IPgrab

Verbose Packet Sniffer

Edition 0.9.6, for IPgrab version 0.9.6
7 October 2001

Mike Borella

Copyright (©) 1997-2001, Mike Borella

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Author.

Table of Contents

1 Introduction..................... 1
2 GuidelinesforUse......................... 2
2.1 Main Modeo 2
2.2 Minimal Mode 3
2.3 Command Line Optionscoviiineeiinaa... 3
2.4 Examples....... ... 4
3 Status of Protocol Modules................. 6
3.1 Authentication Header (AH) 6
3.2 Address Resolution Protocol (ARP) 6
3.3 Challenge Handshake Authentication Protocol (CHAP) 6
3.4 Dynamic Host Configuration Protocol (DHCP)............ 6
3.5 Domain Name System (DNS) 7
3.6 Encapsulating Security Payload (ESP).................... 7
3.7 Ethernet....... 7
3.8 Generic Routing Encapsulation........................... 7
3.9 Hypertext Transfer Protocol 7
3.10 Internet Control Message Protocol....................... 8
3.11 Internet Control Message Protocol Version 6 8
3.12 Internet Group Message Protocol........................ 8
3.13 Internet Protocol.......... 8
3.14 Internet Protocol Control Protocol 8
3.15 Internet Protocol Version 6 9
3.16 Internet Packet Exchange............................... 9
3.17 Internet Packet Exchange Routing Information Protocol... 9
3.18 Internet Key Exchange 9
3.19 Internet Security Association and Key Management Protocol
.. 9

3.20 Layer 2 Tunneling Protocol 9
3.21 Layer Control Protocol 10
3.22 Logical Link Control 10
3.23 Loopback....... ..o 10
3.24 Media Gateway Control Protocol....................... 10
3.25 Mobile IP 10
3.26 NETBIOS Name Service...........coooviiiniia.. 11
3.27 Open Shortest Path First 11
3.28 Point to Point Protocol 11
3.29 PPP Over Ethernet 11
3.30 Point to Point Tunneling Protocol 11
331 Raw IP. ... 12
3.32 Routing Information Protocol 12

3.33 Routing Information Protocol (Next Generation) 12

3.34 Real Time Protocol 12
3.35 Session Description Protocol 12
3.36 Session Initiation Protocol 13
337 Serial Line IP........ 13
3.38 Service Location Protocol.............................. 13
3.39 Simple Network Management Protocol.................. 13
3.40 Sequenced Packet Exchange............................ 13
3.41 Secure Shell 13
3.42 Transmission Control Protocol 14
3.43 User Datagram Protocol............................... 14
4 APIs. ..o e e 15
4.1 Reading APIs..... ... 15
4.2 Writing APIs o 15
5 Historyooiiiiiiiiiii .. 16

6 IndexXcoiiiiiiiii ittt 17

Chapter 1: Introduction 1

1 Introduction

You don’t really understand networks until you’ve watched traffic on the wire. I believe
strongly in this statement. In fact, I believe in it so strongly that I’ve been devleoping a
packet sniffer so that all of us can learn about networking this way.

A packet sniffer is an application layer program that interacts with one or more layer
two or layer three kernel modules or device drivers to capture packets on a network. The
lower-layer pieces read the packet off the wire, copy it into memory, and provide an API
for an application to read it. An application, such as IPgrab, can do whatever it likes with
the resulting image of a packet. Packet sniffers have been used for many years to detect
network problems, troubleshoot protocols, and detect intruders.

Traditionally, packet sniffers have displayed the captured packets in brief, rather cryptic
formats.

IPgrab is my humble attempt to make most, and eventually all, network protocols read-
able. It currently supports a wide variety of IP-related protocols, including some of the
newer [P telephony protocols such as SIP and MGCP, as well as IPv6. IPgrab also decodes
basic IPX and NETBIOS packets.

The center of all IPgrab development, testing, and communication is hosted on Source-

Forge at http://ipgrab.sourceforge.net/. You may mail suggestions and bug reports
for to me at mike@borella.net.

Chapter 2: Guidelines for Use 2

2 Guidelines for Use

IPgrab can be used in a number of ways, for a number of purposes. In this section we
provide a brief overview of IPgrab’s two modes and its command-line options.

2.1 Main Mode

Main mode is the default mode for IPgrab output. It is extremely verbose, displaying
each field from all packet headers and protocols that it understands across a separate line
of text. Banners separate different layers of protocol output. Single packets may require
more than 100 lines in order to be displayed. Main mode is most useful if you need to know
why or when a certain field or fields take on certain values. Below is an example of main
mode formatting of a TCP packet.

stk sk ok ok ok ok sk ok sk ok sk ok st ok sk ok st ok ook sk ok ook ook s ok s ok s ok o ok o ok o ok o ok s ok sk ok ok ok sk ok sk ok sk sk sk ok sk ok sk ok sk ok stk ok ok ok ok ok
Ethernet (990036574.132701)

00:80:3e:57:b4d:cf

01:00:5€:00:01:16

Hardware source:
Hardware destination:

Type / Length: 0x800 (IP)
Media length: 192
IP Header
Version: 4
Header length: 5 (20 bytes)
TOS: 0x00
Total length: 178
Identification: 16
Fragmentation offset: 0
Unused bit: 0
Don’t fragment bit: 0
More fragments bit: 0
Time to live: 29
Protocol: 17 (UDP)
Header checksum: 33315
Source address: 149.112.164.129
Destination address: 224.0.1.22
UDP Header

Source port:

1026 (unknown)

Destination port: 427 (SLP)
Length: 158
Checksum: 17593

Version:

Chapter 2: Guidelines for Use 3

Operation: 1 (service request)
Length: 150

Flags/Reserved: 0x00

Dialect: 0

Language code: en

Character encoding: 1000

XID: 6365

In general, IPgrab does not attempt to "interpret" the values of a packet. For example,
the IP TOS field is displayed in its raw value of 0x00. If there is an interpretation or further
explanation of a field, IPgrab puts it in parenthesis following the raw value. For example,
the TP header lenght field is displayed in its raw form of 5 followed by an interpretation of
the number of bytes that this value represents. Likewise, the TCP source port is 23, which
IPgrab recognizes as the telnet port.

Note that [Pgrab adds a timestamp to the banner for each link layer packet.

2.2 Minimal Mode

IPgrab also supports a minimal mode in which all information about all parts of a
packet are displayed in a single line of text. This line may be longer than 80 characters and
thus wrap around a standard terminal window one or more times. Below is an example of
minimal mode formatting of a TCP packet.

1 990038240.206509 | ETH 00:b0:d0:11:a4:d0->ff:ff:ff:ff:ff:ff | IP
149.112.90.171->149.112.90.255 (len:78,id:29629,frag:0) | UDP 137->137
| NETBIOS NS query 3-COM

Minimal mode begins with a number (in this case, the number 1 indicates that this
packet is the first one read) and a timestamp, and then parses the packet from link layer to
application layer. Each layer begins with an abbreviation of the protocol being displayed
(such as ETH, IP, and UDP, above). These abbreviations are followed by only the most
relevant fields of the protocol. For example, IP source and destination addresses are shown,
along with the total length field and the DF bit (if set) in parentheses. Likewise, UDP
source and destination ports are shown.

2.3 Command Line Options

Both main mode and minimal mode output can be adjusted by specifying one or more
commend line options. In this section, we provide a complete list of [Pgrab’s command line
options and their use.

The usage of IPgrab is briefly described as follows.

ipgrab [-blmnPprTtwx] [-c|--count n] [-h|--help] [-il|--interface if] [BPF expr]

The BPF expression is a string of terms that is acceptable to the Berkeley Packet Filter.
For more details on the BPF expression grammar, see the tcpdump manual page.

e -a. Don’t display application layer data.

e -b. Turn off buffering of standard output (stdout) so that all displaying occurs as soon
as possible. Useful when IPgrab output is being re-directed to a file.

e -cn / --count n. Terminate after reading and displaying the first n packets.

Chapter 2: Guidelines for Use 4

e -C proto / ——CCP proto. Assume a particular CCP protocol, such as MPPC. MPPC
is the only one supported today.

e -d. Dump extra padding in packets. For example, according to an IP header, the
packet ends at a certain point, but the link layer may have padded it beyond that.
This option displays the padding. Not valid in minimal mode.

e -h / —-help. Display usage screen with a brief description of the command line options.

e -iif / --interface if. Makes [Pgrab listen to packets on interface if. If this option
is not used, the default interface will be assumed.

e -1. Don’t display link layer headers. The following protocols are considered to be link
layer: ARP, CHAP, Ethernet, IPCP, LCP, LLC, Loopback, PPP, PPPoE, Raw, Slip, .

e -m. Minimal mode output.

e -n. Don’t display network layer headers. The following protocols are considered to be
network layer: AH, ESP, GRE, ICMP, ICMPv6, IGMP, IP, IPv6, IPX, IPXRIP.

e -P. Initiate a dynamic port mapping. This option must be followed by a string of the
form ‘<protocol>=<port>’; such as ‘rtp=6569’.

e -p. Dump packet payloads beyond what [Pgrab parses. In other words, if IPgrab
doesn’t parse a particular application, this option will dump the application data in
hex and text format.

e -r. Read packets from a file, rather than an interface. The file should be created in
"raw" format, such as with ‘-w’ option.

e -T. Don’t display timestamps in minimal mode.

e —-t. Don’t display transport layer headers. The following protocols are considered to
be transport layer: SPX, TCP, UDP.

e -w. Write the raw packets to a file, rather than the screen. The packets will not be
parsed. The file can be read with the ‘-r’ option.

e -x. Hex dump mode. After processing each layer, dump out the contents of that layer
in hex and text. Only valid in main mode.

2.4 Examples

e Only ICMP packets will be displayed using main mode without link layer headers.

Command: ipgrab -1 icmp

Output:

sk ok ok ok ok ok ok ok sk sk ok sk sk sk sk sk s s ok o o ok o ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk ok ok sk o ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok ok ok ok ok
IP Header

Version: 4
Header length: 5 (20 bytes)
TOS: 0x00
Total length: 84
Identification: 0
Fragmentation offset: 0
Unused bit: 0
Don’t fragment bit: 1

Chapter 2: Guidelines for Use 5

More fragments bit: 0

Time to live: 64

Protocol: 1 (ICMP)
Header checksum: 42625

Source address: 149.112.90.225
Destination address: 198.147.221.66

Type: 8 (echo request)
Code: 0

Checksum: 43361
Identifier: 15353

Sequence number: 0

e Only packets arriving on interface ethl with a source port of 21 (FTP) will be displayed
in minimal mode.

Command: ipgrab -i ethl -m src port 21
Output:

1 990038936.642292 | ETH 00:80:3e:57:b4:cf->00:50:04:32:0e:8f | IP
198.147.221.66->149.112.90.225 (len:64,i1d:18353,DF,frag:0) | TCP 21->1047
(54,3123051349,2290714856,9856) <timestamp 873976824 43310056><window
scale 0><SACK permitted><maximum segment size 1420>

Chapter 3: Status of Protocol Modules 6

3 Status of Protocol Modules

In this section we discuss the status of each of the protocol modules. While some

protocols may be fully supported and well tested, other modules may only have partial
support or may not have been tested fully.

3.1 Authentication Header (AH)

Module: ah.c
Support: Full.
Maturity: Not tested.

Notes: AH typically appears between IP and TCP/UDP headers in order to apply
IPsec-based authentication.

3.2 Address Resolution Protocol (ARP)

Module: arp.c
Support: Partial (only supports IP over Ethernet).
Maturity: Well tested.

Notes: Originally, ARP was defined to support address resolution of network layer
protocol x over link layer protocol y. Currently, IP over Ethernet is by far the most
used mode of ARP, and thus is the only one supported.

3.3 Challenge Handshake Authentication Protocol (CHAP)

Module: chap.c

Support: Full.

Maturity: Well tested.

Notes: CHAP authenticates the ends of a PPP session to one another.

3.4 Dynamic Host Configuration Protocol (DHCP)

Module: dhcp.c
Support: Partial (doesn’t support all options).
Maturity: Well tested.

Notes: DHCP is an extensibly protocol with a large number of officially sanctioned
options, and a number of de facto options. Currently we support many of the most
common, but not all, of these options.

Chapter 3: Status of Protocol Modules 7

3.5 Domain Name System (DNS)

Module: dns.c
Support: Partial (doesn’t support all record types).
Maturity: Well tested.

Notes: Currently, we support records of type A, AAAA, CNAME, NS, SOA, and PTR.
Other record types, such as A6, MX, and SRV, are not supported.

3.6 Encapsulating Security Payload (ESP)

Module: esp.c

Support: Partial (doesn’t decrypt packets nor decode ESP trailer).

Maturity: Not tested.

Notes: ESP typically appears between IP and TCP/UDP headers in order to apply
IPsec-based encryption and/or authentication. We do not attempt to decode encrypted
packets because this would require adding state to IPgrab, which is something that we’d
rather not do. This prevents us from displaying the ESP trailer as well. As soon as
an ESP header is read and the plaintext portion is displayed, we halt processing of the
rest of the packet.

3.7 Ethernet

Module: ethernet.c

Support: Full, expcept that not all Ethernet types are recognized, and 802.1p and
VLANS are not supported.

Maturity: Well tested.

Notes: Supported Ethernet types include IP, IPv6, PPP, ARP, RARP, and IPX. LL.C
encapsulation is supported in the LLC module.

3.8 Generic Routing Encapsulation

Module: gre.c

Support: Full for versions 0 and 1.

Maturity: Well tested.

Notes: Version 1 is defined in the PPTP RFC.

3.9 Hypertext Transfer Protocol

Module: http.c

Support: Full (displays only headers).

Maturity: Well tested.

Notes: Parses and displays HT'TP headers only. The rest of the payload is skipped.

Chapter 3: Status of Protocol Modules 8

3.10 Internet Control Message Protocol

Module: icmp.c
Support: Partial.
Maturity: Well tested.

Notes: Displays all ICMP types and codes, but does not parse specific payloads for
some lesser-used ICMP types, such as source quench, and redirect. Also does not
handle Mobile IP extensions (yet).

3.11 Internet Control Message Protocol Version 6

Module: icmpv6.c

Support: Partial.

Maturity: Well tested.

Notes: Not all types and codes are explicitly parsed.

3.12 Internet Group Message Protocol

Module: igmp.c
Support: Partial.
Maturity: Well tested.

Notes: IGMPv1 and v2 are supported. IGMPv3 is not tested and may not be cleanly
supported.

3.13 Internet Protocol

Module: ip.c
Support: Full.
Maturity: Well tested.

Notes: Full support for the IP header and options. TOS/DS byte is not interpreted in
any particular fashion.

3.14 Internet Protocol Control Protocol

Module: ipcp.c
Support: Partial.
Maturity: Well tested.

Notes: Full support for common messages and options. Some options may not be
supported.

Chapter 3: Status of Protocol Modules 9

3.15 Internet Protocol Version 6

e Module: ipv6.c
e Support: Partial.
o Maturity: Well tested.

e Notes: Full support for the IPv6 header, except that IPv6 addresses are not displayed
in the proper shorthand.

3.16 Internet Packet Exchange

e Module: ipx.c
e Support: Partial.
e Maturity: Well tested.

e Notes: Full support for the IPX header, but not all transport protocols and applications
are supported, nor are the header fields interpretated as well as they could be.

3.17 Internet Packet Exchange Routing Information
Protocol

e Module: ipxrip.c

Support: Partial.
Maturity: Well tested.
Notes: Basic listing of the routes.

3.18 Internet Key Exchange

See Internet Security Association and Key Management Protocol.

3.19 Internet Security Association and Key Management
Protocol

e Module: isakmp.c
e Support: Partial.
e Maturity: Well tested against Windows 2000 only.

e Notes: Only the following ISAKMP headers are supported: delete, SA, vendor 1D,
proposal, transform.

3.20 Layer 2 Tunneling Protocol

e Module: 12tp.c

Support: Partial.

Maturity: Well tested.

Notes: Only the most common message types are supported.

Chapter 3: Status of Protocol Modules 10

3.21 Layer Control Protocol

Module: 1cp.c

Support: Partial.

Maturity: Well tested.

Notes: Not all NCPs are tested for.

3.22 Logical Link Control

Module: 11c.c
Support: Partial.
Maturity: Partially tested.

Notes: Some basic cases such as IP and IPX encapsulation work reasonably well, but
other common cases are not supported. Basically, this module needs a re-write.

3.23 Loopback

Module: loopback.c
Support: Full.
Maturity: Fully tested.

Notes: Some loopback interfaces, Redhat Linux 6.2 for example, present themselves as
Ethernet interfaces, where all Ethernet addresses are zeroed out. Strange but true.

3.24 Media Gateway Control Protocol

Module: mgcp.c
Support: Partial.
Maturity: Not tested.

Notes: Use at your own risk.

3.25 Mobile IP

Module: mobileip.c
Support: Partial.
Maturity: Well tested.

Notes: Not all extensions are supported. Support for the CDMA2000 A1l interface is
also in this module. We support registration update and registration acknowledgement,
as well as some of the extensions.

Chapter 3: Status of Protocol Modules 11

3.26 NETBIOS Name Service

Module: netbios_ns.c

Support: Full.
Maturity: Well tested.
Notes: DNS-like protocol for NETBIOS.

3.27 Open Shortest Path First

Module: ospf.c

Support: Partial.
Maturity: Well tested.

Notes: Only hello messages are supported.

3.28 Point to Point Protocol

Module: ppp.c

Support: Partial.
Maturity: Well tested.

Notes: Most systems will not let you sniff native PPP packets, as their headers are
usually stripped off before the kernel gives the packet to the sniffer. However, when
you use PPTP or L2TP, PPP is avilable to a sniffer. Thus all testing was done using
tunneling modes, rather than native mode. Note that some tunnel configurations may
fragment a single incoming PPP frame into multiple tunneled packets. In this case, it
is not clear what ipgrab will do (probably something strange). We currently do not
decode HDLC-mode (control escape) PPP packets.

3.29 PPP Over Ethernet

Module: pppoe.c

Support: Full.
Maturity: Not tested.
Notes: This is a contributed module. I have not tested it, but the contributor has.

3.30 Point to Point Tunneling Protocol

Module: pptp.c

Support: Partial.
Maturity: Well tested.

Notes: Not all message types are supported, but the most common ones are.

Chapter 3: Status of Protocol Modules 12

3.31 Raw IP

Module: raw.c
Support: Full.
Maturity: Well tested.

Notes: This is a default datalink type for native IP. Since most kernel don’t let us look
at native PPP frames, most packets on a PPP interface will be interpreted as raw.

3.32 Routing Information Protocol

Module: rip.c

Support: Partial.

Maturity: Well tested.

Notes: RIPv1 was tested extensively. RIPv2 was not tested.

3.33 Routing Information Protocol (Next Generation)

Module: ripng.c
Support: Full.
Maturity: Well tested.
Notes:

3.34 Real Time Protocol

Module: rtp.c
Support: Partial.
Maturity: Not tested.

Notes: n order to use this module, you’ll need to notify IPgrab of proper port number
on which to expect the RTP traffic. Use the -P option to do this.

3.35 Session Description Protocol

Module: sdp.c
Support: Full.
Maturity: Well tested.

Notes: Displays the headers in plain format with no interpretation. Does not display
anything in minimal mode.

Chapter 3: Status of Protocol Modules 13

3.36 Session Initiation Protocol

Module: sip.c

Support: Full.

Maturity: Well tested.

Notes: Displays the headers in plain format with no interpretation.

3.37 Serial Line IP

Module: slip.c

Support: Full.
Maturity: Not tested.
Notes:

3.38 Service Location Protocol

Module: slp.c

Support: Partial.

Maturity: Well tested.

Notes: Only basic forms of version 1 are supported.

3.39 Simple Network Management Protocol

e Module: snmp.c
e Support: Partial.
o Maturity: Well tested.

e Notes: This module only displays the most basic information about captured SNMP
packets.

3.40 Sequenced Packet Exchange

Module: spx.c

Support: Partial.
Maturity: Well tested.
Notes: Not all applications are supported.

3.41 Secure Shell

Module: ssh.c

Support: Partial.

Maturity: Well tested.

Notes: Only the initial version number exchange is supported.

Chapter 3: Status of Protocol Modules 14

3.42 Transmission Control Protocol

e Module: tcp.c
e Support: Partial.
e Maturity: Well tested.

e Notes: Not all options are well supported. Program might crash on assorted nasty-
grams. In the minimal mode output, there are four parameters following the port
numbers. They are, in order: a list of all flags that are set, the sequence number, the
acknowledgement number, and the advertized window size.

3.43 User Datagram Protocol

e Module: udp.c
e Support: Full.
e Maturity: Fully tested.

e Notes:

Chapter 4: APIs 15

4 APlIs

The internal structure of IPgrab is logically divided into modules, one per protocol. For
example, TP headers and options are decoded and displayed in ip.c, TCP headers and
options are decoded and displayed in tcp.c, and so on.

IPgrab modules use two APIs — the first for reading data from a packet that has been
captured, and the second for displaying this data (or some derivation thereof) to an output
device.

In this chapter, we’ll explore and document these APIs.

4.1 Reading APIs

4.2 Writing APIs

IPgrab supports a rich set of APIs for displaying data of various types in a number of
formats. There are two basic types of output for IPgrab: main mode, or minimal mode. In
main mode, each piece of data (e.g., a field in a protocol header) is formatted

— display(char * label, u_int8_t * content, u_int8_t length, display_t format)

Chapter 5: History 16

5 History

Like many other folks, I started using tcpdump after reading Rich Stevens’ wonderful
book, TCP/IP Illustrated Vol. 1. Each packet is summarized in a single compact, but
slightly cryptic, line of output. While tcpdump remained a classic, around 1997 development
had slowed quite a bit. Support for new protocols was not being added to the official
distribution, and understanding and modifying the existing code could be trying. I felt the
need to provide a more general packet sniffer that not only displayed all of a packet’s fields,
but was written in a way that could easily be read, understood, and modified.

In Fall 1997 I developed the first few versions of IPgrab. They were very tentative, just
displaying Ethernet, IP, TCP, and UDP fields. For the most part, they only compiled on
Linux. But I had gotten a taste of how useful such a tool could be. I used IPgrab to find
out that Windows NT 4.0 incremented IP identification fields by 256 instead of 1, and to
find out that a LAN router wasn’t proxy ARPing correctly.

Over the next two years I added features to IPgrab. Most of the work was done in my
spare time, and progress was slow. Occasionally I received a very useful patch from a user.
I also worked on porting it to other systems besides Linux — in particular, FreeBSD and
Solaris. By mid-1999, IPgrab was stable (version 0.8.2) and supported a number of rather
complex protocol suites, such as IPsec, L2TP and some VoIP protocols. I didn’t do much
work until April 2000, when I decided to host it on Sourceforge.net.

It was time for a massive overhaul. Development took three major angles: (1) New APIs
for safe reading from a packet and displaying to an output device, (2) a line-based minimal
output mode comparable to tcpdump, and (3) more protocol support. In particular, the
APIs took a while to get right, but now they’re in place and work really well. This required
a re-write of every module, resulted in an overall cleanup of the code. Release 0.9 was the
first official release with these new features.

tcpdump development is once again underway and there are many freeware and open
source packet sniffers available that do much of what IPgrab does. However, I've continued
to develop IPgrab for a number of reasons. In particular, new protocols are being designed
so quickly by the IETF and other organizations that it becomes very useful to be able to
add these protocols quickly to a sniffer. Some of the extensions to IETF protocols that
are defined by other Standards Development Organizations are typically not supported in
sniffers. Also, developing [Pgrab gives me a reason to stay on top of protocol developments
and keep my hands dirty with coding.

Chapter 6: Index

6 Index

A

Address Resolution Protocol................... 6
AH . 6
ARP .. 6
Authentication Header 6

CHAP .. 6
Command line options 3
Contact info.................................. 1

DHCP ..o 6
DN S 6
Domain Name System......................... 6
Dynamic Host Configuration Protocol 6

E

Encapsulating Security Payload 7
ESP .o 7
Ethernet 7

G

Historyo 16
HTTP ..o 7
Hypertext Transfer Protocol 7

ICMP . . 7
ICMPV6G ..o 8
IGMP .. 8
IKE . 9
Internet Control Message Protocol 7
Internet Control Message Protocol Version 6.... 8
Internet Group Message Protocol 8
Internet Key Exchange........................ 9

Internet Packet Exchange 9

17

Internet Packet Exchange Routing Information

Protocol 9
Internet Protocol 8
Internet Protocol Control Protocol 8
Internet Protocol Version 6.................... 8
Internet Security Association and Key

Management Protocol..................... 9
TP 8
TPVG .o 8
TP X 9
IPXRIP ..o 9
ISAKMP . oo 9
L
L2TP o 9
Layer 2 Tunneling Protocol.................... 9
Layer Control Protocol........................ 9
LCP oo 9
LLC . 10
Logical Link Control 10
Loopback 10
M
Mainmode...........oooiiiiii i 2
Media Gateway Control Protocol 10
MGCP . o 10
Minimal mode 3
MIP .o 10
Mobile IP 10
N
NETBIOS. ... 10
NETBIOS Name Service 10
O
Open Shortest Path First..................... 11
OSPE . o 11
P
Point to Point Protocol 11
Point to Point Tunneling Protocol 11
PPP . 11
PPP Over Ethernet.......................... 11

Chapter 6: Index

RARP .. 6
Raw IP 11
Real Time Protocol 12
Reverse Address Resolution Protocol........... 6
RIP . 12
RIPng ... 12
RIPVG 12
Routing Information Protocol................. 12
Routing Information Protocol (Next Generation)
.. 12
RTP .. 12
S
SDP 12
Secure Shell 13

18
Serial Line IP 13
Service Location Protocol 13
Session Description Protocol.................. 12
Session Initiation Protocol.................... 12
Simple Network Management Protocol 13
SIP oo 12
SLIP . 13
SLP o 13
SNMP ..o 13
SP X 13
SSH .o 13
T
TCP . 13
Transmission Control Protocol................ 13
U
UDP. .o 14
User Datagram Protocol 14

