstration (FIRST, ALL,
INTERACTIVE), and the tracing flags on unifier and solver

TRUTH VALUE ONLY: this flag controls if the prover returns all the goals with the variables
instantiated or only the values T or NIL

126

en·vos

SHOW AXIOM: shows the definition of an axiom or of a semantic attachment

EDIT AXIOM: edits the definition of an axiom or of a semantic attachment

DELETE AXIOM: deletes the definition of an axiom or of a semantic attachment

SET MODE: sets the mode of the demonstration: this may be ALL, FIRST or INTERACTIVE

LOGIC

TRACE SOLVER: the solver is the procedure of the interpreter that takes as arguments a tree, a
formula and the clauses for that formula, and gives back the new tree obtained by the resolution
operation; its behaviour is traced on a debugging window which has the middle menu capability
of dribbling; the output file has the extension TRC.

TRACE UNIFIER: traces the going on of the unifier on a debugger window; this window too has the
middle menu capability of dribbling its output. The pattern, the datum and the unification
environment will be shown to the user.

CREATE THEORY: creates a new theory

DELETE THEORY: all the theories loaded are showed in a tablebrowser at the left of the main
window; when you select one or more theories, this means that you want to use them for your
demonstration; this command deletes the selected theories; you can however undelete or
expunge them with the subitems of this entry. Remember that, for undeleting the selected

theories with the tablebrowser mark(.), you must click middle button on it and press CTRL (PROP)
key

MERGE THEORIES: merges the selected theories in a new theory; the user is prompted for the
name of the new theory

LOAD THEORY: loads a theory from a file in the current directory

SAVE THEORY: save the selected theory(ies) on the corresponding files

ERASE ENV: erases all the environment of the window

EXIT: exits from the environment

Remember that, for every demonstration requested, there must be at least one theory selected in
the tablebrowser at the left of the main window

I hope these notes hel p you to use LOG IC

You can find some examples in the theory file EXAMPLES.LGC.

Any suggestion is welcome: since it is not fully tested, please notify every kind of error or bug you
will find.

EXAMPLES

Choose LOGIC from the background menu: a new window will appear: choose LOAD THEORY
from the control menu and type in EXAMPLES at the request in the prompt window: mark the
theory loaded in the theories window and try:

3)))

127

en·vos

the system wi II respond you

12 Logic>«APPEND ?A ?B (1 2 3»)
«APPEND NIL (1 2 3)

(1 2 3)')"1
1 • 1

NIL
13 Logic>

Click now on SHOW PROFILE: you will see

Mode: FIRST IUnifier: NOTRACE ISolver: NOTRACE IValues: NIL

Choose SET MODE ALL (submenu) and retry the same goal as before: you get the answer:

13 Loaic)((APPEND ?A ?B (1 2 3»)
«APP~ND ~iL (1 2 3)

(1 2 3»)
«APPEND (1)

,'.-. .-,)
I,.,:::, .J

(1 2 3»)
«APPEND (1 2)

(":3 ")
ll' ,;, :3') "1 "1 - .. '}

«APPEND (1 2 3)
NIL
(1 2 3»)

NIL

In the theory EXAMPLESa simple little maze is described: type in the goal:
((search a g»
that wi II fi nd a path from the room I a' to the room I g I.

I

M I E F
f- -

B C 0 H
r-- -

A N
G I L

- I

Here are other examples of goals you can try:

((sa-member 3 (1 2345»)
{(logic-member 3 (1 2345»)
The first one is a SA, the latter is a predicate.

128

LOGIC

')

en·vos

«NOT (A 1») -- > T
«NOTMEMBER 2 (1 34») --> T
and so on.

Try now all the other features of the language.

You can ask the system for the same goals from the lisp listener:

(load-theory 'examples)
(prove '«APPEND?X ?Y (1 234» '(examples» --> T
(all'(?X ?Y) '«APPEND?X?Y (1 234» '(examples»
--> {(NIL (1 234» «1) (2 34» {(1 2) (3 4» «1 23) (4» «1 234) NIL»

Have fun!

129

LOGIC

en-vaS LOOKUPINFILES

LOOKUPINFILES

By: dgb (Bobrow.pa@Xerox.com)

INTRODUCTION

The LOOKUPINFILES module is a facility for building quick and easy access to on-line files. It allows
search for a target string though all files in a specified list. It finds the target, and brings up the file
in a window, with the target selected in inverse video. The file can then be used as the source for
text for other documents. It is the basis for the user facilities of ADDRESSBOOK and
FIND-CITATION. Its interface is defined by the function:

(MakeLookupWindow fileList processName mainWindowRegion iconBM iconMask iconPosition)

These arguments are used as follows:

fileList

processName

mainWindowRegion

iconBM

icon Mask

iconPosition

List of file names. Search goes through these files in order

Name appearing in PSW for this lookup process

Region for window showing text found

Bit map for icon when mainWindow is shrunk

Mask for icon

Position for icon

Arguments other than fileList are optional. Calling MakeLookupWindow will construct a Lookup
window, and shrinks it to the icon provided. Opening this icon shows the window interface to the
search process. To find any string in one of the files, type the string followed by a return. The
program will quickly search through the files and show you an occurrence of the string typed. The
located string is shown in inverse video. The title of the window will contain the name of the file in
which the entry was found. The search ignores case; e.g. "bobrow" matches "Bobrow". The text
of the document is scrollable, and any portion can be shift selected into another document.

Type carriage return, or click on Next Occurrence to search further in the files for the same string. If
no (further) occurrences are found, the text window will display a message indicating the failure.
Searching again after failure will start the search from the beginning of all the files, using the same
lookup string. Typing a new string can be repeated as many times as you like. When you are done,
just SHRINK the window back to its icon.

The window below is taken from the use of this package as an online address book.

130

en· v oS LOOKUPINFILES

lookup String: stefik
lookup String:

Next Occurrence
Looking in: {phylunl} <bobrow)lisp >addresses. ted

Dr, Mark J, am
Xerox Palo Alto Research Ctr,
Knowledge Systems Area
3333 Coyote Hill Road
Palo Alto, CA 94304
P .. esidence:

Example ADDRESSBOOK window

NOTES

Caching Files

When you first open the window, the program will copy the files to {CORE}, significantly speeding
up queries. Bugging in the title of the main window with the left or middle mouse button will
produce a menu with an option to recache all these files.

Editing Your Files

To edit the file in which a string is found, bug in the title of the main window, and select the option
"Edit File". You will be requested to confirm that you want to edit the file. If you confirm, a TEDIT
process editing the file will be set up. This process is independent of the lookup process. To make
editing changes visible to the lookup process, PUT the file in TEDIT; when it is done, recache the
the file in core. To recache just the file edited, (the one specified in the title bar of the window),
select the option "Recache just this file" in the title bar menu. You can recache all files by selecting
that option in the title menu.

Adding to the List of Files

To add to the list of files being used for lookup, select the option "Add new file" in the title bar
menu. This file will be added to the list of files to be searched, and cached in core.

131

en·vos

MAGNIFIER WINDOW

By: Richard R. Burton (Burton.PA @ Xerox. Com)

This document last edited on March 17, 1986.

INTRODUCTION

File: MAGNIFIER.LCOM

MAGNIFIER

Tired of giving demos in which only the two people sitting next to you can see the screen? This
small package implements magnifying windows, windows that show an enlarged copy of that
portion of the screen that is around the cursor. A magnifying window can be created either by
calling the function MAGNIFYW or by selecting the item "Magnifier" from the background menu.
A magnifying window can be made to any size and is distinguished by its large border. Once a
magnifying window has been created, it can be activated by clicking the left button in it. While
activated, the cursor will be replaced by a black rectangle and the contents of the rectangle will be
displayed in the magnifying window enlarged by a factor of 4. The contents will continue to track
the location of the cursor until the left button is clicked a second time. The magnifier can be
reshaped.

Suggested use: When six people drop into your office unannounced for a demo, create a
magnifying window across the top or bottom of your screen (so the people in the back can see it
easily). When it is important for people to read what you are talking about, move the cursor into
the magnifier, click the left button, move the cursor over the area of interest and, when the image
in the magnifier has what you want, click the left button again. This will leave an enlarged part of
the screen in the magnifier and free the mouse of other things. You can leave magnifier active but
it will not block (so no other processes get to run) and if you move the cursor, the image in the
magnifier will move too.

132

en·vos MAKEGRAPH

MakeGraph

By: D. Austin Henderson, Jr.

Supported by: Nick Briggs (Briggs.pa@Xerox.com)

INTRODUCTION

MakeGraph is a module which sits on top of Grapher and helps one create graphs depicting a data
structure by walking through it. The central idea is that each point in the walk (and node in the
graph) is characterized by a datum/state pair and motion is defined by a graph specification in the
form of state transition function. This function is specified by a collection of state specifications,
each of which indicates how 'to display (label and font) the datum when one is in that state and
how to find the datum/state pairs which are the sons of that node. Also the state specification may
specify additional roots for the walk. The generation of a branch of the graph ceases when either
there are no sons of a node, or an already encountered node is revisited (identical datum and
identical state). The module contains a function for creating such graphs and an example of its use:
a function which graphs the graph specifications themselves. Comments are welcomed

FUNCTIONS

The main functions are:

(MAKE.GRAPH WINDOW TITLE GRAPH.SPECIFICA TlON ROOTS CONTEXT
LEFTBUTTONFN MIDDLEBUTTONFN TOPJUSTlFYFLG DEPTH) [Function]

Creates a MAKEGRAPH window. If WINDOW is NIL, then a new one will be created and the user
will be prompted to position it. Otherwise, the graph will be shown in WINDOW. The window will
be titled with TITLE, will call LEFTBUTTONFN and MIDDLEBUTTONFN on nodes selected (or NIL if
selection is made where no node is positioned), and will be justified as indicated by TOPJUSTlFYFLG
(a la Grapher). The button functions are defaulted to MAKE.GRAPH.LEFTBUTTONFN (which scrolls
the window so that the selected node is in the middle of the window, or if the left shift key is
depressed, prints out information about it) and MAKE.GRAPH.MIDDLEBUTTONFN (which provides
a menu of two choices: INSPECT - inspects the datum of the node selected, or if the left shift key is
depressed, inspects the node itself; and SUB.GRAPH - which opens another MAKEGRAPH window
with the same parameters as this one, but with graph starting at the selected node). The
arguments to MAKE.GRAPH are added as properties to the window under their argument names.
Selecting in the title invokes the functions which are the values of the 'window properties
TITLE.LEFTBUTTONFN and TITLE.MIDDLEBUnONFN (not in the calling sequence; set by the user if
desired; called with a single argument - WINDOW; defaulted to a function which provides a menu
of UPDATE and SHOW.GRAPH.SPEC (see functionality below». The graph is created according to
the GRAPH. SPECIFICATION (see below) to depth DEPTH, starting from ROOTS which are (DATUM.
STATE) pairs. CONTEXT is an extra argument which is a passed along to all accessing expressions.

GRAPH.SPECIFICA TION [Parameter]

A GRAPH.SPECIFICATION is a property list of STATE.SPECIFICATIONs where the properties are the
state names.

133

en·vos MAKEGRAPH

STATE.SPECIFICAITON [Property list]

A STATE.SPECIFICATION is a property list whose properties and values are as follows (in this, EXPR
means a LISP form which will be evaluated in an environment in which DATUM is bound to the
node's datum, STATE to the node's state, and CONTEXT to context):

LABEL [Property]

an expression returning something which will be printed as the label of the node; if no LABEL
property is provided, the string "???" will be used.

FONT [Property]

an expression returning the font to be used for this node; if no FONT property is provided, the
default font for the grapher will be used.

SONS [Property}

a form indicating a list of (DATUM. STATE) pairs to be used in generating the sons of this node; the
acceptable forms are any of the following:

(data-expression state-expression) [Property value]

where data-expression returns a list of datum's for the son nodes, and state-expression is evaluated
in the context of each of these in turn to produce the corresponding state of each.

(LIST (data-expression state-expression) ...) [Property value]

a template of expressions which are evaluated individually to produce a list of sons of the same
form, viz. (DATUM. STATE) pairs.

(EVAL expression)

the expression returns a list of (DATUM. STATE) pairs of the sons.

(UNION sons-spec ...)

where each sons-spec is any of these forms (recursively).

(TRACE sons-spec)

[Property value]

[Property value]

[Property value]

a device for helping debug graph specifications; the value is the value of sons-specs; the user is
given the chance to INSPECT them after they have been generated.

ROOTS [Property]

like SONS, except the resulting (DATUM. STATE) pairs are used as possibly additional roots of the
graph.

(MAKE.GRAPH.CONSTRUCT GRAPH. SPECIFICATION INITIAL. ROOTS CONTEXT DEPTH) [Function]

This is the functional heart of MAKE.GRAPH broken out for those who wish to handle their own·
interactions with grapher and the window package. It produces a list of graphnodes with labels
and sons as specified by GRAPH.SPECIFICATION (see MAKEGRAPH), starting from INITlAL.ROOTS
which are (DATUM. STATE) pairs. CONTEXT is an extra argument which is a passed along to all
accessing expressions. Returns the list of graphnodes.

134

en· v oS MAKEGRAPH

(MAKE.GRAPH.FIND.ROOTS GRAPH. SPEC/FICA TlON INITlAL.ROOTS CONTEXT DEPTH) [Function)

Finds the real roots from a set of initial roots, using the same processing as MAKEGRAPH uses. This
is helpfut'when you want to hand a "correct" set of roots of a structure to MAKEGRAPH without
having to explore the dependencies within that structure. As with MAKEGRAPH, the data structure
is processed according to the GRAPH.SPECIFICATION (see MAKEGRAPH), starting from
INITIAL. ROOTS which are (DATUM. STATE) pairs. CONTEXT is an extra argument which is a passed
along to all accessing expressions. Returns the real roots as a list of (DATUM. STATE) pairs.

Supporting Functions

(MAKE.GRAPH.UPDATE.WINDOW WINDOW) [Function)

Uses the window properties (which may have been changed) to reinvoke MAKE.GRAPH on the
window.

(MAKE.GRAPH.SHOW.SPEC GRAPH.SPECIFICA TION) [Function]

Uses MAKE.GRAPH to produced a graph of a GRAPH.SPECIFICA TlON. It uses as the
graph.specification for this layout the value of the variable MAKE.GRAPH.SPEC.SPEC which
presents GRAPH. SPECIFIC A nON (reflectively) as a graph.specification. (MAKE.GRAPH.SPEC.SPEC
can serve as a template for other graph.specifications. It is a fairly complex 9-state specification. For
a simpler example see below under MAKE.GRAPH.SHOW.LlST.)

(MAKE.GRAPH.EXAMPLE.1)

Calls MAKE.GRAPH.SHOW.SPEC on MAKE.GRAPH.SPEC.SPEC.

(MAKE.GRAPH.SHOW.L1ST OBJECn

[Function]

[Function)

Uses MAKE.GRAPH to produced a graph of an arbitrary Lisp object. It uses as the
graph.specification for this layout the value of the variable MAKE.GRAPH.LlST.SPEC which presents
OBJECT as a tree whose nodes are L1STPs and whose leaves are non-LlSTPs.

MAKE. GRAPH. LIST .SPEC [Variable]

MAKE.GRAPH.L1ST.SPEC is the simple 1-state specification below, included here as an example of a
graph.specification

(OBJECT (DOC (ANY LISP OBJECT) - some documentation
LABEL (COND «LISTP DATUM) "()")

(T DATUM»
SONS «COND «LISTP DATUM) DATUM)

(T NIL»
(QUOTE OBJECT})

For a more complex example see above under MAKE.GRAPH.SHOW.SPEC.

(MAKE.GRAPH.EXAMPLE.2) [Function]

Calls MAKE.GRAPH.SHOW.L1ST on MAKE.GRAPH.L1ST.SPEC; that is, produces a graph of this simple
graph.specification as a list. Notice that selecting the title command UPDATE in this window will
yield a different graph of the same structure, viz. as a GRAPH.SPECIFICA TION.

Other useful functions

135

en·vos

(MAKE.GRAPH.DATUM NODE)

Returns the DATUM associated with the graph node NODE.

(MAKE.GRAPH.STATE NODE)

Returns the STATE associated with the graph node NODE.

(MAKE.GRAPH.FATHER NODE)

Returns the graph node which is the father of the graph node NODE.

136

MAKEGRAPH

[Function]

[Function]

[Function]

en·vos

MANAGER

By: Jay Ferguson, Larry Masinter and Andrew Cameron III

Maintained by Ron Fischer (Fischer.pa@Xerox.com)

Uses: MASTERSCOPE

INTRODUCTION

In its latest incarnation Manager supports MasterScope and improves its performance.

USING MANAGER:

MANAGER

Manager provides a way to perform most common File Manager operations onscreen using menus,
both pop-up and permanent. Activity centers around the filelst, or main, menu, and menus of
items of a type in the file (like all FNS, or all VARS).

Printing and interaction is done through the Manager Command Activity Window. The first time it
is needed you'll be prompted to size it onto the display. Thereafter, it will be used as needed. If
shrunken before use it will wait 10 seconds after an operation and then shrink down again.

The FILELST menu:

The manager provides a menu of the FILELST:

INIT.LISP it
rv1.h..NAGER ~

137

en·vos MANAGER

The names in the FILELST menu can be copy selected.

Middle buttoning on the title bar of the FILELST menu pops up a menu of operations which are
applied to all loaded files:

MakeF les
CleanUp
Changes

fvlS DataBaseFNS
Files?
Add

uit

These operations are the same as the similarly named functions in the File Manager interface,
except for the following slide off options:

CleanUp:
Set default: TCOMPL, the default compiler will be TCOMPL.
Set default: CL:COMPILE-FILE, the default compiler will be CL:COMPILE-FILE.

MS DataBase FNS:
various MasterScope database flags can be set

Add, notice a file via:

Quit:

LOADFNS
LOADFROM
LOAD
ADDFILE*
Edit FILELST, edit the FILELST directly in a lisp editor window.

Quit*, shut down the Manager, all menu caches cleared, windows closed.
Reset, shut down and turn on the Manager again.

Left buttoning on a file in the FILELST menu (without sliding off) pops up a menu of operations on
that file:

File 0 erations
See

(Re)Loacj
r'",', a.~<.e F i I e

Li:::;t

138

en·vos

See:
fast*, prints the source of the file.
scrollable, displayed in a scrollable TEdit window.

(Re)load:
Load*, use current DFNFLG settings.
Sysload, load with File Manager turned off.

MakeFile, dump the file
MakeFile*, dump the source of the file by remaking it.
New, dump the source without copying unchanged defs from existing file.
Fast, dump source without prettyprinting (fast).

MANAGER

CommonLisp, dump source in commonlisp format (loads common-makefile if needed).
List, list the source file on the default printer.
CleanUp:

CleanUp*, dump the file according to CLEANUPOPTIONS.
Set default compiler: TCOMPL.
Set default compiler: CL:COMPllE-FILE.

MasterScope:
Analyze*, analyze the fns on the file.
Check, check the file for problems.
Show Paths, show paths of function calls on this file.
DatabaseFNS, display the database property for this file (loads databasefns if needed):

Compile:

Set to ASK, ask about saving MS DB information.
Set to ON, automatically maintain MS DB information.
Set to OFF, do not save MS DB information.
Load DB, load an existing MS DB for this file.
Dump DB, dump the current MS DB for this file.

Compile*, compile the file based on the current settings.
CL:COMPILE-FILE, compile the file with CL:COMPllE-FllE.

Changes:
Brief*, prints the changes that have been made to this file.
Everything, prints the complete list of files changes.
Edit PL, brings up a lisp editor on the file's property list.

Middle buttoning on a file in the filelst menu (without sliding off) pops up a menu of generic
operations on that file:

Delete, removes the file object from the system.
Rename, prompts for a new name and renames the file.
Copy, prompts for a new name and copies the file under that name.
Mark, mark the contents of the file as changed.
Unmark, unmark the contents of the file as changed.

139

en·vos

Left buttoning on a file and sliding off to the right pops up a menu of types in the file:

Releasing on one of these places a menu of items of that type on the file:

This menu is not pop-up and remains on the display.

The items of a type menu:

MANAGER

These menus contain the names of all instances of a particular type on a file. Names of items in
these menus can be copy selected.

Left buttoni ng on an item name pops up a menu of operations on that type:

Edit
F' rettv F' d nt

Docurnenta.tion

Edit, brings up the source text of the item in a lisp editor.
PrettyPri nt:

Show*, prints the source text of the item quickly.
Value, prints the global value of the item's name (assumed a symbol).
Function Def, prints the global function definition of the item's name (assumed a symbol).
Property List, prints the global property list of the item's name (assumed a symbol).

Documentation:
Documentation*, prints the item's documentation string.
Describe, calls describe on the item's name (assumed a symbol).

140

en·vos MANAGER

The menu of item operations shown above is the general one. There are special menus for the
following types:

FNS, FUNCTIONS, RECORDS, VARS

Middle buttoning on an item name pops up a menu of generic operations on that type:

Delete, removes this item from its file.

Delete
EditAII

Rename
rvlove
Copy
rv1ark

Unmark

EditAlI, edits all occurances of this item's name in the latest source file (uses EDITCALLERS).
Rename:

Rename*, rename this item in its file and update all uses of the name.
CopyOef, copy this item under a new name.
Rename All, rename this item in *ALL * loaded files.

Move, move this item into another file.
Copy, copy this item into another file.
Mark:

Changed*, mark this item as changed by being edited.
Defined, mark this item as changed by being defined.
Deleted, mark this item as changed by being deleted.

Unmark, unmarks the source of this item as being changed (marks it "unchanged).

The file's makefile-environment has its readtable argument used to bring up thelisp structure
editor properly on objects in the file. When SEdit is the lisp editor, the package used depends on
SEd it's "correct package" heuristic (usually that of the symbol naming what is being edited).

Loading and controlling Manager:

Just load the file. Manager can be started either from the background menu or by calling the FNS
MANAGER (see below).

Programmer's interface to Manager:

(MANAGER POSITION)

Starts up the manager. If POSITION is given, the filelst menu will be appear there.

(MANAGER.RESET RESTARTFLG)

[FNS]

[FNS]

Shuts down the manager. If RESTARTFLG is true, manager will be immediately restarted after the
shutdown.

141

en·vos MANAGER

Manager.SORTFILELSTFLG [INITVAR]

If true, the FILELST will be sorted, without side effecting the actual FILELST variable. If unset,
defaults to T.

Manager.MENUROWS

Maximum number of rows in a manager menu. If unset, defaults to 20.

manager-marked-shade

[lNITVAR]

[INITVAR]

The shade used to indicate that an item has been marked as changed. If unset, defaults to
MENUBOLDFONT.

142

en-vas MATHTONS

MATHTONS

By: Tad Hogg (Hogg.pa@Xerox.com)

INTRODUCTION

This file defines the translation array needed to convert from the Press MATH font to
corresponding NS characters. This allows documents containing the MATH font to be printed on
Interpress printers.

The array \MATHTONSARRA Y contai ns the translations for most of the characters. Some may not
be available on particular printers, causing them to appear as black boxes.

143

en·vos MICROTEK

MICROTEK

By: Ron Clarke (RClarke.pa@Xerox.COM)

INTRODUCTION

MICROTEK is an image processing software package that enables you to operate Microtek
Models-300 and 300A Intelligent Image Scanners with the Xerox 1108 and 1186 workstations. The
Microtek MS-300, 300A, and MSF-300C are high-resolution optical scanners that can convert text,
artwork, photographs, etc, into digital form for processing by computer. The digitized images
that are output to the computer contain up to 300 black and white dots for every linear inch of the
original document. Page size can be as large as 8.5 by 14 inches. Sophisticated firmware in this
scanner enables the user to set the scanning area and control brightness, contrast, scaling, shading
and other characteristics of the scanned images through simple commands transmitted from the
1108 or 1186. Two basic scanning modes are supported: Line Art mode for accurate capture of
completely black-and-white material, and Halftone mode for faithful reproduction of material
with varied shading. Mixed-mode scanning is also available.

With the MICROTEK software package you will be able to: Set the scanner to capture images of all
kinds, with desired visual effects, and transmit them to the 1108/1186, save scanned images to
disk, floppy or file server for later reloading to recreate images and print scanned images to a
Xerox 4045 or 8044 laser printer.

SOFTWARE REQUIRED

MICROTEK.DFASl

MICROTEKPRINT.DFASl (if you have a Xerox 4045 or 8044 laser printer)

DlRS232C.lCOM

EDITBITMAP.lCOM

READNUMBER.lCOM

4045XlPSTREAM.DFASl (if you have a Xerox 4045 laser printer)

FONTS USED

MODERN 10, 12 BOLD

Other useful software for manipulating the scanned image:

Lispuser's Packages:

ACTIVEREGIONS, ACTIVEREGIONS2, AIREGIONS, FlllREGION

HARDWARE REQUIRED

Xerox 1108 with RS232C port (E-30 upgrade kit). It is also recommended that the 1108 have 3.5
meg of memory and a floating point processor (CPE board) to enable faster scanning and creation
of bitmaps.

Xerox 1186. It is also recommended that the 1186 have 3.7 meg of memory.

144

en·vos MICROTEK

Microtek MS-300, MS-300A, or MSF-300C Intelligent Image Scanner with optional serial port.

CABLE CONFIGURATION

Note that the cable configuration is DIFFERENT for the MSF-300C scanner. Plugging a standard
RS232C cable into the MSF-300C DB25 connector may result in damage to the equipment.

RS232C Port (DTE) MICROTEK MS-300, MS-300A - DB25 Connector

Signal Pin Pin Signal

FGround 1 FGround
TO 2 3 RD
RO 3 2 TO
SGround 7 7 Sground

Pins 5, 6,8 and 20 are jumpered together on the RS232C port end of the cable.

RS232C Port (OTE) MICROTEK MSF-300C- DB25 Connector

Signal

TO

RO

Ground

Pin

21

9

5,7

Pin

3

2

7

DOCUMENTATION REQUIRED

Signal

RD

TO

Ground

Microtek MS-300, MS-300A, or MSF-300C Intelligent Image Scanner Operation Manual

LOADING MICROTEK

Make sure that DIRECTORIES contains the directory where the required software is located. When
the file MICROTEK.DFASL is loaded, the item IMicrotekScanner" will be added to the Background
menu. If you have a Xerox 4045 or 8044 laser printer load MICROTEKPRINT.OFASL. If you have a
Xerox 4045 laser printer load 4045XLPSTREAM.DFASL. Your 4045 laser printer should be
connected to the TTY IDCE port.

RUNNING MICROTEK

The process of running the Microtek scanner software consists of three phases: Scanner
initialization, scanning, and creating a bitmap of the scanned image that can eventually be
printed. Each of these are controlled by different menus within the Microtek Scanner Control
Window.

SCANNER INITIALIZATION

Set the Microtek scanner so that it is operating at 19200 baud by setting its internal DIP switches
(See Microtek Operating Manual for details). Turn on the Microtek scanner. Select
IMicrotekScanner" from the background menu and the Microtek Scanner Control window (figure
1) and Microtek Scanner Pagemap window (figure 2) will be created. (Note you may have do a
control-E and retry if cursor flashes while trying to create the control window).The scanner
pagemap window is used to select the area of the image to be scanned and to select the page
length. The scanner control window is used to set all other scanner parameters, start and stop
scanning as well as to initiate creation and printing of scanned image bitmaps. After these
windows have been created, the RS232 port will be initialized to 19200 baud and an attention

145

en·vas MICROTEK

command will be sent to the scanner. If all cables are connected properly and the scanner is on,
the message "MICROSCAN 300(A) V# is ready" will be displayed in the Microtek Status Window. If
the cable is configured incorrectly or the scanner is not on or ready the messsage UMicrotek Not
Responding ... Check scanner and cable" will appear instead.

FIGURE 1 - MICROTEK SCANNER CONTROL WINDOW

Before scanning can be initiated, a number of parameters have to be set by the user via the
Microtek Command Menu and Microtek Configuration Menu as follows:

146

en-vas MICROTEK

Microtek Command Menu:

Output FileName Left buttoning on this item allows you enter the name of the file on disk,
floppy or fileserver where the scanned data is to be saved. Be sure to type a carriage return to
terminate this entry.

Microtek Configuration Menu:

Reduction Left button on the number next to the item Reduction and a menu will appear.
Reduction can be changed from 0%, which corresponds to scanning at 300 dots per inch (DPI) to
75%, which corresponds to 75 DPI.

GrayLevel Left button on the number next to the item GrayLevel and a menu will appear
allowing you to choose from a selection of gray levels based on grain size and number of gray
levels within that grain size.

Contrast Left button on either the the left or right arrow to either decrease or increase the
contrast setting.

Brightness Left button on either the the left or right arrow to either decrease or increase the
brightness setting.

1

2

3

B 1 2 3 4 567 8

11I111'.

rv1icrotek Scanner Page Map

FIGURE 2 - MICROTEK SCANNER PAGEMAP WINDOW

BackGround Select either HALFTONE or LlNEART as the primary scanning mode for the image.
Line Art mode is for accurate capture of completely .black-and-white material, and Halftone mode
for faithful reproduction of material with varied shading.

Pagelength Move the cursor to the vertical ruler of the page map (figure 2). The cursor will
change to a right pointing triangle. Position this triangle and left-button to select the pagelength.
The page length will also show up in the configuration menu. The page length should be set so

147

en·vos MICROTEK

that it is longer than the actual page length of the document to be scanned. Otherwise you will
get a paper jam message at the completion of scanning. The minimum page length is 3 inches and
the maximum page length is 14 inches.

Frame The scanning frame is an area within the document that will be scanned. The maximum
scanning frame is 8.5" by 14". Left button on the item Frame and you will be prompted to sweep
out an area on the scanner page map to select the primary area to be scanned. The horizontal and
vertical rulers and the page map grid dots can be used as a guide in determining the dimensions of
the scanning frame. When the the scanning frame has been swept out, a box of the scanned area
will be drawn on the page map and the actual X and Y coordinates of the top lefthand corner and
lower righthand corner will appear next to corresponding items on the configuration menu (See
Figure 2).

Windows 1· 4 Windows are areas within the scanning frame that are scanned in a different mode
from the rest of the frame. If LlNEART mode is selected as the background, all material in any
windows you set will be scanned in Halftone mode, and vice versa.

The method used to set the windows is similar to that used to set the scanning frame except that
you first need to specify whether the window is to be selected or not. This is done by left
buttoning on the YES/NO indicator next to each window. A menu will pop-up and will allow you
select "yes" or "no". After making your selection, left buttoning on the appropriate Window #
will cause you to be prompted to sweep out an area within the scanning frame. Each selected
window will be displayed and have a unique shade to it (See Figure 2). The only restriction is that
the scanning mode must not change more than twice in one 8.5" horizontal scan line. Thus, if two
windows lie across the same scan line they must extend to the edges of the pag,e setting area.
(Note that material to the left and right of the frame is scanned but not transmitted to the 1108.)
You can select different windows for halftone vs lineart mode by switching between backgrounds.
The item above WINDOW1 indicates which window mode is selected. An illegal window setting
will result in an error message when you attempt to scan. Also note that the windows will be
displayed on the scanner pagemap only if there is a "yes" next to the window number.

SCANNING

After the Microtek scanning parameters have been initialized, the document to be scanned should
be placed in the scanner top-first with the image to be scanned facing away from the user.
Scanning is initiated by left-buttoning SCAN on the Microtek Command Menu. The software first
creates a scratch file in {CORE} for storage of the incoming data. It then sends the scanning
parameters to the scanner and if all are valid the scanning process starts as indicated by movement
of the rollers. You have up to 5 minutes to insert a document before the scanner automatically
stops. After scanning has been completed you will be notified in the status window that it is
saving the core file to the file specified in Output Filename. It takes approxiamtely 20 minutes to
scan an 8.5" x 11" document at 300 OPI.

You may stop the scanning at any time by selecting STOP. The document will be ejected and the
scanner reset. You can also explicitly reset the scanner by selecting RESET. This closes the scanner"
scratch file if it is open, sends a reset command to the scanner and then sends the attention
command. If everything is reset properly, you will get the message "MICROSCAN 300(A) V# is
ready" in the status window.

CREATING BITMAPS OF SCANNED IMAGES

The Microtek Display Menu is used to create bitmaps from a file that contains scanned data. Select
SOURCE FILENAME and enter the name of the file that contains the scanned data. Select BITMAP

148

en·vos MICROTEK

NAME and enter the name of a variable that you would like the bitmap bound to. Be sure to type
a carraige return to terminate the entry of each of these items. Left button on the number next to
SHRINKFACTOR and choose a factor by which you want the bitmap shrunk. The default value is 1.
Left button on the item next to ROTATION and choose how you want the scanned image to be
rotated. The default is "none." After these items have been set, you can then select CREATE
BITMAP to start the bitmap creation process. The status window will be updated as it proceeds to
create the bitmap and finally, you will be prompted to sweep out a scrollable window to display
the bitmap. NOTE: Depending on the size of the bitmap, rotation may take a "very" long time
and will look like your machine has frozen ... be patient, it will come back. If you desire to save the
bitmap(s) on a file you can do the following:

(SETQ filenameCOMS '«VARS bitmapnamel bitmapname2 etc)}}.
(MAKEFILE '{device}<dir~ctory>filename)

PRINTING BITMAPS OF SCANNED IMAGES TO A XEROX LASER PRINTER

If you have the package MICOTEKPRINT loaded you will have a MicrotekPrint Menu under your
display menu (See Figure 1). Select BITMAPNAME on the display menu and enter the name of the
bitmap that you would like to print. To select where on the page the bitmap is printed, left button
XPOS and YPOS and enter a number. For the 4045 laser printer the values of XPOS can be between
o - 2550 and YPOS, between 0 - 3300. 1" = 300 print units 0 4045 . For an 8044 Interpress laser
printer the values of XPOS can be between 0 - 21590 and YPOS, between 0 - 27940. 1" = 2540
Interpress units. The scale that an image is printed at is dependent upon its initial scanned
reduction/DPI. You can increase or decrease the scale at which the bitmap is printed by buttoning
on the number next to the item SCALE and selecting a scaling factor. On an 8044 Interpress printer
a scale of 8: 1 will magnify an image by 8 times on printing, 1: 1 will print at true size and 1:8
reduce the image by 8 times. Values in between are also available. On a 4045 laser printer only a
limited number of scale factor are availble and is dependent upon the original scan reduction as
shown in the table below.

REDUCTION {%} RESOLUTION ~DPQ SCALES ALLOWED

0 300 1:1,2:1,4:1

5 285 1:1,2:1,4:1

10 270 1:1,2:1,4:1

15 255 1:1,2:1,4:1

20 240 1:1,2:1,4:1

25 225 1:1,2:1,4:1

33 200 1:1,2:1,4:1

35 195 1:1,2:1,4:1

149

en·vos MICROTEK

REDUCTION (%) RESOLUTION (DPI) SCALES ALLOWED

40 180 2:1,1:1,1:2

45 165 2:1,1:1,1:2

50 150 2:1,1:1,1:2

55 135 2:1,1:1,1:2

60 120 2:1,1:1,1:2

67 100 1:1,1:2,1:4

70 90 1:1,1:2,1:4

75 75 1:1,1:2,1:4

Select PRINT to initiate the printing process. NOTE: The amount of reduction that you will be
able to do is dependent upon the number bits that were originally scanned in. If you make the
scale too small nothing will be printed out.

OTHER ITEMS AND GENERAL COMMENTS

On the Microtek Command Menu, left buttoning the item PAGEMAP will alternately open and
close the scanner pagemap window. Left buttoning on the item QUIT will close the input and
output streams to the scanner, shutdown the RS232C port and close the scanner pagemap and
control windows. The following icon will be displayed if you shrink the Microtek Scanner Cuntrol
window.

..·····071 II I L.

The Microtek Pagemap window will close when you shrink the Microtek Scanner Control window
and has to be expicitely opened when the Microtek Scanner Control window is expanded again.
This is done by buttoni~g on PAGEMAP in the Microtek Command Menu window.

Within Interlisp you normally cannot create bitmaps larger than approximately 2.1 million pixels (
about 1400 x 1400). The Microtek scanner software allows you to create bitmaps much larger than
this but at the cost of using a correspondingly large amount of virtual memory. If you are near
your maximum vmemsize, as determined by comparing (VMEMSIZE) to (VOLUMESIZE
'volumename) , there is a good chance you could crash your system if you create a very large
bitmap ... caveat emptor. In addition you will not be able to call the function EDITBM to edit
bitmaps larger than 2.1 million pixels

The reduction % used to scan the original image is stored on the property list of the atom that the
bitmap is bound to. It is saved as the property "Resolution" and is in %. This is used to determine
the appropriate values that will make an image 1: 1 when printed. If you attempt to print a bitmap
to an Interpress printer that was not created by use of the Microtek scanner software you will be
prompted to enter a scale explicitely. The following table indicates the 8044 laser printer scale
used for scanned images and can be used as a guide when attempting to print bitmaps not created
by the Microtek software.

150

en·vos

REDUCTION (%) RESOLUTION (OPI) SCALE

0 300 .240

5 285 .252

10 270 .266

15 255 .282

20 240 .300

25 225 .320

33 200 .360

35 195 .369

40 180 .400

45 165 .439

50 150 .480

55 135 .533

60 120 .600

67 100 .720

70 90 .800

75 75 .960

Further information about the Microtek scanner can be obtained from:

Microtek Lab Inc
16901 South Western Avenue
Gardena, California 90247
Tel: 213-321-2121,800-654-4160

151

MICROTEK

en·vos MONITOR

MONITOR

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu)

Uses: COURIERSERVE, BITMAPFNS

MONITOR is a remote screen monitor which shows a scaled down version of the entire remote
screen and a small section at full size which can be moved around.

The module contains the code for the client and the server and must be loaded on both. The
program supports multiple instances of the tool, even at different scale factors, and works correctly
between machines with different size displays.

The lower, full screen window is mouse sensitive. Pressing the left button in the window updates
the upper, closeup window to contain the portion of the remote screen indicated by the cursor.
Pressing the middle button in the full screen window causes the compressed image of the remote
screen in the lower window to be updated.

(MONITOR HOST{SCALEj) [Function]

Opens a remote screen monitor onto HOST, where HOST is any specification that COURIER.OPEN
accepts. SCALE is optional and determines the amount of compression of the remote screen
bitmap as well as the amount of area covered by the closeup.

The useful range of scale factors is from 2 to about 8; a scale factor of N will compress the remote
screen by lIN in width and height and the closeup will cover l/N2 of the area of the remote screen.

MONITOR.SCALE = 3 [Variable]

If not specified, the SCALE argument to MONITOR defaults to the value of MONITOR.SCALE.

KNOWN PROBLEMS

• The Courier program number that the MONITOR Courier program uses is unregistered.
• The monitor does not yet correct for VIDEOCOLOR (which affects both the client and
server).

152

en·V6S MONITOR

153

en·V6S NEATICONS

NEATICONS

By: Peter Schachte (quintuslpds@Sun.com)

INTRODUCTION

If you like to keep your icons neatly arranged on your screen, NEATICONS is for you. After this
package is loaded, whenever an icon is created by shrinking a window, that icon will be "neat."
But what is a neat icon? A neat icon is one that is lined up with with another icon or window, or
the edge of the screen. The easiest way to see this is to load the package, shrink a few windows
(creating a snapshot and shrinking it is easy), and move them around. When a neat icon is moved
near another icon or window or the edge of the screen, it is "grabbed" and moved neatly near it.

Neat icons line themselves up in a variety of ways. They will flush themselves with the edge of the
screen. They will move themselves a fixed number of pixels from the edge of another window. Or
they will align one of their edges with the corresponding edge of another window. When you
move a neat icon, it will try to find a "neat" position near where you placed it, and place the
window there instead. It may find a nearby position that is horizontally neat but not vertically, or
vice versa. In any case, it will move the window into the nearest neat position it can find, or leave it
where you put it if it can't find any nearby neat places.

EXAMPLES

Here are a few examples of how your icons will be arranged. A typical cluster of neat icons:

:~:!::!:!: ::::::!:::!:!::! !:!:!:!:!:::!:!:!:!: !:;! !:!:!: !:!:!:!:!:! :!:!:: :!:!:::::::! :::!:!:! :::!:::!:!:! :::!:::::::::::::!:!:::::!:::!:::::::!:!::::::::::::::::::
••• ' •••• , ••••••••••••••••••••••••••• ' •••••••••••••• ' ••••••• ' •• , •••••••••••••••• ' •• , ••••••• , ••• , ••••• ,., •••••• ' •••••• , ••••••••••••• ,1.1.1.' •• ,.,' •• , •••••• '

:::.:.:.:::.:.:.:.:::::.:.:.:.:::-:-:-:':.:::::::::.:.:::::::::::.:::::::::•.... , ' ,• '•...•.•. ' ' ... '.' :.:.:.,.:.:':.: !.:.:.: ... :.:.:.!.:., :.:-.' .. ,.,' .. : ', .. ' '[3] ... , , , , , , ... ,., .. ' ... ' .. , .. ' ... '.' ',.,. :::.: :.:.:.:.:.:.:.:.:.:.:.:.:.:.:':.:.:.:.:.:':':.:.:.:.:.:.:.:::.:.:.:.:::::.:.:.:.:::::.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:::.:.:.:
:::::~:::;:::::::::::::::::::::;:;:::::::::::::::::::::::::::::::::::::::.::::::: .:.:. """""-"---u ::::!:::::::::!:::!:::!:::::::::::::::!:::::::::
:.:.: :.:.:.:.:.:.:.:.:.:.:.:':.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.'.'.:.:.:.:.:.:.:.:.:.:.:.:.:. I I , [3] , , , ... , , .. , .. . :.:. ::.:.:.:.:::.:.:', , ... ' ,., ... ,:::' ~

:.:.: ~ :.:.:.:.:.:.:.:. ([S.: -
::::: --.....a ---u ::::::::::!::::: ... : -eel ::;: ~{.}.
::::: :.:.:.::::!:!:!: : <LI:S F' FI LE:3 >
l:l:~ '.:.:.:: UNNE.~ TEr···J : U::;:EFi>:t:.:t:~:t:

lll1l {OSK} •••) i II II II

:.::::!;~ (LlSPFILES> '(' .••.•.. · ~:~ I I
::::: '"r.:; I.iI ..
::::: f:c.l USER>
::::: f NEA TICONS.
~:~:~ 1EOl1 ; 2
:::::

NE.~ TEI"·J

...) ~

154

en·vos

Neat icons can align themselves with the side of a window:

14
1
8
6
2
4
5
9
5
2
o
1
12
6
4
5
7
5
3

18-Aug-8
1-Apr-8
1-Apr-8

26-Jul-8
26-Jul-8
29-Jan-S
6-Jan-S

16-0ec-S
16-0ec-8
5-Jun-8

30-0ec-8
3-Jan-S

19-Feb-S
2S-Sep-8
30-0ec-8
5-0ec-S

22-Mar-8
11-0ct-S

S-Oec-S

::::!:!::.::!:::!:::::!:::::::::::!:!::::::::: :.:':.:.:::.:.:.:.:.:':.:.:-:.:.:.:.:.:.:.:.:.
:: , , ', .. ' ' .. , .. ' ' .. , ' ' .:
:::-:::::-:.:::::.:::::::.:::::::::::::::::::: :.:::.:-:::::.:.:::.:-:.:::.:.:.:.:-:.:.:.:.: ',., , .. '.' , ' .. , , ,'.' ',' ... ' .. ,., ' ... :.:

.:.
I I
~

{DS~.}
<LlSPFILES>
USER>*,*;*

',' ',' ',' :.: .:.
::: ,', ,', ,', .:.
:':

~;;;;;;;;;:;;;;;~,:,
.,:::!!::::::::::::::::::::::!::::!:::::::::!:
::!:::::::::::::::!;:;!::::::::::::::::::::::: :.:':.:.:.:.:.:.:.:.:':.:.:.:.:.:.:.:.:.:.:.:.
::::::::::::::::::!::::::::::::::::::::::::::: .: ,.: .. ' , .. ' .. ,',.,
::::!:!:::::::::!:!.!:::!:!:::!:!:::!:::!::::: :.:.:.:.:.:.:.:.:.:::.:.:.:.:.:':.:.:.:.:.:.:.
:::::::!::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::.:.:.:::::-
::::::::::::::::::::::::::::::!:!:::::!:::!:::
::::::::::::::::!:!:!:::::::!:::::::::::::::::
:::::::::.:.::!::.!::::::::.::::::::::::::::::
:: ' , ',' .. , ' .. .

,-, n •• _ .. r. :: ... ' ,'.' ... ' :' ':., : ' , ,

But more typically, they will align themselves with the corner of a window:

--
4

15
7

25
43

-- --r' -
30-0ec-8
5-0ec-S

22-Mar-8
11-0ct-S

S-Oec-S

·.:::.:.:.:.:.:.:.:.:::::.:.~:.:.:.:.:I:.:.:.:
~~~~~:::: 

{DSK~ 
(LlSPFILES) 
USER>*,:+:;:+: 

.... :.:. .... . :.: .... 
',', .... .... .... .... .... 
',', 

A .-. n •• _.. .-. :::: .............. ,., ..... ,., .. '.'.' .. ,' ..... ', ........... ,' ........ ,' ..... ' ... '.' ............ ,., ..... . ............. ', .. ' ............. ' ... ' ....... ' ......... ' ....... ' ..... ' ..... ',', ..... , ................. . 

155 

NEATICONS 



en·vos 

And they occasionally align themselves near the corner where two windows overlap: 

DETAILS 

I \ ~1 \i'IlUSE. PROCESS~-~~8 WINDOW. KtUSE 

s overlap: 

•..•••......• ,.' .... !:!:::!:::::: 
I I ::::::::::::: :.:.:.:.:.:.: 

, :::::::!:::!: .... ,., ..... . 
~-o s Y~.1.. :::!::::::::: 

~'LI ::;:"P FI LE $ '.> .:.:.:.:.:.:. 
~ :.:.:.:.:.:.: 
IJ S E R >*. :+C;:ic :::!:::::!:!: .... , ....... . 

~;;;;;;;;;;;;;;;;;;~::::::.:::::: 
:'-':':':':':':':':':':-:':-:':':".:-:-:.:-:.:-::-.:.:. 
:::!:;:!:!:!:!:!:!:!:::!:::!:!:!::::::::::::!:!::!::!::: 
:!:!:.:::::::!:!:!:!:.:!:!:!:::::::::.:.:::.:.:.:::.:.:. 

NEATICONS 

You can just load this module and forget about it, and it will behave as advertised. It does have 
two user-settable parameters, and two user-callable functions, however. These are documented 
below. 

Please note that the NEATICONS module is contained entirely in the NEATICONS package. This 
package exports the following symbols. 

How near is near? 

NEATICONS:DEFAUlT-TOlERANCE [Variable] 

This global parameter determines how many pixels vertically and horizontally an icon will be 
moved in order to make it neat. This defaults to 100. 

Spacing between icons 

NEATICONS: DEFAU LT-SPACING [Variable] 

This global parameter determines how many pixels apart neat icons will be placed. The default is 
5. 

Making a window neat 

loading the NEATICONS module causes SHRINKW to be advised, so every time a window is shrunk, 
the icon is made neat. So icons created before you load N EATICONS wi II not be neat, but they can 
be made neat by expanding and then re-shrinking them. 

But suppose you want to make a regular window neat? 

(NEATICONS:NEATEN &OPTIONAl WINDOW) [Function] 

makes WINDOW neat. WINDOW defaults to (WHICHW), so you can point at a window with the 
mouse and type (NEATICONS:NEATEN). 

156 



en·vos 

Making a window sloppy 

(NEATICONS:UNNEATEN &OPTIONAL WINDOW) 

NEATICONS 

[Function] 

makes WINDOW no longer neat. It behaves just like a normal, sloppy, vanilla window. WINDOW 
defaults to (WHICHW). 

Other MOVEFNs 

The NEATICONS module uses each window's MOVEFN prop. If you wish to have another MOVEFN 
on a neat window, you can. If a window has MOVEFN when it is NEATICONS:NEATENed, it will be 
preserved. If you wish to add a MOVEFN to an existing neat window, you should put it on the 
window's 

N EATICONS: USERMOVEFN [Wi ndow Prop] 

prop. This prop should hold a list of functions. When a neat window is moved, first it finds the 
nearest neat place. Then the first function on the window's NEATICONS:USERMOVEFN prop is 
called with the neat position as argument. If this function returns IL:DON'T, the window won't be 
moved. If it returns NIL, the position argument it was passed is passed to the second function on 
the list. If it returns a position, this position is passed to the second function on the list. The result 
of each function on the list is treated similarly, until all the functions have been called. The latest 
position is used as the position to move the window to. 

157 



en·vos NOTEPAD 

NOTEPAD 

By: D. Austin Henderson, Jr. (AHenderson.pa@Xerox) 

Compiled for Medley by Larry Masinter (Masinter.PA@Xerox.COM) 

Auxiliary file: NOTEPAD-CORESTYlES 

NOTEPAD is a module for creating NOTEPAD windows - windows in which one can do artwork at 
the bitmap level. The ideas in this module come pretty directly from other people's work, both 
inside and outside Xerox, including Markup, Draw and Smalltalk. Notepad as it stands is the 
product of about a man-week of work, using standard Interlisp-D as released and the EDITBITMAP 
module of bitmap manipulation functions. It provides a nearly unusable interface to some 
distinctly interesting functionality. Comments and suggestions are welcomed. 

NOTEPAD (BITMAP COlORFlG) 

Creates a NOTEPAD window. If BITMAP is NIL, then you are prompted for region for the window. 
Otherwise, a region is defined from the size of BITMAP, and you are prompted to move it to a 
desired position. If COLORFLG is non-NIL, the NOTEPAD window will be used only for control (for 
menu's, etc.), and all the painting will take place on the color screen. 

There are two menus: one in the title of the window, and one in the window proper. Both are 
invoked by buttoning with either left or middle buttons. 

Title menu 

This menu gives access to commands for manipulating the window as a whole: 

New Notepad 

Copy Notepad 

Save as a bitmap. 

Window menu 

This menu has two columns of commands: those in the left column of the menu are for 
painting/erasing material into/from the bitmap (if this menu is invoked with the left button, 
painting is implied; if with the middle button, erasing); those in the right column of the menu are 
for changing the style in which the operations work. 

Pai nti ng/Erasi ng 

You can paint/erase using trajectories, or using (or editing) single objects. The commands in the left 
column of the menu are divided into two sets which reflect rthis division. 

158 



en·vos NOTEPAD 

Trajectories 

Sketch: follows the mouse to define a trajectory of points at which to sketch. 

Line: prompts for endpoints (fix and rubberband) and uses the points on the line as a trajectory. 

Circle: prompts for center and a point on the circumference, and uses the points on the line as a 
trajectory. 

Ellipse: prompts for center, end of semi-major axis and end of semi-minor axis, and uses the points 
on the line as a trajectory. 

Open curve: prompts for first point and one or more subsequent points. You indicate that you are 
finished by depressing the left shift key on the last point defining the curve. A smooth curve is 
fitted through these points and used as a trajectory. 

Closed curve: Like open curve, except that the fitted curve is closed, starting at the last point given, 
and proceeding to the first and then subsequent points. 

Objects/editing 

Text: prompts for text, and permits positioning it with the mouse. 

Area of the screen: Prompts for a (rectangular) region of the screen and places permits placing 
them where you want in the window. 

Shade rectangle: prompts for a region, and paints/erases it with the current shade (a shade of black 
does complete paint and erase). 

f.ill: Prompts for a region within which to fill, and a point within the area to be filled; fills the area 
(not necessarily a rectangle, but defined by being closed rectilinearly) with the current shade. 

Edit area: prompts for a region of the window and invokes the (Trillium) bitmap editor (standard 
Interlisp-D bitmap editor is the "hand-edit" choice on the submenu; others allow reflecting, 
rotati;'g, shifting, inverting, putting on borders, etc.) on it. If the bitmap resulting from the edit is 
the same size as the original, it replaces the original region; if not, you are promtped for a place to 
put it. 

Style 

Notepad operations (see above) are carried out in a style. The style at any given moment is given by 
a collection of characteristics. The current style can be saved (use the command SAVE.STYLE) under 
a name and restored (RESTORE.STYLE). Styles may be deleted (DELETE.STYLE) from the collection 
of saved styles. The style collection is currently part of notepad. Consequently, moving styles 
between loadups is not directly supported. (It is always possibole to save it on a separate file. The 
styles are stored as the value of NOTEPAD.STYLES. It includes bitmaps, and msut therefore be 
added as an UGLYVARS.) 

The characteristics in the style are: 

Brush: A bitmap which is either painted or erased at each point on or resulting from (see 
symmetry) a trajectory (see the operations paint, line, circle, ellipse). DEFINE. BRUSH prompts for a 
region which will then become the brush. EDIT.BRUSH permits editing of the brush bitmap (using 
the same editor as the operation EDIT.AREA - see above). BRUSH = COOKIE.CUT.WITH.MASK also 
defines a brush (see mask, below). 

159 



en·vos NOTEPAD 

Use mask: An indication of whether of not to use the masking function (see mask, below) before 
painting/erasing. USE.MASK toggles this setting. 

Mask: A bitmap which is used to clear out an area before the brush is used. The mask is erased if 
the brush is painting, and visa-versa. DEFINE.MASK prompts for a region which will then become 
the mask. EDIT.MASK permits editing of the mask bitmap (using the same editor as the operation 
EDIT.AREA - see above). MASK = OUTLlNE.OF.BRUSH defines the mask to be the same size as the 
brush, with a pattern (of black) which is the filled-in outline of the brush. 
BRUSH = COOKIE.CUT.WITH.MASK allows you to move the mask over a section of the window and 
define the brush as the points so covered. 

Use grid: An indication of whether of not to use the gridding function (see grid, below) while 
painting/erasing. USE.GRID toggles this setting. 

Grid: An origin and the point (1, 1) of a grid to be used to "attract" the points used in following a 
trajectory. DEFINE.GRID prompts for the origin and (1, 1) point of the grid. 

Use symmetry: An indication of what sort of symmetry function to use while painting/erasing. 
USE.SYMMETRY permits setting it as you choose. The choices are none, left/right, up/down, 4-fold 
(both left/right and up/down) and 8-fold (4-fold plus reflecting about the 45-degree diagonals). 
The brush/mask used when painting/erasing symmetrically can themselves be either identical to 
the brush/mask in use or symmetrically reflected. USE.SYMMETRIC.BRUSH/MASK toggles this 
setting. 

Point of symmetry: The point with respect to which the symmetry functions are defined. 
POINT.OF.SYMMETRY prompts for this point. 

Text font: The font in which text is printed. DEFINE. FONT permits choosing one of the fonts already 
loaded or OTHER (in which case you can type in the font description (family size face)}. 

Shade: The shade used for the rectangle and fill operations. EDIT.SHADE permits you to edit the 
shade (using the standard Interlisp-D shade editor). 

160 



en·vas NSCOPYFILE 

NSCOPYFILE 

By: Bill van Melle (vanMelle@Xerox.com) 

The module NSCOPYFILE modifies COPYFILE so that if both the source and destination files are on 
NS file servers, the copying is done by an NSFiling-specific copy routine. This routine copies all 
attributes of the source, including non-standard ones, such as those used by Viewpoint. Thus, you 
can safely copy Viewpoint files from inside Lisp without losing information. In addition, if the copy 
is from an NS file server to itself, the copy is performed by the server itself, which is considerably 
faster than shipping the file over the Ethernet. 

In addition, you can also copy entire directories, by specifying directory names as the source and 
destination, e.g., 

(COPYFILE "{FS:}<Carstairs)Lisp)" "{FS:}<Calvin)Lisp)Current)") 

The destination directory must not already exist, since this operation creates an entirely new 
directory, whose contents are a copy of all the source directory's offspring, to all levels. If the 
destination directory happens to exist but has no children, it is considered vestigial and is quietly 
deleted first (Lisp usually suppresses such directories when performing a directory enumeration). 

You can also use RENAMEFILE in the same manner to either rename a directory, or to move an 
entire directory and its descendents to a new node in the file server's hierarchy, or to a new server 
altogether. You must, of course, have access rights to delete the source directory and all its 
children, and the destination must be on an NS file server. 

A word about protection: when a file is copied or moved, the new file is given "defaulted" access 
rights, i.e., its protection is set as specified by its new parent (sub)directory, just as if you had 
created the file afresh by any other means. Thus, if the original file happened to have its own 
explicit protection, that protection is ignored. When copying or moving an entire directory, only 
the top-level directory receives default protection, so if any individual descendent file had 
non-default protection, that protection is copied verbatim. This can lead to confusion-you may 
want to use the NSPROTECTION module to change the new directory's descendents to default 
protection. See the documentation of NSPROTECTION for more discussion about protection issues. 
Note that if a file/directory is renamed within the same parent directory, .the operation is 
considered merely "changing the name", and its protection is left unchanged. 

Note: If you are using the FILEWATCH module, be aware that files being copied between NS 
servers do not appear (because the files are not opened by the normal Lisp file system). 

161 



en·vos NSDISPLA YSIZES 

NSDISPLA YSIZES 

By: Bill van Melle (vanMelle.pa@Xerox.com) 

The NS font families all have screen fonts that display at approximately their nominal point size. 
This means that there is a closer congruence between their appearance on the display and on 
hardcopy than there is for, say, the Press fonts. Unfortunately, this means that the NS display fonts 
are "too small"-a size that is quite readable on hardcopy can be uncomfortably small on the 
display. The module NSDISPLA YSIZES attempts to ameliorate this problem by fooling FONTCREATE 
into using bigger fonts for display without changing anyone's belief in the nominal size of the 
font. 

Loading NSDISPLAYSIZES.LCOM modifies FONTCREATE's font file lookup procedure so that a 
request for NS display font of size n actually reads the font file for size n + 2. For example, 
(FONTCREATE 'MODERN 10) will actually read the display font file belonging to Modern 12, but 
FONTCREATE wi" still believe the resulting font is Modern 10. Font sizes greater than 12 are not 
affected, on the grounds that those fonts are already big enough to read, and not all fonts are 
available in size n + 2 for large n; hence, for example, Classic 12 and Classic 14 will end up using the 
same actual font for display. Also, since Terminal 14 does not yet (as of this printing) exist, 
Terminal 12 remains Terminal 12. 

A font is considered an NS font if its name is a member of the list NSFONTFAMILlES, whose initial 
value is (CLASSIC MODERN TERMINAL OPTIMA TITAN). 

Loading the module clears the internal font cache of all NS display fonts, so that subsequent calls to 
FONTCREATE will not erroneously return a font cached earlier under the default lookup 
procedure. Of course, if someone has already set some font variable to (FONTCREATE 'MODERN 
10), that font descriptor will not be affected. 

Note that this module has no effect on hardcopy-a font is always printed at the size you named it. 
And you can still use TEdit's Hardcopy display mode to see how a piece of text will be formatted on 
the printer. 

If the VIRTUALKEYBOARDS module is present, then loading NSDISPLA YSIZES automatically edits its 
keyboard specifications so that it continues to use Classic 12 in its keyboard displays. Without this 
fix, the keyboard display routines wi" try to create Classic 12, which NSDISPLA YSIZES coerces to 
Classic 14, and as a result the keyboards wi" be poorly displayed and lack many characters (since 
Classic 14 is not as complete as 12). If you load VIRTUALKEYBOARDS after NSDISPLA YSIZES, you 
should call (VKBD.FIX.FONT) yourself to make the change. 

Note that other modules can have similar problems if they have hardwired into them a specific size. 
of NS font as being appropriate for their display configuration. For such modules to operate 
correctly in the presence of NSDISPLA YSIZES, they might want to be aware of the function used to 
coerce sizes: 

(NSDISPLAYSIZE FAMILY SIZE FACE EXTENSION) [Function] 

Returns a font size that (FONTCREATE FA MIL Y SIZE FACE) will use instead of SIZE. EXTENSION 
must be a member of DISPLA YFONTEXTENSIONS in order that we know we are doing this for the 

162 



en·vos NSDISPLA YSIZES 

display. Follows the rules described above. For example, (NSDISPLAYSIZE 'MODERN 12 'MRR 
'DISPLAYFONT) returns 14. (NSDISPLAYSIZE 'GACHA 12 'MRR 'DISPLAYFONT )returns 
12. 

In the simplest case a module could just test for the existence of NSDISPLAYSIZE and choose one 
size or another. For example, 

(SETQ MYFONT (FONTCREATE 'MODERN (if (GETD 'NSDISPLAYSIZE) 

then 10 
else 12») 

163 



en-vas NSPROTECTION 

NSPROTECTION 

By: Bill van Melle (vanMelle@Xerox.com) 

INTRODUCTION 

The module NSPROTECTION provides a tool that enables you to easily change the protection of 
files and directories on Xerox NS file servers. 

To install the module, load the file NSPROTECTION.LCOM. Also, Your NS file server must be 
running Services release 10.0 or later. 

THE PROTECTION MECHANISM 

An NS File Server maintains a protection for each file and (sub)directory on the server. In most 
cases, the protection is not specified explicitly, but rather is inherited from a file's parent directory, 
making it easy to maintain co,:",sistent protection over an entire branch of the file system hierarchy. 

The protection is specified as a set of pairs <access rights, name>. The name can be the name of 
an individual user or a group. The name can also be a pattern of the restricted form 
*:domain:organization, *:*:organization, or *:*:*. The access rights granted to any particular 
user are the most general of those in the pairs that match the user's name (by exact match, pattern 
or membership). 

The following five kinds of access rights are independently specified (the term "file" here can also 
denote a directory in the places where that makes sense): 

Read The user may read the file's content and attributes. In the case of a directory, the 
user may enumerate files in it. 

Write The user may change the file's content and attributes, and may delete the file. In 
the case of a directory, the user may change the protection of any of the directory's 
immediate children. 

Add (Applies only to directories) The user may create files in the directory (i.e., add 
children). 

Delete (Applies only to directories) The user may delete files from the directory (i.e., 
remove children). 

Owner The user may change the file's access list. 

In the case of directories, it is also possible to independently specify the directory's own protection 
and the protection that its children inherit by default. In most cases, the latter simply defaults to . 
the former, and it is usually best to keep it that way for simplicity. However, there might 
conceivably be cases where, for example, you would want a user to be able to read the files in a 
directory, but not be able to enumerate it, or vice-versa. 

Note that there can be problems when giving a more lenient protection to a file or directory than 
to its parents, depending on what software is going to be used to gain access to the file. For 
example, if your default directory protection grants access only to you, and you want to allow a 

164 



en·vos NSPROTECTION 

user to read a particular file stored in your directory, then you can change the protection on just 
that file to allow Read access. However, the user will have to know the exact name of the file in 
order to read it, since she won't be able to enumerate the directory to search for the file. 
Specifying the exact file name works fine from Lisp, but other software that gets to a file by 
starting at the top and working its way down through the hierarchy would be unable to get to the 
file. 

USER INTERFACE 

To use the tool, select "NS Protection" from the background menu (if your menu has a "System" 
item, it's a subitem underneath it), or call the function (NSPROTECTION). You are prompted for a 
place to position the tool's window. Be sure to leave space below the window for the protection 
information that will follow. 

Show New Entry 

Type: Principal 
Host: 
DirlFile: 

Apply Set to Default 
Check: r-.Je··.·v f'oJames Clnly 

The tool window has four command buttons across the top, two switches labeled Type and Check, 
and two fill-in fields for the host and file name. Holding a mouse button down over any of these 
items for a couple of seconds will display a help message in the prompt window. 

To view or change the protection of a file or directory, first fill in the Host and Dir/File fields. You 
can edit these fields by clicking with the mouse anywhere inside the existing text (if any), or by 
clicking with the LEFT button on the boldface label. If you click with RIGHT on the label, then any 
existing text is first erased. Typing the Next or Return key moves to the next field. [See the 
FreeMenu documentation for more information about text editing.] 

You can either enter the host and directory separately, e.g., 

Host: Phylex 
Dir/File: Carstai rs > Lisp 

or enter a file name in the usual Lisp syntax in the Dir/File field, e.g., 

Host: 
Dir/File: {Phylex:}< Carstairs> Lisp> 

This latter form is intended to make it easy to copy-select the name of the directory or file from 
another source, such as a FileBrowser window; the host in the full name overrides any name in the 
Host line. 

To see the protection of a file or directory, click on the command Show. The protection is 
displayed as a series of editable one-line windows beneath the main window. In each line is a set 
of access rights and a Clearinghouse name or pattern to which those rights are granted; for 
example, 

165 



en·V6S NSPROTECTION 

Show New Entry Apply Set to Default 
Type: Principal Che(k: Nevv' Names Only 
Host: Phylex: R.esearch: A(~""lE 
DiriFile: < Carstairs ==- Lis p::-

The highlighted buttons indicate which of the five access rights (Read, Write, Add, Delete, Owner) 
are granted to the name on the right. If the displayed protection was inherited from its parent 
subdirectory, rather than having been explicitly set, this fact is noted in the prompt window. 

To change the protection of a file or directory, set up the protection entries as desired, then click 
on the command Apply. The usual procedure is to use the Show command to see the current 
protection, then edit one or more entries. Clicking on one of the first five buttons toggles it; 
clicking on All either sets all five (if All was previously unhighlighted) or clears all five. In addition, 
setting either Write or Add also sets Read, since they are of little use without read access (you can, 
however, clear Read if you really meant it). The name following to is edited in the same manner as 
the Host and Dir/File items above. As with most other places in the system, the name you type can 
omit the domain and organization, in which case the tool will fill in the local defaults; you can also 
use nicknames, which will be replaced by the Clearinghouse full names (assuming checking is on). 

To add an additional entry, click on the command New Entry. This adds a new line to the existing 
set of protection entries, which you can edit as appropriate. To remove a set of access rights 
completely for an existing name, either clear all five access buttons (most easily done by clicking 
once or twice on All), or clear the name from the to field (by clicking on it with the RIGHT mouse 
button). Any such cleared lines will be removed by the Apply command. 

You can also change the protection of a file back to "default" by clicking on the command Set to 
Default. Following this command, the protection of the specified file is inherited from its parent 
directory. This is usually the best way to "undo" a changed protection, because then any changes 
to the protection of its parent, or parent's parent, etc., will have the expected effect on all its 
children. 

For the Apply and Set to Default commands, you may also specify a group of files, rather than a 
single file, by giving a file pattern-a name with asterisks serving as wild cards to match zero or 
more characters. Any pattern acceptable to the File Browser can be used. The tool enumerates the 
specified set of files and applies the specified protection to each. The enumeration is made to all 
levels (infinite depth), so affects files both in the immediate directory and also in its subdirectories, 
and subdirectories of those, etc. The enumeration does not, however, include the top-level 
subdirectory itself; e.g., "<Carstairs>Lisp>*" matches all files (including subdirectories) 
anywhere in the directory <Carstairs> Lisp> , but does not include <Carstairs> Lisp> itself. 

Note that applying a protection to a directory is different from applying the same protection to the 
files in it, because of defaulting. If you apply a protection to <Carstairs>Lisp>*, it changes the 
protection of every file currently in the directory, but any new files added after the change still 
inherit the protection of the directory <Carstairs>Lisp>. On the other hand, applying a 
protection to the directory <Carstairs>Lisp> itself affects all current and future files in the 

166 



en·vos NSPROTECTION 

directory, except any files that already have an explicit protection currently set. To reduce 
confusion, it is thus preferable to apply protections to subdirectories, rather than individual files, if 
you want to control a whole group of files. If you have a subdirectory containing files of 
miscellaneous protection that you would like to make uniform, the best procedure is to set the 
desired protection on the subdirectory itself, and then use the Set to Default command with a 
pattern (e.g., <Carstairs>Lisp>*) to reset all the individual files to defaulted. 

The Apply command looks up in the Clearinghouse each of the names in the individual protection 
entries to make sure that they are valid, and replaces aliases (nicknames) with the canonical names. 
It then tells the file server to change the protection as indicated. The extent to which the Apply 
command checks names is controlled by the Check item in the second line of the tool window. It 
has four possible settings: 

New Names Only This is the default setting. The tool checks any names that you have 
entered or changed, but assumes that names returned by the Show 
command were correct. 

All Names The tool checks all names, regardless of source. You might want to do this 
to convert an existing protection entry into canonical form, or check that all 
the names are still valid. 

Never The tool never checks names; it assumes you meant exactly what you typed. 
You might want this setting, for example, if one of the names you are 
entering is registered only in a distant Clearinghouse not currently 
accessible. 

I really mean it Not only does the tool not check the names, it also doesn't balk if you tell it 
to take certain unlikely actions, such as changing a top-level directory to 
default protection, setting a completely null protection, or setting a 
protection in which nobody has Owner rights (which means the protection 
can only be changed by someone with Write access to the parent, if any). 
This setting is "one-shot"-it reverts to "New Names Only" after you issue 
the next command. 

The Type item in the second line of the tool window controls which of a directory's two protection 
attributes is displayed or set. The initial setting is "Principal" and is the one that should normally 
be used (it coincides with the Lisp file attribute PROTECTION, or "Access List" in NS Filing parlance). 
The other setting is "Children Only". When the protection type is set this way, the tool deals with 
the protection that is inherited by default by the directory's children, the attribute called "Default 
Access List" in NS Filing parlance. Ordinarily, this attribute is defaulted, in which case the 
directory's principal protection is also used as its children's default protection. Using the Apply 
command changes the Default Access List to the value you specify; using the Set to Default 
command changes it back to defaulted. The Show command displays the directory's Default 
Access List if it has one; otherwise, it displays the principal protection and notes this fact in the 
prompt window. 

The Type item is irrelevant for non-directory files (and, in fact, the tool sets it back to "Principal" if 
it has been changed). When the file is a pattern, the tool always sets the Principal protection; in 
the case of any subdirectories matching the pattern, it sets the Principal protection to that 
specified in the window and the Default Access List to "default". 

As an additional convenience feature, when you request to Show the "Principal" protection of a 
top-level directory, the tool also displays in the prompt window the directory's current page usage 

167 



en·vos NSPROTECTION 

and allocation. 

168 



en·vos PAGEHOLD 

PAGEHOLD 

By: Jon L White 
Currently maintained by: Bill van Melle (vanMelle.pa@Xerox.com) 

INTRODUCTION 

Loading PAGEHOLD.LCOM redefines the function PAGEFULLFN to alter the behavior that occurs 
when a tty window fills. Rather than inverting the window and waiting indefinitely for type-in, 
the PAGEHOLD module indicates the hold by an independent notification, and waits for only a 
specified interval before continuing. Thus, filling the window is no longer a cause for a program to 
hang indefinitely. 

The default behavior of the PAGEHOLD module is to raise a "button" at the corner of the tty 
window flashing a message, alternating between 

and 

indicating that output to the window is being held. While in this state, you can release the hold by 
any of the following means: 

Typing any character (of course, the window must own the tty process). This is the same as the old 
behavior; 

Depressing the CTRL key; 

Depressing and releasing either SHIFT key; 

Clicking with LEFT on the button that announces the hold (clicking instead with MIDDLE gets a 
menu of options); 

Waiting until the timeout has passed (initially, 20 seconds). 

When you depress one of the SHIFT keys, the button stops flashing. Output will continue to be 
held indefinitely as long as one of the SHIFT keys is depressed, even if the timeout passes. If while 
holding down SHIFT, you depress the CTRL key for a second or so, the button will start flashing 
again; you may now release CTRl and then SHIFT, and the hold will be maintained without your 
needing to hold down SHIFT. You can release the hold by any of the means listed above. 

If the CTRL key is down when a window fills, output is not held at all. Depressing the CTRl key 
immediately releases any hold in progress. 

The remainder of this document describes ways of tailoring the behavior further. 

169 



en·vos PAGEHOLD 

Controlling the timeout 

One of the primary motivations for the PAGEHOLD module is so that printout to a TTY window 
does not hang indefinitely when one "page" has filled up. The default release time is in the global 
variable PAGE. WAIT. SECONDS, which comes initialized to 20 seconds; a value of 0 causes 
immediate release (unless a SHIFT key is already depressed). If a window being held has a 
PAGE. WAIT. SECONDS property, then that value is used instead of the global default. 

However, if PAGE. WAIT. SECONDS is set to STOP, then the hold will not be released by any 
automatic timeout, nor will it be sensitive to the SHIFT or CTRL key actions This mode most closely 
approximates the current lisp design, except that a pop-up button signals the hold rather than a 
video inversion (mousing the button will, nevertheless, still effect a release). The message 

"Scrolling Stopped" 

appears in the button rather than one of the several" holding" messages. 

The Pop-up "Buttons" 

A secondary motivation for this facility is to have a pop-up "button" that interactively signals the 
user of a holding condition on a particular window without obscuring the window's contents, as 
video inversion does. In addition, the button permits the selective release of a particular window 
by mousing the button (note that holding down SHIFT, on the other hand, would affect all 
windows currently being held). There are three styles of buttons-WINKING, FLASHING, and 
NIL-and the selection is determined by the value of the global variable PAGE. WAIT. ACTIVITY, 
which comes initialized to WINKING. If a window has a PAGE. WAIT. ACT IVITY property, then 
that value is used instead of the global default, thus allowing different types of buttons on 
different wi ndows. 

A WINKING button is a fairly hefty pad-approximately 1/2" by 2 1/2"-which pops up just over the 
right side of the window's title bar; it will alternately print and clear two short holding messages: 
one in the upper half of the "button" and one in the lower half. A FLASHING button is about the 
same width, but half the height, and will alternately print the two holding messages. A NIL 
button merely shows the message "Release SHIFT for more". 

LEFT-mousing any button causes an immediate release of the hold; MIDDLE-mousing the button 
brings up a menu offering several options. One of these is "Release this hold!", same as using LEFT. 
Other menu options permit conversion of the hold to indefinite "hold" or to STOP mode; 
additionally, five options are offered for setting the window's specific PAGE. WAIT. SECONDS 
property. 

The WINKING button has a different pattern of activity when the hold is placed into indefinite hold 
mode, but the other button styles do not visibly distinguish this state. If there isn't room to place 
the button down over the right side of the title bar (because, for example, the window is too close 
to the screen top), then it will be placed over another corner of the window. 

Keyboard Input and Typeahead 

Consistent with Lisp's current action, there will be no holding on a window which is its process's 
TtyDisplayStream and for which there is typeahead in that process's TTY input buffer. This action 
can be overridden by setting PAGE. WAIT. IGNORETYPEAHEAD to a non-NIL value: typeahead 
does not inhibit the hold, character input does not release the hold, and no input is ever discarded 
(note that depressing the SHIFT andlor the CTRL keys does not generate character input). This 
feature is intended for those who dislike not knowing whether a keystroke will be consumed by 

170 



en·V6S PAGEHOLD 

the PAGEFULLFN-under the default behavior, if the TTY input buffer is empty, then the first 
character you type will either (a) release a hold already in progress and be discarded, or (b) prevent 
subsequent holds and be retained, all depending on when exactly you type the character. 

171 



en·vos PIECE-MENUS 

Piece-Menus 

By: D. Austin Henderson, Jr. (AHenderson.pa@Xerox.COM) 

INTRODUCTION 

This module provides two solutions to the problem of menus with too many items. Which is useful 
will depend on the 'inherent structure of the items. 1) CHUNK-MENUs: For use in which the items 
have the simple structure of one long list: Break the items up into chunks following the orderingof 
the items in the list, and then provide a menu which presents one of those pieces and a way of 
getting other menus containing the other pieces. 2) KEYWORD-MENUs: For use when it is possible 
to associate keywords with the items: Break the items up into the sets which share the same 
keyword, and then provide a menu which presents one of those chunks and a way of getting other 
menus with other keywords. As with standard Interlisp-D menus, these specialized menus are 
created by a "create" function (cf. (CREATE MENU», and are used with a single "invoke" function 
(cf. (MENU menu». The items and other information are as with standard menus, except that the 
other information is presented to the create function in the form of a Plist. 

CHUNK MENUS 

A Chunk Menu appears as a single menu, but is really a data structure encompassing a number of 
pieces, each represented by a menu, between which the operator can move to find the item 
desired. Each piece is in three parts: a set of "required items" which will appear in all chunks, a set 
of indicators for all the chunks, and the items in this piece. Each chunk has up t030 items in it (it 
can be varied using the CHUNK.COUNT property). If there are fewer than one chunk's worth of 
items, the CHU NK-MENU behaves just like a standard menu. 

(CHUNK.MENU.CREATE ITEMS PROPERTIES REQUIRED. ITEMS ) [Function] 

Creates and returns a Chunk Menu, a data structure of menus each containing some of the 
(presumably large number of) items.. All items are as with standard menus. The properties 
understood are: CHUNK.COUNT (see above), TITLE, CENTERFLG, MENUFONT, ITEMWIDTH, 
ITEMHEIGHT, MENUBORDERSIZE, and MENULA YOUTSIZE. The actual menus are created only 
when needed. 

(CHUNK.MENU.INVOKE CHUNK. MENU POSITION) [Function] 

Carries out the interaction with the user to select and item from a Chunk Menu. If POSITION is 
non-NIL, the menu will appear at that position, otherwise it will appear under the mouse. All 
interactions are as with the standard menus. Returns the value produced when a selection is made. 
Selecting outside any of the menus appearing in the interaction cancels the interaction and returns 
NIL. 

KEYWORD MENUS 

A keyword menu appears as a single menu, but is really a data structure encompassing number of 
menus which the operator can move between to find the item desired. Each piece is in two parts: 
the set of keywords for all the pieces, and the items in this piece (having this keyword). Each piece 
Is a Chunk Menu, so that if a particular keyword has many items, its piece is itself broken into 
pieces. The items in a keyword menu is computed from a list of objects, the things which 

172 



en·vos PIECE-MENUS 

presumably are being selected among. A function is provided for computing the keywords of each 
object, and another for computing an item from an object. 

(KEYWORD.MENU.CREATE OBJECTS KEYWORDFN PROPERTIES ITEMFN) [Function1 

Creates and returns a Keyword Menu, a data structure of pieces associated with the keywords of 
the OBJECTS as determined by KEYWORDFN. Each piece of the Keyword Menu is a Chunk Menu 
and contains the items for the objects with the associated keyword. The item is computed from the 
object by applying the ITEMFN to that object; ITEMFN should return an item appropriate for 
standard menus. The menus are determined by the values on the PList PROPERTIES. The properties 
understood are: CHUNK.COUNT (see Chunk Menus),TITLE, CENTERFLG, MENU FONT, ITEMWIDTH, 
ITEMHEIGHT, MENUBORDERSIZE, and MENULAYOUTSIZE. The actual menus are created only 
when needed. 

(KEYWORD.MENU.INVOKE KEYWORD. MENU POSITION) [Function1 

Carries out the interaction with the user to select and item from a Keyword Menu. If POSITION is 
non-NIL, the menu will appear at that position, otherwise it will appear under the mouse. All 
interactions are as with Chunk Menus, which is just that for standard menus for small numbers of 
items. Returns the value produced by the items when a selection is made. Selecting outside any of 
the menus appearing in the interaction cancels the interaction and returns NIL. 

173 



en·vas PLOT 

PLOT 

By: Jan Pedersen (pedersen.PA @ Xerox. com) 

Uses: TWODGRAPHICS and PLOTOBJECTS 

PLOT is a module designed to assist in the production of analytic graphics. PLOT provides automatic 
scaling, labeling, incremental modification, generalized selection, and a collection of standard 
graphics primitives which may be combined to produce interactive plots of great diversity. 

PLOT is to some degree object-oriented. The primitive components of a plot are plot objects (e.g. 
points, lines, etc.). A plot manager maintains a display list of plot objects which are individually 
responsible for displaying themselves, highlighting themselves, etc. The user constructs a plot 
incrementally, adding plot objects, while the plot manager handles details such as the appropriate 
scale for the plot. Each plot object is active, in the sense that it is selectable and may have a menu 
associated with it. In addition, the plot manager may be directed to modify the appearance of the 
entire plot through a command menu. 

The module is open, in the sense that most default behaviors may be overridden by the user, 
although it is hoped that the defaults will be sufficient for most applications. A functional 
interface is provided for programmatic access to all of PLOTts facilities. 

The plot manager is abstracted as a datatype of type PLOT, along with a collection of functions 
which operate on PLOT's. Functions are provided to create PLOT's, manipulate their display lists, 
and modify default menus. Plot objects are abstracted as instances of datatype PLOTOBJECT. A set 
of default plot objects are provided, along with a mechanism of defining new plot objects. 

Plots exist independently of their representation on the screen. Indeed, it is intended that plots 
may be displayed on ANY imagestream. However, the most common usage is to display a plot in a 
window, and a PLOT does have an associated WINDOW which may be opened, closed, etc. 

Plots may be hard copied, made into image objects, and dumped to file. 

The lispuser's module PLOTEXAMPLES contains a few examples of how PLOT may be used to create 
high level plotting facilities. 

BASIC OPERATION 

A plot is abstracted as an instance of datatype PLOT which includes a display list, a property list, 
and an associated window, among other things. PLOT's may be create via the function 
CREATEPLOT. 

(CREATEPLOT openflg region title border) [Function] 

Returns a PLOT. If openflg is T then the PLOT's associated window is opened with an empty plot. 
The other arguments are treated as in CREATEW. 

An empty plot is initialized to have a world coordinate system extending from 0.0 to 1.0 on either 
axis, with no labels or tic marks displayed. As objects are added to the plot, the world coordinate 
system is grown to accommodate the new objects. 

174 



en·vos PLOT 

A PLOT has an associated window, which is closed by default. The window is used as the primary 
display device and may be manipulated with the following functions. 

(OPENPLOTWINDOW plot) 

Opens the plot's associated window. 

Returns the associated window. 

(CLOSEPLOTWINDOW plot) 

Closes the plot's associated window. 

(REDRAWPLOTWINDOW plot) 

[Function] 

[Function] 

[Function] 

Redraws, by running down the current display list, the contents of the associated window. Opens 
the window if it is closed. 

(GETPLOTWINDOW plot) 

Returns the window associated with plot. 

(WHICHPLOT xy) 

[Function] 

[Function] 

Returns the PLOT associated with the window (or icon) at position (x . y), or at the current cursor 
position if x and yare defaulted. x may be a WINDOW, in which case the associated PLOT is 
returned. 

A plot object is abstracted as an instance of datatype PLOTOBJECT. A point plot object is an 
instance of PLOTOBJECT whose data component describes a point. That is, a point plot object is a 
subtype of PLOTOBJECT; all plot objects satisfy (type? PLOTOBJECT FOO), but only a point plot 
object satisfies in addition (PLOTOBJECTSUBTYPE? POINT FOO). A collect of standard plot objects 
has been implemented, including point, curve, polygon, line, and filled rectangle plot objects. The 
module is designed so that new objects may defined at any time, but that mechanism is described 
in a separate document. 

PLOTOBJECT's may be added to or deleted from a PLOT. The following functions provide an add 
facility for the standard objects. 

(PLOTPOINT plot position label symbol menu nodrawflg) [Function] 

Only the plot and position arguments are required. Position is a POSITION in world coordinates. 
Label is an expression which will be PRIN 1 'ed whenever a label is required (typically an atom or a 
string). Symbol is a BITMAP which will be plotted centered at position. The litatoms CROSS, CIRCLE, 
STAR are bound to convenient BITMAPS. Symbol defaults to STAR. Menu is either a MENU, a 
litatom, in which case a MENU of that name must be cached on plot (more about this later), or an 
item list which may be coerced into a MENU. 

If nodrawflg is non-NIL then a point object will be added to the display list of plot, but the 
associated window will not be updated. If Nodrawflg is NIL, and the plot's associated window is 
not open, it will be opened. 

Returns a POINT PLOTOBJECT. 

(PLOTPOINTS plot pOSitions labels symbol menu nodrawflg) [Function] 

As above except that positions is a list of POSITIONS and labels may also be a list. Reasonable things 
happen if positions and labels are of unequal length. 

175 



en·vos PLOT 

Returns a list of POINT PLOTOBJECT's. 

(PLOTCU RVE plot positions label style menu nodrawflg) [Function] 

The list of POSITION's defines a piecewise linear curve. Style may be an integer which specifies the 
line width (in pixels) or a list of (Iinewidth dashing color), any of which may be NIL; defaults to one. 
For convenience the atoms DOT, DASH and DOTDASH have been bound to a few dashing patterns. 

Returns a CURVE PLOTOBJECT. 

(PLOTPOL YGON plot positions label style menu nodrawflg) 

As in PLOTCURVE, although a polygon is a closed figure 

Returns a POLYGON PLOTOBJECT. 

(PLOTIEXT plot position text label font menu nodrawflg) 

Text should be a STRING to be printed at position. 

Returns a TEXT PLOTOBJECT. 

(PLOTFILLEDRECTANGLE plot left bottom width height label 

[Function] 

[Function] 

texture borderwidth menu nodrawflg) [Function] 

Texture must be TEXTURE. SHADEl, .... , SHADE8 are bound to some convenient textures. Defaults 
toSHADE3. 

Returns a FILLEDRECTANGLE PLOTOBJECT. 

The following two functions add analytic plot objects to the display list of a PLOT. Analytic objects 
differ from points, curves, etc. by having infinite extents; their appearance on a plot depends on 
the current world coordinate scale, but adding an analytic object to a plot wi" not effect the 
current scale. 

(PLOTLINE plot slope constant label style menu nodrawflg) [Function] 

Slope and constant define an analytic line, y = slope * x + constant. If slope is NIL, it is taken to be 
infinite; i.e. the line is vertical. 

Returns a LINE PLOTOBJECT. 

(PLOTGRAPH plot graphfn nsamples label style menu nodrawflg) [Function] 

Graphfn should be a function of one variable which defines a graph (or the graph of a function) to 
be drawn on plot. Nsamples is the number of equispaced points along the x-axis of plot at which 
graphfn is to be sampled when drawn; defaults to 100. 

Returns a GRAPH PLOTOBJECT. 

Complex objects may be built up from the preceding primitives by defining a compound plot . 
object, which is simply a collection of other plot objects, including other compound objects. 

(PLOTCOMPOUND plot component1 ... componentn typename label 
menu nodrawflg) [NoSpread Function] 

A compound plot object is specified by listing its components. In addition, a compound plot object 
may have its own menu and label. The typename field is supplied to allow different compound 

176 



en·vos PLOT 

objects to be differentiated. Drawing a compound object amounts to drawing its components 
recursively. In general, operations on compound objects are applied recursively. 

Components 1 through n are plot objects. Typename is required and serves to tag this compound 
object, and is accessable via the function COMPOUNDSUBTYPE. Label and menu are as in other plot 
objects. 

Returns a COMPOUND PLOTOBJECT. 

All plot objects may be created independently of the previous functions. This is useful if it is desired 
to create a plot object without entering it on a PLOT's display list. The following functions create 
and return the standard plot objects. 

(CREATEPOINT position label symbol menu) 

Returns a POINT PLOTOBJECT. 

(CREATECU RVE positions label style menu) 

Returns a CURVE PLOTOBJECT. 

(CREATEPOL YGON positions label style menu) 

Returns a POLYGON PLOTOBJECT. 

(CREATETEXT position text label font menu) 

Returns a TEXT PLOTOBJECT. 

(CREATEFILLEDRECTANGLE left bottom width height label texture style menu) 

Returns a FILLEDRECTANGLE PLOTOBJECT. 

(CREATELINE slope constant label style menu) 

Returns a LINE PLOTOBJECT. 

(CREATGRAPH graphfn nsamples label style menu) 

Returns a GRAPH PLOTOBJECT. 

(CREATECOMPOUND compoundtype components label menu) 

Components must be a list of PLOTOBJECT's. 

Returns a COMPOUND PLOTOBJECT. 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

Each PLOT has a display list which is nothing more than a list of plot objects. The display list may be 
manipulated directly via the following functions. 

(ADDPLOTOBJECT plotobject plot nodrawflg) [Function] 

Interns plotobject on the display list of plot, and updates the associated window. The update is 
suppressed if nodrawflg is non NIL. 

One might think of PLOTPOINT as being equivalent to: 

(ADDPLOTOBJECT (CREATEPOINT position .... ) plot nodrawflg) 

Interns plotobject on the display list of plot, and updates the associated window. The update is 
suppressed if nodrawflg is non NIL. 

177 



en-vas PLOT 

Returns plotobject. 

(DELETEPLOTOBJECT plotobject plot nodrawflg nosaveflg) [Function] 

Deletes plotobject from the display list of plot, and updates the associated window accordingly. 
The update is suppressed if nodrawflg is T. If nosaveflg is T, then the deleted objected will not be 
saved for possible later undeletion. 

Returns plotobject if it was deleted from the display list, else NIL. 

A PLOT has collection of properties, some of which are maintained by the plot manager, and others 
which rnay be used to cache arbitrary user data. All plot properties are accessed via the function 
PLOTPROP. 

(PLOTPROP plot prop newvalue) [NoSpread Function] 

If newvaJue is absent then the current value of prop is returned. If newvalue is suppl ied (even if it is 
NIL) then the value of prop is set and the old value returned. The distinguished prop's 
PLOTOBJECTS, PLOTSCALE, SELECTEDOBJECT, PLOTWINDOW, PLOTWIN DOWVI EWPORT, 
PLOTPROMPTWINDOW, and PLOTSAVELIST refer system maintained properties plot, and should be 
treated as read only. Compiles open in some cases. 

For example, The display list of plot may be accessed by the expression. 

(PLOTPROP plot 'PLOTOBJECTS) 

For convenience in manipulating the property list of a PLOT, the following functions are provided. 

(PLOTADDPROP plot prop itemtoadd firstflg) [Function] 

If the value of prop is a list then itemtoadd is added to the end of the list. If the value of prop is NIL, 
it is set to (LIST itemtoadd). Firstflg indicates that the new item is to be the first in the list rather 
than the last. Works only for user defined properties. 

Returns the new value. 

(PLOTDELPROP plot prop itemtodelete) [Function] 

If itemtodelete is a member (MEMB) of the prop value, it is deleted. Works only for user defined 
properties. 

Returns NIL if nothing was deleted, else the new value of prop. 

(PLOTREMPROP plot prop) [Function] 

Destructively removes prop from property list of plot. Works only for user defined properties. 

Each plot object also has a property list. As with PLOT's, some of the properties are maintained by 
the system, but the rest may be used to store arbitrary data objects. The property list of a plot 
object is accessed through the function PLOTOBJECTPROP. 

(PLOTOBJECTPROP object prop newvalue) [NoSpread Function] 

As in PLOTPROP. The distinguished props are OBJECTMENU, OBJECTLABEL, and OBJECTDATA. The 
property, OBJECTMENU, may be set as well as read; if the newvalue is a list of items, it will be 
coerced into a menu. 

178 



en-vas PLOT 

(PLOTOBJ ECT ADDPROP object prop itemtoadd firstflg) [Function] 

As in PLOTADDPROP. Firstflg indicates that the new item is to be the first in the list rather than the 
last. 

(PLOTOBJECTDELPROP object prop itemtodelete) 

As in PLOTDElPROP. 

DEFAULT MOUSE BUTTON ACTIONS 

[Function] 

The user may interact with a plot through its associated window. A plot provides two default 
menu's, the RIGHT menu, which pops up if the right mouse button is depressed within a plot's 
window, and typically contains items relevant to the plot as a whole, and the MIDDLE menu, which 
pops up if the middle mouse button is depressed, and typically contains items relevant to the 
currently selected plot object. The left mouse button is used exclusively for selection. The right 
menu may optionally be fixed to the right hand side of the plot window for easy reference. In 
summary: 

left Button 

While depressed will select the closest plot object. 

Middle Button 

Pops up a menu of default actions on the selected object 

Right Button 

Pops up a menu of default actions on the plot as a whole 

DEFAULT MIDDLE MENU ITEMS 

Label 

Label the selected object. Either a default location for the label is selected (for point plot objects), 
or the user is queried for a location. 

Unlabel 

If the object is label, remove the label. 

Relabel 

Change the object's label 

Delete 

Remove the object from the plot. May be undeleted later. 

DEFAULT RIGHT MENU ITEMS 

layout 

Create a SKETCH of the contents of the PLOT. Requires SKETCH and SKETCHSTREAM to be loaded. 

Redraw 

Redraw the plot 

179 



en·vos PLOT 

Rescale 

Compute a new scale for both the X and the Y axis based on the objects currently displayed. May 
also rescale the X or Y axis separately. 

Extend 

Extend the axes slightly on either side so plot objects occuring on the borders may become visible. 
May be applied separately to either axis. 

Labels 

Change the marginal labels. May either Choose a margin explicitly, or respond to query. 

Tics 

Enable or disable marginal tics. 

Undelete 

Restore the last plot object deleted. Subsidiary items allow selected objects to be restored. 

Deselect 

Deselects the current selected object. 

The default menus may be altered or superceded altogether. Each plot object may either use the 
default middle menu, another cached menu, or provide its own individual menu. 

Menus are described by item lists of the form (label function helpstring [(subitems .... )]). Function 
may be a litatom in which case the function is called with one argument, plot, for right menu 
items,or two arguments, plotobject and plot, for all other menus. If function is a list the CAR of the 
list is a APPLIED to (CONS PLOTOBJECT (CONS PLOT (CDR 1 is t) ) ), etc. 

The following functions facilitate modifying existing menus, and creating new menus. 

(PlOTMEN U plot menuname newmenu) [NoSpread Function) 

Plot and menuname are required. If newmenu is not present, then the current value of menu 
menuname is returned. Menuname may be RIGHT or MIDDLE, in which case the default menus are 
referred to, or any lITATOM, in which case the cached menu by that name is referred to. Menus 
other than RIGHT or MIDDLE will typically be specialized menus for particular plot objects. If 
present, newmenu must be a MENU. 

(PlOTMENUITEMS plot menuname menuitems) [NoSpread Function] 

Plot and menu name are required. If menuitems is not present, then the current item list for the 
MENU menuname is returned. If menuitems is present, then menu menuname is replaced with a 
new menu with items list menuitems. All the properties (if any) of the old menu are copied over. 
Menuname may be one of RIGHT or MIDDLE, in which case the operations refer to the default right 
or middle mouse button menus or any other lITATOM, in which case the operations refer to a 
menu cached on plot by that name. Menus other than RIGHT or MIDDLE will typically be 
specialized menus for particular plot objects. 

(PlOTADDMENUITEMS plot menuname itemstoadd) [Function] 

Itemstoadd must be a list of menu items. Adds each item in itemstoadd to the end of the item list 
for menu menuname and replaces menu menuname with a new MENU having the appropriate 
item list. 

180 



en·vos 

Returns the the new item list for menu name. 

(PLOTDELMENUITEM plot menuname itemstodelete) 

PLOT 

[Function] 

Itemstodelete must be a list of items. For each element of itemstodelete, if it is a LlTATOM, then 
deletes the item whose CAR is EQ to it. If it is a LlSTP, then deletes the item EQUAL to it. Replaces 
menu menuname with a new MENU having the appropriate item list. 

Returns NIL if no items were deleted, else the new item list. 

(PLOT.FIXRIGHTMENU plot fixedflg) [NoSpread Function] 

Fixedflg is optional. If not present that the current state of the right menu of plot is returned; T 
implies the right menu is fixed. If Fixedflg is supplied the right menu state is correspondingly 
changed. 

The middle button menu for a particular plot object is a property of that plot object, and may be 
accessed via the function PLOTOBJECTPROP. For example, the expression, 

(PLOTOBJECTPROP object 'OBJECTMENU) 

will return the current middle button menu for object. If the OBJECTMENU property is NIL, then 
the system default MIDDLE menu is used, if it is a LlTATOM, than a specialized cached menu by that 
name is used, finally, if it is a MENU, then that menu is used. 

Two default fonts are provided, a large font for labels and a small font for tic marks. Both may be 
reset and that aspect of a plot will change accordingly with the next redraw. 

LARGEPLOTFONT [Variable] 

Default value: (Gacha 12 BRR) 

SMALLPLOTFONT [Variable] 

Default value: (Gacha 8 MRR) 

Detailed Operation 

Most visible aspects of a PLOT may be changed programmatically. The following functions allow 
the user to specify labels, etc., as well as override the d~fault algorithms for drawing tics, etc. 

(PLOTLABEL plot margin newlabel nodrawflg) [NoSpread Function] 

Plot and position are required. Margin must be one of TOP, BOnOM, LEFT, OR RIGHT. If newlabel 
is absent, then the current margin label is returned (may be NIL). If newlabel is present then the 
mar~gin label is set to newlabel. The display is automatically updated unless nodrawflg is non NIL. 

(PLOTTICS plot margin newvalue nodrawflg) [NoSpread Function] 

Plot and margin are required. Margin must be one of TOP, BOTTOM, LEFT, OR RIGHT. If newvalue is 
absent, returns the tic status of that margin. NIL implies no tics or labels, T implies both. If 
newvalue is present, then sets margin's tic status. The display is automatically updated unless 
nodrawflg is non NIL. 

The appearance of the tic marks will also depend on the tic generation method employed. The 
default is simply to make down tics at "pretty" intervals from the max to the min of each axis in 
world coordinates. However, non-numeric tic marks, and other behaviors are user specifiable by 
the function PLOTTICMETHOD. 

181 



en·vos PLOT 

(PLOnICMETHOD plot margin newmethod nodrawflg) [NoSpread Function) 

Plot and margin are required. Margin must be one of TOP, BOnOM, LEFT, OR RIGHT.lf 
newmethod is absent, returns the current tic method for margin margin. Newmethod may be one 
of NIL, implying the default tic method, a I.ist of CONS pairs (value. label ), in which case label (if 
non-NIL) will be printed at value, or a list of numbers, which is equivalent to «value. value) ... ) or a 
function which will be called with args, margin plotscale plot, and should return a list as above. 
Plotscale is a datatype which descibes the current scale of the plot. 

(DEFAU L TTICMETHOD margin plotscale plot) [Function) 

The result depends on the ticinfo field of plotscale, which should be an instance of the PLOTSCALE 
datatype. The ticinfo field will be an instance of datatype TICINFO. If its ticinc field is a number (the 
usual case) then it returns a list of numbers, starting at ticmin and ending at ticmax in increments 
of ticinc, otherwise returns ticinc (should be a list). 

When a plot object is added to a plot, the scale of the plot is adjusted so that the object is visible. 
This is accomplished by comparing the extent (in world coordinates) of the object with the current 
scale of the plot. If the scale needs to be enlarged, a new interval is chosen for each axis which is 
guaranteed to include the object and also be some multiple of a "round" increment -- in other 
words, a pretty tic interval. The default behavior of this scaling algorithm may be altered in several 
ways. 

The pretty tic interval is determined by the TICFN for each axis. The default uses the function SCALE 
to find a suitable interval. This may be altered by supplying a TICFN other than the default. 

Given a pretty tic interval, the default is to simply use the end points of that interval as the 
endpoints of the scale for each axis. This may be altered by supplying a SCALEFN other than the 
default. 

In other words the actually displayed interval (for each axis) in world coordinates (what I will call 
the plot interval) is separated from the pretty tic interval (for each axis). The pretty tic interval is 
computed first, then the plot interval is computed in the presence of that information. This 
separation is useful if the user wishes to plot objects in a coordinate system different from the one 
used to display tic marks. 

The current state of each axis of a PLOT is cached in the plot property plotscale, whose value is an 
instance of datatype PLOTSCALE. A PLOTSCALE has three fields for each axis, one which contains 
an instance ofAXISINTERVAL, describing the actual plot interval for that axis, another which 
contains an instance of TICINFO, which describes the pretty tic interval for that axis, and a third 
which is a simply a place to cache a user supplied TICFN and SCALEFN. 

(PLOTTICFN plot axis ticfn nodrawflg) [NoSpread Function] 

Tidn is optional. If not present the current tidn for the indicated axis is returned. If supplied, the 
state of that axis is correspondingly updated. A tidn is called with args min, max, and plot and 
should return an instance of TICINFO. If the state of plot is changed, the appropriate axis is 
rescaled. A value of NIL implies the default tidn. 

(DEFAULTTICFN min max -- -- --) [Function] 

The default tidn for each axis. Uses the function SCALE to find a suitable pretty tic interval. 

182 



en-vas PLOT 

(PLOTSCALEFN plot axis scalefn nodrawflg) [NoSpread Function] 

Scalefn is optional. If not present the current scalefn for that axis of plot is returned. If supplied, 
the state of that axis is updated. A scalefn is called with four arguments, the min and max extent 
(in world coordinates) on that axis of the plotobjects currently displayed, the TICINFO for that axis, 
and the plot; the scalefn should return an AXISINTERVAL which will determine the scale for that 
axis of plot. A value of NIL implies the default scalefn. 

(DEFAULTSCALEFN min max ticinfo) [Function] 

The default scalefn for each axis. 

Returns an AXISINTERVAL with endpoints identical to the endpoints of ticinfo. 

(ADJUSTSCALE? extent plot) [Function] 

Determines whether extent will fit into the current viewing area of plot. If so, returns NIL. If not, 
returns T and updates the plotscale of plot. 

(EXTENTOFPLOT plot) [Function] 

Computes the current extent of plot by mapping EXTENTOBJECT down the display list. Returns an 
EXTENT. 

To be precise, the scaling algorithm operates as follows; a min and max extent of the data is 
computed (via EXTENTOFPLOT or entered manually in the case manual rescaling), then 
CHOOSETICS is called, which returns an instance of TICINFO. CHOOSETICS either uses a default 
TICFN, or one supplied by the user, The default TICFN, calls SCALE repeatedly to find an "optimal" 
tic interval in world coordinates. Once the TICINFO instance has been computed, CHOOSESCALE is 
called with the original min, max and the TICINFO, and returns an instance ofAXISINTERVAL, 
which will determine the actually displayed plot interval. Again, CHOOSESCALE either uses a 
default SCALEFN, or one supplied by the user. The default SCALEFN simply uses the end points of 
the passed in pretty tic interval as the end points of the AXISINTERVAL which it returns. Finally, the 
PLOT is redrawn with the new scale -- notice that the plot interval may either be larger or smaller 
than the pretty tic interval; the margin drawing routines are robust enough to deal with all cases. 

For example, suppose the world coordinates are in centigrade and it is desired to produce a pretty 
tic interval in units of Fahrenheit (this is an easy case since the transformation between scales is 
linear -- more about that later). The user would then supply a TICFN which would transform the 
incoming min and max to Fahrenheit, apply the default TICFN on the transformed min and max, 
obtain a TICINFO in Fahrenheit, transform the fields of that record back to Centigrade, and return 
that record. Note, it is always assumed that the fields of a returned TICINFO are in the units of the 
world coordinate system. The rest of the machinery would then go through as before. 

A tricker example is one in which it is desired to produce unequispaced tic marks. Suppose the data 
were plotted on a log scale (that is, log was applied BEFORE plotting the data}.The default 
algorithm would produce a pretty tic interval in the log scale. It might be desired instead to 
produce one pretty in the original scale. The user would then supply a TICFN which would 
exponentiate the incoming min and max, apply the default TICFN on the transformed min and 
max, obtain a TICINFO in the original scale, then return a TICINFO in the logscale. Note; since 
equispaced tic marks in the orginal scale are not equispaced in the log scale, the TICINC field of the 
returned TICINFO would be a list of the unequispaced tic marks values, rather than a number. 

The plot scale of each axis may be manipulated directly through the following functions. 

183 



en·vos PLOT 

(PLOTAXISI NTERVAL plot axis newinterval nodrawflg) [Function] 

Plot and axis are required. Axis must be one of X, or Y. If newinterval is NIL, returns the current 
AXISINTERVAL for that axis. If newinterval is non-NIL it must be an AXISINTERVAL. 

(PLOTTICINFO plot axis newticinfo nodrawflg) [Function] 

Plot and axis are required. Axis must be one of X, or Y. If newticinfo is NIL I returns the current 
TlCINFO for that axis. If newticinfo is non-NIL it must be a TICINFO. 

On occasion it is useful to clean out an existing plot instead of creating a new one. 

(PLOT. RESET plot xscale yscale flushmargins flushprops nodrawflg) [Function] 

Returns plot to a pristine state. If xscale and yscale are provided, the scale of the plot is set 
accordingly. 

Finer control over the behavior of plot objects is possible through the following functions. 

(TRANSLA TEPLOTOBJECT plotobject dx dy plot nodrawflg) [Function] 

Moves plotobject dx, dy in world coordinates and updates the associated window accordingly. The 
update is suppressed if nodrawflg is non NIL. 

(DRAWPLOTOBJECT plotobject plot) [Function] 

Draw plotobject in the window asssociated with plot. As with all the display functions, the window 
should be opened beforehand. DRAWOBJECT does NOT check that the window is open. 

APPL Yls the plotobject's DRAWFN. 

(ERASEPLOTOBJECT plotobject plot) [Function] 

APPl YIS the plotobject's ERASEFN 

(HIGHlIGHTPlOTOBJECT plotobject plot) 

Invoked when a plotobject is selected 

(lOWlIGHTPlOTOBJECT plotobject plot) 

Invoked when a plotobject is deselected 

(EXTENTOFPlOTOBJECT plotobject plot) 

Computes the extent of plotobject in world coordinates. 

Returns an EXTENT, which has fields MAXX, MINX, etc. 

(DIST ANCETOPlOTOBJ ECT plotobject streamposition plot) 

[Function] 

[Function] 

[Function] 

[Function] 

Returns the "distance" to plotobject from streamposition in stream coordinates. Value returned 
may be a FIXP or a FlOATP, but is always a distance in stream coordinates. 

(ClOSESTPlOTOBJECT plot streamposition) 

Returns the "closest" plotobject on plot's display list to streamposition. 

(DESElECTPLOTOBJECT plot) 

Deselects the current selected object of plot 

184 

(Function] 

[Function] 



en·vos PLOT 

Plot objects also have "afterfns". That is, functions which are optionally invoked after some 
standard operation. These are stored as plot object properties with distinguished names, and 
invoked with at least two args, the plotobject and the plot. 

WHENADDEDFN 

The WHENADDEDFN is called with three arguments, plotobject, plot, and nodrawflg 

WHENDELETEDFN 

[Property] 

[Property] 

The WHENDELETEDFN is called with four arguments, plotobject, plot, nodrawflg, and nosaveflg. 

WHENDRAWNFN [Property] 

The WHENDRAWNFN is called with three arguments, plotobject, viewport and plot. 

WHENERASEDFN 

WHENHIGHLIGHTEDFN 

WHENLOWLIGHTEDFN 

WHENTRANSLATEDFN 

[Property] 

[Property] 

[Property] 

[Property] 

A PLOT has two associated windows, the mainwindow in which the graphics, labels, tics, etc. are 
displayed and an attached promptwindow. The mainwindow is cached as plot property and may 
be accessed via the function PLOTPROP. A function is provided for easy access to the prompt 
window. 

(PLOTPROMPT text plot) [Function] 

Text is output in the one character high prompt window of plot. 

PLOT's may be drawn in ANY imagestream (but only interacted with in the PLOT's associated 
window). The following function is the fundamental draw primitive. 

(DRA'JVPLOT plot stream stream viewport stream region) [Function] 

Stream is any imagestream. Streamviewport is a viewport on that stream that defines the the world 
to stream transformation. Streamregion is a region in stream coordinates that will contain the 
entire image (for a window it will be the CLiPPINGREGION). Streamviewport is usually the result of 
ADJUSTVIEWPORT. 

For more information about viewport, consult the documentation for the TWODGRAPHICS 
module. 

(ADJUSTVIEWPORT viewport streamregion plot) [Function] 

Viewport is a VIEWPORT whose parentstream is the imagestream of interest. Streamregion is a 
region in stream coordinates that will contain the entire image. 

Adjusts the Streamsubregion and Worldregion of viewport to reflect the current scale and margin 
setti ng of pi ot. 

(MINSTREAMREGIONSIZE stream plot) [Function] 

Returns a CONS pair (minwidth . minheight) of the plot in stream coordinates. 

185 



en·vos PLOT 

A plot has" afterfns" for two major operations, opening and closing the plotwindow. These are 
stored as plot properties with distinguished names. The values of these properties may be a single 
function or a list of functions which are called in sequence with the plot as an argument. 

WHENOPENEDFN 

WHENClOSEDFN 

[Property] 

[Property] 

PLOT's may be copied, made into image objects, dumped onto files, sent in the mail, etc. 

(COPYPlOT plot) [Function] 

Returns a copy of plot. The user defined properties require special handling. If there exists a plot 
prop COPYFN, which may be function or list of functions, the function (or functions) will be 
invoked with the arguments newplot plot and propname for each user defined property on plot. If 
the function returns a non-Nil value, it will be used as the value of propname on newplot. In the 
case of a list of functions, the first non-Nil value (traveling from the head to the tail of the list of 
functions) will be used as the new prop value. Otherwise the prop will be HCOPYAll'ed. 

(COPYPlOTOBJ ECT plotobject plot) [Function] 

Returns a copy of plotobject. The protocol for copying objectprops is similar to plot props. The 
plotobject may have a COPYFN prop which may be a function or list of functions. The function (or 
functions) will be invoked with the arguments newplotobject plotobject plot propname. The first 
non-Nil value will be used as the prop value else the property will be HCOPYAll'ed. 

(PRINTPlOT plot stream) [Function] 

Writes out an HREADable symbolic representation of plot on stream. Again, user defined 
properties require special handling. If there exists a plot prop PUTFN, which may be function or list 
of functions, the function (or functions) will be invoked with the arguments plot propname and 
stream for each user defined property on plot. If the function returns a non-Nil value, it is assumed 
an HREADable representation of the prop value has been written out on stream. In the case of a list 
of functions, the functions will invoked one at time, starting from the head of the list, until a 
non-Nil result is obtained. If there is no PUTFN, or the function (or none of the functions) returns a 
non-Nil value, the prop is HPRINT'ed. 

Lists of the form «FUNCTION function) arg) are recognized by the inverse of PRINTPlOT, 
READPlOT, to imply that function should be called with plot and arg as arguments at HREAD time, 
and the value returned to be the prop value. 

(PRINTPLOTOBJECT plotobject plot stream) [Function] 

Writes out an HREADable symbolic representation of plotobject on stream. As in PRINTPlOT user 
defined object properties require special handling. The protocol is the same as in PRINTPLOT. 

The following data types have HPRINT macros and need no special handling: FONTDESCRIPTOR, 
MEN U, PLOT, and PLOTOBJ ECT. 

A file package command has been defined to simplyfy dumping PLOT's on files. 

(PLOTS. plots) [FilePkgCom] 

The syntax is identical to VARS. 

A plot image object is fully supported. 

186 



en·vos PLOT 

(CREATEPLOTIMAGEOBJ plot) [Function] 

Returns an image object which contains a copy of plot. These image objects can also be created by 
copy-selecting from a plot window into a host window (e.g. TEd it or Sketch) that supports image 
objects. Such a selection will ask whether the plot should be inserted as a bitmap or a plot, the 
latter case constructing a plot image object. Buttoning on the image object provides the option of 
reshaping the plot or creating a separate plot window in which the plot can be modified. Closing 
the plot window will ask whether the new plot should be reinserted in the host. 

187 



en·vos PLOTEXAMPLES 

PLOT EXAMPLES 

By: Jan Pedersen (Pedersen.PA @ Xerox. com) 

Uses: PLOT 

This module contains two examples of how PLOT might be used to produce high level plotting 
facilities. The first example is a histogram primitive, and the second is a scatterplotter. The code is 
commented, and exploits most of the facilities in PLOT. The scatterplot example is the simpler of 
the two, and is suggested as a starti ng poi nt. 

(SCA TPLOT Y x pointlabels ylabel xlabel title symbol) [Function] 

Generates of a scatterplot of y vs x which are numeric lists of equal length. If x in NIL, then y is 
plotted vs the integers from 1 to (LENGTH y). Pointlabels is a list of labels, one for each point 
plotted. Ylabel and xlabel are labels for the x and y axis respectively. Title is a title for the 
scatterplot. Symbol is the plotting symbol to use, must be a BITMAP; defaults to STAR. 

Returns a PLOT. 

(HISTPLOT batch label shade) [Function] 

Batch is a list of numbers, or a list of pairs (number. frequency) whose histogram will be displayed. 
Label is an optional label for those numbers. Shade is a shade to use to fill the bars of the 
histogram (defaults to SHADE3). The case of all entries in batch being integers is treated specially. 

Retu rns a PLOT. 

188 



en·vos PLOTOBJECTS 

PLOT OBJECTS 

By: Jan Pedersen (pedersen.PA @ Xerox. com) 

Uses: PLOT and TWODGRAPHICS 

Plot objects are the primitive quantities of the PLOT module. A plot object is abstracted as an 
instance of datatype PLOTOBJECT. A point plot object is an instance of PLOTOBJECT whose data 
component describes a point. That is, a point plot object is a subtype of PLOTOBJECT; all plot 
objects satisfy (type? PLOTOBJ ECT FOO,) but only a point plot object satisfies in addition 
(PLOTOBJECTSUBTYPE? POINT FOO). 

A PLOTOBJECT is both a datatype and a collection of functions that implements a set of generic 
operations on that plot object. A plot object must know how to draw itself, erase itself, highlight 
itself, etc. The PLOT module then deals only with generic operations, and allows the plot objects to 
implement them as is appropriate. 

PLOTOBJECT [Datatype] 

OBJECTFNS [Field] 

Must be an instance of PLOTFNS 

OBJECTSUBTYPE [Field] 

Describes the plot objects subtype 

OBJECTUSERDATA [Field] 

Space for a propery list 

OBJECTMENU [Field] 

The object's MENU 

OBJECTLABEL [Field] 

Something to print 

OBJECTDATA [Field] 

Space for a datatype that describes the subtype of this PLOTOBJECT 

The field OBJECTFNS must be an instance of PLOTFNS, essentially a vector of functions which 
implements the generic operations. 

PLOTFNS 

DRAWFN 

Implements the DRAWOBJECT generic operation 

ERASEFN 

etc. 

189 

[Datatype] 

[Field] 

[Field] 



en·vos 

HIGHLIGHTFN 

LOWLIGHTFN 

LABELFN 

MOVEFN 

EXTENTFN 

DISTANCEFN 

COPYFN 

PUTFN 

GETFN 

The generic operations are: 

(DRAWPLOTOBJ ECT object viewport plot) 

PLOTOBJ ECTS 

[Field] 

[Field] 

[Field] 

[Field] 

[Field] 

[Field] 

[Field] 

[Field] 

[Field] 

[Function] 

Draw the object within viewport. A VIEWPORT may be thought of as a sub imagestream. It will 
usually be associated with the plot's PLOTWINDOW, but might might also be associated with some 
other image stream. Typically this generic operation will make use of functions from 
TWODGRAPHICS and the position of the object in world coordinates. The plot is also passed as an 
argument, so that the draw operation may make use of information cached on the property list of 
plot. 

The only operation that is expected to draw on streams other than the PLOTWINDOW is 
drawobject, so the drawfn may have to behave differently depending on the imagestreamtype of 
the stream. All other generic operations are assumed to operate on the PLOTWINDOW. The idea 
here is that plot's may be drawn on any stream, but may be interacted with only through the 
PLOTWINDOW. It is also guaranteed that an object will be drawn before it is erased, highlighted, 
etc. 

(ERASEPLOTOBJECT object viewport plot) [Function] 

Erase the object from the viewport. The inverse of DRAWOBJECT. It is guaranteed that the 
vi ewport wi II be on the PLOTWI N DOW 

(HIGHLIGHTPLOTOBJECT object plot) 

Highlight the object. Used in selection. 

[Function] 

(LOWLIGHTPLOTOBJET object plot) [Function] 

The inverse of HIGHLIGHTOBJECT. With XOR drawing the HIGHLIGHTFN and the LOWLIGHTFN can 
often be the same. 

(MOVEPLOTOBJ ECT object dx dy plot) [Function] 

Destructively alter the object's OBJECTDATA, so that its position is moved dx, dy units (in world 
coordinates). 

(LABELPLOTOBJECT object plot) [Function] 

If it is desired to label the object, the LABELFN will be called. Often the function LABELGENERIC will 
do the trick. 

190 



en·vos PLOTOBJECTS 

(EXTENTOFPLOTOBJECT object plot) [Function] 

Should return an EXTENT, which expresses the range of the object in world coordinates. 

EXTENT 

MINX 

Minimun extent in the X (horizontal) direction 

MAXX 

Maximun extent in the X (horizontal) direction 

MINY 

Minimun extent in the Y (vertical) direction 

MAXY 

Maximun extent in the Y (vertical) direction 

All fields are type floating. 

(DISTANCETOPLOTOBJECT object streamposition plot) 

[Datatype] 

[Field] 

[Field] 

[Field] 

[Field] 

[Function] 

Should return a number (more efficient if it returns a SMALLP), which is some measure of the 
distance from the REPRESENTATION of the object to the POSITION streamposition. Note that 
distance is calculated in stream coordinates, NOT world coordinates. This is done for efficiency and 
logical consistency. Selection makes most sense as an activity in stream coordinates. 

A plot object will typically cache its stream coordinates when it is drawn. Although not strictly 
necessary (it is always possible to backsolve to stream coordinates from world coordinates), this 
improves efficiency many fold by avoiding generation of floating point boxes. 

The following functions are provided to allow the plot object to customize how it is copied, printed 
on file, etc. The generic defaults will usually be satisfactory. 

(COPYPLOTOBJECT object plot) [Function] 

Returns a copy of object. COPYOBJECT will create a new instance of PLOTOBJECT and copyover all 
the fields of object except for OBJECTDATA. The object's COPYFN is evoked with the agruments 
object and plot and is expected to return a new instance of OBJECTDATUM. The objects property 
list is handled as follows: If object has a prop COPYFN (which may be a function or list of functions), 
for each property it is called with the arguments newobject, oldobject, plot, propname. If the 
returned value is non-nil it is used as the value for that property on newobject; else the prop value 
is HCOPYALL'ed. If the value of COPYFN is a list of functions, they are invoked in order head to tail, 
and the first non-NIL value is used as the new value. 

(PRI NTPLOTOBJ ECT object plot stream) [Function] 

Writes out to stream an HREADable symbolic representation of object. As in COPYOBJECT, 
PRINTOBJECT takes care of all PLOTOBJECT fields except of OBJECTDATUM. The objects PUTFN will 
be invoked with the arguments object plot stream and is 'expected to write out a representation of 
OBJECTDATUM which is HREADable. This will usually be in prop list format. 

Again the prop list of object requires special handling. The special object prop PUTFN may be a 
function or list of functions. For each property it will be invoked with the arguments object plot 
propname and stream and if it returns a non-NIL value, it is assumed that property has been 

191 



en·vos PLOTOBJECTS 

written out in a HREADable format. Again, if the the PUTFN prop is a list of fns then if anyone of 
them returns non-NIL then the property is assumed written out. If there is no PUTFN then the 
property is (HPRINT prop stream NIL T) "ed. 

PUTFNS may put out special lists of the form «FUNCTION fnname) arg) in which case fnname will 
be invoked at HREAD time with args object plot propname arg and fnname will be expected to 
return the propvalue of propname. 

(READPLOTOBJECT stream) [Function] 

Reads in the product of PRINTOBJECT. Calls the objects GETFN to read in the OBJECTDATA field. 

An instance of PLOTFNS may be created by the function: 

(CREA TEPLOTFNS drawfn erasefn extentfn distancefn high/ightfn 
low/ightfn labelfn movefn copyfn putfn getfn borrowfrom) [Function] 

Returns an instance of PLOTFNS. Drawfn, erasefn, and extentfn are required. If a distancefn is 
supplied then so must be a highlightfn. Lowlightfn defaults to highlightfn, labelfn defaults to 
LABELGENERIC. The other arguments also default to some safe, if not too efficient genericfn. 

A primitive inheritance scheme is implemented via the optional argument borrowfrom. If supplied, 
borrowfrom must be an instance of PLOTFNS. Before creating the new instance of PLOTFNS, the 
NIL arguments passed are filled in from the fields of borrowfrom, with the following exception; 
lowlightfn is only inherited if highlightfn is also NIL. 

The OBJECTDATA field will typically be a datatype which holds the data characterizing the 
PLOTOBJECT. For example a point plot object wi" have an OBJECTDATA field whose value is an 
instance of the datatype POINTDATA (has fields position, symbol, etc). So, a point PLOTOBJECT is a 
specialization of PLOTOBJECT. The field OBJECTSUBTYPE is supplied to make the subtype explicit. 
The following macro is provided to facilitate testing for plot object subtypes. 

(PLOTOBJECTSUBTYPE? subtype plotobject) 

Essentially tests if (EQ subtype (fetch OBJECTSUBTYPE of plotobject» 

(PLOTOBJECTSUBTYPE plotobject) 

Returns the value of the OBJECTSUBTYPE field. 

PLOTOBJECTS may be created via the function: 

(CREATEPLOTOBJECT objectfns objectlabel objectmenu objectdata) 

Returns an instance of PLOTOBJECT. Coerces objectmenu into a MENU if it is an item list. 

The following subtypes of PLOTOBJECT are currently implemented. 

[Macro] 

[Function] 

[Function] 

pointPLOTOBJECT, curvePLOTOBJECT, polygonPLOTOBJECT, linePLOTOBJECT, 
graphPLOTOBJECT, texttPLOTOBJECT, fi"edrectanglePLOTOBJECT, compound PLOTOBJECT 

The functions CREATEPOINT, etc. return an instance of PLOTOBJECT, with the appropriate 
OBJECTFNS and OBJECTDATA. In order for this to work, some intializations must be done at load 
time. 

The function PLOT.SETUP performs the intializations at LOAD time. 

192 



en·vos 

(PLOT.SETUP opstable) 

Opstable must be a list of lists of the form: 

(subtypename1 (opname1 function1) (opname2 function2) ... . 

(subtypename2 (opname1 function1) (opname2 function2) ... . 

(subtypenamen (opname1 function1)(opname2 function2) .... 

Creates one instance of PLOTFNS for each sUbtypename. 

In summary, to add a new plot object you need to: 

PLOTOBJECTS 

[Function] 

• Determine the data required to describe the new subtype. This may involve declaring a new 
datatype. 

• Write functions similar to CREATEPOINT and PLOTPOINT for the new sUbtype. 

• Write (or borrow) the functions which implement the generic ops described above. 

• Invoke MAKEPLOTFNS to create an instance of PLOTFNS for the new plot object subtype, which 
all objects of that subtype will refer to. 

• If continued use of the new plot object is contemplated, PLOT.5ETUP should be evoked at load 
ti me to effect the proper initializations. 

Look at the code for existing plot objects for more detaiis. The point plot object is the simplest 
example. 

193 



en·vos 

PLOTOBJECTS1 

By: Tad Hogg (hogg.PA @ Xerox.com) 

Uses: PLOT and PLOTOBJECTS 

PLOTOBJECTS 1 defines additional plot objects for use with PLOT. 

NEW PLOTOBJECTS 

ERRORPOINT - a point with vertical and/or horizontal error bars. 

PLOTOBJECTS1 

SAMPLESET - a set of points drawn as line segments to a specified vertical or horizontal line. 

FUNCTIONS 

The following functions provide an add facility for the new objects. They are similar to the 
corresponding functions for the standard plot objects, e.g. PLOTPOINT, etc. The allowed forms of 
the arguments symbol, style, menu and nodrawflg are the same as for the standard functions. 

(PLOTERRORPOINT plot position-range label symbol style menu nodrawflg) [Function] 

Position-range is a list of the form (POSITION XRANGE YRANGE). POSITION is the position of the 
point in world coordinates. XRANGE and YRANGE control the length of the horizontal and vertical 
error bars respectively. If the range is NIL, no error bars are drawn. If it is a number, it is a distance 
(in world coords) for the error bar to extend on each side of the point. Finally, if it is a pair of 
numbers (NegDist . PosDist) it specifies the extent of the error bar in the negative and possitive 
directions, respectively. Symbol is used to plot the point. Symbol defaults to STAR. Style specifies 
the style to use for drawing the error bars. 

Returns an ERRORPOINT PLOTOBJECT. 

(PLOTERRORPOINTS plot position-ranges labels symbol style menu nodrawflg) [Function] 

As above except that position-ranges is a list of POSITION-RANGEs as described above and labels 
may also be a list. Reasonable things happen if positions and labels are of unequal length. 

Returns a list of ERRORPOINT PLOTOBJECT's. 

(PLOTSAMPLESET plot positions constant vertical? side label style menu nodrawflg) [Function] 

The list of POSITION's defines a number of sample points. Constant specifies the location of a 
vertical or horizontal line, depending on whether vertical? is non-NIL. Line segments are drawn 
from the sample points to this line. Side determines which points are actually included. If side is 
NIL, only those points whose coord is greater than constant will be drawn (i.e. points above or to 
the right of the line). If side is T, only those with coord less than constant will be drawn. Otherwise, 
all points will be included. Style specifies the style to use for drawing the line segments. 

Returns a SAMPLESET PLOTOBJECT. 

All plot objects may be created independently of the previous functions. This is useful if it is desired 
to create a plot object without entering it on a PLOT's display list. The following functions create 
and return the new plot objects. 

194 



en·vos 

(CREATEERRORPOINT position-range label symbol style menu) 

Returns an ERRORPOINT PLOTOBJECT. 

(CREATESAMPLESET positions constant vertical? side label style menu) 

Returns a SAMPLESET PLOTOBJECT. 

PLOTOBJECTS 1 

[Function] 

[Function] 

In addition there are a number of functions to aid in creating position-ranges used with the error 
point plot objects: 

(MAKE-POSITION-RANG E position xrange yrange) [Function] 

Returns a position-range suitable for use for specifying an error point. The arguments are as 
described above for PLOTERRORPOINT. 

(LOG-ERROR-RANGE position-range axis base) [Function] 

Returns a position-range corresponding to position-range converted to a log scale. base is the log 
base to use (defaults to 10) and axis specifies which axis to convert: :X or :Y for a specific axis, NIL 
for both. Note that the position, with its error bars must be positive in order to be converted to a 
log scale. 

(LOG-ERROR-RANGE-LiST position-ranges axis base) 

Converts a list of position-ranges to log scale. 

195 

[Function] 



en·vos POSTSCRIPT 

POSTSCRIPT 

By: Matt Heffron (BEC.HEFFRON@ECLA.USC.EDU) 

INTRODUCTION 

The PostScript package defines a set of imageops for printers which understand the PostScript 
page description language by Adobe. At Beckman we have successfully used TEdit, Sketch, 
LlSTFILES, and HARDCOPYW to an Apple LaserWriter and an AST TurboLaser PS. The PostScript 
imagestream driver installs itself when it is loaded. All symbols in the PostScript driver are located 
in the INTERLlSP: package. 

VARIABLES 

POSTSCRIPT.FONT.ALIST [lnitVariable] 

POSTSCRIPT.FONT.ALlST is an ALiST mapping Lisp font names into the root names of PostScript 
font files. It is also used for font family coercions. The default value should be acceptable for any 
of the fonts which are built into the Apple Laserwriter. 

POSTSCRIPTFONTDIRECTORIES [lnitVariable] 

POSTSCRIPTFONTDIRECTORIES is the list of directories where the PostScript .PSCFONT font files can 
be found. The default value is: ("{DSK}< LlSPFILES>FONTS>PSC>"). 

\POSTSCRIPT.SHORTEDGE.SHIFT [lnitVariable] 

\POSTSCRIPT.SHORTEDGE.SHIFT is the distance (in points) to shift the image perpendicular to the 
short edge of the paper. A positive value gives a shift upward in portrait mode, and to the right in 
landscape mode. The default value is: O. 

\POSTSCRI PT. LO NG E DG E. SH I FT [lnitVariable] 

\POSTSCRIPT.LONGEDGE.SHIFT is the corresponding variable for shifts perpendicular to the long 
edge of the paper. A positive value here gives a shift to the right in portrait mode and downward 
in landscape mode. The default value is: O. 

\POSTSCRI PT. SHO RTE DG E. PTS [lnitVariable] 

\POSTSCRIPT.SHORTEDGE.PTS indicates the printable region of the page (in points) along the short 
edge of the paper. It should be adjusted to allow for any shifts of the image (see above). The 
default value is: 576 (= 8 inches). 

\POSTSCRIPT. LONGEDGE.PTS [lnitVariable] 

\POSTSCRIPT.LONGEDGE.PTS indicates the printable region of the page (in points) along the long 
edge of the paper. It should be adjusted to allow for any shifts of the image (see above). The 
default value is: 786.24 (= 10.92 inches). 

HINT 

The AST TurboLaser PS has an imageable area on the page which is a 
different size than that of the Apple LaserWriter. The values of 

196 



en·vos POSTSCRIPT 

\POSTSCRIPT.SHORTEDGE.PTS and \POSTSCRIPT.LONGEDGE.PTS for the AST 
are 575.76 and 767.76, respectively. 

\POSTSCRIPT.MAX.WILD.FONTSIZE [lnitVariable] 

\POSTSCRIPT.MAX.WILD.FONTSIZE indicates the maximum point size that should be returned from 
FONTSAVAILABLE when the SIZE argument is wild (i.e. *). All integer pointsizes from 1 to 
\POSTSCRIPT.MAX.WILD.FONTSIZE will be indicated as available. The default value is: 72. 

POSTSCRIPT.PREFER.LANDSCAPE [lnitVariable] 

POSTSCRIPT.PREFER.LANDSCAPE indicates if the OPENIMAGESTREAM method should default the 
orientation of output files to LANDSCAPE. The default value is: NIL. 

POSTSCRIPT.TEXTFILE.LANDSCAPE [lnitVariable] 

POSTSCRIPT.TEXTFILE.LANDSCAPE indicates if the printing of TEXT files (e.g. LlSTFILES, ... ) should 
force the orientation of output files to LANDSCAPE. The default value is: NIL. 

POSTSCRIPT.BITMAP.SCALE [lnitVariable] 

POSTSCRIPT.BITMAP.sCALE specifies an independent scale factor for display of bitmap images (e.g. 
window hardcopies). Values less than 1 will reduce the image size. (I.e. a value of 0.5 will give a 
half size bitmap image.) The position of the scaled bitmap will still have the SAME lower-left 
corner (i.e. the scaled bitmap is not centered in the region of the full size bitmap image). The 
default value is: 1. 

HINT 

Setting POSTSCRIPT.BITMAP.SCALE to 0.96, instead of 1, will give cleaner 
BITMAP images on a 300 dpi printer. (This corrects for the 72 ppi 
imagestream vs. the 75 dpi printer, using 4x4 device dots per bitmap pixeL) 
Also, values of 0.24, 0.48 and 0.72, instead of 0.25, 0.5 and 0.75, will also 
give cleaner images for reduced size output. In general, use integer 
multiples of 0.24 for a 300 dpi printer. 

POSTSCRIPT.TEXTU RE.SCALE [lnitVariable] 

POSTSCRIPT.TEXTURE.SCALE specifies an independent scale for the display of bitmap textures. The 
value represents the number of device space units per texture unit (bitmap bit). The default value is 
4, which represents each bit of the texture as a 4x4 block, so that textures are approximately the 
same resolution as on the screen (for 300 dpi output devices, such as the Apple Laserwriter). 

The PostScript package extends the allowed representations of a texture, beyond 16-bit FIXP and 
16x16 bitmap, to ANY square bitmap. (If the bitmap is not square, its longer edge is truncated 
from the top or right to make it square.) Use this feature with caution, as large bitmap textures, or 
sizes other than multiples of 16 bits square, require large amounts of storage in the PostScript 
interpreter (in the printer controller), and can cause limitcheck errors when actually printing. 

Anywhere that a texture or color can be used on an imagestream or in the specification of a 
BRUSH, you can instead give a FLOATP between 0.0 and 1.0 (inclusive) to represent a PostScript 
halftone gray shade. (0.0 is black and 1.0 is white. Specifically, the value sets the brightness of the 
shade.) The value you specify will not be range checked, and will be passed directly through to the 
PostScript setgray operator. (E.g. you can pass 0.33 as the color to DRAWLINE to get a dark gray 
line with approximately 67% of the pixels in the line black.) 

POSTSCRIPT.IMAGESIZEFACTOR [lnitVariable] 

POSTSCRIPT.IMAGESIZEFACTOR specifies an independent factor to change the overall size of the 
printed image. This re-sizing affects the entire printed output (specifically, it superimposes its 
effects upon those of POSTSCRIPT.BITMAP.SCALE and POSTSCRIPT.TEXTURE.SCALE). Values 

197 



en·vos POSTSCRIPT 

greater than 1 enlarge the printed image, and values less than 1 reduce it. An invalid 
POSTSCRIPT.IMAGESIZEFACTOR (i.e. not a positive, non-zero number) will use a value of 1. The 
BITMAPSCALE function for the POSTSCRIPT printer type does NOT consider the 
POSTSCRIPT.IMAGESIZEFACTOR when determining the scale factor for a bitmap. 

MISCELLANEOUS 

The SCALE of a PostScript imagestream is 100. This is to allow enough resolution in the width 
information for fonts to enable TEd it to correctly fill and justify text. 

The first time any PostScript imagestream is created (even if only to hardcopy a bitmap or window) 
the DEFAUL TFONT is instantiated (unless a FONTS option was given to the OPENIMAGESTREAM, in 
which case the initial font for the imagestream will be set to that font, or to the CAR if a list). 

The PostScript imagestream method for FILLPOLYGON uses the global variable FILL.WRULE as the 
default value for the WINDINGNUMBER argument. (This is the same variable which is used by the 
DISPLAY imagestream method for FILLPOL YGON.) 

The PostScript imagestream method for OPENIMAGESTREAM (and, therefore, 
SEND.FILE.TO.PRINTER), supports an IMAGESIZEFACTOR option to change the size of the printed 
image. The IMAGESIZEFACTOR re-sizing is combined with the POSTSCRIPT.IMAGESIZEFACTOR to 
produce an overall re-sizing of the printed image. A HEADING option is also supported to give a 
running header on each page of output. The value of the HEADING option is printed at the top 
left of the page, followed by "Page" and the appropriate page number. They are printed in the 
DEFAULTFONT (unless a FONTS option was given to the OPENIMAGESTREAM, in which case it will 
be that font, or to the CAR if a list). 

The PostScript package is contained in the files: POSTSCRIPT.LCOM & PS-SEND.LCOM, with the 
source in the files: POSTSCRIPT & PS-SEND. The module PS-SEND.LCOM is required and will be 
loaded automatically when POSTSCRIPT.LCOM is loaded. It contains the function which is called by 
SEND.FILE.TO.PRINTER to actually transmit the file to the printer. It is, by its nature, quite site 
specific, so it is in a separate fHe to make modifying it for any site relatively simple. System record 
declarations required to compile POSTSCRIPT can be found in EXPORTS.ALL. 

I'm pretty sure that the output generated by the PostScript imageops fully conforms to the Adobe 
Systems Document Structuring Conventions, Version 2.0, January 31, 1987. 

Including Other PostScript Operations 

If you wish to insert your own specific PostScript operations into a PostScript imagestream, you can 
do so with the following functions: 

(POSTSCRIPT.OUTSTR STREAM STRING) [Function] 

POSTSCRIPT;OUTSTR outputs a string or value to the imagestream. STREAM must be an open 
PostScript imagestream. STRING is the value to output {STRINGP and LlTATOM are most efficient, 
but any value can be output (its PRIN 1 pname is used». 

(POSTSCRIPT.PUTCOMMAND STREAM STRING 1 ... STRINGn) [NoSpread Function] 

POSTSCRIPT.PUTCOMMAND is more general for sequences of commands and values. It calls 
POSTSCRIPT.OUTSTR repeatedly to output each of the STRING; arguments to STREAM. 

(\POSTSCRIPT.OUTCHARFN STREAM CHAR) [Function] 

\POSTSCRIPT.OUTCHARFN is used to output the characters forming the text of a PostScript string 
(e.g. the argumen~ to a show or charpath operator). STREAM is the open PostScript imagestream 
to output to, and CHAR is the CHARCODE of the character to output. The I (slash), ( and) 
(parenthesis) characters will be quoted with I, and characters with ASCII values less than 32 (space) 
or greater than 126 (tilde) will be output as Innn (in octal). \POSTSCRIPT.OUTCHARFN will output 

198 



en·vos POSTSCRIPT 

the ( character to open the string, if necessary. Use POSTSCRIPT.CLOSESTRING (below) to close the 
string. 

(POSTSCRIPT.CLOSESTRING STREAM) [Function] 

POSTSCRIPT.CLOSESTRING closes a PostScript string (e.g. the argument to a show or charpath 
operator). STREAM is the open PostScript imagestream. It is important to use 
POSTSCRIPT.CLOSESTRING to output the) character to close the string, because it also clears the 
stream state flag that indicates that a string is in progress (otherwise, the next 
POSTSCRIPT.PUTCOMMAND would output the commands to close the string and show it). 

Warning 

Do not attempt to create a PostScript font larger than about 600 points, as much of Interlisp's font 
information is stored in SMALLP integers, and too large a font would overflow the font's height, or 
the width for any of the wider characters. (I know that 600 points is a ridiculously large limit 
(about 8.3 inches), but I thought I'd better mention it, or someone might try it!) 

Changes from the lyric Release 

The Medley release of this PostScript imagestream driver changed the default value of 
POSTSCRIPT.TEXTFILE.LANDSCAPE from T to NIL. It also added the support for the HEADING 
option. 

Known Problems/limitations 

The output generated for a PostScript imagestream is rather brute force. It isn't particularly careful 
to generate the smallest output file for a given sequence of operations. Specifically, it often 
generates extra end-of-lines between PostScript operator sequences (this has no effect on the 
printed output, only on the file size). 

Using BITMAPs or Functions as BRUSH arguments to the curve drawing functions is not supported, 
nor is using a non-ROUND BRUSH with DRAWCIRCLE or DRAWELLIPSE. 

There is no support for NS character sets other than 0, and there is no translation of the character 
code values from NS encoding to PostScript encoding. 

There is no support for color. 

\POSTSCRIPT.OUTCHARFN is pretty wimpy in its handling of TAB characters. It just outputs 8 
SPACEs for the TAB. 

I haven't yet documented how to build the .PSCFONT files for any new fonts that become available, 
I'll do that eventually. 

199 



en·vos PS-SEND 

PS-SEND 

By: Matt Heffron (BEC.HEFFRON@ECLA.USC.EDU) 

Requires: POSTSCRIPT 

The module PS-SEND.lCOM is required by the PostScript ImageStream driver, and will be loaded 
automatically when POSTSCRIPT.LCOM is loaded. It contains the function (POSTSCRIPT.SEND) 
which is called by SEND.FILE.TO.PRINTER to actually transmit the file to the printer. It is, by its 
nature, quite site specific, so it is in a separate file to make modifying it for any site relatively 
simple. 

POSTSCRIPT.SEND can handle the simple cases of copying a file to a spool directory or directly to a 
specific device (using COPYBYTES). The information about how to send a file to a specific host is 
expected to be on the SPOOLDIRECTORY, SPOOLFILE, SPOOLOPTIONS, HOST.CONTROL.STRING and 
HOST.CONTROL.AFTER.STRING properties of the host name. It checks first for the SPOOLFILE 
property on the host name, which must be a full filename that can be opened (by OPENSTREAM). 
If there is no SPOOLFILE property, then it checks for a SPOOLDIRECTORY property, if there, it will 
be concatenated together with a generated filename (by (GENSYM USERNAME» and a ".PS" 
extension. If either the SPOOLFllE or SPOOLDIRECTORY properties exist, then an output stream 
will be opened onto the specified file. The value of the SPOOLOPTIONS property on the host name 
(if any) will be passed as the PARAMETERS argument to OPENSTREAM, and must be an 
appropriately formed list. (This is useful for cases where the specified destination is an 11 xx device, 
such as {TTY} or {RS232} where you must set additional attributes of the stream like baud rate, 
etc.) If there is no SPOOLFILE or SPOOLDIRECTORY properties, then nothing will be sent and a 
message will appear int the PROMPTWINDOW ("[Unable to send FILE to HOST.]"). 

After the output stream is opened, if there is a HOST.CONTROL.STRING property of the hostname, 
then that string will be printed (IL:PRIN1) to the output stream first, then the first line of the file 
being sent (for a file generated by the PostScript ImageStream driver, this is the" %! ... II line), then 
the value of the POSTSCRIPT.CONTROL.STRING from the PRINTOPTIONS argument to 
POSTSCRIPT.SEND, finally the rest of the input file. (The idea of the HOST.CONTROL.STRING is that 
it should be a string to control the printing host itself, or perhaps a routing device that is 
mid-stream between the 11 xx and the printer itself. For example, using a SPOOLFILE of 
"{TTY}FOO.PS" and having the PostScript printer shared by several additional computers (e.g. PC's) 
by use of a device like the Logical Connection from Fifth Generation Systems, it might be necessary 
to send a command to the logical Connection to specify to route the output from this input to the 
output which is the PostScript printer.) Likewise, if there is a HOST.CONTROL.AFTER.STRING 
property of the hostname, then that string will be printed to the output stream last, just before 
closing the stream. 

200 



en·vos PS-TTY 

PS-TTY 

By: Matt Heffron (BEC.HEFFRON@ECLA.USC.EDU) 

Requires: POSTSCRIPT, PS-SEND, DLTTY 

The module PS-TTY defines a printing host named PS-TTY which sends PostScript output to a 
printer over the {TTY} port of the 11xx. It also puts a function onto AROUNDEXITFNS which 
reinitializes the {TTY} after returning from LOGOUT. The BaudRate and other parameters of the 
{TTY} port are controlled by the following variables. 

VARIABLES 

PS-TTY-BAUD 

This is the BaudRate for the {TTY} port output stream. Defaults to: 4800. 

PS-TTY -DA T AB ITS 

This is the BitsPerSerialChar for the {TTY} port output stream. Defaults to: 8. 

PS-TTY -PARITY 

This is the Parity for the {TTY} port output stream. Defaults to: NONE. 

PS-TTY -STOPBITS 

This is the NoOfStopBits for the {TTY} port output stream. Defaults to: 1. 

PS-TTY -FLOWCONTROL 

This is the FlowControl for the {TTY} port output stream. Defaults to: XOnXOff. 

201 

[lnitVariable] 

[lnitVariable] 

[lnitVariable] 

[lnitVariable] 

[InitVariable] 



en·vos PREEMPTIVE 

PREEMPTIVE 

By: Larry Masinter (Masinter.pa@Xerox.com) 

This module turns on pre-emptive process scheduling. Using IL:\\PERIODIC.INTERRUPT, it forces a 
block in whatever process is running. 

(IL:PREEMPTIVE &OPTIONAL STATE) [Function] 

The function PREEMPTIVE turns preemptive process scheduling on and off. (lL:PREEMPTIVE ':ON) 
turns it on, (lL:PREEMPTIVE ':OFF) turns it off. (IL:PREEMPTIVE) with no argument returns the 
current state with no change. 

WARNING WARNING WARNING WARNING DANGER DANGER DANGER DANGER 

PREEMPTIVE is dangerous. Many places in the system do not have monitor locks and other 
mechanisms to prevent one process from overwriting the data of another in the face of preemptive 
interrupts. (Most do, of course.) 

I've run with preemptive scheduling turned on for weeks, and about once a day, my screen gets 
trashed, windows and menus overwritten, etc. This version of PREEMPTIVE is a little more 
conservative than previous versions, e.g., it checks to see if the system is running in the MENU code 
and doesn't do a process switch. However: 

USE AT YOUR OWN RISK. CAUTION CAUTION. 

NOTE: Using Spy turns preemptive scheduling OFF. 

202 



en·vos PRESSFROMNS 

PRESSFROMNS 

By: Tad Hogg (Hogg.pa@Xerox.com) 

INTRODUCTION 

This module is a patch to allow Press printers to print NS characters by translating them to 
appropriate Press fonts. Before loading this file, make sure there are no open press streams (i.e. no 
hardcopy in progress to a Press printer). 

CONTROLLING CHARACTER SET TRANSLATIONS 

The translations are controlled by a number of variables and functions described below. These 
variables can be modified to provide additional or different translations. 

Global character set translations 

NSTOASCIITRANSLA TIONS [Variable] 

an ASSOC list whose elements have the form (charset translationArrayName). This specifies which 
translation array is to be used when translating the specified character set. 

Example: ( (0 ASC I IF ROMOARRA Y) ( 38 ASC I I F ROM38ARRAY» specifies that 
ASCIIFROM38ARRAY is bound to the array to be used for translatingcharset 38. 

The translationArrayName is bound to an array whose index ranges from 0 to 255. Each element of 
the array specifies the translation to use for the corresponding charcode in this charset. 

Translations are of one of the following forms: 

1. NIL -- no translation specified which will use the font as is for charset 0 and otherwise print a 
black box to indicate the NS character could not be translated 

2. an integer in the range 0 to 255 which indicates that this value is to be used as the translated 
charcode, but that no font translation is required [This is mainly useful for converting NS to ASCII in 
charset 0.] 

3. a two element translation list of the form (fontFamily charcode) which indicates that this 
character should be translated to charcode in a font whose family is fontFamily. Note that 
charcode should be in the range 0 to 255. fontFamily can also be a font descriptor or a font 
specification list (e.g. (Gacha 10)) of a form acceptable to FONTCREATE. 

PRESSFONTFAM IllES [Variable] 

a list whose elements are of the form (FAMILY . speciaITranslations). The optional list 
specialTranslations specifies translations to use for Press fonts in charset O. Each element is 
(charcode translation) which specifies that translation is to be used for charcode in this family. 

Example: «GACHA (50 (HELVETICA 40» (51 (TIMESROMAN 45») (TIMESROMAN) 
(SYMBOL» 

203 



en·vos PRESSFROMNS 

Note: these translations are cached in the font descriptor when PRESS fonts are created so any 
changes to these variables will not change the translations in previously created fonts. 

Translations in individual fonts 

The following two functions provided detailed control over the translations used in individual 
fonts. 

(GETCHARPRESSTRANSLA TlON CHARCODE FONn 

returns the translation (a two element list) used for CHARCODE in FONT 

(PUTCHARPRESSTRANSLA TlON CHARCODE FONT NEWTRANSLA TlON) 

[Function] 

[Function] 

sets the translation to be used for CHARCODE in FONT. NEWTRANSLATION should be a translation 
in one of the forms described above. 

Additional functions 

(PRESS. NSARRA Y CHARSET FA MIL Y ASCIIARRA y) [Function] 

This function returns a suitable translation array built as the inverse of a translation array from 
Press to NS characters. Such arrays are used to print Press fonts on Interpress printers and are listed 
in the variable ASCIITONSTRANSLATIONS. CHARSET is the character set for which to create a 
translation. FAMILY is the press font family for which ASCIIARRA Y is the translation to NS 
characters. If ASCIIARRA Y is not specified, the function looks through all arrays included on 
ASCIITONSTRANSLATIONS to fill in the translation array.he following two functions provided 
detailed control over the translations used in individual fonts. 

CONTROLLING PRESS FONT COERCIONS 

There is also a mechanism for determining which press font is actually used for the translation. For 
example, an NS character in the Modern 8 font might translate to an ASCII character in Symbol 8. If 
this font does not exist on the printer, a (generally incorrect) font change will be done by the 
printer. The following procedure changes the actual font used, e.g. to Symbol 10 in this example. 

The coercion is controlled by a coercion list which is an alist indexed by device. The font coercion 
scans down the element on the list for the requested device (e.g. PRESS) looking for the first entry 
that matches the user request. If a match is found, then the entry tells how to construct an 
appropriate new name from the requested specification. Fields of the newname not specified in 
the entry are simply copied over. 

FONTCOERCIONS [Variable] 

This list allows the user to coerce fonts that he knows don't exist on the printer even tho the 
fonts-widths files doesn't indicate that (e.g. the desired size doesn't exist). FONTCOERCIONS is 
initialized simply to take all SYMBOL fonts of size less than 10 into 10, and size greater than 12 into 
12. 

M ISSI NG FONTCOERCIONS [Variable] 

If the initial coerced (or uncoerced) lookup fails, then MISSINGFONTCOERCIONS is used. This takes 
MODERN into HELVETICA etc--the standard press coercions. 

The procedure for determining whether a user request matches a coercion entry is 
straightforward. If the match-part of the coercion entry is an atomic family name, it matches if it is 
eq to the requested family. Otherwise, the match-part must be a list of family, size, face in 

204 



en·vos PRESSFROM NS 

standard fontname order. If a component is NIL or missing, then it is assumed to match. The only 
funniness is in size matching. The size component can be NIL (matches anything), a particular size 
(EQ matches), or a list of the form « n) or (> n) where n is a size number. The first matches any 
requested size less than n, and the second matches any requested size greater than n. 

FONTCOERCIONS for PRESS starts out as 

«SYMBOL « 10) ) (SYMBOL 10» (SYMBOL (> 12»(SYMBOL 12» 

MISSINGFONTCOERCIONS for PRESS starts out as 

«MODERN HELVETICA)(CLASSIC TIMESROMAN) etc.) 

205 



en·vos PRETTYFILEINDEX 

PRETTYFILEINDEX 

By: Bill van Melle (vanMelle.PA@Xerox.com) 

INTRODUCTION 

PRETTYFILEINDEX is a program for generating indexed listings for Lisp source files. 
PRETTYFILEINDEX operates by reading expressions from the file and reprettyprinting them to the 
output image stream, building up an index of the objects as it goes. The index is partitioned by 
type (e.g. FUNCTIONS, VARIABLES, MACROS, etc.); within each type, the objects are listed 
alphabetically by name along with the page number(s) on which their definitions appear in the 
listing. 

PRETTYFILEINDEX also modifies the Exec's and the FileBrowser's SEE command to prettyprint the 
file being viewed, if it is a Lisp source file. It also modifies the PF and PF* commands to prettyprint 
the requested function body. Together, these features mean you can use the NEW & FAST options 
to MAKEFILE to speed up file creation without sacrificing the ability to get pretty listings or see the 
files prettily inside Lisp. 

PRETTYFILEI~DEX performs some additional niceties in the listing: it prints bitmaps by "displaying" 
them, rather than dumping their bits; it translates underscore to left arrow (for the benefit of 
Interlisp listings); it prints quote and backquote in a font in which they are clearly distinguishable; 
and it suppresses some of the" noise" in source files, such as the filemap. 

The module also contains a function MULTIFILEINDEX that can be used to generate a merged index 
of items from a whole set of files being listed. 

PRETTYFILEINDEX subsumes, and is incompatible with, the modules SINGLEFILEINDEX and 
PP-CODE-FILE. You can, however, load PRETTYFILEINDEX on top of either one, and it will 
successfully wrest control of LlSTFILES from them. PRETTYFILEINDEX has several advantages over 
SINGLEFILEINDEX: the prettyprinter has fine control over positioning of the output stream, so 
things that are supposed to line up do, despite font changes and variable-width fonts; the entire 
page is used, rather than sacrificing the bottom quarter or so due to lack of control over page 
breaks; and the use of an image stream allows bitmaps to be rendered directly. 

USING PRETTYFILEINDEX 

For ordinary use, just load PRETTYFILEINDEX.LCOM. This redefines LlSTFILES1 so that calling 
LlSTFILES or using the File Browser's Hardcopy command invokes PRETTYFILEINDEX if the file is a 
Lisp source file. The listing is created by default in a single background process that handles all 
LlSTFILES requests. The file being indexed needn't be loaded, or even noticed (in the File Manager 
sense) as long as the file's commands don't require customized prettyprinting defined by the file 
itself. The index is printed at the end of the listing; you are expected to manually transpose the 
index to the front of the collection of paper that emerges from the printer. 

PRETTYFILEINDEX normally assumes that you are printing one-sided listings. However, if your 
global default is for two-sided (currently this means that EMPRESS#SIDES = 2) or you specified 
two-sided in the options you passed to LlSTFILES, it will prepare the output as if for two-sided 
listing. For example, from an Interlisp exec, 

206 



en·vos PRETTYFILEINDEX 

(LISTFILES (SERVER "Perfector:" %'SIDES 2) FOOBAR} 

causes the file FOOBAR to be listed two-sided on the print server Perfector: (the % is the Interlisp 
reader's escape character, needed to quote the special character #; in an XCL exec the escape 
character is \, and from other packages you also have to qualify the symbols LIST FILES, SE RVE R 
and 'SIDES with the package prefix I L:). 

For two-sided listings, the margins are symmetric, instead of being shifted a bit to the right, page 
numbers appear on the outside edge of the page, and a blank page is inserted at the end of the 
listing if necessary to ensure that the index starts on an odd page (and hence is transposable to the 
front). 

PRETTYFILEINDEX prettyprints the file's contents and prints indexed names using the package and 
read table specified in the file's reader environment, which appears at the beginning of the file. It 
assumes, as does most of the file manager, that the reader environment is sufficient to read any 
expression on the file. If you have violated this assumption, for example, by referring in the file to 
a symbol in another package that is defined on a file that is indirectly loaded by the file somewhere 
in its coms, you will probably need to LOADFROM the file before you can list it. 

INDEXING MULTIPLE FILES 

Ordinarily, you list files and get one index per file. If a module is made up of several files, you may 
want a master index of the whole set of files, so that you don't have to remember which file 
contains a function, macro, etc. that you are looking up. This job is handled by MULTIFILEINDEX: 

(MULTIFILEINDEX files printoptions) [Function] 

This function lists each of the files in the list files using PRETTYFILEINDEX and then 
produces a master index by merging all the individual indices. The master index is 
appended to the output of the last file listed. The argument files can be a list of file names 
and/or file patterns, such as "{FS:}<Carstairs>RED*", or a single such pattern. In the 
pattern, unless explicitly specified, the extension defaults to null and the version to 
"highest". The argument printoptions is a property-list of options, the same as the 
printoptions argument to SEND.FILE.TO.PRINTER or PRETTYFILEINDEX, with the addition of 
some options recognized by MULTIFILEINDEX, described further below. 

As each file is listed, its pages are numbered with an ordinal file number plus the page number 
within the file; e.g., in the first file the pages are numbered 1-1,1-2, ... , in the second file 2-1,2-2, 
etc. The master index then refers to page numbers in this form, although each individual file's own 
index shows only the file-relative page numbers. Alternatively, you can tell MUL TlFILEINDEX to 
number all the pages consecutively, rather than using "part numbers", by giving the option 
: CONSECUT IVE, value T in printoptions. 

In the event that some files in the set have different reader environments, the master index is 
printed in the environment used by the majority of the files. More specifically, MULTIFILEINDEX 
independently chooses the package used by the majority of the files and the readtable used by the 
majority; in the case of a tie, the file later in the set wins. If this default is not adequate, you can 
specify the environment yourself by giving the: ENVI RONMENT option. The value should either be 
a reader environment object, such as produced by MAKE -READE R-ENVI RONMENT, or a property list 
of the form used by the MAKEFILE-ENVIRONMENT property. 

For example, 

207 



en·vos 

(MULTIFILEINDEX "(Barney>Rub*" 
'(:CONSECUTIVE T 

PRETTYFILEINDEX 

:ENVIRONMENT (:PACKAGE "JABBA" :READTABLE "XCL")}} 

would list each of the files matching" < Barney> Rub*.;", numbering the pages consecutively from 
the first file through the last, and printing the master index with respect to the package JABBA and 
read table XCL. 

INCREMENTALLY REPRINTING MULTIPLE FILES 

If you have used MULTIFILEINDEX to list a group of files, and later one of the files changes, or 
maybe the printer just ate part of your listing, you might want to update your listing without 
reprinting the entire set of files. You have two options. 

(1) You can have PRETTYFILEINDEX reprint the one file that changed (or was eaten). Specify the 
print option : PART n to have it treat the single file as the nth part of a multiple listing, or the 
option: FIRSTPAGE n to have it start numbering the pages at n instead of 1 (for the case where 
you used the: CONSECUT IVE option to MULTFILEINDEX). For example, 

(LISTFILES (:PA~T 3) "(Barney>Rubric") 

would reprint (Barney>Rubric as the third file in a group. Of course, this doesn't reprint the 
master index, but it only has to process the one file, which may be adequate for your needs if 
things didn't move around too much. 

(2) You can have MULTIFILEINDEX process the entire set of files again, but only print some of 
them. You specify this by parenthesizing the files you don't want printed. That is, each element of 
the files argument to MULTIFILEINDEX is a file name or a list of file name(s); those files inside 
sublists are processed but not printed. You cannot specify patterns. The master index is listed after 
the last file, as usual, except that if the last file was in a sublist, and hence not printed, the master 
index will appear as a separate listing. Calling MULTIFILEINDEX in this manner is nearly as 
computationally expensive as calling it to list the whole set for real (it omits only the transportation 
to the printer), but it does save paper and printer time. 

LISTING COMMON LISP FILES 

Ordinarily, PRETTYFILEINDEX only processes files produced by the Lisp File Manager; it passes all 
others off to the default hardcopy routines. However, you can tell it to process a plain Common 
Lisp text file by passing the print option: COMMON; e.g., 

(LISTFILES (:COMMON T) "conjugate.lisp"} 

PRETTYFILEINDEX still processes the file by reading and prettyprinting, just as for Lisp files. It starts 
in the default Common Lisp reading environment (package USER and read table LISP), and 
evaluates top-level package expressions, such as in-package and import, in order to continue 
reading correctly. The index is printed in whatever the environment was at the end of the file. 

Of course, this is of fairly limited utility, as all read-time conditional syntax is lost: comments, # + , 
#0, etc. The one exception is that top-level semi-colon comments are preserved-they are copied 
to the output directly, rather than being read. 

Customizing PRETTYFILEINDEX 

The remainder of this document describes various ways in which PRETTYFILEINDEX can be 
customized. 

208 



en·vos PRETTYFILEINDEX 

HOW TO SPECIFY INDEXING TYPES 

Initially, PRETIYFILEINDEX knows about most of the standard file manager types. In addition, it 
handles all the types defined by DEFDEFINER. For definers with a :NAME option, it assumes that 
the function is free of side effects. PRETTYFILEINDEX also notices (but does not evaluate) 
DEFDEFINERs that appear on the file it is currently indexing, which should appear before any 
instances of the type so defined in order for correct indexing to occur. Of course, it can't know 
about definer types that are defined on some other file unless you load it. 

You can augment the set of indexing types, or override the default handling of definers, by adding 
elements to the following variable: 

*PFI-TYPES* [Variable] 

A list of entries describing types to be indexed and a way of testing whether an expression 
on the file is of the desired type. Each entry is a list of up to 4 elements of the form (type 
dumpfn namefn ambiguous), the first two of which are required: 

type The name of the type, e.g., MACRO. This name will appear as the name of 
the index for this type, e.g., "MACRO INDEX". type is usually the name of a 
file package type, though it need not be. It must be a symbol. 

dumpfn The name of the function that appears as the CAR of the form that defines 
objects of type type on the file, or a list of such names. E.g., for type 
TEMPLATE it is SETTEMPLATE; for type VARIABLES it is (RPAQ RPAQQ 
RPAQ? ADDTOVAR). 

namefn A function that tests whether the expression that starts with dumpfn really 
is of the desired type, and returns the name of the object defined in the 
expression. The function takes as arguments (expr entry), where expr is the 
expression whose CAR matched the entry. The testfn should return one of 
the foil owi ng: 

NIL the expression is not of the desired type. 

name the expression defines a single object of this name and of 
the type given in the entry. 

a list the value is either a single list or a list of lists, each of the 
form (type. names), meaning that the expression defines 
each of the names as having the specified type. 

If the namefn is NIL or omitted, the name of the object is obtained from 
the second element of the expression. If that element is a list, the name is 
taken to be its CAR, or its CADR if the element is a quoted atom. 

ambiguous True if the expression is ambiguous, in the sense that even if namefn 
returns a non-NIL value, it is possible for this expression to also satisfy other 
entries in *PFI-TYPES*. E.g., the expression (RPAQ --) is ambiguous, 
because it could define either a variable or a constant. If ambiguous is true, 
you usually want a corresponding entry on * P F I - F I L T E RS* (below). 

209 



en·vos PRETTYFILEINDEX 

*PFI-PROPERTIES* [Variable] 

A list used by the default handler for the PUT PROPS form. It associates property names 
with a type (something more specific than the type PROPE RTY) under which objects having 
this property should be indexed. Each element is of the form (propname type). If type is 
NIL or omitted, then objects having this property are ignored. In addition, the default 
PUT PROPS handler treats all elements of the list MACROPROPS as implying type MACRO. 

The initial value of *PFI-PROPERTIES* is 

«COPYRIGHT) 
(READVICE ADVICE», 

meaning that the COPYRIGHT property should be ignored, and the READVICE property 
implies that the object should be indexed as type ADVICE. 

*PFI-FILTERS* [Variable] 

A list describing potential index entries that should be filtered out of the final index. Each 
element of *PFI-FILTERS* is a list (type filterfn), where type is one of the types in 
* P F I - TYPES* and filterfn is a function of one argument, an index entry. If filterfn returns 
true, then the index entry is discarded. An index entry is of the form (name 
pagenumbers). For convenience, an element of * P F I - F I L T E RS * can also take the form 
(type. subtype), meaning that if an object is already indexed as a subtype then it should 
not also be indexed as a type. 

The initial value of *PFI-FILTERS* is 

«VARIABLES. CONSTANTS», 

meaning that "variables" that successfully index as constants should not also be listed in 
the VARIABLES index. This extra pass is needed because the CONSTANTS File Manager 
command causes expressions of the form (RPAQ var value) to be dumped on the file, and 
at the time this expression is read, it is not known whether there will later on appear a 
CONSTANTS form for the same variable. 

Filter functions may want to call the following function: 

(PFI.LOOKUP.NAME name type) [Function] 

Looks up name in the index being built for type type. If it finds an entry, it returns it. Index 
entries are of the form (name . pagenumbers). It is permissible for a filter function as a 
side effect to destructively change another index entry by adding page numbers to it. You 
might want to do so, for example, in the case where there is a kind of object that dumps 
two expressions on a file, each of which is a different type (according to *PFI-TYPES*), 
but you want both occurrences indexed as a single type. 

MORE EXPLICIT EXPRESSION HANDLING 

The functions and variables described below allow you to completely control how certain 
expressions in the input file are handled. You can use these hooks to perform custom 
prettyprinting, to suppress the printing of some expressions, or to perform indexing more complex 
than that supported by *PF 1-TYPES*. 

210 



en·vos PRETTYFILEINDEX 

*PFI-HANDLERS* [Variable] 

An association list specifying explicit "handlers" for expressions that appear on the input 
file. Each element is a pair (car-of-form . handler), where handler is a function of one 
argument, an expression read from the file whose first element is car-of-form. The handler 
is completely in charge of indexing the expression and/or printing it to 
*STANDARD-OUT PUT*. Unless the handler chooses to suppress the printing altogether, it 
is expected to print at least one blank line first, so that expressions are attractively 
separated in the listing (see PFI .MAYBE. NEW. PAGE). 

*PFI-PREVIEWERS* [Variable] 

This list is used when PRETTYFILEINDEX is used by the SEE command. During the SEE 
command, real-time performance is important, so it is undesirable to have long delays 
while reading a very large expression. For example, all the functions in an Interlisp FNS 
command appear on the file inside a single DEFINEQ expression. If handled in the obvious 
way, the user would have to wait for the entire expression to be read before any output 
appeared. A previewer has the opportunity to read the expression in pieces and 
prettyprint it as it goes. 

Each element of *PFI-PREVIEWERS* is a pair (car-af-form . previewer), where previewer 
is a function of one argument, the car-of-form. The previewer is called when 
PRETTYFILEINDEX encounters an expression of the form "(car-of-form " on the file. Its job 
is to read expressions from * STANDARD- INPUT* (currently positioned after the car of 
form) until it encounters the closing right parenthesis, which it should consume, and 
prettyprint the elements appropriately to *STANDARD-OUTPUT*. *PFI-PREVIEWERS* is 
used only from the SEE command, so indexing is not necessary (but also not harmful, other 
than to waste some time). 

If an expression does not have a previewer, PRETTYFILEINDEX reads the reset of the 
expression itself and handles it normally, i.e., performs ( PFI. HANDLE. EXPR (CONS 
car-of-form (C L : READ -DE L IMI TED- LIST #\». 

(PFI . DEFAULT. HANDLER expr) [Function] 

This is the function PRETTYFILEINDEX uses to process expressions that have no explicit 
handler. It indexes the expression according to *PF I - TYPES* and then prettyprints the 
expression. You can call this function from your handler if you decide you have an 
expression you didn't want to handle specially. 

(PFI.HANDLE.EXPR expr) [Function] 

Performs PRETTYFILEINDEX's normal handling of the expression expr, including looking on 
*PFI-HANDLERS*. Handlers and previewers of forms that encapsulate arbitrary 
expressions, such as DECLARE:, typically call this to process subexpressions. 

(PF I. ADD. TO. INDEX name type/entry) [Function] 

Adds an entry to the index for type/entry specifying that name occurs on the current page. 
type/entry is either a type or an entry from *PF I - TYPES* from which the type will be 
extracted. 

211 



en·vos PRETTYFllEINDEX 

(PFI. PRETTYPRINT expr name formflg) [Function] 

Prettyprints expr. Optional name is the name of the object being printed; if a page 
crossing occurs in the middle of the prettyprinting, this name will be displayed in the page 
header. If formflg is true, print the expression as code; otherwise as data. 

(PFI. MAYBE. NEW. PAGE expr minlines) [Function] 

Starts a new page if the listing is currently near the bottom of the page and expr won't fit, 
else performs a single (TERPRI). If minlines is specified, it is an explicit estimate of how 
much space the expression will require, in which case expr can be NIL; otherwise, the 
function estimates the size. Handlers should call this before calling PF I. ADD. TO. INDEX, 
so that the page number in the index is correct. The typical handler catls 
PFI.MAYBE.NEW.PAGE, then PFI.ADD.TO.INDEX, then prints the expression, possibly 
via PFI. PRETTYPRINT. 

OTHER VARIABLES 

*PFI-INDEX-ORDER* [Variable] 

A list of types (as in * PF I - TYPES*) in the order in which the various types should appear in 
the index. Types not in this list are printed in an order of the program's choosing, currently 
a "best fit" algorithm (print the largest type index that will fit on the page). The initial 
value is (FUNCT IONS), meaning that the function index will appear first, with no 
constraints on the order of other types. 

*PFI-PRINTOPTIONS* [Variable] 

A plist of print options that PRETTYF I lE INDEX appends to the list of print options passed 
to lISTFllES, thus supplying some printing defaults. The initial value is (REG ION (2540 
1905 17780 24765») which on standard letter size paper in portrait mode results in 
left, bottom, top, and right margins of 1", t", t" and t", respectively. If the print options 
passed to lISTFllES call for a two-sided listing, the default region is shifted t" to the left. If 
the print options specify LANDSCAPE mode, the default region is ignored. 

*PFI-MAX-WASTED-lINES* [Variable] 

If an expression looks like it won't fit on the current page and there are no more than this 
many lines remaining on the page, PRETTYFILEINDEX starts a new page before printing 
the expression. A floating-point value indicates a fraction of the page; an integer indicates 
an absolute number of lines. The initial value is 12. 

*PFI-CHARACTER-TRANSLATIONS* [Variable] 

A list specifying how certain characters should be rendered on the output stream. This is 
used to get around the poor rendering of certain characters in the default font. Each 
element is of the form (imagetype . charpairs), where image type is the type of image 
stream being printed to and each element of charpairs is an alist whose elements are of the 
form (sourcecode destcode . looks-plist), specifying the character code to use on the 
destination image stream for a specified character code in the input stream. If looks-plist is 
non-Nil, destcode is printed in a font obtained by applying FONTCOPY to the current font 
and looks-plist. 

212 



en·vos 

The initial value is 

«INTERPRESS (95 172) 
(96 169 FAMILY CLASSIC) 
(39 185 FAMILY CLASSIC)}} 

PRETTYFILEINDEX 

meaning if the output stream is an Interpress stream the lister should turn character 95 
(underscore) into 172 (left arrow), backquote into left single quote in the Classic font (of 
the same size and weight), and single quote into right single quote in Classic. 

*PRINT-PRETTY-FROM-FILES* [Variable] 

If true, the SEE (in the Exec and Filebrowser), PF and PF* commands attempt to prettyprint 
to the display, rather than copying the file as it is currently formatted. The initial value is T. 

*PRINT-PRETTY-BITMAPS* [Variable] 

If true, then when *PRINT-ARRAY* is true and a bitmap is to be printed to an image 
stream, the bitmap itself is displayed as an image on the stream, rather than as the 
machine-readable representation of its bits (of the form #* ( 16 16) H@@@L.). This 
variable has no effect on printing to files, such as in MAKEFILE, nor on PRETTYFILEINDEX, 
which binds it true; thus, changing the value mainly affects the display. The initial value is 
T. 

*PFI-DONT-SPAWN* [Variable] 

If NIL, LlSTFILES arranges for a separate process to do the hardcopying (whether using 
PRETTYFILEINDEX or not) and returns immediately; if T, it makes the listing directly, not 
returning until it is finished. The initial value is NIL 

LISTING ELSEWHERE THAN THE PRINTER 

Ordinarily, you call LlSTFILES (or uses the File Browser) to create listings. However, you can also call 
PRETTYFILEINOEX directly if you want to direct the output elsewhere, such as to an Interpress 
file: 

( PRE TTY F I LEI NO E X filename printoptions outstream dontindex) [Function] 

Lists filename, the name of a Lisp source file or a stream open for input on such a file, 
printing it and its index to outstream. outstream is either an open image stream, or NIL, in 
which case the output goes to (OPENIMAGESTREAM) and the stream is closed afterwards, 
which results in it being sent to the default printer. If filename or outstream is open on 
entry, it is left open on exit. printoptions is a plist of options of interest to either LlSTFILES 
or OPENIMAGESTREAM. If dontindex is true, no index is produced; this argument is used 
by the SEE command. 

If the file is not a File manager file, PRETTYFILEINOEX takes no action and returns NIL; 
otherwise, it returns the full file name. However, if filename is an open stream, then 
PRETTYFILEINOEX copies the remainder of the stream to outstream (which must be 
given) using PFCOPYBYTES, and returns the full file name. This is so that the stream does 
not need to be backed up after discovering that the file is not a File Manager file, an 
operation not possible for a sequential-access stream. 

LIMITATIONS 

PRETTYFILEINDEX assumes that the default font, which is used to print the index, is fixed-width. 

213 



en·vos PRETTYFILEINDEX 

PRETTYFILEINDEX uses the regular Interlisp prettyprinter. This means that if you have File Manager 
commands that produce their output in a customized way, e.g., by printing inside the E command, 
then the output will look different between MAKEFILE and PRETTYFILEINDEX. You can usually 
remedy this by supplying PRETTYPRINTMACROS for the types of expressions your command dumps 
(which may also let you replace the E with a simpler P command), or by defining handlers for the 
expressions (see * P F I - HANDLE RS*). PRETTYFILEINDEX already supplies PRE TTYP R I NTMACROS 
for most of the customized printing done by the current File Manager: RPAQ, RPAQQ, RPAQ?, 
ADDTOVAR, PUTPROPS and COURIERPROGRAM. 

With the exception of noticing the reader environment and DEFDEFINER expressions, 
PRETTYFILEINDEX does not interpret the contents of the file. If your file depends on itself for 
proper prettyprinting or indexing, you need to LOAD (or possibly just LOADFROM) the file' first. 

214 



en·vos PRINTERMENU 

PRINTERMENU 

By: ISLWS (Bloomberg.pa@Xerox.com) 

DESCRIPTION 

Creates a menu which displays all printers in the global list DEFAULTPRINTINGHOST, allows 
selection of a default printer, and permits addition and deletion of printers from 
DEFAULTPRINTINGHOST. Printers are displayed in the same order as they appear in 
DEFAULTPRINTINGHOST. Selecting an item from the menu will highlight by inversion and move it 
to the top of the menu, thus becoming the default printer. Selection in the title bar of the menu 
with the left or middle button will allow you to add or to delete a printer from the menu. 

An auxiliary process, PRINTERMENU.WATCH, monitors the value of DEFAULTPRINTINGHOST and 
will update the menu if this variable is changed. If PRINTERMENU.WATCH is killed, the menu will 
be grayed out to indicate that it may no longer be valid. Clicking left or middle buttons inside the 
menu will restart PRINTERMENU.WATCH and update the menu. 

To use: 

Load the module with: 

(LOAD 'PRINTERMENU.LCOM) 

Start it with: 

(PRINTERMENU) 

User Switches: 

1. Set DEFAULTPRINTINGHOST to contain all printers from which you wish to select. 

2. Prior to calling the function (PRINTERMENU), the global variable PRINTERMENU.POSITION can 
be set to the position, in screen coordinates, where you want the menu to appear. If not set, 
you will be prompted for a position for the menu window. 

215 



en·vos PROGRAMCHAT 

PROGRAMCHAT 

By: ISLWS (bloomberg.pa@xerox.com) 

DESCRIPTION 

PROGRAMCHAT is a Lisp function that invokes a windowless Chat process to execute a single 
command line on a· remote host. PROGRAMCHAT requests a login if one has not been made 
recently to the remote host. After execution of the command, a normal logout is performed, and 
the Chat connection is closed. 

PROGRAMCHAT was written by Eric Schoen to allow initiation of remote computation from Lisp 
workstations. It works with both VMS and Unix operating systems on the remote host. 

To use: 

Load the module with: 

(LOAD 'PROGRAMCHAT.lCOM) 

Invoke the functon with: 

(PROG RAMCHA T hostname commandString windowFlg) 

where 

hostname is the network name of the remote host, 

[Function] 

commandString is a string which is the exact format of the command to be run from the command 
line interpreter of a VAXNMS host (or from the shell of a VAX/Unix host), and 

windowFlg is a variable that, when T, opens a window and displays a log of data transferred 
between the PROGRAMCHAT process and the remote host. PROGRAMCHAT is normally 
invoked with windowFlg = NIL. 

Warnings: 

1. When loaded, PROGRAMCHAT resets the variable NETWORKLOGINFO. 

2. PROGRAMCHAT provides no error handling. If the connection to the remote host is broken, 
no error message is returned. 

216 



en-vas PROMPTREMINDERS 

PROMPTREMINDERS 

To be periodically reminded of things 

By: JonL White 

Revised by: Larry Masinter (Masinter.pa@Xerox.com), subsequently by Becky Burwell 
(Burwell.PA@Xerox.COM) 

INTRODUCTION 

PROMPTREMINDERS implements a facility which schedules events to be performed, or messages to 
be flashed in a prompt window. Events can be periodic or once-only. The showing of a message in a 
prompt window has the extra facility of flashing a message, and stopping only when there has 
been a recent response (mouse or keyboard movement) from the user. 

If the MESSAGE given for the reminder (see description of the function SETREMINDER below) is a 
listp, then when the reminder "goes off", that listp will be EVAL'd rather than any of the 
"winking", "flashing", or "hassling" mentioned above. 

The global variable REMINDERSTREAM holds the stream where the message is to be displayed; if 
not set by the user, it defaults to PROMPTWINDOW. After the message has been displayed, the 
window (if indeed REMINDERSTREAM holds a window) will be closed, depending on the value of 
CLOSEREMINDERSTREAMFLG. 

REMINDERS is a file package type, so that they may be easily saved on files, and so that the general 
typed-definition facilities may be used. On any file which uses the REMINDERS filepkgcom, it is 
advisable to precede this command with a command 

(FILES (SYSLOAD COMPILED FROM LISPUSERS) PROMPTREMINDERS) 

since this package is not in the initial Lisp loadup. When initially defining a reminder, it is 
preferable for the user to call SETREMINDER rather than PUTDEF; but HASDEF is the accepted way 
to ask if some name currently defines a "reminder", and DELDEF is the accepted way to cancel an 
existing "reminder". 

EXAMPLES 

(SETREMINDER NIL (ITIMES 30 60) "Have you done a CLEANUP recently?") 

the user wants to be reminded every 30 minutes that he ought to save his work 

(SETREMINDER 'WOOF NIL "Call home about dinner plans." 
"8-Jan-83 4:00PM") 

he merely wants to be told once, at precisely 4:00PM to call home 

217 



en·vos PROMPTREMINDERS 

(SETREMINDER NIL 600 
'(PROGN (AND (FIND.PROCESS 'LISTFILES) (add FREQ 1» 

(add TOTAL 1») 
checks every 10 minutes to see if there is a process called LlSTFILES 

FUNCTIONS 

(SETREMINDER NAME PERIOD MESSAGE INITIALDELA Y EXPIRA TlON) [Function] 

This will create and install a "reminder" with the name NAME (NIL given for a name will be 
replaced by a gensym), which will be executed every PERIOD number of seconds by winking the 
string MESSAGE into the prompt window; if MESSAGE is null, then NAME is winked; if MESSAGE is 
a listp, then it is EVAL'd and no "winking" takes place. "Winking" means alternately printing the 
message and clearing the window in which it was printed, at a rate designed to attract the eye's 
attention. 

The first such execution will occur at PERIOD seconds after the call to SETREMINDER unless 
INITIALDELA Y is non-NIL, in which case that time will be used; a numeric value for INITIALDELA Y is 
interpreted as an offset in seconds from the time of the call to SETREMINDER, and a stringp value is 
an absolute date/time string. 

If PERIOD is null, then the reminder is to be run precisely once. If EXPIRATION is non-null, then a 
fixp means that that number of seconds after the first execution, the timer will be deleted; a 
stringp means a precise date/time at which to delete the timer. 

Optional 6th and 7th arguments -- called REMINDINGDURATION and WINKINGDURATION -­
permit one to vary the amount of time spent in one cycle of the wink/flash loop, and the amount of 
time spent winking before initiating a "flash". The attention-attracting action will continue for 
REMINDINGDURATION seconds (default: the value of the global variable 
DEFAULT.REMINDER.DURATION which is initialized to 60), or until some keyboard action takes 
place. 

Type-ahead does not release the winking. In case the user fails to notice the winking, then every 
WINKINGDURATION seconds (default: the value of the global variable 
DEFAULT.REMINDER.WINKINGDURATION which is initialized to 10) during the "reminding", the 
whole display videocolor will be wagged back and forth a few times, which effects a most 
obnoxious stimulus. 

SETREMINDER returns the name (note above when NIL is supplied for the name). 

(ACTIVEREMINDERNAMES) [Function] 

ACTIVEREMINDERNAMES returns the list of active reminders. 

(REMINDER.NEXTREMINDDATE NAME DATE) [Function] 

REMINDER.NEXTREMINDDATE returns (and optionally sets) the date&time (in DATE format) at 
which the reminder is next to be executed. 

(REMINDER.EXPIRATIONDATE NAME DATE) [Function] 

REMINDER.EXPIRATIONDATE returns (and optionally sets) the date&time (in DATE format) at 
which the reminder will be automatically deleted. 

218 



en·vos PROMPTREMINDERS 

(REMINDER. PERIOD NAME SECONDS) [Function] 

REMINDER.PERIOD returns (and optionally sets) the period (in seconds) at which the reminder gets 
rescheduled. 

(SHOWDEF name 'REMINDERS) [Function] 

will show a reminder in a pretty format, etc. 

219 



en·vos PROOFREADER 

Proofreader 

By: John Maxwell (Maxwell.pa@Xerox.com) 

Use in conjunction with Analyzer, SpellingArray 

INTRODUCTION 

The Proofreader interactively looks for and corrects spelling errors in a given TEdit document. To 
use it, go to the TEdit menu (click the middle button while in the title bar) and invoke the menu 
item labeled "Proofread". This will simultaneously attach a special menu to the side of the 
document and start proofreading from the caret. The proofreader scans the document from the 
caret location and stops at the first misspelling it finds, highlighting it with a pending delete 
selection. Successive misspellings can be found by clicking the "Proofread" menu item in the TEdit 
menu or the "Proofread" menu item in the new side menu. 

At this point, you can either correct the misspelled word or skip to the next misspelling. If you are 
not sure what the correct spelling is, you can get a menu of possible corrections by invoking the 
"Correct" menu item. Selecting a correction from this menu will cause it to be automatically 
inserted into the document in place of the misspelling. (Note: The Proofreader occasionally 
suggests some very bizzare spelling corrections for your misspelled word. Do not be alarmed; this 
is a known but unavoidable artifact of the heuristic used for checking for misspellings. (see notes 
at the end» If the word was erroneously flagged as misspelled, then you can insert the word into 
your personal word list of acceptable words by invoking the "Insert" menu item. At the end of the 
editting session you can save the word list on a file with the "StoreWordList" command (see 
below). 

If when the Proofreader is invoked the current selection has more than one word in it, then the 
Proofreader will only correct the words in that selection. Otherwise, the Proofreader always 
proofreads the text from the caret to the end of the document. 

PROOFREADER SUB-COMMANDS 

Under the TEdit Proofread menu item there are a number of sub-commands that the user can 
invoke. They are: 

Proofread 

The same as the top level Proofread command. Attaches a special menu to the side of the 
document and starts proofreading from the caret. 

CountWords 

Counts the number of words in the current selection. To count the number of words in the entire 
document, first click "All" in TEdit's expanded menu. 

220 



en·vos PROOFREADER 

SetProofreader 

Gives the user a menu of proofreaders to use for proofreading. If there is only one proofreader, no 
menu is generated. If the user selects a remote server, a second menu may be generated of 
proofreaders available on the server. 

StoreWordList 

Allows the user to save the words that he inserted into the proofreader onto a remote file. The 
words from an existing version of the file will be read in first and then a new file will be generated 
consisting of the old file plus the new words. After the file is written, the list of newly inserted 
words is set to NIL. 

LoadWordList 

The inverse of StoreWordList. If you have a file that you want to load every time you use the 
proofreader, you can add it to Proof reade r. AutoLoad, and it will be loaded when the 
proofreader is first opened. Proof re ad e r . Au to Load can be either a file or a list of files. 

AutoCorrect 

Sets the variable Proof reade r. AutoCo rrect so that the proofreader automatically generates a 
list of corrections whenever it finds a misspelled word. In the AutoCorrect mode, the proofreader 
will also automatically scan for the next misspelled word whenever after a correction has been 
selected. If you want to stop the proofreading process, click outside of the correction menu. If you 
want to insert the flagged word into your word list, click the menu item labeled" *INSERT* ". If you 
want to continue proofreading without changing the flagged word, select the menu item labeled 
"*SKIP*". 

ManualCorrect 

Sets the variable Proof reade r. AutoCo r rect so that the proofreader will not generate a list of 
corrections unless the user asks for it. 

PROOFREADER VARIABLES 

There are a couple of variables that the user can set in his init file to change how the proofreader 
works. They are: 

Proofreader.AutoLoad [Variable] 

A file or list of files to be loaded into the proofreader every time that the proofreader is initialized. 

Proofreader.AutoCorrect [Variable] 

A boolean that determines whether or not a list of corrections is automatically generated 
whenever the proofreader finds a misspelled word. The default value is NIL. 

Proofreader.AutoDelete [Variable] 

A boolean that determines whether or not to delete the old versions of a word list file when a new 
one is written out. The default value is T. 

Proofreader.MenuEdge [Variable] 

The side of the window that the proofreader menu appears on (can be either LEFT or RIGHT). The 
default value is LEFT. 

221 



en·vos PROOFREADER 

Proofreader.UserFns [Variable] 

A list of functions to be applied to misspelled words (as strings). If the function returns a non-Nil 
value, then the word is assumed to be correctly spelled. (If the function ATOMHASH#PROBES is 
added to Proofreader.UserFns, then any word defined as an atom becomes legal. 
ATOMHASH#PROBES tests whether or not a string is an atom without creating new atoms. If you 
want a more restricted test (i.e. II anything defined as a procedure is legal II) first test that the string 
exists at an atom before doing MKATOM. Otherwise, the atom space wi" fill up with misspelled 
words.} 

NOTES 

• The proofreader uses a heuristic to determine whether or not a word is in its word list that 
occasionally will produce false positives. This is most noticeable when the proofreader is 
generating corrections for a misspelled words. I don't know of any way to eliminate this problem 
except to use a different algorithm, the fastest of which is at least twice as slow. Hopefu"y people 
wi" find it more of a nuisance than a real problem . 

• There is no way to remove words once they have been inserted into the local dictionary. The only 
way to get rid of a bad word is to reload the dictionary. This can be done by reloading the 
Spe"ingArray file. If a bad word gets into one of the remote files, you can edit the file to get rid of 
it. 

ACKNOWLEDEGMENTS 

The algorithm used in the Proofreader is based on the algorithm in the Cedar Spelling Tool by Bob 
Nix. For more information on the implementation, see the section IIHow it Works II in 
{Cyan}<CedarChest6.1 >Oocumentation> SpellingTooIOoc.tioga. 

222 



en·vas 

QEdit 

By: Johannes A. G. M. Koomen 
(Koomen.wbst@Xerox or Koomen@CS.Rochester.edu) 

This document last edited on January 22, 1988 

INTRODUCTION 

QEdit 

QEdit is a facility for editing queues, which are ordered lists containing arbitrary objects. QEdit 
provides facilities for reordering, editing and deleting current queue entries, and inserting new 
entries. A QEditor looks like this: 

<-- -- --- Insert Edit Delete Abort Done 
Queue Editor 

c:; elem.:.nt-;: ... - -
Iqueue 

I test 5 

I a. 4 

I is 3 

This 2 

1 

Clicking the left mouse button over a queue entry makes it the current selection. You can then 
select a QEdit menu operation. QEdit returns with the original list if aborted, or a new list upon 
normal exit. Selecting an entry that is not entirely visible causes the display to scroll until it is. 

DETAILS 

(QEDIT QUEUE PROPS) [Function] 

Invokes a QEditor on QUEUE. Returns QUEUE if aborted, a new list otherwise. The PROPS 
argument is a property list which serves to customize the behavior of QEDIT for this particular 
invocation. Currently defined props are listed below. 

<- [QEd it command] 

Moves the current selection forward, i.e., switches the current selection and the queue entry just 
before it. 

-> [QEdit command] 

Moves the current selection backward, i.e., switches the current selection and the queue entry just 
after it. 

223 



en-vas QEdit 

Insert [QEdit command] 

Inserts a new entry in front of the current selection, provided PROPS contained an INSERTFN. 

Edit 

Edits the current selection, provided PROPS contained an EDITFN. 

Delete 

Deletes the current selection, provided PROPS contained a DELETEFN. 

Abort 

Aborts the current QEdit session, returning the original queue. 

Done 

[QEdit command] 

[QEd it command] 

[QEdit command] 

[QEdit command] 

Ends the current QEdit session, returning a new list containing the current queue entries. 

TITLE 

If supplied, its value becomes the title for the QEdit window. 

CONTEXT 

[QEdit property] 

[QEdit property] 

The value of the CONTEXT property is passed to the functions below as an extra argument. It does 
not affect QEdit directly. The functions below can also obtain the current queue by calling the 
function QEDIT.CURRENT.QUEUE (see below). 

LABELFN [QEd it property] 

If supplied, its value is a function which, when invoked on a queue entry and the user context, 
returns a label to use for displaying the queue entry. If not supplied, QEdit displays the queue 
entry itself. 

LABELFONT 

If supplied, its value is a font specification for displaying the queue entry. 

INSERTFN 

[QEdit property] 

[QEd it property] 

If supplied, its value is a function which, when invoked on the user context, returns either NIL or a 
new element to be inserted in front of the current selection (at the front of the queue, if there is 
no current selection). If not supplied, no elements can be inserted into the queue. 

EDITFN [QEdit property] 

If supplied, its value is a function which, when invoked on a queue entry and the user context, 
returns either NIL or a (possibly new) entry to be used instead of the current selection. 

DELETEFN [QEdit property] 

If supplied, its value is a function which, when invoked on a queue entry and the user context, 
returns NIL if the entry should not be deleted. If not supplied, no elements can be deleted. Hint: 
the function TRUE always returns T. 

(QEDIT.CU RRENT.QUEU E) [Function] 

Invoked from one of the above mentioned functions, returns the queue being edited in its current 
form. The INSERTFN might use this, for example, if duplicates are not allowed. 

224 



en·vos QEdit 

(QEDIT. RESET) [Function] 

QEdit will reuse QEditors upon reinvocation. This function will throwaway any known but 
currently inactive QEditors. Useful if you wish to change the default QEdit props. 

*QEDITPROPS* [QEd it variable] 

Any props not explicitly supplied in the call to the function QEDIT are taken from this free variable. 
Its initial value is (TITLE "Queue Editor" LABELFONT (HELVETICA 8» 

Examples 

(QEDIT '(This is a test queue» [Function] 

Brings up a QEditor as shown above. Queue elements can be rearranged, but not added to, edited 
or deleted. 

(QEDIT '(This is a test queue) '(INSERTFN READ DELETEFN TRUE» [Function] 

Brings up a QEditor as shown above. Queue elements can be rearranged, inserted or deleted, but 
not edited. 

225 



en·vos READAIS 

READAIS 

By: Nick Briggs (Briggs.pa@Xerox.com) 

INTRODUCTION 

AIS (array of intensity samples) is a format for color and gray- level images. The following 
functions allow reading and writing of AIS files from Lisp. 

(AISBl T FILE SOURCELEFT SOURCEBOTTOM DES TINA TlON DESTLEFT DESTBOTTOM WIDTH HEIGHT 
HOW FILTER NBITS LOBITADDRES5) [Function] 

Puts the image in an AIS file into a bitmap. AISBLT checks the sample size of the AIS file and the 
number of bits per pixel of the DESTINATION and performs the required reduction (if any). 
SOURCELEFT and SOURCEBOTTOM give the left and bottom coordinates in the source file of the 
image to be read (default to (0,0». DESTINATION can be a bitmap, a color bitmap, or a window. 

HOW indicates what method of reduction is to be used if the sample size of the AIS file is larger 
than the number of bits per pixel in the destination bitmap. The recognized methods are 
TRUNCATE (use the high-order bits) and FSA (use the Floyd-Steinberg dithering algorithm). The 
default when going to a 1 bpp bit map is FSA; otherwise it is TRU NCA TE. 

FILTER if non-NIL should be an array that will be used to filter the samples read from the AIS file. If 
FILTER is given and a sample point of intensity N is read from the file, (EL T FILTER N) is used to 
determine the bits for the destination. The function SMOOTHHIST described below is one way of 
getting a filter that balances the contrast in an image. 

NBITS and LOBITADDRESS allow an image to be read into one or more "planes" of a color bitmap. 
NBITS tells how many bits are to be taken from each image sample, and LOBITADDRESS indicates 
the lowest bit within each pixel that the NBITS bits are to go. (Bit address zero is the leftmost or 
highest-order bit. For a four-bit-per-pixel bit map, three would be the lowest-order bit.) This is 
used by SHOWCOLORAIS to put the different planes of a color image into the bit map. 

(SHOWCOlORAIS BASEFILE COLORMAPINFO HOW SOURCELEFT SOURCEBOTTOM DES TINA TlON 
DESTLEFT DESTBOTTOM WIDTH HEIGHT [Function] 

Reads a color image from three AIS files into a color bit map. The three color files are obtained by 
concatenating the strings "-RED.AIS", "-GREEN.AIS", and "-BLUE.AIS"onto the end of BASEFllE. If 
COlORMAPINFO is a list of three small integers, it indicates how many of the bits in the destination 
are allocated to each color. For example, if DESTINATION is a four-bit-per-pixel color bit map and 
COlORMAPINFO is (1 2 1), one bit (bit zero) will be allocated to the red image, two bits (bits one 
and two) will be allocated to the green image, and one bit (bit three) will be allocated to the blue 
image. 

DESTINATION is the color bitmap the image will be stored into. 

HOW, SOURCElEFT, SOURCEBOTTOM, DESTLEFT, DESTBOTTOM, WIDTH, and HEIGHT are as 
described in AISBlT. 

An experimental feature that is available only when going to 8 bpp color bit map: if 
COLORMAPINFO is a color map, each pixel will be determined by finding the color in the color map 

226 



en·vos READAIS 

that is closest to the 24 bits of color information read from the three image files. (This takes a long 
time.) The function COLOR. DISTANCE (red green blue redentry greenentry blueentry) is called to 
calculate the distance by which "closest" color is determined. 

(CMYCOLORMAP CYANBITS MAGENTABITS YELLOWBITS BITSPERPIXEL) [Function] 

Returns a color map that assumes the BITSPERPIXEL bits are to be treated as three separate color 
planes with CYANBITS bits being in the cyan plane, MAGENTABITS bits being in the magenta 
plane, and YELLOWBITS bits being in the yellow plane. Within each plane, the colors are uniformly 
distributed over the intensity range 0 to 255. White is 0 and black is 255. 

(RGBCOLORMAP REDBITS GREENBITS BLUEBITS BITSPERPIXEL) [Function] 

Returns a color map that assumes the BITSPERPIXEL bits are to be treated as three separate color 
planes with REDBITS bits being in the red plane, GREENBITS bits being in the green plane, and 
BLUEBITS bits being in the blue plane. Within each plane, the colors are uniformly distributed over 
the intensity range 0 to 255. White is 255 and black is O. 

(GRA YCOLORMAP BITSPERPIXEL) 

Returns a color map containing shades of gray. White is 0 and black is 255. 

(WRITEAIS BITMAP FILE REGION) 

[Function] 

[Function] 

Writes the region REGION of the color bit map BITMAP onto the file FILE in AIS format. This 
provides an efficient way of saving color or gray- level images. 

(AISH ISTOG RAM FILE REGION) [Function] 

Returns a histogram array of the region REGION in the AIS file FILE. The histogram array has as its 
Nth element the number of pixels in the region that have intensity N. 

(GRAPHAISHISTOGRAM HISTOGRAM W) 

Draws a graph of a histogram array in the window W. If Wis NIL, a window is created. 

(SMOOTHEDFILTER HISTOGRAM) 

[Function] 

[Function] 

Returns a "filter" array that maximally distributes the intensities values contained in HISTOGRAM. 
The filter array can be passed to AtSBLT to change the contrast of the image being read. 

227 



en·vos READAPPLEFONT 

READAPPLEFONT 

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu) 

Uses: READDISPLA YFONT 

READAPPLEFONT defines a new display font type which allows Envos Lisp to use (commercially 
available) Macintosh T. display fonts. Although this module is primarily intended for extracting 
font width information for conversion programs (eg. MacPaine- to Sketch and vice versa) it can 
also be used to extend the number of display fonts available within the Envos Lisp environment. 

There are no user functions in the module. In addition to this module, you need a directory of 
extracted Macintosh T

• font files (as described below) and you must add the name of that directory 
to the system DISPLAYFONTDIRECTORIES list. The following function is added under the type 
APPLE to the list DISPLA YFONTTYPES (defined by the READDISPLA YFONT module). 

(READAPPLEFONT STREAM FA MIL Y SIZE FACE) [Function] 

The module also adds the extension APPLE to the system list DISPLA YFONTEXTENSIONS. 

FONT FilES 

This module only uses the FontRec portion of the font files (see Inside Macintosh TM). The font 
resources must be extracted into individual files with appropriate names, ego 
SANFRANCISC018-MRR-CO.APPLE. One method of doing this is to use the FontlDA Mover T

• utility: 

(!J Font 
() Desk AHeS\Ory MOller 

Palatino 12 
Palatino 14 
Palatino 18 
Palatino 24 

i I 

'iljmbol9 
Sljmboll0 

'iy .. tem 
on D'iK 

:-
1 "506"5K free 

( Close) 

~ 

~ 

( »Copy >P 'ian Francis(o 18 :!::! 

( Remolle 1 

"51'50 bytes 
.. elected 

Help 

Quit 

'ianFr"annu 0 18-1'1 ... 
on DSK 

I "5063K free 

( Close) 

'ian Francisco 18: Ihe qu ink tlrOWn fo:: jU mpS 

The individual font files should be moved to a 
Unix AUFS/CAP server (or the equivalent) and 
the resource forks (in the .resource directory) 
should be copied to the directory you added to 
DISPLA YFONTDIRECTORIES above . 

If another method for extracting the FontRec data structure into individual files is used, the 
following variable will probably need to be reset: 

APPLEFONTREC.OFFSET [Variable] 

The offset in bytes into the font file of where the FontRec data structure begins (initially 264). 

NOTES 

• This module only handles proportionally spaced fonts and ignores fractional character widths . 

• The user is responsible for determining the legality of extracting the fonts in question. 

228 



en·vos 

READBRUSH 

By: Larry Masinter (Masinter.pa@Xerox.com) 

uses: BITMAPFNS 

This document last edited on September 8, 1988. 

INTRODUCTION 

This module implements two things: 

(IDLE.GLlDING.BRUSH W box wait) 

READBRUSH 

[Function] 

Like the default IDLE.BOUNCING.BOX Idle function but glides the bitmap around the screen 
instead of bouncing it. 

(READBRUSHFILE file) [Function] 

Reads files in the" .brush" format used by MesaNiewpoint. Returns a pair of bitmap/mask (or just 
(bitmap) if there is no mask. Brush file names use defaults from BRUSH DIRECTORY, initially 
{goofy:osbu north:xerox}<hacks>data>brushes> (and of use only inside Xerox.) 

(READBRUSH file) 

Calls READBRUSHFILE and then creates a window with that brush in it. 

BRUSHDIRECTORY 

Default location to get brushes from. 

[Function] 

[Variable] 

Adds an entry to IDLE.FUNCTIONS for "Gliding box", which will use IDLE.GLlDING.BOX on the 
brush selected from a menu created by enumerating all of the .brush files on BRUSHDIRECTORY. 

229 



en·vos READDATATYPE 

READDATATYPE 

By: Christopher lane (lane@Sumex-Aim.Stanford.Edu) 

READATATYPE gives @ a read macro definition (in the INTERLISP readtable) so that it can be used 
to type in datatype pointers directly. For example, suppose you have lost your pointer to a window 
(or menu, etc.) but you have the printed representation around (eg. {WINDOW}#56, 17470) then 
you can do things like: 

90 (INVERTW @{WINDOW}#56,17470) 
{WINDOW}#56 , 17470 

The read macro is only intended to be used at the read-eva/-print loop. If the character following 
the @ is not a { then the read macro returns the @ character just as if you had typed it in so that 
otherexpressionsthatuse@,like'(A B ,@FIlElST C D),willstillworkcorrectly. 

Although the read macro does not need the data type name in the brackets (eg. {MENU}) to get 
the pointer, it does require it in order to check the pointer to make sure it is of the correct type. If 
the pointer is not of the type specified, then the read macro returns NIl. 

The following form is used in the COMS of the file to set the syntax of @ in the INTERLISP readtable 
and can be used to add the capability to other readtables and/or characters: 

(SETSYNTAX '%@ '(MACRO FIRST READDATATYPE) (FIND-READTABlE "INTERlISP")) 

230 



en·vos READDISPLA YFONT 

READDISPLA YFONT 

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu) 

READISPLA YFONT modifies the display font functions to make it possible to define new display 
font types. 

The functions \READDISPLAYFONTFILE and FONTFILEFORMAT are modified to use the list: 

DISPLA YFONTTYPES [Variable] 

An ALST containing font file extensions and the functions that can read those types from a file. Its 
initial value is: 

«AC \READACFONTFILE) 
(STRIKE \READSTRIKEFONTFILE» 

The functions take (STREAM FAMILY SIZE FACE) as arguments and return a CHARSETINFO datum. 
You will (probably) need the Xerox (internal) documentation about fonts and character sets (not 
supplied with the standard documentation) to define a new font file reading function. 

The AC and STRIKE font types are handled specially to be compatible with the existing font code, 
so files with extension DISPLA YFONT still work and FONTFILEFORMAT moves the file pointer to the 
appropriately for those two types. For all other (new) types, the type is determined solely from the 
file extension and FONTFILEFORMAT has no side effects. 

When defining a new display font types, you will need to add the new extension to the system list 
DISPLA YFONTEXTENSIONS. 

231 



en·vos REGION 

REGION 

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu) 

REGION facilitates having multiple complex cursor behaviors in a single window without having 
the CURSORMOVEDFNs, CURSORINFNs, CURSOROUTFNs, and BUTTONEVENTFNs of the behaviors 
know about each other. In its simplest form it can be used to implement active regions. 

To use, set the various window functions of the window to the REGION window functions and put 
a list of REGION EVENT records on the REGIONEVENTLST property of the window. When the cursor 
moves over the window, REGION checks which region it is in, calls the CURSOROUTFN of the 
previous region and the CURSORINFN of the new region. If regions overlap, then the appropriate 
functions will be called on all regions affected by the mouse event. 

The REGIONEVENTLST property of the window should contain a list of REG ION EVENT records 
which have the fields: 

EVENTREGION 

REGIONBUTTONFN 

REGIONMOVEDFN 

REGIONINFN 

REGIONOUTFN 

REGIONREPAINTFN 

ACTIVEREGION 

REGIONFLAGS 

REGIONUSERDATA 

A REGION record which is the region of the window over which the region 
specific functions will be invoked. 

(WINDOW POSITION REGION REGIONEVENn 

(WINDOW POSITION REGION REGIONEVENn 

(WINDOW REGION REGIONEVENn 

(WINDOW REGION REGIONEVENn 

(WINDOW REGION REGIONEVENn 

Boolean indicating if the region is active or not. 

User defined identification flags. 

User defined field. 

All of the fields in the REGIONEVENT record are optional. If a REGIONEVENT record has a NIL 
EVENTREGION, then it is considered the default REGION EVENT and will be invoked whenever a 
mouse event occurs outside of any other region. 

The REGION window functions are: 

(WINDOWPROP WINDOW 'CURSORINFN (FUNCTION REGIONINFN» 
(WINDOWPROP WINDOW 'CURSOROUTFN (FUNCTION REGIONOUTFN» 
(WINDOWPROP WINDOW 'REPAINTFN (FUNCTION REGIONREPAINTFN» 
(WINDOWPROP WINDOW 'CURSORMOVEDFN (FUNCTION REGIONMOVEDFN» 
(WINDOWPROP WINDOW 'BUTTONEVENTFN (FUNCTION REGIONEVENTFN» 

232 



en·V6S 

The above window properties can be set using the function: . 

(REGION.INIT WINDOW [REGIONEVENTLST SAVE?]) 

REGION 

[Function] 

The REGIONEVENTLSTis a list of REGIONEVENT records to put on the window. If SAVE? is non-NIL, 
the CURSORINFN, CURSOROUTFN, etc. of the window are put into a default region event record 
(one with an EVENTREGION = NIL) and added to the REGIONEVENTLST. The macro: 

(ADDREGIONEVENT REGIONEVENT WINDOW) [Macro] 

can be used to add a REGIONEVENT record onto the current REG ION EVENTLST of WINDOW. 

The REGIONFLAGS field of the REGIONEVENT record consists of whatever atoms the user wishes to 
identify regions with. These allow the user to issue commands such as "turn off all regions marked 
GRAPH", "activate all the MENU regions", etc. 

(ACTIVATEREGIONS FLAGS WINDOW) 

(DEACTIVATEREGIONS FLAGS WINDOW) 

[Function] 

[Function] 

Activate and deactivate all the REGION EVENT records on WINDOW whose REGIONFLAGS have a 
flag in common with FLAGS. If FLAGS is T, activate or deactivates all REGIONEVENT records. 

DISABLEFLG [Variable] 

If set to T, disables all of the region functions for all windows using the REGION module. 
Alternatively, setting DISABLEFLG to a window, or list of windows, disables all the windows using 
the REGION package except for those windows. This allows selectively turning off cursor actions 
on parts of the screen. 

233 



en·vos REMOTEPSW 

REMOTEPSW 

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu) 

Uses: COURIERSERVE, COURIERDEFS 

REMOTEPSW defines a remote process status window facility that runs on top of Courier. The 
remote process status window is identical to the local one except that it contains UPDATE (to get 
the current process status) instead of BREAK, and INFO is not implemented. Both the client and 
server code are contained in the module which must be loaded on both hosts. The Courier server 
must be running on the host you wish to monitor. 

The only user function is: 

(REMOTE.PROCESS.STATUS.WINDOW HOSn [Function] 

which opens a remote process status window onto HOST, where HOST is any NS host specification 
that COURIER.OPEN accepts. 

221 It 0.52612.1 00127 It 0 

COURIER221#0.52612.100127#137624 
COURIER.LISTENER+124745 

SPP#221#0.52612.100127#5 
COURIER.LISTENER 
LAF I TEMAIL I .... ATCH 

ERIS#LEAF 
\3~'B~'.IA TCHER 

MOUSE 
TE(~; t#2 

TEdit 
:::::::::::::::::::::::::::::::::::::::::::::::::~!!1~:~::::::::::::::::::::::::::::::::::::::::::::::::: 

\N8GATELI8TENER 
\PUPGATELISTENER 

BT 
BTV 
BTV* 
BT\l! 

\ T I r~ER . PROCESS 
BACt-;:GROUND 

".'V H 0 'f' 1'<.1 L L 
K.BD.;- RESTART 
IN F CI " . .'.1 .e.. 1·<. E 

UPD.6. TE SU::::PEND 

234 



en·vos 

RPC 

SUN REMOTE PROCEDURE 
CALLS 

By: JFinger 

RPC 

Supported by Atty Mullins (Mullins.pa@Xerox.com) and Bill Van Melle (vanMelle.pa@Xerox.com). 

This document last edited on August 1, 1988. 

INTRODUCTION 

This module implements SUN remote procedure calls as specified in the Remote Procedure Call 
Protocol Specification. The syntax is oriented toward Lisp users, differing greatly from Sun's C-like 
syntax. 

RPC2 Package 
All functions and variables mentioned in this document are defined as external variables in the 
package RPC2, unless otherwise stated. 

REMOTE PROCEDURE DEFINITITION 
Remote programs are defined via calls to define-remote-program. 

defi ne-remote-program 

name 

number 

version 
protocol 

constants 

inherits 

types 

name number version protocol &key :constants 
:types :inherits :procedures 

[Function] 

Defines parameters and result types of the procedures of remote 
program (number, version, protocol). If successful, returns name, 
otherwise nil. 
a string or symbol that may be used by other procedures (for 
example, remote-procedure-call) to uniquely specify this remote 
program. 
is the proQram number of this program on the remote machine. As 
specified In Sun's Remote Procedure Call Programming Guide, 
programs 0 - #xHffffff are defined by Sun, #x20000000 - #x3fffffff 
are reserved for users, and #x40000000 - #x5ffffff are designated 
as transient. 
a number, is the desired version of remote program. 
an atom,UDP or TCP.( At the moment TCP is not supported under 
Medley 1.0-S). 
a list of pairs «constant-name> <constant-def», where 
<constant-name> is a symbol and a <constant-def> is an XDR 
constant (See XDR Constant Definitions below). 
a list of name's of other remote programs from which types and 
constants are inherited. Inherited types and constants are resolved 
by searching this list in order. 
a list of pairs «type-name> <typedef», where a <type-name> 
is a symbol and a <typedef> is an XDR type definition (defined 
below). 

235 



en·vos 

procedures 

RPC 

a list of 4-tuples of the form «procname> <procnumber> 
<arg-types> <result-types», where <procname> is a symbol or 
string naming the procedure, <procnumber> is the procedure 
number on the remote machine, <arg-types> is a (possibly empty) 
list of XDR type definitions (see below) of the arguments to be 
sent to the remote procedure, and <result-types> is a (possibly 
empty) list of XDR type definitions of data to be returned from this 
remote procedure. 

XDR (EXTERNAL DATA REPRESENTATION) TYPE DEFINITIONS 

Because the client and server machines may represent data in different ways, a data representation 
common to both machines is necessary Remote procedure calls pass data between machines in 
'External Data Representation' (XDR). The XDR language implemented here is oriented toward 
Lisp in its syntax and is not identical to the language spelled out in the Sun XDR Protocol 
Specification. 

XDR data types may be defined in the :types keyword argument for later reference in the :types or 
: procedures of this or later remote programs. When a remote program is defined (usually at load 
time), the needed reading and writing functions are compiled for each constructed type 
referenced. Note that all XDR calls are eventually resolved to a composition of Primitive and 
Constructed XDR Type Definitions (see below). 

SYNTAX 
The keywords of the XDR language may be specified as symbols of the Keyword package. 

All XDR Data Types Definitions (notated here as a <typedef», used in Remote Procedure Calls are 
from the following language: 

1) Primitive Definition: 

2) Constructed Definition: 

3) local Definition: 

One of the types in *xdr-primitive-types*, 
:integer 
: boolean 
:unsigned 
: hyperi nteger 
: hyperu nsi g ned 
:string 
:float (not yet implemented) 
:double (not yet implemented). 

One of the types in *xdr-constructed-types*, 
(:enumeration «symbol-1> <constant-1 » ... 

«symbol-n> <constant-n») 
(:union <enumeration-type> <typedef-1 > ... <typedef-n» 
(:fixed-array <typedef> < constant» 
(:counted-array <typedef» 
(:opaque <constant» 
(:struct <defstruct-type> 
<typedef-1 » ... 

« field-name-1 > 

« field-name n > 
< typedef-n > ) ) 
(:sequence <typedef» 
(:Iist <typedef-1 > ... <typedef-n». 

A symbol defined previously in the same remote program 
definition. . 

236 



en·vos 

4) Qualified Definition: 

5) Inherited Definition: 

XDR CONSTANT DEFINITIONS 

Example: 

RPC 

:types «nrec :unsigned) ... ) says that type 'nrec' is 
really only of type ':unsigned'. 

A dotted pai r of the form « RPC program name> . < type> ), 
where <type> is an XDR type local to < RPC program name>. 

Example: :types «count (myprog . nrec» ... ) says that a 'count' 
is really whatever myprog defines a 'nrec' to be. 

A symbol defined in the :types argument of a remote program R 
such that R is on the list of remote programs passed as the :inherits 
argument to the current remote program definition. The first such 
type definition found is used, that is, the list of inherited programs 
is scanned from left to right. 

Constants in XDR are defined by the following grammar: 

SEMANTICS 

< constant-def > :: = < integer> I < defined-constant> 

< defi ned constant> :: = < locally defined constant> 
; Defined in the Remote Program 
currently being defined. 

I < inherited constant> 
; Defined in a remote program 
inherited by the current Remote 
Program (searched from left to 
right). 

I <qualified constant> 
; A dotted pair «rp> 
<constant», where <constant> 
is defined in remote program 
<rp>. 

An XDR type can be defined by a bidirectional filter mapping a subset of Lisp onto a byte stream 
and vice-versa. 

For the XDR primitive type's filter, a description is given of its argument on the Lisp and XDR sides. 

:integer 

:unsigned 

: boolean 

: hyperi nteger 

Lisp: an integer in range -2,147,483,648 to 2,147,483,648 
inclusive. 
XDR: a 4 byte two's complement integer, high order to low 
order. 

Lisp: an integer in range 0 to 4,294,967,295 inclusive. 
XDR: a 4 byte non-negative integer, high order to low order. 

Lisp: NIL for false, non-NIL for true. (The Lisp symbol T is returned 
when decoding a 1 from the XDR side.) 
XDR: 0 for false, 1 for true. 

Lisp: an integer in range -(263) to 263 -1 inclusive. 
XOR: a 8 byte two's complement integer, high order to low 
order. 

237 



en ·vos 

: hyperu nsi g ned 

:string 

: stri ng-poi nter 

:float 

:double 

:void 

RPC 

Lisp: an integer in range 0 to 264-1 inclusive. 
XDR: a 8 byte non-negative integer, high order to low order. 

Lisp: a string of any length. 
XDR: Suppose the string is of length n. The XDR representation is 
an :unsigned (the string length n), followed by the n bytes of the 
string, followed by enough 0 bytes to make a multiple of 4 bytes. 

(UDPonly) 
Lisp: a dotted pair (addr . nbytes), where addr is a buffer's address 
and nbytes is the number of bytes in the buffer. (Should I add an 
offset argument?). This is a speed hack to avoid having to copy 
VMEMPAGEP~s twice. 
XDR: An XDR :string, as above. 

Lisp: A floating point number. (NOT YET IMPLEMENTED). 
XDR: A 4 byte floating point number in IEEE format. 

Lisp: A floating point number. (NOT YET IMPLEMENTED). 
XDR: A double precision floating point number in IEEE format. 

Lisp: null 
XDR: no bytes. 

For each constructed XDR type, the declaration syntax is given 
along with its corresponding mapping. 

(:enumeration «symbol> <integer» ... «symbol> <integer>)) 
Lisp: a symbol 
XDR: an XDR :integer. 
The Lisp symbol (Each symbol is the "discriminant" for that value of 
the enumeration) and the XDR integer will be from a 
corresponding pair in the declaration. It is an error to try to encode 
a symbol not in the declaration or to try to decode an XDR integer 
for which there is not a corresponding symbol in the declaration. 

(:union <enumeration-type> «symbol-l > <typedef-l » ... «symbol-n> <typedef-n>)) 
Lisp: A list of two elements, the first being a discriminant for the 
enumeration type, and the second the appropriate Lisp 
input/output for the typedef corresponding to that discriminant's 
type .. 
XDR: An :integer discriminant followed by the XDR input/output 
for the typedef corresponding to that discriminant's type. 

(:fixed-array <typedef> <constant» 
Lisp: An array of length <constant>, each element of which is an 
object of type <typedefLisp>. Note that since the function elt is 
used in encoding, any Lisp sequence could be used in place of an 
array. 

(:counted-array <typedef» 

(:opaque <constant» 

XDR: A sequence of <constant> objects of type <typedefXDR>. 

Lisp: A list of two elements, the first of which is an integer (the 
number of objects to be encoded/decoded), and the second of 
which is an array of objects of type <typedefLisp>. 
XDR: An integer (the number of objects to be encoded/decoded) 
followed by that number of objects of type <typedefXDR>. 

Lisp: A string of length <constant>. 

238 



en·vos RPC 

XDR: A sequence of <constant> bytes followed by enough null 
bytes to round <constant> up to a multiple of four. 

(:struct <defstruct-type> «field-name-1 > <typedef-l » ... «field-name n> <typedef-n») 

Lisp: A struct of type < defstruct-type > such that each field 
mentioned in the this XDR declaration has a value. Note that a 
separate defstruct must be executed. The fields need not be named 
here in the same order as those in the defstruct, nor must all the 
fields named in the defstruct be used here. 

(:sequence <typedef» 

XDR: A sequence of objects of types <typedef1 XDR> ... <typedefn 
XDR>. 

This is fashioned after Courier's method for encoding/decoding 
linked lists. This type can often be used to get around clumsy 
recursive definitions involving :union's of enumeration type 
:boolean. 

Lisp: A list of objects of type <typedefLisp>. 

XDR: A sequence of objects, each preceded by an XDR :boolean 
encoding of true. The last object in the sequence is followed by the 
XDR :boolean encoding of false. 

Note: (:sequence <typedef» produces the same encoding (but 
not the same decoding) as 
(defstruct astructure this-element the-rest) 
along with the declaration 

(: recursive (: union :boolean 
(T (:struct astructure 
(this-element <typedef» 

astructure») 
(NIL :void»), 

(the-rest 

(:Iist <typedef-1 > ... <typedef-n» 

(:skip < unsigned» 

Lisp: A list, the ith element of which is of type <typedefi Lisp>. 

XDR: A sequence of objects, the ith of which is of type <typedefi 
XDR>. 

(For decoding only) 

Lisp: Nothing 

XDR: Any n bytes of data, where < unsigned> = n. 

Note: This is a klooge for not havi ng to decode the fattr's that N FS 
returns with every single cotton-pickin' memory read. 

EXAMPLE OF A REMOTE PROGRAM DEFINITION 

The following call to define-remote-program defines the portmapper remote procedures 
described in Sun's Remote Procedure Call Specification. Note that there are two definitions of 
procedure 4 given. Since remote procedures may be invoked by name, it is reasonable for there to 
be more than one definition for how to decode and encode the arguments to a given routine. In 

239 



en·vos RPC 

this case, both a recursive and non-recursive definition is given for the values returned from 
procedure 4. Note also that mapstruct and mapsequence must be defstruct'ed before this call to 
define-remote-procedure. 

(define-remote-program 'portmapper 100000 2 'udp 
:types '( (mapstruct (:union :boolean 

(nil :void) 
(t (:struct mapstruct 

(program :unsigned) 
(vers : unsigned) 
(prot: unsigned) 
(port: unsigned) 
(therest mapstruct»») 

(mapsequence (:sequence (:struct mapsequence 
(program: unsigned) 
(vers : unsigned) 
(protocol: unsigned) 
(port: unsigned»») 

: proced u res 
'( (null 0 nil nil) 

(lookup 3 (:unsigned :unsigned :unsigned :unsigned) 
(: unsigned» 

(gooddump 4 nil (mapsequence» 
(dump 4 nil (mapstruct» 
(indirect 5 (:unsigned :unsigned :unsigned 

:string) 
(: unsigned :string»» 

UNDEFINING REMOTE PROGRAMS 

undefine-remote-program name number version [Function] 

MAKING REMOTE PROCEDURE CALLS 

remote-procedure-call 

destination 

program 

procid 

destination program procid arglist 
&key destsocket version credentials protocol 
dynamic-prognum dynamic-version 
msec-until-timeout msec-between-tries noerrorflg 

[Function] 

Performs a remote procedure call to program on destination. 
Returns a list of the returned values. 

Designates the host to which the procedure call is made. If 
Destination is a number it is interpreted to be the 
il:iphostadress of the host; if a symbol or string, it is a name from 
which the net address of the host may be found. 

Designates the remote program to be called. If Program is a 
number, it is interpreted to be the remote program number. If a 
symbol, in which case it is assumed to be the name of the remote 
procedure (as defined in define-remote-procedure. If :version is 
non-nil, then program is treated as a number rather than as a 
name. If version is nil and program is a number, then the latest 
version of that program is used. 

Designates the procedure number from program to be called. If 
Procid is a number it is interpreted to be the remote procedure 
number; if a symbol, it is the name given that procedure in 
defi ne-remote-proced u re. 

240 



en-vas 

arglist 

:destsocket 

:version 

:credentials 

: protocol 

:dynamic-prognum 

:dynamic-version 

: msec-unti I-timeout 

: msec-between-tri es 

:errorflg 

RPC 

A list of the arguments to be serialized into XDR representation and 
passed as the arguments of the remote procedure call. 

Normally, the remote socket must be looked up in the local caches 
(See *rpc-socket-cache* and *rpc-well-known-sockets*) or else 
found by making a call to the Portmapper on the remote machine. 
If :destsocket is non-nil, its value is used as the remote socket. 

If non-nil designated the desired version of program as well as 
causing program to be interpreted as a number rather than a name. 
See program above. 

An object of type authentication to be passed as the credentials of 
the remote procedure call. (See create-unix-authentication). 

A symbol specifying the transport protocol. Currently only UDP is 
implemented. Defaults to UDP. The only reason for using this 
parameter is to specify (along with the program and version), which 
known remote program is to be used. 

If you really can't live without it, dynamic-prognum is used as the 
remote program number in spite of treating the arglist and 
returned values exactly as in program. Don't ask why. 

If you really can't live without it, dynamic-version is used as the 
remote program version in spite of treating the arglist and 
returned values exactly as specified in program (and possibly 
version). Don't ask why. Defaults to 1. 

Total number of milliseconds of waiting for a reply packet before 
iiving up on this remote procedure call. Defaults to value of 

rpc-msec-until-timeout* . 

Number of milliseconds between outgoing UDP packets. Defaults 
to *rpc-msec-between-tries*. 

If :noerrors, ignores remote procedure call errors. If :returnerrors, 
returns the error as an s-expression. Otherwise, signals a Lisp error. 
Defaultt. 

LOW-LEVEL REMOTE PROCEDURE CALL FUNCTIONS 

setup-rpc 

open-rpc-stream 

destination program procid 
&optional destsocket version protocol dynamic-prognum 
dynamic-version 

[Function] 

Returns four values destaddr, socket, program-and procedure (Yes, 
this is real,live multiple value return requiring a 
multiple-value-bind or something similar.) for consumption by 
perform-rpc. The arguments to setup-rpc are identical in meaning 
to the identically named arguments to remote-procedure-call. 

protocol destaddr destsocket [Function] 

Returns an rpcstream for use by perform-rpc. Destaddr and 
destsocket are as returned by setup-rpc and protocol is identical to 
the protocol argument to remote-procedure-call. 

241 



en·vos 

cI ose-rpc-stream 

perform-rpc 

RPC 

rpcstream protocol [Function] 

Closes rpcstream, an rpc-stream of protocol protocol created by 
open-rpc-stream. 

destaddr destsocket program procedure rpcstream [Function] 
arglist credentials protocol &key errorflg leave-stream-open 
msec-until-timeout msec-between-tries 

Performs a remote procedure call returning a list of the values 
retruned by the remote procedure. 

LISTING REMOTE PROGRAMS CURRENTLY DEFINED 

I ist-remote-programs 

CREATION OF CREDENTIALS 

create-unix-authentication 

stamp 

machine-name 

uid 

gid 

gids 

GLOBAL VARIABLES 

*xdr-primitive-types* 

*xdr-constructed-types* 

*msec-until-timeout* 

* msec-between-tries* 

*rpc-ok-to-cache* 

[Function] 

Returns a list of 4-tuples (name number version protocol) for each 
remote program currently defined. 

stamp machine-name uid gid gids [Function] 

Returns a lUnix-type authentication suitable for use as the 
credentials of a call to remote-procedure-call or perform-rpc. 

An arbitrary unsigned integer. 

A string containing the name of the calling machine. 

User id number on the remote machine. 

Group id number on the machine. 

A list or array of group id numbers (on the remote machine) that 
contain the caller as a member. 

An a-list of keywords and the corresponding function 
that implements that XDR primitive type. 

An a-list of keywords and the corresponding function 
that generates code to implement that XDR constructed 
type. 

Number of milliseconds before giving up on receiving a 
reply packet. Default 1000. 

Number of milliseconds to wait before resending UDP 
packet. Default 100. 

If non-nil, uses *rpc-socket-cache* as a cache of socket 
numbers found to date. 

242 



en·vos 

*rpc-well-known-sockets* 

*rpc-socket-cache* 

*debug* 

RPC FILES 

RPC 

RPCLOWLEVEL 

RPCOS 

RPCSTRUCT 

RPCCOMMON 

RPCXDR 

RPCRPC 

RPCPORTMAPPER 

KNOWN DEFICIENCIES 

A I ist of well-known sockets. Format is 
( <host address> 

<remote program number> 
<remote program version> 
<protocol> 
<socket> ) 

RPC 

A list of non-well-known sockets. Format is same as 
*rpc-well-known-sockets* . 

If non-nil prints out debugging information. If a number, 
the higher the number, the more information is printed. 
Default nil. 

Sets up the RPC2 Package and loads other RPC files. Loads 
Portmapper remote program definition and executes it. 

Super low-level UDPITCP functions added to Eric Schoen's 
TCPUDP code. 

Low-level interface to Sun OS networking code. 

Structure definitions used by the other files. These are in 
a separate file because they take so long to compile. 

Common lookup functions and stream i/o functions used 
by the other fi I es. 

External Data Representation (XDR). Code Generation 
for XDR constructed types and XDR primitive functions. 

Remote program definition and remote procedure calls. 

Definition of portmapper in UDP and rcp. 

Floating point XDR types are not implemented. 

The view-packet utility is not documented and needs to be smarter about authentications. 

Fall through cases of XDR types UNION and ENUMERATE should be added. 

rcp is not supported under Medley 1.0-S, this should be in the next release. 

COPYRIGHT INFORMA liON 
Copyright (c) 1987,1988 Leland Stanford Junior University and Envos Corporation. 

Written by Jeff Finger under support of National Institutes of Health Grant NIH SP41 RR0078S 

to the SUMEX-AIM Computing Resource at Stanford University. 

Modified to work under Medley 1.0-5 by Atty Mullins. 

243 



en·vos SCREENPAPER 

SCREENPAPER 

By: Larry Masinter (Masinter.pa@Xerox.com) 

SCREENPAPER is an Idle hack ("Screen wallpaper"). Old fashioned wallpaper/wrapping paper from 
your screen. 

Global parameters: 

SCREENPAPERSIZE size of viewport, initially 64. 

SCREENPERIOD how often to go into reflective move 

SCREENREPEAT how long to stay in reflective mode (initially O. e.g., disable reflective mode). 

244 



en·vos SEdit-Menu-Always 

SEdit-Menu-Always 

By: Matt Heffron (BEC.HEFFRON@ECLA.USC.EDU) 

This package advises the SEdit Editor so that when an SEdit window is opened, the SEdit Attached 
Command Menu is automatically opened as well (depending on the setting of the global variable 
IL:SEditMenuAlwaysFlg). The value of IL:SEditMenuAlwaysFlg is initialized to T as an INITVAR 
when the file is loaded. 

245 



en·vos SETDEFAUL TPRINTER 

SETDEFAULTPRINTER 

By: Nick Briggs (Briggs.pa@Xerox.com) 

The SETDEFAUL TPRINTER module provides a (cleaner) mechanism for moving printer names 
around on your DEFAULTPRINTINGHOST list. There are no user callable functions. Access to the 
features of the module are through the Background menu. This module uses the 
DEFAULTSUBITEMFN module which redefines the DEFAULTSUBITEMFN used in menus to accept an 
expanded form for menu subitems. 

Set Default Printer [Background Menu Entry] 

Selecting the "Set Default Printer" item off the background menu will prompt you for a new 
default printer, which will be added at the beginning of the DEFAUL TPRINTINGHOST list. If you 
roll-out into the subitems for Set Default Printer it will present a submenu with the entries on 
DEFAULTPRINTINGHOST, and an "Other ... " item. Selecting one of the printer name entries will 
cause it to be moved to the front of DEFAULTPRINTINGHOST, selecting "Other ... " will prompt for 
the name of a printer in the same manner as selecting the "Set Default Printer" top level item off 
the background menu. If any commentary information has been supplied (see below) holding the 
mouse over the printer name will display the information in the prompt window. 

SDP.PRINTERINFO 

Sn.~.p 
E::(ec 
CH.~T 

TEdit 

[Variable] 

The variable SDP.PRINTERINFO is an A-list which will be used to lookup commentary information 
about a printer to be included as the "help" in the menu subitems. The UPPERCASE name of the 
printer is used as a key. An example SDP.PRINTERINFO setting might be 

( (QUAKE 
1532"» 

LOCATION 

"Press, Rm 1532") (PENTELPS:PARC:XEROX "Interpress, Rm 

[Property] 

The code that looks up the commentary information about a printer will also check for a 
LOCATION property on the UPPERCASE atom which is the printername if no entry is found on 
SDP.PRINTERINFO. For example 

(PUTPROP 'JED! 'LOCATION "FullPress, Pod 5, 2nd floor") 

Would describe the location of printer Jedi. 

246 



en·V6S 

SHOWTIME 

By: Timothy Bigham (TBigham.henr@Xerox.com) 
Medley mods by: Ron Fischer (Fischer.PA@Xerox.com) 

Uses: BITMAPFNS, SCALEBITMAP, READBRUSH 

This document last edited on May 13,1988. 

INTRODUCTION 

SHOWTIME 

SHOWTlME provides a user interface to read, write, and edit bitmaps in several different formats. 
Among the supported formats is RES, used in VIEWPOINT Freehand Graphics. Other supported 
formats include Brush (Mesa Doodle format); and Lisp. 

SHOWTIME has been written to readily accomodate new formats. Users may add new formats to 
Showtime by writing format-specific read and/or write functions and adding them to those 
Showtime knows about (described below). 

Selecting SHOWTIME from the background will provide the user the opportunity to specifiy and 
area to use as the SHOWTIME window. After the user creates a SHOWTIME window, a left mouse 
button within the window will popup a menu of available options. There may only be one bitmap 
displayed in a SHOWTIME window at a time, but any number of SHOWTIME windows may be 
opened. Shrinking a SHOWTIME window will create an icon with the name of the bitmap that is 
displayed in the window. 

Functions. Variables, and Lisp Code Examples 

SHOWTIME.FORMAT.FNS [Variable] 

A global association list that maintains a list of all the formats Showtime knows about and the read 
and write functions to use with those formats. This variable should be updated by calling the 
function SHOWTIME.ADD.FORMAT to ensure successful integration of any new bitmap formats. 

SHOWTIME.DEFAULT.FORMAT [Variable] 

A variable that is initially set to 'LISP. This format uses the binary storage routines found in the 
lispusers module BITMAPFNS. 

(SHOWTIME.ADD. FORMAT FORMAT READFN SAVEFN ) [Function] 

A function that should be called when the user wants Showtime to know about new bitmap 
formats. FORMAT may be any descri pti ve atom, such as RES or LISP. READFN and SA VEFN must be 
functions that have as the first two arguments FILENAME and BITMAP. In addition, the READFN 
must return a bitmap. 

247 



en·vos SHOWTIME 

For example, the READFN code for LISP format is: 

(LAMBDA (FILENAME) 

(* this function must (1) read a bitmap from a file and (2) return the 
value of the bitmap) 

(READBM (OPENFILE FILENAME (QUOTE INPUT»» 

For example, the WRITEN code for LISP format is: 

(LAMBDA (FILENAME BITMAP) (* TBigham "30-Dec-86 13:09") 

(* this function must write a bitmap to a file) 

(WRITEBM (OPENFILE FILENAME (QUOTE OUTPUT» BITMAP» 

ACKNOWLEDGEMENTS 

SHOWTIME was originally developed to provide a user interface in the exchange of bitmaps 
between the VIEWPOINT and INTERLlSP-D environments. Tom Wall initiated the idea to exchange 
bitmaps between these environemts and was instrumental in developing the code to write RES 
files. Gary Gocek originally wrote the code to read RES files; Mitch Garnaat wrote the code to 
write BRUSH files; reading brush files is supported by the lispusers module READBRU5H written by 
Larry Masinter. The SHOWTIME icon was designed and created by Mary Baecher-Cocca. 

248 



en·vos 

SIMPLECHAT 

By: Larry Masinter (Masinter.PA@Xerox.COM) 

This document last edited on Sept. 8, 1988. 

INTRODUCTION 

Uses: TEOIT 

SIMPLECHAT 

Like CHAT except that it works in the current window/exec instead of spawning a new window. To 
exit from TTYCHAT there is an escape character, control-right-bracket ( i D. If you type i], you get 
prompted for a Chat command. This can be one of Binary, Text, or Close. Normally TTYCHAT 
translates incoming characters and converts EOL; setting Binary mode disables this. Close will close 
the connection. 

MODULE EXPLANATIONS 

The CHATSERVER module advises CHAT to use TTYCHAT when the main "terminal" is not the 
display. This allows one to use the Lisp system as a "protocol translation gateway"; for example, on 
a Sun with CHATSERVER-NS loaded, you can Chat to the Sun using NS and then use UNIXCHAT to 
CHAT(SHELL). 

(TTYCHA T &optional host logoption) [Function] 

249 



XEROX SOLID-MOVEW 

SOLID-MOVEW 

By: Lennart L6vstrand 
(Lovstrand.EuroPARC@Xerox.COM) 

This document last edited on May 13, 1988. 

INTRODUCTION 

This module changes the behaviour of MOVEW when no destination is given to let the whole 
image of a window track the mouse instead of just its outline. To avoid flickering and to give an 
illusion of a smooth animation, all rendering operations are done off the screen, ending with a 
single bitblt to the frame buffer for each cycle. This can easily be done on small windows such as 
icons, but the more bits there are to be moved, the longer it takes to do the animation updates and 
the slower it becomes to solidly move windows. Therefore, the user can control when solid vs. 
outline moving is to be done by setting *SOLIO-MOVEW-FLAG* to an appropriate value. By 
default, only windows containing less than 15,000 pixels will be moved solidly; all other windows 
are moved using the original MOVEW method. 

SOLID-MOVEW interfaces nicely with both ICONW and ATTACHEDWINDOWS by being able to 
move images of arbitrary shape - not just pure rectangles. It also knows about GRID-ICONS and 
can be made to force the icons to snap to grid positions while being moved, thus producing a kind 
of jagged feeling. Finally, a shadow has been added emphasize the 2t-D property of window 
systems and to give a clear indication of when the window is in the process of being moved. 

PROGRAMMER'S INTERFACE 

When loaded, the module replaces the system MOVEW function with its own version and moves 
the original code to ORIGINAL-MOVEW. The control and interaction is then comes through the 
following variables: 

*SOLID-MOVEW-FLAG* [Variable] 

This variable controls whether the new MOVEW should use solid or outline moving. It should have 
one of the following types of values: 

a NUMBERP Only use solid moving on windows that have a total size (width x height) less 
than or equal to the given number of pixels. 

a POSITIONP Only use solid moving on windows that have a width and height less than or 
equal to the two numbers. 

ICON Only move icons solidly. A window is considered to be an icon if it either has 
an ICONFOR or an ICONIMAGE property. 

T Move all windows solidly. 
NIL Move all windows using outlines. 

The default value for *SOLIO-MOVEW-FLAG* is 15000. 

250 



XEROX 

*SOLI D-MOVEW-SHADOW* 
*SOLID-MOVEW-SHADOW-SHADE* 

SOLID-MOVEW 

[Variable] 
[Variable] 

These two variables define whether or not a shadow should accompany the moving image. The 
shadow is always directed towards south-east and the first variable, *SOLID-MOVEW-SHADOW*, 
determines its position by taking on any of the following types of values: 

a NUMBERP The x and y offsets of the shadow (same) 
a POSITIONP The x and y offsets of the shadow (different) 
T Use the default shadow offset - 3 pixels in both directions. 
NIL Don't show a shadow. 

The second variable, *SOLID-MOVEW-SHADOW-SHADE*, sets the darkness of the shadow, ie. the 
texture to be added to the background where the shadow is visible. 

The default values for the two variables are T and 42405, a 50% gray shadow offset by 3 pixels. 

*SOLID-MOVEW-GRIDDING* [Variable] 

When used together with the ICON-GRIDS module, 'SOLID-MOVEW can be made to only move solid 
window images on grid positions, thus creating a kind of "jagged" feeling when interactively 
moving icons on the screen. If this is disabled, the icon will "snap" to the closest grid position only 
after the move has been completed. 

The default value for *SOLID-MOVEW-GRIDDING* is NIL, thus disabling early gridding. 

*SOLID-MOVEW-CASHING* [Variable] 

SOLID-MOVEW uses separate bitmaps for rendering purposes so as to produce a smooth animated 
move and avoid unnecessary flickering on the screen. To speed up the initial phase of the move 
operation, the rendering bitmaps can be cached from one invocation to another. This will use up 
some bitmap space, but can be freed using (GAINSPACE) if need arises. 

The default value for *SOLID-MOVEW-CASHING* is T, thus enabling cached rendering bitmaps. 

(SOLID-MOVEW POSorX y) [Function] 

Because only those windows meeting the requirements of *SOLID-MOVEW-FLAG* will be moved 
solidly, the user has the option of calling SOLID-MOVEW. It takes the same arguments as MOVEW, 
but if either POSorX or Vis specified, control is again turned over to the old MOVEW. 

If you get tired of all this, you can undo the behaviour of SOLID-MOVEW by typing the following 
form into an Interlisp Exec: 

(MOVD 'ORIGINAL-MOVEW 'MOVEW) 

BUGS 

No provision has been made to make SOLID-MOVEW work with color. 
If the window is closed as a side effect of the its MOVEFN or AFTERMOVEFN, it will be reopened 
before SOLID-MOVEW returns 

251 



en·vos SOLITAIRE 

SOLITAIRE 

By: Beau Sheil. Upgraded for Medley by Larry Masinter (Masinter.PA@Xerox.COM) 

The SOLITAIRE package ia a simple graphics demonstration program that plays and animates the 
solitaire card game (known as -Patience- in English speaking countries). Solitaire is a game for 
one, so there is no way to play -against- the machine. SOLITAIRE is most effective as a background 
activity when the machine is doing nothing else, so it is frequently used as an IDLE hack. 

TO USE 

To play once 

(SOLITAIRE SOLOW REPLA y) [Function} 

Plays one hand of solitaire, which it wi" animate in the window SOLOW (which should be at least 
700 by 700, although the program will do its best to adapt). If REPLA Y is T, SOLITAIRE wi" use the 
deck from the previous shuffle, else it wi" deal a new hand. 

To play repeatedly 

(SOLO SOLOW) 

Calls (SOLITAIRE SOLOW) repeatedly. 

The results 

[Function] 

SOLO keeps a record of the frequency of each of its results in the array SOLORESULTS [0 .. 52] which 
it plots at the end of each hand. 

As an IDLE hack 

Loading SOLITAIRE automatically adds SOLITAIRE as an option to the IDLE menu. If chosen, it will 
be given the -whole screen- covering window of IDLE and will use a black background, rather than 
its usual shaded one, to preserve the screen phosphor. Otherwise, its operation is completely 
normal. 

252 



en·vos STARBG 

STARBG 

By: Gregg Foster (Foster.PA@Xerox.COM) 

Upgraded for Medley by Larry Masinter (Masinter.PA@Xerox.COM) 

STARBG creates a random star field for your screen background and and a little flying saucer to 
follow your cursor when it's in space (so it doesn't get lost). It also supplies an alternate IDLE 
function, Cosmos. 

The star field will look something like this: 

The saucer will look like this: 

USAGE 

(STARBG) 

.... ~ . 
. 

[Function] 

STARBG fills a screensized bitmap with random stars, turns the saucer on, and calls 
CHANGEBACKGROUND. If you don't like the star pattern you get, try it again. 

(Cosmos window) [Function] 

Cosmos is puts an evolving universe in a window. It's intended as an IDLE function, but will 
entertain you for hours in any decently sized window. 

(SaucerOn) 

SaucerOn turns the saucer on by changing the CURSORBACKGROUND*FNs. 

(SaucerOff) 

SaucerOff turns the saucer off and sets the BACKGROUNDCURSOR*FNs to NIL. 

253 

[Function] 

[Function] 



en·vos STARBG 

CUSlOMIZA liON 

There are lots of user-settable parameters, all of which have reasonable defaults. Here are some 
of the i nteresti ng ones: 

STARBGParameters [Variable] 

is a list of settable parameters. Most are dotted pairs specifying ranges (e.g. stars3 defaults to (6 . 
70) meaning that STARBG will make 6 to 70 type-3 stars). The others are bitmaps. 

BM1, ... , BMS 

The star bitmaps used to BL T the stars. BM 1 must be a single bit. 

SBM 

The starry screen bitmap. This is reused in subsequent calls to STARBG. 

stars 1, ... , starsS 

Ranges for the 5 kinds of stars. 

constell ati ons 

Range for number of constellations. A constellation is a group of bright stars. 

clusters 

Range for number of clusters. Clusters are tightly globular. 

su perCI usters 

Range for number of superClusters. SuperClusters are clusters of clusters. 

eventPause 

[Variables] 

[Variable] 

[Variables] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

Number of milliseconds to block between events. Larger numbers have the effect of slowing down 
the rate of evolution .. 

changeStars [Variable] 

Will use the IDLE-ing star field as your new background. 

254 



en·vos STEP-COMMAND-MENU 

STEP-COMMANO-MENU 

By: Matt Heffron (BEC.HEFFRON@ECLA.USC.EDU) 

This package changes the function CL: :STEP-COMMAND (used by CL:STEP) to call a new function 
(instead of IL:ASKUSER) to get its commands from a menu attached to the stepping window 
(depending on the setting of the CL:SPECIAL variable IL:*STEP-COMMAND-MENU*). The value of 
IL:*STEP-COMMAND-MENU* is initialized to T as an INITVAR when the file is loaded. The variable 
USER: :*STEP-COMMAND-INVERT-MENU-SHADE* is the shade used to grey-out the attached menu 
when the stepping is not awaiting a command. The menu is attached to the Right edge (at the 
Bottom) of the stepping window. (If there isn't enough room on the Right, it will be attached to 
the Left edge.) The menu is detached and closed when the stepping level which first attached it is 
exited. 

255 



en·vos STORAGE 

STORAGE 

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu) 

STORAGE implements a bar-graph version of the Lisp STORAGE function, providing a visual 
summary of the amount of storage allocated to each data type. 

(SHOWSTORAGE [PAGETHRESHOLD MODE ROTA TlON]) [Function] 

Displays the storage allocation of Lisp data types in bar graph format: 

Datatype Storage by ITEM count, threshold = 4 

All the arguments are optional. PAGETHRESHOLD is the same as for the STORAGE function and 
defaults to 1. MODE determines what to display and can be one of the followi ng: 

ITEM 
PAGE 
BOX 

The number of items of each type that have been allocated (the default mode). 
The number of pages allocated for each type. 
The number of times each type has been allocated (see BOXCOUNT in the IRM). 

The mode can be changed when the window is open by clicking with the middle mouse button. 
Clicking in the window with the left mouse button will update the window. When the window is 
redisplayed (using the standard window menu or REDISPLA YW) it will add new data types that 
have been defined since the window was last redisplayed. 

For the ITEM and PAGE modes, the black part of the bar represents the number of items or pages 
currently in use. The gray part of the bar represents the number of free items or pages. The total 
length of the bar represents the total number of items or pages. 

256 



en·vos STORAGE 

The ROTATION argument can be one of NIL (use the rotation of the SHOWSTORAGEFONT), 0 
(labels from bottom to top on the right, bars grow to the left) or 90 (labels from left to right and 
bars grow down). 

The display is controlled by the following global variables: 

SHOWSTORAGEWINDOWSIZE [Variable] 

The width or height (depending on the rotation) of the window, initially 275 (pixels). The bars 
truncate at the edge of the window; the window can be reshaped to put the longer bars in 
perspecti ve. 

SHOWSTORAGEIGNORE [Variable] 

A list of data types to ignore. The information for the data types initially on this list is incorrect 
and/or their inclusion breaks the program. 

SHOWS TO RAG E DE FAU L TTH RESHOLD 

The default threshold used when PAGETHRESHOLD is NIL, initially 1 (page). 

SHOWSTORAGEPRIN2FLG 

[Variable] 

[Variable] 

Flag that causes PRIN2 to be used instead of PRIN 1 when printing data type names (PRIN2 will 
include package names), initially NIL. 

SHOWSTORAGEFONT [Variable] 

The window font, initially one of Helvetica 5 through 10, i.e. the smallest that can be found when 
the file is loaded. The default font has a rotation of 90 degrees. 

257 



en·vos SYSTATS 

SYSTATS 

By: Johannes A. G. M. Koomen 
.(Koomen.wbst@Xerox or Koomen@CS.Rochester) 

This document last edited on: October 28, 1987 

SUMMARY 

SYSTATS provides a functional interface to system statistics such as PageFaults, DisklOTime, etc. 
Statistics are maintained in objects of type SYSTATS. Functions are provided to fetch values from 
these objects, and to update the objects to reflect the current system state or to compute 
differences. This facility provides a Lyric alternative to the (undocumented) MISCSTATS functions 
in Koto. 

DESCRIPTION 

SYSTATSPROPS 

A list of statistics maintained by SYSTATS. Changing it does not alter SYSTATS behavior. 

(SYSTATSPROP prop fromstats) 

[Variable] 

[Function] 

If fromstats is NIL, the internal SYSTATS object is updated and used. Retuns the value of the 
statistic named by prop, which must be a member of the variable SYSTATSPROPS. 
Caveat: The value returned is a FIXP which is an element of the fromstats object and which, for the 
sake of performance, is reused during a SYSTATSREAD on the fromstats object. Note that there is 
an implicit SYSTATSREAD on the internal SYSTATS object if fromstats is NIL. 

(SYSTATSREAD intostats fromstats) [Function] 

If intostats is NIL, it is set to a newly created SYSTATS object. If fromstats is NIL, the internal 
SYSTATS object is updated and used. Copies system statistics from fromstats into intostats. Retuns 
intostats. 

(SYSTATSDIFF oldstats newstats difstats) [Function] 

If oldstats is NIL, the internal SYSTATS object is updated and used in its place. If newstats is NIL, the 
internal SYSTATS object is updated and used in its place. If difstats is NIL, it is set to a newly created 
SYSTATS object. Computes the statistics differences between oldstats and newstats, and places the 
results in difstats. Retuns difstats. 

(CLOCKTICKS interval timerunits) [Function] 

Returns the (machine dependent!) number of internal clock ticks over the interval. For instance, on 
the D'Lion, (CLOCKTICKS 2.5 'MINUTES) = 5211900. 

258 



en·vos TALK 

TALK 

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu) 

Uses: Various editor and network protocol modules. 

TALK allows users to hold conversations between machines across the Ethernet. TALK uses various 
services (TTY, TEdit and Sketch) and network protocols (NS and IP). 

TALK FILES 

TALK (TEdit) 

Howd~l , 
did you finally get these to load? 

/80:-: 
/"<~ C1 RCLE .. ~ 

ELEMENTS~ POL ..... GON 
... ---........ ,-- SPLI t~E 

-"TE:<T 

No I haven~t, where are they! 
(NS) Talk from Christopher D. Lane: 

Greet i ngs, 
not yet. Did you see the new bitmaps: 

They're in the IMAGES directory. 

Disconnect RinQBelis ~""'essa!_ e 

Talk's services and protocols are now in separate files which may be loaded independently: 

TALK The main Talk module. 

Services 

TTYTALK 
TEDITTALK 
SKETCHTALK 

Protocols 

Simple text conversation between machines running Lisp, XOE and Viewpoint. 
Uses TEDIT; allows the full capabilities of the TEdit editor in a conversation. 
Uses SKETCH; allows a conversation using the Sketch graphics editor. 

NSTALK Uses COURIERSERVE (and optionally NSTALKGAP); allows XNS protocols. 
NSTALKGAP Used by NSTALK if the GAP Courier program has not been defined (by NSCHAT). 
IPTALK Uses TCP and TCPUDP; allows conversations using IP protocols. 

259 



en·vos TALK 

Any Talk service can be used with any Talk protocol. The preferred order of loadi ng is: 

(FILESLOAD TALK TEDITTALK TTYTALK SKETCHTALK NSTALK IPTALK) 

dropping out those services/protocols you do not use. Order of loading determines which 
services/protocols are tried first; the files may be loaded in any order to force different priorities. 

USING TALK 

(TALK [USER. OR. HOS TNA ME SERVICE PROTOCOL)) [Function] 

Starts a TALK session; USER.OR.HOSTNAME, SERVICE and PROTOCOL are optional. If not supplied, 
USER.OR.HOSTNAME is prompted for (either by menu or typein or both). If SERVICE and 
PROTOCOL are not supplied (the usual case) , TALK will figure out which to use based on what is 
available on the local and remote machines. The supported services and protocols are described 
below. The service and protocol used are indicated in the title bars of the TALK window. 

TALK returns a process handle if the connection is successfully opened; it returns NIL if the user 
aborts out of the host/user menu and it returns an error message (as a string or list instead of 
breaking) if it cannot contact the remote host (for whatever reason). TALK can also be invoked 
from the background menu. 

TALK MENU 

The menu at the bottom of the TALK window (which is only active while the connection is open) 
contains the following items: 

Disconnect Closes the TALK connection. This is equivalent to closing the TALK window, but leaves 
the window open in case you want to save and/or hardcopy part or all of the session. 

RingBelis Rings the bell on the remote workstation (if possible) and flashes the TALK window 
on the local one to indicate it has done so. This is useful if you have asked a person to 
hold and want to let them know you have returned. 

Message Prompts for and inserts a canned message into the TALK stream. Useful if the phone 
rings and you want to ask the other person to hold with a minimum of time/effort. 
Messages can be added to the list, see the TALK.USER.MESSAGES variable below. The 
TALK window must have the keyboard in order to use this item. 

ERROR MESSAGES 

The TALK function will return one of the following error messages when it fails to start a session: 

Host not found! It could not find host address for the host or user name specified. 

Can't connect to host! The remote workstation does not have the appropriate server 
loaded and/or running or does not have TALK loaded. 

No answer from TALK service! A connection was made, but no one responded (intentionally or 
otherwise). A darkened TALK icon is left on the remote screen to 
log the connection attempt (unless TALK.GAG is non-NIL). 

Unknown service type! 

No services available! 

Unknown protocol! 

An unknown type was given as the SERVICE argument. 

The SERVICE argument was not supplied and it cannot find one. 

An unknown protocol was given as the PROTOCOL argument. 

260 



en·vos TALK 

No protocols available! The PROTOCOL argument was not supplied and it cannot find one. 

Service and protocol errors may indicate additional files need to be loaded. 

RECEIVING TALK 

When your machine is contacted by another via TALK, the following icon will appear on your 
screen, ringing bells, flashing and showing the time, mode (service and protocol) and (when 
possible) the caller's identity: 

- -. 
L.3ne 

1-A.ug 08:01 

lilill 

TEdit(NS) 

If you button the icon with the left or middle buttons, a TALK session will begin. If you either close 
the icon or do not button it (it will go dark (invert) in about 15 seconds if not buttoned) the TALK 
connection will be refused. TALK connections are automatically refused if the TALK.GAG flag is 
non-NIL (settable using the subitem(s) of the TALK item in the background menu). If the machine 
is in IDLE, TALK will wait twice the normal time out for the user to respond. 

If you button a darkened (unanswered) TALK icon, it will try to reconnect you to the caller (after a 
mouse confirm). If a TALK connection comes in from someone who has already left an unanswered 
TALK icon on your screen, the icon will be reused. 

TALK SERVICES 

TEdit 

This service allows you to use the full capabilities of TEdit in your conversation, including: 
correcting mistakes anywhere in the document, changing character and paragraph looks, inserting 
ImageObjects, etc. Along with keyboard input, mouse selections and the caret are also visible to 
the remote user. The GET and INCLUDE commands in the TEdit command menu will load files into 
both the local and remote TEdit windows, so make sure the files are accessible to both. Similarly 
for fonts, if your workstation has to load a font from a server, the remote workstation must also 
have access to the font. Si nce the remote workstation may also need to load the font, you may 
experience communication delays. The TEdit service supports NS character codes and most of the 
1108 and 1186 function keys. 

TTY 

This service is similar to the TEdit service except that the only supported feature is backspace (but 
not across lines). TIY is the only service that can talk with the Talk.bcd program in XDE or the TALK 
application (VPTalk.bcd) in Viewpoint. You do not need to know what type of workstation you are 
contacting when using any of the TALK programs. 

261 



en·vos 

Sketch 

The Sketch service is built on the Sketch graphics editor: 

TALK PROTOCOLS 

NS 

NS) Tall< from Christopher D Lane 

':Of .1·IIT.i:,U 
to ':i QIJ I~!tte-r! 

t·lo. I· ..... e been ·· .. .."orkin9 (in ';lettin9 tt·,j·; one fh ed up: 

I R~IHbl~ I e.'jt~ :. ft~ 3m 

t---='"---

[Ii :.( onne(t 

Delete 
Move 
Copy 
Align 

Change 
" .... T~·.· ... I 

CJ 
~ 
<n 
di:> 

'-rt 
<"8 

Bit image 
Bury 
Undo 

Defaults 
Grid 

HardCopy,­
Get 

TALK 

When NSTALK is loaded, TALK will accept as a host name anything that COURIER.OPEN will accept 
including an NS address or the name of a workstation registered in a Clearinghouse. Additionally, 
user names can be used if the address of the user's workstation is registered under the user's name 
in the Clearinghouse. The following function can be used to register a user and workstation 
correspondence in the Clearinghouse: 

(CH.USER.WORKSTATION USER WORKSTATION) [Function] 

Sets (or changes) the AddressList Clearinghouse property of USER (which must already be a name 
or alias in the Clearinghouse) to be the address of WORKSTATION (an NS address or name). If 
WORKSTA TlON is NIL, the fLinction removes the AddressList property from USER. To use this 
function, you must be logged in (via (LOGIN» as a System Administrator for USER's domain. 

One way to register users would be to go to the individual's workstation, login as the System 
Administrator and evaluate: (CH. USER. WORKSTAT ION 'Use rName \MY. NSADDRESS) 
Note that you cannot use the USERNAME function in this example since the (LOGIN) will change it. 

NSTALK does not require or use NSCHAT, but they do share the Courier program GAP. If both 
NSTALK and the NS CHATSERVER modules are to be loaded, the CHATSERVER should be loaded 
first if possible. NSTALK is designed to allow other types of NSCHAT/GAP servers. The GAP server 
function determines which function to call using the service type requested (TTY = 5, TEdit = 6, 
Sketch = 7) and the entries on the association list GAP.SERVICETYPES which has entries of the form 
(ServiceNumber ServiceName ServerFunction). It is possible to have both NSTALK running and an 
EXEC server by adding appropriate entries to GAP.SERVICETYPES. If a GAP server already exists 
when NSTALK is loaded, it is made the default for all unrecognized service types. 

Although NSTALK loads the COURIERSERVE LispUsers module you do not have to have a Courier 
server running to initiate an NS TALK connection, but you must have one running in order to 
receive an NS TALK connection. 

262 



en·vos TALK 

IP (Interim) 

When IPTALK is loaded, TALK will accept as a host name anything that DODIP.HOSTP will accept, 
including symbolic and numeric IP addresses. User names can be used by adding them as synonyms 
for local workstation hosts in the HOSTS.TXT file. 

The current TALK IP interface is only temporary and will eventually be replaced by one which is 
compatible (for TIY service) with the TALK program which runs under BSD Unix; at that time, the 
allowable username format may be expanded to handle user@host. The current IP interface will 
probably not be compatible with the eventual, Unix-compatible one. 

TALK VARIABLES 

The following variables can be used to affect TALK's default behavior: 

TALK.DEFAULT.REGION = (00500500) [Variable] 

The LEFT and BOTTOM of this region determine where the (initial) TALK icon appears on the 
screen; the HEIGHT and WIDTH are the combined dimensions of the TALK windows (each uses half 
the HEIGHT). If this variable is set to NIL, then the icons start at (0 . 0) and the TALK window region 
is prompted for as needed. 

TALK. USE R. M ESSAG ES [Variable] 

A list of menu items to put up when the MESSAGES item on the TALK menu is selected. Items on 
the list should return strings to be put into the TALK stream. If there is an entry of the form 
(GREETING "message") on this list, it will be printed automatically when a connection is opened. 

TALK.GAG = NIL 

If non-NIL, causes the TALK server to automatically reject any TALK connections. 

TALK.ANSWER.WAIT = 15 

[Variable] 

[Variable] 

The number of seconds the TALK icon remains up before closing and aborting the connection. 

TALK.HOSTNAMES = NIL 

A list structure containing hosts TALK has connected to along with the address used. 

TALK.SERVICETYPES 

[Variable] 

[Variable] 

This list determines which services are tried and in what order. You only need to modify this if you 
wish to force an order other than the one determined by the order files were loaded or you wish to 
add or drop a service. 

TALK. PROTOCOL TYPES [Variable] 

This list determines which protocols are tried and in what order. You only need to modify this if 
you wish to force an order other than the one determined by the order files were loaded or you 
wish to add or drop a protocol. 

KNOWN PROBLEMS 

Talk 

• Since TALK uses the Dove/Dandelion sound generator to help announce a connection, on other 
machines it is difficult for the user to detect connections being made during IDLE. 

263 



en·vos 

TTY Talk 

• The TTY service cannot backspace beyond the left margin (unlike other implementations). 

TEdit Talk 

TALK 

• Sometimes the local and remote TEdit windows will get out of sync as to what the current looks 
are; usually this is not serious. 

• Page layout commands have not been implemented for the remote TEdit window; there are 
probably other commands that do not work either. 

• ImageObject specific manipulations to ImageObjects already in the window do not get 
transmitted to the remote Tedit window. 

• Inserting (other than keyboard input) into a pending delete does not echo correctly on the 
remote Tedit window. 

• A large ImageObject inserted into the TALK window may not be seen by the remote user until 
some text is typed to force the remote window to scroll. The remote user may not see the 
ImageObject at all if it is larger than his window. These are both true of any TEdit window. 

• User scrolling of the TEdit window will not cause scrolling of the remote TEdit window. System 
scrolling of the window (due to insertions and deletions) will be tracked in the remote window. 

Sketch Talk 

• When the TALK window is opened, some sketch menus will be created and then replaced. This is 
due to Sketch not allowing a user to specify both an existing window and an initial menu. 

• When text (or a text box) is entered, only the initial character is seen in the remote window until 
the text is completed and the user buttons some other point in the window. 

• Arrow heads do not show up at all on the remote sketch window. 

• Put of a SKETCHTALK sketch gets into an infinite loop so temporarily you must copy the sketch 
items to another sketch if you wish to save them on a file. 

• If you sweep a control point on a box past the other one (like sweeping one corner of a region 
past the other in RESHAPE), the remote box will not move identically. 

• Since there are no functions to programmatically manipulate grouped elements the Group and 
UnGroup items have been disabled in the Sketch Talk window. 

• For a small number of changes (text fonts, text box brushes and closed wire dashing), the entire 
remote sketch window is redisplayed to make the change visible. 

• Setting the SKETCHINCOLOR flag to a non-NIL value will cause some operations to break. 

Talk with 
:~ Christopher 
r-; 

k~ D. Lane: -­
f-. Connection 

Closed 

264 



en·vos TCPTIME 

TCPTIME 

By: Christopher Lane (Lane@Sumex-Aim.Stanford.Edu) 

Uses: TCP, TCPUDP 

TCPTIME implements time client and server routines under TCPIIP and UDPIIP based on RFC868. 
The following are the user functions; the PROTOCOL argument refers to one of Tep or UDP and 
defaults to the value of RFC868.DEFAULT.PROTOCOL, initially Tep. All arguments are optional: 

(RFC868.SETTIME [RETFLG PROTOCOL) [Function] 

Obtains the time from the network, similar to the \PUP.SETTIME and \NS.SETTIME functions. If 
RETFLG is non-NIL, the time is returned as an integer (as specified in RFC868), otherwise SETTIME is 
called and the new time is printed in the prompt window. Either TCP.TlME.HOSTS and/or 
UDP.TIME.HOSTS (see below) must be set before calling this function. 

(RFC868.START.SERVER [PROTOCOL ASCIIFLG)) [Function] 

Starts a network time server process for the specified (or default) PROTOCOL if one is not already 
running. The ASCIIFLG is discussed below. 

(RFC868.STOP.SERVER [PROTOCOL) [Function] 

Deletes the network time server process for the specified (or default) PROTOCOL if one is running. 

The following variables are used by the functions above: 

RFC868.TIME.PORT = 37 [Variable] 

Used to set the initial value of the protocol specific port variables when the file is loaded. Once the 
file is loaded, changing this variable has no effect, so it must be reset (if necessary) before loading 
the file, otherwise the protocol specific port variables should be reset directly. See TCP.TIME.PORT 
and UDP.TIME.PORT below. 

RFC868.DEFAULT.PROTOCOL = TCP [Variable] 

The default protocol to use when one is not specified. 

BINARY & ASell TIME FORMAT 

Some network software implements the RFC868 standard by returning the printed (ASCII) 
representation of the time, rather than the binary representation as specified'in the RFC. To work 
around this, the ASCIIFLG can be specified when starting a server to indicate that it should output 
the printed representation of the number. Similarly, when getting the time from the network, the 
following is used: 

RFC868.ASCII.OSTYPES = (VMS) [Variable] 

to decide based on the host's operating system whether to read the time as a binary or ASCII 
number. If this variable is set to NIL, the ASCII format is never used. 

The ASCI1 format is currently only supported in the TCP protocol. 

265 



en-vas 

PROTOCOL SPECIFIC FUNCTIONS 

(TCP.SETTIME [RETFLGJ) 

(UDP.SETTIME [RETFLGJ) 

TCPTIME 

[Function] 

[Function] 

Functions called by RFC868.SETTIME which can be called directly. The variables TCP.TIME.HOSTS 
and UDP.TIME.HOSTS must be set to use these functions. 

(TCP.TIMESERVER [ASCIIFLGJ) 

(U DP.TIMESERVER) 

Functions used by RFC868.sTART.SERVER. Can be used directly using ADD. PROCESS. 

TCP.TIME.PORT = RFC868.TIME.PORT 

UDP.TIME.PORT = RFC868.TIME.PORT 

The ports to use in both the client and server functions. 

TCP.TIME.HOSTS 

UDP.TIME.HOSTS 

[Function] 

[Function] 

[Variable] 

[Variable] 

[Variable] 

[Variable] 

Lists of host names and/or addresses (including broadcast addresses) to try to get the time from. 
Host are tried until one responds. 

TCP.SETTIME.TIMEOUT = 10000 

UDP.SETTIME.TIMEOUT = 10000 

[Variable] 

[Variable] 

Length of time (in milliseconds) to wait for a host to respond to TCP.OPEN or UDP.EXCHANGE 
before trying the next one on the list. 

266 



en·V6S TEDITKEY 

TEDITKEY 

By: Greg Nuyens 

Supported by: Jan Pedersen (Pedersen.pa@Xerox.com) 

Uses: KEYOBJ, DlIONFNKEYS 

TEditKey is a module that provides a keyboard interface to TEdit. On a Dandelion, the interface 
takes advantage of the special keys to the left, top, and right of the main keyboard. On a Dorado 
or Dolphin, a window mimicking the Dandelion function keys provides some of the same abilities. 

The abilities provided include allowing the user to alter the caret looks (the looks of characters 
typed in) or the selection looks. These commands are given using the Dandelion function keys 
and/or metacodes. (Metacodes are keys typed while a meta key is held down. The default meta key 
is the tab key; to alter this see" User Switches" below.) Other metacodes and control codes move 
the cursor within the document (beginning/end of line, backlforward a character, up/down a line, 
etc.). 

Thus, many of the special Dandelion keys are made to function in TEdit the way they are labeled. 
The following keys change their behavior once TEditKey is loaded. 

CENTER modifies the justification of the paragraph(s) containing the current selection. If the 
selection was left justified, then hitting the CENTER key makes it centered. Hitting it again 
produces right and left justification. 

BOLD boldfaces the selection. All other properties remain unchanged. Holding the shift key down 
while hitting BOLD will make the selection become un-bold. 

ITALICS italicizes the selection. Shift-ITALICS is the opposite. 

UNDERLINE underlines the selection. Shift-UNDERLINE is the opposite. 

SUPERSCRIPT superscripts the selection by a constant amount. Any relative superscripts (or 
subscripts) are maintained. Thus if "Xi" is selected in "the set Xi is empty" then pressing the 
SUPERSCRIPT button produces "the set Xi is empty." See "User Switches" below for how to set the 

increment. Shift-SUPERSCRIPT is the same as SUBSCRIPT. 

SUBSCRIPT is analogous to SUPERSCRIPT. 

SMALLER decreases the font size of the selection. All relative size differences are maintained. 
E.g., "this is bigger than that" produces "this is bigger than that." Shift-SMALLER (labeled 
LARGER) does the opposite. 

DEFAULTS makes the selection have default looks. N.B.: The default looks can be set to the current 
caret looks by typing shift-DEFAULTS. 

The above keys all affect the caret looks if the keyboard key is held down when they are hit. Thus 
holding down KEYBOARD and then hitting UNDERLINE makes the caret looks be underlined. 

267 



en·vos TEDITKEY 

FONT changes the font of the selection or caret looks according to the following table (to alter this 
table see" User Switches" below): 

Times Roman 

2 Helvetica 

3 Gacha 

4 Modern 

5 Classic 

6 Terminal 

7 Symbol 

8 Hippo 

Thus, to change the font of the selection to Classic, hold down FONT and hit 5. To change the caret 
font to Classic, hold down FONT (to signal the font change) and KEYBOARD (to direct the change 
to the caret looks) then hit 5. Note that this table is part of the menu displayed when the HELP 
button is pressed. 

On a Dorado, middle-blank is the FONT key. 

KEYBOARD applies any changes that occur while this key is down to the caret looks instead of the 
selection. On a Dorado, bottom-blank is the KEYBOARD key. 

AGAIN invokes the redo facility in TEdit. A wide variety of operations can be repeated very simply 
by making a selection, performing an operation (for instance, an insertion), then picking a new 
selection and hitting the AGAIN key. The AGAIN key is an ESCape key, which acts as the TEdit REDO 
syntax class. (See page 20.22 of the Interlisp Reference Manual.) 

OPEN opens a blank line at the current cursor position. OPEN is also used to type a linefeed 
outside of TEdit (for example to the function FILES?). 

FIND prompts the user for a target string, then searches from the selection forward. 

NEXT acts as the TEdit NEXT syntax class. (It goes to the next field to be filled in. These fields are 
marked as follows: > >text to be substituted < < .) 

shift-NEXT transfers the TTY (which window will receive typed characters) to the next window 
which can accept typein. Thus one can cycle through the open text windows (mail windows, top 
level lisp windows, TEdit windows, etc.) without using the mouse. 

EXPAND expands TEdit abbreviations. (See page 20.31 of the Interlisp Reference Manual.) 

HELP displays a menu of the keybindings until a mouse key is clicked. 

UNDO acts as the TEdit UNDO syntax class. Note that it still retains its TELERAID function as does 
STOP. There are TEditKey operations (such as Transpose Characters) that are implemented with 
multiple TEdit operations. Since TEdit will UNDO only single operations, it does not fully UNDO 
these operations. 

RightArrow enters \, and I when shifted. (Recall that AGAIN is an escape key.) 

268 



en·vos TEDITKEY 

MARGINS indents the margins of the paragraph selected. Shift-MARGINS exdents the margins. If 
the right margin is a floating margin, it is left unchanged. To control the amount by which the 
margins are moved, see II User Switches. II 

As well as the previous functions available on the Dandelion's special keys, the following functions 
are available on the standard keyboard (thus usable on the Dandelion, Dolphin, and Dorado). Each 
function is shown with the key that invokes it (in conjunction with the control (denoted i) or meta 
(denoted #) key). Thus, for the sixth entry, holding down the metakey and hitting f (or II F") would 
move the caret one word forward. (To find out how to get a metakey see "User Switches" below.) 

#1 defaults the caret looks 

# = queries caret looks 

#9 smaller caret font 

#0 larger caret font 

i b back character 

i f forward character 

#b back word 

#f forward word 

i p previous line 

in next line 

i a beginning of line 

i e end of line 

# < beginning of document 

# > end of document 

#s select whole document 

i k kills line (delete from caret to end of line) 

i 0 opens line 

i d deletes character forward (also on shift backspace) 

#d deletes word forward (as always i w deletes word backward) 

i t transposes characters 

#[ indents paralooks. Also available on the MARGINS key 

#] exdents paralooks. Also available as shift-MARGINS 

#j justification change (same as CENTER key) 

#u uppercases selection 

#c capitalizes selection 

#1 "lowercases selection 

#0 inserts object into document 

269 



en·vos TEDITKEY 

#1 shows keybindings (same as HELP) 

#r restores the display 

Note that the positions of any of these functions can be individually changed using 
TEDIT.SETFUNCTION (see page 20.30 of the Interlisp Reference Manual). For wholesale 
customization see "User Switches" below. 

INTERRUPTS 

Any operation can be aborted by typing the STOP key. This can be used to abort font changes, 
GETs, PUTs, etc. A stronger form of interrupt is available as shift-STOP, which prompts the user for 
a menu of processes to interrupt. 

i G is available as a synonym for hitting the STOP key within TEditKey. Outside of TEdit, however, 
i G will continue to have the meaning specified in the user's init file. This is often the HELP 
interrupt, which acts as shift-STOP. 

Users who are accustomed to typing i E as a soft interrupt should note that i E moves to the end 
of the line. As discussed above, hitting the STOP key (or equivalently, typing i G) accomplishes 
what i E did. 

Since i H is defined to be the Backspace action in TEditKey, users cannot type i A to erase 
characters even outside of TEditKey (Interlisp-D currently does not allow multiple backspace 
characters). 

In addition to the changed functionality mentioned above (provided courtesy of TEditKey), the 
user should be aware of the following standard Interlisp-DITEdit behavior: 

SAME operates as a LooksCopy mode key. First make a selection. Now to copy the looks from 
some other text simply hold down the SAME key, then select the source for the looks. (Paragraph 
looks can be copied the same way, but by making the final selection while in the left margin. This 
is the standard way to select a whole paragraph in TEd it.) 

MOVE and COpy act as mode keys for the selection mechanism. Thus the user can select the 
destination, then hold down the MOVE key and make a second selection. This selection will be 
moved (or COPY'd depending on the mode key used) to the (original) caret position. 

CONTROL operates as a mode key to signal deletion. This means that holding down the CONTROL 
key and selecting some text will delete that text when the CONTROL key is released. 

DELETE deletes the current selection when pressed. 

DORADO EQUIVALENTS 

Dandelion Key: 

OPEN 

SAME 

FIND 

AGAIN 

DELETE 

COpy 

Equivalent key on Dorado: 

i 0 (or i a) 

META 

finds item in TEdit menu 

ESC 

DEL 

SHIFT 

270 



en·V6S 

MOVE 

PROP'S 

NEXT 

EXPAND 

HELP 

MARGINS 

FONT 

KEYBOARD 

UNDO 

STOP 

shift-STOP 

CTRL-SHIFT 

META or LOCK depending on switches 

#n (or #N) 

j x (or j X) 

#1 

#[ (unnest (which is shift-MARGINS on the Dandelion) is #] } 

top blank 

middle blank 

bottom blank 

jG 

# j S (intentionally difficult to type accidentally) 

TEDITKEY 

The function keys (CENTER, BOLD, etc.) are all available on the function key window brought up 
when TEditKey is loaded on a Dorado. 

Note that the function key window can be rebuilt on a Dorado by selecting "Function Keys" in the 
default TEdit menu (obtained by buttoning in the title bar of a TEdit window). 

USER SWITCHES 

TEDITKEY.METAKEY The user must choose a metakey to make use of TEditKey. The value of the 
variable TEDITKEY.METAKEY is the name of the key that will be your metakey. For instance to 
make TAB (the default) your metakey, (SETQ TEDITKEY 'TAB) before loading TEditKey. (Note that 
even in the standard system, TAB is available as Control-I). 

NOTE: METASHIFT (see page 18.9 of the Interlisp Reference Manual) is redefined to operate on 
TEDITKEY.METAKEY instead of on the bottom-blank key of the Dorado. 

The operation of TEditKey is controlled by the following (lNITVARed) variables: 

TEDITKEY.LOCKTOGGLEKEY is the key that will be turned into a lock-toggle. If it is non-NIL, that 
key is set to act as a lock-toggle. Thus hitting this switches the case of the type-in. For those users 
who have removed the spring from their lock key, TEDITKEY.LOCKTOGGLEKEY is usually PROP'S. 
The action of LOCK is then made to be '(CTRLDOWN. CTRLUP) providing the user with a control key 
where LOCK is located and a lock toggle where PROP'S is located. 

TEDITKEY.FONTS is an eight-element list of the fonts that are invoked by meta-1 through meta-8. 
The defaults are listed above. 

TEDIT.DEFAULT.CHARLOOKS defines the looks that result when the DEFAULTS key is pressed or 
when default caret looks are requested. It is an instance of the CHARLOOKS datatype. To preset it, 
for instance, to TIMESROMAN 10 type the following to the Lisp top level. 

(SETQ TEDIT.DEFAULT.CHARLOOKS (CHARLOOKS.FROM.FONT (FONTCREATE 'TIMESROMAN 10») 

However, a much simpler method is to select an instance of the desired looks and type 
shift-DEFAU L TS. 

TEDITKEY.VERBOSE if T (the default), the functions that modify the caret looks print feedback in 
the (TEdit) prompt window. 

271 



en·vos TEDITKEY 

TEDITKEY.NESTWIDTH is the distance (in points) that the indent and exdent functions move the 
margins. Initially 36 points (0.5 inches). 

\TK.SIZEINCREMENT is the amount (in points) which the LARGER function increases the selection 
(and conversely for SMALLER). Initially 2 points. 

TEDITKEY.OFFSETINCREMENT is the amount (in points) which the SUBSCRIPT function raises the 
selection (and conversely for SUPERSCRIPT). Initially 3 points. 

TEDITKEY.KEYBINDINGS is the list that controls the mapping of keys to functions for the functions 
that are common to the Dandelion, Dorado, and Dolphin. It consists of triples of function name, 
list of CHARCODE-style character specifications, and a comment describing what the function does. 
(The comments are used by the automated menu-building tools and their inclusion is encouraged.) 

TEDITKEY.DLlON.KEYACTIONS is the list that specifies the key actions of the non-Alto keys (to the 
left and right) on the Dandelion. It is the format acceptable to MODIFY.KEYACTIONS (see page 
18.9 of the Interlisp Reference Manual). 

TEDITKEY.DLlON.KEYBINDINGS is the list specifying the functions to be tied to the characters 
generated from above. The keynames in the CAR of each element are comments. Note that 
TEDIT.DLlON.KEYACTIONS and TEDIT.DLlON.KEYBINDINGS must be coordinated (similarly for 
TEDITKEY.FNKEYACTIONS and TEDITKEY.FNKEYBINDINGS). 

TEDIT.DLlON.KEYSYNTAX is the list of syntax classes to be applied to the Dandelion keys. 

TEDITKEY.FNKEYACTIONS is the list that specifies the keyactions of the function keys (center, bold, 
etc.). 

TEDITKEY.FNKEYBINDINGS is analogous to TEDIT.DLlON.KEYBINDINGS but for the function keys. 

TEDITKEY.DORADO.KEYACTIONS are the keyactions unique to the Dorado (and Dolphin). 

TEDITKEY.DORADO.KEYSYNTAX is analogous to TEDIT.DLlON.KEYSYNTAX. 

The previous variables in conjunction with the following functions specify the effect of TEditKey. 

(TEDITKEY.lNSTALl readtable) invokes the keyactions and bindings as specified by the above 
variables on readtable. (Readtable defaults to TEDIT.READTABLE). 

(\TK.BUllD.MENU) is a function that automagically builds the help menu from the values of the 
above variables. 

272 



en·vos TILED-SEDIT 

TILED-SEDIT 

By: Johannes A. G. M. Koomen 
(Koomen.wbst@Xerox or Koomen@CS.Rochester) 

This document last edited on: September 23, 1987 

SUMMARY 

TILED-SEDIT is a facility for automagically positioning SEdit windows according to a specified 
pattern. SEdit windows appear in any of the four corners of the screen, with overlapping windows 
slightly offset so they can still be brought to top (by clicking on them). Users can specify which 
corners, in what order, how thick a margin around the screen, and the size of the offset. 

DESCRIPTION 

(TILED.SEDIT.RESET Tiling-Order XShift YShift Screen) [Function] 

If Tiling-Order is NIL, this resets the SEdit window tiling facility, and SEdit reverts back to its old 
behavior (i.e., prompting for a window region). Otherwise Tiling-Order should be either T or a 
keyword or an arbitrarily long list of keywords from the following set {:TL :TOP-LEFT :TOP.LEFT 
:TOPLEFT :BL :BOTTOM-LEFT :BOTTOM.LEFT :BOTTOMLEFT :TR :TOP-RIGHT :TOP.RIGHT 
:TOPRIGHT :BR :BOTTOM-RIGHT :BOTTOM.RIGHT :BOTTOMRIGHT}. If Tiling-Order is T, the list 
'(:TL :BL :TR :BR) is assumed. SEdit will place new windows in the corners specified by 
Tiling-Order (which is indefinitely repeated if necessary). 

If a new SEdit window would overlap an existing SEd it window, the new one is offset by XShift 
pixels right and YShift pixels down. XShift and YShift default to 15. Tiled.SEdit will compute the 
tile size and placement on the basis of the region Screen such that you can go three times through 
the default four corner loop before the right or bottom windows start crossing the edge of Screen. 
If Screen is neither a region nor a fixp, Screen defaults to 25. If Screen is a fixp M, Screen is assumed 
to be (CREATEREGION M M SCREENWIDTH-M SCREENHEIGHT-M). The default setting leaves room 
enough for a scrollbar on the left and the bottom. 

Invoking TILED.SEDIT.RESET with a non-NIL Tiling-Order will cause all currently open SEdit 
windows to be repositioned according to Tiling-Order. 

EXAMPLES 

(TILED.sEDIT.RESET T) [Function] 

This is executed when you load TILED-SEDIT. It provides for automatic SEdit window creation in 
the corners Top Left, Bottom Left, TopRight, Bottom Right, Top Left, Bottom Left, ... Each time 
around the loop windows are shifted 15 pixels to the right and downward. A 25 pixels margin is 
preserved at the left and bottom edge of the screen. 

(TILED.SEDIT.RESET :TL) [Function] 

This causes SEdit to create windows in the TopLeft corner only. Each new window is shifted 15 
pixels to the right and downward. A 25 pixels margin is preserved at the left and bottom edge of 
the screen. 

273 



en·vos TILED-SEDIT 

(TILED.SEDIT.RESET '(:TR :BR) NIL 35) [Function] 

This causes SEdit to create windows in the TopRight and BottomRight corners only. Each time 
around the two corner loop windows are shifted 15 pixels to the right and 35 pixels downward. 
This has the advantage that the title of each SEdit window remains visible, but the disadvantage 
that each window is smaller. A 25 pixels margin is preserved at the left and bottom edge of the 
screen. 

CAVEAT 

TILED.SEDIT.RESET is independent of SEDIT.RESET. It will not invoke SEDIT.RESET, nor does it 
require that all SEdit windows are closed prior to invocation. It is strictly used for controlling the 
window tiling. 

274 



en·vos TRAJ ECTORY -FOLLOWE R 

Trajectory-Follower 

By: D. Austin Henderson, Jr. (AHenderson.pa@Xerox.com) 

INTRODUCTION 

Trajectory-Follower provides a function which causes a "snake" to crawl along a trajectory. 
Comments on both interface and functionality are welcomed. 

FUNCTIONS 

(TRAJECTORY.FOLLOW KNOTS CLOSED N DEL A Y BITMAP WINDOW) [Function] 

The trajectory is specified by KNOTS (a set of knots) and CLOSED (a flag indicating whether it is an 
open or closed curve). N is the length of the snake in points along the curve. DELA Y is the time (in 
milliseconds) between each move along the curve; DELAY = 0 or NIL means go as fast as you can. 
BITMAP is the brush to be used at each point in creating the snake. WINDOW is the window in 
whose coordinate system the knots are given and in which the snake is to be drawn; if NIL, then 
the SCREEN bitmap is used. The snake is moved by INVERTing the bitmap at the points along the 
curve, and then INVERTing the bitmap back out again. 

Examples 

A demonstration function is also provided with the module: 

(TRAJECTORY. FOLLOWER.TEST) [Function] 

Interacts with the user through prompting in the promptwindow to gather up arguments for 
TRAJECTORY.FOLLOW and then carries it out. Closed curves are snaked around repeatedly until 
the left shift key is found depressed when it reaches the curve's starting point. 

Internal Functions 

The internal functions used by this module are also available for use. They are: 

(TRAJECTORY.FOLLOWER.SETUP WINDOW N DELA Y BITMAP) 

Initializes drawing variables. 

(TRAJECTORY.FOLLOWER.POINT X YWINDOW) 

[Function] 

[Function] 

Defines the next point on the curve. Note that the argument structure of this function is 
appropriate for use as a BRUSH with the curve drawing functions DRAWCURVE, DRAWCIRCLE, and 
DRAWELLIPSE. (For an example, see the demonstration function TRAJECTORY. FOLLOWER.TEST) 

(TRAJECTORY. FOLLOWER.WRAPUP) [Function] 

Finishes the job after all the points have been defined. 

275 



en·vos 

TRICKLE 

By: Nick Briggs (Briggs.pa@Xerox.com) 

Uses: PROMPTREMINDERS 

This document last edited on October 12, 1987 

INTRODUCTION 

TRICKLE 

Trickle provides a very simple cover for COPYFILES to do periodic (every 24 hours) updating of one 
directory from another, with processing of the log files generated by COPYFILES to mail a note to 
some designated person indicating what COPYFILES did. 

USE 

There is only one function of interest to the user: 

(Trickle Source Destination RootLogfileName MailAddress ScheduleAnotherOne 
DontReplaceOldVersions) [Function] 

Source and Destination should be patterns acceptable to COPYFILES. RootLogfileName should be a 
host, directory, and partial file name to which Trickle will append the date in the form yymmdd, 
and the extension .CopyLog. On completion of the copy Trickle will mail a message to MailAddress 
if it is non-NIL. If ScheduleAnotherOne is T then another Trickle will be scheduled (randomly) 
between 1 am and 5: 59 am of the next day, alternatively, if ScheduleAnotherOne is a time that 
would be acceptable to IDATE (Trickle will prepend the actual date, just give the time) then 
another Trickle will be scheduled at exactly that time. DontReplaceOldVersions signals that Trickle 
should not use the COPYFILES option REPLACE, use of which causes problems with NS file servers 
(at least in Koto). 

Example 

To update the directory {cf}<lispusers>koto>* from {eris}<lispusers>koto>* storing the log 
files starting with {core}eluk-870512.copylog, mailing notification to Briggs.pa, scheduling this to 
run every night, and using COPYFILES' REPLACE option one would execute: 

(SETREMINDER NIL NIL 
'(Trickle '{eris}<lispusers)koto)* '{cf}<lispusers)koto)* 

"{core}eluk-" "Briggs.pa" T) 
"12-May-87 03:00") 

Two versions of the log file will be created; version 1 with the complete log output of COPYFILES, 
and version 2, with all the "skipped" files removed. It is this version that is mailed to the 
designated recipient. 

The mail messages that are sent out indicate whether there were any files processed: the subject 
line will include the string "(Empty)" if no files were Trickled, and the string "(Error?)" if there 
were no files in the source directory (may not be an error, but may be worth investigating) 

276 



en-vas TURBO-WINDOWS 

TURBO-WINDOWS 

By: Andrew J. Cameron, III (Cameron.pa@Xerox.com or cameron@cs.wisc.edu) 
New Owner: Atty Mullins (Mullins.pa@Xerox.com) 

Uses: WDHACKS (LispUsers) [optional] 

This document last edited on Sept. 8, 1988. 

INTRODUCTION 

Turbo-Windows does not have anything to do with speeding up primitive window operations, but 
rather it helps speed up your use and manipulation of windows by providing most of the right 
button menu functions via shift keychords. In this way one can Move, Shape, Copy, Shrink, Close, 
etc., a window without having to wait for the right button menu to appear and then select from 
it. 

Also, when providing the INITIAL shape of a window, pressing the middle button yields a large 
default size suitable for TEdit, etc. (Recall that using the middle button during a RESIZING 
operation allows you to keep roughly the original window shape and then move the corner 
nearest the cursor when the middle button was pressed.) 

One can bring up a brief cribsheet for all the TurboWindow keychord commands by holding down 
the HELP key and RIGHT buttoning on the background (not in any window). This can also be 
produce by typing (TW.HELP) to an InterLisp EXEC. 

OPERATION 

Before discussing how to use this utility, a description of how the key-chords were chosen is in 
order. They are based loosely on the effect of the shift keys in TEd it. Recall that in TEdit, pressing 
and holding the Shift key Copies whatever is selected. Also, pressing and holding the Control key 
(sometimes labeled PROPS or EDIT) Deletes whatever is selected. Pressing both Shift and Control 
performs both a copy and a delete, which ends up Moving the selected item. The only additional 
piece of information that you need to know is that the Meta key (sometimes labeled KEYBOARD or 
AL T) modifies an operation or in some way makes it different. With this general interpretation, 
most of the key-chords are rather easy to remember. 

If the following keys are chorded (held down together) while the right mouse button is pressed in 
the region of a window which would normally bring up the right-button menu (by convention, at 
least the title bar should provide the right button menu), the listed operation will be invoked 
without actually bringing up the right button menu. 

SHIFT (using the LEFT SHIFT key or CAPS LOCK key) 

Makes a copy of a window by snapping it. 

CONTROL 

Closes (deletes) a window .. (Since this is a destructive operation, a small safeguard is built into this 
operation. If one holds the CONTROL key and depresses the right mouse button and continues to 

277 



en-vas TURBO-WINDOWS 

hold them, the window to be operated on (closed) will blink. If this is not the window you want to 
close you can cancel the Turbo-Close by either moving outside the window (or by releasing the 
CONTROL key before releasing the right mouse button). If you abort the Turbo-Close in this 
manner, the normal right button menu will appear. Clicking outside of the menu will make it go 
away. Sometimes unexpected things occur when trying to Turbo-Close windows with attached 
windows, e.g. FileBrowsers, but hopefully this safeguard is conservative enough to avoid 
inadvertent closing of the wrong window.) [Holding down CONTROL while Right Buttoning on 
the background activates Window Slamming, if the LispUsers utility WDHACKS is loaded.) 

META 

Shape (makes different) a window. 

SHIFT-CONTROL 

Moves a window. (Due to the design of the InterLisp window system, this operation works in a 
rather strange way. You press and hold both CONTROL and SHIFT and then press the right mouse 
button while in the appropriate part (title bar) of the window you want to move. You then need 
to release the right button to be able to actually move the window. In order to "drop" the 
window (here is the strange part) you need to press the LEFT (or middle) button. Pressing the right 
button merely allows you to move to a different corner of the shadow box.) 

META-CONTROL 

Shrinks ("deletes" in a different way) a window. 

META-SHIFT 

Redisplays (copies in a different way) a window. 

M ETA-SH I FT -CONTROL 

Buries (moves in a different way) a window. [You might also think of this as pushing the window 
down to the bottom, as you are pressing down all three shift keys.] 

RIGHT-SHIFT 

Clears a window. 

HELP 

Pressing the HELP key while the cursor is in the background (or typing (TW.HELP) to an InterLisp 
EXEC) displays a cribsheet for the Turbo-Window KeyChords. Some addition capabilities not listed 
here are given on that cribsheet. The "OTHER" keychords which are marked with an asterisk (*) 
indicate that some side-effect (potentially quite harmful) might occur depending on where the 
TTY is when those alternate access methods are used. You are warnedf 

GETTING STARTED 

[If any of the operations described below do not perform properly, it might be the case that your 
keys are not defined in the way that this utility expects. See INTERNALS below for more 
information.] 

You might want to get familiar with Turbo-Windows by first bringing up the cribsheet by 
depressing the HE~P key and right-buttoning on the background. Next, make a copy of the 
cribsheet by depressing SHIFT (the left shift key) and right-buttoning on the cribsheet. Drop the 
new copy of the cribsheet by releasing all keys and buttons and the pressing the left mouse button. 
[Note: The cribsheet is merely written to the TTY window, which happens to be sensitive to the 

278 



en·vos TURBO-WINDOWS 

right mouse button everywhere. Other windows may only be sensitive to the right button (for the 
purpose of bringing up the right button menu, in their title bar.] Now try moving the copied 
cribsheet by pressing both SHIFT and CONTROL (PROPS or EDIT) and right-buttoning on the copy of 
the cribsheet. Again, release everything (well, just releasing the mouse button will do) and press 
the left mouse button to drop it. Press and hold both META (KEYBOARD) and CONTROL while 
right buttoning in the copy of the cribsheet to shrink it to an icon. Release and click the left mouse 
button to drop the icon. Reopen (expand) the icon by middle buttoning on it. Reshape the copy of 
the cribsheet by pressing META and right buttoning on the copy's window. Release and 
rubberband the new shape with the left mouse button. (Do you know what would happen if you 
used the middle button after releasing instead? Try it.) Assuming the copy of the cribsheet is 
overlapping another window and some part of the background (if not, Turbo-Move it so it is), press 
and hold all three (META, SHIFT, and CONTROL) and right button in the cribsheet copy's window to 
bury it. Right button (holding no other keys) in the partially exposed area of the now buried 
cribsheet copy to bring it back to the top. Finally, close the copied cribsheet window by pressing 
CONTROL while right buttoning in the copy's window. [O.K. which shift key combination hasn't 
been used yet? Consult the original cribsheet (or produce it again), if necessary. Give that 
combination a try in the original cribsheet's window. [Did you notice the message in the prompt 
window?] And don't forget to give the Right Shift key (Clears a window) a try as well. [Remember, 
the cribsheet can be brought back at any time using HELP-RightButton on the background.]) To 
see how to cancel a Turbo-Close, depress the CONTROL key and press AND HOLD the right mouse 
button while in the original cribsheet window. Notice that the window blinks. Before you release 
the right mouse button move the cursor outside the cribsheet's window and then release the right 
mouse button. The cribsheet's window is not closed because releasing outside the window that 
flashed cancels the Turbo-Close. The normal right button menu appears instead. Click outside it to 
get rid of it. Now, actually close the original cribsheet window. And with that, may I welcome you 
to the fast paced world of Turbo-Windows. 

INTERNALS 

The right button events are intercepted by a piece of advice placed on DOWINDOWCOM. The 
middle button sizing capability is provide by advice on \GETREGIONTRACKWITHBOX. 

The window snapping Turbo-Window feature (LeftShift-RightMouseButton) is also added as a 
submenu to the normal right button menu provided by the window system. 

A common problem is that the META key is not defined to be at the proper place (attached to the 
key named KEYBOARD). To remedy this, type: 

(KEYACTION 'KEYBOARD '(METADOWN . METAUP» 

to an InterLisp EXEC. The following should also be the case: 

(KEYACTION 'EDIT '(CTRLDOWN . CTRlUP» 

(KEYACTION 'LSHIFT '(lSHIFTDOWN . lSHIFTUP» 

(KEYACTION 'RSHIFT '(2SHIFTDOWN . 2SHIFTUP» 

These can be verified by using, for example: 

(KEYACTION 'EDIT) 

TW. NO-FLASH-CLOSE 

Initially NIL, if set to T, windows will not flash to indicate there impending closure. 

279 

[Variable] 



en·vos TURBO-WINDOWS 

TW. DONT -G ROW-SNAP-BORDE R [Variable] 

Initially NIL, if set to T, windows will be copied without a small border. The small border is quite 
handy in telling the original window from its Turbo-Snapped copy. 

TW.SNAP-HERE [Variable] 

Initially NIL, if set to T, windows will be copied directly on top of the window they are duplicating. 
Normally (when NIL) the user must position the copy. 

GETREGIONDEFAU L T [Variable] 

This variable can be bound dynamically by an application to provide the region afforded by middle 
buttoning when prompted for an initial region of a window. It is initially set to roughly 7x9 inches, 
and is useful for TEdit windows, FileBrowsers, etc. [See the LispUsers utility RESIZE-FILEBROWSER 
for an even better way of dealing with FileBrowsers.] 

• In order to edit/compile the source of this utility, the InterLisp Source file WINDOW must be 
loaded in order to provide theSCREEN record definition used by the window system internals. 
The loading of this source file occurs automatically when this utility's source file is loaded. 

• This utility interacts poorly with other utilities that redefine any of the shift keys. TEDITKEY 
and PC-Emulation (among others) are dubious in this regard. 

280 



en·vos TWODGRAPHICS 

TWODGRAPHICS 

By: Jan Pedersen (Pedersen.PA @ Xerox.com) 

Uses: UNBOXEDOPS 

TWODGRAPHICS implements viewports. A viewport is a subregion of a window (or image stream) 
within which graphics is clipped and a linear transformation from a world coordinate system to the 
window (or image stream) coordinates. 

A given window (or image stream) may have any number of viewports defined and the viewports 
may be arbitrarily nested or overlapping. If a window is reshaped the subregions of all currently 
defined viewports are proportionately reshaped. 

Viewports will operate in the context of any image stream, (lnterpress printers, etc.), although not 
all DIG (Device independent graphics) primitives are supported. 

(CREATEVIEWPORT stream streamsubregion source) [Function] 

Creates a viewport on stream. Stream is the target stream. Streamsubregion is a region in stream 
coordinates that defines the extent of the viewport. 

Source may be a REGION in world coordinates, in which case the world to stream linear 
transformation is set up to map left to left and bottom to bottom, etc., or a VIEWPORT, in which 
case the new viewport inherits its world to stream transformation. 

Returns a VIEWPORT 

(SETWORLDREGION region viewport) [Function] 

(Re)sets the worldregion of viewport and recomputes the transformation. 

(SETSTREAMSUBREGION region viewport) [Function] 

(Re)sets the streamsubregion of viewport and recomputes the transformation. 

Modified versions of selected DIG primitives are supplied to take advantage of the world to stream 
tr a nsformati on. 

(TWODGRAPHICS. BITBLT source source/eft sourcebottom destinationviewport 
destination/eft destinationbottom width height 
sourcetype operation texture c1ippingregion) [Function] 

World coordinates may be used where it makes sense. The destination must be a VIEWPORT. 
Destination left and bottom default to the viewport's stream subregion left and bottom. The 
clippingregion argument is always in destinationviewport world coordinates. The source may be a 
VIEWPORT, a BITMAP, or NIL in the case of texture patterns. 

In the following, all coordinates must be world coordinates. 

281 



en· v 6S TWODGRAPHICS 

(TWODGRAPHICS.MOVETO x y viewport) [Function] 

(TWODGRAPHICS.MOVETOPT position viewport) [Function] 

Here position is a POSITION in world coordinates 

(TWODGRAPHICS.RElMOVETO dx dy viewport) [Function] 

(TWODGRAPHICS.RElMOVETOPT dposition viewport) [Function] 

(TWODGRAPHICS.DRAWTO x y width operation viewport color dashing) [Function] 

(TWODGRAPHICS.DRAWTOPT position width operation viewport color dashing) [Function] 

(TWODGRAPHICS.RElDRAWTO dx dy width operation viewport color dashing) [Function] 

(TWODGRAPHICS.RElDRAWTOPT dposition width operation viewport color dashing) [Function] 

(TWODGRAPHICS.DRAWLINE x1 y1 x2 y2 width operation viewport color dashing) [Function] 

(TWODGRAPHICS.DRAWBETWEEN position 1 position2 width operation 
viewport color dashing) [Function] 

(TWODGRAPHICS.DSPRESET viewport) [Function] 

Does a " DSPRESET" on the VIEWPORT 

(TWODGRAPHICS.DSPFlll region texture operation viewport) [Function] 

region must be inworld coordinates 

The following function is an extension which may be of use to those who wish to produce analytic 
plots. 

(TWODG RAPH les. PLOT AT position glyph viewport operation) 

Bitblts glyph to position with operation, with glyph centered at position. 

Several functions provide access to the world to stream transformations. 

(WORlDTOSTREAM position viewport oldposition) 

Position is in world coordinates. Oldposition is smashed if provided. 

Returns the corresponding position in stream coordinates. 

(WORlDREGIONTOSTREAMREGION region viewport) 

Region is in world coordinates 

Returns the corresponding region in stream coordinates 

(WORlDTOSTREAMX x viewport) 

Returns x in stream coordinates. 

Uses unboxed floating point arithmetic 

(WORlDTOSTREAMY y viewport) 

Returns y in stream coordinates 

Uses unboxed floating point arithmetic. 

282 

[Function] 

[Function] 

[Function] 

[Macro] 

[Macro] 



en·vos 

(WORLDXLENGTH dx viewport) 

Returns the length dx in stream coordinates 

Uses unboxed floating point arithmetic. 

(WORLDYLENGTH dy viewport) 

Returns the length dy in stream coordinates. 

Uses unboxed floating point arithmetic. 

(STREAMTOWORLD position viewport o/dposition) 

Returns position in world coordinates. 

(STREAMTOWORLDX x viewport) 

Returns x in world coordinates. 

Uses unboxed floating point arithmetic. 

(STREAMTOWORLDY y viewport) 

Returns y in world coordinates. 

Uses unboxed floating point arithmetic. 

(STREAMXLENGTH dx viewport) 

Returns dx in world coordinates. 

Uses unboxed floating point arithmetic. 

(STREAMYLENGTH dy viewport) 

Returns dy in world coordinates. 

Uses unboxed floating point arithmetic. 

TWODGRAPHICS 

[Macro] 

[Macro] 

[Function] 

[Macro] 

[Macro] 

[Macro] 

[Macro] 

For those who desire tighter control over the two-stage process, transform into stream 
coordinates, and then clip against the viewport, the following functions provide primitive clipping 
for line drawing and text output in any image stream. 

(CLIPPED.BITBL T c1ippingregion source source/eft sourcebottom 
destination destination/eft destinationbottom 
width height sourcetype operation texture) [Function] 

As in BITBLT, although the operation is clipped against clippingregion in destination stream 
coord i nates. 

(CLlPPED.DRAWLlNE c1ippingregion x1 y1 x2 y2 width operation stream 
color dashing) [Function] 

As in DRAWLlNE, although the operation is clipped against clippingregion in stream coordinates. 

(CLIPPED. DRAWTO c1ippingregion x y width operation stream color dashing) [Function] 

As in DRAWTO, although the operation is clipped against clippingregion in stream coordinates. 

283 



en·vos TWODGRAPHICS 

(CLIPPED.DRAWBETWEEN c!ippingregion pt1 pt2 width operation stream color dashing) [Function] 

As in DRAWBETWEEN, although the operation is clipped against clippingregion in stream 
coord i nates. 

(CLIPPED.PLOTAT c!ippingregion position glyph stream operation) 

BITBL T glyph to stream centered at position and clipped against clippingregion. 

(CLIPPED.PRIN 1 c!ippingregion expr stream) 

PRIN 1 expr on stream clipped against clippingregion. 

284 

[Function] 

[Function] 



en·vos UNBOXEDOPS 

UNBOXEDOPS 

By: Jan Pedersen(Pedersen.PA @ Xerox.com] and Larry Masinter (Masinter.PA @ Xerox.com] 

The module UNBOXEDOPS is intended to assist those interested in high-performance, scalar, 
floating-point arithmetic. The basic trick is to perform floating point arithmetic on the stack, 
utilizing special, unboxed, floating-point opcodes, an ugly but usually effective solution. This 
method of eliminating floating-point number boxes is likely to change, but in the interim a 
combination of compiler declarations and explicit evocations of unboxed operations, as described 
below, will allow the interested user to eliminate a high percentage of floating-point number 
boxes. This module and the methods described are "safe", i.e., the declarations won't cause your 
programs to crash, and if it works with the declarations it will also work without them. 

Unboxed floating point tricks help out only 1108's with floating point hardware or 1186's with 
floating point microcode. Unfortunately, they may make performance even worse on 1108's 
without floating point hardware, although the performance degradation is probably not too 
severe. 

There exist opcodes which perform floating point arithmetic on the stack (that is, on the bits of 
those numbers, rather than pointers to those bits). These opcodes are only emitted by the byte 
compiler if arithmetic occurs in an unboxed context. One example of an unboxed context is 
arithmetic on a record field defined to be of type FLOATP, another is arithmetic on a variable 
declared to be of TYPE FLOAT. However, the compiler will box across function boundaries and in a 
return context. Furthermore, there exist more unboxed opcodes than are used by the compiler 
(unboxed comparison springs to mind). 

UNBOXEDOPS defines macros/functions so that these additional opcodes may be exploited in an 
unboxed context. These macros/functions include: 

UFABS, UFEQP, UFGEQ, UFGREATERP, UFIX, UFLEQ, UFLESSP, UFMAX, UFMIN, UFMINUS, and 
UFREMAINDER, 

which behave identically to there non-U namesakes, except that the operations are done on the 
stack without generating floating point boxes. 

For those unfamiliar with unboxed compiler declarations a short description follows: 

Using (DECLARE (TYPE FLOATING x y z» to reduce number boxes 

Consider the silly function: 
(OEFINEQ (FIE (N) 

(bind (SETQ X 0.0) (SETQ Y 2.0) for I from 1 to N 
do (SETQ X (FPLUS X (FTIMES Y V»~) 
finally (RETURN X»» 

(TIMEALL (FIE 100» 

returns a CPU time of .025 and reports 200 FLOATP boxes produced. Now, consider 

285 



en· v oS UNBOXEDOPS 

(DEFINEQ (FOO (N) 
(bind (SETQ X 0.0) (SETQ Y 2.0) for I from 1 to N 

declare (TYPE FLOAT X Y) 
do (SETQ X {FPLUS X (FTIMES Y V»~) 
finally (RETURN X»» 

(TIMEALL (FOO 100» 

returns a CPU time of .003 seconds and reports just one floatp box produced. 

Essentially the (TYPE FLOAT X Y) declaration is a promise to the compiler that X and Y will hold 
FLOATP's, so arithmetic may be done unboxed (that is on the value itself, instead of on a pointer to 
the value, which is the usual case) if possible. The key issue is what is meant by "if possible". 

The compiler is conservative. It will perform unboxed arithmetic only on built-in arithmetic 
functions (PLUS, TIMES, DIFFERENCE, etc), which have unboxed counter parts, and will otherwise 
box across function boundaries regardless of compiler declarations. 

For example: 
(DEFINEQ (FOOBAR (N) 

then 

(bind (SETQ X 0.0) (SETQ Y 2.0) for I from 1 to N 
declare (TYPE FLOAT X Y) 
do (SETQ X {FPLUS X (LOG V»~) 

finally (RETURN X»» 

(TIMEALL (FOOBAR 100» 

returns a CPU time of .049 with 601 FLOATP boxes produced (some of which come from the LOG 
(five per function call». 

Also, the compiler will box in a return context. For example 
(DEFINEQ (BAR (N) 

then 

(bind"(SETQ X 0.0) for I from 1 to N 
declare (TYPE FLOAT X ) 
do (SETQ X 

(PROG «Y 2.0» 
(DECLARE (TYPE FLOAT V»~ 

(RETURN (FTIMES Y V»~»~ 
finally (RETURN X»» 

(TIMEALL (BAR 100 » 

returns a CPU time of .022 with 301 FLOATP boxes produced -- notice that BAR seems like it should 
behave like FOO. 

Indeed that is the the greatest drawback of the unboxed arithmetic as it stands now -- it is not 
always easy to predict what is going to happen -- there are even traps where indiscriminate uses of 
TYPE FLOAT declarations will actually produce MORE boxes than without them. This is the case if, 

286 



en·vos UNBOXEDOPS 

for example, you use comparison operators (GREATERP, etc) since the compiler boxes each operand 
before i nvoki ng them. 

The BAR example may be fixed up as follows: 
(DEFINEQ (BAR (N) 

then 

(bind (SETQ X 0.0) for I from 1 to N 
declare (TYPE FLOAT X ) 
do (SETQ X 

(PROG «Y 2.0) RESULT) 
(DECLARE (TYPE FLOAT Y RESULT)) 
(RETURN (SETQ RESULT (FTIMES Y Y)))) 

finally (RETURN X))) 

(TIMEALL (BAR 100)) 

returns a CPU time of .008 with 101 FLOATP boxes produced. Note that the compiler still boxes the 
result returned by the PROG. . 

The best way to find out what is happening is to use a combination of TIMEALL and INSPECTCODE . 
Unanticipated boxing behavior will show up as BOX opcodes -- if you find a sequence of opcodes 
UNBOX , BOX, function call, UNBOX , then you know you are in trouble. TIMEALL will report the 
total number of boxes produced. 

Basically TYPE FLOAT declarations are best used in tight inner loops of the sort illustrated in FOO. 

With all these caveats, I think it is only fair to say that considerable performance inprovements can 
be realized with judicious use of the TYPE FLOAT declarations; my measurements indicate a factor 
often. 

Additional note: TYPE FLOAT vars are by necessity LOCALVARS. 

Lyric compatibility note: Allthe entries described for this module are in the Interlisp package. Only 
the Byte compiler pays attention to TYPE FLOAT declarations -- i.g. use of TYPE FLOAT declarations 
will be ignored by the XCL compiler. 

287 



en·vos 

UUENCODE 

By: Doug Cutting (Cutting.PA@Xerox.COM) 

This document last edited on October 7, 1987. 

UUENCODE 

UUENCODE provides facilities for encoding files into printing ASCII characters for transfer by 
electronic mail. It is compatable with the UNIX™ facility of the same name. For details of the file 
format see the UNIXTM manual page on 'uuencode'. 

(U U ENCODE FILES INTO-FILE) [Function] 

Encodes the files named by FILES into INTO-FILE. FILES may be either a list or files or a single file 
name. Note that UNIX™ uudecode does not support multiple files encoded in one file. Thus one 
should only pass a single file name to UUENCODE if the file is to be decoded under UNIXTM. Returns 
the name of the file written. 

(U U DECODE FILE-OR-STREAM ONL Y-ONE-FILE?) [Function] 

Decode from FILE-OR-STREAM writing the decoded files in the connected directory. 
FILE-OR-STREAM may be either a file name or a stream. If ONLY-ONE-FILE? is non-NIL then only 
one file will be extracted from FILE-OR-STREAM, and an error will be reported if no encoded file is 
found. This can be thought of as UNIX™ compatability mode. Returns the list of the names of the 
files extracted. 

(UUENCODE-INTERNAL INS OUTS DECODE-NAME FILE-MODE) [Function] 

Called by UUENCODE to encode one file. Encodes all bytes from the stream INS to the stream 
OUTS. DECODE-NAME is the name the file should be given when it is decoded. FILE-MODE is the 
UNIX™ file mode for the file. DECODE-NAME defaults to (FULLNAME INS) and FILE-MODE defaults 
to the value of the variable UU.MODE-DEFAULT. Returns OUTS. 

UU.MODE-DEFAULT [Global Variable] 

The default UNIX™ file mode to encode files under as an integer. UNIX™ uudecode will use this 
when creating the decoded file. The initial value is 644Q (read & write by owner, read by group 
and other). 

(UUDECODE-INTERNAL INS ONE-FILE-ONLY?) [Function] 

Called by UUDECODE to decode one file. INS should be a stream open for input. Returns the name 
of the file extracted or NIL if none is found and ONE-FILE-ONLY? is NIL. 

UUENCODE was inspired by Christopher Lane's BMENCODE package. 

288 



en·vos 

VSTATS 

By: Johannes A. G. M. Koomen 
(Koomen.wbst@Xerox or Koomen@CS.Rochester) 

Uses: SYSTATS, READNUMBER 

This document last edited on November 20, 1987 

INTRODUCTION 

VSTATS 

Loading VSTATS will put a VStats entry on the background menu, and execute (VSTATS 'On), 
which will cause the following display to be created and continuously updated: 

16-Jan-86 14:45:34 

DOat.3 
'1.11 

~~t~m 
~.1 •. :.6 i'",'Mem 

~j.7:3 
OO;SI<. 

0. ~j5 

1_ C~'U o I/O o 13C DC . • j 1 ••• 1·3 P 
k.1.91 o . ~H!1 0.0B 0. ~j1 

DESCRIPTION 

VSTATS is a facility for continuously displaying various interesting aspects of a running system. It 
can display the current time of day, with or without seconds, and/or display memory and disk 
space utilization, and/or display machine utilization in terms of CPU, I/O, GC and swap time. The 
display can be regular or inverse-video. The display is updated at user settable intervals, either 
always or only if the display window is completely visible. 

Closing the VSTATS window will remove the background update function. 

Left buttoning the VSTATS window causes it to be recomputed and redisplayed entirely. Otherwise 
display updates only affect those parts that have actually changed, making for a visually quiet and 
efficient facility. 

Middle buttoning the VSTATS window will bring up an Inspector window onto the VSTATS list of 
options. Left buttoning an option name prints an explanation of the option to the Prompt 
window. Left buttoning an option value selects it, and middle buttoning an option value presents 
a menu from which a new value can be selected. The options window looks like this: 

289 



en·vos 

Vstats Options 

Oisplay.Golor 
UpcJ.3te . A 1 wa~ls? 
Show. 0 i sk. Sp.3ce·? 
MUt i 1 . Hy:ster'es i s 
Space.Panic.Level 
Glock.Update.lnterval 
Space.Update.lnterval 
MUtil.Update.lnterval 

Normal 
No 
at 
20 
Ois.3bled 
1 
:300 
1 

VSTATS 

VSTATS is highly optimized for speed and implemented as a BACKGROUNDFN rather than as a 
seperate process so as to minimize overhead. As a result, VSTATS can easily be run with display 
update intervals equal to 1 second. 

DETAILS 

(VST A TS on/off) [Function] 

If on/off is either ON, On, on, or T, the VStats display is turned on; otherwise off. 

VSTATS.CLOCK.INTERVAL [Variable] 

If the global variable VSTATS.CLOCK.INTERVAL is a positive number, VSTATS displays an 
alphanumeric clock (e.g., "1-Aug-85 14:30"), which is updated every VSTATS.CLOCK.INTERVAL 
seconds. If this interval is less than 1 minute VSTATS displays seconds as well. For those of you who 
keep their machines running overnight (say, with IDLE or BOUNCE), if the clock display is enabled, 
VSTATS will resynchronize the local clock with the network daily at midnight. (My machine looses 
about 15 minutes a week, otherwise!) 

VSTATS.SPACE.INTERVAL [Variable] 

If the global variable VSTATS.SPACE.INTERVAL is a positive number, VSTATS displays, both 
graphically and alphanumerically, the utilization of Data, Atom, and VMem spaces and optionally 
Disk space, which is updated every VSTATS.SPACE.INTERVAL seconds. 

VSTATS.SPACE.PANIC.LEVEL [Variable] 

If VStats is displaying space utilization, and VSTATS.SPACE.PANIC.LEVEL is a percentage between 1 
and 100 (or a fraction between 0 and 1), and any of the memory space utilizations (other than disk) 
exceed this percentage, VSTATS will flash its window in proportion to the excess, whether the 
window is occluded or not. 

VSTATS.SPACE.SHOW. DISK? [Variable] 

If VStats is displaying space utilization, then if VSTATS.SPACE.SHOW.DISK? is non-NIL, Disk space 
utilization is displayed as welt provided VStats can figure out the total disk size. If 
VSTATS.SPACE.SHOW.DISK? is T, the default DSK is used, for instance {DSK19} on a Dorado, or 
{DSK}< LispFiles> on a Dandelion. Alternate Dorado partitions or Dandelion volumes may be 
assigned to VSTATS.SPACE.SHOW.DISK? as well. If assigned through the options window, VStats 
will figure out which volumes or partitions are displayable. 

VSTATS.MUTILINTERVAL [Variable] 

If the global variable VSTATS.MUTILINTERVAL is a positive number, VSTATS displays, both 
graphically and alphanumerically, the machine utilization in terms of CPU time, time spent on disk 

290 



en·vos VSTATS 

and Ethernet I/O, garbage collection time, and swapping time, which is updated every 
VSTATS.MUTIL.INTERVALseconds. 

VSTATS.MUTIL.HYSTERESIS [Variable] 

If VStats is displaying machine utilization and VSTATS.MUTIL.HYSTERESIS is a positive number, the 
relative percentages are based on the average over VSTATS.MUTIL.HYSTERESIS intervals, otherwise 
they are based on the total time since VSTATS was invoked. 

VSTATS.POSITION [Variable] 

If the global variable VSTATS.POSITION is a POSITION, the VSTATS display will be put there, 
otherwise the user is prompted for a POSITION. 

VSTATS.BLACK? 

If the global variable VSTATS.BLACK? is non-NIL, VSTATS displays with inverse video. 

VSTATS.ALWAYS? 

[Variable] 

[Variable] 

If the global variable VSTATS.ALWAYS? is non-NIL, VSTATS will always update its display when its 
timers expire, causing its window to come to the top if it isn't already there; otherwise, VSTATS 
will only update the display if its window is neither partially nor wholly occluded. If it is occluded, 
VSTATS will, of course, continue to update its internal timers and the display will be updated the 
first time the timers expire after the display becomes wholly visible again. 

Defaults 
VSTATS.BLACK? NIL 
VSTATS.ALWAYS?NIL 
VSTATS.POSITION top right corner of display 
VSTATS.CLOCK.INTERVAL 
VSTATS.SPACE.INTERVAL 
VSTATS.SPACE.PANIC.LEVEL 
VSTATS.SPACE.SHOW.DISK? 
VSTATS.MUTIL.INTERVAL 
VSTATS.MUTIL.HYSTERESIS 

1 second 
300 seconds (5 minutes) 
95% 
T 
1 second 
20 intervals 

If different values are preferred, these variables should be set by the user before loading VSTATS to 
affect initial display. They can of course be altered anytime using the options menu. 

Extras: 

A number of functions are required (and supplied) by VSTATS which the author believes might well 
be part of standard Interlisp-D, viz., 

(COVEREDWP window) [Function] 

Returns T if window is partially or completely covered by some other window; NIL otherwise. 

(CLOCKTICKS interval timerunits) [Function] 

Returns the (machine dependent!) number of internal clock ticks over the interval. For instance, on 
the D'Lion 

(CLOCKTICKS 2.5 'MINUTES) = 5211900 

291 



en·vos VSTATS 

(AL TOPARTITIONS) [Function] 

On the Dorado, returns a list of partitions set up with an Alto exec, i.e., containing a system boot 
file. Especially useful with the recently added Extended VMem option, where not all partitions are 
bootable. Returns NIL on any other machine type. Note: this list of partitions takes between 15-20 
seconds to com pute. 

(DISKUSEDPAGES dsk recompute) [Function] 

Returns the total number of disk pages in use (complementing DISKFREEPAGES). On Dorado, this is 
only an estimate, unless recompute is non-NIL in which case you wait - 8 seconds for the answer. 

(DISKTOTALPAGES dsk recompute) [Function] 

Returns the total number of disk pages available (sum of DISKFREEPAGES and DISKUSEDPAGES). 

292 



en·vos WDWHACKS 

WDWHACKS 

By: Atty Mullins (Muliins.pa@Xerox.com). 

Some short hacks that make window management slightly easier. 

Loading this file forces the menu entries: SLAMWS (in the background menu) with the subitem 
INSPECTORS, and POPSHAPE (under "Close" in the window menu), and replaces the action for 
SHAPE (window menu) with its own call. 

When SLAMWS is selected, you are asked for a region of the screen, and all of the windows that 
intersect that region are closed (by call to CLOSEW). If the INSPECTORS subitem is selected, all 
open (not shrunken) inspector windows are closed. 

When SHAPE is selected, the old shape of the window is stored, and then selecting POPSHAPE will 
reshape the window to the stored shape. When POPSHAPE is called, the current shape is stored, so 
that doing POPSHAPE multiple times will rotate between the two shapes. 

The shape/popshape hacks are useful if you want to either get something out of the way 
temporarily (but not lose it entirely); or to enlarge something temporarily (e.g., for doing a SEE in 
the typesacript window). 

SLAMWS is most useful for inspector and notecards applications, where there are a whole slew of 
windows that you'd like to clobber. 

293 



en·vos WHO-LINE 

WHO-LINE 

By: SML (Lanning.pa@Xerox.com) 

INTRODUCTION 

Need to know what package you're in? Don't know what your connected directory is? Fret not. 
The Who-Line is here. 

The Who-Line is a window that displays this information on your screen. It is continually updated 
to reflect the current state of the world (thanks to an entry on BACKGROUNDFNS). Additionally, 
items in the Who-line can act as menu items, allowing you to change the state of the machine. 

Defining the information displayed in the Who-Line 

The values displayed in the Who-Line are determined by the setting of the variable 
*WHO-liNE-ENTRIES* . 

*WHO-LINE-ENTRIES* [Global Variable] 

*WHO-liNE-ENTRIES* is a list that describes the items that will be displayed in the who-line. Each 
item in the list should be a list of up to five things: the name of the item; a form that, when 
evaluated, will produce the value to display; the maximum number of characters in the value; an 
optional function to call if the item is selected (with the mouse) in the Who-Line; an optional form 
that will reset any internal state of the entry when evaluated; and an optional string that describes 
the value displayed by the entry. 

[[NOTE: Since the items on the Who-Line are evaluated rather often, it is best if they are fast and 
efficient (= don't CONS or allocate any space).]] 

The following are standard members of *WHO-LiNE-ENTRIES*. 

*WHO-LI N E-USE R-E NTRY* [Variable] 

Displays the current user in the Who-Line. Selecting this item in the Who-Line will let you change 
the logged in user. 

*WHO-liNE-HOST-NAME-ENTRY* 

Displays the (ETHERHOSTNAME) of the machine you are running on. 

*WHO-LINE-PACKAGE-ENTRY* 

[Variable] 

[Variable] 

Displays the package of the current TTY process in the Who-Line. Selecting this item in the 
Who-Line will let you switch the package of the current TTY process. 

*WHO-liNE-READTABLE-ENTRY* [Variable] 

Displays the (name of the) readtable of the current TTY process in the Who-Line. Selecting this 
item in the Who-Line will let you switch the readtable of the current TTY process. 

294 



en·vos WHO-UNE 

*WHO-U N E-TTY -PROC-E NTRY* [Variable] 

Displays the name of the current TTY process in the Who-Line. Selecting this item in the Who-Line 
will let you give the TTY to a different process. 

*WHO-LIN E-DIRECTORY -ENTRY* [Variable] 

Displays the current connected directory in the Who-Line; the directory is shown in the format 
"Dir>Subdir> ... >Subdir on {Host}". Selecting this item in the Who-Line will let you connect to 
another directory: the variable *WHO-UNE-DIRECTORIES* (see below) is used to produce a menu 
of interesting directories. If you are holding down a SHIFT key when you select an item from this 
menu, the directory name will be COPYINSERTed into the current tty input stream, otherwise you 
will be connected to that directory. 

*WHO-LINE-VMEM-ENTRY* [Variable] 

Displays the percentage of the VMem file that is currently being used in the Who-Line. If the 
VMem file is inconsistant, the number will be preceeded by an asterik ("*"). Selecting this item in 
the Who-Line will let you do a (SAVEVM). 

*WHO-LINE-SYMBOL-SPACE-ENTRY* 

Displays the percentage of symbol space that is currently in use. 

*WHO-LINE-TIME-ENTRY* 

[Variable] 

[ Variable] 

Displays the current time in the Who-Line. Selecting this item in the Who-Line will let you do a 
(SETTIME). If you hold down a shift key when you select this item, the current time will be 
COPYINSERTed into the current tty input stream instead. 

The default value of *WHO-UNE-ENTRIES* contains all these items 

Other ways to tailor the Who-Line 

*WHO-UNE-ANCHOR* [Variable] 

*WHO-UNE-ANCHOR* describes where the who-line will be displayed. If *WHO-UNE-ANCHOR* 
contains the symbol :TOP, the Who-Line will be anchored at the top of the screen; if it contains the 
symbol :BOTTOM it will be anchored at the bottom of the screen. If *WHO-UNE-ANCHOR* 
contains the symbol : LEFT, it will be anchored to the left side of the display; if it contains the 
symbol :CENTER it will be centered on the screen; if it contains the symbol :JUSTIFY it will run the 
width of the screen; if it contains the symbol :RIGHT it will be anchored to the right side of the 
screen. Finally, if *WHO-UNE-ANCHOR* is a POSITION, it will be used as the lower left corner of 
the Who-Line. The default value is (:CENTER :BOTTOM). 

*WHO-U N E-NAM E-FONT* [Variable] 

The font used to display the names of the items in the who-line. The default is HELVETICA 8 BOLD. 

*WHO-UNE-VALUE-FONT* [Variable] 

The font used to display the values in the who-line. The default is GACHA 8. 

*WHO-UNE-COLOR* [Variable] 

The color of the Who-Line. Legal values are the keywords :WHITE and :BLACK. The default is 
:WHITE. 

295 



en·vos 

*WHO-LINE-BORDER* 

The border width of the Who-Line window. The default is 2. 

*WHO-LlNE-TlTLE* 

The title of the Who-Line window. The default is NIL. 

*WHO-LiNE-DISPLA Y -NAMES?* 

WHO-LINE 

[Variable] 

[Variable] 

[Variable] 

If *WHO-LiNE-DISPLAY-NAMES?* is true, the names of items in the who-line will be displayed; 
otherwise they will not be shown. The default value is T. 

*WHO-LiNE-UPDATf:-INTERVAL * [Variable] 

The number of milliseconds between updates of the who-line. The default is 100 milliseconds. 

Installing new Who-line options 

Changing the above variables has no direct effect on the who-line. These values need to be 
installed in the Who-Line before they can take effect. 

(INSTALL-WHO-LiNE-OPTIONS) [Function] 

INSTALL-WHO-LiNE-OPTIONS installs the above options in the Who-Line, and updates the 
Who-Line accordingly. 

The Who-Line supports an easy way to interactivly add or remove entries. If you click on the 
Who-Line while holding down the EDIT or CONTROL key, you will be given a chance to add or 
remove items from the Who-Line. 

*WHO-LINE-ENTRY -REGISTRY* [Global Variable] 

A list of all known Who-Line entries. This is used to construct the menu of possible new entries for 
the Who-Line. 

Who-line process state 

The who-line entry *WHO-UNE-TTY-STATE-ENTRY* tries to display the current state of the TTY 
process. 

*WHO-LI N E-TTY -ST A TE-E NTRY * [Variable] 

A Who-Line entry that displays the "state" of the current TTY process in the Who-Line. The typical 
state of a process is the name of the function that is currently running in that process. This simple 
minded result can be altered by use of the following items. 

[[NOTE: Because of the nature of the Lisp scheduler, this information is almost always out of date.]] 

296 



en·vos WHO-LINE 

The Who-Line "state" can be explicitly controlled from code. If the special variable 
*WHO-LiNE-STATE* is bound, its value is taken to be the state of that process. You can use this 
feature to provide visual indiation of the state of your code by using the programming idiom: 

(LET « *WHO-LINE-STATE* indicator)) 
(BLOCK) ;Give the Who-line a chance to run 
... your-code ... ) 

This will run the ... your-code ... with the Who-Line state of the process set to (the value of) 
indicator. The call to BLOCK insures that the Who-Line has a chance to update before 
... your-code ... is run. 

*WHO-LI N E-ST ATE-U N I NTE RESTI NG-FNS * [Global Variable] 

If there is no declared who-line state (via a WITH-WHO-LiNE-STATE form), then the name of the 
function that is currently running is used as the who-line state. However, if the function is on the 
list *WHO-LiNE-STATE-UNINTERESTING-FNS*, the function that called it is used instead. The 
default value of *WHO-LINE-STATE-UNINTERESTING-FNS* is (BLOCK AWAIT.EVENT). 

WHO-LiNE-STATE [Property] 

If the function that is currently running has a WHO-LiNE-STATE property, the value of that 
property is used as the who-line state. This is used to convert functions like \TTYBACKGROUND to 
meaningful values like "TTY wait". 

(WH 0-LI N E- RE DISPLAY -I NTE RRU PT) [Function] 

Updates the Who-Line. It is intended that this function be installed on an interrupt character, so 
that the user can easily force an update of the Who-Line. For example, 

(ADVISE 'CONTROL-T 'BEFORE '(WHO-LINE-REDISPLAY-INTERRUPT)) 
will cause afT interrupt to update the Who-Line as well as its current behavior of printing state 
information in the Prompt window. Alternatly, you can define a new interrupt character that will 
force an update of the Who-Line; 

(INTERRUPTCHAR (CHARCODE tU) '(WHO-LINE-REDISPLAY-INTERRUPT) 'MOUSE) 
will cause the Who-Line to be updated whenever the user hits a f U. 

Other interesting things 

*WHO-LI N E-DI RECTORI ES * [Global Variable] 

A list of interesting directories used to generate a pop-up menu of directories to connect to when 
you select the DIRECTORY item in the Who-Line. The default value is a list containing just your 
LOGINHOST/DIR. When the Who-Line notices that you have changed your connected directory, it 
updates this list to contain the new directory. 

(CU RRENT -TTY -PACKAGE) [Function] 

Returns the name of the package of the current TTY process. This function is used in the default 
value of *WHO-LiNE-ENTRIES*. 

(CURRENT-TTY-READTABLE-NAME) [Function] 

Returns the name of the readtable of the current TTY process, or the string "Unknown" if it can't 
figure out the name. This function is used in the default value of *WHO-LiNE-ENTRIES*. 

297 



en·vos WHO-LINE 

(SET-PACKAGE-INTERACTIVELY) [Function] 

Pops up a menu of currently defined packages. If the user selects one of them, the current package 
is changed to the selected package. 

(SET-READTABLE-INTERACTIVEL Y) [Function] 

Pops up a menu of currently known readtables. If the user selects one of them, the current 
readtable is changed to the selected readtable. 

298 



en·vos 

WHOCAllS 

By: Bill van Melle (vanMelle.pa@Xerox.com) 

This file contains two useful functions for quick crossreference: 

(whocalls callee usage) 

WHOCALLS 

[Function] 

maps over all symbols in the current 'environment, looking for any function that mentions callee 
according to usage: 

values for usage: 

USES VAR VARS BOUND USEDFREE GLOBALS 
All mean: mention as a variable 

NIL CALLS 

means calls as a function 

(distribute.callinfo) [Function] 

inverts all of the call, use global, use free, bound releations for functions, variables from compiled 
code. Operates by mapping over all symbols in the sysout that are defined as compiled code, and 
analyzing their definitions. Anything that is called has a CALLEDBY property of all of the things 
that call it; any variable bound has a BOUNDBY with the list of functions that bind it, variables that 
are used globally have a USEDGLOBALBY and variables that are used freely have a USEDFREEBY. 

(References from interpreted code, etc are not detected, so it isn't 100% guaranteed that if 
something doesn't have a CALLEDBY that it isn't called ..... ) 

299 



en·V6S XCl-BRIDGE 

XCL-BRIDGE 

By: Jan Pedersen (pedersen.PA @ Xerox. com) 

XCl-BRIDGE is a module that assists in the transformation of ascii Common lisp source files to lisp 
managed files and vice versa. In the text-to-managed-file direction, user interaction is employed to 
repair read-in forms before establishing a resident image of a lisp managed file. In the 
managed-to-text-file direction, a few simple transforms are employed to translate common 
filepackagecoms to equivalent Common lisp forms. 

All entry points are external to the "XCl" package. 

(XCl:TEXT-TO-MANAGED-FllE pathname filename &key (package "USER") 
(readtable "XCl") (read-base 10) (combine-comments t» [Function] 

Reads an ascii lisp source file named by "-pathname" and converts it to a managed file with 
rootname "filename". The package, readtable, and read-base employed to read the ascii file may 
be specified via keywords arguments, or defaulted, as shown. If the reader environment 
arguments are defaulted and the source file has a emacs-style" mode line", then the package and 
read-base will be as indicated by the "mode line". The "combine-comments" keyword controls 
whether adjacent comments at the same";" level should be combined when generating sedit-style 
comments for the converted file. 

Note that forms are only read from the ascii lisp source file, not evaluated. It is assumed that the 
converted file should be made (via "il:makefile") and compiled before any evaluation should be 
attempted. 

Text-to-managed-file proceeds incrementally and interactively to convert the specified file. First all 
the forms are read, and presented to the user for editing (via Sedit). If the user accepts this primary 
phase, a filecoms is generated and again, presented to the user for editing. If the user accepts the 
generated filecoms, a file (and its contained definitions) is instantiated, completing the conversion. 

(XCl:MANAGED-TO-TEXT-FllE filename pathname &key (package "USER") 
(readtable "XCl") (print-base 10» [Function] 

Prints a managed file, with rootname "filename", whose source definitions must be resident, to an 
ascii file "pathname" in a form suitable for reading by any Common lisp reader. The read-print 
environment of the managed file may be overwritten via the keyword arguments "package", 
"readtable", and "print-base". Many Interlisp "filepackagecoms" are translated to their Common 
lisp equivalents. For example, "il :declare\:" forms are transformed to "eval-when" forms and 
"il :files" forms are transformed to "require" forms. As an additional convenience, defdefiners are 
printed as equivalent defmacros. 

300 


	00001
	00002
	00003
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300

