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7.2.4.2 

Table 7·8 

Figure 7·15 
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Burst and Cache Line Fill Order 

The burst order used by the Am486DX/DX2 microprocessor is shown in Table 7-8. This 
burst order is followed by any burst cycle (cache or not), cache line fill (burst or not), or 
code prefetch. 

The microprocessor presents each request for data in an order determined by the first 
address in the transfer. For example, if the first address is 104, the next three addresses 
in the burst will be 100, 1 �~�C�,� and 108. An example of burst address sequencing is 
shown in Figure 7-15. 

The sequences shown in Table 7-8 accommodate systems with 64-bit buses, as well as 
systems with 32-bit data buses. The sequence applies to all bursts, regardless of 
whether the purpose of the burst is to fill a cache line, do a 64-bit read, or do a prefetch. 
If either 8S8 or 8S16 is returned active, the Am486DX/DX2 microprocessor completes 
the transfer of the current 32-bit word before progressing to the next 32-bit word. For 
example, a 8S16 burst to address 4 has the following order: 4-6-0-2-C-E-8-A. 

Burst Order 

First Address Second Address Third Address Fourth Address 

0 4 8 C 

4 0 C 8 

8 C 0 4 

C 8 4 0 

Burst Cycle Showing Order of Addresses 
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Interrupted Burst Cycles 

Some memory systems might not be able to respond with burst cycles in the order 
defined in Table 7-8. To support these systems, the Am4860X/OX2 microprocessor 
allows a burst cycle to be interrupted at any time. 

The Am4860X/OX2 microprocessor automatically generates another normal bus cycle 
after being interrupted to complete the data transfer. This is called an interrupted burst 
cycle. The external system can respond to an interrupted burst cycle with another burst 
cycle. 

The external system can interrupt a burst cycle by returning RDY instead of BRDY. RDY 
can be returned after any number of data cycles terminated with BRDY. 

An example of an interrupted burst cycle is shown in Figure 7-16. The Am4860X/OX2 
microprocessor immediately drives ADS active to initiate a new bus cycle after RDY is 
returned active. BLAST is driven inactive one clock after ADS begins the second bus 
cycle, indicating that the transfer is incomplete. 

KEN need not be returned active in the first data cycle of the second part of the transfer 
in Figure 7-16. The cycle was converted to a cache fill in the first part of the transfer and 
the Am4860XlOX2 microprocessor expects the cache fill to be completed. Note that the 
first half and second half of the transfer in Figure 7-16 are each two cycle burst trans­
fers. 

The order in which the Am4860X/OX2 microprocessor requests operands during an 
interrupted burst transfer is determined in Table 7-8. Mixing RDY and BRDY does not 
change the order in which the Am4860X/OX2 microprocessor requests operand 
addresses. 

Figure 7·16 Interrupted Burst Cycle 
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7.2.5 

Figure 7·17 
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An example of the order in which the Am486DX/DX2 microprocessor requests operands 
during. a cycle, in which the external system mixes RDY and BRDY, is shown in 
Figure 7-17. The Am486DX/DX2 microprocessor initially requests a transfer beginning at 
Location 104. The transfer becomes a cache line fill when the external system returns 
KEN active. The first cycle of the cache fill transfers the contents of location 104 and is 
terminated with RDY. The Am486DX/DX2 microprocessor drives out a new request (by 
asserting ADS) to address 100. If the external system terminates the second cycle with 
BRDY, the Am486DXlDX2 microprocessor then requests/expects address 10C. The 
correct order is determined by the first cycle in the transfer, which might not be the first 
cycle in the burst if the system mixes RDY with BRDY. 

8· and i6·Bit Cycles 
The Am486DX/DX2 microprocessor supports both 16- and 8-bit external buses through 
the BS 16 and BSB inputs. BS 16 and BSB allow the external system to specify, on a 
cycle-by-cycle basis, whether the addressed component can supply 8, 16, or 32 bits. 
BS16 and BSB can be used in burst cycles as well as non-burst cycles. If both BS16 and 
BSB are returned active for any bus cycle, the Am486DX/DX2 microprocessor responds 
as if only BSB were active. 

The timing of BS16 and BSB is the same as that of KEN. BS16 and BSB must be driven 
active before the first RDY or BRDY is driven active. 

Driving the BS16 and BSB active can force the Am486DXlDX2 microprocessor to run 
additional cycles to complete what would have been only a single 32-bit cycle. BSB and 
BS16 can change the state of BLAST when they force subsequent cycles from the 
transfer. 

Figure 7-18 shows an example in which BSB forces the Am486DX/DX2 microprocessor to 
run two extra cycles to complete a transfer. The Am486DX/DX2 microprocessor issues a 

Interrupted Burst Cycle with Unobvious Order of Addresses 
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request for 24 bits of information. The external system drives BS8 active, indicating that 
only eight bits of data can be supplied per cycle. The Am486DX/DX2 microprocessor 
issues two extra cycles to complete the transfer. 

Extra cycles forced by the BS16 and BS8 should be viewed as independent bus cycles. 
BS16 and BS8 should be driven active for each additional cycle, unless the addressed 
device has the ability to change the number of bytes it can return between cycles. The 
Am486DX/DX2 microprocessor drives BLAST inactive until the last cycle before the 
transfer is complete. 

Refer to Section 7.1.3 for the sequencing of addresses while BS8 or BS16 are active. 

BS8 and BS16 operate during burst cycles exactly the same as non-burst cycles. For 
example, a single non-cacheable read can be transferred by the Am486DX/DX2 micropro­
cessor as four 8-bit burst data cycles. Similarly, a single 32-bit write can be written as four 
8-bit burst data cycles. An example of a burst write is shown in Figure 7-19. Burst writes 
can only occur if BS8 or BS16 is asserted. 

Locked Cycles 
Locked cycles are generated in software for any instruction that performs a read-modify­
write operation. During a read-modify-write operation, the processor can read and 
modify a variable in external memory and be assured that the variable is not accessed 
between the read and write. 

Locked cycles are automatically generated during certain bus transfers. The exchange 
(xchg) instruction generates a locked cycle when one of its operands is memory based. 
Locked cycles are generated when a segment or page table entry is updated and during 
interrupt acknowledge cycles. Locked cycles are also generated when the LOCK 
instruction prefix is used with selected instructions. 

Figure 7·18 8·Bit Bus Size Cycle 
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Figure 7·19 Burst Write as a Result of trS8 or IJS"'t6 
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Locked cycles are implemented in hardware with the LOCK pin. When LOCK is active, the 
processor is performing a read-modify-write operation and the external bus should not be 
relinquished until the cycle is complete. Multiple reads or writes can be locked. A locked cycle 
is shown in Figure 7-20. LOCK goes active with the address and bus definition pins at the 
beginning of the first read cycle and remains active until RDY is returned for the last write 
cycle. For unaligned 32-bit read-modify-write operation, the LOCK remains active for the entire 
duration of the multiple cycle. It goes inactive when RDY is returned for the last write cycle. 

When LOCK is active, the Am486DX/DX2 microprocessor recognizes address hold and 
backoff but does not recognize bus hold. It is left to the external system to properly 
arbitrate a central bus when the Am486DXlDX2 microprocessor generates LOCK. 

Pseudo·Locked Cycles 
Pseudo-locked cycles ensure that no other master is given control of the bus during 
operand transfers that take more than one bus cycle. 

Pseudo-locked transfers are indicated by the PLOCK pin. The memory operands must 
be aligned for correct operation of a pseudo-locked cycle. 

PLOCK need not be examined during burst reads. A 64-bit aligned operand can be 
retrieved in one burst (note: this is only valid in systems that do not interrupt bursts). 

The system must examine PLOCK during 64-bit writes since the Am486DX/DX2 
microprocessor cannot burst write more than 32 bits. However, burst can be used within 
each 32-bit write cycle if BS8 or BS16 is asserted. BLAST is deasserted in response to 
BS8 or BS 16. A 64-bit write is driven out as two non-burst bus cycles. BLAST is 
asserted during both writes since a burst is impossible. PLOCK is asserted during the 
first write to indicate that another write follows. This behavior is shown in Figure 7-21. 
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Figure 7·20 Locked Bus Cycle 
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Figure 7·21 Pseudo Lock Timing 
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During all of the cycles where PLOCK is asserted, HOLD is not acknowledged until the cycle 

I 
completes. This results in a large HOLD latency, especially when BS8 or BS16 is asserted. To 
reduce the HOLD latency during these cycles, windows are available between transfers to I 

allow HOLD to be acknowledged during non-cacheable, non-bursted code prefetches. 
I 
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PLOCK is asserted since BLAST is negated, but it is ignored and HOLD is recognized during 
the prefetch. 

PLOCK can change several times during a cycle, settling to its final value when the clock 
RDY is retumed. 

Invalidate Cycles 
Invalidate cycles are needed to keep the Am486DX/DX2 microprocessor's intemal cache 
contents consistent with extemal memory. The Am486DX/DX2 microprocessor contains a 
mechanism for listening to writes by other devices to extemal memory. When the processor 
finds a write to a section of extemal memory contained in its intemal cache, the processor's 
intemal copy is invalidated. 

Invalidations use two pins, address hold request (AHOlD) and valid extemal address (EADS). 
There are two steps in an invalidation cycle. First, the extemal system asserts the AHOlD 
input, forcing the Am486DX/DX2 microprocessor to immediately relinquish its address bus. 
Next, the extemal system asserts EADS, indicating that a valid address is on the 
Am486DX/DX2 microprocessor's address bus. Figure 7-22 shows the fastest possible 
invalidation cycle. The Am486DX/DX2 CPU cycle recognizes AHOlD on one ClK edge and 
floats the address bus in response. To allow the address bus to float and avoid contention, 
EADS and the invalidation address should not be driven until the following ClK edge. The 
microprocessor reads the address over its address lines. If the microprocessor finds this 
address in its internal cache, the cache entry is invalidated. Note that the Am486DX/DX2 
microprocessor's address bus is input/output, unlike the 386 microprocessor's bus which is 
output only. 

The Am486DX/DX2 microprocessor immediately relinquishes its address bus in the next 
clock upon assertion of AHOlD. For example, the bus could be three wait states into a read 
cycle. If AHOlD is activated, the Am486DXlDX2 microprocessor immediately floats its 
address bus before ready is returned, terminating the bus cycle. 

When AHOlD is asserted only the address bus is floated, the data bus can remain active. 
Data can be returned for a previously specified bus cycle during address hold (see 
Figure 7-22 and Figure 7-23). 

EADS is normally asserted when an external master drives an address onto the bus. AHOlD 
need not be driven for EADS to generate an intemal invalidate. If EADS alone is asserted 
while the Am486DX/DX2 microprocessor is driving the address bus, it is possible that the 
invalidation address comes from the Am486DX/DX2 microprocessor itself. 

Note that it is also possible to run an invalidation cycle by asserting EADS when HOLD or 
BOFF is asserted. 

Running an invalidation cycle prevents the Am486DX/DX2 microprocessor cache from 
satisfying other internal requests, so invalidations should be run only when necessary. The 
fastest possible invalidation cycle is shown in Figure 7-22, while a more realistic invalidation 
cycle is shown in Figure 7-23. Both examples take one clock of cache access from the rest of 
the Am486DXlDX2 microprocessor. 

Rate of Invalidate Cycles 

The Am486DX/DX2 microprocessor can accept one invalidate per clock except in the 
last clock of a line fill. One invalidate per clock is possible as long as EADS is negated in 
ONE or BOTH of the following cases: 

1. In the clock, RDY or BRDY is returned for the last time. 
2. In the clock following, RDY or BRDY is being returned for the last time. 
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Figure 7·22 Fast Internal Cache Invalidation Cycle 
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Figure 7·23 Typical Internal Cache Invalidation Cycle 
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7.2.8.2 

This definition allows two system designs. Simple designs can restrict invalidates to one 
every other clock. The simple design need not track bus activity. Alternatively, systems 
can request one invalidate per clock if the bus is monitored. 

Running Invalidate Cycles ConculTently with Line Fills 

Precautions are necessary to avoid caching stale data in the Am486DX/DX2 microproces­
sor's cache in a system with a second level cache. An example of a system with a second 
level cache is shown in Figure 7-24. An external device can be writing to main memory 
over the system bus while the Am486DXlDX2 microprocessor is retrieving data from the 
second level cache. The Am486DX/DX2 microprocessor needs to invalidate a line in its 
internal cache if the external device is writing to a main memory address also contained in 
the Am486DXlDX2 microprocessor's cache. 

A potential problem exists if the external device is writing to an address in external 
memory, and at the same time the Am486DX/DX2 microprocessor is reading data from 
the same address in the second level cache. The system must force an invalidation 
cycle to invalidate the data that the Am486DXlDX2 microprocessor has requested during 
the line fill. 

If the system asserts EADS before the first data in the line fill is returned to the 
Am486DX/DX2 microprocessor, the system must return data consistent with the new 
data in the external memory upon resumption of the line fill after the invalidation cycle. 
This is illustrated by the asserted EADS signal labeled in Figure 7-25. 

If the system asserts EADS at the same time or after the first data in the line fill is 
returned (in the same clock that the first RDY or BRDY is returned or any subsequent 
clock in the line fill), the data is read into the Am486DX/DX2 microprocessor's input 
buffers but is not stored in the on-chip cache. This is illustrated by the asserted EADS 
signal labeled 2 in Figure 7-25. The stale data is used to satisfy the request that initiated 
the cache fill cycle. 

Figure 7·24 System with Second Level Cache 
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Figure 7-25 Cache Invalidation Cycle Concurrent with Line Fill 
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Bus Hold 
The Am486DX/DX2 microprocessor provides a bus hold, hold acknowledge protocol 
using the bus hold request (HOLD) and bus hold acknowledge (HLDA) pins. Asserting 
the HOLD input indicates that another bus master desires control of the Am486DX/DX2 
microprocessor's bus. The processor responds by floating its bus and driving HLDA 
active when the current bus cycle or sequence of locked cycles is complete. An example 
of a HOLD/HLDA transaction is shown in Figure 7-26. Unlike the 386 microprocessor, 
the Am486DX/DX2 microprocessor can respond to HOLD by floating its bus and 
asserting HLDA while RESET is asserted. 

Note that HOLD is recognized during unaligned writes (less than or equal to 32 bits) with 
BLAST being active for each write. For greater than 32-bit or unaligned write, HOLD 
recognition is prevented by PLOCK getting asserted. 

The pins floated during bus hold are: BE3-BEO, peD, PWT, WfF{, Ole, MIlO, LOCK, 
PLOCK, ADS, BLAST, 031-00, A31-A2, and DP3-DPO. 

Interrupt Acknowledge 
The Am486DX/DX2 microprocessor generates interrupt acknowledge cycles in response 
to maskable interrupt requests. These requests are generated on the interrupt request 
input (INTR) pin. Interrupt acknowledge cycles have a unique cycle type generated on 
the cycle type pins. 
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An example interrupt acknowledge transaction is shown in Figure 7-27. Interrupt acknowl­
edge cycles are generated in locked pairs. Data returned during the first cycle is ignored. 
The interrupt vector is returned during the second cycle on the lower eight bits of the data 
bus. The Am486DX/DX2 microprocessor has 256 possible interrupt vectors. 

The state of A2 distinguishes the first and second interrupt acknowledge cycles. The 
byte address driven during the first interrupt acknowledge cycle is 4 (A31-A3 Low, A2 
High, BE3-BE1 High, and BED Low). The address driven during the second interrupt 
acknowledge cycle is 0 (A31-A2 Low, BE3-BE1 High, and BED Low). 

Figure 7·26 HOLD/HLDA Cycles 
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Special Bus Cycle Encoding 

BE3 BE2 BE1 BEO Special Bus Cycle 

1 1 1 0 Shutdown 

1 1 0 1 Flush 

1 0 1 1 Halt 

0 1 1 1 Write Back 

Each of the interrupt acknowledge cycles are terminated when the external system 
returns ROY or BROY. Wait states can be added by withholding ROY or BROY. The 
Am486DX/DX2 microprocessor automatically generates four idle clocks between the first 
and second cycles to allow for 8259A recovery time. 

Special Bus Cycles 
The Am486DX/DX2 microprocessor provides four special bus cycles to indicate that 
certain instructions were executed or certain conditions have occurred internally. The 
special bus cycles in Table 7-9 are defined when the bus cycle definition pins are in the 
following state: 

MIlO = 0, DIe = 0 and wi"R = 1. During these cycles the address bus is driven Low while 
the data bus is undefined. 

Two of the special cycles indicate halt or shutdown. Another special cycle is generated when 
the Am486DXlDX2 microprocessor executes an INVD (invalidate data cache) instruction and 
could be used to flush an external cache. The Write Back cycle is generated when the 
Am486DX/DX2 microprocessor executes the WBINVD (write-back invalidate data cache) 
instruction and could be used to synchronize an extemal write-back cache. 

The external hardware must acknowledge these special bus cycles by retuming ROY or 
BRDY. 

Halt Indication Cycle 

The Am486DX/DX2 microprocessor halts as the result of HALT instruction. Signaling its 
entrance into the halt state, a halt indication cycle is performed. The halt indication cycle is 
identified by the bus definition signals in special bus cycle state and a byte address of 2. BED 
and BE2 are the only signals distinguishing halt indication from shutdown indication, which 
drives an address of O. During the halt cycle, undefined data is driven on D31-00. The halt 
indication cycle must be acknowledged by ROY or BROYasserted. 

A halted Am486DXlDX2 microprocessor resumes execution when INTR (if interrupts are 
enabled), NMI, or RESET is asserted. 

Shutdown Indication Cycle 

The Am486DX/DX2 microprocessor shuts down as the result of a protection fault while 
attempting to process a double fault. Signaling its entrance into the shutdown state, a 
shutdown indication cycle is performed. The shutdown indication cycle is identified by the bus 
definition signals in special bus cycle state and a byte address of o. 

Bus Cycle Restart 
In a multimaster system, another bus master can require the use of the bus to enable the 
Am486DX/DX2 microprocessor to complete its current bus request. In this situation the 
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Am486DXlDX2 microprocessor needs to restart its bus cycle after the other bus master 
completes its bus transaction. 

A bus cycle can be restarted if the external system asserts the backoff (BOFF) input. The 
Am486DX/DX2 microprocessor samples the BOFF pin every clock. The Am486DX/DX2 
microprocessor immediately (in the next clock) floats its address, data, and status pins when 
BOFF is asserted (see Figure 7-28). Any bus cycle in progress when BOFF is asserted is 
aborted, and any data returned to the processor is ignored. The same pins that are floated in 
response to HOLD are floated in response to BOFF. HLDA is not generated in response to 
BOFF. BOFF has higher priority than RDY or BRDY. If either RDY or BRDY is returned in the 
same clock as BOFF, BOFF takes effect 

The device asserting BOFF is free to run any cycles it wants while the Am486DX/DX2 
microprocessor bus is in its high impedance state. If backoff is requested after the 
Am486DX/DX2 microprocessor has started a cycle, the new master should wait for memory 
to retum RDY or BRDY before assuming control of the bus. Waiting for ready provides a 
handshake to ensure that the memory system is ready to accept a new cycle. If the bus is 
idle when BOFF is asserted, the new master can start its cycle two clocks after issuing BOFE 

The external memory can view BOFF in the same manner as BLAST. Asserting BOFF tells 
the external memory system that the current cycle is the last cycle in a transfer. 

The bus remains in the high impedance state until BOFF is negated. Upon negation, the 
Am486DX/DX2 microprocessor restarts its bus cycle by driving out the address and status 
and asserting ADS. The bus cycle then continues as usual. 

Asserting BOFF during a burst, BS8, or 8S16 cycle forces the Am486DXIDX2 microproces­
sor to ignore data returned for that cycle only. Data from previous cycles is still valid. For 
example, if BOFF is asserted on the third BRDY of a burst, the Am486DX/DX2 microproces­
sor assumes the data returned with the first and second BRDYs is correct and restarts the 
burst beginning with the third item. The same rule applies to transfers broken into multiple 
cycle by BS8 or 8S16. 

Asserting BOFF in the same clock as ADS causes the Am486DX/DX2 microprocessor to 
float its bus in the next clock and leaves ADS floating Low. Since ADS is floating Low, a 
peripheral might think a new bus cycle has begun, even though the cycle is aborted. There 
are two possible solutions to this problem. The first is for all devices to recognize this 
condition and ignore ADS until RDY comes back. The second approach is to use a ''two 
clock" backoff: in the first clock AHOLD is asserted, and in the second clock BOFF is 
asserted. This guarantees that ADS is not floating Low. This is only necessary in systems 
where BOFF can be asserted in the same clock as ADS. 

Bus States 
A bus state diagram is shown in Figure 7-30. A description of the signals used in the diagram 
is given in Table 7-10. 

Floating.Point Error Handling 
The Am486DXlDX2 microprocessor provides two options for reporting floating-point errors. 
The simplest method is to raise interrupt 16 whenever an unmasked floating-point error 
occurs. This option can be enabled by setting the NE bit in control register 0 (CRO). 

The Am486DX/DX2 microprocessor also provides the option of allowing external hardware to 
determine how floating-point errors are reported. This option is necessary for compatibility with 
the error reporting scheme used in DOS-based systems. The NE bit must be cleared in CRO 
to enable user-defined error reporting. User-<:lefined error reporting is the default condition 
because the NE bit is cleared on reset. 

BuS Operation 
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Two pins, floating-point error (FERR) and ignore numeric error (IGNNE), are provided to direct 
the actions of hardware if user-defined error reporting is used. The Am486DX/DX2 micropro­
cessor asserts the FERR output to indicate that a floating-point error has occurred. FERR 
corresponds to the ERROR pin on the 387 math coprocessor. However, there is a difference 
in the behavior of the two. 

In some cases FERR is asserted when the next floating-point instruction is encountered, and 
in other cases it is asserted before the next floating-point instruction is encountered, depend­
ing upon the execution state of the instruction causing the exception. 

The following class of floating-point exceptions drive FERR at the time the exception occurs 
(I.e., before encountering the next floating-point instruction). 

1. The stack fault, invalid operation, and denormal exceptions on all transcendental instruc­
tions, integer arithmetic instructions, FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and 
FBSTP. 

2. Any exceptions on store instructions (including integer store instructions). 

The following class of floating-point exceptions drive FERR only after encountering the next 
floating-point instruction. 

1. Exceptions other than on all transcendental instructions, integer arithmetic instructions, 
FSQRT, FSCALE, FPREM(1), FXTRACT, FBLD, and FBSTP. 

2. Any exception on all basic arithmetic, load, compare, and control instructions (I.e., all other 
instructions). 

Figure 7·28 Restarted Read Cycle 
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Figure 7·29 Restarted Write Cycle 
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Table 7·10 Bus State Description 

State 

Ti 

T1 

T2 

T1b 

Tb 

7·32 

Means 

Bus is idle. Address and status signals can be driven to undefined values, or the bus can be floated to 
a high impedance state. 

First clock cycle of a bus cycle. Valid address and status are driven and ADS is asserted. 

Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a write, or data is 
expected if the cycle is a read. RDY and BRDY are sampled. 

i First clock cycle of a restarted bus cycle. Valid address and status are driven and ADS is asserted. 

Second and subsequent clock cycles of an aborted bus cycle. 

For both sets of exceptions above, the 387 math coprocessor asserts ERROR when the error 
occurs and does not wait for the next floating-point instruction to be encountered. 

IGNNE is an input to the Am486DX/DX2 microprocessor. 

When the NE bit in CRO is cleared and IGNNE is asserted, the Am486DX/DX2 microproces­
sor ignores a user floating-point error and continues executing floating-point instructions. 
When IGNNE is negated, the Am486DX/DX2 microprocessor freezes on floating-point 
instructions that get errors (except for the control instructions FNCLEX, FNINIT, FNSAVE, 
FNSTENV, FNSTCW, FNSTSW, FNSTSW AX, FNENI, FNDISI, and FNSETPM). IGNNE can 
be asynchronous to the Am486 DX/DX2 microprocessor clock. 

In systems with user-defined error reporting, the FERR pin is connected to the interrupt 
controller. When an unmasked floating-point error occurs, an interrupt is raised. If IGNNE is 
High at the time of this interrupt, the Am486DX/DX2 microprocessor freezes (disallowing 
execution of a subsequent floating-point instruction) until the interrupt handler is invoked. By 
driving the IGNNE pin Low (when clearing the interrupt request), the interrupt handler allows 
execution of a floating-point instruction, within the interrupt handler, before the error condition 
is cleared (by FNCLEX, FNINIT, FNSAVE, or FNSTENV). If execution of a non-control 
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Figure 7·30 Bus State Diagram 
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floating-point instruction within the floating-point interrupt handler is unnecessary, the 
IGNNE pin can be tied High. 

Floating·Point Error Handling In AT Compatible Systems 
The Am486DX microprocessor provides special features to allow the implementation of 
an AT compatible numerics error reporting scheme. These features DO NOT replace the 
external circuit. Logic is still required that decodes the OUT FO instruction and latches 
the FERR signal. What follows is a description of the use of these Am486DXlDX2 
microprocessor features. 

The features provided by the Am486DX/DX2 microprocessor are the NE bit in the 
Machine Status Register, the IGNNE pin, and the FERR pin. 

The NE bit determines the action taken by the Am486DX/DX2 microprocessor when a 
numerics error is detected. When set, this bit signals that non-DOS compatible error 
handling will be implemented. In this mode the Am486DX/DX2 microprocessor takes a 
software exception (16) if a numerics error is detected. 

If the NE bit is reset, the Am486DX/DX2 microprocessor uses the IGNNE pin to allow an 
external circuit to control the time at which non-control numerics instructions are allowed 
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to execute. Note that floating-point control instructions such as FNINIT and FNSAVE can 
be executed during a floating-point error condition regardless of the state of IGNNE. 

To process a floating-point error in the DOS environment, the following sequence must 
take place: 

1. The error is detected by the Am486DX/DX2 microprocessor which activates the 
FERR pin. 

2. FERR is latched so that it can be cleared by the OUT FO instruction. 

3. The latched FERR signal activates an interrupt at the interrupt controller. This interrupt 
is usually handled on IRQ13. 

4. The Interrupt Service Routine (ISR) handles the error and then clears the interrupt by 
executing an OUT instruction to port FO. The address FO is decoded externally to clear 
the FERR latch. The IGNNE Signal is also activated by the decoder output. 

5. Usually the ISR then executes an FNINIT instruction or other control instruction 
before restarting the program. FNINIT clears the FERR output. 

Figure 84 illustrates the circuit required to perform this function. Note that this circuit has 
not been tested. It is included as an example of the required error handling logic. 

Note that the IGNNE input allows non-control instructions to be executed prior to the time 
the FERR signal is reset by the Am486DX/DX2 microprocessor. This function is imple­
mented to allow exact compatibility with the AT implementation. Most programs reinitialize 
the floating-point unit before continuing after an error is detected. The floating point unit 
can be reinitialized using one of the following four instructions: FCLEX, FINIT, FSAVE, 
FSTENV. 
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Figure 7·31 DOS Compatible Numerics Error Circuit 
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8 Am486DX/DX2 CPU TESTABILITY 

Testing the Am486DX/DX2 microprocessor can be divided into three categories: Built-In 
Self Test (BIST), Boundary Scan, and external testing. BIST performs basic device 
testing on the Am486DX/DX2 CPU, including the non-random logic, control ROM 
(CRaM), translation lookaside buffer (TLB), and on-chip cache memory. Boundary Scan 
provides additional test hooks that conform to the IEEE Standard Test Access Port and 
Boundary Scan Architecture (IEEE Std. 1149.1). The Am486DX/DX2 microprocessor 
also has a test mode in which all of its outputs are three-stated. Additional testing can be 
performed by using the test registers within the Am486DX/DX2 CPU. 

8.1 BUILT·IN SELF TEST (BIST) 
The BIST is initiated by asserting AHOLD (address hold) on the falling edge of RESET. 
AHOLD is a synchronous signal only. It should be asserted in the clock prior to RESET 
going from High to Low to start BIST. FLUSH must also be asserted (driven Low) prior to 
the falling edge of RESET to start BIST. FLUSH must be deasserted (driven High) during 
BIST. A20M must be deasserted (driven High) during the falling edge of RESET to start 
BIST. The BIST takes approximately 2**20 clocks, or approximately 42 milliseconds with 
a 25-MHz Am486DX/DX2 microprocessor. No bus cycles are run by the Am486DX/DX2 
microprocessor until the BIST is concluded. Note that for the Am486DX/DX2 micropro­
cessor, the RESET must be active for 15 clocks with or without BIST being enabled for 
warm resets. 

The results of BIST are stored in the EAX register. The Am486DXlDX2 microprocessor 
has successfully passed the BIST if the contents of the EAX register are zero. If the 
results in EAX are not zero, then the BIST has detected a flaw in the microprocessor. 
The microprocessor performs reset and begins normal operation at the completion of the 
BIST. 

The non-random logic, control ROM, on-chip cache, and TLB are tested during the BIST. 

The cache portion of the BIST verifies that the cache is functional and that it is possible 
to read and write to the cache. The BIST manipulates test registers TR3, TR4, and TR5 
while testing the cache. These test registers are described in Section 8.2. 

The cache testing algorithm writes a value to each cache entry, reads the value back, 
and checks that the correct value was read back. The algorithm may be repeated more 
than once for each of the 512 cache entries using different constants. 

The TLB portion of the BIST verifies that the TLB is functional and that it is possible to 
read and write to the TLB. The BIST manipulates test registers TR6 and TR7 while 
testing the TLB. TR6 and TR7 are described in Section 8.3. 

8.2 ON-CHIP CACHE TESTING 
The on-chip cache testability hooks are designed to be accessible during the BIST and 
for assembly language testing of the cache. 

The Am486DXlDX2 microprocessor contains a cache fill buffer and a cache read buffer. 
For testability writes, data must be written to the cache fill buffer before it can be written 
to a location in the cache. Data must be read from a cache location into the cache read 
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8.2.1 

8.2.1.1 

8.2.1.2 

8.2.1.3 

buffer before the microprocessor can access the data. The cache fill and cache read 
buffer are both 128 bits wide. 

Cache Testing Registers TR3, TR4, and TR5 
Figure 8-1 shows the three cache testing registers: the Cache Data Test Register (TR3), 
the Cache Status Test Register (TR4), and the Cache Control Test Register (TRS). 
External access to these registers is provided through MOV reg, TREG, and MOV 
TREG, reg instructions. 

Cache Data Test Register: TR3 

The cache fill buffer and the cache read buffer can only be accessed through TR3. Data 
to be written to the cache fill buffer must first be written to TR3. Data read from the 
cache read buffer must be loaded into TR3. 

TR3 is 32 bits wide while the cache fill and read buffers are 128 bits wide. 32 bits of data 
must be written to TR3 four times to fill the cache fill buffer. 32 bits of data must be read 
from TR3 four times to empty the cache read buffer. The entry select bits in TRS 
determine which 32 bits of data TR3 accesses in the buffers. 

Cache Status Test Register: TR4 

TR4 handles tag, LRU, and valid bit information during cache tests. TR4 must be loaded 
with a tag and a valid bit before a write to the cache. After a read from a cache entry, 
TR4 contains the tag and valid bit from that entry, as well as the LRU bits and four valid 
bits from the accessed set. 

Cache Control Test Register: TR5 

TRS specifies which testability operation is performed and the set and entry within the set 
that is accessed. 

The 7 -bit set select field determines which of the 128 sets is accessed. 

The functionality of the two entry select bits depends on the state of the control bits. 
When the fill or read buffers are being accessed, the entry select bits point to the 32-bit 
location in the buffer being accessed. When a cache location is specified, the entry 
select bits point to one of the four entries in a set (see Table 8-1). 

Figure 8·1 Cache Test Registers 
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Table 8-1 

Control Bfts 

Bit 1 Bit 0 

0 0 

0 1 

1 0 

1 1 

8.2.2 
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cache Control Bit Encoding and Effect of Control Bits on Entry Select and Set 
Select Functionality 

Operation Entry Select Bfts Functions Set Select Bfts 

Enable { Fill Buffer Write Read Select 32-bit location in filII 
Buffer Read read buffer. -

Periorm Cache Write Select an entry in set. Select a set to write to. 

Periorm Cache Read Select an entry in set. Select a set to read from. 

Periorm Flush Cache - -

Five testability functions can be performed on the cache. The two control bits in TRS 
specify the operation to be executed. The five operations are 

1. Write the cache fill buffer 

2. Perform a cache testability write 

3. Perform a cache testability read 

4. Read the cache read buffer 

S. Perform a cache flush 

Table 8-1 shows the encoding of the two control bits in TRS for the cache testability. 
Table 8-1 also shows the functionality of the entry and set select bits for each control 
operation. 

The cache tests attempt to use as much of the normal operating circuitry as possible. 
Therefore, when cache tests are being performed, the cache must be disabled (the CD 
and NW bits in control register must be set to 1 to disable the cache, see Section S). 

Cache Testability Write 
A testability write to the cache is a two step process. First, the cache fill buffer must be 
loaded with 128 bits of data and TR4 loaded with the tag and valid bit. Next, the contents 
of the fill buffer are written toa cache location. Sample assembly code to do a write is 
given in Figure 8-2. 

Loading the fill buffer is accomplished by first writing to the entry select bits in TRS and 
setting the control bits in TRS to 00. The entry select bits identify one of four 32-bit 
locations in the cache fill buffer to put 32 bits of data. Following the write to TRS, TR3 is 
written with 32 bits of data that are immediately placed in the cache fill buffer. Writing to 
TR3 initiates the write to the cache fill buffer. The cache fill buffer is loaded with 128 
bits of data by writing to TRS and TR3 four times, using a different entry select location 
each time. 

TR4 must be loaded with the 21-bit tag and valid bit (bit 10 in TR4) before the contents 
of the fill buffer are written to a cache location. 

The contents of the cache fill buffer are written to a cache location by writing TRS with a 
control field of 01 , along with the set select and entry select fields. The set select and 
entry select field indicates the location in the cache to be written. The normal cache LRU 
update circuitry updates the internal LRU bits for the selected set. 

Note that a cache testability write can only be done when the cache is disabled for 
replaces (the CO bit in control register 0 is reset to 1). Also note that care must be taken 
when directly writing to entries in the cache. If the entry is set to overlap an area of 
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memory that is being used in external memory, that cache entry could inadvertently be 
used instead of the external memory. Of course, this is exactly the type of operation that 
one would desire if the cache were to be used as a high speed RAM. 

Cache Testability Read 
A cache testability read is a two step process. First, the contents of the cache location 
are read into the cache read buffer. Next, the data is examined by reading it out of the 
read buffer. Sample assembly code to do a testability read is given in Figure 8-2. 

Reading the contents of a cache location into the cache read buffer is initiated by writing 
TR5 with the control bits set to 10 and the desired seven-bit set select and two-bit entry 
select. In response to the write to TR5, TR4 is loaded with the 21-bit tag field and the 
single valid bit from the cache entry read. TR4 is also loaded with the three LRU bits and 
four valid bits corresponding to the cache set that was accessed. The cache read buffer 
is filled with the 128-bit value that was found in the data array at the specified location. 

The contents of the read buffer are examined by performing four reads of TR3. Before 
reading TR3, the entry select bits in TR5 must be loaded to indicate which of the four 
32-bit words in the read buffer to transfer into. TR3 and the control bits in TR5 must be 
loaded with 00. The register read of TR3 initiates the transfer of the 32-bit value from the 
read buffer to the specified general purpose register. 

Note that it is very important that the entire 128-bit quantity from the read buffer, and 
also the information from TR4, be read before any memory references are allowed to 
occur. If memory operations are allowed to happen, the contents of the read buffer are 
corrupted. This occurs because the testability operations use hardware that is used in 
normal memory accesses for the Am486DX/DX2 microprocessor, whether the cache is 
enabled or not. 

Flush Cache 
The control bits in TR5 must be written with 11 to flush the cache. None of the other bits 
in TRS have any meaning when 11 is written to the control bits. Flushing the cache 
resets the LRU bits and the valid bits to 0, but does not change the cache tag or data 
arrays. 

When the cache is flushed by writing to TR5, the special bus cycle indicating a cache 
flush to the external system is not run (see Section 7.2.11, Special Bus Cycles). The 
cache should be flushed with the INVD (Invalidate Data Cache) instruction or the 
WBINVD (Write-back and Invalidate Data Cache) instruction. 

8.3 TLB TESTING 

8.3.1 

8·4 

The Am486DX/DX2 microprocessor TLB testability hooks are similar to those in the 386 
microprocessor. The testability hooks have been enhanced to provide added test 
features and to include new features in the Am486DX/DX2 microprocessor. The TLB 
testability hooks are designed to be accessible during the BIST and for assembly 
language testing of the TLB. 

Translation Lookaside Buffer Organization 
The Am486DX/DX2 microprocessor's TLB is four-way set associative and has space for 
eight entries. The TLB is logically split into three blocks (see Figure 8-3). 

The data block is physically split into four arrays, each with space for eight entries. An 
entry in the data block is 22 bits wide, containing a 20-bit physical address and two bits 
for the page attributes. The page attributes are the PCD (page cache disable) bit and the 
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Figure 8-2 Sample Assembly Code for Cache Testing 

An example assembly language sequence to perform a cache write is 

eax. ebx. ecx. edx contain the cache line to write 
edi contains the tag information to load 
CRO already says to enable reads/write to TR5 

fill 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 
mov 

the cache 
esi,O 
tr5,esi 
tr3,eax 
e8i,4 
tr5,esi 
tr3,ebx 
esi,8 
tr5,esi 
tr3,ecx 
esi,Och 
tr5,esi 
tr3,edx 

buffer 
set up command 
load to TR5 
load data into cache fill buffer 

load the Cache Status Register 

mov tr4,edi load 21-bit tag and valid bit 

perform the cache write 

move8i 1 1 
mov tr5,esi ; write the cache (set 0, entry 0) 

An example assembly language sequence to perform a cache read is 

data into eax, ebx, ecx, edx; status into edi 

read the cache line back 

mov e8i,2 
mov tr5,esi ; do cache testability read (set 0, entry 0) 

read the data from the read buffer 

mov e8i,O 
mov tr5,esi 
mov eax,tr3 
mov esi,4 
mov tr5,esi 
mov ebx,tr3 
mov esi,8 
mov tr5,esi 
mov ecx,tr3 
mov esi,Och 
mov tr5,esi 
mov edx,tr3 

read the status from TR4 

mov edi, tr4 
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PWT (page write-through) bit. Refer to Section 4.5.4 for a discussion of the PCO and 
PWT bits. 

The tag block is also split into four arrays, one for each of the data arrays. A tag entry is 
21 bits wide, containing a 17 -bit linear address and four protection bits. The protection 
bits are valid (V), user/supervisor (U/S), read/write (R/w) , and dirty (0). 

The third block contains eight three-bit quantities used in the pseudo LRU replacement 
algorithm. These bits are the LRU bits. The LRU replacement algorithm used in the TLB 

Am486DXlDX2 CPU Testability 8-5 



~AMD 

8.3.2 

is the same as that used by the on-chip cache. For a description of this algorithm, refer 
to Section 5.5. 

TLB Test Registers (TR6 and TR7) 
The two TLB test registers are shown in Figure 8-4, TRS is the command test register 
and TR7 is the data test register, External access to these registers is provided through 
MOV reg, TREG, and MOV TREG reg instructions. 

8.3.2.1 Command Test Register (TR6) 

TRS contains the tag information and control information used in a TLB test. Loading 
TRS with tag and control information initiates a TLB write or lockup test. 

Figure 8·3 TLB Organization 
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TR6 contains three bit fields: a 20-bit linear address (bits 12-31), seven bits for the TLB 
tag protection bits (bits 5-11), and one bit (bit 0) to define the type of operation to be 
performed on the TLB. 

The 20-bit linear address forms the tag information used in the TLB access. The lower 
three bits of the linear address select which of the eight sets are accessed. The upper 
17 bits of the linear address form the tag stored in the tag array. 

The seven TLB tag protection bits are described below. 

V: The valid bit for this TLB entry 

D, 5: The dirty bit for/from the TLB entry 

U, D: The user/supervisor bit for/from the TLB entry 

W, W: The read/write bit for/from the TLB entry 

Two bits are used to represent the D, UlS, and RIW bits in the TLB tag to permit the 
option of a forced miss or hit during a TLB lookup operation. The forced miss or hit 
occurs regardless of the state of the actual bit in the TLB. The meaning of these pairs of 
bits is given in Table 8-2. 

The operation bit in TR6 determines if the TLB test operation is a write or a lockup. The 
function of the operation bit is given in Table 8-3. 

Data Test Register (TR7) 

TR7 contains the information stored or read from the data block during a TLB test 
operation. Before a TLB test write, TR7 contains the physical address and the page 
attribute bits to be stored in the entry. After a TLB test lookup hit, TR7 contains the 
physical address, page attributes, LRU bits, and entry location from the access. 

TR7 contains a 20-bit physical address (bits 31-12), two bits for PCD (bit 11 ) and PWT 
(bit 10), and three bits for the LRU bits (bits 9-7). The LRU bits in TR7 are only used 
during a TLB lookup test. The functionality of TR7 bit 4 differs for TLB writes and 
lookups. The encoding of bit 4 is defined in Table 8-4 and Table 8-5. Finally, TR7 
contains two bits (bits 3-2) to specify a TLB replacement pointer or the location of a TLB 
hit. 

Meaning of a Pair of TR6 Protection Bits 

TR6 Protection TR6 Protection Meaning of TLB Meaning of TLB Lookup 
Bit (B) Bit# (B#) Write Operation Operation 

0 0 Undefined Miss any TLB TAG Bit B 

0 1 Write 0 to TLB TAG Bit B Match TLB TAG Bit B if 0 

1 0 Write 1 to TLB TAG Bit B Match TLB TAG Bit B if 1 

1 1 Undefined Match any TLB TAG Bit B 

TR6 Operation Bit Encoding 

TR6 Bit 0 TLB Operation to Be Performed 

0 TLB Write 

1 TLB Lookup 
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Encoding of Bit 4 of TR7 on Writes 

TR7 Bit 4 Replacement Pointer Used on TLB Write 

0 Pseudo-LRU Replacement Pointer 

1 Data Test Register Bits 3-2 

Encoding of Bit 4 of TR7 on Lookups 

TR7Bit4 Meaning after TLB Lookup Operation 

0 TLB Lookup Resulted in a Miss 

1 TLB Lookup Resulted in a Hit 

A replacement pointer is used during a TLB write. The pointer indicates which of the four 
entries in an accessed set is to be written. The replacement pOinter can be specified to 
be the internal LRU bits or bits 2-3 in TR7. The source of the replacement pointer is 
specified by TR7 bit 4. The encoding of bit 4 during a write is given in Table 8-4. 

Note that both testability writes and lookups affect the state of the internal LRU bits 
regardless of the replacement pOinter used. All TLB write operations (testability or 
normal operation) cause the written entry to become the most recently used. For 
example, during a testability write with the replacement pointer specified by TR7 bits 
2-3, the indicated entry is written and that entry becomes the most recently used as 
specified by the internal LRU bits. 

There are two TLB testing operations: write entries into the TLB, and perform TLB 
lookups. One major enhancement over TLB testing in the 386 microprocessor is that 
paging need not be disabled while executing testability writes or lookups. 

Note that any time one TLB set contains the same linear address in more than one of its 
entries, looking up that linear address do.es not result in a hit. Therefore, a single linear 
address should not be written to one TLB set more than once. 

TLB Write Test 
To perform a TLB write, TR7 must be loaded followed by a TR6 load. The register 
operations must be performed in this order since the TLB operation is triggered by the 
write to TR6. 

TR7 is loaded with a 20-bit physical address and values for PCD and PWT to be written 
to the data portion of the TLB. In addition, bit 4 of TR7 must be loaded to indicate 
whether to use TR7 bits 3-2 or the internal LRU bits as the replacement pointer on the 
TLB write operation. Note that the LRy bits in TR7 are not used in a write test. 

TR6 must be written to initiate the TLB write operation. Bit 0 in TR6 must be reset to 0 to 
indicate a TLB write. The 20-bit linear address and the seven page protection bits must 
also be written in TR6 to specify the tag portion of the TLB entry. Note that the three 
least significant bits of the linear address specify which of the eight sets in the data block 
are loaded with the phYSical address data. Thus, only 17 of the linear address bits are 
stored in the tag array. 

TLB Lookup Test 
To perform a TLB lookup, it is only necessary to write the proper tags and control informa­
tion into TR6. Bit 0 in TR6 must be set to 1 to indicate a TLB lookup. TR6 must be loaded 
with a 20-bit linear address and the seven protection bits. To force misses and matches of 
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the individual protection bits on TLB lookups, set the seven protection bits as specified in 
Table 8-2, 

A TLB lookup operation is initiated by the write to TR6, TRl indicates the result of the 
lookup operation following the write to TR6, The hit/miss indication can be found in TRl 
bit 4 (see Table 8-5). 

TRl contains the following information if bit 4 indicates that the lookup test resulted in a 
hit. Bits 2-3 indicate in which set the match occurred, The 22 most significant bits in TRl 
contain the physical address and page attributes contained in the entry. 

Bits 9-1 contain the LRU bits associated with the accessed set The state of the LRU 
bits is previous to their being updated for the current lookup. 

If bit 4 in TRl indicated that the lockup test resulted in a miss, the remaining bits in TR7 
are undefined. 

Again, it should be noted that a TLB testability lookup operation affects the state of the 
LRU bits. The LRU bits are updated if a hit occurred. The entry that was hit becomes the 
most recently used. 

8.4 THREE·STATE OUTPUT TEST MODE 
The Am4860X/OX2 microprocessor provides the ability to float all its outputs and 
bidirectional pins. This includes all pins floated during bus hold, as well as pins that are 
never floated in normal operation of the chip (HLOA, BREQ, FERR, and PCHK), When 
the Am4860X/OX2 microprocessor is in the three-state output test mode, external 
testing can be used to test board connections. 

The three-state test mode is invoked by driving FLUSH Low for two clocks before and 
two clocks after RESET goes Low. The outputs are guaranteed to three-state no later 
than ten clocks after RESET goes Low (see Figure 6-4). The Am4860X/OX2 micropro­
cessor remains in the three-state test mode until the next RESET. 

8.5 Am486DX/DX2 MICROPROCESSOR BOUNDARY SCAN (JTAG) 
The Am4860X/OX2 microprocessor provides additional testability features compatible 
with the IEEE Standard Test Access Port and Boundary Scan Architecture (IEEE Std. 
1149.1). The test logic provided allows for testing to ensure that components function 
correctly, that interconnections between various components are correct, and that 
various components interact correctly on the printed circuit board. 

8.5.1 

The boundary scan test logic consists of a boundary scan register and support logic that 
are accessed through a test access port (TAP). The TAP provides a simple serial 
interface that makes it possible to test all Signal traces with only a few probes. 

The TAP can be controlled via a bus master. The bus master can be either automatic 
test equipment or a component (PLD) that interfaces to the four-pin test bus. 

Boundary Scan Architecture 
The boundary scan test logic contains the following elements: 

• TAP, consisting of input pins TMS, TCK, and TOI; and output pin TOO. 

• TAP controller, which interprets the inputs on the test mode select (TMS) line and per­
forms the corresponding operation. The operations performed by the TAP include 
controlling the instruction and data registers within the component. 
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8.5.2 

8.5.2.1 

8.5.2.2 

• Instruction register (IR), which accepts instruction codes shifted into the test logic on 
the test data input (TOI) pin. The instruction codes are used to select the specific test 
operation to be performed or the test data register to be accessed. 

• Test data registers: The Am4860XIDX2 microprocessor contains three test data reg­
isters: Bypass register (BPR), Oevice Identification register (010), and Boundary 
Scan register (BSR). 

The instruction and test data registers are separate shift-register paths connected in 
parallel that have a common serial data input and a common serial data output connected 
to the TAP signals, TOI and TOO, respectively. 

Data Registers 
The Am4860X/OX2 CPU contains the two required test data registers; bypass register 
and boundary scan register. In addition, they also have a device identification register. 

Each test data register is serially connected to TOI and TOO, with TOI connected to the 
most significant bit and TOO connected to the least significant bit of the test data 
register. Oata is shifted one stage (bit position within the register) on each rising edge of 
the test clock (TCK). 

In addition, the Am4860X/OX2 CPU contains a RUNBIST register to support the 
RUNBIST boundary scan instruction. 

Bypass Register (BPR) 

The BPR is a one-bit shift register that provides the minimal length path between TOI and 
TOO. This path can be selected when no test operation is being performed by the 
component to allow rapid movement of test data to and from other components on the 
board. While the BPR is selected, data is transferred from TOI to TOO without inversion. 

Boundary Scan Register (BSRl 

The BSR is a single shift register path containing the boundary scan cells that are 
connected to all input and output pins of the Am4860X/OX2 CPU. Figure 8-5 shows the 
logical structure of the BSR. While output cells determine the value of the signal driven on 
the corresponding pin, input cells only capture data; they do not affect the normal 
operation of the device. Oata is transferred without inversion from TOI to TOO through the 
BSR during scanning. The BSR can be operated by the EXTEST and SAMPLE instruc­
tions. The boundary scan register order is described in Section 8.5.5. 

8.5.2.3 Device Identification Register (DID) 

The 010 contains the manufacturer's identification code, part number code, and version 
code in the format shown in Figure 8-6. Table 8-6 lists the codes corresponding to the 
Am4860X/OX2 CPU. 

8.5.2.4 RUNBIST Register 

The RUNBIST register is a one-bit register used to report the results of the Am4860X/OX2 
CPU BIST when it is initiated by the RUNBIST instruction. This register is loaded with a 
"1" prior to invoking the B 1ST and is loaded with "0" upon successful completion. 

Table 8-& Component Codes 

Component Code Version Code Part Number Code Manufacturer Identity 
Am4B6 CPU (Ax) OOH 0410H 09H 

Am4B6 CPU (8x) OOH 0411H 09H 
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Figure 8·5 Logical Structure of Boundary Scan Register 
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Instruction Register 
The IR allows instructions to be serially shifted into the device. The instruction selects the 
particular test to be performed, the test data register to be accessed, or both. The instruction 
register is four bits wide. The most significant bit is connected to TDI and the least 
significant bit is connected to TDO. There are no parity bits associated with the IR. Upon 
entering the Capture-IR TAP controller state, the instruction register is loaded with the 
default instruction "0001 ", SAMPLE/PRELOAD. Instructions are shifted into the instruction 
register on the rising edge of TCK while the TAP controller is in the Shift-IR state. 

Am486DX/DX2 CPU Boundary Scan Instruction Set 

The Am486DXlDX2 CPU supports all three mandatory boundary scan instructions 
(BYPASS, SAMPLE/PRELOAD, and EXTEST) along with two optional instructions 
(IDCODE and RUNBIST). Table 8-7 lists the Am486DXlDX2 CPU boundary scan 
instruction codes. The instructions listed as PRIVATE cause TDO to become enabled in 
the Shift-DR state and cause "0" to be shifted out of TDO on the rising edge of TCK. 
Execution of the PRIVATE instructions does not cause hazardous operation of the 
Am486DX/DX2 CPU. 
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Table 8-7 

8-12 

Boundary Scan Instruction Codes 

Instruction Code Instruction Name 

0000 EXT EST 
0001 SAMPLE 
0010 IDCODE 

0011 PRIVATE 
0100 PRIVATE 
0101 PRIVATE 
0110 PRIVATE 
0111 PRIVATE 
1000 RUNBIST 
1001 PRIVATE 
1010 PRIVATE 
1011 PRIVATE 
1100 PRIVATE 
1101 PRIVATE 
1110 PRIVATE 
1111 BYPASS 

EXT EST 
The instruction code is "0000". The EXTEST instruction allows testing of circuitry external 
to the component package, typically board interconnects. It does so by driving the values 
loaded into the Am486DXIDX2 CPU's BSR out on the output pins corresponding to each 
boundary scan cell. It then captures the values on Am486DX/DX2 CPU input pins to be 
loaded into their corresponding BSR locations. I/O pins are selected as input RUNBIST or 
output depending on the value loaded into their control setting locations in the BSR. Val­
ues shifted into input latches in the BSR are never used by the internal logic of the 
Am486DX/DX2 CPU. 

Note: 
After using the EXTEST instruction, the Am486DX/DX2 CPU must be reset before normal (non­
boundary scan) use. 

SAMPLE/PRELOAD 
The instruction code is "0001". The SAMPLE/PRELOAD has two functions that it per­
forms. When the TAP controller is in the Capture-DR state, the SAMPLE/PRELOAD 
instruction allows a "snapshot" of the normal operation of the component without inter­
fering with that normal operation. The instruction causes BSR cells associated with out­
puts to sample the value being driven by the Am486DXlDX2 CPU. It causes the cells 
associated with inputs to sample the value being driven into the Am486DX/DX2 CPU. 
On both outputs and inputs, the sampling occurs on the rising edge of TCK. When the 
TAP controller is in the Update-DR state, the SAMPLE/PRELOAD instruction preioads 
data to the device pins to be driven to the board by executing the EXTEST instruction. 
Data is preloaded to the pins from the BSR on the falling edge of TCK. 

IDCODE 
The instruction code is "0010". The IDCODE instruction selects the DID to be connected 
to TDI and TDO, allowing the device identification code to be shifted out of the device on 
TDO. Note that the DID is not altered by data being shifted in on TDI. 

BYPASS 
The instruction code is "1111". The BYPASS instruction selects the bypass register to be 
connected to TDI or TDO, effectively bypassing the test logic on the Am486DX/DX2 
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microprocessor by reducing the shift length of the device to one bit. Note that an open 
circuit fault in the board level test data path causes the bypass register to be selected fol­
lowing an instruction scan cycle due to the pull-up resistor on the TDI input. This has been 
done to prevent any unwanted interference with the proper operation of the system logic. 

RUNBIST 
The instruction code is "1000", The RUNBIST instruction selects the one (1) bit runbist 
register, loads a value of "1" into the runbist register, and connects it to TDO. It also initi­
ates the built-in self test (BIST) feature of the Am486DX/DX2 CPU, which is able to 
detect approximately 60% of the stuck-at faults on the Am486DX/DX2 CPU. The 
Am486DX/DX2 CPU AC/DC specifications for Vee and ClK must be met and RESET 
must have been asserted at least once prior to executing the RUNBIST boundary scan 
instruction. After loading the RUNBIST instruction code in the instruction register, the 
TAP controller must be placed in the Run-Test-Idle state. BIST begins on the first rising 
edge of TCK after entering the Run-Test-Idle state. The TAP controller must remain in 
the Run-Test-Idle state until BIST is completed. It requires 1.2 million ClK cycles to com­
plete 81ST and report the result to the runbist register. After completing the 1.2 million 
ClK cycles, the value in the runbist register should be shifted out on TDO during the 
Shift-DR state. A value of "0" being shifted out on TDO indicates BIST successfully com­
pleted. A value of "1" indicates a failure. After executing the RUNBIST instruction, the 
Am486DX/DX2 CPU must be reset prior to normal operation. 

Test Access Port (TAP) Controller 
The TAP controller is a synchronous, finite state machine. It controls the sequence of 
operations of the test logic. The TAP controller changes state only in response to the 
following events: 

1. a rising edge of TCK 

2. power-up 

The value of the test mode state (TMS) input signal at a rising edge of TCK controls the 
sequence of the state changes. The state diagram for the TAP controller is shown in 
Figure 8-7. Test designers must consider the operation of the state machine in order to 
design the correct sequence of values to drive on TMS. 

Test.Logic·Reset State 

In this state, the test logic is disabled so that normal operation of the device can 
continue unhindered. This is achieved by initializing the instruction register such that the 
IDCODE instruction is loaded. No matter what the original state of the controller, the 
controller enters Test-logic-Reset state when the TMS input is held High (1) for at least 
five rising edges of TCK. The controller remains in this state while TMS is High. The TAP 
controller is also forced to enter this state at power-up. 

Run·Test·ldle State 

This is controller state between scan operations. Once in this state, the controller 
remains in this state as long as TMS is held low. In devices supporting the RUNBIST 
instruction, the BIST is performed during this state and the result is reported in the 
runbist register. For instruction not causing functions to execute during this state, no 
activity occurs in the test logic. The instruction register and all test data registers retain 
their previous state. When TMS is High and a rising edge is applied to TCK, the 
controller moves to the Select-DR state. 
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Figure 8·7 TAP Controller State Diagram 
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Select·DR·Scan State 

This is a temporary controller state. The test data register selected by the current 
instruction retains its previous state. If TMS is held Low and a rising edge is applied to 
TCK when in this state, the controller moves into the Capture-DR state and a scan 
sequence for the selected test data register is initiated. If TMS is held High and a rising 
edge is applied to TCK, the controller moves to the Select-IR-Scan state. 

The instruction does not change in this state. 

Capture· DR State 

In this state, the BSR captures input pin data if the current instruction is EXTEST or 
SAMPLE/PRELOAD. The other test data registers, which do not have parallel input, are 
not changed. 
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The instruction does not change in this state" 

When the TAP controller is in this state and a rising edge is applied to TCK, the control­
ler enters the Exit1-DR state if TMS is High, or the Shift-DR state if TMS is Low" 

Shift· DR State 

In this controller state, the test data register connected between TDI and TOO as a 
result of the current instruction shifts data one stage toward its serial output on each 
rising edge of TCK. 

The instruction does not change in this state. 

When the TAP controller is in this state and a rising edge is applied to TCK, the controller 
enters the Exit1-DR state if TMS is High, or remains in the Shift-DR state if TMS is Low. 

Exit1·DR State 

This is a temporary state. While in this state, if TMS is held High, a riSing edge applied to 
TCK causes the controller to enter the Update-DR state, which terminates the scanning 
process. If TMS is held Low and a rising edge is applied to TCK. the controller enters the 
Pause-DR state. 

The test data register selected by the current instruction retains its previous value during 
this state" The instruction does not change in this state" 

Pause· DR State 

The pause state allows the test controller to temporarily halt the shifting of data through 
the test data register in the serial path between TDI and TOO. An example of using this 
state could be to allow a tester to reload its pin memory from disk during application of a 
long test sequence. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

The controller remains in this state as long as TMS is Low. When TMS goes High and a 
riSing edge is applied to TCK, the controller moves to the Exit2-DR state" 

Exit2-DR State 

This is a temporary state. While in this state, if TMS is held High, a rising edge applied to 
TCK causes the controller to enter the Update-DR state, which terminates the scanning 
process" If TMS is held Low and a rising edge is applied to TCK, the controller enters the 
Shift-DR state. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

Update· DR State 

The BSR is provided with a latched parallel output to prevent changes at the parallel 
output while data is shifted in response to the EXT EST and SAMPLE/PRELOAD 
instructions. When the TAP controller is in this state and the BSR is selected, data is 
latched onto the parallel output of this register from the shift-register path on the falling 
edge of TCK. The data held at the latched parallel output does not change other than in 
this state" 

All shift-register stages in test data register selected by the current instruction retain their 
previous values during this state. The instruction does not change in this state. 
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Select·IR·Scan State 

This is a temporary controller state. The test data register selected by the current 
instruction retains its previous state. If TMS is held Low and a rising edge is applied to 
TCK when in this state, the controller moves into the Capture-IR state and a scan 
sequence for the instruction register is initiated. If TMS is held High and a rising edge is 
applied to TCK, the controller moves to the Test-Logic-Reset state. 

The instruction does not change in this state. 

Capture·IR State 

In this controller state the shift register contained in the instruction register loads the 
fixed value "0001" on the rising edge of TCK. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

When the controller is in this state and a rising edge is applied to TCK, the controller 
enters the Exit1-IR state if TMS is held High, or the Shift-IR state if TMS is held Low. 

Shift·IR State 

In this state the shift register contained in the instruction register is connected between 
TDI and TOO, and shifts data one stage towards its serial output on each rising edge of 
TCK. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

When the controller is in this state and a rising edge is applied to TCK, the controller 
enters the Exit1-IR state if TMS is held High, or remains in the Shift-IR state if TMS is 
held Low. 

Exit1·IR State 

This is a temporary state. While in this state, if TMS is held High, a rising edge applied to 
TCK causes the controller to enter the Update-IR state, which terminates the scanning 
process. If TMS is held Low and a rising edge is applied to TCK, the controller enters the 
Pause-IR state. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

Pause·IR State 

The pause state allows the test controller to temporarily halt the shifting of data through 
the instruction register. 

The test data register selected by the current instruction retains its previous value during 
this state. The instruction does not change in this state. 

The controller remains in this state as long as TMS is Low. When TMS goes High and a 
rising edge is applied to TCK, the controller moves to the Exit2-IR state. 

Exit2-IR State 

This is a temporary state. While in this state, if TMS is held High, a rising edge applied to 
TCK causes the controller to enter the Update-IR state, which terminates the scanning 
process. If TMS is held Low and a rising edge is applied to TCK, the controller enters the 
Shift-IR state. 
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The test data register selected by the current instruction retains its previous value during 
this statec The instruction does not change in this state. 

Update·IR State 

The instruction shifted into the instruction register is latched onto the parallel output from 
the shift-register path on the falling edge of TCK. Once the new instruction has been 
latched, it becomes the current instruction. 

Test data registers selected by the current instruction retain the previous value. 

Boundary Scan Register Cell 
The BSR contains a cell for each pin, as well as cells for control of liD and three-state 
pins. 

The following is the bit order of the Am486DX/DX2 CPU BSR: (from left to right and top to 
bottom). 

TDI -->WRCTL ABUSCTL BUSCTL MISCCTL 
ADS BLAST PLOCK LOCK PCHK 
(BRDY BOFF BS16 BS8 RDY KEN) 
HOLD AHOlD ClK HlDA W/Fi. BREQ BED 
BE1 BE2 BE3 MilO Die PWT PCD 
EADS A2DM RESET FLUSH INTR NMI 
FERR IGNNE D31 D30 D29 D28 D27 D26 
D25 D24 DP3 D23 D22 D21 D20 D19 D18 D17 
D16 DP2 D15 D14 D13 D12 D11 D10 D9 D8 
DP1 D7 D6 D5 D4 D3 D2 D1 DO DPO A31 A30 
A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 
A19 A18 Ai7 A16 A15 A14 A13 A12 A11 A10 
A9 A8 A7 A6 RESERVED A5 A4 A3 
A2-->TDO 

"RESERVED" corresponds to no connect "NC" signals on the Am486DX/DX2 CPU. 

All the CTL cells are control cells that are used to select the direction of bidirectional pins 
or three-state output pins. If "1" is loaded into the control cell (CTl), the associated 
pin(s) are three-stated or selected as input. The following lists the control cells and their 
corresponding pins. 

1. WRCTL controls the D31-DO and DP3-DPO pins. 

2. ABUSCTl controls the A31-A2 pins. 

3. BUSCTL controls the ADS, BLAST, PLOCK, LOCK, W/Fi., BED, BE1, BE2, BE3, MilO, 
Die, PWT, and PCD pins. 

4. MISCCTl controls the PCHK, HLDA, and BREQ pins. 

Tap Controller Initialization 
The TAP controller is automatically initialized when a device is powered up. In addition, 
the TAP controller can be initialized by applying a high signal level on the TMS input for 
five TCK periods. 
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9 DEBUGGING SUPPORT 

The Am486DX/DX2 microprocessor provides several features that simplify the debug­
ging process. The three categories of on-chip debugging aids are: 

1. The code execution breakpoint opcode (OCCH) 

2. The single-step capability provided by the TF bit in the flag register 

3. The code and data breakpoint capability provided by the Debug Registers DR3-DRO, 
DR6, and DR? 

9.1 BREAKPOINT INSTRUCTION 
A single-byte-opcode breakpoint instruction is available for use by software debuggers. 

The breakpoint opcode is OCCH and generates an exception 3 trap when executed. In 
typical use, a debugger program can "plant" the breakpoint instruction at all desired code 
execution breakpoints. The single-byte breakpoint opcode is an alias for the two-byte 
general software interrupt instruction, INT n, where n = 3. The only difference between 
INT 3 (OCCH) and INT n is that INT 3 is never IOPL-sensitive but INT n is IOPL-sensitive 
in Protected Mode and Virtual 8086 Mode. 

9.2 SINGLE·STEP TRAP 
If the single-step flag (TF, bit 8) in the EFLAGS register is found to be set at the end of 
an instruction, a single-step exception occurs. The single-step exception is auto 
vectored to exception number 1. Precisely, exception 1 occurs as a trap after the 
instruction following the instruction that set TF. In typical practice, a debugger sets the 
TF bit of a flag register image on the debugger's stack. It then typically transfers control 
to the user program and loads the flag image with a signal instruction, the IRET instruc­
tion. The single-step trap occurs after executing one instruction of the user program. 

Since the exception 1 occurs as a trap (that is, it occurs after the instruction has already 
executed), the CS:EIP pushed onto the debugger's stack points to the next unexecuted 
instruction of the program being debugged. An exception 1 handler, merely by ending 
with an IRET instruction, can therefore efficiently support single-stepping through a user 
program. 

9.3 DEBUG REGISTERS 
The Debug Registers are an advanced debugging feature of the Am486DX/DX2 
microprocessor. They allow data access breakpoints as well as code execution break­
pOints. Since the breakpoints are indicated by on-Chip registers, an instruction execution 
breakpoint can be placed in ROM code or in code shared by several tasks, neither of 
which can be supported by the INT 3 breakpoint opcode. 

The Am486DXlDX2 microprocessor contains six Debug Registers, providing the ability to 
specify up to four distinct breakpoint addresses, breakpoint control options, and read 
breakpoint status. Initially after reset, breakpoint are in the disabled state. Therefore, no 
breakpoints occur unless the debug registers are programmed. Breakpoints set up in the 
Debug Registers are autovectored to exception number 1. 
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Linear Address Breakpoint Registers (DR3-DRO) 
Up to four breakpoint addresses can be specified by writing into Debug Registers 
DR3-DRO, shown in Figure 9-1, The breakpoint addresses specified are 32-bit linear 
addresses. Am486DX/DX2 microprocessor hardware continuously compares the linear 
breakpoint addresses in DR3-DRO with the linear addresses generated by executing 
software. (A linear address is the result of computing the effective address and adding 
the 32-bit segment base address.) Note that if paging is not enabled, the linear address 
equals the physical address. If paging is enabled, the linear address is translated to a 
physical 32-bit address by the on-chip paging unit. However, regardless of whether 
paging is enabled or not, the breakpoint registers hold linear addresses. 

Debug Control Register (DR7) 
A Debug Control Register, DR?, (see Figure 9-1), allows several debug control functions 
such as enabling the breakpoints and setting up other control options for the break­
points. The fields within the DR? are as follows: 

Breakpoint Length Specification Bits (LENi) 

A 2-bit LEN field exists for each of the four breakpoints. LEN specifies the length of the 
associated breakpoint field. The choices for data breakpoints are: 1 byte, 2 bytes, and 4 
bytes. Instruction execution breakpoints must have a length of 1 (LENi = 00), Encoding 
of the LENi field is shown in Figure 9-1, 

The LENi field controls the size of breakpoint field i by controlling whether all low-order 
linear address bits in the breakpoint address register are used to detect the breakpoint 
event. Therefore, all breakpoint fields are aligned; 2-byte breakpoint fields begin on word 
boundaries, and 4-byte breakpoint fields begin on dword boundaries (see Table 9-1), 

Figure 9-2 is an example of various size breakpoint fields. Assume the breakpoint linear 
address in DR2 is 00000005H. In that situation, Figure 9-2 indicates the region of the 
breakpoint field for lengths of 1, 2, or 4 bytes. 

Figure 9·1 Debug Registers 
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Table 9-1 Debug Registers LENi Encoding 

LENi Encoding Breakpoint Field Width Use of Least Significant Bits in Breakpoint Address Register i, (i = 0-3) 

00 1 byte All 32-bits used to specify a single-byte breakpoint field. 

01 2 bytes A31-A 1 used to specify a two-byte, word-aligned breakpoint field. AO in 
Breakpoint Address Register is not used. 

10 Undefined-do not use this 
encoding 

11 4 bytes A31-A2 used to specify a four-byte, dword-aligned breakpoint field. AO and 
A 1 in Breakpoint Address Register are not used. 

Figure 9·2 Debug Registers Breakpoint Fields 
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A 2-bit RW field exists for each of the four breakpoints. The 2-bit RW field specifies the 
type of usage that must occur in order to activate the associated breakpoint (see 
Table 9-2). 

RW encoding 00 is used to set up an instruction execution breakpoint. RW encodings 01 
or 11 are used to set up write-only or read/write data breakpoints. 

Note: Instruction execution breakpoints are taken as faults (i.e., before the instruction executes), 
but data breakpoints are taken as traps (i.e., after the data transfer takes place). 
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9.3.2.5 
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9·4 

Debug Registers RW Encoding 

RWEncoding Usage Causing Breakpoint 

00 Instruction execution only 

01 Data wr~es only 

10 Undefined-do not use this encoding 

11 Data reads and writes only 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear address into DRi (i = 0-3). For data 
breakpoints, RWi can = 01 (write-only) or 11 (write/read). LEN can = 00, 01, or 11. 

If a data access falls entirely or partly within the data breakpoint field, the data break­
point condition has occurred, and if the breakpoint is enabled, an exception 1 trap then 
occurs. 

Using LENi and RWi to Set Instruction Execution Breakpoint i 

An instruction execution breakpoint can be set up by writing the address of the begin­
ning of the instruction (including prefixes, if any) into DRi (i = 0-3). RWi must = 00 and 
LEN must = 00 for instruction execution breakpoints. 

If the instruction beginning at the breakpoint address is about to be executed, the 
instruction execution breakpoint condition has occurred; and if the breakpoint is enabled, 
an exception 1 fault occurs before the instruction is executed. 

Note: An instruction execution breakpoint address must equal the beginning byte address of an 
instruction (including prefixes) in order for the instruction execution breakpoint to occur. 

Global Debug Register Access Detect (GD) 

The Debug Registers can only be. accessed in Real Mode or at privilege level 0 in 
Protected Mode. The GD bit, when set, provides extra protection against any Debug 
Register access, even in Real Mode or at privilege level 0 in Protected Mode. This 
additional protection feature guarantees that a software debugger can have full control 
over the Debug Register resources when required. The GD bit, when set, causes an 
exception 1 fault if an instruction attempts to read or write any Debug Register. The GD 
bit is then automatically cleared when the exception 1 handler is invoked, allowing the 
exception 1 handler free access to the debug registers. 

Exact Data Breakpoint Match Global (GEl and Exact Data Breakpoint Match 
Local (LE) 

The breakpoint mechanism of the Am486DXlDX2 microprocessor differs from that of the 
Am386 CPU. The Am486DX/DX2 microprocessor always does exact data breakpoint 
matching, regardless of GE/LE bit settings. Any data breakpoint trap is reported exactly 
after completion of the instruction that caused the operand transfer. Exact reporting is 
provided by forcing the Am486DX/DX2 microprocessor execution unit to wait for 
completion of data operand transfers before beginning execution of the next instruction. 

When the Am486DX/DX2 microprocessor performs a task switch, the LE bit is cleared. 
Thus, the LE bit supports fast task switching out of tasks that have enabled the exact 
data breakpoint match for their task-local breakp.oints. The LE bit is cleared by the 
processor during a task switch to avoid having exact data breakpoint match enabled in 
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9.3.3 
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AMD~ 
the new task. Note that exact data breakpoint match must be re-enabled under software 
control. 

The Am486DX/DX2 microprocessor GE bit is unaffected during a task switch. The GE bit 
supports the exact data breakpoint match that is to remain enabled during all tasks 
executing in the system. 

Note: Instruction execution breakpoints are a/ways reported exactly. 

Breakpoint Enable Global (Gi) and Breakpoint Enable Local (Li) 

If either Gi or Li is set, then the associated breakpoint (as defined by the linear address 
in DRi, the length in LENi, and the usage criteria in RWi) is enabled. If either Gi or Li is 
set and the Am486DX/DX2 microprocessor detects the ith breakpoint condition, then the 
exception 1 handler is invoked. 

When the Am486DX/OX2 microprocessor performs a task switch to a new Task State 
Segment (TSS), all Li bits are cleared. Thus, the Li bits support fast task switching out of 
tasks that use some task-local breakpoint registers. The Li bits are cleared by the 
processor during a task switch to avoid spurious exceptions in the new task. Note that 
the breakpoints must be re-enabled under software control. 

All Am486DX/DX2 microprocessor Gi bits are unaffected during a task switch. The Gi 
bits support breakpoints that are active in all tasks executing in the system. 

Debug Status Register (DRS) 
A Debug Status Register, DR6, (see Figure 9-1), allows the exception 1 handler to easily 
determine why it was invoked. Note the exception 1 handler can be invoked as a result 
of one of several events: 

1. DRO Breakpoint fault/trap 

2. DR1 Breakpoint fault/trap 

3. DR2 Breakpoint fault/trap 

4. DR3 Breakpoint fault/trap 

5. Single-step (TF) trap 

6. Task switch trap 

7. Fault due to attempted debug register access when GO = 1 

The Debug Status Register contains single-bit flags for each of the possible events 
invoking exception 1. Note below that some of these events are faults (exceptions taken 
before the instruction is executed), while other events are traps (exceptions taken after 
the debug events occurred). 

The flags in DR6 are set by the hardware but never cleared by hardware. Exception 1 
handler software should clear DR6 before returning to the user program to avoid future 
confusion in identifying the source of exception 1. 

The fields within the DR6 are as follows: 

Debug Fault/Trap Due to Breakpoint 0-3 (Bi) 

Four breakpoint indicator flags, B3-BO, correspond one-to-one with the breakpoint 
registers in DR3-DRO. A flag Bi is set when the condition described by DRi, LENi, and 
RWi occurs. 
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9.3.3.2 

9.3.3.3 

9.3.3.4 

9.3.4 

9·6 

If Gi or Li is set and if the ith breakpoint is detected, the processor invokes the exception 
1 handler. The exception is handled as a fault if an instruction execution breakpoint 
occurred, or as a trap if a data breakpoint occurred. 

Note: A flag Bi is set whenever the hardware detects a match condition on enabled breakpoint i. 
Whenever a match is detected on at least one enabled breakpoint i, the hardware immediately 
sets all Bi bits corresponding to breakpoint conditions matching at that instant, whether enabled 
or not. Therefore, the exception 1 handler can see that multiple Bi bits are set, but only set Bi bits 
corresponding to enabled breakpoints (Li or Gi set) are true indications of why the exception 1 
handler was invoked. 

Debug Fault Due to AHempted Register Access when GD Bit Set (BD) 

This bit is set if the exception 1 handler is invoked due to an instruction attempting to 
read or write to the debug registers when GD bit was set. If such an event occurs, then 
the GD bit is automatically cleared when the exception 1 handler is invoked, allowing 
handler access to the debug registers. 

Debug Trap Due to Single·Step (BS) 

This bit is set if the exception 1 handler is invoked due to the TF bit in the flag register 
being set (for single-stepping). 

Debug Trap Due to Task Switch (BT) 

This bit is set if the exception 1 handler is invoked due to a task switch occurring to a 
task having an Am486DX/DX2 microprocessor TSS with the T bit set. Note the task 
switch into the new task occurs normally, but before the first instruction of the task is 
executed, the exception 1 handler is invoked. With respect to the task switch operation, 
the operation is considered to be a trap. 

Use of Resume Flag (RF) in Flag Register 
The Resume Flag (RF) in the flag word can suppress an instruction execution break­
point. This occurs when the exception 1 handler returns to a user program at a user 
address that is also an instruction execution breakpoint. 
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1 0 INSTRUCTION SET SUMMARY 

This section describes the Am486DX/DX2 microprocessor instruction set. Table 10-1 
through Table 10-5 list all instructions along with instruction encoding diagrams and clock 
counts. Further details of the instruction encoding are then provided in Section 10.2, 
which completely describes the encoding structure and the definition of all fields occurring 
within the Am486DX/DX2 microprocessor instructions. 

10.1 MICROPROCESSOR INSTRUCTION ENCODING AND CLOCK COUNT 
SUMMARY 

10.1.1 

10.1.2 

To calculate elapsed time for an instruction, multiply the instruction clock count, as listed 
in Table 10-1 through Table 10-5, by the processor clock period. 

For more detailed information on the encodings of instructions, refer to Section 10.2, 
Instruction Encodings. Section 10.2 explains the general structure of instruction encodings 
and defines the exact encodings of all fields contained within the instruction. 

Instruction Clock Count 
The Am486DX/DX2 microprocessor instruction clock count tables give clock counts, 
assuming data and instruction accesses hit in the cache. A separate penalty column 
defines clocks to add if a data access misses in the cache. The combined instruction and 
data cache hit rate is over 90%. 

A cache miss forces the Am486DXlDX2 microprocessor to run an external bus cycle. 
The Am486DX/DX2 microprocessor 32-bit burst bus is defined as r-b-w. 

Where: 

r = The number of clocks in the first cycle of a burst read or the number of clocks per data 
cycle in a non-burst read. 

b = The number of clocks for the second and subsequent cycles in a burst read. 

w = The number of clocks for a write. 

The fastest bus the Am486DXlDX2 microprocessor can support is 2-1-2, assuming 0 
wait states. The clock counts in the cache miss penalty column assume a 2-1-2 bus. For 
slower buses, add r-2 clocks to the cache miss penalty for the first dword accessed. 
Other factors also affect instruction clock counts. 

Instruction Clock Count Assumptions 
1. The external bus is available for reads or writes at all times. Else, add clocks to 

reads until the bus is available. 

2. Accesses are aligned. Add three clocks to each misaligned access. 

3. Cache fills complete before subsequent accesses to the same line. If a read misses 
the cache during a cache fill due to a previous read or prefetch, the read must wait 
for the cache fill to complete. If a read or write accesses a cache line still being filled, 
it must wait for the fill to complete. 
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4. If an effective address is calculated, the base register is not the destination register of 

the preceding instruction. If the base register is the destination register of the preced­
ing instruction, add 1 to the clock counts shown. Back-to-back PUSH and POP 
instructions are not affected by this rule. 

5. An effective address calculation uses one base register and does not use an index 
register. However, if the effective address calculation uses an index register, one 
clock may be added to the clock count shown. 

6. The target of a jump is in the cache. If not, add r clocks for accessing the destination 
instruction of a jump. If the destination instruction is not completely contained in the 
first dword read, add a maximum of 3b clocks. If the destination instruction is not 
completely contained in the first i6-byte burst, add a maximum of another r+3b 
clocks, 

7. If no write buffer delay, w clocks are added only in the case in which all write buffers 
are full. This case rarely occurs. 

8. Displacement and immediate are not used together. If displacement and immediate 
are used together, one clock can be added to the clock count shown. 

9. No invalidate cycles. Add a delay of one clock for each invalidate cycle if the invalidate 
cycle contends for the internal cache/external bus when the Am486DXlDX2 CPU needs 
to use it. 

10. Page translation hits in TLB. A TLB miss adds 13, 21, or 28 clocks to the instruction, 
depending on whether the accessed and/or dirty bit in neither, one, or both of the 
page entries needs to be set in memory. This assumes that neither page entry is in 
the data cache and a page fault does not occur on the address translation. 

11. No exceptions are detected during instruction execution. Refer to Table 10-3 for 
extra clocks if an interrupt is detected. 

12. Instructions that read multiple consecutive data items (Le., task switch, paPA, etc.) 
and miss the cache are assumed to start the first access on a i6-byte boundary. If 
not, an extra cache line fill might be necessary and might add up to (r+3b) clocks to 
the cache miss penalty. 
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Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary 

Penalty 
if 

Cache Cache 
INSTRUCTION FORMAT Hit Miss Notes" 

INTEGER OPERATIONS 

MOV=Move: 

regl to reg2 1000100W 11 regl reg2 1 

reg2 to regl 1000101w 11 regl reg2 1 

memory to reg 1000101w mod reg rim 1 2 

reg to memory 1000100w mod reg rim 1 

Immediate to reg 1100011w 11000reg immediate data 1 

or 1011 wreg immediate data 1 

Immediate to Memory 1100011w mod 000 rim displacement immediate 1 

Memory to Accumulator 1010000w full displacement 1 2 

Accumulator to Memory 1010001w full dsplacement 1 

MOVSXlMOVZX = Move with SignlZero Extension 

reg2 to reg 1 00001111 1011 z11w 11 regl reg2 I 3 

Memory to reg 00001111 1011 z11w mod reg rim I 3 2 

z Instruction 
o MOVZX 
1 MOVSX 

PUSH = Push 

reg 11111111 11 110 reg 4 

or 01010 reg 1 

memory 11111111 mod 110rlm 4 1 I 

immediate 011010s0 immediate data 1 

PUSHA = Push All 01100000 11 

POP = Pop 

reg 10001111 11 000 reg 4 1 

or 01011 reg 1 2 

memory 10001111 mod 000 rim 5 2 1 

POPA=popAn 01100001 9 7115 16/32 

XCHG = Exchange 

regl with reg2 1000011w 11 regl reg2 3 2 

Accumulator with reg 10010 reg 3 2 

Memory with reg 1000011w mod reg rim 5 2 

NOP = No Operation 10010000 1 

LEA = Load EA to Register 10001101 mod reg rim J 
No index register 1 
With index register 2 

Instruction TTT 

ADD-Add 000 

ADC=Add with Carry 010 

AND=Logicai AND 100 

OR=Logical OR 001 

SUB=Subtract 101 

SBB=Subtract with Borrow 011 

XOR=Logicai Exclusive OR 110 
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Table 10.1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes' 

INTEGER OPERAnONS (continued) 

regl to reg2 OOTTTOOw 11 regl reg2 1 

reg2 to reg 1 OOTTTOlw 11 regl reg2 1 

memory to register OOTTTOlw mod reg rim 2 2 

register to memory OOTTTOOw mod reg rim .3 6/2 U/L 

immediate to register 100000sw l1TTTreg immediate data 1 

immediate to accumulator 00TTT10w immediate data 1 

immediate to memory 100000sw mod TTT rim immediate data 3 6/2 UIL 

Instnlction TTT 

INC = Increment 000 

DEC = Decrement 001 

reg l111111w 11 TTT reg 1 

or 01 TTT reg 1 

memory lllllllw mod TTT rim 3 6/2 UIL 

Instl1lction TTT 

NOT = Logical Complement 010 
NEG = Negate 011 

reg 1111011w 11 TTT reg 1 

memory 1111011 w I mod TTT rim 3 6/2 U/L 

CMP = Compsre 

reg 1 with reg2 0011100w 11 regl reg2 1 

reg2 with reg 1 0011101w 11 regl reg2 1 

memory with register 0011100w mod reg rim 2 2 

register with memory 0011101w mod reg rim 2 2 

immediate with register 100000sw 11111 reg immediate data 1 

immediate with acc. 0011110w immediate data 1 

immediate with memory 100000sw modlll rim immediate data 2 2 

TEST = Logical Compare 

reg 1 and reg2 1000010w 11 regl reg2 1 

memory and register 1000010w mod reg rim 2 2 

immediate and register 1111011w 11 000 reg immediate data 1 

immediate and ace. 1010100w immediate data 1 

immediate and memory 1111011w mod 000 rim I immediate data 2 2 

MUL = Multiply (unsigned) 

ace. with register I 1111011w I 11 100 reg I 
Multiplier-Byte 13/18 MNlMX,3 

Word 13/26 MNlMX,3 

Dword 13/42 MN/MX,3 

ace. with memory I 1111011w I mod 100 rim I 
Multiplier-Byte 13/18 1 MNlMX,3 

Word 13/26 1 MNlMX,3 
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Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

il 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Noles'" 

INTEGER OPERATIONS (continued) 

Oword 13/42 1 MN/MX,3 

IMUl = Integer Multiply (signed) 

ace. with register I 1111011w I 11 101 reg I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Oword 13/42 MN/MX,3 

acc. with memory I 1111011 w I modl01r/m I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Oword 13/42 MN/MX,3 

reg 1 with reg2 I 0000 1111 I 10101111 I 11 regl reg2 I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Oword 13/42 MN/MX,3 

register with memory I 00001111 I 10101111 I mod reg rim I 
Multiplier-Byte 13/18 1 MN/MX,3 

Word 13/26 1 MN/MX,3 

Oword 13/42 1 MN/MX,3 

regl with imm. to reg2 I 011010 s 1 I 1 1 regl reg2 I immediate data 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Oword 13/42 MN/MX,3 

memo with imm. to reg. I 011010 s 1 I mod reg rim I immediate data 

Multiplier-Byte 13/18 2 MN/MX,3 

Word 13/26 2 MN/MX,3 

Oword 13/42 2 MN/MX,3 

DIV = Divide (unsigned) 

acc. by register I 1111011 w I 11 1 10 reg I 
Oivisor- Byte 16 

Word 24 

Dword 40 

ace. by memory I 1111011 w I mod 110r/m I 
Oivisor- Byte 16 

Word 24 

Oword 40 

IDIV = Integer Divide (signed) 

ace. by register I 11110 11 w I 11 1 11 reg I 
Oivisor- Byte 19 

Word 27 
Oword 43 

ace. by memory I 1111011 w I modl11 rim I 
Oivisor- Byte 20 

Word 28 

Oword 44 
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Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes· 

INTEGER OPERATIONS (continued) 

CBW = Convert Byte to Wordl 

Convert Word to Dword 10011000 3 

CWD = Convert Word to Dwordl 10011001 3 

Convert Dword to Quad Word 

Instruction Instruction TTT 

ROL = Rotate Left 000 

ROR = Rotate Right 001 

RCL = Rotate through Carry Left 010 

RCR = Rotate through Carry Right 011 

SHUSAL = Shift Logical/Arithmetic Left 100 

SHR = Shift Logical Right 101 

SAR = Shift Arithmetic Right 111 

Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

reg by 1 1101000w llTTTreg 3 

memory by 1 1101000w mod TTT rim 4 6 

reg by CL 1101001 w 11 TTT reg 3 

memory by CL 1101001 w mod TTT rim 4 6 

reg by immediate count 1100000w l1TTTreg imm. S-bit data 2 

mem by immediate count 1100000w mod TTT rim imm. S-bit data 4 6 

Through Carry (RCL and RCR) 

reg by 1 1101000w l1TTTreg 3 

memory by 1 1101000w mod TTT rim 4 6 

reg by CL 1101001 w 11 TTT reg 8/30 MN/MX,4 

memory by CL 1101001 w mod TTT rim 9/31 MN/MX,5 

reg by immediate count 1100000w 11 TTT reg immediate 8-bit data 8/30 MN/MX,4 

mem by immediate count 1100000w mod TTT rim immediate 8-bit data 9/31 MN/MX,5 

Instruction TTT 

SHLD = Shift Left Double 100 

SHRD = Shift Right Double 101 

register with immediate 00001111 10TTT100 11 reg2 regl immed. 8-bit data 2 

memory by immediate 00001111 10TTT100 11 reg2 regl immed. 8-bit data 3 6 

register by CL 00001111 10TTT10l 11 reg2 regl 3 

memory by CL 00001111 10TTT10l mod reg rim 4 5 

BSWAP = Byte Swap I 00001111 I 11001 reg I 1 

XADD = Exchange and Add 

regl, reg2 00001111 1100000w 1 1 reg2 regl 3 

memory, reg 00001111 1100000w mod reg rim 4 6/2 U/L 
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Table 10-1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes< 

INTEGER OPERATIONS (continued) 

CMPXCHG = Compare and Exchange 

reg 1 , reg2 00001111 1 1011000w I 11 reg2 regl I 6 

memory, reg 00001111 1 1011000w I mod reg rim I 7/10 2 6 

CONTROL TRANSFER (within segment) 

NOTE: TImes are jump taken/not taken 

Jecc = Jump on ecc 

8-bit displacement 0111 TTTn j 8-bitdisp. J 3/1 T/NT,23 

full displacement 00001111 1 1000lttn J full displacement 311 T/NT,23 

NOTE: TImes are jump taken/not taken 

SETcccc = Set Byte on ecce (Times are cccc true/false) 

reg 0000111111001TTTn I 11 000 reg I 413 

memory 00001111 1 100 1TTTn I mod 000 rim I 3/4 

Mnemonic Condition ttn 
eccc 

0 Overflow 0000 
NO No Overflow 0001 
B/NAE Below/Not Above or Equal 0010 
NB/AE Not Below/Above or Equal 0011 
EIZ Equal/Zero 0100 
NE/NZ Not Equal/Not Zero 0101 
BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equal/Above 0111 
S Sign 1000 
NS Not Sign 1001 
PIPE Parity/Parity Even 1010 
NP/PO Not Parity/Parity Odd 1011 
UNGE Less Than/Not Greater or Equal 1100 
NUGE Not Less Than/Greater or Equal 1101 
LE/G Less Than or Equal/Greater Than 1110 
NLEIG Not Less Than or Equal/Greater Than 1111 

LOOP = LOOP CX Times I 11100010 I 8-bitdisp. I 7/6 UNL,23 

LOOPZlLOOPE 

= Loop while Not Zero I 11100001 I 8-bitdisp. I 9/6 UNL,23 

LOOPNZlLOOPNE 

= Loop while Not Zero I 11100000 I 8-bitdisp. I 9/6 UNL,23 

JCXZ = Jump on CX Zero I 11100011 I 8-bitdisp. I 8!5 T/NT,23 

JECXZ = Jump on ECX Zero I 11100011 I 8-bitdisp. I 8/5 T/NT,23 

(Address Size Prefix Differentiates JCXZ for JECXZ) 

JMP = Unconditional Jump (within segment) 

Short 11101011 i 8-bitdisp. I 3 7,23 
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Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes' 

CONTROL TRANSFER (within segment) (continued) 

Direct 11101001 full displacement 3 7,23 

Register Indirect 11111111 11 100 reg 5 7,23 

Memory Indirect 11111111 mod 100 rim 5 5 7 

CALL = Call (within segment) 

Direct 11101000 full displacement 3 7.23 

Register Indirect 11111111 11 010 reg 5 7,23 

Memory Indirect 11111111 modOl0rlm 5 5 7 

RET = Return from CALL 

(within segment) I 11000011 I 5 5 

Adding immediate to SP I 11000010 I 16-bit disp. I 5 5 

ENTER = Enter Procedure I 11001000 liS-bit dispJ B-bit level I 
Level=O 14 
Level=1 17 
Level (L) > 1 17+3L 8 

LEAVE = Leave Procedure I 11001001 I 5 1 

MULTIPLE-SEGMENT INSTRUCTIONS 

MOV= Move 

reg. to segment reg. 10001110 11 sreg3 reg 3/9 0/3 RV/P,9 

memory to segment reg. 10001110 mod sreg3 rim 3/9 2/5 RV/P,9 

segment reg. to reg. 10001100 1 1 sreg3 reg 3, 

segment reg. to memory 10001100 mod sreg3 rim 3 

PUSH = Push 

segment reg. 1000sreg2110 I 3 

(ES, CS, SS, or OS) 

segment reg. (FS or GS) I 00001111 I 1 Osreg3 000 I 3 

POP = Pop 

segment reg. 1000sreg2111 I 3/9 215 RV/P, 9 

(ES, SS, or OS) 

segment reg. (FS or GS) 00001111 10 sreg300 1 3/9 215 RV/P,9 

LOS = Load Pointer to OS 11000101 mod reg rim 6/12 7/10 RV/P, 9 

LES = Load Pointer to EO 11000100 mod reg rim 6/12 7/10 RV/P, 9 

LFS = Load Pointer to FS 00001111 10110100 mod reg rim 6/12 7/10 RV/P, 9 

LGS = Load Pointer to GS 00001111 10110101 mod reg rim 6/12 7/10 RV/P, 9 

LSS = Load Pointer to SS 00001111 10110010 mod reg rim 6/12 7/10 RV/P, 9 

CALL = Call 

Direct intersegment I 100 11010 I unsigned full offset, selector 18 2 R, 7, 22 

to same level 20 3 P,9 
thru Gate to same level 35 6 P,9 
to inner level, no parameters 69 17 P,9 
to inner level, x parameter (d) words 77-f4X 17+n P. 11.9 
toTSS 37+TS 3 P, 11,9 
thru Task Gate 38+TS 3 P, 1 0,9 
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Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes* 

MULTIPLE·SEGMENT INSTRUCTIONS (continued) 

Indirect intersegment I 11111111 I mod 011 rim I 17 8 R,7 

to same level 20 10 P,9 
thru Gate to same level 35 13 P,9 
to inner level, no parameters 69 24 P,9 

to inner level, x parameter (d) words 77+4X 24+n p, 11,9 

toTSS 37+TS 10 P, 1 O. 9 
thru Task Gate 38+TS 10 P. 1 0, 9 

RET = Return from CALL 

intersegmeni I 11001011 I 13 8 R,7 

to same level 17 9 P,9 
to outer level 35 12 P.9 

intersegment adding I 11001010 I 16-bit disp. I 
imm. toSP 14 8 R,7 
to same level 18 9 P,9 

to outer level 36 12 P,9 

JMP = Unconditional Jump 

Direct intersegment I 11101010 I unsigned full offset, selector 17 2 R, 7, 22 

to same level 19 3 P,9 
thru Call Gate to same level 32 6 P,9 
thru TSS 42+TS 3 P, 1 0, 9 

thru Task Gate 43+TS 10 P, 1 0, 9 

Indirect intersegment I 1111111 I mod 101 rim I 13 9 R. 7, 9 

to same level 18 10 P.9 
thru Call Gate to same level 31 13 P,9 

thru TSS 41+TS 10 P, 1 0,9 
thru Task Gate 42+TS 10 P, 1 0,9 

BIT MANIPULATION 

BT = TEST BIT 

register, immediate 00001111 10111010 11100reg immed. 8-bit data 3 

memory, immediate 00001111 10111010 mod 100 rim immed. 8-bit data 3 1 

regl, reg2 00001111 10100011 1 1 reg2 regl 3 

memory, reg 00001111 10100011 mod reg rim 8 2 

Instruction TTT 

BTS= Test Bit and Set 101 

BTR= Test Bit and Reset 110 

BTC= Test Bit and Compliment 111 

register, immediate 00001111 10111010 l1TTTreg immed. 8-bit data 6 

memory, immediate 00001111 10111010 mod TTT rim immed. 8-bit data 8 210 U/L 

regl, reg2 00001111 10111100 1 1 reg2 regl 6 

memory, reg 00001111 10111100 mod reg rim 13 3/1 U/L 

BSF = Scan Bit Forward 

regl, reg2 00001111 10111 100 1 1 reg2 regl 6/42 MN/MX,12 

memory, reg 00001111 10111100 mod reg rim 7/43 2 MN/MX,13 
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Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes' 

BIT MANIPULATION (continued) 

BSR = Scan Bit Reverse 

regl, reg2 00001111 10111101 I 1 1 reg2 reg1 I 6/103 MN/MX,14 

memory, reg 00001111 10111101 I mod reg rim I 711 04 1 MN/MX,15 

STRING INSTRUCTIONS 

CMPS = Compare By1e Word 1010011 w 8 6 16 

LODS = Load ByteiWord 1010110w 5 2 
to AUEX/EAX 

MOVS = Move By1eiWord 1010010w 7 2 16 

SCAS = Scan By1eiWord 1010111 w 6 2 

STOS = Store ByteIWord 1010101 w 5 
from AUEXlEAX 

XLAT = Translate String I 11010111 I 4 2 

REPEATED STRING INSTRUCTIONS 

Repeated by Count in CX or ECX (C = Count in CX or ECX) 

REPE CMPS = Compare String 
(Find Non-Match) 

I 11110011 I 1010011 w I 
C=O 5 
C>O 7+7c 16,17 

REPNE CMPS = Compare String I 11110010 I 1010011 w I 
(Find Match) 
C =0 5 
C >0 7+7c 16,17 

REP LODS = Load String I 11110011 I 1010110w I 
C =0 5 
C >0 7+4c 16,18 

REP MOVS = Move String I 11110011 I 1010010w I 
C =0 5 
C = 1 13 1 16 
C > 1 12+3c 16,19 

REPE SCAS = Scan String I 11110011 I 1010111w I 
(Find Non-AUAX/EAX) 
C =0 5 
C >0 7+5c 20 

REPNE SCAS = Scan String I 11110010 I 1010111 w I 
(Find Non-AUAX/EAX) 

C=O 5 
C>O 7+5c 20 

REP STOS = Store String 
C =0 

I 11110011 I 1010101 w I 
5 

C>O 7+4c 

FLAG CONTROL 

CLC = Clear Carry Flag 11111000 2 

STC = Set Carry Flag 11111001 2 

CMC = Complement Carry Flag 11110101 2 

CLD = Clear Direction Flag 11111100 2 
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Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes'" 

REPEATED STRING INSTRUCTIONS (continued) 

STD = Set Direction Flag 11111101 2 

ell = Clear Interrupt Enable Flag 11111010 5 

STI = Set Interrupt Enable Flag 11111011 5 

LAHF = Load AH into Flag 10011111 3 

SAHF = Store AH into Flags 10011110 2 

PUSHF = Push Flags 10011100 4/3 RV/P 

POPF = Pop Flags 10011101 9/6 RV/P 

DECIMAL ARITHMETIC 

AAA = ASCII Adjust for Add 00110111 3 

AAS = ASCII Adjust for Subtract 00110111 3 

AAM = ASCII Adjust for Multiply 11010100 00001010 15 

AAD = ASCII Adjust for Divide 11010101 00001010 14 

DAA = Decimal Adjust for Add 00100111 2 

DAS = Decimal Adjust for Subtract 00101111 2 

PROCESSOR CONTROL INSTRUCTIONS 

HLT=Halt I 11110100 I 4 

MOV = Move To and From Control/DebuglTest Registers 

CRO from register 00001111 00100010 11 000 reg 17 2 

CR2/CR3 from register 00001111 00100010 11 eee reg 4 

Reg from CR0-3 00001111 00100000 11 eee reg 4 

DRO--3 from register 00001111 00100011 11 eee r89 10 

DRS-7 from register 00001111 00100011 11 'eee reg 10 

Register from DR6-7 00001111 00100001 11 eee reg 9 

Register from DR0-3 00001111 00100001 11 eee reg 9 

TR3 from register 00001111 00100110 11011 reg 4 

TR4-7 from register 00001111 00100100 11 eee reg 4 

Register from TR3 00001111 00100100 11011 reg 3 

Register from TR4-7 00001111 00100100 11 eee reg 4 

CLTS = Clear Task Switched Flag 00001111 00000110 7 2 

INVD = Invalidate Data Cache 00001111 00001000 4 

WBINVD 00001111 00001001 5 

= Write-Back and Invalidate Data Cache 

INVLPG = Invalidate TLB Entry 

INVLPG memory I 00001111 I 00000001 I mod 111 rim I 1211 1 H/NH 

PREFIX BYTES 

Address Size Prefix 01100111 1 

LOCK = Bus Lock Prefix 11110000 1 

Operand Size Prefix 01100110 1 

Segment Override Prefix 

CS: 00101110 1 

DS: 00111110 1 
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Table 10·1 Am486DX/DX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes« 

PROCESSOR CONTROL INSTRUCTIONS (continued) 

ES: 00100110 1 

FS: 00100110 1 

GS: 01100 1 a 1 1 

SS: 00 110 11 a 1 

PROTECTION CONTROL 

ARPL = Adjust Requested Privilege Level 

From register a 11 000 11 1 1 regl reg2 I 9 

From memory 01100011 mod reg rim I 9 

LAR = Load Access Rights 

From register 0000 1111 00000010 I 11 regl reg2 I 11 3 

From memory 0000 1111 00000010 I mod reg rim I 11 5 

LGDT = Load Global Descriptor 

Table register I 00001111 I 00000001 I mod 010 rim I 12 5 

LlDT = Load Interrupt Descriptor 

Table register I 00001111 I 00000001 I modOll rim I 12 5 

LLDT = Load Local Descriptor 

Table register from reg. 00001111 00000000 I 11010 reg I 11 3 

Table registerfrom memo 00001111 00000000 I mod 010 rim I 11 6 

LMSW=Load Machine Status Word 

From register 00001111 00000001 I 11110 reg I 13 

From memory 00001111 00000001 I mod 110 rim I 13 1 

LSL = Load Segment Limit 

From register 0000 1111 00000011 I 11 regl reg2 I 10 3 

From memory 00001111 00000011 I mod reg rim I 10 6 

LTR = Load Task Register 

From Register 00001111 00000000 I 11011 reg I 20 

From Memory 00001111 00000000 I modOll rim 20 

SGDT 

= Store Global Descriptor Table I 00001111 I 00000001 I mod 000 rim I 10 

SlOT = Store 

Interrupt Descriptor Table I 00001111 I 00000001 I mod 001 rim I 10 

SLOT = Store Local Descriptor Table 

To register 00001111 00000000 I 11000 reg I 2 

To memory 00001111 00000000 I mod 000 rim I 3 

SMSW = Store Local Machine Status 

To register 00001111 00000001 I 11 100 reg I 2 

To memory I 0000 1111 00000001 I mod 100 rim I 3 

STR = Store Task Register 

To register I 0000 1111 00000000 I 11 001 reg I 2 

To memory I 0000 1111 00000000 I mod 001 rim I 3 
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Table 10-1 Am486DXJDX2 Microprocessor Integer Clock Count Summary (continued) 
Penalty 

if 
Cache Cache 

INSTRUCTION FORMAT Hit Miss Notes" 

PROTECTION CONTROL (continued) 

VERR = Verify Reed Access 

Register 00001111 00000000 I l1100r/m I 11 3 

Memory I 00001111 00000000 I mod 100 rim I 11 7 

VERW = Verify Write Access 

To register I 00001111 00000000 I 11101 reg I 11 3 

To memory I 00001111 00000000 I mod 101 rim I 11 7 

INTERRUPT INSTRUCTIONS 

INTn = Interrupt Type n 11001101 type I INT+410 RVlP, 21 

INT3 = Interrupt Type 3 11001100 INT+O 21 

INTO = Interrupt 4 if 11001110 

Overftow Flag Set 

Taken INT+2 21 

NotTaken 3 21 

BOUND = Interrupt 5 if Detect 

Value Out Range I 01100010 I mod reg rim I • 
If in range 7 7 21 

If out of range INT+ 24 7 21 

IRET = Interrupt Return I 11001111 I 
Real ModeMrtuai Mode 15 B 

Protected Mode 

To same level 20 11 9 

To outer level 36 19 9 

To nested task (EFLAGS.NT =1) TS+32 4 9,10 

External Interrupt INT+l1 21 

NMI = Non-Makable Interrupt INT+3 21 

Page Fault INT+24 21 

VM86 Exceptions 

eLi INT+B 21 

STI INT+B 21 

INTn INT+9 

PUSHF INT+9 21 

POPF INT+8 21 

IRET INT+9 

IN 
Fixed Port INT+50 21 

Variable Port INT+51 21 

OUT 
Fixed Port INT+50 21 

Variable Port INT+51 21 

INS INT+50 21 

OUTS INT+50 21 

REP INS INT+51 21 

REP OUTS INT+51 21 

Note: 
• Notes for Table 10-1 can be found following Table 10-3, 
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Table 10·2 Task Switch Clock Counts Table 

Value forTS 
Method 

Cache Hit Miss Penalty 

VM/Am486 CPU/286ITSS To Am486 CPU TSS 

VM/Am486 CPU/2861 TSS To 286 VMS 

VM/Am486 CPU/286 TSS To VM TSS 

Table 10·3 Interrupt Clock Counts Table 

NOTES 

Method 

Real Mode 
Protected Mode 

InterruptlTrap gate, same level 
InterruptlTrap gate, different level 
Task Gate 

Virtual Mode 
InterruptlTrap gate, different level 
Task Gate 

(Table 10·1 through Table 10·3) 
Abbreviations: 
16/32 
UlL 
MN!MX 
UNL 

Definition: 
16/32 bit modes 
unlocked/locked 
minimum/maximum 
loop/no loop 

Cache Hit 
26 

44 
71 

37 + TS 

82 
37+TS 

RV/P 
R 

Real and Virtual Mode/Protected Mode 
Real Mode 

P Protected Mode 
T/NT taken/not taken 
H/NH hit/no hit 

Notes: 

162 

143 

140 

Value for INT 

Miss Penalty 
2 

6 
17 

3 

17 

3 

1. Assuming that the operand address and stack address fall in different cache sets. 
2. Always locked, no cache hit case. 
3. Clocks 10 + max(log2 (fmj),n) 

m multiplier value (min clocks for m = 0) 
n 3/5for±m 

4. Clocks (quotient(count/operand length)} '7+9 
8 if count S. operand length (8/16/32) 

5. Clocks (quotient(count/operand length)} '1+9 
9 if count S. operand length (8/16/32) 

6. Equal/not equal cases (penalty is the same regardless of lock). 

55 

31 

37 

Notes 

9 
9 

9, 10 

10 

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different 
cache sets. 

8. Penalty for cache miss: add six clocks for every 16 bytes copied to new stack frame. 
9. Add 11 clocks for each unaccessed descriptor load. 
10. Refer to Table 10-2 for value of TS. 
11. Add four ex1ra clocks to the cache miss penalty for each 16 bytes. 
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NOTES (continued) 

For notes 12-13: (b = 0-3, non-zero byte number); 
(i = 0-1, non-zero nibble number); 
(n = 0-3, non bit number in nibble); 

12. Clocks 8+4 (b+1) + 3(i+1) + 3(n+1) 
6 if second operand = 0 

13. Clocks 9+4(b+1) + 3(i+1) + 3(n+1) 
7 if second operand = 0 

For notes 14-15: (n = bit position 0-31) 
14. Clocks = 7 +3(32-n) 

6 if second operand = 0 
15. Clocks = 8 + 3(32-n) 

7 if second operand = 0 
16. Assuming that the two string addresses fall in different cache sets. 
17. Cache miss penalty: add six clocks for every 16 bytes compared. Entire penalty on first compare. 
18. Cache miss penalty: add two clocks for every 16 bytes of data. Entire penalty on first load. 
19. Cache miss penalty: add four clocks for every 16 bytes moved. 

(One clock for the first operation and three for the second) 
20. Cache miss penalty: add four clocks for every 16 bytes scanned. 

(Two clocks each for first and second operations) 
21. Refer to Table 10-3 for value on INT 
22. Clock count includes one clock for using bother displacement and immediate. 
23. Refer to assumption 6 (see Section 10.1.2) in the case of a cache miss. 

Table 10·4 Am486DX/DX2 Microprocessor 1/0 Instructions Clock Count Summary 

Protected Protected Virtual 
Real Mode Mode 8086 

INSTRUCTION FORMAT Mode (CPl.$IOPL) (CPl>IOPL) Mode 

VO INSTRUCTIONS 

IN = Input from: 

Fixed Port I 111001 Ow I port number I 14 9 29 27 

Variable Port I 111011 Ow I 14 8 28 27 

OUT = Output to: 

Fixed Port I 1110011 w I porI number I 16 11 31 29 

Variable Port I 1110111 w I 16 10 30 29 

INS = Input ByteIWord I 0110110w I 17 10 32 30 

from DXPort 

OUTS = Output ByteIWord I 0110111 w I 
to DXPort 17 10 32 30 

REP INS = Input String I 11110011 10110110W I 16+8c 10+8c 30+8c 29+8c 

REP OUTS = Output String I 11110011 10110111 w I 17+5c 11+5c 31+5c 3O+5c 

Notes: 
1. Two clock cache miss penalty in all cases. 
2. c = count in CX or ECX. 
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation. 

Instruction Set Summary 
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Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Summary 

Concurrent 
Cache Hit Execution 

Avg (lower Avg (lower 
Range-- Penalty if Range--
Upper Cache Upper 

INSTRUCTION FORMAT Range) Miss Range) Noles 

DATA TRANSFER 

FLO = Real load to ST (0): 

32-bit memory 11011 001 mod 000 rim s-i-b/disp. 3 2 

64-bil memory 11011 101 mod 000 rim s-i-b/disp. 3 3 

SO-bit memory 11011 011 mod 101 rim s-i-b/disp. 6 4 

ST(i) 11011 011 11000 ST(i) 4 

FllD = Integer load to ST(O) 

16-bit memory 11011 111 mod 000 rim s-i-b/disp. 14.5(13--16) 2 4 

32-bit memory 11011 011 mod 000 rim s-i-b/disp. 5(9---12) 2 4(2-4) 

64-bit memory 11011 1 11 mod 101 rim s-i-b/disp. 316.S(10-1S) 3 7.S(2--8) 

FBlD = BCD Load to ST(O) 111011 111 I mod 100 rim I s-i-b/disp. I 75(70-103) 4 7.7(2--8) 

FST = Store Real from ST(O) 

32-bit memory 11011 110 mod 010 rim s-i-b/disp. 7 1 

64-bit memory 11011 101 mod 010 rim s-i-b/disp. I S 2 

ST(i) 11011 101 11010 ST(i) 3 

FSTP = Store Real from ST(O) and Pop 

32-bit memory 11011 001 mod 011 rim s-i-b/disp. 7 1 

64-bit memory 11011 101 mod 011 rim s-i-b/disp. a 2 

aO-bit memory 11011 011 mod 111 rim s-i-b/disp. 6 

ST(i) 11011 101 11001 ST(i) 3 

FIST = Store Integer from ST(O) 

16-bit memory 11011 1 11 mod 101 rim s-i-b/disp. 33.4(29---34) 

32-bit memory 111011 011 I mod 010 rim s-i-b/disp. I 32.4(29---34) 

FISTP = Store Integer from ST(O) and Pop 

16-bit memory 11011 111 mod 011 rim s-i-b/disp. 33.4(29---34) 

32-bit memory 11011 011 mod 011 rim s-i-b/disp. 33.4(29-34) 

64-bit memory 11011 1 11 mod 111 rim s-i-b/disp. 33.4(29-34) 

FBSTP = 111011 111 I mod 110 rim I s-i-b/disp. I 175( 172-176) 

Store BCD from ST(O) and Pop 

FXCH = Exchange ST(O) and ST(i) 111011 001 I 11001 ST(i) I 4 

COMPARISON INSTRUCTIONS 

FCOM = Compare ST(O) with Real 

32-bit memory 11011 000 mod 010 rim s-i-b/disp. 4 2 1 

64-bit memory 11011 100 mod 010 rim s-i-b/disp. 4 3 1 

ST(i) 11011 000 11010 ST(i) 4 1 

FCOM P = Compare ST(O) with Real and Pop 

32-bit memory 11011 000 mod 011 rim s-i-b/disp. 4 2 1 

64-bit memory 11011 100 mod 011 rim s-i-b/disp. I 4 3 1 

ST(i) 11011 000 1 1 0 1 1 ST(i) 4 1 
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Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Summary (continued) 

Concurrent 
Cache Hit Execution 

Avg (Lower Avg (lower 
Rang&- Penalty if Range-
Upper Cache Upper 

INSTRUCTION FORMAT Range) Miss Range) Notes 

COMPARISON INSTRUCTIONS (Continued) 

FCOMPP = Compare ST(O) 111011 110 11 101 
with ST(i) and Pop Twice 

1001 1 5 1 

FICOM = Compare ST(O) with Inleger 

16-bit memory 111011 1 10 I mod 010 rim I s-i-b/disp. I 18(16--20) 2 1 

32-bit memory 11011 010 mod 010 rim s-i-b/disp. I 16.5(15~17) 2 1 

FICOM P = Compare ST(O) with Inleger 

16-bit memory 111011 1 10 I mod all rim s-I-b/disp. I 18(16~20) 2 1 

32-bit memory 11011 010 mod all rim s-i-b/disp. I 16.5(15-17) 2 1 

FTST = Compare ST(O) with 0.0 111011 001 11 1 10 0100 I 4 1 

FUCOM = Unordered 
compare ST(O) with ST(i) 

111011 001 111110 ST(i)! 4 1 

FUCOMP = Unordered compare 111011 101 
ST(O) with ST(i) and Pop 

11 1101 ST(i) I 4 1 

FUCOMPP = Unordered compare 
ST(O) with ST(i) and Pop Twice 

111011 010 11 1 10 1001 I 5 1 

FXAM = Examine ST(O) 111011 001 11 1 10 0101 1 8 

CONSTANTS 

FlDZ = load + 0.0 into ST(O) 11011 001 1 1011 1110 4 

FlDl = load + 1.0 into ST(O) 11011 001 110 11 10 a 0 4 

FlDPl = load 1t into ST(O) 11011 001 11011 1011 B 2 

FlDL2T = load log,,(10) inlo ST(O) 11011 001 1101 1 1001 8 2 

FLDL2E = load log,,(e) into ST(O) 11011 001 11011 1011 8 2 

FlDlG2 = load log,,(2) into ST(O) 11011 001 1 1011 1100 B 2 

FlDLN2 = Load 10g.(2) into ST(O) 11011 001 110 11 1101 8 2 

ARITHMETIC 

FADD = Add Real with ST(O) 

ST(O)~ ST(O) + 32-bit memory 11011 000 mod 000 rim s-i-b/disp. I 10(8~20) 2 7(5-17) 

ST(O)~ ST(O) + 64-bit memory 11011 100 mod 000 rim s-i-b/disp. I 10(8-20) 3 7(5-17) 

ST(d)~ ST(i) ~ ST(O) 11011 dOD 11000 ST(i) 10(8-20) 7(5-17) 

FADD = Add real with ST(O) and 11011 110 110 00 ST(i) 10(8~20) 7(5-17) 
Pop (ST(i) ~ ST(O) - ST(i» 

FSUB = Subtract real from ST(O) 

ST(O)~ ST(O) ~ 32-bit memory 11011 000 mod 100 rim s-i-b/disp. I 10(8~20) 2 7(5-17) 

ST(O)~ ST(O) ~ 64-bit memory 11011 100 mod 100 rim s-i-b/disp. J 10(8-20) 3 7(5-17) 

ST(d)~ ST(O) ~ ST(i) 11011 dOO 1 110 1 ST(i) 10(8-20) 7(5-17) 

FSUBP = Subtract real from ST(i) 
and Pop (ST(ij ~ ST(O) - ST(i» 

111011 110 11 110 1 ST(i) I s-i-b/disp. I 10(6--20) 7(5-17) 
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Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Sunvnary (continued) 

Concurrent 
Cache Hit Execution 

Avg (Lower Avg(Lower 
Range- Penalty if Range-
Upper Cache Upper 

INSTRUCTIPN FORMAT Range) Miss Range) Notes 

ARITHMETIC (Continued) 

FSUB R = Subtract real from ST(O) 

ST(O)- 32-bit memory - ST(O) 11011 000 mod 000 rim s-i-b/disp. I 10(8--20) 2 7(5--17) 

ST(O)- 64-bit memory - ST(O) 11011 100 mod 000 rim s-i-b/disp. I 10(8-20) 3 7(5--17) 

ST(d)- ST(i) - ST(O) 11011 dOO 1110 10ST(i) 10(8--20) 7(5--17) 

FSUBRP = Subtract real reversed 
and Pop from (ST(i) -

111011 110 11 1 100 ST(i) I s-i-b/disp. I 10(8--20) 7(5--17) 

ST(i) -ST(O» 

FMUL = Multiply real with ST(O) 

ST(O)- ST(O) x 32-bit memory 11011 000 mod 000 rim s-i-b/disp. I 11 2 8 

ST(O)- ST(O) x 64-bit memory 11011 100 modOOOr/m s-i-b/disp. I 14 3 11 

ST(d)- ST(O) x ST(i) 1 1011 dOO 11001 ST(i) 16 13 

FMULP = Multiply ST(O) with ST(i) 
and Pop (ST(l) - ST(O) x ST(i» 

111011 110111001 ST(i) I s-i-b/disp. I 16 13 

FDIV = Divide ST(O) by Real 

ST(O)- ST(0)/32-bit memory 11011 000 mod 110 rim s-i-b/disp. i 73 2 70 3 

ST(O)- ST(0)/64-bit memory 11011 100 mod 110r/m s-i-b/disp. I 73 3 70 3 

ST(d)- ST(O)/ST(i) 11011 dOO 1111 d ST(i) 73 70 3 

FDIVP = Divide ST(O) by ST(i) 111011 110 111111 ST(i) I 
and Pop (ST(i) - ST(O) /ST(i)) 

s-i-b/disp. I 73 70 3 

FDIVR = Divide real reversed (ReaIIST(O» 

ST(O)- 32-bit memory/ST(O) 11011 000 mod 111 rim s-i-b/disp. J 73 2 70 3 

ST(O)- 64-bit memory/ST(O) 11011 100 mod 111 rim s-i-b/disp. I 73 3 70 3 

ST(d)- ST(i)/ST(O) 11011 dOO 1111 d ST(i) 73 70 3 

FDIVRP = Divide real reversed 11 1011 110 11 1110 ST(i) 1 s-i-b/disp. I 73 70 3 
and Pop (ST(i) - ST(O) /ST(i» 

FIADD = Add Integer to ST(O) 

ST(O)- ST(O) + 16-bit memory 11011 110 mod OOOr/m s-i-b/disp. I 24(20-'35) 2 7(5--17) 

ST(O)- ST(O) + 32-bit memory 111011 010 mod 000 rim I s-i-b/disp. I 22.5(19-32) 2 7(5--17) 

FISUB = Subtract Integer from ST(O) 

ST(O)- ST(O) - 16-bit memory 11011 110 mod 100r/m s-i-b/disp. I 24(20-'35) 2 7(5--17) 

ST(O)- ST(O) - 32-bit memory 1 110 11 010 I mod 100 rim I s-i-b/disp. I 22.5(19-32) 2 7(5--17) 

FISUBR = Integer Subtract LReversed 

ST(O)- 16-bit memory - ST(O) 11011 110 mod 101 rim s-i-b/disp. I 24(20-'35) 2 7(5--17) 

ST(O)- 32-bit memory - ST(O) 11 1 011 010 I mod 101 rim I s-i-b/disp. I 22.5(19-32) 2 7(5--17) 

FIMUL = Multiply Integer with ST(O) 

ST(O)- ST(O) + 16-bit memory 11011 110 mod 001 rim s-i-b/disp. I 25(23--27) 2 8 

ST(O)- ST(O) + 32-bit memory 11011 010 mod 001 rim I s-i-b/disp. J 23.5(22-24) 2 8 

FIDIV = Integer Divide 

ST(O)- ST(0)/16-bit memory 11011 110 mod 110 rim s-i-b/disp. I 87(85--89) 2 70 3 

ST(O)- ST(0)/32-bit memory 111011 010 mod 110 rim I s-i-b/disp. I 85.5(84--86) 2 70 3 
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Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Summary (continued) 

Concurrent 
CacheHil Execution 

Avg (Lower Avg(Lower 
Range- Penalty if Range- i 
Upper Cache Upper 

INSTRUCTION FORMAT Range) Miss Range) Notes 

ARITHMETIC (Continued) 

FIDlVR = Integer Divide Reversed 

ST(O)- 16-bit memoryIST(O) 11011 110 mod 111 rim s-i-b/disp. 87(85-89) 2 70 3 

ST(O)- 32-bit memoryIST(O) 110 11 010 mod 111 rim s-i-b/disp. 85.5(84-86) 2 70 3 

FSQRT = Square Root 110 11 001 1111 1010 s-i-b/disp. 85.5(83-87) 70 

Fscale = Scale ST(O) by ST(i) 1110 11 111 11111 1101 1 s-i-b/disp. I 31(30-32) 2 

Fxtract = 1110 11 001 11111 0100 I s-i-b/disp. I 19(16-20) 4(2-4) 
Extract components of ST(O) 

FPREM = Partial Reminder 11011 001 1111 1000 s-i-b/disp. 84(70-138) 2(2-8) 

FPREMI = Partial Reminders (IEEE) 11011 001 1111 0101 s-i-b/disp. 94.5(72-167) 5.5(2-18) 

FRNDINT = Absolute value of ST(O) 110 11 001 1111 1100 s-i-b/disp. 29.1 (21-M) 7.4(2-8) 

FABS = Absoulte value of ST(O) 110 11 001 1111 0001 s-i-b/disp. 3 

FCHS = Change sign of ST(O) 11011 1001 1111 0000 s-i-b/disp. 6 

TRANSCENDENTAL 

FCOS = Cosine of ST(O) 110 11001 1111 1111 s-i-b/disp. 241(193-279) 2 6,7 

FPTAN = Partial tangent of ST(O) 110 11 001 1111 0010 s-i-b/disp. 244(200-273) 70 6,7 

FPATAN = Partial arctangent 11011 001 1111 00 11 s-i-b/disp. 289(218-303) 5(2-17) 6 

FSIN = Sine of ST(O) 110 11 001 1111 1110 s-i-b/disp. 241(193-279) 2 6,7 

FSINCOS = Sine and cosine of ST(O) 11011 001 1111 1011 s-i-b/disp. 291 (243-829) 2 6,7 

F2XMl = :zST(O) - 1 110 11 001 1111 0000 s-i-b/disp. 2429140-279) 2 6 

FLV2X = ST(I) x IogiST(O» 110 11 001 1111 0001 s-i-b/disp. 311(196-329) 13 6 

FLV2XPI = ST(I) x log. 110 11 001 1111 100 1 s-i-b/disp. 313(171-'326) 13 6 
(ST(O) + 1.0) 

PROCESSOR CONTROL 

FINIT = Initialize FPU 11011 all 1110 0011 s-i-b/disp. 17 4 

FSlSW AX = Stare status word Into AX 11011 111 1110 0000 s-i-b/disp. 3 5 

FSTSW = Stare status word into memory 11011 101 mod 111 rim s-i-b/disp. 3 5 

FLDCW = Load control word 11011 001 mod 101 rim s-i-b/disp. 4 2 

FSTCW = Load control word 11011 111 mod 111 rim s-i-b/disp. 3 5 

FCLEX = Clear exceptions 11011 all 1110 0 a 1 a s-i-b/disp. 7 4 

FSTENV= Store environment 11011 001 mod 110 rim s·i-b/disp. 

Real and Virtual Modes 16-bit Address 67 4 
Real and Virtual Modes 32-bit Address 67 4 
Protected Mode 16-bit Address 56 4 
Protected Mode 32-bit Address 56 4 

FLDEVN = Load environment 111011 001 I mod 100 rim I s-i-b/disp. I 
Real and Virtual Modes 16-bit Address 44 2 
Real and Virtual Modes 32-bit Address 44 2 
Protected Mode 16-bit Address 34 2 
Protected Mode 32-bit Address 34 2 
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Table 10·5 Am486DX/DX2 Microprocessor Floating·Point Clock Count Summary (continued) 

Concurrent 
Cache Hit Execution 

Avg (lower Avg(lower 
Range- Penalty if Range-
Upper Cache Upper 

INSTRUCTION FORMAT Range) Miss Range) Notes 

PROCESSOR CONTROL (Continued) 

FSAVE = Save state 111011 101 I mod 100 rim I s-i-b/disp. I 
Real and Virtual Modes 16-bit Address 154 
Real and Virtual Modes 32-bit Address 154 
Protected Mode 16-bit Address 143 
Protected Mode 32-bit Address 143 

FRSTOR = Restore state 111011 101 I mod 100 rim I s-i-bl I 
Real and Virtual Modes 16-bit Address 131 23 
Real and Virtual Modes 32-bit Address 131 27 
Protected Mode 16-bit Address 120 23 
Protected Mode 32-bit Address 120 27 

FINCSTP = Increment Stack Pointer I 1 1 0 1 1 001 11111 0111 1 3 

FDECSTP= 
Decrement Stack Pointer 

111011 001 11 1 1 1 0110 1 3 

FFREE = Free ST(i) 111011 1 01 11 1 000 ST(i) I 3 

FNOP = No operations 111011 001 11101 0000 I 3 

WAIT = Wait until FPU ready 110011011 I 1/3 
(Minum/Maximum) 

Notes: 
1. If operand is 0, clock counts = 27. 
2. If operand is 0, clock counts = 28. 
3. If CWPC indicates 24 bit precision then subtract 38 clocks. 

If CWPC indicates 53 bit precision then subtract 11 clocks. 
4. If there is a numeric error pending from a previous instruction, add 17 clocks. 
5. If there is a numeric error pending from a previous instruction, add 18 clocks. 
6. The INT pin is polled several times while this instruction is executing to assure short interrupt latency. 
7. If ABS (operand) is greater than rc/4 then add n clocks. Where n = (operand/(rc/4)). 

10.2 Instruction Encoding 
All instruction encodings are subsets of the general instruction format shown in 
Figure 10-1. Instructions consist of one or two primary opcode bytes, possibly an 
address specifier conSisting of the "mod rim" byte and "scaled index" byte, a displace­
ment if required, and an immediate data field if required. 

4 
4 
4 
4 

Within the primary opcode or opcodes, smaller encoding fields can be defined. These 
fields vary according to the class of operation. The fields define such information as 
direction of the operation, size of the displacements, register encoding, or sign extension. 

10-20 

Almost all instructions referring to an operand in memory have an addressing mode byte 
following the primary opcode byte(s). This byte, the mod rim byte, specifies the address 
mode to be used. Certain encodings of the mod rim byte indicate a second addressing 
byte, the scale-index-base byte, follows the mod rim byte to fully specify the addressing 
mode. 
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Addressing modes can include a displacement immediately following the mod rim byte, or 
scaled index byte. If a displacement is present, the possible sizes are 8, 16, or 32 bits. 

If the instruction specifies an immediate operand, the immediate operand follows any 
displacement bytes. The immediate operand, if specified, is always the last field of the 
instruction. 

Figure 10-1 illustrates several of the fields that can appear in an instruction, such as the 
mod field and the rim field, but Figure 10-1 does not show all fields. Several smaller fields 
also appear in certain instructions, sometimes within the opcode bytes themselves. 
Table 10-6 is a complete list of all fields appearing in the Am486DX/DX2 microprocessor 
instruction set. Detailed tables for each field follow Table 10-6. 

32·Bit Extensions of the Instruction Set 
With the Am486DX/DX2 microprocessor, the 8086/801861 80286 instruction set is 
extended in two orthogonal directions: 32-bit forms of all i6-bit instructions are added to 
support the 32-bit data types, and 32-bit addressing modes are made available for ali 
instructions referencing memory. This orthogonal instruction set extension is accom­
plished having a Default (D) bit in the code segment descriptor, and by having two 
prefixes to the instruction set. 

Whether the instruction defaults to operations of 16 bits or 32 bits depends on the 
setting of the 0 bit in the code segment descriptor, which gives the default length (either 
32 bits or 16 bits) for both operands and effective addresses when executing that code 
segment. In the Real Address Mode or Virtual 8086 Mode, no code segment descriptors 
are used, but a 0 value of 0 is assumed internally by the Am486DX/DX2 microprocessor 
when operating in those modes (for 16-bit default sizes compatible with the 
8086/80186/80286). 

Two prefixes, the Operand Size Prefix and the Effective Address Size Prefix, individually 
allow overriding the Default selection of operand size and effective address size. These 
prefixes can precede any opcode bytes and affect only the instruction they precede. If 
necessary, one or both of the prefixes can be placed before the opcode bytes. The 
presence of the Operand Size Prefix and the Effective Address Prefix toggles the operand 
size or the effective address size, respectively, to the value "opposite" from the Default 
setting. For example, if the default operand size is for 32-bit data operations, then the 
presence of the Operand Size Prefix toggles the instruction to 16-bit data operation. 
Another example, if the default effective address size is 16 bits, the presence of the 
Effective Address Size prefix toggles the instruction to use 32-bit effective address 
computations. 

These 32-bit extensions are available in all Am486DXlDX2 microprocessor modes, 
including the Real Address Mode or the Virtual 8086 Mode. In these modes the default is 
always 16 bits, so prefixes are needed to specify 32-bit operands or addresses. For 
instructions with more than one prefix, the order of prefixes is not important. 

Unless specified otherwise, instructions with 8-bit and i6-bit operands do not affect the 
contents of the high-order bits of the extended registers. 

Encoding of Integer Instruction Fields 
Within the instruction are several fields indicating register selection, addressing mode, and 
so on. The exact encodings of these fields are defined immediately ahead. 
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Figure 10·1 General Instruction Format 

ITT T T T T TTl T T T T T T TTl mod T T T rim I ss index base I d321161 81 none data32 1 161 81 none 

7 07 0765320765320 .. ... .... ----,.; ... _--_ ... 

10.2.2.1 

10.2.2.2 

opcode 
(one or two bytes) 
(T represents an 

opcode bit) 

"mod rim" "s-i-b" 
byte byte 

register and address 
mode specifier 

Encoding of Operand Length (w) Field 

address 
displacement 
(4,2, 1 bytes 

or none) 

immediate 
data (4, 2, 1 

bytes or 
none) 

17852A--094 

For any given instruction performing a data operation, the instruction is executing as a 
32-bit operation or a 16-bit operation. Within the constraints of the operation size, the w 
field encodes the operand size as either one byte or the full operation size, as shown in 
Table 10-7. 

Encoding of the General Register (reg) Field 

The general register is specified by the reg field, which can appear in the primary opcode 
bytes, or as the reg field of the "mod rIm" byte, or as the rIm field of the "mod rIm" byte. 
The encoding of the reg field when the w field is not present in the instruction is shown in 
Table 10-8. 

The encoding of the reg field when the w field is present in the instruction during 16-bit 
data operations is shown in Table 10-9. 

The register specified by the reg field when the w field is present in the instruction during 
32-bit data operations is shown in Table 10-10. 

Table 10·6 Fields within Am486 Microprocessor Instructions 

Field Name Description Number of Bits 
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 bits) 1 
d Specifies Direction of Data Operation 1 
s Specifies if an Immediate Data Field Must be Sign-Extended 1 

reg General Register Specifier 3 
mod rim Address Mode Specifier (Effective Address can be a General Register) 2 for mod; 3 lor rim 

ss Scale Factor for Scaled Index Address Mode 2 
index General Register to be used as Index Register 3 
base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, OS, ES 2 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 3 

tin For Conditional Instructions, Specifies a Condition Asserted or a Condition 4 
Negated 

Table 10·7 Encoding of the Operand Length (w) Field 

wField Operand Size During 16-Bit Data Operations Operand Size During 32-Bit Data Operations 
0 8 bits 8 bits 
1 16 bits 32 bits 

Note: 
Table 10-1 through Table 10-5 show encoding of individual instructions 
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Table 10·8 Encoding of the reg Field (w Field not Present Instruction) 

reg Register Selected During Register Selected During 
Field 16-blt Data Operations 32·blt Data Operations 
000 AX EAX 
001 CX ECX 
010 DX EDX 
011 BX EBX 
100 SP ESP 
101 BP EBP 
110 SI ESI 
111 01 EDI 

Table 10·9 Encoding of the reg Field (w Field is Present, Instruction 16 Bits) 

Register Specified by reg Field During 16·bH Data Operations 
Function of w Field 

reg 
(when w= 0) (whenw= 1) 

000 AL AX 
001 CL CX 
010 OL OX 
011 BL BX 
100 AH SP 
101 CH BP 
110 OH SI 
111 BH 01 

Table 10·10 Register Specified by the reg Field (w Field is Present, Instruction 32 Bits) 

10.2.2.3 

Register Specified by reg Field During 32·bH Data Operations 
Function of w Field 

reg 
(when w = 0) (when w = 1) 

000 AL EAX 
001 CL ECX 
010 DL EOX 
011 BL EBX 
100 AH ESP 
101 CH EBP 
110 OH ESI 
111 BH EDI 

Encoding of the Segment Register (sreg) Field 

The sreg field in certain instructions is a 2·bjt field, allowing one of the four 80286 
segment registers to be specified. The sreg field in other instructions is a 3·bit field, 
allowing the Am486DX/DX2 microprocessor's FS and GS segment registers to be 
specified. 
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Table 10·11 2·Bit sreg2 Field 

2-Bit sreg2 Field Segment Register Selected 
00 ES 
01 CS 
10 SS 
11 OS 

Table 10·12 3-Bit sreg3 Field 

10.2.2.4 

1()"24 

3-Bit sreg3 Field Segment Register Selected 
000 ES 
001 CS 
010 SS 
011 OS 
100 FS 
101 GS 
110 do not use 
111 do not use 

Encoding of Address Mode 

Except for special instructions such as PUSH or POP, where the addressing mode is 
predetermined, the addressing mode for the current instruction is specified by addres­
sing bytes following the primary opcode. The primary addressing byte is the "mod rIm" 
byte, and a second byte of addressing information, the "s-i-b" (scale-index-base) byte, 
can be specified. 

The s-i-b byte is specified when using 32-bit addressing mode and the "mod rIm" byte 
has rIm = 100 and mod = 00, 01, or 10. When the s-i-b byte is present, the 32-bit 
addressing mode is a function of the mod, ss, index, and base fields. 

The primary addressing byte, the "mod rIm" byte, also contains three bits (shown as TIT 
in Figure 10-1) sometimes used as an extension of the primary opcode. The three bits, 
however, can also be used as a register field (reg). 

When calculating an effective address, either 16-bit addressing or 32-bit addressing is used. 
16-bit addressing uses 16-bit address components to calculate the effective address, 
while 32-bit addressing uses 32-bit address components to calculate the effective 
address. When 16-bit addressing is used, the "mod rIm" byte is interpreted as a 16-bit 
addressing mode specifier. When 32-bit addressing is used, the "mod rIm" byte is 
interpreted as a 32-bit addressing mode specifier. 

Table 10-13 through Table 10-15 define all encodings of all 16-bit addressing modes and 
32-bit addressing modes. 
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Table 10·13 Encoding of 16·Bit Address Mode with "mod rIm" Byte 

mod rIm Effective Address 
00000 OS:[BX + SI] 
00001 OS:[BX+ 01] 
00010 SS:[BP +SIJ 
00011 SS:[BP + 01] 
00100 OS:[SI] 
00101 OS:[OI] 
00110 OS:d16 
00 111 OS:[BX] 

01000 OS:[BX + SL + d8] 
01 001 OS:[BX + 01 + d8) 
01 010 SS:[BP + SI + d8] 
01 011 S8:[BP + 01 + d8] 
01 100 08:[SI + d8] 
01 101 OS:[OI + d8) 
01 110 SS:[BP + d8] 
01 111 OS:[BX+ d8] 

10000 08:[BX + 81 + d16] 
10001 OS:[BX + 01 + di6] 

10010 SS:[BP + SI + di6) 
10011 SS:[BP + 01 + d16J 
10100 OS:[81 + di6) 
10101 OS:[OI + di6] 
10110 S8:[BP + d16] 

10 111 OS:[BX + d16] 

Register Specified by rIm During 16-Bit Data Operations 

mod rIm 
Function of w Field 

(when w = 0) (when w = 1) 
11 000 AL AX 

11 001 CL CX 
11 010 OL OX 

11 011 BL BX 
11 100 AH SP 

11 101 CH BP 

11 110 OH SI 

11 111 BH 01 

Register Specified by rIm During 32-Bit Data Operations 

mod rIm 
Function of w Field 

(when w = 0) (when w = 1) 
11 000 AL EAX 

11 001 CL ECX 

11 010 OL EOX 

11 011 BL EBX 

11100 AH ESP 

11 101 CH EBP 

11 110 OH ESI 

11 111 BH EOI 
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Table 1()"14 Encoding of 32-Bit Address Mode with "mod rIm!' Byte (No "s·i·b" Byte Present) 

mod rIm Effective Address 
00000 DS:[EAX] 
00001 DS:[ECX] 
00010 DS:[EDX] 
00011 DS:[EBX] 
00100 s-i-b is present 
00101 DS:d32 
00110 DS:[ESI] 
00111 DS:[EDI] 

01000 DS:[EAX + d8] 
01 001 DS:[ECX + d8] 
01 010 DS:[EDX + d81 
01011 DS:[EBX + d8] 
01 100 s-i-b is present 
01 101 SS:[EBP + d8] 
01110 DS:[ESI + d8] 
01 111 DS:[EDI + d8] 

10000 DS:[EAX + d32] 
10001 DS:[ECX + d32] 
10010 DS:[EDX + d32] 
10011 DS:[EBX + d32] 
10100 s-i-b is present 
10101 SS:[EBP + d32] 
10110 DS:[ESI + d32] 
10111 DS:[EDI + d32] 

Register Specified by reg or rIm During 16·8ft Data Operations: 

mod rIm 
Function of w field 

(whenw= 0) (when w = 1) 
11 000 AL AX 
11 001 CL CX 
11 010 DL DX 
11 011 BL BX 
11 100 AH SP 
11 101 CH BP 
11 110 DH SI 
11 111 BH DI 

Register Specified by reg or rIm During 32·81t Data Operations: 

mod rIm 
Function of w field 

(whenw=O) (when w = 1) 

11 000 AL EAX 
11 001 CL ECX 
11 010 DL EDX 
11 011 BL EBX 
11 100 AH ESP 
11 101 CH EBP 
11 110 DH ESI 
11 111 BH EDI 
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Table 10·15 Encoding of 32·Bit Address Mode ("mod rIm" byte and "s·j·b" byte present) 

mod base Effective Address 
00000 DS:[EAX + (scaled index]] 

00001 DS:[ECX + (scaled index)] 

00010 DS:[EDX + (scaled index)] 

00011 DS:[EBX + (scaled index)) 

00100 SS:[ESP + (scaled index)] 

00101 DS:[d32 + (scaled index)] 

00110 DS:[ESI + (scaled index)] 

00111 DS:[EDI + (scaled index)] 

01000 DS:[EAX + (scaled index) + d8] 

01 001 DS:[ECX + (scaled index) + d8] 

01 010 DS:[EDX + (scaled index) + d8] 

01 011 DS:[EBX + (scaled index) + d8] 

01 100 SS:[ESP + (scaled index) + d8] 

01 101 SS:[EBP + (scaled index) + d8) 

01 110 DS:[ESI + (scaled index) + d8] 

01 111 DS:[EDI + (scaled index) + d8] 

10000 DS:[EAX + (scaled index) + d32] 

10001 DS:[ECX + (scaled index) + d32j 

10010 DS:[EDX + (scaled index) + d32) 

10011 DS:[EBX + (scaled index) + d32) 

10100 SS:[ESP + (scaled index) + d32) 

10101 SS:[EBP + (scaled index) + d32) 

10110 DS:[ESI + (scaled index) + d32] 

10 111 DS:[EDI + (scaled index) + d32] 

Note: 
Mod field in mod rim byte; ss, index, base fields in s-i-b byte. 

ss Scale Factor 

00 xi 

01 x2 

10 x4 

11 x8 

index Index Register 
000 EAX 

001 ECX 

010 EDX 

011 EBX 

100 no index reg" 

101 EBP 

110 ESI 

111 EDI 

""Important Note: 
When the index field is 100, indicating "no index register," then the ss field MUST equal 00. If the 
index is 100 and ss does not equal 00, the effective address is undefined. 
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10.2.2.5 Encoding of Operation Direction (d) Field 

In many two-operand instructions, the d field is present to indicate which operand is 
considered the source and which is the destination. 

Table 10.16 Encoding of d Field 

10.2.2.6 

d Direction of Operation 

0 Register/Memory <-Register "reg" Field indicates Source Operand; "mod r/m" or "mod 
ss index base" indicates Destination Operand 

1 Register <-Register/Memory "reg" Field indicates Destination Operand; "mod r/m" or 
"mod ss index base" indicates Source Operand 

Encoding of Sign.Extend (5) Field 

The s field occurs primarily to instructions with immediate data fields. The s field has an 
effect only if the size of the immediate data is 8 bits and is being placed in a 16-bit or 
32-bit destination. 

Table 10·17 Encoding of 5 Field 

10.2.2.7 

5 Effect on Immediate Data 8 Effect on Immediate Data 16/32 

0 None None 

1 Sign-Extend Data None 
8 to fill 16-Bit or 32-Bit Destination 

Encoding of Conditional Test (tUn) Field 

For the conditional instructions (conditional jumps and set on condition), tttn is encoded 
with "n" indicating to use the condition (n = 0) or its negation (n = 1), and ttt giving the 
condition to test. 

Table 10.18 Encoding of tUn Field 

Mnemonic Condition mn 

0 Overflow 0000 

NO No Overflow 0001 

B/NAE Below/Not Above or Equal 0010 

NBIAE Not Below/Above or Equal 0011 

E/Z Equal/Zero 0100 

NElNZ Not Equal/Not Zero 0101 

BEINA Below or EquaVNot Above 0110 

NBE/A Not Below or Equal/Above 0111 

S Sign 1000 

NS Not Sign 1001 

PIPE Parity/Parity Even 1010 

NP/PO Not Parity/Parity Odd 1011 

UNGE Less Than/Not Greater or Equal 1100 

NUGE Not Less Than/Greater or Equal 1101 

LEIG Less Than or Equal/Greater Than 1110 

NLEIG Not Less or EquaVGreater Than 1111 
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Table 10-19 Encoding of eee Field 

10.2.2.8 

10.2.3 

When Interpreted as Control Register Field 

eee Code Reg Name 

000 CRO 

010 CR2 

011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 ORO 

001 ORt 

010 OR2 

011 OR3 

110 OR6 

111 OR7 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

011 TR3 

100 TR4 

101 TR5 

110 TR6 

111 TR7 

Do not use any other encoding 

Encoding of Control or Debug or Test Register (eee) Field 

This field is used to load and store the Control, Debug, and Test registers; 

Encoding of Floating-Point Instruction Fields 
Instructions for the FPU assume one of the five forms shown in the following table. In all 
cases, instructions are at least two bytes long and begin with the bit pattern 11011 B. 

OP = Instruction opcode, possible split into two fields; OPA and OPB 

MF = Memory Format 

00~2-bit real 

01~2-bit integer 

10-64-bit real 

11-16-bit integer 

P = Pop 

0-00 not pop stack 

1-Pop stack after operation 

d = Destination 
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O-Destination is ST(O) 

1-Destination is ST(i) 

R XOR d = O-Destination (op) Source 

R XOR d = 1-Source (op) Destination 

ST(i) = Register stack element i 

000 = Stack top 

001 = Second stack element 

• 
• 
• 

111 = Eighth stack element 

mod (Mode field) and rIm (Register/Memory specifier) have the same interpretation as 
the corresponding fields of the integer instructions. 

S-i-b (scale index base) byte and disp (displacement) are optionally present in instruc­
tions that have mod and rIm fields. Their presence depends on the values of mod and 
rim, as for integer instructions. 

Table 10·20 Encoding of Floating·Point Instruction Fields 

Instruction 

First Byte Second Byte Second 
Optional Fields Byte 

1 11011 OPA 1 mod 1 I OPS rIm s-i-b I disp 

2 11011 MF OPA mod OPS rIm s-i-b I disp 

3 11011 d P OPA 1 1 OPS ST(i) 

4 11011 0 0 1 1 1 1 I OP 
5 11011 0 1 1 1 1 1 I OP 

15-11 10 9 8 7 6 5 4 3 2 1 0 
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11 COMPARISON OF Am486DXJDX2 CPU AND 
THE 386 CPU WITH MATH COPROCESSOR 

The differences between the Am486DX/DX2 microprocessor and the 386 microproces­
sor are due to performance enhancements. The differences between the microproces­
sors are listed below. 

1. Instruction clock counts have been reduced to achieve higher performance. See 
Section 10. 

2. The Am486DX/DX2 microprocessor bus is significantly faster than the 386 micro­
processor bus. Differences include a 1X clock, parity support, burst cycles, cache­
able cycles, cache invalidate cycles, and 8-bit bus support. The Hardware Interface 
and Bus Operation Sections (see Chapters 6 and 7 of this manual) should be care­
fully read to understand the Am486DX/DX2 microprocessor bus functionality. 

3. To support the on-chip cache, new bits have been added to control register 0 (CD 
and NW) (see Section 2.2.2.1), new pins have been added to the bus (see Chapter 
6), and new bus cycle types have been added (see Chapter 7). The on-chip cache 
needs to be enabled after reset by clearing the CD and NW bit in CRO. 

4. The complete 387 math coprocessor instruction set and register set have been 
added. No 1/0 cycles are performed during floating-point instructions. The instruc­
tion and data pOinters are set to 0 after FINIT/FSAVE. Interrupt 9 can no longer 
occur, interrupt 13 occurs instead. 

5. The Am486DX/DX2 microprocessor supports new floating-point error reporting 
modes to guarantee DOS compatibility. These new modes require a new bit in con­
trol register 0 (NE) (see Section 2.2.2.1) and new pins (FERR and IGNNE) (see 
Sections 6.2.13 and 7.2.14). 

6. In some cases FERR is asserted when the next floating-point instruction is encoun­
tered; and in other cases, it is asserted before the next floating-point instruction is 
encountered, depending upon the execution state of the instruction causing exception 
(see Sections 6.2.13 and 7.2.14). For both of these cases, the 387 math coprocessor 
asserts ERROR when the error occurs and does not wait for the next floating-point 
instruction to be encountered. 

7. Six new instructions have been added: 

- Byte Swap (BSWAP) 

- Exchange-and-Add (XADD) 
- Compare and Exchange (CMPXCHG) 

- Invalidate Data Cache (INVD) 

- Write-back and Invalidate Data Cache (WBINVD) 

- Invalidate TLB Entry (INVLPG) 

8. There are two new bits defined in control register 3, the page table entries and page 
directory entries (PCD and PWTj (see Section 4.5.2.5). 

9. A new page protection feature has been added. This feature requires a new bit in 
control register 0 (WP) (see Sections 2.2.2.1 and 4.5.3). 

10. A hew Alignment Check feature has been added. This feature requires a new bit in 
the flags register (AC) (see Section 2.2.1.3) and a new bit in control register 0 (AM) 
(see Section 2.2.2.1). 
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11. The replacement algorithm for the TLB has been changed from a random algorithm 

to a pseudo least recently used algorithm, like that used by the on-chip cache. See 
Section 5.5 for a description of the algorithm. 

12. Three new testability registers, TR3, TR4, and TR5, have been added for testing the 
on-chip cache. TLB testability has been enhanced (see Section 8). 

13. The prefetch queue has been increased from 16 bytes to 32 bytes. A jump always 
needs to execute after modifying code to guarantee correct execution of the new 
instruction. 

14. After reset, the ID in the upper byte of the DX register is 04. The contents of the 
base registers, including the floating-point registers, can be different after reset 
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I1:MilH' 1 2 CONVERTING AN EXISTING Am486DX 
CPU DESIGN 

Converting an Am486DX CPU system design to an Am486DX2 CPU design provides 
more performance for a small difference in cost. Migrating from a 33-MHz Am486DX CPU 
to a 50-MHz Am486DX2 CPU could increase performance by 35%. Conversion can be as 
easy as replacing one or two devices. 

A few system details should be checked first to be sure the design is ready for the 
Am486DX2 CPU. Check with your BIOS vendor to be sure any BIOS issues have been 
resolved. The BIOS for the Am486DX CPU may have timing loops. Since the Am486DX2 
CPU runs instructions twice as fast as the Am486DX CPU, timing loops may no longer 
retum the required results. Most of the timing loops have been removed from a standard 
BIOS, but there may be some versions that need updating. Another BIOS issue that may 
not be critical is the processor identification code. There are different ID codes in the 
Am486DX CPU and the Am486DX2 CPU. The BIOS may need to be modified to identify 
the Am486DX2 CPU code properly. 

Other system parameters to watch out for are the thermal and power supply specifica­
tions. Refer to the Am486 device data sheets, order numbers 17914 and 17852. Since the 
processor core runs twice as fast for the same input clock, the Am486DX2 CPU uses 
more power and generates more heat than the Am486DX CPU. Be sure there is ade­
quate cooling and adequate power built into the design. A heat sink is a recommended 
method to help provide cooling for the Am486DX2 CPU. 

The system checks mentioned above are common to all conversions from an Am486DX 
CPU to an Am486DX2 CPU regardless of the speed of the processor or system. 

Migrating from a 33-MHz Am486DX CPU to a 50-MHz Am486DX2 CPU is a two step 
process. The first step is to change the frequency source for the CPU from 33 MHz to 25 
MHz. The Am486DX2 CPU can then be inserted into the system. Without any tuning of 
the memory and depending on the application, only a modest performance improvement 
may be observed. For programs running entirely out of the on-chip cache, however, 
performance can increase up to 50%. There are many factors that contribute to the 
performance of an application, including whether there is a second-level (L2) cache, the 
cache size (if present), the memory subsystem design, and many other factors beyond 
the scope of this introduction. 

Because the Am486DX2 CPU core runs twice as fast as its external bus, it is more 
sensitive to wait states. The Am486DX2 CPU needs to be fed instructions and data 
quickly. Either a high performance memory subsystem is needed or an external cache 
should be added. An external cache benefits the Am486DX2 CPU even more than it 
benefits the Am486DX CPU and helps to hide the effects of a slower memory subsystem. 
The Am486DX CPU gains an average of 3-9% performance by the addition of a second­
level cache, but the Am486DX2 CPU gains an average of 20-30% performance by 
adding a second level cache. It should be noted however, that an external cache does not 
preclude the benefits of tuning the memory subsystem. 

The graph shown in Figure 12-2 shows a set of benchmarks known to have a poor cache 
hit rate. This is shown for memory tuning purposes and is not to be taken as absolute 
performance. 
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With the absence of a second-level cache, the memory subsystem becomes critical to 
gaining performance when converting from a 33-MHz Am486DX CPU to a 50-MHz 
Am486DX2 CPU. For slow memory systems without tuning, the 50-MHz Am486DX2 CPU 
can possibly run slower than the 33-MHz Am486DX CPU (see Figure 12-2). By tuning the 
memory design, the 50-MHz Am486DX2 CPU can reach equivalent performance to the 
33-MHz Am486DX CPU running applications with low cache hit rates, and increase 
performance for applications with higher hit rates. Tuning the memory design can be done 
easily by either removing a wait state from the memory design (if timing permits), and/or 
adding faster DRAM and removing wait state(s) from the memory design. 

Changing the wait state configuration for the system is often done by programming the 
DRAM controller in the chip set on the motherboard. Each chip set is programmed 
differently at the BIOS level, requiring a BIOS modification. For testing purposes, the chip 
set may be programmed on the fly from a DOS program if the register locations are 
known. 

A typicallSA chip set (such as the PCnet'" ISA Am79C960 device with an L2 cache), 
allows 6-4-4-4 bus cycles at 33-MHz with 80-ns DRAMs for the Am486DX CPU. Without 
modifying the memory subsystem, the 50-MHz Am486DX2 CPU achieved an average of 
7-12% improvement over the 33-MHz Am486DX CPU. By reducing the bus cycles at 
25-MHz to 5-2-2-2 (still with 80-ns DRAMS), Am486DX2 CPU improved to achieve an 
average of 15-20% more performance than the 33-MHz Am486DX CPU. By replacing the 
DRAMs with faster devices (70 ns) bus cycles could be reduced to 4-2-2-2 at 25-MHz, 
improving the performance of the 50-MHz Am486DX2 CPU even more. 

Converting An Existing Am486DX CPU Design 



Figure 12·1 Flowchart for Am486DX CPU to Am486DX2 CPU Conversion 
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Figure 12-2 Performance of 50-MHz Am486DX2 CPU vs. 33-MHz Am486DX CPU 
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