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1 Introduction

OpenCL is a class library, written in ISO C++, which attempts to provide the most common cryptographic
algorithms in an easy to use and portable package. While you are reading this, you may want to refer to the
files opencl.h and filters.h. These files contain the classes that form the basic interface for the library.

All declarations in the library are contained within the namespace OpenCL. OpenCL declares several
typedef’ed types to help buffer it against changes in machine architecture. These types are used extensively
in the interface, and thus it would be often be convenient to use them without the OpenCL: : prefix. You
can, by using the namespace OpenCL_types (this way you can use the type names without the namespace
prefix, but the remainder of the library stays out of the global namespace). The included types are byte
and u32bit, which are unsigned integer types.

2 Building The Library

These are the basic steps for compiling OpenCL on a Unix or Unix-like system:

$ ./configure.pl CC-0S-CPU

$ gmake

$ gmake check # optional, but recommended

# gmake INSTALLROOT=path install # default INSTALLROOT=/usr/local

The ./configure.pl script is written in Perl, and the Makefile requires GNU make. It is shown above as
gmake’, which will work for most systems. To get the list of values for CC, 0S, and CPU that ./configure.pl
supports, run it with the “~--help” option.

Note that you should only select the 64-bit version of a CPU (like “sparc64” or “mips64”) if your operating
system knows how to handle 64-bit object code — a 32-bit kernel on a 64-bit CPU will generally not like
64-bit code. This restriction also applies to submodels, ie, gce-solaris-ultra2 will not work unless you're
running a 64-bit Solaris kernel (for 32-bit Solaris, you want gcc-solaris-v9).

Note that not all OSes or CPUs have specific support. If your CPU architecture isn’t supported by
./configure.pl, use ’generic’. This simply disables machine-specific optimization flags. Similarly, setting
OS to ’generic’ disables things which depend greatly on OS support (specifically, shared libraries).

However, it’s impossible to guess which options to give to a system compiler. Thus, if you want to compile
OpenCL with a compiler which ./configure.pl does not support, fill out the bug report form (linked off
the OpenCL web page), giving enough information to update the script (preferably, mail the man pages for
the C and C++ compilers and the linker).

2.1 Configuration Parameters

There are some configuration parameters which you may want to tweak before building the library. These
can be found in config.h.

DEFAULT BUFFERSIZE: This constant is used as the size of buffers throughout OpenCL. A good rule of
thumb would be to use the page size of your machine.



3 The Basic Interface

OpenCL has two different interfaces. The one documented in this section is meant more for implementing
higher-level types (see the section on filters, below) than for use by applications.

Virtually every class listed here implements the function void clear(), which destroys any sensitive data
contained within the object and returns it to it’s initial state. This is called by the destructor of each class,
so usually you will not have to call it, but occasionally it may be useful.

3.1 Symmetrically Keyed Algorithms

Block ciphers, stream ciphers, and MACs all handle keys in pretty much the same way. To make this
similiarity explicit, all algorithms of those types are derived from the SymmetricAlgorithm base class. This
type has only two functions:

void set_key(const byte key[], ud2bit length):

Most algorithms only accept keys of certain lengths. If you attempt to call set_key with a key length
that is not supported, the exception InvalidKeyLength will be thrown.

Objects of this type have a parameter KEYLENGTH, which gives one value that the algorithm supports.
This will generally be the largest key length possible (or 256 bits, whichever is less). Unless you have a
reason to do otherwise, using KEYLENGTH as the length of the key is recommended.

bool valid_keylength(u32bit length) const:
This function returns true if a key of the given length will be accepted by the cipher.

3.2 Block Ciphers

Block ciphers implement the inferface BlockCipher, found in opencl.h.

void encrypt(const byte in[BLOCKSIZE], byte out[BLOCKSIZE]) const
void encrypt(byte block| BLOCKSIZE]) const

These functions apply the block cipher transformation to in and place the result in out, or encrypts block
in place (in may be the same as out). BLOCKSIZE is a constant which specifies how much data a block
cipher can process at one time.

BlockCiphers have similar functions decrypt, which perform the inverse operation. All variations of
encrypt and decrypt assume that set_key has already been called.

Block ciphers implement the SymmetricAlgorithm interface.

3.3 Stream Ciphers

Stream ciphers are somewhat different from block ciphers, in that encrypting data results in changing the
internal state of the cipher. Also, you may encrypt any length of data in one go (in byte amounts).

void encrypt(const byte in[], byte out[], ud2bit length)
void encrypt(byte data[], ud32bit length):



These function encrypt the arbitrary length (well, less than 4 gigabyte) string in and place it in out, or
encrypt it in place in data. The decrypt functions look just like encrypt.

Stream ciphers implement the SymmetricAlgorithm interface.

Some stream ciphers support random access to any point in their cipher stream. These ciphers have
the interface RandomAccessStreamCipher (which is derived from StreamCipher). For these ciphers, calling
void seek(u32bit byte) will change the ciphers state so that it as if the cipher and been keyed as normal,
then encrypted byte — 1 bytes of data (so the next byte in the cipher stream is byte number byte).

3.4 Hash Functions

Hash functions take their input without producing any output, only producing anything when all input has
already taken place.

void update(const byte input[], ud2bit length):
Update the hash function with length more bytes in input.

void final(byte hashl[HASHLENGTH)]):

Complete the hash calculation and place the result into hash. HASHLENGTH is a public constant in
each class that gives the length of the hash in bytes. After you call final, the hash function is reset to it’s
initial state, so it may be reused immediately.

3.5 Message Authentication Codes

A MAC is essentially a keyed hash function, so classes derived from MessageAuthCode have update and
final classes just like a HashFunction (and like a HashFunction, after final is called, it can be used to
make a new MAC right away; the key is kept around). One minor difference is that the constant called
HASHLENGTH in a hash function is called MACLENGTH in a MAC object.

Additionally, a MAC has the SymmetricAlgorithminterface (a MAC should be keyed before being used).

3.6 Random Number Generators

The random number generators provided in OpenCL are meant for creating keys, IVs, padding, nonces, and
anything else which requires 'random’ data. It is important to remember that the output of these classes
will vary, even if they are supplied with exactly the same seed (ie, two Randpools with similar initial states
will not produce the same output).

To ensure good quality output, you need to seed the RNG with truly random’ data, such as timing data
from hardware. Preferably, you should use an EntropySource (see below).

To add entropy to a RNG, you can use void add_entropy(const byte data[], ud2bit length) or the
EntropySource interface.

One a RNG has been initialized, you can get a single byte of random data by calling byte random(),
or get a large block by calling void randomize(byte data[], u32bit length), which will put random bytes
into each member of the array from indexes O ... length — 1.



3.6.1 Randpool

Randpool is based around a large pool of data and a hash function (usually, MD4). Randpool is slower than
X917, but can easily satisfy any reasonable demand (on a 350 MHz Pentium II Randpool can produce over
100K of data per second). Because the internal state of Randpool is much larger than X917, it is more likely
to be secure, and it is recommended that Randpool be used over X917 in most cases.

3.6.2 X917

X917 is based on the ANSI X9.17 standard, which makes use of a block cipher. X917 is quite a bit faster
than Randpool (depending on the block cipher used). Using Square, usually one of the fastest ciphers in the
suite, X917 is about 7 times faster than Randpool. The version used is a variant of the normal X9.17; most
importantly, only 1/2 of the output of the block cipher is actually given to the caller (then a new block is
computed), the timestamp is encrypted in CBC mode instead of ECB mode, and that after a X917 object
has generated a certain number of blocks (normally set to 32), it will automatically rekey itself using it’s
internal state. These alterations make any attack much harder (at the cost of reducing speed). X917 is a
template which takes a block cipher as an parameter.

3.6.3 Entropy Sources

For a RNG to be secure, it has to be seeded with some amount of “truly random” data. Because OpenCL
is designed to be platform independent, no routines for this are provided. However, OpenCL does have an
EntropySource interface, which can be subclassed for each individual platform. Some OSes (such as Linux,
FreeBSD, and Windows NT) provide easy ways to get random data from the OS itself, while others (like
most commercial Unices) will require very specialized code. EntropySources for some systems can be found
on the OpenCL FTP site.

The only function in the EntropySource interface is u32bit get_entropy(byte data[], ud2bit length).
Basically you pass an EntropySource written for your particular system to a RandomNumberGenerator, by
calling the function void add_entropy(EntropySource& source, bool slow). This tells the RNG to ask the
EntropySource for some amount of random data. It passes it an array where it wants the entropy stored,
and a length parameter telling it how much it wants. If slow is true, then the RNG assumes that your
application doesn’t have anything pressing to do, and basically tells the EntropySource “Go nuts, I've got
all the time in the world”. Doing this at least once (when your application starts up, for example) is a highly
recommended idea, because it ensures that your RNG is in a good (ie, highly random and unpredictable)
state.

The EntropySource shouldn’t write more data into the array than was requested (otherwise memory
not owned by the process will probably be written to), however, it can write less (for instance, if it cannot
collect enough data, or collecting that much would take too long). For this reason, the get_entropy function
returns how much data it actually wrote (which should never be more than the length field passed to the
function).

Note for writers of EntropySources: it isn’t necessary to use any kind of cryptographic hash on your
output. The data produced by an EntropySource is only used by an application after it has been hashed by
the RandomNumberGenerator which asked for the entropy, and thus any hashing you do will be wasteful of
both CPU cycles and possibly entropy.



3.7 Miscellaneous

This section has documentation for anything that just didn’t fit into any of the major categories.

3.7.1 Checksums

Checksums are very similar to hash functions, and in fact share the same interface. However, there are
some significant differences, the major ones being that the output size is very small (generally in the range
of 2 to 4 bytes), and is not designed to be cryptographically secure. But for their intended purpose (error
checking), they perform very well. Some examples of checksums included in OpenCL are the Adler32 and
CRC32 checksums.

3.7.2 Exceptions

Sooner or later, something is going to go wrong. OpenCL’s behavior when something unusual occurs, like
most C++ software, is to throw an exception. Exceptions in OpenCL are derived from it’s Exception class.
You can see most of the major varieties of exceptions used in OpenCL by looking at exceptn.h. The only
function you really need to concern yourself with is const char* what(). This will return an error message
relevant to the error that occured. For example:

try {
// various OpenCL operations
}
catch(OpenCL: :Exception& e)
{
std::cout << "OpenCL exception caught: " << e.what() << std::endl;
// error handling, or just abort
}

OpenCL’s exceptions are derived from std: : exception, so you don’t need to explicitly check for OpenCL
exceptions.

3.7.3 Secure Memory

A major concern with mixing modern multiuser OSes and cryptographic code is that at any time the code
(including secret keys) could be swapped to disk, where it can later be read by an attacker (unless, of course,
you’re using OpenBSD, which encrypts whatever it writes to swap <g>). OpenCL stores almost everything
(and especially anything sensitive) in memory buffers which a) clear out their contents when their destructors
are called, and b) have easy plugins for various memory locking functions, such as the mlock(2) call on many
Unix systems.

These classes should also be used within your own code for storing sensitive data. They are only meant
for primitive data types (int, long, etc): if you want a container of higher level OpenCL objects, you can
just use a std: :vector, since these objects know how to clear themselves when they are destroyed. You
cannot, however, have a std::vector (or any other container) of Pipes or Filters, because these types
have pointers to other Filters, and implementing copy constructors for these types would be both hard and
quite expensive.

These types are not described in any great detail: for more information, consult the files secmem.h and
secalloc.h.



SecureBuffer is a simple array type, whose size is specified at compile time. It will automatically convert
to an array of the appropriate type, and has various useful functions, including clear(), and u32bit size(),
which returns the length of the array. It is a template that takes as parameters a type, and a constant
integer which is how long the array is (for example: SecureBuffer<byte, 8> key;).

SecureVector is a variable length array. It’s size can be increased or decreased as need be, and it has
a wide variety of functions useful for copying data into it’s buffer. Like SecureBuffer, it implements clear
and size.

You can change the allocation functions used by replacing (or editing) the file secalloc.h. This file
contains the template SecureAllocator which is used by SecureBuffer and SecureVector to allocate and
deallocate their memory (the idea is quite similiar to the STL allocators).

Memory locking can be implemented by editing the functions lock_mem and unlock_mem in util. cpp.
These functions take a void* and a length argument; the intent is that if memory locking is available, the
block of memory starting at the pointer and extending for the specified number of bytes should be locked,
if possible (they’re also useful fo profiling memory use).

3.7.4 Timers

OpenCL includes a pair of functions, system_time and system_clock, which are used extensively in some
areas of the code (especially in the random number generators). These functions by default use std::time
and std::clock, but often you can do better with system-dependant functions, especially for the system
clock (for example, returning the microseconds value from gettimeofday is far superior).

4 Filters

4.1 Basic Filter Usage

Up until this point, using OpenCL would be very tedious; to do anything you would have to bother with
putting data into arrays, doing whatever you want with it, and then sending it someplace. The filter
metaphor (defining a series of operations which take some amount of input, process it, then send it along to
the next filter) works very well in this situation. If you’ve ever used a Unix system, the usage of filters in
OpenCL should be very intuitive (and even if you haven’t, don’t worry, it’s pretty easy). For instance, here
is how you encrypt a file with Blowfish in CBC mode with padding, then encode it with Base64 and send
it to standard output (we assume you have already created key and iv, probably using one of OpenCL’s
RandomNumberGenerator types, and that file is an open istream):

Pipe encryptor(new CBC_wPadding_Encryption<Blowfish>(key, iv),
new Base64Encoder) ;

file >> encryptor;

encryptor.close(); // flush buffers, complete computations

cout << encryptor;

Pipe works in conjunction with the Filter class (for example, the CBC_wPadding Encryption and
Base64Encoder types used above are Filters), but you should never have to deal with them directly (in
fact, it’s a distinctly bad idea, as Pipe and Filter are closely tied and rely on knowing a great deal about
each other to work correctly).



Some useful functions in Pipe not shown above are u32bit remaining(), which returns how many
bytes are available for immediate reading, and several different I/O functions. Using the istream/ostream
operators above, all data available (either stored in the pipe or until EOF from an istream) is taken out.
Sometimes, you want only a small amount at a time, or you are getting your input in small chunks, in which
case you can use u32bit read(byte output[], ud2bit len), which will read up to len bytes into output and
return how many bytes were actually written into the array, and void write(byte input[], u32bit len),
which writes len bytes from input into the pipe. There are also versions of read and write which take a
single byte as their argument, as convenience functions. You can see the complete declaration for Pipe in
filebase.h

You can reuse a Pipe by calling it’s reset function, which restores a pipe to it’s initial state of no filters
(writing into the Pipe and then reading will give you back your data unchanged). This usually isn’t too
useful, so you can use void attach(Filter* filter) to attach a new filter onto the pipe again. You can call
attach as many times as you like; each filter added will be attached to the end of the current set of filters
(note that you can use attach even if you haven’t called reset). Calling reset will also destroy any output
currently stored in the pipe.

One last point: if you call attach, everything which has previously been processed by the Pipe remains
as-is. To prevent various problems, if you are calling attach on a Pipe which already has had input written
into it (and you haven’t reset the Pipe), you should call close first (this may not be exactly what you’re
looking for either: different filters have different semantics when they are closed).

4.2 Fork

It’s fairly common that you might recieve some data and want to perform more than one operation on it
(ie, encrypt it with DES and calculate the MD5 hash of the plaintext at the same time). That’s where Fork
comes in. Fork is a filter that takes it’s input and passes it on to one or more Filters which are attached
to it.

Fork changes the nature of the pipe system completely. Instead of being a linked list, it becomes a tree.
Each “leaf” of this tree has it’s own output buffer. When you read data from the pipe, your request for a
read passes through all the Filters in the pipe until it reaches the end, whereupon your data is retrieved
from an output buffer. Obviously, if Fork forwarded your request to read to all it’s “children”, confusion
would result: Filters would be stepping on each other’s toes (and output), as they all try to write into your
buffer. Also, what value should remaining() return?

The solution to this dilemma is that you have to inform Fork what you want it to do. You do this by
calling the function void set_port(u32bit port). The port specifies which Filter it is that Fork should pass
read requests on to. You can find out how many ports there are by calling u32bit total ports() (valid port
numbers range from 0 ...n—1, where n is the return value of total_ports()), and the currently selected port
from u32bit current_port(). Generally, after you have finished entering input, you will iterate through all
ports reading the output.

Since you will have to call set_port when using Fork, you need to keep a pointer to the Forks you are
using, rather than simply calling new in the call to the constructor. See the section “A Filter Example” for
an example of using Fork.

4.3 Chain

Chain is about as simple as it gets. Chain creates a chain of Filters and encapsulates them inside a single
filter (itself). This is primarily useful for passing a sequence of filters into something which is expecting only



a single Filter (most notably, Fork). You can call Chain’s constructor with up to 4 Filterx*s (they will be
added in order), or with an array of Filter*s and a u32bit which tells Chain how many Filter*s are in
the array (again, they will be attached in order).

See the next section for an example of using Chain.

4.4 A Filter Example

Here is some code which takes one or more filenames as it’s argument and calculates the result of several
hash functions for each file. This code can be found as hasher.cpp in the OpenCL distribution.

#include <fstream>

#include <string>

#include <opencl/md5.h>
#include <opencl/shal.h>
#include <opencl/rmd160.h>
#include <opencl/encoder.h>

using namespace OpenCL_types;

int main(int argc, char* argv[])

{
if (argc < 2)
{

std::cout << "Usage: hasher <filenames>" << std:

return 1;

}

const u32bit COUNT = 3;

OpenCL: :Filter* hash[COUNT] = {

new OpenCL::Chain(new
new
new OpenCL::Chain(new
new
new OpenCL::Chain(new
new

OpenCL:
OpenCL:
OpenCL:
OpenCL:
OpenCL:
OpenCL:

:HashFilter<OpenCL:
:HexEncoder) ,
:HashFilter<0OpenCL:
:HexEncoder) ,
:HashFilter<0OpenCL:
:HexEncoder) };

:endl;

:MD5>,

:SHA1>,

:RIPEMD160>,

std::string name[COUNT] = { "MD5", "SHA-1", "RIPE-MD160" };

OpenCL: :Fork* fork = new OpenCL::Fork(hash, COUNT);

OpenCL: :Pipe pipe(fork);

for(u32bit j = 1; argv[j]l !'= 0; j++)

{
std::ifstream file(argv[jl);
if(1file)

{

std::cout << "ERROR: could not open " << argv[j] << std::endl;

continue;
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}
file >> pipe;
file.close();
pipe.close();
for(u32bit k = 0; k != COUNT; k++)

{
fork->set_port (k) ;
std::cout << name[k] << "(" << argv[j] << ") = " << pipe << std::endl;
}
}
return 0;

4.5 Rolling Your Own

Well, now that you know how filters work in OpenCL, you probably want to write your own. Lucky for
you, all of the hard work is done by the Filter base class, leaving you to handle the details of what your
filter is supposed to do. The first thing is to make sure to do is derive your filter from OpenCL’s Filter
class. Remember that if you get confused about any of this, you can always look at the implementation of
OpenCL’s filters to see exactly how everything works.

There are basically only three functions that a filter need worry about:

void write(byte input[], ud2bit length):

The write function is what is called when a filter receives input for it to process. The filter is not required
to process it right away; many filters buffer their input before producing any output. A filter will generally
have write called many times during it’s lifetime.

void send(byte output[], ud32bit length):

Eventually, a filter will want to produce some output to send along to the next filter in the pipeline. It
does so by calling send with whatever it wants to send along to the next filter.

void final():

Implementing the final function is optional. It is called when it has been requested that filters finish
up their computations. Note that they should not deallocate their resources; this should be done by their
destructor. They should simply finish up with whatever computation they have been working on (for
example, a compressing filter would flush the compressor and send the final block), and empty any buffers
in preparation for processing a fresh new set of input.

Additionally, if necessary filters should define a constructor that takes any needed arguments, and a
destructor to deal with deallocating memory, closing files, etc.

4.6 The Filter Directory

This section contains descriptions of every Filter included in OpenCL.
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4.6.1 Keys

Key handling is a little different for Filters. Instead of a (very low level) interface of an array of bytes and
a length parameter, they use a (slightly higher level) SymmetricKey. The major functions of this type are
it’s constructors:

SymmetricKey(RandomNumberGenerator& rng, ud2bit length):
This constructor takes length bytes of output from rng and uses it for a key.

SymmetricKey(const byte input[], u32bit length):
This constructor simply copies it’s input.

SymmetricKey(const std::string str)
The argument str is assumed to be a hex string; it is converted to binary and stored in the key.

Synonyms for this type include BlockCipherKey, StreamCipherKey, MACKey, and BlockCipherModeIV
(they’re all exactly the same thing, the different names just makes it clear what the bytes are being used
for).

4.6.2 Basic Wrappers

Stream ciphers, hash functions, and MACs don’t need anything special when it comes to filters. Stream
ciphers take their input, encrypt it, and send it along to the next Filter. Hash functions and MACs both
take their input and produce no output until final() is called, at which time they complete the hash and
send that as output.

StreamCipherFilter(const StreamCipherKey& key)

The constructor for a StreamCipherFilter takes the a key, which it will pass pretty much directly on to
the StreamCipher being used, so if the key length is inappropriate for the cipher used, InvalidKeyLength
will be thrown.

HashFilter(u32bit outlength):

The constructor for a HashFilter takes only one argument, which is a number specifying how much of
the hash should be produced as output. Sometimes, you will only want to use (say) half of the hash, and
this mechanism lets you do this easily. It defaults to the full size of the hash. If outlength is greater than
the size of the output, the full hash is used.

MACYFilter(const MACKey& key, u3d2bit outlength):

The constructor for a MACFilter takes a key, used in calculating the MAC, and a length parameter,

which has semantics exactly the same as the one passed to HashFilters constructor.

All three of StreamCipherFilter, HashFilter, and MACFilter are templates, which take the desired
type as an parameter. These filters can be found in filters.h.

4.6.3 Cipher Modes

For block ciphers, the situation is more complicated. Because ECB mode is dangerous (a message may be
easily altered without detection and similar plaintext encrypts to similar ciphertext), block ciphers must

12



be used in a different mode. The modes provided with OpenCL are CBC with padding (see RFC 2040),
CFB, OFB, and Counter. All are templates, taking a BlockCipher as a parameter. They are presented
in modes.h, and derive from CipherMode, which is a subclass of Filter (this allows you to enforce that a
particular filter is, in fact, a block cipher mode, without having special cases for each mode).

Only their constructors are interesting; other than that they are just like any other filter, and are used
like any other discussed in this documentation.

CBC_wPadding_Encryption(const BlockCipherKey& key, const BlockCipherModeIV& iv):

This is quite simple: a key, of a length suitable for the cipher, and an IV, which is the size of the cipher
block (if it is not an exception will be thrown). The constructor for CBC_wPadding Decryption is exactly
the same.

CFB _Encryption(const BlockCipherKey& key, const BlockCipherModeIV& iv, u32bit feedback):

This is just like CBC, but it takes an (optional) additional argument, the size of the feedback (it will
default to the full blocksize of the cipher being used). This value is given in bytes, and can range from 1
to BLOCKSIZE. If the feedback is not a valid amount, InvalidArgument will be thrown. CFB_Decryption,
the inverse opertaion, takes similar arguments.

OFB(const BlockCipherKey& key, const BlockCipherModeIV& iv):

This is the usual OFB mode. Variable feedback sizes are not supported, as it has be shown that they
are insecure. Counter is a variant of OFB, whose constructor takes the same arguments. Remember that a
block cipher operating in either OFB or counter modes is like a stream cipher, and thus you should never
encrypt 2 messages with the same key without changing the IV.

4.6.4 Encoders

Often you want your data to be in some form of text (for sending over channels which aren’t 8-bit clean,
printing it, etc). The filters HexEncoder and Base64Encoder will convert arbitrary binary data into Hex or
Base64 formats. Not suprisingly, you can use HexDecoder and Base64Decoder to convert it back into it’s
original form. You can find the declarations for these types in encoder.h.
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5 More Information

5.1 Portability

A fair amount of effort was made into making this library portable to a wide variety of platforms, assuming
an implementation of the C++ standard. OpenCL has been successfully compiled, tested, and used with
the following systems:

0S CPU Compiler(s)
Linux | x86 eges 1.1.2, gee 3.0 (20010327), KAI C++ 3.4g, PGI C++ 3.2
Linux | IA-64 gee 2.9 (20000216)

Linux | Alpha gee 2.96 (20000731)
Linux | PowerPC | gce 2.95.2

Tru64 | Alpha Compaq C++ 6.2
Solaris | SPARC gee 2.95.2

IRIX | MIPS MIPSProC++ 7.2.1

5.2 Compatibility

Generally, cryptographic algorithms are well standardized, and thus compatibilty between implementations
is relatively simple (of course, not all algorithms are supported by all implementations). However, there
are a few algorithms which are poorly specified, and these should be avoided if you wish your data to be
proccessed in the same way by another implementation (including future version of OpenCL).

The block cipher GOST has a particularly poor specification: there are no standard Sboxes, and the
specification does not give test vectors even for sample boxes, which leads to issues of endian conventions,
etc. Other algorithms including in OpenCL suffering from these problems (though to a less serious degree)
include HAVAL, ISAAC, and EMAC.

If you wish maximum portability between different implementations of an algorithm, it’s best to stick to
strongly defined and well standardized algorithms: TripleDES, Blowfish, CAST5, Rijndael, Serpent, HMAC,
MD5, SHA-1, and RIPE-MD160 all being good examples.

5.3 Patents

Some of the algorithms implemented by OpenCL are covered by patents. Algorithms known to be patented
in the United States or other countries (where the patent holder has not granted royalty-free use for any
purpose) include: CS-Cipher, IDEA, MISTY1, RC5, RC6, and SEAL. Note that just because an algorithm
is not listed here, you should not assume that it is not encumbered by patents.

5.4 Further Reading

It’s probably a very good idea if you have some knowledge of cryptography prior to trying to use OpenCL.
It is recommended you read one or more of these books before seriously using the library:

Handbook of Applied Cryptography, by Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone;
CRC Press

Cryptography: Theory and Practice, by Douglas R. Stinson; CRC Press
Applied Cryptography, 2nd Ed., by Bruce Schneier; John Wiley & Sons
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5.5 Acknowledgements

The implementation of DES is based off a public domain implementation by Phil Karn from 1994 (he, in
turn, credits Richard Outerbridge and Jim Gillogly).

Matthew Skala’s public domain twofish.c (as given in GnuPG 0.9.8) provided the basis for Twofish.

Rijndael and Square are based on the reference implementations written by the inventors, Joan Daemon and
Vincent Rijmen.

ThreeWay is based on reference code written by Joan Daemon.

The Serpent S-Boxes used were discovered by Dag Arne Osvik and detailed in his paper ”Speeding Up
Serpent”.

The design of Randpool takes some of it’s design principles from those suggested by Eric A. Young in his
SSLeay documentation and Peter Guttman’s paper ”Software Generation of Practically Strong Random
Numbers”.

X917’s design was changed from the X9.17 standard in response to the attacks presented in the paper
”Cryptanalytic Attacks on Pseudorandom Number Generators”, by Kelsey, Schneier, Wagner, and Hall.

5.6 Contact Information

A DSA key with a fingerprint of 33E3 9768 1D13 E7B4 1A01 BBCE A63F 2CBD FAO2 FBCC is used to sign
all OpenCL releases. This key can be found in the file doc/pgpkeys.asc; PGP keys for the developers are
also stored there.

Email: opencl@acm.jhu.edu
OpenCL Web Site: http://opencl.sourceforge.net
OpenCL File Distribution Site: ftp://prdownloads.sourceforge.net/opencl

5.7 Developers

Name: Jack Lloyd

Email: <1loyd@acm. jhu.edu>

PGP Key Fingerprint: 2DD2 95F9 C7E3 A15E AF29 80E1 D6A9 A5B9 4DCD F398
Credits: Initial design and coding
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