CONTRIBUTED RESEARCH ARTICLE

The doBy package for data handling,

linear estimates and LS-means
by Seren Hojsgaard

Abstract The doBy is one of several general utility packages on CRAN. We illustrate two main features
of the package: The ability to making groupwise computations and the ability to compute linear
estimates, contrasts and 1east—squares means.

Introduction

The doBy package (Hojsgaard and Halekoh, 2020) grew out of a need to calculate groupwise summary
statistics (much in the spirit of PROC SUMMARY of the SAS system, (SAS Institute Inc., 2020)). The package
first appeared on CRAN, https://cran-r-project.org, in 2006. The name doBy comes from the
need to do some computations on data which is stratified By the value of some variables. Today the
package contains many additional utilities. In this paper we focus 1) on the “doing by”-functions and
2) on functions related to linear estimates and contrasts (in particular LS-means).

Related functionality

When it comes to data handling, doBy is nowhere nearly as powerful as more contemporary packages,
such as those in the tidyverse eco system, (Wickham et al., 2019). The aggregate function in base R
provides functionality similar to doBys summaryBy function. Another package to be mentioned in this
connection is data.table, Dowle and Srinivasan (2019). On the other hand, doBy is based on classical
data structures that are unlikely to undergo sudden changes. There is one exception to this, though:
The data handling functions work on tibble’s, from tibble Miiller and Wickham (2020). In relation
to linear estimates, the multcomp package (Hothorn et al., 2008) deserves mention, and the Ismeans
package (Lenth, 2016) provides facilities for computing LS-means.

It can be hypothesized that the data handling functions in doBy remain appealing to a group of
users because of their simplicity.

A working dataset - the C02 data

The C02 data frame comes from an experiment on the cold tolerance of the grass species Echinochloa
crus-galli. Type is a factor with levels Quebec or Mississippi giving the origin of the plant. Treatment
is a factor levels nonchilled or chilled. Data is balanced with respect to these two factors. However,
illustrated certain points we exclude a few rows of data to make data imbalanced. To limit the amount
of output we modify names and levels of variables as follows

data(C02)
C02 <- within(C02, {
Treat = Treatment; Treatment = NULL
levels(Treat) = c(”"nchil”, "chil”); levels(Type) = c("Que", "Mis")
b))
C02 <- subset(C02, Plant %in% c("Qn1", "Qc1"”, "Mn1", "Mc1"))
C02 <- C02[-(1:3),]
xtabs(~Treat+Type, data=C02)

#> Type

#> Treat Que Mis
#> nchil 4 7
#> chil 7 7

head(C02, 4)

#> Plant Type conc uptake Treat
#> 4 Qnl Que 350 37.2 nchil
#>5 Qnl Que 500 35.3 nchil
#> 6 Qnl Que 675 39.2 nchil
#> 7 Qnl Que 1000 39.7 nchil

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=doBy
https://cran-r-project.org
http://CRAN.R-project.org/package=tidyverse
http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=tibble
http://CRAN.R-project.org/package=multcomp
http://CRAN.R-project.org/package=lsmeans

CONTRIBUTED RESEARCH ARTICLE

40 -
o 30- Type
X
g Que
S 20- Fed Mis

10- t t

nchil chil
Treat

Figure 1: Interaction plot for the CO2 data. Boxplot outliers are crosses. The plot suggests additivity
between Treat and Type.

Functions related to groupwise computations
The summaryBy function

The summaryBy function is used for calculating quantities like the mean and variance of numerical variables
x and y for each combination of two factors A and B. Notice: A functionality similar to summaryBy is
provided by aggregate from base R, but summaryBy offers additional features.

myfunl <- function(x){c(m=mean(x), s=sd(x))}
summaryBy(cbind(conc, uptake, lu=log(uptake)) ~ Plant, data=C02, FUN=myfuni)

#> Plant conc.m conc.s uptake.m uptake.s 1lu.m lu.s
#> 1 Qn1 631.2 279.4 37.85 2.014 3.633 0.05375
#> 2 Qc1 435.0 317.7 29.97 8.335 3.356 0.34457
#> 3 Mn1 435.0 317.7 26.40 8.694 3.209 0.42341
#> 4 Mc1 435.0 317.7 18.00 4.119 2.864 0.26219

The convention is that variables that do not appear in the dataframe (e.g. log(uptake)) must be
named (here as 1u). Various shortcuts are available, e.g. the following, where left hand side dot refers
to all numeric variables while the right hand side dot refers to all factor variables. Writing 1 on the right
hand side leads to computing over the entire dataset:

summaryBy(. ~ ., data=C02, FUN=myfunl)

#> Plant Type Treat conc.m conc.s uptake.m uptake.s

#> 1 Qn1 Que nchil 631.2 279.4 37.85 2.014
#> 2 Qcl Que chil 435.0 317.7 29.97 8.335
#> 3 Mn1 Mis nchil 435.0 317.7 26.40 8.694
#> 4 Mcl Mis chil 435.0 317.7 18.00 4.119

summaryBy(. ~ 1, data=C02, FUN=myfunl)
#> conc.m conc.s uptake.m uptake.s
#> 1 466.4 301.4 26.88 9.323
Specifications as formulas and lists

We shall refer to all the functions for groupwise computations etc. as the By-functions. The convention
for the By-functions is that a two sided formula like can be written in two ways:

cbind(x, y) ~ A+ B
liSt(C(”X”, llyll), C("A", HB‘I))

Some By-functions only take a right hand sided formula as input. Such a formula can also be
written in two ways:

~A+B
c("A", "B")

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

The list-form / vector-form is especially useful if a function is invoked programatically. Hence the
calls to summaryBy above can also be made as

summaryBy (list(c("conc”, "uptake"”, "lu=log(uptake)"), "Plant"), data=C02, FUN=myfuni)

summaryBy(list("."”, "."), data=C02, FUN=myfunl)
summaryBy (list(”.", "1"), data=C02, FUN=myfunl)
Using the pipe operator

The summaryBy function has a counterpart called summary_by. The difference is that a formula is the
first argument to the former function while a dataframe (or a tibble) is the first argument to the latter.
The same applies to the other By-functions. This allows for elegant use of the pipe operator %>% from
magrittr, (Bache and Wickham, 2014):

C02 %>% summary_by(cbind(conc, uptake) ~ Plant + Type, FUN=myfunl) -> newdat
newdat

#> Plant Type conc.m conc.s uptake.m uptake.s

#> 1 Qn1 Que 631.2 279.4 37.85 2.014
#> 2 Qcl Que 435.0 317.7 29.97 8.335
#> 3 Mn1 Mis 435.0 317.7 26.40 8.694
4 Mcl Mis 435.0 317.7 18.00 4.119

The orderBy function

Ordering (or sorting) a data frame is possible with the orderBy function. Suppose we want to order
the rows of the the C02 data by increasing values of conc and decreasing value of uptake (within conc):

x1 <- orderBy(~ conc - uptake, data=C02)
head(x1)

#> Plant Type conc uptake Treat
#> 22 Qcl Que 95 14.2 chil
#> 43 Mn1 Mis 95 10.6 nchil
#> 64 Mcl Mis 95 10.5 chil
#> 23 Qcl Que 175 24.1 chil
#> 44 Mn1 Mis 175 19.2 nchil
#> 65 Mc1 Mis 175 14.9 chil

The splitBy function

Suppose we want to split C02 into a list of dataframes:

x1 <- splitBy(~ Plant + Type, data=C02)
x1

#> listentry Plant Type

#> 1 Qn1|Que Qn1 Que
#> 2 Qc1|Que Qcl Que
#> 3 Mn1|Mis Mnl Mis
#> 4 Mc1|Mis Mc1 Mis

The result is a list (with a few additional attributes):
lapply(x1, head, 2)

#> $°Qn1|Que®

#> Plant Type conc uptake Treat

#> 4 Onl Que 350 37.2 nchil

#> 5 Qnl Que 500 35.3 nchil

#>

#> $°Qc1|Que*

#> Plant Type conc uptake Treat
#> 22 Qcl Que 95 14.2 chil
#> 23 Qcl Que 175 24.1 chil

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=magrittr

CONTRIBUTED RESEARCH ARTICLE

#>

#> $*Mn1|Mis®

#> Plant Type conc uptake Treat
#> 43 Mnl Mis 95 10.6 nchil
#> 44 Mn1 Mis 175 19.2 nchil
#>

#> $*Mc1|Mis®

#> Plant Type conc uptake Treat
#> 64 Mc1 Mis 95 10.5 chil
#> 65 Mcl Mis 175 14.9 chil

The subsetBy function

Suppose we want to select those rows within each treatment for which the uptake is larger than 75%
quantile of uptake (within the treatment). This is achieved by:

x2 <- subsetBy(~ Treat, subset=uptake > quantile(uptake, prob=0.75), data=C02)
head(x2, 4)

#> Plant Type conc uptake Treat
#> nchil.4 Qn1 Que 350 37.2 nchil
#> nchil.6 Qn1 Que 675 39.2 nchil
#> nchil.7 Qn1 Que 1000 39.7 nchil
#> chil.25 Qcl1 Que 350 34.6 chil

The transformBy function

The transformBy function is analogous to the transform function except that it works within groups.
For example:

x3 <- transformBy(~ Treat, data=C02,
minU=min(uptake), maxU=max(uptake), range=diff(range(uptake)))
head(x3, 4)

#> Plant Type conc uptake Treat minU maxU range
#> 1 Qn1 Que 350 37.2 nchil 10.6 39.7 29.1
#> 2 Qn1 Que 500 35.3 nchil 10.6 39.7 29.1
#> 3 Qnl Que 675 39.2 nchil 10.6 39.7 29.1
#> 4 Qn1 Que 1000 39.7 nchil 10.6 39.7 29.1

The 1mBy function

The 1mBy function allows for fitting linear models to different strata of data (the vertical bar is used for
defining groupings of data):

m <- lmBy(uptake ~ conc | Treat, data=C02)

coef(m)

#> (Intercept) conc
#> nchil 19.32 0.02221
#> chil 17.02 0.01602

The result is a list with a few additional attributes and the list can be processed further as e.g.

lapply(m, function(z) coef(summary(z)))

#> $nchil

#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 19.31969 3.692936 5.232 0.0005408
#> conc 0.02221 0.006318 3.515 0.0065698
#>

#> $chil

#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 17.01814 3.668315 4.639 0.0005709
#> conc 0.01602 0.006986 2.293 0.0407168

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Functions related linear estimates and contrasts
A linear function of a p-dimensional parameter vector 8 has the form
C=Lp

where L is a ¢ X p matrix which we call the Linear Estimate Matrix or simply LE-matrix. The correspond-
ing linear estimate is C = Lj. A linear hypothesis has the form Hy : LB = m for some q dimensional
vector m.

In the following we describe what is essentially simple ways of generating such L-matrices.

Computing linear estimates
First we focus on an additive model.
co2.add <- lm(uptake ~ Treat + Type, data=C02)

Consider computing the estimated uptake for each treatment for plants originating from Missis-
sippi: One option: Construct the LE-matrix L directly and then compute Lf:

L <- matrix(c(1, o, 1,
1, 1, 1), nrow=2, byrow=T); L

#> [,11 [,2] [,3]
#> [1,] 1 0 1
#> [2,] 1 1 1

beta <- coef(co2.add); beta

#> (Intercept) Treatchil TypeMis
#> 38.04 -8.18 -11.75

L %*% beta

#> [,11]
#> [1,] 26.29
2,1 18.11

However, this approach does not produce standard errors, confidence intervals etc. Once L has
been constructed, such quantities can be constructed using linest (short for linear estimate) and the
older but very similar esticon function (short for estimate contrast)

cl <- linest(co2.add, L)

coef(cl)

#> estimate std.error statistic df p.value
#> 1 26.29 2.247 11.70 22 6.440e-11
#> 2 18.11 2.247 8.06 22 5.209e-08
confint(c1)

#> 0.025 0.975
#> 1 21.63 30.95
#> 2 13.45 22.77

cl <- esticon(co2.add, L)
cl

#> estimate std.error statistic p.value betad df
#> [1,] 2.63e+t01 2.25e+00 1.17e+01 6.44e-11 0.00e+00 22
#> [2,] 1.81e+01 2.25e+00 8.06e+00 5.21e-08 0.00e+00 22

Another option is to invoke glht (short for general linear hypothesis) from the multcomp package:

library(multcomp)
mc <- glht(co2.add, linfct=L)
summary (mc)

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=multcomp

CONTRIBUTED RESEARCH ARTICLE

#>

#> Simultaneous Tests for General Linear Hypotheses
#>

#> Fit: Im(formula = uptake ~ Treat + Type, data = C02)
#>

#> Linear Hypotheses:

#> Estimate Std. Error t value Pr(>|t])

#> 1 == 26.29 2.25 11.70 1.3e-10

#> 2 == 18.11 2.25 8.06 1.0e-07

#> (Adjusted p values reported -- single-step method)

In doBy there are facilities for computing L automatically and for supplying LB with standard
errors etc.

L <- LE_matrix(co2.add, effect = "Treat”, at=list(Type="Mis")); L

#> (Intercept) Treatchil TypeMis
#> [1,] 1 0 1
#> [2,] 1 1 1

Least-squares means (LS—-means)

A related question is: What is the estimated uptake for each treatment if we ignore the type (i.e. origin
of the plants)? One option would to fit a linear model without Type as explanatory variable:

Cc02.0 <- update(co2.add, . ~ . - Type)

L@ <- LE_matrix(co2.0, effect="Treat"); LO
#> (Intercept) Treatchil

#> [1,] 1 0

[2,] 1 1

linest(co2.0, L=L0)

#> Coefficients:

#> estimate std.error statistic df p.value
#> [1,] 30.56 2.68 11.40 23.00 Q
#> [2,] 23.99 2.38 10.09 23.00 Q

An alternative would be to keep the focus on the original model but compute the estimated uptake
for each treatment for an average location. That would correspond to giving weight 1/2 to each of the
two locations. However, as one of the parameters is already set to zero to obtain identifiability, we
obtain the LE-matrix L as

L1 <- matrix(c(1, 0, 0.5,
1, 1, 0.5), nrow=2, byrow=T); L1

#> [,11 [,2] [,3]
#®1[1,] 1 0 0.5
#© [2,] 1 1 0.5

linest(co2.add, L=L1)

#> Coefficients:

#> estimate std.error statistic df p.value
#> [1,] 32.17 2.05 15.68 22.00 Q
#> [2,] 23.99 1.79 13.41 22.00 Q

Such a particular linear estimate is sometimes called a least-squares mean, an LS-mean, a marginal
mean or a population mean. If data had been balanced, the LS-mean would be identical to the result
obtained after fitting a model without Type.

The virtue of the doBy package is in this connection that L can be generated automatically with:

L1 <- LE_matrix(co2.add, effect="Treat"); L1

#> (Intercept) Treatchil TypeMis
#> [1,] 1) 0.5
[2,] 1 1 0.5

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=doBy

CONTRIBUTED RESEARCH ARTICLE

Notice: One may obtain the LS-mean directly as:

LSmeans(co2.add, effect="Treat")
same as
linest(co2.add, L=LE_matrix(co2.add, effect="Treat"))

For a model with interactions, the LS-means are computed as above, but the L-matrix is different:

co2.int <- Im(uptake ~ Treat * Type, data=C02)
LE_matrix(co2.int, effect="Treat")

#> (Intercept) Treatchil TypeMis Treatchil:TypeMis
#> [1,] 1 0 0.5 0.0
#> [2,] 1 1 0.5 0.5

Using (transformed) covariates

From the examples above it should follows that the key aspect of computing LS-means is the (au-
tomatic) generation of the L matrix. Therefore we shall in the following focus on form of the L
matrix rather than on the computed LS-means. Covariates are fixed at their average value (unless the
at=...-argument is used, see below). For example, conc is fixed at the average value:

co2.1ml <- Im(uptake ~ conc + Type + Treat, data=C02)
1sm1 <- LSmeans(co2.1ml, effect="Treat")

1sm1$L

#> (Intercept) conc TypeMis Treatchil

#> [1,] 1 466.4 0.5 0

#> [2,] 1 466.4 0.5 1

1smla <- LSmeans(co2.1lm1, effect="Treat"”, at=list(conc=700))
lsmilas$L

#> (Intercept) conc TypeMis Treatchil

#> [1,] 1 700 0.5 0

#> [2,] 1 700 0.5 1

A special issue arises in connection with transformed covariates. Consider:

c02.1m2 <- Im(uptake ~ conc + I(conc*2) + log(conc) + Type + Treat, data=C02)
1sm2 <- LSmeans(co2.1m2, effect="Treat")

1sm2$L

#> (Intercept) conc I(conc*2) log(conc) TypeMis Treatchil
#> [1,] 1 466.4 217529 6.145 0.5 0
#> [2,] 1 466.4 217529 6.145 0.5 1

Above I(conc*2) is the the square of the average of conc (which is 2.1753 x 10°) - not the average
of the squared values of conc (which is 3.0476 x 105). Likewise log(conc) is the log of the average
of conc (which is 6.145) - not the average of the log of conc (which is 5.908). To make computations
based on the average value of the square of conc and the average of the log of conc do

c02.1m3 <- Im(uptake ~ conc + conc2 + log.conc + Type + Treat,
data=transform(C02, conc2=conc”2, log.conc=log(conc)))
1sm3 <- LSmeans(co2.1m3, effect="Treat")

1sm3$L

#> (Intercept) conc conc2 log.conc TypeMis Treatchil
#> [1,] 1 466.4 304758 5.908 0.5 0
#> [2,] 1 466.4 304758 5.908 0.5 1

Thus, if we want to evaluate the LS—means at conc=700 then we can do:

1sm4 <- LSmeans(co2.1m3, effect="Treat"”, at=list(conc=700, conc2=700"2, log.conc=1og(700)))

1sm4s$L

#> (Intercept) conc conc2 log.conc TypeMis Treatchil
#> [1,] 1 700 490000 6.551 0.5 0
#> [2,] 1 700 490000 6.551 0.5 1

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Alternative models

The functions esticon, linest, LSmeans etc. are available for a range of model classes. We illustrate a
few below: We may decide to treat Type as a random effect (here with only two levels). This leads to a
linear mixed effects model as implemented in Ime4, (Bates et al., 2015):

library(1lme4)
co2.mix <- lmer(uptake ~ Treat + (1|Type), data=C02)
LSmeans(co2.mix, effect="Treat")

#> Coefficients:

#> estimate std.error statistic df p.value
#> [1,] 32.08 6.08 5.28 1.14 0.10
#> [2,] 23.99 5.99 4.00 1.08 0.14

Notice here that the parameter estimates themselves are similar to those of a linear model (had
data been completely balanced, the estimates would have been identical). However, the standard
errors of the the estimates are much larger under the mixed model. This is due to Type being treated
as a random effect. Notice that the degrees of freedom by default are adjusted using a Kenward-
Roger approximation (provided that pbkrtest package (Halekoh and Hejsgaard, 2014) is installed).
Adjustment of degrees of freedom is controlled with the adjust.df argument.

LS-means are also available in a generalized linear model setting as well as for for generalized estimating
equations as implemented in the geepack package, (Halekoh et al., 2006). In both cases the LS—-means
are on the scale of the linear predictor - not on the scale of the response.

Acknowledgements

Credit is due to Dennis Chabot, Gabor Grothendieck, Paul Murrell, Jim Robison-Cox and Erik Jer-
gensen for reporting various bugs and making various suggestions to the functionality in the doBy
package.

Bibliography

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2014. URL https://CRAN.R-
project.org/package=magrittr. R package version 1.5. [p3]

D. Bates, M. Michler, B. Bolker, and S. Walker. Fitting linear mixed-effects models using Ime4. Journal
of Statistical Software, 67(1):1-48, 2015. doi: 10.18637/jss.v067.i01. [p8&]

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame’, 2019. URL https://CRAN.R-project.
org/package=data.table. R package version 1.12.8. [p1]

U. Halekoh and S. Hojsgaard. A kenward-roger approximation and parametric bootstrap methods for
tests in linear mixed models — the R package pbkrtest. Journal of Statistical Software, 59(9):1-30, 2014.
URL http://www. jstatsoft.org/v59/i09/. [p8]

U. Halekoh, S. Hejsgaard, and J. Yan. The r package geepack for generalized estimating equations.
Journal of Statistical Software, 15/2:1-11, 2006. [p8]

T. Hothorn, F. Bretz, and P. Westfall. Simultaneous inference in general parametric models. Biometrical
Journal, 50(3):346-363, 2008. [p1]

S. Hejsgaard and U. Halekoh. doBy: Groupwise Statistics, LSmeans, Linear Contrasts, Utilities, 2020. URL
http://people.math.aau.dk/~sorenh/software/doBy/. R package version 4.6.6. [p1]

R. V. Lenth. Least-squares means: The R package Ismeans. Journal of Statistical Software, 69(1):1-33,
2016. doi: 10.18637/jss.v069.i01. [p1]

K. Miiller and H. Wickham. tibble: Simple Data Frames, 2020. URL https://CRAN.R-project.org/
package=tibble. R package version 3.0.1. [p1]

SAS Institute Inc. Base SAS 9.4 Procedures Guide, Seventh Edition, April 2020. [p1]

H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. Frangois, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Miiller, J. Ooms, D. Robinson,
D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the
tidyverse. Journal of Open Source Software, 4(43):1686, 2019. doi: 10.21105/joss.01686. [p1]

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=pbkrtest
http://CRAN.R-project.org/package=geepack
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
http://www.jstatsoft.org/v59/i09/
http://people.math.aau.dk/~sorenh/software/doBy/
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble

CONTRIBUTED RESEARCH ARTICLE

Soren Hojsgaard

Department of Mathematical Sciences, Aalborg University, Denmark
Skjernvej 4A

9220 Aalborg @, Denmark

sorenh@math.aau.dk

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

mailto:sorenh@math.aau.dk

	The doBy package for data handling, linear estimates and LS-means
	Introduction
	Functions related to groupwise computations
	Using the pipe operator
	Functions related linear estimates and contrasts
	Alternative models
	Acknowledgements

