

1990/91 Data Book

Atmel Corporation Integrated Circuit Data Book

is the registered trademark of Atmel Corporation, 2125 O'Nel Drive, San Jose, CA 95131

Important Notice

Atmel guarantees that its circuits will be free from defects of material and workmanship under normal use and service, and that these circuits will perform to current specifications in accordance with, and subject to, the Company's standard warranty which is detailed in Atmel's Purchasing Order Acknowledgment.

Atmel reserves the right to change devices or specifications detailed in this data book at any time without notice, and assumes no responsibility for any errors within this document. Atmel does not make any commitment to update this information. Atmel assumes no responsibility for the use of any circuits described in this data book, nor does the Company assume responsibility for the functioning of undescribed features or parameters.

In the absence of a written agreement to the contrary, Atmel assumes no liability with respect to the use of semiconductor devices described in this data book for applications assistance, customers' product design or infringement of patents or copyrights of third parties.

Atmel's products are not authorized for use as critical components in life support devices or systems and the use as such implies that user bears all risk of such use.

If Atmel is an approved vendor on a Standard Military Drawing (SMD), the Atmel similar part number specification is fully compliant with the SMD.

© Atmel Corporation, 1990

Atmel Overview

Atmel Corporation designs, manufactures and markets high quality and high performance CMOS memory, logic and analog integrated circuits. Founded in 1984, the Company serves the manufacturers of computation, communications and instrumentation equipment in military and commercial environments.

Since the purchase in 1989 of Honeywell's Solid State Electronics Division in Colorado Springs, Colorado, Atmel's product line expanded to include CMOS and bipolar gate arrays. This data book contains specifications on this new family of devices.

Atmel's broad line of products provide customers with a variety of solutions to their memory applications. Atmel can offer high-density, high-speed memory and logic *standard* products as well as *custom* gate arrays.

Atmel guarantees quality and reliability by fabricating all products— no matter what their intended application— to meet or exceed the specifications of Military Standard 883.

If you have any questions, please call your nearest Atmel representative or distributor as listed in the back of this data book, or contact Atmel's corporate headquarters:

Atmel Corporation 2125 O'Nel Drive San Jose, CA 95131 Phone: (408) 441-0311 Facsimile: (408) 436-4200

We thank you for considering Atmel semiconductors.

Section '	1			
	Alpha-Numeric Pr	oduct Summar	y and Index	1-3
	Product Selection	Guide		1-11
	Ordering Informat	ion		1-65
Section 2	2			
	CMOS E ² PROMS	\$		
	AT28HC16/L	2K x 8	High Speed, 16K CMOS E ² PROM	
	AT28HC64/L	8K x 8	High Speed, 64K Paged E ² PROM	2-15
	AT28HC256/L	32K x 8	High Speed, 256K Paged E ² PROM	2-27
	AT28C04	512K x 8	4K E ² PROM	2-41
	AT28C16	2K x 8	16K E ² PROM	2-51
	AT28C17	2K x 8	16K E ² PROM	2-61
	AT28C64	8K x 8	64K E ² PROM	2-71
	AT28C64X	8K x 8	64K E ² PROM Without Ready-Busy	2-71
	AT28PC64	8K x 8	64K E ² PROM With Page Mode Write	2-83
	AT28C256	32K x 8	256K E ² PROM	2-93
	AT28MC010	128K x 8	1MBit Module E ² PROM	2-105
	AT28C1024	64K x 16	1MBit E ² PROM	2-115
	AT28C010	128K x 16	1MBit E ² PROM with 128 Byte Page	
Section 3	3			
	CMOS PEROMs	(Flash)		
	AT29C256	32K x 8	256K 5-Volt Reprogrammable ROM	3-3
	AT29C257	32K x 8	256K 5-Volt Reprogrammable ROM	3-13
	AT29C010	128K x 8	1MBit 5-Volt Reprogrammable ROM	3-23
0 11	_			
Section	-			
	CMOS EPROMs			
	AT27HC64/L	8K x 8	High Speed, 64K EPROM	
	AT27HC64R/RL	8K x 8	High Speed, 64K EPROM	
	AT27HC256/L	32K x 8	High Speed, 256K EPROM	
	AT27HC256R/RL		High Speed, 256K EPROM	
	AT27HC1024	64K x 16	High Speed, 1MBit EPROM	
	AT27C128	16K x 8	128K EPROM	
	AT27C256	32K x 8	256K EPROM	
	AT27C256R	32K x 8	256K EPROM	
	AT27C512	64K x 8	512K EPROM	4-55
	AT27C512R	64K x 8	512K EPROM	
	AT27C513R	4 x 16K x 8	Paged 512K EPROM	4-71
	AT27C010/L	128K x 8	1MBit EPROM	
	AT27C011	8 x 16K x 8	Paged 1MBIT EPROM	
	AT27C1024/L	64K x 16	1MBit EPROM	4-101
	AT27C040	512K x 8	4MBit EPROM	4-111

TABLE OF CONTENTS

0		
Section 5		
	eed CMOS PRO	
AT28HC		High Speed, 16K Reprogrammable [E ²]PROM5-3
AT28HC		High Speed, 16K Reprogrammable [E ²]PROM5-1
AT27HC		High Speed, 64K Reprogrammable [UV]PROM5-19
A12/HO	641R/2R 8K x 8	High Speed, 64K Reprogrammable [UV]PROM5-27
Section 6		
CMOS S	RAMs	
AT3864L	8K x 8	64K SRAM6-3
AT3864L	-15DMB 8K x 8	64K SRAM, Full Military Temperature6-1
AT38256	32K x 8	3 256K High Speed SRAM6-19
Section 7		
CMOS E	PLDs	
AT22V10		tes EPLD7-3
ATV750/I	•	
		Application Brief7-35
ATV2500)/H 2500 G	ates EPLD7-39
		Application Brief7-55
ATV5000	5000 G	ates EPLD7-57
Atmel-AE	BEL™	High-Level Design Tool for Atmel PLDs7-61
		Programming Hardware & Software Support7-63
Section 8		
CMOS G	ate Arrays	
ATL4	4K Gat	es 1-Micron CMOS Gate Array8-3
ATL10	10K Ga	•
ATL20	22K Ga	ttes 1-Micron CMOS Gate Array8-3
ATL60	57K Ga	ites 1-Micron CMOS Gate Array8-3
ATL130	131K G	ates 1-Micron CMOS Gate Array8-3
ATL260	257K G	ates 1-Micron CMOS Gate Array8-3
Section 9		
CMOS A	nalog	
AT76C10	_	Programmable, Phone Line Equalizer9-3
AT76C10		Programmable, Phone Line Equalizer
		With On-Board E ² PROM9-11
AT76C12	0 100KH	Dual Channel 16/18-Bit A/D Converters9-19
AT76C17	′1 50MHz	Triple, 6-Bit Color Palette DAC9-27
AT76C17	6 66MHz	Triple, 6-Bit Color Palette DAC9-39
AT76C17	'6A 50-110	MHz Triple, 6-Bit Color Palette DAC
		With Power-Down9-51

Section	10		
	Application Note	98	
	E ² PROMs	Using Atmel's CMOS E ² PROMs	10-3
		E ² PROM Data Protection	10-7
	EPROMs	Programming Socket Adapter	10-11
		Atmel SOIC Package and Programming Socket Modification	10-15
		EPROM Programming with Vcc=5V	10-19
	EPLDs	Using Programmable Logic Devices	10-21
		Selecting Decoupling Capacitors for Atmel's EPLDs	10-25
		Using a PLD as a System Controller	10-29
		Using the Buried Nodes and Feedbacks	10-35
	Analog	Interfacing the AT76C10/E to a Microcontroller	10-39
Section	Quality and Relia	ability ovement Systembility Assurance	
	Military		
	•	w	12-3
Section	13		
	Die Products E ² PROM Die prod	ducts	13-3
Section	14		
	Package Outline	es	
	Package Outlines	5	14-3
	Thermal Specifica	ations	14-17

Product Information	1
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	3
CMOS EPROMs	4
High Speed CMOS PROMs	5
CMOS SRAMs	6
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13

Package Outlines

Section 1

Alpha-Numeric Product Summary and Index	1-3
Product Summary and Index	1-7
Product Selection Guide	1-1
Ordering Information	1-6

Alpha-Numeric Product Selection Guide and Index

CMOS E²PROMs

Part Number	Organization	Description	Page No.
AT28C010	128Kx8	1MBit E ² PROM with 128 Byte Page	2-125
AT28C04	512x8	4KE ² PROM	2-41
AT28C1024	64Kx16	1MBit E ² PROM	2-115
AT28C16	2Kx8	16KE ² PROM	2-51
AT28C16E	2Kx8	16K E ² PROM with Extended Endurance	2-51
AT28C16F	2Kx8	16K E ² PROM with Fast Write	2-51
AT28C17	2Kx8	16KE ² PROM	2-61
AT28C256	32Kx8	256KE ² PROM	2-93
AT28C256F	32Kx8	256K E ² PROM with Fast Write	2-93
AT28C64	8Kx8	64KE ² PROM	2-71
AT28C64E	8Kx8	64K E ² PROM with Extended Endurance	2-71
AT28C64F	8Kx8	64KE ² PROM with Fast Write	2-71
AT28C64X	8Kx8	64K E ² PROM without Ready-Busy	2-71
AT28HC16	2Kx8	High Speed, 16K CMOS E ² PROM	2-3
AT28HC16L	2Kx8	High Speed, Low Power, 16K E ² PROM	2-3
AT28HC256	32Kx8	High Speed, 256K Paged E ² PROM	2-27
AT28HC256F	32Kx8	High Speed, 256K E ² PROM with Fast Write	2-27
AT28HC256L	32Kx8	High Speed, Low Power, 256KE ² PROM	2-27
AT28HC64	8Kx8	High Speed, 64K Paged E ² PROM	2-15
AT28HC64L	8Kx8	High Speed, Low Power, 64K E ² PROM	2-15
AT28MC010	128Kx8	1MBit Module E ² PROM	2-105
AT28PC64	8K×8	64KE ² PROM with Page Mode Write	2-83

CMOS PEROMs

Part Number	Organization	Description	Page No.
AT29C010	128Kx8	1MBit 5-Volt Reprogrammable ROM	3-23
AT29C256	32Kx8	256K 5-Volt Reprogrammable ROM	3-3
AT29C257	32Kx8	256K 5-Volt Reprogrammable ROM	3-13

CMOS EPROMs

Part Number	Organization	Description	Page No.
AT27C010	128Kx8	1MBit EPROM	4-81
AT27C010L	128Kx8	Low Power, 1MBit EPROM	4-81
AT27C011	8x16Kx8	Paged, 1MBit EPROM	4-91
AT27C040	512Kx8	4MBit EPROM	4-111
AT27C1024	64Kx16	1MBit EPROM	4-101
AT27C1024L	64Kx16	Low Power, 1MBit EPROM	4-101
AT27C128	16Kx8	128KEPROM	4-33
AT27C256	32Kx8	256KEPROM	4-39
AT27C256R	32Kx8	256KEPROM	4-47
AT27C512	64Kx8	512KEPROM	4-55
AT27C512R	64Kx8	512KEPROM	4-63

Alpha-Numeric Product Selection Guide and Index (continued)

CMOS EPROMs (continued)

Part Number	Organization	Description	Page No.
AT27C513R	4x16Kx8	Paged, 512KEPROM	4-71
AT27HC1024	64Kx8	High Speed, 1MBit EPROM	4-29
AT27HC256	32Kx8	High,Speed, 256KEPROM	4-15
AT27HC256L	32Kx8	High Speed, Low Power, 256K EPROM	4-15
AT27HC256R	32Kx8	High Speed, 256KEPROM	4-25
AT27HC256RL	32Kx8	High Speed, Low Power, 256K EPROM	4-25
AT27HC64	8Kx8	High Speed, 64K EPROM	4-3
AT27HC64L	8Kx8	High Speed, Low Power, 64K PROM	4-3
AT27HC64R	8Kx8	High Speed, 64K EPROM	4-11
AT27HC64RL	8Kx8	High Speed, Low Power, 64K EPROM	4-11

High-Speed CMOS PROMs

Part Number	Organization	Description	Page No.
AT28HC191	2Kx8	High Speed, 16K Reprogrammable [E ²] PROM	5-3
AT28HC191L	2Kx8	Low Power, 16K Reprogrammable [E ²] PROM	5-3
AT28HC291	2Kx8	High Speed, 16 Reprogrammable [E ²] PROM	5-11
AT28HC291L	2Kx8	Low Power, 16K Reprogrammable [E ²] PROM	5-11
AT27HC641	8Kx8	High Speed, 64K Reprogrammable [UV] PROM	5-19
AT27HC641R	8Kx8	High Speed, 64K Reprogrammable [UV] PROM	5-27
AT27HC642	8Kx8	High Speed, 64K Reprogrammable [UV] PROM	5-19
AT27HC642R	8Kx8	High Speed, 64K Reprogrammable [UV] PROM	5-27

CMOS SRAMs

Part Number	Organization	Description	Page No.
AT38256	32Kx8	256K High Speed SRAM	6-19
AT3864L	8Kx8	64K SRAM	6-3
AT3864L-15DMB	8Kx8	64K SRAM, Full Military Temperature	6-11

CMOS EPLDs

Part Number	Gates	Description	Page No.
AT22V10 AT22V10L ATV2500 ATV2500H ATV5000 ATV750 ATV750L	500 Gates 500 Gates 2500 Gates 2500 Gates 5000 Gates 750 Gates 750 Gates	EPLD Low Power EPLD EPLD High Speed EPLD EPLD EPLD EPLD Low Power EPLD	7-3 7-3 7-39 7-39 7-57 7-19

Alpha-Numeric Product Selection Guide and Index (continued)

CMOS Gate Arrays

Part Number	Gates	Description	Page No.
ATL4	4K	1-Micron CMOS Gate Array	8-3
ATL10	10K	1-Micron CMOS Gate Array	8-3
ATL20	22K	1-Micron CMOS Gate Array	8-3
ATL60	57K	1-Micron CMOS Gate Array	8-3
ATL130	131K	1-Micron CMOS Gate Array	8-3
ATL260	257K	1-Micron CMOS Gate Array	8-3

CMOS Analog

Frequency	Description	Page No.
4KHz	Programmable, Phone Line Equalizer	9-3
4KHz	Programmable, Phone Line Equalizer with on board E ² PROM	9-11
100KHz	Dual Channel 16/18-Bit A/D Converters	9-19
50MHz	Triple, 6-Bit Color Palette DAC	9-27
65MHz	Triple, 6-Bit Color Palette DAC	9-39
50-100MHz	Triple, 6-Bit Color Palette DAC with Power-Down	9-51
	4KHz 4KHz 100KHz 50MHz 65MHz	4KHz Programmable, Phone Line Equalizer 4KHz Programmable, Phone Line Equalizer with on board E ² PROM 100KHz Dual Channel 16/18-Bit A/D Converters 50MHz Triple, 6-Bit Color Palette DAC 65MHz Triple, 6-Bit Color Palette DAC

Product Summary and Index

CMOS E²PROMs

Part No.	Organization	Speeds	Description	Page No.
AT28C04	512x8	150-450ns	4KE ² PROM	2-41
AT28C16	2Kx8	150-450ns	16KE ² PROM	2-51
AT28C16E	2Kx8	150-450ns	16KE ² PROM with Extended Endurance	2-51
AT28C16F	2Kx8	150-450ns	16KE ² PROM with Fast Write	2-51
AT28C17	2Kx8	150-450ns	16KE ² PROM	2-61
AT28C64	8Kx8	150-450ns	64KE ² PROM	2-71
AT28C64E	8Kx8	150-450ns	64K E ² PROM with Extended Endurance	2-71
AT28C64F	8Kx8	150-450ns	64KE ² PROM with Fast Write	2-71
AT28C64X	8Kx8	150-450ns	64KE ² PROM without Ready-Busy	2-71
AT28PC64	8Kx8	150-350ns	64K E ² PROM with Page Mode Write	2-83
AT28C256	32Kx8	150-350ns	256KE ² PROM	2-93
AT28C256F	32Kx8	150-350ns	256KE ² PROM with Fast Write	2-93
	1			1

High-Speed CMOS E²PROMs

Part No.	Organization	Speeds	Description	Page No
AT28HC16	2Kx8	45-90ns	16KE ² PROM	2-3
AT28HC16L	2Kx8	55-90ns	Low Power, 16K E ² PROM	2-3
AT28HC64	8Kx8	55-120ns	64K Paged E ² PROM	2-15
AT28HC64L	8Kx8	70-120ns	Low Power, 64K E ² PROM	2-15
AT28HC256	32Kx8	70-120ns	256KPaged E ² PROM	2-27
AT28HC256F	32Kx8	70-120ns	256KE ² PROM with Fast Write	2-27
AT28HC256L	32Kx8	90-120ns	Low Power, 256K E ² PROM	2-27
AT28C1024	64Kx16	150-250ns	1MBit E ² PROM	2-115
AT28MC010	128Kx8	120-250ns	1MBit Module E ² PROM	2-105
AT28C010	128Kx8	120-250ns	1MBit E ² PROM	2-125

CMOS PEROMs (5-Volt Only)

Part No.	Organization	Speeds	Description	Page No.
AT29C256	32K×8	150-250ns	256K 5-Volt Reprogrammable ROM	3-3
AT29C257	32K×8	150-250ns	256K 5-Volt Reprogrammable ROM	3-13
AT29C010	128K×8	150-250ns	1MBit 5-Volt Reprogrammable ROM	3-23

Product Summary and Index (continued)

CMOS EPROMs

Part No.	Organization	Speeds	Description	Page No.
AT27C040	512Kx8	120-250ns	4 MBit EPROM	4-111
AT27C128	16Kx8	120-250ns	128KEPROM	4-33
AT27C256	32Kx8	120-350ns	256KEPROM	4-39
AT27C256R	32Kx8	90-250ns	256KEPROM	4-47
AT27C512	64Kx8	120-250ns	512KEPROM	4-55
AT27C512R	64Kx8	100-250ns	512KEPROM	4-63
AT27C513R	4x16Kx8	150-250ns	512K Paged EPROM	4-71
AT27C010	128Kx8	120-250ns	1MBit EPROM	4-81
AT27C010L	128Kx8	120-250ns	Low Power, 1MBit EPROM	4-81
AT27C011	8x16Kx8	150-250ns	1MBit Paged EPROM	4-91
AT27C1024	64Kx16	120-250ns	1MBit EPROM	4-101
AT27C1024L	64Kx16	120-250ns	Low Power, 1MBit EPROM	4-101

High-Speed CMOS EPROMs

Part No.	Organization	Speeds	Description	Page No.
AT27HC64	8Kx8	45-90ns	64KEPROM	4-3
AT27HC64L	8Kx8	55-90ns	Low Power, 64K EPROM	4-3
AT27HC64R	8Kx8	45-90ns	Low Power, 64K EPROM	4-11
AT27HC64RL	8Kx8	55-90ns	Low Power, 64K EPROM	4-11
AT27HC256	32Kx8	55-120ns	256KEPROM	4-15
AT27HC256L	32Kx8	70-120ns	Low Power, 256K EPROM	4-15
AT27HC256R	32Kx8	55-120ns	256 EPROM	4-25
AT27HC256RL	32Kx8	70-120ns	256 EPROM	4-25
AT27HC1024	64Kx8	55-120ns	1MBit EPROM	4-29

High-Speed CMOS PROMs

Part No.	Organization	Speeds	Description	Page No.
AT28HC191 AT28HC191L AT28HC291 AT28HC291L AT27HC641 AT27HC641R AT27HC642	2Kx8 2Kx8 2Kx8 2Kx8 8Kx8 8Kx8	35-55ns 45-55ns 35-55ns 45-55ns 35-90ns 35-90ns	16K[E ²]PROM 16K[E ²]PROM 16K[E ²]PROM 16K[E ²]PROM 64K[UV]PROM High Speed, 64K Reprogrammable [UV]PROM 64K[UV]PROM	5-3 5-3 5-11 5-11 5-19 5-27 5-19
AT27HC642R	8Kx8	35-90ns	High Speed, 64K Reprogrammable [UV]PROM	

Product Summary and Index (continued)

CMOS SRAMs

Part No.	Organization	Speeds	Description	Page No.
AT38256	32Kx8	20-35ns	256K High Speed SRAM	6-19
AT3864L	8Kx8	100-150ns	64K SRAM	6-3
AT3864L-15DMB	8Kx8	150ns	64K SRAM, Full Military Temperature	6-11

CMOS EPLDs

Part No.	Speeds	Description	Page No.
AT22V10	15-35ns	500 Gate EPLD	7-3
AT22V10L	15-35ns	500 Gate, Low Power EPLD	7-3
ATV750	20-40ns	750 Gate EPLD	7-19
ATV750L	20-30ns	750 Gate, Low Power EPLD	7-19
ATV2500	30-45ns	2500 Gate EPLD	7-39
ATV2500H	25-35ns	2500 Gate EPLD	7-39
ATV5000	25-35ns	5000 Gate EPLD	7-57
	l .		1

CMOS Gate Arrays

Part No.	Gates	Description	Page No.
ATL4	4K	1-Micron CMOS Gate Array	8-3
ATL10	10K	1-Micron CMOS Gate Array	8-3
ATL20	22K	1-Micron CMOS Gate Array	8-3
ATL60	57K	1-Micron CMOS Gate Array	8-3
ATL130	131K	1-Micron CMOS Gate Array	8-3
ATL260	257K	1-Micron CMOS Gate Array	8-3

CMOS Analog

Frequency	Description	Page No.
4KHz	Programmable, Phone Line Equalizer	9-3
4KHz	Programmable, Phone Line Equalizer w/On-Board E ² PROM	9-11
50MHz		9-27
66MHz	Triple, 6-Bit Color Palette DAC	9-39
50-110MHz	• •	9-51
100KHz	• •	9-19
	4KHz 4KHz 50MHz 66MHz 50-110MHz	4KHz Programmable, Phone Line Equalizer 4KHz Programmable, Phone Line Equalizer w/ On-Board E ² PROM 50MHz Triple, 6-Bit Color Palette DAC 66MHz Triple, 6-Bit Color Palette DAC 50-110MHz Triple, 6-Bit Color Palette DAC, with Power-Down

1-10

AT28HC16	Organi-	Speed		Pa	acka	ge	ĺ	Temp.	lcc (mA)	No. of Pins	Page
Part Number	zation	(ns)	D3	D6	P3	P6	W	Range	Active	Standby	DIP	Number
AT28HC16	2Kx8	45	•	•	•	•		С	80	60	24	2-3
	2Kx8	45	•	•	•	•	1	1	80	60	24	2-3
	2Kx8	55	•	•	•	•		С	80	60	24	2-3
	2Kx8	55	•	•	•	•		1	80	60	24	2-3
	2Kx8	55	•	•				M	80	60	24	2-3
	2Kx8	55	•	•				M/883	80	60	24	2-3
	2Kx8	70	•	•		•		С	80	60	24	2-3
	2Kx8	70	•	•	•	•		1	80	60	24	2-3
	2Kx8	70	•	•	1	1		M	80	60	24	2-3
	2Kx8	70	•	•				M/883	80	60	24	2-3
	2Kx8	90	•	•	•	•	•	С	80	60	24	2-3
	2Kx8	90	•	•	•	•		1	80	60	24	2-3
	2Kx8	90	•	•				M	80	60	24	2-3
	2Kx8	90	•	•				M/883	80	60	24	2-3

	Package Type									
D3	24D3, 24 Lead, 0.300" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)									
D6	24D6, 24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)									
P3	24P3, 24 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)									
P6	24P6, 24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)									
W	Die									
	Temperature Range									
С	Commercial (0°C to 70°C)									
ı	Industrial (-40°C to 85°C)									
M	M Military (-55°C to 125°C)									
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)									

AT28HC16L PartNumber	Organi- zation	Speed (ns)	D3		acka P3	ge P6	w	Temperature Range	Icc (Active	mA) Standby	No. of Pins DIP	Page Number
AT28HC16L	2Kx8	55	•	•	•	•		С	80	0.5	24	2-3
	2Kx8	55		•	•	•		1	80	0.5	24	2-3
	2Kx8	55	•	•				M	80	0.5	24	2-3
	2Kx8	55	•	•				M/883	80	0.5	24	2-3
	2Kx8	70	•	•	•	•	•	С	80	0.5	24	2-3
	2Kx8	70	•	•	•	•		ı	80	0.5	24	2-3
	2Kx8	70	•	٠				M	80	0.5	24	2-3
	2Kx8	70		•	1			M/883	80	0.5	24	2-3
	2Kx8	90	•	•	•	•	•	С	80	0.5	24	2-3
	2Kx8	90	•	•	•	•	-	1	80	0.5	24	2-3
	2Kx8	90	•	•	1			М	80	0.5	24	2-3
	2Kx8	90	•	•				M/883	80	0.5	24	2-3

	Package Type
D3	24D3, 24 Lead, 0.300" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
D6	24D6, 24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
P3	24P3, 24 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
P6	24P6, 24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
W	Die
	Temperature Range
С	Commercial (0°C to 70°C)
I	Industrial (-40°C to 85°C)
М	Military (-55°C to 125°C)
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)

AT28HC64	Organization	Speed		Pac	kage		Temp.	Option	lcc	(mA)	No. o	fPins	Page
Part Number	Organization	(ns)	D	J	L	Р	Range		Active	Standby	DIP	LCC	Number
AT28HC64	8Kx8	55	•		•	•	С	Е	80	60	28	32	2-15
	8Kx8	55	•		•	•	1	E	80	60	28	32	2-15
	8Kx8	70	•	•	•	•	С	E	80	60	28	32	2-15
	8Kx8	70	•	•	•	•	ı	E	80	60	28	32	2-15
	8Kx8	70	•		•		М	E	80	60	28	32	2-15
	8Kx8	70	•		•		M/883	E	80	60	28	32	2-15
	8Kx8	90	•	•	•	•	С	E	80	60	28	32	2-15
	8Kx8	90	•	•	•	•	1	E	80	60	28	32	2-15
	8Kx8	90	•	l	•		М	E	80	60	28	32	2-15
	8Kx8	90	•		•		M/883	Е	80	60	28	32	2-15
	8Kx8	120	•	•	•	•	С	E	80	60	28	32	2-15
	8Kx8	120	•	•	•	•	1	E	80	60	28	32	2-15
	8Kx8	120	•		•		М	E	80	60	28	32	2-15
	8Kx8	120	•		•		M/883	E	80	60	28	32	2-15

	Package Type
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)
P	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
	Temperature Range
С	Commercial (0°C to 70°C)
ı	Industrial (-40°C to 85°C)
M	Military (-55°C to 125°C)
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)
	Options
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 2ms
E	High Endurance Option: Endurance = 100K Write Cycles

AT28HC64L	Organi-	Speed			Pack	age			Temp.	Option	lcc	(mA)	No. c	fPins -	Page
Part Number	zation	(ns)	D	J	K	L	Р	W	Range	Орион	Active	Standby	DIP	LCC	Number
AT28HC64L	8Kx8	70	•			•	•		С	E	80	0.1	28	32	2-15
	8Kx8	70	•		1	•	•	Ì	1	E	80	0.1	28	32	2-15
	8Kx8	90	•	•		•	•	j	С	E	80	0.1	28	32	2-15
	8Kx8	90	•	•		•	•		i	E	80	0.1	28	32	2-15
	8Kx8	90	•			•		ļ	М	E	80	0.2	28	32	2-15
	8Kx8	90	•			•		1	M/883	E	80	0.2	28	32	2-15
	8Kx8	120	•	•	ļ	•	•	•	С	E	80	0.1	28	32	2-15
	8Kx8	120	•	•		•	•		1	E	80	0.1	28	32	2-15
	8Kx8	120				•		ļ	M	E	80	0.2	28	32	2-15
	8Kx8	120				•		ĺ	M/883	E	80	0.2	28	32	2-15
SMD Number	}														
5962-8751412	8Kx8	70	•		•	•			M/883		80	0.2	28	32	2-15
5962-8751411	8Kx8	90	•		•	•			M/883	1	80	0.2	28	32	2-15
5962-8751410	8Kx8	120	•		•	•			M/883		80	0.2	28	32	2-15

	Package Type
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)
K	32K, 32 Lead, Non-Windowed, Ceramic J-Leaded Quad Flat Package (Cerquad)
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)
P	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
W	Die
	Temperature Range
С	Commercial (0°C to 70°C)
1	Industrial (-40°C to 85°C)
М	Military (-55°C to 125°C)
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)
	Options
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time ≈ 2ms
E	High Endurance Option: Endurance = 100K Write Cycles

AT28HC256	Organi-	Speed	D	F		kage	P	U	Temp.	Option	Icc (mA) Standby	No. of	fPins LCC	Page Number
Part Number	zation	(ns)	U	г	J				Range		Active	Standby	DIP	LCC	Number
AT28HC256	32Kx8	70				•			С	E,F	80	60	28	32	2-27
	32Kx8	70	•			•	•		1	E,F	80	60	28	32	2-27
	32Kx8	90	•	•	•	•	•	•	С	E,F	80	60	28	32	2-27
	32Kx8	90	•	•	•	•	•	•	1	E,F	80	60	28	32	2-27
	32Kx8	90	•	•		•		•	М	E, F	80	60	28	32	2-27
	32Kx8	90	•	•		•		•	M/883	E,F	80	60	28	32	2-27
	32Kx8	120	•	•	•	•	•	•	С	E,F	80	60	28	32	2-27
	32Kx8	120	•	•	•	•	•	•	ı	E,F	80	60	28	32	2-27
	32Kx8	120	•	•		•	1	•	М	E,F	80	60	28	32	2-27
	32Kx8	120	•	•		•		•	M/883	E,F	80	60	28	32	2-27
SMD Number															
5962-8863403	32Kx8	90	•	•		•		•	M/883		80	60	28	32	2-27
5962-8863404	32Kx8	90	•	•		•		•	M/883	F	80	60	28	32	2-27

	Package Type
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
F	28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)
P	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
U	28U, 28 Pin, Ceramic Pin Grid Array (PGA)
	Temperature Range
С	Commercial (0°C to 70°C)
ı	Industrial (-40°C to 85°C)
M	Military (-55°C to 125°C)
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)
	Options
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms
E	High Endurance Option: Endurance = 100K Write Cycles
F	Fast Write Option: Write Time = 3ms

AT28HC256L Part Number	Organi- zation	Speed (ns)	D	F	Pac J	kage L	Р	U	Temp. Range	Option	I _{CC} Active	(mA) Standby	No. o	fPins LCC	Page Number
AT28HC256L	32Kx8 32Kx8 32Kx8 32Kx8 32Kx8 32Kx8	90 90 120 120 120 120	•	•	•	•	•	•	C I C I M W/883	E, F E, F E, F E, F	80 80 80 80 80	0.3 0.3 0.3 0.3 0.3 0.3	28 28 28 28 28 28 28	32 32 32 32 32 32 32	2-27 2-27 2-27 2-27 2-27 2-27
SMD Number															,
5962-8863401 5962-8863402	32Kx8 32Kx8	120 120	•	•		•		•	M/883 M/883	F	80 80	0.3 0.3	28 28	32 32	2-27 2-27

D 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) F 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) J 32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC) L 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP) U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) Temperature Range C Commercial (0°C to 70°C) I Industrial (-40°C to 85°C) M Military (-55°C to 125°C) M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 100K Write Cycles F Fast Write Option: Write Time = 3ms		Package Type
J 32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC) L 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP) U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) Temperature Range C Commercial (0°C to 70°C) I Industrial (-40°C to 85°C) M Military (-55°C to 125°C) M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 10K Write Cycles	D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
L 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP) U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) Temperature Range C Commercial (0°C to 70°C) I Industrial (-40°C to 85°C) M Military (-55°C to 125°C) M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 10K Write Cycles	F	28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)
P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP) U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) Temperature Range C Commercial (0°C to 70°C) I Industrial (-40°C to 85°C) M Military (-55°C to 125°C) M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 10K Write Cycles	J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)
U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) Temperature Range C Commercial (0°C to 70°C) I Industrial (-40°C to 85°C) M Military (-55°C to 125°C) M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 10K Write Cycles	L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)
Temperature Range C Commercial (0°C to 70°C) I Industrial (-40°C to 85°C) M Military (-55°C to 125°C) M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 10K Write Cycles	Р	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
C Commercial (0°C to 70°C) I Industrial (-40°C to 85°C) M Military (-55°C to 125°C) M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 10K Write Cycles	U	28U, 28 Pin, Ceramic Pin Grid Array (PGA)
I Industrial (-40°C to 85°C) M Military (-55°C to 125°C) M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 100K Write Cycles		Temperature Range
M Military (-55°C to 125°C) M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 100K Write Cycles	С	Commercial (0°C to 70°C)
M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C) Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 100K Write Cycles	1	Industrial (-40°C to 85°C)
Options Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 100K Write Cycles	M	Military (-55°C to 125°C)
Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms E High Endurance Option: Endurance = 100K Write Cycles	M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)
E High Endurance Option: Endurance = 100K Write Cycles		Options
	Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms
F Fast Write Option: Write Time = 3ms	E	High Endurance Option: Endurance = 100K Write Cycles
	F	Fast Write Option: Write Time = 3ms

AT28C04	0	Speed		Pac	kage	•	Temp.	Option	Icc	(mA)	No. of	Pins	Page
Part Number	Organization	(ns)	D	L	Р	W	Range	Option	Active	Standby	DIP	LCC	Number
AT28C04	512x8	150	•	•	•		С	E,F	30	0.1	24	32	2-41
	512x8	150	•	•	•		1	E,F	45	0.1	24	32	2-41
	512x8	150	•	•			М	E,F	45	0.1	24	32	2-41
	512x8	150	•	•			M/883	E,F	45	0.1	24	32	2-41
	512x8	200	•	•	•	•	С	E,F	30	0.1	24	32	2-41
	512x8	200	•	•	•		1	E,F	45	0.1	24	32	2-41
	512x8	200	•	•			М	E,F	45	0.1	24	32	2-41
	512x8	200	•	•			M/883	E,F	45	0.1	24	32	2-41
	512x8	250	•	•		•	С	E,F	30	0.1	24	32	2-41
	512x8	250	•	•	•		1	E,F	45	0.1	24	32	2-41
	512x8	250	•	•		,	М	E,F	45	0.1	24	32	2-41
	512x8	250	•	•			M/883	E,F	45	0.1	24	32	2-41
	512x8	300	•	•			M/883	E,F	45	0.1	24	32	2-41
	512x8	350	•	•			M/883	E,F	45	0.1	24	32	2-41
	512x8	450	•	•			M/883	E,F	45	0.1	24	32	2-41

	Package Type											
D	24D6, 24 Lead 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)											
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)											
Р	24P6, 24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)											
W	Die											
	Temperature Range											
С	Commercial (0°C to 70°C)											
I	Industrial (-40°C to 85°C)											
M	Military (-55°C to 125°C)											
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											
	Options											
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1ms											
E	High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200μs											
F	Fast Write Option: Write Time = 200μs											

AT28C16	Organi-	Speed			Pac	kage)		Temp.	Option	loc ((mA)	No. o	fPins	Page
Part Number	zation	(ns)	D	J	L	Р	s	W	Range	Option	Active	Standby	DIP	LCC	Number
AT28C16	2Kx8	150	•	•	•		•		С	E,F	30	0.1	24	32	2-51
	2Kx8	150	•	•	•	•	•		1	E,F	45	0.1	24	32	2-51
	2Kx8	150	•		•				M	E,F	45	0.1	24	32	2-51
	2Kx8	150	•		•				M/883	E,F	45	0.1	24	32	2-51
	2Kx8	200	•	•	•	•	•	•	С	E,F	30	0.1	24	32	2-51
	2Kx8	200	•	•	•	•	•		1	E,F	45	0.1	24	32	2-51
	2Kx8	200	•		•				М	E,F	45	0.1	24	32	2-51
	2Kx8	200	•		•				M/883	E,F	45	0.1	24	32	2-51
	2Kx8	250	•	•	•	•	•	•	С	E,F	30	0.1	24	32	2-51
	2Kx8	250	•	•	•	•	•		- 1	E,F	45	0.1	24	32	2-51
	2Kx8	250	•		•				М	E,F	45	0.1	24	32	2-51
	2Kx8	250	•		•				M/883	E,F	45	0.1	24	32	2-51
	2Kx8	300	•		•				M/883	E,F	45	0.1	24	32	2-51
	2Kx8	350	•		•				M/883	E,F	45	0.1	24	32	2-51
	2Kx8	450	•		•				M/883	E,F	45	0.1	24	32	2-51

	Package Type												
D	24D6, 24 Lead 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)												
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)												
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)												
Р	24P6, 24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)												
S	24S, 24 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)												
W	Die												
	Temperature Range												
С	Commercial (0°C to 70°C)												
	Industrial (-40°C to 85°C)												
M	Military (-55°C to 125°C)												
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)												
	Options												
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1ms												
E	High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200μs												
F	Fast Write Option: Write Time = 200µs												

AT28C17	Organi-	Speed			Pac	kage	9		Temp.	Option	lcc (mA)	No. o	fPins	Page
Part Number	zation	(ns)	D	J	L	Р	S	W	Range	Option	Active	Standby	DIP	LCC	Number
AT28C17	2Kx8	150	•	•	•	•			С	E,F	30	0.1	28	32	2-61
	2Kx8	150	•	•	•	•	•		1	E,F	45	0.1	28	32	2-61
l l	2Kx8	150	•		•				M	E,F	45	0.1	28	32	2-61
	2Kx8	150	•		•	}			M/883	E,F	45	0.1	28	32	2-61
	2Kx8	200	•	•	•	•	•	•	С	E,F	30	0.1	28	32	2-61
	2Kx8	200	•	•	•	•	•	}	- 1	E,F	45	0.1	28	32	2-61
	2Kx8	200	•		•				М	E,F	45	0.1	28	32	2-61
	2Kx8	200	•		•	1			M/883	E,F	45	0.1	28	32	2-61
	2Kx8	250	•	•	•	•	•	•	С	E,F	30	0.1	28	32	2-61
	2Kx8	250	•	•	•	•	•		1	E,F	45	0.1	28	32	2-61
Ì	2Kx8	250	•		•				M	E,F	45	0.1	28	32	2-61
Ì	2Kx8	250	•		•				M/883	E,F	45	0.1	28	32	2-61
1	2Kx8	300	•	}	•				M/883	E,F	45	0.1	28	32	2-61
}	2Kx8	350	•		•				M/883	E,F	45	0.1	28	32	2-61
	2Kx8	450	•		•				M/883	E,F	45	0.1	28	32	2-61

	Package Type
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)
P	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
S	28S, 28 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)
W	Die
	Temperature Range
С	Commercial (0°C to 70°C)
ı	Industrial (-40°C to 85°C)
M	Military (-55°C to 125°C)
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)
	Options
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1ms
E	High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200μs
F	Fast Write Option: Write Time = 200μs

AT28C64	Organi-	Speed			Pa	acka	ge				Temp.	0.4	Icc (mA)		No. of Pins		Page
Part Number	zation	(ns)	D	F	J	K	L	Р	S	W	Range	Option	Active	Standby	DIP	LCC	Number
AT28C64	8Kx8	150			•				•		С	E,F	30	0.1	28	32	2-71
ļ	8Kx8	150	•	•	•		•	•	•		1	E,F	45	0.1	28	32	2-71
İ	8Kx8	150	•	•			•	ĺ		1	M	E,F	45	0.1	28	32	2-71
ĺ	8Kx8	150	•	•			•				M/883	E,F	45	0.1	28	32	2-71
1	8Kx8	200	•		•		•	•	•	•	С	E,F	30	0.1	28	32	2-71
ļ	8Kx8	200	•	•	•		•	•	•		1	E,F	45	0.1	28	32	2-71
	8Kx8	200	•	•		ĺ	•				M	E,F	45	0.1	28	32	2-71
	8Kx8	200	•	•			•				M/883	E,F	45	0.1	28	32	2-71
	8Kx8	250	•	•	•	Ì	•	•	•	•	С	E,F	30	0.1	28	32	2-71
,	8Kx8	250	•	•	•	1	•	•	•			E,F	45	0.1	28	32	2-71
	8Kx8	250	•	•		ĺ	•		ļ		М	E,F	45	0.1	28	32	2-71
	8Kx8	250	•	•		1					M/883	1 -, -	45	0.1	28	32	2-71
	8Kx8	300	•	•			•		j		M/883	1 '	45	0.1	28	32	2-71
	8Kx8	350	•	•		ĺ	•		ļ		M/883	,	45	0.1	28	32	2-71
	8Kx8	450	•	•		l	•	-			M/883	E,F	45	0.1	28	32	2-71
SMD Number																	
5962-8751417	8Kx8	150				•					M/883		45	0.1	28	32	2-71
5962-8751416	8Kx8	200	•			•	•				M/883		45	0.1	28	32	2-71
5962-8751415	8Kx8	250	•	•			•				M/883		45	0.1	28	32	2-71
5962-8751414	8Kx8	300	•			•					M/883		45	0.1	28	32	2-71
5962-8751413	8Kx8	350	•			•	•				M/883		45	0.1	28	32	2-71

	Package Type											
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)											
F	28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)											
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)											
K	32K, 32 Lead, Non-Windowed, Ceramic J-Leaded Quad Flat Package (Cerquad)											
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)											
Р	28P6, 28 Lead, 0.600" Wide Plastic Dual Inline Package (PDIP)											
S	28S, 28 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)											
W	Die											
	Temperature Range											
С	Commercial (0°C to 70°C)											
ı	Industrial (-40°C to 85°C)											
M	Military (-55°C to 125°C)											
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											
	Options											
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1ms											
E	High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200μs											
F	Fast Write Option: Write Time = 200μs											

AT28C64X	Organi-	Speed			Ρ	acka	ge			Temp.	lcc (mA)	No. of	Pins	Page
Part Number	zation	(ns)	D	F	J	K	L	P	s	Range	Active	Standby	DIP	LCC	Number
AT28C64X	8Kx8	150								С	30	0.1	28	32	2-71
	8Kx8	150		•				•		1	45	0.1	28	32	2-71
	8Kx8	150		•			•			М	45	0.1	28	32	2-71
ľ	8Kx8	150	•	•			•			M/883	45	0.1	28	32	2-71
	8Kx8	200	•	•	•		•	•	•	С	30	0.1	28	32	2-71
1	8Kx8	200	•	•			•	•	•	1	45	0.1	28	32	2-71
	8Kx8	200	•	•	l .		•			М	45	0.1	28	32	2-71
	8Kx8	200	•	•	1	1	•			M/883	45	0.1	28	32	2-71
	8Kx8	250	•	•			•	•	•	С	30	0.1	28	32	2-71
	8Kx8	250	•	•	•		•	•	•	1	45	0.1	28	32	2-71
1	8Kx8	250	•	•		:	•			М	45	0.1	28	32	2-71
	8Kx8	250	•	•	}		•			M/883	45	0.1	28	32	2-71
	8Kx8	300	•	•	[,	Į	•			M/883	45	0.1	28	32	2-71
1	8Kx8	350	•	•			•		ŀ	M/883	45	0.1	28	32	2-71
	8Kx8	450	•	•	ĺ		•			M/883	45	0.1	28	32	2-71
SMD Number															
5962-8751422	8Kx8	150	•			•	•			M/883	45	0.1	28	32	2-71
5962-8751421	8Kx8	200	•			•	•			M/883	45	0.1	28	32	2-71
5962-8751420	8Kx8	250	•	•		•	•			M/883	45	0.1	28	32	2-71
5962-8751419	8Kx8	300	•			•	•			M/883	45	0.1	28	32	2-71
5962-8751418	8Kx8	350	•			•	•			M/883	45	0.1	28	32	2-71

	Package Type											
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)											
F	F 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)											
J	5 5 5 5 5 5 5 5 5 5											
K	K 32K, 32 Lead, Non-Windowed, Ceramic J-Leaded Quad Flat Package (Cerquad)											
L	L 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)											
P	P 28P6, 28 Lead, 0.600" Wide Plastic Dual Inline Package (PDIP)											
S	28S, 28 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)											
	Temperature Range											
С	Commercial (0°C to 70°C)											
ı	Industrial (-40°C to 85°C)											
М	M Military (-55°C to 125°C)											
M/883	M/883 MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											

AT28PC64	Organi-	Speed			Pa	acka	ge		Temp.	Option	lcc ((mA)	No. o	fPins	Page
Part Number	zation	(ns)	D	J	K	L	Р	W	Range	Орион	Active	Standby	DIP	LCC	Number
AT28PC64	8Kx8	150	•			•	•	•	С	Е	80	0.1	28	32	2-83
	8Kx8	150	•	•		•	•		ı	E	80	0.1	28	32	2-83
	8Kx8	150	•			•			М	E	80	0.2	28	32	2-83
	8Kx8	150	•			•			M/883	E	80	0.2	28	32	2-83
	8Kx8	200	•	•		•	•	•	С	E	80	0.1	28	32	2-83
	8Kx8	200	•	•	1	•	•		ı	E	80	0.1	28	32	2-83
	8Kx8	200		•		•			М	E	80	0.2	28	.32	2-83
	8Kx8	200	•			•			M/883	E	80	0.2	28	32	2-83
	8Kx8	250	•	•		•	•	•	С	E	80	0.1	28	32	2-83
Ĺ	8Kx8	250	•	•		•	•		- 1	E	80	0.1	28	32	2-83
	8Kx8	250	•			•			М	E	80	0.2	28	32	2-83
	8Kx8	250	•	1	Ì	•			M/883	E	80	0.2	28	32	2-83
	8Kx8	300	•			•			M/883	E	80	0.2	28	32	2-83
	8Kx8	350	•			•			M/883	E	80	0.2	28	32	2-83
SMD Number]											. !			1
5962-8751409	8Kx8	200				•			M/883		80	0.2	28	32	2-83
5962-8751408	8Kx8	250	•		•	•			M/883		80	0.2	28	32	2-83
5962-8751407	8Kx8	300	•		•	•			M/883		80	0.2	28	32	2-83
5962-8751406	8Kx8	350	•		•	•			M/883		80	0.2	28	32	2-83

	Package Type							
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)							
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)							
K	32K, 32 Lead, Non-Windowed, Ceramic J-Leaded Quad Flat Package (Cerquad)							
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)							
P	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)							
W	Die							
	Temperature Range							
С	Commercial (0°C to 70°C)							
I	Industrial (-40°C to 85°C)							
М	Military (-55°C to 125°C)							
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)							
	Options							
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 2ms							
E	High Endurance Option: Endurance = 100K Write Cycles							

AT28C256	Organi- Spee				Р	acka	ge			Temp.	Option	loc	(mA)	No. of	Pins	Page
Part Number	zation	(ns)	D	F	J	L	Р	U	W	Range	Option	Active	Standby	DIP	LCC	Number
AT28C256	32Kx8	150	•		•				•	С	E,F	80	0.2	28	32	2-93
	32Kx8	150	•	•	•	•	•	•		1	E,F	80	0.2	28	32	2-93
	32Kx8	150	•	•						M	E,F	80	0.3	28	32	2-93
	32Kx8	150	•	•		•		•		M/883	E,F	80	0.3	28	32	2-93
	32Kx8	200	•	•	•	•	•	•	•	С	E,F	80	0.2	28	32	2-93
	32Kx8	200	•	•	•	•	•	•		- 1	E,F	80	0.2	28	32	2-93
	32Kx8	200	•	•		•	1	•		М	E,F	80	0.3	28	32	2-93
	32Kx8	200	•	•		•		•		M/883	E,F	80	0.3	28	32	2-93
	32Kx8	250	•	•	•	•	•	•	•	С	E,F	80	0.2	28	32	2-93
1	32Kx8	250	•	•	•	•	•	•	ŀ	1	E,F	80	0.2	28	32	2-93
	32Kx8	250	•	•		•	Ì	•		M	E,F	80	0.3	28	32	2-93
	32Kx8	250	•	•		•		•	l	M/883	E,F	80	0.3	28	32	2-93
	32Kx8	300	•	•		•	ĺ	•		M/883	E,F	80	0.3	28	32	2-93
}	32Kx8	350	•	•		•		•		M/883	E,F	80	0.3	28	32	2-93
SMDNumber																
5962-88525 06	32Kx8	150		•		•	}			M/883		80	0.35	28	32	2-93
5962-88525 07	32Kx8	150	•	•		•				M/883	F	80	0.35	28	32	2-93
5962-88525 04	32Kx8	200	•	•		•		•		M/883	1	80	0.35	28	32	2-93
5962-88525 03	32Kx8	250	•	•		•		•	ĺ	M/883		80	0.35	28	32	2-93
5962-88525 05	32Kx8	250	•	•		•				M/883	E	80	0.35	28	32	2-93
5962-88525 02	32Kx8	300	•	•		•		•		M/883		80	0.35	28	32	2-93
5962-88525 01	32Kx8	350	•	•		•		•		M/883		80	0.35	28	32	2-93

	Package Type						
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)						
F	28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)						
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)						
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)						
Р	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)						
U	28U, 28 Pin, Ceramic Pin Grid Array (PGA)						
W	Die						
	Temperature Range						
С	Commercial (0°C to 70°C)						
1	Industrial (-40°C to 85°C)						
М	Military (-55°C to 125°C)						
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)						
	Options						
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms						
Ε	High Endurance Option: Endurance = 100K Write Cycles						
F	Fast Write Option: Write Time = 3ms						

AT28MC010 PartNumber	Organization	Speed (ns)	Package M	Temperature Range	Icc (Active	mA) Standby	No. of Pins DIP	Page Number
			+					
AT28MC010	128Kx8	120	.	С	100	0.5	32	2-105
	128Kx8	120	•	ı	100	0.5	32	2-105
	128Kx8	120	•	M	100	0.5	32	2-105
	128Kx8	120		MB	100	0.5	32	2-105
	128Kx8	150		С	100	0.5	32	2-105
	128Kx8	150	•	1	100	0.5	32	2-105
	128Kx8	150	•	M	100	0.5	32	2-105
	128Kx8	150	•	MB	100	0.5	32	2-105
	128Kx8	200	•	С	100	0.5	32	2-105
	128Kx8	200		1	100	0.5	32	2-105
	128Kx8	200	•	М	100	0.5	32	2-105
	128Kx8	200	•	MB	100	0.5	32	2-105
	128Kx8	250		С	100	0.5	32	2-105
	128Kx8	250		l	100	0.5	32	2-105
	128Kx8	250		М	100	0.5	32	2-105
	128Kx8	250	•	MB	100	0.5	32	2-105

	Package Type								
М	32M, 32 Lead, Non-Windowed, Ceramic Dual Inline 32D6 Compatible Module (Module)								
	Temperature Range								
С	Commercial (0°C to 70°C)								
ı	Industrial (-40°C to 85°C)								
М	Military (-55°C to 125°C)								
MB	MIL-STD-883C Class B Components (-55°C to 125°C)								

AT28C1024		Speed	Pac	kage	Temperature	Icc (mA)		No. of Pins		Page
Part Number	Organization	(ns)	В	L	Range	Active	Standby	DIP	LCC	Number
AT28C1024	64Kx16	150	•	•	С	100	0.5	40	44	2-115
	64Kx16	150	•	•	1	100	0.5	40	44	2-115
	64Kx16	150	•		М	100	0.5	40	44	2-115
	64Kx16	150	•	•	M/883	100	0.5	40	44	2-115
	64Kx16	200	•	•	С	100	0.5	40	44	2-115
	64Kx16	200	•	•	i	100	0.5	40	44	2-115
	64Kx16	200	•	•	М	100	0.5	40	44	2-115
	64Kx16	200		•	M/883	100	0.5	40	44	2-115
	64Kx16	250	•		С	100	0.5	40	44	2-115
	64Kx16	250	•		1	100	0.5	40	44	2-115
	64Kx16	250	•	•	М	100	0.5	40	44	2-115
	64Kx16	250	•		M/883	100	0.5	40	44	2-115

	Package Type						
В	B 40B, 40 Lead, 0.600" Wide, Ceramic Side Braze Dual Inline (Side Braze)						
L	L 44L, 44 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)						
	Temperature Range						
С	Commercial (0°C to 70°C)						
ı	Industrial (-40°C to 85°C)						
М	Military (-55°C to 125°C)						
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)						

CMOS E²PROM Product Selection Guide

AT28C010	0	Speed	Pac	kage	Temperature	lcc	(mA)	No. of	Pins	Page
Part Number	Organization	(ns)	В	L	Range	Active	Standby	DIP	LCC	Number
AT28C010	128Kx8	150	•	•	С	80	0.3	32	44	2-125
	128Kx8	150	•	•	1	80	0.3	32	44	2-125
	128Kx8	150	•		М	80	0.3	32	44	2-125
	128Kx8	150	•	•	M/883	80	0.3	32	44	2-125
	128Kx8	200	•		С	80	0.3	32	44	2-125
	128Kx8	200	•	•	1	80	0.3	32	44	2-125
	128Kx8	200	•	•	M	80	0.3	32	44	2-125
	128Kx8	200	•	•	M/883	80	0.3	32	44	2-125
	128Kx8	250	•	•	С	80	0.3	32	44	2-125
	128Kx8	250	•	•	l	80	0.3	32	44	2-125
	128Kx8	250	•		M	80	0.3	32	44	2-125
	128Kx8	250	•	•	M/883	80	0.3	32	44	2-125

	Package Type										
В	32B, 32 Lead, 0.600" Wide Ceramic Side Braze Dual Inline (Side Braze)										
L	44L, 44 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)										
	Temperature Range										
С	Commercial (0°C to 70°C)										
ı	Industrial (-40°C to 85°C)										
М	Military (-55°C to 125°C)										
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)										

AT29C256	0	Speed		Pac	kage	•	Temp.	lo	c (mA)	No. o	fPins	Page
Part Number	Organization	(ns)	D	J	L	Р	Range	Active	Standby	DIP	LCC	Number
AT29C256	32Kx8	150	•	•	•	•	С	80	0.3	28	32	3-3
	32Kx8	150	•	•	•	•	1	80	0.3	28	32	3-3
	32Kx8	150	•		•		М	80	0.3	28	32	3-3
,	32Kx8	150	•	1	•		M/883	80	0.3	28	32	3-3
	32Kx8	200	•	•	•	•	С	80	0.3	28	32	3-3
	32Kx8	200	•	•	•	•	1	80	0.3	28	32	3-3
1	32Kx8	200	•		•		M	80	0.3	28	32	3-3
	32Kx8	200			•		M/883	80	0.3	28	32	3-3
i	32Kx8	250	•	•	•	•	С	80	0.3	28	32	3-3
	32Kx8	250		•	•	•	1	80	0.3	28	32	3-3
	32Kx8	250	•		•		М	80	0.3	28	32	3-3
	32Kx8	250	•		•		M/883	80	0.3	28	32	3-3

	Package Type										
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)										
J	J 32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)										
L	L 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)										
P	P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)										
	Temperature Range										
С	Commercial (0°C to 70°C)										
1	Industrial (-40°C to 85°C)										
М	Military (-55°C to 125°C)										
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)										

AT29C257 Part Number	Organization	Speed (ns)	Pacl D	kage P	Temperature Range	lcc (mA) Standby	No. of Pins DIP	Page Number
AT29C257	32K×8 32K×8 32K×8 32K×8 32K×8 32K×8 32K×8 32K×8 32K×8 32K×8	150 150 150 150 200 200 200 200 250 250 250 250	•	•	C I M M/883 C I M M/883 C	80 80 80 80 80 80 80 80 80 80	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	32 32 32 32 32 32 32 32 32 32 32 32	3-13 3-13 3-13 3-13 3-13 3-13 3-13 3-13

	Package Type											
D	32D6, 32 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)											
Р	32P6, 32 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)											
	Temperature Range											
С	Commercial (0°C to 70°C)											
ı	Industrial (-40°C to 85°C)											
М	Military (-55°C to 125°C)											
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											

AT29C010	Organization	Speed		Pac	kage	•	Temp.	lo	c (mA)	No. o	fPins	Page
Part Number	Organization	(ns)	D	J	L	Р	Range	Active	Standby	DIP	LCC	Number
AT29C010	128Kx8	150	•	•	•	•	С	80	0.3	32	32	3-23
	128Kx8	150	•	•	•	•	ı	80	0.3	32	32	3-23
	128Kx8	150	•		•		M	80	0.3	32	32	3-23
	128Kx8	150	•		•	}	M/883	80	0.3	32	32	3-23
	128Kx8	200	•	•	•	•	С	80	0.3	32	32	3-23
	128Kx8	200	•	•	•	•	ı	80	0.3	32	32	3-23
	128Kx8	200	•				М	80	0.3	32	32	3-23
	128Kx8	200	•		•		M/883	80	0.3	32	32	3-23
	128Kx8	250	•	•	•	•	С	80	0.3	32	32	3-23
	128Kx8	250	•	•	•	•	ł	80	0.3	32	32	3-23
	128Kx8	250	•		•		М	80	0.3	32	32	3-23
	128Kx8	250	•		•		M/883	80	0.3	32	32	3-23

	Package Type
D	32D6, 32 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)
L	32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)
P	32P6, 32 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
	Temperature Range
С	Commercial (0°C to 70°C)
ı	Industrial (-40°C to 85°C)
M	Military (-55°C to 125°C)
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)

AT27HC64	Organization	Speed	l	cka		Temperature	Power		(mA)	No. of		Page
Part Number		(ns)	D	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27HC64	8Kx8	45	•	•		С	10%	75	35	28	32	4-3
	8Kx8	45	•	•		i i	10%	90	40	28	32	4-3
	8Kx8	55	•	•	•	С	10%	75	35	28	32	4-3
	8Kx8	55	•	•		1	10%	90	40	28	32	4-3
	8Kx8	55	•			M	10%	90	40	28	32	4-3
	8Kx8	55	•			M/883	10%	90	40	28	32	4-3
	8Kx8	70	•		•	С	10%	75	35	28	32	4-3
	8Kx8	70	•	•	•	1	10%	90	40	28	32	4-3
	8Kx8	70	•	•		М	10%	90	40	28	32	4-3
	8Kx8	70	•	•		M/883	10%	90	40	28	32	4-3
	8Kx8	90	•	•	•	С	10%	75	35	28	32	4-3
	8Kx8	90	•	•	•	1	10%	90	40	28	32	4-3
	8Kx8	90	•	•		М	10%	90	40	28	32	4-3
	8Kx8	90	•	•		M/883	10%	90	40	28	32	4-3

AT27HC64L	Organization	Speed	P	acka	ge	Temperature	Power	Icc	(mA)	No. of	Pins	Page
Part Number	Organization	(ns)	D	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27HC64L	8Kx8	55	•	•		С	10%	75	0.1	28	32	4-3
	8Kx8	55	•	•		1	10%	90	0.2	28	32	4-3
	8Kx8	70	•	•	•	С	10%	75	0.1	28	32	4-3
	8Kx8	70	•	•	•	1	10%	90	0.2	28	32	4-3
	8Kx8	70	•	•		M	10%	90	0.2	28	32	4-3
	8Kx8	70	•	•		M/883	10%	90	0.2	28	32	4-3
	8Kx8	90	•	•	•	C	10%	75	0.1	28	32	4-3
	8Kx8	90	•	•	•	1 [10%	90	0.2	28	32	4-3
	8Kx8	90	•	•		M	10%	90	0.2	28	32	4-3
	8Kx8	90	٠	•		M/883	10%	90	0.2	28	32	4-3
SMD Number												
5962-85102 04	8Kx8	90	•	•		M/883	10%	90	0.2	28	32	4-3

	Package Type										
D	28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)										
L	32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)										
P	P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)										
	Temperature Range										
С	Commercial (0°C to 70°C)										
ı	Industrial (-40°C to 85°C)										
M	Military (-55°C to 125°C)										
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)										

AT27HC64R	0	Speed	Pa	cka	ge	Temperature	Power	Icc	(mA)	No. of	Pins	Page
Part Number	Organization	(ns)	D	L	Р	Range Si	Supply	Active	Standby	DIP	LCC	Number
AT27HC64R	8Kx8	45	•	•		C	10%	35	20	28	32	4-11
	8Kx8	45	•	•			10%	45	30	28	32	4-11
	8Kx8	55	•	•	•	С	10%	35	20	28	32	4-11
	8Kx8	55	•	•	•	1	10%	45	30	28	32	4-11
	8Kx8	55	•	•		M	10%	45	30	28	32	4-11
	8Kx8	55		•		M/883	10%	45	30	28	32	4-11
	8Kx8	70		•	•	С	10%	35	20	28	32	4-11
	8Kx8	70	•	•	•		10%	45	30	28	32	4-11
	8Kx8	70	•	•		M	10%	45	30	28	32	4-11
	8Kx8	70		•		M/883	10%	45	30	28	32	4-11
	8Kx8	90	•	•		С	10%	35	20	28	32	4-11
	8Kx8	90		•	•	1	10%	45	30	28	32	4-11
	8Kx8	90		•		М	10%	45	30	28	32	4-11
	8Kx8	90	•	•		M/883	10%	45	30	28	32	4-11

AT27HC64RL	Organization	Speed	P	acka	ge	Temperature	Power	Icc (mA)		No. of Pins		Page
Part Number	Organization	(ns)	D	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27HC64RL	8Kx8	55	•	•		С	10%	35	0.1	28	32	4-11
	8Kx8	55	•	•		1	10%	45	0.2	28	32	4-11
	8Kx8	70	•	•	•	С	10%	35	0.1	28	32	4-11
	8Kx8	70	•	•	•		10%	45	0.2	28	32	4-11
	8Kx8	70	•	•		M	10%	45	0.2	28	32	4-11
	8Kx8	70	•	•		M/883	10%	45	0.2	28	32	4-11
	8Kx8	90	•	•	•	С	10%	35	0.1	28	32	4-11
	8Kx8	90	•	•	•	1	10%	45	0.2	28	32	4-11
	8Kx8	90	•	•		M	10%	45	0.2	28	32	4-11
	8Kx8	90	•	•		M/883	10%	45	0.2	28	32	4-11

	Package Type
D	28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)
L	32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
Р	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)
	Temperature Range
С	Commercial (0°C to 70°C)
1	Industrial (-40°C to 85°C)
М	Military (-55°C to 125°C)
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)

AT27HC256	0	Speed		Р	acka	ge		Temp.	Power	Icc	(mA)	No. o	Pins	Page
Part Number	Organization	(ns)	D	J	K	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27HC256	32Kx8	55	•		•	•		С	10%	75	40	28	32	4-15
	32Kx8	55	•		•	•		1	10%	90	45	28	32	4-15
	32Kx8	70	•	•	•	•	•	С	10%	75	40	28	32	4-15
	32Kx8	70	•	•	•	•	•	1	10%	90	45	28	32	4-15
	32Kx8	70	•		•	•		М	10%	90	45	28	32	4-15
	32Kx8	70	•		•	•		M/883	10%	90	45	28	32	4-15
	32Kx8	90	•	•	•	•	•	С	10%	75	40	28	32	4-15
	32Kx8	90	•	•	•	•	•	1	10%	90	45	28	32	4-15
	32Kx8	90	•		•	•		M	10%	90	45	28	32	4-15
	32Kx8	90	•		•	•		M/883	10%	90	45	28	32	4-15
	32Kx8	120	•	•	•	•	•	С	10%	75	40	28	32	4-15
	32Kx8	120	•	•	•	•	•		10%	90	45	28	32	4-15
	32Kx8	120	•		•	•		М	10%	90	45	28	32	4-15
	32Kx8	120	•		•	•		M/883	10%	90	45	28	32	4-15
SMD Number	1													
5962-86063 08	32Kx8	70	•			•		M/883	10%	90	45	28	32	4-15

	Package Type									
D	28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)									
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)									
K	32KW, 32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)									
L	L 32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)									
P	P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)									
	Temperature Range									
С	Commercial (0°C to 70°C)									
ı	Industrial (-40°C to 85°C)									
М	Military (-55°C to 125°C)									
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)									

AT27HC256L	0	Speed		Р	acka	ge		Temp.	Power	Icc	(mA)	No. of	Pins	Page
Part Number	Organization	(ns)	D	J	K	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27HC256L	32Kx8	70	•		•	•		С	10%	75	0.1	28	32	4-15
	32Kx8	70	•		•	•		1	10%	90	0.2	28	32	4-15
	32Kx8	90	•	•	•	•	•	С	10%	75	0.1	28	32	4-15
	32Kx8	90	•	•	•	•	•	1	10%	90	0.2	28	32	4-15
	32Kx8	90	•		•	•		М	10%	90	0.2	28	32	4-15
	32Kx8	90	•		•	•		M/883	10%	90	0.2	28	32	4-15
	32Kx8	120	•	•	•	•	•	С	10%	75	0.1	28	32	4-15
	32Kx8	120	•	•	•	•	•	l I	10%	90	0.2	28	32	4-15
	32Kx8	120	•		•	•		М	10%	90	0.2	28	32	4-15
	32Kx8	120	•		•	•		M/883	10%	90	0.2	28	32	4-15
SMD Number				ĺ										
5962-86063 07	32Kx8	90						M/883	10%	90	0.2	28	32	4-15
5962-86063 06	32Kx8	120	•			•		M/883	10%	90	0.2	28	32	4-15

	Package Type									
D	28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)									
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)									
K	32KW, 32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)									
L	32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)									
Р	P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)									
	Temperature Range									
С	Commercial (0°C to 70°C)									
1	Industrial (-40°C to 85°C)									
М	Military (-55°C to 125°C)									
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)									

AT27HC256R	Organi-	Speed		Pa	ackaç	ge		Temp.	Power	lcc	(mA)	No. o	fPins	Page
Part Number	zation	(ns)	D	J	K	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27HC256R	32Kx8	55	•		•	•		С	10%	35	20	28	32	4-25
	32Kx8	55	•		•	•		1	10%	45	30	28	32	4-25
	32Kx8	70	•	•	•	•	•	С	10%	35	20	28	32	4-25
	32Kx8	70	•	•	•	•	•	1	10%	45	30	28	32	4-25
	32Kx8	70	•		•	•		М	10%	45	30	28	32	4-25
	32Kx8	70	•		•	•		M/883	10%	45	30	28	32	4-25
	32Kx8	90	•	•	•	•	•	С	10%	35	20	28	32	4-25
	32Kx8	90	•	•	•	•	•	l I	10%	45	30	28	32	4-25
	32Kx8	90	•	1	•	•		M	10%	45	30	28	32	4-25
	32Kx8	90	•		•	•		M/883	10%	45	30	28	32	4-25
	32Kx8	120	•	•	•	•	•	С	10%	35	20	28	32	4-25
	32Kx8	120	•	•	•	•	•	I	10%	45	30	28	32	4-25
	32Kx8	120	•		•	•		M	10%	45	30	28	32	4-25
	32Kx8	120	•		•	•		M/883	10%	45	30	28	32	4-25

AT27HC256RL	Organi-	Speed		Pi	acka	ge		Temp.	Power	lcc	(mA)	No. o	fPins	Page
Part Number	zation	(ns)	D	J	K	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27HC256RL	32Kx8	70	•		•	•		С	10%	35	0.1	28	32	4-25
	32Kx8	70	•		•	•		1	10%	45	0.2	28	32	4-25
	32Kx8	90	•	•	•	•	•	С	10%	35	0.1	28	32	4-25
	32Kx8	90	•	•	•	•	•	1	10%	45	0.2	28	32	4-25
	32Kx8	90	•		•	•	1	M	10%	45	0.2	28	32	4-25
	32Kx8	90			•	•		M/883	10%	45	0.2	28	32	4-25
	32Kx8	120	•	•	•	•	•	С	10%	35	0.1	28	32	4-25
	32Kx8	120		•	•	•		1	10%	45	0.2	28	32	4-25
	32Kx8	120	•		•	•		М	10%	45	0.2	28	32	4-25
	32Kx8	120	•		•	•		M/883	10%	45	0.2	28	32	4-25

	Package Type									
D	28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)									
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)									
K	32KW, 32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)									
L	L 32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)									
Р	P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)									
	Temperature Range									
С	Commercial (0°C to 70°C)									
1	Industrial (-40°C to 85°C)									
М	Military (-55°C to 125°C)									
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)									

AT27HC1024	Organization	Speed		Pac	kage		Temp.	Power	Icc	(mA)	No. of Pins		Page
Part Number	Organization	(ns)	D	J	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27HC1024	64Kx16	55			•		С	10%	60	0.5	40	44	4-29
	64Kx16	70	•	•	•	•	С	10%	60	0.5	4C	44	4-29
	64Kx16	70	•	•	•	•	l I	10%	75	1.0	40	44	4-29
	64Kx16	70	•		•		М	10%	75	1.0	40	44	4-29
	64Kx16	70	•		•		M/883	10%	75	1.0	40	44	4-29
	64Kx16	90	•	•	•		С	10%	60	0.5	40	44	4-29
	64Kx16	90	•	•	•	•	1	10%	75	1.0	40	44	4-29
	64Kx16	90	•		•		М	10%	75	1.0	40	44	4-29
	64Kx16	90	•		•		M/883	10%	75	1.0	40	44	4-29
	64Kx16	120	•	•	•	•	С	10%	60	0.5	40	44	4-29
	64Kx16	120	•	•	•	•	1	10%	75	1.0	40	44	4-29
	64Kx16	120	•		•		М	10%	75	1.0	40	44	4-29
	64Kx16	120	•		•		M/883	10%	75	1.0	40	44	4-29

	Package Type									
D	40DW6, 40 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)									
J	44J, 44 Lead, Plastic J-Leaded Chip Carrier, OTP (PLCC)									
L	44LW, 44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)									
Р	P 40P6, 40 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)									
	Temperature Range									
С	Commercial (0°C to 70°C)									
ı	Industrial (-40°C to 85°C)									
М	Military (-55°C to 125°C)									
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)									

AT27C128	Organization	Speed	Package			Temperature	Power	Icc	(mA)	No. o	Page	
Part Number	Organization	(ns)	B) DJP	Range	Supply	Active	Standby	DIP	PLCC	Number		
AT27C128	16Kx8	120	•			С	10%	30	0.1	28	32	4-33
	16Kx8	120	•			1	10%	40	0.2	28	32	4-33
	16Kx8	150	•	•	•	С	10%	30	0.1	28	32	4-33
	16Kx8	150	•	•		1	10%	40	0.2	28	32	4-33
	16Kx8	200	•	•	•	С	10%	30	0.1	28	32	4-33
	16Kx8	200	•	•	•		10%	40	0.2	28	32	4-33
	16Kx8	250	•	•	•	С	10%	30	0.1	28	32	4-33
	16Kx8	250	•	•	•	I	10%	40	0.2	28	32	4-33

	Package Type
D	28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
Р	28P6, 28 Lead, 0.600" Plastic Dual Inline Package OTP (PDIP)
	Temperature Range
С	Commercial (0°C to 70°C)
ı	Industrial (-40°C to 85°C)

AT27C256 -Not recommended for new designs. Use AT27C256R.

AT27C256R	Organi-	Speed			Pac	kage)		Temp.	Power	lcc i	(mA)	No. of	Pins	Page
Part Number	zation	(ns)	D	J	K	L	Р	R	Range	Supply	Active	Standby	DIP	LCC	Number
AT27C256R	32Kx8	90	•		•	•			С	10%	20	0.1	28	32	4-47
	32Kx8	90	•		•	•			1	10%	25	0.2	28	32	4-47
	32Kx8	120	•	•	•	•	•	•	С	10%	20	0.1	28	32	4-47
1	32Kx8	120	•	•	•	•	•	•	l l	10%	25	0.2	28	32	4-47
	32Kx8	120	•		•	•			М	10%	25	0.2	28	32	4-47
	32Kx8	120	•		•	•			M/883	10%	25	0.2	28	32	4-47
	32Kx8	150	•	•	•	•	•	•	С	10%	20	0.1	28	32	4-47
	32Kx8	150	•	•	•	•	•	•	1	10%	25	0.2	28	32	4-47
	32Kx8	150	•		•	•			М	10%	25	0.2	28	32	4-47
	32Kx8	150	•	ļ	•	•		Ì	M/883	10%	25	0.2	28	32	4-47
	32Kx8	170	•	•	•	•	•	•	С	10%	20	0.1	28	32	4-47
	32Kx8	170	•	•	•	•	•	•	1	10%	25	0.2	28	32	4-47
	32Kx8	170	•		•	•			M	10%	25	0.2	28	32	4-47
	32Kx8	170	•		•	•			M/883	10%	25	0.2	28	32	4-47
	32Kx8	200	•	•	•	•	•	•	С	10%	20	0.1	28	32	4-47
	32Kx8	200	•	•	•	•	•	•	1	10%	25	0.2	28	32	4-47
	32Kx8	200	•		•	•			M	10%	25	0.2	28	32	4-47
	32Kx8	200	•		•	•	i		M/883	10%	25	0.2	28	32	4-47
	32Kx8	250	•	•	•	•	•		С	10%	20	0.1	28	32	4-47
	32Kx8	250	•	•	•	•	•	•	1	10%	25	0.2	28	32	4-47
1	32Kx8	250	•		•	•			М	10%	25	0.2	28	32	4-47
	32Kx8	250	•		•	•			M/883	10%	25	0.2	28	32	4-47
SMD Number															
5962-86063 05	32Kx8	150							M/883	10%	25	0.2	28	32	4-47
5962-86063 04	32Kx8	170	•			•			M/883	10%	25	0.2	28	32	4-47
5962-86063 01	32Kx8	200	•		1	•			M/883	10%	25	0.2	28	32	4-47
5962-86063 02	32Kx8	250	•			•			M/883	10%	25	0.2	28	32	4-47
5962-86063 03	32Kx8	300	•			•			M/883	10%	25	0.2	28	32	4-47

	Package Type											
D	28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)											
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)											
K												
L	32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)											
P	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)											
R	28R, 28 Lead, 0.330" Wide, Plastic Gull Wing Small Outline OTP (SOIC)											
	Temperature Range											
С	Commercial (0°C to 70°C)											
1	Industrial (-40°C to 85°C)											
М	Military (-55°C to 125°C)											
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											

AT27C512 -Not recommended for new designs. Use AT27C512R.

AT27C512R	Organi-	Speed			Pack	age			Temp.	Power	lcc	(mA)	No. of	Pins	Page
Part Number	zation	(ns)	D	j	K	L	Р	R	Range	Supply	Active	Standby	DIP	LCC	Number
AT27C512R	64Kx8	100	•		•	•			С	5%	20	0.1	28	32	4-63
	64Kx8	120	•		•	•			С	10%	20	0.1	28	32	4-63
	64Kx8	120	•		•	•			- 1	10%	25	0.2	28	32	4-63
	64Kx8	120	•		•	•			M	10%	25	0.2	28	32	4-63
	64Kx8	120	•		•	•			M/883	10%	25	0.2	28	32	4-63
İ	64Kx8	150	•	•	•	•	•	•	C	10%	20	0.1	28	32	4-63
	64Kx8	150	•	•	•	•	•	•	1	10%	25	0.2	28	32	4-63
	64Kx8	150	•		•	•			M	10%	25	0.2	28	32	4-63
	64Kx8	150	•		•	•			M/883	10%	25	0.2	28	32	4-63
	64Kx8	200	•	•	•	•	•	•	С	10%	20	0.1	28	32	4-63
)	64Kx8	200	•	•	•	•	•	•		10%	25	0.2	28	32	4-63
	64Kx8	200	•	ì	•	•			М	10%	25	0.2	28	32	4-63
	64Kx8	200	•		•	•			M/883	10%	25	0.2	28	32	4-63
	64Kx8	250	•	•	•	•	•	•	С	10%	20	0.1	28	32	4-63
	64Kx8	250	•	•	•	•	•	•	ı	10%	25	0.2	28	32	4-63
	64Kx8	250	•		•	•			M	10%	25	0.2	28	32	4-63
	64Kx8	250	•		•	•			M/883	10%	25	0.2	28	32	4-63
SMD Number															
5962-8764804	64Kx8	120	•			•			M/883	10%	25	0.2	28	32	4-63
5962-8764801	64Kx8	150	•			•			M/883	10%	25	0.2	28	32	4-63
5962-8764802	64Kx8	200	•			•			M/883	10%	25	0.2	28	32	4-63
5962-8764803	64Kx8	250	•			•			M/883	10%	25	0.2	28	32	4-63

	Package Type										
D	28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)										
J	J 32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)										
K	K 32KW, 32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)										
L	32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)										
P	P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)										
R	R 28R, 28 Lead, 0.330" Wide, Plastic Gull Wing Small Outline OTP (SOIC)										
	Temperature Range										
С	Commercial (0°C to 70°C)										
1	Industrial (-40°C to 85°C)										
M	Military (-55°C to 125°C)										
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)										

AT27C513R	Organization	Speed		P	acka	ge		Temp.	Power	Icc	(mA)	No. of	Pins	Page
Part Number	Organization	(ns)	D	J	L	Р	R	Range	Supply	Active	Standby	DIP	LCC	Number
AT27C513R	4x16Kx8	120	•		•			С	10%	20	0.1	28	32	4-71
	4x16Kx8	120	•		•			1	10%	25	0.2	28	32	4-71
	4x16Kx8	150	•	•	•	•	•	С	10%	20	0.1	28	32	4-71
	4x16Kx8	150	•	•	•	•	•	1	10%	25	0.2	28	32	4-71
	4x16Kx8	150	•	j	•			M	10%	25	0.2	28	32	4-71
	4x16Kx8	150	•		•			M/883	10%	25	0.2	28	32	4-71
	4x16Kx8	200	•	•	•	•	•	С	10%	20	0.1	28	32	4-71
	4x16Kx8	200	•	•	•	•	•	1	10%	25	0.2	28	32	4-71
	4x16Kx8	200	•	l	•			M	10%	25	0.2	28	32	4-71
	4x16Kx8	200	•		•			M/883	10%	25	0.2	28	32	4-71
	4x16Kx8	250	•	•	•	•	•	С	10%	20	0.1	28	32	4-71
	4x16Kx8	250	•	•	•	•	•	1	10%	25	0.2	28	32	4-71
	4x16Kx8	250	•		•]		M	10%	25	0.2	28	32	4-71
	4x16Kx8	250	•		•			M/883	10%	25	0.2	28	32	4-71

	Package Type											
D	28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)											
J	5 525, 52 2545, 1 1545 5 2 545 5 1 1 (1 25 5)											
L	L 32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)											
Р	P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)											
R	R 28R, 28 Lead, 0.330" Wide, Plastic Gull Wing Small Outline OTP (SOIC)											
	Temperature Range											
С	Commercial (0°C to 70°C)											
ı	Industrial (-40°C to 85°C)											
M	Military (-55°C to 125°C)											
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											

AT27C010	Ornanization	Speed		P	acka	ge		Temp.	Power	lcc	(mA)	No. c	fPins	Page
Part Number	Organization	(ns)	D	J	K	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27C010	128Kx8	120	•		•	•		С	10%	40	0.1	32	32	4-81
	128Kx8	120	•		•	•		1	10%	50	0.1	32	32	4-81
	128Kx8	120	•		•	•		М	10%	50	0.1	32	32	4-81
	128Kx8	120	•		•			M/883	10%	50	0.1	32	32	4-81
	128Kx8	150	•	•	•	•	•	С	10%	40	0.1	32	32	4-81
	128Kx8	150	•	•	•		•	1.	10%	50	0.1	32	32	4-81
	128Kx8	150	•		•	•	ļ	М	10%	50	0.1	32	32	4-81
	128Kx8	150	•		•		ļ	M/883	10%	50	0.1	32	32	4-81
	128Kx8	170	•	•	•	•	•	С	10%	40	0.1	32	32	4-81
	128Kx8	170		•	•	•	•	1	10%	50	0.1	32	32	4-81
	128Kx8	170	•	- 2	•	•		M	10%	50	0.1	32	32	4-81
	128Kx8	170	•		•	•	1	M/883	10%	50	0.1	32	32	4-81
	128Kx8	200	•	•	•	•	•	С	10%	40	0.1	32	32	4-81
	128Kx8	200	•	•	•	•	•	1	10%	50	0.1	32	32	4-81
	128Kx8	200	•		•	•		М	10%	50	0.1	32	32	4-81
	128Kx8	200	•		•	•		M/883	10%	50	0.1	32	32	4-81
	128Kx8	250	•	•	•	•	•	С	10%	40	0.1	32	32	4-81
	128Kx8	250	•	•	•	•	•		10%	50	0.1	32	32	4-81
	128Kx8	250	•		•			М	10%	50	0.1	32	32	4-81
	128Kx8	250	•		•	•		M/883	10%	50	0.1	32	32	4-81

	Package Type										
D	32DW6, 32 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)										
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)										
K	32KW, 32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)										
L	32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)										
P	P 32P6, 32 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)										
	Temperature Range										
С	Commercial (0°C to 70°C)										
ı	Industrial (-40°C to 85°C)										
М	Military (-55°C to 125°C)										
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)										

AT27C010L	0 ' '	Speed		Pi	acka	ge		Temp.	Power	lcc	(mA)	No. c	fPins	Page
Part Number	Organization	(ns)	D	J	K	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27C010L	128Kx8	120	•		•	•		С	10%	25	0.1	32	32	4-81
	128Kx8	120	•		•	•		i	10%	30	0.1	32	32	4-81
	128Kx8	120	•		•	•		М	10%	30	0.1	32	32	4-81
	128Kx8	120	•		•	•		M/883	10%	30	0.1	32	32	4-81
	128Kx8	150	•	•		•	•	С	10%	25	0.1	32	32	4-81
	128Kx8	150	•	•	•	•	•	- 1	10%	30	0.1	32	32	4-81
	128Kx8	150	•			•		М	10%	30	0.1	32	32	4-81
	128Kx8	150	•		•	•		M/883	10%	30	0.1	32	32	4-81
	128Kx8	170	•	•	•	•	•	С	10%	25	0.1	32	32	4-81
	128Kx8	170	•	•	•	•	•	1	10%	30	0.1	32	32	4-81
	128Kx8	170	•			•		М	10%	30	0.1	32	32	4-81
	128Kx8	170	•		•	•		M/883	10%	30	0.1	32	32	4-81
	128Kx8	200	•	•	•	•	•	С	10%	25	0.1	32	32	4-81
	128Kx8	200	•	•		•	•	1	10%	30	0.1	32	32	4-81
	128Kx8	200	•		•	•		М	10%	30	0.1	32	32	4-81
	128Kx8	200	•			•		M/883	10%	30	0.1	32	32	4-81
	128Kx8	250	•	•	•	•	•	С	10%	25	0.1	32	32	4-81
	128Kx8	250	•	•	•	•	•	1	10%	30	0.1	32	32	4-81
	128Kx8	250	•		•	•		М	10%	30	0.1	32	32	4-81
	128Kx8	250	•		•	•		M/883	10%	30	0.1	32	32	4-81

	Package Type											
D	32DW6, 32 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)											
J	J 32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)											
K	K 32KW, 32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)											
L	L 32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)											
Р	P 32P6, 32 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)											
	Temperature Range											
С	Commercial (0°C to 70°C)											
ı	Industrial (-40°C to 85°C)											
M	Military (-55°C to 125°C)											
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											

AT27C011	Organization	Speed		Pac	kage		Temp.	Power	lcc	(mA)	No. c	fPins	Page
Part Number	Organization	(ns)	D	L	Р	J	Range	Supply	Active	Standby	DIP	LCC	Number
AT27C011	8x16Kx8	150	•	•			С	5%	25	0.1	28	32	4-91
	8x16Kx8	170	•	•	•	•	С	10%	25	0.1	28	32	4-91
	8x16Kx8	170	•	•	•	•	1	10%	30	0.1	28	32	4-91
	8x16Kx8	170	•	•]	1	М	10%	30	0.1	28	32	4-91
	8x16Kx8	170	•	•			M/883	10%	30	0.1	28	32	4-91
1	8x16Kx8	200	• ,	•	•	•	С	10%	25	0.1	28	32	4-91
	8x16Kx8	200	•	•	•	•	1	10%	30	0.1	28	32	4-91
	8x16Kx8	200	•	•			М	10%	30	0.1	28	32	4-91
ļ.	8x16Kx8	200	•	•			M/883	10%	30	0.1	28	32	4-91
	8x16Kx8	250	•	•	•	•	С	10%	25	0.1	28	32	4-91
	8x16Kx8	250	•	•	•	•	1 -	10%	30	0.1	28	32	4-91
	8x16Kx8	250	•	•		İ	M	10%	30	0.1	28	32	4-91
	8x16Kx8	250	•	•			M/883	10%	30	0.1	28	32	4-91

	Package Type										
D	D 28DW6, 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)										
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)										
L	32LW, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)										
P	P 28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)										
	Temperature Range										
С	Commercial (0°C to 70°C)										
I	Industrial (-40°C to 85°C)										
М	Military (-55°C to 125°C)										
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)										

AT27C1024	Organization	Speed		Pac	kage		Temp.	Power	lcc	(mA)	No. o	fPins	Page
Part Number	Organization	(ns)	D	L	Р	J	Range	Supply	Active	Standby	DIP	LCC	Number
AT27C1024	64Kx16	120	•	•			С	5%	50	0.1	40	44	4-101
	64Kx16	150	•	•	•	•	С	10%	50	0.1	40	44	4-101
	64Kx16	150	•	•	•	•	1	10%	60	0.1	40	44	4-101
	64Kx16	150	•	•			М	10%	60	0.1	40	44	4-101
	64Kx16	150	•	•			M/883	10%	60	0.1	40	44	4-101
	64Kx16	170	•		•	•	С	10%	50	0.1	40	44	4-101
	64Kx16	170	•	•	•	•	- 1	10%	60	0.1	40	44	4-101
	64Kx16	170	•	•			М	10%	60	0.1	40	44	4-101
	64Kx16	170	•	•			M/883	10%	60	0.1	40	44	4-101
	64Kx16	200	•	•	•	•	С	10%	50	0.1	40	44	4-101
	64Kx16	200	•	•	•	•	1	10%	60	0.1	40	44	4-101
	64Kx16	200	•	•			М	10%	60	0.1	40	44	4-101
	64Kx16	200	•	•			M/883	10%	60	0.1	40	44	4-101
	64Kx16	250	•	•	•	•	С	10%	50	0.1	40	44	4-101
	64Kx16	250	•	•	•	•		10%	60	0.1	40	44	4-101
	64Kx16	250	•	•			M	10%	60	0.1	40	44	4-101
	64Kx16	250	•	•			M/883	10%	60	0.1	40	44	4-101

	Package Type										
D	40DW6, 40 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)										
J	44J, 44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)										
L	44LW, 44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)										
Р	P 40P6, 40 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)										
	Temperature Range										
С	Commercial (0°C to 70°C)										
Ī	Industrial (-40°C to 85°C)										
М	Military (-55°C to 125°C)										
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)										

AT27C1024L	Organization	Speed		Pacl	kage		Temp.	Power	lcc	(mA)	No. o	fPins	Page
Part Number	Organization	(ns)	D	L	Р	J	Range	Supply	Active	Standby	DIP	LCC	Number
AT27C1024L	64Kx16	120	•	•			С	5%	30	0.1	40	44	4-101
	64Kx16	150	•	•	•	•	С	10%	30	0.1	40	44	4-101
	64Kx16	150	•	•			1	10%	40	0.1	40	44	4-101
	64Kx16	150	•	•	l		М	10%	40	0.1	40	44	4-101
	64Kx16	150					M/883	10%	40	0.1	40	44	4-101
	64Kx16	170		•		•	С	10%	30	0.1	40	44	4-101
	64Kx16	170	•	•			1	10%	40	0.1	40	44	4-101
	64Kx16	170	•				M	10%	40	0.1	40	44	4-101
	64Kx16	170			1		M/883	10%	40	0.1	40	44	4-101
	64Kx16	200					С	10%	30	0.1	40	44	4-101
	64Kx16	200	•	•		•	1	10%	40	0.1	40	44	4-101
	64Kx16	200			1		M	10%	40	0.1	40	44	4-101
	64Kx16	200					M/883	10%	40	0.1	40	44	4-101
	64Kx16	250	•	•			С	10%	30	0.1	40	44	4-101
	64Kx16	250					1	10%	40	0.1	40	44	4-101
	64Kx16	250	•				М	10%	40	0.1	40	44	4-101
	64Kx16	250	•	•			M/883	10%	40	0.1	40	44	4-101

	Package Type											
D	D 40DW6, 40 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)											
J	44J, 44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)											
L	44LW, 44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)											
P	P 40P6, 40 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)											
	Temperature Range											
С	Commercial (0°C to 70°C)											
1	Industrial (-40°C to 85°C)											
М	Military (-55°C to 125°C)											
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											

AT27C040		Speed	Package	Temp.	Power	Icc	(mA)	No. c	fPins	Page
Part Number	Organization	(ns)	D	Range	Supply	Active	Standby	DIP	LCC	Number
AT27C040	128Kx8	120	•	С	10%	25	0.1	32	32	4-111
	128Kx8	150	•	С	10%	25	0.1	32	32	4-111
	128Kx8	150	•	1	10%	30	0.1	32	32	4-111
	128Kx8	150		М	10%	30	0.1	32	32	4-111
	128Kx8	150	•	M/883	10%	30	0.1	32	32	4-111
	128Kx8	200	•	С	10%	25	0.1	32	32	4-111
	128Kx8	200	•		10%	30	0.1	32	32	4-111
	128Kx8	200		M	10%	30	0.1	32	32	4-111
	128Kx8	200	•	M/883	10%	30	0.1	32	32	4-111
	128Kx8	250		C	10%	25	0.1	32	32	4-111
	128Kx8	250	•	1	10%	30	0.1	32	32	4-111
	128Kx8	250	•	M	10%	30	0.1	32	32	4-111
	128Kx8	250	•	M/883	10%	30	0.1	32	32	4-111

	Package Type											
D	32DW6, 32 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)											
	Temperature Range											
С	Commercial (0°C to 70°C)											
I	Industrial (-40°C to 85°C)											
M	Military (-55°C to 125°C)											
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											

AT28HC191 PartNumber	Organization	Speed (ns)	Paci D	kage P	Temp. Range	Power Supply	I _{CC} (I	mA) Standby	No. of Pins DIP	Page Number
AT28HC191	2Kx8	35			С	10%	80	60	24	5-3
	2Kx8	45	•		С	10%	80	60	24	5-3
	2Kx8	45	•	•	1	10%	80	60	24	5-3
	2Kx8	45			М	10%	80	60	24	5-3
	2Kx8	45	•		M/883	10%	80	60	24	5-3
	2Kx8	55	•	•	С	10%	80	60	24	5-3
	2Kx8	55	•	•	1	10%	80	60	24	5-3
	2Kx8	55	•		М	10%	80	60	24	5-3
	2Kx8	55	•		M/883	10%	80	60	24	5-3

AT28HC191L	Organization	Speed	Paci	kage	Temp.	Power	loc	(mA)	No. of Pins	Page
Part Number	Organization	(ns)	D P		Range	Supply	Active	Standby	DIP	Number
AT28HC191L	2Kx8	45	•	•	С	10%	80	3	24	5-3
	2Kx8	45	•	•	ļ	10%	80	3	24	5-3
	2Kx8	45	•		M	10%	80	3	24	5-3
	2Kx8	45	•		M/883	10%	80	3	24	5-3
	2Kx8	55		•	С	10%	80	3	24	5-3
	2Kx8	55	•	•	1	10%	80	3	24	5-3
	2Kx8	55	•		M	10%	80	3	24	5-3
	2Kx8	55	•		M/883	10%	80	3	24	5-3

	Package Type											
D	D 24D6, 24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)											
Р	24P6, 24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)											
	Temperature Range											
С	Commercial (0°C to 70°C)											
1	Industrial (-40°C to 85°C)											
M	Military (-55°C to 125°C)											
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)											

AT28HC291	Oiti	Speed	Р	acka	ge	Temperature	Power	lcc	(mA)	No. of	Pins	Page
Part Number	Organization	(ns)	D	DLP		Range	Supply	Active	Standby	DIP	LCC	Number
AT28HC291	2Kx8	35	•		•	С	10%	80	60	24	28	5-11
	2Kx8	45	•		•	C	10%	80	60	24	28	5-11
,	2Kx8	45	•	•	•	1	10%	80	60	24	28	5-11
	2Kx8	45	•	•		M	10%	80	60	24	28	5-11
	2Kx8	45	•	•		M/883	10%	80	60	24	28	5-11
	2Kx8	55	•	•	•	С	10%	80	60	24	28	5-11
	2Kx8	55	•	•	•	1	10%	80	60	24	28	5-11
	2Kx8	55	•	•		M	10%	80	60	24	28	5-11
	2Kx8	55	•	•		M/883	10%	80	60	24	28	5-11

AT28HC291L	0	Speed	Р	acka	ge	Temperature	Power	lcc	(mA)	No. c	fPins	Page
Part Number	Organization	(ns)	D	DLP		Range	Supply	Active	Standby	DIP	LCC	Number
AT28HC291L	2Kx8	45	•		•	С	10%	80	3	24	28	5-11
	2Kx8	45	•		•	l	10%	80	3	24	28	5-11
	2Kx8	45	•			M	10%	80	3	24	28	5-11
	2Kx8	45	•			M/883	10%	80	3	24	28	5-11
	2Kx8	55		•	•	С	10%	80	3	24	28	5-11
	2Kx8	55		•	•	1	10%	80	3	24	28	5-11
	2Kx8	55	•	•		M	10%	80	3	24	28	5-11
	2Kx8	55	•	•		M/883	10%	80	3	24	28	5-11

	Package Type								
D	D 24D3, 24 Lead, 0.300" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)								
L	L 28L, 28 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)								
P	P 24P3, 24 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)								
	Temperature Range								
С	Commercial (0°C to 70°C)								
ı	Industrial (-40°C to 85°C)								
М	Military (-55°C to 125°C)								
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)								

AT27HC641	Organization	Speed		Pac	kage		Temp.	Power	lcc	(mA)	No. c	ofPins	Page
Part Number	Organization	(ns)	D	F	L	Р	Range	Supply	Active	Standby	DIP	LCC	Number
AT27HC641	8Kx8	35	•		•		С	5%	75	35	24	28	5-19
	8Kx8	45	•		•		С	10%	75	35	24	28	5-19
	8Kx8	45	•	ļ	•		1	10%	90	40	24	28	5-19
,	8Kx8	45	•		•		М	10%	90	40	24	28	5-19
	8Kx8	45	•		•		M/883	10%	90	40	24	28	5-19
	8Kx8	55	•		•	•	С	10%	75	35	24	28	5-19
	8Kx8	55	•		•	•	1	10%	90	40	24	28	5-19
	8Kx8	55	•		•	ļ	М	10%	90	40	24	28	5-19
	8Kx8	55	•		•		M/883	10%	90	40	24	28	5-19
	8Kx8	70	•		•	•	С	10%	75	35	24	28	5-19
	8Kx8	70	•		•	•	1	10%	90	40	24	28	5-19
į	8Kx8	70	•		•		M	10%	90	40	24	28	5-19
	8Kx8	70	•		•	l	M/883	10%	90	40	24	28	5-19
	8Kx8	90	•		•	•	С	10%	75	35	24	28	5-19
	8Kx8	90	•		•	•	ı	10%	90	40	24	28	5-19
	8Kx8	90	•				M	10%	90	40	24	28	5-19
	8Kx8	90	•		•		M/883	10%	90	40	24	28	5-19
SMD Number													
5962-87515 01	8Kx8	45	•				M/883	10%	90	40	24	28	5-19
5962-87515 02	8Kx8	55	•	•	•		M/883	10%	90	40	24	28	5-19
5962-87515 03	8Kx8	70	•	•	•		M/883	10%	90	40	24	28	5-19
5962-87515 04	8Kx8	90	•	•	•		M/883	10%	90	40	24	28	5-19

	Package Type						
D	24DW6, 24 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)						
F	24FW, 24 Lead, Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)						
L	28LW, 28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)						
P	24P6, 24 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)						
	Temperature Range						
С	Commercial (0°C to 70°C)						
1	Industrial (-40°C to 85°C)						
М	Military (-55°C to 125°C)						
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)						

AT27HC642	0	Speed	Pack	age	Temperature	Power	lcc (n	nA)	No. of Pins	Page
Part Number	Organization	(ns)	D	Р	Range	Supply	Active	Standby	DIP	Number
AT27HC642	8Kx8	35	•		С	5%	75	35	24	5-19
	8Kx8	45	•		С	10%	75	35	24	5-19
	8Kx8	45	•		1	10%	90	40	24	5-19
	8Kx8	45	•		М	10%	90	40	24	5-19
	8Kx8	45	•		M/883	10%	90	40	24	5-19
	8Kx8	55	•	•	С	10%	75	35	24	5-19
	8Kx8	55	•	•	1	10%	90	40	24	5-19
	8Kx8	55			М	10%	90	40	24	5-19
	8Kx8	55	•		M/883	10%	90	40	24	5-19
	8Kx8	70	•	•	С	10%	75	35	24	5-19
	8Kx8	70	•	•	l	10%	90	40	24	5-19
	8Kx8	70	•		М	10%	90	40	24	5-19
	8Kx8	70	•		M/883	10%	90	40	24	5-19
	8Kx8	90	•	•	С	10%	75	35	24	5-19
	8Kx8	90	•	•	I	10%	90	40	24	5-19
	8Kx8	90	•		М	10%	90	40	24	5-19
	8Kx8	90	•		M/883	10%	90	40	24	5-19
SMD Number										
5962-87515 01	8Kx8	45	•		M/883	10%	90	40	24	5-19
5962-87515 02	8Kx8	55	•		M/883	10%	90	40	24	5-19
5962-87515 03	8Kx8	70	•		M/883	10%	90	40	24	5-19
5962-87515 04	8Kx8	90	•		M/883	10%	90	40	24	5-19

	Package Type								
D	D 24DW3, 24 Lead, 0.300" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)								
Р									
	Temperature Range								
С	Commercial (0°C to 70°C)								
1	Industrial (-40°C to 85°C)								
М	M Military (-55°C to 125°C)								
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)								

AT27HC641R PartNumber	Organization	Speed (ns)	Pa D	acka L	ge P	Temp. Range	Power Supply	Active	(mA) Standby	No. c	fPins LCC	Page Number
AT27HC641R	8Kx8	35		•		С	10%	35	20	24	28	5-27
	8Kx8	45				С	10%	35	20	24	28	5-27
	8Kx8	45		•		1	10%	45	30	24	28	5-27
	8Kx8	45		•		м	10%	45	30	24	28	5-27
	8Kx8	45	•	•		M/883	10%	45	30	24	28	5-27
	8Kx8	55	•	•	•	С	10%	35	20	24	28	5-27
	8Kx8	55	•	•		1	10%	45	30	24	28	5-27
	8Kx8	55	•	•		М	10%	45	30	24	28	5-27
	8Kx8	55	•	•	1	M/883	10%	45	30	24	28	5-27
	8Kx8	70	•	•	•	С	10%	35	20	24	28	5-27
	8Kx8	70	•	•	•	1	10%	45	30	24	28	5-27
	8Kx8	70	•	•		M	10%	45	30	24	28	5-27
	8Kx8	70	•	•		M/883	10%	45	30	24	28	5-27
	8Kx8	90	•	•	•	С	10%	35	20	24	28	5-27
	8Kx8	90	•	•	•		10%	45	30	24	28	5-27
	8Kx8	90	•	•		М	10%	45	30	24	28	5-27
	8Kx8	90	•	•		M/883	10%	45	30	24	28	5-27

	Package Type									
D	D 24DW6, 24 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)									
L	L 28LW, 28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)									
Р	P 24P6, 24 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)									
	Temperature Range									
C	Commercial (0°C to 70°C)									
ı	Industrial (-40°C to 85°C)									
M	Military (-55°C to 125°C)									
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)									

AT27HC642R		Speed	Package D P		Temperature	Power	lcc (t	nA)	No. of Pins	Page
Part Number	Organization	(ns)			Range	Supply	Active	Standby	DIP	Number
AT27HC642R	8Kx8	35			С	10%	35	20	24	5-27
	8Kx8	45	•		С	10%	35	20	24	5-27
	8Kx8	45	•		ı	10%	45	30	24	5-27
	8Kx8	45	•		М	10%	45	30	24	5-27
	8Kx8	45	•		M/883	10%	45	30	24	5-27
	8Kx8	55	•	•	C	10%	35	20	24	5-27
	8Kx8	55	•	•	1	10%	45	30	24	5-27
	8Kx8	55	•		М	10%	45	30	24	5-27
	8Kx8	55	•		M/883	10%	45	30	24	5-27
	8Kx8	70	•		С	10%	35	20	24	5-27
	8Kx8	70	•		1	10%	45	30	24	5-27
	8Kx8	70	•		М	10%	45	30	24	5-27
	8Kx8	70	•		M/883	10%	45	30	24	5-27
	8Kx8	90	•	•	С	10%	35	20	24	5-27
	8Kx8	90	•	•	1	10%	45	30	24	5-27
	8Kx8	90			М	10%	45	30	24	5-27
	8Kx8	90			M/883	10%	45	30	24	5-27

	Package Type									
D	D 24DW3, 24 Lead, 0.300" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)									
Р	P 24P3, 24 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)									
	Temperature Range									
С	Commercial (0°C to 70°C)									
ł	Industrial (-40°C to 85°C)									
М	M Military (-55°C to 125°C)									
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)									

	Speed	Pac	kage	Temperature	Icc (mA)		No. of Pins		Page
Organization	(ns)	Р	R	Range	Active	Standby	DIP	SOIC	Number
8Kx8	100	•	•	С	35	0.1	28	28	6-3
8Kx8	100	•	•	1	35	0.1	28	28	6-3
8Kx8	120	•	•	C	35	0.1	28	28	6-3
8Kx8	120			1	35	0.1	28	28	6-3
8Kx8	150	•	•	С	35	0.1	28	28	6-3
8Kx8	150	•	•	1	35	0.1	28	28	6-3
	8Kx8 8Kx8 8Kx8 8Kx8	Organization (ns) 8Kx8 100 8Kx8 100 8Kx8 120 8Kx8 120 8Kx8 120 8Kx8 150	Organization (ns) P 8Kx8 100 • 8Kx8 100 • 8Kx8 120 • 8Kx8 120 • 8Kx8 150 •	Organization (ns) P R 8Kx8 100 • • • 8Kx8 120 • • 8Kx8 120 • • 8Kx8 150 • • •	Organization (ns) P R Range 8Kx8 100 • • • C C 8Kx8 100 • • I I 8Kx8 120 • • C C 8Kx8 120 • • I I 8Kx8 150 • • C C	Organization (ns) P R Range Active 8Kx8 100 • • C 35 8Kx8 100 • • I 35 8Kx8 120 • • C 35 8Kx8 120 • I 35 8Kx8 150 • C 35	Organization (ns) P R Range Active Standby 8Kx8 100 • • C 35 0.1 8Kx8 100 • • I 35 0.1 8Kx8 120 • • C 35 0.1 8Kx8 120 • I 35 0.1 8Kx8 150 • C 35 0.1	Organization (ns) P R Range Active Standby DIP 8Kx8 100 • • C 35 0.1 28 8Kx8 100 • • I 35 0.1 28 8Kx8 120 • • C 35 0.1 28 8Kx8 120 • I 35 0.1 28 8Kx8 120 • I 35 0.1 28 8Kx8 150 • C 35 0.1 28	Organization (ns) P R Range Active Standby DIP SOIC 8Kx8 100 • • C 35 0.1 28 28 8Kx8 100 • • I 35 0.1 28 28 8Kx8 120 • • C 35 0.1 28 28 8Kx8 120 • I 35 0.1 28 28 8Kx8 150 • C 35 0.1 28 28

	Package Type								
Р	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)								
R									
	Temperature Range								
С	Commercial (0°C to 70°C)								
ı	Industrial (-40°C to 85°C)								

CMOS SRAM

AT3864L-15DMB	Organi-	Speed	Package	Temperature	lcc	(mA)	No. of Pins	Page
Part Number	zation	(ns)	D	Range	Active	Standby	DIP	Number
AT3864L-15DMB	8Kx8	150	•	М	40	1.0	28	6-11

	Package Type													
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)													
	Temperature Range													
М	Military (-55°C to 125°C)													

AT38256	Organi-	Speed		Р	acka	ge		Temperature	loc	(mA)	No. of Pins	Page
Part Number	zation	(ns)	В	B D N P		Х	Range	Active Standby		DIP	Number	
AT38256	32Kx8	20			•		•	С	120	1.0	28	6-19
	32Kx8	20			•		•	1	120	1.0	28	6-19
	32Kx8	25			•	•	•	С	120	1.0	28	6-19
	32Kx8	25			•	•	•	1	120	1.0	28	6-19
	32Kx8	25	•	•				M	120	1.0	28	6-19
	32Kx8	35			•	•	•	С	120	1.0	28	6-19
	32Kx8	35			•	•	•	ı	120	1.0	28	6-19
l İ	32Kx8	35	•	•				М	120	1.0	28	6-19

	Package Type
В	28B, 28 Lead, 0.300" Wide, Ceramic Side Braze Dual Inline (Side Braze)
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
N	28P3, 28 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
Р	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
Х	28X, 28 Lead, 0.300" Wide, Plastic J-Leaded Small Outline (SOIC)
	Temperature Range
С	Commercial (0°C to 70°C)
ı	Industrial (-40°C to 85°C)
М	Military (-55°C to 125°C)

CMOS SRAM

AT22V10	Approx.	Speed				P	acka	ge				Temp.	Power	Icc	No. o	fPins	Page
Part Number	Gates	(ns)	D	F	G	J	K	L	N	Р	Υ	Range	Supply	(mA)	DIP	LCC	Number
AT22V10	500	15							•	•	•	С	10%	90	24	28	7-3
		15	•	•	•	•	•	•	•	•	٠	1	10%	90	24	28	7-3
		20	•	•	•	•	•	•	•	•	•	С	10%	55	24	28	7-3
		20	•	•	•	•	•	•	•	•	•	1	10%	55	24	28	7-3
		20	•	•	•		•	•	•		•	М	10%	55	24	28	7-3
		20	• .	•	•		•	•	•		•	M/883	10%	55	24	28	7-3
		25	•	•	•	•	•	•	•	•	•	С	10%	55	24	28	7-3
		25	•	•	•	•	•	•	•	•	•	1	10%	55	24	28	7-3
		25	•	•	•		•	•	•		•	М	10%	55	24	28	7-3
		25	•	•	•		•	•	•		•	M/883	10%	55	24	28	7-3
		30	•	•	•		•	•	•		•	М	10%	55	24	28	7-3
		30	•	•	•		•	•	•		•	M/883	10%	55	24	28	7-3
		35	•	•	•	•	•	•	•	•	•	С	10%	55	24	28	7-3
		35	•	•	•	•	•	•	•	•	•	1	10%	55	24	28	7-3
SMD Number																	
5962-87539 04	500	20	•					•				M/883	10%	55	24	28	7-3
5962-8753901	500	25	•					•			•	M/883	10%	55	24	28	7-3
5962-8753902	500	30	•					•			•	M/883	10%	55	24	28	7-3
5962-8753903	500	40	•					•			•	M/883	10%	55	24	28	7-3
5962-8867004	500	20		•	•				•			M/883	10%	55	24	28	7-3
5962-8867001	500	25		•	•				•			M/883	10%	55	24	28	7-3
5962-8867002	500	30		•	•				•			M/883	10%	55	24	28	7-3
5962-8867003	500	40		•	•				•			M/883	10%	55	24	28	7-3

	Package Type
D	24DW3, 24 Lead, 0.300" Wide, Windowed (OTP) Ceramic Dual Inline Package (Cerdip)
F	24C, 24 Lead, Non-Windowed, Ceramic Flat Package (Cerpack)
G	24D3, 24 Lead, 0.300" Wide, Non-Windowed (OTP) Ceramic Dual Inline Package (Cerdip)
J	28J, 28 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
K	28KW, 28 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)
L	28LW, 28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
N	28L, 28 Pad, Non-Windowed Ceramic Leadless Chip Carrier OTP (LCC)
Р	24P3, 24 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)
Υ	24CW, 24 Lead, Windowed, Ceramic Flat Package (Cerpack)
	Temperature Range
С	Commercial (0°C to 70°C)
ı	Industrial (-40°C to 85°C)
M	Military (-55°C to 125°C)
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)

AT22V10L	Approx.	Speed				Pa	acka	ige				Temp.	Power	lcc	No.o	fPins	Page
Part Number	Gates	(ns)	D	F	G	J	K	L	Ν	Р	Υ	Range	Supply	(mA)	DIP	LCC	Number
AT22V10L	500	15	•	•		•		•		•		С	10%	12	24	28	7-3
	ĺ	15	•	•	•	•	•	•	•	•	•	1	10%	15	24	28	7-3
		20	•	•	•	•	•	•	•	•	•	С	10%	12	24	28	7-3
		20		•	•	•	•	•	•	•	•	1	10%	15	24	28	7-3
		20	•				•	•	•		•	М	10%	15	24	28	7-3
		20		•	•			•	•		•	M/883	10%	15	24	28	7-3
		25	•		•	•	•	•	•	•	•	С	10%	12	24	28	7-3
		25	•	•	•	•	•				•	1	10%	15	24	28	7-3
·		25		•	•		•	•			•	М	10%	15	24	28	7-3
		25			•		•	•				M/883	10%	15	24	28	7-3
		30					•		•		•	М	10%	15	24	28	7-3
		30							•		•	M/883	10%	15	24	28	7-3
		35						•			•	C	10%	12	24	28	7-3
		35	•	•	•	•	•	•	•	•	•	i	10%	15	24	28	7-3
SMD Number																	
5962-8872401	500	25			•							M/883	10%	15	24	28	7-3
5962-8872402	500	30		•					•			M/883	10%	15	24	28	7-3
5962-8872403	500	40			•				•			M/883	10%	15	24	28	7-3
5962-89755 04	500	20		•					•			M/883	10%	15	24	28	7-3
5962-89755 01	500	25		•					•			M/883	10%	15	24	28	7-3
5962-8975502	500	30							•			M/883	10%	15	24	28	7-3
5962-8975503	500	40		•	•				•			M/883	10%	15	24	28	7-3

	Package Type
D	24DW3, 24 Lead, 0.300" Wide, Windowed (OTP) Ceramic Dual Inline Package (Cerdip)
F	24C, 24 Lead, Non-Windowed, Ceramic Flat Package (Cerpack)
G	24D3, 24 Lead, 0.300" Wide, Non-Windowed (OTP) Ceramic Dual Inline Package (Cerdip)
J	28J, 28 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
K	28KW, 28 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)
L	28LW, 28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
N	28L, 28 Pad, Non-Windowed Ceramic Leadless Chip Carrier OTP (LCC)
Р	24P3, 24 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)
Υ	24CW, 24 Lead, Windowed, Ceramic Flat Package (Cerpack)
	Temperature Range
С	Commercial (0°C to 70°C)
I	Industrial (-40°C to 85°C)
. M	Military (-55°C to 125°C)
M/883	MIL-STD-883C, (-55°C to 125°C) Class B, Fully Compliant

ATV750	Approx.	Speed			,	P	acka	ge				Temp.	Power	lcc	No. o	fPins	Page
Part Number	Gates	(ns)	D	F	G	J	K	L	N	Р	Y	Range	Supply	(mA)	DIP	LCC	Number
ATV750	750	20	•	•	•			•			•	С	10%	120	24	28	7-19
	ĺ	20	•	•	•	•	•	•	•	•	•	1	10%	140	24	28	7-19
		20	•	•	•		•	•			•	M	10%	140	24	28	7-19
		20	•	•	•		•	•	•		•	M/883	10%	140	24	28	7-19
		25	•	•	•	•	•	•	•	•	•	С	10%	120	24	28	7-19
		25	•	•	•	•	•	•	•	•	•	1	10%	140	24	28	7-19
!		25	•	•	•		•	•	•		•	M	10%	140	24	28	7-19
		25	•		•		•	•	•		•	M/883	10%	140	24	28	7-19
		30		•	•	•	•	•	•	•	•	С	10%	120	24	28	7-19
4		30	•			•				•	•	1	10%	140	24	28	7-19
		30		•	•		•	•	•		•	М	10%	140	24	28	7-19
		30	•		•		•	•			•	M/883	10%	140	24	28	7-19
		35	•	•	•	•		•	•	•	•	С	10%	120	24	28	7-19
		35	•	•	•		•		•	•	•	1	10%	140	24	28	7-19
		35	•	•	•			•			•	М	10%	140	24	28	7-19
		35	•		•		•	•	•		•	M/883	10%	140	24	28	7-19
		40		•	•		•	•		•	•	1	10%	140	24	28	7-19
	İ	40	•		•			•			•	М	10%	140	24	28	7-19
		40	•	•	•		•	•	•		•	M/883	10%	140	24	28	7-19
SMD Number																	
5962-8872602	750	35					1	•				M/883	10%	140	24	28	7-19
5962-8872601	750	40	•					•				M/883	10%	140	24	28	7-19

	Package Type
D	24DW3, 24 Lead, 0.300" Wide, Windowed (OTP) Ceramic Dual Inline Package (Cerdip)
F	24C, 24 Lead, Non-Windowed, Ceramic Flat Package (Cerpack)
G	24D3, 24 Lead, 0.300" Wide, Non-Windowed (OTP) Ceramic Dual Inline Package (Cerdip)
J	28J, 28 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
K	28KW, 28 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)
L	28LW, 28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
N	28L, 28 Pad, Non-Windowed Ceramic Leadless Chip Carrier OTP (LCC)
Р	24P3, 24 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)
Υ	24CW, 24 Lead, Windowed, Ceramic Flat Package (Cerpack)
	Temperature Range
С	Commercial (0°C to 70°C)
I	Industrial (-40°C to 85°C)
M	Military (-55°C to 125°C)
M/883	MIL-STD-883C, (-55°C to 125°C) Class B, Fully Compliant

ATV750L Part Number	Approx. Gates	Speed (ns)	D	F	G	P. J	acka K	ige L	N	Р	Υ	Temp. Range	Power Supply	Icc (mA)	No. o	fPins LCC	Page Number
ATV750L	750	20 20 25 25 25 25 25 30 30 30	•	•	•	•	•	•		•	•	C I C I M M/883 I M/883	10% 10% 10% 10% 10% 10% 10%	120 140 120 140 140 140 140 140	24 24 24 24 24 24 24 24 24	28 28 28 28 28 28 28 28 28 28	7-19 7-19 7-19 7-19 7-19 7-19 7-19 7-19

	Package Type
D	24DW3, 24 Lead, 0.300" Wide, Windowed (OTP) Ceramic Dual Inline Package (Cerdip)
F	24C, 24 Lead, Non-Windowed, Ceramic Flat Package (Cerpack)
G	24D3, 24 Lead, 0.300" Wide, Non-Windowed (OTP) Ceramic Dual Inline Package (Cerdip)
J	28J, 28 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
K	28KW, 28 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)
L	28LW, 28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
N	28L, 28 Pad, Non-Windowed Ceramic Leadless Chip Carrier OTP (LCC)
P	24P3, 24 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)
Υ	24CW, 24 Lead, Windowed, Ceramic Flat Package (Cerpack)
	Temperature Range
С	Commercial (0°C to 70°C)
ı	Industrial (-40°C to 85°C)
М	Military (-55°C to 125°C)
M/883	MIL-STD-883C, (-55°C to 125°C) Class B, Fully Compliant

ATV2500	Approx.	Speed		Pa	acka	ge	_	Temp.	Power	lcc		ofPins	Page
Part Number	Gates	(ns)	D	J	K	L	Р	Range	Supply	(mA)	DIP	LCC	Number
ATV2500	2500	30	•	•	•	•	•	С	10%	5	40	44	7-39
		35	•	•	•	•	•	С	10%	5	40	44	7-39
1		35	•	•	•	•	•	ı	10%	10	40	44	7-39
l _i		35	•		•	•		M	10%	10	40	44	7-39
		35	•		•	•		M/883	10%	10	40	44	7-39
		40	•	•	•	•	•	С	10%	5	40	44	7-39
		40	•	•	•	•	•	ı	10%	10	40	44	7-39
		40	•	1	•	•	1	M	10%	10	40	44	7-39
1		40	•		•	•		M/883	10%	10	40	44	7-39
		45	•	•	•	•	•	l	10%	10	40	44	7-39
		45	•		•	•		M	10%	10	40	44	7-39
}		45	•		•	•		M/883	10%	10	40	44	7-39

ATV2500H Part Number	Approx. Gates	Speed (ns)	D	P. J	acka K	ige L	Р	Temp. Range	Power Supply	Icc (mA)	No. o	of Pins LCC	Page Number
ATV2500H	2500	25 25 25 25 30 30 30 30 30 35 35 35		•		•	•	C I M M/883 C I M M/883 C	10% 10% 10% 10% 10% 10% 10% 10% 10%	120 140 140 140 120 140 140 140 120 140 140 140	40 40 40 40 40 40 40 40 40 40	44 44 44 44 44 44 44 44 44	7-39 7-39 7-39 7-39 7-39 7-39 7-39 7-39

	Package Type							
D	40DW6, 40 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)							
J	44J, 44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)							
K	44KW, 44 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)							
L	44LW, 44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)							
P	40P6, 40 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)							
	Temperature Range							
С	Commercial (0°C to 70°C)							
1	Industrial (-40°C to 85°C)							
M	Military (-55°C to 125°C)							
M/883	MIL-STD-883C, (-55°C to 125°C) Class B, Fully Compliant							

ATV5000 Part Number	Approx. Gates	Speed (ns)	Paci J	kage K	Temperature Range	Power Supply	Icc (mA)	No. of Pins LCC	Page Number
ATV5000	5000	25	•	•	С	10%	40	68	7-57
	5000	30	•	•	С	10%	40	68	7-57
	5000	30				10%	50	68	7-57
	5000	30			М	10%	50	68	7-57
	5000	30			M/883	10%	50	68	7-57
	5000	35	•	•	ı	10%	50	68	7-57
	5000	35		•	М	10%	50	68	7-57
	5000	35		•	M/883	10%	50	68	7-57

	Package Type										
J	J 68J, 68 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)										
K	68KW, 68 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)										
	Temperature Range										
С	Commercial (0°C to 70°C)										
ı	Industrial (-40°C to 85°C)										
М	Military (-55°C to 125°C)										
M/883	MIL-STD-883C, Class B, Fully Compliant (-55°C to 125°C)										

CMOS Analog Product Selection Guide

AT76C10	Delay	Gain	Bandwidth	Package			Temp.	Power	No. of Pins		Page
Part Number	(ms)	(dB)	(KHz)	D	Ρ	S	Range	Supply	DIP	SOIC	Number
AT76C10	1.8	31.5	4		•	•	С	10%	16	16	9-3
	1.8	31.5	4	į	•	•	1	10%	16	16	9-3
	1.8	31.5	4	•			М	5%	16	16	9-3

AT76C10E	Delay	Gain	Bandwidth	P:	acka	ge	Temp.	Power	No. of	fPins	Page
PartNumber	(ms)	(dB)	(KHz)	D	P	S	Range	Supply	DIP	SOIC	Number
AT76C10E	1.8 1.8 1.8	31.5 31.5 31.5	4 4 4	•	•	•	C I M	10% 10% 5%	16 16 16	16 16 16	9-11 9-11 9-11

	Package Type							
D	16D3, 16 Lead, 0.300" Wide, Non-Windowed (OTP), Ceramic Dual Inline Package (Cerdip)							
P	16P3, 16 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)							
S	16S, 16 Lead, 0.300" Wide, Plastic Gull Wing Small Outline OTP (SOIC)							
	Temperature Range							
С	Commercial (0°C to 70°C)							
ı	Industrial (-40°C to 85°C)							
M	Military (-55°C to 125°C)							

CMOS Analog Product Selection Guide

AT76C120 Part Number	Organization		Signal-to- Noise (dB)	,	Paci D	kage P	Temp. Range	Power Supply	No. of Pins DIP	Page Number
AT76C120-1 AT76C120-2	Dual 16/18-bit A/D Dual 16/18-bit A/D Dual 16/18-bit A/D Dual 16/18-bit A/D Dual 16/18-bit A/D Dual 16/18-bit A/D	96 96 96 96	90 90 90 84 84 84	15 15 15 13 13	•	•	C - M C - M	10% 10% 5% 10% 10% 5%	24 24 24 24 24 24	9-19 9-19 9-19 9-19 9-19 9-19

	Package Type							
D	24D6, 24 Lead, 0.600" Wide, Non-Windowed (OTP), Ceramic Dual Inline Package (Cerdip)							
Р	24P6, 24 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)							
	Temperature Range							
С	Commercial (0°C to 70°C)							
ı	Industrial (-40°C to 85°C)							
М	Military (-55°C to 125°C)							

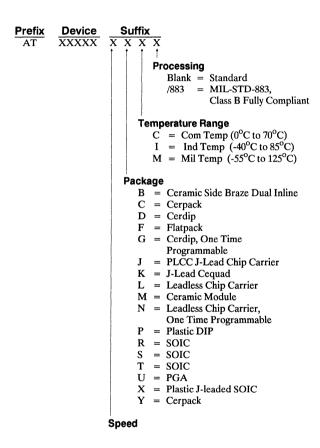
CMOS Analog Product Selection Guide

AT76C171	Organ	ization	Speed	Pá	acka(ge	Temp.	Power	No. of	Pins	Page
Part Number	D/A	RAM	(MHz)	D		P	Range	Supply	DIP	LCC	Number
AT76C171	Triple 6-bit Triple 6-bit Triple 6-bit Triple 6-bit Triple 6-bit	256x18 256x18 256x18 256x18 256x18	35 35 35 50 50	•	•	•	C - M C -	10% 10% 5% 10% 10%	28 28 28 28 28	32 32 32 32 32 32	9-27 9-27 9-27 9-27 9-27

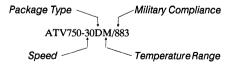
AT76C176 PartNumber	Orgar D/A	nization RAM	Speed (MHz)	Pa D	acka J	ge P	Temp. Range	Power Supply	No. o	fPins LCC	Page Number
AT76C176	Triple 6-bit	256 x 18	40		•	•	С	10%	28	32	9-39
	Triple 6-bit	256 x 18	40		•	•	1	10%	28	32	9-39
	Triple 6-bit	256 x 18	40	•			M	5%	28	32	9-39
	Triple 6-bit	256 x 18	50		•	•	С	10%	28	32	9-39
	Triple 6-bit	256×18	50		•		- 1	10%	28	32	9-39
	Triple 6-bit	256 x 18	66		•	•	С	5%	28	32	9-39

	Package Type							
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)							
J	32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)							
P	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)							
	Temperature Range							
С	Commercial (0°C to 70°C)							
i	Industrial (-40°C to 85°C)							
М	Military (-55°C to 125°C)							

CMOS Analog Product Selection Guide


AT76C176A	Organ	ization	Speed		Pack	kage		Temp.	Power	No. o	fPins	Page
Part Number	D/A	RAM	(MHz)	D	J1	J2	Р	Range	Supply	DIP	LCC	Number
AT76C176A	Triple 6-bit	256×18	50		•	•	•	С	10%	28	32,44	9-51
	Triple 6-bit	256×18	50		•	•	•	1	10%	28	32,44	9-51
	Triple 6-bit	256×18	50	•				М	5%	28	32,44	9-51
	Triple 6-bit	256×18	66		•	•	•	С	10%	28	32,44	9-51
	Triple 6-bit	256×18	66		•	•	•	1	10%	28	32,44	9-51
	Triple 6-bit	256×18	66	•		j		M	5%	28	32,44	9-51
	Triple 6-bit	256×18	80		•	•	•	С	10%	28	32,44	9-51
	Triple 6-bit	256×18	80		•	•	•	1	10%	28	32,44	9-51
	Triple 6-bit	256×18	110		•	•		С	5%	28	32,44	9-51

	Package Type							
D	28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)							
J1	32J, 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)							
J2	44J, 44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)							
Р	28P6, 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)							
	Temperature Range							
С	Commercial (0°C to 70°C)							
1	Industrial (-40°C to 85°C)							
М	Military (-55°C to 125°C)							


Explanation of Atmel's Part Number Code

All Atmel part numbers begin with the prefix "AT." The next four to nine digits are the part number. In addition, Atmel parts can be ordered in particular speeds, in specific packages, for particular temperature ranges and with the option of 883C level B military compliance. The available options for

each part are listed at the back of its data sheet in its "Ordering Information" table. These options are designated by the following suffixes placed at the end of the Atmel part number, in the order given:

Here is an example of how to designate a part number:

Product Information	1
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	3
CMOS EPROMs	4
High Speed CMOS PROMs	5
CMOS SRAMs	6
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	14

Section 2

CMOS E-PRO	MS		
AT28HC16/L	2K x 8	High Speed, 16K CMOS E ² PROM	2-,3
AT28HC64/L	8K x 8	High Speed, 64K Paged E ² PROM	2-15
AT28HC256/L	32K x 8	High Speed, 256K Paged E ² PROM	
AT28C04	512K x 8	4K E ² PROM	2-41
AT28C16	2K x 8	16K E ² PROM	2-51
AT28C17	2K x 8	16K E ² PROM	
AT28C64	8K x 8	64K E ² PROM	2-71
AT28C64X	8K x 8	64K E ² PROM Without Ready-Busy	
AT28PC64	8K x 8	64K E ² PROM With Page Mode Write	
AT28C256	32K x 8	256K E ² PROM	
AT28MC010	128K x 8	1MBit Module E ² PROM	2-105
AT28C1024	64K x 16	1MBit E ² PROM	2-115
AT28C010	128K v 16	1MRit E ² PROM with 128 Ryte Page	2-125

2-2

Features

- Fast Read Access Time 45ns
- · Fast Byte Write 1ms
- Self-Timed Byte Write Cycle Internal Address and Data Latches Internal Control Timer Automatic Clear Before Write
- Direct Microprocessor Control DATA POLLING
- Low Power

80mA Active Current 500µA CMOS Standby Current (28HC16L)

High Reliability CMOS Technology

Endurance: 10⁴ cycles Data Retention: 10 years

- 5 V ± 10% Supply
- . CMOS & TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28HC16/16L is a high-speed, low-power Electrically Erasable and Programmable Read Only Memory. The device is optimized for high speed applications, featuring access times to 45ns. Its 16k of memory is organized as 2,048 words by 8 bits. The AT28HC16/16L comes in a space saving 24 pin DIP.

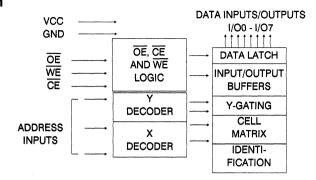
The AT28HC16/16L is accessed like a static RAM for the read or write cycles without the need of external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of a write cycle, the device being written will go to a busy state and automatically clear and write the latched data using an internal control timer. Data polling of I/O7 may be used to detect the end of the write cycle. Once a write cycle has been completed, a new access for a read or a write may begin immediately.

Atmel's high-speed CMOS technology is used to achieve access times of 45ns for the AT28HC16 with under 440mW of power dissipation. The AT28HC16L offers ultra low standby power consumption of under 2.75mW at access time to 55ns.

The AT28HC16/16L has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and for improved data retention characteristics. An extra 16 bytes of E²PROM are available for device identification or tracking.

Pin Configurations

A7 U 1 2 A6 U 2 A5 U 3 A4 U 4 A3 U 5 A2 U 6 A1 U 7 A0 U 8 I/O0 U 9 I/O2 U 11 GND U 12	24 D VCC 23 D A8 22 D A9 21 D WE 20 D OE 17 D VO7 16 D V/O6 15 D V/O5 14 D V/O4 13 D V/O4
---	--


PIN NAMES						
A0 - A10	Addresses					
CE	Chip Enable					
ŌĒ	Output Enable					
WE	Write Enable					
I/O0 - I/O7	Data Inputs/Outputs					
NC	No Connect					

16K (2K x 8) High Speed CMOS E²PROM

Block Diagram

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	V_{IL}	V_{IL}	$V_{ m IH}$	Dout
Write ⁽²⁾	V_{IL}	V_{IH}	V_{IL}	D_{IN}
Standby/Write Inhibit	V_{IH}	$\mathbf{X}^{(1)}$	X	High Z
Write Inhibit	X	X	V_{IH}	
Write Inhibit	X	V _{IL}	X	
Output Disable	X	V _{IH}	X	High Z
Chip Erase	V_{IL}	$V_{H}^{(3)}$	VIL	High Z

Notes: 1. X can be VIL or VIH.

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5 V$.

Device Operation

READ: The AT28HC16/16L is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in a high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the AT28HC16/16L is similar to writing into a Static RAM. A low pulse on the \overline{WE} or \overline{CE} input with \overline{OE} high and \overline{CE} or \overline{WE} low (respectively) initiates a byte write. The address location is latched on the last falling edge of \overline{WE} (or \overline{CE}); the new data is latched on the first rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion.

DATA POLLING: The AT28HC16/16L provides DATA POLLING to signal the completion of a write cycle. During a write cycle, an attempted read of the data being written results in the complement of that data for I/O7 (the other outputs are indeterminate). When the write cycle is finished, true data appears on all outputs.

WRITE PROTECTION: Inadvertent writes to the device are protected against in the following ways: (a) Vcc sense — if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay — once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a byte write. (c) Write Inhibit — holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits byte write cycles. (d) Noise Protection — a \overline{WE} or \overline{CE} pulse of less than 10ns (typical) will not initiate a write cycle.

CHIP CLEAR: The contents of the entire memory of the AT28HC16/16L may be set to the high state by the CHIP CLEAR operation. By setting \overline{CE} low and \overline{OE} to 12 volts, the chip is cleared when a 10 msec low pulse is applied to \overline{WE} .

DEVICE IDENTIFICATION: In the AT28HC16/16L there are an extra 16 bytes of E^2 PROM memory available to the user for device identification. By raising A9 to 12 ± 0.5 V and using address locations 7F0H to 7FFH the additional bytes may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to $+150$ °C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} \! + \! 0.6V$
Voltage on \overline{OE} and A9 with Respect to Ground0.6V to $+13.5V$

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

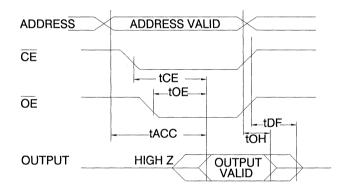
		AT28HC16-45	AT28HC16L-55	AT28HC16-55	AT28HC16-70	AT28HC16-90
					AT28HC16L-70	AT28HC16L-90
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С	0°C - 70°C	0°C - 70°C
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.			-55°C - 125°	-55°C - 125°C	-55°C - 125°C
VCC Power Su	pply	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

D.C. Characteristics

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$		10	μΑ
ILO	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		10	μΑ
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{\text{CE}} = \text{V}_{\text{CC}} - 0.3 \text{V to V}_{\text{CC}} + 1.0$	V (AT28HC16L)	500	μΑ
I _{SB2}	V _{CC} Standby Current TTL	$\overline{CE} = 2.0V$	AT28HC16L	3	mA
		to $V_{CC} + 1.0V$	AT28HC16	60	mA
ICC	V _{CC} Active Current A.C	$f = 10MHz$; $I_{out} = 0mA$		80	mA
VIL	Input Low Voltage			0.8	V
V_{IH}	Input High Voltage		2.0		V
$V_{ m OL}$	Output Low Voltage	I _{OL} =12mA		.4	V
VoH	Output High Voltage	$I_{OH} = -4.0 \text{mA}$	2.4		V

Pin Capacitance (f = 1 MHz T = 25°C) (5)

	Тур	Max	Units	Conditions	
C _{IN}	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	$V_{OUT} = 0V$	



A.C. Read Characteristics (1)

Symbol		28HC Min	16-45 Max		216-55 Max		16L-55 Max		C16-70 Max		C16L-70 Max		C16L-9 Max	0 Units
tACC	Address to Output Delay		45		55		55		70		70		90	ns
$t_{CE}^{(2)}$	CE to Output Delay		30		40		55		50		70		90	ns
toE ⁽³⁾	OE to Output Delay	0	30	0	40	0	40	0	50	0	50	0	50	ns
t _{DF} ^(4,5)	OE to Output Float	0	30	0	40	0	40	0	50	0	50	0	50	ns
ton	Output Hold from OE	0		0		0		0		0		0		ns
	or Address, whichever													
	occurred first													

A.C. Read Waveforms

Notes:

- 1. $C_L = 30pF$.
- CE may be delayed up to tACC tCE after the address transition without impact on tACC.
- OE may be delayed up to tCE tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change without impact on tACC.
- 4. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first $(C_L = 5pF)$.
- 5. This parameter is characterized and is not 100% tested.

3.0V

0.0V

Input Test Waveforms and Measurement Level

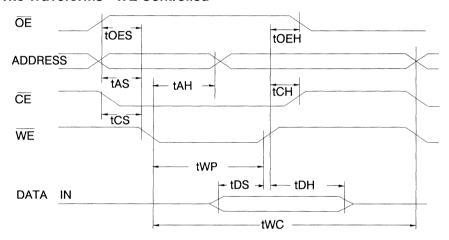
AC MEASUREMENT LEVEL 330 OUTPUT PIN 200 30pF

Output Test Load

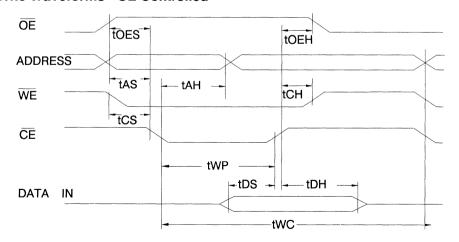
 t_R , $t_F < 5 ns$

AC DRIVING

LEVELS


AT28HC16/L

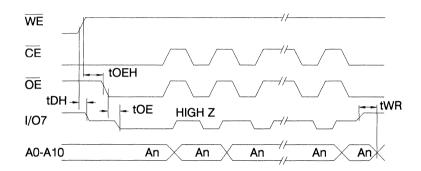
1.5V


A.C. Write Characteristics

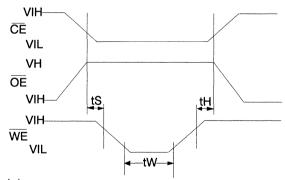
Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	0			ns
tAH	Address Hold Time	50			ns
twp	Write Pulse Width	100		1000	ns
t _{DS}	Data Set-up Time	50			ns
tDH,tOEH	Data, OE Hold Time	0			ns
twc	Write Cycle Time		0.5	1.0	ms

A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - TE Controlled



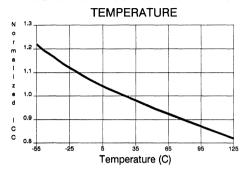
Data Polling Characteristics (1)


Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	0			ns
toeh	OE Hold Time	0			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

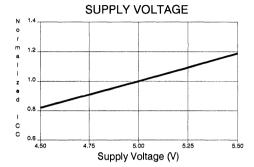
Note: 1. These parameters are characterized and not 100% tested.

Data Polling Waveforms

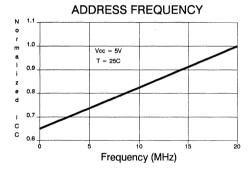
Chip Erase Waveforms



 $t_S = t_H = 1 \mu sec (min.)$


tw = 10msec (min.)

 $V_H = 12 \pm 0.5V$


NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

tacc	loo	: (mA)	Ordoring Code	Packago	Operation Pages
(ns)	Active	Standby	Ordering Code	Package	Operation Range
45	80	60	AT28HC16N-45DC AT28HC16-45DC AT28HC16N-45PC AT28HC16-45PC	24D3 24D6 24P3 24P6	Commercial (0°C to 70°C)
			AT28HC16N-45DI AT28HC16-45DI AT28HC16N-45PI AT28HC16-45PI	24D3 24D6 24P3 24P6	Industrial (-40°C to 85°C)
55	80	60	AT28HC16N-55DC AT28HC16-55DC AT28HC16N-55PC AT28HC16-55PC	24D3 24D6 24P3 24P6	Commercial (0°C to 70°C)
			AT28HC16N-55DI AT28HC16-55DI AT28HC16N-55PI AT28HC16-55PI	24D3 24D6 24P3 24P6	Industrial (-40°C to 85°C)
			AT28HC16N-55DM AT28HC16-55DM	24D3 24D6	Military (-55°C to 125°C)
			AT28HC16N-55DM/883 AT28HC16-55DM/883	24D3 24D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)
70	80	60	AT28HC16N-70DC AT28HC16-70DC AT28HC16N-70PC AT28HC16-70PC	24D3 24D6 24P3 24P6	Commercial (0°C to 70°C)
			AT28HC16N-70DI AT28HC16-70DI AT28HC16N-70PI AT28HC16-70PI	24D3 24D6 24P3 24P6	Industrial (-40°C to 85°C)
			AT28HC16N-70DM AT28HC16-70DM	24D3 24D6	Military (-55°C to 125°C)
			AT28HC16N-70DM/883 AT28HC16-70DM/883	24D3 24D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	80	60	AT28HC16N-90DC AT28HC16-90DC AT28HC16N-90PC AT28HC16-90PC AT28HC16-90W	24D3 24D6 24P3 24P6 DIE	Commercial (0°C to 70°C)
			AT28HC16N-90DI AT28HC16-90DI AT28HC16N-90PI AT28HC16-90PI	24D3 24D6 24P3 24P6	Industrial (-40°C to 85°C)

tacc	lco	(mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby	Crucing Code	1 donage	Operation Hange
90	80	60	AT28HC16N-90DM AT28HC16-90DM	24D3 24D6	Military (-55°C to 125°C)
			AT28HC16N-90DM/883 AT28HC16-90DM/883	24D3 24D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type
24D3	24 Lead, 0.300" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
24D6	24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
24P3	24 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
W	Die

tacc	Icc	(mA)	Oudering Code	Package	Operation Dense
(ns)	Active	Standby	Ordering Code	Fackage	Operation Range
55	80	0.5	AT28HC16LN-55DC AT28HC16L-55DC AT28HC16LN-55PC AT28HC16L-55PC	24D3 24D6 24P3 24P6	Commercial (0°C to 70°C)
			AT28HC16LN-55DI AT28HC16L-55DI AT28HC16LN-55PI AT28HC16L-55PI	24D3 24D6 24P3 24P6	Industrial (-40°C to 85°C)
			AT28HC16LN-55DM AT28HC16L-55DM	24D3 24D6	Military (-55°C to 125°C)
			AT28HC16LN-55DM/883 AT28HC16L-55DM/883	24D3 24D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)
70	80	0.5	AT28HC16LN-70DC AT28HC16L-70DC AT28HC16LN-70PC AT28HC16L-70PC AT28HC16L-70W	24D3 24D6 24P3 24P6 DIE	Commercial (0°C to 70°C)
			AT28HC16LN-70DI AT28HC16L-70DI AT28HC16LN-70PI AT28HC16L-70PI	24D3 24D6 24P3 24P6	Industrial (-40°C to 85°C)
			AT28HC16LN-70DM AT28HC16L-70DM	24D3 24D6	Military (-55°C to 125°C)
			AT28HC16LN-70DM/883 AT28HC16L-70DM/883	24D3 24D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	80	0.5	AT28HC16LN-90DC AT28HC16L-90DC AT28HC16LN-90PC AT28HC16L-90PC AT28HC16L-90W	24D3 24D6 24P3 24P6 DIE	Commercial (0°C to 70°C)
			AT28HC16LN-90DI AT28HC16L-90DI AT28HC16LN-90PI AT28HC16L-90PI	24D3 24D6 24P3 24P6	Industrial (-40°C to 85°C)
			AT28HC16LN-90DM AT28HC16L-90DM	24D3 24D6	Military (-55°C to 125°C)
			AT28HC16LN-90DM/883 AT28HC16L-90DM/883	24D3 24D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type
24D3	24 Lead, 0.300" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
24D6	24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
24P3	24 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
W	Die

2-14

Features

- Fast Read Access Time 55ns
- Automatic Page Write Operation
 Internal Address and Data Latches for 32 Bytes
 Internal Control Timer
- Fast Write Cycle Times

Maximum Page Write Cycle Time: 2ms 1 to 32 Byte Page Write Operation

- Low Power Dissipation 80mA Active Current 100μA CMOS Standby Current
- Direct Microprocessor Control

DATA Polling

- High Reliability CMOS Technology Endurance: 10⁴ or 10⁵ Cycles Data Retention: 10 years
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28HC64/L is a high-speed, low-power Electrically Erasable and Programmable Read Only Memory. Its 64k of memory is organized as 8,192 words by 8 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the device offers access times to 55ns with power dissipation of just 440mW. When the device is deselected the standby current is less than 100_LA.

The AT28HC64/L is accessed like a Static RAM for the read or write cycles without the need for external components. The device contains a 32-byte page register to allow writing of up to 32 bytes simultaneously. During a write cycle, the addresses and 1 to 32 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

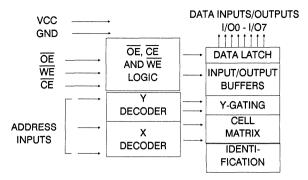
Atmel's 28HC64/L has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. The AT28HC64/L also includes an extra 32 bytes of E²PROM for device identification or tracking.

Pin Configurations

NC I	28		vcc
A12 🗆 2			WE
A7 🗆 3	26		NC
A6 ☐ 4	25		8A
A5 📮 5	24		A9
A4 ☐ 6	23		A11
АЗ □ 7	22		OE
A2 □ 8	21	\Box	A10
A1 🗆 9	20	\Box	CE
A0 🗆 10	19		1/07
I/O0 🗆 11	18		1/06
I/O1 🗆 12	17	J	1/05
I/O2 🗆 13	16		1/04
GND ☐ 14	15		1/03

PIN 1	PIN NAMES						
A0 - A12	Addresses						
CE	Chip Enable						
ŌĒ	Output Enable						
WE	Write Enable						
I/O0 - I/O7	Data Inputs/Outputs						
NC	No Connect						

	A	NC V	WE	_	
A6	5			29	A8
A5	5 6			28	A9
A4	5 7			27	A11
A3	8 <			26 (NC
A2	9 9			25 (OE
A1	10			24	A10
AO	211			23 ⟨	CE
NC	12			22 <	1/07
1/00	∤13			21 〈	1/06
	14.	51617	18192	<u>10</u> /	
I/C)'s 1	2 NC	3 4	5	
		GND			


Note: PLCC package pins 1 and 17 are DON'T CONNECT.

17 are DON'T CONNECT.

64K (8K x 8) High Speed CMOS E²PROM

Block Diagram

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	$V_{\rm IL}$	$V_{\rm IL}$	V _{IH}	D _{OUT}
Write ⁽²⁾	$V_{\rm IL}$	V_{IH}	V_{IL}	D _{IN}
Standby/Write Inhibit	$V_{ m IH}$	$X^{(1)}$	X	High Z
Write Inhibit	X	X	V _{IH}	
Write Inhibit	X	V_{IL}	X	
Output Disable	X	V_{IH}	X	High Z
Chip Erase	V_{IL}	V _H ⁽³⁾	V_{IL}	High Z

Notes: 1. X can be VIL or VIH.

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5V$.

Device Operation

READ: The AT28HC64 is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers flexibility in preventing bus contention.

WRITE: A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a byte write has been started it will automatically time itself to completion.

PAGE WRITE MODE: The page write operation of the AT28HC64 allows one to 32 bytes of data to be loaded into the device and then simultaneously written during the internal programming period. After the first data byte has been loaded, successive bytes may be loaded in the same manner. Each byte to be written must be loaded into the AT28HC64 within 150 μ s of the first byte. A5 to A12 determine the page address. The page address must be valid during each high to low transition of $\overline{\text{WE}}$ (or $\overline{\text{CE}}$). A0 to A4 are used to specify which bytes within the page are to be written. All bytes to be written must share the same page address. The bytes may be loaded in any order and may be altered within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.

DATA POLLING: The AT28HC64 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data on I/O7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. DATA Polling may begin at any time during the write cycle.

DATA PROTECTION: Hardware features protect against inadvertent writes to the AT28HC64 in the following ways: (a) Vcc sense— if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay— once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a write. (c) Write inhibit— holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits write cycles. (d) Noise filter— pulses of less than 15ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a write cycle.

CHIP CLEAR: The contents of the entire memory of the AT28HC64 may be set to the high state by the use of the CHIP CLEAR operation. By setting \overline{CE} low and \overline{OE} to 12 volts, the chip is cleared when a 10ms low pulse is applied to the \overline{WE} pin.

DEVICE IDENTIFICATION: An extra 32 bytes of E^2PROM memory are available to the user for device identification. By raising A9 to 12 + /-0.5V and using address locations 1FE0H to 1FFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to $+150$ °C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC}\!+\!0.6V$
Voltage on \overline{OE} and A9 with Respect to Ground0.6V to $+13.5V$

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

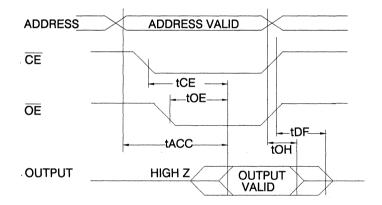
	-					
		AT28HC64-55	AT28HC64L-70	AT28HC64-70	AT28HC64-90	AT28HC64-12
					AT28HC64L-90	AT28HC64L-12
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С	0°С - 70°С	0°C - 70°C
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.			-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V ±10%	5V ±10%	5V ±10%	5V ±10%	5V ±10%

D.C. Characteristics

Symbol	Parameter	Condition	Min	Max	Units	
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$		10	μA	
I_{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		10	μA	
I _{SB1}	VCC Standby Current CMOS	$\overline{CE} = V_{CC}$ 3V to $V_{CC} + 1V$	Com.,Ind.	100	μΑ	
		AT28HC64L	Mil.	200	μA	
I _{SB2}	VCC Standby Current TTL	$\overline{\text{CE}} = 2.0\text{V}$	AT28HC64L	3	mA	
		to V _{CC} +1V	AT28HC64	60	mA	
Icc	V _{CC} Active Current	$f = 10MHz$; $I_{OUT} = 0mA$		80	mA	
VIL	Input Low Voltage			0.8	V	
V_{IH}	Input High Voltage		2.0		V	
Vol	Output Low Voltage	$I_{OL} = 4mA$.4	V	
Voh	Output High Voltage	$I_{OH} = -4.0 \text{mA}$	2.4		V	

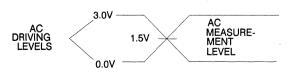
Pin Capacitance (f = 1MHz T = 25°C) (5)

	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
Cout	8	12	pF	$V_{OUT} = 0V$

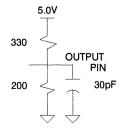


A.C. Read Characteristics (1)

		28HC	64-55	28HC	64-70	28HC6	4L-70	28H	C64-90	28HC	64L-90	28HC	64L-1	2
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
tACC	Address to Output Delay		55		70		70		90		90		120	ns
tcE ⁽²⁾	CE to Output Delay		55		70		70		90		90		120	ns
toE ⁽³⁾	OE to Output Delay	0	30	0	35	0	35	0	40	0	40	0	50	ns
$t_{\rm DF}^{(4,5)}$	OE to Output Float	0	30	0	35	0	35	0	40	0	40	0	50	ns
tон	Output Hold from \overline{OE} , \overline{CE}	0		0		0		0		0		0		ns
	or Address, whichever													
	occurred first													


A.C. Read Waveforms

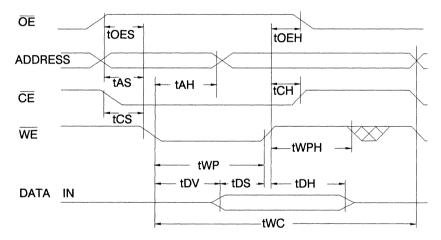
Notes:


- 1. $C_L = 30pF$.
- CE may be delayed up to tACC tCE after the address transition without impact on tACC.
- OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.
- 4. tDF is specified from \overline{OE} or \overline{CE} whichever occurs first ($C_L = 5pF$).
- 5. This parameter is characterized and is not 100% tested.

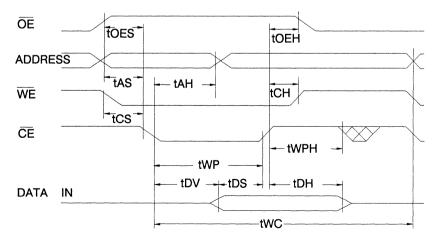
Input Test Waveforms and Measurement Level

 $t_R, t_F < 5ns$

Output Test Load



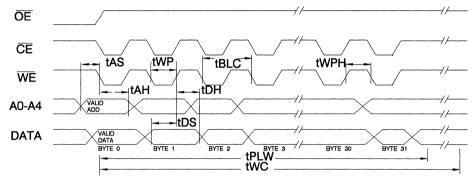
AT28HC64/L


A.C. Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	0			ns
tah	Address Hold Time	50			ns
tcs	Chip Select Set-up Time	0			ns
tcH	Chip Select Hold Time	0			ns
twp	Write Pulse Width (WE or CE)	100		1000	ns
tDS	Data Set-up Time	50			ns
tDH,tOEH	Data, OE Hold Time	0			ns
t _{DV}	Time to Data Valid			1	μs
twc	Write Cycle Time		1.0	2.0	ms

A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - CE Controlled

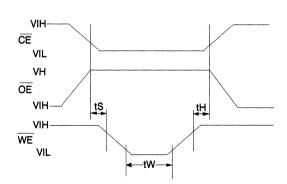


AMEL

Page Mode Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
twc	Write Cycle Time		1	2.0	ms
tas	Address Set-up Time	0			ns
tah	Address Hold Time	50			ns
tps	Data Set-up Time	50			ns
tDH	Data Hold Time	0		,	ns
twp	Write Pulse Width	100		1000	ns
tBLC	Byte Load Cycle Time	150			ns
tPLW	Page Load Width			150	μs
twpH	Write Pulse Width High	50			ns

Page Mode Write Waveforms



Note: A5 through A12 must specify the page address during each high

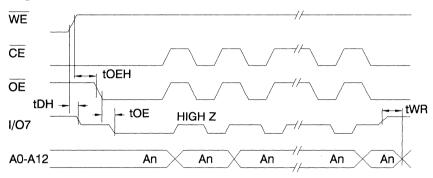
to low transition of WE (or CE).

 \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.

Chip Erase Waveforms

 $t_S = t_H = 1 \mu sec (min.)$

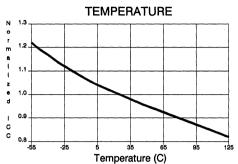
tw = 10msec (min.)

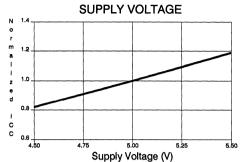

 $V_H = 12 \pm 0.05$

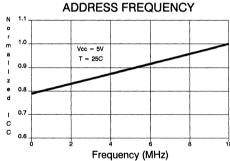
Data Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	0			ns
toeh	OE Hold Time	0			ns
toE	OE to Output Delay			50	ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.


DATA Polling Waveforms




NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

tacc	Ico	(mA)	Ordering Code	Package	Operation Range																
(ns)	Active	Standby	Ordering Code	rackage	Operation hange																
55	80	60	AT28HC64(E)-55DC AT28HC64(E)-55LC AT28HC64(E)-55PC	28D6 32L 28P6	Commercial (0°C to 70°C)																
			AT28HC64(E)-55DI AT28HC64(E)-55LI AT28HC64(E)-55PI	28D6 32L 28P6	Industrial (-40°C to 85°C)																
70	80	60	AT28HC64(E)-70DC AT28HC64(E)-70JC AT28HC64(E)-70LC AT28HC64(E)-70PC	28D6 32J 32L 28P6	Commercial (0°C to 70°C)																
			AT28HC64(E)-70DI AT28HC64(E)-70JI AT28HC64(E)-70LI AT28HC64(E)-70PI	28D6 32J 32L 28P6	Industrial (-40°C to 85°C)																
			AT28HC64(E)-70DM AT28HC64(E)-70LM	28D6 32L	Military (-55°C to 125°C)																
			AT28HC64(E)-70DM/883 AT28HC64(E)-70LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)																
90	80	60	AT28HC64(E)-90DC AT28HC64(E)-90JC AT28HC64(E)-90LC AT28HC64(E)-90PC	28D6 32J 32L 28P6	Commercial (0°C to 70°C)																
																			AT28HC64(E)-90DI AT28HC64(E)-90JI AT28HC64(E)-90LI AT28HC64(E)-90PI	28D6 32J 32L 28P6	Industrial (-40°C to 85°C)
			AT28HC64(E)-90DM AT28HC64(E)-90LM	28D6 32L	Military (-55°C to 125°C)																
			AT28HC64(E)-90DM/883 AT28HC64(E)-90LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)																
120	80	60	AT28HC64(E)-12DC AT28HC64(E)-12JC AT28HC64(E)-12LC AT28HC64(E)-12PC	28D6 32J 32L 28P6	Commercial (0°C to 70°C)																
			AT28HC64(E)-12DI AT28HC64(E)-12JI AT28HC64(E)-12LI AT28HC64(E)-12PI	28D6 32J 32L 28P6	Industrial (-40°C to 85°C)																
			AT28HC64(E)-12DM AT28HC64(E)-12LM	28D6 32L	Military (-55°C to 125°C)																
			AT28HC64(E)-12DM/883 AT28HC64(E)-12LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)																

	Package Type					
28D6	28D6 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)					
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)					
32L	32L 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28P6 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)					
	Options					
Blank	Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 2ms					
E						

tacc	loc	(mA)	Out out on Ondo	Dankana	Onesation Dense	
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
70	80	0.1	AT28HC64L(E)-70DC 28D6 AT28HC64L(E)-70LC 32L AT28HC64L(E)-70PC 28P6		Commercial (0°C to 70°C)	
			AT28HC64L(E)-70DI AT28HC64L(E)-70LI AT28HC64L(E)-70PI	28D6 32L 28P6	Industrial (-40°C to 85°C)	
90	80	0.1	AT28HC64L(E)-90DC AT28HC64L(E)-90JC AT28HC64L(E)-90LC AT28HC64L(E)-90PC	28D6 32J 32L 28P6	Commercial (0°C to 70°C)	
			AT28HC64L(E)-90DI AT28HC64L(E)-90JI AT28HC64L(E)-90LI AT28HC64L(E)-90PI	28D6 32J 32L 28P6	Industrial (-40°C to 85°C)	
90	80	0.2	AT28HC64L(E)-90DM AT28HC64L(E)-90LM	28D6 32L	Military (-55°C to 125°C)	
			AT28HC64L(E)-90DM/883 28D6 AT28HC64L(E)-90LM/883 32L		Military/883C Class B, Fully Compliant (-55°C to 125°C)	
120	80	0.1	AT28HC64L(E)-12DC AT28HC64L(E)-12JC AT28HC64L(E)-12LC AT28HC64L(E)-12PC AT28HC64L-12W	28D6 32J 32L 28P6 DIE	Commercial (0°C to 70°C)	
			AT28HC64L(E)-12DI 28D6 AT28HC64L(E)-12JI 32J AT28HC64L(E)-12LI 32L AT28HC64L(E)-12PI 28P6		Industrial (-40°C to 85°C)	
120	80	0.2	AT28HC64L(E)-12DM 28D6 AT28HC64L(E)-12LM 32L (-		Military (-55°C to 125°C)	
			AT28HC64L(E)-12DM/883 AT28HC64L(E)-12LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
70	80	0.2	5962-87514 12 UX 5962-87514 12 XX 5962-87514 12 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
90	80	0.2	.2 5962-87514 11 UX 32K 5962-87514 11 XX 28D6 5962-87514 11 YX 32L		Military/883C Class B, Fully Compliant (-55°C to 125°C)	
120	80	0.2	5962-87514 10 UX 5962-87514 10 XX 5962-87514 10 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)	

	Package Type						
28D6	28D6 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)						
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)						
32K	32 Lead, Non-Windowed, Ceramic J-Leaded Quad Flat Package (Cerquad)						
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)						
28P6	3 28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)						
W	W Die						
	Options						
Blank	Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 2ms						
E							

256K (32K x 8)

High Speed

CMOS

E²PROM

Features

- Fast Read Access Time 70ns
- Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Internal Control Timer
- Fast Write Cycle Times

Page Write Cycle Time: 10ms or 3ms maximum 1 to 64 Byte Page Write Operation

- Low Power Dissipation
 80mA Active Current
 3mA Standby Current (AT28HC256L)
- Hardware and Software Data Protection
- DATA Polling for End of Write Detection
- High Reliability CMOS Technology Endurance: 10⁴ or 10⁵ Cycles Data Retention: 10 years
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28HC256/L is a high-performance Electrically Erasable and Programmable Read Only Memory. Its 256k of memory is organized as 32,768 words by 8 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the AT28HC256 offers access times to 70ns with power dissipation of just 440mW. When the AT28HC256L is deselected, the standby current is less than 5mA.

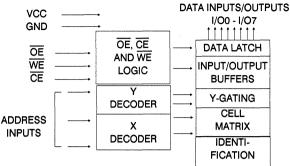
The AT28HC256/L is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 64-byte page register to allow writing of up to 64 bytes simultaneously. During a write cycle, the address and 1 to 64 bytes of data are internally latched, freeing the addresses and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

Atmel's 28HC256/L has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes. The device also includes an extra 64 bytes of E²PROM for device identification or tracking.

Pin Configurations

A14	28 27 26 25 24 23 22 21 20 19 18 17 16	ممممممممم	VCC WE A13 A8 A9 A11 OE I/O7 I/O6 I/O5
GND 13	15	F	I/O4 I/O3

PIN	PIN NAMES				
A0 - A14	Addresses				
CE	Chip Enable				
ŌĒ	Output Enable				
WE	Write Enable				
I/O0 - I/O7	Data Inputs/Outputs				
NC	No Connect				


A7 A14 VC A12 NC 4 3 2 13	WE					
A6 5 A5 6 A4 7 A3 8 A2 9 A1 10 A0 11 NC 12 I/O0 13	29 AB 28 A9 27 A11 26 NC 25 OE 24 A10 23 CE 22 1/07 21 1/06					
GND						

Note: PLCC package pins 1 and 17 are DON'T CONNECT.

Block Diagram

Device Operation

READ: The AT28HC256/L is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers flexibility in preventing bus contention.

WRITE: A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a byte write has been started it will automatically time itself to completion.

PAGE WRITE MODE: The page write operation of the AT28HC256/L allows one to 64 bytes of data to be loaded into the device and then simultaneously written during the internal programming period. After the first data byte has been loaded into the device successive bytes may be loaded in the same manner. Each new byte to be written must have its high to low transition on WE (or CE) within 150 us of the low to high transition of WE (or CE) of the preceding byte. If a high to low transition is not detected within 150 us of the last low to high transition, the load period will end, and the internal programming period will start. A6 to A14 specify the page address. The page address must be valid during each high to low transition of \overline{WE} (or \overline{CE}). A0 to A5 are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be changed within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not

DATA POLLING: The AT28HC256/L features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data on I/O7. Once the write cycle has been completed, true data is valid on all outputs and the next cycle may begin. DATA Polling may begin at any time during the write cycle.

TOGGLE BIT: In addition to DATA Polling the AT28HC256/L provides another method for determining the end of a write cycle. During a write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop toggling, and valid data will be read. Examining the toggle bit may begin at any time during the write cycle.

HARDWARE DATA PROTECTION: Hardware features protect against inadvertent writes to the AT28HC256/L in the following ways: (a) Vcc sense — if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay — once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a write. (c) Write inhibit — holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits write cycles. (d) Noise filter — pulses of less than 15ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a write cycle.

SOFTWARE DATA PROTECTION: A software controlled data protection feature is available on the AT28HC256/L. Once the software protection is enabled a software algorithm must be issued to the device before a write may be performed. The software protection feature may be enabled or disabled by the user; when shipped from Atmel, the software data protection feature is disabled. To enable the software data protection, a series of three write commands to specific addresses with specific data must be performed. After the software data protection is enabled the same three write commands must begin each write cycle in order for the writes to occur. All software write commands must obey the page write timing specifications. Once set, the software data protection feature remains active unless its disable command is issued. Power transitions will not reset the software data protection feature, but the software feature will guard against inadvertent writes during power transitions.

DEVICE IDENTIFICATION: An extra 64 bytes of E^2 PROM memory are available to the user for device identification. By raising A9 to 12 ± 0.5 V and using address locations 7FC0H to 7FFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to $+150$ °C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} + 0.6V \label{eq:vcc}$
Voltage on OF and A0

with Respect to Ground.....-0.6V to $\,+\,13.5V$

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

		AT28HC256-70	AT28HC256L-90	AT28HC256-90	AT28HC256-12
					AT28HC256L-12
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.			-55°C - 125°C	-55°C - 125°C
VCC Power Supply		$5V \pm 10\%$	$5V \pm 10\%$	$5V \pm 10\%$	$5V \pm 10\%$

Operating Modes

			I/O
V_{IL}	$V_{ m IL}$	V_{IH}	Dout
V_{IL}	V_{IH}	V_{IL}	D_{IN}
V_{IH}	$X^{(1)}$	X	High Z
X	X	V _{IH}	
X	V_{IL}	X	
X	$V_{ m IH}$	X	High Z
V_{IL}	$V_{\rm H}^{(3)}$	$V_{\rm IL}$	High Z
	V _{IL} V _{IH} X X X V _{IL}	VIL VIH VIH X ⁽¹⁾ X X X VIL X VIH VIL VH ⁽³⁾	VIL VIH VIL VIH X ⁽¹⁾ X X X VIH X VIL X X VIH X

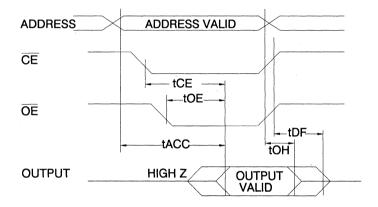
Notes: 1. X can be V_{IL} or V_{IH} . 2. Refer to A.C. Programming Waveforms. 3. $V_H = 12.0 \pm 0.5V$.

D.C. Characteristics

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$		10	μA
I_{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		10	μΑ
I _{SB1}	VCC Standby Current TTL	$\overline{\text{CE}} = 2.0 \text{V to V}_{\text{CC}} + 1 \text{V}$	AT28HC256L	3	mA
			AT28HC256	60	mA
I _{SB2}	V _{CC} Standby Current CMOS	$\overline{CE} = -0.3V$ to $V_{CC} + 1V$	AT28HC256L	300	μΑ
I _{CC}	V _{CC} Active Current	$f = 5MHz; I_{OUT} = 0mA$		80	mA
V_{IL}	Input Low Voltage			0.8	V
V _{IH}	Input High Voltage		2.0		V
V_{OL}	Output Low Voltage	$I_{OL} = 6.0 \text{mA}$.45	V
V _{OH}	Output High Voltage	$I_{OH} = -4mA$	2.4		V

Pin Capacitance (f = 1MHz T = 25°C) (4)

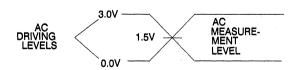
	Тур	Max	Units	Conditions
	C _{IN} 4	6	pF	$V_{IN} = 0V$
Ì	C _{OUT} 8	12	pF	$V_{OUT} = 0V$



A.C. Read Characteristics

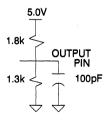
		AT28H	C256-70		C256-90 C256L-90		C256-12 C256L-12	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
tACC	Address to Output Delay		70		90		120	ns
tce ⁽¹⁾	CE to Output Delay		70		90		120	ns
toE ⁽²⁾	OE to Output Delay	0	35	. 0	40	0	50	ns
$t_{DF}^{(3,4)}$	CE or OE to Output Float	0	35	0	40	0	50	ns
toH	Output Hold from \overline{OE} , \overline{CE}	0		0		0		ns
	or Address, whichever							
	occurred first							

A.C. Read Waveforms



Notes:

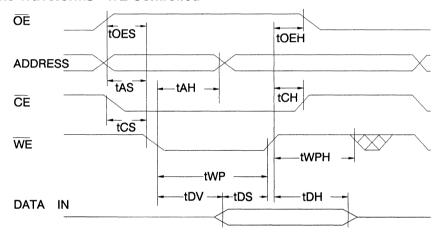
- 1. $\overline{\text{CE}}$ may be delayed up to tACC tCE after the address transition without impact on tACC.
- 2. \overline{OE} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.


 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first (C_L = 5pF).
- 4. This parameter is characterized and is not 100% tested.

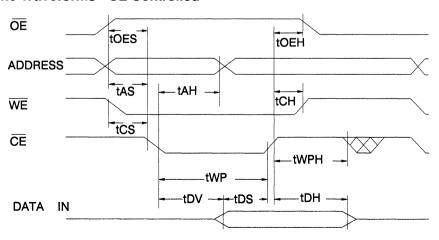
Input Test Waveforms and Measurement Level

 t_R , $t_F < 5 ns$

Output Test Load



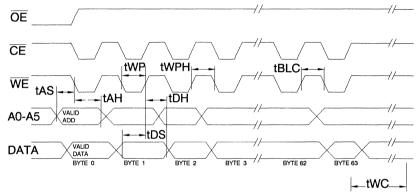
A.C. Write Characteristics


		Symb	ool Pa	rameter	Min
tas,toes	Address, OE Set-up Time	0			ns
t _{AH}	Address Hold Time	50			ns
tcs	Chip Select Set-up Time	0			ns
tcH	Chip Select Hold Time	0			ns
twp	Write Pulse Width (WE or CE)	100			ns
t _{DS}	Data Set-up Time	50			ns
t _{DH} ,toeh	Data, OE Hold Time	0			ns
t _{DV}	Time to Data Valid	NR ⁽¹⁾			
twc	Write Cycle Time AT28HC256			10	ms
l	AT28HC256F			3.0	ms

Note: 1. NR = No Restriction

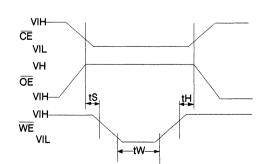
A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - CE Controlled



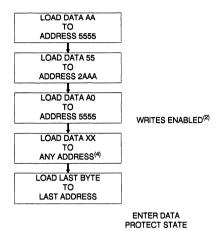
Page Mode Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
twc	Write Cycle Time AT28HC256		5	10	ms
	AT28HC256F		2	3.0	ms
tas	Address Set-up Time	0			ns
t _A H	Address Hold Time	50			ns
tDS	Data Set-up Time	50			ns
tDH	Data Hold Time	0			ns
twp	Write Pulse Width	100		,	ns
tBLC	Byte Load Cycle Time			150	μs
twpH	Write Pulse Width High	50			ns


Page Mode Write Waveforms

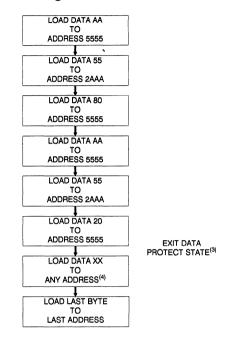
Note: A6 through A14 must specify the page address during each high to low transition of WE (or CE).

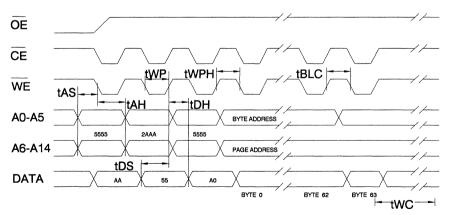
 \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.


Chip Erase Waveforms

 $t_S = t_H = 5\mu sec (min.)$ $t_W = 10 msec (min.)$

 $V_H=12\,\pm\,0.5V$


Software Data Protection Enable Algorithm (1)


Notes:

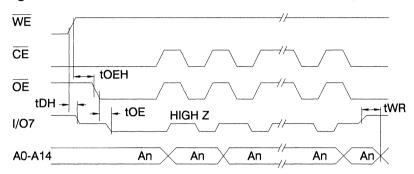
- 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
- Write Protect state will be activated at end of write even if no other data is loaded.
- 3. Write Protect state will be deactivated at end of write period even if no other data is loaded.
- 4. 1 to 64 bytes of data may be loaded.

Software Data Protection Disable Algorithm (1)

Software Protected Write Cycle Waveforms

Notes: A6 through A14 must specify the page address during each high to low transition of WE (or CE) after the software code has been entered.

OE must be high only when WE and CE are both low.

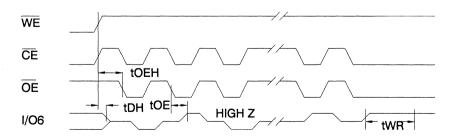


Data Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	0			ns
toeh	OE Hold Time	0			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

DATA Polling Waveforms

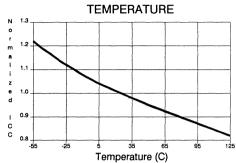


Toggle Bit Characteristics (1)

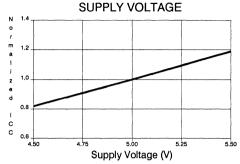
Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
toehp	OE High Pulse	150			ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

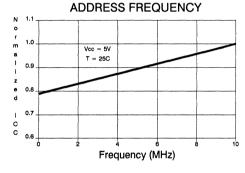
Toggle Bit Waveforms



Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit.


- 2. Beginning and ending state of I/O6 will vary.
- 3. Any address location may be used but the address should not vary.

AT28HC256/L


NORMALIZED SUPPLY CURRENT vs.

${\tt NORMALIZED\ SUPPLY\ CURRENT\ vs.}$

NORMALIZED SUPPLY CURRENT vs.

tacc	loc Active	(mA) Standby	Ordering Code	Package	Operation Range
(ns) 70	80	60	AT28HC256(E,F)-70DC AT28HC256(E,F)-70LC AT28HC256(E,F)-70PC	28D6 32L 28P6	Commercial (0°C to 70°C)
			AT28HC256(E,F)-70DI AT28HC256(E,F)-70LI AT28HC256(E,F)-70PI	28D6 32L 28P6	Industrial (-40°C to 85°C)
90	80	60	AT28HC256(E,F)-90DC AT28HC256(E,F)-90FC AT28HC256(E,F)-90JC AT28HC256(E,F)-90LC AT28HC256(E,F)-90PC AT28HC256(E,F)-90UC	28D6 28F 32J 32L 28P6 28U	Commercial (0°C to 70°C)
			AT28HC256(E,F)-90DI AT28HC256(E,F)-90FI AT28HC256(E,F)-90JI AT28HC256(E,F)-90LI AT28HC256(E,F)-90PI AT28HC256(E,F)-90UI	28D6 28F 32J 32L 28P6 28U	Industrial (-40°C to 85°C)
			AT28HC256(E,F)-90DM AT28HC256(E,F)-90FM AT28HC256(E,F)-90LM AT28HC256(E,F)-90UM	28D6 28F 32L 28U	Military (-55°C to 125°C)
			AT28HC256(E,F)-90DM/883 AT28HC256(E,F)-90FM/883 AT28HC256(E,F)-90LM/883 AT28HC256(E,F)-90UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55°C to 125°C)
120	80	60	AT28HC256(E,F)-12DC AT28HC256(E,F)-12FC AT28HC256(E,F)-12JC AT28HC256(E,F)-12LC AT28HC256(E,F)-12PC AT28HC256(E,F)-12UC	28D6 28F 32J 32L 28P6 28U	Commercial (0°C to 70°C)
			AT28HC256(E,F)-12DI AT28HC256(E,F)-12FI AT28HC256(E,F)-12JI AT28HC256(E,F)-12LI AT28HC256(E,F)-12PI AT28HC256(E,F)-12UI	28D6 28F 32J 32L 28P6 28U	Industrial (-40°C to 85°C)

t _{ACC} (ns)	lcc Active	(mA) Standby	Ordering Code	Package	Operation Range
120	80	60	AT28HC256(E,F)-12DM AT28HC256(E,F)-12FM AT28HC256(E,F)-12LM AT28HC256(E,F)-12UM	28D6 28F 32L 28U	Military (-55°C to 125°C)
			AT28HC256(E,F)-12DM/883 AT28HC256(E,F)-12FM/883 AT28HC256(E,F)-12LM/883 AT28HC256(E,F)-12UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	80	60	5962-88634 03 UX 5962-88634 03 XX 5962-88634 03 YX 5962-88634 03 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)
			5962-88634 04 UX 5962-88634 04 XX 5962-88634 04 YX 5962-88634 04 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type					
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)					
28F	28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)					
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)					
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)					
28U	28 Pin, Ceramic Pin Grid Array (PGA)					
	Options					
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms					
E	High Endurance Option: Endurance = 100K Write Cycles					
F	Fast Write Option: Write Time = 3ms					

tacc	loc	; (mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby	Grading Good		
90	80	0.3	AT28HC256L(E,F)-90DC AT28HC256L(E,F)-90FC AT28HC256L(E,F)-90JC AT28HC256L(E,F)-90LC AT28HC256L(E,F)-90PC AT28HC256L(E,F)-90UC	28D6 28F 32J 32L 28P6 28U	Commercial (0°C to 70°C)
			AT28HC256L(E,F)-90DI AT28HC256L(E,F)-90FI AT28HC256L(E,F)-90JI AT28HC256L(E,F)-90LI AT28HC256L(E,F)-90PI AT28HC256L(E,F)-90UI	28D6 28F 32J 32L 28P6 28U	Industrial (-40°C to 85°C)
120	80	0.3	AT28HC256L(E,F)-12DC AT28HC256L(E,F)-12FC AT28HC256L(E,F)-12JC AT28HC256L(E,F)-12LC AT28HC256L(E,F)-12PC AT28HC256L(E,F)-12UC	28D6 28F 32J 32L 28P6 28U	Commercial (0°C to 70°C)
			AT28HC256L(E,F)-12DI AT28HC256L(E,F)-12FI AT28HC256L(E,F)-12JI AT28HC256L(E,F)-12LI AT28HC256L(E,F)-12PI AT28HC256L(E,F)-12DI	28D6 28F 32J 32L 28P6 28U	Industrial (-40°C to 85°C)
			AT28HC256L(E,F)-12DM AT28HC256L(E,F)-12FM AT28HC256L(E,F)-12LM AT28HC256L(E,F)-12UM	28D6 28F 32L 28U	Military (-55°C to 125°C)
			AT28HC256L(E,F)-12DM/883 AT28HC256L(E,F)-12FM/883 AT28HC256L(E,F)-12LM/883 AT28HC256L(E,F)-12UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55°C to 125°C)
120	80	0.3	5962-88634 01 UX 5962-88634 01 XX 5962-88634 01 YX 5962-88634 01 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)
			5962-88634 02 UX 5962-88634 02 XX 5962-88634 02 YX 5962-88634 02 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)

Package Type					
28D6	28D6 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)				
28F	28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)				
32J	J 32 Lead, Plastic J-Leaded Chip Carrier (PLCC)				
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)				
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)				
28U	28 Pin, Ceramic Pin Grid Array (PGA)				
Options					
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms				
E	High Endurance Option: Endurance = 100K Write Cycles				
F	Fast Write Option: Write Time = 3ms				

Features

- Fast Read Access Time 150ns
- Fast Byte Write 200μs or 1 ms
- Self-Timed Byte Write Cycle Internal Address and Data Latches Internal Control Timer

Automatic Clear Before Write

- Direct Microprocessor Control
 DATA POLLING
- Low Power
 30mA Active Current
 100µa CMOS Standby Current
- High Reliability
 Endurance: 10⁴ or 10⁵ cycles
 Data Retention: 10 years
- 5V ± 10% Supply
- CMOS & TTL Compatible Inputs and Outputs
- JEDEC Approved Byte Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28C04 is a low-power, high-performance Electrically Erasable and Programmable Read Only Memory with easy to use features. The AT28C04 is a 4k memory organized as 512 words x 8 bits. The device is manufactured with Atmel's reliable non-volatile CMOS technology.

The AT28C04 is accessed like a static RAM for the read or write cycles without the need of external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the intitation of a write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. The end of a write cycle can be determined by DATA polling of I/O₇. Once the end of a write cycle has been detected, a new access for a read or a write can begin.

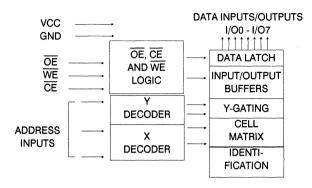
The CMOS technology offers fast access times of 150ns at low power dissipation. When the chip is deselected the standby current is less than $100\mu A$. Atmel's 28C04 has additional features to ensure high quality and manufacturability, including internal error correction for extended endurance and for improved data retention characteristics.

Pin Configurations

	A6	VCC A8 NC WE OE NC CE 1/O7 1/O6 1/O3
--	----	---

PIN NAMES					
A0 - A10	Address				
CE	Chip Enable				
ŌĒ	Output Enable				
WE	Write Enable				
I/O0 - I/O7	Data Inputs/Outputs				
NC	No Connect				

8A
NC
NC
NC
ŌĒ
NC CE
CE
1/07
1/06


Note: PLCC package pins 1 and 17 are DON'T CONNECT.

4K (512 x 8) CMOS E²PROM

Block Diagram

Operating Modes

CE	ŌĒ	WE	I/O
V_{IL}	V_{IL}	$V_{ m IH}$	D _{OUT}
V_{IL}	$V_{ m IH}$	V_{IL}	$D_{ m IN}$
V_{IH}	$X^{(1)}$	X	High Z
X	X	V _{IH}	
X	V_{IL}	X	
X	V_{IH}	X	High Z
$V_{\rm IL}$	V _H ⁽³⁾	V_{IL}	High Z
	V _{IL} V _{IL} V _{IH} X X X	VIL VIL VIL VIH VIH X ⁽¹⁾ X X X VIL X VIH	Vil. Vil. ViH Vil. ViH ViL Vih X ⁽¹⁾ X X X ViH X Vil. X X Vil. X X Vil. X

Notes: 1. X can be VIL or VIH.

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5V$.

Device Operation

READ: The AT28C04 is accessed like a Static RAM. When $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are low and $\overline{\text{WE}}$ is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in a high impedance state whenever $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the AT28C04 is similar to writing into a Static RAM. A low pulse on the \overline{WE} or \overline{CE} input with \overline{OE} high and \overline{CE} or \overline{WE} low (respectively) initiates a byte write. The address location is latched on the last falling edge of \overline{WE} (or \overline{CE}); the new data is latched on the first rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion.

FAST BYTE WRITE: The AT28C04F offers a byte write time of 200µs maximum. This feature allows the entire device to be rewritten in 0.1 seconds.

DATA POLLING: The AT28C04 provides DATA POLLING to signal the completion of a write cycle. During a write cycle, an attempted read of the data being written results in the complement of that data for I/O7 (the other outputs are indeterminate). When the write cycle is finished, true data appears on all outputs.

WRITE PROTECTION: Inadvertent writes to the device are protected against in the following ways. (a) Vcc sense—if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay—once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a byte write. (c) Write Inhibit—holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits byte write cycles.

CHIP CLEAR: The contents of the entire memory of the AT28C04 may be set to the high state by the CHIP CLEAR operation. By setting $\overline{\text{CE}}$ low and $\overline{\text{OE}}$ to 12 volts, the chip is cleared when a 10 msec low pulse is applied to $\overline{\text{WE}}$.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} \! + \! 0.6V$
Voltage on $\overline{\text{OE}}$ with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

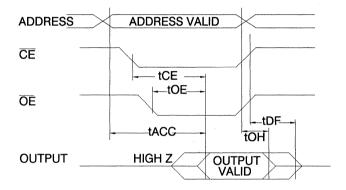
		AT28C04-15	AT28C04-20	AT28C04-25
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V ±10%	5V ±10%	5V ±10%

D.C. Characteristics

Symbo	l Parameter	Condition		Min	Max	Units	
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$			10	μΑ	
I_{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μΑ	
I _{SB1}	VCC Standby Current CMOS	$\overline{CE} = V_{CC}-0.3V$ to $V_{CC}+1$.0V		100	μΑ	
I _{SB2}	V _{CC} Standby Current TTL	$\overline{\text{CE}} = 2.0\text{V}$	Com.		2	mA	
		to $V_{CC} + 1.0V$	Ind., Mil.		3	mA	
Icc	V _{CC} Active Current A.C.	$f = 5MHz$; $I_{out} = 0mA$	Com.		30	mA	
		$\overline{CE} = V_{IL}$	Ind., Mil.		45	mA	
V_{IL}	Input Low Voltage				0.8	V	
V_{IH}	Input High Voltage			2.0		V	
Vol	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.4	V	
V_{OH}	Output High Voltage	$I_{OH} = -400 \mu A$		2.4		V	

Pin Capacitance (f = 1MHz T = 25°C) (4)

	Тур	Max	Units	Conditions	
C_{IN}	4	6	pF	$V_{IN} = 0V$	
 Cout	8	12	pF	$V_{OUT} = 0V$	/// ·

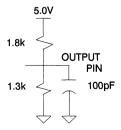


A.C. Read Characteristics

		AT280	204-15	AT280	C04-20	AT280	204-25		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units	
tACC	Address to Output Delay		150		200		250	ns	
tcE ⁽¹⁾	CE to Output Delay		150		200		250	ns	
toE ⁽²⁾	OE to Output Delay	10	70	10	80	10	100	ns	
t _{DF} ^(3,4)	OE or CE High to Output Float	0	50	0	55	0	60	ns	
toH	Output Hold from \overline{OE} , \overline{CE}	0		0		0		ns	
	or Address, whichever								
1	occurred first								

A.C. Read Waveforms

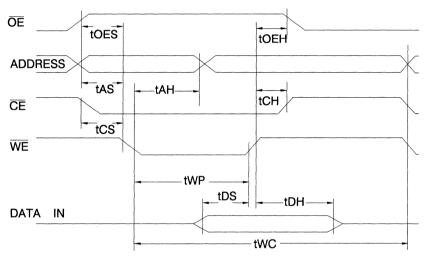
Notes:

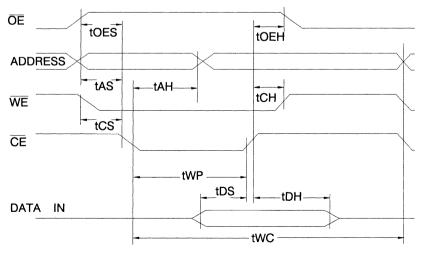

- CE may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC}.
- 2. OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC}.
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first ($C_L = 5pF$).
- 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

AC DRIVING LEVELS 1.5V AC MEASURE-MENT LEVEL

 $t_{\rm R}, t_{\rm F} < 20 {\rm ns}$

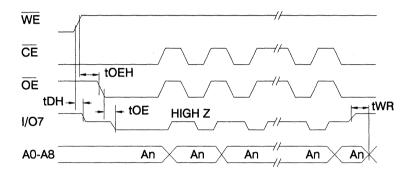

Output Test Load


A.C. Write Characteristics

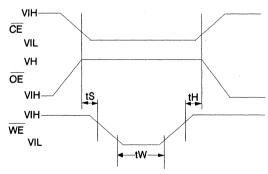
Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	10			ns
tah	Address Hold Time	50			ns
twp	Write Pulse Width (WE or CE)	100		1000	ns
tDS	Data Set-up Time	50			ns
tDH,tOEH	Data, OE Hold Time	10			ns
twc	Write Cycle Time 28C04		0.5	1.0	ms
	28C04E/F		100	200	μs

A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - $\overline{\text{CE}}$ Controlled



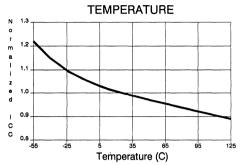
Data Polling Characteristics (1)


Symbol	Parameter	Min	Typ	Max	Units
tDH	Data Hold Time	10	-716	1124/2	ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

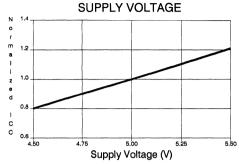
Note: 1. These parameters are characterized and not 100% tested.

Data Polling Waveforms

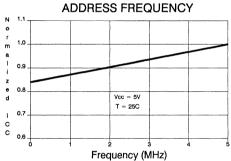
Chip Erase Waveforms

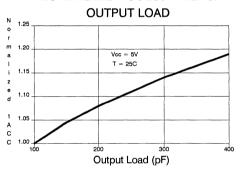


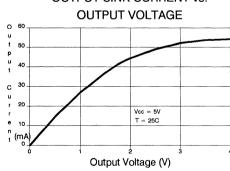
 $t_S = t_H = 1 \mu sec (min.)$

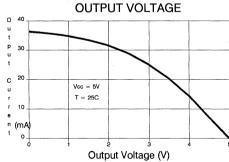

tw = 10msec (min.)

 $V_{H} \!=\! 12 \pm 0.5 V$


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED ACCESS TIME vs.

OUTPUT SINK CURRENT vs.

OUTPUT SOURCE CURRENT vs.

tacc	loc	(mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby	Ordering Code	Package	Operation hange
150	30	0.1	AT28C04(E,F)-15DC AT28C04(E,F)-15LC AT28C04(E,F)-15PC	24D6 32L 24P6	Commercial (0°C to 70°C)
150	45	0.1	AT28C04(E,F)-15DI AT28C04(E,F)-15LI AT28C04(E,F)-15PI	24D6 32L 24P6	Industrial (-40°C to 85°C)
			AT28C04(E,F)-15DM AT28C04(E,F)-15LM	24D6 32L	Military (-55°C to 125°C)
			AT28C04(E,F)-15DM/883 AT28C04(E,F)-15LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	30	0.1	AT28C04(E,F)-20DC AT28C04(E,F)-20LC AT28C04(E,F)-20PC AT28C04-20W	24D6 32L 24P6 DIE	Commercial (0°C to 70°C)
200	45	0.1	AT28C04(E,F)-20DI AT28C04(E,F)-20LI AT28C04(E,F)-20PI	24D6 32L 24P6	Industrial (-40°C to 85°C)
	-		AT28C04(E,F)-20DM AT28C04(E,F)-20LM	24D6 32L	Military (-55°C to 125°C)
			AT28C04(E,F)-20DM/883 AT28C04(E,F)-20LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	30	0.1	AT28C04(E,F)-25DC AT28C04(E,F)-25LC AT28C04(E,F)-25PC AT28C04-25W	24D6 32L 24P6 DIE	Commercial (0°C to 70°C)
250	45	0.1	AT28C04(E,F)-25DI AT28C04(E,F)-25LI AT28C04(E,F)-25PI	24D6 32L 24P6	Industrial (-40°C to 85°C)
			AT28C04(E,F)-25DM AT28C04(E,F)-25LM	24D6 32L	Military (-55°C to 125°C)
			AT28C04(E,F)-25DM/883 AT28C04(E,F)-25LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	45	0.1	AT28C04(E,F)-30DM/883 AT28C04(E,F)-30LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
350	45	0.1	AT28C04(E,F)-35DM/883 AT28C04(E,F)-35LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
450	45	0.1	AT28C04(E,F)-45DM/883 AT28C04(E,F)-45LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type					
24D6	24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)					
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)					
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)					
W	Die					
	Options					
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1ms					
E	E High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200μs					
F	Fast Write Option: Write Time = 200µs					

2-50

Features

- Fast Read Access Time 150ns
- Fast Byte Write 200μs or 1 ms
- Self-Timed Byte Write Cycle Internal Address and Data Latches Internal Control Timer Automatic Clear Before Write
- Direct Microprocessor Control
 DATA POLLING
- Low Power

30mA Active Current 100µA CMOS Standby Current

High Reliability

Endurance: 10⁴ or 10⁵ cycles Data Retention: 10 years

- 5V ± 10% Supply
- . CMOS & TTL Compatible Inputs and Outputs
- JEDEC Approved Byte Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28C16 is a low-power, high-performance Electrically Erasable and Programmable Read Only Memory with easy to use features. The AT28C16 is a 16k memory organized as 2,048 words x 8 bits. The device is manufactured with Atmel's reliable nonvolatile CMOS technology.

The AT28C16 is accessed like a static RAM for the read or write cycles without the need of external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of a write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. The end of a write cycle can be determined by \overline{DATA} polling of I/O₇. Once the end of a write cycle has been detected, a new access for a read or a write can begin.

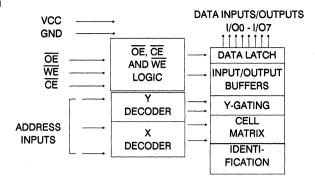
The CMOS technology offers fast access times of 150ns at low power dissipation. When the chip is deselected the standby current is less than 100µA.

Atmel's 28C16 has additional features to ensure high quality and manufacturability. The device utilizes error correction internally for extended endurance and for improved data retention characteristics. An extra 32 bytes of E²PROM are available for device identification or tracking.

Pin Configurations

A7 🗆 1	24 VCC .	PIN	NAMES
A6 🗆 2	23 🗆 A8	A0 - A10	Address
A5 🗆 3 A4 🗆 4	22 A9 21 WE 20 DE	CE	Chip Enable
A3 🗆 5	20 DE	OE	Output Enable
A2 □ 6 A1 □ 7 A0 □ 8	19 A10 18 CE	$\overline{ ext{WE}}$	Write Enable
A0 4 8 I/O0 9	17 1/07 16 1/06	I/O0 - I/O7	Data Inputs/Outputs
I/O1 □ 10 I/O2 □ 11	15 1/05 14 1/04	NC	No Connect
CND CI13	12 5 1/03		

TOP V	/IEWS
	VCC_NC
432	1323130
A6 5	29 〈 A8
A5 > 6	28 〈 A9
A4 > 7	27 ⟨ NC
A3 > 8	26 (NC
A2 > 9	25 (OE
A1 >10	24 (A10
A0 >11	23 CE
NC >12	22 (1/07
1/00 > 13	21 (1/06
1415161	17181920
I/O's 1 2 N	NC 3 4 5
CNI	


Note: PLCC package pins 1 and 17 are DON'T CONNECT.

16K (2K x 8) CMOS E²PROM

Block Diagram

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	$V_{\rm IL}$	$V_{\rm IL}$	V_{IH}	Dout
Write ⁽²⁾	V_{IL}	V _{IH}	$V_{\rm IL}$	D _{IN}
Standby/Write Inhibit	V_{IH}	$X^{(1)}$	X	High Z
Write Inhibit	X	X	V _{IH}	
Write Inhibit	X	V_{IL}	X	
Output Disable	X	V_{IH}	X	High Z
Chip Erase	V_{IL}	$V_{H}^{(3)}$	V_{IL}	High Z

Notes: 1. X can be VII, or VIH.

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5V$.

Device Operation

READ: The AT28C16 is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in a high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the AT28C16 is similar to writing into a Static RAM. A low pulse on the \overline{WE} or \overline{CE} input with \overline{OE} high and \overline{CE} or \overline{WE} low (respectively) initiates a byte write. The address location is latched on the last falling edge of \overline{WE} (or \overline{CE}); the new data is latched on the first rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion.

FAST BYTE WRITE: The AT28C16F offers a byte write time of 200µs maximum. This feature allows the entire device to be rewritten in 0.4 seconds.

DATA POLLING: The AT28C16 provides DATA POLL-ING to signal the completion of a write cycle. During a write cycle, an attempted read of the data being written results in the complement of that data for I/O7 (the other outputs are indeterminate). When the write cycle is finished, true data appears on all outputs.

WRITE PROTECTION: Inadvertent writes to the device are protected against in the following ways. (a) Vcc sense – if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay – once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a byte write. (c) Write Inhibit – holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits byte write cycles.

CHIP CLEAR: The contents of the entire memory of the AT28C16 may be set to the high state by the CHIP CLEAR operation. By setting \overline{CE} low and \overline{OE} to 12 volts, the chip is cleared when a 10 msec low pulse is applied to \overline{WE} .

DEVICE IDENTIFICATION: An extra 32 bytes of E^2 PROM memory are available to the user for device identification. By raising A9 to 12 ± 0.5 V and using address locations 7E0H to 7FFH the additional bytes may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to $+150$ °C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} \! + \! 0.6V$
Voltage on $\overline{\text{OE}}$ and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

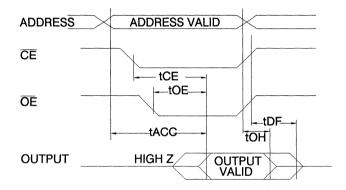
		AT28C16-15	AT28C16-20	AT28C16-25
Operating	Com.	0°C - 70°C	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V ±10%	5V ± 10%	$5V \pm 10\%$

D.C. Characteristics

Symbol	Parameter	Condition		Min	Max	Units	
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$			10	μA	
ILO	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μA	
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC}-0.3V$ to $V_{CC}+1$.	0 V		100	μΑ	
I _{SB2}	V _{CC} Standby Current TTL	$\overline{\text{CE}} = 2.0\text{V}$	Com.		2	mA	
		to V _{CC} + 1.0V	Ind., Mil.		3	mA	
ICC	V _{CC} Active Current A.C.	$f = 5MHz; I_{out} = 0mA$	Com.		30	mA	
		$\overline{CE} = V_{IL}$	Ind., Mil.		45	mA	
VIL	Input Low Voltage				0.8	V	
V_{IH}	Input High Voltage			2.0		V	
Vol	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.4	V	
Voh	Output High Voltage	$I_{OH} = -400 \mu A$		2.4		V	

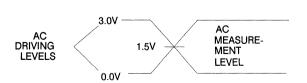
Pin Capacitance (f = 1MHz T = 25°C) (4)

	Тур	Max	Units	Conditions	
CIN	4	6	pF	$V_{IN} = 0V$	
Cot	т 8	12	pF	$V_{OUT} = 0V$	

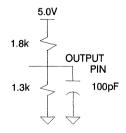


A.C. Read Characteristics

		AT28C16-15		AT28	AT28C16-20 AT28C		6-25		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units	
tACC	Address to Output Delay		150		200		250	ns	
tcE ⁽¹⁾	CE to Output Delay	150			200		250	ns	
toE ⁽²⁾	OE to Output Delay	10	70	10	80	10	100	ns	
t _{DF} (3,4)	OE or CE High to Output Float	0	50	0	55	0	60	ns	
toH	Output Hold from OE, CE	0		0		0		ns	
1	or Address, whichever								
	occurred first								

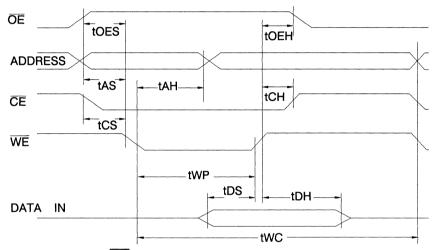

A.C. Read Waveforms

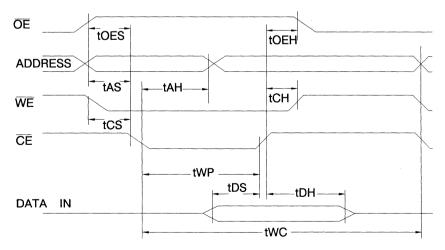
Notes:


- CE may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC}.
- OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.
- 3. t_{DF} is specified from \overrightarrow{OE} or \overrightarrow{CE} whichever occurs first ($C_L = 5pF$).
- 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

 t_R , $t_F < 20$ ns

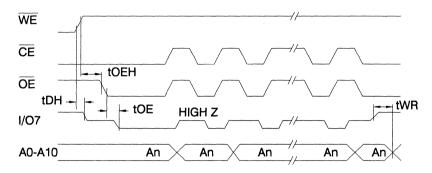

Output Test Load


A.C. Write Characteristics

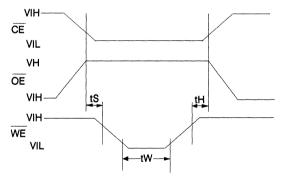
Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	10			ns
tah	Address Hold Time	50			ns
twp	Write Pulse Width (\overline{WE} or \overline{CE})	100		1000	ns
tDS	Data Set-up Time	50			ns
tDH,tOEH	Data, OE Hold Time	10			ns
twc	Write Cycle Time 28C16		0.5	1.0	ms
j	28C16E/F		100	200	μs

A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - CE Controlled



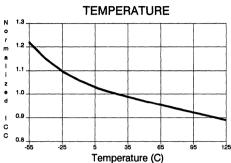
Data Polling Characteristics (1)


Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

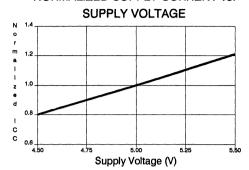
Note: 1. These parameters are characterized and not 100% tested.

Data Polling Waveforms

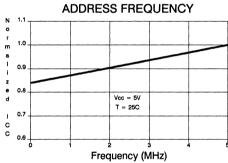
Chip Erase Waveforms

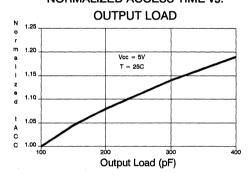


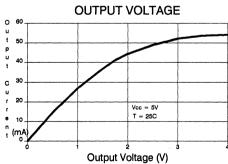
 $t_S = t_H = 1 \mu sec (min.)$

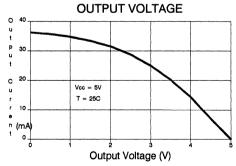

tw = 10msec (min.)

 $V_H = 12 \pm 0.5 V$


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED ACCESS TIME vs.

OUTPUT SINK CURRENT vs.

OUTPUT SOURCE CURRENT vs.

·		/ 43			
tACC		(mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby			
150	30	0.1	AT28C16(E,F)-15DC AT28C16(E,F)-15JC AT28C16(E,F)-15LC AT28C16(E,F)-15PC AT28C16(E,F)-15SC	24D6 32J 32L 24P6 24S	Commercial (0°C to 70°C)
150	45	0.1	AT28C16(E,F)-15DI AT28C16(E,F)-15JI AT28C16(E,F)-15LI AT28C16(E,F)-15PI AT28C16(E,F)-15SI	24D6 32J 32L 24P6 24S	Industrial (-40°C to 85°C)
			AT28C16(E,F)-15DM AT28C16(E,F)-15LM	24D6 32L	Military (-55°C to 125°C)
			AT28C16(E,F)-15DM/883 AT28C16(E,F)-15LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	30	0.1	AT28C16(E,F)-20DC AT28C16(E,F)-20JC AT28C16(E,F)-20LC AT28C16(E,F)-20PC AT28C16(E,F)-20SC AT28C16-20W	24D6 32J 32L 24P6 24S DIE	Commercial (0°C to 70°C)
200	45	0.1	AT28C16(E,F)-20DI AT28C16(E,F)-20JI AT28C16(E,F)-20LI AT28C16(E,F)-20PI AT28C16(E,F)-20SI	24D6 32J 32L 24P6 24S	Industrial (-40°C to 85°C)
			AT28C16(E,F)-20DM AT28C16(E,F)-20LM	24D6 32L	Military (-55°C to 125°C)
			AT28C16(E,F)-20DM/883 AT28C16(E,F)-20LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	30	0.1	AT28C16(E,F)-25DC AT28C16(E,F)-25JC AT28C16(E,F)-25LC AT28C16(E,F)-25PC AT28C16(E,F)-25SC AT28C16-25W	24D6 32J 32L 24P6 24S DIE	Commercial (0°C to 70°C)
250	45	0.1	AT28C16(E,F)-25DI AT28C16(E,F)-25JI AT28C16(E,F)-25LI AT28C16(E,F)-25PI AT28C16(E,F)-25SI	24D6 32J 32L 24P6 24S	Industrial (-40°C to 85°C)

tacc Icc (mA)		(mA)	Ordering Code	Package	Operation Range
(ns)	ns) Active Standby			rackage	Operation Hange
250	50 45 0.1		AT28C16(E,F)-25DM AT28C16(E,F)-25LM	24D6 32L	Military (-55°C to 125°C)
			AT28C16(E,F)-25DM/883 AT28C16(E,F)-25LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	45	0.1	AT28C16(E,F)-30DM/883 AT28C16(E,F)-30LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
350	45	0.1	AT28C16(E,F)-35DM/883 AT28C16(E,F)-35LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
450	45	0.1	AT28C16(E,F)-45DM/883 AT28C16(E,F)-45LM/883	24D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type					
24D6	24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)					
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)					
32L	2L 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)					
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)					
245	24 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)					
W	Die					
	Options					
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1ms					
E	High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200μs					
F	Fast Write Option: Write Time = 200μs					

16K (2K x 8)

CMOS

E²PROM

Features

- Fast Read Access Time 150ns
- Fast Byte Write 200μs or 1 ms
- Self-Timed Byte Write Cycle Internal Address and Data Latches Internal Control Timer
 Automatic Clear Before Write
- Direct Microprocessor Control
 DATA POLLING
 READY/BUSY Open Drain Output
- Low Power

30mA Active Current 100ua CMOS Standby Current

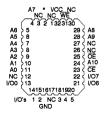
High Reliability

Endurance: 10⁴ or 10⁵ cycles
Data Retention: 10 years

- 5 V ± 10% Supply
- CMOS & TTL Compatible Inputs and Outputs
- JEDEC Approved Byte Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28C17 is a low-power, high-performance Electrically Erasable and Programmable Read Only Memory with easy to use features. The AT28C17 is a 16k memory organized as 2,048 words x 8 bits. The device is manufactured with Atmel's reliable non-volatile CMOS technology.

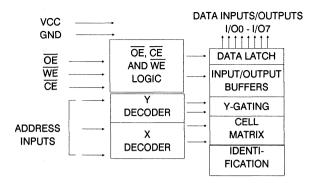

The AT28C17 is accessed like a static RAM for the read or write cycles without the need of external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of a write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. The device includes two methods for detecting the end of a write cycle, level detection of RDY/BUSY and DATA polling of I/O7. Once the end of a write cycle has been detected, a new access for a read or a write can begin.

The CMOS technology offers fast access times of 150ns at low power dissipation. When the chip is deselected the standby current is less than 100 µA.

Atmel's 28C17 has additional features to ensure high quality and manufacturability. The device utilizes error correction internally for extended endurance and for improved data retention characteristics. An extra 32 bytes of E²PROM are available for device identification or tracking.

Pin Configurations

RDY/BUSY 1 NC 2 A7 3	28 VCC 27 WE 26 NC	PIN 1	NAMES
A6 🗗 4 A5 🗆 5	25 A8 24 A9	A0 - A10	Addresses
A4 □ 6 A3 □ 7	23 NC 22 OE	CE	Chip Enable
A2 🗆 8	21 A10	ŌĒ	Output Enable
A1 🗆 9 A0 🗆 10	19 🗦 1/07	WE	Write Enable
I/O0 日11 I/O1 日12	18 I/O6 17 I/O5	I/O0 - I/O7	Data Inputs/Outputs
I/O2 ☐ 13 GND ☐ 14	16 I/O4 15 I/O3	RDY/BUSY	Ready/Busy Output
3115		NC	No Connect


*=RDY/BUSY

Note: PLCC package pins 1 and 17 are DON'T CONNECT.

Block Diagram

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	V _{IL}	$V_{\rm IL}$	V _{IH}	D _{OUT}
Write ⁽²⁾	V_{IL}	V _{IH}	$V_{\rm IL}$	D_{IN}
Standby/Write Inhibit	V _{IH}	$X^{(1)}$	X	High Z
Write Inhibit	X	X	V _{IH}	
Write Inhibit	X	$V_{\rm IL}$	X	
Output Disable	X	V_{IH}	X	High Z
Chip Erase	VIL	$V_{H}^{(3)}$	V _{IL}	High Z

Notes: 1. X can be VII. or VIH.

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5V$.

Device Operation

READ: The AT28C17 is accessed like a Static RAM. When $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are low and $\overline{\text{WE}}$ is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in a high impedance state whenever $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the AT28C17 is similar to writing into a Static RAM. A low pulse on the \overline{WE} or \overline{CE} input with \overline{OE} high and \overline{CE} or \overline{WE} low (respectively) initiates a byte write. The address location is latched on the last falling edge of \overline{WE} (or \overline{CE}); the new data is latched on the first rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion.

FAST BYTE WRITE: The AT28C17F offers a byte write time of 200µs maximum. This feature allows the entire device to be rewritten in 0.4 seconds.

READY/BUSY: Pin 1 is an open drain READY/BUSY output that can be used to detect the end of a write cycle. RDY/BUSY is actively pulled low during the write cycle and is released at the completion of the write. The open drain connection allows for OR-tying of several devices to the same RDY/BUSY line.

DATA POLLING: The AT28C17 provides DATA POLLING to signal the completion of a write cycle. During a write cycle, an attempted read of the data being written results in the complement of that data for I/O7 (the other outputs are indeterminate). When the write cycle is finished, true data appears on all outputs.

WRITE PROTECTION: Inadvertent writes to the device are protected against in the following ways. (a) Vcc sense — if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay — once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a byte write. (c) Write Inhibit — holding any one of $\overline{\text{OE}}$ low, $\overline{\text{CE}}$ high or $\overline{\text{WE}}$ high inhibits byte write cycles.

CHIP CLEAR: The contents of the entire memory of the AT28C17 may be set to the high state by the CHIP CLEAR operation. By setting \overline{CE} low and \overline{OE} to 12 volts, the chip is cleared when a 10 msec low pulse is applied to \overline{WE} .

DEVICE IDENTIFICATION: An extra 32 bytes of E^2 PROM memory are available to the user for device identification. By raising A9 to 12 ± 0.5 V and using address locations 7E0H to 7FFH the additional bytes may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} + 0.6V$
Voltage on $\overline{\rm OE}$ and A9

with Respect to Ground.....-0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

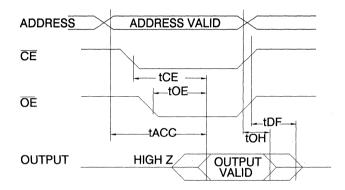
		AT28C17-15	AT28C17-20	AT28C17-25
Operating	Com.	0°C - 70°C	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V ±10%	$5V \pm 10\%$	$5V \pm 10\%$

D.C. Characteristics

Symbol	Parameter	Condition		Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$			10	μA
I_{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μΑ
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC} - 0.3V$ to $V_{CC} + 1.0$)V		100	μΑ
I _{SB2}	VCC Standby Current TTL	$\overline{\text{CE}} = 2.0\text{V}$	Com.		2	mA
		to $V_{CC} + 1.0V$	Ind., Mil.		3	mA
I _{CC}	V _{CC} Active Current A.C.	$f = 5MHz; I_{out} = 0mA$	Com.		30	mA
		$\overline{CE} = V_{IL}$	Ind., Mil.		45	mA
V_{IL}	Input Low Voltage				0.8	V
V_{IH}	Input High Voltage			2.0		V
Vol	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.4	V
		=4.0mA for RDY/BUS	Y			
VoH	Output High Voltage	$I_{OH} = -400 \mu A$		2.4		V

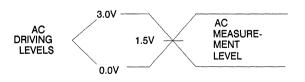
Pin Capacitance $(f = 1MHz T = 25^{\circ}C)^{(4)}$

	Тур	Max	Units	Conditions	
C _{IN}	4	6	pF	$V_{IN} = 0V$	
Cou	т 8	12	pF	$V_{OUT} = 0V$	

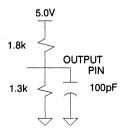


A.C. Read Characteristics

		AT28	C17-15	AT280	C17-20	AT280	C17-25		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units	
tACC	Address to Output Delay		150		200		250	ns	
tcE ⁽¹⁾	CE to Output Delay		150		200		250	ns	
toE ⁽²⁾	OE to Output Delay	10	70	10	80	10	100	ns	
t _{DF} (3,4)	OE or CE High to Output Float	0	50	0	55	0	60	ns	
tон	Output Hold from OE, CE	0		0		0		ns	
	or Address, whichever								
	occurred first								

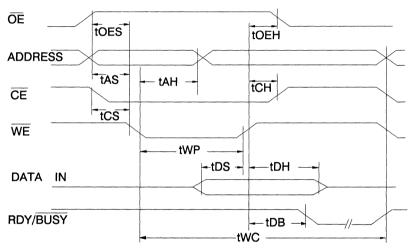

A.C. Read Waveforms

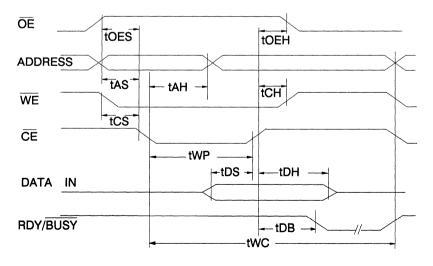
Notes:


- CE may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC}.
- OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.
- 3. tDF is specified from \overline{OE} or \overline{CE} whichever occurs first $(C_L = 5pF)$.
- 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

 t_R , $t_F < 20$ ns

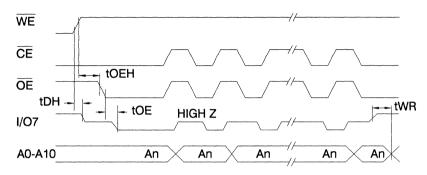

Output Test Load


A.C. Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	10			ns
tAH	Address Hold Time	50			ns
twp	Write Pulse Width (\overline{WE} or \overline{CE})	100		1000	ns
tDS	Data Set-up Time	50			ns
tdh,toeh	Data, OE Hold Time	10			ns
t _{DB}	Time to Device Busy			50	ns
twc	Write Cycle Time 28C17		0.5	1.0	ms
]	28C17E/F		100	200	μs

A.C. Write Waveforms - WE Controlled

A.C. Waveforms - CE Controlled



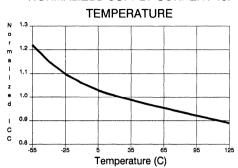
Data Polling Characteristics (1)


Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

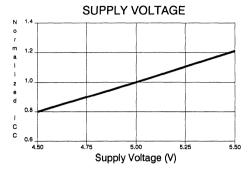
Note: 1. These parameters are characterized and not 100% tested.

Data Polling Waveforms

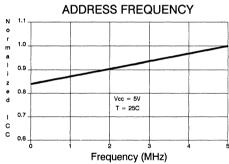
Chip Erase Waveforms

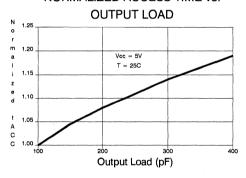


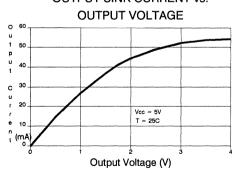
 $t_S = t_H = 1 \mu sec (min.)$

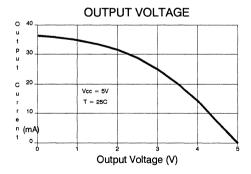

tw = 10msec (min.)

 $V_H = 12 \pm 0.5V$


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED ACCESS TIME vs.

OUTPUT SINK CURRENT vs.

OUTPUT SOURCE CURRENT vs.

tacc	lcc	; (mA)	Outside Outs	BJ	On and the Day
(ns)	Active	Standby	Ordering Code	Package	Operation Range
150	30	0.1	AT28C17(E,F)-15DC AT28C17(E,F)-15JC AT28C17(E,F)-15LC AT28C17(E,F)-15PC AT28C17(E,F)-15SC	28D6 32J 32L 28P6 28S	Commercial (0°C to 70°C)
150	45	0.1	AT28C17(E,F)-15DI AT28C17(E,F)-15JI AT28C17(E,F)-15LI AT28C17(E,F)-15PI AT28C17(E,F)-15SI	28D6 32J 32L 28P6 28S	Industrial (-40°C to 85°C)
			AT28C17(E,F)-15DM AT28C17(E,F)-15LM	28D6 32L	Military (-55°C to 125°C)
			AT28C17(E,F)-15DM/883 AT28C17(E,F)-15LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	30/	0.1	AT28C17(E,F)-20DC AT28C17(E,F)-20JC AT28C17(E,F)-20LC AT28C17(E,F)-20PC AT28C17(E,F)-20SC AT28C17-20W	28D6 32J 32L 28P6 28S DIE	Commercial (0°C to 70°C)
200	45	0.1	AT28C17(E,F)-20DI AT28C17(E,F)-20JI AT28C17(E,F)-20LI AT28C17(E,F)-20PI AT28C17(E,F)-20SI	28D6 32J 32L 28P6 28S	Industrial (-40°C to 85°C)
			AT28C17(E,F)-20DM AT28C17(E,F)-20LM	28D6 32L	Military (-55°C to 125°C)
		`.	AT28C17(E,F)-20DM/883 AT28C17(E,F)-20LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	30	0.1	AT28C17(E,F)-25DC AT28C17(E,F)-25JC AT28C17(E,F)-25LC AT28C17(E,F)-25PC AT28C17(E,F)-25SC AT28C17-25W	28D6 32J 32L 28P6 28S DIE	Commercial (0°C to 70°C)
250	45	0.1	AT28C17(E,F)-25DI AT28C17(E,F)-25JI AT28C17(E,F)-25LI AT28C17(E,F)-25PI AT28C17(E,F)-25SI	28D6 32J 32L 28P6 28S	Industrial (-40°C to 85°C)

tacc	tacc Icc (mA)		Ordarina Codo	Dookooo	Operation Banco		
(ns)	Active	Standby	Ordering Code Package		Operation Range		
250	250 45 0.1		AT28C17(E,F)-25DM AT28C17(E,F)-25LM	28D6 32L	Military (-55°C to 125°C)		
			AT28C17(E,F)-25DM/883 AT28C17(E,F)-25LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
300	45	0.1	AT28C17(E,F)-30DM/883 AT28C17(E,F)-30LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
350	45	0.1	AT28C17(E,F)-35DM/883 AT28C17(E,F)-35LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
450	45	0.1	AT28C17(E,F)-45DM/883 AT28C17(E,F)-45LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)		

	Package Type					
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)					
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)					
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)					
28S	28 Lead, 0.300" Wide, Plastic Gull Wing, Small Outline (SOIC)					
W	Die					
	Options					
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1ms					
E	High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200μs					
F	Fast Write Option: Write Time = 200μs					

64K (8K x 8)

CMOS

E²PROM

Features

- Fast Read Access Time 150ns
- Fast Byte Write 200μs or 1 ms
- Self-Timed Byte Write Cycle Internal Address and Data Latches Internal Control Timer Automatic Clear Before Write
- Direct Microprocessor Control READY/BUSY Open Drain Output DATA Polling
- Low Power

30mA Active Current 100uA CMOS Standby Current

High Reliability

Endurance: 10⁴ or 10⁵ Cycles

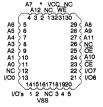
- Data Retention: 10 years

 5V + 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28C64 is a low-power, high-performance 8,192 words x 8 bit non-volatile Electrically Erasable and Programmable Read Only Memory with popular, easy to use features. The device is manufactured with Atmel's reliable non-volatile technology.

The AT28C64 is accessed like a Static RAM for the read or write cycles without the need for external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of a write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. The device includes two methods for detecting the end of a write cycle, level detection of RDY/BUSY (unless pin 1 is N.C.) and DATA polling of I/O7. Once the end of a write cycle has been detected, a new access for a read or write can begin.

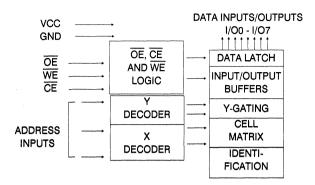

The CMOS technology offers fast access times of 150ns at low power dissipation. When the chip is deselected the standby current is less than 100µA.

Atmel's 28C64 has additional features to ensure high quality and manufacturability. The device utilizes error correction internally for extended endurance and for improved data retention characteristics. An extra 32 bytes of E²PROM are available for device identification or tracking.

Pin Configurations

RDY/BUSY		1
(or NC) [1	28	□ vcc
A12 □ 2	27	□ WE
A7 □ 3	26	Þ NC '
A6 □ 4	25	Þ A8
A5 🗆 5	24	□ A9
A4 □ 6	23	□ A11
A3 🗆 7	22	₽ SE
		E 05
A2 □ 8	21	□ A10
A1 🗆 9	20	₽ CE
A0 □ 10	19	□ I/O7
1/00 □11	18	NE NC A8 A9 A11 OE 1/07 1/06 1/06 1/06 1/06 1/06 1/06 1/06
l/O1 □ 12	17	1/05
i/O2 □ 13	16	□ 1/04
	15	5 ,,04
GND ☐ 14	10	□ I/O3

PIN NAMES					
Addresses					
Chip Enable					
Output Enable					
Write Enable					
Data Inputs/Outputs					
Ready/Busy Output					
No Connect					


 $* = RDY/\overline{BUSY}$ (or NC)

Note: PLCC package pins 1 and 17 are DON'T CONNECT.

Block Diagram

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	V_{IL}	$V_{\rm IL}$	V_{IH}	$\mathbf{D}_{\mathbf{OUT}}$
Write ⁽²⁾	$V_{\rm IL}$	V_{IH}	V_{IL}	${ m D_{IN}}$
Standby/Write Inhibit	V_{IH}	$X^{(1)}$	X	High Z
Write Inhibit	X	X	V_{IH}	
Write Inhibit	X	V_{IL}	X	
Output Disable	X	V _{IH}	X	High Z
Chip Erase	$V_{\rm IL}$	V _H ⁽³⁾	V _{IL}	High Z

Notes: 1. X can be VIL or VIH.

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5 V$.

Device Operation

READ: The AT28C64 is accessed like a Static RAM. When $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are low and $\overline{\text{WE}}$ is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in a high impedance state whenever $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the AT28C64 is similar to writing into a Static RAM. A low pulse on the \overline{WE} or \overline{CE} input with \overline{OE} high and \overline{CE} or \overline{WE} low (respectively) initiates a byte write. The address location is latched on the falling edge of \overline{WE} (or \overline{CE}); the new data is latched on the rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion.

FAST BYTE WRITE: The AT28C64F offers a byte write time of 200 µs maximum. This feature allows the entire device to be rewritten in 1.6 seconds.

READY/BUSY: Pin 1 is an open drain READY/BUSY output that can be used to detect the end of a write cycle. RDY/BUSY is actively pulled low during the write cycle and is released at the completion of the write. The open drain connection allows for OR-tying of several devices to the same RDY/BUSY line. Pin 1 is not connected for the AT28C64X.

DATA POLLING: The AT28C64 provides DATA POLLING to signal the completion of a write cycle. During a write cycle, an attempted read of the data being written results in the complement of that data for I/O7 (the other outputs are indeterminate). When the write cycle is finished, true data appears on all outputs.

WRITE PROTECTION: Inadvertent writes to the device are protected against in the following ways. (a) Vcc sense — if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay — once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a byte write. (c) Write Inhibit — holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits byte write cycles.

CHIP CLEAR: The contents of the entire memory of the AT28C64 may be set to the high state by the CHIP CLEAR operation. By setting \overline{CE} low and \overline{OE} to 12 volts, the chip is cleared when a 10 msec low pulse is applied to \overline{WE} .

DEVICE IDENTIFICATION: An extra 32 bytes of EEPROM memory are available to the user for device identification. By raising A9 to $12 \pm 0.5V$ and using address locations 1FE0H to 1FFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Ratings*

Absolute maximum ratings
Temperature Under Bias55°C to +125°C
Storage Temperature65°C to $+150$ °C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} + 0.6V$
Voltage on \overline{OE} and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

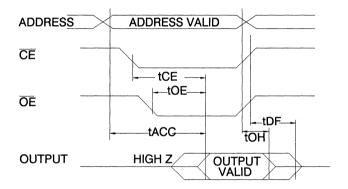
		AT28C64-15	AT28C64-20	AT28C64-25
Operating	Com.	0°C - 70°C	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V +/-10%	5V + /-10%	5V + /-10%

D.C. Characteristics

Parameter	Condition		Min	Max	Units	
Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$	$V_{IN} = 0V$ to $V_{CC} + 1V$		10	μΑ	
Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μΑ	
VCC Standby Current CMOS	$\overline{CE} = V_{CC} - 0.3V$ to $V_{CC} +$	1.0V		100	μΑ	
VCC Standby Current TTL	$\overline{\text{CE}} = 2.0\text{V}$	Com		2	mA	
	to $V_{CC} + 1.0V$	Ind., Mil.		3	mA	
V _{CC} Active Current A.C	$f = 5MHz; I_{out} = 0mA$	Com.		30	mA	
	$\overline{CE} = V_{IL}$	Ind., Mil.		45	mA	
Input Low Voltage				0.8	V	
Input High Voltage			2.0		V	
Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.45	V	
	$=4.0$ mA for RDY/ \overline{BU}	JSY				
Output High Voltage	$I_{OH} = -400 \mu A$		2.4		V	
_	Input Load Current Output Leakage Current VCC Standby Current CMOS VCC Standby Current TTL VCC Active Current A.C Input Low Voltage Input High Voltage Output Low Voltage	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

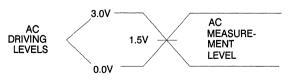
Pin Capacitance (f = 1MHz T = 25°C) (4)

	Тур	Max	Units	Conditions	
C _{IN}	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	$V_{OUT} = 0V$	

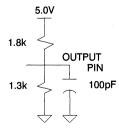


A.C. Read Characteristics

		AT28C64-15		AT28C64-20		AT28C64-25			
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units	
tACC	Address to Output Delay		150		200		250	ns	
tcE ⁽¹⁾	CE to Output Delay		150		200		250	ns	
toE ⁽²⁾	OE to Output Delay	10	70	10	80	10	100	ns	
$t_{\rm DF}^{(3,4)}$	OE or CE High to Output Float	0	50	0	55	0	60	ns	
toH	Output Hold from OE, CE	0		0		0	· · · · · · · · · · · · · · · · · · ·	ns	
ľ	or Address, whichever								
	occurred first								


A.C. Read Waveforms

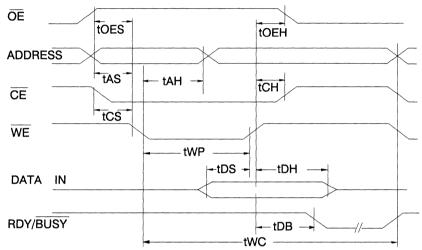
Notes:


- CE may be delayed up to tACC tCE after the address transition without impact on tACC.
- OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.
- 3. tDF is specified from \overline{OE} or \overline{CE} whichever occurs first $(C_L = 5pF)$.
- 4. This parameter is characterized and is not 100% tested.

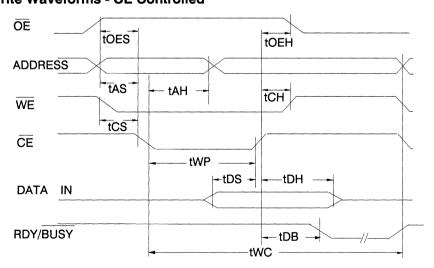
Input Test Waveforms and Measurement Level

 t_R , $t_F < 20$ ns

Output Test Load



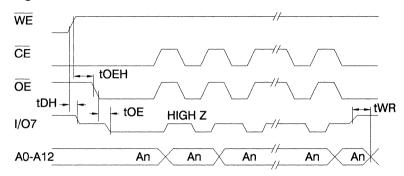
AT28C64


A.C. Write Characteristics

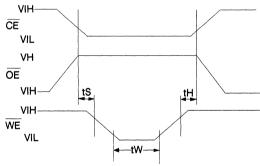
Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	10			ns
tah	Address Hold Time	50			ns
twp	Write Pulse Width (\overline{WE} or \overline{CE})	100		1000	ns
tDS	Data Set-up Time	50			ns
tDH,tOEH	Data, OE Hold Time	10			ns
tDB	Time to Device Busy			50	ns
twc	Write Cycle Time AT28C64		0.5	1.0	ms
	AT28C64E/F		100	200	μs

A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - CE Controlled



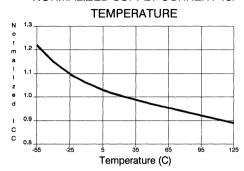
Data Polling Characteristics (1)


Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
twR	Write Recovery Time	0			ns

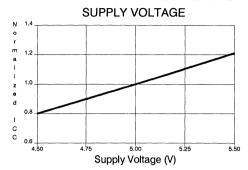
Note: 1. These parameters are characterized and not 100% tested.

Data Polling Waveforms

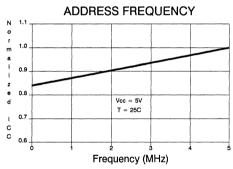
Chip Erase Waveforms

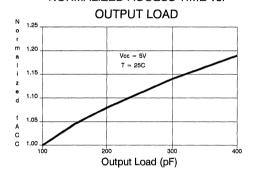


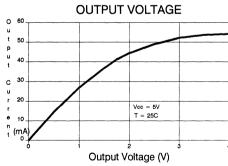
 $t_S = t_H = 1 \mu sec (min.)$

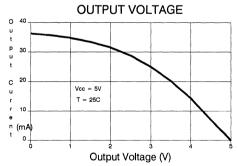

tw = 10msec (min.)

 $V_{\rm H}=12\pm0.5V$


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED ACCESS TIME vs.

OUTPUT SINK CURRENT vs.

OUTPUT SOURCE CURRENT vs.

tacc	loo	(mA)	Outlanta a Oada	Daglaga	Onevalian Dense
(ns)	Active	Standby	Ordering Code	Package	Operation Range
150	30	0.1	AT28C64(E,F)-15DC AT28C64(E,F)-15FC AT28C64(E,F)-15JC AT28C64(E,F)-15LC AT28C64(E,F)-15PC AT28C64(E,F)-15SC	28D6 28F 32J 32L 28P6 28S	Commercial (0°C to 70°C)
150	45	0.1	AT28C64(E,F)-15DI AT28C64(E,F)-15FI AT28C64(E,F)-15JI AT28C64(E,F)-15LI AT28C64(E,F)-15PI AT28C64(E,F)-15SI	28D6 28F 32J 32L 28P6 28S	Industrial (-40°C to 85°C)
			AT28C64(E,F)-15DM AT28C64(E,F)-15FM AT28C64(E,F)-15LM	28D6 28F 32L	Military (-55°C to 125°C)
			AT28C64(E,F)-15DM/883 AT28C64(E,F)-15FM/883 AT28C64(E,F)-15LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	30	0.1	AT28C64(E,F)-20DC AT28C64(E,F)-20FC AT28C64(E,F)-20JC AT28C64(E,F)-20LC AT28C64(E,F)-20PC AT28C64(E,F)-20SC AT28C64-20W	28D6 28F 32J 32L 28P6 28S DIE	Commercial (0°C to 70°C)
200	45	0.1	AT28C64(E,F)-20DI AT28C64(E,F)-20FI AT28C64(E,F)-20JI AT28C64(E,F)-20LI AT28C64(E,F)-20PI AT28C64(E,F)-20SI	28D6 28F 32J 32L 28P6 28S	Industrial (-40°C to 85°C)
			AT28C64(E,F)-20DM AT28C64(E,F)-20FM AT28C64(E,F)-20LM	28D6 28F 32L	Military (-55°C to 125°C)
			AT28C64(E,F)-20DM/883 AT28C64(E,F)-20FM/883 AT28C64(E,F)-20LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	30	0.1	AT28C64(E,F)-25DC AT28C64(E,F)-25FC AT28C64(E,F)-25JC AT28C64(E,F)-25LC AT28C64(E,F)-25PC AT28C64(E,F)-25SC AT28C64-25W	28D6 28F 32J 32L 28P6 28S DIE	Commercial (0°C to 70°C)

tacc	Ico	(mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby		Fackage	Operation hange
250	45	0.1	AT28C64(E,F)-25DI AT28C64(E,F)-25FI AT28C64(E,F)-25JI AT28C64(E,F)-25LI AT28C64(E,F)-25PI AT28C64(E,F)-25SI	28D6 28F 32J 32L 28P6 28S	Industrial (-40°C to 85°C)
			AT28C64(E,F)-25DM AT28C64(E,F)-25FM AT28C64(E,F)-25LM	28D6 28F 32L	Military (-55°C to 125°C)
			AT28C64(E,F)-25DM/883 AT28C64(E,F)-25FM/883 AT28C64(E,F)-25LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	45	0.1	AT28C64(E,F)-30DM/883 AT28C64(E,F)-30FM/883 AT28C64(E,F)-30LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
350	45	0.1	AT28C64(E,F)-35DM/883 AT28C64(E,F)-35FM/883 AT28C64(E,F)-35LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
450	45	0.1	AT28C64(E,F)-45DM/883 AT28C64(E,F)-45FM/883 AT28C64(E,F)-45LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
150	45	0.1	5962-87514 17 UX 5962-87514 17 XX 5962-87514 17 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	45	0.1	5962-87514 16 UX 5962-87514 16 XX 5962-87514 16 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	45	0.1	5962-87514 15 UX 5962-87514 15 XX 5962-87514 15 YX 5962-87514 15 ZX	32K 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	45	0.1	5962-87514 14 UX 5962-87514 14 XX 5962-87514 14 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
350	45	0.1	5962-87514 13 UX 5962-87514 13 XX 5962-87514 13 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
28F	28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)
32K	32 Lead, Non-Windowed, Ceramic J-Leaded Quad Flat Package (Cerquad)
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
28S	28 Lead, 0.300" Wide, Plastic Gull Wing, Small Outline (SOIC)
W	Die
	Options
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1ms
E	High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200μs
F	Fast Write Option: Write Time = 200μs

tacc	lcc	: (mA)	Oudenies Oede	Daylore	O
(ns)	Active	Standby	Ordering Code Package		Operation Range
150	30	0.1	AT28C64X-15DC AT28C64X-15FC AT28C64X-15JC AT28C64X-15LC AT28C64X-15PC AT28C64X-15SC	28D6 28F 32J 32L 28P6 28S	Commercial (0°C to 70°C)
150	45	0.1	AT28C64X-15DI AT28C64X-15FI AT28C64X-15JI AT28C64X-15LI AT28C64X-15PI AT28C64X-15SI	28D6 28F 32J 32L 28P6 28S	Industrial (-40°C to 85°C)
			AT28C64X-15DM AT28C64X-15FM AT28C64X-15LM	28D6 28F 32L	Military (-55°C to 125°C)
			AT28C64X-15DM/883 AT28C64X-15FM/883 AT28C64X-15LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	30	0.1	AT28C64X-20DC AT28C64X-20FC AT28C64X-20JC AT28C64X-20LC AT28C64X-20PC AT28C64X-20SC	28D6 28F 32J 32L 28P6 28S	Commercial (0°C to 70°C)
200	45	0.1	AT28C64X-20DI AT28C64X-20FI AT28C64X-20JI AT28C64X-20LI AT28C64X-20PI AT28C64X-20SI	28D6 28F 32J 32L 28P6 28S	Industrial (-40°C to 85°C)
			AT28C64X-20DM AT28C64X-20FM AT28C64X-20LM	28D6 28F 32L	Military (-55°C to 125°C)
			AT28C64X-20DM/883 AT28C64X-20FM/883 AT28C64X-20LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	30	0.1	AT28C64X-25DC AT28C64X-25FC AT28C64X-25JC AT28C64X-25LC AT28C64X-25PC AT28C64X-25SC	28D6 28F 32J 32L 28P6 28S	Commercial (0°C to 70°C)

tacc	lcc	(mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby	Ordering Code	Fackage	Operation hange
250	45	0.1	AT28C64X-25DI AT28C64X-25FI AT28C64X-25JI AT28C64X-25LI AT28C64X-25PI AT28C64X-25SI	28D6 28F 32J 32L 28P6 28S	Industrial (-40°C to 85°C)
			AT28C64X-25DM AT28C64X-25FM AT28C64X-25LM	28D6 28F 32L	Military (-55°C to 125°C)
			AT28C64X-25DM/883 AT28C64X-25FM/883 AT28C64X-25LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	45	0.1	AT28C64X-30DM/883 AT28C64X-30FM/883 AT28C64X-30LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
350	45	0.1	AT28C64X-35DM/883 AT28C64X-35FM/883 AT28C64X-35LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
450	45	0.1	AT28C64X-45DM/883 AT28C64X-45FM/883 AT28C64X-45LM/883	28D6 28F 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
150	45	0.1	5962-87514 22 UX 5962-87514 22 XX 5962-87514 22 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	45	0.1	5962-87514 21 UX 5962-87514 21 XX 5962-87514 21 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	45	0.1	5962-87514 20 UX 5962-87514 20 XX 5962-87514 20 YX 5962-87514 20 ZX	32K 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	45	0.1	5962-87514 19 UX 5962-87514 19 XX 5962-87514 19 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
350	45	0.1	5962-87514 18 UX 5962-87514 18 XX 5962-87514 18 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type	
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)	
28F	28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)	
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)	
32K	32 Lead, Non-Windowed, Ceramic J-Leaded Quad Flat Package (Cerquad)	
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)	
28P6	28 Lead, 0.600" Wide Plastic Dual Inline Package (PDIP)	
285	28 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)	

Features

- Fast Read Access Time 150ns
- Automatic Page Write Operation

Internal Address and Data Latches for 32 Bytes
Internal Control Timer

• Fast Write Cycle Times

Maximum Page Write Cycle Time: 2ms
1 to 32 Byte Page Write Operation

Low Power Dissipation

80mA Active Current 100uA CMOS Standby Current

Direct Microprocessor Control
 DATA Polling

 High Reliability CMOS Technology Endurance: 10⁴ or 10⁵ Cycles Data Retention: 10 years

• Single 5V ± 10% Supply

CMOS and TTL Compatible Inputs and Outputs

JEDEC Approved Byte-Wide Pinout

• Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28PC64 is a high-speed, low-power Electrically Erasable and Programmable Read Only Memory. Its 64k of memory is organized as 8,192 words by 8 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the device offers access times to 150ns with power dissipation of just 440mW. When the device is deselected the standby current is less than 100µA.

The AT28PC64 is accessed like a Static RAM for the read or write cycles without the need for external components. The device contains a 32-byte page register to allow writing of up to 32 bytes simultaneously. During a write cycle, the addresses and 1 to 32 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by \overline{DATA} polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

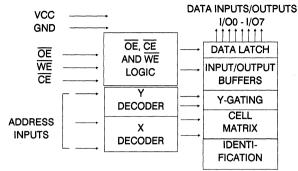
Atmel's 28PC64 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. The AT28PC64 also includes an extra 32 bytes of E²PROM for device identification or tracking.

Pin Configurations

A5 0 5 24 0 A9 A4 0 6 23 0 A11 A3 0 7 22 0 0E A2 0 8 21 0 A10 A1 0 9 20 0 0E A0 0 10 19 0 007 000 0 11 18 0 007	NC C A12 C A7 C A6 C A5 C A4 C	1 2 3 4	28 27 26 25	VCC WE NC A8
1/01 12 17 17 17 17 17 17 17 17 17 17 17 17 17	A3 C A2 C A1 C A0 C I/O1 C I/O1 C	7 8 9 110 11	25 24 23 22 21 20 19 18 17	A9 A11 OE A10

PIN NAMES					
A0 - A12 Addresses					
CE	Chip Enable				
ŌĒ	Output Enable				
WE	Write Enable				
I/O0 - I/O7	Data Inputs/Outputs				
NC	No Connect				

	A7 NC VCC_NC A12 NC WE					
		3 2 13		~		
A6	5 5			29 ⟨	A8	
A5	6 6			28 ⟨	A9	
A4	57			27 (A11	
АЗ	8 <			26 (NC	
A2	9			25 <	ŌĒ	
A1	510			24 (A10	
AO	511			23 ⟨	CE	
NC	12			22	1/07	
1/00	13			21 (1/06	
14151617181920						
I/O's 1 2 NC 3 4 5						
		GND		-		


Note: PLCC package pins 1 and 17 are DON'T CONNECT.

64K (8K x 8) Paged CMOS E²PROM

Block Diagram

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	V_{IL}	V_{IL}	$V_{ m IH}$	$D_{ m OUT}$
Write ⁽²⁾	V_{IL}	V_{IH}	V_{IL}	D_{IN}
Standby/Write Inhibit	V_{IH}	$X^{(1)}$	X	High Z
Write Inhibit	X	X	V _{IH}	
Write Inhibit	X	V _{IL}	X	
Output Disable	X	V_{IH}	X	High Z
Chip Erase	V _{IL}	V _H ⁽³⁾	V _{IL}	High Z

Notes: 1. X can be VIL or VIH.

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5V$.

Device Operation

READ: The $\overline{AT28PC64}$ is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers flexibility in preventing bus contention.

WRITE: A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a byte write has been started it will automatically time itself to completion.

PAGE WRITE MODE: The page write operation of the AT28PC64 allows one to 32 bytes of data to be loaded into the device and then simultaneously written during the internal programming period. After the first data byte has been loaded, successive bytes may be loaded in the same manner. Each byte to be written must be loaded into the AT28PC64 within 150µs of the first byte. A5 to A12 determine the page address. The page address must be valid during each high to low transition of WE (or CE). A0 to A4 are used to specify which bytes within the page are to be written. All bytes to be written must share the same page address. The bytes may be loaded in any order and may be altered within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.

DATA POLLING: The AT28PC64 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data on I/O7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. DATA Polling may begin at any time during the write cycle.

DATA PROTECTION: Hardware features protect against inadvertent writes to the AT28PC64 in the following ways: (a) Vcc sense — if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay — once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a write. (c) Write inhibit — holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits write cycles. (d) Noise filter — pulses of less than 15ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a write cycle.

CHIP CLEAR: The contents of the entire memory of the AT28PC64 may be set to the high state by the use of the CHIP CLEAR operation. By setting \overline{CE} low and \overline{OE} to 12 volts, the chip is cleared when a 10ms low pulse is applied to the \overline{WE} pin.

DEVICE IDENTIFICATION: An extra 32 bytes of E^2PROM memory are available to the user for device identification. By raising A9 to $12\pm0.5V$ and using address locations 1FE0H to 1FFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature 65° C to $+150^{\circ}$ C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC}\!+\!0.6V$
Voltage on $\overline{\text{OE}}$ and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

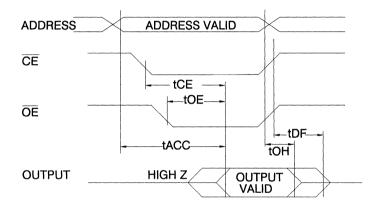
		AT28PC64-15	AT28PC64-20	AT28PC64-25
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		$5V \pm 10\%$	5V ± 10%	$5V \pm 10\%$

D.C. Characteristics

Symbol	Parameter	Condition	Min	Max	Units	
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$		10	μΑ	
I_{LO}	Output Leakage Current	$V_{\rm I/O} = 0 \rm V \ to \ V_{\rm CC}$		10	μA	
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC}3V$	Com., Ind.	100	μΑ	
		to V _{CC} +1V	Mil.	200	μΑ	
I _{SB2}	VCC Standby Current TTL	$\overline{CE} = 2.0V$ to $V_{CC} + 1V$		3	mA	
ICC	V _{CC} Active Current	$f = 5MHz; I_{OUT} = 0mA$		80	mA	
V_{IL}	Input Low Voltage			0.8	V	
V _{IH}	Input High Voltage		2.0		V	
Vol	Output Low Voltage	$I_{OL}=2.1mA$.4	V	
VoH	Output High Voltage	$I_{OH} = -400 \mu A$	2.4		V	

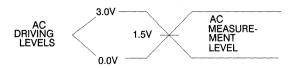
Pin Capacitance (f = 1MHz T = 25°C) (5)

	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
Cout	8	. 12	pF	$V_{OUT} = 0V$

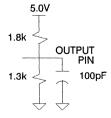


A.C. Characteristics (1)

		AT28P	C64-15	AT28P	C64-20	AT28P	C64-25	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
tACC	Address to Output Delay		150		200		250	ns
tcE ⁽²⁾	CE to Output Delay		150		200		250	ns
toE ⁽³⁾	OE to Output Delay	0	70	0	80	0	100	ns
$t_{DF}^{(4,5)}$	OE or CE to Output Float	0	50	0	55	0	60	ns
tон	Output Hold from \overline{OE} , \overline{CE}	0		0		0		ns
1	or Address, whichever							
	occurred first							

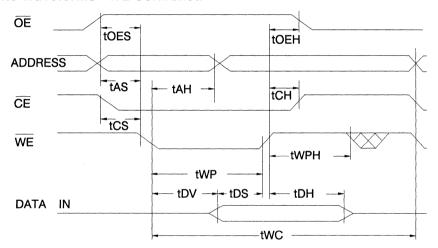

A.C. Read Waveforms

Notes:


- 1. $C_L = 100 pF$.
- CE may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC}.
- OE may be delayed up to tCE tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change without impact on tACC.
- 4. t_{DF} is specified from \overrightarrow{OE} or \overrightarrow{CE} whichever occurs first $(C_L = 5pF)$.
- 5. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

 $t_R, t_F < 5ns$

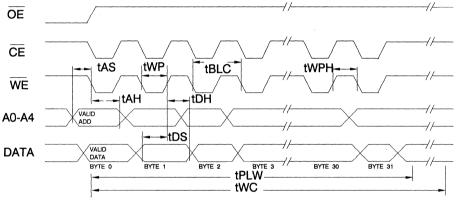

Output Test Load


A.C. Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	0			ns
tah	Address Hold Time	50			ns
tcs	Chip Select Set-up Time	0			ns
tch	Chip Select Hold Time	0			ns
twp	Write Pulse Width (WE or CE)	100		1000	ns
tDS	Data Set-up Time	50			ns
tDH,tOEH	Data, OE Hold Time	0			ns
tDV	Time to Data Valid			1	μs
twc	Write Cycle Time		1.0	2.0	ms

A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - CE Controlled



Page Mode Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
twc	Write Cycle Time		1	2.0	ms
tas	Address Set-up Time	0			ns
tah	Address Hold Time	50			ns
tDS	Data Set-up Time	50			ns
tDH	Data Hold Time	0			ns
twp	Write Pulse Width	100		1000	ns
tBLC	Byte Load Cycle Time	150			ns
tPLW	Page Load Width			150	μs
twpH	Write Pulse Width High	50			ns

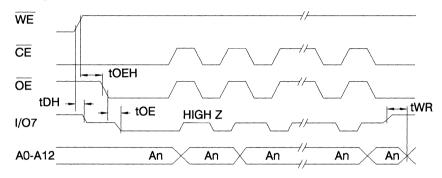

Page Mode Write Waveforms

Note: A5 through A12 must specify the page address during each high to low transition of \overline{WE} (or \overline{CE}).

 \overrightarrow{OE} must be high only when \overrightarrow{WE} and \overrightarrow{CE} are both low.

Chip Erase Waveforms

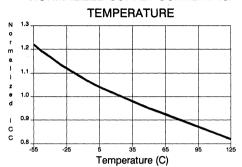
 $t_S = t_H = 1 \mu sec (min.)$ $t_W = 10 msec (min.)$

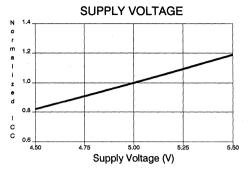

 $V_{\rm H}=12\pm0.5V$

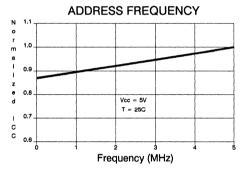
Data Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	0			ns
toeh	OE Hold Time	0			ns
toE	OE to Output Delay			50	ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.


DATA Polling Waveforms




NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

tacc	loc	; (mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby	Ordering Code	Fackage	Operation Hange
150	80	0.1	AT28PC64(E)-15DC AT28PC64(E)-15JC AT28PC64(E)-15LC AT28PC64(E)-15PC AT28PC64-15W	28D6 32J 32L 28P6 DIE	Commercial (0°C to 70°C)
			AT28PC64(E)-15DI AT28PC64(E)-15JI AT28PC64(E)-15LI AT28PC64(E)-15PI	28D6 32J 32L 28P6	Industrial (-40°C to 85°C)
150	80	0.2	AT28PC64(E)-15DM AT28PC64(E)-15LM	28D6 32L	Military (-55°C to 125°C)
			AT28PC64(E)-15DM/883 AT28PC64(E)-15LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	80	0.1	AT28PC64(E)-20DC AT28PC64(E)-20JC AT28PC64(E)-20LC AT28PC64(E)-20PC AT28PC64-20W	28D6 32J 32L 28P6 DIE	Commercial (0°C to 70°C)
			AT28PC64(E)-20DI AT28PC64(E)-20JI AT28PC64(E)-20LI AT28PC64(E)-20PI	28D6 32J 32L 28P6	Industrial (-40°C to 85°C)
200	80	0.2	AT28PC64(E)-20DM AT28PC64(E)-20LM	28D6 32L	Military (-55°C to 125°C)
			AT28PC64(E)-20DM/883 AT28PC64(E)-20LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	80	0.1	AT28PC64(E)-25DC AT28PC64(E)-25JC AT28PC64(E)-25LC AT28PC64(E)-25PC AT28PC64-25W	28D6 32J 32L 28P6 DIE	Commercial (0°C to 70°C)
			AT28PC64(E)-25DI AT28PC64(E)-25JI AT28PC64(E)-25LI AT28PC64(E)-25PI	28D6 32J 32L 28P6	Industrial (-40°C to 85°C)
250	80	0.2	AT28PC64(E)-25DM AT28PC64(E)-25LM	28D6 32L	Military (-55°C to 125°C)
			AT28PC64(E)-25DM/883 AT28PC64(E)-25LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)

t _{ACC}	I _{CC}	(mA) Standby	Ordering Code	Package	Operation Range
300	80	0.2	AT28PC64(E)-30DM/883 AT28PC64(E)-30LM/883	28D6 32L	Military/883 Class B, Fully Compliant (-55°C to 125°C)
350	80	0.2	AT28PC64(E)-35DM/883 AT28PC64(E)-35LM/883	28D6 32L	Military/883 Class B, Fully Compliant (-55°C to 125°C)
200	80	0.2	5962-87514 09 UX 5962-87514 09 XX 5962-87514 09 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	80	0.2	5962-87514 08 UX 5962-87514 08 XX 5962-87514 08 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	80	0.2	5962-87514 07 UX 5962-87514 07 XX 5962-87514 07 YX	32K 28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
350	80	0.2	5962-87514 06 UX 5962-87514 06 XX 5962-87514 06 YX	32K 28D6 32L	Military/883 Class B, Fully Compliant (-55°C to 125°C)

	Package Type
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
32K	32 Lead, Non-Windowed, Ceramic J-Leaded Quad Flat Package (Cerquad)
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier OTP (LCC)
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)
W	Die
	Options
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 2ms
E	High Endurance Option: Endurance = 100K Write Cycles

Features

- Fast Read Access Time 150ns
- Automatic Page Write Operation
 Internal Address and Data Latches for 64 Bytes
 Internal Control Timer
- Fast Write Cycle Times

Page Write Cycle Time: 3.0ms or 10ms maximum 1 to 64 Byte Page Write Operation

- Low Power Dissipation
 80mA Active Current
 200µA CMOS Standby Current
- Hardware and Software Data Protection
- DATA Polling for End of Write Detection
- High Reliability CMOS Technology Endurance: 10⁴ or 10⁵ Cycles Data Retention: 10 years
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28C256 is a high-performance Electrically Erasable and Programmable Read Only Memory. Its 256k of memory is organized as 32,768 words by 8 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the device offers access times to 150ns with power dissipation of just 440mW. When the device is deselected, the CMOS standby current is less than 200µA.

The AT28C256 is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 64-byte page register to allow writing of up to 64 bytes simultaneously. During a write cycle, the addresses and 1 to 64 bytes of data are internally latched, freeing the address and data bus for other operations. Following the internal control timer. The end of a write cycle can be detected by DATA polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

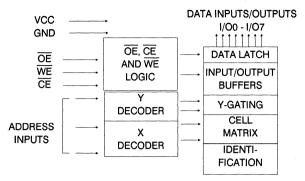
Atmel's 28C256 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes. The device also includes an extra 64 bytes of E²PROM for device identification or tracking.

Pin Configurations

	A14 G 1 28 D VCC A12 G 2 27 D WE A7 G 3 26 D A13 A6 G 4 25 D A6 A4 G 5 24 D A9 A4 G 6 23 D A11 A3 G 7 22 D OE A2 G 8 21 D A10 A1 G 9 20 D OE A0 G 10 19 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107 UO G 11 18 D 107
--	--

PIN NAMES						
A0 - A14	Addresses					
CE	Chip Enable					
ŌĒ	Output Enable					
WE	Write Enable					
I/O0 - I/O7	Data Inputs/Outputs					
NC No Connect						

	_	7 A14 VC A12 NC 3 2 13	WE	\	
A6	5 5		29	, Į	A8
A5	5 6		28		A9
A4	5 7		27		A11
АЗ	5 a		26		NC
A2	وا		25		ŌĒ
A1	10		24	ιł	A10
AO	>11		23	١٧	CE
NC	12		22	٤٤	1/07
/00	513		21	ζ	1/06
	√ 1 4	1516171	81920	7	
I/C)'s 1	2 NC GND	3 4 5		


Note: PLCC package pins 1 and 17 are DON'T CONNECT.

256K (32K x 8) Paged CMOS E²PROM

Block Diagram

Device Operation

READ: The AT28C256 is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers flexibility in preventing bus contention.

WRITE: A low pulse on the WE or CE input with CE or WE low (respectively) and OE high initiates a write cycle. The address is latched on the falling edge of CE or WE, whichever occurs last. The data is latched by the first rising edge of CE or WE. Once a byte write has been started it will automatically time itself to completion.

PAGE WRITE MODE: The page write operation of the AT28C256 allows one to 64 bytes of data to be loaded into the device and then simultaneously written during the internal programming period. After the first data byte has been loaded into the device successive bytes may be loaded in the same manner. Each new byte to be written must have its high to low transition on WE (or CE) within 150 us of the low to high transition of \overline{WE} (or \overline{CE}) of the preceding byte. If a high to low transition is not detected within 150 us of the last low to high transition, the load period will end and the internal programming period will start. A6 to A14 specify the page address. The page address must be valid during each high to low transition of WE (or CE). A0 to A5 are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be changed within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.

DATA POLLING: The AT28C256 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data on I/O7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. DATA Polling may begin at any time during the write cycle.

TOGGLE BIT: In addition to DATA Polling the AT28C256 provides another method for determining the end of a write cycle. During a write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop toggling and valid data will be read. Examining the toggle bit may begin at any time during the write cycle.

HARDWARE DATA PROTECTION: Hardware features protect against inadvertent writes to the AT28C256 in the following ways: (a) Vcc sense — if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay — once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a write. (c) Write inhibit — holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits write cycles. (d) Noise filter — pulses of less than 15ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a write cycle.

SOFTWARE DATA PROTECTION: A software controlled data protection feature is available on the AT28C256. Once the software protection is enabled a software algorithm must be issued to the device before a write may be performed. The software protection feature may be enabled or disabled by the user; when shipped from Atmel, the software data protection feature is disabled. To enable the software data protection, a series of three write commands to specific addresses with specific data must be performed. After the software data protection is enabled the same three write commands must begin each write cycle in order for the writes to occur. All software write commands must obey the page write timing specifications. Once set, the software data protection feature remains active unless its disable command is issued. Power transitions will not reset the software data protection feature, but the software feature will guard against inadvertent writes during power transitions.

DEVICE IDENTIFICATION: An extra 64 bytes of E^2PROM memory are available to the user for device identification. By raising A9 to $12\pm0.5V$ and using address locations 7FC0H to 7FFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Ratings*

Temperature Under Bias55°C to $+125$ °C
Storage Temperature65°C to $+150$ °C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC}\!+\!0.6V$
Voltage on $\overline{\text{OE}}$ and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

		AT28C256-15	AT28C256-20	AT28C256-25	AT28C256-35
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С	
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	$5V \pm 10\%$

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	V_{IL}	V_{IL}	V_{IH}	D _{OUT}
Write ⁽²⁾	$ m V_{IL}$	V_{IH}	V_{IL}	D_{IN}
Standby/Write Inhibit	V_{IH}	$X^{(1)}$	X	High Z
Write Inhibit	X	X	V _{IH}	
Write Inhibit	X	V_{IL}	X	
Output Disable	X	V_{IH}	X	High Z
Chip Erase	$V_{\rm IL}$	$V_{H}^{(3)}$	V_{IL}	High Z

Notes: 1. X can be VIL or VIH.

2. Refer to A.C. Programming Waveforms.

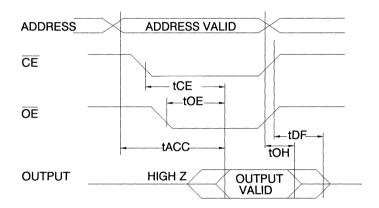
3. $V_H = 12.0 \pm 0.5V$.

D.C. Characteristics

Symbol	Parameter	Condition		Min	Max	Units
I_{LI}	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$			10	μA
I_{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μΑ
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC}$ 3V to $V_{CC} + 1V$	Com.,Ind.		200	μΑ
			Mil.		300	μΑ
I _{SB2}	V _{CC} Standby Current TTL	$\overline{\text{CE}} = 2.0 \text{V to V}_{\text{CC}} + 1 \text{V}$			3	mA
Icc	V _{CC} Active Current	$f = 5MHz; I_{OUT} = 0mA$			80	mA
V_{IL}	Input Low Voltage				0.8	V
V _{IH}	Input High Voltage			2.0		V
Vol	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.45	V
VoH	Output High Voltage	$I_{OH} = -400 \mu A$		2.4		V

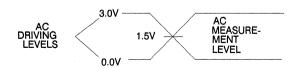
Pin Capacitance $(f = 1 MHz T = 25^{\circ}C)^{(4)}$

	Тур	Max	Units	Conditions	
C _{IN}	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	$V_{OUT} = 0V$	

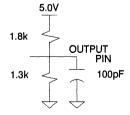


A.C. Read Characteristics

		AT280	C256-15	AT280	C256-20	AT28	C256-25	AT28	C256-35	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Units
tACC	Address to Output Delay		150		200		250		350	ns
tcE ⁽¹⁾	CE to Output Delay		150		200		250		350	ns
toE ⁽²⁾	OE to Output Delay	0	70	0	80	0	100	0	100	ns
$t_{\rm DF}^{(3,4)}$	CE or OE to Output Float	0	50	0	55	0	60	0	70	ns
ton	Output Hold from \overline{OE} , \overline{CE}	0		0		0		0		ns
	or Address, whichever									
	occurred first									


A.C. Read Waveforms

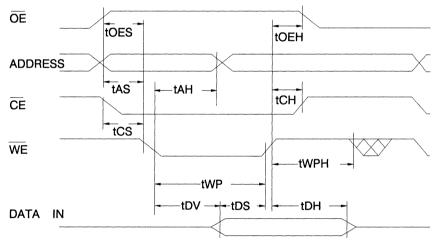
Notes:


- CE may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC}.
- OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC}.
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first ($C_L = 5pF$).
- 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

 $t_{R}, t_{F} < 5n_{S}$

Output Test Load



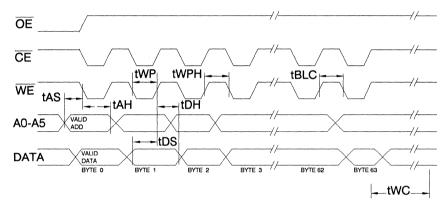
A.C. Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	0			ns
tah	Address Hold Time	50			ns
tcs	Chip Select Set-up Time	0			ns
tch	Chip Select Hold Time	0			ns
twp	Write Pulse Width (\overline{WE} or \overline{CE})	100			ns
tDS	Data Set-up Time	50			ns
tDH,tOEH	Data, OE Hold Time	0			ns
t _{DV}	Time to Data Valid	NR ⁽¹⁾			
twc	Write Cycle Time AT28C256			10	ms
	AT28C256F			3.0	ms

Note: 1. NR = No Restriction

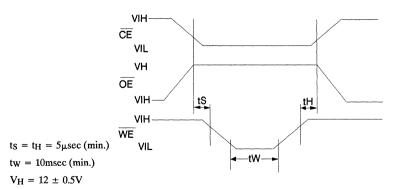
A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - CE Controlled

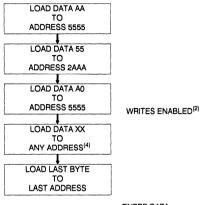


Page Mode Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
twc	Write Cycle Time AT28C256			10	ms
	AT28C256F			3.0	ms
tas	Address Set-up Time	0			ns
tah	Address Hold Time	50			ns
tDS	Data Set-up Time	50			ns
tDH	Data Hold Time	0			ns
twp	Write Pulse Width	100			ns
tBLC	Byte Load Cycle Time			150	μs
twpH	Write Pulse Width High	50			ns


Page Mode Write Waveforms

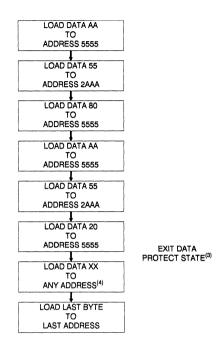
Note: A6 through A14 must specify the page address during each high to low transition of WE (or CE).


 \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.

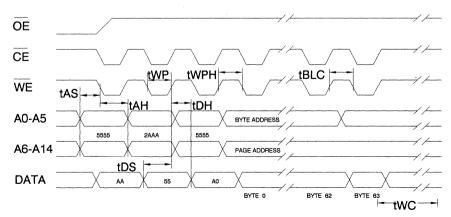
Chip Erase Waveforms

AT28C256

Software Data Protection Enable Algorithm (1)



ENTER DATA PROTECT STATE


Notes:

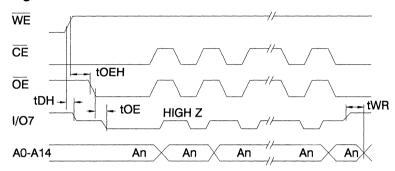
- 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
- Write Protect state will be activated at end of write even if no other data is loaded.
- Write Protect state will be deactivated at end of write period even if no other data is loaded.
- 4. 1 to 64 bytes of data may be loaded.

Software Data Protection Disable Algorithm (1)

Software Protected Write Cycle Waveforms

Notes: A6 through A14 must specify the page address during each high to low transition of WE (or CE) after the software code has been entered.

OE must be high only when WE and CE are both low.

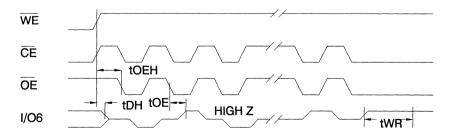


Data Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	0			ns
toeh	OE Hold Time	0			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

DATA Polling Waveforms

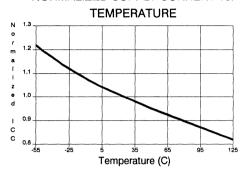


Toggle Bit Characteristics (1)

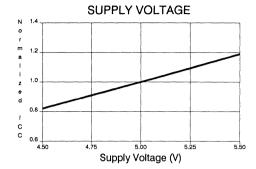
Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
toehp	OE High Pulse	150			ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

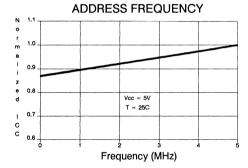
Toggle Bit Waveforms



Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit.


- 2. Beginning and ending state of I/O6 will vary.
- 3. Any address location may be used but the address should not vary.

AT28C256


NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

tacc	loc	; (mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby	Ordering Code	Package	Operation hange
150	80	0.2	AT28C256(E,F)-15DC AT28C256(E,F)-15FC AT28C256(E,F)-15JC AT28C256(E,F)-15LC AT28C256(E,F)-15PC AT28C256(E,F)-15UC AT28C256(E,F)-15UC	28D6 28F 32J 32L 28P6 28U DIE	Commercial (0°C to 70°C)
			AT28C256(E,F)-15DI AT28C256(E,F)-15FI AT28C256(E,F)-15JI AT28C256(E,F)-15LI AT28C256(E,F)-15PI AT28C256(E,F)-15UI	28D6 28F 32J 32L 28P6 28U	Industrial (-40°C to 85°C)
150	80	0.3	AT28C256(E,F)-15DM AT28C256(E,F)-15FM AT28C256(E,F)-15LM AT28C256(E,F)-15UM	28D6 28F 32L 28U	Military (-55°C to 125°C)
			AT28C256(E,F)-15DM/883 AT28C256(E,F)-15FM/883 AT28C256(E,F)-15LM/883 AT28C256(E,F)-15UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	80	0.2	AT28C256(E,F)-20DC AT28C256(E,F)-20FC AT28C256(E,F)-20JC AT28C256(E,F)-20LC AT28C256(E,F)-20PC AT28C256(E,F)-20UC AT28C256(E,F)-20UC	28D6 28F 32J 32L 28P6 28U DIE	Commercial (0°C to 70°C)
			AT28C256(E,F)-20DI AT28C256(E,F)-20FI AT28C256(E,F)-20JI AT28C256(E,F)-20LI AT28C256(E,F)-20PI AT28C256(E,F)-20UI	28D6 28F 32J 32L 28P6 28U	Industrial (-40°C to 85°C)
200	80	0.3	AT28C256(E,F)-20DM AT28C256(E,F)-20FM AT28C256(E,F)-20LM AT28C256(E,F)-20UM	28D6 28F 32L 28U	Military (-55°C to 125°C)
			AT28C256(E,F)-20DM/883 AT28C256(E,F)-20FM/883 AT28C256(E,F)-20LM/883 AT28C256(E,F)-20UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55°C to 125°C)

tacc	Ico	(mA)	Ordering Code	Poolegge	Operation Dange
(ns)	Active	Standby	Ordering Code	Package	Operation Range
250	80	0.2	AT28C256(E,F)-25DC AT28C256(E,F)-25FC AT28C256(E,F)-25JC AT28C256(E,F)-25LC AT28C256(E,F)-25PC AT28C256(E,F)-25UC AT28C256-25W	28D6 28F 32J 32L 28P6 28U DIE	Commercial (0°C to 70°C)
			AT28C256(E,F)-25DI AT28C256(E,F)-25FI AT28C256(E,F)-25JI AT28C256(E,F)-25LI AT28C256(E,F)-25PI AT28C256(E,F)-25UI	28D6 28F 32J 32L 28P6 28U	Industrial (-40°C to 85°C)
250	80	0.3	AT28C256(E,F)-25DM AT28C256(E,F)-25FM AT28C256(E,F)-25LM AT28C256(E,F)-25UM	28D6 28F 32L 28U	Military (-55°C to 125°C)
			AT28C256(E,F)-25DM/883 AT28C256(E,F)-25FM/883 AT28C256(E,F)-25LM/883 AT28C256(E,F)-25UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	80	0.3	AT28C256(E,F)-30DM/883 AT28C256(E,F)-30FM/883 AT28C256(E,F)-30LM/883 AT28C256(E,F)-30UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55°C to 125°C)
350	80	0.3	AT28C256(E,F)-35DM/883 AT28C256(E,F)-35FM/883 AT28C256(E,F)-35LM/883 AT28C256(E,F)-35UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55°C to 125°C)
150	80	0.35	5962-88525 07 XX 5962-88525 07 YX 5962-88525 07 ZX	28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)
			5962-88525 06 XX 5962-88525 06 YX 5962-88525 06 ZX	28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	80	0.35	5962-88525 04 UX 5962-88525 04 XX 5962-88525 04 YX 5962-88525 04 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	80	0.35	5962-88525 03 UX 5962-88525 03 XX 5962-88525 03 YX 5962-88525 03 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)
			5962-88525 05 XX 5962-88525 05 YX 5962-88525 05 ZX	28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)

tacc	Icc (mA)		Ordering Code	Package	Operation Range		
(ns)	Active	Standby	Ordering Code	Fackage	Operation hange		
300	80	0.35	5962-88525 02 UX 5962-88525 02 XX 5962-88525 02 YX 5962-88525 02 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
350	80	0.35	5962-88525 01 UX 5962-88525 01 XX 5962-88525 01 YX 5962-88525 01 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)		

	Package Type					
28D6	28D6 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)					
28F	28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)					
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)					
32L	32L 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)					
28U	28 Pin, Ceramic Pin Grid Array (PGA)					
W	Die					
	Options					
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 10ms					
E	High Endurance Option: Endurance = 100K Write Cycles					
F	Fast Write Option: Write Time = 3ms					

AT28C256 ___

Features

- Fast Read Access Time 120ns
- Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes
 - Internal Control Timer
 Fast Write Cycle Times

Page Write Cycle Time: 10ms maximum 1 to 64 Byte Page Write Operation

- Low Power Dissipation 100mA Active Current 5mA Standby Current
- Hardware and Software Data Protection
- DATA Polling for End of Write Detection
- High Reliability CMOS Technology Endurance: 10,000 cycles Data Retention: 10 years
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

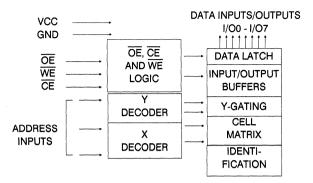
The AT28MC010 is a high-performance Electrically Erasable and Programmable Read Only Memory. Its 1 MBit of memory is organized as 131,072 words by 8 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the device offers access times to 120ns with power dissipation of just 550mW. When the device is deselected, the CMOS standby current is typically less than 100µA.

The AT28MC010 is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 64-byte page register to allow writing of up to 64 bytes simultaneously. During a write cycle, the addresses and 1 to 64 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by \overline{DATA} polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

Atmel's 28MC010 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes.

Pin Configurations

NC	32 D VCC 31 D WE 30 D NC 29 D A14 28 D A13 27 D A8 26 D A9 25 D A11 24 D OE 23 D A10 22 D CE 21 D I/O6 19 D I/O6 19 D I/O6 18 D I/O4
,	21 1/07
	19 1/05
"O' = :-	18 5 1/04
I/O2 🗆 15	
GND 🗆 16	17 🖯 1/03


PIN NAMES					
A0 - A16	Addresses				
CE	Chip Enable				
ŌĒ	Output Enable				
WE	Write Enable				
I/O0 - I/O7	Data Inputs/Outputs				
NC	No Connect				

1 Megabit (128K x 8) Paged CMOS E²PROM Module

Block Diagram

Device Operation

READ: The AT28MC010 is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers flexibility in preventing bus contention.

WRITE: A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a byte write has been started it will automatically time itself to completion.

PAGE WRITE MODE: The page write operation of the AT28MC010 allows one to 64 bytes of data to be loaded into the device and then simultaneously written during the internal programming period. After the first data byte has been loaded into the device successive bytes may be loaded in the same manner. Each new byte to be written must have its high to low transition on WE (or CE) within 150 µs of the low to high transition of WE (or CE) of the preceding byte. If a high to low transition is not detected within 150 µs of the last low to high transition, the load period will end, and the internal programming period will start. A6 to A16 specify the page address. The page address must be valid during each high to low transition of WE (or CE). A0 to A5 are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be changed within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.

DATA POLLING: The AT28MC010 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data on I/O7. Once the write cycle has been completed, true data is valid on all outputs and the next cycle may begin. DATA Polling may begin at any time during the write cycle.

TOGGLE BIT: In addition to DATA Polling the AT28MC010 provides another method for determining the end of a write cycle. During a write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero (A15 and A16 must address the page being written). Once the write has completed, I/O6 will stop toggling, and valid data will be read. Examining the toggle bit may begin at any time during the write cycle.

HARDWARE DATA PROTECTION: Hardware features protect against inadvertent writes to the AT28MC010 in the following ways: (a) Vcc sense — if Vcc is below 3.8V (typical) the write function is inhibited (b) Vcc power on delay — once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a write (c) Write inhibit — holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits write cycles (d) Noise filter — pulses of less than 15ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a write cycle.

SOFTWARE DATA PROTECTION: A software controlled data protection feature is available on the AT28MC010. Once the software protection is enabled a software algorithm must be issued to the device before a write may be performed. The software protection feature may be enabled or disabled by the user; when shipped from Atmel, the software data protection feature is disabled. To enable the software data protection, a series of three write commands to specific addresses with specific data must be performed. After the software data protection is enabled the same three write commands must begin each write cycle in order for the writes to occur. All software write commands must obey the page write timing specifications. Once set, the software data protection feature remains active unless its disable command is issued. Power transitions will not reset the software data protection feature, but the software feature will guard against inadvertent writes during power transitions.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature 65° C to $+150^{\circ}$ C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} + 0.6V$

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

-	•				
		AT28MC010-12	AT28MC010-15	AT28MC010-20	AT28MC010-25
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V ± 10%	5V ± 10%	5V ±10%	5V ± 10%

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	V_{IL}	VIL	V_{IH}	D _{OUT}
Write ⁽²⁾	V_{IL}	V_{IH}	V_{IL}	$\mathrm{D_{IN}}$
Standby/Write Inhibit	V_{IH}	$\mathbf{X}^{(1)}$	X	High Z
Write Inhibit	X	X	V_{IH}	
Write Inhibit	X	V_{IL}	X	
Output Disable	X	V_{IH}	X	High Z

Notes: 1. X can be VIL or VIH.

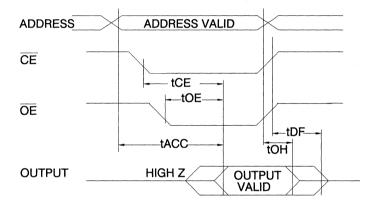
2. Refer to A.C. Programming Waveforms.

D.C. Characteristics

Symbol	Parameter	Condition	Min	Max	Units	
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$		20	μΑ	
I_{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		20	μΑ	
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC}$ 3V to $V_{CC} + 1V$		5	mΑ	
I _{SB2}	VCC Standby Current TTL	$\overline{\text{CE}} = 2.0 \text{V to V}_{\text{CC}} + 1 \text{V}$		8	mA	
I_{CC}	V _{CC} Active Current	$f = 5MHz; I_{OUT} = 0mA$		100	mA	
		$\overline{CE} = 0V, \overline{OE} = \overline{WE} = V_{CC}$				
V_{IL}	Input Low Voltage			0.8	V	
V_{IH}	Input High Voltage		2.0		V	
Vol	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.45	V	
Voh	Output High Voltage	I _{OH} = -400μA	2.4		V	

Pin Capacitance (f = 1MHz T = 25°C) (4)

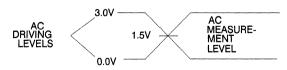
	Тур	Max	Units	Conditions	
C _{IN}	20	40	pF	$V_{IN} = 0V$	
Cout	20	40	pF	$V_{OUT} = 0V$	



A.C. Read Characteristics

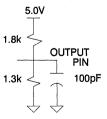
		AT28M	AT28MC010-12 AT28M		C010-15 AT28MC01		C010-20	10-20 AT28MC010-25		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Units
tACC	Address to Output Delay		120		150		200		250	ns
tcE ⁽¹⁾	CE to Output Delay		120		150		200		250	ns
toE ⁽²⁾	OE to Output Delay	0	60	0	70	0	80	0	100	ns
$t_{\rm DF}^{(3,4)}$	CE or OE to Output Float	0	50	0	55	0	60	0	70	ns
tон	Output Hold from \overline{OE} , \overline{CE}	0		0		0		0		ns
	or Address, whichever									
	occurred first									

A.C. Read Waveforms



Notes:

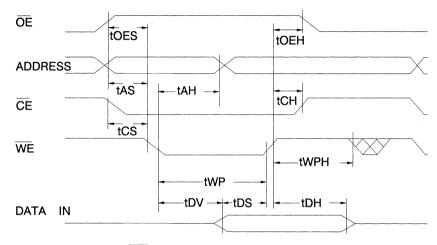
- 1. $\overline{\text{CE}}$ may be delayed up to tACC tCE after the address transition without impact on tACC.
- 2. \overline{OE} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on tCE or by tACC - tOE after an address change without impact on tACC.


 3. tDF is specified from OE or CE whichever occurs first (C_L = 5pF).
- 4. This parameter is characterized and is not 100% tested.

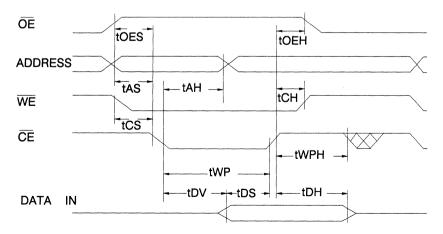
Input Test Waveforms and Measurement Level

 t_R , $t_F < 5$ ns

Output Test Load



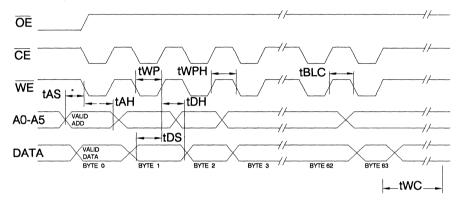
A.C. Write Characteristics


Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	10			ns
t _{AH} ⁽¹⁾	Address Hold Time	100			ns
tcs	Chip Select Set-up Time	0			ns
tcH	Chip Select Hold Time	0			ns
twp	Write Pulse Width (WE or CE)	150			ns
tDS	Data Set-up Time	100			ns
tDH,tOEH	Data, OE Hold Time	10		1	ns
t _{DV}	Time to Data Valid	NR ⁽²⁾			
twc	Write Cycle Time		5.0	10	ms

- Note: 1. A15 and A16 must remain valid throughout the WE or CE low pulse.
 - 2. NR = No Restriction

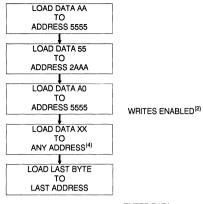
A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - TE Controlled



Page Mode Write Characteristics

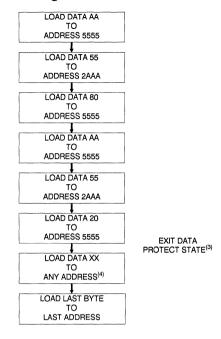
Symbol	Parameter	Min	Тур	Max	Units
twc	Write Cycle Time		5	10	ms
tAS	Address Set-up Time	10			ns
t _{AH} ⁽¹⁾	Address Hold Time	100			ns
t _{DS}	Data Set-up Time	50			ns
tDH	Data Hold Time	10			ns
twp	Write Pulse Width	150			ns
tBLC	Byte Load Cycle Time			150	μs
twpH	Write Pulse Width High	100			ns
tDW	Delay to Next Write	0			ns


Note: 1. A15 and A16 must remain valid throughout the WE or CE low pulse.

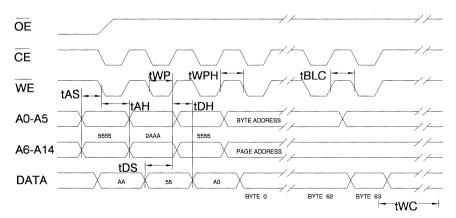
Page Mode Write Waveforms

A6 through A16 must specify the page address during each high to low transition of \overline{WE} (or \overline{CE}). \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low. Note:

Software Data Protection Enable Algorithm ^(1,5,6)



ENTER DATA PROTECT STATE


Notes:

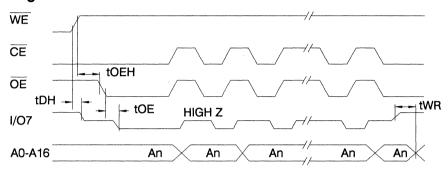
- 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
- 2. Write Protect state will be activated at end of write even if no other data is loaded.
- Write Protect state will be deactivated at end of write period even if no other data is loaded.
- 4. 1 to 64 bytes of data may be loaded.
- 5. A15 and A16 must address page to be written.
- 6. Quadrants determined by A15 and A16 act independently.

Software Data Protection Disable Algorithm (1,5,6)

Software Protected Write Cycle Waveforms

Notes: A6 through A16 must specify the page address during each high to low transition of WE (or CE) after the software code has been entered.

OE must be high only when WE and CE are both low.

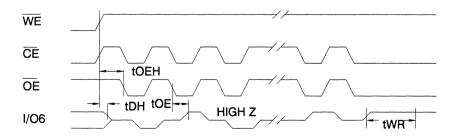


Data Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
twR	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

DATA Polling Waveforms



Toggle Bit Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10		'	ns
toE	OE to Output Delay			100	ns
toehp	OE High Pulse	150			ns
twR	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

Toggle Bit Waveforms

Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit.

- 2. Beginning and ending state of I/O6 will vary.
- Any address location within quadrant determined by A15 and A16 may be used but the address should not vary.

AT28MC010

tacc	loc	; (mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby		rackage	Operation Hange
120	100	0.5	AT28MC010-12MC	32M	Commercial (0° to 70°C)
			AT28MC010-12MI	32M	Industrial (-40° to 85°C)
			AT28MC010-12MM	32M	Military (-55°C to 125°C)
			AT28MC010-12MMB	32M	Military/883C Class B Components (-55°C to 125°C)
150	100	0.5	AT28MC010-15MC	32M	Commercial (0° to 70°C)
			AT28MC010-15MI	32M	Industrial (-40° to 85°C)
			AT28MC010-15MM	32M	Military (-55°C to 125°C)
			AT28MC010-15MMB	32M	Military/883C Class B Components (-55°C to 125°C)
200	100	0.5	AT28MC010-20MC	32M	Commercial (0° to 70°C)
			AT28MC010-20MI	32M	Industrial (-40° to 85°C)
			AT28MC010-20MM	32M	Military (-55°C to 125°C)
			AT28MC010-20MMB	32M	Military/883C Class B Components (-55°C to 125°C)
250	100	0.5	AT28MC010-25MC	32M	Commercial (0° to 70°C)
			AT28MC010-25MI	32M	Industrial (-40° to 85°C)
			AT28MC010-25MM	32M	Military (-55°C to 125°C)
			AT28MC010-25MMB	32M	Military/883C Class B Components (-55°C to 125°C)

	Package Type
32M	32 Lead, Non-Windowed, Ceramic Dual Inline 32D6 Compatible Module (Module)

Features

- Fast Read Access Time 120ns
- Automatic Page Write Operation
 Internal Address and Data Latches for 64 Words
 Internal Control Timer
- Fast Write Cycle Times

Page Write Cycle Time: 10ms maximum
1 to 64 Word Page Write Operation

- Low Power Dissipation
 100mA Active Current
 - 400µA CMOS Standby Current
- Hardware and Software Data Protection
- DATA Polling for End of Write Detection
 High Reliability CMOS Technology
 Endurance: 10⁴ or 10⁵ Cycles
 Data Retention: 10 years
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28C1024 is a high performance Electrically Erasable and Programmable Read Only Memory. Its 1 MBit of memory is organized as 65,536 words by 16 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the device offers access times down to 120ns with power dissipation of just 550mW. When the device is deselected, the CMOS standby current is less than 400 µ.A.

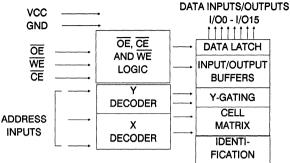
The AT28C1024 is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 64-word page register to allow writing of up to 64 words simultaneously. During a write cycle, the addresses and 1 to 64 words of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA polling of I/O7 or I/O15. Once the end of a write cycle has been detected a new access for a read or write can begin.

Atmel's 28C1024 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes. The device also includes an extra 64 words of E²PROM for device identification or tracking.

Pin Configurations

NC 1		
CE c 2 38 b WE 1975 r 3 38 b NC 1975 r 3 38 b NC 1974 r 4 4 37 b A15 1976 r 3 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 4 5 b NC 1974 r 1974	NC - 1	40 b VCC
	CE d 2	39 b WE
	I/O15 d 3	38 b NC
VO14	1/014 7 4	37 - A15
	VO13 ♂ 5	36 - A14
1001 1	1/012 7 6	35 E A13
	1011 7 7	34 2 413
100 1	1011 7	34 P A12
NO9	1/010 4 8	33 P A11
	1/O9 q 9	32 b A10
GND c 11 29 b A8 1/06 c 13 28 b A7 1/05 c 144 27 b A6 1/03 c 16 25 b A4 1/02 c 17 24 b A3 1/01 c 18 23 b A2 1/00 c 19 22 b A1 1/00 c 19 22 b A1	I/O8 d 10	31 🗁 A9
	GND 4 11	30 b GND
VO6 c	I/O7 d 12	29 🗖 A8
VO5	I/O6 d 13	28 🗅 A7
15	I/O5 d 14	27 b A6
/O3	VO4 rd 15	26 b A5
VO2 c 17 24 b A3 VO1 c 18 23 b A2 VO0 c 19 22 b A1 OE c 20 21 b A0	VO3 d 16	25 m A4
VO1 0 18 23 5 A2 VO0 0 19 22 5 A1 OE 0 20 21 5 A0	1/02 - 17	24 5 42
1/O0 19 22 A1 OE 20 21 A0	1/01 2 10	23 5 43
OE 20 21 A0	1/00 4 10	50 P A2
OE q 20 21 p A0	VQQ q 19	22 P A1
	OE q 20	21 Þ A0

PIN NAMES				
A0 - A15	Addresses			
CE Chip Enable				
ŌĒ	Output Enable			
WE	Write Enable			
I/O0 - I/O15	Data Inputs/Outputs			
NC	No Connect			


1 Megabit (64K x 16) Paged CMOS E²PROM

Preliminary

Block Diagram

Device Operation

READ: The AT28C1024 is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers flexibility in preventing bus contention.

WRITE: A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a write has been started it will automatically time itself to completion.

PAGE WRITE MODE: The page write operation of the AT28C1024 allows 1 to 64 words of data to be loaded into the device and then simultaneously written during the internal programming period. After the first word has been loaded into the device successive words may be loaded in the same manner. Each new word to be written must have its high to low transition on WE (or CE) within 150 µs of the low to high transition of WE (or CE) of the preceding word. If a high to low transition is not detected within 150 us of the last low to high transition, the load period will end, and the internal programming period will start. A6 to A15 specify the page address. The page address must be valid during each high to low transition of WE (or CE). A0 to A5 are used to specify which words within the page are to be written. The words may be loaded in any order and may be changed within the same load period. Only words which are specified for writing will be written; unnecessary cycling of other words within the page does not occur.

DATA POLLING: The AT28C1024 features DATA Polling to indicate the end of a write cycle. During a write cycle an attempted read of the last word written will result in the complement of the written data on I/O7 and I/O15. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. DATA Polling may begin at any time during the write cycle.

TOGGLE BIT: In addition to DATA Polling, the AT28C1024 provides another method for determining the end of a write cycle. During a write operation, successive attempts to read data from the device will result in I/O14 toggling between one and zero. Once the write has completed, I/O14 will stop toggling and valid data will be read. Examining the toggle bit may begin at any time during the write cycle.

HARDWARE DATA PROTECTION: Hardware features protect against inadvertent writes to the AT28C1024 in the following ways: (a) Vcc sense — if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay — once Vcc has reached 3.8V the device will automatically time out 5ms (typical) before allowing a write. (c) Write inhibit — holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits write cycles. (d) Noise filter — pulses of less than 15ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a write cycle.

SOFTWARE DATA PROTECTION: A software controlled data protection feature is available on the AT28C1024. Once the software protection is enabled a software algorithm must be issued to the device before a write may be performed. The software protection feature may be enabled or disabled by the user; when shipped from Atmel, the software data protection feature is disabled. To enable the software data protection, a series of three write commands to specific addresses with specific data must be performed. After the software data protection is enabled the same three write commands must begin each write cycle in order for the writes to occur. All software write commands must obey the page write timing specifications. Once set, the software data protection feature remains active unless its disable command is issued. Power transitions will not reset the software data protection feature, but the software feature will guard against inadvertent writes during power transitions.

DEVICE IDENTIFICATION: An extra 64 words of E^2PROM memory are available to the user for device identification. By raising A9 to $12\pm0.5V$ and using address locations FFC0H to FFFFH the additional words may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Rating*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to $+150$ °C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} \! + \! 0.6V$
Voltage on $\overline{\text{OE}}$ and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

		AT28C1024-12	AT28C1024-15	AT28C1024-20	AT28C1024-25
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V ± 10%	$5V \pm 10\%$	$5V \pm 10\%$	5V ± 10%

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	V_{IL}	V_{IL}	V_{IH}	D _{OUT}
Write ⁽²⁾	V_{IL}	V_{IH}	$V_{\rm IL}$	$D_{ m IN}$
Standby/Write Inhibit	V_{IH}	$X^{(1)}$	X	High Z
Write Inhibit	X	X	V_{IH}	
Write Inhibit	X	$V_{\rm IL}$	X	
Output Disable	X	V_{IH}	X	High Z
Chip Erase	V_{IL}	$V_{H}^{(3)}$	V_{IL}	High Z

Notes: 1. X can be VIL or VIH.

2. Refer to A.C. Programming Waveforms.

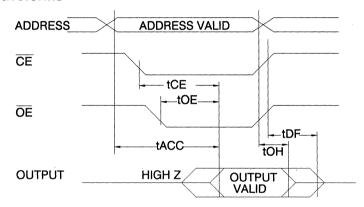
3. $V_H = 12.0 \pm 0.5V$.

D.C. Characteristics

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$		10	μA
ILO	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		10	μA
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC}$ 3V to $V_{CC} + 1V$		500	μΑ
I _{SB2}	VCC Standby Current TTL	$\overline{\text{CE}} = 2.0 \text{V to V}_{\text{CC}} + 1 \text{V}$		5	mA
Icc	V _{CC} Active Current	$f = 5MHz; I_{OUT} = 0mA$		100	mA
V_{IL}	Input Low Voltage		-0.1	0.8	V
V_{IH}	Input High Voltage		2.0	VCC+1	V
Vol	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.45	V
Voh	Output High Voltage	$I_{OH} = -400 \mu A$	2.4		V

Pin Capacitance (f = 1 MHz T = 25°C) (4)

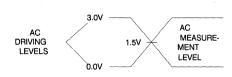
	Тур	Max	Units	Conditions	
C _{IN}	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	$V_{OUT} = 0V$	



A.C. Read Characteristics

	,	AT28C1024-12 AT28C1024-15		AT28C1024-20		AT28C1024-25				
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Units
tACC	Address to Output Delay		120		150		200		250	ns
tcE ⁽¹⁾	CE to Output Delay		120		150		200		250	ns
toE ⁽²⁾	OE to Output Delay	0	60	0	70	0	80	0	100	ns
t _{DF} (3,4)	CE or OE to Output Float	0	50	0	55	0	60	0	70	ns
tон	Output Hold from \overline{OE} , \overline{CE}	0		0		0		0		ns
	or Address, whichever									
	occurred first									

A.C. Read Waveforms



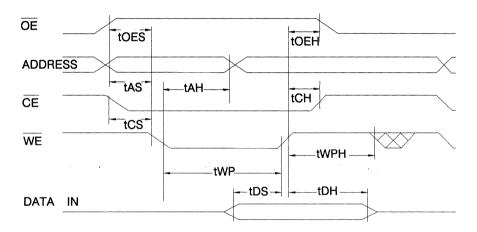
Notes:

- CE may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC}.
- OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.
- 3. tDF is specified from \overline{OE} or \overline{CE} whichever occurs first $(C_L = 5pF)$.
- 4. This parameter is characterized and is not 100% tested.

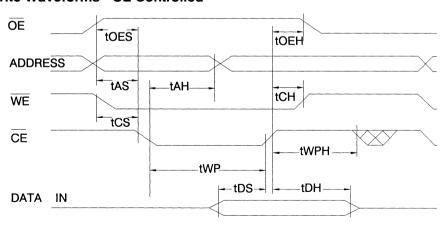
Input Test Waveforms and Measurement Level

Output Test Load

1.8k OUTPUT PIN 100pF


 $t_R, t_F < 5n_S$

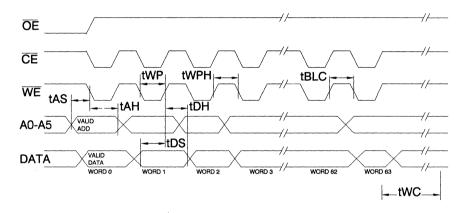
AT28C1024

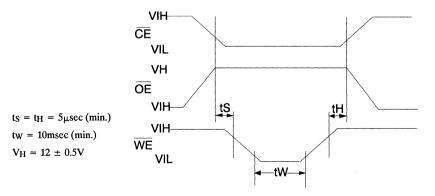

A.C. Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	0			ns
tAH	Address Hold Time	50			ns
tcs	Chip Select Set-up Time	0			ns
tcH	Chip Select Hold Time	0			ns
twp	Write Pulse Width (\overline{WE} or \overline{CE})	100			ns
tDS	Data Set-up Time	50			ns
tDH,tOEH	Data, OE Hold Time	0			ns
twc	Write Cycle Time		5.0		ms

A.C. Write Waveforms - WE Controlled

A.C. Write Waveforms - CE Controlled




Page Mode Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
twc	Write Cycle Time		5		ms
tas	Address Set-up Time	0			ns
tah	Address Hold Time	50			ns
tDS	Data Set-up Time	50			ns
tDH	Data Hold Time	0			ns
twp	Write Pulse Width	100			ns
tBLC	Byte Load Cycle Time			150	μs
twpH	Write Pulse Width High	50			ns

Page Mode Write Waveforms

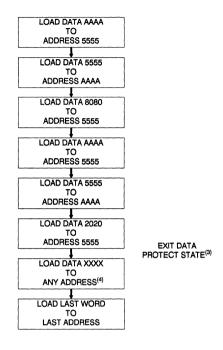
Chip Erase Waveforms

AT28C1024

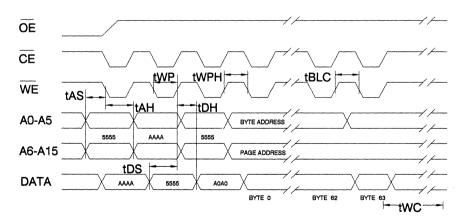
Software Data Protection Enable Algorithm (1)

LOAD DATA AAAA TO ADDRESS 5555 LOAD DATA 5555 TO ADDRESS AAAA LOAD DATA AOAO TO ADDRESS 5555 LOAD DATA XXXX TO ANY ADDRESS(4) LOAD LAST WORD TO

ENTER DATA PROTECT STATE


Notes:

- 1. Data Format: I/O15 I/O0 (Hex); Address Format: A15 - A0 (Hex).
- Write Protect state will be activated at end of write even if no other data is loaded.
- Write Protect state will be deactivated at end of write period even if no other data is loaded.


LAST ADDRESS

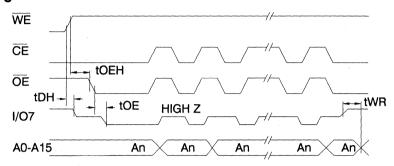
4. 1 to 64 words of data may be loaded.

Software Data Protection Disable Algorithm (1)

Software Protected Write Cycle Waveforms

Notes: A6 through A15 must specify the page address during each high to low transition of WE (or CE) after the software code has been entered.

OE must be high when WE and CE are both low.

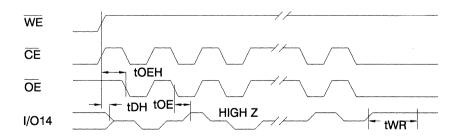


DATA Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	0			ns
toeh	OE Hold Time	0			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

DATA Polling Waveforms



Toggle Bit Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
toehp	OE High Pulse	150			ns
twR	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

Toggle Bit Waveforms

Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit.

- 2. Beginning and ending state of I/O14 will vary.
- 3. Any address location may be used but the address should not vary.

tacc	loc	(mA)	Ordering Code	Package	Operation Range	
(ns)	Active	Standby	Ordering Code	rackage	Operation hange	
150	100	0.5	AT28C1024-15BC AT28C1024-15LC	40B 44L	Commercial (0° to 70°C)	
			AT28C1024-15BI AT28C1024-15LI	40B 44L	Industrial (-40° to 85°C)	
			AT28C1024-15BM AT28C1024-15LM	40B 44L	Military (-55°C to 125°C)	
			AT28C1024-15BM/883 AT28C1024-15LM/883	40B 44L	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
200	100	0.5	AT28C1024-20BC AT28C1024-20LC	40B 44L	Commercial (0° to 70°C)	
				AT28C1024-20BI AT28C1024-20LI	40B 44L	Industrial (-40° to 85°C)
				AT28C1024-20BM AT28C1024-20LM	40B 44L	Military (-55°C to 125°C)
			AT28C1024-20BM/883 AT28C1024-20LM/883	40B 44L	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
250	100	0.5	AT28C1024-25BC AT28C1024-25LC	40B 44L	Commercial (0° to 70°C)	
			AT28C1024-25BI AT28C1024-25LI	40B 44L	Industrial (-40° to 85°C)	
			AT28C1024-25BM AT28C1024-25LM	40B 44L	Military (-55°C to 125°C)	
			AT28C1024-25BM/883 AT28C1024-25LM/883	40B 44L	Military/883C Class B, Fully Compliant (-55°C to 125°C)	

Package Type					
40B	40B 40 Lead, 0.600" Wide, Ceramic Side Braze Dual Inline (Side Braze)				
44L	44 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)				

2-124

Features

- Fast Read Access Time 120ns
- Automatic Page Write Operation Internal Address and Data Latches for 128 Bytes Internal Control Timer
- Fast Write Cycle Time

Page Write Cycle Time - 10ms maximum 1 to 128 Byte Page Write Operation

- Low Power Dissipation
 - 80mA Active Current
 - 300µA CMOS Standby Current
- Hardware and Software Data Protection
- DATA Polling for End of Write Detection
 - High Reliability CMOS Technology Endurance: 10⁴ or 10⁵ Cycles
 - Endurance: 10° or 10° Cycles
 Data Retention: 10 years
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-Wide Pinout
- Full Military, Commercial and Industrial Temperature Ranges

Description

The AT28C010 is a high-performance Electrically Erasable and Programmable Read Only Memory. Its one megabit of memory is organized as 131,072 words by 8 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the device offers access times to 120ns with power dissipation of just 440mW. When the device is deselected, the CMOS standby current is less than 300µA.

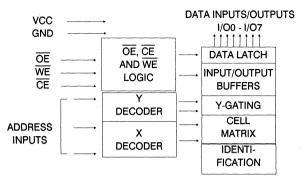
The AT28C010 is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 128-byte page register to allow writing of up to 128 bytes simultaneously. During a write cycle, the address and 1 to 128 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by $\overline{\text{DATA}}$ polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

Atmel's 28C010 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes. The device also includes an extra 128 bytes of E²PROM for device identification or tracking.

Pin Configurations

NC 1	32 h VCC
A16 2	
A15 🗆 3	31 D WE 30 D NC 29 D A14 28 D A13 27 D A8 26 D A9
A12 4	29 A14
	28 5 A13
	20 H AIS
A6 □ 6	27 🗅 A8
A5 🗆 7	26 🗆 A9
A4 🗆 8	25 A11
A3 🗆 9	24 DE 23 DA10 22 DE 21 DVO7 20 DVO6 19 DVO4 17 DVO3
, , ,	20 - 140
A2 🗆 10	23 🔁 A10
A1 🗆 11	22 🗆 CE
A1 11 A0 12 I/O0 13	21 🖯 1/07
1/00 🗆 13	20 1/06
	10 = 10-
I/O1 🗆 14	19 🖯 1/05
I/O2 4 15	18 占 1/04
,	17 5 1000
GND 🗆 16	17 1/03

PIN	PIN NAMES				
A0 - A16	Addresses				
CE	Chip Enable				
ŌĒ	Output Enable				
WE	Write Enable				
I/O0 - I/O7	Data Inputs/Outputs				
NC	No Connect				


1 MEGABIT (128K x 8) Paged CMOS E²PROM

Preliminary

Block Diagram

Device Operation

READ: The AT28C010 is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers flexibility in preventing bus contention.

WRITE: A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a byte write has been started it will automatically time itself to completion.

PAGE WRITE MODE: The page write operation of the AT28C010 allows one to 128 bytes of data to be loaded into the device and then simultaneously written during the internal programming period. After the first data byte has been loaded into the device successive bytes may be loaded in the same manner. Each new byte to be written must have its high to low transition on WE (or CE) within 150 µs of the low to high transition of WE (or CE) of the preceding byte. If a high to low transition is not detected within 150 µs of the last low to high transition, the load period will end and the internal programming period will start. A7 to A16 specify the page address. The page address must be valid during each high to low transition of WE (or CE). A0 to A6 are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be changed within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.

DATA POLLING: The AT28C010 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data on I/O7. Once the write cycle has been completed, true data is valid on all outputs and the next cycle may begin. DATA Polling may begin at any time during the write cycle.

TOGGLE BIT: In addition to DATA Polling the AT28C010 provides another method for determining the end

of a write cycle. During a write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop toggling and valid data will be read. Examining the toggle bit may begin at any time during the write cycle.

HARDWARE DATA PROTECTION: Hardware features protect against inadvertent writes to the AT28C010 in the following ways: (a) Vcc sense— if Vcc is below 3.8V (typical) the write function is inhibited. (b) Vcc power on delay—once Vcc has reached 3.8V (typical) the device will automatically time out 5ms (typical) before allowing a write. (c) Write inhibit—holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits write cycles. (d) Noise filter—pulses of less than 15ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a write cycle.

SOFTWARE DATA PROTECTION: A software controlled data protection feature is available on the AT28C010. Once the software protection is enabled a software algorithm must be issued to the device before a write may be performed. The software protection feature may be enabled or disabled by the user; when shipped from Atmel, the software data protection feature is disabled. To enable the software data protection, a series of three write commands to specific addresses with specific data must be performed. After the software data protection is enabled the same three write commands must begin each write cycle in order for the writes to occur. All software write commands must obey the page write timing specifications. Once set, the software data protection feature remains active unless its disable command is issued. Power transitions will not reset the software data protection feature, but the software feature will guard against inadvertent writes during power transitions.

DEVICE IDENTIFICATION: An extra 128 bytes of E^2 PROM memory are available to the user for device identification. By raising A9 to 12 ± 0.5 V and using address locations 1FF80H to 1FFFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature 65° C to $+150^{\circ}$ C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} + 0.6V$
Voltage on \overline{OE} and A9

with Respect to Ground.....-0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

		AT28C010-12	AT28C010-15	AT28C010-20	AT28C010-25
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

Operating Modes

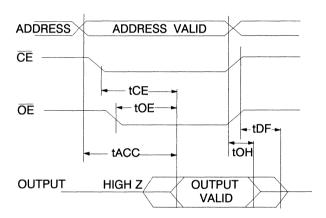
MODE	CE	ŌĒ	WE	I/O
Read	V_{IL}	V_{IL}	V_{IH}	D _{OUT}
Write ⁽²⁾	V_{IL}	V_{IH}	V_{IL}	$\mathrm{D_{IN}}$
Standby/Write Inhibit	V _{IH}	$X^{(1)}$	X	High Z
Write Inhibit	X	X	V_{IH}	
Write Inhibit	X	V _{IL}	X	
Output Disable	X	V_{IH}	X	High Z
Chip Erase	$V_{\rm IL}$	$V_{H}^{(3)}$	V_{IL}	High Z
Notes: 1. X can be VIL or VIH.	2. Refer to A	C. Programming Wavef	orms. 3	$V_{\rm H} = 12.0 \pm 0.5 \rm V.$

D.C. Characteristics

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$		10	μΑ
ILO	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		10	μA
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC}$ 3V to $V_{CC} + 1$		300	μΑ
I _{SB2}	V _{CC} Standby Current TTL	$\overline{\text{CE}} = 2.0 \text{V to V}_{\text{CC}} + 1 \text{V}$		3	mA
Icc	V _{CC} Active Current	$f = 5MHz; I_{OUT} = 0mA$		80	mA
V _{IL}	Input Low Voltage			0.8	V
V_{IH}	Input High Voltage		2.0		V
Vol	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.45	V
V _{OH1}	Output High Voltage	$I_{OH} = -400 \mu A$	2.4		V
V _{OH2}	Output High Voltage CMOS	$I_{OH} = -100 \mu A; V_{CC} = 4.5 V$	4.2		V

Pin Capacitance (f=1MHzT=25°C) (4)

	Тур	Max	Units	Conditions
$C_{ m IN}$	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	$V_{OUT} = 0V$

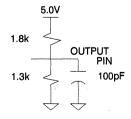


A.C. Read Characteristics

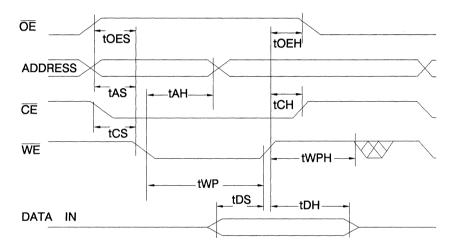
		AT28C010-12 AT28C010-15		AT28C010-20		AT28C010-25				
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Units
tACC	Address to Output Delay		120		150		200		250	ns
tcE ⁽¹⁾	CE to Output Delay		120		150		200		250	ns
toE ⁽²⁾	OE to Output Delay	0	60	0	70	0	80	0	100	ns
$t_{\rm DF}^{(3,4)}$	CE or OE to Output Float	0	50	0	50	0	55	0	60	ns
toH	Output Hold from OE, CE	0		0		0		0		ns
	or Address, whichever									
	occurred first									

A.C. Read Waveforms

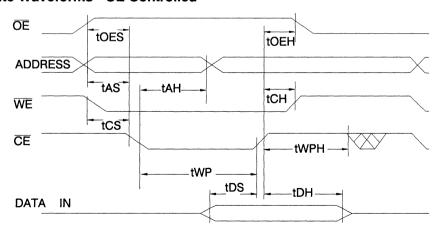
Notes:


- CE may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC}.
- OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first ($C_L = 5pF$).
- 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level


 t_R , $t_F < 5 ns$

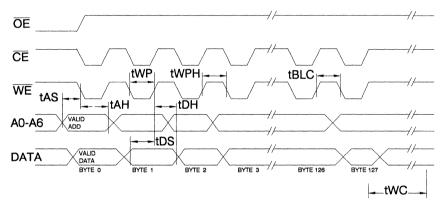
Output Test Load



Symbol	Parameter	Min	Тур	Max	Units
tas,toes	Address, OE Set-up Time	0			ns
tah	Address Hold Time	50			ns
tcs	Chip Select Set-up Time	0			ns
tch	Chip Select Hold Time	0			ns
twp	Write Pulse Width (\overline{WE} or \overline{CE})	100			ns
tDS	Data Set-up Time	50			ns
tDH,tOEH	Data, OE Hold Time	0			ns
twc	Write Cycle Time			10	ms

A.C. Write Waveforms - WE Controlled

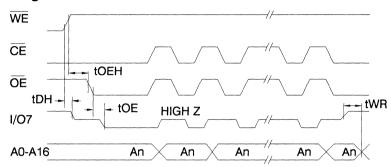
A.C. Write Waveforms - CE Controlled



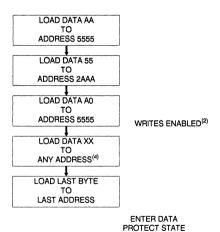
Page Mode Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
twc	Write Cycle Time			10	ms
tas	Address Set-up Time	0			ns
tah	Address Hold Time	50			ns
tDS	Data Set-up Time	50			ns
tDH	Data Hold Time	0			ns
twp	Write Pulse Width	100			ns
tBLC	Byte Load Cycle Time		VI. 7 - VI. 7 - VII. 1 - VII. 1 - VII. 1 - VII. 1 - VII. 1 - VII. 1 - VII. 1 - VII. 1 - VII. 1 - VII. 1 - VII.	150	μs
twpH	Write Pulse Width High	50			ns

Page Mode Write Waveforms

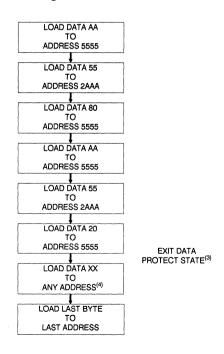

Note: A7 through A16 must specify the page address during each high to low transition of \overline{WE} (or \overline{CE}). \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.

Data Polling Characteristics (1)


Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

DATA Polling Waveforms


Software Data Protection Enable Algorithm (1)

Notes:

- 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
- Write Protect state will be activated at end of write even if no other data is loaded.
- Write Protect state will be deactivated at end of write period even if no other data is loaded.
- 4. 1 to 128 bytes of data may be loaded.

Software Data Protection Disable Algorithm (1)

tacc	loc	(mA)	Ordering Code	Package	Operation Range		
(ns)	Active	Standby	Ordering Code	rackage	Operation hange		
150	80	0.3	AT28C010-15BC AT28C010-15LC	32B 44L	Commercial (0° to 70°C)		
			AT28C010-15BI AT28C010-15LI	32B 44L	Industrial (-40° to 85°C)		
			AT28C010-15BM AT28C010-15LM	32B 44L	Military (-55°C to 125°C)		
			AT28C010-15BM/883 AT28C010-15LM/883	32B 44L	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
200	200 80 0.3	0.3	AT28C010-20BC AT28C010-20LC	32B 44L	Commercial (0° to 70°C)		
			AT28C010-20BI AT28C010-20LI	32B 44L	Industrial (-40° to 85°C)		
			AT28C010-20BM AT28C010-20LM	32B 44L	Military (-55°C to 125°C)		
					AT28C010-20BM/883 AT28C010-20LM/883	32B 44L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	80	0.3	AT28C010-25BC AT28C010-25LC	32B 44L	Commercial (0° to 70°C)		
			AT28C010-25BI AT28C010-25LI	32B 44L	Industrial (-40° to 85°C)		
			AT28C010-25BM AT28C010-25LM	32B 44L	Military (-55°C to 125°C)		
			AT28C010-25BM/883 AT28C010-25LM/883	32B 44L	Military/883C Class B, Fully Compliant (-55°C to 125°C)		

Package Type					
32B	32 Lead, 0.600" Wide, Ceramic Side Braze Dual Inline (Side Braze)				
44L	44 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)				

Product Information	15
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	3
CMOS EPROMS	4
High Speed CMOS PROMs	5
CMOS SRAMS	5
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	.11
Military	12
Die Products	13
Package Outlines	14:4

Section 3

CMOS PERC)MS (Flash)	
AT29C256	32K x 8	256K 5-Volt Reprogrammable ROM3-3
AT29C257	32K x 8	256K 5-Volt Reprogrammable ROM3-13
AT29C010	128K x 8	1MBit 5-Volt Reprogrammable ROM3-23

Features

- Fast Read Access Time 150ns
- Five Volt Only Reprogramming
- Page Program Operation

Single Cycle Reprogram (Erase and Program) Internal Address and Data Latches for 64 Bytes

Fast Program Cycle Times
 Page (64 Byte) Program Time - 10ms

- Chip Erase Time 10ms

 Internal Program Control Timer
- Low Power Dissipation

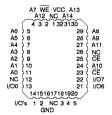
80mA Active Current

300μA CMOS Standby Current

- Hardware and Software Data Protection
- DATA Polling for End of Program Detection
- High Reliability CMOS Technology 1000 Erase/Program Cycles 10 Year Data Retention
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT29C256 is a 5 volt only in system Programmable and Erasable Read Only Memory (PEROM). Its 256k of memory is organized as 32,768 words by 8 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the device offers access times to 150ns with power dissipation of just 440mW. When the device is deselected, the CMOS standby current is less than $300\mu A$.


To allow for simple in-system reprogrammability, the AT29C256 does not require high input voltages for programming. Five volt only commands determine the operation of the device. Reading data out of the device is similar to reading from an EPROM. Reprogramming the AT29C256 is performed on a page basis; 64 bytes of data are loaded into the device and then simultaneously programmed. The contents of the entire device may be erased by using a six byte software code (although erasure before programming is not needed).

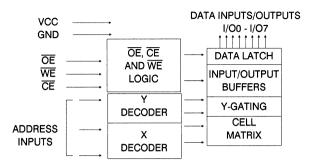
During a reprogram cycle, the address locations and 64 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a program cycle, the device will automatically erase the page and then program the latched data using an internal control timer. The end of a program cycle can be detected by DATA polling of I/O7. Once the end of a program cycle has been detected a new access for a read, program or chip erase can begin.

Pin Configurations

			,	
WE	1	28	þ	vcc
A12 E	2	27	Þ	A14
A7 4	3	26	Þ	A13
A6 [25	Þ	A8
A5 [5	24	Þ	A9
A4 [1 6	23	Þ	<u>A1</u> 1
A3 [7	22	Þ	ŌĒ
A2 [8 [21	Þ	A10
A1 E	9	20	Þ	CE
AO D	10	19	Þ	1/07
1/00	111	18	Þ	1/06
1/01	12	17		1/05
1/02		16	Þ	1/04
GND [114	15	h	1/03

PIN NAMES	
A0 - A14	Addresses
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
I/O0 - I/O7	Data Inputs/Outputs
NC	No Connect

Note: PLCC package pins 1 and 17 are DON'T CONNECT.


256K (32K x 8) 5 Volt Only CMOS PEROM

Preliminary

Block Diagram

Device Operation

READ: The AT29C256 is accessed like an EPROM. When CE and OE are low and WE is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever CE or OE is high. This dual line control gives designers flexibility in preventing bus contention.

BYTE LOAD: A byte load is performed by applying a low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Byte loads are used to enter the 64 bytes of a page to be programmed or the software codes for data protection and chip erasure.

PROGRAM: The device is reprogrammed on a page basis. If a byte of data within a page is to be changed, data for the entire page must be loaded into the device. Any byte that is not loaded during the programming of its page will be erased to read FFh. Once the bytes of a page are loaded into the device, they are simultaneously programmed during the internal programming period. After the first data byte has been loaded into the device, successive bytes are entered in the same manner. Each new byte to be programmed must have its high to low transition on WE (or CE) within 150 us of the low to high transition of WE (or CE) of the preceding byte. If a high to low transition is not detected within 150 us of the last low to high transition, the load period will end and the internal programming period will start. A6 to A14 specify the page address. The page address must be valid during each high to low transition of WE (or CE). A0 to A5 specify the byte address within the page. The bytes may be loaded in any order; sequential loading is not required.

DATA POLLING: The AT29C256 features DATA Polling to indicate the end of a program cycle. During a program cycle an attempted read of the last byte loaded will result in the complement of the loaded data on I/O7. Once the program cycle has been completed, true data is valid on all outputs and the next cycle may begin. DATA Polling may begin at any time during the program cycle.

TOGGLE BIT: In addition to DATA Polling the AT29C256 provides another method for determining the end of a program or erase cycle. During a program or erase operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the program cycle has completed, I/O6 will stop toggling and valid

data will be read. Examining the toggle bit may begin at any time during a program cycle.

HARDWARE DATA PROTECTION: Hardware features protect against inadvertent programs to the AT29C256 in the following ways: (a) Vcc sense — if Vcc is below 3.8V (typical), the program function is inhibited. (b) Vcc power on delay — once Vcc has reached the Vcc sense level, the device will automatically time out 5ms (typical) before programming. (c) Program inhibit — holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits program cycles. (d) Noise filter — pulses of less than 15ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a program cycle.

SOFTWARE DATA PROTECTION: A software controlled data protection feature is available on the AT29C256. Once the software protection is enabled a software algorithm must be issued to the device before a program may be performed. The software protection feature may be enabled or disabled by the user; when shipped from Atmel, the software data protection feature is disabled. To enable the software data protection, a series of three program commands to specific addresses with specific data must be performed. After the software data protection is enabled the same three program commands must begin each program cycle in order for the programs to occur. All software program commands must obey the page program timing specifications. Once set, the software data protection feature remains active unless its disable command is issued. Power transitions will not reset the software data protection feature, however the software feature will guard against inadvertent program cycles during power transitions.

5 VOLT CHIP ERASE: The entire device may be erased at one time by using a six byte software code. The erase code consists of six byte load commands to specific address locations with specific data patterns. Once the code has been entered, the device will set each byte to the high state (FFh). After the software chip erase has been initiated, the device will internally time the erase operation so that no external clocks are required.

HIGH VOLTAGE CHIP ERASE: The contents of the entire device may be set to the high state by using an externally timed high voltage operation. \overline{OE} is first raised to 12 volts with \overline{CE} low and \overline{WE} high; when \overline{WE} is pulsed low for a minimum of 10ms, the contents of the entire device is erased.

Absolute Maximum Ratings*

<i>-</i>
Temperature Under Bias55°C to $+125$ °C
Storage Temperature65°C to $+150^{\circ}C$
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to $V_{CC} + 0.6V$
Voltage on \overline{OE} with Respect to Ground0.6V to $+13.5V$

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

		AT29C256-15	AT29C256-20	AT29C256-25
Operating	Com.	0°C - 70°C	0°C - 70°C	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		$5V \pm 10\%$	5V ± 10%	5V ± 10%

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	V_{IL}	V_{IL}	V_{IH}	D _{OUT}
Program ⁽²⁾	V_{IL}	V_{IH}	V_{IL}	$\mathrm{D_{IN}}$
5V Chip Erase	V_{IL}	V_{IH}	V_{IL}	
Standby/Write Inhibit	V _{IH}	$\mathbf{X}^{(1)}$	X	High Z
Write Inhibit	X	X	V_{IH}	
Write Inhibit	X	$ m V_{IL}$	X	
Output Disable	X	V_{IH}	X	High Z
High Voltage Chip Erase	V_{IL}	$V_{\rm H}^{(3)}$	$V_{\rm IL}$	High Z

Notes: 1. X can be VIL or VIH.

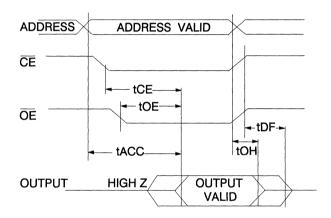
D.C. Characteristics

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to V_{CC}		10	μΑ
I_{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		10	μΑ
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{\text{CE}} = \text{V}_{\text{CC}}$ 3V to V_{CC}		300	μΑ
I _{SB2}	V _{CC} Standby Current TTL	$\overline{\text{CE}} = 2.0 \text{V to V}_{\text{CC}}$		3	mA
ICC	V _{CC} Active Current	$f = 5MHz; I_{OUT} = 0mA$		80	mA
V _{IL}	Input Low Voltage			0.8	V
V_{IH}	Input High Voltage		2.0		V
Vol	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.45	V
V _{OH1}	Output High Voltage	$I_{OH} = -400 \mu A$	2.4		V
V _{OH2}	Output High Voltage CMOS	$I_{OH} = -100 \mu A; V_{CC} = 4.5 V$	4.2		V

Pin Capacitance (f = 1MHz T = 25°C) (4)

	Тур	Max	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
Cout	8	12	pF	$V_{OUT} = 0V$

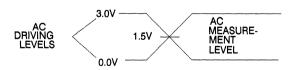
^{2.} Refer to A.C. Programming Waveforms.


^{3.} $V_H = 12.0 \pm 0.5 V$.

A.C. Read Characteristics

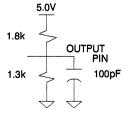
		AT29C256-15 AT29C256-20		AT29C256-25				
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
tACC	Address to Output Delay		150		200		250	ns
$t_{CE}^{(1)}$	CE to Output Delay		150		200		250	ns
toE ⁽²⁾	OE to Output Delay	0	70	0	80	0	100	ns
t _{DF} (3,4)	CE or OE to Output Float	0	50	0	55	0	60	ns
toH	Output Hold from OE, CE	0		0		0		ns
l	or Address, whichever							
1	occurred first							

A.C. Read Waveforms



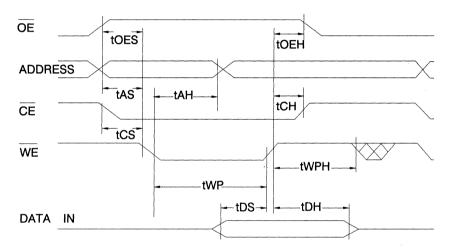
Notes:

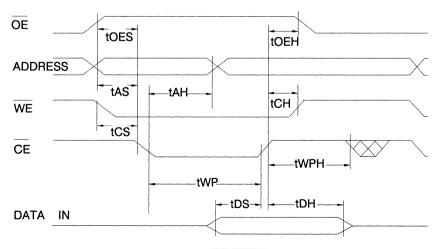
- 1. $\overline{\text{CE}}$ may be delayed up to tACC tCE after the address transition without impact on tACC.
- 2. \overline{OE} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.


 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first (C_L = 5pF).
- 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

 $t_R, t_F < 5ns$

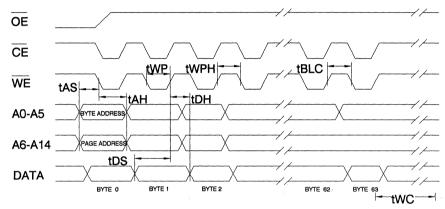

Output Test Load


A.C. Byte Load Characteristics

Symbol	Parameter	Min	Max	Units
tas,toes	Address, OE Set-up Time	10		ns
tah	Address Hold Time	50		ns
tcs	Chip Select Set-up Time	0		ns
tcH	Chip Select Hold Time	0		ns
twp	Write Pulse Width (WE or CE)	150		ns
tos	Data Set-up Time	50		ns
tDH,tOEH	Data, OE Hold Time	10		ns
twc	Write Cycle Time		10	ms

A.C. Byte Load Waveforms - WE Controlled

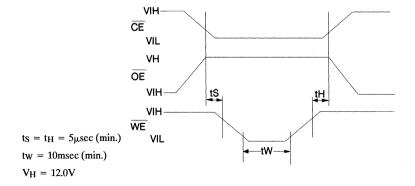
A.C. Byte Load Waveforms - $\overline{\text{CE}}$ Controlled



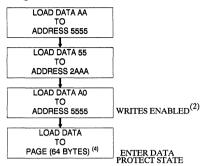
Program Cycle Characteristics

Symbol	Parameter	Min	Max	Units
twc	Write Cycle Time		10	ms
tAS	Address Set-up Time	10		ns
tAH	Address Hold Time	50		ns
tDS	Data Set-up Time	50		ns
tDH	Data Hold Time	10		ns
twp	Write Pulse Width	150		ns
tBLC	Byte Load Cycle Time		150	μs
twpH	Write Pulse Width High	100		ns

Program Cycle Waveforms

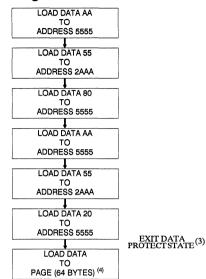


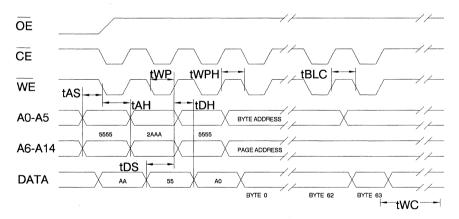
Notes: A6 through A14 must specify the page address during each high to low transition of \overline{WE} (or \overline{CE}).


OE must be high when WE and CE are both low.

All bytes that are not loaded within the page being programmed will be erased to FF.

High Voltage Chip Erase Waveforms


Software Data Protection Enable Algorithm (1)


Notes for software program code:

- 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
- 2. Data Protect state will be activated at end of program cycle.
- Data Protect state will be deactivated at end of program period.
- 4. 64 bytes of data are loaded.

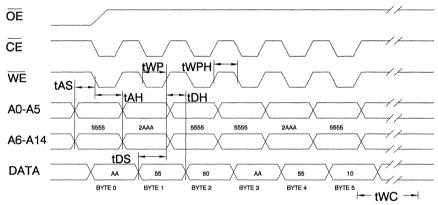
Software Data Protection Disable Algotithm (1)

Software Protected Program Cycle Waveform

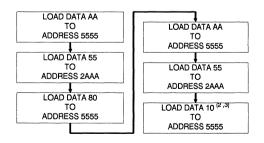
Notes: A6 through A14 must specify the page address during each high to low transition of WE (or CE) after the software code has been entered.

OE must be high when WE and CE are both low.

All bytes that are not loaded within the page being programmed will be erased to FF.



Chip Erase Cycle Characteristics


Symbol	Parameter	Min	Max	Units
twc	Write Cycle Time		10	ms
tas	Address Set-up Time	10		ns
t _{AH}	Address Hold Time	50		ns
tDS	Data Set-up Time	50		ns
tDH	Data Hold Time	10		ns
twp	Write Pulse Width	· 150		ns
tBLC	Byte Load Cycle Time		150	μs
twpH	Write Pulse Width High	100		ns

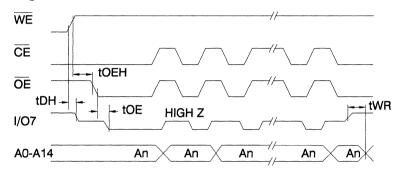
Chip Erase Cycle Waveforms

Note: \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.

Chip Erase Software Algorithm (1)

Notes for software erase code:

- 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
- DATA polling may be used to determine the end of the erase cycle by checking any address for data equal to FF.
- After loading the six byte code, no byte loads are allowed until the completion of the erase cycle. The erase cycle will time itself to completion within twc.

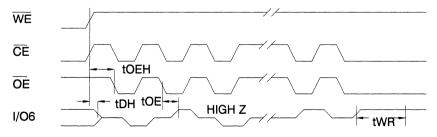

AT29C256

Data Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

DATA Polling Waveforms



Toggle Bit Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
toehp	OE High Pulse	150			ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

Toggle Bit Waveforms

Notes:

- 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit.
- 2. Beginning and ending state of I/O6 will vary.
- 3. Any address location may be used but the address should not vary.

tacc	lcc	(mA)	Oudouin a Oodo	Doolyana	Onerelies Dense
(ns)	Active	Standby	Ordering Code	Package	Operation Range
150	80	0.3	AT29C256-15DC AT29C256-15JC AT29C256-15LC AT29C256-15PC	28D6 32J 32L 28P6	Commercial (0° to 70°C)
			AT29C256-15DI AT29C256-15JI AT29C256-15LI AT29C256-15PI	28D6 32J 32L 28P6	Industrial (-40° to 85°C)
			AT29C256-15DM AT29C256-15LM	28D6 32L	Military (-55°C to 125°C)
			AT29C256-15DM/883 AT29C256-15LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	80	0.3	AT29C256-20DC AT29C256-20JC AT29C256-20LC AT29C256-20PC	28D6 32J 32L 28P6	Commercial (0° to 70°C)
			AT29C256-20DI AT29C256-20JI AT29C256-20LI AT29C256-20PI	28D6 32J 32L 28P6	Industrial (-40° to 85°C)
	1000		AT29C256-20DM AT29C256-20LM	28D6 32L	Military (-55°C to 125°C)
			AT29C256-20DM/883 AT29C256-20LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	80	0.3	AT29C256-25DC AT29C256-25JC AT29C256-25LC AT29C256-25PC	28D6 32J 32L 28P6	Commercial (0° to 70°C)
			AT29C256-25DI AT29C256-25JI AT29C256-25LI AT29C256-25PI	28D6 32J 32L 28P6	Industrial (-40° to 85°C)
			AT29C256-25DM AT29C256-25LM	28D6 32L	Military (-55°C to 125°C)
			AT29C256-25DM/883 AT29C256-25LM/883	28D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)

Features

- Fast Read Access Time 150ns
- Five Volt Only Reprogramming
- Page Program Operation

Single Cycle Reprogram (Erase and Program)
Internal Address and Data Latches for 64 Bytes

- Fast Program Cycle Times
 Page (64 Byte) Program Time 10ms
 Chip Erase Time 10ms
- Internal Program Control Timer
- Low Power Dissipation
 80mA Active Current
 300uA CMOS Standby Current
 - Hardware and Software Data Protection
- DATA Polling for End of Program Detection
- High Reliability CMOS Technology 1000 Erase/Program Cycles 10 Year Data Retention
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT29C257 is a 5 volt only in system Programmable and Erasable Read Only Memory (PEROM). Its 256k of memory is organized as 32,768 words by 8 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the device offers access times to 150ns with power dissipation of just 440mW. When the device is deselected, the CMOS standby current is less than 300 µA.

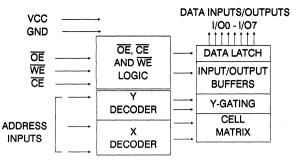
To allow for simple in-system reprogrammability, the AT29C257 does not require high input voltages for programming. Five volt only commands determine the operation of the device. Reading data out of the device is similar to reading from an EPROM. Reprogramming the AT29C257 is performed on a page basis; 64 bytes of data are loaded into the device and then simultaneously programmed. The contents of the entire device may be erased by using a six byte software code (although erasure before programming is not needed).

During a reprogram cycle, the address locations and 64 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a program cycle, the device will automatically erase the page and then program the latched data using an internal control timer. The end of a program cycle can be detected by DATA polling of I/O7. Once the end of a program cycle has been detected a new access for a read, program or chip crase can begin.

Pin Configurations

All	9	y 	1900			Allega
NC	П	. 1	$\neg \circ$	32	Ъ	VCC
NC	П	2		31		WE
NC	d	3		30	Þ	NC
A12	₫	4		29	Þ	A14
A7	₫	5		28	Þ	A13
A6		6	7000	27	Þ	A8
A5	ㅁ	7		26	Þ	A9
A4	뎍	8		25	Þ	A11
A3	þ	9		24	Þ	OE
A2	П	10		23	Þ	A10
A1	4	11		22	Þ	CE
A0	d	12		21	Þ	1/07
1/00	ㅁ	13		20	Þ	1/06
1/01	d	14		19	Þ	1/05
1/02	ㅁ	15		18	Þ	1/04
GND	þ	16		17	Þ	1/03

PIN NAMES				
Addresses				
Chip Enable				
Output Enable				
Write Enable				
Data Inputs/Outputs				
NC No Connect				


256K (32K x 8) 5 Volt Only CMOS PEROM

Preliminary

Block Diagram

Device Operation

READ: The AT29C257 is accessed like an EPROM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers flexibility in preventing bus contention.

BYTE LOAD: A byte load is performed by applying a low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Byte loads are used to enter the 64 bytes of a page to be programmed or the software codes for data protection and chip erasure.

PROGRAM: The device is reprogrammed on a page basis. If a byte of data within a page is to be changed, data for the entire page must be loaded into the device. Any byte that is not loaded during the programming of its page will be erased to read FFh. Once the bytes of a page are loaded into the device, they are simultaneously programmed during the internal programming period. After the first data byte has been loaded into the device, successive bytes are entered in the same manner. Each new byte to be programmed must have its high to low transition on WE (or CE) within 150 us of the low to high transition of WE (or CE) of the preceding byte. If a high to low transition is not detected within 150 us of the last low to high transition, the load period will end and the internal programming period will start. A6 to A14 specify the page address. The page address must be valid during each high to low transition of WE (or CE). A0 to A5 specify the byte address within the page. The bytes may be loaded in any order; sequential loading is not required.

DATA POLLING: The AT29C257 features DATA Polling to indicate the end of a program cycle. During a program cycle an attempted read of the last byte loaded will result in the complement of the loaded data on I/O7. Once the program cycle has been completed, true data is valid on all outputs and the next cycle may begin. DATA Polling may begin at any time during the program cycle.

TOGGLE BIT: In addition to DATA Polling the AT29C257 provides another method for determining the end of a program or erase cycle. During a program or erase operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the program cycle has completed, I/O6 will stop toggling and valid

data will be read. Examining the toggle bit may begin at any time during a program cycle.

HARDWARE DATA PROTECTION: Hardware features protect against inadvertent programs to the AT29C257 in the following ways: (a) Vcc sense—if Vcc is below 3.8V (typical), the program function is inhibited. (b) Vcc power on delay—once Vcc has reached the Vcc sense level, the device will automatically time out 5ms (typical) before programming. (c) Program inhibit—holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits program cycles. (d) Noise filter—pulses of less than 15ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a program cycle.

SOFTWARE DATA PROTECTION: A software controlled data protection feature is available on the AT29C257. Once the software protection is enabled a software algorithm must be issued to the device before a program may be performed. The software protection feature may be enabled or disabled by the user; when shipped from Atmel, the software data protection feature is disabled. To enable the software data protection, a series of three program commands to specific addresses with specific data must be performed. After the software data protection is enabled the same three program commands must begin each program cycle in order for the programs to occur. All software program commands must obey the page program timing specifications. Once set, the software data protection feature remains active unless its disable command is issued. Power transitions will not reset the software data protection feature, however the software feature will guard against inadvertent program cycles during power transitions.

5 VOLT CHIP ERASE: The entire device may be erased at one time by using a six byte software code. The erase code consists of six byte load commands to specific address locations with specific data patterns. Once the code has been entered, the device will set each byte to the high state (FFH). After the software chip erase has been initiated, the device will internally time the erase operation so that no external clocks are required.

HIGH VOLTAGE CHIP ERASE: The contents of the entire device may be set to the high state by using an externally timed high voltage operation. \overline{OE} is first raised to 12 volts with \overline{CE} low and \overline{WE} high; when \overline{WE} is pulsed low for a minimum of 10ms, the contents of the entire device is erased.

Absolute Maximum Ratings*

Temperature Under Bias55	$^{\circ}$ C to $+125^{\circ}$ C
Storage Temperature65	$^{\circ}$ C to $+150^{\circ}$ C
All Input Voltages (including N.C. Pins) with Respect to Ground0	.6V to +6.25V
All Output Voltages with Respect to Ground0.6V	to V _{CC} + 0.6V
Voltage on \overline{OE} with Respect to Ground0	.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

		AT29C257-15	AT29C257-20	AT29C257-25
Operating	Com.	0°С - 70°С	0°С - 70°С	0°С - 70°С
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
VCC Power Supply		5V ± 10%	5V ± 10%	5V ± 10%

Operating Modes

MODE	CE	ŌĒ	WE	I/O
Read	$V_{\rm IL}$	V _{IL}	V _{IH}	Dout
Program ⁽²⁾	V_{IL}	V_{IH}	V_{IL}	D _{IN}
5V Chip Erase	V_{IL}	V_{IH}	V_{IL}	
Standby/Write Inhibit	V_{IH}	$X^{(1)}$	X	High Z
Write Inhibit	X	X	V_{IH}	
Write Inhibit	X	$V_{\rm IL}$	X	
Output Disable	X	V_{IH}	X	High Z
High Voltage Chip Erase	$ m V_{IL}$	$V_{H}^{(3)}$	V_{IL}	High Z

Notes: 1. X can be VIL or VIH.

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5 V$.

D.C. Characteristics

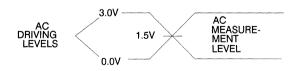
Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to V_{CC}		10	μΑ
I_{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		10	μΑ
I _{SB1}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC}$ 3V to V_{CC}		300	μΑ
I _{SB2}	V _{CC} Standby Current TTL	$\overline{\text{CE}} = 2.0 \text{V to V}_{\text{CC}}$		3	mA
Icc	V _{CC} Active Current	$f = 5MHz; I_{OUT} = 0mA$		80	mA
V_{IL}	Input Low Voltage			0.8	V
V_{IH}	Input High Voltage		2.0		V
Vol	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$.45	V
V _{OH1}	Output High Voltage	$I_{OH} = -400 \mu A$	2.4		V
V _{OH2}	Output High Voltage CMOS	$I_{OH} = -100 \mu A; V_{CC} = 4.5 V$	4.2		V

Pin Capacitance (f = 1MHz T = 25°C) (4)

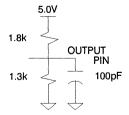
	Тур	Max	Units	Conditions	
C _{IN}	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	$V_{OUT} = 0V$	

A.C. Read Characteristics

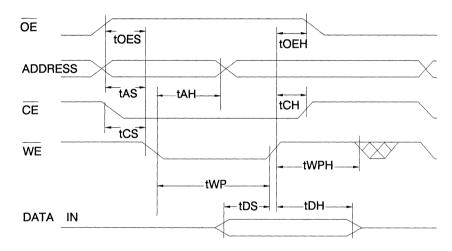
		AT290	2257-15	AT29C257-20		AT29C257-25		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
tACC	Address to Output Delay		150		200		250	ns
tcE ⁽¹⁾	CE to Output Delay		150		200		250	ns
toE ⁽²⁾	OE to Output Delay	0	70	0	80	0	100	ns
t _{DF} ^(3,4)	CE or OE to Output Float	0	50	0	55	0	60	ns
ton	Output Hold from \overline{OE} , \overline{CE}	0		0		0		ns
1	or Address, whichever							
	occurred first							


A.C. Read Waveforms

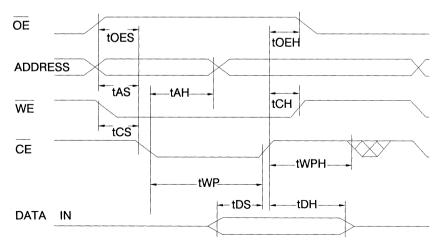
Notes:


- CE may be delayed up to tACC tCE after the address transition without impact on tACC.
- OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first ($C_L = 5pF$).
- 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level


 $t_R, t_F < 5ns$

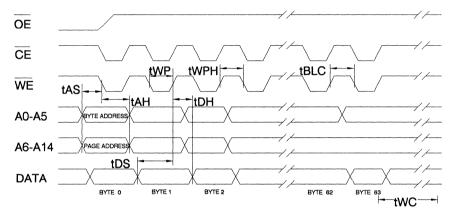
Output Test Load



Symbol	Parameter	Min	Max	Units
tas,toes	Address, OE Set-up Time	10		ns
tah	Address Hold Time	50		ns
tcs	Chip Select Set-up Time	0		ns
tcH	Chip Select Hold Time	0		ns
twp	Write Pulse Width (WE or CE)	150		ns
tDS	Data Set-up Time	50		ns
tDH,tOEH	Data, OE Hold Time	10		ns
twc	Write Cycle Time		10	ms

A.C. Byte Load Waveforms - WE Controlled

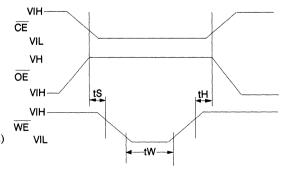
A.C. Byte Load Waveforms - $\overline{\text{CE}}$ Controlled



Program Cycle Characteristics

Symbol	Parameter	Min	Max	Units
twc	Write Cycle Time		10	ms
tas	Address Set-up Time	10		ns
tah	Address Hold Time	50		ns
t _{DS}	Data Set-up Time	50		ns
tDH	Data Hold Time	10		ns
twp	Write Pulse Width	150		ns
tBLC	Byte Load Cycle Time		150	μS
twpH	Write Pulse Width High	100		ns

Program Cycle Waveforms

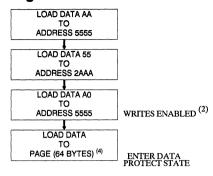

Notes: A6 through A14 must specify the page address during each high to low transition of WE (or CE).

 \overline{OE} must be high when \overline{WE} and \overline{CE} are both low.

All bytes that are not loaded within the page being programmed

will be erased to FF.

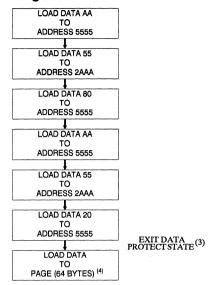
High Voltage Chip Erase Waveforms

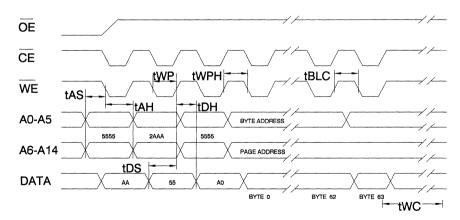


 $t_S = t_H = 5\mu sec (min.)$

tw = 10msec (min.)

 $V_H = 12.0V \pm 0.5$


Software Data Protection Enable Algorithm (1)


Notes for software program code:

- 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
- 2. Data Protect state will be activated at end of program cycle.
- Data Protect state will be deactivated at end of program period.
- 4. 64 bytes of data are loaded.

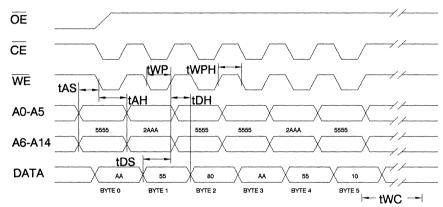
Software Data Protection Disable Algorithm (1)

Software Protected Program Cycle Waveform

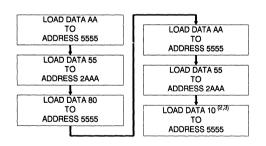
Notes: A6 through A14 must specify the page address during each high to low transition of WE (or CE) after the software code has been entered.

OE must be high when WE and CE are both low.

All bytes that are not loaded within the page being programmed will be erased to FF.



Chip Erase Cycle Characteristics

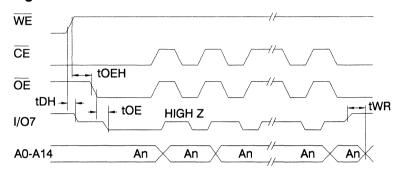

Symbol	Parameter	Min	Max	Units
twc	Write Cycle Time		10	ms
tAS	Address Set-up Time	10		ns
tah	Address Hold Time	50		ns
tDS	Data Set-up Time	50		ns
tDH	Data Hold Time	10		ns
twp	Write Pulse Width	150		ns
tBLC	Byte Load Cycle Time		150	μs
twpH	Write Pulse Width High	100		ns

Chip Erase Cycle Waveforms

Note: \overline{OE} must be high only when \overline{WE} and \overline{CE} are both low.

Chip Erase Software Algorithm (1)

Notes for software erase code:

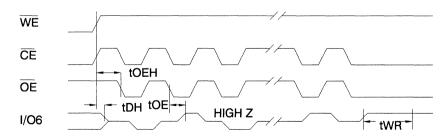

- 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
- DATA polling may be used to determine the end of the erase cycle by checking any address for data equal to FF.
- After loading the six byte code, no byte loads are allowed until the completion of the erase cycle. The erase cycle will time itself to completion within twc.

Data Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

DATA Polling Waveforms



Toggle Bit Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay			100	ns
toehp	OE High Pulse	150			ns
twr	Write Recovery Time	0			ns

Note: 1. These parameters are characterized and not 100% tested.

Toggle Bit Waveforms

Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit.

- 2. Beginning and ending state of I/O6 will vary.
- 3. Any address location may be used but the address should not vary.

tacc	loc	(mA)	Ordering Code	Doelrage	Operation Range		
(ns)	Active	Standby	Ordering Code	Package	Operation Hange		
150	80	0.3	AT29C257-15DC AT29C257-15PC	32D6 32P6	Commercial (0° to 70°C)		
			AT29C257-15DI AT29C257-15PI	32D6 32P6	Industrial (-40° to 85°C)		
			AT29C257-15DM	32D6	Military (-55°C to 125°C)		
			AT29C257-15DM/883	32D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
200	0 80 0.3 AT29C257-20DC AT29C257-20PC AT29C257-20DI AT29C257-20PI AT29C257-20DM AT29C257-20DM/883	200 80	0.3		32D6 32P6	Commercial (0° to 70°C)	
				32D6 32P6	Industrial (-40° to 85°C)		
				AT29C257-20DN	AT29C257-20DM	32D6	Military (-55°C to 125°C)
		32D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)				
250	80	0.3	AT29C257-25DC AT29C257-25PC	32D6 32P6	Commercial (0° to 70°C)		
			AT29C257-25DI AT29C257-25PI	32D6 32P6	Industrial (-40° to 85°C)		
		AT29C257-25DM	32D6	Military (-55°C to 125°C)			
			AT29C257-25DM/883	32D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)		

Package Type				
32D6	32 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)			
32P6	32 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)			

Features

- Fast Read Access Time 150ns
- Five Volt Only Reprogramming
- Page Program Operation

Internal Address and Data Latches

- Fast Program Cycle Times
 Page Program Time 10ms
 Chip Erase Time 10ms
- Internal Program Control Timer
- Low Power Dissipation

80mA Active Current 200µA CMOS Standby Current

- Hardware and Software Data Protection
- DATA Polling for End of Program Detection
- High Reliability CMOS Technology
 100 Erase/Program Cycles
 10 Year Data Retention
- Single 5V ± 10% Supply
- CMOS and TTL Compatible Inputs and Outputs
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT29C010 is a 5 volt only in system Programmable and Erasable Read Only Memory (PEROM). Its one megabit of memory is organized as 131,072 words by 8 bits. Manufactured with Atmel's advanced non-volatile CMOS technology, the device offers access times to 150ns with power dissipation of just 440mW. When the device is deselected, the CMOS standby current is less than 200µA.

To allow for simple in-system reprogrammability, the AT29C010 does not require high input voltages for programming. Five volt only commands determine the operation of the device. Reading data out of the device is similar to reading from an EPROM. Reprogramming the AT29C010 is performed on a page basis. The contents of the entire device may be erased by using a six byte software code (although erasure before programming is not needed). The end of a program cycle can be detected by DATA polling of I/O7. Once the end of a program cycle has been detected a new access for a read, program or chip erase can begin.

Pin Configurations

PIN NAMES

A0 - A16	Addresses
CE	Chip Enable
$\overline{\text{OE}}$	Output Enable
WE	Write Enable
I/O0 - I/O7	Data Inputs/Outputs
NC	No Connect

1 Megabit (128K x 8) 5 Volt Only CMOS PEROM

Advance Information

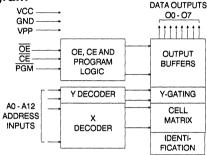
tacc	loc	(mA)	Ordering Code	Doolsogo	Operation Dance		
(ns)	Active	Standby	Ordering Code	Package	Operation Range		
150	80	0.3	AT29C010-15DC AT29C010-15JC AT29C010-15LC AT29C010-15PC	32D6 32J 32L 32P6	Commercial (0° to 70°C)		
			AT29C010-15DI AT29C010-15JI AT29C010-15LI AT29C010-15PI	32D6 32J 32L 32P6	Industrial (-40° to 85°C)		
			AT29C010-15DM AT29C010-15LM	32D6 32L	Military (-55°C to 125°C)		
			AT29C010-15DM/883 AT29C010-15LM/883	32D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
200	80	0.3	AT29C010-20DC AT29C010-20JC AT29C010-20LC AT29C010-20PC	32D6 32J 32L 32P6	Commercial (0° to 70°C)		
					AT29C010-20DI AT29C010-20JI AT29C010-20LI AT29C010-20PI	32D6 32J 32L 32P6	Industrial (-40° to 85°C)
			AT29C010-20DM AT29C010-20LM	32D6 32L	Military (-55°C to 125°C)		
		To the second	AT29C010-20DM/883 AT29C010-20LM/883	32D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
250	80	0.3	AT29C010-25DC AT29C010-25JC AT29C010-25LC AT29C010-25PC	32D6 32J 32L 32P6	Commercial (0° to 70°C)		
			AT29C010-25DI AT29C010-25JI AT29C010-25LI AT29C010-25PI	32D6 32J 32L 32P6	Industrial (-40° to 85°C)		
			AT29C010-25DM AT29C010-25LM	32D6 32L	Military (-55°C to 125°C)		
			AT29C010-25DM/883 AT29C010-25LM/883	32D6 32L	Military/883C Class B, Fully Compliant (-55°C to 125°C)		

Package Type				
32D6	32 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)			
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)			
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)			
32P6	32 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)			

Product Information	
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	
CMOS EPROMs	4
High Speed CMOS PROMs	5
CMOS SRAMs	6
CMOS EPLDs	7
CMOS Gate Arrays	
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	18
Package Outlines	14

Section 4

CMOS EPROMS			
AT27HC64/L	8K x 8	High Speed, 64K EPROM	4-3
AT27HC64R/RL	8K x 8	High Speed, 64K EPROM	4-11
AT27HC256/L	32K x 8	High Speed, 256K EPROM	4-15
AT27HC256R/RL	32K x 8	High Speed, 256K EPROM	4-25
AT27HC1024	64K x 16	High Speed, 1MBit EPROM	4-29
AT27C128	16K x 8	128K EPROM	4-33
AT27C256	32K x 8	256K EPROM	4-39
AT27C256R	32K x 8	256K EPROM	4-47
AT27C512	64K x 8	512K EPROM	4-55
AT27C512R	64K x 8	512K EPROM	4-63
AT27C513R	4 x 16K x 8	Paged 512K EPROM	4-71
AT27C010/L	128K x 8	1MBit EPROM	4-81
AT27C011	8 x 16K x 8	Paged 1MBIT EPROM	4-91
AT27C1024/L	64K x 16	1MBit EPROM	4-10
AT27C040	512K v 8	4MRit EPROM	4-11



Features

- Bipolar Speed in JEDEC Standard EPROM Pinout Read Access Time - 45ns
 600 mil DIP or LCC packages
- Low Power CMOS Operation 100 μA max. Standby 75 mA max. Active at 10 MHz
- High Output Drive Capability
- High Reliability Latch-Up Resistant CMOS Technology
- Fast Programming 4ms/byte (typical)
- Two-line Control
- . CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Commercial and Industrial Temperature Ranges

Block Diagram

Description

The AT27HC64/64L chip family is a high-speed, low-power 65,536 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM), organized 8K x 8. The AT27HC64 is suited for very high speed applications, while the AT27HC64L features low Vcc Standby Current. Both require only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 45ns on the AT27HC64, making this part compatible with high performance systems. Power consumption is typically only 40mA in Active Mode on both parts and less than 20u A in Standby on the AT27HC64L.

Atmel's 1.5 micron, high speed CMOS technology provides optimum speed, low-power and high noise immunity. The high speed CMOS process is an extension of Atmel's high quality and highly manufacturable floating poly EPROM technology.

The AT27HC64/64L come in an industry standard JEDEC-approved 28-lead 64K EPROM pinout. The devices feature a two-line control ($\overline{\text{CE}}$, $\overline{\text{OE}}$) to give designers the flexibility to prevent bus contention. Both parts are available in either 28-pin 600 mil DIP or 32-pad LCC packages.

Pin Configurations

Pin Name	Function
A0-A12	Addresses
CE	Chip Enable
ŌĒ	Output Enable
PGM	Program Strobe
NC	No Connect
00-07	Outputs

		$\overline{}$		1	
VPP C	1	_ 2	8	b vcc	
A12 C	2	2	7	PGN	١
A7 🗆	3	2	6	□ NC	
A6 🗆	4	2	5	Þ.A8	
A5 🗆	5	2	4	□ A9	
A4 🗆	6	2	3	Þ A11	
A3 🗆	7	2	2	OE	
A2 🗆	8	2	1	□ A10	
A1 🗆	9	2	0	DCE	
AO 🗆	10	11	9	Þ07	
00 🗆	11	10	В	D 06	
01 🗆	12	11	7	D 05	
O2 =	13	10	6	Þ04	
GND C	14	11	5	⊨oз	
	L				

64K (8K x 8) High Speed UV Erasable CMOS EPROM

Description (Continued)

With a storage capacity of 8K bytes, Atmel's 27HC64/64L allow firmware to be stored reliably and to be accessed at bipolar PROM speeds. The AT27HC64/64L have exceptional output drive capability - source 4mA and sink 16mA per output.

The AT27HC64/64L have additional features to ensure high quality and efficient production use. The fast programming algorithm reduces the time required to program the chip and guarantees reliable programming. The Integrated Product Identification Code electronically identifies the device and manufacturing origin. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27HC64/64L is erased (all outputs read as VOH) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using $12,000 \,\mu\text{W/cm}^2$ intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W • sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

Temperature Under Blas55°C to +125°C	
Storage Temperature65°C to +150°C	
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾	
Voltage on A9 with Respect to Ground2.0V to $+14.0\text{V}^{(1)}$	
V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾	
Integrated UV Erase Dose7258 w•sec/cm ²	

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is $V_{CC}+0.75V$ dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

.							
MODE \ PIN	CE	ŌĒ	PGM	Ai	V _{PP}	Vcc	Outputs
Read	VIL	VIL	ViH	Ai	Vcc	Vcc	Dout
Output Disable	VIL	ViH	ViH	X ⁽¹⁾	Vcc	Vcc	High Z
Standby	VIH	X.	Х	X	Vcc	Vcc	High Z
Fast Program ⁽²⁾	VIL	ViH	VIL	Ai	V _{PP}	Vcc	Din
PGM Verify	VIL	VIL	ViH	Ai	VPP	Vcc	Dout
PGM Inhibit	ViH	Х	Х	Х	V_{PP}	Vcc	High Z
Product Identification ⁽⁴⁾	VIL	VIL	V _{IH}	A9 = V _H ⁽³⁾ A0 = V _{IH} or V _{IL} A1-A12 = V _{IL}	Vcc	Vcc	Identification Code

- Notes: 1. X can be VIL or VIH.
 - 2. Refer to Programming characteristics.
 - 3. $V_H = 12.0 \pm 0.5 V$.

4. Two identifier bytes may be selected. All Ai inputs are held low (VIL), except A9 which is set to VH and A0 which is toggled low (VIL) to select the Manufacturer's Identification byte and high (VIH) to select the Device Code byte.

D.C. and A.C. Operating Conditions for Read Operation

		AT27HC64	AT27HC64 / AT27HC64L				
		-55	-70	-90	-12		
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C		
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C		
(Case)	Mil.		-55°C - 125°C ⁽¹⁾	-55°C - 125°C	-55°C - 125°C		
Vcc Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%		

Notes: 1. AT27HC64 only.

D.C. and Operating Characteristics for Read Operation

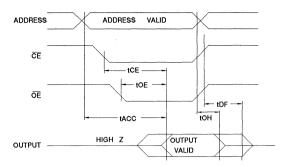
Symbol	Parameter	Condition		Min	Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
IPP ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = 3.8 \text{ to } V_{CC} + 0.3V$			20	μΑ
I _{SB1} /I _{SB2}	V _{CC} ⁽¹⁾ Standby Current	$\frac{\text{ISB1 (CMOS)}}{\text{CE} = \text{V}_{\text{CC}}\text{-}0.3 \text{ to V}_{\text{CC}} + 1.0\text{V}}$	AT27HC64L Com. Ind.,Mil.		0.1/2 0.2/3	mA mA
	,	$\frac{I_{SB2}}{CE}$ (TTL) $\frac{1}{CE}$ = 2.0 to V_{CC} + 1.0V	AT27HC64 Com. Ind.,Mil.		35/35 40/40	mA mA
Icc	V _{CC} Active Current	$\frac{f=10MHz, I_{OUT}=0mA,}{\overline{CE}=V_{IL}}$	Com. Ind.,Mil.		75 90	mA mA
VIL	Input Low Voltage			-0.6	0.8	V
ViH	Input High Voltage			2.0	Vcc + 1	V
V _{OL}	Output Low Voltage	I _{OL} = 16mA			.45	V
		$I_{OH} = -100 \mu A$		V _{CC} -0.3		٧
VoH	Output High Voltage	I _{OH} = -2.5mA		3.5		٧
		I _{OH} = -4.0mA		2.4		V
V _{PP}	V _{PP} Read Voltage	V _{CC} = 5 ± 0.5V		3.8	5.5	V

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

A.C. Characteristics for Read Operation

			AT27	AT27HC64 AT2				7HC64 / AT27HC64L				
				-4	1 5		55	-	70	-9	90	
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Max	Min	Max	Units
tacc (4)	Address to	CE = OE	Com.,Ind.		45		55		70		90	ns
IACC	Output Delay		Mil.				55 ⁽¹⁾		70		90	ns
tce (3)	CE to Output Delay	$\overline{OE} = V_{IL}$			45		55		70		90	ns
toE (3,4)	OE to Output Delay	$\overline{CE} = V_{IL}$			25		30		35		40	ns
t _{DF} ^(2,5)	OE or CE High to Output Float	CE = V _{IL}			25		30		35		40	ns
tон	Output Hold from Address, CE or OE, whichever occurred first	CE = OE = V _{IL}			0		0		0		0	ns

Notes: 1. AT27HC64 only.


2, 3, 4, 5. - see AC Waveforms for Read Operation.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

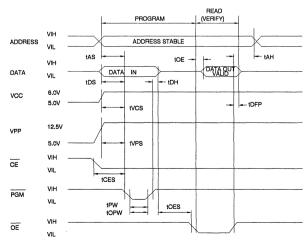
A.C. Waveforms for Read Operation (1)

Notes:

- Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.
 - $\dot{C}_L = 30 \text{pF}$, add 10ns for $C_L = 100 \text{pF}$.
- t_{DF} is specified from OE or CE, whichever occurs first. t_{DF} is measured at V_{OH}-0.5V or V_{OL}+0.5V with C_L=5pF.
- 3. \overline{OE} may be delayed up to t_{CE}-t_{OE} after the falling edge of \overline{CE} without impact on t_{CE}.
- OE may be delayed up to t_{ACC}-t_{OE} after the address is valid without impact on t_{ACC}.
- This parameter is only sampled and is not 100% tested.

Input Test Waveforms and Measurement Levels

Output Test Load


Note: $C_L=30pF$ including jig capacitance.

Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions	
Cin	4	6	pF	$V_{IN} = 0V$	
Соит	8	12	pF	Vout = 0V	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- 1. The Input Timing Reference is 0.0V for V_{IL} and 3.0V for V_{IH} .
- toE and tppp are characteristics of the device but must be accommodated by the programmer.
- When programming the AT27HC64/64L a 0.1μF capacitor is required across Vpp and ground to suppress spurious voltage transients.

AT27HC64/L

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $V_{PP}=12.5\pm0.5V$

Sym-		Test	Li	Limits		
bol	Parameter	Conditions	Min	Max	Units	
ILI	Input Load Current	$V_{iN} = V_{iL}, V_{iH}$		10	μΑ	
VIL	Input Low Level	(All Inputs)	-0.6	0.8	٧	
VIH	Input High Level		2.0	V _{CC+} 1	٧	
VOL	Output Low Volt.	I _{OL} ≈ 16mA		.4	V	
Vон	Output High Volt.	I _{OH} = -4.0mA	2.4		٧	
ICC2	V _{CC} Supply Curren (Program and Veri			80	mA	
IPP2	V _{PP} Supply Current	CE = V _{IL}		30	mA	
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧	

A.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $V_{PP}=12.5\pm0.5V$

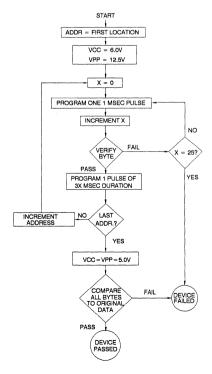
Sym-		Test Conditions*	Li	Limits		
bol	Parameter	(see Note 1)	Min	Мах	Units	
tas	Address Setup Tin	ne	2		μS	
tces	CE Setup Time		2		μS	
toes	OE Setup Time		2		μS	
tos	Data Setup Time		2		μS	
tan	Address Hold Time	е	0		μS	
toH	Data Hold Time		2		μS	
tDFP	OE High to Out- put Float Delay	(Note 2)	0	130	ns	
tvps	V _{PP} Setup Time		2		μS	
tvcs	V _{CC} Setup Time		2		μS	
tpw	PGM Initial Pro- gram Pulse Width	(Note 3)	0.95	1.05	ms	
topw	PGM Overprogram Pulse Width	(Note 4)	2.85	78.75	ms	
toe	Data Valid from O			70	ns	

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	5ns
Input Pulse Levels	0.0V to 3.0V
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V

Notes:

- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Initial Program Pulse width tolerance is 1msec±5%.
- The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the iteration counter value X.


Atmel's 27HC64/L Integrated Product Identification Code:

Pins							Hex			
Codes	AO	07	O6	O5	04	ОЗ	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	1	1F
Device Type	1	1	0	0	1	0	0	0	1	91

Fast Programming Algorithm

Two \overline{PGM} pulse widths are used to program; initial and overprogram. Ai are set to address the desired byte. V_{CC} is raised to 6.0V. The first \overline{PGM} pulse is 1ms. The programmed byte is then verified. If the byte programmed successfully, then an overprogram \overline{PGM} pulse is applied for 3ms. If the byte fails to program after the first 1ms pulse, then up to 25 successive 1ms pulses are applied with a verification after each pulse. When the byte passes verification, the overprogram pulse width is 3X (times) the number of 1ms pulses required earlier (75ms max).

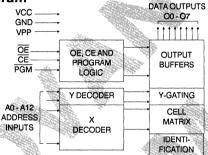
If the part fails to verify after 25 1ms pulses have been applied, it is considered as failed. After the first byte is programmed, the Ai are set to the next address repeating the algorithm until all required addresses are programmed. Then $V_{\rm CC}$ is lowered to 5.0V. All bytes subsequently are read to compare with the original data to determine if the device passes or fails.

tacc	lec	; (mA)	Out to Out	Destant	On and the Daniel
(ns)	Active	Standby	Ordering Code	Package	Operation Range
45	75	35	AT27HC64-45DC AT27HC64-45LC	28DW6 32LW	Commercial (0°C to 70°C)
45	90	40	AT27HC64-45DI AT27HC64-45LI		
55	75	35	AT27HC64-55DC AT27HC64-55LC AT27HC64-55PC	AT27HC64-55LC 32LW (0	
55	90	40	AT27HC64-55DI AT27HC64-55LI AT27HC64-55PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64-55DM AT27HC64-55LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64-55DM/883 AT27HC64-55LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
70	75	35	AT27HC64-70DC AT27HC64-70LC AT27HC64-70PC	28DW6 32LW 28P6	Commercial (0°C to 70°C)
70	90	40	AT27HC64-70DI AT27HC64-70LI AT27HC64-70PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64-70DM AT27HC64-70LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64-70DM/883 AT27HC64-70LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	75	35	AT27HC64-90DC AT27HC64-90LC AT27HC64-90PC	28DW6 32LW 28P6	Commercial (0°C to 70°C)
90	90	40	AT27HC64-90DI AT27HC64-90LI AT27HC64-90PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64-90DM AT27HC64-90LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64-90DM/883 AT27HC64-90LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

Package Type						
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)					
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)					

tacc	loc	(mA)	Oude day Oede	Baskers	O
(ns)	Active	Standby	Ordering Code	Package	Operation Range
55	75	0.1	AT27HC64L-55DC AT27HC64L-55LC	28DW6 32LW	Commercial (0°C to 70°C)
55	90	0.2	AT27HC64L-55DI AT27HC64L-55LI	28DW6 32LW	Industrial (-40°C to 85°C)
70	75	0.1	AT27HC64L-70DC AT27HC64L-70LC AT27HC64L-70PC	28DW6 32LW 28P6	Commercial (0°C to 70°C)
70	90	0.2	AT27HC64L-70DI AT27HC64L-70LI AT27HC64L-70PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64L-70DM AT27HC64L-70LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64L-70DM/883 AT27HC64L-70LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	75	0.1	AT27HC64L-90DC AT27HC64L-90LC AT27HC64L-90PC	28DW6 32LW 28P6	Commercial (0°C to 70°C)
90	90	0.2	AT27HC64L-90DI AT27HC64L-90LI AT27HC64L-90PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64L-90DM AT27HC64L-90LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64L-90DM/883 AT27HC64L-90LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	90	0.2	5962-85102 04 YX 5962-85102 04 ZX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

Package Type			
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)		
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)		
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)		

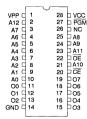


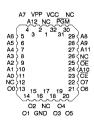
4-10

Features

- Bipolar Speed in JEDEC Standard EPROM Pinout Read Access Time - 45ns
 600 mil DIP, and LCC packages
- Low Power CMOS Operation 100 μA max. Standby 35 mA max. Active at 10 MHz
- High Output Drive Capability
- High Reliability Latch-Up Resistant CMOS Technology
- Rapid Programming 100μ s/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Industrial and Commercial Temperature Ranges
- Fully Compatible with AT27HC64/L

Block Diagram


Description


The AT27HC64R/RL chip family is a high-speed, low-power 65,536 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM), organized as 8K x 8 bits. The AT27HC64R is suited for very high-speed applications, while the AT27HC64RL features low Vcc Standby Current. Both require only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 45ns on the AT27HC64R, making this part ideal for high-performance systems. Power consumption is typically only 25mA in Active Mode on both parts, and less than 10µA in Standby on the AT27HC64RL.

Atmel's 1.2 micron, high-speed CMOS technology provides optimum speed, lower power and high noise immunity. The high-speed CMOS process is an extension of Atmel's high quality and highly manufacturable floating poly EPROM technology.

Pin Configurations

Pin Name Function			
A0-A12	Addresses		
CE	Chip Enable		
ŌĒ	Output Enable		
PGM	Program Strobe		
NC	No Connect		
O0-O7	Outputs		

64K (8K x 8)
High Speed
UV
Erasable
CMOS
EPROM

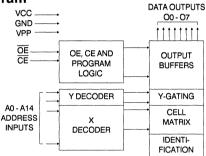
Advance Information

tacc	loc	(mA)	Oudesteen Oede	Darling	Occuption Boson
(ns)	Active	Standby	Ordering Code	Package	Operation Range
45	35	20	AT27HC64R-45DC AT27HC64R-45LC	28DW6 32LW	Commercial (0°C to 70°C)
45	45	30	AT27HC64R-45DI AT27HC64R-45LI	28DW6 32LW	Industrial (-40°C to 85°C)
55	35	20	AT27HC64R-55DC AT27HC64R-55LC AT27HC64R-55PC	28DW6 32LW 28P6	Commercial (0°C to 70°C)
55	45	30	AT27HC64R-55DI AT27HC64R-55LI AT27HC64R-55PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64R-55DM AT27HC64R-55LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64R-55DM/883 AT27HC64R-55LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
70	35	20	AT27HC64R-70DC AT27HC64R-70LC AT27HC64R-70PC	28DW6 32LW 28P6	Commercial (0°C to 70°C)
70	45	30	AT27HC64R-70DI AT27HC64R-70LI AT27HC64R-70PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64R-70DM AT27HC64R-70LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64R-70DM/883 AT27HC64R-70LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	35	20	AT27HC64R-90DC AT27HC64R-90LC AT27HC64R-90PC	28DW6 32LW 28P6	Commercial (0°C to 70°C)
90	45	30	AT27HC64R-90DI AT27HC64R-90LI AT27HC64R-90PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64R-90DM AT27HC64R-90LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64R-90DM/883 AT27HC64R-90LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

Package Type			
28DW6	24 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)		
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)		
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)		

tacc	Icc (mA)		Orderine Code	Deales	On anation Bases
(ns)	Active	Standby	Ordering Code	Package	Operation Range
55	35	0.1	AT27HC64RL-55DC AT27HC64RL-55LC	28DW6 32LW	Commercial (0°C to 70°C)
55	45	0.2	AT27HC64RL-55DI AT27HC64RL-55LI	28DW6 32LW	Industrial (-40°C to 85°C)
70	35	0.1	AT27HC64RL-70DC AT27HC64RL-70LC AT27HC64RL-70PC	28DW6 32LW 28P6	Commercial (0°C to 70°C)
70	45	45 0.2	AT27HC64RL-70DI AT27HC64RL-70LI AT27HC64RL-70PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64RL-70DM AT27HC64RL-70LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64RL-70DM/883 AT27HC64RL-70LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	35	0.1	AT27HC64RL-90DC AT27HC64RL-90LC AT27HC64RL-90PC	28DW6 32LW 28P6	Commercial (0°C to 70°C)
90	45	0.2	AT27HC64RL-90DI AT27HC64RL-90LI AT27HC64RL-90PI	28DW6 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC64RL-90DM AT27HC64RL-90LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27HC64RL-90DM/883 AT27HC64RL-90LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

Package Type		
28DW6	24 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)	
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)	
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)	



4-14

Features

- Bipolar Speed in JEDEC Standard EPROM Pinout Read Access Time - 55ns
 28-Lead 600 mil CERDIP and OTP Plastic DIP
 32-Pad LCC
 32-Lead JLCC and OTP PLCC
- Low Power CMOS Operation 100 μA max. Standby 75 mA max. Active at 10 MHz
- . High Output Drive Capability
- High Reliablity Latch-Up Resistant CMOS Technology
- Fast Programming 4ms/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Commercial and Industrial Temperature Ranges

Block Diagram

Description

The AT27HC256/256L chip family is a high speed, low-power 262,144 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 32K x 8. The AT27HC256 is suited for very high speed applications, while the AT27HC256L features low Vcc Standby Current. Both require only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 55ns on the AT27HC256, making this part compatible with high performance systems. Power consumption is typically only 50mA in Active Mode on both parts and less than 10 μ A in Standby on the AT27HC256L.

Atmel's 1.5-micron, high speed CMOS technology provides optimum speed, low-power and high noise immunity. The high speed CMOS process is an extension of Atmel's high quality and highly manufacturable floating poly EPROM technology.

Pin Configurations

Pin Name	Function
A0-A14	Addresses
CE	Chip Enable
ŌĒ	Output Enable
NC	No Connect
00-07	Outputs

A7 VPP VCC A13
A12 NC A14
4 2 32 30
A6 5 3 1 31 29 A8
A5 6 28 (A9
A4 7 27 (A11
A3 8 26 (NC
A2 9 25 OF
A1 10 24 A10
NC 12 22 (O7
O0\13 _{15 17 19} 21 \ O6
14 16 18 20
\\
O2 NC O4
O1 GND O3 O5
01 GND 00 00

Note: PLCC package pins 1 and 17 are DON'T CONNECT.

256K (32K x 8) High Speed UV Erasable CMOS EPROM

Description (Continued)

The AT27HC256/256L come in a choice of industry standard JEDEC-approved packages including: 28-pin DIP ceramic or one time programmable (OTP) plastic, 32-pad ceramic leadless chip carrier (LCC), and 32-lead ceramic (JLCC), or OTP plastic (PLCC) J-leaded chip carrier. The device features two-line control (CE, OE) to give designers the flexibility to prevent bus contention.

With a storage capacity of 32K bytes, Atmel's 27HC256/256L allow firmware to be stored reliably and to be accessed at very high speeds. The AT27HC256/256L have exceptional output drive capability - source 4mA and sink 16mA per output.

The AT27HC256/256L have additional features to ensure high quality and efficient production use. The fast programming algorithm reduces the time required to program the chip and guarantees reliable programming. The Integrated Product Identification Code electronically identifies the device and manufacturing origin. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27HC256/256L is erased (all outputs read as V_{OH}) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W • sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

1	
	Temperature Under Bias55°C to +125°C
	Storage Temperature65°C to +150°C
	Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
	Voltage on A9 with Respect to Ground2.0V to $+14.0V^{(1)}$
	VPP Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾
	Integrated UV Erase Dose7258 w _• sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

MODE \ PIN	CE	ŌĒ	Ai	V _{PP}	Vcc	Outputs
Read	VIL	VIL	Ai	Vcc	Vcc	D _{OUT}
Output Disable	V _{IL}	ViH	X ⁽¹⁾	Vcc	Vcc	High Z
Standby	ViH	X	X	Vcc	Vcc	High Z
Fast Program ⁽²⁾	VIL	VIH	Ai	VPP	Vcc	DiN
PGM Verify ⁽²⁾	Х	VIL	Ai	Vpp	Vcc	Dout
Optional PGM Verify ⁽²⁾	VIL	VIL	Ai	Vcc	Vcc	Dout
PGM Inhibit ⁽²⁾	ViH	ViH	X	Vpp	Vcc	High Z
Product Identification ⁽⁴⁾	VIL	VIL	A9 = V _H ⁽³⁾ A0 = V _{IH} or V _{IL} A1-A14 = V _{IL}	Vcc	Vcc	Identification Code

Notes: 1. X can be VIL or VIH.

- 2. Refer to Programming characteristics.
- 3. $V_H = 12.0 \pm 0.5 V$.

4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

D.C. and A.C. Operating Conditions for Read Operation

		AT27HC256	AT	27HC256 / AT27HC2	56L
		-55	-70	-90	-12
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.		-55°C - 125°C ⁽¹⁾	-55°C - 125°C	-55°C - 125°C
Vcc Power Supply	,	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

Notes: 1. AT27HC256 only.

D.C. and Operating Characteristics for Read Operation

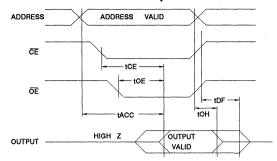
Symbol	Parameter	Condition		Min	Max	Units
ILI	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
IPP (2)	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = 3.8 \text{ to } V_{CC} + 0.3V$			20	μΑ
ISB1/ISB2	V _{CC} ⁽¹⁾ Standby Current	I _{SB1} (CMOS) CE = V _{CC} -0.3 to V _{CC} + 1.0V	AT27HC256L Com. Ind.,Mil.		0.1/2 0.2/3	mA mA
1981/1982	Vice - Standby Guitelli	I _{SB2} (TTL) CE = 2.0 to V _{CC} + 1.0V	AT27HC256 Com. Ind.,Mil.		40/40 45/45	mA mA
Icc	V _{CC} Active Current	$\frac{f = 10MHz, I_{OUT} = 0mA,}{\overline{CE} = V_{IL}}$	Com. Ind.,Mil.		75 90	mA mA
VIL	Input Low Voltage			-0.6	8.0	٧
ViH	Input High Voltage			2.0	Vcc+1	٧
Vol	Output Low Voltage	I _{OL} = 16mA			.45	٧
		$I_{OH} = -100 \mu A$		Vcc-0.3		V
Vон	Output High Voltage	$I_{OH} = -2.5 \text{mA}$		3.5		V
		I _{OH} = -4.0mA		2.4		٧
VPP	V _{PP} Read Voltage	$V_{CC} = 5 \pm 0.5V$		3.8	Vcc+0.3	٧

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

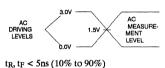
A.C. Characteristics for Read Operation

				AT27HC25				AT27HC256 / AT27HC256L				
					55	-7	70	-	90	-1	12	
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Max	Min	Max	Units
tacc (4)	Address to	CE = OE	Com.,Ind.		55		70		90		120	ns
IACC (Output Delay	$=V_{IL}$	Mil.				70 ⁽¹⁾		90		120	ns
tce (3)	CE to Output Delay	OE = VIL			55		70		90		120	ns
toE (3,4)	OE to Output Delay	CE = VIL			25		30		30		35	ns
t _{DF} (2,5)	OE or CE High to Output Float	CE = V _{IL}			25		30		30		35	ns
tон	Output Hold from Address, CE or OE, whichever occurred first	CE = OE = V _{IL}			0		0		0		0	ns

Notes: 1. AT27HC256 only.


2, 3, 4, 5. - see AC Waveforms for Read Operation.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

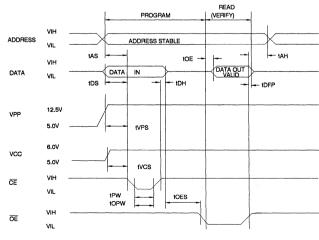

A.C. Waveforms for Read Operation (1)

Notes:

- Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.
 - $C_L = 30 pF$, add 10 ns for $C_L = 100 pF$.
- tpF is specified from OE or CE, whichever occurs first. tpF is measured at V_{OH}-0.5V or V_{OL}+0.5V with C_L=5pF.
- OE may be delayed up to t_{CE}-t_{OE} after the falling edge of CE without impact on t_{CE}.
- OE may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- This parameter is only sampled and is not 100% tested.

Input Test Waveforms and Measurement Levels

Output Test Load


Note: C_L =30pF including jig capacitance.

Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions	
CIN	4	6	pF	$V_{IN} = 0V$	
Соит	8	12	pF	$V_{OUT} = 0V$	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- 1. The Input Timing Reference is 0.0V for V_{IL} and 3.0V for V_{IH} .
- toE and tDFP are characteristics of the device but must be accommodated by the programmer.
- When programming the AT27HC256/256L a 0.1μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

AT27HC256/L

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $V_{PP}=12.5\pm0.5V$

Sym-		Test	Li		
bol	Parameter	Conditions	Min	Max U	Jnits
1LI	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	input Low Level	(All Inputs)	-0.6	0.8	٧
VIH	Input High Level		2.0	V _{CC} + 1	٧
Vol	Output Low Volt.	I _{OL} = 16mA		.45	٧
Vон	Output High Volt.	I _{OH} = -4.0mA	2.4		٧
ICC2	Vcc Supply Curren (Program and Veri			80	mA
I _{PP2}	V _{PP} Supply Current	CE = V _{IL}		30	mΑ
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $V_{PP}=12.5\pm0.5V$

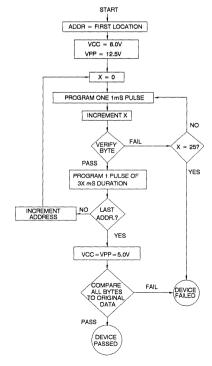
Sym- bol	Parameter	Test Conditions* (see Note 1)	Li Min	Limits Min Max	
tas	Address Setup Time		2		μS
toes	OE Setup Time		2		μS
tos	Data Setup Time		2		μS
tah	Address Hold Time		0		μS
tDH	Data Hold Time		2		μS
tofp	OE High to Out- put Float Delay	(Note 2)	0	130	ns
tvps	V _{PP} Setup Time		2		μS
tvcs	Vcc Setup Time		2		μS
tpw	CE Initial Pro- gram Pulse Width	(Note 3)	0.95	1.05	ms
topw	CE Overprogram Pulse Width	(Note 4)	2.85	78.75	ms
toE	Data Valid from OE	E		150	ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	5ns
Input Pulse Levels	. 0.0V to 3.0V
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V

Notes:

- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Initial Program Pulse width tolerance is 1msec±5%.
- 4. The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the iteration counter value X.


Atmel's 27HC256/L Integrated Product Identification Code:

		Pins							Hex	
Codes	AO	07	O6	O 5	04	Оз	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	1	1F
Device Type	1	1	0	0	1	0	1	0	0	94

Fast Programming Algorithm

Two $\overline{\text{CE}}$ pulse widths are used to program; initial and overprogram. Ai are set to address the desired byte. V_{CC} is raised to 6.0V. The first $\overline{\text{CE}}$ pulse is 1ms. The programmed byte is then verified. If the byte programmed successfully, then an overprogram $\overline{\text{CE}}$ pulse is applied for 3ms. If the byte fails to program after the first 1ms pulse, then up to 25 successive 1ms pulses are applied with a verification after each pulse. When the byte passes verification, the overprogram pulse width is 3X (times) the number of 1ms pulses required earlier (75ms max).

If the part fails to verify after 25 1ms pulses have been applied, it is considered as failed. After the first byte is programmed, the Ai are set to the next address repeating the algorithm until all required addresses are programmed. Then $V_{\rm CC}$ is lowered to 5.0V. All bytes subsequently are read to compare with the original data to determine if the device passes or fails.

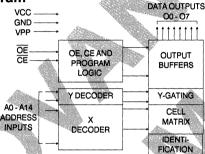
tacc	loc	(mA)	Out of a Code	Davis	On a walk on Daniel		
(ns)	Active	Standby	Ordering Code	Package	Operation Range		
55	75	40	AT27HC256-55DC AT27HC256-55KC AT27HC256-55LC	28DW6 32KW 32LW	Commercial (0°C to 70°C)		
55	90	45	AT27HC256-55DI AT27HC256-55KI AT27HC256-55LI	28DW6 32KW 32LW	Industrial (-40°C to 85°C)		
70	75	40	AT27HC256-70DC AT27HC256-70JC AT27HC256-70KC AT27HC256-70LC AT27HC256-70PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)		
70	90	45	AT27HC256-70DI AT27HC256-70JI AT27HC256-70KI AT27HC256-70LI AT27HC256-70PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)		
					AT27HC256-70DM AT27HC256-70KM AT27HC256-70LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27HC256-70DM/883 AT27HC256-70KM/883 AT27HC256-70LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
90	75	40	AT27HC256-90DC AT27HC256-90JC AT27HC256-90KC AT27HC256-90LC AT27HC256-90PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)		
90	90	45	AT27HC256-90DI AT27HC256-90JI AT27HC256-90KI AT27HC256-90LI AT27HC256-90PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)		
			AT27HC256-90DM AT27HC256-90KM AT27HC256-90LM	28DW6 32KW 32LW	Military (-55°C to 125°C)		
			AT27HC256-90DM/883 AT27HC256-90KM/883 AT27HC256-90LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
120	75	40	AT27HC256-12DC AT27HC256-12JC AT27HC256-12KC AT27HC256-12LC AT27HC256-12PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)		

tacc (ns)	Icc (mA)		Ordering Code	Package	Operation Banga
	Active	Standby	Ordering Code	rackage	Operation Range
120	90	45	AT27HC256-12DI AT27HC256-12JI AT27HC256-12KI AT27HC256-12LI AT27HC256-12PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC256-12DM AT27HC256-12KM AT27HC256-12LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27HC256-12DM/883 AT27HC256-12KM/883 AT27HC256-12LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
70	90	45	5962-86063 08 XX 5962-86063 08 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type				
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)				
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)				
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)				
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)				
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)				

tacc	loc	; (mA)							
(ns)	Active	Standby	Ordering Code	Package	Operation Range				
70	75	0.1	AT27HC256L-70DC AT27HC256L-70KC AT27HC256L-70LC	28DW6 32KW 32LW	Commercial (0°C to 70°C)				
70	90	0.2	AT27HC256L-70DI AT27HC256L-70KI AT27HC256L-70LI	28DW6 32KW 32LW	Industrial (-40°C to 85°C)				
90	75	0.1	AT27HC256L-90DC AT27HC256L-90JC AT27HC256L-90KC AT27HC256L-90LC AT27HC256L-90PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)				
90	90	0.2	AT27HC256L-90DI AT27HC256L-90JI AT27HC256L-90KI AT27HC256L-90LI AT27HC256L-90PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)				
						AT27HC256L-90DM AT27HC256L-90KM AT27HC256L-90LM	28DW6 32KW 32LW	Military (-55°C to 125°C)	
			AT27HC256L-90DM/883 AT27HC256L-90KM/883 AT27HC256L-90LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)				
120	75	0.1	AT27HC256L-12DC AT27HC256L-12JC AT27HC256L-12KC AT27HC256L-12LC AT27HC256L-12PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)				
120	90	90	90	90	90	0.2	AT27HC256L-12DI AT27HC256L-12JI AT27HC256L-12KI AT27HC256L-12LI AT27HC256L-12PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC256L-12DM AT27HC256L-12KM AT27HC256L-12LM	28DW6 32KW 32LW	Military (-55°C to 125°C)				
			AT27HC256L-12DM/883 AT27HC256L-12KM/883 AT27HC256L-12LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)				
90	90	0.2	5962-86063 07 XX 5962-86063 07 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)				
120	90	0.2	5962-86063 06 XX 5962-86063 06 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)				

Package Type					
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)				
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)				
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)				
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)				
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)				



4-24

Features

- Bipolar Speed in JEDEC Standard EPROM Pinout Read Access Time - 55ns
 28-Lead 600 mil CERDIP and OTP Plastic DIP
 32-Pad LCC, JLCC and OTP PLCC
- Low Power CMOS Operation 100 μA max. Standby 35 mA max. Active at 10 MHz
- High Output Drive Capability
- High Reliablity Latch-Up Resistant CMOS Technology
- Rapid Programming 100μ s/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Industrial and Commercial Temperature Ranges
- Fully Compatible with AT27HC256/L

Block Diagram

Description

The AT27HC256R/RL chip family is a high-speed, low-power 262,144 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized as 32K x 8 bits. The AT27HC256R is suited for very high-speed applications, while the AT27HC256RL features low Vcc Standby Current. Both require only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 55ns on the AT27HC256, making this part ideal for high-performance systems. Power consumption is typically only 25mA in Active Mode on both parts, and less than 10 μ A in Standby Mode on the AT27HC256RL.

Atmel's 1.2-micron, high-speed CMOS technology provides optimum speed, lower power and high noise immunity. The high-speed CMOS process is an extension of Atmel's high quality and highly manufacturable floating poly EPROM technology.

Pin Configurations

Pin Name	Function
A0-A14	Addresses
CE	Chip Enable
ŌĒ	Output Enable
NC	No Connect
00-07	Outputs

A7 VPP VCC A13 A12 NC A14 A6 5 3 1 32 330 A6 5 3 1 31 29 A6	3
A5 6 28 (A9	•
A4 > 7 27 < A1	1
A3 > 8 26 (NO)
A2 9 25 (OE	Ξ
A1 210 24 (A1	0
A0 11 23 (CE	ſ
NC 12 22 (O	7
00 13 15 17 19 21 (0	3
14 16 18 20	
O2 NC O4	
O1 GND O3 O5	

Note: PLCC package pins 1 and

17 are DON'T CONNECT.

256K (32K x 8) High Speed UV Erasable CMOS

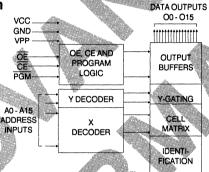
Advance Information

EPROM

tacc	Ico	(mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
55	35	20	AT27HC256R-55DC AT27HC256R-55KC AT27HC256R-55LC	28DW6 32KW 32LW	Commercial (0°C to 70°C)
55	45	30	AT27HC256R-55DI AT27HC256R-55KI AT27HC256R-55LI	28DW6 32KW 32LW	Industrial (-40°C to 85°C)
70	. 35	20	AT27HC256R-70DC AT27HC256R-70JC AT27HC256R-70KC AT27HC256R-70LC AT27HC256R-70PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)
70	45	30	AT27HC256R-70DI AT27HC256R-70JI AT27HC256R-70KI AT27HC256R-70LI AT27HC256R-70PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC256R-70DM AT27HC256R-70KM AT27HC256R-70LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27HC256R-70DM/883 AT27HC256R-70KM/883 AT27HC256R-70LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	35	20	AT27HC256R-90DC AT27HC256R-90JC AT27HC256R-90KC AT27HC256R-90LC AT27HC256R-90PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)
90 ,	45	30	AT27HC256R-90DI AT27HC256R-90JI AT27HC256R-90KI AT27HC256R-90LI AT27HC256R-90PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC256R-90DM AT27HC256R-90KM AT27HC256R-90LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27HC256R-90DM/883 AT27HC256R-90KM/883 AT27HC256R-90LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
120	35	20	AT27HC256R-12DC AT27HC256R-12JC AT27HC256R-12KC AT27HC256R-12LC AT27HC256R-12PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)

tacc	lcc	(mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby			
120	45	30	AT27HC256R-12DI AT27HC256R-12JI AT27HC256R-12KI AT27HC256R-12LI AT27HC256R-12PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC256R-12DM AT27HC256R-12KM AT27HC256R-12LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27HC256R-12DM/883 AT27HC256R-12KM/883 AT27HC256R-12LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type					
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)					
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)					
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)					
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)					


tacc	Ico	(mA)			0 .: 0
(ns)	Active	Standby	Ordering Code	Package	Operation Range
70	35	0.1	AT27HC256RL-70DC AT27HC256RL-70KC AT27HC256RL-70LC	28DW6 32KW 32LW	Commercial (0°C to 70°C)
70	45	0.2	AT27HC256RL-70DI AT27HC256RL-70KI AT27HC256RL-70LI	28DW6 32KW 32LW	Industrial (-40°C to 85°C)
90	35	0.1	AT27HC256RL-90DC AT27HC256RL-90JC AT27HC256RL-90KC AT27HC256RL-90LC AT27HC256RL-90PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)
90	45	0.2	AT27HC256RL-90DI AT27HC256RL-90JI AT27HC256RL-90KI AT27HC256RL-90LI AT27HC256RL-90PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC256RL-90DM AT27HC256RL-90KM AT27HC256RL-90LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27HC256RL-90DM/883 AT27HC256RL-90KM/883 AT27HC256RL-90LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
120	35	0.1	AT27HC256RL-12DC AT27HC256RL-12JC AT27HC256RL-12KC AT27HC256RL-12LC AT27HC256RL-12PC	28DW6 32J 32KW 32LW 28P6	Commercial (0°C to 70°C)
120	45	0.2	AT27HC256RL-12DI AT27HC256RL-12JI AT27HC256RL-12KI AT27HC256RL-12LI AT27HC256RL-12PI	28DW6 32J 32KW 32LW 28P6	Industrial (-40°C to 85°C)
			AT27HC256RL-12DM AT27HC256RL-12KM AT27HC256RL-12LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27HC256RL-12DM/883 AT27HC256RL-12KM/883 AT27HC256RL-12LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type					
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)					
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)					
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)					
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)					

Features

- Very Fast Read Access Time 55ns
- Low Power CMOS Operation 500 μA max. Standby
 - 60 mA max. Active at 10 MHz
- Wide Selection of JEDEC Standard Packages Including OTP 40-Lead 600 mil Cerdip and OTP Plastic 44-Pad LCC and OTP PLCC
- High Output Drive Capability
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Rapid Programming 100μs/word (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Industrial and Commercial Temperature Ranges

Block Diagram

The AT27HC1024 chip is a high-speed, low-power 1,048,576 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized as 64K x 16 bits. It requires only one 5V power supply in normal read mode operation. Any word can be accessed in less than 55ns, eliminating the need for speed reducing WAIT states. The by-16 organization makes these parts ideal for high-performance 16 and 32 bit microprocessor and digital signal processor systems.

In read mode, the AT27HC1024 typically consumes 40mA while in standby mode supply current is typically less than 100µ A.

Pin Configurations

Pin Name	Function
A0-A15	Addresses
O0-O15	Outputs
CE	Chip Enable
ŌĒ	Output Enable
PGM	Program Strobe
NC	No Connect

Note: Both GND pins must be connected.

VPP (1 1	•	40 D VCC
ČĒ (2		39 p PGM
015	3		38 - NC
O15 0	4		37 D A15
013	5		36 a A14
012	6		35 A13
011	7		34 A12
O10 (8		33 A11
O9 (9		32 A10
08	10		31 A9
GND	11		30 GND
07	12		29 b A8
06	13		28 5 A7
05 (14		27 5 A6
04	15		26 D A5
03	16		25 A4
00 0	17		24 5 A3
O5 0 O4 0 O3 0 O2 0	18		23 D A2
VPP CE CO CO CO CO CO CO CO CO CO CO CO CO CO	19		40 b VCC 39 b PGM 38 b NC 37 b A15 36 b A14 35 b A13 34 b A12 33 b A11 32 b A10 31 b A9 30 b GND 29 b A8 28 b A7 27 b A6 26 b A5 25 b A4 24 b A3 23 b A2 22 b A1 21 b A0
₩ i	20		21 h A0
JE I	20		ZIP AU

	013	015	5 VP	PV	CC I	VC	A14	
		014	CE	NC	PGN	ΛA.	15	
012	(₇ 6	~~ 5	3	~~	43	12 41	40 39	A13
011	Şέ	•	•	•	40	٠,	38	A12
010	}9						37	A11
09	10						36	A10
80)11 						35	A9
GND	112						34	GND
NC O7	13						33 6	NC A8
06	15						31	A7
05	16						30 2	A6
04	(17	19	21	22	25	27	29 2	A5
-	Ü		21 0~3		43	27 6	28	
		02	00	NC	A1	АЗ		
	0	3 0	1 (DE A	40 A	12	A4	

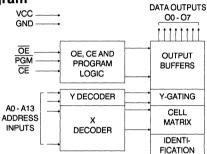
Note: PLCC Package Pins 1 and 23 are DON'T CONNECT.

1 MEGABIT (64K x 16) High Speed UV Erasable CMOS EPROM

Advance Information

tacc	loo	(mA)	0.4.10.4.	Destress	0	
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
55	60	0.5	AT27HC1024-55DC AT27HC1024-55LC	40DW6 44LW	Commercial (0°C to 70°C)	
70	60	0.5	AT27HC1024-70DC AT27HC1024-70LC AT27HC1024-70PC AT27HC1024-70JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)	
70	75	1.0	AT27HC1024-70DI AT27HC1024-70LI AT27HC1024-70PI AT27HC1024-70JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)	
			AT27HC1024-70DM AT27HC1024-70LM	40DW6 44LW	Military (-55°C to 125°C)	
			AT27HC1024-70DM/883 AT27HC1024-70LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
90	60	0.5	AT27HC1024-90DC AT27HC1024-90LC AT27HC1024-90PC AT27HC1024-90JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)	
90	75	75	1.0	AT27HC1024-90DI AT27HC1024-90LI AT27HC1024-90PI AT27HC1024-90JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)
			AT27HC1024-90DM AT27HC1024-90LM	40DW6 44LW	Military (-55°C to 125°C)	
			AT27HC1024-90DM/883 AT27HC1024-90LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
120	60	0.5	AT27HC1024-12DC AT27HC1024-12LC AT27HC1024-12PC AT27HC1024-12JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)	
120	75	1.0	AT27HC1024-12DI AT27HC1024-12LI AT27HC1024-12PI AT27HC1024-12JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)	
			AT27HC1024-12DM AT27HC1024-12LM	40DW6 44LW	Military (-55°C to 125°C)	
			AT27HC1024-12DM/883 AT27HC1024-12LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	

	Package Type							
40DW6	40DW6 40 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)							
44J	44J 44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)							
44LW	44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)							
40P6	40 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)							



4-32

Features

- Low Power CMOS Operation 100 μA max. Standby 30 mA max. Active at 5 MHz
- Fast Read Access Time 120ns
- Wide Selection of JEDEC Standard Packages Including OTP 28-Lead 600 mil Cerdip and OTP Plastic DIP 32-Pad OTP PLCC
- 5V± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection
- Fast Programming 4ms/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Commercial and Industrial Temperature Ranges

Block Diagram

Description

The AT27C128 chip is a low-power, high performance 131,072 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 16K x 8. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 120ns, eliminating the need for speed reducing WAIT states on high performance microprocessor systems.

Atmel's 1.5 micron CMOS technology provides optimum speed, low power and high noise immunity. Power consumption is typically only 10 mA in Active Mode and less than $10 \mu \text{A}$ in Standby. In addition to the speed, power and reliability advantages of the CMOS process, the CMOS technology is an extension of Atmel's high quality and highly manufacturable floating poly EPROM technology.

Pin Configurations

Pin Name	Function
A0-A13	Addresses
00-07	Outputs
CE	Chip Enable
ŌĒ	Output Enable
PGM	Program Strobe
NC	No Connect

	A6 U 4 20 D A6 A5 6 A7 A4 U 6 23 D A11 A3 8 A7 A4 U 6 23 D A11 A3 8 A7 A4 U 8 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7 A7	29 A8 28 A9 27 A1 26 NC 25 OE 24 A10 23 CE 22 O7
--	--	---

Note: PLCC package Pins 1 and 17 are DON'T CONNECT

128K (16K x 8) UV Erasable CMOS

EPROM

Description (Continued)

The AT27C128 comes in a choice of industry standard JEDEC-approved packages including; 32-pin DIP in ceramic or one time programmable (OTP) plastic, and 32-pin OTP plastic J-leaded chip carrier (PLCC). All devices feature two line control ($\overline{\text{CE}}$, $\overline{\text{OE}}$) to give designers the flexibility to prevent bus contention.

With high density 16K byte storage capability, the AT27C128 allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27C128 has additional features to ensure high quality and efficient production use. The Fast Programming Algorithm reduces the time required to program the part and guarantees reliable programming. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27C128 is erased (all outputs read as V_{OH}) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

ı	
-	Temperature Under Bias40°C to +85°C
	Storage Temperature65°C to +125°C
	Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
	Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
	VPP Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾
	Integrated UV Erase Dose7258 w• sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

MODE \ PIN	CE	ŌĒ	PGM	Aì	Vpp	Vcc	Outputs
Read	VIL	VIL	VIH	Ai	X ⁽¹⁾	Vcc	Dout
Output Disable	VIL	VIH	ViH	Х	Х	Vcc	High Z
Standby	ViH	Х	Х	Х	X ⁽⁵⁾	Vcc	High Z
Fast Program ⁽²⁾	VIL	VIH	VIL	Ai	V _{PP}	Vcc	DiN
PGM Verify	VIL	VIL	ViH	Ai	V _{PP}	Vcc	Dout
PGM Inhibit	ViH	Х	Х	X	VPP	Vcc	High Z
Product Identification ⁽⁴⁾	VIL	ViL	Х	A9 = VH ⁽³⁾ A0 = VIH or VIL A1-A13 = VIL	Vcc	Vcc	Identification Code

Notes: 1. X can be VIL or VIH.

- 2. Refer to Programming Characteristics.
- 3. $V_H = 12.0 \pm 0.5V$.
- 4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H

and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code Byte.

Standby V_{CC} current (I_{SB}) is specified with V_{PP}=V_{CC}. V_{CC} > V_{PP} will cause a slight increase in I_{SB}.

D.C. and A.C. Operating Conditions for Read Operation

		AT27C128								
		-12	-15	-20	-25					
Operating Temperature	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C					
(Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C					
Vcc Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%					

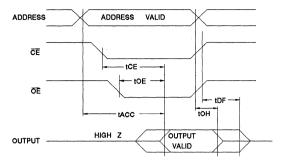
D.C. and Operating Characteristics for Read Operation

Symbol	Parameter	Condition		Min	Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
IPP1 (2)	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = 3.8 \text{ to } V_{CC} + 0.3V$			10	μΑ
		I _{SB1} (CMOS)	Com.		100	μΑ
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	$\overline{CE} = V_{CC} - 0.3$ to $V_{CC} + 1.0V$	Ind.,Mil.		200	μΑ
		I _{SB2} (TTL)	Com.		2	mA
		$\overline{CE} = 2.0 \text{ to V}_{CC} + 1.0V$	Ind.,Mil.		3	mA
1	Vcc Active Current	$f = 5MHz, I_{OUT} = 0mA,$	Com.		30	mA
100	ACC Acrive Criterir	$\overline{CE} = V_{IL}$			40	mA
VIL	Input Low Voltage			-0.6	0.8	٧
ViH	Input High Voltage			2.0	Vcc+1	٧
Vol	Output Low Voltage	I _{OL} = 2.1mA			.45	٧
		I _{OH} = -100μA		Vcc-0.3		٧
VoH	Output High Voltage	I _{OH} = -2.5mA		3.5		٧
VIL VIH VOL		I _{OH} = -400μ A		2.4		٧

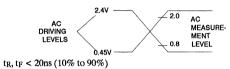
Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

A.C. Characteristics for Read Operation

			AT27C128									
					12		15	-	20	-2	25	
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC} ⁽⁴⁾ Address to Output Delay	Address to	CE = OE	Com.		120		150		200		250	ns
	=VIL	Ind.		120		150		200		250	ns	
tce (3)	CE to Output Delay	OE = VIL			120		150		200		250	ns
toe (3,4)	OE to Output Delay	CE = VIL			60		70		75		100	ns
t _{DF} ^(2,5)	OE or CE High to Output Float	CE = V _I L			50		50		55		60	ns
tон	Output Hold from Address, CE or OE, whichever occurred first	CE = OE = VIL			0		0		0		0	ns


Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

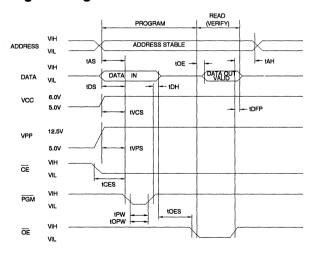

A.C. Waveforms for Read Operation (1)

Notes:

- Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- tDF is specified from OE or CE, whichever occurs first. Output float is defined as the point when data is no longer driven.
- OE may be delayed up to tCE-tOE after the falling edge of CE without impact on tCE.
- OE may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- This parameter is only sampled and is not 100% tested.

Input Test Waveforms and Measurement Levels

Output Test Load


Note: C_L=100pF including jig capacitance.

Pin Capacitance $(f = 1 MHz T = 25^{\circ}C)^{(1)}$

	Тур	Max	Units	Conditions	
CiN	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	Vout = 0V	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH}.
- 2. toe and topp are characteristics of the device but must be accommodated by the programmer.
- When programming the AT27C128 a 0.1μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

AT27C128

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $V_{PP}=12.5\pm0.5V$

Sym-		Test	Li	mits	
bol	Parameter	Conditions	Min	Max	Units
ILI	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	0.8	٧
ViH	Input High Level		2.0	V _{CC+} 1	٧
Vol	Output Low Volt.	I _{OL} = 2.1mA		.45	٧
Vон	Output High Volt.	I _{OH} = -400μA	2.4		٧
ICC2	V _{CC} Supply Curren (Program and Veri			30	mA
IPP2	V _{PP} Current	$\overline{CE} = V_{IL}$		25	mA
V _{ID}	A9 Product Iden- tification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $V_{PP}=12.5\pm0.5V$

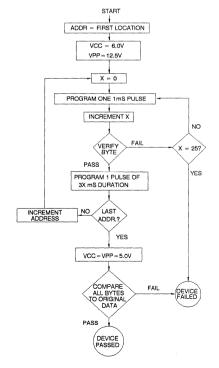
Sym-		Test Conditions*	Li	Limits		
bol	Parameter	(see Note 1)	Min	Max	Units	
tas	Address Setup Tir	ne	2		μS	
tces	CE Setup Time		2		μS	
toes	OE Setup Time		2		μS	
tos	Data Setup Time	2		μS		
tah	Address Hold Tim	е	0		μS	
tDH	Data Hold Time		2		μS	
tDFP	OE High to Output Float Delay	(Note 2)	0	130	ns	
tvps	V _{PP} Setup Time		2		μS	
tvcs	V _{CC} Setup Time		2		μS	
tpw	PGM Initial Pro- gram Pulse Width	(Note 3)	0.95	1.05	ms	
topw	PGM Overprogram Pulse Width	(Note 4)	2.85	78.75	ms	
toe	Data Valid from Ol	=		150	ns	

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20ns
Input Pulse Levels	0.45V to 2.4V
Input Timing Reference Level	. 0.8V to 2.0V
Output Timing Reference Level	. 0.8V to 2.0V

Notes:

- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Initial Program Pulse width tolerance is 1msec±5%.
- 4. The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the iteration counter value X.

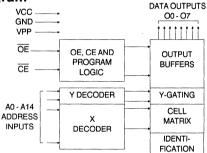

Atmel's 27C128 Integrated Product Identification Code:

		Pins Hex								
Codes	AO	07	06	O5	04	Оз	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	1	1F
Device Type	1	1	0	0	0	0	0	1	1	83

Fast Programming Algorithm

Two \overline{PGM} pulse widths are used to program; initial and overprogram. Ai are set to address the desired byte. V_{CC} is raised to 6.0V. The first \overline{PGM} pulse is 1ms. The programmed byte is then verified. If the byte programmed successfully, then an overprogram \overline{PGM} pulse is applied for 3ms. If the byte fails to program after the first 1ms pulse, then up to 25 successive 1ms pulses are applied with a verification after each pulse. When the byte passes verification, the overprogram pulse width is 3X (times) the number of 1ms pulses required earlier (75ms max).

If the part fails to verify after 25 1ms pulses have been applied, it is considered as failed. After the first byte is programmed, the Ai are set to the next address repeating the algorithm until all required addresses are programmed. Then $V_{\rm CC}$ is lowered to 5.0V. All bytes subsequently are read to compare with the original data to determine if the device passes or fails.


tacc	Icc	(mA)	Ordering Code	Pankaga	Operation Range
(ns)	Active	Standby	Ordering Code	Package	Operation Range
120	30	0.1	AT27C128-12DC	28DW6	Commercial (0°C to 70°C)
120	40	0.2	AT27C128-12DI	28DW6	Industrial (-40°C to 85°C)
150	30	0.1	AT27C128-15DC AT27C128-15PC AT27C128-15JC	28DW6 28P6 32J	Commercial (0°C to 70°C)
150	40	0.2	AT27C128-15DI AT27C128-15PI AT27C128-15JI	28DW6 28P6 32J	Industrial (-40°C to 85°C)
200	30	0.1	AT27C128-20DC AT27C128-20PC AT27C128-20JC	28DW6 28P6 32J	Commercial (0°C to 70°C)
200	40	0.2	AT27C128-20DI AT27C128-20PI AT27C128-20JI	28DW6 28P6 32J	Industrial (-40°C to 85°C)
250	30	0.1	AT27C128-25DC AT27C128-25PC AT27C128-25JC	28DW6 28P6 32J	Commercial (0°C to 70°C)
250	40	0.2	AT27C128-25DI AT27C128-25PI AT27C128-25JI	28DW6 28P6 32J	Industrial (-40°C to 85°C)

	Package Type				
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)				
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)				
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)				

Features

- Low Power CMOS Operation 100 μA max. Standby 30 mA max. Active at 5 MHz
- Fast Read Access Time 120ns
- Wide Selection of JEDEC Standard Packages Including OTP 28-Lead 600 mil Cerdip and OTP Plastic DIP or SOIC 32-Pad LCC and OTP PLCC
- 5V± 10% Supply
- High Reliability Latch-Up Resistant CMOS Technology 2000V ESD Protection
- Fast Programming 4ms/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Commercial and Industrial Temperature Ranges

Block Diagram

Description

The AT27C256 is a low-power, high performance 262,144 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 32K x 8. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 120ns, making this part compatible with high performance microprocessor systems by eliminating the need for speed-reducing WAIT states.

Atmel's 1.5-micron CMOS technology provides optimum speed, low-power and high noise immunity. Power consumption is typically only 10mA in Active Mode and less than $1\mu A$ in Standby. Atmel's CMOS EPROM process uses industry-proven floating poly EPROM technology to provide high quality and manufacturability.

The AT27C256 comes in a choice of industry standard JEDEC-approved packages including; 28-pin DIP in ceramic or one time programmable (OTP) plastic, 28-pin OTP plastic small outline (SOIC), and 32-pad ceramic leadless chip carrier (LCC) or OTP plastic J-leaded chip carrier (PLCC). The device features two-line control (CE, OE) to give designers the flexibility to prevent bus contention.

Pin Configurations

Pin Name	Function
A0-A14	Addresses
CE	Chip Enable
ŌĒ	Output Enable
NC	No Connect
00-07	Outputs

	Γ	\neg		7
VPP C	1		28	b vcc
A12 🗆	2		27	D A14
A7 🗀	3		26	□ A13
A6 🗆	4		25	□ A8
A5 🗆	5		24	□ A9
A4 🗆	6		23	D <u>A11</u>
A3 🗆	7		22	POE
A2 🗆	8		21	□A10
A1 🗆	9		20	CE
AO 🗆	10		19	P07
O0 🗆			18	□06
01 🗆	12		17	□ 05
O2 🗆	13		16	□04
GND [14		15	□ O3

A2 9 25 OE A1 10 24 (A1C A0)11 23 CE NC >12 22 O7 O0)13 15 17 19 21 O6	A6 5 A5 6 A4 7	3 1	A14 32 30 31 29 28	A8 A9 A1
A1 10 24 A10 A0 11 23 (CE NC 12 22 O7 O0 13 15 17 19 21 O6	A5 > 6 A4 > 7 A3 > 8	3 1	28 27 26	A9 A1 NC
00 13 15 17 19 21 06 14 16 18 20	A1 >10)	24 23	ALC
O1 GND O3 O5	00/10	02 NC	8 ¹⁹ 20 04	

Note: PLCC Package Pins 1 and 17 are DON'T CONNECT.

AMEL

256K (32K x 8) UV Erasable CMOS

EPROM

Description (Continued)

With a high density 32K byte storage capability, Atmel's 27C256 allows firmware to be stored reliably and to be quickly accessed by the system without the delays of mass storage media.

The AT27C256 has additional features to ensure high quality and efficient production use. The fast programming algorithm reduces the time required to program the chip and guarantees reliable programming. The Integrated Product Identification Code electronically identifies the device and manufacturing origin. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27C256 is erased (all outputs read as V_{OH}) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W • sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

Temperature Under Bias	-55°C to +125°C
Storage Temperature	-65°C to +150°C
Voltage on Any Pin with Respect to Ground	2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground	2.0V to + 14.0V ⁽¹⁾
VPP Supply Voltage with Respect to Ground	2.0V to +14.0V ⁽¹⁾
Integrated UV Erase Dose	7258 w∙sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note

1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is $V_{\rm CC}$ +0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

MODE \ PIN	CE	ŌĒ	Ai	Vpp	Vcc	Outputs
Read	VIL	VIL	Ai	Vcc	Vcc	Dout
Output Disable	VIL	ViH	X ⁽¹⁾	Vcc	Vcc	High Z
Standby	ViH	Х	X	Vcc	Vcc	High Z
Fast Program ⁽²⁾	VIL	ViH	Ai	VPP	Vcc	DiN
PGM Verify ⁽²⁾	Х	VIL	Ai	Vpp	Vcc	Dout
Optional PGM Verify ⁽²⁾	VIL	VIL	Ai	Vcc	Vcc	Dout
PGM Inhibit ⁽²⁾	V _{IH} .	ViH	X	Vpp	Vcc	High Z
Product Identification ⁽⁴⁾	VIL	VIL	A9=V _H ⁽³⁾ A0=V _{IH} or V _{IL} A1-A14=V _{IL}	Vcc	Vcc	Identification Code

Notes: 1. X can be VIL or VIH.

2. Refer to Programming characteristics.

3. $V_H = 12.0 \pm 0.5 V$.

4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}) , except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

D.C. and A.C. Operating Conditions for Read Operation

				AT27C256		
		-12	-15	-17	-20	-25
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
Vcc Power Supp	oly	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

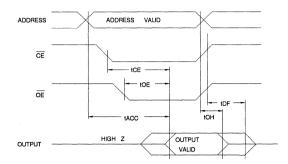
D.C. and Operating Characteristics for Read Operation

Symbol	Parameter	Condition		Min	Max	Units
ILI	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	V _{PP} = 3.8 to V _{CC} + 0.3V			10	μΑ
		I _{SB1} (CMOS)	Com.		100	μΑ
lon	I _{SB} V _{CC} ⁽¹⁾ Standby Current	$\overline{CE} = V_{CC} - 0.3$ to $V_{CC} + 1.0V$	Ind.,Mil.		200	μΑ
100		I _{SB2} (TTL) CE = 2.0 to V _{CC} + 1.0V			2	mA
					3	mA
loo	Vcc Active Current	$f = 5MHz, I_{OUT} = 0mA,$	Com.		30	mA
Icc	VCC Active Current	$\overline{CE} = V_{IL}$	Ind.,Mil.		40	mA
VIL	Input Low Voltage			-0.6	8.0	V
ViH	Input High Voltage			2.0	V _{CC} +1	V
VoL	Output Low Voltage	I _{OL} = 2.1mA			.45	V
		$I_{OH} = -100\mu A$		Vcc-0.3		٧
Vон	Output High Voltage	I _{OH} = -2.5mA		3.5		٧
		I _{OH} = -400μ A		2.4		V
VPP	V _{PP} Read Voltage	V _{CC} = 5 ± 0.5V		3.8	Vcc+.3	V

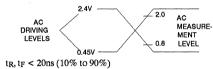
Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

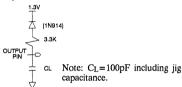
A.C. Characteristics for Read Operation

				AT27C256										
					12		15	-1	17	-2	20	-2	25	
Symbol	Parameter	Condition		Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Max	Units
tacc (4)	Address to	CE = OE	Com.,Ind.		120		150		170		200		250	ns
IACC \	Output Delay	≈VIL	Mil.				150		170		200		250	ns
tce (3)	CE to Output Delay	OE = VIL			120		150		170		200		250	ns
toe (3,4)	OE to Output Delay	CE = VIL			60		70		70		75		100	ns
t _{DF} (2,5)	OE or CE High to Output Float	CE = VIL			45		50		50		55		60	ns
tон	Output H <u>old</u> from Address, CE or OE, whichever occurred first	CE = OE = V _{IL}			0		0		0		0		0	ns


Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

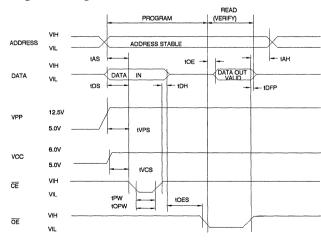

A.C. Waveforms for Read Operation (1)


Notes:

- Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- t_{DF} is specified from OE or CE, whichever occurs first. Output float is defined as the point when data is no longer driven.
- 3. \overline{OE} may be delayed up to t_{CE}-t_{OE} after the falling edge of \overline{CE} without impact on t_{CE}.
- OE may be delayed up to t_{ACC}-t_{OE} after the address is valid without impact on t_{ACC}.
- This parameter is only sampled and is not 100% tested.

Input Test Waveforms and Measurement Levels

Output Test Load



Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions	
CIN	4	6	pF	V _{IN} = 0V	
Cout	8	12	pF	Vout = 0V	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .
- 2. toE and tDFP are characteristics of the device but must be accommodated by the programmer.
- When programming the AT27C256 a 0.1µF capacitor is required across Vpp and ground to suppress spurious voltage transients.

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $V_{PP}=12.5\pm0.5V$

Sym-		Test	Li	mits	
bol	Parameter	Conditions	Min	Max	Units
lu	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	8.0	V
VIH	Input High Level		2.0	V _{CC+} 1	٧
Vol	Output Low Volt.	I _{OL} = 2.1mA		.45	٧
Vон	Output High Volt.	I _{OH} = -400μA	2.4		٧
ICC2	VCC Supply Currer (Program and Veri			30	mA
IPP2	V _{PP} Supply Current	CE = V _{IL}		25	mA
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $V_{PP}=12.5\pm0.5V$

TA-20.					
Sym- bol	Parameter	Test Conditions* (see Note 1)	Li Min	mits Max l	Units
tas	Address Setup Tim	ne	2		μS
toes	OE Setup Time		2		μS
tos	Data Setup Time		2		μS
tah	Address Hold Time	Э	0		μS
tDH	Data Hold Time		2		μS
tDFP	OE High to Out- put Float Delay	(Note 2)	0	130	ns
tvps	V _{PP} Setup Time		2		μS
tvcs	Vcc Setup Time		2		μS
tpw	CE Initial Pro- gram Pulse Width	(Note 3)	0.95	1.05	ms
topw	CE Overprogram Pulse Width	(Note 4)	2.85	78.75	ms
toE	Data Valid from OF	Ē		150	ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20ns
Input Pulse Levels	. 0.45V to 2.4V
Input Timing Reference Level	0.8V to 2.0V
Output Timing Reference Level	0.8V to 2.0V

Notes:

- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Initial Program Pulse width tolerance is 1msec±5%.
- 4. The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the iteration counter value X.

Atmel's 27C256 Integrated Product Identification Code:

		Pins							Hex	
Codes	AO	07	O6	O5	04	Оз	02	01	00	Data
Manufacturer	0	0	0	1	0	1	0	0	1	29
Device Type	1	1	0	0	0	1	1	0	0	8C

Fast Programming Algorithm

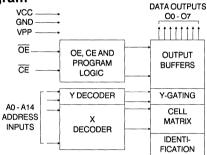
Two $\overline{\text{CE}}$ pulse widths are used to program; initial and overprogram. Ai are set to address the desired byte. V_{CC} is raised to 6.0V. The first $\overline{\text{CE}}$ pulse is 1ms. The programmed byte is then verified. If the byte programmed successfully, then an overprogram $\overline{\text{CE}}$ pulse is applied for 3ms. If the byte fails to program after the first 1ms pulse, then up to 25 successive 1ms pulses are applied with a verification after each pulse. When the byte passes verification, the overprogram pulse width is 3X (times) the number of 1ms pulses required earlier (75ms max).

If the part fails to verify after 25 1ms pulses have been applied, it is considered as failed. After the first byte is programmed, the Ai are set to the next address repeating the algorithm until all required addresses are programmed. Then $V_{\rm CC}$ is lowered to 5.0V. All bytes subsequently are read to compare with the original data to determine if the device passes or fails.

tacc	Icc	(mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
120	30	0.1	AT27C256-12DC AT27C256-12LC	28DW6 32LW	Commercial (0°C to 70°C)
120	40	0.2	AT27C256-12DI AT27C256-12LI	28DW6 32LW	Industrial (-40°C to 85°C)
150	30	0.1	AT27C256-15DC AT27C256-15LC AT27C256-15PC AT27C256-15JC AT27C256-15RC	28DW6 32LW 28P6 32J 28R	Commercial (0°C to 70°C)
150	40	0.2	AT27C256-15DI AT27C256-15LI AT27C256-15PI AT27C256-15JI AT27C256-15RI	28DW6 32LW 28P6 32J 28R	Industrial (-40°C to 85°C)
			AT27C256-15DM AT27C256-15LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C256-15DM/883 AT27C256-15LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
170	30	0.1	AT27C256-17DC AT27C256-17LC AT27C256-17PC AT27C256-17JC AT27C256-17RC	28DW6 32LW 28P6 32J 28R	Commercial (0°C to 70°C)
170	40	0.2	AT27C256-17DI AT27C256-17LI AT27C256-17PI AT27C256-17JI AT27C256-17RI	28DW6 32LW 28P6 32J 28R	Industrial (-40°C to 85°C)
			AT27C256-17DM AT27C256-17LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C256-17DM/883 AT27C256-17LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	30	0.1	AT27C256-20DC AT27C256-20LC AT27C256-20PC AT27C256-20JC AT27C256-20RC	28DW6 32LW 28P6 32J 28R	Commercial (0°C to 70°C)
200	40	0.2	AT27C256-20DI AT27C256-20LI AT27C256-20PI AT27C256-20JI AT27C256-20RI	28DW6 32LW 28P6 32J 28R	Industrial (-40°C to 85°C)

tacc	Ico	(mA)	Out it woods	Davidson	O
(ns)	Active	Standby	Ordering Code	Package	Operation Range
200	40	0.2	AT27C256-20DM AT27C256-20LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C256-20DM/883 AT27C256-20LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	30	0.1	AT27C256-25DC AT27C256-25LC AT27C256-25PC AT27C256-25JC AT27C256-25RC	28DW6 32LW 28P6 32J 28R	Commercial (0°C to 70°C)
250	40	0.2	AT27C256-25DI AT27C256-25LI AT27C256-25PI AT27C256-25JI AT27C256-25RI	28DW6 32LW 28P6 32J 28R	Industrial (-40°C to 85°C)
			AT27C256-25DM AT27C256-25LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C256-25DM/883 AT27C256-25LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
300	40	0.2	AT27C256-30DM/883 AT27C256-30LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
350	40	0.2	AT27C256-35DM/883 AT27C256-35LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type					
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)					
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)					
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)					
28R	28 Lead, 0.330" Wide, Plastic Gull Wing Small Outline OTP (SOIC)					



4-46

Features

- Low Power CMOS Operation 100 μA max. Standby 20 mA max. Active at 5 MHz
- Fast Read Access Time 90ns
- Wide Selection of JEDEC Standard Packages Including OTP 28-Lead 600 mil Cerdip and OTP Plastic DIP or SOIC 32-Pad LCC 32-Lead JLCC and OTP PLCC
- 5V± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Rapid Programming 100μs/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- . Military, Commercial and Industrial Temperature Ranges
- Fully Compatible with AT27C256

Block Diagram

Description

The AT27C256R chip is a low-power, high performance 262,144 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 32K x 8. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 90ns, eliminating the need for speed reducing WAIT states on high performance microprocessor systems.

The AT27C256R meets or exceeds all specifications for the AT27C256. Atmel's 1.2 micron scaled CMOS technology additionally provides lower active power consumption, and significantly faster programming. Power consumption is typically only 8mA in Active Mode and less than 10μ A in Standby.

Pin Configurations

Pin Name	Function	
A0-A14	Addresses	
00-07	Outputs	
CE	Chip Enable	
ŌĒ	Output Enable	
NC	No Connect	

	<u> </u>	<u> </u>		L
VPP [1		28	□ VCC
A12 🗆	2		27	□ A14
A7 □			26	□ A13
A6 □	4		25	□ A8
A5 □	5		24	□ A9
A4 🗆			23	□ A11
A3 🗆	7		22	OE
A2 🗆	8		21	□A10
A1 C	9		20	CE
AO 🗆	10		19	07
O0 [11		18	DO6
O1 🗆	12		17	□ 05
O2 [13		16	□04
GND [14		15	□ O3
	L]

A7 VPPVCC A13 A12 NC A14 A6 5 3 2 1 32 30 A5 6 2 22 A8 A4 7 27 A11 A3 8 26 (NC A2 9 25 (OE A1 10 24 (A10 A0 11 23 (CE CO OO 11 1 21 (OE 14 15 18 20 (OE

Note: PLCC Package Pins 1 and 17 are DON'T CONNECT.

256K (32K x 8) UV Erasable CMOS

EPROM

Description (Continued)

The AT27C256R comes in a choice of industry standard JEDEC-approved packages including; 28-pin DIP ceramic or one time programmable (OTP) plastic, 28-pin OTP plastic small outline (SOIC), 32-pad ceramic leadless chip carrier (LCC), and 32 lead ceramic (JLCC), or OTP plastic J-leaded chip carrier (PLCC). All devices feature two line control (CE, OE) to give designers the flexibility to prevent bus contention.

With high density 32K byte storage capability, the AT27C256R allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27C256R has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100μ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27C256R is erased (all outputs read as V_{OH}) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
VPP Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾
Integrated UV Erase Dose7258 w•sec/cm ²

^{*}NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

<u>'</u>						
MODE \ PIN	CE	- OE	Ai	Vpp	Vcc	Outputs
Read	VIL	VIL	Ai	Vcc	Vcc	Dout
Output Disable	VIL	ViH	X ⁽¹⁾	Vcc	Vcc	High Z
Standby	ViH	Х	Х	Vcc	Vcc	High Z
Rapid Program ⁽²⁾	VIL	VIH	Ai	Vpp	Vcc	DiN
PGM Verify ⁽²⁾	Х	ViL	Ai	Vpp	Vcc	Dout
Optional PGM Verify ⁽²⁾	VIL	VIL	Ai	Vcc	Vcc	Dout
PGM Inhibit ⁽²⁾	ViH	ViH	X	Vpp	Vcc	High Z
Product Identification ⁽⁴⁾	VIL	V _{IL}	A9=V _H ⁽³⁾ A0=V _{IH} or V _{IL} A1-A14=V _{IL}	Vcc	Vcc	Identification Code

- Notes: 1. X can be V_{IL} or V_{IH}.
 - 2. Refer to Programming characteristics.
 - 3. $V_H = 12.0 \pm 0.5 V$.

4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_{H} and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

D.C. and A.C. Operating Conditions for Read Operation

				AT27C256R		
		-90	-12	-15	-20	-25
Operating Temperature	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
Vcc Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

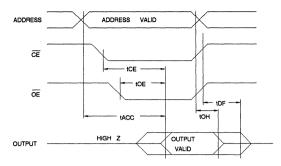
D.C. and Operating Characteristics for Read Operation

Symbol	Parameter	Condition		Min	Max	Units
Ш	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
IPP1 (2)	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = 3.8 \text{ to } V_{CC} + 0.3V$			10	μΑ
	Input Load Current V O Output Leakage Current V O Output Leakage Current V O Output Leakage Current V O Output Leakage Current V O Output Leakage Current V O Output Leakage Current V O Output Leakage Current Is C O Output Low Voltage O Output Low Voltage O Output Low Voltage O Output Low Voltage O Output Low Voltage O Output High Voltage O Output High Voltage	I _{SB1} (CMOS)	Com.		100	μΑ
Isa		$\overline{CE} = V_{CC} - 0.3$ to $V_{CC} + 1.0V$	Ind.,Mil.		200	μΑ
198	VCC Standby Odneni	I _{SB2} (TTL)	Com.		2	mA
		$\overline{CE} = 2.0$ to $V_{CC} + 1.0V$	Ind.,Mil.		, 3	mA
laa	Voc Active Current	f=5MHz,lout=0mA,	Com.		20	mA
Icc	ACC Active Critetir	CE = V _{IL}	Ind.,Mil.		25	mA
V _{IL}	Input Low Voltage			-0.6	0.8	٧
ViH	Input High Voltage			2.0	Vcc+1	٧
VoL	Output Low Voltage	I _{OL} = 2.1mA			.45	٧
		$I_{OH} = -100\mu A$		V _{CC} -0.3		٧
Vон	V _{OH} Output High Voltage	I _{OH} = -2.5mA		3.5		٧
		$I_{OH} = -400 \mu A$		2.4		٧
VPP	V _{PP} Read Voltage	Vcc=5±0.25V		3.8	Vcc+.3	٧

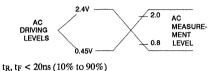
Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

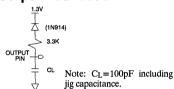
A.C. Characteristics for Read Operation

				AT27C256R										
					-90 -12		12	-15		-20		-25		
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Мах	Min	Max	Min	Max	Units
tacc (4)	Address to	CE = OE	Com.		90		120		150		200		250	ns
	Output Delay	=VIL	Ind.,Mil.		90		120		150		200		250	ns
tce (3)	CE to Output Delay	OE = V _{IL}			90		120		150		200		250	ns
toe (3,4)	OE to Output Delay	CE = VIL			40		50		60		75		100	ns
t _{DF} ^(2,5)	OE or CE High to Output Float	CE = V _{IL}			30		30		45		55		60	ns
tон	Output Hold from Address, CE or OE, whichever occurred first	CE = OE = V _{IL}			0		0		0		0		0	ns


Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

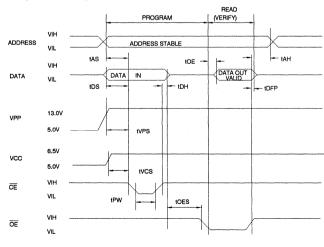

A.C. Waveforms for Read Operation (1)


Notes:

- Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- t_{DF} is specified from OE or CE, whichever occurs first. Output float is defined as the point when data is no longer driven.
- 3. \overline{OE} may be delayed up to t_{CE}-t_{OE} after the falling edge of \overline{CE} without impact on t_{CE}.
- OE may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- This parameter is only sampled and is not 100% tested.

Input Test Waveforms and Measurement Levels

Output Test Load



Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions	
CiN	4	6	pF	$V_{IN} = 0V$	
Соит	8	12	pF	Vout = 0V	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .
- toe and tDFP are characteristics of the device but must be accommodated by the programmer.
- 3. When programming the AT27C256R a 0.1µF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

AT27C256R

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.5\pm0.25V$, $V_{PP}=13.0\pm0.25V$

Sym-		Test	Li	mits	
bol	Parameter	Conditions	Min	Max	Units
lu	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	0.8	٧
ViH	Input High Level		2.0	V _{CC+} 1	٧
Vol	Output Low Volt.	l _{OL} = 2.1mA		.45	٧
Vон	Output High Volt.	I _{OH} = -400μA	2.4		٧
ICC2	Vcc Supply Curren (Program and Veri			25	mA
IPP2	V _{PP} Current	CE = VIL		25	mA
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

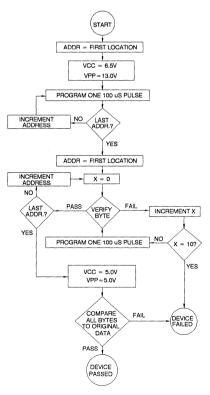
 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.5\pm0.25V$, $V_{PP}=13.0\pm0.25V$

Sym- bol	Parameter	Test Conditions* (see Note 1)	Li ı Min	nits Max	Units
tas	Address Setup Tir	ne	2		μS
toes	OE Setup Time		2		μS
tos	Data Setup Time		2		μS
tan	Address Hold Tim	е	0		μS
ton	Data Hold Time		2		μS
torp	OE High to Output Float Delay	(Note 2)	0	130	ns
tvps	V _{PP} Setup Time		2		μS
tvcs	Vcc Setup Time		2		μS
tpw	CE Program Pulse Width	(Note 3)	95	105	μS
toe	Data Valid from OE	(Note 2)		150	ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20ns
Input Pulse Levels	0.45V to 2.4V
Input Timing Reference Level	. 0.8V to 2.0V
Output Timing Reference Level	. 0.8V to 2.0V

Notes:


- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven — see timing diagram.
- 3. Program Pulse width tolerance is $100\mu \sec \pm 5\%$.

Atmel's 27C256R Integrated Product Identification Code:

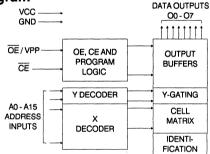
		Pins					Hex			
Codes	AO	07	O6	O5	04	Оз	O2	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	1	0	0	0	1	1	0	0	8C

Rapid Programming Algorithm

A $100\mu s$ $\overline{\text{CE}}$ pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one $100\mu s$ $\overline{\text{CE}}$ pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive $100\mu s$ pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

tacc	tacc Icc (mA)				Outside Design		
(ns)	Active	Standby	Ordering Code	Package	Operation Range		
90	20	0.1	AT27C256R-90DC AT27C256R-90KC AT27C256R-90LC	28DW6 32KW 32LW	Commercial (0°C to 70°C)		
90	25	0.2	AT27C256R-90DI AT27C256R-90KI AT27C256R-90LI	28DW6 32KW 32LW	Industrial (-40°C to 85°C)		
120	20	0.1	AT27C256R-12DC AT27C256R-12JC AT27C256R-12KC AT27C256R-12LC AT27C256R-12PC AT27C256R-12RC	28DW6 32J 32KW 32LW 28P6 28R	Commercial (0°C to 70°C)		
120	25	0.2	AT27C256R-12DI AT27C256R-12JI AT27C256R-12KI AT27C256R-12LI AT27C256R-12PI AT27C256R-12RI	28DW6 32J 32KW 32LW 28P6 28R	Industrial (-40°C to 85°C)		
			AT27C256R-12DM AT27C256R-12KM AT27C256R-12LM	28DW6 32KW 32LW	Military (-55°C to 125°C)		
			AT27C256R-12DM/883 AT27C256R-12KM/883 AT27C256R-12LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
150	20	0.1	AT27C256R-15DC AT27C256R-15JC AT27C256R-15KC AT27C256R-15LC AT27C256R-15PC AT27C256R-15RC	28DW6 32J 32KW 32LW 28P6 28R	Commercial (0°C to 70°C)		
150	25	0.2	AT27C256R-15DI AT27C256R-15JI AT27C256R-15KI AT27C256R-15LI AT27C256R-15PI AT27C256R-15RI	28DW6 32J 32KW 32LW 28P6 28R	Industrial (-40°C to 85°C)		
			AT27C256R-15DM AT27C256R-15KM AT27C256R-15LM	28DW6 32KW 32LW	Military (-55°C to 125°C)		
			AT27C256R-15DM/883 AT27C256R-15KM/883 AT27C256R-15LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)		

tacc	lcc	; (mA)	Outsian Outs	Darles	0		
(ns)	Active	Standby	Ordering Code	Package	Operation Range		
170	20	0.1	AT27C256R-17DC AT27C256R-17JC AT27C256R-17KC AT27C256R-17LC AT27C256R-17PC AT27C256R-17RC	28DW6 32J 32KW 32LW 28P6 28R	Commercial (0°C to 70°C)		
170	25	0.2	AT27C256R-17DI AT27C256R-17JI AT27C256R-17KI AT27C256R-17LI AT27C256R-17PI AT27C256R-17RI	28DW6 32J 32KW 32LW 28P6 28R	Industrial (-40°C to 85°C)		
			AT27C256R-17DM AT27C256R-17KM AT27C256R-17LM	28DW6 32KW 32LW	Military (-55°C to 125°C)		
			AT27C256R-17DM/883 AT27C256R-17KM/883 AT27C256R-17LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
200	20	0.1	AT27C256R-20DC AT27C256R-20JC AT27C256R-20KC AT27C256R-20LC AT27C256R-20PC AT27C256R-20PC	28DW6 32J 32KW 32LW 28P6 28R	Commercial (0°C to 70°C)		
200	25	0.2	AT27C256R-20DI AT27C256R-20JI AT27C256R-20KI AT27C256R-20LI AT27C256R-20PI AT27C256R-20RI	28DW6 32J 32KW 32LW 28P6 28R	Industrial (-40°C to 85°C)		
					AT27C256R-20DM AT27C256R-20KM AT27C256R-20LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C256R-20DM/883 AT27C256R-20KM/883 AT27C256R-20LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
250	20	0.1	AT27C256R-25DC AT27C256R-25JC AT27C256R-25KC AT27C256R-25LC AT27C256R-25PC AT27C256R-25RC	28DW6 32J 32KW 32LW 28P6 28R	Commercial (0°C to 70°C)		

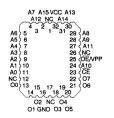

tacc	Icc	; (mA)	Oudering Onda	Dealessa	Onesation Desage	
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
250	250 25 0.2		AT27C256R-25DI AT27C256R-25JI AT27C256R-25KI AT27C256R-25LI AT27C256R-25PI AT27C256R-25RI	28DW6 32J 32KW 32LW 28P6 28R	Industrial (-40°C to 85°C)	
			AT27C256R-25DM AT27C256R-25KM AT27C256R-25LM	28DW6 32KW 32LW	Military (-55°C to 125°C)	
250	25	0.2	AT27C256R-25DM/883 AT27C256R-25KM/883 AT27C256R-25LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
150	25	0.2	5962-86063 05 XX 5962-86063 05 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
170	25	0.2	5962-86063 04 XX 5962-86063 04 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
200	25	0.2	5962-86063 01 XX 5962-86063 01 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
250	25	0.2	5962-86063 02 XX 5962-86063 02 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
300	25	0.2	5962-86063 03 XX 5962-86063 03 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	

	Package Type					
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)					
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)					
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)					
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)					
28R	28 Lead, 0.330" Wide, Plastic Gull Wing Small Outline OTP, (SOIC)					

Features

- Low Power CMOS Operation 100 μA max. Standby 40 mA max. Active at 5 MHz
- Fast Read Access Time 120ns
- Wide Selection of JEDEC Standard Packages Including OTP 28 -Lead 600 mil Cerdip and OTP Plastic DIP 32-Pad LCC and OTP PLCC
- 5V± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Fast Programming 4ms/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Commercial and Industrial Temperature Ranges

Block Diagram


Description

The AT27C512 chip is a low-power, high performance 524,288 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 64K x 8. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 120ns, eliminating the need for speed reducing WAIT states on high performance microprocessor systems.

Atmel's 1.5 micron CMOS technology provides optimum speed, low power and high noise immunity. Power consumption is typically only 15mA in Active Mode and less than 10μ A in Standby. In addition to the speed, power and reliability advantages of the CMOS process, the CMOS technology is an extension of Atmel's high quality and highly manufacturable floating poly EPROM technology.

Pin Configurations

Pin Name	Function	A12 🗆	2	27	□ A14
1 111 1441110	T direction	A7 □	3	26	□ A13
A0-A15	Addresses	A6 □	4	25	□ A8
70-710	Addiesses	A5 🗆	5	24	□ A9
00-07	Outputs	A4 □	6	23	A11
00-07	Outputs	A3 □	7	22	DEA
CE	Chia Faabla	A2 =	8	21	6 A10
CE	Chip Enable		9		
		A1 🗆		20	CE
OE /VPP	Output Enable	AO 🗆	10	19	D 07
		O0 [11	18	□ 06
NC	No Connect	O1 [12	17	D 05
	1	O2 [13	16	b 04
		GND E	14	15	□ 03
				-	J

Note: PLCC Package Pins 1 and 17 are DON'T CONNECT.

512K (64K x 8) UV Erasable CMOS

EPROM

Description (Continued)

The AT27C512 comes in a choice of industry standard JEDEC-approved packages including; 28-pin DIP in ceramic or one time programmable (OTP) plastic, and 32-pad ceramic leadless chip carrier (LCC), or OTP plastic J-leaded chip carrier (PLCC). All devices feature two line control (CE, OE) to give designers the flexibility to prevent bus contention.

With high density 64K byte storage capability, the AT27C512 allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27C512 has additional features to ensure high quality and efficient production use. The Fast Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 4ms/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27C512 is erased (all outputs read as VOH) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W • sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾
Integrated UV Erase Dose7258 w• sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

-					
MODE \ PIN	CE	OE/Vpp	Ai	Vcc	Outputs
Read	VIL	VIL	Ai	Vcc	Dout
Output Disable	VIL	ViH	X ⁽¹⁾	Vcc	High Z
Standby	ViH	Х	X	Vcc	High Z
Fast Program ⁽²⁾	VIL	Vpp	Ai	Vcc	D _{IN}
PGM Verify	VIL	VIL	Ai	Vcc	Dout
PGM Inhibit	V _{IH}	V _{PP}	X	Vcc	High Z
Product Identification ⁽⁴⁾	V _{IL}	VIL	A9 = V _H ⁽³⁾ A0 = V _{IH} or V _{IL} A1-A15 = V _{IL}	Vcc	Identification Code

Notes: 1. X can be VIL or VIH.

2. Refer to Programming characteristics.

3. $V_H = 12.0 \pm 0.5 V$.

4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

D.C. and A.C. Operating Conditions for Read Operation

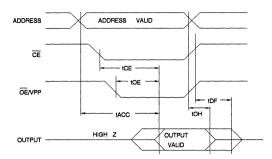
		AT27C512						
		-12	-15	-20	-25			
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C			
Temperature	Ind.		-40°C - 85°C	-40°C - 85°C	-40°C - 85°C			
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C	-55°C - 125°C			
Vcc Power Supply		5V ± 5%	5V ± 10%	5V ± 10%	5V ± 10%			

D.C. and Operating Characteristics for Read Operation

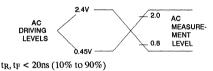
Symbol	Parameter	Condition		Min	Max	Units
ILI	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
		I _{SB1} (CMOS)	Com.		100	μΑ
ISB	V _{CC} ⁽¹⁾ Standby Current	$\overline{CE} = V_{CC}-0.3$ to $V_{CC}+1.0V$	Ind.,Mil.		200	μΑ
136	Voc Stariosy Surroit	I _{SB2} (TTL)	Com.		2	mA
		CE = 2.0 to V _{CC} + 1.0V	Ind.,Mil.		3	mA
loo	V _{CC} Active Current	$f = 5MHz, I_{OUT} = 0mA,$	Com.		40	mA
Icc	VCC Active Current	CE = V _{IL}	Ind.,Mil.		50	mA
VIL	Input Low Voltage			-0.6	8.0	V
ViH	Input High Voltage			2.0	Vcc+1	٧
Vol	Output Low Voltage	I _{OL} = 2.1mA			.45	٧
		$I_{OH} = -100\mu A$		V _{CC} -0.3		٧
Vон	Output High Voltage	I _{OH} = -2.5mA		3.5		٧
		I _{OH} = -400μ A	2.4		٧	

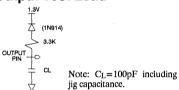
Notes: 1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} , and removed simultaneously or after \overline{OE}/V_{PP} .

A.C. Characteristics for Read Operation


				AT27C512								
					2	-	15	-	20	-2	25	
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Max	Min	Max	Units
tacc (4)	Address to	$\overline{CE} = \overline{OE}/V_{PP}$	Com.		120		150		200		250	ns
IACC Y	Output Delay	=VIL	Ind., Mil.				150		200		250	ns
t _{CE} (3)	CE to Output Delay	$\overline{OE}/V_{PP} = V_{IL}$			120		150		200		250	ns
toe (3,4)	OE/V _{PP} to Output Delay	CE = VIL			65		70		75		100	ns
t _{DF} ^(2,5)	OE/V _{PP} or CE High to Output Float	CE = V _{IL}			50		50		55		60	ns
tон	Output Hold from Address, CE or OE/V _{PP} , which- ever occurred first	CE = OE/VPP = VIL			0		0		0		0	ns

Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

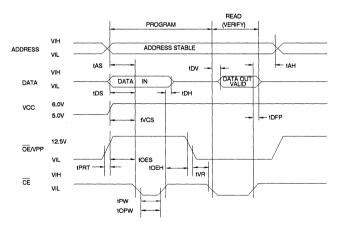

A.C. Waveforms for Read Operation (i)


Notes:

- Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- t_{DF} is specified from OE /V_{PP} or CE, whichever occurs first. Output float is defined as the point when data is no longer driven.
- OE/V_{PP} may be delayed up to t_{CE}-t_{OE} after the falling edge of CE without impact on t_{CE}.
- OE NPP may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- This parameter is only sampled and is not 100% tested.

Input Test Waveforms and Measurement Levels

Output Test Load



Pin Capacitance $(f = 1 MHz T = 25^{\circ}C)^{(1)}$

	Тур	Max	Units	Conditions	
Cin	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	Vout = 0V	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .
- t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $\overline{OE}/V_{PP}=12.5\pm0.5V$

Sym-		Test	Li	mits		•
bol	Parameter	Conditions	Min	Max	Units	
ILI	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ	
VIL	Input Low Level	(All Inputs)	-0.6	0.8	٧	
ViH	Input High Level		2.0	V _{CC+} 1	٧	
Vol	Output Low Volt.	l _{OL} =2.1mA		.45	٧	
Vон	Output High Volt.	$I_{OH} = -400 \mu A$	2.4		٧	_
ICC2	V _{CC} Supply Curren (Program and Veri			40	mA	
IPP2	OE/V _{PP} Current	CE = V _{IL}		25	mA	
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧	

A.C. Programming Characteristics

Ta=25±5°C, Vcc=6.0±0.25V, OE/Vpp=12.5±0.5V

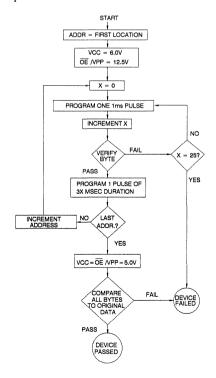
IA=25±5°C, VCC=6.0±0.25V, OE/VPP=12.5±0.5V								
Sym- bol	Parameter	Test Conditions* (see Note 1)	Li Min	mits Max	Units			
tas	Address Setup Time)	2		μS			
toes	OE/V _{PP} Setup Time		2		μS			
toeh	OE/V _{PP} Hold Time		2		μS			
tDS	Data Setup Time		2		μS			
taH	Address Hold Time		0		μS			
tDH	Data Hold Time		2		μS			
tDFP	CE High to Out- put Float Delay	(Note 2)	0	130	ns			
tvcs	V _{CC} Setup Time		2		μS			
tpw	CE Initial Program Pulse Width	(Note 3)	0.95	1.05	ms			
topw	CE Overprogram Pulse Width	(Note 4)	2.85	78.75	ms			
tov	Data Valid from CE	(Note 2)		1	μS			
tvR	OE/V _{PP} Recovery Ti	me	2		μS			
tprt	OE/V _{PP} Pulse Rise Time During Progra	mming	50		ns			

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20ns
Input Pulse Levels	. 0.45V to 2.4V
Input Timing Reference Level	0.8V to 2.0V
Output Timing Reference Level	0.8V to 2.0V

Notes:

- V_{CC} must be applied simultaneously or before OE/V_{PP} and removed simultaneously or after OE/V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Initial Program Pulse width tolerance is 1msec±5%.
- 4. The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the iteration counter value X.


Atmel's 27C512 Integrated Product Identification Code:

		Pins							Hex	
Codes	AO	07	O6	O5	04	Оз	O2	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	1	1F
Device Type	1	0	0	0	0	1	1	0	1	0D

Fast Programming Algorithm

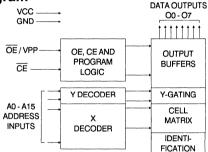
Two $\overline{\text{CE}}$ pulse widths are used to program; initial and overprogram. Ai are set to address the desired byte. V_{CC} is raised to 6.0V. The first $\overline{\text{CE}}$ pulse is 1ms. The programmed byte is then verified. If the byte programmed successfully, then an overprogram $\overline{\text{CE}}$ pulse is applied for 3ms. If the byte fails to program after the first 1ms pulse, then up to 25 successive 1ms pulses are applied with a verification after each pulse. When the byte passes verification, the overprogram pulse width is 3X (times) the number of 1ms pulses required earlier (75ms max).

If the part fails to verify after 25 1ms pulses have been applied, it is considered as failed. After the first byte is programmed, the Ai are set to the next address repeating the algorithm until all required addresses are programmed. Then $V_{\rm CC}$ is lowered to 5.0V. All bytes subsequently are read to compare with the original data to determine if the device passes or fails.

tacc	loo	; (mA)	Ordering Code	Package	Operation Panes
(ns)	Active	Standby	Ordering Code	Package	Operation Range
120	40	0.1	AT27C512-12DC AT27C512-12LC	28DW6 32LW	Commercial (0°C to 70°C)
150	40	0.1	AT27C512-15DC AT27C512-15LC AT27C512-15PC AT27C512-15JC	28DW6 32LW 28P6 32J	Commercial (0°C to 70°C)
150	50	0.2	AT27C512-15DI AT27C512-15LI AT27C512-15PI AT27C512-15JI	28DW6 32LW 28P6 32J	Industrial (-40°C to 85°C)
			AT27C512-15DM AT27C512-15LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C512-15DM/883 AT27C512-15LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
170	50	0.2	AT27C512-17DM/883 AT27C512-17LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	40	0.1	AT27C512-20DC AT27C512-20LC AT27C512-20PC AT27C512-20JC	28DW6 32LW 28P6 32J	Commercial (0°C to 70°C)
200	50	0.2	AT27C512-20DI AT27C512-20LI AT27C512-20PI AT27C512-20JI	28DW6 32LW 28P6 32J	Industrial (-40°C to 85°C)
			AT27C512-20DM AT27C512-20LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C512-20DM/883 AT27C512-20LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	40	0.1	AT27C512-25DC AT27C512-25LC AT27C512-25PC AT27C512-25JC	28DW6 32LW 28P6 32J	Commercial (0°C to 70°C)
250	50	0.2	AT27C512-25DI AT27C512-25LI AT27C512-25PI AT27C512-25JI	28DW6 32LW 28P6 32J	Industrial (-40°C to 85°C)
			AT27C512-25DM AT27C512-25LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C512-25DM/883 AT27C512-25LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

Package Type						
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)					
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)					
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)					

4-62


Features

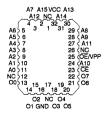
- Low Power CMOS Operation 100 µA max. Standby 20 mA max. Active at 5 MHz
- Fast Read Access Time 100ns
- Wide Selection of JEDEC Standard Packages including OTP 28-Lead 600 mil Cerdip and OTP Plastic DIP or SOIC 32-Pad LCC

32-Lead JLCC and OTP PLCC

- 5V± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Rapid Programming 100μs/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Military, Commercial and Industrial Temperature Ranges
- Fully Compatible with AT27C512

Block Diagram

Description


The AT27C512R chip is a low-power, high performance 524,288 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 64K x 8. It requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 100ns, eliminating the need for speed reducing WAIT states on high performance microprocessor systems.

The AT27C512R meets or exceeds all specifications for the AT27C512. Atmel's 1.2 micron scaled CMOS technology additionally provides lower active power consumption, and significantly faster programming. Power consumption is typically only 8mA in Active Mode and less than 10µ A in Standby.

Pin Configurations

Pin Name	Function
A0-A15	Addresses
00-07	Outputs
CE	Chip Enable
OE /VPP	Output Enable
NC	No Connect

A1B [1	\neg	28	h	VCC	
710	1 2			E		
A12 C	1 -		21	٢	A14	
A7 🗆	3		26	Þ	A13	
A6 🗆	4		25	Þ	A13 A8	
A5 C	5		24	b	A9	
A4 [6		23	b	A11	
A15 C A12 C A6 C A5 C A4 C A3 C A1 C A0 C O1 C	1 2 3 4 5 6 7		27 26 25 24 23 22 21 20 19	Ь	OE/V	PP
A2 C	8		21	b	A10	
A1 C	9		20	b	CE O7	
AO C	10		19	b	07	
00 0	11		18 17	b	06	
01 5	12		17	ь	O5	
00 E 01 E 02 E	13		16	00000000000000	04	
O2 C	14		15	þ	О3	
				_		

Note: PLCC Package Pins 1 and 17 are DON'T CONNECT.

512K (64K x 8) UV **Erasable CMOS EPROM**

Description (Continued)

The AT27C512R comes in a choice of industry standard JEDEC-approved packages including; 28-pin DIP ceramic or one time programmable (OTP) plastic, 28-pin OTP plastic small outline (SOIC), 32-pad ceramic leadless chip carrier (LCC), and 32-lead ceramic (JLCC), or OTP plastic J-leaded chip carrier (PLCC). All devices feature two line control $(\overline{CE}, \overline{OE})$ to give designers the flexibility to prevent bus contention.

With high density 64K byte storage capability, the AT27C512R allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27C512R has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100μ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27C512R is erased (all outputs read as V_{OH}) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W•sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to $+14.0V^{(1)}$
V _{PP} Supply Voltage with Respect to Ground2.0V to $+14.0V^{(1)}$
Integrated UV Erase Dose7258 w• sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

MODE \ PIN	CE	OE/V _{PP}	Ai	Vcc	Outputs
Read	VIL	V _{IL}	Ai	Vcc	Dout
Output Disable	VIL	ViH	X ⁽¹⁾	Vcc	High Z
Standby	ViH	Х	Х	Vcc	High Z
Rapid Program ⁽²⁾	VIL	V _{PP}	Ai	Vcc	DiN
PGM Verify	VIL	V _{IL}	Ai	Vcc	Dout
PGM Inhibit	ViH	Vpp	Х	Vcc	High Z
Product Identification ⁽⁴⁾	VIL	VIL	A9 = V _H ⁽³⁾ A0 = V _{IH} or V _{IL} A1-A15 = V _{IL}	Vcc	Identification Code

Notes: 1. X can be VIL or VIH.

- 2. Refer to Programming characteristics.
- 3. $V_H = 12.0 \pm 0.5 V$.

4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

D.C. and A.C. Operating Conditions for Read Operation

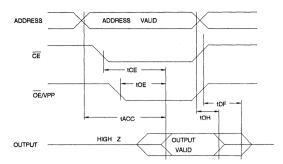
				AT27C512R		
		-10	-12	-15	-20	-25
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature	Ind.		-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
Vcc Power Sup	ply	5V ± 5%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

D.C. and Operating Characteristics for Read Operation

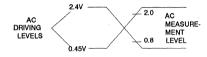
Symbol	Parameter	Condition		Min	Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
		I _{SB1} (CMOS)	Com.		100	μΑ
Isa	Vcc ⁽¹⁾ Standby Current	$\overline{CE} = V_{CC}-0.3$ to $V_{CC} + 1.0V$	Ind.,Mil.		200	μΑ
156	VGC Claridby Current	I _{SB2} (TTL)	Com.		2	mA
		$\overline{CE} = 2.0$ to $V_{CC} + 1.0V$	Ind.,Mil.		3	mA
loo	Vcc Active Current	$f = 5MHz, I_{OUT} = 0mA,$	Com.		20	mA
Icc	VCC Active Current	CE = V _{IL}	Ind.,Mil.		25	mA
VIL	Input Low Voltage			-0.6	0.8	٧
ViH	Input High Voltage			2.0	Vcc+1	٧
VoL	Output Low Voltage	I _{OL} =2.1mA			.45	٧
		I _{OH} = -100μ A		V _C C-0.3		٧
Vон	Output High Voltage	I _{OH} = -2.5mA		3.5		٧
		I _{OH} = -400μ A	2.4		٧	

Notes: 1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} , and removed simultaneously or after \overline{OE}/V_{PP} .

A.C. Characteristics for Read Operation


						AT27C512R								
				-	10	-	12	-	15	-	20	-	25	
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{ACC} (4) Address to Output Delay	CE=OE/V _{PP}	Com.		100		120		150		200		250	ns	
	Output Delay	=VIL	Ind., Mil.				120		150		200		250	ns
t _{CE} (3)	CE to Output Delay	OE/V _{PP} =V _{IL}			100		120		150		200		250	ns
toE (3,4)	OE/V _{PP} to Output Delay	CE=VIL			40		50		60		75		100	ns
t _{DF} (2,5)	OE/V _{PP} or CE High to Output Float	CE=V _{IL}			30		45		50		55		60	ns
tон	Output Hold from Address, CE or OE/V _{PP} , whichever occurred first	CE=OE/V _{PP} =V _{IL}			0		0		0		0		0	ns

Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.


A.C. Waveforms for Read Operation (1)

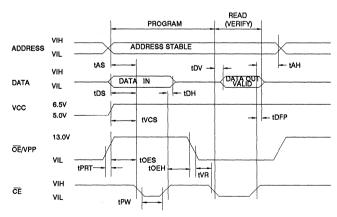
Notes:

- Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- t_{DF} is specified from OE /V_{PP} or CE, whichever occurs first. Output float is defined as the point when data is no longer driven.
- 3. OE/V_{PP} may be delayed up to t_{CE}-t_{OE} after the falling edge of CE without impact on t_{CE}.
- 4. OE /VPP may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- This parameter is only sampled and is not 100% tested.

Input Test Waveforms and Measurement Levels

t_R, t_F < 20ns (10% to 90%)

Output Test Load


Note: C_L =100pF including jig capacitance.

Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions	
CIN	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	V _{OUT} = 0V	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .
- t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.

AT27C512R

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.5\pm0.25V$, $\overline{OE}/V_{PP}=13.0\pm0.25V$

Sym-		Test	Li		
bol	Parameter	Conditions	Min	Max	Units
ILI	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	8.0	٧
ViH	Input High Level		2.0	V _{CC+} 1	٧
Vol	Output Low Volt.	I _{OL} = 2.1mA		.45	٧
Vон	Output High Volt.	I _{OH} = -400μA	2.4		٧
ICC2	V _{CC} Supply Curren (Program and Veri			25	mA
IPP2	OE/V _{PP} Current	CE = V _{IL}		25	mA
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

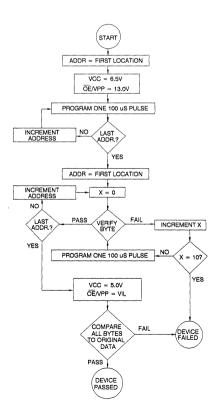
TA=25±5°C, V_{CC}=6.5±0.25V, OE/V_{PP}=13.0±0.25V

		Test			
Sym-		Conditions*	Lit		
bol	Parameter	(see Note 1)	Min	Max	Units
tas	Address Setup Time)	2		μS
toes	OE/V _{PP} Setup Time		2		μS
toeh	OE/V _{PP} Hold Time		2		μS
tos	Data Setup Time		2		μS
tah	Address Hold Time		0		μS
tDH	Data Hold Time		2		μS
tofp	CE High to Out- put Float Delay	(Note 2)	0	130	ns
tvcs	Vcc Setup Time		2		μS
tpw	CE Program Pulse Width	(Note 3)	95	105	μS
tov	Data Valid from CE	(Note 2)		1	μS
tvR	OE/V _{PP} Recovery Ti	me	2		μS
tprt	OE/V _{PP} Pulse Rise Time During Prograr	mming	50		ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20ns
Input Pulse Levels	0.45V to 2.4V
Input Timing Reference Level	. $0.8V$ to $2.0V$
Output Timing Reference Level	. 0.8V to 2.0V

Notes:


- 1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} and removed simultaneously or after \overline{OE}/V_{PP} .
- This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven — see timing diagram.
- 3. Program Pulse width tolerance is $100\mu \sec \pm 5\%$.

Atmel's 27C512R Integrated Product Identification Code:

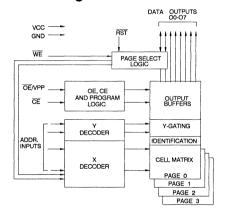
		Pins							Hex	
Codes	AO	07	O 6	O5	04	Оз	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	0	0	0	0	1	1	0	1	0D

Rapid Programming Algorithm

A $100\mu s$ $\overline{\text{CE}}$ pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and $\overline{\text{OE}}/\text{Vpp}$ is raised to 13.0V. Each address is first programmed with one $100\mu s$ $\overline{\text{CE}}$ pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive $100\mu s$ pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. $\overline{\text{OE}}/\text{Vpp}$ is then lowered to V_{IL} and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

tacc	Ico	; (mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby	Ordering Code	гаскауе	Operation Hange
100	20	0.1	AT27C512R-10DC AT27C512R-10KC AT27C512R-10LC	28DW6 32KW 32LW	Commercial (0°C to 70°C)
120	20	0.1	AT27C512R-12DC AT27C512R-12KC AT27C512R-12LC	28DW6 32KW 32LW	Commercial (0°C to 70°C)
120	25	0.2	AT27C512R-12DI AT27C512R-12KI AT27C512R-12LI	28DW6 32KW 32LW	Industrial (-40°C to 85°C)
			AT27C512R-12DM AT27C512R-12KM AT27C512R-12LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C512R-12DM/883 AT27C512R-12KM/883 AT27C512R-12LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
150	20	0.1	AT27C512R-15DC AT27C512R-15JC AT27C512R-15KC AT27C512R-15LC AT27C512R-15PC AT27C512R-15RC	28DW6 32J 32KW 32LW 28P6 28R	Commercial (0°C to 70°C)
150	25	0.2	AT27C512R-15DI AT27C512R-15JI AT27C512R-15KI AT27C512R-15LI AT27C512R-15PI AT27C512R-15RI	28DW6 32J 32KW 32LW 28P6 28R	Industrial (-40°C to 85°C)
			AT27C512R-15DM AT27C512R-15KM AT27C512R-15LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C512R-15DM/883 AT27C512R-15KM/883 AT27C512R-15LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	20	0.1	AT27C512R-20DC AT27C512R-20JC AT27C512R-20KC AT27C512R-20LC AT27C512R-20PC AT27C512R-20RC	28DW6 32J 32KW 32LW 28P6 28R	Commercial (0°C to 70°C)

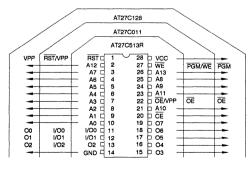
tacc	Ico	(mA)	0.4.2.0.0.4.	D!	Occupation Bosons
(ns)	Active	Standby	Ordering Code	Package	Operation Range
200	25	0.2	AT27C512R-20DI AT27C512R-20JI AT27C512R-20KI AT27C512R-20LI AT27C512R-20PI AT27C512R-20RI	28DW6 32J 32KW 32LW 28P6 28R	Industrial (-40°C to 85°C)
			AT27C512R-20DM AT27C512R-20KM AT27C512R-20LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C512R-20DM/883 AT27C512R-20KM/883 AT27C512R-20LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	20	0.1	AT27C512R-25DC AT27C512R-25JC AT27C512R-25KC AT27C512R-25LC AT27C512R-25PC AT27C512R-25RC	28DW6 32J 32KW 32LW 28P6 28R	Commercial (0°C to 70°C)
250	25	0.2	AT27C512R-25DI AT27C512R-25JI AT27C512R-25KI AT27C512R-25LI AT27C512R-25PI AT27C512R-25RI	28DW6 32J 32KW 32LW 28P6 28R	Industrial (-40°C to 85°C)
			AT27C512R-25DM AT27C512R-25KM AT27C512R-25LM	28DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C512R-25DM/883 AT27C512R-25KM/883 AT27C512R-25LM/883	28DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
120	25	0.2	5962-87648 04 XX 5962-87648 04 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
150	25	0.2	5962-87648 01 XX 5962-87648 01 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	25	0.2	5962-87648 02 XX 5962-87648 02 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	25	0.2	5962-87648 03 XX 5962-87648 03 YX	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

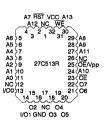


Package Type							
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)						
32J	32 Lead, Plastic, J-Leaded Chip Carrier OTP (PLCC)						
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)						
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)						
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)						
28R	28 Lead, 0.330" Wide, Plastic Gull Wing Small Outline OTP (SOIC)						

Features

- Paged Configurations with Page Reset on Power-Up or RST Signal
- 4 Pages, 16K x 8
- Low Power CMOS Operation 100 μA max. Standby 20 mA max. Active at 5 MHz
- Fast Read Access Time 120ns
- Wide Selection of JEDEC Standard Packages Including OTP 28-Lead 600 mil Cerdip and OTP Plastic DIP or SOIC 32-Pad LCC and OTP PLCC
- 5V± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Rapid Programming 100μ s/byte (typical)
- Two-line Control
- . CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- . Military, Commercial and Industrial Temperature Ranges
- Fully Compatible with 27128, 27513, 27011


Block Diagram


Address	Number	Bits per
Pins	of Pages	Page
A0-A13	4	131,072

Pin Name	Function
A0-A13	Addresses
02-07	Outputs
I/O0-I/O1	Input/Output
CE	Chip Enable
OE/V _{PP}	Output Enable
WE	Page Write Enable
RST	Page Reset
NC	No Connect

Pin Configurations

Note: JEDEC standard pinouts for AT27C011 and AT27C128 are shown for comparison only.

Note: PLCC Package Pins 1 and 17 are DON'T CONNECT.

512K (4x16Kx8) UV Erasable Paged CMOS EPROM

Description

The AT27C513R is a low-power, high performance 524,288 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM). This device requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 120ns, making this part compatible with high performance microprocessor systems by eliminating the need for speed-reducing WAIT states.

The AT27C513R features page mode addressing. Atmel's 27C513R has 4 pages, each organized 16K x 8, and provides a compatible upgrade for existing 128K EPROM based designs. Increased memory capacity and improved system performance can now be easily retrofitted without using costly additional board space.

The AT27C513R has an automatic page latch clear circuit to ensure consistent page selection during system bootstrapping. The page latches are automatically reset to page 0 upon power-up (resets typically for $V_{CC} \le 3.8V$) or when \overline{RST} is brought low (V_{IL}) .

The AT27C513R meets or exceeds all specifications for the AT27C513. Atmel's 1.2 micron scaled CMOS technology additionally provides lower active power consumption, and significantly faster programming. Power consumption is typically only 8mA in Active Mode and less than 10uA in Standby.

The AT27C513R is available in a choice of industry standard JEDEC-approved packages including; 28-pin DIP in ceramic or one time programmable (OTP) plastic, and 32-pad ceramic leadless chip carrier (LCC) or OTP plastic J-leaded chip carrier (PLCC). All devices feature a two line control

(CE, OE) to give designers the flexibility to prevent bus contention.

With a high density 64K byte storage capability, the Atmel 512K EPROMs allow firmware to be stored reliably and to be quickly accessed by the system without the delays of mass storage media.

The AT27C513R has additional features to ensure high quality and efficient production use. The rapid programming algorithm reduces the time required to program the chip and guarantees reliable programming. Programming time is typically 100 μ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturing origin. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Page Selection Data (1)

	Page D _{IN}					
Page Selection	I/O1	I/O0				
Select Page 0	VIL	VIL				
Select Page 1	VIL	ViH				
Select Page 2	ViH	VIL				
Select Page 3	VIH	ViH				

Note: 1. The AT27C513R automatically resets to page 0 whenever $V_{CC} \le 3.8V$ (typical conditions).

Operating Modes

<u> </u>								
MODE \ PIN	CE	OE/V _{PP}	WE	RST	Ai	V _{CC} (3)	Outputs	I/Oi
Read	VIL	VIL	ViH	ViH	Ai	Vcc	Dout	Dout
Output Disable	VIL	ViH	ViH	ViH	X ⁽¹⁾	Vcc	High Z	High Z
Standby	VIH	Х	Х	ViH	Х	Vcc	High Z	High Z
Rapid Program ⁽²⁾	VIL	Vpp	ViH	VIH	Ai	Vcc	DIN	DiN
PGM Verify	VIL	VIL	ViH	VIH	Ai	Vcc	Dout	Dout
PGM Inhibit	VIH	V _{PP}	ViH	VIH	X	Vcc	High Z	High Z
Page Select	VIL	VIH	VIL	ViH	Х	V _{CC} (3)	High Z	Page D _{IN}
Page Reset	Х	Х	Х	VIL	Х	Vcc (3)	High Z	High Z
Product Identification ⁽⁵⁾	VIL	VIL	ViH	VIH	A9=V _H ⁽⁴⁾ A0=V _{IH} or V _{IL} A1-A13=V _{IL}	Vcc	Identification Code	Identification Code

Notes: 1. X can be VIL or VIH.

- 2. Refer to Programming characteristics.
- 3. Page 0 is automatically selected at power up $(V_{CC} < 3.8V)$.
- 4. $V_H = 12.0 \pm 0.5 V$.

5. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}) , except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
VPP Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾
Integrated UV Erase Dose7258 w• sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

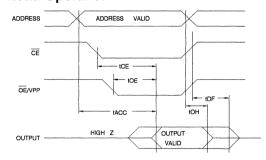
D.C. and A.C. Operating Conditions for Read and Page Select Operations

		_	AT27	C513R	
		-12	-15	-20	-25
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
Vcc Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

D.C. and Operating Characteristics for Read and Page Select Operations

Symbol	Parameter	Condition		Min	Max	Units
l _{LI}	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
llo	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
		I _{SB1} (CMOS)	Com.		100	μΑ
ISB Vo	V _{CC} ⁽¹⁾ Standby Current	$\overline{CE} = V_{CC}-0.3$ to $V_{CC} + 1.0V$	Ind.,Mil.		200	μΑ
	VCC · Standby Current	I _{SB2} (TTL)	Com.		2	mA
		$\overline{CE} = 2.0 \text{ to V}_{CC} + 1.0 \text{V}$	Ind.,Mil.		3	mA
1	VCC Active Current	$f = 5MHz, I_{OUT} = 0mA,$	Com.		20	mA
Icc		CE =V _{IL}	Ind.,Mil.		25	mA
VIL	Input Low Voltage			-0.6	0.8	٧
ViH	Input High Voltage			2.0	V _{CC} + 1	٧
Vol	Output Low Voltage	I _{OL} = 2.1mA			.45	V
		I _{OH} = -100μ A		V _{CC} -0.3		٧
Vон	Output High Voltage	I _{OH} = -2.5mA		3.5		٧
		I _{OH} = -400μ A		2.4		٧
VCLR	Page Latch Clear VCC Supply Voltage				4.0	V

Notes: 1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} , and removed simultaneously or after \overline{OE}/V_{PP} .



A.C. Characteristics for Read Operation

				AT27C513R								
				-1	2	-	15	-	20	-2	25	
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Max	Min	Max	Units
tacc (4)	Address to	$\overline{CE} = \overline{OE}/V_{PP}$	Com., Ind.		120		150		200		250	ns
Output Delay	Output Delay	=VIL	Mil.				150		200		250	ns
t _{CE} (3)	CE to Output Delay	$\overline{OE}/V_{PP} = V_{IL}$			120		150		200		250	ns
toE (3,4)	OE/V _{PP} to Output Delay	CE = V _{IL}			60		60		75		100	ns
t _{DF} ^(2,5)	OE/V _{PP} or CE High to Output Float	CE = VIL			50		50		55		60	ns
tон	Output Hold from Address, CE or OE/V _{PP} , which- ever occurred first	CE = OE/Vpp = VIL			0		0		0		0	ns


A.C. Waveforms for Read Operation (1)

Notes:

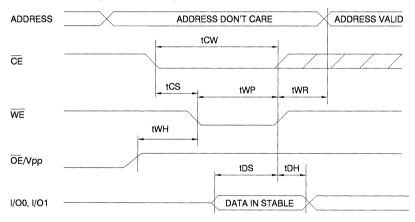
- Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- t_{DF} is specified from OE/V_{PP} or CE, whichever occurs first.
 Output float is defined as the point when data is no longer driven.
- 3. \overline{OE}/V_{PP} may be delayed up to t_{CE}-t_{OE} after the falling edge of \overline{CE} without impact on t_{CE}.
- OE/V_{PP} may be delayed up to t_{ACC}-t_{OE} after the address is valid without impact on t_{ACC}.
- 5. This parameter is only sampled and is not 100% tested.

A.C. Waveforms for Page Reset Operation

Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions
CIN	4	6	pF	V _{IN} = 0V
Соит	8	12	pF	Vout = 0V

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

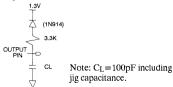

A.C. Characteristics for Page Select and Page Reset Operations

			AT27C513R								
				12	-1	15	-2	20	-2	:5	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Units
tcw (1)	CE to End of Write	OE/Vpp=ViH	110		110		145		180		ns
twp (1)	Write Pulse Width	OE/V _{PP} = V _{IH}	60		60		80		100		ns
twa (3)	Write Recovery Time		20		20		20		20		ns
tos	Data Setup Time	OE/Vpp = ViH	35		35		45		50		ns
toH	Data Hold Time	OE/Vpp = ViH	20		20		20		20		ns
tcs	CE to Write Setup Time	$\overline{OE}/V_{PP} = V_{IH}$	0		0		0		0		ns
t _{WH} ^(2,3)	WE Low from OE/V _{PP} High Delay Time		50		50		50		55		ns
trst	Reset Low Time		120		150		200		250		ns
trav	Reset to Address Valid		120		150		200		250		ns


Notes: 1. Writing can be terminated by either \overline{CE} or \overline{WE} going high after the minimum t_{CW} or t_{WP} reguirements have been met.

- 2. OE/Vpp must be at V_{IH} during a Page Select.
- 3. This parameter is only sampled and is not 100% tested.

A.C. Waveforms for Page Select Operation



Input Test Waveforms and Measurement Levels

 $t_R, t_F < 20 \text{ns} (10\% \text{ to } 90\%)$

Output Test Load

D.C. Programming Characteristics

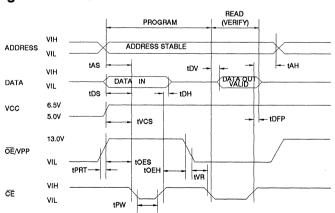
T_A=25±5°C, V_{CC}=6.5±0.25V, OE/V_{PP}=13.0±0.25V

Sym-		Test	Li	mits	
bol	Parameter	Conditions	Min	Max	Units
ILI	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	0.8	٧
ViH	Input High Level		2.0	V _{CC+} 1	٧
Vol	Output Low Volt.	l _{OL} = 2.1mA		.45	٧
Vон	Output High Volt.	I _{OH} = -400μA	2.4		٧
ICC2	V _{CC} Supply Currer (Program and Ver			25	mA
IPP2	OE/V _{PP} Current	CE = V _{IL}		25	mA
VID	A9 Product Identification Voltage		11.5	12.5	٧

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20ns
Input Pulse Levels	.0.45V to 2.4V
Input Timing Reference Level	0.8V to 2.0V
Output Timing Reference Level	0.8V to 2.0V

A.C. Programming Characteristics


T_A=25±5°C, V_{CC}=6.5±0.25V, OE/V_{PP}=13.0±0.25V

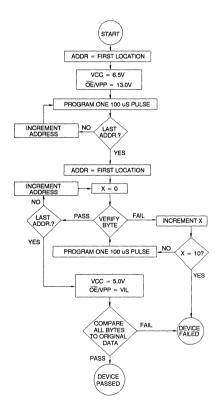
Sym-		Test Conditions*	Lir		
bol	Parameter	(see Note 1)	Min	Max	Units
tas	Address Setup Time)	2		μS
toes	OE/V _{PP} Setup Time		2		μS
toeh	OE/V _{PP} Hold Time		2		μS
tos	Data Setup Time		2		μS
tan	Address Hold Time		0		μS
tDH	Data Hold Time		2		μS
tDFP	CE High to Out- put Float Delay	(Note 2)	0	130	ns
tvcs	V _{CC} Setup Time		2		μS
tpw	CE Program Pulse Width	(Note 3)	95	105	μS
tov	Data Valid from CE	(Note 2)		1	μS
tvR	OE/V _{PP} Recovery Ti	2		μS	
tprt	OE/V _{PP} Pulse Rise Time During Programming		50		ns

Notes:

- 1. V_{CC} must be applied simultaneously or before \overline{OE}/V_{PP} and removed simultaneously or after \overline{OE}/V_{PP} .
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is 100\u03c4sec±5\u03c4.

Programming Waveforms (1)

Notes


- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .
- t_{DV} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3. The proper page to be programmed must be selected by a page select operation prior to programming the AT27C513R.

AT27C513R

Rapid Programming Algorithm (1)

A 100μ s $\overline{\text{CE}}$ pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and $\overline{\text{OE}}/\text{Vpp}$ is raised to 13.0V. Each address is first programmed with one 100μ s $\overline{\text{CE}}$ pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. $\overline{\text{OE}}/\text{Vpp}$ is then lowered to V_{IL} and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

 The proper page to be programmed must be selected by a page select operation prior to programming the AT27C513R.

Erasure Characteristics

The entire memory array of the AT27C513R is erased (all outputs read as V_{OH}) after exposure to ultraviolet light at a wavelength of 2537 Å. Complete erasure is assured after a minimum of 20 minutes exposure using $12,000\,\mu\text{W/cm}^2$ intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of $15\text{W} \cdot \text{sec/cm}^2$. To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

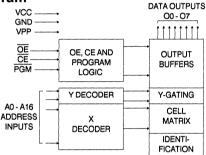
Identification Code:

		Pins							Hex	
Codes	AO	07	O6	O5	04	Оз	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	0	0	0	0	1	1	1	0	0E

tacc	Ico	(mA)	Outsian Outs	Darling	Operation Range		
(ns)	Active	Standby	Ordering Code	Package	Operation Hange		
120	20	0.1	AT27C513R-12DC AT27C513R-12LC	28DW6 32LW	Commercial (0°C to 70°C)		
120	25	0.2	AT27C513R-12DI AT27C513R-12LI	28DW6 32LW	Industrial (-40°C to 85°C)		
150	20	0.1	AT27C513R-15DC AT27C513R-15LC AT27C513R-15PC AT27C513R-15JC AT27C513R-15RC	28DW6 32LW 28P6 32J 28R	Commercial (0°C to 70°C)		
150	25	0.2	AT27C513R-15DI AT27C513R-15LI AT27C513R-15PI AT27C513R-15JI AT27C513R-15RI	28DW6 32LW 28P6 32J 28R	Industrial (-40°C to 85°C)		
			AT27C513R-15DM AT27C513R-15LM	28DW6 32LW	Military (-55°C to 125°C)		
			AT27C513R-15DM/883 AT27C513R-15LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
200	20	0.1	AT27C513R-20DC AT27C513R-20LC AT27C513R-20PC AT27C513R-20JC AT27C513R-20RC	28DW6 32LW 28P6 32J 28R	Commercial (0°C to 70°C)		
200	25	0.2	AT27C513R-20DI AT27C513R-20LI AT27C513R-20PI AT27C513R-20JI AT27C513R-20RI	28DW6 32LW 28P6 32J 28R	Industrial (-40°C to 85°C)		
			AT27C513R-20DM AT27C513R-20LM	28DW6 32LW	Military (-55°C to 125°C)		
			AT27C513R-20DM/883 AT27C513R-20LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)		
250	20	0.1	AT27C513R-25DC AT27C513R-25LC AT27C513R-25PC AT27C513R-25JC AT27C513R-25RC	28DW6 32LW 28P6 32J 28R	Commercial (0°C to 70°C)		

tacc	lcc	(mA)	Ordering Code	Package	Operation Range
(ns)	(ns) Active Standby		Ordering Gode	1 ackage	Operation Hange
250	250 25 0.2		AT27C513R-25DI 28DW6 AT27C513R-25LI 32LW AT27C513R-25PI 28P6 AT27C513R-25JI 32J AT27C513R-25RI 28R		Industrial (-40°C to 85°C)
			AT27C513R-25DM AT27C513R-25LM	28DW6 32LW	Military (-55°C to 125°C)
		AT27C513R-25DM/883 AT27C513R-25LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	

	Package Type						
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)						
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)						
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)						
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)						
28R	28 Lead, 0.330" Wide, Plastic Gull Wing Small Outline OTP (SOIC)						


Features

- Low Power CMOS Operation 100 uA max. Standby
 - 25 mA max. Active at 5 MHz (AT27C010L) 40 mA max. Active at 5 MHz (AT27C010)
- Fast Read Access Time 120ns
- Wide Selection of JEDEC Standard Packages Including OTP 32-Lead 600 mil Cerdip and OTP Plastic DIP 32-Pad LCC

32-Lead JLCC and OTP PLCC

- 5V± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Rapid Programming 100µs/byte (typical)
- **Two-line Control**
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Commercial and Industrial Temperature Ranges

Block Diagram

Description

The AT27C010/L chip family is a low-power, high performance 1,048,576 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized as 128K x 8 bits. They require only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 120ns, eliminating the need for speed reducing WAIT states on high performance microprocessor systems.

Two power versions are offered. In read mode, the AT27C010 typically consumes 25mA while the AT27C010L takes only 8mA. Standby mode supply current for both parts is typically less than 20µA.

Pin Configurations

Pin Name	Function
A0-A16	Addresses
00-07	Outputs
CE	Chip Enable
ŌĒ	Output Enable
PGM	Program Strobe
NC	No Connect

VPP A16	000	1 2	~~	32 31		VCC PGM
A15	Ч	3 4 5 6		30	Ľ	NC
A12	9	4		29	Р	A14
A7	П	5		28	P	A13
A6	d	6		27	Þ	A8
A5	nnn	7		27 26	Þ	A9
A5 A4		8		25	Ь	A11 OE
A3	8			24	Þ	ŌĒ
A3 A2	þ	10		23	Ь	A10
A1		11		22	Þ	CE
AO	d	12		21	Þ	07
00	d	13		20	Б	O6
01	q	14		19	Þ	O5
02	d	15		18	6	04
GND	q	16		17	Þ	03

1 MEGABIT $(128K \times 8)$ UV Erasable **CMOS EPROM**

Description (Continued)

The AT27C010/L come in a choice of industry standard JEDEC-approved packages including; 32-pin DIP in ceramic or one time programmable (OTP) plastic, 32-pad ceramic leadless chip carrier (LCC), and 32-lead ceramic (JLCC) or OTP plastic (PLCC) J-leaded chip carrier. All devices feature two line control (\overline{CE} , \overline{OE}) to give designers the flexibility to prevent bus contention.

With high density 128K byte storage capability, the AT27C010/L allow firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27C010/L have additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100μ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27C010/L is erased (all outputs read as V_{OH}) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W•sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
VPP Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾
Integrated UV Erase Dose7258 w•sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is VCC+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

MODE \ PIN	CE	ŌĒ	PGM	Ai	V_{PP}	Vcc	Outputs
Read	VIL	VIL	X ⁽¹⁾	Ai	Χ	Vcc	Dout
Output Disable	Х	VIH	Х	X	Х	Vcc	High Z
Standby	ViH	Х	Х	Х	X ⁽⁵⁾	Vcc	High Z
Fast Program ⁽²⁾	VIL	ViH	VIL	Ai	VPP	Vcc	DiN
PGM Verify	VIL	VIL	ViH	Ai	V _{PP}	Vcc	Dout
PGM Inhibit	ViH	Х	X	X	VPP	Vcc	High Z
Product Identification ⁽⁴⁾	VIL	ViL	х	A9 = V _H ⁽³⁾ A0 = V _{IH} or V _{IL} A1-A16 = V _{IL}	Х	Vcc	Identification Code

- Notes: 1. X can be VIL or VIH.
 - 2. Refer to Programming characteristics.
 - 3. $V_H = 12.0 \pm 0.5 V$.
 - Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H
- and A0 which is toggled low $(V_{\rm IL})$ to select the Manufacturer's Identification byte and high $(V_{\rm IH})$ to select the Device Code byte.
- Standby V_{CC} current (I_{SB}) is specified with V_{PP}=V_{CC}. V_{CC} > V_{PP} will cause a slight increase in I_{SB}.

D.C. and A.C. Operating Conditions for Read Operation

		AT27C010 / AT27C010L							
		-12	-15	-17	-20	-25			
Operating Temperature (Case)	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C			
	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C			
	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C			
Vcc Power Supply		5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%			

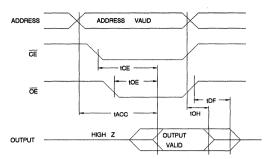
D.C. and Operating Characteristics for Read Operation

Symbol	Parameter	Condition			Min	Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$		5	μΑ		
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0$).1V			10	μΑ
IPP1 (2)	V _{PP} ⁽¹⁾ Read/Standby Current	Vpp = 3.8 to Vcc + 0.3V				10	μΑ
IsB	Vcc ⁽¹⁾ Standby Current	I _{SB1} (CMOS), CE = V _{CC} -0.3 to V _{CC} + 1.0V				100	μΑ
		I _{SB2} (TTL), $\overline{CE} = 2.0$ to		1	mA		
	V _{CC} Active Current	$\frac{f=5MHz, I_{OUT}=0mA,}{CE=V_{IL}}$	AT27C010L	Com.		25	mA
Icc				Ind.,Mil.		30	mA
100			AT27C010	Com.		40	mA
				Ind.,Mil.		50	mA
VIL	Input Low Voltage				-0.6	0.8	V
ViH	Input High Voltage				2.0	Vcc+1	٧
Vol	Output Low Voltage	IoL = 2.1mA				.45	٧
	Output High Voltage	I _{OH} = -100μ A			Vcc-0.3	3	V
Vон		I _{OH} = -2.5mA			3.5		٧
		I _{OH} = -400μ A					V

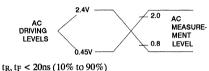
Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

A.C. Characteristics for Read Operation

				AT27C010 / AT27C010L										
				-12		-15		-17		-20		-25		
Symbol	Parameter	Condition		Min	Max	Min	Мах	Min	Max	Min	Мах	Min	Max	Units
tacc (3)	Address to Output Delay	CE=OE =V _{IL}	Com.		120		150		170		200		250	ns
			Ind.,Mil.		120		150		170		200		250	ns
tce (2)	CE to Output Delay	OE =V _{IL}			120		150		170		200		250	ns
toE (2,3)	OE to Output Delay	CE=V _{IL}			35		40		65		75		100	ns
t _{DF} (4,5)	OE High to Output Float	CE=V _{IL}			30		40		50		55		60	ns
tон	Output Hold from Address, CE or OE, whichever occurred first	CE=OE =V _{IL}			0		0		0		0		0	ns


Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .


A.C. Waveforms for Read Operation (1)

Notes:

- Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- 2. \overline{OE} may be delayed up to t_{CE}-t_{OE} after the falling edge of \overline{CE} without impact on t_{CE}.
- OE may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- This parameter is only sampled and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

Output Test Load


Note: C_L=100pF including jig capacitance.

Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions	
Cin	4	8	pF	$V_{IN} = 0V$	
Соит	8	12	` pF	$V_{OUT} = 0V$	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .
- 2. toE and tDFP are characteristics of the device but must be accommodated by the programmer.
- When programming the AT27C010/L a 0.1µF capacitor is required across Vpp and ground to suppress spurious voltage transients.

AT27C010/L

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.5\pm0.25V$, $V_{PP}=13.0\pm0.25V$

Sym-		Test	LI		
bol	Parameter	Conditions	Min	Max	Units
lu	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	8.0	٧
VIH	Input High Level		2.0	V _{CC+} 1	٧
VOL	Output Low Volt.	I _{OL} = 2.1mA		.45	٧
Vон	Output High Volt.	I _{OH} = -400μA	2.4		٧
ICC2	Vcc Supply Curren (Program and Veri			40	mA
IPP2	V _{PP} Supply Current	CE = PGM = V	/ _{IL}	20	mA
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

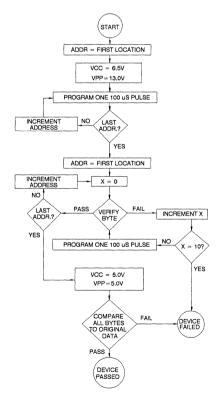
 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.5\pm0.25V$, $V_{PP}=13.0\pm0.25V$

Sym-		Test Conditions*	Liı	nits	
bol	Parameter	(see Note 1)	Min	Max	Units
tas	Address Setup Tir	ne	2		μS
tces	CE Setup Time		2		μS
toes	OE Setup Time		2		μS
tos	Data Setup Time		2		μS
tah	Address Hold Tim	е	0		μS
tDH	Data Hold Time		2		μS
tDFP	OE High to Output Float Delay	(Note 2)	0	130	ns
tvps	V _{PP} Setup Time		2		μS
tvcs	Vcc Setup Time		2		μS
tpw	PGM Program Pulse Width	(Note 3)	95	105	μS
toE	Data Valid from O	Ē		150	ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20ns
Input Pulse Levels	. 0.45V to 2.4V
Input Timing Reference Level	0.8V to 2.0V
Output Timing Reference Level	0.8V to 2.0V

Notes:


- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is $100\mu \sec \pm 5\%$.

Atmel's 27C010/L Integrated Product Identification Code:

		Pins							Hex	
Codes	AO	07	O6	O5	O4	Оз	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	0	0	0	0	0	1	0	1	05

Rapid Programming Algorithm

A 100μ s \overline{PGM} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 100μ s \overline{PGM} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

tacc	loc	(mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
120	40	0.1	AT27C010-12DC AT27C010-12KC AT27C010-12LC	32DW6 32KW 32LW	Commercial (0°C to 70°C)
120	50	0.1	AT27C010-12DI AT27C010-12KI AT27C010-12LI	32DW6 32KW 32LW	Industrial (-40°C to 85°C)
			AT27C010-12DM AT27C010-12KM AT27C010-12LM	32DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C010-12DM/883 AT27C010-12KM/883 AT27C010-12LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
150	40	0.1	AT27C010-15DC AT27C010-15JC AT27C010-15KC AT27C010-15LC AT27C010-15PC	32DW6 32J 32KW 32LW 32P6	Commercial (0°C to 70°C)
150	50	0.1	AT27C010-15DI AT27C010-15JI AT27C010-15KI AT27C010-15LI AT27C010-15PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)
			AT27C010-15DM AT27C010-15KM AT27C010-15LM	32DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C010-15DM/883 AT27C010-15KM/883 AT27C010-15LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
170	40	0.1	AT27C010-17DC AT27C010-17JC AT27C010-17KC AT27C010-17LC AT27C010-15PC	32DW6 32J 32KW 32LW 32P6	Commercial (0°C to 70°C)
170	50	0.1	AT27C010-17DI AT27C010-17JI AT27C010-17KI AT27C010-17LI AT27C010-17PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)
			AT27C010-17DM AT27C010-17KM AT27C010-17LM	32DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C010-17DM/883 AT27C010-17KM/883 AT27C010-17LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

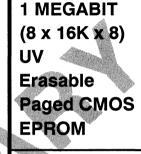
tacc	lco	(mA)	Outside a Costa	Dankara	On anotion Dance	
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
200	40	0.1	AT27C010-20DC AT27C010-20JC AT27C010-20KC AT27C010-20LC AT27C010-20PC	32DW6 32J 32KW 32LW 32P6	Commercial (0°C to 70°C)	
200	50	0.1	AT27C010-20DI AT27C010-20JI AT27C010-20KI AT27C010-20LI AT27C010-20PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)	
			AT27C010-20DM AT27C010-20KM AT27C010-20LM	32DW6 32KW 32LW	Military (-55°C to 125°C)	
			AT27C010-20DM/883 AT27C010-20KM/883 AT27C010-20LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
250	40	0.1	AT27C010-25DC AT27C010-25JC AT27C010-25KC AT27C010-25LC AT27C010-25PC	32DW6 32J 32KW 32LW 32P6	Commercial (0°C to 70°C)	
250	50	0.1	AT27C010-25DI AT27C010-25JI AT27C010-25KI AT27C010-25LI AT27C010-25PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)	
			AT27C010-25DM AT27C010-25KM AT27C010-25LM	32DW6 32KW 32LW	Military (-55°C to 125°C)	
			AT27C010-25DM/883 AT27C010-25KM/883 AT27C010-25LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)	

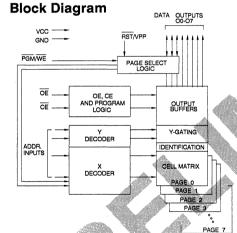
	Package Type						
32DW6	32 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)						
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)						
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)						
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)						
32P6	32 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)						

tacc	lec	; (mA)								
(ns)			Ordering Code	Package	Operation Range					
120	25	0.1	AT27C010L-12DC AT27C010L-12KC AT27C010L-12LC	32DW6 32KW 32LW	Commercial (0°C to 70°C)					
120	30	0.1	AT27C010L-12DI AT27C010L-12KI AT27C010L-12LI	32DW6 32KW 32LW	Industrial (-40°C to 85°C)					
			AT27C010L-12DM AT27C010L-12KM AT27C010L-12LM	32DW6 32KW 32LW	Military (-55°C to 125°C)					
			AT27C010L-12DM/883 AT27C010L-12KM/883 AT27C010L-12LM/883	32DW6 32KW 32LW	Military Class B, Fully Compliant (-55°C to 125°C)					
150	25	0.1	AT27C010L-15DC AT27C010L-15JC AT27C010L-15LC AT27C010L-15KC AT27C010L-15PC	32DW6 32J 32LW 32KW 32P6	Commercial (0°C to 70°C)					
150	30	30	30	30	30	30	0.1	AT27C010L-15DI AT27C010L-15JI AT27C010L-15KI AT27C010L-15LI AT27C010L-15PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)
			AT27C010L-15DM AT27C010L-15KM AT27C010L-15LM	32DW6 32KW 32LW	Military (-55°C to 125°C)					
			AT27C010L-15DM/883 AT27C010L-15KM/883 AT27C010L-15LM/883	32DW6 32KW 32LW	Military Class B, Fully Compliant (-55°C to 125)					
170	25	0.1	AT27C010L-17DC AT27C010L-17JC AT27C010L-17KC AT27C010L-17LC AT27C010L-17PC	32DW6 32J 32KW 32LW 32P6	Commercial (0°C to 70°C)					
170	30	0.1	AT27C010L-17DI AT27C010L-17JI AT27C010L-17KI AT27C010L-17LI AT27C010L-17PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)					
			AT27C010L-17DM AT27C010L-17KM AT27C010L-17LM	32DW6 32KW 32LW	Military (-55°C to 125°C)					
			AT27C010L-17DM/883 AT27C010L-17KM/883 AT27C010L-17LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)					

tacc	Ico	(mA)	Ordering Code	Dagkaga	Operation Dange
(ns)	Active	Standby	Ordering Code	Package	Operation Range
200	25	0.1	AT27C010L-20DC AT27C010L-20JC AT27C010L-20KC AT27C010L-20LC AT27C010L-20PC	32DW6 32J 32KW 32LW 32P6	Commercial (0°C to 70°C)
200	30	0.1	AT27C010L-20DI AT27C010L-20JI AT27C010L-20KI AT27C010L-20LI AT27C010L-20PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)
			AT27C010L-20DM AT27C010L-20KM AT27C010L-20LM	32DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C010L-20DM/883 AT27C010L-20KM/883 AT27C010L-20LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	25	0.1	AT27C010L-25DC AT27C010L-25JC AT27C010L-25KC AT27C010L-25LC AT27C010L-25PC	32DW6 32J 32KW 32LW 32P6	Commercial (0°C to 70°C)
250	30	0.1	AT27C010L-25DI AT27C010L-25JI AT27C010L-25KI AT27C010L-25LI AT27C010L-25PI	32DW6 32J 32KW 32LW 32P6	Industrial (-40°C to 85°C)
			AT27C010L-25DM AT27C010L-25KM AT27C010L-25LM	32DW6 32KW 32LW	Military (-55°C to 125°C)
			AT27C010L-25DM/883 AT27C010L-25KM/883 AT27C010L-25LM/883	32DW6 32KW 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

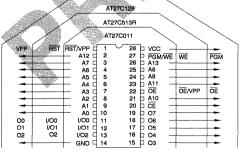
	Package Type							
32DW6	32 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)							
32J	32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)							
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)							
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)							
32P6	32 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)							




4-90

Features

- Paged Configurations with Page Reset on Power-Up or RST Signal 8 Pages, 16K x 8
- Low Power CMOS Operation 100 μA max. Standby 25 mA max. Active at 5 MHz
- Fast Read Access Time 150ns
- Wide Selection of JEDEC Standard Packages Including OTP 28-Lead 600 mil Cerdip and OTP Plastic DIP 32-Pad LCC and OTP PLCC
- 5V± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Rapid Programming 100μs/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- . Military, Commercial and Industrial Temperature Ranges
- Fully Compatible with 27128, 27513, 27011


Preliminary

Address	Number	Bits per
Pins	of Pages	
A0-A13	8	131,072

300000000000000000000000000000000000000	
Pin Name	Function
A0-A13	Addresses
O2-O7	Outputs
1/00-1/01	Input/Output
CE	Chip Enable
ŌĒ	Output Enable
PGM/WE	Page Write Enable
RST/V _{PP}	Page Reset
NC	No Connect

Pin Configurations

Note: JEDEC standard pinouts for AT27C513R and AT27C128 are shown for comparison only.

Note: PLCC Package Pins 1 and 17 are DON'T CONNECT.

Description

The AT27C011 is a low-power, high performance 1,048,576 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM). This device requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 150ns, making this part compatible with high performance microprocessor systems by eliminating the need for speed-reducing WAIT states.

The AT27C011 features page mode addressing. Atmel's 27C011 has 8 pages, each organized 16K x 8, and provides a compatible upgrade for existing 128K EPROM based designs. Increased memory capacity and improved system performance can now be easily retrofitted without using costly additional board space.

The AT27C011 has an automatic page latch clear circuit to ensure consistent page selection during system bootstrapping. The page latches are automatically reset to page 0 upon power-up (resets typically for $V_{CC} \le 3.8V$) or when \overline{RST}/Vpp is brought low (V_{IL}).

Atmel's 1.2 micron scaled CMOS technology provides significantly lower active power consumption than similar NMOS designs. Power consumption is typically only 8mA in Active Mode and less than 20µA in Standby.

The AT27C011 is available in a choice of industry standard JEDEC-approved packages including; 28-pin DIP in ceramic or one time programmable (OTP) plastic, and 32-pad ceramic leadless chip carrier (LCC) or OTP plastic J-leaded chip carrier (PLCC). All devices feature two line control $(\overline{CE}, \overline{OE})$ to give designers the flexibility to prevent bus contention.

With a high density 128K byte storage capability, the AT27C011 allows firmware to be stored reliably and to be quickly accessed by the system without the delays of mass storage media.

The AT27C011 has additional features to ensure high quality and efficient production use. The rapid programming algorithm reduces the time required to program the chip and guarantees reliable programming. Programming time is typically 100μ s/byte. The Integrated Product Identification Code electronically identifies the device and manufacturing origin. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Page Selection Data (1)

	3	Page D _{IN}		Page D _{IN}			
Page Selection	I/O2	I/O1	I/O0	Page Selection	I/O2	I/O1	I/O0
Select Page 0	VIL	ViL	VIL	Select Page 4	V _{IH}	VIL	VIL
Select Page 1	VIL	V _{IL}	ViH	Select Page 5	V _{IH}	VIL	ViH
Select Page 2	VIL	ViH	VIL	Select Page 6	V _{IH}	ViH	VIL
Select Page 3	VIL	ViH	VIH	Select Page 7	ViH	ViH	ViH

Note: 1. The AT27C011 automatically resets to page 0 whenever $V_{CC} \le 3.8V$ (typical conditions).

Operating Modes

MODE \ PIN	CE	ŌĒ	PGM/WE	RST/V _{PP}	Ai	Vcc (3)	Outputs	I/Oi
Read	VIL	VIL	ViH	V _{IH}	Ai	Vcc	Dout	Dout
Output Disable	VIL	ViH	ViH	VIH	X ⁽¹⁾	Vcc	High Z	High Z
Standby	ViH	Χ	Χ	Х	X	Vcc	High Z	High Z
Rapid Program ⁽²⁾	VIL	VIH	VIL	V _{PP}	Ai	Vcc	DIN	D _{IN}
PGM Verify	VIL	VIL	ViH	V_{PP}	Ai	Vcc	Dout	Dout
PGM Inhibit	ViH	Х	ViH	Vpp	Х	Vcc	High Z	High Z
Page Select	V_{IL}	ViH	ViL	VIH	Х	V _{CC} (3)	High Z	Page D _{IN}
Page Reset	Х	Χ	Х	VIL	Х	Vcc (3)	High Z	High Z
Product Identification ⁽⁵⁾	VIL	VIL	VIH	ViH	A9=V _H ⁽⁴⁾ A0=V _{IH} or V _{IL} A1-A13=V _{IL}	Vcc	Identification Code	Identification Code

Notes: 1. X can be VIL or VIH.

- 2. Refer to Programming characteristics.
- Page 0 is automatically selected at power up (V_{CC} < 3.8V).
- 4. $V_H = 12.0 \pm 0.5 V$.

5. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C	 C
Storage Temperature65°C to +150°C	2
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾	1)
Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾	1)
VPP Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾)
Integrated UV Erase Dose7258 we sec/cm	2

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

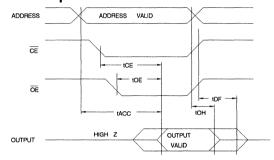
D.C. and A.C. Operating Conditions for Read and Page Select Operations

			AT27	C011	
		-15	-17	-20	-25
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature	Ind.		-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
Vcc Power Supply		5V ± 5%	5V ± 10%	5V ± 10%	5V ± 10%

D.C. and Operating Characteristics for Read and Page Select Operations

Symbol	Parameter	Condition		Min	Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			5	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
I _{PP1}	RST/V _{PP} ⁽¹⁾ Read/Standby Current	$\overline{RST}/V_{PP} = 3.8 \text{ to } V_{CC} + 0.3V$			10	μΑ
la-	Vcc ⁽¹⁾ Standby Current	$\frac{I_{SB1} \text{ (CMOS)}}{CE} = V_{CC}-0.3 \text{ to } V_{CC}+1.0V$			100	μΑ
ISB	VCC C Standby Current	I _{SB2} (TTL) CE = 2.0 to V _{CC} + 1.0V			1	mA
laa	Vcc Active Current	$f = 5MHz, I_{OUT} = 0mA,$	Com.		25	mA
Icc	ACC Active Carrell	$\overline{CE} = V_{IL}$	Ind.,Mil.		30	mA
VIL	Input Low Voltage			-0.6	0.8	٧
V _{IH}	Input High Voltage			2.0	Vcc+1	V
VoL	Output Low Voltage	I _{OL} =2.1mA			.45	٧
		I _{OH} = -100μ A		Vcc-0.3		V
Vон	Output High Voltage	I _{OH} = -2.5mA		3.5		V
		$I_{OH} = -400\mu A$		2.4		V
VCLR	Page Latch Clear Vcc Supply Voltage				4.0	٧

Notes: 1. V_{CC} must be applied simultaneously or before \overline{RST}/V_{PP} , and removed simultaneously or after \overline{RST}/V_{PP} .



A.C. Characteristics for Read Operation

			AT27C011									
				-1	15	-	17	-	20	-2	25	
Symbol	Parameter	Condition		Min	Max	Min	Max	Min	Max	Min	Max	Units
tacc (4)	Address to	CE = OE	Com.		150		170		200		250	ns
IACC V	Output Delay	$=V_{IL}$	Ind., Mil.				170		200		250	ns
tce (3)	CE to Output Delay, OE = V _{IL}				150		170		200		250	ns
toE (3,4)	OE to Output Delay	CE = VIL			65		70		75		100	ns
t _{DF} (2,5)	OE or CE High to Output Float	CE = VIL			50		55		55		60	ns
tон	Output Hold from Address, CE or OE, whichever occurred first	CE = OE = V _{IL}			0		0		0		0	ns


A.C. Waveforms for Read Operation (1)

Notes:

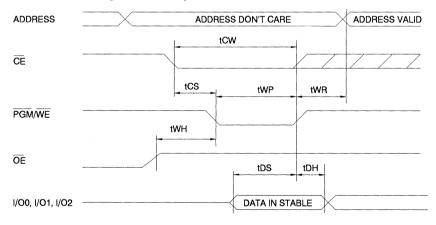
- Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- 2. t_{DF} is specified from \overline{OE} or \overline{CE} , whichever occurs first. Output float is defined as the point when data is no longer driven.
- OE may be delayed up to t_{CE}-t_{OE} after the falling edge of CE without impact on t_{CE}.
- OE may be delayed up to t_{ACC}-t_{OE} after the address is valid without impact on t_{ACC}.
- 5. This parameter is only sampled and is not 100% tested.

A.C. Waveforms for Page Reset Operation

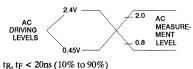
Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions
CIN	4	6	pF	V _{IN} = 0V
Соит	8	12	pF	Vout = 0V

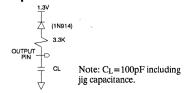
Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.


A.C. Characteristics for Page Select and Page Reset Operations

						AT27	'C011				
				15		17	-2	20	-2	25	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{CW} (1)	CE to End of Write	OE = VIH	110		125		145		180		ns
twp (1)	Write Pulse Width	ŌĒ = V _{IH}	60		70		80		100		ns
twn (3)	Write Recovery Time		20		20		20		20		ns
tos	Data Setup Time	OE = ViH	35		40		45		50		ns
t _{DH}	Data Hold Time	OE = VIH	20		20		20		20		ns
tcs	CE to Write Setup Time	OE = V _{IH}	0		0		0		0		ns
t _{WH} ^(2,3)	PGM/WE Low from OE High Delay Time		50		50		50		55		ns
trst	Reset Low Time		150		170		200		250		ns
trav	Reset to Address Valid		150		170		200		250		ns


Notes: 1. Writing can be terminated by either \overline{CE} or $\overline{PGM/WE}$ going high after the minimum t_{CW} or t_{WP} reguirements have been met.

- 2. \overline{OE} must be at V_{IH} during a Page Select.
- 3. This parameter is only sampled and is not 100% tested.


A.C. Waveforms for Page Select Operation

Input Test Waveforms and Measurement Levels

Output Test Load

D.C. Programming Characteristics

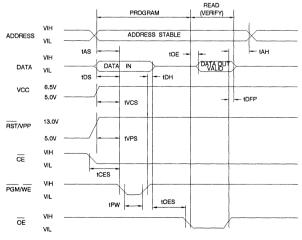
T_A=25±5°C, V_{CC}=6.5±0.25V, RST/V_{PP}=13.0±0.25V

Sym-		Test	Li	mits	
bol	Parameter	Conditions	Min	Max	Units
lu	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	0.8	٧
VIH	Input High Level		2.0	V _{CC+} 1	٧
Vol	Output Low Volt.	$l_{OL} = 2.1 mA$.45	٧
Vон	Output High Volt.	I _{OH} = -400µA	2.4		٧
ICC2	Vcc Supply Currer (Program and Ve			25	mA
I _{PP2}	RST/V _{PP} Current	CE = PGM/WI = V _{IL}	=	20	mA
ViD	A9 Product Identification Voltage		11.5	12.5	٧

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20n:
Input Pulse Levels	0.45V to 2.4V
Input Timing Reference Level	0.8V to 2.0V
Output Timing Reference Level	0.8V to 2.0V

A.C. Programming Characteristics


 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.5\pm0.25V$, $\overline{RST}/V_{PP}=13.0\pm0.25V$

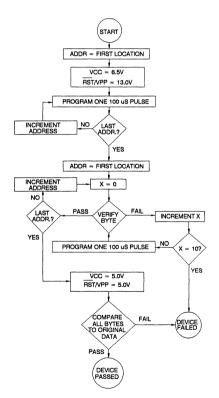
Sym-		Test Conditions*	Lir	nits	
bol	Parameter	(see Note 1)	Min	Max	Units
tas	Address Setup Time	e	2		μS
tces	CE Setup Time		2		μS
toes	OE Hold Time		2		μS
tos	Data Setup Time		2		μS
taH	Address Hold Time		0		μS
toH	Data Hold Time		2		μS
t _{DFP}	OE High to Out- put Float Delay	(Note 2)	0	130	ns
tvps	RST/V _{PP} Setup Time	•	2		μS
tvcs	Vcc Setup Time		2		μS
tpw	PGM/WE Program Pulse Width	(Note 3)	95	105	μS
toe	Data Valid from OE			150	ns

Notes:

- V_{CC} must be applied simultaneously or before RST/V_{PP} and removed simultaneously or after RST/V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is $100\mu \sec \pm 5\%$.

Programming Waveforms (1)

Notes:


- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .
- t_{DV} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3. The proper page to be programmed must be selected by a page select operation prior to programming the AT27C011.

AT27C011

Rapid Programming Algorithm (1)

A 100μ s $\overline{PGM/WE}$ pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and $\overline{RST/Vpp}$ is raised to 13.0V. Each address is first programmed with one 100μ s $\overline{PGM/WE}$ pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. $\overline{RST/Vpp}$ is then lowered to 5.0V and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

Note: 1. The proper page to be programmed must be selected by a page select operation prior to programming the AT27C011.

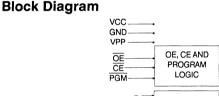
Erasure Characteristics

The entire memory array of the AT27C011 is erased (all outputs read as V_{OH}) after exposure to ultraviolet light at a wavelength of 2537 Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 μW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W • sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Identification Code:

		Pins				Hex				
Codes	AO	07	O6	O5	04	Оз	02	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	1	0	0	0	0	1	0	1	85

tacc	Ico	c (mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
150	25	0.1	AT27C011-15DC AT27C011-15LC	28DW6 32LW	Commercial (0°C to 70°C)
170	25	0.1	AT27C011-17DC AT27C011-17LC AT27C011-17PC AT27C011-17JC	28DW6 32LW 28P6 32J	Commercial (0°C to 70°C)
170	30	0.1	AT27C011-17DI AT27C011-17LI AT27C011-17PI AT27C011-17JI	28DW6 32LW 28P6 32J	Industrial (-40°C to 85°C)
			AT27C011-17DM AT27C011-17LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C011-17DM/883 AT27C011-17LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	25	0.1	AT27C011-20DC AT27C011-20LC AT27C011-20PC AT27C011-20JC	28DW6 32LW 28P6 32J	Commercial (0°C to 70°C)
200	30	0.1	AT27C011-20DI AT27C011-20LI AT27C011-20PI AT27C011-20JI	28DW6 32LW 28P6 32J	Industrial (-40°C to 85°C)
			AT27C011-20DM AT27C011-20LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C011-20DM/883 AT27C011-20LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	25	0.1	AT27C011-25DC AT27C011-25LC AT27C011-25PC AT27C011-25JC	28DW6 32LW 28P6 32J	Commercial (0°C to 70°C)
250	30	0.1	AT27C011-25DI AT27C011-25LI AT27C011-25PI AT27C011-25JI	28DW6 32LW 28P6 32J	Industrial (-40°C to 85°C)
			AT27C011-25DM AT27C011-25LM	28DW6 32LW	Military (-55°C to 125°C)
			AT27C011-25DM/883 AT27C011-25LM/883	28DW6 32LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)


	Package Type				
28DW6	28DW6 28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)				
32J	32J 32 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)				
32LW	32LW 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)				
28P6	28P6 28 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)				

Features

- Low Power CMOS Operation
 - 100 uA max. Standby
 - 30 mA max. Active at 5 MHz (AT27C1024L)
 - 50 mA max. Active at 5 MHz (AT27C1024)
- Fast Read Access Time 120ns
- Wide Selection of JEDEC Standard Packages Including OTP 40-Lead 600 mil Cerdip and OTP Plastic DIP 44-Pad LCC and OTP PLCC
- 5V± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Rapid Programming 100μ s/word (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Commercial and Industrial Temperature Ranges

GND
VPP

OE
OE, CE AND
PROGRAM
LOGIC

A0-A15
ADDRESS
INPUTS

OE, CE AND
PROGRAM
LOGIC

Y DECODER

X
CELL
MATRIX

IDENTIFICATION

Description

The AT27C1024/L chip family is a low-power, high performance 1,048,576 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 64K x 16. They require only one 5V power supply in normal read mode operation. Any word can be accessed in less than 120ns, eliminating the need for speed reducing WAIT states. The by-16 organization makes these parts ideal for high-performance 16 and 32 bit microprocessor systems.

Two power versions are offered. In read mode, the AT27C1024 typically consumes 30mA while the AT27C1024L takes only 15mA. Standby mode supply current for both parts is typically less than 20µA.

Pin Configurations

inigarations
Function
Addresses
Outputs
Chip Enable
Output Enable
Program Strobe
No Connect

Note: Both GND pins must be connected.

VPP d		10 - 1/00
	1	40 VCC
CE d	2	39 - PGM
O15 d	3	38 b NC
U14 []	4	37 - A15 36 - A14
O13 d	5	36 a A14
O12 d	6	35 A13
011	7	34 a A12
O10 d	8	33 - A11
O9 d	9	32 A10
08	10	31 5 A9
GND d	11	31 - A9 30 - GND
07	12	29 D A8
06	13	28 - A7
	14	27 5 A6
O5 0	15	26 D A5
	16	25 D A4
00 4		
O2 d	17	24 Þ A3
03 d 02 d 01 d	18	23 🗅 A2
O0 d	19	22 D A1
OE d	20	21 b A0

O13 O15 VPP VCC NC A14
014 CE NC PGM A15 012 7 5 3 1 43 41 39 A13 011 8 38 A12 010 9 10 36 A10 08 11 33 5 A9 NC 13 33 33 NC 07 14 32 A8 06 15 31 A7 05 16 30 A7 04 17 19 21 23 25 27 29 A5 15 20 22 24 5 28
O2 O0 NC A1 A3 O3 O1 OE A0 A2 A4

DATA OUTPUTS O0 - O15

Note: PLCC Package Pins 1 and 23 are DON'T CONNECT.

1 MEGABIT (64K x 16) UV Erasable CMOS EPROM

Description (Continued)

The AT27C1024/L come in a choice of industry standard JEDEC-approved packages including; 40-pin DIP in ceramic or one time programmable (OTP) plastic, and 44-pad ceramic leadless chip carrier (LCC), or OTP plastic J-leaded chip carrier (PLCC). All devices feature two line control (\overline{CE} , \overline{OE}) to give designers the flexibility to prevent bus contention.

With high density 64K word storage capability, the AT27C1024/L allow firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27C1024/L have additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100µs/word. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27C1024/L is erased (all outputs read as V_{OH}) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W • sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

Г	
	Temperature Under Bias55°C to +125°C
	Storage Temperature65°C to +150°C
	Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
	Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾
	V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾
	Integrated UV Erase Dose7258 w• sec/cm ²

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

MODE \ PIN	CE	ŌĒ	PGM	Ai	V_{PP}	Vcc	Outputs
Read	VIL	VIL	X ⁽¹⁾	Ai	Х	Vcc	D _{OUT}
Output Disable	Х	ViH	Х	Х	Х	Vcc	High Z
Standby	VIH	Х	Х	Х	X ⁽⁵⁾	Vcc	High Z
Rapid Program ⁽²⁾	VIL	ViH	VIL	Ai	V _{PP}	Vcc	D _{IN}
PGM Verify	VIL	VIL	V _{IH}	Ai	V_{PP}	Vcc	Dout
PGM Inhibit	VIH	Х	Х	Χ	V_{PP}	Vcc	High Z
Product Identification ⁽⁴⁾	VIL	VIL	Х	A9 = V _H ⁽³⁾ A0 = V _{IH} or V _{IL} A1-A15 = V _{IL}	Vcc	Vcc	Identification Code

Notes: 1. X can be VIL or VIH.

- 2. Refer to Programming characteristics.
- 3. $V_H = 12.0 \pm 0.5 V$.
- 4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}) , except A9 which is set to V_H
- and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.
- Standby V_{CC} current (I_{SB}) is specified with V_{PP}=V_{CC}. V_{CC} > V_{PP} will cause a slight increase in I_{SB}.

D.C. and A.C. Operating Conditions for Read Operation

				AT27C1024 /	AT27C1024L	
		-12	-15	-17	-20	-25
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature	Ind.		-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
Vcc Power Supp	oly	5V ± 5%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

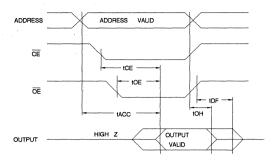
D.C. and Operating Characteristics for Read Operation

Symbol	Parameter	Condition			Min	Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$				5	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.00$.1V			10	μΑ
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = 3.8 \text{ to } V_{CC} + 0.3V$				10	μΑ
lon	V _{CC} ⁽¹⁾ Standby Current	ISB1 (CMOS) CE = V _{CC} -0.3 to V _{CC} + 1	1.0V			100	μΑ
ISB	VCC -> Standby Current	$\frac{I_{SB2} (TTL)}{CE} = 2.0 \text{ to } V_{CC} + 1.0V$				1	mA
	Vcc Active Current		AT27C1024L	Com.		30	mA
Icc		$f = 5MHz, I_{OUT} = 0mA,$	A127C1024L	Ind.,Mil.		40	mA
100	VCC ACTIVE CUITETIE	CE = VIL	AT27C1024	Com.		50	mA
			A127C1024	Ind.,Mil.		60	mA
VIL	Input Low Voltage				-0.6	0.8	٧
VIH	Input High Voltage				2.0	V _{CC} +1	٧
Vol	Output Low Voltage	I _{OL} = 2.1mA				.45	٧
		I _{OH} = -100μA			V _C C-0.3		٧
Vон	Output High Voltage	I _{OH} = -2.5mA			3.5		٧
		I _{OH} = -400μ A			2.4		٧

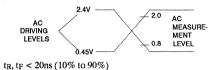
Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} , and removed simultaneously or after V_{PP} .

A.C. Characteristics for Read Operation

					AT27C1024 / AT27C1024L									
					12	-1	15	-1	7	-:	20	-2	25	
Symbol	Parameter	Condition		Min	Мах	Min	Мах	Min	Мах	Min	Max	Min	Max	Units
tacc (3)	Address to	CE=OE	Com.		120		150		170		200		250	ns
IACC \	Output Delay	=V _{IL}	Ind.,Mil.						170		200		250	ns
tce (2)	CE to Output Delay	ŌE=V _{IL}			120		150		170		200		250	ns
t _{OE} (2,3)	OE to Output Delay	CE=V _{IL}			60		65		65		75		100	ns
t _{DF} (4,5)	OE High to Output Float	CE=V _{IL}			30		40		50		55		60	ns
tон	Output H <u>old from</u> Address, CE or OE, whichever occurred first	CE=OE =V _{IL}			0		0		0		0		0	ns


Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

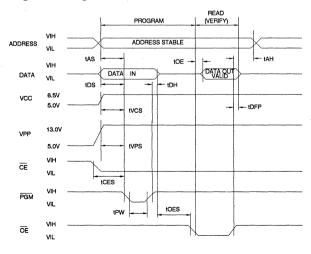

A.C. Waveforms for Read Operation (1)

Notes:

- Timing measurement references are 0.8V and 2.0V. Input AC driving levels are 0.45V and 2.4V, unless otherwise specified.
- 2. \overline{OE} may be delayed up to t_{CE}-t_{OE} after the falling edge of \overline{CE} without impact on t_{CE}.
- 3. OE may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- This parameter is only sampled and is not 100% tested.
- Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

Output Test Load


Note: $C_L=100pF$ including jig capacitance.

Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions	
CiN	4	8	pF	$V_{IN} = 0V$	
Соит	8	12	pF	Vout = 0V	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes

- 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .
- 2. toe and tofp are characteristics of the device but must be accommodated by the programmer.
- When programming the AT27C1024/L a 0.1μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.5\pm0.25V$, $V_{PP}=13.0\pm0.25V$

		-			
Sym-		Test	LI	mits	
bol	Parameter	Conditions	Min	Max	Units
lu	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	8.0	٧
VIH	Input High Level		2.0	V _{CC+} 1	٧
Vol	Output Low Volt.	I _{OL} = 2.1mA		.45	٧
Vон	Output High Volt.	I _{OH} = -400μA	2.4		٧
ICC2	V _{CC} Supply Curren (Program and Veri			50	mA
I _{PP2}	V _{PP} Supply Current	CE = PGM = V	/IL	30	mA
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

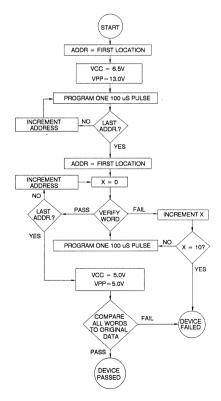
 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.5\pm0.25V$, $V_{PP}=13.0\pm0.25V$

Sym-		Test Conditions*	Lir	nits	
bol	Parameter	(see Note 1)	Min	Max	Units
tas	Address Setup Tir	me	2		μS
tces	CE Setup Time		2		μS
toes	OE Setup Time		2		μS
tos	Data Setup Time		2		μS
tah	Address Hold Tim	16	0		μS
tDH	Data Hold Time		2		μS
tDFP	OE High to Out- put Float Delay	(Note 2)	0	130	ns
tvps	V _{PP} Setup Time		2		μS
tvcs	V _{CC} Setup Time		2		μS
tpw	PGM Program Pulse Width	(Note 3)	95	105	μS
toe	Data Valid from O	Ē		150	ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20ns
Input Pulse Levels	. 0.45V to 2.4V
Input Timing Reference Level	0.8V to 2.0V
Output Timing Reference Level	0.8V to 2.0V

Notes:


- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is $100\mu \sec \pm 5\%$.

Atmel's 27C1024/L Integrated Product Identification Code:

		Pins									Hex
Codes	A0	015-08	07	O6	O5	04	Оз	02	01	00	Data
Manufacturer	0	0	0	0	0	1	1	1	1	0	001E
Device Type	1	0	1	1	1	1	0	0	0	1	00F1

Rapid Programming Algorithm

A 100μ s \overline{PGM} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 100μ s \overline{PGM} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a word fails to pass verification, up to 10 successive 100μ s pulses are applied with a verification after each pulse. If the word fails to verify after 10 pulses have been applied, the part is considered failed. After the word verifies properly, the next address is selected until all have been checked. Vpp is then lowered to 5.0V and V_{CC} to 5.0V. All words are read again and compared with the original data to determine if the device passes or fails.

tacc	lcc	(mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
120	50	0.1	AT27C1024-12DC AT27C1024-12LC	40DW6 44LW	Commercial (0°C to 70°C)
150	50	0.1	AT27C1024-15DC AT27C1024-15LC AT27C1024-15PC AT27C1024-15JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)
150	60	0.1	AT27C1024-15DI AT27C1024-15LI AT27C1024-15PI AT27C1024-15JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)
			AT27C1024-15DM AT27C1024-15LM	40DW6 44LW	Military (-55°C to 125°C)
			AT27C1024-15DM/883 AT27C1024-15LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
170	50	0.1	AT27C1024-17DC AT27C1024-17LC AT27C1024-17PC AT27C1024-17JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)
170	60	0.1	AT27C1024-17DI AT27C1024-17LI AT27C1024-17PI AT27C1024-17JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)
			AT27C1024-17DM AT27C1024-17LM	40DW6 44LW	Military (-55°C to 125°C)
			AT27C1024-17DM/883 AT27C1024-17LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	50	0.1	AT27C1024-20DC AT27C1024-20LC AT27C1024-20PC AT27C1024-20JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)
200	60	0.1	AT27C1024-20DI AT27C1024-20LI AT27C1024-20PI AT27C1024-20JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)
			AT27C1024-20DM AT27C1024-20LM	40DW6 44LW	Military (-55°C to 125°C)
			AT27C1024-20DM/883 AT27C1024-20LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

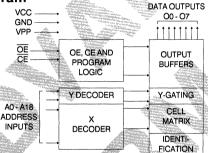
tacc (ns)	Icc (mA)		Ordering Code	Pooleago	Operation Dance
	Active	Standby	Ordering Code	Package	Operation Range
250	50	0.1	AT27C1024-25DC AT27C1024-25LC AT27C1024-25PC AT27C1024-25JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)
250	60	0.1	AT27C1024-25DI AT27C1024-25LI AT27C1024-25PI AT27C1024-25JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)
			AT27C1024-25DM AT27C1024-25LM	40DW6 44LW	Military (-55°C to 125°C)
			AT27C1024-25DM/883 AT27C1024-25LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type
40DW6	40 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)
44J	44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
44LW	44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
40P6	40 Lead, 0.600" Wide, Plastic Dual Inline package OTP (PDIP)

tacc	loo	; (mA)		B	A .: B
(ns)	Active	Standby	Ordering Code	Package	Operation Range
120	50	0.1	AT27C1024L-12DC AT27C1024L-12LC	40DW6 44LW	Commercial (0°C to 70°C)
150	30	0.1	AT27C1024L-15DC AT27C1024L-15LC	40DW6 44LW	Commercial (0°C to 70°C)
150	50	0.1	AT27C1024L-15PC AT27C1024L-15JC	40P6 44J	Commercial (0°C to 70°C)
150	60	0.1	AT27C1024L-15PI AT27C1024L-15JI	40P6 44J	Industrial (-40°C to 85°C)
170	30	0.1	AT27C1024L-17DC AT27C1024L-17LC AT27C1024L-17PC AT27C1024L-17JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)
170	40	0.1	AT27C1024L-17DI AT27C1024L-17LI AT27C1024L-17PI AT27C1024L-17JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)
			AT27C1024L-17DM AT27C1024L-17LM	40DW6 44LW	Military (-55°C to 125°C)
			AT27C1024L-17DM/883 AT27C1024L-17LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	30	0.1	AT27C1024L-20DC AT27C1024L-20LC AT27C1024L-20PC AT27C1024L-20JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)
200	40	0.1	AT27C1024L-20DI AT27C1024L-20LI AT27C1024L-20PI AT27C1024L-20JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)
			AT27C1024L-20DM AT27C1024L-20LM	40DW6 44LW	Military (-55°C to 125°C)
			AT27C1024L-20DM/883 AT27C1024L-20LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	30	0.1	AT27C1024L-25DC AT27C1024L-25LC AT27C1024L-25PC AT27C1024L-25JC	40DW6 44LW 40P6 44J	Commercial (0°C to 70°C)
250	40	0.1	AT27C1024L-25DI AT27C1024L-25LI AT27C1024L-25PI AT27C1024L-25JI	40DW6 44LW 40P6 44J	Industrial (-40°C to 85°C)

t _{ACC} (ns)	Icc (mA)		Ordering Code	Dockogo	Operation Renge
	Active	Standby	Ordering Code	Package	Operation Range
250	40	0.1	AT27C1024L-25DM AT27C1024L-25LM	40DW6 44LW	Military (-55°C to 125°C)
			AT27C1024L-25DM/883 AT27C1024L-25LM/883	40DW6 44LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type
40DW6	40 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)
44J	44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
44LW	44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
40P6	40 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)



Features

- Low Power CMOS Operation 100 μA max. Standby 25 mA max. Active at 5 MHz
- Fast Read Access Time 120ns
- JEDEC Standard Package 32-Lead 600 mil Cerdip
- 5V± 10% Supply
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Rapid Programming 100μ s/byte (typical)
- Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Full Military, Industrial and Commercial Temperature Ranges

Block Diagram

Description

The AT27C040 chip family is a low-power, high-performance 4,194,304 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized as 512K x 8 bits. The AT27C040 requires only one 5V power supply in normal read mode operation. Any byte can be accessed in less than 120ns, eliminating the need for speed reducing WAIT states on high-performance microprocessor systems.

Atmel's 1.2 micron scaled CMOS technology provides for significantly lower active power consumption than similar NMOS designs. Power consumption is typically 20mA in active mode and less than 20µA in standby mode.

Pin Configurations

Pin Name	Function
A0-A18	Addresses
O0-O7	Outputs
CE	Chip Enable
ŌE	Output Enable
NC	No Connect

VPP 🗆	1	32	D VCC
A16 🗖	2 3		□ A18
A15 🗆	3	30	5 A17
A12 🗆	4 5	29	□ A14
A7 🗆	5	28	□ A13
A6 🗆	6	27	b A8
A5 □	7	26	A9 A11
A4 🗆	8	25	□ A11
A3 🗆	9	24	OE
A2 🗆	10	23	□ A10
A1 □	11	22	CE
A0 🗆	12	21	07
00	13	20	06
01 d	14	19	
02 🗆	15	18	04
GND	16	17	6 03
VIII 7		 	

4 MEGABIT (512K x 8) UV Erasable CMOS EPROM

Advance Information

tacc	loo	(mA)	Ouderie v Oede	D1	On a series Bases				
(ns)	Active	Standby	Ordering Code	Package	Operation Range				
120	25	0.1	AT27C040-12DC	32DW6	Commercial (0°C to 70°C)				
150	25	0.1	AT27C040-15DC	32DW6	Commercial (0°C to 70°C)				
150	30	0.1	AT27C040-15DI	32DW6	Industrial (-40°C to 85°C)				
			AT27C040-15DM	32DW6	Military (-55°C to 125°C)				
			AT27C040-15DM/883	32DW6	Military/883C Class B, Fully Compliant (-55°C to 125°C)				
200	25	0.1	AT27C040-20DC	32DW6	Commercial (0°C to 70°C)				
200	30	0.1	AT27C040-20DI	32DW6	Industrial (-40°C to 85°C)				
			AT27C040-20DM	32DW6	Military (-55°C to 125°C)				
			AT27C040-20DM/883	32DW6	Military/883C Class B, Fully Compliant (-55°C to 125°C)				
250	25	0.1	AT27C040-25DC	32DW6	Commercial (0°C to 70°C)				
250	30	30	30	30	30	0.1	AT27C040-25DI	32DW6	Industrial (-40°C to 85°C)
			AT27C040-25DM	32DW6	Military (-55°C to 125°C)				
			AT27C040-25DM/883	32DW6	Military/883C Class B, Fully Compliant (-55°C to 125°C)				

	Package Type
32DW6	32 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)

Product Information	1
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	3
CMOS EPROMs	4.
High Speed CMOS PROMs	5
CMOS SRAMs	6
CMOS EPLDs	7
CMOS Gate Arrays	3
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	14

Section 5

High-Speed CMC	OS PROMs		
AT28HC191/L	2K x 8	High Speed, 16K	
		Reprogrammable [E ²]PROM	5-3
AT28HC291/L	2K x 8	High Speed, 16K	
		Reprogrammable [E ²]PROM	5-11
AT27HC641/2	8K x 8	High Speed, 64K	
		Reprogrammable [UV] PROM	5-19
AT27HC641R/2R	8K x 8	High Speed, 64K	
		Reprogrammable [UV] PROM	5-27

Features

- Fast Access Time 35ns
- Low Power Dissipation 100 μ A Standby Current (AT28HC191L) 80 mA Active Current
- E²PROM Technology 100% Reprogrammable
- Direct Replacement for Bipolar PROMs
- Reprogrammable 1000 times
- Chip Clear
- JEDEC Approved Byte-Wide Pinout Industry Standard 600 mil Wide Package
- CMOS and TTL Compatible Inputs and Outputs
- High Reliability High Speed CMOS Technology
- . Full Military, Commercial, and Industrial Temperature Ranges

Description

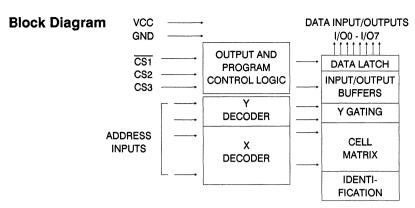
The AT28HC191/191L are a pair of high-speed, low-power 2,048 words by 8 bit CMOS PROMs. The high speed AT28HC191 offers access times to 35ns while the AT28HC191L provides low standby current consumption of just 100μ A. Both devices are packaged in 24 pin dual inline packages using the JEDEC approved pinout for byte-wide PROMs. The AT28HC191 and AT28HC191L are packaged in the industry standard 600 mil wide package.

These devices are plug-in replacements for 16k bipolar PROMs, while offering distinct advantages in power consumption, performance and programming. Atmel's low power CMOS devices provide a direct power saving upgrade to systems originally using bipolar PROMs. The ultra-low standby power of the 28HC191L brings bipolar speeds to battery powered systems.

The electrically erasable and programmable memory cell allows for 100% testing of each memory location. The E^2PROM cell's low programming current permits devices to be programmed one byte at a time. On chip circuitry automatically erases each byte and rewrites it with the new data, permitting in socket reprogramming. The entire memory array can also be erased simultaneously, if desired, by using the device's "chip- clear" mode.

The fast access time of the devices makes them suitable for high-performance applications such as micro-control storage. In such an application the device allows for fast execution speeds, without penalizing storage density or power consumption. With a memory capacity of 2K bytes, these devices provide economical, reliable and high-performance means of storing program instructions. System reliability is enhanced by the low power and inherent reliability of Atmel's 1.5 micron floating poly technology.

Pin Configurations


A7 C A6 C A5 C A4 C A3 C A1 C A0 C I/O0 C I/O1 C I/O2 C	6 7 8 9 10	~~	24 23 22 21 20 19 18 17 16 15	VCC A8 A9 A10 CS1 CS2 CS3 I/O7 I/O6 I/O5 I/O4
				5 1/O4
GND □	12		13	1/03

Pin Name	Function
riii Name	runction
A0-A10	Addresses
CS1	Chip Select (Power Down Option)
CS2	Chip Select
CS3	Chip Select
1/00-1/07	Data

16K (2K x 8)
High Speed
Electrically
Erasable
CMOS PROM

Operating Modes

<u> </u>					
Mode	CS3	CS2	CS1	I/O	
Read	ViH	ViH	VIL	Dout	
Standby	X ⁽¹⁾	X	ViH	High Z	
Output Disable	VIL	X	Х	High Z	
Output Disable	Х	VIL	Х	High Z	
Write ⁽²⁾	VIL	VIL	V _H ⁽³⁾	D _{IN}	
Verify	ViH	ViH	VH	Dout	
Chip Erase	VIL	VH	VIL	High Z	

Notes: 1. X can be VIL or VIH.

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5 V$.

Device Operation

READ: When $\overline{\text{CS1}}$ is low and CS2 and CS3 are high, the data stored at the memory location determined by the address inputs is asserted on the outputs of the device. The outputs are put in a high impedance state whenever CS2 or CS3 is low or whenever $\overline{\text{CS1}}$ is high. The availability of three control lines gives the designer flexibility in preventing bus contention.

STANDBY: The AT28HC191L consumes less than 550μ W when deselected by raising $\overline{\text{CS1}}$ to V_{CC}-0.3V. This part retains the fast chip select times from CS2 and CS3 that are common to the AT28HC191.

PROGRAMMING: A 12 volt input is required on the CSI pin in order to program the devices. This input voltage is not needed to supply the programming current required by the memory cells as all high voltages used inside the chip are self-generated. After CSI is raised to 12 volts with CS2 low and CS3 high, CS3 is pulsed low to begin the internally timed write cycle. The address location presented to the device on the falling edge of the CS3 signal is written with the data that is presented to the device on the rising edge of CS3. An entire eight bit byte is programmed during each programming cycle. Any byte can be programmed to any data pattern regardless of the current data in that byte. An internal timer uses 1 ms to program a byte. No additional time is required nor are any additional programming pulses.

VERIFY: A verify of programmed data may be performed with $\overline{CS1}$ at 12 volts by taking CS2 and CS3 to V_{IH}. The verify works exactly as a device read except that $\overline{CS1}$ is at 12 volts rather than V_{IL}.

MEMORY CELL: The AT28HC191 family of parts uses fully reprogrammable E²PROM cells to store data. Unlike the one time programmable fuse link cells commonly found in bipolar PROMs, E²PROM cells allow each bit to be fully tested before shipment by Atmel. The electrical reprogrammability of E²PROM cells allows for multiple patterns to be written into each device during testing to ensure proper programming, functioning, and timing. All cells may be reprogrammed up to 1000 times by the user.

CHIP CLEAR: The entire contents of these memory devices may be set to the high state by the chip clear function. By setting $\overline{\text{CS1}}$ low and CS2 to 12 volts, the chip is cleared when a 10 msec low pulse is applied to CS3.

PRODUCT IDENTIFICATION CODE: The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages for the device.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to V _{CC} +0.6V
Voltage on CS1, CS2 and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

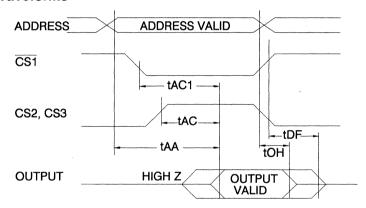
		AT28HC191-35	AT28HC191-45 AT28HC191L-45	AT28HC191-55 AT28HC191L-55
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature	Ind.		-40°C - 85°C	-40°C - 85°C
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C
V _{CC} Power Supply		5V ± 10%	5V ± 10%	5V ± 10%

D.C. Characteristics

Symbol	Parameter	Condition		Min	Max	Units
Ш	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μΑ
Icc1 Vcc Standby C	Voc Standby Current	CS1 = V _{IH}	AT28HC191L		3	mA
	VCC Standby Current	ADDR = 0/VCC	AT28HC191		60	mA
lcc	VCC Active Current	f=10MHz; lout=0mA			80	mA
VIL	Input Low Voltage				0.8	٧
ViH	Input High Voltage			2.0		٧
VoL	Output Low Voltage	I _{OL} = 12mA			.4	٧
Vон	Output High Voltage	I _{OH} = -4.0mA		2.4		٧

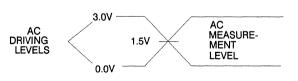
Pin Capacitance $(f = 1 MHz T = 25^{\circ}C)^{(4)}$

	Тур	Max	Units	Conditions	
Cin	4	6	pF	V _{IN} = 0V	
Соит	8	12	pF	V _{OUT} = 0V	

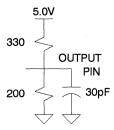


A.C. Characteristics for Read Operation (1)

			AT28HC191			AT28HC191L						
		-35		-45		-55		-45		-55		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{AA} ⁽²⁾	Address to Output Delay		35		45		55		45		55	ns
tac (2)	CS2, CS3 to Output Delay		25		30		40		30		40	ns
t _{AC1} ⁽²⁾	CS1 to Output Delay		30		35		40		45		55	ns
t _{DF} (3,4)	CS1, CS2, CS3 to Output Float	0	25	0	30	0	40	0	30	0	40	ns
tон	Output Hold from CS1,CS2, CS3, or Address, whichever occurred first	0		0		0		0		0		ns

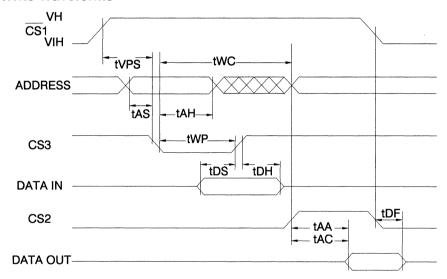

A.C. Read Waveforms

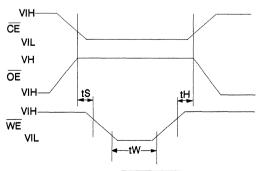
Notes:


- 1. CL=30pF
- CS, CS2 or CS3 may be delayed up to t_{AA}-t_{AC} after the address transition without impact on t_{AA}.
- 3. tpF is specified from CS1, CS2, or CS3, whichever occurs first.
- 4. This parameter is only characterized and is not 100% tested.

Input Test Waveforms and Measurement Levels

 t_R , $t_F < 5$ ns


Output Test Load


A.C. Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
tas	Address Set-up Time	0			ns
tah	Address Hold Time	50			ns
twp	Write Pulse Width	50		1000	ns
tos	Data Set-up Time	50			ns
tDH	Data Hold Time	0			ns
twc	Write Cycle Time	1			ms
tvps	Programming Set-up Time	2			μS
taa	Address to Output Delay			100	ns
tAC	CSn to Output Delay			100	ns
tor	CSn to Output Float			60	ns

A.C. Write Waveforms

Chip Erase Waveforms

 $t_S = t_H = 1\mu sec (min.)$ $t_W = 10 msec (min.)$ $V_H = 12 \pm 0.5 V$

tacc	loc	(mA)	Ordanian Codo	Dooksons	Operation Dance
(ns)	Active	Standby	Ordering Code	Package	Operation Range
35	80	60	.28HC191-35DC AT28HC191-35PC	AT28HC191-35PC 24P6 (0° to 1	
45	80	60	AT28HC191-45DC AT28HC191-45PC	24D6 24P6	Commercial (0° to 70°C)
			AT28HC191-45DI AT28HC191-45PI	24D6 24P6	Industrial (-40° to 85°C)
			AT28HC191-45DM	24D6	Military (-55° to 125°C)
			AT28HC191-45DM/883	24D6	Military/883C Class B, Fully Compliant (-55° to 125°C)
55	80	60	AT28HC191-55DC AT28HC191-55PC	24D6 24P6	Commercial (0° to 70°C)
			AT28HC191-55DI AT28HC191-55PI	24D6 24P6	Industrial (-40° to 85°C)
			AT28HC191-55DM	24D6	Military (-55° to 125°C)
			AT28HC191-55DM/883	24D6	Military Class B, Fully Compliant (-55° to 125°C)

	Package Type
24D6	24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)

tacc	Icc	(mA)	Ordering Code	Doolsogo	Operation Bangs
(ns)	Active	Standby	Ordering Code	Package	Operation Range
45	80	3	AT28HC191L-45DC AT28HC191L-45PC	24D6 24P6	Commercial (0° to 70°C)
			AT28HC191L-45DI AT28HC191L-45PI	24D6 24P6	Industrial (-40° to 85°C)
			AT28HC191L-45DM	24D6	Military (-55° to 125°C)
			AT28HC191L-45DM/883	24D6	Military/883C Class B, Fully Compliant (-55° to 125°C)
55	80	3	AT28HC191L-55DC AT28HC191L-55PC	24D6 24P6	Commercial (0° to 70°C)
			AT28HC191L-55DI AT28HC191L-55PI	24D6 24P6	Industrial (-40° to 85°C)
			AT28HC191L-55DM	24D6	Military (-55° to 125°C)
			AT28HC191L-55DM/883	24D6	Military/883C Class B, Fully Compliant (-55° to 125°C)

	Package Type							
24D6	24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)							
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)							

Features

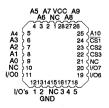
- Fast Access Time 35ns
- Low Power Dissipation

100 μ A Standby Current (AT28HC291L) 80 mA Active Current

- E²PROM Technology 100% Reprogrammable
- Direct Replacement for Bipolar PROMs
- Reprogrammable 1000 times
- Chip Clear
- JEDEC Approved Byte-Wide Pinout Space-Saving 300 mil Wide Package
- CMOS and TTL Compatible Inputs and Outputs
- High Reliability High Speed CMOS Technology
- Full Military, Commercial, and Industrial Temperature Ranges

Description

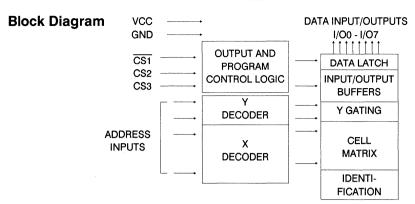
The AT28HC291/291L are a pair of high-speed, low-power 2,048 words by 8 bit CMOS PROMs. The high speed AT28HC291 offers access times to 35ns while the AT28HC291L provides low standby current consumption of just 100 μ A. Both devices are packaged in 24 pin dual inline packages using the JEDEC approved pinout for byte-wide PROMs. The AT28HC291 and AT28HC291L are supplied in space-saving 300 mil wide packages and also in 28 pad leadless chip carriers.


These devices are plug-in replacements for 16k bipolar PROMs, while offering distinct advantages in power consumption, performance and programming. Atmel's low power CMOS devices provide a direct power saving upgrade to systems originally using bipolar PROMs. The ultra-low standby power of the 28HC291L brings bipolar speeds to battery powered systems.

The electrically erasable and programmable memory cell allows for 100% testing of each memory location. The E²PROM cell's low programming current permits devices to be programmed one byte at a time. On chip circuitry automatically erases each byte and rewrites it with the new data, permitting in socket reprogramming. The entire memory array can also be erased simultaneously, if desired, by using the device's "chip-clear" mode.

The fast access time of the devices makes them suitable for high-performance applications such as micro-control storage. In such an application the device allows for fast execution speeds, without penalizing storage density or power consumption. With a memory capacity of 2K bytes, these devices provide economical, reliable, and high-performance means of storing program instructions. System reliability is enhanced by the low power and inherent reliability of Atmel's 1.5 micron floating poly technology.

Pin Configurations


Pin Name	Function
A0-A10	Addresses
CS1	Chip Select (Power Down Option)
CS2	Chip Select
CS3	Chip Select
1/00-1/07	Data
NC	No Connect

16K (2K x 8)
High Speed
Electrically
Erasable
CMOS PROM

Operating Modes

Mode	CS3	CS2	CS1	I/O
Read	ViH	ViH	VIL	Dout
Standby	X ⁽¹⁾	X	ViH	High Z
Output Disable	VIL	X	Х	High Z
Output Disable	Х	VIL	Х	High Z
Write ⁽²⁾	VIL	VIL	VH (3)	DiN
Verify	ViH	ViH	VH	Dout
Chip Erase	VIL	V _H	VIL	High Z

Notes: 1. X can be V_{IL} or V_{IH} .

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \pm 0.5V$.

Device Operation

READ: When $\overline{CS1}$ is low and CS2 and CS3 are high, the data stored at the memory location determined by the address inputs is asserted on the outputs of the device. The outputs are put in a high impedance state whenever CS2 or CS3 is low or whenever $\overline{CS1}$ is high. The availability of three control lines gives the designer flexibility in preventing bus contention.

STANDBY: The AT28HC291L consumes less than 550μ W when deselected by raising $\overline{CS1}$ to V_{CC} -0.3V. This part retains the fast chip select times from CS2 and CS3 that are common to the AT28HC291.

PROGRAMMING: A 12 volt input is required on the CS1 pin in order to program the devices. This input voltage is not needed to supply the programming current required by the memory cells as all high voltages used inside the chip are self-generated. After CS1 is raised to 12 volts with CS2 low and CS3 high, CS3 is pulsed low to begin the internally timed write cycle. The address location presented to the device on the falling edge of the CS3 signal is written with the data that is presented to the device on the rising edge of CS3. An entire eight bit byte is programmed during each programming cycle. Any byte can be programmed to any data pattern regardless of the current data in that byte. An internal timer uses 1 ms to program a byte. No additional time is required nor are any additional programming pulses.

VERIFY: A verify of programmed data may be performed with $\overline{CS1}$ at 12 volts by taking CS2 and CS3 to VIH. The verify works exactly as a device read except that CS1 is at 12 volts rather than VIL.

MEMORY CELL: AT28HC291 family of parts uses fully reprogrammable E²PROM cells to store data. Unlike the one time programmable fuse link cells commonly found in bipolar PROMs, E²PROM cells allow each bit to be fully tested before shipment by Atmel. The electrical reprogrammability of E²PROM cells allows for multiple patterns to be written into each device during testing to ensure proper programming, functioning and timing. All cells may be reprogrammed up to 1000 times by the user.

CHIP CLEAR: The entire contents of these memory devices may be set to the high state by the chip clear function. By setting $\overline{\text{CS1}}$ low and CS2 to 12 volts, the chip is cleared when a 10 msec low pulse is applied to CS3.

PRODUCT IDENTIFICATION CODE: The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages for the device.

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including N.C. Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to V _{CC} +0.6V
Voltage on CS1, CS2 and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

		AT28HC291-35	AT28HC291-45 AT28HC291L-45	AT28HC291-55 AT28HC291L-55
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C
Temperature	Ind.		-40°C - 85°C	-40°C - 85°C
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C
V _{CC} Power Supply		5V ± 10%	5V ± 10%	5V ± 10%

D.C. Characteristics

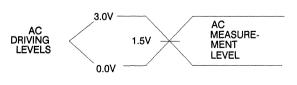
Symbol	Parameter	Condition		Min	Max	Units
1LI	Input Load Current	V _{IN} = 0V to V _{CC} + 1V			10	μΑ
llo	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μΑ
loor	Vcc Standby Current	CS1 = V _{IH}	AT28HC291L		3	mA
ICC1	VCC Standby Current	$ADDR = 0/V_{CC}$	AT28HC291		60	mA
Icc	V _{CC} Active Current	f=10MHz; I _{OUT} =0mA			80	mA
VIL	Input Low Voltage				0.8	٧
ViH	Input High Voltage			2.0		٧
VoL	Output Low Voltage	I _{OL} = 12mA			.4	V
VoH	Output High Voltage	I _{OH} = -4.0mA		2.4		V

Pin Capacitance $(f = 1MHz T = 25^{\circ}C)^{(4)}$

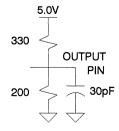
	Тур	Max	Units	Conditions	
Cin	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	Vout = 0V	

A.C. Characteristics for Read Operation (1)

		AT28HC291						AT28HC291L				
		-	-35		-45		-55		-45		-55	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{AA} (2)	Address to Output Delay		35		45		55		45		55	ns
t _{AC} ⁽²⁾	CS2, CS3 to Output Delay		25		30		40		30		40	ns
t _{AC1} (2)	CS1 to Output Delay		30		35		40		45		55	ns
t _{DF} (3,4)	CS1, CS2, CS3 to Output Float	0	25	0	30	0	40	0	30	0	40	ns
tон	Output Hold from CS1,CS2, CS3, or Address, whichever occurred first	0		0		0		0		0		ns

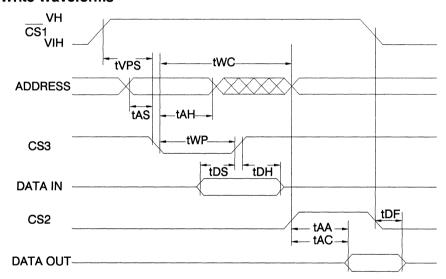

A.C. Read Waveforms

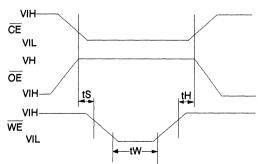
Notes:


- 1. CL=30pF
- CS, CS2 or CS3 may be delayed up to t_{AA}-t_{AC} after the address transition without impact on t_{AA}.
- 3. t_{DF} is specified from $\overline{CS1}$, CS2, or CS3, whichever occurs first.
- 4. This parameter is only characterized and is not 100% tested.

Input Test Waveforms and Measurement Levels

 t_R , $t_F < 5 ns$


Output Test Load


A.C. Write Characteristics

Symbol	Parameter	Min	Тур	Max	Units
tas	Address Set-up Time	0			ns
tah	Address Hold Time	50			ns
twp	Write Pulse Width	50		1000	ns
tos	Data Set-up Time	50			ns
toh	Data Hold Time	0			ns
twc	Write Cycle Time	1			ms
tvps	Programming Set-up Time	2			μS
taa	Address to Output Delay			100	ns
tac	CSn to Output Delay			100	ns
tor	CSn to Output Float			60	ns

A.C. Write Waveforms

Chip Erase Waveforms

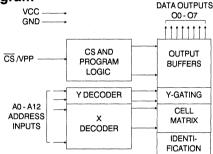
 $t_S = t_H = 1\mu \sec (min.)$ $t_W = 10 \text{msec (min.)}$ $V_H = 12 \pm 0.5 \text{V}$

tacc	lcc	(mA)	Out of a Code	Dooloone			
(ns)	Active	Standby	Ordering Code	Package	Operation Range		
35	80	60	AT28HC291-35DC AT28HC291-35PC	24D3 24P3	Commercial (0° to 70°C)		
45	80	60	AT28HC291-45DC AT28HC291-45LC AT28HC291-45PC	24D3 28L 24P3	Commercial (0° to 70°C)		
			AT28HC291-45DI AT28HC291-45LI AT28HC291-45PI	24D3 28L 28P3	Industrial (-40° to 85°C)		
			AT28HC291-45DM AT28HC291-45LM	24D3 28L	Military (-55° to 125°C)		
			AT28HC291-45DM/883 AT28HC291-45LM/883	24D3 28L	Military/883C Class B, Fully Compliant (-55° to 125°C)		
55	80	60	AT28HC291-55DC AT28HC291-55LC AT28HC291-55PC	24D3 28L 24P3	Commercial (0° to 70°C)		
			AT28HC291-55DI AT28HC291-55LI AT28HC291-55PI	24D3 28L 24P3	Industrial (-40° to 85°C)		
			AT28HC291-55DM AT28HC291-55LM	24D3 28L	Military (-55° to 125°C)		
			AT28HC291-55DM/883 AT28HC291-55LM/883	24D3 28L	Military/883 Class B, Fully Compliant (-55° to 125°C)		

Package Type						
24D3	24 Lead, 0.300" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)					
28L	28 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)					
24P3	24 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)					

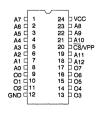
tacc	lcc	(mA)	Ordering Code	Doolsono	Operation Dance
(ns)	Active	Standby	Ordering Code Package		Operation Range
45	80	3	AT28HC291L-45DC AT28HC291L-45PC	24D3 24P3	Commercial (0° to 70°C)
			AT28HC291L-45DI AT28HC291L-45PI	24D3 28P3	Industrial (-40° to 85°C)
			AT28HC291L-45DM	24P3	Military (-55° to 125°C)
			AT28HC291L-45DM/883	24D3	Military/883C Class B, Fully Compliant (-55° to 125°C)
55	80	3	AT28HC291L-55DC AT28HC291L-55LC AT28HC291L-55PC	24D3 28L 24P3	Commercial (0° to 70°C)
			AT28HC291L-55DI AT28HC291L-55LI AT28HC291L-55PI	24D3 28L 24P3	Industrial (-40° to 85°C)
			AT28HC291L-55DM AT28HC291L-55LM	24D3 28L	Military (-55° to 125°C)
			AT28HC291L-55DM/883 AT28HC291L-55LM/883	24D3 28L	Military/883 Class B, Fully Compliant (-55° to 125°C)

	Package Type					
24D3	24 Lead, 0.300" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)					
28L	28 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)					
24P3	24 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)					



Features

- Bipolar Speed
 Read Access Time 35ns
- Low Power CMOS Operation 35 mA max. Standby 75 mA Active at 10 MHz
- Direct Bipolar PROM Replacement
- . High Output Drive Capability
- Reprogrammable 4ms/byte (typical)
 Tested 100% for Programmability
- JEDEC Approved Byte-Wide Pinout 300 mil, 600 mil, DIP, or LCC packages
- CMOS and TTL Compatible Inputs and Outputs
- High Reliability Latch-Up Resistant CMOS Technology
- Integrated Product Identification Code
- Full Military, Commercial and Industrial Temperature Ranges


Description

The AT27HC641/642 chip family is a high-speed, low-power 65,536 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 8K x 8. All require only one 5V power supply in normal read mode operation. All bytes on the 641 and 642 parts can be accessed in less than 35ns, making these parts compatible with high performance systems, without penalizing bit density or power consumption.

The 640 series chips come in a choice of JEDEC-approved 24-pin DIPs or 28-pad LCC packages, providing a direct power saving CMOS upgrade for systems originally using Bipolar PROMs. The AT27HC641 is available in standard 600 mil cerdip or plastic (OTP) and LCC packages, while the AT27HC642 provides a space-saving 300 mil cerdip or plastic (OTP) package.

Pin Configurations

Pin Name	Function
A0-A12	Addresses
CS/V _{PP}	Chip Select/V _{PP}
00-07	Outputs

64K (8K x 8) UV Erasable CMOS PROM

Description (Continued)

Atmel's 1.5 micron, high speed CMOS technology provides optimum speed, low-power and high noise immunity. Power consumption on the AT27HC641 and AT27HC642 is typically only 50 mA in Active Mode and less than 20mA in Standby. The high speed CMOS process is an extension of Atmel's high quality and highly manufacturable floating poly EPROM technology. EPROM reprogrammability, which is fully tested before shipment, provides inherently better programmability and reliability than one-time fusable PROMs.

With a storage capacity of 8K bytes, Atmel's 640 series parts allow firmware to be stored reliably and to be accessed at bipolar PROM speeds. All the 640 series parts have exceptional output drive capability - source 4 mA and sink 16 mA per output.

Atmel's 640 series chips also have additional features to ensure high quality and efficient production use. The fast programming algorithm reduces the time required to program the chip and guarantees reliable programming. The Integrated Product Identification Code electronically identifies the device and manufacturing origin. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of an Atmel 640 series chip is erased (all outputs read as VOH) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15W • sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Absolute Maximum Ratings*

С
С
1)
1)
1)
2

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is $V_{CC}+0.75V$ dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes

MODE \ PIN	CS/Vpp	Ai	Vcc	Outputs
Read	VIL	Ai	Vcc	Dout
Standby	ViH	X ⁽¹⁾	Vcc	High Z
Fast Program ⁽²⁾	V _{PP}	Ai	Vcc	DIN
PGM Verify	VIL	Ai	Vcc	Dout
Product Identification ⁽⁴⁾	VIL	A9 = V _H ⁽³⁾ A0 = V _{IH} or V _{IL} A1-A12 = V _{IL}	Vcc	Identification Code

- Notes: 1. X can be V_{IL} or V_{IH} .
 - 2. Refer to Programming characteristics.
 - 3. $V_H = 12.0 \pm 0.5 V$.

4. Two identifier bytes may be selected. All Ai inputs are held low (VIL), except A9 which is set to VH and A0 which is toggled low (VIL) to select the Manufacturer's Identification byte and high (VIH) to select the Device Code byte.

D.C. and A.C. Operating Conditions for Read Operation

		AT27HC641 / AT27HC642								
		-35	-45	-55	-70	-90				
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C				
Temperature	Ind.		-40°C - 85°C	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C				
(Case)	Mil.		-55°C - 125°C	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C				
V _{CC} Power Suppl	V	5V ± 5%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%				

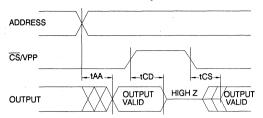
D.C. and Operating Characteristics for Read Operation

Symbol	Parameter	Condition		Min	Max	Units
1LI	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$			10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$			10	μΑ
I _{PP1}	CS/V _{PP} ⁽¹⁾ Read/Standby Current	$\overline{\text{CS}}/\text{Vpp} = -0.1\text{V to V}_{\text{CC}} + 1\text{V}$			10	μΑ
		I _{SB1} (CMOS)	Com.		35	mA
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	$\overline{\text{CS}}/\text{Vpp} = \text{V}_{\text{CC}}-0.3 \text{ to V}_{\text{CC}} + 1.0\text{V}$	Ind.,Mil.		40	mA
100		I _{SB2} (TTL) CS/V _{PP} = 2.0 to V _{CC} + 1.0V	Com.		35	mA
			Ind.,Mil.		40	mA
1	V _{CC} Active Current	$f = 10MHz, I_{OUT} = 0mA,$	Com.		75	mA
Icc		CS/V _{PP} = V _{IL}	Ind.,Mil.		90	mA
los (2)	Output Short Circuit Current	V _{OUT} = 0V			-100	mA
VIL	Input Low Voltage			-0.6	0.8	٧
VIH	Input High Voltage			2.0	Vcc+1	٧
VoL	Output Low Voltage	I _{OL} = 16mA			.4	٧
Vall	Output High Voltage	I _{OH} = -100μ A		Vcc-0.3		٧
Voн	Output High Voltage	I _{OH} = -4.0mA		2.4		٧

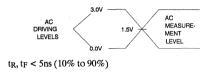
Notes: 1. V_{CC} must be applied simultaneously or before \overline{CS}/V_{PP} , and removed simultaneously or after \overline{CS}/V_{PP} .

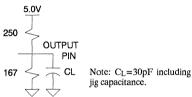
Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec. This parameter is only sampled and is not 100% tested. See Absolute Maximum Ratings.

A.C. Characteristics for Read Operation


			AT27HC641 / AT27HC642										
			-:	35	-4	15	-6	55	-7	70	-6	90	
Symbol	Parameter		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
taa ⁽⁴⁾	Address to Output Delay	Com.		35		45		55		70		90	ns
IAA Y		Ind.,Mil				45		55		70		90	ns
tcs (2,4)	CS/V _{PP} to Output Delay			25		30		35		45		55	ns
t _{CD} (3,4,5)	CS/V _{PP} to Output Float		0	25	0	30	0	35	0	40	0	45	ns

Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

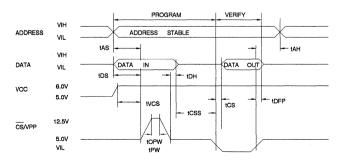

A.C. Waveforms for Read Operation (1)


Notes:

- Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.
- Asserting CS/Vpp may be delayed up to t_{AA} - t_{CS} after the address transition without impact on access time.
- 3. This parameter is only sampled and is not 100% tested.
- 4. $C_L = 30pF$, add 10ns for $C_L = 100pF$.
- 5. Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

Output Test Load



Pin Capacitance (f=1MHz T=25°C) (1)

	Тур	Max	Units	Conditions	
Cin	4	6	pF	$V_{IN} = 0V$	
Cout	8	12	pF	Vout = 0V	

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- 1. The Input Timing References are 0.0V for V_{IL} and 3.0V for V_{IH} .
- t_{CS} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.

D.C. Programming Characteristics

 $T_A=25\pm5^{\circ}C$, $V_{CC}=6.0\pm0.25V$, $\overline{CS}/V_{PP}=12.5\pm0.5V$

Sym-		Test	Li	mits	
bol	Parameter	Conditions	Min	Max	Units
lu	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	0.8	٧
ViH	Input High Level		2.0	V _{CC+} 1	٧
Vol	Output Low Volt.	I _{OL} = 16mA		.4	٧
Vон	Output High Volt.	I _{OH} = -4.0mA	2.4		٧
ICC2	V _{CC} Supply Curren (Program and Veri			80	mA
IPP2	CS/V _{PP} Supply Current	CS/V _{PP} = V _{PP}		30	mA
VID	A9 Product Iden- tification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.0 \pm 0.25V$, $\overline{CS}/V_{PP} = 12.5 \pm 0.5V$

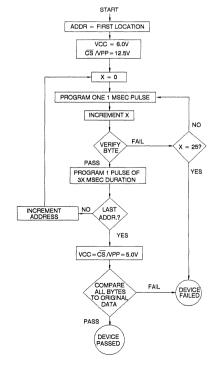
Sym- bol	Parameter	Test Conditions* (see Note 1)	Li Min	mits Max	Units
tas	Address Setup Tin	ne	2		μS
tcss	CS/V _{PP} Setup Time	9	2		μS
tos	Data Setup Time		2		μS
tah	Address Hold Time	0		μS	
t _{DH}	Data Hold Time		2		μS
t _{DFP}	CS/V _{PP} High to Output Float Delay	(Note 2)	0	130	ns
tvcs	Vcc Setup Time		2		μS
tpw	CS/V _{PP} Initial Program Pulse Width	(Note 3)	0.95	1.05	ms
topw	CS/V _{PP} Overprogram Pulse Width	(Note 4)	2.85	78.75	ms
tcs	Data Valid from CS	N _{PP}		70	ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	5ns
Input Pulse Levels	0.0V to 3.0V
Input Timing Reference Level	1.5V
Output Timing Reference Level	1.5V

Notes:

- V_{CC} must be applied simultaneously or before CS/V_{PP} and removed simultaneously or after CS/V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Initial Program Pulse width tolerance is 1msec±5%.
- 4. The length of the overprogram pulse may vary from 2.85 msec to 78.75 msec as a function of the iteration counter value X.


Atmel's 27HC641/2 Integrated Product Identification Code:

		Pins					Hex			
Codes	AO	07	O6	O5	04	Оз	O2	01	00	Data
Manufacturer	0	0	0	0	1	1	1	1	1	1F
Device Type	1	0	0	0	1	0	0	0	0	10

Fast Programming Algorithm

Two 12.5V $\overline{\text{CS}}/\text{Vpp}$ pulse widths are used to program; initial and overprogram. Ai are set to address the desired byte. V_{CC} is raised to 6.0V. The first $\overline{\text{CS}}/\text{Vpp}$ pulse is 1ms. The programmed byte is then verified. If the byte programmed successfully, then an overprogram $\overline{\text{CS}}/\text{Vpp}$ pulse is applied for 3ms. If the byte fails to program after the first 1ms pulse, then up to 25 successive 1ms pulses are applied with a verification after each pulse. When the byte passes verification, the overprogram pulse width is 3X (times) the number of 1ms pulses required earlier (75ms max).

If the part fails to verify after 25 1ms pulses have been applied, it is considered as failed. After the first byte is programmed, the Ai are set to the next address repeating the algorithm until all required addresses are programmed. Then $V_{\rm CC}$ is lowered to 5.0V. All bytes subsequently are read to compare with the original data to determine if the device passes or fails.

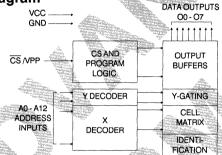
tacc	Icc	; (mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range
35	75	35	AT27HC641-35DC AT27HC642-35DC AT27HC641-35LC	24DW6 24DW3 28LW	Commercial (0°C to 70°C)
45	75	35	AT27HC641-45DC AT27HC642-45DC AT27HC641-45LC	24DW6 24DW3 28LW	Commercial (0°C to 70°C)
45	90	40	AT27HC641-45DI AT27HC642-45DI AT27HC641-45LI	24DW6 24DW3 28LW	Industrial (-40°C to 85°C)
			AT27HC641-45DM AT27HC642-45DM AT27HC641-45LM	24DW6 24DW3 28LW	Military (-55°C to 125°C)
			AT27HC641-45DM/883 AT27HC642-45DM/883 AT27HC641-45LM/883	24DW6 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
55	75	35	AT27HC641-55DC AT27HC642-55DC AT27HC641-55LC AT27HC641-55PC AT27HC642-55PC	24DW6 24DW3 28LW 24P6 24P3	Commercial (0°C to 70°C)
55	90	40	AT27HC641-55DI AT27HC642-55DI AT27HC641-55LI AT27HC641-55PI AT27HC642-55PI	24DW6 24DW3 28LW 24P6 24P3	Industrial (-40°C to 85°C)
			AT27HC641-55DM AT27HC642-55DM AT27HC641-55LM	24DW6 24DW3 28LW	Military (-55°C to 125°C)
			AT27HC641-55DM/883 AT27HC642-55DM/883 AT27HC641-55LM/883	24DW6 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
70	75	35	AT27HC641-70DC AT27HC642-70DC AT27HC641-70LC AT27HC641-70PC AT27HC642-70PC	24DW6 24DW3 28LW 24P6 24P3	Commercial (0°C to 70°C)
70	90	40	AT27HC641-70DI AT27HC642-70DI AT27HC641-70LI AT27HC641-70PI AT27HC642-70PI	24DW6 24DW3 28LW 24P6 24P3	Industrial (-40°C to 85°C)
			AT27HC641-70DM AT27HC642-70DM AT27HC641-70LM	24DW6 24DW3 28LW	Military (-55°C to 125°C)

tacc	Icc	(mA)	Oudering Code	Doolsoon	Operation Dense
(ns)	Active	Standby	Ordering Code	Package	Operation Range
70	90	40	AT27HC641-70DM/883 AT27HC642-70DM/883 AT27HC641-70LM/883	24DW6 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	75	35	AT27HC641-90DC AT27HC642-90DC AT27HC641-90LC AT27HC641-90PC AT27HC642-90PC	24DW6 24DW3 28LW 24P6 24P3	Commercial (0°C to 70°C)
90	90	40	AT27HC641-90DI AT27HC642-90DI AT27HC641-90LI AT27HC641-90PI AT27HC642-90PI	24DW6 24DW3 28LW 24P6 24P3	Industrial (-40°C to 85°C)
			AT27HC641-90DM AT27HC642-90DM AT27HC641-90LM	24DW6 24DW3 28LW	Military (-55°C to 125°C)
			AT27HC641-90DM/883 AT27HC642-90DM/883 AT27HC641-90LM/883	24DW6 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
45	90	40	5962-87515 01 JX 5962-87515 01 KX 5962-87515 01 LX 5962-87515 01 3X	24DW6 24FW 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
55	90	40	5962-87515 02 JX 5962-87515 02 KX 5962-87515 02 LX 5962-87515 02 3X	24DW6 24FW 24DW3 24LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
70	90	40	5962-87515 03 JX 5962-87515 03 KX 5962-87515 03 LX 5962-87515 03 3X	24DW6 24FW 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	90	40	5962-87515 04 JX 5962-87515 04 KX 5962-87515 04 LX 5962-87515 04 3X	24DW6 24FW 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type						
24DW3	24 Lead, 0.300" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)						
24DW6	24 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)						
24FW	24 Lead, Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)						
28LW	28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)						
24P3	24 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)						
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)						

9

Features


- Bipolar Speed
- Read Access Time 35ns

 Low Power CMOS Operation

20 mA max. Standby 35 mA max. Active at 10 MHz

- Direct Bipolar PROM Replacement
- High Output Drive Capability
- Reprogrammable 100μs/byte (typical)
 Tested 100% for Programmability
- JEDEC Approved Byte-Wide Pinout 300 mil DIP, 600 mil DIP and LCC packages
- CMOS and TTL Compatible Inputs and Outputs
- High Reliability Latch-Up Resistant CMOS Technology
- Integrated Product Identification Code
- Full Military, Industrial and Commercial Temperature Ranges
- Fully Compatible with AT27HC641/2

Block Diagram

Description

The AT27HC641R/642R chip family is a high-speed, low-power 65,536 bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized as 8K x 8 bits. All devices require only one 5V power supply in normal read mode operation. All bytes on the 641R and 642R parts can be accessed in less than 35ns, making these parts ideal for high-performance systems without penalizing bit density or power consumption.

The 640R series of devices come in a choice of JEDEC-approved 24-pin DIP or 28 pad LCC packages, providing a direct power saving CMOS upgrade for systems originally using Bipolar PROMs. The AT27HC641R is available in a standard 600 mil cerdip or one-time programmable plastic "blank" (OTP) package, and LCC package, while the AT27HC642R is available in a space-saving 300 mil cerdip or plastic "blank" (OTP) package.

Pin Configurations

(madel 2)	Nesse. 1924-1111/1979
Pin Name	Function
A0-A12	Addresses
CS/V _{PP}	Chip Select/V _{PP}
O0-O7	Outputs

45 47 1/00	••
A5 A7 VCC	A9
A6 NC A8	
4 2 28 2	žě \
A4 5 3 1 27	25 〈 A10
A3 5 6	24 CS/VPP
A4 \ 5 3 1 27 A3 \ 6 A2 \ 7 A1 \ 8 A0 \ 9	23 C A11
A1 5 8	22 (A12
A0 5 9	
NC 510	21 NC 20 O7
00 11 13 15 17	19 (06
12 14 16 1	18 /
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~
O2 NC O4	
O1 GND O3 (O5

64K (8K x 8) UV Erasable CMOS PROM

Advance Information

tacc	loo	; (mA)	Ordering Code	Poolsogo	Operation Dance
(ns)	Active	Standby	Ordering Code	Package	Operation Range
35	35	20	AT27HC641R-35DC AT27HC642R-35DC AT27HC641R-35LC	24DW6 24DW3 28LW	Commercial (0°C to 70°C)
45	35	20	AT27HC641R-45DC AT27HC642R-45DC AT27HC641R-45LC	24DW6 24DW3 28LW	Commercial (0°C to 70°C)
45	45	30	AT27HC641R-45DI AT27HC642R-45DI AT27HC641R-45LI	24DW6 24DW3 28LW	Industrial (-40°C to 85°C)
			AT27HC641R-45DM AT27HC642R-45DM AT27HC641R-45LM	24DW6 24DW3 28LW	Military (-55°C to 125°C)
			AT27HC641R-45DM/883 AT27HC642R-45DM/883 AT27HC641R-45LM/883	24DW6 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
55	35	20	AT27HC641R-55DC AT27HC642R-55DC AT27HC641R-55LC AT27HC641R-55PC AT27HC642R-55PC	24DW6 24DW3 28LW 24P6 24P3	Commercial (0°C to 70°C)
55	45	30	AT27HC641R-55DI AT27HC642R-55DI AT27HC641R-55LI AT27HC641R-55PI AT27HC642R-55PI	24DW6 24DW3 28LW 24P6 24P3	Industrial (-40°C to 85°C)
			AT27HC641R-55DM AT27HC642R-55DM AT27HC641R-55LM	24DW6 24DW3 28LW	Military (-55°C to 125°C)
			AT27HC641R-55DM/883 AT27HC642R-55DM/883 AT27HC641R-55LM/883	24DW6 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
70	35	20	AT27HC641R-70DC AT27HC642R-70DC AT27HC641R-70LC AT27HC641R-70PC AT27HC642R-70PC	24DW6 24DW3 28LW 24P6 24P3	Commercial (0°C to 70°C)
70	45	30	AT27HC641R-70DI AT27HC642R-70DI AT27HC641R-70LI AT27HC641R-70PI AT27HC642R-70PI	24DW6 24DW3 28LW 24P6 24P3	Industrial (-40°C to 85°C)
			AT27HC641R-70DM AT27HC642R-70DM AT27HC641R-70LM	24DW6 24DW3 28LW	Military (-55°C to 125°C)

tacc	Icc	(mA)	Ordering Code	Package	Operation Range
(ns)	Active	Standby	Crashing Code		operation riange
70	45	30	AT27HC641R-70DM/883 AT27HC642R-70DM/883 AT27HC641R-70LM/883	24DW6 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)
90	35	20	AT27HC641R-90DC AT27HC642R-90DC AT27HC641R-90LC AT27HC641R-90PC AT27HC642R-90PC	24DW6 24DW3 28LW 24P6 24P3	Commercial (0°C to 70°C)
90	45	30	AT27HC641R-90DI AT27HC642R-90DI AT27HC641R-90LI AT27HC641R-90PI AT27HC642R-90PI	24DW6 24DW3 28LW 24P6 24P3	Industrial (-40°C to 85°C)
			AT27HC641R-90DM AT27HC642R-90DM AT27HC641R-90LM	24DW6 24DW3 28LW	Military (-55°C to 125°C)
			AT27HC641R-90DM/883 AT27HC642R-90DM/883 AT27HC641R-90LM/883	24DW6 24DW3 28LW	Military/883C Class B, Fully Compliant (-55°C to 125°C)

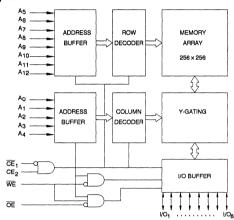
	Package Type					
24DW3	24DW3 24 Lead, 0.300" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)					
24DW6	24DW6 24 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)					
24FW	24FW 24 Lead, Windowed, Ceramic Bottom-Brazed Flat Package (FlatPack)					
28LW	28LW 28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)					
24P3	24P3 24 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)					
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)					

Product Information	
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	
CMOS EPROMs	4
High Speed CMOS PROMs	5
CMOS SRAMS	6
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	11

Section 6

\sim		^_	•	
I In	1OS	- N	Δ	Me

AT3864L	8K x 8	64K SRAM	6-3
AT3864L-15DMB	8K x 8	64K SRAM, Full Military Temperature	6-11
AT38256	32K x 8	256K High Speed SRAM	6-19


Features

- Fast Read Access Time 100ns
- Low Power

35mA Maximum (Active) 100 uA Maximum (Standby)

- **2V Data Retention**
- Fully Static: No Clock Required
- Three Control Inputs (CE₁, CE₂, and OE)
- TTL Compatible Inputs and Outputs
- 5V ± 10% Supply
- 28 Lead Dual In-line and Surface Mount Packages
- **JEDEC Pinout**
- **Commercial and Industrial Temperature Ranges**

Block Diagram

Description

The AT3864L is a high performance CMOS static Random Access Memory. Its 64K of memory is organized as 8192 words by 8 bits. Manufactured with an advanced CMOS technology, the AT3864L offers access times down to 100ns with power dissipation of under 200mW. When the AT3864L is deselected, the standby current is just 100µA. In addition, the AT3864L offers a data retention capability of only 100µW power dissipation when operated on a 2V power supply.

The AT3864L powers down to the standby mode when deselected (\overline{CE}_1 is HIGH or CE₂ is LOW). The I/O pins remain in the high impedance state unless the chip is selected (\overline{CE}_1) is LOW and CE₂ is HIGH), the outputs are enabled (\overline{OE}) is LOW, and Write Enable is not active (WE is HIGH).

The AT3864L is completely TTL compatible and requires a single 5V power supply. The device is fully static and does not need any clocks or refresh control signals for operation.

Pin Configurations DINNAMES

LIIA	NAMES
12	Add
O ₈	Ou

A ₀ -A ₁₂	Addresses
I/O ₁ -I/O ₈	Outputs
$\overline{\text{CE}}_1, \text{CE}_2$	Chip Enables
ŌĒ	Output Enable
WE	Write Enable
V _{CC} , GND	Power, Ground
NC	No Connect

	-		~ ,		7	
NC	Н	1	_	28	Ь	VCC
A12	d	2		27	Ь	WE
A7	d	3		26	B	CE2
A6	ㅁ	4		25	Þ	A8
A5	d	5		24	Þ	A9
A4	q	6		23	Þ	A11
АЗ	d	7		22	Þ	OE
A2	q	8		21	Þ	A10
A1	d	9		20	Þ	CE1
AO	q	10		19	Þ	1/08
1/01	4	11		18	Þ	1/07
1/02	4	12		17	Þ	1/06
1/03	q	13		16	R	1/05
GND		14		15	Þ	1/04
	- 1				1	

64K (8K x 8) **CMOS SRAM**

Device Operation

READ: When \overline{CE}_1 is LOW, CE₂ is HIGH, \overline{OE} is LOW, and \overline{WE} is HIGH, the 8 bits of data stored at the memory location determined by the address input (pins A₀ through A₁₂) are inserted on the data outputs (pins I/O₁ through I/O₈).

WRITE: When \overline{CE}_1 is LOW, CE₂ is HIGH, and \overline{WE} is LOW, the 8 bits of data placed on the input pins (I/O₁ through I/O₈) are stored at the memory location determined by the address input (pins A₀ through A₁₂).

DATA RETENTION: When the chip is in standby mode, V_{CC} can be reduced to as low as 2 volts without impacting data integrity. Power dissipation will be reduced to 100 μ W maximum.

Operating Modes

MODE\PIN	$\overline{\text{CE}}_1$	CE ₂	ŌĒ	WE	I/O	
Read	L	Н	L	Н	Dout	
Write	L	Н	$X^{(1)}$	L	DIN	
Standby ₁	Н	X	X	X	High Z	
Standby ₂	X	L	X	X	High Z	
Output Disable	X	X	Н	X	High Z	

Note: 1. X can be L (Low) or H (High)

Absolute Maximum Ratings*

Temperature Under Bias40° C to 85° C
Storage Temperature55° C to 125° C
All Input Voltages (including NC Pins) with Respect to Ground0.3 V to $V_{CC} + 0.3V$
All Output Voltages with Respect to Ground0.3V to $V_{CC} + 0.3V$
Maximum Supply Voltage+7.0V

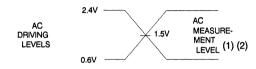
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Conditions

		AT3864L-10	AT3864L-12	AT3864L-15
Operating	Commercial	0°C to 70°C	0°C to 70°C	0°C to 70°C
Temperature (Case)	Industrial	-40°C to 85°C	-40°C to 85°C	-40°C to 85°C
V _{CC} Power Supply		5V ± 10%	5V ± 10%	$5V \pm 10\%$

D.C. and Operating Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{LI}	Input Load Current	$V_{IN} = 0$ to V_{CC}	-1.0		1.0	μA
I_{LO}	Output Leakage	$\overline{CE}_1 = 2.2V \text{ to } V_{CC} + 0.3V \text{ or}$				
	Current	$CE_2 = -0.3V \text{ to } 0.8V \text{ or}$				
		$\overline{OE} = 2.2 \text{V to V}_{CC} + 0.3 \text{V or}$	-1.0		1.0	μA
		$\overline{\text{WE}} = -0.3 \text{V} \text{ to } 0.8 \text{V}$				
		$V_{I/O} = 0$ to V_{CC}				
I _{SB1}	Standby Current	$CE_2 \leq 0.2V$ or				
	(CMOS)	$\overline{\text{CE}}_1 \geq \text{V}_{\text{CC}} - 0.2\text{V},$		2	100	μA
		$CE_2 \ge V_{CC} - 0.2V$ or $CE_2 \le 0.2V$				
		$V_{IN} = 0$ to V_{CC}				
I _{SB2}	Standby Current	$CE_2 = -0.3V \text{ to } 0.8V \text{ or}$				
	(TTL)	$\overline{\text{CE}}_1 = 2.2 \text{V to V}_{\text{CC}} + 0.3 \text{V},$			3	mA
		$V_{IN} = 0$ to V_{CC}				
Icc	V _{CC} Active Current	$\overline{CE}_1 = -0.3V \text{ to } 0.8V,$				
	(TTL)	$CE_2 = 2.2V \text{ to } V_{CC} + 0.3V,$		20	35	mA
		$I_{OUT} = 0$ mA, min cycle				
V_{IL}	Input Low Voltage		-0.3		0.8	V
V_{IH}	Input High Voltage		2.2V		$V_{CC} + 0.3$	V
V_{OL}	Output Low Voltage	$I_{OL} = 2.0 \text{mA}$			0.4	V
VoH	Output High Voltage	$I_{OH} = -1.0 \text{mA}$	2.4			V


6

Pin Capacitance $(f = 1MHz T = 25^{\circ}C)^{(1)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Cour	Input/Output Capacitance	$V_{OUT} = 0V$		6	10	pF
CIN	Input Capacitance	$V_{IN} = 0V$		6	10	pF

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

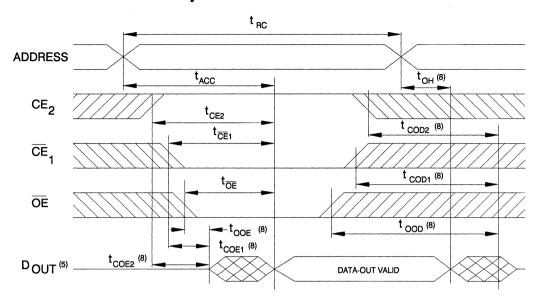
Input Test Waveforms and Measurement Levels

Notes: 1. Input rise and fall time 5ns.

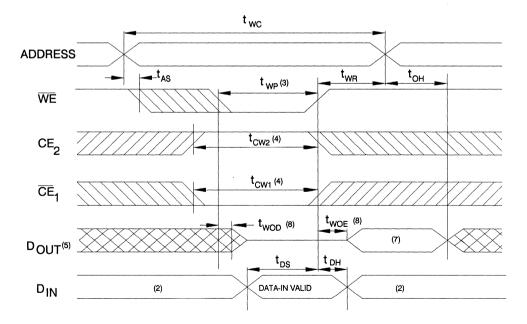
2. Output load: 1TTL gate +100pF.

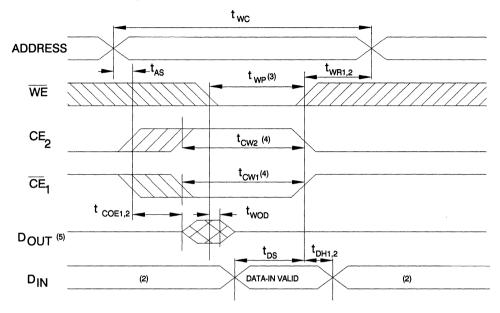
A.C. Characteristics for Read

		AT3864L-10		AT38	AT3864L-12		AT3864L-15	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
tRC	Read Cycle Time	100		120		150		ns
tACC	Address Access Time		100		120		150	ns
tce1, tce2	CE ₁ , CE ₂ Access Time		100		120		150	ns
toe	OE Access Time		50		60		70	ns
toH	Output Hold Time	15		15		15		ns
tCOE1,2	CE ₁ , CE ₂ Output Enable Time	10		10		10		ns
tooe	OE Output Enable Time	5		5		5		ns
tCOD1,2	CE ₁ , CE ₂ Output Disable Time		45		45		60	ns
toop	OE Output Disable Time		40		40		50	ns


A.C. Characteristics for Write

		AT386	64L-10	AT3864L-12		AT386	AT3864L-15	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
twc	Write Cycle Time	100		120		150		ns
tas	Address Setup Time	0		0		0		ns
twp	Write Pulse Width	60		70		90		ns
tcw1,2	CE ₁ , CE ₂ Setup Time	80		80		90		ns
twr	Write Recovery Time	0		0	0			ns
twR1,2	CE ₁ , CE ₂ Write Recovery Time	0		0	0 0			ns
tDS	Data Setup Time	40		50	50 60			ns
tDH	Data Hold Time	0		0	0 0			ns
t _{DH1,2}	CE ₁ , CE ₂ Data Hold Time	0		0 0			ns	
twoE	WE Output Enable Time	5		5		5		ns
twop	WE Output Disable Time		40	40			50	ns



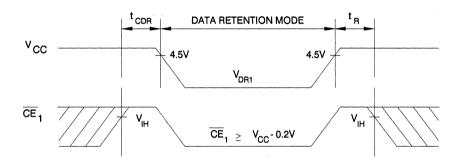

A.C. Waveforms for Read Cycle⁽¹⁾

A.C. Waveforms for Write Cycle 1 (WE Write)(6)

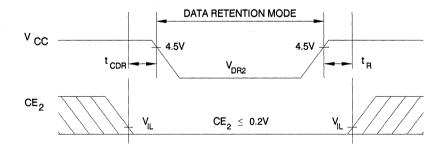
A.C. Waveforms for Write Cycle 2 (CE Write)(6)

Notes:

- 1. During a Read Cycle, WE should be HIGH.
- 2. During this period, I/O pins are in the output state.
- 3. A Write occurs when \(\overline{CE}_1\), CE₂ and \(\overline{WE}\) are all active at the same time. A Write begins at the latest transition among \(\overline{CE}_1\) going LOW, CE₂ going HIGH and \(\overline{WE}\) going LOW. A Write ends at the earliest transition among \(\overline{CE}_1\) going HIGH, CE₂ going LOW and \(\overline{WE}\) going HIGH. twp is measured from the beginning of Write to the end of Write.
- 4. t_{CW} is measured from the later of \overline{CE}_1 going LOW or CE_2 going HIGH to the end of Write.
- 5. If \overline{OE} or \overline{CE}_1 is HIGH, or CE₂ or \overline{WE} is LOW, D_{OUT} goes to a HIGH impedance state.
- 6. During a write cycle, $\overline{OE} = V_{IH}$ or V_{IL} .
- 7. DOUT is equal to the Input Data written during the same cycle.
- 8. Parameter is sampled and not 100% tested.



Data Retention Characteristics


Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Data Retention	VDR1	$\overline{CE}_1 \ge V_{CC} - 0.2V$				
Power Supply Voltage		$CE_2 \ge V_{CC} - 0.2V$ or	2.0		5.5	V
		$CE_2 \leq 0.2V$				-
	V_{DR2}	$CE_2 \leq 0.2V$	2.0		5.5	_
Data Retention	I _{CCDR1}	$V_{CC} = 3.0V$				
Current		$\overline{CE}_1 \geq V_{CC} - 0.2V$		1	50	μA
}		$CE_2 \ge V_{CC}$ -0.2V or				
<u> </u>		$CE_2 \leq 0.2V$				
1	ICCDR2	$V_{CC} = 3.0V$,		1	50	μΑ
4		$CE_2 \leq 0.2V$				
Chip Enable Setup Time	tcdr		0			ns
Chip Enable Hold Time	tR		t _{RC} ⁽¹⁾			ns

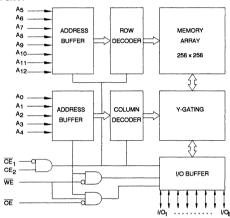
Note: 1. t_{RC} = Read Cycle Time

Data Retention Waveform 1 (CE₁ Control)

Data Retention Waveform 2 (CE₂ Control)

tacc	lcc	(mA)	Ordering Code	Package	Operation Range		
(ns)	Active Standby		Ordering Gode	rackage	- Cps. aorr range		
100	35	0.1	AT3864L-10PC AT3864L-10RC	28P6 28R	Commercial (0° to 70°C)		
			AT3864L-10PI AT3864L-10RI	28P6 28R	Industrial (-40° to 85°C)		
120	120 35 0.1		20 35	0.1	AT3864L-12PC AT3864L-12RC	28P6 28R	Commercial (0° to 70°C)
			AT3864L-12PI AT3864L-12RI	28P6 28R	Industrial (-40° to 85°C)		
150	35	0.1	AT3864L-15PC AT3864L-15RC	28P6 28R	Commercial (0° to 70°C)		
			AT3864L-15PI AT3864L-15RI	28P6 28R	Industrial (-40° to 85°C)		

Package Type				
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)			
28R	28 Lead, 0.330" Wide Plastic Gull Wing Small Outline (SOIC)			



Features

- Fast Read Access Time 150ns
- Low Power
 - 40mA Maximum (Active) 1mA Maximum (Standby)
- 2V Data Retention
- Fully Static: No Clock Required
- Three Control Inputs (CE₁, CE₂, and OE)
- TTL Compatible Inputs and Outputs
- 5V ± 10% Supply
- 28 Lead Dual In-line
- JEDEC Pinout
- Full Military Temperature Range

Block Diagram

Description

The AT3864L-15DMB is a high performance CMOS static Random Access Memory. Its 64K of memory is organized as 8192 words by 8 bits. Manufactured with an advanced CMOS technology, the AT3864L-15DMB offers access times down to 150ns with power dissipation of 220mW maximum. When the AT3864L-15DMB is deselected, the standby current is just 1mA. In addition, the AT3864L-15DMB offers a data retention capability of only 800µW power dissipation when operated on a 2V power supply.

The AT3864L-15DMB powers down to the standby mode when deselected (\overline{CE}_1) is HIGH or CE₂ is LOW). The I/O pins remain in the high impedance state unless the chip is selected (\overline{CE}_1) is LOW and CE₂ is HIGH), the outputs are enabled (\overline{OE}) is LOW), and Write Enable is not active (\overline{WE}) is HIGH).

The AT3864L-15DMB is completely TTL compatible and requires a single 5V power supply. The device is fully static and does not need any clocks or refresh control signals for operation.

Pin Configurations

PIN	NA	M	ES

I III IVAIVIES						
A ₀ -A ₁₂	Addresses					
I/O ₁ -I/O ₈	Outputs					
$\overline{\text{CE}}_1, \text{CE}_2$	Chip Enables					
ŌĒ	Output Enable					
WE	Write Enable					
V _{CC} , GND	Power, Ground					
NC	No Connect					

	ſ		~~		7		
NC	d	1		28	Ь	VCC	
A12		2		27	Þ	WE	
A7	q	3		26		CE2	
A6	q	4		25	Þ	A8	
A5	d	5		24	Þ	A9	
A4	덕	6		23	Þ	A11	
A3		7		22	Þ	ŌĒ	
A2	q	8		21	Þ	A10	
A1	9	9		20	5	CE1	
AO	4	10		19	Þ	1/08	
1/01	þ	11		18		1/07	
1/02	9	12		17	Р	1/06	
I/O3	4	13		16	Р	1/05	
GND	q	14		15	P	1/04	
	- 1				1		

64K (8K x 8) CMOS SRAM

Device Operation

READ: When \overline{CE}_1 is LOW, CE₂ is HIGH, \overline{OE} is LOW, and \overline{WE} is HIGH, the 8 bits of data stored at the memory location determined by the address input (pins A₀ through A₁₂) are inserted on the data outputs (pins I/O₁ through I/O₈).

WRITE: When \overline{CE}_1 is LOW, CE₂ is HIGH, and \overline{WE} is LOW, the 8 bits of data placed on the input pins (I/O₁ through I/O₈) are stored at the memory location determined by the address input (pins A₀ through A₁₂).

DATA RETENTION: When the chip is in standby mode, V_{CC} can be reduced to as low as 2 volts without impacting data integrity. Power dissipation will be reduced to $800~\mu W$ maximum.

Operating Modes

MODE\PIN	$\overline{\text{CE}}_1$	CE ₂	ŌĒ	WE	I/O
Read	L	Н	L	Н	Dout
Write	L	Н	$X^{(1)}$	L	D_{IN}
Standby ₁	Н	X	X	X	High Z
Standby ₂	X	L	X	X	High Z
Output Disable	X	X	H	X	High Z

Note: 1. X can be L (Low) or H (High)

Absolute Maximum Ratings*

Temperature Under Bias55° C to 150	0° C
Storage Temperature65° C to 150	0° C
All Input Voltages (including NC Pins) with Respect to Ground0.3 V to V _{CC} +0).3V
All Output Voltages with Respect to Ground0.3V to V _{CC} +0).3V
Maximum Supply Voltage+7	7.0V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Conditions

		AT3864L-15	
Operating Temperature (Case)	Military	-55°C to 125°C	
VCC Power Supply		5V ± 10%	

D.C. and Operating Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ILI	Input Load Current	V _{IN} =0 to V _{CC}	-1.0		1.0	μΑ
ILO	Output Leakage	$\overline{\text{CE}}_1 = 2.2 \text{V to V}_{\text{CC}} + 0.3 \text{V or}$				
	Current	$CE_2 = -0.3V \text{ to } 0.8V \text{ or }$				
		$\overline{OE} = 2.2 \text{V to V}_{CC} + 0.3 \text{V or}$	-1.0		1.0	μΑ
		$\overline{\text{WE}} = -0.3 \text{V to } 0.8 \text{V}$				
		$V_{I/O} = 0$ to V_{CC}				
I _{SB1}	Standby Current	$CE_2 \leq 0.2V$ or				
	(CMOS)	$\overline{CE}_1 \geq V_{CC} - 0.2V$,			1	mΑ
		$CE_2 \ge V_{CC} - 0.2V$ or $CE_2 \le 0.2V$				
		$V_{IN} = 0$ to V_{CC}				
I _{SB2}	Standby Current	$CE_2 = -0.3V \text{ to } 0.8V \text{ or}$				
	(TTL)	$\overline{\text{CE}}_1 = 2.2 \text{V to V}_{\text{CC}} + 0.3 \text{V},$			3	mA
		$V_{IN} = 0$ to V_{CC}				
Icc	V _{CC} Active Current	$\overline{\text{CE}}_1 = -0.3 \text{V to } 0.8 \text{V},$				
	(TTL)	$CE_2 = 2.2V \text{ to } V_{CC} + 0.3V,$		20	40	mΑ
		$I_{OUT} = 0$ mA, min cycle				
VIL	Input Low Voltage		-0.3		0.8	V
V _{IH}	Input High Voltage		2.2V		$V_{CC} + 0.3$	V
Vol	Output Low Voltage	$I_{OL} = 2.0 \text{mA}$			0.4	· V
V _{OH}	Output High Voltage	$I_{OH} = -1.0 \text{mA}$	2.4			V

Pin Capacitance (f = 1MHz T = 25°C) (1)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Cout	Input/Output Capacitance	$V_{OUT} = 0V$		6	10	pF
CIN	Input Capacitance	$V_{IN} = 0V$		6	10	pF

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Input Test Waveforms and Measurement Levels

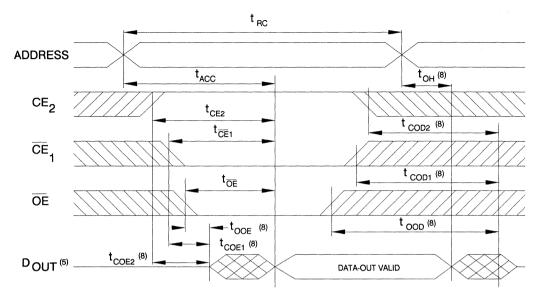
AC DRIVING LEVELS 1.5V MEASURE-MENT LEVEL (1) (2)

Notes: 1. Input rise and fall time 5ns.

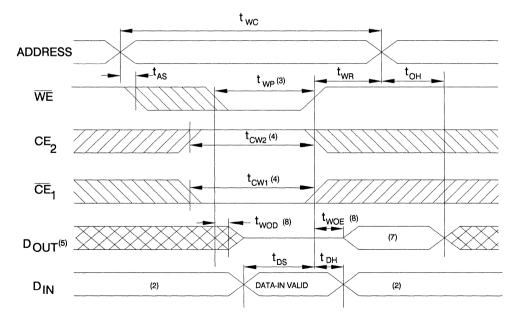
2. Output load: 1TTL gate +100pF.

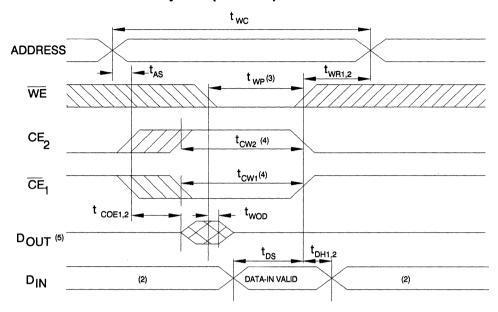
A.C. Characteristics for Read

		AT38	64L-15	
Symbol	Parameter	Min	Max	Unit
trc	Read Cycle Time	150		ns
tACC	Address Access Time		150	ns
tcE1, tcE2	$\overline{\text{CE}}_1$, CE ₂ Access Time		150	ns
toE	OE Access Time		70	ns
tон	Output Hold Time	15		ns
tCOE1,2	CE ₁ , CE ₂ Output Enable Time	10		ns
tooe	OE Output Enable Time	5		ns
tCOD1,2	CE ₁ , CE ₂ Output Disable Time		60	ns
toop	OE Output Disable Time		50	ns


A.C. Characteristics for Write

		AT386	64L-15		
Symbol	Parameter	Min	Max	Unit	
twc	Write Cycle Time	150		ns	
tas	Address Setup Time	0		ns	
twp	Write Pulse Width	90		ns	
tcw1,2	CE ₁ , CE ₂ Setup Time	90		ns	
twr	Write Recovery Time	0		ns	
twR1,2	CE ₁ , CE ₂ Write Recovery Time	0		ns	
tDS	Data Setup Time	60		ns	
t _{DH}	Data Hold Time	0		ns	
tDH1,2	CE ₁ , CE ₂ Data Hold Time	0		ns	
twoE	WE Output Enable Time	5		ns	
twop	WE Output Disable Time		50	ns	



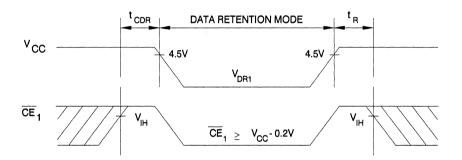

A.C. Waveforms for Read Cycle⁽¹⁾

A.C. Waveforms for Write Cycle 1 (WE Write) (6)

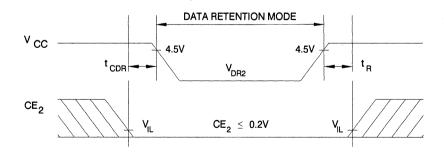
A.C. Waveforms for Write Cycle 2 (CE Write)(6)

Notes:

- 1. During a Read Cycle, WE should be HIGH.
- 2. During this period, I/O pins are in the output state.
- 3. A Write occurs when \(\overline{CE}_1\) is LOW, CE₂ is HIGH, and \(\overline{WE}\) is LOW. A Write begins at the latest transition among \(\overline{CE}_1\) going LOW, CE₂ going HIGH and \(\overline{WE}\) going LOW. A Write ends at the earliest transition among \(\overline{CE}_1\) going HIGH, CE₂ going LOW and \(\overline{WE}\) going HIGH. twp is measured from the beginning of Write to the end of Write.
- 4. t_{CW} is measured from the later of \overline{CE}_1 going LOW or CE_2 going HIGH to the end of Write.
- 5. If \overline{OE} or \overline{CE}_1 is HIGH, or CE₂ or \overline{WE} is LOW, D_{OUT} goes to a HIGH impedance state.
- 6. During a write cycle, \overline{OE} is VIH or VIL.
- 7. DOUT is equal to the Input Data written during the same cycle.
- 8. Parameter is sampled and not 100% tested.



Data Retention Characteristics


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data Retention	VDR1	$\overline{CE}_1 \ge V_{CC} - 0.2V$				
Power Supply Voltage		$CE_2 \ge V_{CC} - 0.2V$ or	2.0		5.5	V
		$CE_2 \leq 0.2V$				
	V_{DR2}	$CE_2 \leq 0.2V$	2.0		5.5	
Data Retention	I _{CCDR1}	$V_{CC} = 3.0V$				
Current		$\overline{CE}_1 \ge V_{CC} - 0.2V$		1	400	μA
ļ		$CE_2 \ge V_{CC}-0.2V$ or				
		$CE_2 \leq 0.2V$				
	ICCDR2	$V_{CC} = 3.0V,$		1	400	μA
		$CE_2 \leq 0.2V$				
Chip Enable Setup Time	tcdr		0			ns
Chip Enable Hold Time	tR		$t_{RC}^{(1)}$			ns

Note: 1. t_{RC} = Read Cycle Time

Data Retention Waveform 1 ($\overline{\text{CE}}_1$ Control)

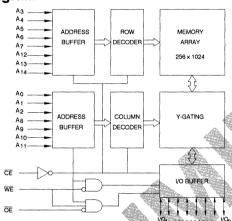
Data Retention Waveform 2 (CE₂ Control)

6

tacc			Ordering Code	Package	Operation Range
(ns)	Active	Standby	Crdening Code	rackage	Operation hange
150	40	1.0	AT3864L-15DMB	28D6	Military (-55° to 125°C)

	Package Type
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)

Features


- Fast Read Access Time 20ns
- Low Power

120mA Maximum (Active) 1mA Maximum (Standby)

500 µA Maximum (2V Data Retention)

- . Fully Static: No Clock Required
- Two Control Inputs (CE and OE)
- TTL Compatible Inputs and Outputs
- 5V ± 10% Supply
- 28 Lead Dual In-line and Surface Mount Packages
- JEDEC Pinout
- Commercial, Industrial and Military Temperature Ranges

Block Diagram

Description

The AT38256 is a high performance CMOS static Random Access Memory. Its 256K of memory is organized as 32768 words by 8 bits. Manufactured with an advanced CMOS technology, the AT38256 offers access times down to 20ns with power dissipation of 660mW. When the AT38256 is deselected, the standby current is just 1mA. In addition, the AT38256 offers a data retention capability of only 1mW power dissipation when operated on a 2V power supply.

The AT38256 powers down to the standby mode when deselected (\overline{CE} is HIGH). The I/O pins remain in the high impedance state unless the chip is selected (\overline{CE} is LOW), the outputs are enabled (\overline{OE} is LOW), and Write Enable is not active (\overline{WE} is HIGH).

The AT38256 is completely TTL compatible and requires a single 5V power supply. The device is fully static and does not need any clocks or refresh control signals for operation.

Pin Configurations

For .300 DIP/.600 DIP/.300 SOJ

Pin Name	Function
A ₀ -A ₁₄	Addresses
I/O ₁ -I/O ₈	Outputs
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
V _{CC} , GND	Power, Ground

	- 6		\sim			
A14	d	1		28	þ	VCC
A12	d	2		27	Þ	WE
Α7	þ	3		26	Þ	A13
A6	d	4		25	Þ	A8
A5	d	5		24	Þ	A9
A4	d	6		23		A11
АЗ	ㅁ	7		22	Þ	ŌĒ
A2	q	8		21	Þ	A10
A1	9	9		20	Þ	CE
AO	d	10		19	Þ	1/08
1/01	q	11		18	Þ	1/07
1/02	q	12		17	Þ	1/06
1/03	9	13		16	B	1/05
GND	q	14		15	Þ	1/04
	l				1	

256K (32K x 8) CMOS SRAM

Preliminary

Device Operation

READ: When \overline{CE} is LOW, \overline{OE} is LOW, and \overline{WE} is HIGH, the 8 bits of data stored at the memory location determined by the address input (pins A₀ through A₁₄) are inserted on the data outputs (pins I/O₁ through I/O₈).

WRITE: When \overline{CE} is LOW and \overline{WE} is LOW, the 8 bits of data placed on the input pins (I/O₁ through I/O₈) are stored at the memory location determined by the address input (pins A₀ through A₁₄).

DATA RETENTION: When the chip is in standby mode, V_{CC} can be reduced to as low as 2 volts without impacting data integrity. Power dissipation will be reduced to 1 mW maximum.

Operating Modes

MODE\PIN	CE	ŌĒ	WE	I/O
Read	L	L	Н	DOUT
Write	L	$X^{(1)}$	L	D _{IN}
Standby (not selected)	Н	X	X	High Z
Output Disable	L	Н	Н	High Z

Note: 1. X can be L (Low) or H (High)

Absolute Maximum Ratings*

Temperature Under Bias	55° C to 125° C
Storage Temperature	65° C to 150° C
All Input Voltages with Respect to Ground	0.3 $V^{(1)}$ to V_{CC} + 0.3 V
All Output Voltages with Respect to Ground	0.3V ⁽¹⁾ to V _{CC} +0.3V
Maximum Supply Voltage	+7.0V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

1. Minimum input voltages are -3.5V for pulse width less than 20 ns.

D.C. and A.C. Operating Conditions

		AT38256	
Operating	Commercial	0°C to 70°C	
Temperature (Ambient)	Industrial	-40°C to 85°C	
	Military	-55°C to 125°C	
V _{CC} Power Supply		5V ± 10%	

D.C. and Operating Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ILI	Input Load Current	$V_{IN} = 0$ to V_{CC}	-1.0		1.0	μΑ
I_{LO}	Output Leakage	$\overline{\text{CE}} = 2.2 \text{V to VCC} + 0.3 \text{V or}$				
		$\overline{OE} = 2.2 \text{V to V}_{CC} + 0.3 \text{V or}$	-1.0		1.0	μA
		$\overline{\text{WE}} = -0.3 \text{V to } 0.8 \text{V}$				
		$V_{I/O} = 0$ to V_{CC}				
I _{SB1}	Standby Current	$\overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.2\text{V},$				
	(CMOS)	$V_{IN} \ge (V_{CC}-0.2V)$ or $\le 0.2V$			1	mA
I_{SB2}	Standby Current	$\overline{\text{CE}} = 2.2 \text{V to V}_{\text{CC}} + 0.3 \text{V},$			25	mA
	(TTL)	$V_{IN} = V_{IL} \text{ or } V_{IH}$				
I_{CC}	V _{CC} Active Current	$\overline{\text{CE}} = -0.3 \text{V to } 0.8 \text{V},$			120	mA
	(TTL)	$I_{OUT} = 0$ mA, min cycle				
V _{IL} (1)	Input Low Voltage		-0.3 ⁽²⁾		0.8	V
V _{IH} ⁽¹⁾	Input High Voltage		2.2V		$V_{CC} + 0.3$	V
V_{OL}	Output Low Voltage	$I_{OL} = 8.0 \text{mA}$			0.4	V
VoH	Output High Voltage	$I_{OH} = -4.0 \text{mA}$	2.4			V

Note:

- 1. These are voltages with respect to device GND.
- 2. $V_{IL} = -3.0V$ for pulse width less than 20ns.

Pin Capacitance $(f=1MHz TA = 25^{\circ}C)^{(1)}$

Symbol	Parameter	Conditions	Min Max Unit	
Cout	Input/Output Capacitance	$V_{OUT} = 0V$	8 pF	
CIN	Input Capacitance	$V_{IN} = 0V$	8 pF	

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Output Test Load

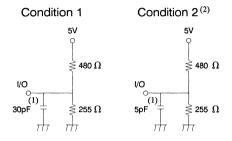


Figure 1

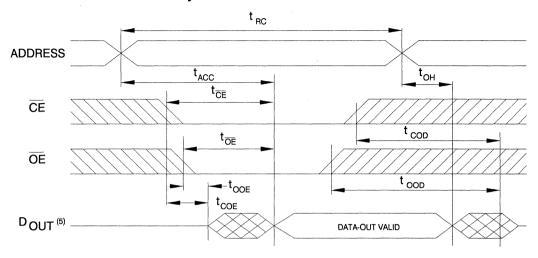
Notes:

- 1. Capacitance Load includes scope and jig capacitances
- 2. For tCOE, tOOE, tCOD, tOOD, tWOE, tWOD

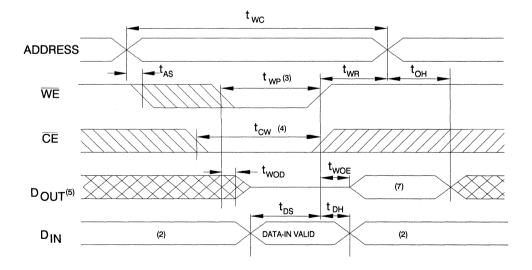
A.C. Characteristics for Read

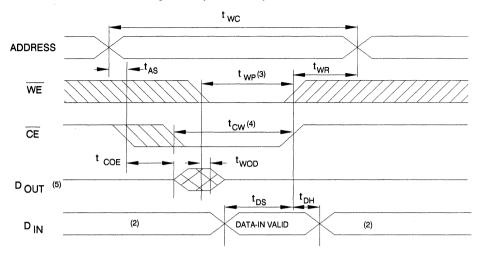
		AT38:	256-20	AT382	256-25	AT38	256-35	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
trc	Read Cycle Time	20		25		35		ns
tACC	Address Access Time		20		25		35	ns
tCE	CE Access Time		20	100 100 100 100 100 100 100 100 100 100	25		35	ns
toE	OE Access Time		12		12		20	ns
toH	Output Hold Time	5		5		5		ns
tcoE (1)	CE Output Enable Time	5		5		5		ns
tooe (1)	OE Output Enable Time	0		0		0		ns
tcon (1)	CE Output Disable Time		15		15		15	ns
toop (1)	OE Output Disable Time		13		13		15	ns

A.C. Characteristics for Write


		AT3825	66-20	AT3825	66-25	AT38	256-35	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
twc	Write Cycle Time	20		25		35		ns
tas	Address Setup Time	0		0		0		ns
twp	Write Pulse Width	15		20		30		ns
tcw	CE Setup Time	15		20		30		ns
twR	Write Recovery Time	2		2		2		ns
tDS	Data Setup Time	12		12		15		ns
tDH	Data Hold Time	0		0		0		ns
twoE (1)	WE Output Enable Time	0		0		0		ns
twop (1)	WE Output Disable Time		13		13		15	ns

Note: 1. Tansition is measured by ±500 mV from the normal state with the output test load circuit, condition 2. This parameter is sampled and is not 100% tested.



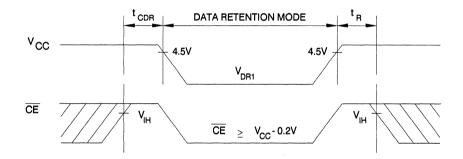

A.C. Waveforms for Read Cycle (1)

A.C. Waveforms for Write Cycle 1 (WE Write) (6)

A.C. Waveforms for Write Cycle 2 (CE Write) (6)

Notes:

- During a Read Cycle, WE should be HIGH.
- 2. During this period, I/O pins are in the output state.
- 3. A Write occurs when \overline{CE} and \overline{WE} are LOW at the same time.
 - A Write begins at the latest transition among $\overline{\text{CE}}$ going LOW, and $\overline{\text{WE}}$ going LOW.
 - A Write ends at the earliest transition among \overline{CE} going HIGH, and \overline{WE} going HIGH. twp is measured from the beginning of Write to the end of Write.
- 4. tcw is measured from the later of $\overline{\text{CE}}$ going LOW or going HIGH to the end of Write.
- 5. If $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is HIGH, or $\overline{\text{WE}}$ is LOW, D_{OUT} goes to a high impedance state.
- 6. During a write cycle, $\overline{OE} = V_{IH}$ or V_{IL} .
- 7. DOUT is equal to the Input Data written during the same cycle.


Data Retention Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data Retention	VDR1	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$				
Power Supply Voltage			2.0		5.5	V
Data Retention	ICCDR1	$V_{CC} = 2.0V$				
Current		$\overline{CE} \ge V_{CC} - 0.2V$ and				
		$V_{IN} \ge (V_{CC} - 0.2V)$ or $\le 0.2V$			500	μA
	I _{CCDR2}	$V_{CC} = 3.0V$ and				
		$V_{IN} \ge (V_{CC} - 0.2V)$ or $\le 0.2V$			750	μA
Chip Enable Setup Time	tcdr		0			ns
Chip Enable Hold Time	tR		t _{RC} (1)			ns

Note:

1. t_{RC} = Read Cycle Time

Data Retention Waveform (CE Control)

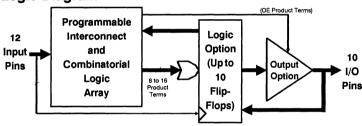
tacc	loc	(mA)	Ordering Code	Package	Operation Range	
(ns)	Active	Standby	Ordering Code	Fackage	Operation hange	
20	120	1.0	AT38256-20NC AT38256-20XC	28P3 28X	Commercial (0° to 70°C)	
			AT38256-20NI AT38256-20XI	28P3 28X	Industrial (-40° to 85°C)	
25	120	1.0	AT38256-25PC AT38256-25NC AT38256-25XC	28P6 28P3 28X	Commercial (0° to 70°C)	
				AT38256-25PI AT38256-25NI AT38256-25XI	28P6 28P3 28X	Industrial (-40° to 85°C)
			AT38256-25BM AT38256-25DM	28B 28D6	Military (-55° to 125°C)	
35	120	1.0	AT38256-35PC AT38256-35NC AT38256-35XC	28P6 28P3 28X	Commercial (0° to 70°C)	
			AT38256-35PI AT38256-35NI AT38256-35XI	28P6 28P3 28X	Industrial (-40° to 85°C)	
			AT38256-35BM AT38256-35DM	28B 28D6	Military (-55° to 125°C)	

	Package Type						
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)						
28B	28 Lead, 0.300" Wide, Ceramic Side Braze Dual Inline (Side Braze)						
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)						
28P3	28 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)						
28X	28 Lead, 0.300" Wide, Plastic J-Leaded Small Outline (SOIC)						

Product Information	All Services
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	-3
CMOS EPROMS	4
High Speed CMOS PROMs	
CMOS SRAMs	6
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	12

Section 7

CMOS EPLDs			
AT22V10/L	500 Gates	EPLD	7-3
ATV750/L	750 Gates	EPLD	7-19
		Application Brief	7-35
ATV2500/H	2500 Gates	EPLD	7-39
		Application Brief	7-55
ATV5000	5000 Gates	EPLD	7-57
Atmel-ABEL™		High-Level Design Tool for Atmel PLDs	7-61
		Programming HW & SW Support	7-63


Features

- High Speed Programmable Logic Device 15 ns Max Propagation Delay 5V ± 10% Operation
- Low Power CMOS Operation

Speed	"L"	-15	All		
Temp	C/M	All	Others		
Icc(mA)	12/15	90	55		

- CMOS and TTL Compatible Inputs and Outputs 10 μA Leakage Maximum
- Reprogrammable Tested 100% for Programmability
- High Reliability CMOS Technology 2000V ESD Protection 200mA Latchup Immunity
- Full Military, Commercial and Industrial Temperature Ranges
- Dual-In-Line and Surface Mount Packages

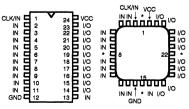
Logic Diagram

Description

The AT22V10 and AT22V10L are CMOS high performance Erasable Programmable Logic Devices (EPLDs). Speeds down to 15 ns and power dissipation as low as 12 mA are offered. All speed ranges are specified over the full $5V \pm 10\%$ range. All pins offer a low $\pm 10 \,\mu$ A leakage.

The AT22V10L provides the optimum low power CMOS EPLD solution, with low DC power (8mA typical) and full CMOS output levels. The AT22V10L significantly reduces total system power and enhances system reliability.

Full CMOS output levels help reduce power in many other system components.


The AT22V10 and AT22V10L incorporate a variable product term architecture. Each output is allocated from 8 to 16 product terms, which allows highly complex logic functions to be realized.

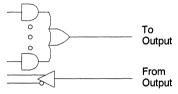
Two additional product terms are included to provide synchronous preset and asynchronous reset. These terms are common to all 10 registers. All registers are automatically cleared upon power up.

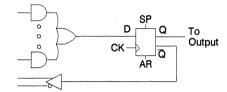
Register Preload simplifies testing. A Security Fuse prevents unauthorized copying of programmed fuse patterns.

Pin Configurations

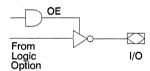
Pin Name	Function
CLK/IN	Clock and Logic Input
IN	Logic Inputs
1/0	Bidirectional Buffers
. *	No Internal Connection
VCC	+5V Supply

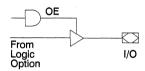
High Speed UV Erasable Programmable Logic Device


Absolute Maximum Ratings*


*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:


 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.


Logic Options

Output Options

D.C. and A.C. Operating Conditions

	Commercial AT22V10/L -15, -20, -25, -35	Industrial AT22V10/L -15, -20, -25, -35	Military AT22V10/L -15 ⁽¹⁾ , -20, -25, -30
Operating Temperature (Case)	0°C - 70°C	-40°C - 85°C	-55°C - 125°C
Vcc Power Supply	5V± 10%	5V± 10%	5V± 10%

Note: 1. Preliminary.

Operating Modes

	24 DIP Pin	1	5	8	13	I/O's	V _{CC} (24)
Mode	28 JLCC Pin	2	6	10	16	I/O's	V _{CC} (28)
"EPLD"		X ⁽¹⁾	. X	Х	Х	I/O	5V
Program		V _{PP}	X/V _H ⁽²⁾	Х	VPP	Din .	6V
PGM Verify		V _{PP}	X/V _H	Х	VIL	Dout	6V
PGM Inhibit		V _{PP}	X/V _H	Х	ViH	High Z	6V
Preload		Х	Х	VH	Х	DIN	5V

Notes: 1. X can be V_{IL} or V_{IH}.

 $2. V_{\rm H} = 11.0 V$ to 14.0 V

D.C. Characteristics

Symbol	Parameter	Condition			Min	Max	Units
ILI	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$				10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0$).1V			10	μΑ
			AT22V10-1	5		90	mA
lcc	Power Supply Current	V _{CC} = MAX, V _{IN} = GND.	AT22V10-2	0,-25,-35 ⁽²⁾		55	mA
100	Tower Supply Current	Outputs Open	22V10L ⁽²⁾	Com.		12	mA
			22V IUL. /	Ind., Mil.		15	mA
	Clocked Power Supply	f = 1MHz, V _{CC} = MAX,	22V10L ⁽²⁾	Com.		15	mA
Icc2	Current	Outputs Open	22V TUL. /	Ind., Mil.		20	mA
los (1)	Output Short Circuit Current	V _{OUT} = 0.5V				-90	mA
VIL	Input Low Voltage				-0.6	0.8	٧
VIH	Input High Voltage				2.0	Vcc+0.75	٧
			I _{OL} =16mA	Com.,Ind.		0.5	٧
VoL	Output Low Voltage	V _{IN} = V _{IH} or V _{IL} , V _{CC} = MIN	I _{OL} = 12mA Mil.			0.5	٧
		VOC — WIII V	I _{OL} =24mA Com.			0.8	٧
V	Output High Voltage	VIN = VIH or VIL,	IOH = -100µ	ıA .	V _{CC} -0.3		٧
		V _{CC} = MIN			2.4		V

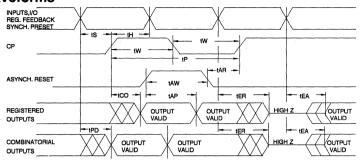
Notes: 1. Not more than one output at a time should be shorted.

Duration of short circuit test should not exceed 30 sec.

This parameter is only sampled and is not 100% tested.

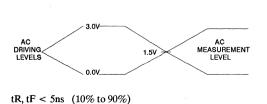
See Absolute Maximum Ratings.

2. See I_{CC} vs. Frequency curves in the back of this data sheet.

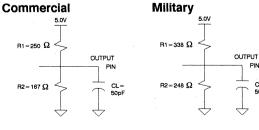

A.C. Characteristics, Commercial and Industrial

		22	V10/L	-15	22	V10/L	10/L-20 22V10/L-25		-25	22	V10/L	-35		
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
t _{PD}	Input or Feedback to Non-Registered Output		10	15		12	20		15	25		20	35	ns
tEA	Input to Output Enable		10	15			20		15	25		20	35	ns
ter	Input to Output Disable		10	15			20		15	25		20	35	ns
tCF	Clock to Feedback	0	1	2.5	0	4	8	0	5	10	0	10	15	ns
tco	Clock to Output	0	7	10	0	8	12	0	10	15	0	12	20	ns
ts	Input or Feedback Setup Time	10	8		12	8		15	12		20	15		ns
tH	Hold Time	0			0			0			0			ns
tp	Clock Period	12			20			24			30			ns
tw	Clock Width	6			10			12			15			ns -
	External Feedback 1/(ts+tco)			50.0			41.6			33.3			25.0	MHz
FMAX	Internal Feedback 1/(ts + tcr)			80.0			50.0			40.0			28.5	MHz
	No Feedback 1/(t _P)			83.3			50.0			41.6			33.3	MHz
taw	Asynchronous Reset Width	15	8		20	9		25	10		30	15		ns
tar	Asynchronous Reset Recovery Time	15	8		20	12		25	15		30	18		ns
tap	Asynchronous Reset to Registered Output Reset		12	20		15	22		18	25		20	30	ns

A.C. Waveforms (1)

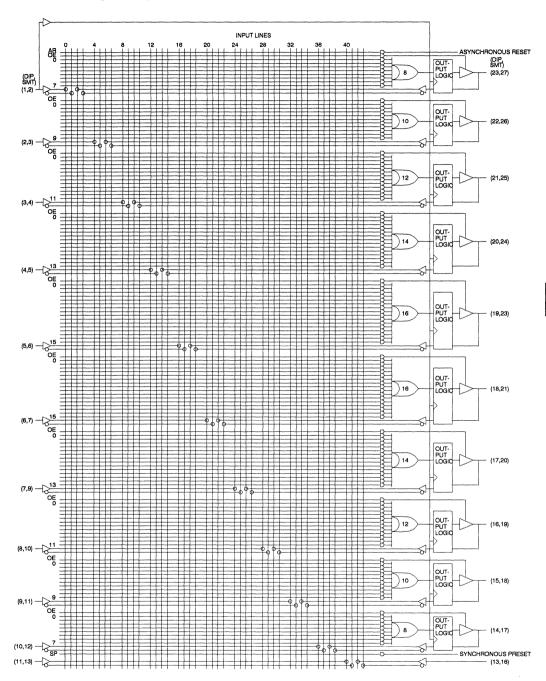

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.

A.C. Characteristics, Military


		AT2	2V10/	L-15 ⁽¹⁾	AT22V10/L-20		AT22V10/L-25		/L-25	AT22V10/L-30				
Symbol	Parameter	Min	Тур	Max	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Мах	Units
tpD	Input or Feedback to Non-Registered Output		10	15		12	20		15	25		20	30	ns
tEA	Input to Output Enable		10	15			20		15	25		20	30	ns
ter	Input to Output Disable		10	15			20		15	25		20	30	ns
tcF	Clock to Feedback	0	1	2.5	0	4	8	0	5	10	0	10	15	ns
tco	Clock to Output	0	7	10	0	8	15	0	10	15	0	12	20	ns
tsF	Feedback Setup Time	10	8		12	10		15	12		18	15		ns
ts	Input Setup Time	10	8		17	14		18	15		20	15		ns
tH	Hold Time	0			0			0			0			ns
tp	Clock Period	12			20			24			30			ns
tw	Clock Width	6			10			12			15			ns
	External Feedback 1/(ts+tco)			50.0			31.2			30.3			25.0	MHz
FMAX	Internal Feedback 1/(ts + tcr)			80.0			50.0			40.0			30.0	MHz
	No Feedback 1/(t _P)			83.3			50.0			41.6			33.3	MHz
t _{AW}	Asynchronous Reset Width	15	8		20	9		25	10		30	15		ns
t _{AR}	Asynchronous Reset Recovery Time	15	8		20	12		25	15		30	18		ns
tap	Asynchronous Reset to Registered Output Reset		12	20		15	22		18	25		20	20	ns

Note: 1. Preliminary

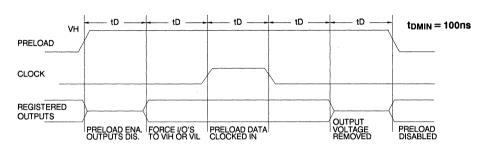
Input Test Waveforms and Measurement Levels



Output Test Loads:

AT22V10/L

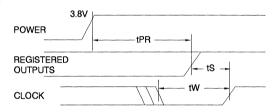
Functional Logic Diagram AT22V10/L



Preload of Registered Outputs

The registers in the AT22V10 and AT22V10L are provided with circuitry to allow loading of each register asynchronously with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A V_{II} level on the I/O pin will force the register high; a V_{IL} will force it low, independent of the polarity bit (C0) setting. The PRELOAD state is entered by placing an 11V to 14V signal on pin 8 on DIPs, and pin 10 on SMPs. When the clock pin is pulsed high, the data on the I/O pins is placed into the 10 registers.

Level forced on registered output pin during PRELOAD cycle.	Register state After Cycle
V _{IH}	High
VIL	Low



Power Up Reset

The registers in the AT22V10 and AT22V10L are designed to reset during power up. At a point delayed slightly from V_{CC} crossing 3.8V, all registers will be reset to the low state. The output state will depend on the polarity of the output buffer.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

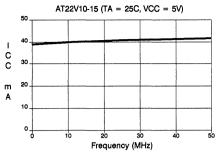
- 1) The V_{CC} rise must be monotonic,
- 2) After reset occurs, all input and feedback setup times must be met before driving the clock pin high, and
- 3) The clock must remain stable during tpR.

Parameter	Description	Min	Тур	Max	Units
tpR	Power-Up Reset Time		600	1000	ns

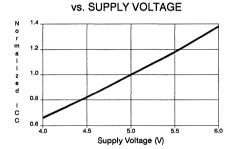
Pin Capacitance $(f = 1 MHz T = 25^{\circ}C)^{(1)}$

	Тур	Max	Units	Conditions
Cin	5	8	pF	$V_{IN} = 0V$
Соит	6	8	pF	Vout = 0V

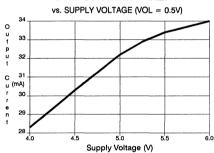
Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

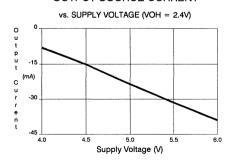

Erasure Characteristics

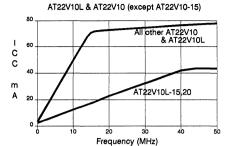
The entire fuse array of an AT22V10 or AT22V10L is erased after exposure to ultraviolet light at a wavelength of 2537 Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 μ W/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum

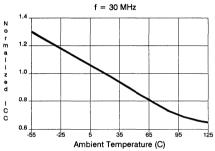

integrated erasure dose of 15W•sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPLD which will be subjected to continuous fluorescent indoor lighting or sunlight.

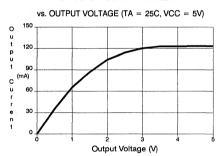
7

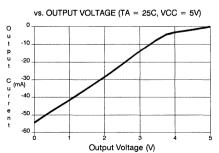

SUPPLY CURRENT vs. INPUT FREQUENCY


NORMALIZED SUPPLY CURRENT


OUTPUT SINK CURRENT


OUTPUT SOURCE CURRENT


SUPPLY CURRENT vs. INPUT FREQUENCY


NORMALIZED ICC vs. AMBIENT TEMP.

OUTPUT SINK CURRENT

OUTPUT SOURCE CURRENT

tpp (ns)	ts (ns)	tco (ns)	Ordering Code	Package	Operation Range
15	10	10	AT22V10-15DC AT22V10-15FC AT22V10-15GC AT22V10-15JC AT22V10-15KC AT22V10-15LC AT22V10-15NC AT22V10-15PC AT22V10-15PC AT22V10-15YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)
			AT22V10-15DI AT22V10-15FI AT22V10-15GI AT22V10-15JI AT22V10-15KI AT22V10-15LI AT22V10-15NI AT22V10-15PI AT22V10-15PI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3	Industrial (-40°C to 85°C)
20	12	15	AT22V10-20DC AT22V10-20FC AT22V10-20GC AT22V10-20JC AT22V10-20JC AT22V10-20LC AT22V10-20LC AT22V10-20NC AT22V10-20PC AT22V10-20YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)
			AT22V10-20DI AT22V10-20FI AT22V10-20GI AT22V10-20JI AT22V10-20KI AT22V10-20LI AT22V10-20NI AT22V10-20NI AT22V10-20PI AT22V10-20YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3	Industrial (-40°C to 85°C)
20	17	15	AT22V10-20DM AT22V10-20FM AT22V10-20GM AT22V10-20KM AT22V10-20LM AT22V10-20NM AT22V10-20YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)

t	te	ton			
(ns)	ts (ns)	tco (ns)	Ordering Code	Package	Operation Range
20	17	15	AT22V10-20DM/883 AT22V10-20FM/883 AT22V10-20GM/883 AT22V10-20KM/883 AT22V10-20LM/883 AT22V10-20NM/883 AT22V10-20YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
25	15		Commercial (0°C to 70°C)		
			AT22V10-25DI AT22V10-25FI AT22V10-25GI AT22V10-25JI AT22V10-25KI AT22V10-25LI AT22V10-25NI AT22V10-25PI AT22V10-25PI AT22V10-25YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
25	18	18 15 AT22V10-25DM AT22V10-25FM AT22V10-25GM AT22V10-25KM AT22V10-25LM AT22V10-25NM AT22V10-25YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)	
			AT22V10-25DM/883 AT22V10-25FM/883 AT22V10-25GM/883 AT22V10-25KM/883 AT22V10-25LM/883 AT22V10-25NM/883 AT22V10-25YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
30	20	20	AT22V10-30DM AT22V10-30FM AT22V10-30GM AT22V10-30KM AT22V10-30LM AT22V10-30NM AT22V10-30YM	24DW3 24C 28D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)

				1	
t _{PD} (ns)	ts (ns)	tco (ns)	Ordering Code	Package	Operation Range
30	20	20	AT22V10-30DM/883 AT22V10-30FM/883 AT22V10-30GM/883 AT22V10-30KM/883 AT22V10-30LM/883 AT22V10-30NM/883 AT22V10-30YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
35	25	25	AT22V10-35DC AT22V10-35FC AT22V10-35GC AT22V10-35JC AT22V10-35KC AT22V10-35LC AT22V10-35NC AT22V10-35PC AT22V10-35PC AT22V10-35YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)
			AT22V10-35DI AT22V10-35FI AT22V10-35GI AT22V10-35JI AT22V10-35KI AT22V10-35LI AT22V10-35NI AT22V10-35PI AT22V10-35YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
20	17	15	5962-87539 04 LX 5962-87539 04 3X	24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
25	18	15	5962-87539 01 KX 5962-87539 01 LX 5962-87539 01 3X	24CW 24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
30	20	20	5962-87539 02 KX 5962-87539 02 LX 5962-87539 02 3X	24CW 24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
40	30	25	5962-87539 03 KX 5962-87539 03 LX 5962-87539 03 3X	24CW 24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
20	17	15	5962-88670 04 KX 5962-88670 04 LX 5962-88670 04 3X	24C 24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant
25	18	15	5962-88670 01 KX 5962-88670 01 LX 5962-88670 01 3X	24C 24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant
30	20	20	5962-88670 02 KX 5962-88670 02 LX 5962-88670 02 3X	24C 24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant

t _{PD} (ns)	ts (ns)	tco (ns)	Ordering Code	Package	Operation Range
40	30	25	5962-88670 03 KX 5962-88670 03 LX 5962-88670 03 3X	24C 24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant

	Package Type
24DW3	24 Lead, 0.300" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)
24C	24 Lead, Non-Windowed, Ceramic Flat Package (Cerpack)
24D3	24 Lead, 0.300" Wide, Non-Windowed (OTP), Ceramic Dual Inline Package (Cerdip)
28J	28 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
28KW	28 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)
28LW	28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
28L	28 Pad, Non-Windowed, Ceramic Leadless Chip Carrier OTP (LCC)
24P3	24 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)
24CW	24 Lead, Windowed, Ceramic Flat Package (Cerpack)

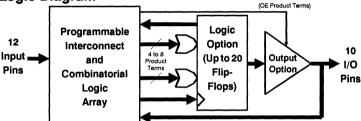
tPD (ns)	ts (ns)	tco (ns)	Ordering Code	Package	Operation Range
15	10 10	AT22V10L-15DC AT22V10L-15FC AT22V10L-15GC AT22V10L-15JC AT22V10L-15KC AT22V10L-15LC AT22V10L-15NC AT22V10L-15PC AT22V10L-15PC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)	
			AT22V10L-15DI AT22V10L-15FI AT22V10L-15GI AT22V10L-15JI AT22V10L-15KI AT22V10L-15LI AT22V10L-15NI AT22V10L-15PI AT22V10L-15YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
20	12 15	0 12	AT22V10L-20DC AT22V10L-20FC AT22V10L-20GC AT22V10L-20JC AT22V10L-20KC AT22V10L-20LC AT22V10L-20NC AT22V10L-20PC AT22V10L-20YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)
			AT22V10L-20DI AT22V10L-20FI AT22V10L-20GI AT22V10L-20JI AT22V10L-20KI AT22V10L-20LI AT22V10L-20NI AT22V10L-20PI AT22V10L-20YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
20	17	15	AT22V10L-20DM AT22V10L-20FM AT22V10L-20GM AT22V10L-20KM AT22V10L-20LM AT22V10L-20NM AT22V10L-20YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)

t _{PD} (ns)	ts (ns)	tco (ns)	Ordering Code	Package	Operation Range
20	17	15	AT22V10L-20DM/883 AT22V10L-20FM/883 AT22V10L-20GM/883 AT22V10L-20KM/883 AT22V10L-20LM/883 AT22V10L-20NM/883 AT22V10L-20YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
25	15	15	AT22V10L-25DC AT22V10L-25FC AT22V10L-25GC AT22V10L-25JC AT22V10L-25KC AT22V10L-25LC AT22V10L-25NC AT22V10L-25PC AT22V10L-25PC AT22V10L-25YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)
			AT22V10L-25DI AT22V10L-25FI AT22V10L-25GI AT22V10L-25JI AT22V10L-25KI AT22V10L-25LI AT22V10L-25NI AT22V10L-25PI AT22V10L-25YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
25	18	15	AT22V10L-25DM AT22V10L-25FM AT22V10L-25GM AT22V10L-25KM AT22V10L-25LM AT22V10L-25NM AT22V10L-25NM AT22V10L-25YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)
			AT22V10L-25DM/883 AT22V10L-25FM/883 AT22V10L-25GM/883 AT22V10L-25KM/883 AT22V10L-25LM/883 AT22V10L-25NM/883 AT22V10L-25YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
30	20	20	AT22V10L-30DM AT22V10L-30FM AT22V10L-30GM AT22V10L-30KM AT22V10L-30LM AT22V10L-30NM AT22V10L-30YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)

t _{PD} (ns)	ts (ns)	tco (ns)	Ordering Code	Package	Operation Range
30	20	20	AT22V10L-30DM/883 AT22V10L-30FM/883 AT22V10L-30GM/883 AT22V10L-30KM/883 AT22V10L-30LM/883 AT22V10L-30NM/883 AT22V10L-35YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
35	25	25	AT22V10L-35DC AT22V10L-35FC AT22V10L-35GC AT22V10L-35JC AT22V10L-35KC AT22V10L-35LC AT22V10L-35NC AT22V10L-35PC AT22V10L-35YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)
35	25	15	AT22V10L-35DI AT22V10L-35FI AT22V10L-35GI AT22V10L-35JI AT22V10L-35KI AT22V10L-35LI AT22V10L-35NI AT22V10L-35PI AT22V10L-35YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3	Industrial (-40°C to 85°C)
20	17	15	5962-88724 04 KX 5962-88724 04 LX 5962-88724 04 3X	24CW 24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
25	18	15	5962-88724 01 KX 5962-88724 01 LX 5962-88724 01 3X	24CW 24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
30	20	20	5962-88724 02 KX 5962-88724 02 LX 5962-88724 02 3X	24CW 24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
40	30	25	5962-88724 03 KX 5962-88724 03 LX 5962-88724 03 3X	24CW 24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
25	18	15	5962-89755 01 KX 5962-89755 01 LX 5962-89755 01 3X	24C 24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant
30	20	20	5962-89755 02 KX 5962-89755 02 LX 5962-89755 02 3X	24C 24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant

t _{PD} (ns)	ts (ns)	tco (ns)	Ordering Code	Package	Operation Range
40	30	25	5962-89755 03 KX 5962-89755 03 LX 5962-89755 03 3X	24C 24D3 28L	Military/883C (-55°C to 125°C) Class B, Fully Compliant

	Package Type
24DW3	24 Lead, 0.300" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)
24C	24 Lead, Non-Windowed, Ceramic Flat Package (Cerpack)
24D3	24 Lead, 0.300" Wide, Non-Windowed (OTP), Ceramic Dual Inline Package (Cerdip)
28J	28 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)
28KW	28 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)
28LW	28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
28L	28 Pad, Non-Windowed, Ceramic Leadless Chip Carrier OTP (LCC)
24P3	24 Lead, 0.300" Wide, Plastic Dual Inline Package OTP (PDIP)
24CW	24 Lead, Windowed, Ceramic Flat Package (Cerpack)



7-18

Features

- Third Generation Programmable Logic Structure High Density Replacement for Discrete Logic
- High Speed Plus a New Low Power Version
- Increased Logic Flexibility
 - 42 Inputs and 20 SUM terms
- Flexible Output Logic
 - 20 Flip-Flops 10 Extra
 - All Can Be Individually Buried or 10 Output Directly
 - Each has Individual Asynchronous Reset or Clock Terms
- Multiple Feedback Paths Provide for Buried State Machines and I/O Bus Compatibility
- Pin Compatible with the AT22V10
- Upgrade With The V750's 2X Usable Gates
- Proven and Reliable High Speed CMOS EPROM Process 2000V ESD Protection 200 mA Latchup Immunity
- Reprogrammable Tested 100% for Programmability
- 24 pin, 300 mil Dual-In-line and 28 Lead Surface Mount Packages

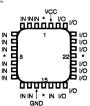
Logic Diagram

Description

The ATV750/L is 100% more powerful than most other programmable logic devices in 24 pin packages. Increased Product terms, SUM Terms, and Flip-Flops translate into more usable gates.

Each of the ATV750's 22 logic pins can be used as an input. Ten of these can be used as input, output, or bi-directional I/O pins. All 20 Flip-Flops can be fed back into the array independently. This flexibility allows burying all of the SUM terms and Flip-Flops.

There are 171 Product Terms available. A variable format is used to assign between 4 and 8 Product Terms per Sum Term. There are 2 Sum Terms per output, providing added flexibility. Much more logic can be replaced by this one 24 pin device.

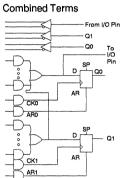

The ATV750/L has more flip-flops available than other EPLDs in this density range. Complex state machines are easily implemented.

Product terms are available providing Asynchronous Resets, Flip-Flop clocks, and Output Enables. One reset and one clock term are provided per Flip-Flop, with one Enable term per output. One product term provides a global synchronous Preset. Register Preload simplifies testing. The device has an internal power up clear function.

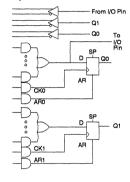
Pin Configurations

Pin Name	Function
IN	Logic Inputs
1/0	Bidirectional Buffers
*	No Internal Connection
VCC	+5V Supply

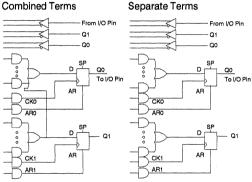
High Density
UV Erasable
Programmable
Logic Device

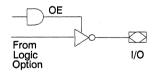

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°	С
Storage Temperature65°C to +150°	С
Voltage on Any Pin with Respect to Ground2.0V to +7.0V	(1)
Voltage on Input Pins with Respect to Ground During Programming2.0V to +14.0V	(1)
Programming Voltage with Respect to Ground2.0V to +14.0V	(1)
Integrated UV Erase Dose 7258 w• sec/cn	n ²


*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is $V_{CC}+0.75V$ dc which may overshoot to +7.0V for pulses of less than 20ns.


Logic Options



Combined Terms

Output Options

OE From I/O Logic Option

D.C. and A.C. Operating Conditions

		ATV750/L-20 ⁽¹⁾	ATV750-25/L ⁽¹⁾	ATV750/L-30	ATV750/L-35	ATV750/L-40
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	
Temperature (Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C ⁽¹⁾	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C ⁽¹⁾	-55°C - 125°C	-55°C - 125°C
V _{CC} Power Su	apply	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

Note: 1. All ATV750L Characteristics are preliminary. ATV750 Characteristics for -20 and -25 are preliminary, and ATV750-30 Industrial and Military are preliminary.

D.C. Characteristics

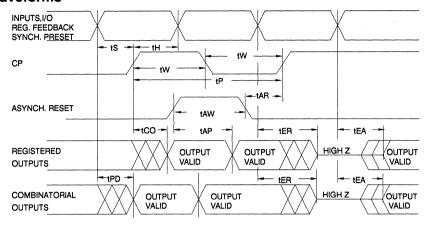
Symbol	Parameter	Condition			Min	Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$				10	μΑ
lLO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$				10	μΑ
			ATV750	Com.		120	mA
lcc	Power Supply Current	VCC = MAX,	A1V/30	Ind.,Mil.		140	mA
	топо опред паменя	V _{IN} = GND, Outputs Open	ATV750L ⁽²⁾	Com.		12	mA
				Ind.,Mil.		15	mA
I _{CC2} ⁽³⁾	Clocked Power Supply	f = 1MHz, VCC = MAX,	ATV750L ⁽²⁾	Com.		15	mA
ICC2 \	Current	Outputs Open	ATV/SUL**	Ind.,Mil.		20	mA
los (1)	Output Short Circuit Current	V _{OUT} = 0.5V				-90	mA
VIL	Input Low Voltage				-0.6	0.8	٧
ViH	Input High Voltage				2.0	V _{CC} +0.75	٧
			I _{OL} = 12mA	Com.,Ind.		0.5	٧
Vol	Output Low Voltage	V _{IN} = V _{IH} or V _{IL} , V _{CC} = MIN	I _{OL} = 8mA M	Ail.		0.5	٧
			I _{OL} = 24mA,	Com.		1.0	٧
Vou	Output High Voltage	VIN = VIH or VIL,	I _{OH} = -100μ	A	Vcc-0.3		٧
Vон	Output High Voltage	V _C C = MIN	I _{OH} = -4.0m.	Α	2.4		٧

Notes: 1. Not more than one output at a time should be shorted.

Duration of short circuit test should not exceed 30 sec. This parameter is only sampled and is not 100% tested. See Absolute Maximum Ratings.

- 2. Preliminary Data
- 3. Outputs not loaded.

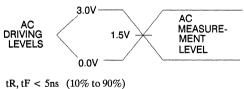
Operating Modes


	24 DIP Pin	1	5	8	11	13	I/O's	Vcc(24)	
Mode	28 JLCC Pin	2	6	10	13 、	16	I/O's	Vcc(28)	
"EPLD"		X ⁽¹⁾	Х	Х	Х	Х	I/O	5V	
Program		Vpp	X/V _H ⁽²⁾	Х	X/V _H	V _{PP}	DIN	6V	
PGM Verify		VPP	X/V _H	Х	X/V _H	VIL	Dout	5V	
PGM Inhibit		Vpp	X/V _H	Х	X/V _H	ViH	High Z	5-6V	
Preload #1		Х	X	VH	Х	ViL	DIN	5V	
Preload #2		Х	Х	VH	Х	VIH	DIN	5V	

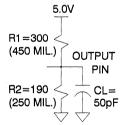
Notes: 1. X can be V_{IL} or V_{IH} . 2. $V_H = 11.0V$ to 14.0V

A.C. Waveforms (1)

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.

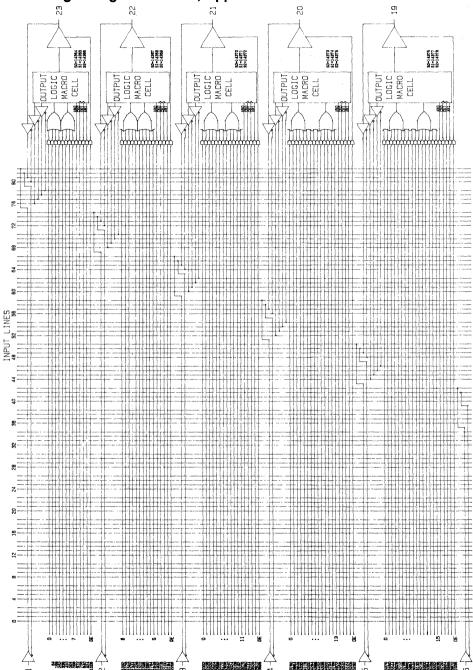

A.C. Characteristics

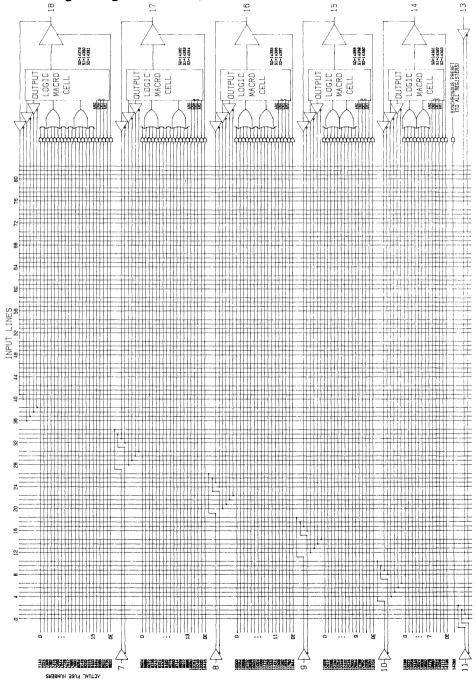
		ATV750-30		ATV7	50-35	ATV7	50-40	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
tpD	Input or Feedback to Non-Registered Output		30		35		40	ns
tEA	Input to Output Enable		30		35		40	ns
ter	Input to Output Disable		30		35		40	ns
tco	Clock to Output	5	25	10	30	10	35	ns
tcF	Clock to Feedback	5	10	10	12	10	15	ns
ts	Input Setup Time	15		18		20		ns
tH	Hold Time	5		10		15		ns
tp	Clock Period	25		30		35		ns
tw	Clock Width	12		15		17		ns
FMAX	Maximum Frequency		40		33		28	MHz
taw	Asynchronous Reset Width	30		35		40		ns
tar	Asynchronous Reset Recovery Time	30		35		40		ns
tap	Asynchronous Reset to Registered Output Reset		30		35		40	ns
tsp	Setup Time, Synchronous Preset	15		18		20		ns


A.C. Characteristics, Preliminary

		ATV7	50/L-20	ATV75	ATV750/L-25		50L-30	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
tpD	Input or Feedback to Non-Registered Output		20		25		30	ns
tEA	Input to Output Enable		20		25		30	ns
ter	Input to Output Disable		20		25		30	ns
tco	Clock to Output		18		22	5	25	ns
tcF	Clock to Feedback	5	10	5	10	5	10	ns
ts	Input Setup Time	10		12		15		ns
tsf	Feedback Setup Time	5		7		15		ns
tн	Hold Time	5		5		5		ns
tp	Clock Period	18		22		25		ns
tw	Clock Width	8		10		12		ns
FMAX	Maximum Frequency		55		45		40	MHz
taw	Asynchronous Reset Width	15		20		30		ns
tar	Asynchronous Reset Recovery Time	15		20		30		ns
tap	Asynchronous Reset to Registered Output Reset		20		25		30	ns
tsp	Setup Time, Synchronous Preset	12		15		15		ns

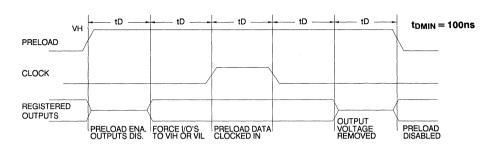
Input Test Waveforms and Measurement Levels


Output Test Load



Functional Logic Diagram ATV750, Upper Half

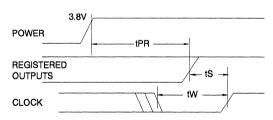
Functional Logic Diagram ATV750, Lower Half



Preload of Registered Outputs

The ATV750's registers are provided with circuitry to allow loading of each register asynchronously with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A $V_{\rm IH}$ level on the I/O pin will force the register high; a $V_{\rm IL}$ will

force it low, independent of the polarity bit (S0) setting. The PRELOAD state is entered by placing an 11V to 14V signal on pin 8 on DIPs, and pin 10 on SMPs. When the clock term is pulsed high, the data on the I/O pin is placed into the register chosen by the Select Pin.


Level forced on registered output pin during PRELOAD cycle	Select Pin State	Register #1 state after cycle	Register #2 State after cycle
ViH	Low	High	X
ViL	Low	Low	X
VIH	High	X	High
V _{IL}	High	X	Low

Power Up Reset

The registers in the ATV750/L are designed to reset during power up. At a point delayed slightly from V_{CC} crossing 3.8V, all registers will be reset to the low state. The output state will depend on the polarity of the output buffer.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

- 1) The VCC rise must be monotonic,
- 2) After reset occurs, all input and feedback setup times must be met before driving the clock term high, and
- 3) The signals from which the clock is derived must remain stable during tpr.

Parameter	Description	Min	Тур	Max	Units
tpR	Power-Up Reset Time		600	1000	ns

Pin Capacitance $(f = 1 MHz T = 25^{\circ}C)^{(1)}$

	Тур	Max	Units	Conditions
CIN	5	8	pF	V _{IN} = 0V
Cout	6	8	pF	Vout = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Using The ATV750's Many Advanced Features

The ATV750's flexibility puts more <u>usable</u> gates in 24 pins than other EPLDs. The ATV750/L starts with an architecture similar to the popular AT22V10, and adds several enhancements:

- · Asynchronous Clocks -
 - Each of the Flip-Flops in the ATV750/L has a dedicated product term driving the clock. The user is no longer constrained to using one clock for all the registers. Buried state machines, counters, and registers can all coexist in one device, while running on separate clocks. The ATV750/L clock period matches that of similar synchronous devices.
- A Full Bank of 10 More Registers -The ATV750/L provides two Flip-Flops for each Output

Macrocell - a total of 20. Each register has its own clock and reset product terms, as well as its own SUM term.

- Independent I/O Pin and Feedback Paths -
- Each I/O pin on the ATV750/L has a dedicated input path. Each of the 20 registers has individual feedback terms into the array. This feature, combined with individual product terms for each I/O's Output Enable, facilitates designs using bi-directional I/O buses.
- · Combinable Sum Terms -

Each Output Macrocell's 2 SUM terms can be combined in an OR gate before the Output or the Register. This provides up to 16 product terms per Output or Flip-Flop. This architecture increases the number of usable gates available.

Programming Software Support

Software which is capable of transforming Boolean equations, state machine descriptions and truth tables into JEDEC files for the ATV750/L is available from the following sources:

Data I/O / Futurenet Corp. - ABEL 2.1, 3.0, and above Logical Devices - CUPL 2.15B, and above

Synchronous Preset and Asynchronous Reset

One synchronous preset line is provided for all 20 registers in the ATV750/L. The appropriate input signals to cause the internal clocks to go to a high state must be received during a synchronous preset. Appropriate setup and hold times must be met, as shown in the switching waveform diagram. An individual asynchronous reset line is provided for each of the 20 Flip-Flops. Both Master and Slave halves of the Flip-Flops are reset when the input signals received combine so as to force the internal resets high.

Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATV750/L fuse patterns. Once programmed, the output buffers will remain in a high impedance state during verify. The security fuse should be programmed last, as its effect is immediate.

Erasure Characteristics

The entire memory array of an ATV750/L is erased after exposure to ultraviolet light at a wavelength of 2537 Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other

intensity ratings can be calculated from the minimum integrated erasure dose of 15W • sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPLD which will be subjected to continuous fluorescent indoor lighting or sunlight.

Atmel CMOS EPLDs

Atmel's Erasable Programmable Logic Devices utilize an advanced 1.5 micron CMOS EPROM technology. This technology's state of the art features are the optimum combination for EPLDs:

- CMOS technology provides high speed, low power, and high noise immunity.
- EPROM technology is the most cost effective method for producing EPLDs - surpassing bipolar fusible link technol-
- ogy in low cost, while providing the necessary reprogrammability.
- EPROM reprogrammability, which is 100% tested before shipment, provides inherently better programmability and reliability than one-time fusible PLDs.
- Atmel's EPROM process has proven extremely reliable in the volume production of a full line of advanced EPROM memory products, from 64k to 1 megabit devices.

t _{PD} (ns)	tco (ns)	fmax (mhz)	Ordering Code	Package	Operation Range
20	18	55	ATV750-20DC ATV750-20FC ATV750-20GC ATV750-20JC ATV750-20KC ATV750-20LC ATV750-20NC ATV750-20PC ATV750-20YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3	Commercial (0°C to 70°C)
			ATV750-20DI ATV750-20FI ATV750-20GI ATV750-20JI ATV750-20KI ATV750-20LI ATV750-20NI ATV750-20PI ATV750-20YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3	Industrial (-40°C to 85°C)
			ATV750-20DM ATV750-20FM ATV750-20GM ATV750-20KM ATV750-20LM ATV750-20NM ATV750-20YM	24DW3 24C 28D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)
			ATV750-20DM/883 ATV750-20FM/883 ATV750-20GM/883 ATV750-20KM/883 ATV750-20LM/883 ATV750-20NM/883 ATV750-20YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
25	22	45	ATV750-25DC ATV750-25FC ATV750-25GC ATV750-25KC ATV750-25LC ATV750-25NC ATV750-25YC	24DW3 24C 24D3 28KW 28LW 28L 24CW	Commercial (0°C to 70°C)
			ATV750-25DI ATV750-25FI ATV750-25GI ATV750-25JI ATV750-25KI ATV750-25LI ATV750-25NI ATV750-25PI ATV750-25YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)

t _{PD} (ns)	tco (ns)	fmax (MHz)	Ordering Code	Package	Operation Range
25	22	45	ATV750-25DM ATV750-25FM ATV750-25GM ATV750-25KM ATV750-25LM ATV750-25NM ATV750-25YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)
			ATV750-25DM/883 ATV750-25FM/883 ATV750-25GM/883 ATV750-25KM/883 ATV750-25LM/883 ATV750-25NM/883 ATV750-25YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
30	25	40	ATV750-30DC ATV750-30FC ATV750-30GC ATV750-30JC ATV750-30KC ATV750-30LC ATV750-30NC ATV750-30PC ATV750-30YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)
			ATV750-30DI ATV750-30FI ATV750-30GI ATV750-30JI ATV750-30KI ATV750-30LI ATV750-30NI ATV750-30PI ATV750-30YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
			ATV750-30DM ATV750-30FM ATV750-30GM ATV750-30KM ATV750-30LM ATV750-30NM ATV750-30YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)
			ATV750-30DM/883 ATV750-30FM/883 ATV750-30GM/883 ATV750-30KM/883 ATV750-30LM/883 ATV750-30NM/883 ATV750-30YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant

t _{PD} (ns)	tco (ns)	fMAX (MHz)	Ordering Code	Package	Operation Range
35	30	33	ATV750-35DC ATV750-35FC ATV750-35GC ATV750-35JC ATV750-35KC ATV750-35LC ATV750-35NC ATV750-35PC ATV750-35YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)
			ATV750-35DI ATV750-35FI ATV750-35GI ATV750-35JI ATV750-35KI ATV750-35LI ATV750-35NI ATV750-35PI ATV750-35YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
			ATV750-35DM ATV750-35FM ATV750-35GM ATV750-35KM ATV750-35LM ATV750-35NM ATV750-35YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)
			ATV750-35DM/883 ATV750-35FM/883 ATV750-35GM/883 ATV750-35KM/883 ATV750-35LM/883 ATV750-35NM/883 ATV750-35YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
40	35	28	ATV750-40DI ATV750-40FI ATV750-40GI ATV750-40JI ATV750-40KI ATV750-40LI ATV750-40PI ATV750-40YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
			ATV750-40DM ATV750-40FM ATV750-40GM ATV750-40KM ATV750-40LM ATV750-40NM ATV750-40YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)

t _{PD} (ns)	tço (ns)	fmax (MHz)	Ordering Code	Package	Operation Range
40	35	28	ATV750-35DM/883 ATV750-35FM/883 ATV750-35GM/883 ATV750-35KM/883 ATV750-35LM/883 ATV750-35NM/883 ATV750-35YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
35	30	33	5962-88726 02 LX 5962-88726 02 3X	24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
40	35	28	5962-88726 01 LX 5962-88726 01 3X	24DW3 28LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant

	Package Type
24DW3	24 Lead, 0.300" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)
24C	24 Lead, Non-Windowed, Ceramic Flat Package (Cerpack)
24D3	24 Lead, 0.300" Wide, Non-Windowed (OTP) Ceramic Dual Inline Package (Cerdip)
28J	28 Lead, Plastic J-Leaded Chip Carrier (PLCC)
28KW	28 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)
28LW	28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)
28L	28 Pad, Non-Windowed, Ceramic Leadless Chip Carrier OTP (LCC)
24P3	24 Lead, 0.300" Wide Plastic Dual Inline Package OTP (PDIP)
24CW	24 Lead, Windowed, Ceramic Flat Package (Cerpack)

tpD (ns)	tco (ns)	fmax (mhz)	Ordering Code	Package	Operation Range
20	18	55	ATV750L-20DC ATV750L-20FC ATV750L-20GC ATV750L-20JC ATV750L-20KC ATV750L-20LC ATV750L-20DC ATV750L-20DC ATV750L-20DC ATV750L-20DC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Commercial (0°C to 70°C)
			ATV750L-20DI ATV750L-20FI ATV750L-20GI ATV750L-20JI ATV750L-20KI ATV750L-20LI ATV750L-20NI ATV750L-20PI ATV750L-20YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
25	25 22 45		ATV750L-25DC ATV750L-25FC ATV750L-25GC ATV750L-25JC ATV750L-25KC ATV750L-25LC ATV750L-25NC ATV750L-25PC ATV750L-25PC ATV750L-25YC	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3	Commercial (0°C to 70°C)
			ATV750L-25DI ATV750L-25FI ATV750L-25GI ATV750L-25JI ATV750L-25KI ATV750L-25LI ATV750L-25NI ATV750L-25PI ATV750L-25YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
			ATV750L-25DM ATV750L-25FM ATV750L-25GM ATV750L-25KM ATV750L-25LM ATV750L-25NM ATV750L-25YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)
			ATV750L-25DM/883 ATV750L-25FM/883 ATV750L-25GM/883 ATV750L-25KM/883 ATV750L-25LM/883 ATV750L-25NM/883 ATV750L-25YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant

t _{PD} (ns)	tco (ns)	fMAX (MHz)	Ordering Code	Package	Operation Range
30	25	40	ATV750L-30DI ATV750L-30FI ATV750L-30GI ATV750L-30JI ATV750L-30KI ATV750L-30LI ATV750L-30NI ATV750L-30PI ATV750L-30YI	24DW3 24C 24D3 28J 28KW 28LW 28L 24P3 24CW	Industrial (-40°C to 85°C)
			ATV750L-30DM ATV750L-30FM ATV750L-30GM ATV750L-30KM ATV750L-30LM ATV750L-30NM ATV750L-30YM	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military (-55°C to 125°C)
			ATV750L-30DM/883 ATV750L-30FM/883 ATV750L-30GM/883 ATV750L-30KM/883 ATV750L-30LM/883 ATV750L-30NM/883 ATV750L-30YM/883	24DW3 24C 24D3 28KW 28LW 28L 24CW	Military/883C (-55°C to 125°C) Class B, Fully Compliant

	Package Type							
24DW3	24 Lead, 0.300" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)							
24C	24 Lead, Non-Windowed, Ceramic Flat Package (Cerpack)							
24D3	24 Lead, 0.300" Wide, Non-Windowed (OTP) Ceramic Dual Inline Package (Cerdip)							
28J	28 Lead, Plastic J-Leaded Chip Carrier (PLCC)							
28KW	28 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)							
28LW	28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)							
28L	28 Pad, Non-Windowed, Ceramic Leadless Chip Carrier OTP (LCC)							
24P3	24 Lead, 0.300" Wide Plastic Dual Inline Package OTP (PDIP)							
24CW	24 Lead, Windowed, Ceramic Flat Package (Cerpack)							

Using the ATV750 with ABEL™ and CUPL™

Typical applications for first and second generation PLDs include address decoding and counting. Here is an example using the ATV750, a third generation PLD, to implement a more complex counter. The following pages show example input listings for ABEL™ and CUPL™.

The first listing is for ABEL™ 3.0. The second listing is for CUPL™ 2.15b.

This design uses all twenty flip-flops of the ATV750 to build a 20-bit synchronous / asynchronous counter. With COUNT high and COUNT10, PRESET, RESET, Q1SEL, and OE low, a 1 MHz signal on the CLK pin will produce roughly a 1 Hz signal on pin 23.

The unique architecture of the macrocell gives the ATV750 its versatility and also increases gate utilization. Each of the twenty registers has its Q and \overline{Q} feeding back to the array.

The Output Registers (Q0's) can be addressed directly (by the pin names in ABEL™; in CUPL™ define PINNODES 35 through 44). However, to access the Buried Registers (Q1's), the corresponding nodes have to be named (nodes 26 through 35 in ABEL™, PINNODEs 25 through 34 in CUPL™). They are called B14, B15,...B24 to show the correspondence with their Q0 counterparts. Any valid identifier can be used as a node name.

The ATV750 provides a global synchronous Preset which is accessible through the node definition or by extension. Each of the twenty flip-flops has its own clock, reset and sum term (not like a second generation PLD that allows only one clock and one reset for all registers). Use the '.CK' extension in conjunction with the named registers to define the equations for the clock inputs for all the registers. Use the '.RE' command following the named registers to define the reset terms.

The ATV750 gives the user a total of eight choices to configure each output. The operators ':=' and '=' inform ABEL™ the output is registered or combinatorial, respectively. In CUPL™, use of the .Q extension defines a registered output. Use the '!' operator to define an active low output; active high output is assumed by default. Another convenient method is to use the 'ISTYPE' statement (ABEL™ only) to define the outputs as high/low and registered / combinatorial. (Note: the ATV22V10 is defined the same way.)

The ATV750 has an advanced feature that lets the user combine or separate the sum terms in each macrocell. By default, the terms are combined. In CUPL™ and ABEL™, using the buried register automatically splits the sum terms.

'Sets' (ABEL™) or 'fields' (CUPL™) are often defined for ease of referencing a group of signals or constants. In this particular example, 'OUTS' is a collection of outputs used in the OE definition. "Out" is a reserved word in CUPL, and "Ouch" was used instead.

When PRESET and COUNT are asserted and the Clk pin goes high, all registers, even the asynchronously clocked ones, will go to the 'one' state. This is because as each flip-flop goes high, it forces the clock of the next flip-flop high, rippling the preset condition throughout the entire bank. To reset the output registers and the buried registers, simply have RESET high and vary IQISEL accordingly.

The O registers pair with the corresponding B registers to form ten 2-bit synchronous counters. These are clocked by the preceding pair's output, thus forming a 20-bit counter. The last product term for the 'O' logic changes this device into a 10-bit counter with the output register mimicking the B registers. This provides observability, and a handy test mode. Test vectors take full advantage of ABEL***

High Density UV Erasable Programmable Logic Device

Application Brief

and CUPL™'s ability to simulate the device before programming. This feature can save hours of testing and enable the user to make the necessary changes in seconds without ever

ABEL TM is a trademark of DATA I/O Corporation CUPL TM is a trademark of Logical Devices, Inc.

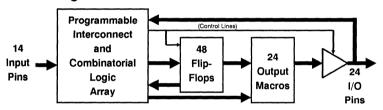
leaving his or her PC. Therefore, it is highly recommended to take the time to write a comprehensive set of test vectors; this will reduce the time spent on the test bench.

ABEL™ Example

module EX3	•				B20.CK	=	O19.Q & COUNT;
title '20 Bit Co	unter for At	mel's A'	Γ V 750		O21.CK	=	O20.Q & COUNT;
EX375 device	e 'P750';				B21.CK	=	O20.Q & COUNT;
Clk			pin	1;	O22.CK	=	O21.Q & COUNT;
COUNT,COU	NT10,PRE	SET	pin	2, 3, 4;	B22.CK	=	O21.Q & COUNT;
RESET, Q1SE	L,OE		pin	5, 11, 13;	O23.CK	=	O22.Q & COUNT;
O14,O15,O16,	O17,O18		pin	14,15,16,17,18;	B23.CK	=	O22.Q & COUNT;
O19,O20,O21,	O22,O23		pin	19,20,21,22,23;	B14	:=	!B14;
B14,B15,B16,F	317,B18		node	26,27,28,29,30;	!O14	:=	!O14.Q & B14 & !COUNT10
B19,B20,B21,F	322,B23		node	31,32,33,34,35;		#	O14.Q & !B14 & !COUNT10
" Node	·s	Descr	iption			#	!B14 & COUNT10;
" 2635	5	Q1 fo	r pins 14 t	o 23	B15	:=	!B15;
"Sets					!O15	:=	!O15.Q & B15 & !COUNT10
OUTS = [O23	3,022,021,	O20,O	19,018,0	017,O16,O15,O14];		#	O15.Q & !B15 & !COUNT10
H,L,Z,C,X =	10 7 C	v .		· · · · · · · · · · · · · · · ·		#	!B15 & COUNT10;
Equations	1,0,.2.,.	,.л.,			B16	:=	!B16;
O14.RE	=	0146	1 % DEC1	ET & !Q1SEL;	!016	:=	!O16.Q & B16 & !COUNT10
B14.RE	=			·		#	O16.Q & !B16 & !COUNT10
O15.RE	=			& Q1SEL; ET & !Q1SEL;		#	!B16 & COUNT10;
B15.RE				- ,	B17	:=	!B17;
O16.RE	52			& Q1SEL;	!017	:=	!O17.Q & B17 & !COUNT10
	=			ET & !Q1SEL;		#	O17.Q & !B17 & !COUNT10
B16.RE	==			& Q1SEL;		#	!B17 & COUNT10;
017.RE	=			ET & !Q1SEL;	B18	:=	!B18;
B17.RE	=			& Q1SEL;	!O18	:=	!O18.Q & B18 & !COUNT10
O18.RE	=			ET & !Q1SEL;		#	O18.Q & !B18 & !COUNT10
B18.RE	=			& Q1SEL;		#	!B18 & COUNT10;
O19.RE	=			ET & !Q1SEL;	B19	:=	!B19;
B19.RE	=			& Q1SEL;	!O19	:=	!O19.Q & B19 & !COUNT10
O20.RE	=			ET & !Q1SEL;		#	O19.Q & !B19 & !COUNT10
B20.RE	=			& Q1SEL;		#	!B19 & COUNT10;
O21.RE	=			ET & !Q1SEL;	B20	:=	!B20;
B21.RE	=			& Q1SEL;	!O20	:=	!O20.Q & B20 & !COUNT10
O22.RE	=			ET & !Q1SEL;		#	O20.Q & !B20 & !COUNT10
B22.RE	=			& Q1SEL;		#	!B20 & COUNT10;
O23.RE	==			ET & !Q1SEL;	B21	:=	!B21;
B23.RE	=			& Q1SEL;	!O21	:=	!O21.Q & B21 & !COUNT10
O14.C	=		COUNT	•		#	O21.Q & !B21 & !COUNT10
B14.CK	=			; "Synchronous		 #	!B21 & COUNT10;
O15.CK	=) & COU		B22	:=	!B22;
B15.CK	=			NT; "Asynchronous	!O22	:=	1022.Q & B22 & !COUNT10
O16.CK	=		& COU	*	.022	#	O22.Q & !B22 & !COUNT10
B16.CK	=		& COU			#	!B22 & COUNT10;
O17.CK	=		& COU		B23	:=	!B23;
B17.CK	=) & COU		!O23	:=	!O23.Q & B23 & !COUNT10
O18.CK	=) & COU	*	.023	.— #	O23.Q & !B23 & !COUNT10
B18.CK	=		2 & COU	•		#	!B23 & COUNT10;
O19.CK	=) & COU		O23.PR	=	PRESET;
B19.CK	=) & COU	,	ENABLE OUTS		!OE;
O20.CK	=	O19.0) & COU	NT;	End	_	OE,

CUPL™ Exa	mole					
Name	EX75;			Q21.CK	=	Q20 & COUNT;
Company	Atmel;			B21.CK	=	Q20 & COUNT;
Device	V750;			Q22.CK	=	Q21 & COUNT;
/************		**********	*******/	B22.CK	=	Q21 & COUNT;
/** Allowable Ta	rget Devic		*/	Q23.CK	=	Q22 & COUNT;
/***********	*******	**********	/ ******/	B23.CK	=	Q22 & COUNT;
/**Tmmustc**/			/	B14.D	=	!B14;
/**Inputs**/	_	CUL COLINT	COLINTIO DDECETI.	Q14.D	=	!Q14 & B14 & !COUNT10
PIN [14]	=		COUNT10,PRESET];	Q14.D	- #	O14 & !B14 & !COUNT10
PIN [5,11,13]	=	RESET,Q1SE	L,UE;		#	-
/**Outputs**/	_	[014 022].	/* Din Outmuta*/	/* Equations		!B14 & COUNT10;
PIN [1423]		[O14O23];	/* Pin Outputs*/	•		B and the Q automatically */ it' SUM term's architecture bit.*/
/*The easiest way					•	
/*Refer to the I/C				B15.D	=	!B15;
/* Q0 and Q1 out				Q15.D	= "	!Q15 & B15 & !COUNT10
PINNODE [253	-		(23]; /* Q1 nodes*/		#	Q15 & !B15 & !COUNT10
PINNODE [354	-	-	(23]; /* Q0 nodes*/	DAGE	#	!B15 & COUNT10;
field BEES	=	[B23B14];	/*Q1 field*/	B16.D	=	!B16;
field Ohi	=	[O23O19];	/*output hi field*/	Q16.D	=	!Q16 & B16 & !COUNT10
field Olo	=	[O18O14];	/*output low field*/		#	Q16 & !B16 & !COUNT10
field Ouch	=	[O23O14];	/*outputfield*/		#	!B16 & COUNT10;
/** Logic Equation				B17.D	=	!B17;
/* The Asynch. R	Reset term			Q17.D	=	!Q17 & B17 & !COUNT10
Q14.AR	=	Q14 & RESE	Γ & !Q1SEL;		#	Q17 & !B17 & !COUNT10
B14.AR	=	B14 & RESE			#	!B17 & COUNT10;
Q15.AR	=	Q15 & RESE	Γ & !Q1SEL;	B18.D	-	!B18;
B15.AR	=	B15 & RESE	Γ & Q1SEL;	Q18.D	=	!Q18 & B18 & !COUNT10
Q16.AR	=	Q16 & RESE	Γ & !Q1SEL;		#	Q18 & !B18 & !COUNT10
B16.AR	=	B16 & RESET	Γ& Q1SEL;		#	!B18 & COUNT10;
Q17.AR	=	Q17 & RESE	Γ & !Q1SEL;	B19.D	=	!B19;
B17.AR	=	B17 & RESET	Γ & Q1SEL;	Q19.D	=	!Q19 & B19 & !COUNT10
Q18.AR	=	Q18 & RESE	Γ & !Q1SEL;		#	Q19 & !B19 & !COUNT10
B18.AR	=	B18 & RESET	Γ & Q1SEL;		#	!B19 & COUNT10;
Q19.AR	=	Q19 & RESE	Γ & !Q1SEL;	B20.D	==	!B20;
B19.AR	=	B19 & RESET	Γ& Q1SEL;	Q20.D	=	!Q20 & B20 & !COUNT10
Q20.AR	=	Q20 & RESE	Γ & !Q1SEL;		#	Q20 & !B20 & !COUNT10
B20.AR	=	B20 & RESET	Γ& Q1SEL;		#	!B20 & COUNT10;
Q21.AR	=	Q21 & RESE	Γ & !Q1SEL;	B21.D	=	!B21;
B21.AR	=	B21 & RESET	Γ& Q1SEL;	Q21.D	=	!Q21 & B21 & !COUNT10
Q22.AR	=	Q22 & RESE			#	Q21 & !B21 & !COUNT10
B22.AR	=	B22 & RESET	- '		#	!B21 & COUNT10;
Q23.AR	=	Q23 & RESE		B22.D	=	!B22;
B23.AR	=	B23 & RESET		Q22.D	=	!Q22 & B22 & !COUNT10
/* The Clock lines	are acces			~	#	Q22 & !B22 & !COUNT10
O14.CK	=	Clk & COUNT			#	!B22 & COUNT10;
B14.CK	=		; /* Synchronous */	B23.D	=	!B23;
O15.CK	=	Q14 & COUN		O23.D	=	!O23 & B23 & !COUNT10
B15.CK	=	-	T; /* Asynchronous*/	Q23.D	#	Q23 & !B23 & !COUNT10
Q16.CK	=	Q14 & COUN			#	!B23 & COUNT10;
-	_		•	/*Only one or		,
B16.CK		Q15 & COUN	· ·			uation is required */
Q17.CK	=	Q16 & COUN	•	O23.SP =	PRESE	•
B17.CK	=	Q16 & COUN				r the OE product term*/
Q18.CK	=	Q17 & COUN	•	O14.0e	=	!OE; O19.0e = !OE;
B18.CK	=	Q17 & COUN	*	O15.0e	=	!OE; O20.oe = !OE;
Q19.CK	=	Q18 & COUN	•	O16.0e	=	!OE; O21.oe = !OE;
B19.CK	=	Q18 & COUN	*	O17.0e	=	!OE; O22.oe = !OE;
Q20.CK	=	Q19 & COUN	1;	O18.0e	=	!OE; O23.oe = !OE;

B20.CK


Q19 & COUNT;

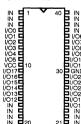
Features

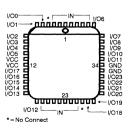
- Third Generation Programmable Logic Structure Easily Achieves Gate Utilization Factors of 80%
- Increased Logic Flexibility
 86 Inputs and 72 Sum Terms
- Flexible Output Macrocell
 48 Flip-Flops 2 per Macrocell
 3 Sum Terms Can Be OR'ed and Shared
- High Speed
- Low Power Less than 0.5mA Typical (ATV2500)
- Multiple Feedback Paths Provide For Buried State Machines and I/O Bus Compatibility
- Asynchronous Clocks and Resets
 Multiple Synchronous Presets 1 per 4 or 8 Flip-Flops
- Proven and Reliable High Speed CMOS EPROM Process 2000V ESD Protection 200 mA Latchup Immunity
- Reprogrammable Tested 100% for Programmability
- 40 pin Dual-In-line and 44 Lead Surface Mount Packages

Block Diagram

Description

The ATV2500/H is the most powerful programmable logic device available in a 40 pin package. Increased Product terms, Sum Terms, and Flip-Flops translate into many more <u>usable</u> gates. High gate utilization is easily obtainable.

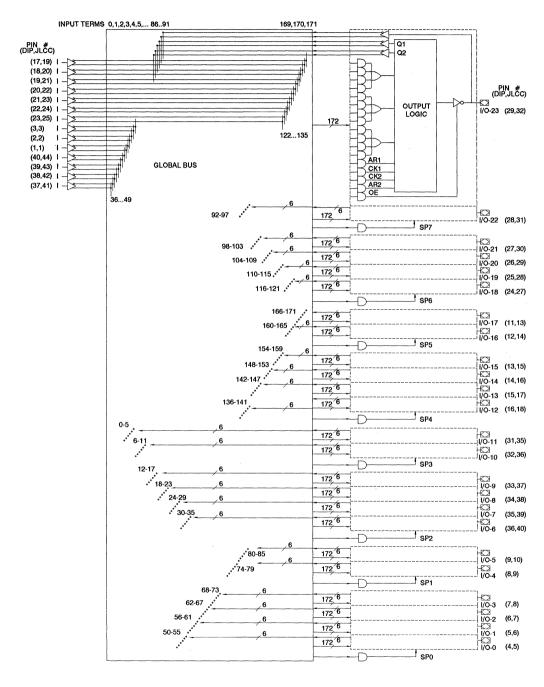

The ATV2500/H is organized around a global bus. All pin and feedback terms are always available to every Logic Cell. Each of the 38 logic pins and their complements are array inputs, as well as the true and false outputs of each of the 48 Flip-Flops.


There are 416 Product Terms available. Four Product Terms are input to each Sum Term. The 3 Sum terms per Logic Cell can be combined to provide up to 12 Product Terms, Combinatorial and Registered. Independent of output configuration, the 2 Flip-Flops are always usable, and always have at least 4 Product Term inputs.

Product terms are available providing Asynchronous Resets, Flip-Flop clocks, and Output Enables. One reset and one clock term are provided per Flip-Flop, with one Enable term per output. Eight product terms provide local Synchronous Presets, divided up into banks of 4 and 8 Flip-Flops. Register Preload and buried register observability simplify testing. The device has an internal power up clear function.

Pin Configurations

Pin Name	Function
IN	Logic Inputs
1/0	Bidirectional Buffers
I/O,0,2,4	"Even" I/O Buffers
I/O,1,3,5	"Odd" I/O Buffers
*	No Internal Connection
VCC	+5V Supply



High Density UV Erasable Programmable Logic Device

Functional Logic Diagram ATV2500/H

Functional Logic Diagram Description

The ATV2500/H Functional Logic Diagram describes the interconnections between the input, feedback pins and Logic Cells. All interconnections are routed through the Global Bus.

The ATV2500/H is a straightforward and uniform EPLD. The 24 Macrocells are numbered 0 through 23. Each Macrocell contains 17 AND gates. All AND gates have 172 inputs. The five lower product terms provide AR1, CK1, CK2, AR2, and OE. These are: one asynchronous reset and clock per Flip-Flop, and an Output Enable. The top 12 product terms are grouped into 3 sum terms, which are used as shown in the Macrocell diagrams.

Eight Synchronous Preset terms are distributed in a 2/4 pattern. The first four Macrocells share Preset 0, the next two share Preset 1, and so on, ending with the last two Macrocells sharing Preset 7.

The 14 dedicated inputs and their complements use the numbered positions in the global bus as shown. Each Macrocell provides 6 inputs to the global bus: (left to right) Flip-Flop Q2 true and false, Flip-Flop Q1 true and false, and the pin true and false. The positions occupied by these signals in the Global Bus are the six numbers in the bus diagram next to each Macrocell.

Absolute Maximum Ratings*

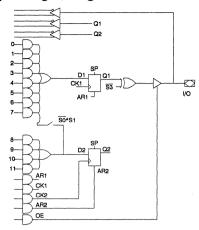
Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on Input Pins with Respect to Ground During Programming2.0V to +14.0V ⁽¹⁾
Programming Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾
Integrated UV Erase Dose7258 W • sec/cm ²

^{*}NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

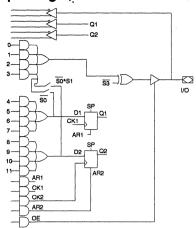
Note:

 Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is V_{CC}+0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

Operating Modes


<u> </u>									
	40 DIP PIN	21	2	38	23	20	V _{CC} (10)	Odd	Even
Mode	44 JLCC PIN	23	2	42	25	22	V _{CC} (11,12)	I/O's	I/O's
"EPLD"		X ¹	Х	Х	Х	Х	5V	I/O	I/O
Program		V _{PP}	Х	Χ	Х	VH (2)	6V	D _{IN}	N.C.
PGM Verify		V _{PP}	Х	Х	Х	ViL	6V	Dout	Voh
PGM Inhibit		V _{PP}	Х	Х	Х	VIH	6V	High Z	High Z
Preload Q1		√	Х	VH	VIL/VIH	VIL	5V	D _{IN} (Even/Odd)	VIH
Preload Q2		几	Х	VH	VIL/VIH	VIH	5V	D _{IN} (Even/Odd)	ViH
Observe Q2		Х	VH	Х	Х	Х	5V	Dout	D _{OUT}

Notes: 1. X can be V_{IL} or V_{IH} . 2. $V_{H} = 11.0V$ to 14.0V



Output Logic, Registered (1)

Output Logic, Combinatorial (1)

Note: 1. These diagrams shows equivalent logic functions, not necessarily the actual circuit implementation.

			Tern	ns In	
S2	S1	S0	D1	D2	Output Configuration
0	0	0	8	4	Registered (Q1)
0	1	0	12	4 ⁽¹⁾	Registered (Q1)

Note: 1. These 4 terms are shared with D1.

			Terms In		
S2	S1	S0	D1	D2	Output Configuration
1	0	0	4 ⁽¹⁾	4	Combinatorial (8 Terms)
1	0	1	4	4	Combinatorial (4 Terms)
1	1	0	4 ⁽¹⁾	4 ⁽¹⁾	Combinatorial (12 Terms)

Note: 1. These 4 terms are shared with D1.

S3	Output Configuration
0	Active Low
1	Active High

S3	Output Configuration
0	Active Low
1	Active High

D.C. and A.C. Operating Conditions

		ATV2500H-25 ⁽¹⁾	ATV2500/H-30 ⁽¹⁾	ATV2500/H-35	ATV2500-40	ATV2500-45
Operating	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C	0°C - 70°C	
Temperature	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C ⁽²⁾	-40°C - 85°C	-40°C - 85°C
(Case)	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C ⁽²⁾	-55°C - 125°C	-55°C - 125°C
Vcc Power Su	ipply	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%	5V ± 10%

Notes: 1. Preliminary data for all ATV2500H-25's and all ATV2500-30's.

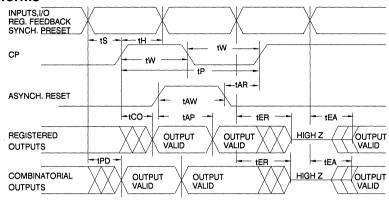
2. Preliminary data for both Industrial and Military ATV2500-35.

D.C. Characteristics

Symbol	Parameter	Condition			Min	Тур	Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} +$	1V				10	μΑ
llo	Output Leakage Current	V _{OUT} = -0.1V to V _{CC}	+0.1V				10	μΑ
			ATV2500	Com.		0.5	5	mA
lcc	Power Supply	Vcc=MAX, Vin=GND or Vcc	A1 V2500	Ind.,Mil.		0.5	10	mA
.00	Current	Outputs Open	ATV2500H	Com.		65	120	mA
			A1 V2500H	Ind.,Mil.		65	140	mA
	Clocked Power	f = 1MHz,V _{CC} = MAX		Com.		10	15	mA
ICC2	Supply Current (ATV2500)	Outpute Open	Ind.,Mil.		10	20	mA	
los (1)	Output Short Circuit Current	V _{OUT} = 0.5V					-90	mA
VIL	Input Low Voltage				-0.6		0.8	٧
VIH	Input High Voltage				2.0		V _{CC} + 0.75	٧
Vol	Output Low Voltage	V _{IN} = V _{IH} or V _{IL} , I _{OL} = 8mACom,Ind;6	SmA Mil.				0.5	٧
Voн	Output High Voltage	I _{OH} = -100μA			Vcc-0.3			٧
VOH	Output riigii voltage	I _{OH} = -4.0mA			2.4			٧

Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec. This parameter is only sampled and is not 100% tested. See Absolute Maximum Ratings.

Pin Capacitance $(f = 1 MHz T = 25^{\circ}C)^{(1)}$


	Тур	Max	Units	Conditions
Cin	4	6	pF	$V_{IN} = 0V$
Cout	8	12	рF	$V_{OUT} = 0V$

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

A.C. Waveforms (1)

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.

A.C. Characteristics for the ATV2500

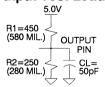
		ATV2500-30 ⁽¹⁾		ATV2	500-35	ATV2500-40		ATV2500-45		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Units
t _{PD}	Input or Feedback to Non-Registered Output		30		35		40		45	ns
tea	Input to Output Enable		30		35		40		45	ns
ter	Input to Output Disable		30		35		40		45	ns
tco	Clock to Output	5	30	5	35	5	40	5	45	ns
tCF	Clock to Feedback	10	20	15	20	15	22	15	25	ns
tsı1	Input Setup Time, Output Register	20		22		25		30		ns
t _{SI2}	Input Setup Time, Buried Register ⁽²⁾	5		5		5		5		ns
tsF	Feedback Setup Time	10		15		18		20		ns
t _{H1}	Hold Time, Output Register	10		15		15		15		ns
t _{H2}	Hold Time, Buried Register ⁽²⁾	5		5		5		5		ns
tw	Clock Width	12	112 112 112	15		17		20		ns
tР	Clock Period	30		35		40		45		ns
FMAX	Maximum Frequency (1/tp)		33		28		25		22	MHz
t _{AW}	Asynchronous Reset Width	18		20		22		25		ns
tar	Asynchronous Reset Recovery Time	18		20		22		25		ns
t _{AP}	Asynchronous Reset to Registered Output Reset		30		35		40		45	ns

Note: 1. Preliminary data.

^{2.} Buried registers include all 24 Q2 registers and any of the 24 Q1 registers in macrocells configured as combinatorial.

A.C. Characteristics for the ATV2500H

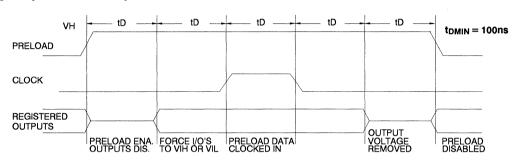
		ATV250	ATV2500H-25 ⁽¹⁾		ATV2500H-30		00H-35	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
t _{PD}	Input or Feedback to Non-Registered Output		25		30		35	ns
tEA	Input to Output Enable		25		30		35	ns
ter	Input to Output Disable		25		30		35	ns
tco	Clock to Output	10	25	12	30	15	35	ns
tcF	Clock to Feedback	10	18	12	20	15	20	ns
t _{SI1}	Input Setup Time, Output Register	10		12		15		ns
t _{SI2}	Input Setup Time, Buried Register ⁽²⁾	5		5		5		ns
tsf	Feedback Setup Time	7		10		15		ns
t _{H1}	Hold Time	5		5		5		ns
tw	Clock Width	10		12		15		ns
tp	Clock Period	25		30		35		ns
FMAX	Maximum Frequency (1/tp)		40		33		28	MHz
t _{AW}	Asynchronous Reset Width	15		18		20		ns
tar	Asynchronous Reset Recovery Time	15		18		20		ns
tap	Asynchronous Reset to Registered Output Reset		25		30		35	ns


- Note: 1. Preliminary Data.
 - 2. Buried registers include all 24 Q2 registers and any of the 24 Q1 registers in macrocells configured as combinatorial.

Input Test Waveforms and Measurement Levels

tR, tF < 5ns (10% to 90%)

Output Test Load

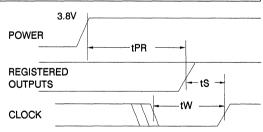

Preload and Observability of Registered Outputs

The ATV2500/H's registers are provided with circuitry to allow loading of each register asynchronously with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A V_{IH} level on the Odd I/O pins will force the appropriate register high; a V_{IL} will force it low, independent of the polarity or other configuration bit settings.

The PRELOAD state is entered by placing an 11V to 14V signal on pin 38 on the DIP and pin 42 on the SMP. When the

clock term is pulsed high, (pin 21 on the DIP, pin 23 on the SMP) the data on the I/O pins is placed into the 12 registers chosen by the Q Select and Even/Odd Select Pins.

Register 2 Observability Mode is entered by placing an 11V to 14V signal on pin 2 (DIP or SMP). In this mode, the contents of the Buried Register bank will appear on the associated outputs when the OE control signals are active.


Level forced on Odd I/O pin during PRELOAD cycle.	Q Select Pin State	Even/ Odd Select	Even Q1 state after cycle	Even Q2 state after cycle	Odd Q1 state after cycle	Odd Q2 state after cycle
ViH	Low	Low	High	Х	Х	Х
VIL	Low	Low	Low	X	Х	Х
ViH	High	Low	Х	High	Х	Х
VIL	High	Low	Х	Low	Х	Х
ViH	Low	High	Х	X	High	X
VIL	Low	High	Х	Х	Low	Х
ViH	High	High	Х	Х	Х	High
ViL	High	High	Х	Х	Х	Low

Power Up Reset

The registers in the ATV2500/H are designed to reset during power up. At a point delayed slightly from V_{CC} crossing 3.8V, all registers will be reset to the low state. The output state will depend on the polarity of the output buffer.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

- 1) The V_{CC} rise must be monotonic,
- 2) After reset occurs, all input and feedback setup times must be met before driving the clock term high, and
- 3) The signals from which the clock is derived must remain stable during tpR.

Parameter	Description	Min	Тур	Max	Units
tpR	Power-Up Reset Time		600	1000	ns

Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATV2500/H fuse patterns. Once programmed, the outputs will read programmed during verify. The security fuse should be programmed last, as its effect is immediate.

The security fuse also inhibits Preload and Q2 observability.

Atmel CMOS EPLDs

Atmel's Erasable Programmable Logic Devices utilize an advanced 1.25 micron CMOS EPROM technology. This technology's state of the art features are the optimum combination for EPLDs:

- CMOS technology provides high speed, low power, and high noise immunity.
- EPROM technology is the most cost effective method for producing EPLDs - surpassing bipolar fusible link technol-
- ogy in low cost, while providing the necessary reprogrammability.
- EPROM reprogrammability, which is 100% tested before shipment, provides inherently better programmability and reliability than one-time fusible PLDs.
- Atmel's EPROM process has proven extremely reliable in the volume production of a full line of advanced EPROM memory products, from 64k to 1024k bit devices.

Using The ATV2500's Many Advanced Features

The ATV2500's flexibility puts more <u>usable</u> gates in 40 pins than other EPLDs. Some of the ATV2500's key features are:

· Asynchronous Clocks -

Each of the Flip-Flops in the ATV2500/H has a dedicated product term driving the clock. The user is no longer constrained to using one clock for all the registers. Buried state machines, counters, and registers can all coexist in one device, while running on separate clocks. The ATV2500/H clock period matches that of similar synchronous devices.

· A Total of 48 Registers -

The ATV2500/H provides two Flip-Flops for each Output Macrocell - a total of 48. Each register has its own clock and reset product terms, as well as its own SUM term.

• Independent I/O Pin and Feedback Paths -

Each I/O pin on the ATV2500/H has a dedicated input path. Each of the 48 registers has individual feedback terms into

the array. This feature, combined with individual product terms for each I/O's Output Enable, facilitates designs using bi-directional I/O buses.

• 3 Sum Terms per Macrocell -

The ATV2500/H Macrocell can be configured with one Sum term feeding the output, and still have 2 Sum terms feeding the Flip-Flops. This is the simplest method for interfacing with an I/O bus, and no Flip-Flops need be sacrificed.

· Combinable Sum Terms -

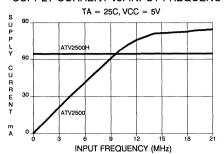
Each Output Macrocell's 3 SUM terms can be combined in an OR gate before the Output or the Register. This provides up to 12 product terms per Output or Flip-Flop. When the Registered Output configuration is chosen, 8 terms are automatically available to D1. The 4 terms feeding D2 can also be shared with D1, giving it a total of 12. In the combinatorial mode, 4,8, or 12 terms can feed the output, with the middle 4 still driving D1 and the bottom 4 still driving D2.

Programming Software Support

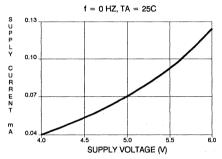
Software which is capable of transforming Boolean equations, state machine descriptions and truth tables into JEDEC files for the ATV2500/H is available from the following sources:

Data I/O / Futurenet Corp. Logical Devices Atmel Corp. - ABEL 3.0, 3.1, and above - CUPL 3.0 and above - Atmel-ABEL™ 1.01

Erasure Characteristics

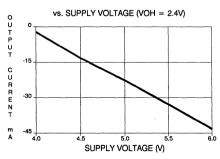

The entire memory array of an ATV2500/H is erased after exposure to ultraviolet light at a wavelength of 2537 Å. Complete erasure is assured after a minimum of 20 minutes exposure using $12,000\,\mu\text{W/cm}^2$ intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other

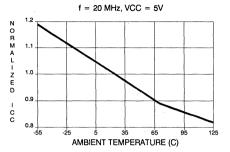
intensity ratings can be calculated from the minimum integrated erasure dose of 15W*sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPLD which will be subjected to continuous fluorescent indoor lighting or sunlight.

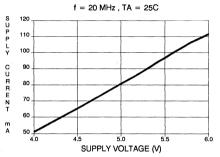


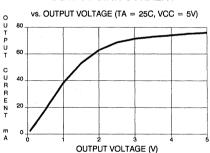
AMEL

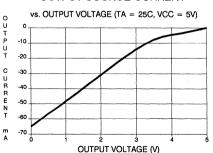
SUPPLY CURRENT vs. INPUT FREQUENCY


SUPPLY CURRENT vs. SUPPLY VOLTAGE

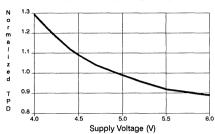

OUTPUT SINK CURRENT

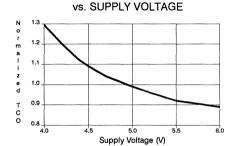

OUTPUT SOURCE CURRENT


NORMALIZED ICC vs. AMBIENT TEMP.

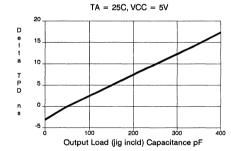

SUPPLY CURRENT vs. SUPPLY VOLTAGE

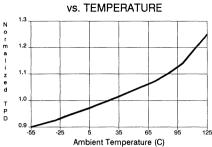
OUTPUT SINK CURRENT

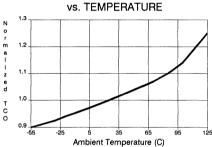

OUTPUT SOURCE CURRENT


7

NORMALIZED TPD




NORMALIZED TCO


DELTA TPD vs. OUTPUT LOADING

NORMALIZED TPD

NORMALIZED TCO

DELTA TCO vs. OUTPUT LOADING

t _{PD} (ns)	tco (ns)	fMAX (MHz)	Ordering Code	Package	Operation Range
30	30	33	ATV2500-30DC ATV2500-30JC ATV2500-30KC ATV2500-30LC ATV2500-30PC	40DW6 44J 44KW 44LW 40P6	Commercial (0°C to 70°C)
35	35	28	ATV2500-35DC ATV2500-35JC ATV2500-35KC ATV2500-35LC ATV2500-35PC	40DW6 44J 44KW 44LW 40P6	Commercial (0°C to 70°C)
			ATV2500-35DI ATV2500-35JI ATV2500-35KI ATV2500-35LI ATV2500-35PI	40DW6 44J 44KW 44LW 40P6	Industrial (-40°C to 85°C)
			ATV2500-35DM ATV2500-35KM ATV2500-35LM	40DW6 44KW 44LW	Military (-55°C to 125°C)
			ATV2500-35DM/883 ATV2500-35KM/883 ATV2500-35LM/883	40DW6 44KW 44LW	Military (-55°C to 125°C) Class B, Fully Compliant
40	40	25	ATV2500-40DC ATV2500-40JC ATV2500-40KC ATV2500-40LC ATV2500-40PC	40DW6 44J 44KW 44LW 40P6	Commercial (0°C to 70°C)
			ATV2500-40DI ATV2500-40JI ATV2500-40KI ATV2500-40LI ATV2500-40PI	40DW6 44J 44KW 44LW 40P6	Industrial (-40°C to 85°C)
			ATV2500-40DM ATV2500-40KM ATV2500-40LM	40DW6 44KW 44LW	Military (-55°C to 125°C)
			ATV2500-40DM/883 ATV2500-40KM/883 ATV2500-40LM/883	40DW6 44KW 44LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
45	45	22	ATV2500-45DI ATV2500-45JI ATV2500-45KI ATV2500-45LI ATV2500-45PI	40DW6 44J 44KW 44LW 40P6	Industrial (-40°C to 85°C)

t _{PD} (ns)	tco (ns)	fMAX (MHz)	Ordering Code	Package	Operation Range
45	45	22	ATV2500-45DM ATV2500-45KM ATV2500-45LM	40DW6 44KW 44LW	Military (-55°C to 125°C)
			ATV2500-45DM/883 ATV2500-45KM/883 ATV2500-45LM/883	40DW6 44KW 44LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant

	Package Type					
40DW6	40 Lead, 0.600" Wide Windowed, Ceramic Dual Inline Package (Cerdip)					
44J	44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)					
44KW	44 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)					
44LW	44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)					
40P6	40 Lead, 0.600" Wide Plastic Dual Inline Package OTP (PDIP)					

t _{PD} (ns)	tco (ns)	fmax (MHz)	Ordering Code	Package	Operation Range
25	25	40	ATV2500H-25DC ATV2500H-25JC ATV2500H-25KC ATV2500H-25LC ATV2500H-25PC	40DW6 44J 44KW 44LW 40P6	Commercial (0°C to 70°C)
			ATV2500H-25DI ATV2500H-25JI ATV2500H-25KI ATV2500H-25LI ATV2500H-25PI	40DW6 44J 44KW 44LW 40P6	Industrial (-40°C to 85°C)
			ATV2500H-25DM ATV2500H-25KM ATV2500H-25LM	40DW6 44KW 44LW	Military (-55°C to 125°C)
			ATV2500H-25DM/883 ATV2500H-25KM/883 ATV2500H-25LM/883	40DW6 44KW 44LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
30	30	33	ATV2500H-30DC ATV2500H-30JC ATV2500H-30KC ATV2500H-30LC ATV2500H-30PC	40DW6 44J 44KW 44LW 40P6	Commercial (0°C to 70°C)
			ATV2500H-30DI ATV2500H-30JI ATV2500H-30KI ATV2500H-30LI ATV2500H-30PI	40DW6 44J 44KW 44LW 40P6	Industrial (-40°C to 85°C)
			ATV2500H-30DM ATV2500H-30KM ATV2500H-30LM	40DW6 44KW 44LW	Military (-55°C to 125°C)
			ATV2500H-30DM/883 ATV2500H-30KM/883 ATV2500H-30LM/883	40DW6 44KW 44LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant
35	35	28	ATV2500H-35DC ATV2500H-35JC ATV2500H-35KC ATV2500H-35LC ATV2500H-35PC	40DW6 44J 44KW 44LW 40P6	Commercial (0°C to 70°C)
			ATV2500H-35DI ATV2500H-35JI ATV2500H-35KI ATV2500H-35LI ATV2500H-35PI	40DW6 44J 44KW 44LW 40P6	Industrial (-40°C to 85°C)
			ATV2500H-35DM ATV2500H-35KM ATV2500H-35LM	40DW6 44KW 44LW	Military (-55°C to 125°C)

t _{PD} (ns)	tco (ns)	fmax (MHz)	Ordering Code	Package	Operation Range
35	35	28	ATV2500H-35DM/883 ATV2500H-35KM/883 ATV2500H-35LM/883	40DW6 44KW 44LW	Military/883C (-55°C to 125°C) Class B, Fully Compliant

	Package Type				
40DW6	40 Lead, 0.600" Wide Windowed, Ceramic Dual Inline Package (Cerdip)				
44J	44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)				
44KW	44 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)				
44LW	44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)				
40P6	40 Lead, 0.600" Wide Plastic Dual Inline Package OTP (PDIP)				

7-54

Using the ATV2500 with ABEL™ and CUPL™

The following two examples show example headers to use when designing the ATV2500 with ABEL™ or CUPL™.

For ABEL™, the node numbers shown may be assigned any legal ABEL™ label. The fuse numbers for combining the product terms are included.

For CUPL™, the pinnodes shown may be assigned any legal CUPL™ label. Combining the product terms is handled automatically.

ABEL™ Example

module NODE2500

title 'Addressing 48 Registers in V2500

NODE2500 device 'P2500';

@message 'Use P2500PC device file.';

Node

node

node

node

@message 'for ABEL on a PC/Clone';

11,12,13 117,118,119,120,121,122,123

"Inputs

pin 1,2,3;

17,18,19,20,21,22,23; pin

137,138,139,140 pin 37,38,39,40;

"I/Os

O4,O5,O6,O7,O8,O9 pin 011,012,013,014,015,016 pin O24,O25,O26,O27,O28,O29 pin

11,12,13,14,15,16; 24,25,26,27,28,29; 31,32,33,34,35,36;

4,5,6,7,8,9;

O31,O32,O33,O34,O35,O36

pin

Number

41,42,43;

44,45,46;

47,48,49;

B4,B5,B6 B7,B8,B9 B11,B12,B13 B14,B15,B16 B24,B25,B26 B27,B28,B29 B31,B32,B33

B34,B35,B36

"Q1 Registers

Q24,Q25,Q26

Q27,Q28,Q29

Q31,Q32,Q33

Q34,Q35,Q36

"Q2 Registers "Node Name

> node 50,51,52; node 53,54,55; 56,57,58; node node 59,60,61; node 62,63,64;

" pin 31 to pin 33 " pin 34 to pin 36

" pin 4 to pin 6

" pin 7 to pin 9

" pin 11 to pin 13

Pin Associated With:

" pin 4 to pin 6

pin 7 to pin 9

" pin 11 to pin 13

" pin 14 to pin 16

" pin 24 to pin 26

" pin 27 to pin 29

"Node Name Node Number Pin Associated With: Q4,Q5,Q6 node 217,218,219; Q7,Q8,Q9 220,221,222; node Q11,Q12,Q13 node 223,224,225; Q14,Q15,Q16

node

226,227,228; node node 229,230,231; 232,233,234; node node 235,236,237;

238,239,240;

" pin 14 to pin 16 " pin 24 to pin 26 " pin 27 to pin 29 " pin 31 to pin 33

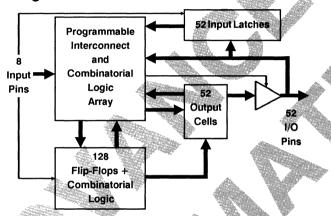
" pin 34 to pin 36

High Density UV Erasable Programmable Logic Device

Application Brief

CUPL™ Example

```
NODE2500
Name
Partno
             00;
             11/21/88:
Date
Revision
             00:
             J. Yu
Designer
Company
             Atmel;
Assembly
             None;
Location
             None;
Device
             V2500;
/******
/** Allowable Target Device Types: V2500
/** Inputs **/
/* This is a handy way to name a set of pins */
                   [I1..I3];
PIN [1..3]
PIN [17..23]
                   [I17..I23];
PIN [37..40]
                   [137..140];
             **/
/** I/Os
PIN [4..9]
                   [O4..O9];
                   [O11..O16];
PIN [11..16]
PIN [24..29]
                   [O24..O29];
PIN [31..36]
                   [O31..O36];
/** Declarations and Intermediate Variable Definitions */
                                    Pin assoc. with:*/
/* Q2 nodes
                                    /*PIN 4 to 9*/
PINNODE [41..46]
                    = [B4..B9];
PINNODE [47..52]
                                    /*PIN 11 to 16*/
                    = [B11..B16];
PINNODE [53..58]
                    = [B24..B29];
                                    /*PIN 24 to 29*/
                                    /*PIN 31 to 36*/
PINNODE [59..64]
                    = [B31..B36];
/* O1 nodes
                                    Pin assoc. with:*/
PINNODE [65..70]
                    = [Q4..Q9];
                                    /*PIN 4 to 9*/
PINNODE [71..76]
                                    /*PIN 11 to 16*/
                    = [Q11..Q16];
PINNODE [77..82]
                    = [O24..O29];
                                    /*PIN 24 to 29*/
PINNODE [83..88]
                    = [Q31..Q36];
                                    /*PIN 31 to 36*/
etc.
```


Features

- Advanced Programmable Logic Device High Gate Utilization
- Flexible Interconnect Architecture Universal Routing
- Flexible Logic Cells 128 Flip-Flops and 52 Latches
- · Synchronous or Asynchronous Registers
- · High Speed 50 MHz Operation
- Complete Third Party Software Support

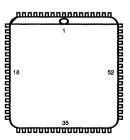
No Placement, Routing or Layout Software Required

Proven and Reliable High Speed CMOS EPROM Process

Block Diagram

Description

The ATV5000 is an easy to use, high density programmable logic device. Its simple, regular architecture and very flexible resource configuration translate into increased utilization and high performance.

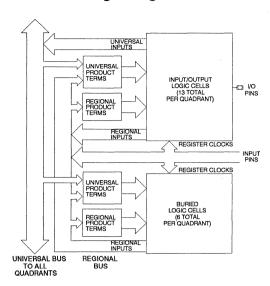

The ATV5000 is organized around one programmable interconnect and combinatorial logic array (see block diagram above). This guarantees easy interconnection of and uniform performance from all nodes. Logic is grouped into "sum terms", which are easy to use groupings of AND-OR gates. Sum terms can be wire-or'd together to integrate larger logic blocks. Buried sum terms can be fed back into the logic array to expand the levels of logic. The 52 I/O pins can each be driven by a register or a sum term. Each I/O pin has an indivually enabled input latch.

All 128 registers are configurable without using extra logic gates. Individual sum terms, asynchronous presets, resets and clocks give each flip-flop added flexibility. An input pin clock option guarantees synchronization and fast clock to output performance.

The ATV5000 will be supported by standard, off-the-shelf third party software tools and programmers, minimizing start-up investment and improving product support.

Chip Carrier Pin Configuration

	- 19	
Pin Name	Qty.	Function
1	8	Logic and Clock Inputs
1/0	52	Bidirectional Buffer
vcc	4	+5V Supply
GND	4	



Programmable Logic Device

Advance Information

Functional Logic Diagram ATV5000

Logic Diagram Description

The ATV5000's logic resources are grouped into 52 identical Input/Ouput logic cells and 24 identical buried logic cells. Each I/O cell has 2 flip-flops, up to 3 sum terms, individual clock, reset, and preset terms per flip-flop, and one output enable term. Independent of output configuration, all flip-flops are always usable, and have at least 4 Product Term inputs each.

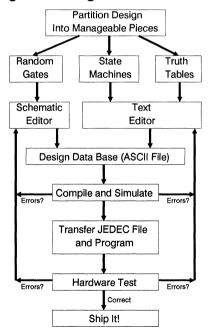
Each I/O pin (52 total) can be used directly or latched, with one latch clock per quadrant.

The ATV5000 has 4 identical quadrants. The Universal Bus routes true and false signals from each of the 52 I/O pins to all four quadrants. Regional buses route each quadrant's flipflop Q and \overline{Q} regionally. The 8 input-only pins are available in all 4 regional buses.

Each logic cell has a number of "regional" and "universal" product terms. The I/O Logic Cells contain 3 sum terms, 2 flip-flops, and an I/O buffer.

The Buried Logic Cells each contain 1 flip-flop. In addition, each buried logic cell sum term can be fed back into the regional bus. This allows for logic expansion.

Register preload and observability are incorporated serially to simplify testing. All registers automatically clear at power up.


D.C. Characteristics (Preliminary)

Symbol	Parameter	Condition		Min	Тур	Max	Units
Iu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$				10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V$ to $V_{CC} + 0.1V$				10	μΑ
loo	Bayyar Cumply Current	VCC = MAX, VIN = GND or VCC Com.			20	40	mA
ICC Power Supply Current		Outputs Open	Ind.,Mil.		20	50	mA
loos	Clocked Power Supply	f=1MHz,V _{CC} =MAX	Com.		30	50	mA
Current	Outputs Open	Ind.,Mil.		30	60	mA	
VIL	Input Low Voltage			-0.6		0.8	٧
ViH	Input High Voltage			2.0		V _{CC} +0.75	٧
VoL	Output Low Voltage	V _{IN} = V _{IH} or V _{IL} , I _{OL} = 8mACom,Ind;6mA Mil.				0.5	٧
Voн	Output High Voltage	I _{OH} = -100μA (CMOS Load)		Vcc-0.3			٧
VOH	Output Flight Voltage	I _{OH} = -4.0mA (TTL Load)		2.4			٧

A.C. Characteristics (Preliminary)

		ATV5	000-25	ATV5	000-30	
Symbol	Parameter	Min	Max	Min	Max	Units
t _{PD1}	Input or Feedback to Non-Registered Output		25		30	ns
tEA1	Input to Output Enable		25		30	ns
tcos	Clock to Output (Synchronous)		15		20	ns
tco	Clock to Output (Asynchronous)		25		30	ns
tsı	Input Latch Setup Time	15		18		ns
tн	Input Latch Hold Time	0		0		ns
tsis	Input Setup Time (Synchronous)	15		20		ns
tHS	Input Hold Time (Synchronous)	0		0		ns
tsia	Input Setup Time (Asynchronous)	10		12		ns
tHA	Input Hold Time (Asynchronous)	7		10		ns
tw	Clock Width	7		10		ns
tp	Clock Period	20		25		ns
FMAX	Maximum Frequency (1/tp)		50		40	MHz

Design Flow Diagram

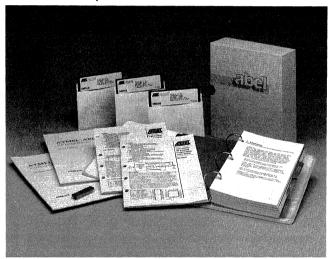
Using The ATV5000

The ATV5000's simple, regular architecture means that only simple logic compilers are required to configure the device. No layout or route and place are required. These software tools are readily available from companies such as Data I/O Corporation (ABEL™), Logical Devices (CUPL™), and ISDATA (LOGiC™).

The first step in designing a device as complex as the ATV5000 is to partition your design into manageable blocks. These blocks are then allocated proportionally to each of the four quadrants of the ATV5000. Random gates can be described either with boolean equations (a behavioral description) or with a schematic editor. Truth table logic and state machines are best described behaviorially and entered with a text editor. The design is then combined into one ASCII file, which is then submitted to the logic compiler. Compilation, logic reduction, simulation, JEDEC file creation and documentation are then completed by all of the popular compilers.

After correcting any syntax and logic errors discovered by the compiler, the JEDEC file is ready to download to an EPLD programmer. These are available from a number of manufacturers. Programmed devices are usually first tested in the programmer with your supplied test vectors. The next step is check out your "custom chip" in the target system. When this hardware debug step is complete, your system is ready to goall in a matter of hours.

ABEL™ is a trademark of Data I/O Corporation. CUPL™ is a trademark of Logical Devices. LOGiC™ is a trademark of ISDATA.


Features

- Atmel-ABEL Uses the Industry-Standard Natural Design Language
- Multiple Input Methods :
 - Boolean Equations, Truth Tables and State Diagrams
- Automatic Logic Reduction, Simulation, Error Checking, and Generation of Design Documentation
- Automatically Takes Advantage of Atmel's EPLD Architecture, Joining Sum Terms When Extra Product Terms are Needed
- Runs on MS-DOS™ Compatible Personal Computers
- This Inexpensive Package Includes:

Atmel-ABEL Software which Supports the ATV750 and ATV2500 Design Examples

Complete ABEL Manual Sample ATV2500-35DC

· Special Offers and Coupons

Description

Atmel Programmable Logic Devices (PLD's) offer powerful solutions for logic design. Atmel-ABEL, developed by Data I/O Corporation, is a software package specifically designed to support developement with Atmel Programmable Logic Devices.

Atmel-ABEL automatically takes advantage of Atmel's innovative multiple sum term PLD architecture. When your reduced equations require more product terms than anticipated, the software automatically allocates the next available block of product terms to your equation.

Atmel-ABEL automatically reduces your logic equations to near minimal form. Depending on your requirements, you can choose among several reduction algorithms. The result is a more efficient, cost-effective design.

Behavioral simulation is an integral part of the Atmel-ABEL design package. Simulation is automatic and software-based so that you can verify your design and test vectors before you program your first device.

Once your design is ready, Atmel-ABEL generates standard JEDEC files which can be downloaded to your programmer with the terminal emulation software included with the package.

ABEL™ is a trademark of Data I/O Corporation.

MS-DOS™ is a trademark of Microsoft Corporation.

High-Level
Design Tool
for Atmel
Programmable
Logic Devices:
ATV750
ATV2500

Programming Software Companies

Data I/O Corporation (ABEL™)

10525 Willows Rd. N.E. P.O. Box 97046 Redmond, WA 98073-9746 (206) 881-6444 (800) 247-5700

Logical Devices (CUPL™)

1321 N.W. 65 Place Ft. Lauderdale, FL 33309 (305) 974-0967 (800) 331-7766

ISDATA Gmbh (LOG/iC)

Haid-und-Neu- Str. 7 D-7500 Karlsruhe 1 West Germany 0721 / 69309

C/O Adams MacDonald Enterprises 800 Airport Rd. Monterey, CA 93940 (408) 373-3607 (800) 777-1202

PistoHI Electronic Tool Co.

22560 Alcalde Rd. Cupertino, CA 95014 (408) 255-2422 (800) 2PISTOHL

ACCEL Technologies, Inc.

6825 Flanders Drive San Diego, CA 92121 (800) 433-7801

Programming Hardware Companies

Data I/O Corporation

10525 Willows Rd. N.E. P.O. Box 97046 Redmond, WA 98073-9746 (206) 881-6444 (800) 247-5700

Stag Microsystems

1600 Wyatt Dr. Santa Clara, CA 95054 (408) 988-1118

PistoHI Electronic Tool Co.

22560 Alcalde Rd. Cupertino, CA 95014 (408) 255-2422

Logical Devices

1321 N.W. 65 Place Ft. Lauderdale, FL 33309 (305) 974-0967 (800) 331-7766

SMS

C/O Adams MacDonald Enterprises 800 Airport Rd. Monterey, CA 93940 (408) 373-3607

BP Microsystems

10681 Haddington #190 Houston, TX 77043 (713) 461-9430

Advin Systems, Inc.

1050-L East Duane Ave. Sunnyvale, CA 94086 (408) 984-8600

System General

510 South Park Victoria Drive Milipitas, CA 95035 (408) 263-6667

Inlab

2150 I W 6th Ave Broomfiled, CO 80020 (800) 237-6759

CMOS EPLD Programming Hardware and Software Support

Pr	roduct Information	1 1
CI	MOS E ² PROMs	2
CI	MOS PEROMs (Flash)	8
CI	MOS EPROMS	4
	igh Speed CMOS PROMs	5
CI	MOS SRAMs	6
	MOS EPLDs	7
	MOS Gate Arrays	8
CI	MOS Analog	9
A	pplication Notes	10
	uality and Reliability	11
M	ilitary	12
	ie Products	13
	ackage Outlines	14

Section 8

CMOS Gate Arrays

ATL4	4K Gates	1-Micron CMOS Gate Array	8-3
ATL10	10K Gates	1-Micron CMOS Gate Array	8-3
ATL20	22K Gates	1-Micron CMOS Gate Array	8-3
ATL60	57K Gates	1-Micron CMOS Gate Array	8-3
ATL130	131K Gates	1-Micron CMOS Gate Array	8-3
ATI 260	257K Gates	1-Micron CMOS Gate Array	8-3

Features

- 0.8µm effective gate lengths (1.0µm drawn) combined with close metal spacing provides outstanding speed/power performance
- Modified channeless architecture provides higher utilization ranging from 2,600 to 130,000 usable gates
- I/O counts from 60 to 320 reduce the number of off-chip transactions for increased system performance
- Design translation from other libraries provides for easy alternate sourcing
- · Cell library contains...

Over 50 logic functions and memory cells

"Soft" macrocells

Serial Scan and Boundary Scan macrocells

- · Scan Path/Built-in Self Test provide shorter test times
- · User-friendly design tools support...

Design Statistics

Network Synthesis

Logic Optimization

Fault Grading

Worst-case Path Delay Estimates

Functional and Timing Simulation

Test Program Generation

Wafer fabrication, packaging and screening in a U.S. facility

Description

The high-performance ATL Series CMOS gate arrays offer superior system performance, flexibility, testability and board utilization. The ATL gate arrays employ 1.0µm-drawn (0.8µm-effective), double-level metal, Si-gate, CMOS technology processed in a U.S.-based, advanced manufacturing facility.

The arrays utilize a modified channeless architecture in which routing channels with four routing lanes provide greater than 50 percent usable gates. This efficient routing scheme combined with close spacing for both metal layers allows the highest usable gate densities.

Clock and power distribution schemes are designed to minimize skew and voltage drop. Scan-compatible flip-flops and shadow registers in the I/O cells provide for improved testability.

ATL Array Organization

Device	ATL4	ATL10	ATL20	ATL60	ATL130	ATL260
Total Gates	4K	10K	22K	57K	131K	257K
Usable Gates	2.6K	6.5K	12K	30K	67K	130K
Total Pins	68	124	144	224	256	360
I/O	60	116	136	208	236	320

1-MICRON
CMOS
GATE ARRAYS

ATL4
ATL10
ATL20
ATL60
ATL130
ATL260
Preliminary

ASIC Design Flow

Netlist Translation

Design netlists existing in a customer's format can be automatically translated into Atmel's gate array cell library.

Library

Atmel provides the cell library, with schematic symbols, functional models, and timing models, on the customer's workstation. Simulators supported include Quicksim, AIDA, HILO and ZYCAD. Customer training in the library can be provided.

Logic Design

Schematic capture, simulation and test vector generation is typically a customer responsibility. Netlists and test vectors provide an unambiguous interface between the customer and Atmel.

Netlist Validation

Upon receipt of a customer's design, Atmel performs netlist checks for common CMOS design problems. Any issues are then resolved with the customer. Next, the netlist is simulated using customer provided vectors to insure a valid starting point for physical design.

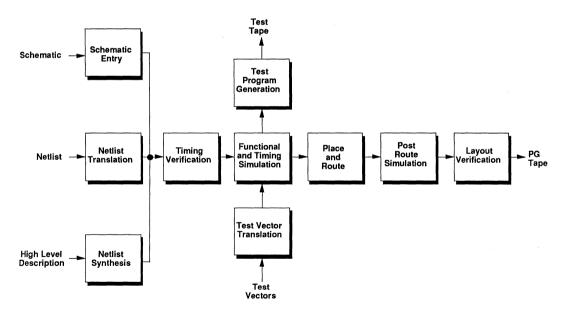
Placement and Routing

Automatic placement and routing are performed using a number of physical design tools. Both placement and routing can be influenced by high priority nets in the netlist. Placement tools support force-directed placement, pair wise swapping for optimized wire length, and congestion smoothing. Routing systems include global assignment, channel routing, maze routing and rip up/retry routers. Manual intervention in placement and routing is supported for critical portions of the circuit.

Verification

Post-route verification includes design rule checks, layout versus schematic checks, and interconnect capacitance extraction for back annotation.

Post-Route Simulation


Using the interconnect capacitance extracted above, the asrouted timing performance is verified. This can be done by Atmel, the customer, or both.

Test Vector Translation

Atmel provides translation of the simulation results to its foundry's tester format. SentryTM and AndoTM testers are supported. Additional test support, in the form of fault grading and automatic test vector generation can be provided.

Final Design Review

Prior to fabrication, the layout, simulation and verification are reviewed and approved by the customer.

Performance Optimized Cell Library

Atmel's ATL series gate arrays use cells from an accurately modeled and highly flexible library. The cell library contains over 50 hard-wired data path elements, ranging from inverters to flip-flops, adders, and multiplexers. Each cell has been characterized via extensive SPICE modeling at the transistor

level and verification of the simulation results through measurements made on processed arrays. Characterization has been done over the military temperature and voltage ranges, and worst-case process limits to ensure an accurate estimate of worst-case delays. SCAN flip-flops with Reset control are also available.

Cell Guide

AND, NAND, OR, NOR GATES

2-input NAND	2-input AND
Dual 2-input NAND	3-input AND
3-input NAND	2-input NOR
4-input NAND	Dual 2-input NOR
5-input NAND	3-input NOR
6-input NAND	4-input NOR
8-input NAND	2-input OR

MULTIPLEXERS

2:1 MUX

2:1 MUX w/Enable QUAD 2:1 MUX

QUAD 2:1 MUX w/Enable

4:1 MUX 8:1 MUX

8:1 MUX w/Enable

EXCLUSIVE OR/NOR GATES

2-input Exclusive OR 2-input Exclusive NOR

1-bit Adder

AND/OR, OR/AND Gates

3-input AND/OR/INVERT 4-input AND/OR/INVERT 7-input AND/OR/INVERT

3-input OR/AND/INVERT

4-input OR/AND/INVERT

DECODERS

2:4 Decoder

2:4 Decoder w/Enable

3:8 Decoder

FLIP-FLOPS/ LATCHES

D Flip-flop

D Flip-flop w/asynchronous CLR

D Flip-flop w/asynchronous RESET D Flip-flop w/asynchronous SET

D Flip-flop w/asynchronous SET/RESET

JK Flip-flop

JK Flip-flop w/asynchronous CLR

QUAD Inverting Latch

Latch

Latch w/RESET

Latch w/SET

Latch w/SET/RESET Perimeter D Flip-flop

SCAN CELLS

Set-Scan Register QUAD Set-Scan Register w/Enable QUAD Set-Scan Register w/Controls

I/O CELLS

All I/O's are designated as PAD cells followed by up to six fields defining capability. For example, a TTL input with 4K pull up would be PADIOOT4K.

P911 F1

F2

F3

F5

F6

Field 1:

B - Bidirectional

O - Output

T - Tristate Output

Field 2: 0-12 - N-Drive Value Field 3: 0-12 - P-Drive Value

Field 4: C - CMOS T - TTL

Field 5: 4K or 40K - Pull-up Value

Field 6: S - SCHMITT

I/O Buffers

The ATL series input/output ring contains the I/O buffer circuitry, capable of sourcing and sinking currents up to 16mA, responding to either CMOS or TTL logic levels, and having ESD protection networks capable of withstanding a 2000V discharge. All outputs can be switched to a high impedance state. I/O locations on this ring can accomodate bidirectional cells.

- Programmable output drive (2 to 24mA I_{OL}, -4 to -48mA I_{OH})
- CMOS or TTL I/O configurable interface
- · ESD input protection greater than 2000 volts
- · Built-in configurable test logic
- · High drive internal buffers
- · High impedance state

CMOS/TTL Input Interface Characteristics

Interface	Logic High	Logic Low	Switchpoint
CMOS	3.5V Minimum	1.5V Maximum	Vdd/2 Typical
TTL	2.0V Minimum	0.8V Maximum	1.3V Typical

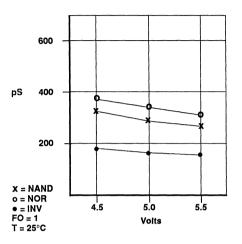
Absolute Maximum Ratings*

Temperature Under Bias55°C to +125	°C
Storage Temperature65°C to +150	°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0)V1

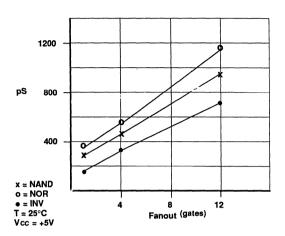
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes

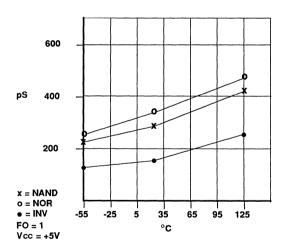
1. Minimum voltage is -0.6V dc which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is $V_{\rm cc}$ + 0.75V dc which may overshoot to +7.0V for pulses of less than 20ns.

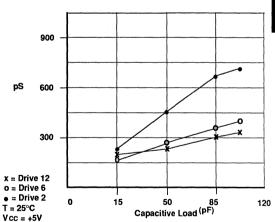

DC Characteristics

Applicable over recommended operating range from $T_a = -55^{\circ}\text{C}$ to $+125^{\circ}\text{C}$, $V_{CC} = 4.5\text{V}$ to 5.5V (unless otherwise noted)


Symbol	Parameter	Test Condition	Min	Max	Units
l _{IH}	Input Leakage High	V _{IN} = V _{CC} = 5.5V		10	μА
I _{IL}	Input Leakage Low 4K Pullup 40K Pullup	$V_{IN} = 0, V_{CC} = 5.5V$		1.35 0.19	mA mA
loL	Output Leakage	$V_{OUT} = 0$ or V_{CC} , $V_{CC} = 5.5V$		10	μА
V _{IL}	TTL Input Low Voltage	V _{CC} = 5.5V		0.8	٧
V _{IL}	CMOS Input Low Voltage	V _{CC} = 5.0V		1.5	٧
V _{IH}	TTL Input High Voltage	V _{CC} = 4.5V	2.0		٧
V _{IH}	CMOS Input High Voltage	V _{CC} = 5.0V	3.5		٧
V _{OL}	Output Low Voltage Output buffer has 12 stages of drive capability with 2mA I _{OL} per stage.	V _{CC} = 4.5V		0.4	V
V _{OH}	Output High Voltage Output buffer has 12 stages of drive capability with -4mA I _{OH} per stage.	V _{CC} = 4.5V	3.5		V

AC Characteristics


Delay vs V_{cc}


Delay vs Fanout

Delay vs Temperature

Output Buffer vs Load

Power Dissipation

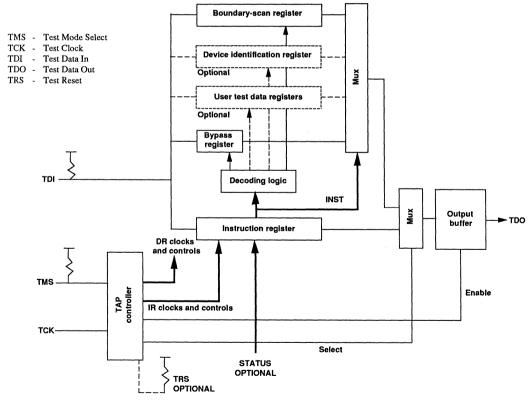
Power dissipation is typically $5\mu W/MHz$ per active gate switching during a clock period.

8

Design for Testability

Today's designs often carry demanding component and systemlevel functional test and maintenance requirements. Atmel's arrays support a full range of Design-for-Test (DFT) testability improvement techniques, which reduces design debug time, component test time, board and system test times and improves system diagnostics.

Designs that permit easy application of stimuli and examination of responses are necessary to make circuits thoroughly functionally testable. Serial Scan techniques, using specially designed registers, improve this controllability and observability by allowing the establishment of scan paths deep inside the circuit logic. Serial patterns can be loaded into these registers and signature analysis techniques used to provide an easy means of determining circuit functionality. This testability improvement method is supported on each of the ATL arrays.


Shadow registers, included in the I/O buffer cells for the arrays, facilitate the use of Boundary Scan techniques. This testability improvement method, coupled with Serial Scan techniques,

provides excellent fault isolation within the array as well as simplifying the testing of interconnects on the board. Scan registers in the periphery can be configured to generate pseudorandom test patterns and signature analysis registers, thus acting as on-chip test pattern generators.

The Joint Testability Action Group (JTAG) macros also feature Built-In Self Test circuitry. This permits testability access to IEEE proposed standards through only four package pins. This extra circuitry, contained in a soft macro, further relieves the designer of the task of developing detailed testability controller designs.

Atmel uses TDS™ software from Test Systems Strategies Inc. (TSSI™) as its primary test program generator for high-performance ASICs. Functional test programs are generated from the simulation files and formatted to be compatible with high speed, high pin-count ANDO & Sentry testers. This software tool can save the designer weeks of tedious test vector generation and debugging.

JTAG Architecture

Advanced Packaging

Atmel offers its ATL series in packages designed to maintain the performance edge obtained in the silicon. Leaded and leadless chip carriers, pin grid arrays, flatpacks, dual-in-line packages and tape automated bonded (TAB) packages are available.

When a standard package can't meet a customer's specific needs, Atmel can design a package to precisely fit the application. Atmel's close working relationship with both domestic and foreign package suppliers ensures a first-pass design success. The Company has proven success in the design and volume delivery of dozens of custom packages. Atmel's new packaging facility includes the capability for screening to commercial, industrial, Class B, and Class S levels.

Packaging Options

	Maximum Pins	DIP	LCC	LDCC	Flatpack	PGA	TAB/Custom
ATL4	68	Х	X	Х	Х	Х	
ATL10	124			X	X	X	
ATL20	144			Х	X	X	x
ATL60	224			X	X	X	X
ATL130	256				X	X	X
ATL260	360					X	X

MENTOR is a registered trademark of Mentor Graphics Corporation. TDS and TSSI are registered trademarks of Test Systems Strategies Inc. Ando is a registered trademark of Ando Corporation.

Sentry is a registered trademark of the Schlumberger Company.

Product Information	1
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	3
CMOS EPROMs	4
High Speed CMOS PROMs	5
CMOS SRAMS	6
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	14

Section 9

CMOS Analog			
AT76C10	4KHz	Programmable, Phone Line Equalizer	9-3
AT76C10E	4KHz	Programmable, Phone Line Equalizer	
		With On-Board E ² PROM	9-11
AT76C120	100KHz	Dual Channel 16/18-Bit A/D Converters	9-19
AT76C171	50MHz	Triple, 6-Bit Color Palette DAC	9-27
AT76C176	66MHz	Triple, 6-Bit Color Palette DAC	9-39
AT76C176A	50-110MHz	Triple, 6-Bit Color Palette DAC	
		With Power-Down	9-51

Features

- High Accuracy Programmable Gain Amplifiers
 - ± 0.02 dB Accuracy (Typical)
 - 31.5 dB Range in 0.5 dB Steps
- Software Programmable Group Delay Equalizer For Leased and Dial-Up Lines
- High Dynamic Range over 90 dB
- On-Chip Anti-Aliasing Filters
- Microcomputer Interface with Serial Data Port
- Three Convenient Clock Options
 - 11.0592 MHz
 - 3.6864 MHz
 - 2.4576 MHz (or 2.56 MHz)
- Operates from +/- 5 V Supplies
- Low Power Standby Mode 100 μA (Typical)
- TTL and CMOS Compatible Digital Interface
- Economical 16-Lead Package
- Full Military, Commercial and Industrial Temperature Ranges

Description

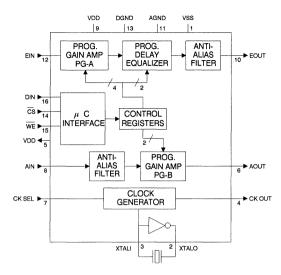
The AT76C10 integrates two Programmable Gain Amplifiers and a Programmable Telephone Line Group Delay Equalizer on a monolithic substrate. It is fabricated in a state-of-the-art, low power CMOS process. The Gain and Group Delay steps are controlled by a 7-bit configuration code which can be programmed in real time. The AT76C10 is implemented in an advanced switched-capacitor technology and is designed to provide precise Gain and Group Delay compensation for low bit-error-rate data transmission over dial-up and leased lines. Anti-alias and clock filters are included on-chip as the AT76C10 employs sampled-data techniques, and external filters are not required for most applications.

Pin Configuration

vss	1	U	16	þ	DIN
XTALO	2		15	Ь	WE
XTALI	3	76C10	14	\vdash	CS
CK OUT	4		13	þ	DGNE
VDD	5		12	þ	EIN
AOUT	6		11	Ь	AGNE
CK SEL	7		10		EOUT
AIN	8		9	\vdash	VDD
	L			j	

Pin Definitions

No.	Pin Name	Function
1	VSS	Negative Power Supply. Nominal -5 Volts.
2	XTALO	Crystal Oscillator Output.
3	XTALI	Crystal Oscillator Input.
4	CK OUT	Sampling Clock Output. (Open Drain)
5	VDD	Connect to VDD.
6	AOUT	PG-B Analog Signal Output.
7	CK SEL	Clock Select. Selects one of the 3 recommended Clock frequencies.
8	AIN	PG-B Analog Signal Input.
9	VDD	Positive Power Supply. Nominal +5 Volts.
10	EOUT	Delay Equalizer Analog Signal Output.
11	AGND	Analog Ground.
12	EIN	Delay Equalizer Analog Signal Input.
13	DGND	Digital Ground.
14	CS	Chip Select Control Input.
15	WE	Write Enable Control Input.
16	DIN	Serial Data Input.


CMOS Programmable Amplifier

Delay **Equalizer**

Block Diagram

Device Operation

The AT76C10 is designed for use in the signal paths of a modem or voice/data phone to minimize the bit-error-rate over dial-up and leased lines. Gain and Group Delay response of the AT76C10 are controlled by a serial 7-bit configuration code. D1 and D0 of the configuration code are the address bits which select one of the three control registers. Bits D2 to D5 set the gain and delay equalizer steps. D6 is an option bit which controls the power down mode. All the functions associated with the configuration code are summarized in Tables 1 to 4.

Configuration Code Format

D6	D5	D4	D3	D2	D1	D0
OPTION SELECT		CONTRO		ADD	RESS	

This chip can be used as part of an adaptive equalizer for medium to high speed modems (1200 bps to greater than 19.2K bps). The configuration code is loaded into the chip at a serial data input port and updated in real time. The amplitude response of the equalizer is nominally at 0 dB with negligible ripple. The AT76C10 can also be used as a fixed compromise delay equalizer.

PROGRAMMABLE GAIN AMPLIFIER: The AT76C10 provides two high dynamic range amplifiers for maximizing signal-to-noise ratio. Amplifier PG-A offers 16 programmable gain steps from 0 dB to 7.5 dB in 0.5 dB steps. Amplifier PG-B provides -8 to 16 dB of gain in 8 dB steps. The two amplifiers can be cascaded to provide 31.5 dB range of programmable gain in 0.5 dB steps. The Programmable Amplifiers can be used as an Automatic Gain Control Circuit or as a fixed gain adjustment.

PROGRAMMABLE GROUP DELAY EQUALIZER: The Group Delay Equalizer is designed to provide programmable compromise group delay compensation to achieve low bit-error-rate data transmission. Four group delay responses are provided to accommodate the majority of conditioned as well as unconditioned lines. The first three responses are recommended for line types C2 and C1, while the fourth response can be used for 3002-type lines. Two or more AT76C10s can be cascaded to obtain additional group delay compensation.

CONTROL REGISTERS: Four control registers are used to store the configuration codes for the gain steps of PG-A and PG-B, the delay steps of the Delay Equalizer, and the control bit for the power-down mode.

MICROCOMPUTER INTERFACE: Control inputs \overline{CS} and \overline{WE} and serial data input DIN allow the AT76C10 to be easily interfaced with most popular microcontrollers. All digital I/Os are TTL as well as CMOS compatible.

WRITE OPERATION: To program a configuration code into a particular control register, the voltage at \overline{CS} has to be brought low while the data bits appearing at DIN are strobed in at the rising edge of \overline{WE} . At the rising edge of \overline{CS} , the last 7 input data bits are latched into the control registers.

POWER-DOWN MODE: To minimize power consumption for battery powered applications and in certain linecard applications, the AT76C10 provides a low power standby mode of operation. In the power-down mode, the analog outputs go into a high impedance state. The power-down mode is initiated by writing a "0" into the power-down register. Once in the power-down mode, the AT76C10 can be reactivated by writing a "1" into the power-down register. It should be noted that upon powering up the AT76C10 for the first time, it automatically goes into the normal active mode of operation.

CRYSTAL OSCILLATOR: Internal timing of the chip is generated either by connecting a crystal across pins XTALI and XTALO of the on-chip oscillator, or by applying an external clock at pin XTALI. In the latter case, pin XTALO should be left unconnected. To accommodate different applications, three clock options: 2.4576 MHz, 3.6864 MHz and 11.0592 MHz, can be selected via control pin CK SEL. For applications in a linecard environment, a 2.56 MHz clock can be used instead of the 2.4576 MHz clock. The 153.6 KHz (160 KHz with 2.56 MHz clock) sampling clock is available as an open drain output at CK OUT for synchronization or driving other circuits, e.g. the transmit or receive filters, or A/D and D/A converters.

CK SEL	Recommended XTAL Frequency	ск оит
VDD	11.0592 MHz	153.6 KHz
DGND	3.6864 MHz	153.6 KHz
vss	2.4576 MHz	153.6 KHz
VSS	2.56 MHz	160.0 KHz

Group Delay Characteristics (Microseconds)

Fs = 153.6 KHz

Frequency (Hz)	Step #1	Step #2	Step #3	Step #4
300	158	278	416	284
600	188	336	502	386
900	237	463	681	680
1200	325	671	985	1360
1500	431	890	1330	1791
1700	462	938	1382	1838
1900	435	897	1305	1810
2100	372	777	1144	1510
2400	266	542	808	683
2700	181	361	534	342
3000	136	250	368	213
3300	102	182	267	148

Table 1. Option Selection

Add	iress	Option Bit	
D1	D0	D6	Function
0	0	1	
0	1	1	Updates Control Registers
1	0	1	·
1	1	0	Power Down Mode
1	1	1	Active Mode

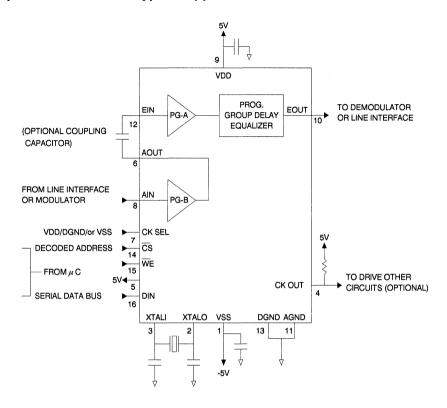
Table 2. Equalizer Selection

Add	ress	C	Control Code			Equalizer	Recommened
D1	D0	D5	D4	D3	D2	Step No.	Line Condition
0	0	Х	Χ	0	0	1	C2
0	0	Х	Χ	0	1	2	C1
0	0	Х	Χ	1	0	3	C1
0	0	Х	Χ	1	1	4	3002

Table 3. Programmable Gain Amplifier, PG-A

Address		Co	Control Code			PG-A	PG-A Gain
D1	D0	D5	D4	D3	D2	Step No.	(dB)
0	1	0	0	0	0	1	0.0
0	1	0	0	0	1	2	0.5
0	1	0	0	1	0	3	1.0
0	1	0	0	1	1	4	1.5
0	1	0	1	0	0	5	2.0
0	1	0	1	0	1	6	2.5
0	1	0	1	1	0	7	3.0
0	1	0	1	1	1	8	3.5
0	1	1	0	0	0	9	4.0
0	1	1	0	0	1	10	4.5
0	1	1	0	1	0	11	5.0
0	1	1	0	1	1	12	5.5
0	1	1	1	0	0	13	6.0
0	1	1	1	0	1	14	6.5
0	1	1	1	1	0	15	7.0
0	1	11	1	1	1	16	7.5

Table 4. Programmable Gain Amplifier, PG-B


							,
Add	ress	C	Control Code			PG-B	PG-B Gain
D1	D0	D5	D4	D3	D2	Step No.	(dB)
1	0	Х	Χ	0	0	1	0.0
1	0	Х	Χ	0	1	2	8.0
1	0	Х	Χ	1	0	3	16.0
1	0	Х	Х	1	1	4	-8.0

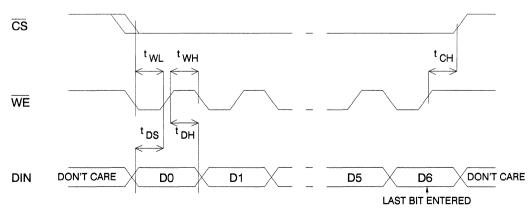
X = Don't Care

Sample Connection for Typical Application

Absolute Maximum Ratings*

	Temperature Under Bias55° C to 125° C
	Storage Temperature65° C to 150° C Voltage on Pins AGND and
-	DGND with Respect to VSS0.6 V to 6.25 V All Voltages with Respect
	to VSS0.6V to VDD + 0.6V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

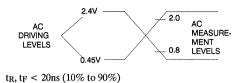

D.C. and A.C. Operating Range

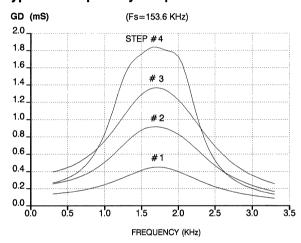
	Operating Temperature (Case)	VDD / VSS Power Supplies		
Commercial	0° C - 70° C	5V / -5V ± 10%		
Industrial	-40° C - 85° C	5V / -5V ± 10%		
Military	-55° C - 125° C	5V / -5V ± 5%		

Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
IDDO	VDD Quiescent Current (active mode)			3	6	mA
Isso	VSS Quiescent Current (active mode)			3	6	mA
IDDP	VDD Quiescent Current (power-down mode)			100	500	μΑ
ISSP	VSS Quiescent Current (power-down mode)			100	500	μΑ
RIA	Input Resistance at AIN		100			Kohm
RIE	Input Resistance at EOUT	F _S = 153.6 KHz	1			Mohm
Cı	Input Capacitance				20	рF
ROA	Ouput Resistance at AOUT				1	Kohm
ROE	Ouput Resistance at EOUT				200	ohm
Fo	Center Frequency			1700		Hz
DT	Group Delay Tolerance		-1.5		+ 1.5	%
GT	Gain Tolerance		-0.05		0.05	dB
Go	Insertion Loss		-0.15		0.15	dB
Vo	Output Voltage	RL=20 Kohm	VSS		VDD	Volts
VN	Output Noise	BW = F _S /2			200	μVrms
THD	Total Harmonic Distortion	RL = 20 Kohm V _O = 8Vpp		0.1	0.5	%
Fs	Sampling Frequency			153.6		KHz
VFT	Clock Feedthrough				5	mVpp

Configuration Code Write Waveform




Digital Timing Parameters

Symbol	Parameter	Min	Max	Units
twL	Write Enable Low	50		ns
twH	Write Enable High	50		ns
tcH	CS Hold Time	100		ns
tos	Data Setup Time	40		ns
t _{DH}	Data Hold Time	40		ns


Input Test Waveform

Typical Group Delay Response

Typical Group Delay Response

Ordering Information

Delay (ms)	Gain (dB)	Power Supply	Bandwidth (KHz)	Ordering Code	Package	Operation Range
1.8	31.5	±10%	4	AT76C10-PC AT76C10-SC	16P3 16S	Commercial (0°C to 70°C)
				AT76C10-PI AT76C10-SI	16P3 16S	Industrial (-40°C to 85°C)
1.8	31.5	±5%	4	AT76C10-DM	16D3	Military (-55°C to 125°C)

	Package Type						
16D3	16 Lead, 0.300" Wide Non-Windowed, Ceramic Dual Inline Package (Cerdip)						
16P3	16 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)						
16S	16 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)						

Features

- High Accuracy Programmable Gain Amplifiers
 - ± 0.02 dB Accuracy (Typical)
 - 31.5 dB Range in 0.5 dB Steps
- Software Programmable Group Delay Equalizer For Leased and Dial-Up Lines
- High Dynamic Range over 90 dB
- On-Chip Anti-Aliasing Filters
- On-Chip E²PROM Configuration Code Memory
- Microcomputer Interface with Serial Data Port
- Three Convenient Clock Options
 - 11.0592 MHz
 - 3.6864 MHz
 - 2.4576 MHz (or 2.56 MHz)
- Operates from +/- 5 V Supplies
- Low Power Standby Mode 100 μA (Typical)
- TTL and CMOS Compatible Digital Interface
- Economical 16-Lead Package
- Full Military, Commercial and Industrial Temperature Ranges

Description

The AT76C10E integrates two Programmable Gain Amplifiers and a Programmable Telephone Line Group Delay Equalizer on a monolithic substrate. It is fabricated in a state-of-the-art, low power CMOS process. The Gain and Group Delay steps are controlled by a 7-bit configuration code which can be programmed in real time and can also be stored permanently in on-chip E²PROMS. The AT76C10E is implemented in an advanced switched-capacitor technology and is designed to provide precise Gain and Group Delay compensation for low bit-error-rate data transmission over dial-up and leased lines. Antialias and clock filters are included on-chip as the AT76C10E employs sampled-data techniques, and external filters are not required for most applications.

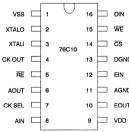
Pin Definitions

Pin Name

vss

15 WE

DIN


16

	'	***************************************	Nominal -5 Volts.
	2	XTALO	Crystal Oscillator Output.
n	3	XTALI	Crystal Oscillator Input.
DIN	4	CK OUT	Sampling Clock Output. (Open Drain)
WE	5	RE	Recall Enable Input.
CS			Loads Configuration into Control Registers from On-Chip E ² PROM.
DGND	6	AOUT	PG-B Analog Signal Output.
EIN AGND	7	CK SEL	Clock Select. Selects one of the 3 recommended Clock frequencies.
FOUT	8	AIN	PG-B Analog Signal Input.
VDD	9	VDD	Positive Power Supply. Nominal +5 Volts.
	10	EOUT	Delay Equalizer Analog Signal Output.
	11	AGND	Analog Ground.
	12	EIN	Delay Equalizer Analog Signal Input
	13	DGND	Digital Ground.
	14	cs	Chip Select Control Input.

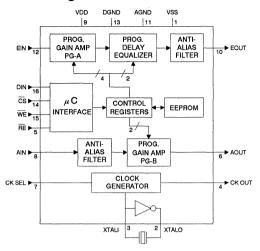
Function

Negative Power Supply.

Pin Configuration

Serial Data Input.

Write Enable Control Input.


CMOS E²PROM

Programmable Amplifier

Delay Equalizer

Block Diagram

Device Operation

The AT76C10E is designed for use in the signal paths of a modem or voice/data phone to minimize the bit-error-rate over dial-up and leased lines. Gain and Group Delay response of the AT76C10E are controlled by a serial 7-bit configuration code. D1 and D0 of the configuration code are the address bits which select one of the three control registers. Bits D2 to D5 set the gain and delay equalizer steps. D6 is an option bit which determines whether the configuration code will update one of the control registers only, or also be stored in on-chip non-volatile memory (E²PROM) of the AT76C10E. All the functions associated with the configuration code are summarized in Tables 1 to 4.

Configuration Code Format

D6	D5	D4	D3	D2	D1	D0
OPTION SELECT		CONTRO		ADDI	RESS	

This chip can be used as part of an adaptive equalizer for medium to high speed modems (1200 bps to greater than 19.2K bps). The configuration code is loaded into the chip at a serial data input port and updated in real time. It can also be stored permanently in on-chip E²PROMS and updated periodically. The high performance Atmel E²PROM process together with redundancy circuits allows over 10E6 write cycles. The amplitude response of the equalizer is nominally at 0 dB with negligible ripple. The AT76C10E can also be used as a fixed compromise delay equalizer.

PROGRAMMABLE GAIN AMPLIFIER: The AT76C10E provides two high dynamic range amplifiers for maximizing signal-to-noise ratio. Amplifier PG-A offers 16 programmable gain steps from 0 dB to 7.5 dB in 0.5 dB steps.

Amplifier PG-B provides -8 to 16 dB of gain in 8 dB steps. The two amplifiers can be cascaded to provide 31.5 dB range of programmable gain in 0.5 dB steps. The Programmable Amplifiers can be used as an Automatic Gain Control Circuit or as a fixed gain adjustment.

PROGRAMMABLE GROUP DELAY EQUALIZER: The Group Delay Equalizer is designed to provide programmable compromise group delay compensation to achieve low bit-error-rate data transmission. Four group delay responses are provided to accommodate the majority of conditioned as well as unconditioned lines. The first three responses are recommended for line types C2 and C1, while the fourth response can be used for 3002-type lines. Two or more AT76C10Es can be cascaded to obtain additional group delay compensation.

CONTROL REGISTERS: Four control registers are used to store the configuration codes for the gain steps of PG-A and PG-B, the delay steps of the Delay Equalizer, and the control bit for the power-down mode. All the control bits, except the power down-bit, can also be programmed into onchip non-volatile memories of the AT76C10E.

MICROCOMPUTER INTERFACE: Control inputs \overline{CS} , \overline{WE} , \overline{RE} and serial data input DIN allow the AT76C10E to be easily interfaced with most popular microcontrollers. All digital I/Os are TTL as well as CMOS compatible. For stand alone operation, \overline{CS} should be tied to VDD while \overline{WE} , \overline{RE} and DIN should be tied to ground.

WRITE OPERATION: To program a configuration code into a particular control register, the voltage at \overline{CS} has to be brought low while the data bits appearing at DIN are strobed in at the rising edge of \overline{WE} . At the rising edge of \overline{CS} , the last 7 input data bits are latched into the control registers. Therefore, if the first bit of an update byte is a "start bit," it will be ignored. If a "0" was inserted at D6 of the input code, the configuration code will also be immediately written into on-chip E²PROM of the AT76C10E. As all timing signals and programming voltages are generated internally, writing the E²PROM is transparent to the user. However, while the E²PROM is being programmed, which takes 1.5 mS, any further attempt to initiate programming will be ignored until the first operation is completed.

RECALL OPERATION: A RECALL operation can be initiated any time during operation by bringing both \overline{CS} and \overline{RE} low simultaneously. The configuration codes which have been pre-programmed in the E^2PROM of the AT76C10E are loaded into the control registers.

POWER-DOWN MODE: To minimize power consumption for battery powered applications and in certain linecard applications, the AT76C10E provides a low power standby mode of operation. In the power-down mode, the analog outputs go into a high impedance state. The power-down mode is initiated by writing a "0" into the power-down register. Once in the power-down mode, the AT76C10E can be reactivated by writing a "1" into the power-down register or performing a RECALL operation. It should be noted that upon powering up the AT76C10E for the first time, it automatically goes into the normal active mode of operation.

CRYSTAL OSCILLATOR: Internal timing of the chip is generated either by connecting a crystal across pins XTALI and XTALO of the on-chip oscillator, or by applying an external clock at pin XTALI. In the latter case, pin XTALO should be left unconnected. To accommodate different applications, three clock options: 2.4576 MHz, 3.6864 MHz and 11.0592 MHz, can be selected via control pin CK SEL. For

applications in a linecard environment, a 2.56 MHz clock can be used instead of the 2.4576 MHz clock. The 153.6 KHz (160 KHz with 2.56 MHz clock) sampling clock is available as an open drain output at CK OUT for synchronization or driving other circuits, e.g. the transmit or receive filters, or A/D and D/A converters.

Recommended **CK SEL XTAL Frequency CK OUT VDD** 11.0592 MHz 153.6 KHz **DGND** 3.6864 MHz 153.6 KHz VSS 2.4576 MHz 153.6 KHz VSS 2.56 MHz 160.0 KHz

Group Delay Characteristics (Microseconds)

Fs = 153.6 KHz

Frequency (Hz)	Step #1	Step #2	Step #3	Step #4
300	158	278	416	284
600	188	336	502	386
900	237	463	681	680
1200	325	671	985	1360
1500	431	890	1330	1791
1700	462	938	1382	1838
1900	435	897	1305	1810
2100	372	777	1144	1510
2400	266	542	808	683
2700	181	361	534	342
3000	136	250	368	213
3300	102	182	267	148

Table 1. Option Selection

Add	iress	Option Bit	
D1	D0	D6	Function
0	0	0	Writes Control Code into E ² PROM and updates
1	<u> </u>	0	Control Registers
0	0	1	Umalata a Osustual
0	1	1	Updates Control Registers Only
1	0	1	
1	1	0	Power Down Mode
1	1	1	Active Mode

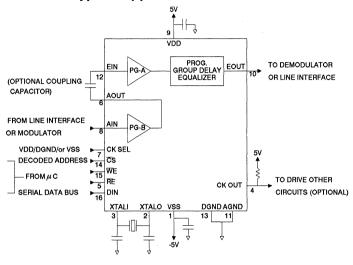
Table 2. Equalizer Selection

Add	Address		ontro	l Co	de	Equalizer Step	Recommened Line
D1	D0	D5	D4	D3	D2	No.	Condition
0	0	Χ	Χ	0	0	1	C2
0	0	Х	Х	0	1	2	C1
0	0	X	Χ	1	0	3	C1
0	0	Х	Χ	1	1	4	3002

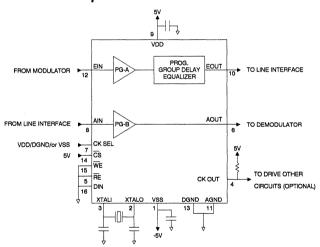
Table 3. Programmable Gain Amplifier, PG-A

Address		Co	ontro	I Co	de	PG-A	PG-A Gain
D1	D0	D5	D4	D3	D2	Step No.	(dB)
0	1	0	0	0	0	1	0.0
0	1	0	0	0	1	2	0.5
0	1	0	0	1	0	3	1.0
0	1	0	0	1	1	4	1.5
0	1	0	1	0	0	5	2.0
0	1	0	1	0	1	6	2.5
0	1	0	1	1	0	7	3.0
0	1	0	1	11	1	8	3.5
0	1	1	0	0	0	9	4.0
0	1	1	0	0	1	10	4.5
0	1	1	0	1	0	11	5.0
0	1	1	0	1	1	12	5.5
0	1	1	1	0	0	13	6.0
0	1	1	1	0	1	14	6.5
0	1	1	1	1	0	15	7.0
0	1	1	1	1	1	16	7.5

Table 4. Programmable Gain Amplifier, PG-B


Ada D1	ress D0	D5	D4	D3		PG-B Step No.	PG-B Gain (dB)
1	0	Х	Χ	0	0	1	0.0
1	0	Χ	Х	0	1	2	8.0
1	0	Х	Χ	1	0	3	16.0
1	0	Χ	Х	1	1	4	-8.0

X = Don't Care



Sample Connection for Typical Application

Stand Alone Operation Example

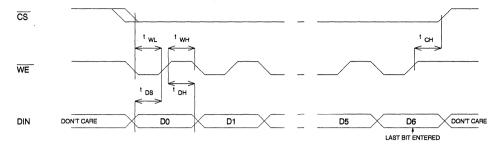
Absolute Maximum Ratings*

Temperature Under Bias	55° C to 125° C
Storage Temperature	65° C to 150° C
Voltage on Pins AGND and DGND with Respect to VSS	0.6 V to 6.25 V
All Voltages with Respect to VSS	0.6V to VDD + 0.6V

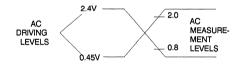
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. and A.C. Operating Range

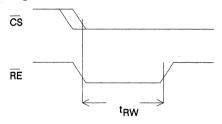
	Operating Temperature (Case)	VDD / VSS Power Supplies
Commercial	0° C - 70° C	5V / -5V ± 10%
Industrial	-40° C - 85° C	5V / -5V ± 10%
Military	-55° C - 125° C	5V / -5V ± 5%


Electrical Characteristics

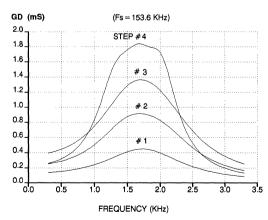
Symbol	Parameter	Conditions	Min	Тур	Max	Units
IDDO	VDD Quiescent Current (active mode)			3	6	mA
Isso	VSS Quiescent Current (active mode)			3	6	mA
IDDP	VDD Quiescent Current (power-down mode)			100	500	μΑ
ISSP	VSS Quiescent Current (power-down mode)			100	500	μΑ
RIA	Input Resistance at AIN		100			Kohm
RiE	Input Resistance at EOUT	F _S = 153.6 KHz	1			Mohm
Cı	Input Capacitance				20	рF
ROA	Ouput Resistance at AOUT				1	Kohm
ROE	Ouput Resistance at EOUT				200	ohm
Fo	Center Frequency			1700		Hz
DT	Group Delay Tolerance		-1.5		+ 1.5	%
GT	Gain Tolerance		-0.05		0.05	dB
Go	Insertion Loss		-0.15		0.15	dB
Vo	Output Voltage	RL=20 Kohm	VSS		VDD	Volts
VN	Output Noise	BW = F _S /2			200	μVrms
THD	Total Harmonic Distortion	RL=20 Kohm Vo=8Vpp		0.1	0.5	%
Fs	Sampling Frequency			153.6		KHz
VFT	Clock Feedthrough				5	mVpp


Configuration Code Write Waveform

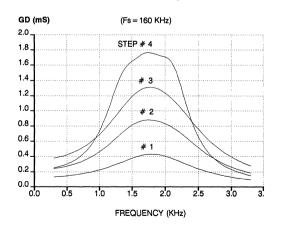
Digital Timing Parameters


Symbol	Parameter	Min	Max	Units
twL	Write Enable Low	50		ns
twH	Write Enable High	50		ns
tch	CS Hold Time	100		ns
tos	Data Setup Time	40		ns
ton	Data Hold Time	40		ns

Input Test Waveform



 t_{R} , $t_{F} < 20$ ns (10% to 90%)


Configuration Code Recall Waveform

Typical Group Delay Response

Typical Group Delay Response

AT76C10E

Ordering Information

Delay (ms)	Gain (dB)	Power Supply	Bandwidth (KHz)	Ordering Code	Package	Operation Range
1.8	31.5	±10%	4	AT76C10E-PC AT76C10E-SC	16P3 16S	Commercial (0°C to 70°C)
				AT76C10E-PI AT76C10E-SI	16P3 16S	Industrial (-40°C to 85°C)
1.8	31.5	±5%	4	AT76C10E-DM	16D3	Military (-55°C to 125°C)

Package Type				
16D3	16 Lead, 0.300" Wide Non-Windowed, Ceramic Dual Inline Package (Cerdip)			
16P3	16P3 16 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
16S	16S 16 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)			

9-18

9

Features

- Monolithic Dual-Channel 16/18-Bit A/D Converters On-Chip Sample/Hold Automatic Linearity Error Correction
- High Conversion Rates to 96K Samples Per Second at 18 Bits for Each Channel
- Operates from a Single 5V +/- 10% Supply
- High Signal-to-Noise Ratio: 90 dB
- Single Multiplexed Serial Data Output
- High Reliability CMOS Technology
- Full Military, Commercial and Industrial Temperature Ranges

Description

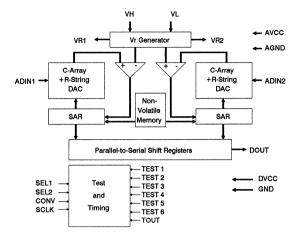
The AT76C120 provides two complete Analog-to-Digital (A/D) Converters integrated on a monolithic substrate. It is designed for Digital Audio and Signal Processing applications as well as Industrial Control and Datacommunication. The Sample/Hold function is incorporated in both A/D channels. Each channel can independently perform 96K 18-Bit conversions per second. The AT76C120 needs a minimum of external components and provides a simple and cost effective solution for applications requiring high resolution A/D conversion.

The AT76C120 is fabricated in a state-of-the-art, low power CMOS process and operates from a single 5V supply. A modified successive approximation algorithm is used to optimize conversion speed. Linearity errors caused by tap weight variations are automatically compensated by adding a correction factor to each A/D conversion result. The optimum correction factors are factory programmed into each individual chip. The digital output code is presented serially, in 2's complement format.

Pin Configuration

		in the second	. 78	954645
1		24	Ы	AGND
2		23	Ь	ADIN2
3	Mr.	22	b	VL 🦠
4	BK14	21	b,	VR2
5		20	Þ	TEST 5
6	76(12	19	Ь	AGND
7	70012	18	Þ	TEST 6
8		17	Þ	TEST 4
9		16	þ	TEST 2
10		15	þ	TEST 1
11		14	Þ	TOUT
12		13	þ	GND
	7 8 9 10	7 /00 12 8 9 10 11	3 22 4 21 5 20 6 76C120 19 7 18 8 17 9 16 10 15	3 22 4 21 2 5 5 20 1 6 76C120 19 1 6 7 18 1 7 9 16 1 10 15 11 14 1

Pin Name	Function
AGND, GND	Analog Ground, Ground
ADIN1	Analog Input for Channel-1
ADIN2	Analog Input for Channel-2
AVCC	+5V Analog Supply Input
DOUT	Digital Data Output
DVCC	+5V Digital Supply Input
CONV	Convert Clock Input
SCLK	System Clock Input
SEL1	DOUT Mode Select Input
SEL2	16/18-Bit Mode Select Input
TEST 1,2,3,4,5,6	Test Inputs
TOUT	Test I/O
V _H ,V _L	Reference Voltage Inputs
VR1,VR2	Channel-1,-2 Reference Voltage Outputs


CMOS Dual-Channel 16/18-Bit A/D Converters

Preliminary

Block Diagram

Device Operation

Each analog input to the AT76C120 is sampled and held simultaneously once every CONV clock period. As shown in the Block Diagram, the AT76C120 uses a combination of binary ratioed double-polysilicon Capacitor Arrays and Resistor String networks to generate the analog decision levels (or tap weights). The Capacitor Arrays also provide the internal Sample-and-Hold function. A high-gain auto-zeroed Comparator is used to compare an analog input with the decision levels. The Vr Generator supplies internal reference voltages equal to (VH - VL)/2 used by the comparators.

A/D conversion is accomplished through 18-bit Successive Approximation Registers (SAR's). An improved successive approximation scheme is used to optimize conversion speed. The A/D output codes are stored in Parallel-to-Serial Shift Registers and are available at a single multiplexed serial data output port.

System Clock input, SCLK, provides the internal timing reference and the Convert Clock, CONV, input initiates an A/D conversion. The Test and Timing circuits shown in the Block Diagram generate all the timing control signals from SCLK and CONV for sample-and-hold, A/D conversion and tap weight error correction during normal operation as well as tap weight error calibration at the factory.

A minimum of 64 SCLK clock cycles are required for one A/D conversion. The maximum SCLK clock frequency is 6.144 MHz. The minimum 18-bit conversion time for each channel is $10.4\,\mu_{\rm S}$, which corresponds to a maximum conversion rate of 96 KHz making 2X sampling in Digital Audio applications possible.

To minimize overall system cost while achieving high resolution, the AT76C120 compensates for linearity errors caused by tap weight variations by adding a correction factor to each A/D conversion result. This operation is done automatically without the intervention of the host processor. The optimum correction factors are factory programmed into on-chip nonvolatile storage.

The AT76C120 requires only a single 5V supply for operation.

System Implementation Considerations

POWER SUPPLY DECOUPLING AND GROUNDING: To obtain the highest performance possible with the AT76C120, critical signal paths, power supply lines and ground planes on the circuit board should be laid out carefully to minimize noise coupling or aliasing into sensitive analog paths. As illustrated in the diagram showing a Sample Connection for Typical Application, a separate AVCC line decoupled to AGND with an electrolytic capacitor in parallel with a smaller ceramic chip capacitor should be used for the analog circuits on the AT76C120. Similarly, a separate analog ground return, AGND, which is connected to the most quiet point in the system ground plane, should be used.

For best results, four layer PC boards with separate ground and power supply planes are recommended. The AGND plane should be laid out as an island or tub underneath pins 1 to 6 and pins 19 to 24.

High frequency noise on the power and ground lines can be aliased into the passband by the sampling action of the AT76C120. If a switching power supply has to be used, both AVCC and AGND need to be isolated from the system supplies with inductors of appropriate values.

ANALOG INTERFACE: Due to the high sampling rate of the AT76C120, little if any anti-alias filtering is required for most industrial applications. For high performance Digital Audio applications, external Anti-Alias Lowpass or Bandpass Filters, shown as AAFs' in the Sample Connection diagram, should be used to eliminate signals outside the desired passband. Low noise op amps with low output impedances should also be used to supply the analog inputs.

The A/D full-scale range is determined by the voltage applied across pins VH and VL, i.e. (VH - VL). VL is normally connected to the analog ground, AGND, while VH should be supplied by a stable voltage reference.

The internal reference voltage appearing at output pins VR1 and VR2 is nominally (VH - VL)/2. For low noise applications, VR1 and VR2 should be decoupled to AGND with high quality capacitors.

If the voltage of the input signal can swing below ground, it is necessary to apply an offset to the input to make the AC ground correspond to the mid point of the full scale range, (VH - VL)/2. Outputs VR1 and VR2 provide the AC ground reference as shown in the diagram for Sample Connection.

SYSTEM TIMING: Internal and output data timing of the AT76C120 are synchronized with the system clock, SCLK. To avoid possible synchronization and aliasing problems, deriving the convert clock, CONV, by dividing SCLK by 64 is recommended.

The AT76C120 samples both analog inputs, ADIN1 and ADIN2, once every CONV period. Both inputs are sampled simultaneously, i.e. in-phase. The AT76C120 then performs an A/D conversin on both samples and returns the two resulting 18-bit codes at the serial data output pin, DOUT, during the following CONV clock period.

The convert clock, CONV, is used inside the AT76C120 to initiate sample-and-hold and can also be used by the host processor to latch in the serial 16-bit or 18-bit wide output data.

DIGITAL INTERFACE: The AT76C120 uses a single multiplexed serial data output pin, DOUT. CH-1 and CH-2 data bits are synchronized with SCLK and are available during

either the "High" or the "Low" period of convert clock, CONV. A logic "1" at DOUT Mode Select, SEL1, results in the AT76C120 returning the A/D output of CH-1 during the CONV "Low" period, and CH-2 output during the CONV "High" period. A logic "0" at SEL1 results in CH-1 output during the CONV "High" period and CH-2 output during the CONV "Low" period.

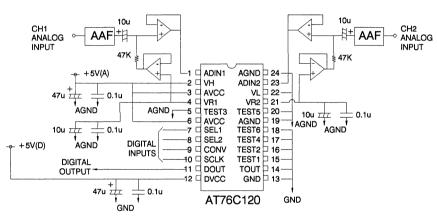
The convert clock, CONV, if equal to SCLK divided by 64, makes a transition from "High" to "Low" or vice versa after the LSB is shifted out of DOUT. This allows the serial data to be easily latched into most popular D/A converters or digital signal processors by using CONV rising or falling edges. To further enhance digital interface compatibility, DOUT Mode Select Input, SEL1, allows the user to choose either CONV transitions for both channels.

The AT76C120 allows the user to choose either 16-bit wide or 18- bit wide A/D outputs in 2's complement format. A logic "1" at 16/18 Mode Select Input, SEL2, returns two 18-bit codes at DOUT, while a logic "0" results in 16-bit output codes at CONV rising or falling edges as shown in Input/Output Timing diagram.

In Digital Audio and many signal processing applications, the A/D outputs are further processed by a digital filter. The 18-bit output mode provides better dynamic range and resolution than 16- bit outputs. However, for applications with a 8-bit or 16-bit host microprocessor, 16-bit wide data are more convenient to manage.

Pin Definitions

	Symbol	Functional Descriptions		
Analog Interface	ADIN1 ADIN2	Analog Inputs for Channel-1 (CH-1) and Channel-2 (CH-2). The Sample/Hold function is provided on-chip for both channels. The analog inputs at ADIN1 and ADIN2 are sampled inphase. Each A/D conversion takes at least 64 SCLK periods.		
	V _L V _H	Reference Voltage Inputs. V_L and V_H are normally tied to Analog Ground and the desired ful scale voltage respectively. The full scale range is given by (V_H-V_L) . The maximum full-scale voltage can be as high as AVCC.		
	VR1 VR2	Reference Voltage Outputs for CH-1 and CH-2. The nominal value at these pins is (V _H -V _L)/2. For low noise applications, VR1 and VR2 should be bypassed to AGND with capacitors.		
Digital Interface	CONV	Convert Clock Input. CONV is normally obtained by dividing the system clock SCLK by 64. The internal Sample/Hold pulse and A/D data output are synchronized with CONV.		
	DOUT	Serial Digital Output. DOUT returns two 18-bit serial outputs for CH-1 and CH-2 in 2's complement format. The output data bits are synchronized with SCLK. Please refer to DOUT Timing Diagram for detailed timing relationship with CONV and SCLK.		
	SCLK	System Clock Input. The maximum frequency for 18-bit operation is 6.144 MHz. This corresponds to a minimum conversion time of 10.4 μ s.		
	SEL1	DOUT Mode Select Input. i) SEL1 = "1", CH-1 data output during CONV "Low" CH-2 data output during CONV "High" CH-2 data output during CONV "Low"		
	SEL2	16/18-Bit Mode Select. i) SEL2 = "1" selects 18-bit A/D mode, ii) SEL2 = "0" selects 16-bit A/D mode.		



Pin Definitions (cont'd)

	Symbol	Functional Descriptions
		Test Inputs. Normally tied to Ground for TEST 1, 2, 4, 6 and to AGND for TEST 3, 5. These inputs are used for testing and calibration at the factory and are not required for normal A/D operations.
	Tout	Test I/O. Normally tied to Ground. Like the Test Input pins, this pin is not used for normal A/D operations.
Power Supply AVCC Analog Power Input. Nominal 5 Volts. AVCC should be connected to ly and kept separate from the Digital Supply.		Analog Power Input. Nominal 5 Volts. AVCC should be connected to a filtered system supply and kept separate from the Digital Supply.
DVCC Digital Power Input. Nominal 5 Volts.		Digital Power Input. Nominal 5 Volts.
	AGND	Analog Ground. AGND should be kept separate from the digital Ground.
	GND	Digital Ground.

Sample Connection for Typical Application

Notes: AVCC, AGND, +5V (A)— analog supply DVCC, GND, +5V (D)— digital supply

Absolute Maximum Ratings*

	Temperature Under Bias55°C to 125°C
	Storage Temperature65°C to 150°C
	Voltage on Any Pin with Respect to AGND and GND2.0V to 7.0V ⁽¹⁾
	Power Dissipation1W
	Reference Current10mA
	Analog Input Current10mA
-	DC Digital Output Compant
	DC Digital Output Current25mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

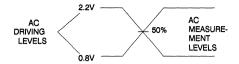
 Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is AVCC/DVCC+0.75V DC which may overshoot to 7.0V for pulses of less than 20ns.

D.C. and A.C. Operating Range

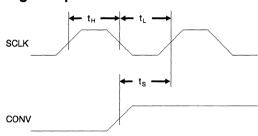
		AT76C120-1	AT76C120-2	AVCC/DVCC Power Supplies
Operating Temperature Range(Case)	Com.	0° C - 70° C	0° C - 70° C	5V +/- 10%
	Ind.	-40° C - 85° C	-40° C - 85° C	5V +/- 10%
·	Mil.	-55° C -125° C	-55° C -125° C	5V +/- 5%

D.C. Characteristics

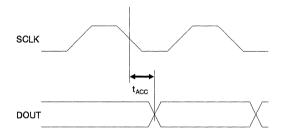
Symbol	Parameter	Conditions	Min	Max	Units
ILI	Digital Input Load Current	$V_{IN} = -0.1V$ to DVCC $+0.1V$		10	μΑ
ILO	Digital Output Leakage Current	$V_{OUT} = -0.1V$ to DVCC $+ 0.1V$		10	μΑ
ICCD	Digital Supply Current			40	mA
ICCA	Analog Supply Current			10	mA
IREF	Reference Input Current			5	mA
VIL	Digital Input Low Voltage		-0.5	0.8	٧
ViH	Digital Input High Voltage		2.2	DVCC+0.5	٧
Vol	Digital Output Low Voltage	IO=5mA		0.4	٧
Vон	Digital Output High Voltage	IO = -5mA	2.4		٧
VAIN	Analog Input Voltage		VL	V _H	٧
VH	Analog Input Voltage at V _H Pin		AVCC-0.5	AVCC	٧
VL	Analog Input Voltage at V _L Pin		0.0	0.5	٧


Analog Characteristics (AVCC = DVCC = 5V, Ta = 25° C)

			AT76C120-1			AT76C120-2				
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Units	
RES	A/D Resolution		18			18			Bits	
DLE	Differential Linearity Error	@ 18 Bits			± 1			± 1	LSB	
ILE	Integral Linearity Error	@ 15 Bits			±1				LSB	
		@ 13 Bits						± 1	LSB	
Fs	A/D Sampling Frequency	18-Bit Mode			96			96	KHz	
FSE	Full Scale Error			± 1.5			± 1.5		% FSR	
		0dB, 1KHz Input		0.01			0.03		%	
THD+N	Total Harmonic Distortion Plus Noise	-20dB, 1KHz Input		0.02			0.06		%	
		-60dB, 1KHz Input		2			5		%	
S/N	Signal-to-Noise Ratio			[^] 90			84		dB	

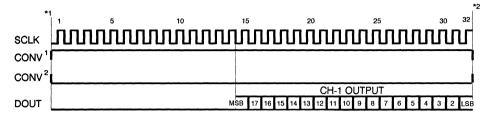


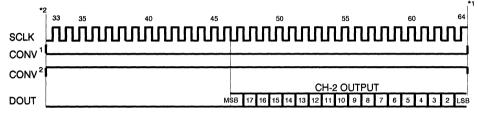
Input Test Waveforms



Notes: 1. tR, tF < 30 ns (10% to 90%) 2. Input timing reference is at 1.5V

Digital Input Waveforms

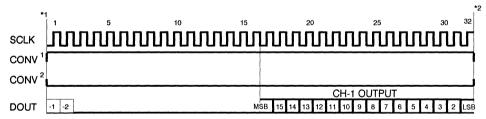

Digital Output Timing Waveforms

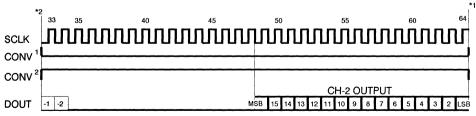


Digital Timing Characteristics

Symbol	Parameter	Conditions	Min	Max	Units
tR	Input Rise Time		,	30	ns
tF	Input Fall Time			30	ns
tH	SCLK High Width		50		ns
tL	SCLK Low Width		50		ns
ts	CONV Setup Time		40		ns
tacc	DOUT Access Time	C _{LOAD} = 30pF		50	ns
TCONV	CONV Period		10.4		μs
TSCLK	SCLK Period		162		ns

Input/Output Timing for 18-Bit Mode (SEL2="1")





i) SEL1 = "0", CONV ¹
ii) SEL1 = "1", CONV ²

Notes: CONV = Fs (96KHz Max) SCLK = CONV x 64

Input/Output Timing for 16-Bit Mode (SEL2="0")

i) SEL1 = "0", CONV 1 ii) SEL1 = "1", CONV 2

Notes: CONV = Fs (96KHz Max) SCLK = CONV x 64

Ordering Information

Speed (KHz)	Signal-to- Noise (dB)	Power Supply	Ordering Code	Package	Operation Range
96	90	±10%	AT76C120-1PC	24P6	Commercial (0°C to 70°C)
			AT76C120-1PI	24P6	Industrial (-40°C to 85°C)
96	90	±5%	AT76C120-1DM	24D6	Military (-55°C to 125°C)
96	84	±10%	AT76C120-2PC	24P6	Commercial (0°C to 70°C)
			AT76C120-2PI	24P6	Industrial (-40°C to 85°C)
96	84	±5%	AT76C120-2DM	24D6	Military (-55°C to 125°C)

Package Type						
24D6	24D6 24 Lead, 0.600" Wide, Non-Windowed (OTP), Ceramic Dual Inline Package (Cerdip)					
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package OTP (PDIP)					

9

Features

- Personal System/2* and VGA* Compatible
- Pixel Rates to 50 MHz
- Triple 6-Bit DACs Display 256K Possible Colors
- Pixel Word Mask and Composite Blank on All Three Channels
- 18-Bit Wide Color Palette Stores 256 Colors
- RGB Video Outputs Drive 37.5 Ohm Loads Directly
- . Low Power, Low Glitch Operation
- Single +5 V Supply
- Available in Standard 28 Pin DIP and 32 Pin Plastic LCC
- . Full Military, Commercial and Industrial Temperature Ranges

Description

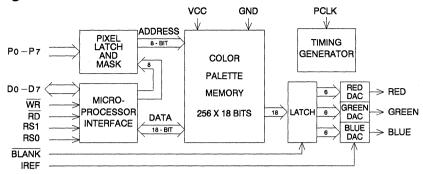
The AT76C171 is a second generation color palette DAC (Digital-to-Analog Converter) which provides direct drives for RGB color displays. The AT76C171 integrates three high performance 6-bit video DACs, an advanced 256 x 18 Color Palette (Color Look-up Table) and a versatile microprocessor interface on a monolithic substrate.

The AT76C171 supports the RS170 video standard and graphics controllers compatible with the VGA standard. This device allows 256 colors to be displayed out of a total of 262,144 colors. The AT76C171 provides composite blank outputs on all three channels. Additional advanced features include on-chip pixel mask logic which allows displayed colors to be modified in a single write cycle rather than by altering the contents of the color palette.

Pin Configurations

Pin Name	Function
RED GREEN BLUE	Analog Video Outputs for R,G,B Guns
IREF	Reference Current Input
P0-P7	Pixel Address Inputs
PCLK	Pixel Clock Input
GND	Ground
RD	Read Enable Input
BLANK	Video Blanking Input
D0-D7	Program Data I/O
WR	Write Enable Input
RS0,RS1	Register Select Inputs
vcc	+5 Volts Supply Input
VAA	+5 Volts Analog Supply Input
N/C	No Connect

,		
RED	AT76C171	28
L	6	
B L U E IREF 5 P0 6	G R E R N V R E E / A S N D C A 1	29 WR 28 D7
P1 □7 P2 □8		27 D6 26 D5
Р3 □9	AT76C171	25 D4
P4 10 P5 11		24 D3 23 D2
P6 🗆 12		22 🗆 D1
P7 13	15 16 17 18 19	21 D0 20
P	G G V N R N N C / D	Ē
L K	N N C / D	L A N


^{*} Personal System/2 and VGA are registered trademarks of IBM Corporation.

CMOS Triple Video DAC Color Palette

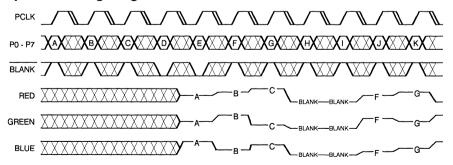
Block Diagram

Pin Definitions

	Symbol	Functional Descriptions
Video Interface	RED GREEN BLUE	Analog Video Outputs. These are the outputs of the triple video DACs. The 18-bit wide color palette output and the BLANK input drive the DAC inputs.
	IREF	Reference Current Input. The Reference Current sets the full scale current sourced by each DAC.
	P0-P7	Pixel Address Inputs. The 8-bit Pixel Address is logically AND'ed with the Pixel Mask value before it is used to select a stored 18-bit color value from the palette.
	PCLK	Pixel (or Dot) Clock Input. The rising edge of PCLK samples the Pixel Address and BLANK inputs. PCLK is the system clock for the palette DAC pipeline.
	BLANK	Blanking Input. A logic "0" at BLANK input overrides the current color value and forces the Analog Video Outputs to the zero (or Blank) level. The Color Palette can be updated while Blanking is active.
Power Supply	GND	Ground. GND should be connected to a solid ground plane in the system.
	vcc	Digital Supply. Nominal 5 Volts. VCC should be bypassed to GND with a high-frequency capacitor.
	VAA	Analog Supply. Nominal 5 Volts. VAA should be connected to a filtered system supply.
Microprocessor	RD	Read Enable Input. RD controls the timing of microprocesssor Read operations.
Interface	WR	Write Enable Input. WR controls the timing of microprocessor Write operations. RD and WR should not be active (low) at the same time.
	D0-D7	Program Data I/O Ports (Bidirectional). The rising edge of $\overline{\text{WR}}$ latches Program Data at D7-D0 into the selected internal register. The falling edge of $\overline{\text{RD}}$ enables D7-D0 as outputs and the rising edge of $\overline{\text{RD}}$ returns D7-D0 to a high impedance state.
	RS0, RS1	Register Select Inputs. Control the selection of internal registers. (See description on Internal Registers.) The falling edge of RD or WR latches in the value at RS1, RSO.

Internal Registers

RS1	RS0	Bits	Register Name	Functional Description
0	0	8	Pixel Address (Write Mode)	The Pixel Address Register is accessed via Register Address (0,0) or (1,1). Reading the Pixel Address value from (0,0) is the same as reading
1	1	8	Pixel Address (Read Mode)	from (1,1). A pixel address value is normally written to Pixel Address Register at (0,0) before one or more color values are written to the Color Palette. A pixel address value is normally written to Pixel Address Register at (1,1) before one or more color values are read from the Color Palette.
0	1	18	Color Value	The Color Value Register acts as a buffer between the 18-bit wide Color Palette and the 8-bit microprocessor interface. Each READ and WRITE at (0,1) consists of three byte transfers in the order of RED first, Green second and BLUE last. Only the LSBs D5-D0 of each byte are used, the two MSBs are set to "0" when a color value is read. The Pixel Address Register automatically increments after each 18-bit color value Read or Write operation. Each color value READ or WRITE operation overrides the pixel stream for one PCLK period.
1	0	8	Pixel Mask	The Pixel Mask value is bitwise AND'ed with the Pixel Address value at P7-P0. A "1" in a position of the Pixel Mask will not change the corresponding bit in the Pixel Address, while a "0" sets that bit to "0". Pixel Address supplied via the microprocessor interface is not affected by the Pixel Mask.


Device Operation

COLOR PALETTE: The AT76C171 provides an 18-bit wide by 256 word deep color palette static RAM array for storing the desired color intensity values. Each word is divided into three fields for the RED, GREEN and BLUE video DACs respectively. The 8-bit wide Pixel Address is decoded and used to select a particular location in the RAM array. The color value retrieved from that location is then

used as inputs to the three video DACs which convert the digital color code into analog color intensity values.

The AT76C171 achieves low power, high speed operation by using an advanced pipelined palette DAC architecture. Delay from Pixel Address to color intensity value out is 3 PCLK periods.

Video Pipeline Timing Diagram

MPU INTERFACE: The AT76C171 provides a standard microprocessor interface which allows the host display controller to access the Color Palette RAM and all internal registers of the AT76C171. MPU READ and WRITE operations are internally synchronized with the video pipeline and therefore can take place asynchronously from the normal pixel mapping operation. An on-chip address counter allows the MPU to READ or WRITE the Color Palette in a Block Mode.

COLOR PALETTE READ AND WRITE: Four MPU operations are required to write (i.e. store a Color Value) to a specific location in the Color Palette RAM. The desired RAM address is first written into the internal Pixel Address register by executing a WRITE operation at register address (0,0). A new Color Value is next written into the internal Color Value register at register address (0,1) by three consecutive WRITE operations, with the RED color first, GREEN second and BLUE last. Only LSBs D5-D0 of each byte transferred are used. The new Color Value is then automatically written into the designated address in the Color Palette RAM.

Similarly, four MPU operations are required to read a Color Value from a specific location in the Color Palette RAM. The RAM address is written into the internal Pixel Address register by executing a WRITE operation at register address (1,1). The Color Value stored in that particular RAM location is automatically transferred to the internal Color Value Register. Three consecutive READ operations are then required to read the retrieved Color Value in three bytes, with the RED color first, GREEN second and BLUE last. Only the last 6 LSBs D5-D0 contain valid data, the two MSBs are set to "0".

BLOCK READ AND WRITE MODE: The on-chip Pixel Address Register automatically increments by one after each complete Color Value READ or WRITE operation. This useful feature allows an entire block of the Color Palette RAM to be accessed by simply writing the starting address into the Pixel Address register at the appropriate register address. Subsequent READ or WRITE operations require only 3-byte transfers at D7-D0.

TRIPLE VIDEO DAC: Each of the three video DACs on the AT76C171 consists of an array of current sources tied to a common output. The current sources use an advanced current steering scheme to minimize glitch energy. The number of current sources in each DAC steered to the output during any PCLK period equals the value represented by the Color Value selected from the Color Palette. The rest of the current sources are steered to ground.

The input Reference Current (IREF) determines the current in each current source. Each DAC is designed to produce a 0.7 Volt peak white level when driving a doubly terminated 75 ohm load with IREF = -8.88 mA. The relationship between the peak white level and IREF is given by the equation:

V_{Peak} white = 2.1 x IREF x R_{Load}

BLANKING: The AT76C171 supports composite blanking at all three RED, GREEN and BLUE video outputs. The BLANK input is latched on the rising edge of PCLK and affects the analog video outputs after 3 PCLK periods. An internal pipelined delay circuit is used to synchronize the BLANK input with the normal pixel pipeline. A logic "0" at BLANK input overrides the current color value and forces the analog video outputs to the zero (or Blank) level. The BLANK circuit has no effect on the MPU interface and the Color Palette remains accessible via READ and WRITE.

PIXEL MASK: The AT76C171 features an advanced onchip Pixel Mask which is very useful for cursor control, flashing objects, and animation. The Pixel Mask value stored in internal register (1,0) is bitwise AND'ed with the input Pixel Address value at P7-P0 to form the actual RAM address for the Color Palette. A "1" in a position of the Pixel Mask will not change the corresponding bit in the Pixel Address, while a "0" sets that bit to "0". Pixel Addresses supplied via the MPU interface are not affected by the Pixel Mask. Note that when loading the Pixel Mask, WR must be synchronized with PCLK as shown in "AC Waveforms for Pixel Mask Synchronization."

Absolute Maximum Ratings*

Temperature Under Bias55	°C to 125°C
Storage Temperature65°	°C to 150°C
Voltage on Any Pin with Respect to Ground2.0	V to 7.0V ⁽¹⁾
Power Dissipation	1W
Reference Current	15mA
Analog Output Current	45mA
DC Digital Output Current	25mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

 Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is VCC+0.75V DC which may overshoot to 7.0V for pulses of less than 20ns.

D.C. and A.C. Operating Range

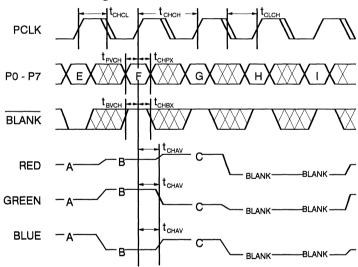
		AT76C171-50	AT76C171-35	VCC/VAA Power Supplies
	Com.	0° C - 70° C	0° C - 70° C	5V +/- 10%
Operating Temperature Range(Case)	Ind.	-40° C - 85° C	-40° C - 85° C	5V +/- 10%
	Mil.		-55° C -125° C	5V +/- 5%

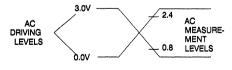
D.C. Characteristics

Symbol	Parameter	Conditions	All Min	35MHz Max	50MHz Max	Units
1Li	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 0.1V$		10	10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V \text{ to } V_{CC} + 0.1V$		10	10	μuA
Icc	Power Supply Current	IO=21mA Digital Outputs Open		140	150	mA
IREF	Reference Current		-7	-10	-10	mA
VIL	Input Low Voltage		-0.5	0.8	0.8	V
ViH	Input High Voltage		2.0	V _{CC} +0.5	V _{CC} +0.5	V
VoL	Output Low Voltage	IO=5mA		0.4	0.4	V
Vон	Output High Voltage	IO = -5mA	2.4			٧
V _{REF}	Voltage at IREF Input		V _{CC} -3	Vcc	Vcc	V

Video DAC Characteristics

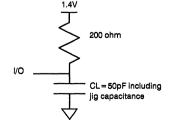
Symbol	Parameter	Conditions	All Min	All Typ	35MHz Max	50MHz Max	Units
RES	Resolution			6			Bits
ILE	Integral Linearity Error	Note A			± 0.5	±0.5	LSB
COR	DAC to DAC Correlation	Note B			±2	±2	%
FSE	Full Scale Error	Note C			±5	±5	%
DVT	Glitch Energy	Notes D, E		75			pVsec
10	Output Current	VO < 1V		18.6	21	21	mA
VO	Output Voltage	IO<21mA		0.7	1.5	1.5	V
tor	Rise Time (10% to 90%)	Notes D, E			8	8	ns
tor	Full Scale Settling Time	Notes D, E, F			28	20	ns




Video Timing Characteristics

			All	051411-	FORMU-	***************************************
Symbol	Parameter	Conditions	All Max	35MHz Min	50MHz Min	Units
tснсн	PCLK Period (τ)		10000	28	20	ns
∆tснсн	PCLK Jitter	tchch= τ	± 2.5			%
tclch	PCLK Low Width		10000	9	6	ns
tCHCL	PCLK High Width		10000	9	6	ns
tpvch	Pixel Word Setup Time			5	4	ns
tCHPX	Pixel Word Hold Time			5	4	ns
tBVCH	BLANK Setup Time			5	4	ns
tchbx	BLANK Hold Time			5	4	ns
tCHAV	PCLK to DAC Output Valid	Note G	30	5	5	ns
Δtchav	Differential Output Delay	Note H	2			ns
tcc	Pixel Clock Transition Time		50			ns

Video Timing Waveforms Diagram



Input Test Waveforms

Notes: 1. t_R , $t_F < 3$ ns (10% to 90%). 2. Input timing reference is at 1.5V.

Digital Input/Output Load

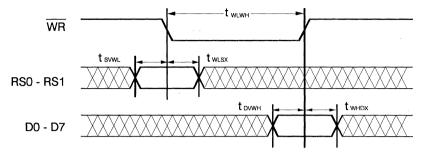
AT76C171

MPU Interface Timing Characteristics

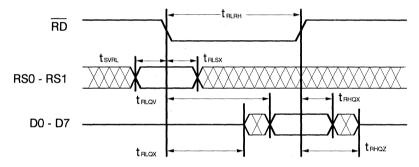
Symbol	Parameter	Conditions	All Max	35MHz Min	50MHz Min	Units
twLwH	WR Pulse Width Low			50	50	ns
trlrh	RD Pulse Width Low			50	50	ns
tsvwl	Register Select Setup Time	WRITE Operations		15	10	ns
tsvrl	Register Select Setup Time	READ Operations		15	10	ns
twlsx	Register Select Hold Time	WRITE Operations		15	10	ns
trlsx	Register Select Hold Time	READ Operations		15	10	ns
tovwh	Write Data Setup Time			15	10	ns
twhox	Write Data Hold Time			15	10	ns
trlox	Output Turn-on Delay			5	5	ns
trlqv	Read Enable Access Time		40			ns
tRHQX	Output Hold Time			5	5	ns
trhqz	Output Turn-off Delay	Note I	20			ns
twHWL1	Successive Write Interval	$\tau = PCLK Period$		3τ	3 τ	ns
twhRL1	Write Followed by Read Interval	τ = PCLK Period		3 τ	3τ	ns
tRHRL1	Successive Read Interval	τ = PCLK Period		3τ	3τ	ns
tRHWL1	Read Followed by Write Interval	τ = PCLK Period		3τ	3τ	ns
twhwL2	Write After Color Write	τ = PCLK Period		3τ	3τ	ns
twhrl2	Read After Color Write	τ = PCLK Period		3τ	3τ	ns
tRHRL2	Read After Color Read	τ = PCLK Period		6τ	6τ	ns
tRHWL2	Write After Color Read	τ = PCLK Period		6τ	6τ	ns
twhrls	Read After Read Address Write	τ = PCLK Period		6τ	6τ	ns
twren	Read/Write Enable Transition Time		50			ns

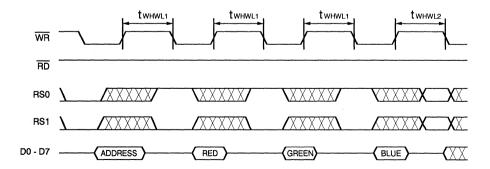
Pixel Mask Synchronization Timing

Symbol	Parameter	Conditions	All Max	35MHz Min	50MHz Min	Units
twlch	WR Illegal Transition Window	Notes J, K	12	1	1	ns
tovwl	Data Setup Time	Note K		15	15	ns

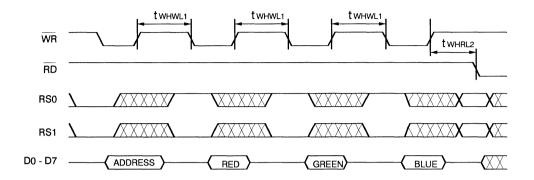

Notes

MOIG2			
Note A:	Measured from best fit line through DAC transfer curve.	Note G:	Measured between the 50% point of the rising
Note B:	Measured from the mid point of the distribution of the		edge of PCLK and at the analog output half way be-
	three DAC transfer curves.		tween successive output values.
Note C:	$FSE = \left\lceil \frac{VO - 2.1 \times IREF \times R_{Load}}{2.1 \times IREF \times R_{Load}} \right\rceil \times 100\%$	Note H:	Measured between different analog outputs on the same device.
Note D:	$Z_{Load} = 37.5$ ohm + 30pF, IREF = -8.88mA	Note I:	Measured at ±200mV from steady state output values.
Note E:	This parameter is sampled and not 100% tested.	Note J:	WR should be active (i.e. low) within this timing window.
Note F:	Measured from a 2% change in the DAC output	Note K:	This parameter is required to synchronize the Pixel
	voltage to within 2% of the final value.		Mask Register to the pixel stream.

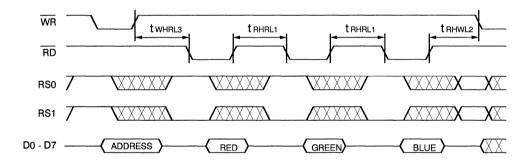



Write Operations Waveforms

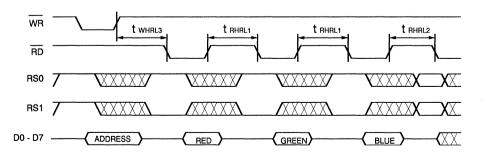
Read Operations Waveforms



A.C. Waveforms for Color Value Write Followed by Any Write

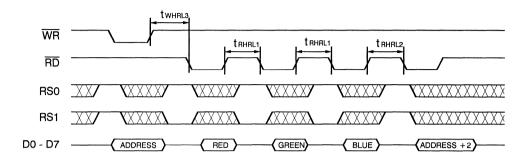


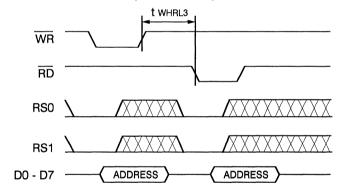
AT76C171


A.C. Waveforms for Color Value Write Followed by Any Read

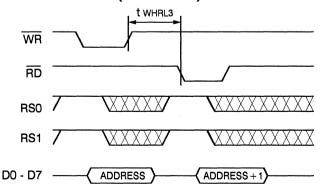
A.C. Waveforms for Color Value Read Followed by Any Write

A.C. Waveforms for Color Value Read Followed by Any Read

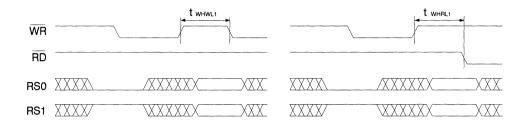




A.C. Waveforms for Color Value Read


Followed by Pixel Address (Read Mode) Read

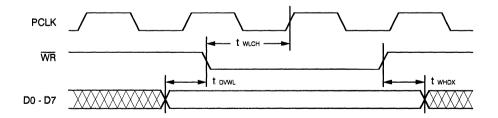
A.C. Waveforms for Pixel Address (Write Mode) Write and Read Back


A.C. Waveforms for Pixel Address (Read Mode) Write and Read Back

AT76C171

9

A.C Waveforms for Pixel Mask Write Followed by Any Write or Read



A.C. Waveforms for Pixel Mask or Pixel Address Read

Followed by Any Read or Write

A.C. Waveforms for Pixel Mask Synchronization

Ordering Information

Speed (MH _z)	Power Supply	Ordering Code	Package	Operation Range
35 ±10%		AT76C171-35PC AT76C171-35JC	28P6 32J	Commercial (0°C to 70°C)
		AT76C171-35PI AT76C171-35JI	28P6 32J	Industrial (-40°C to 85°C)
35	±5%	AT76C171-35DM	28D6	Military (-55°C to 125°C)
50	±10%	AT76C171-50PC AT76C171-50JC	28P6 32J	Commercial (0°C to 70°C)
		AT76C171-50PI AT76C171-50JI	28P6 32J	Industrial (-40°C to 85°C)

Package Type				
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)			
32J	32J 32 Lead, Plastic J-Leaded Chip Carrier, OTP (PLCC)			
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package, OTP (PDIP)			

9

Features

- Personal System/2* and VGA* Compatible
- · Pixel Rates to 66 MHz
- Triple 6-Bit DACs Display 256K Possible Colors
- Pixel Word Mask and Composite Blank on All Three Channels
- 18-Bit Wide Color Palette Stores 256 Colors
- RGB Video Outputs Drive 37.5 Ohm Loads Directly
- . Low Power, Low Glitch Operation
- Asynchronous MPU Read/Write to All Internal Registers
- Single +5 V Supply
- Available in Standard 28 Pin DIP and 32 Pin Plastic LCC
- Full Military, Commercial and Industrial Temperature Ranges

Description

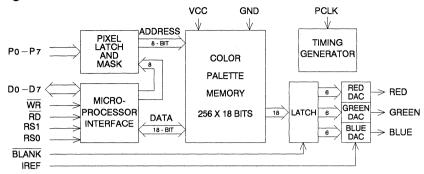
The AT76C176 is a second generation color palette DAC which provides direct drives for RGB color displays. The AT76C176 integrates three high performance 6-bit video DACs (Digital-to-Analog Converters), an advanced 256 x 18 Color Palette (Color Look-up Table) and a versatile microprocessor interface on a monolithic substrate.

The AT76C176 supports the RS170 video standard and graphics controllers compatible with the VGA standard. This device allows 256 colors to be displayed out of a total of 262,144 colors. The AT76C176 provides composite blank outputs on all three channels. Additional advanced features include on-chip pixel mask logic which allows displayed colors to be modified in a single write cycle rather than by altering the contents of the color palette.

Pin Configurations

Pin Name	Function
RED GREEN BLUE	Analog Video Outputs for R,G,B Guns
IREF	Reference Current Input
P0-P7	Pixel Address Inputs
PCLK	Pixel Clock Input
GND	Ground
RD	Read Enable Input
BLANK	Video Blanking Input
D0-D7	Program Data I/O
WR	Write Enable Input
RS0,RS1	Register Select Inputs
VCC	+5 Volts Supply Input
VAA	+5 Volts Analog Supply Input
N/C	No Connect

RED	AT76C176	28 VCC 27 RS1 26 RS0 25 WR 24 D7 23 D6 22 D5 21 D4 20 D3 16 D1 17 D0 16 BLANK
	•	
REF 5 4 REF 5 6 7 7 9 9 9 9 4 1 11 9 9 9 1 1 1 9 9 9 1 1 1 1	AT76C176	R S O O O O O O O O O O O O O O O O O O


^{*} Personal System/2 and VGA are registered trademarks of IBM Corporation.

CMOS Triple Video DAC Color Palette

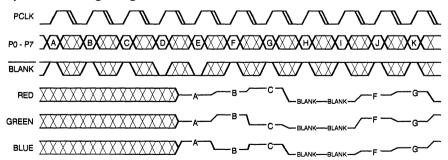
Block Diagram

Pin Definitions

	Symbol	Functional Descriptions
Video Interface	RED GREEN BLUE	Analog Video Outputs. These are the outputs of the triple video DACs. The 18-bit wide color palette output and the BLANK input drive the DAC inputs.
	IREF	Reference Current Input. The Reference Current sets the full scale current sourced by each DAC.
	P0-P7	Pixel Address Inputs. The 8-bit Pixel Address is logically AND'ed with the Pixel Mask value before it is used to select a stored 18-bit color value from the palette.
	PCLK	Pixel (or Dot) Clock Input. The rising edge of PCLK samples the Pixel Address and BLANK inputs. PCLK is the system clock for the palette DAC pipeline.
BLANK		Blanking Input. A logic "0" at BLANK input overrides the current color value and forces the Analog Video Outputs to the zero (or Blank) level. The Color Palette can be updated while Blanking is active.
Power Supply	GND	Ground. GND should be connected to a solid ground plane in the system.
	vcc	Digital Supply. Nominal 5 Volts. VCC should be bypassed to GND with a high-frequency capacitor.
	VAA	Analog Supply. Nominal 5 Volts. VAA should be connected to a filtered system supply.
Microprocessor	RD	Read Enable Input. RD controls the timing of microprocesssor Read operations.
Interface	WR	Write Enable Input. $\overline{\text{WR}}$ controls the timing of microprocessor Write operations. $\overline{\text{RD}}$ and $\overline{\text{WR}}$ should not be active (low) at the same time.
	D0-D7	Program Data I/O Ports (Bidirectional). The rising edge of \overline{WR} latches Program Data at D7-D0 into the selected internal register. The falling edge of \overline{RD} enables D7-D0 as outputs and the rising edge of \overline{RD} returns D7-D0 to a high impedance state.
	RS0, RS1	Register Select Inputs. Control the selection of Internal registers. (See description on Internal Registers.) The falling edge of RD or WR latches in the value at RS1, RSO.

Internal Registers

RS1	RS0	Bits	Register Name	Functional Description
0	0	8	Pixel Address (Write Mode)	The Pixel Address Register is accessed via Register Address (0,0) or (1,1). Reading the Pixel Address value from (0,0) is the same as reading
1	1	8	Pixel Address (Read Mode)	from (1,1). A pixel address value is normally written to Pixel Address Register at (0,0) before one or more color values are written to the Color Palette. A pixel address value is normally written to Pixel Address Register at (1,1) before one or more color values are read from the Color Palette.
0	1	18	Color Value	The Color Value Register acts as a buffer between the 18-bit wide Color Palette and the 8-bit microprocessor interface. Each READ and WRITE at (0,1) consists of three byte transfers in the order of RED first, Green second and BLUE last. Only the LSBs D5-D0 of each byte are used, the two MSBs are set to "0" when a color value is read. The Pixel Address Register automatically increments after each 18-bit color value Read or Write operation. Each color value READ or WRITE operation overrides the pixel stream for one PCLK period.
1	0	8	Pixel Mask	The Pixel Mask value is bitwise AND'ed with the Pixel Address value at P7-P0. A "1" in a position of the Pixel Mask will not change the corresponding bit in the Pixel Address, while a "0" sets that bit to "0". Pixel Address supplied via the microprocessor interface is not affected by the Pixel Mask.


Device Operation

COLOR PALETTE: The AT76C176 provides an 18-bit wide by 256 word deep color palette static RAM array for storing the desired color intensity values. Each word is divided into three fields for the RED, GREEN and BLUE video DACs respectively. The 8-bit wide Pixel Address is decoded and used to select a particular location in the RAM array. The color value retrieved from that location is then

used as inputs to the three video DACs which convert the digital color code into analog color intensity values.

The AT76C176 achieves low power, high speed operation by using an advanced pipelined palette DAC architecture. Delay from Pixel Address to color intensity value out is 3 PCLK periods.

Video Pipeline Timing Diagram

MPU INTERFACE: The AT76C176 provides a standard microprocessor interface which allows the host display controller to access the Color Palette RAM and all internal registers of the AT76C176. MPU READ and WRITE operations are internally synchronized with the video pipeline and therefore can take place asynchronously from the normal pixel mapping operation. An on-chip address counter allows the MPU to READ or WRITE the Color Palette in a Block Mode.

COLOR PALETTE READ AND WRITE: Four MPU operations are required to write (i.e. store a Color Value) to a specific location in the Color Palette RAM. The desired RAM address is first written into the internal Pixel Address register by executing a WRITE operation at register address (0,0). A new Color Value is next written into the internal Color Value register at register address (0,1) by three consecutive WRITE operations, with the RED color first, GREEN second and BLUE last. Only LSBs D5-D0 of each byte transferred are used. The new Color Value is then automatically written into the designated address in the Color Palette RAM.

Similarly, four MPU operations are required to read a Color Value from a specific location in the Color Palette RAM. The RAM address is written into the internal Pixel Address register by executing a WRITE operation at register address (1,1). The Color Value stored in that particular RAM location is automatically transferred to the internal Color Value Register. Three consecutive READ operations are then required to read the retrieved Color Value in three bytes, with the RED color first, GREEN second and BLUE last. Only the last 6 LSBs D5-D0 contain valid data, the two MSBs are set to "0".

BLOCK READ AND WRITE MODE: The on-chip Pixel Address Register automatically increments by one after each complete Color Value READ or WRITE operation. This useful feature allows an entire block of the Color Palette RAM to be accessed by simply writing the starting address into the Pixel Address register at the appropriate register address. Subsequent READ or WRITE operations require only 3-byte transfers at D7-D0.

TRIPLE VIDEO DAC: Each of the three video DACs on the AT76C176 consists of an array of current sources tied to a common output. The current sources use an advanced current steering scheme to minimize glitch energy. The number of current sources in each DAC steered to the output during any PCLK period equals the value represented by the Color Value selected from the Color Palette. The rest of the current sources are steered to ground.

The input Reference Current (IREF) determines the current in each current source. Each DAC is designed to produce a 0.7 Volt peak white level when driving a doubly terminated 75 ohm load with IREF = -8.88 mA. The relationship between the peak white level and IREF is given by the equation:

 $V_{Peak White} = 2.1 x IREF x R_{Load}$

BLANKING: The AT76C176 supports composite blanking at all three RED, GREEN and BLUE video outputs. The BLANK input is latched on the rising edge of PCLK and affects the analog video outputs after 3 PCLK periods. An internal pipelined delay circuit is used to synchronize the BLANK input with the normal pixel pipeline. A logic "0" at BLANK input overrides the current color value and forces the analog video outputs to the zero (or Blank) level. The BLANK circuit has no effect on the MPU interface and the Color Palette remains accessible via READ and WRITE.

PIXEL MASK: The AT76C176 features an advanced onchip Pixel Mask which is very useful for cursor control, flashing objects, and animation. The Pixel Mask value stored in internal register (1,0) is bitwise AND'ed with the input Pixel Address value at P7-P0 to form the actual RAM address for the Color Palette. A "1" in a position of the Pixel Mask will not change the corresponding bit in the Pixel Address, while a "0" sets that bit to "0". Pixel Addresses supplied via the MPU interface are not affected by the Pixel Mask.

Absolute Maximum Ratings*

Temperature Under Bias	55°C to 125°C
Storage Temperature	65°C to 150°C
Voltage on Any Pin with Respect to Ground	2.0V to 7.0V ⁽¹⁾
Power Dissipation	1.5W
Reference Current	15mA
Analog Output Current	45mA
DC Digital Output Current	25mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

 Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is VCC+0.75V DC which may overshoot to 7.0V for pulses of less than 20ns.

D.C. and A.C. Operating Range

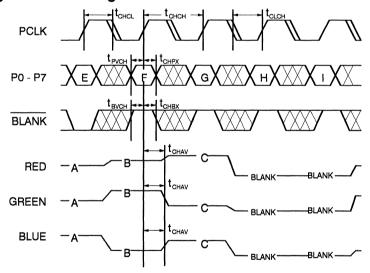
		AT76C176-66	AT76C176-50	AT76C176-40	VCC/VAA Power Supplies
	Com.	0° C - 70° C			5V +/- 5%
Operating Temperature			0° C - 70° C	0° C - 70° C	5V +/- 10%
Range(Case)	Ind.		-40° C - 85° C	-40° C - 85° C	5V +/- 10%
	Mil.			-55° C -125° C	5V +/-5%

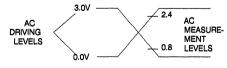
D.C. Characteristics

Symbol	Parameter	Conditions	All Min	40MHz Max	50MHz Max	66MHz Max	Units
lu	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 0.1V$		10	10	10	μΑ
ILO	Output Leakage Current	$V_{OUT} = -0.1V \text{ to } V_{CC} + 0.1V$		10	10	10	μΑ
Icc	Power Supply Current	IO = 21mA Digital Outputs Open		140	150	170	mA
IREF	Reference Current		-7	-10	-10	-10	mA
VIL	Input Low Voltage		-0.5	0.8	0.8	0.8	٧
VIH	Input High Voltage		2.0	V _{CC} +0.5	V _{CC} +0.5	V _{CC} +0.5	٧
Vol	Output Low Voltage	IO=5mA		0.4	0.4	0.4	٧
Voн	Output High Voltage	IO = -5mA	2.4				٧
VREF	Voltage at IREF Input		V _{CC} -3	Vcc	Vcc	Vcc	V

Video DAC Characteristics

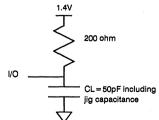
Symbol	Parameter	Conditions	All Min	All Typ	40MHz Max	50MHz Max	66MHz Max	Units
RES	Resolution		6					Bits
ILE	Integral Linearity Error	Note A			± 0.5	±0.5	±0.5	LSB
COR	DAC to DAC Correlation	Note B			± 2	± 2	± 2	%
FSE	Full Scale Error	Note C			± 5	± 5	±5	%
DVT	Glitch Energy	Notes D, E		75				pVsec
10	Output Current	VO < 1V		18.6	21	21	21	mA
VO	Output Voltage	IO<21mA		0.7	1.5	1.5	1.5	V
t _{DR}	Rise Time (10% to 90%)	Notes D, E			8	8	6	ns
t _{DF}	Full Scale Settling Time	Notes D, E, F			25	20	15	ns




Video Timing Characteristics

Symbol	Parameter	Conditions	All Max	40MHz Min	50MHz Min	66MHz Min	Units
tснсн	PCLK Period (τ)		10000	28	20	15	ns
Δtchch	PCLK Jitter	tchch= τ	± 2.5				%
tclch	PCLK Low Width		10000	9	6	5	ns
tCHCL	PCLK High Width		10000	7	6	5	ns
tpvch	Pixel Word Setup Time			5	4	3	ns
tCHPX	Pixel Word Hold Time			5	4	3	ns
tbvch	BLANK Setup Time			5	4	3	ns
tCHBX	BLANK Hold Time			5	4	3	ns
tchav	PCLK to DAC Output Valid	Note G	30	5	5	5	ns
Δtchav	Differential Output Delay	Note H	2				ns
tcc	Pixel Clock Transition Time		50				ns

Video Timing Waveforms Diagram


Input Test Waveforms

Notes: 1. t_R , $t_F < 3$ ns (10% to 90%).

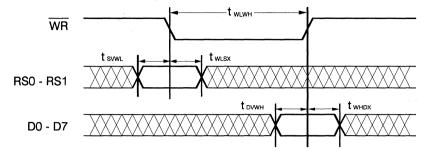
2. Input timing reference is at 1.5V.

Digital Input/Output Load

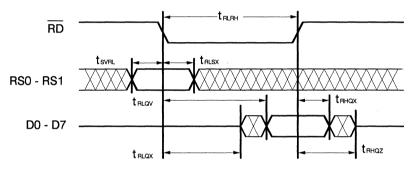
AT76C176

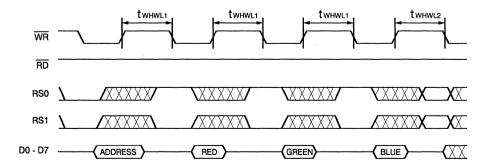
MPU Interface Timing Characteristics

Symbol	Parameter	Conditions	All Max	40MHz Min	50MHz Min	66MHz Min	Units
twLwH	WR Pulse Width Low			50	50	50	ns
t _{RLRH}	RD Pulse Width Low			50	50	50	ns
tsvwL	Register Select Setup Time	WRITE Operations		15	10	10	ns
tsvrl	Register Select Setup Time	READ Operations		15	10	10	ns
twlsx	Register Select Hold Time	WRITE Operations		15	10	10	ns
trlsx	Register Select Hold Time	READ Operations		15	10	10	ns
tovwh	Write Data Setup Time			15	10	10	ns
twhox	Write Data Hold Time			15	10	10	ns
tRLQX	Output Turn-on Delay			5	5	5	ns
t _{RLQV}	Read Enable Access Time		40				ns
trhox	Output Hold Time			5	5	5	ns
tRHQZ	Output Turn-off Delay	Note I	20				ns
twHWL1	Successive Write Interval	$\tau = PCLK Period$		4τ	4τ	4τ	ns
twhrL1	Write Followed by Read Interval	$\tau = PCLK Period$		4τ	4τ	4τ	ns
tRHRL1	Successive Read Interval	$\tau = PCLK Period$		4τ	4τ	4τ	ns
tRHWL1	Read Followed by Write Interval	$\tau = PCLK Period$		4τ	4τ	4τ	ns
twHWL2	Write After Color Write	$\tau = PCLK Period$		4τ	4τ	4τ	ns
twhrl2	Read After Color Write	$\tau = PCLK Period$		4τ	4τ	4τ	ns
trhrl2	Read After Color Read	τ = PCLK Period		7τ	7τ	7τ	ns
tRHWL2	Write After Color Read	τ = PCLK Period		7τ	7τ	7τ	ns
twhrl3	Read After Read Address Write	τ = PCLK Period		7τ	7τ	7τ	ns
twren	Read/Write Enable Transition Time		50				ns

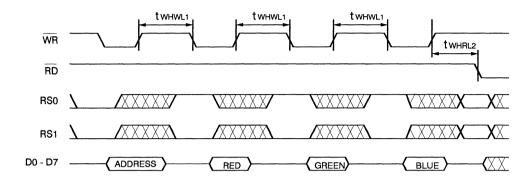

Notes

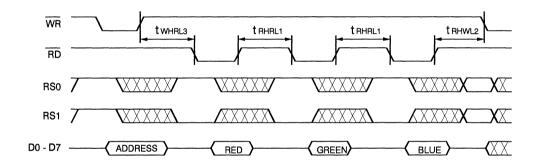
Note A: Measured from best fit line through DAC transfer Note F: Measured from a 2% change in the DAC output voltage to within 2% of the final value. Note B: Measured from the mid point of the distribution of the Note G: Measured between the 50% point of the rising three DAC transfer curves. edge of PCLK and at the analog output half way be- $\left[\frac{\text{VO-}2.1\times\text{IREF}\times\text{R}_{\text{Load}}}{2.1\times\text{IREF}\times\text{R}_{\text{Load}}}\right]\times100\%$ tween successive output values. Note C: Note H: Measured between different analog outputs on the Z_{Load}=37.5 ohm + 30pF, IREF=-8.88mA Note D: same device. Note E: This parameter is sampled and not 100% tested. Note I: Measured at ±200mV from steady state output values.



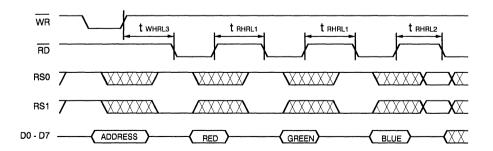

Write Operations Waveforms

Read Operations Waveforms


A.C. Waveforms for Color Value Write Followed by Any Write

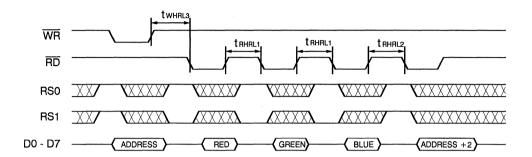

AT76C176

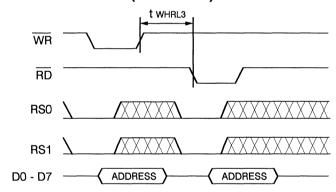
9


A.C. Waveforms for Color Value Write Followed by Any Read

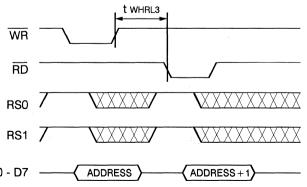
A.C. Waveforms for Color Value Read Followed by Any Write

A.C. Waveforms for Color Value Read Followed by Any Read

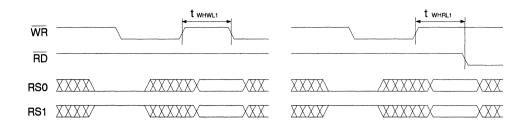




A.C. Waveforms for Color Value Read


Followed by Pixel Address (Read Mode) Read

A.C. Waveforms for Pixel Address (Write Mode) Write and Read Back


A.C. Waveforms for Pixel Address (Read Mode) Write and Read Back


AT76C176

9

A.C Waveforms for Pixel Mask Write Followed by Any Write or Read

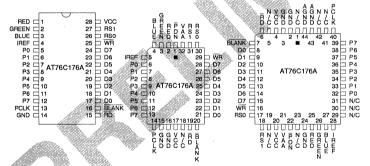
A.C. Waveforms for Pixel Mask or Pixel Address Read Followed by Any Read or Write

Ordering Information

Speed (MH₂)	Ordering Code		Package	Operation Range	
40	±10%	AT76C176-40PC AT76C176-40JC	28P6 32J	Commercial (0°C to 70°C)	
		AT76C176-40PI AT76C176-40JI	28P6 32J	Industrial (-40°C to 85°C)	
40	±5%	AT76C176-40DM	28D6	Military (-55°C to 125°C)	
50	±10%	AT76C176-50PC AT76C176-50JC	28P6 32J	Commercial (0°C to 70°C)	
		AT76C176-50PI AT76C176-50JI	28P6 32J	Industrial (-40°C to 85°C)	
66	±5%	AT76C176-66PC AT76C176-66JC	28P6 32J	Commercial (0°C to 70°C)	

	Package Type					
28D6	28D6 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)					
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)					
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)					

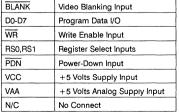
FEATURES


- Personal System/2*, 8514A, and VGA* Compatible
- High Pixel Rates to 110 MHz
- Supports High Resolution 1280 x 1280 Pixels Color Graphics Displays
- Low Standby Current Less than 100µA (PLCC Packages Only)
- Triple 6-Bit DACs Display 256K Possible Colors
- Pixel Word Mask and Composite Blank on All Three Channels
- 18-Bit Wide Color Palette Stores 256 Colors
- **High Reliability CMOS Technology** 2000V ESD Protection 200mA Latchup Immunity
- Single +5 V Supply
- Available in Standard 28 Pin DIP, and 32 and 44 Pin Plastic LCC
- Full Military, Commercial and Industrial Temperature Ranges

Description

The AT76C176A is a second generation color palette DAC which provides direct drives for high resolution RGB color displays with resolutions up to 1280 x 1280 pixels. The AT76C176A integrates three high performance 6-bit video DACs (Digital-to-Analog Converters), an advanced 256 x 18 Color Palette (Color Look-up Table) and a versatile microprocessor interface on a monolithic substrate.

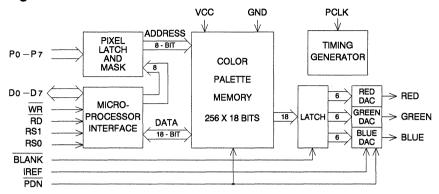
The AT76C176A supports the RS170 video standard and graphics controllers compatible with the VGA and extended VGA standards. This device allows 256 colors to be displayed out of a total of 262,144 colors. The AT76C176A provides composite blank outputs on all three channels. Additional advanced features include on-chip pixel mask logic which allows displayed colors to be modified in a single write cycle rather than by altering the contents of the color palette. For lap-top computers and other battery powered applications, the AT76C176A provides a low power standby mode of operation.


Pin Configurations

90000	(4)
Pin Name	Function
RED GREEN BLUE	Analog Video Outputs for R,G,B Guns
IREF	Reference Current Input
P0-P7	Pixel Address Inputs
PCLK	Pixel Clock Input
AGND	Analog Ground
GND	Ground
RD	Read Enable Input

BLANK	Video Blanking Input
D0-D7	Program Data I/O
WR	Write Enable Input
RS0,RS1	Register Select Inputs
PDN	Power-Down Input
VCC	+5 Volts Supply Input
VAA	+5 Volts Analog Supply Input
N/C	No Connect

^{*} Personal System/2 and VGA are registered trademarks of IBM Corporation.


110 MHz Monolithic CMOS Hi-Res Video Color Palette

Preliminary

Block Diagram

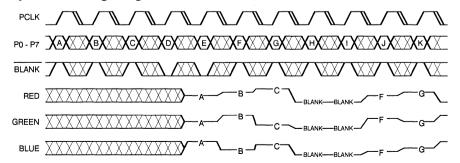
Pin Definitions

	Symbol	Functional Descriptions		
Video Interface	RED GREEN BLUE	Analog Video Outputs. These are the outputs of the triple video DACs. The 18-bit wide color palette output and the BLANK input drive the DAC inputs.		
	IREF	Reference Current Input. The Reference Current sets the full scale current sourced by each DAC.		
	P0-P7	Pixel Address Inputs. The 8-bit Pixel Address is logically AND'ed with the Pixel Mask value before it is used to select a stored 18-bit color value from the palette.		
	PCLK	Pixel (or Dot) Clock Input. The rising edge of PCLK samples the Pixel Address and BLANK inputs. PCLK is the system clock for the palette DAC pipeline.		
	BLANK	Blanking Input. A logic "0" at BLANK input overrides the current color value and forces the Analog Video Outputs to the zero (or Blank) level. The Color Palette can be updated while Blanking is active.		
Power Supply	AGND GND	Ground. Both AGND and GND should be connected to a solid ground plane n the system.		
	vcc	Digital Supply. Nominal 5 Volts. VCC should be bypassed to GND with a high-frequency capacitor.		
	VAA	Analog Supply. Nominal 5 Volts. VAA should be connected to a filtered system supply.		
Microprocessor	RD	Read Enable Input. RD controls the timing of microprocessor Read operations.		
Interface	WR	$\frac{\text{Write Enable Input. }\overline{\text{WR}}\text{ controls the timing of microprocessor Write operations. }\overline{\text{RD}}\text{ and }\overline{\text{WR}}\text{ should not be active (low) at the same time.}$		
	D0-D7	Program Data I/O Ports (Bidirectional). The rising edge of $\overline{\text{WR}}$ latches Program Data at D7-D0 into the selected internal register. The falling edge of $\overline{\text{RD}}$ enables D7-D0 as outputs and the rising edge of $\overline{\text{RD}}$ returns D7-D0 to a high impedance state.		
	RSO, RS1	Register Select Inputs. Control the selection of internal registers. (See description on Internal Registers.) The falling edge of \overline{RD} or \overline{WR} latches in the value at RS1, RSO.		
	PDN	Power-Down Input. A logic "0" at $\overline{\text{PDN}}$ input powers down the video DAC and Color Palette circuits for low power standby mode operation. The Color Palette can still be read or updated if PCLK is active. $\overline{\text{PDN}}$ should be held at logic "1" for normal operation.		

Internal Registers

RS1	RS0	Bits	Register Name	Functional Description
0	0	8	Pixel Address (Write Mode)	The Pixel Address Register is accessed via Register Address (0,0) or (1,1). Reading the Pixel Address value from (0,0) is the same as reading
1	1	8	Pixel Address (Read Mode)	from (1,1). A pixel address value is normally written to Pixel Address Register at (0,0) before one or more color values are written to the Color Palette. A pixel address value is normally written to Pixel Address Register at (1,1) before one or more color values are read from the Color Palette.
0	1	18	Color Value	The Color Value Register acts as a buffer between the 18-bit wide Color Palette and the 8-bit microprocessor interface. Each READ and WRITE at (0,1) consists of three byte transfers in the order of RED first, Green second and BLUE last. Only the LSBs D5-D0 of each byte are used, the two MSBs are set to "0" when a color value is read. The Pixel Address Register automatically increments after each 18-bit color value Read or Write operation. Each color value READ or WRITE operation overrides the pixel stream for one PCLK period.
1	0	8	Pixel Mask	The Pixel Mask value is bitwise AND'ed with the Pixel Address value at P7-P0. A "1" in a position of the Pixel Mask will not change the corresponding bit in the Pixel Address, while a "0" sets that bit to "0". Pixel Address supplied via the microprocessor interface is not affected by the Pixel Mask.

Device Operation


COLOR PALETTE: The AT76C176A provides an 18-bit wide by 256 word deep color palette static RAM array for storing the desired color intensity values. Each word is divided into three fields for the RED, GREEN and BLUE video DACs respectively. The 8-bit wide Pixel Address is decoded and used to select a particular location in the RAM array. The color value retrieved from that location is then used as inputs to the three video DACs which convert the digital color code into analog color intensity values.

The AT76C176A achieves low power, high speed operation by using an advanced pipelined palette DAC architecture.

Delay from Pixel Address to color intensity value out is 3 PCLK periods.

MPU INTERFACE: The AT76C176A provides a standard microprocessor interface which allows the host display controller to access the Color Palette RAM and all internal registers of the AT76C176A. MPU READ and WRITE operations are internally synchronized with the video pipeline and therefore can take place asynchronously from the normal pixel mapping operation. An on-chip address counter allows the MPU to READ or WRITE the Color Palette in a Block Mode.

Video Pipeline Timing Diagram

COLOR PALETTE READ AND WRITE: Four MPU operations are required to write (i.e. store a Color Value) to a specific location in the Color Palette RAM. The desired RAM address is first written into the internal Pixel Address register by executing a WRITE operation at register address (0,0). A new Color Value is next written into the internal Color Value register at register address (0,1) by three consecutive WRITE operations, with the RED color first, GREEN second and BLUE last. Only LSBs D5-D0 of each byte transferred are used. The new Color Value is then automatically written into the designated address in the Color Palette RAM.

Similarly, four MPU operations are required to read a Color Value from a specific location in the Color Palette RAM. The RAM address is written into the internal Pixel Address register by executing a WRITE operation at register address (1,1). The Color Value stored in that particular RAM location is automatically transferred to the internal Color Value Register. Three consecutive READ operations are then required to read the retrieved Color Value in three bytes, with the RED color first, GREEN second and BLUE last. Only the last 6 LSBs D5-D0 contain valid data, the two MSBs are set to "0".

BLOCK READ AND WRITE MODE: The on-chip Pixel Address Register automatically increments by one after each complete Color Value READ or WRITE operation. This useful feature allows an entire block of the Color Palette RAM to be accessed by simply writing the starting address into the Pixel Address register at the appropriate register address. Subsequent READ or WRITE operations require only 3-byte transfers at D7-D0.

TRIPLE VIDEO DAC: Each of the three video DACs on the AT76C176A consists of an array of current sources tied to a common output. The current sources use an advanced current steering scheme to minimize glitch energy. The number of current sources in each DAC steered to the output during any PCLK period equals the value represented by the Color Value selected from the Color Palette. The rest of the current sources are steered to ground.

The input Reference Current (IREF) determines the current in each current source. Each DAC is designed to produce a 0.7 Volt peak white level when driving a doubly terminated 75 ohm load with IREF = -8.88 mA. The relationship between the peak white level and IREF is given by the equation:

VPeak White = 2.1 x IREF x RLoad

BLANKING: The AT76C176A supports composite blanking at all three RED, GREEN and BLUE video outputs. The BLANK input is latched on the rising edge of PCLK and affects the analog video outputs after 3 PCLK periods. An internal pipelined delay circuit is used to synchronize the BLANK input with the normal pixel pipeline. A logic "0" at BLANK input overrides the current color value and forces the analog video outputs to the zero (or Blank) level. The

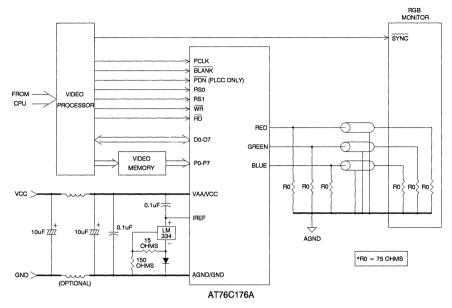
BLANK circuit has no effect on the MPU interface and the Color Palette remains accessible via READ and WRITE.

PIXEL MASK: The AT76C176A features an advanced onchip Pixel Mask which is very useful for cursor control, flashing objects, and animation. The Pixel Mask value stored in internal register (1,0) is bitwise AND'ed with the input Pixel Address value at P7-P0 to form the actual RAM address for the Color Palette. A "1" in a position of the Pixel Mask will not change the corresponding bit in the Pixel Address, while a "0" sets that bit to "0". Pixel Addresses supplied via the MPU interface are not affected by the Pixel Mask.

POWER-DOWN MODE: In PLCC packages, the AT76C176A provides an on-chip power-down feature for use in lap-top computers and other battery powered applications. During normal operation, pin PDN should be held as logic "1." A logic "0" at PDN powers down the video DAC and Color Palette circuits. With a reduced PCLK frequency, the Color Palette can be read or updated in the power-down mode.

Further power reduction can be obtained by reducing the frequency of PCLK to the minimum or stopping it altogether.

Absolute Maximum Ratings*


i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
Temperature Under Bias55°C to 125°C
Storage Temperature65°C to 150°C
Voltage on Any Pin with Respect to Ground2.0V to 7.0V ⁽¹⁾
Power Dissipation1.5W
Reference Current15mA
Analog Output Current45mA
DC Digital Output Current25mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

 Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20ns. Maximum output pin voltage is VCC+0.75V DC which may overshoot to 7.0V for pulses of less than 20ns.

Sample Connection for Typical Application

System Implementation Considerations

POWER SUPPLY DECOUPLING AND GROUNDING: To obtain the cleanest possible analog outputs from the AT76C176A, digital noise coupling into the analog signal paths needs to be minimized. The video data paths, power supply lines and ground planes on the circuit board should be laid out carefully to reduce noise coupling. As illustrated in the diagram showing a Sample Connection for Typical Application, a separate VAA line decoupled to AGND with an electrolytic capacitor in parallel with a smaller ceramic chip capacitor should be used for the analog circuits on the AT76C176A. Similarly, a separate analog ground return, AGND, which is connected to the lowest impedance point in the system ground plane, should be used.

For best results, four layer PC boards with separate ground and power supply planes are recommended. The AGND plane should be laid out as an island or tub underneath the AT76C176A. All video frequency signal traces should be kept as short as possible to minimize radiation and all decoupling capacitors should be placed as close to the AT76C176A as the layout rules permit.

Noise and transients on the power and ground lines can be coupled or aliased into the video circuits by the switching action of the AT76C176A. For applications at 66 MHz and above, it may be necessary to isolate both VAA and AGND from the system supplies with inductors of appropriate values.

CURRENT REFERENCE: The maximum full scale output of the video DACs is determined by the reference current supplied externally at pin IREF. An adjustable current source such as the LM334 is recommended to set the refer-

ence current at 8.88 mA for a full scale output of 0.7 Volt when driving a 37.5 ohm load. The video DACs employ current sources which are referenced to the positive supply voltage. A high quality $0.1\,\mu\mathrm{F}$ chip capacitor may be required to decouple IREF to VAA or VCC.

VIDEO INTERFACE: The Red, Green and Blue video outputs are designed to drive doubly terminated 75 ohm lines. To minimize ringing due to impedance mismatch, 75 ohm +/-1% thin film resistors should be placed close to the AT76C176A on the PC board.

To comply with FCC RF emission regulations, ferrite beads can be inserted at the video outputs to limit the amount of high frequency emission. The AT76C176A is designed to produce very little high frequency digital feedthrough.

SYSTEM TIMING: The pixel clock, PCLK, controls the timing of the Color Palette and the Video DACs. To obtain the highest quality display possible with the AT76C176A, Setup and Hold time requirements with respect to PCLK should be strictly adhered to. The duty cycle limits of PCLK should also be met over the entire display.

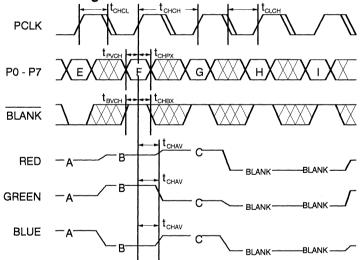
DIGITAL INTERFACE: When the high impedance digital inputs of the CMOS AT76C176A are driven by low impedance sources, considerable ringing can occur, which may degrade high video rate operation. Impedance matching resistors of the order of 50 ohms can be inserted in series at the inputs to the Pixel Address and Blanking inputs to reduce ringing. This also minimizes the amount of high frequency emission due to excessively high slew rates at the video data inputs.

D.C. and A.C. Operating Range

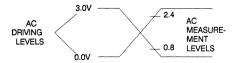
		AT76C176A-110	AT76C176A-80	AT76C176A-66 AT76C176A-50	VCC/VAA Power Supplies
	Com.	0° C - 70° C			5V +/- 5%
Operating Temperature			0° C - 70° C	0° C - 70° C	5V +/- 10%
Range(Case)	Ind.		-40° C - 85° C	-40° C - 85° C	5V +/- 10%
	Mil.			-55° C -125° C	5V +/- 5%

D.C. Characteristics

Symbol	Parameter	Conditions	All Min	50MHz Max	66MHz Max	80MHz Max	110MHz Max	Units
lu	Input Load Current	V _{IN} =-0.1V to V _{CC} +0.1V		10	10	10	10	μΑ
ILO	Output Leakage Current	V _{OUT} =-0.1V to V _{CC} + 0.1V		10	10	10	10	μΑ
Icc	Power Supply Current	IO=21mA, PDN = V _{IH} Digital Outputs Open		150	170	190	220	mA
ISB	Standby Supply Current	PDN=V _{IL} PCLK=0Hz			100	100	100	μΑ
lilb	Current Sourced by Pin PDN	PDN=V _{IL}			20	20	20	μΑ
IREF	Reference Current		-7	-10	-10	-10	-10	mA
VIL	Input Low Voltage		-0.5	0.8	0.8	0.8	0.8	٧
VIH	Input High Voltage		2.0	Vcc+0.5	V _{CC} +0.5	Vcc+0.5	Vcc+0.5	٧
Vol	Output Low Voltage	IO=5mA		0.4	0.4	0.4	0.4	٧
Vон	Output High Voltage	IO=-5mA	2.4					٧
VREF	Voltage at IREF Input		Vcc-3	Vcc	Vcc	Vcc	Vcc	٧

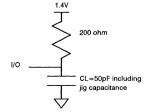

Video DAC Characteristics

Symbol	Parameter	Conditions	All Min	All Typ	50MHz Max	66MHz Max	80MHz Max	110MHz Max	Units
RES	Resolution		6						Bits
ILE	Integral Linearity Error	Note A			± 0.5	± 0.5	±0.5	± 0.5	LSB
COR	DAC to DAC Correlation	Note B			±2	±2	±2	±2	%
FSE	Full Scale Error	Note C			± 5	±5	±5	±5	%
DVT	Glitch Energy	Notes D, E		75					pVsec
10	Output Current	VO<1V		18.6	21	21	21	21	mA
vo	Output Voltage	IO<21mA		0.7	1.5	1.5	1.5	1.5	٧
tor	Rise Time (10% to 90%)	Notes D, E			8	6	6	5	ns
tor	Full Scale Settling Time	Notes D, E, F			20	15	12.5	9	ns


Video Timing Characteristics

Comple of	Barramatar	Conditions	All	50MHz	66MHz	80MHz Min	110MHz	Unite
Symbol	Parameter	Conditions	Max	Min	Min	IVIIII	Min	Units
tchch I	PCLK Period (τ)	Normal	10000	20	15	12.5	9	ns
СНСН	TOLKT BIOG (t)	Standby		35	25	20	20	ns
∆tснсн	PCLK Jitter	$t_{CHCH} = \tau$	± 2.5					%
***	CH PCLK Low Width	Normal	10000	6	5	5	4	ns
tCLCH	POLK LOW WIGHT	Satndby		12	9	7	7	ns
	PCLK High Width	Normal	10000	6	5	5	4	ns
tCHCL	FOLK HIGH WIGHT	Standby		12	9	7	7	ns
tpvch	Pixel Word Setup Time			4	3	3	3	ns
tCHPX	Pixel Word Hold Time			4	3	3	2	ns
tbvch	BLANK Setup Time			4	3	3	3	ns
tchbx	BLANK Hold Time			4	3	3	2	ns
tCHAV	PCLK to DAC Output Valid	Note G	30	5	5	5	5	ns
Δtchav	Differential Output Delay	Note H	2					ns
tcc	Pixel Clock Transition Time		50					ns

Video Timing Waveforms Diagram


Input Test Waveforms

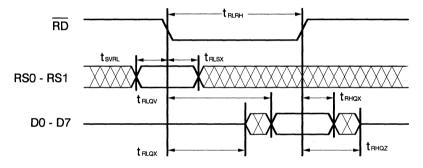
Notes: 1. t_R , $t_F < 3$ ns (10% to 90%).

2. Input timing reference is at 1.5V.

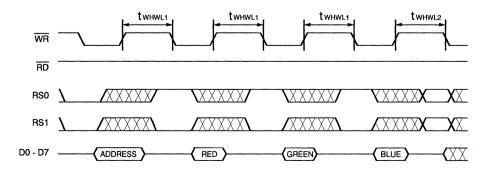
Digital Input/Output Load


MPU Interface Timing Characteristics

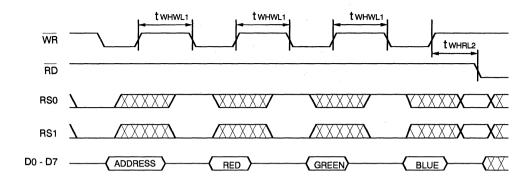
Symbol	Parameter	Conditions	All Max	66/50MHz Min	80MHz Min	110MHz Min	Units
twLwH	WR Pulse Width Low			50	50	50	ns
trurh	RD Pulse Width Low			50	50	50	ns
tsvwL	Register Select Setup Time	WRITE Operations		10	10	10	ns
tsvrl	Register Select Setup Time	READ Operations		10	10	10	ns
twLsx	Register Select Hold Time	WRITE Operations		10	10	10	ns
tRLSX	Register Select Hold Time	READ Operations		10	10	10	ns
tovwh	Write Data Setup Time			10	10	10	ns
twhox	Write Data Hold Time			10	10	10	ns
tRLQX	Output Turn-on Delay			5	5	5	ns
tRLQV	Read Enable Access Time		40				ns
trhqx	Output Hold Time			5	5	5	ns
trhoz	Output Turn-off Delay	Note I	20				ns
twHWL1	Successive Write Interval	$\tau = PCLK Period$		4τ	4τ	4τ	ns
twhRL1	Write Followed by Read Interval	$\tau = PCLK Period$		4τ	4τ	4τ	ns
tRHRL1	Successive Read Interval	$\tau = PCLK Period$		4τ	4τ	4τ	ns
tRHWL1	Read Followed by Write Interval	τ = PCLK Period		4τ	4τ	4τ	ns
twHWL2	Write After Color Write	$\tau = PCLK Period$		4τ	4τ	4τ	ns
twHRL2	Read After Color Write	$\tau = PCLK Period$		4τ	4τ	4τ	ns
tRHRL2	Read After Color Read	$\tau = PCLK Period$		7τ	7τ	7τ	ns
t _{RHWL2}	Write After Color Read	$\tau = PCLK Period$		7τ	7τ	7τ	ns
twhRL3	Read After Read Address Write	$\tau = PCLK Period$		7τ	7τ	7τ	ns
twren	Read/Write Enable Transition Time		50				ns

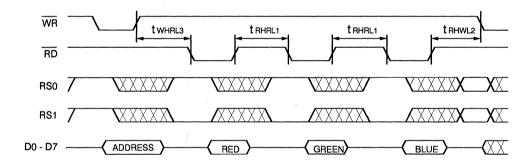

Notes

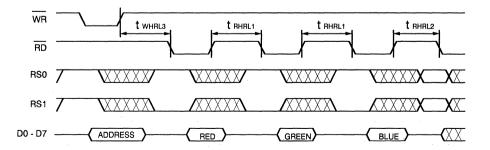
Note A:	Measured from best fit line through DAC transfer curve.	Note F:	Measured from a 2% change in the DAC output voltage to within 2% of the final value.
Note B:	Measured from the mid point of the distribution of the three DAC transfer curves.	Note G:	Measured between the 50% point of the rising edge of PCLK and at the analog output half way between suc-
Note C:	$FSE = \left[\frac{VO - 2.1 \times IREF \times R_{Load}}{2.1 \times IREF \times R_{Load}} \right] \times 100\%$	Note H:	cessive output values. Measured between different analog outputs on the same
Note D: Note E:	Z _{Load} =37.5 ohm + 30pF, IREF=-8.88mA This parameter is sampled and not 100% tested.	Note I:	device. Measured at $\pm 200 \text{mV}$ from steady state output values.


Write Operations Waveforms

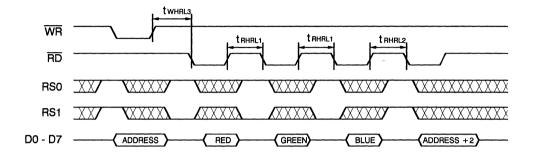
Read Operations Waveforms


A.C. Waveforms for Color Value Write Followed by Any Write

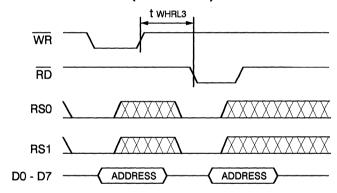



A.C. Waveforms for Color Value Write Followed by Any Read

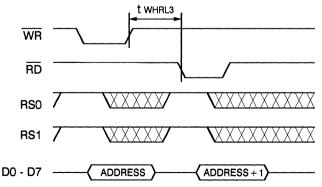
A.C. Waveforms for Color Value Read Followed by Any Write



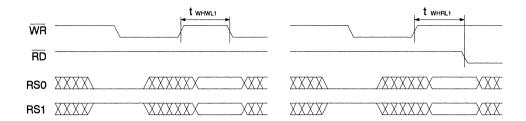
A.C. Waveforms for Color Value Read Followed by Any Read



A.C. Waveforms for Color Value Read


Followed by Pixel Address (Read Mode) Read

A.C. Waveforms for Pixel Address (Write Mode) Write and Read Back


A.C. Waveforms for Pixel Address (Read Mode) Write and Read Back

A.C Waveforms for Pixel Mask Write Followed by Any Write or Read

A.C. Waveforms for Pixel Mask or Pixel Address Read

Followed by Any Read or Write

Ordering Information

Speed (MH _z)	Power Supply	Ordering Code	Package	Operation Range
50	±10%	AT76C176A-50PC AT76C176A1-50JC AT76C176A2-50JC	28P6 32J 44J	Commercial (0°C to 70°C)
		AT76C176A-50PI AT76C176A1-50JI AT76C176A2-50JI	28P6 32J 44J	Industrial (-40°C to 85°C)
50	±5%	AT76C176A-50DM	28D6	Military (-55°C to 125°C)
66	±10%	AT76C176A-66PC AT76C176A1-66JC AT76C176A2-66JC	28P6 32J 44J	Commercial (0°C to 70°C)
		AT76C176A-66PI AT76C176A1-66JI AT76C176A2-66JI	28P6 32J 44J	Industrial (-40°C to 85°C)
66	±5%	AT76C176A-66DM	28D6	Military (-55°C to 125°C)
80	±10%	AT76C176A-80PC AT76C176A1-80JC AT76C176A2-80JC	28P6 32J 44J	Commercial (0°C to 70°C)
		AT76C176A-80PI AT76C176A1-80JI AT76C176A2-80JI	28P6 32J 44J	Industrial (-40°C to 85°C)
110	±5%	AT76C176A-110PC AT76C176A1-110JC AT76C176A2-110JC	28P6 32J 44J	Commercial (0°C to 70°C)

Package Type			
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)		
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)		
44J	44 Lead, Plastic J-Leaded Chip Carrier (PLCC)		
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)		

Product Information	1
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	3
CMOS EPROMs	4
High Speed CMOS PROMs	5
CMOS SRAMs	6
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	14

CONTENTS

Section 10

Applicatio	n Notes	
E ² PROMs	Using Atmel's CMOS E ² PROMs	10-3
	E ² PROM Data Protection	10-7
EPROMs	Programming Socket Adapter	10-1
	Atmel SOIC Package and Programming Socket Modification	10-15
	EPROM Programming with V _{CC} = 5V	10-19
EPLDs	Using Programmable Logic Devices	10-21
	Selecting Decoupling Capacitors for Atmel's EPLDs	10-25
	Using a PLD as a System Controller	10-29
	Using the Buried Nodes and Feedbacks	10-35
Analog	Interfacing the AT76C10/F to a Microcontroller	10-30

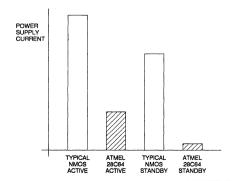
Using Atmel's CMOS E²PROMs

E²PROMs offer many features desired for present day memory systems. They are non-volatile, preserving data for years whether or not power is applied. They provide high density memory storage, with 1 megabit devices now available. They offer high speed reads and can be re-written on a byte or page basis.

Five volt only signals are used to operate the devices. When writing new data only the data bytes that are desired to be changed need be rewritten. No erasure steps are required before rewriting any memory location. Since all of Atmel's products are made with CMOS technology, the supply current required to operate Atmel E²PROMs is low. Other features such as DATA polling, internal error correction and software data protection, make Atmel E²PROMs the correct solution for many memory systems.

CMOS Versus NMOS E²PROMS

CMOS is quickly becoming the dominant MOS technology. Many systems however, have been designed without the use of CMOS products, and therefore do not have the benefits of this advanced process technology. The most obvious advantage of CMOS is in the power savings. Figure 1 shows a comparison of a typical 64K NMOS E²PROM current specification versus that of Atmel's AT28C64. The power advantage of CMOS is quite clear. The power savings actually does more than just reduce the drain on the power supply. The low power consumption helps to keep system temperatures lower, reducing the need for cooling and allowing for greater packing density on boards. With less internally generated heat, CMOS products can be more reliable than their NMOS counterparts.


The TTL and CMOS compatible inputs and outputs of Atmel's CMOS E²PROMs offer additional advantages. The input stages consume no active power when the input voltage is at ground or the positive supply level. Figure 2 shows the typical power consumption curve for an Atmel input stage versus input voltage. By using full CMOS input levels to the device, the active power consumption can be reduced below the specified levels.

The outputs of Atmel E²PROMs drive to the full limits of the supply voltage. When driving other CMOS input stages, this full

CMOS E²PROM

Application Note

Figure 1. Comparison of typical NMOS 64K E²PROM current consumption to that of Atmel's AT28C64.

swing drive capability can actually reduce the power consumed by other devices within the system! Also, by driving to the high power supply limit, Atmel devices improve the noise margin of the high input level of the device they are driving as compared to typical NMOS devices which do not drive to the high supply level (see Figure 3).

Upgrading from NMOS to CMOS

It is generally quite easy to upgrade a system using NMOS devices to use CMOS parts. In most cases, NMOS E²PROM devices organized from 512 by 8 to 32k by 8 may be directly replaced by an Atmel CMOS device of the same density and pinout. No hardware nor software changes need necessarily be made when upgrading the system.

In some cases, power switching transistors have been used to power down NMOS E²PROMs while the rest of the system remains active. In such a state, the DATA lines of the NMOS E²PROM do not load the DATA bus of the system. A CMOS device in such a configuration may show substantial input current through the DATA pins if the DATA bus is higher than the E²PROM's power supply input. To permit CMOS devices to work properly in such a system, it is recommended that the switching transistor be removed from the power supply of the E²PROM. With the low power standby mode of Atmel'S E²PROMs, the power switching is not necessary. The low power consumption of the CMOS device will not adversely affect the system power consumption and there will be negligible input leakage at the E²PROM DATA pins. Additionally, the power consumption of the E²PROM will be much lower when selected and, with the removal of the switching transistor, the number of devices in the system will be reduced.

Figure 2. Typical power consumption curve for Atmel input stage versus input level.

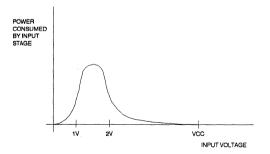
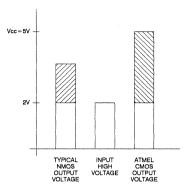



Figure 3. High input voltage noise margin comparison of typical NMOS output to Atmel CMOS output.

NMOS NOISE MARGIN

CMOS NOISE MARGIN

Read Cycle

The E^2PROM read cycle is controlled by the \overline{CE} and \overline{OE} signals. When \overline{CE} and \overline{OE} are both low, data is read from the device. The address inputs specify the memory location being read. The address and data lines are not latched during a read cycle; changing the address while \overline{CE} and \overline{OE} are low will result in the output of the device changing. If \overline{CE} or \overline{OE} is high, the outputs are put in a high impedance state. This dual line control allows for flexibility in avoiding buss line contention. There is no need for periodic refresh of the memory; E^2PROM s retain their data whether or not power is applied. Addresses may be randomly selected; there are no restrictions on address lines.

When $\overline{\text{CE}}$ is high, the internal power consumption of the device is greatly reduced; the device is said to be in the standby mode. The power reduction is achieved by turning off the internal circuits of the device. When $\overline{\text{CE}}$ is returned low, the internal circuits are again powered on and a new read is performed.

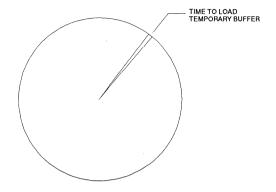
Atmel E^2 PROMs are designed to provide the fastest access times available among like devices. They therefore may have large transient current requirements. It is recommended that each device be carefully decoupled. A decoupling capacitor across the power and ground line as close to the device as possible should be used. As with any high performance device, the integrity of the power and input signals can affect its operation in the system. Maintaining clean power and input signals will ensure the best performance of the device.

■CMOS E²PROM

Byte Write Cycle

Writing to Atmel E^2PROMs has been designed to minimize the time that the system must spend in issuing commands to the memory device. The write cycle is controlled by \overline{OE} , \overline{CE} and \overline{WE} . Initiating a write cycle is done with a short pulse on either the \overline{WE} or \overline{CE} input. With \overline{OE} high and \overline{CE} (or \overline{WE}) low, the address to be written is latched on the falling edge of \overline{WE} (or \overline{CE} , whichever occurred last). The data to be written is latched on the rising edge of \overline{WE} (or \overline{CE} , whichever occurred first). The latching of the address and data inputs allows the address and data busses to be used to access other devices while the write is in progress. During its write cycle, data may not be read from the E^2PROM (the device may however be polled to see if the write is completed).

Internal to the E²PROM device, the write cycle can be divided into two steps. The first is to load the data into a temporary buffer; this operation can be done very quickly (measured in nanoseconds). The second step is to perform the non-volatile storage. It takes considerably longer for this step (up to several milliseconds). After the non-volatile storage is completed, a new read or write cycle may begin immediately.


Page Write Cycle

To improve the effective write time when large sections of the memory are being rewritten, some Atmel E²PROMs provide a page write operation. The page write allows a group of bytes to be quickly loaded into the device's temporary buffer and then simultaneously written to the non-volatile storage elements. Figure 4 is a pie chart showing the time needed for completely loading the temporary 64 byte page buffer of the AT28C256 as a portion of the write cycle time. Clearly, by utilizing the page write with minimum write load times, the write time can effectively be reduced by a factor approximately equal to the page width.

Similar to the writing of a single byte, address location and data to be written are latched on the falling and rising edges of \overline{WE} or \overline{CE} . All bytes being written must have the same page address. The page address is determined by the higher order addresses and is specified in the data sheet of each particular device. The page address must be valid during each high to low transition of \overline{WE} or \overline{CE} . The \overline{OE} input must be high whenever \overline{CE} and \overline{WE} are low.

During write cycles, only the bytes that are specified to be written are altered; other bytes within the device are not rewritten or otherwise affected. A write cycle will only occur when requested; however, there may be conditions present during such times as power-up or power-down when a system might inadvertently initiate a write cycle. Atmel devices include many features to help prevent inadvertent write cycles. Users of E²PROMs should become familiar with these features.

Figure 4. Time to load 64 bytes to temporary buffer in AT28C256 as a portion of the write cycle time.

Additional Features

Atmel E²PROMs include other features to help ensure reliability and to improve overall system performance. The internal error correction incorporated into Atmel's E²PROMs protects against single bit data errors from appearing in the devices. The user does nothing to utilize the feature; whenever a write or read cycle is performed, parity generation or checking occurs internally to the E²PROM device to help ensure the integrity of the data.

The inputs and outputs of Atmel devices contain circuitry to protect the device from electrostatic damage. Even though the devices do have this protection circuitry, it is strongly recommended that safe handling procedures be used with these devices. All equipment and personnel that may come in contact with the devices should be well grounded. Other features such as DATA polling, READY/BUSY outputs or toggle bit are available and may be employed by users as required by their particular application.

-

E²PROM Data Protection

Advantages of E²PROMs

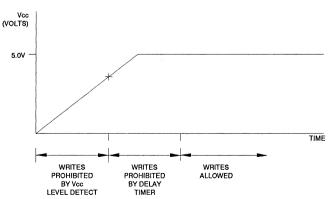
E²PROMs provide the memory solution wherever reprogrammable, non-volatile memory is required. They are easy to use, requiring little or no support hardware such as refresh clocks or batteries. Each memory location can be selectively changed without impact on any other location; blanket erasure and rewriting of the entire device or a large section of it is not required.

E²PROMs made at Atmel were designed to provide the best features available. Atmel E²PROMs provide high speed read access times so that many applications can use them without inserting costly wait states. The page mode write operation of Atmel E²PROMs allows for the fastest effective write time available in E²PROM memories. Since all of Atmel's devices are made in CMOS, they offer the benefits of low operating and standby power.

In order to take advantage of all of the benefits of Atmel E²PROMs, care must be taken to maintain the integrity of the data. While an E²PROM will retain its

data for many years with or without power applied, improper operation of the device could result in data being inadvertently rewritten.

When is Data Susceptible to Corruption


In the use of any memory device, it is expected that the data stored in it is available as it is written. This is especially true of E²PROMs since their code often controls the operation of the system in which they are contained. Unlike most other memory types that are rewritten in systems, E²PROMs are often expected to retain their data for a period of many years, with or without power applied and during power transitions. For these reasons, added attention is given to avoid corrupting data in E²PROMs.

There are a number of situations in which data is particularly prone to corruption. These situations include powering on and off of the devices, noise spikes on the control lines and system glitches. Atmel E²PROMs include features to help protect against each of these potential

CMOS E²PROM

Application Note

Figure 1.

sources of inadvertent writes. Atmel data protection features are broken down into two different types: hardware data protection features and software data protection features.

Atmel Hardware Data Protection Features

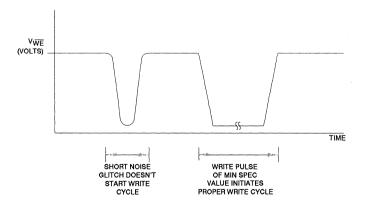
Atmel E²PROMs include four different types of hardware data protection. These features provide protection against most inadvertent writes that might occur in a system. Atmel hardware data protection features include: three line write control, power level sense detector, power on delay timer and noise filters on \overline{CE} and \overline{WE} .

Three Line Write Control: In order to write a device the \overline{OE} signal must be high with the \overline{CE} and \overline{WE} signals low. Holding any of the three lines in the opposite state will prohibit a write cycle. For example, whenever the \overline{OE} signal is low, a write to the device cannot be started.

Power Level Sense Detector: An active circuit in Atmel E²PROMs monitors the level of the supply voltage to the device. If the supply is below 3.8 volts, typical, write cycles to the devices can not be activated.

Power On Delay Timer: As power is applied to Atmel E²PROMs, the power level sense detector will issue an internal signal that indicates that the supply is above the sense level. At this time an internal timer is initiated that times out in typically 5ms. During this time period, writes to the device cannot be performed. This delay period serves two purposes. First, it allows the supply level additional time to rise to within the standard operating region before writes are permitted. Secondly, it lets the system stabilize and present the correct levels to the control pins of the E²PROM so that the E²PROM doesn't react to its inputs before they are actually valid. Figure 1 shows the combined action of the power

supply level detector and the delay timer upon writes to the device.


Noise Filters on \overline{WE} and \overline{CE} : If brief noise pulses below V_{IH} occur on the \overline{WE} or \overline{CE} inputs to the device, a write cycle will not be initiated. Internal to the E²PROM, a noise filter does not allow the short pulses to activate a write cycle. As shown in Figure 2, write pulses of sufficient length will still initiate writes but short noise spikes on the \overline{WE} or \overline{CE} control lines will not.

Atmel Software Data Protection Feature

Available on some Atmel E²PROMs is a user selectable feature that requires a software sequence at the beginning of each write cycle in order for a write to be performed. To enable the software data protection feature, a series of three write commands to specific addresses with specific data must be performed. Once set, the same three byte code must begin each write request. (A separate write cycle to enable the software feature is not necessary; after any write that is preceded with the three byte code, the software data protection function will be enabled, see Figure 3.) The feature may be disabled by issuing a six byte code to the device as shown in Figure 4. After being set, the software data protection feature remains active until its disable command is issued. Power transitions will not reset the software data protection feature, but the feature will prevent against inadvertent writes during power transitions.

The software data protection feature protects data against various causes of inadvertent writes. Since it is active during power transitions it protects data when powering on or off the device. Noise spikes that occur on the control lines will be ignored since they will not show the correct address and data

Figure 2.

needed to start a write cycle. Even for system malfunctions, such as when write pulses of adequate length are given to the device, the software feature can prevent the corruption of the data in the E²PROM. The address locations used for the software code are not sacrificed from the usable memory array. The device recognizes the software code and does not alter the data stored at the address locations of the code. Byte locations of code are still usable, and don't have to be rewritten.

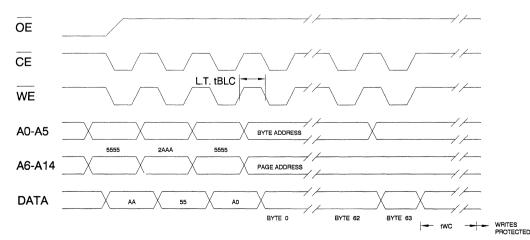
System Design Considerations

Designing systems with data integrity in mind can greatly reduce the chance of lost data. The amount of attention needed depends upon the nature of the design. Following are a few areas that might need special attention in certain designs.

External Power On Protection

Many systems will have a PON (power on) signal to control the operation of the system. Such a signal can be gated with the logic creating the \overline{OE} signal to the E^2PROM , holding \overline{OE} low when the PON signal is false. Similarly, a PON type signal could be gated with the \overline{WE} or \overline{CE} logic, forcing \overline{WE} or \overline{CE} high when writes should not be allowed.

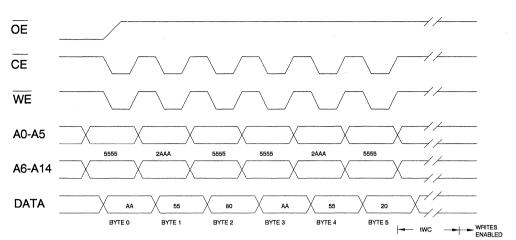
If the system does not include a PON type signal, one can be created from various programmable voltage reference devices. With such a device, the user can select the voltage supply level below which the device cannot be written. It should be noted that in many systems, using Atmel's E^2PROMS with their internal power level detection and power delay timer, no additional power on circuitry is required for the device.


Multiple Power Supplies

In systems that utilize more than one power supply, extra care must be taken during power transitions to both the E^2PROM and the devices controlling the inputs to the E^2PROM . Power on rates of the different supplies are likely to vary. Using programmable voltage reference devices to detect the power level of both supplies and forcing the \overline{OE} pin low when either line is below the desired level may be used in such situations to avoid inadvertent writes.

Memory Cards

Since memory cards are often pushed into and pulled out of systems that are already powered on, they have additional chances of inadvertent writes. If the edge connector is arranged such that power and control lines are not asserted in a prescribed manner, false writes to the device may occasionally occur depending upon how the card is inserted. To provide proper power on sequencing, a card could be designed with its control pins recessed from the edge of the card. Resisters would be placed on the card to connect \overline{CE} and WE to VCC and OE to ground. This arrangement insures that power is first applied to the device and that the control pins are not in the write state until each pin is being controlled by the host system. Variations of this technique may be used effectively in different systems; the basic idea is to guarantee systematic application of the power and control pins such that a write state is not entered upon insertion or removal of the card from the host.



Programming Socket Adapter

As the market for non-volatile memory parts in surface mount packages increases, so does the interest in simple, low cost programming socket adapters. These adapters allow users of standard programming equipment to program any package type including LCC (leadless), SOIC (Gull-wing), PLCC (J-Lead), and flatpack. The adapter plugs into the programmer in place of a 600mil or 300mil DIP package of the same part. The surface mount part to be programmed then plugs into the socket on the adapter.

The two major disadvantages of building a socket adapter are:

- Little or no support from programmer manufacturers.
- Prolonged use of socket adapters using wire-wrap pins is not recommended due to spring tension loss damage of the programmer's zero insertion force sockets. That may degrade the reliability of the programmer when the adapter is not used.

Table 1. Piece-Part Descriptions (see Figure 1)

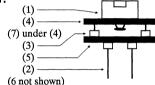
Item No.	Qty.	Description
(1)	1	Zero insertion force socket.
(2)	2	Wire wrap strips with 100mils pin centers and about 500 mils long on the end which will plug into the programmer's socket and 200 mils long on the opposite end to attach to (5) below.
(3)	2	Wire wrap strips similar to (2) above except only 100 mils and 200 mils long to connect (4) and (5) below.
(4)	1	PC board to accept the socket (1) and run traces to the edge of the card connecting to (3).
(5)	1	PC board to run traces from the card edge (3) to the two strips (2) (usually seperated by 600 mils).
(6)	20"	#16-18 insulated stranded copper wire.
(7)	1-2	$0.1\mu F$ ceramic high-frequency decoupling capacitors.
(8)	. 1	(Recommended) Pin socket board to fit between (1) and (4) to allow easy replacement of the socket (1). (8) is soldered to (4) and (1) plugs into (8). Zero insertion force sockets wear out quickly so replaceability is a good feature to have.

UV Erasable CMOS EPROM

Application Note

The advantages are more obvious. Some manufacturers charge up to \$500 for an adapter which slides or plugs into the programmer compared to about \$100 for the hardware described here.

Assembly of a custom programming adapter is very simple. Table 1 describes the typical piece parts needed. Table 2 lists sockets and piece-part sources for different package configurations. The finished adapter is about 2 inches square and 1.5 inches high.


As listed in Table 2, Emulation Technology, Inc., (408) 982-0660, can supply the adapter sockets preassembled, but we recommend you order the parts as an UNSOLDERED KIT to facilitate attaching the decoupling capacitors. The additional wire shunts (not required if a -LN kit is ordered from ET) and capacitors are essential to reduce inductive noise effects during programming and to maintain adequate programming yield. It is necessary to "beef-up" all the power (VCC, Vpp) and ground (Gnd) connections by adding short jumpers of wire (6) running from the socket (1), around the edge of the module and finally to the pins of item (2) on the bottom of the module. Bypass capacitors (7) must be soldered between Gnd and VCC or VPP (if applicable). The leads on the capacitors must be trimmed as short as possible and soldered as close to the socket (1) as possible (on the wide traces on the -LN board (4)). The other end of each capacitator will be connected to short stranded wires (6) running from the top, around the edge of the adapter, and finally soldered to the ground pin of item (2).

Assembly proceeds as follows (see Figure 1 and note that jumper wires (6) are not required if a -LN kit is used):

1) Trim the leads on the jumper wires (6) to about 3.0 inches. Solder capacitors (7) with shrink-wrap insulation on the cap leads, and jumper wires (6) under the socket (1) (or under (8) if socket replaceability is needed) in such a way that they do not interfere with attaching the socket (or (8))

- to the board (4). (If a -LN kit is used, just solder the capacitators on the wide traces provided on board (4).)
- 2) Solder the socket (or item (8)) to the PC board (4) and trim the pins on the socket flush to the board (4).
- 3) Solder the shorter pin strips (3) to the outside of board (4) with the spacers on the side away from the socket (1).
- 4) Solder the longer pin strips (2) into the other PC board (5) such that the spacers stick out of the bottom of the adapter. These longer pins will be used to plug directly into the programmer socket. Trim the shorter leads of (2) flush with the board (5) after soldering.
- 5) Solder the PC board (5) to the short pins protruding below PC board (4).
- 6) (Omit this step if a -LN kit is used.) Connect all the VCC, VPP (if applicable) and Gnd wires which were connected in step (1) to their appropriate pins on item (2) on the underside of the assembly close to the protruding spacer in such a way that they will not interfere with plugging the completed module into the programmer DIP socket. Trim these shunt wires as short as possible to minimize inductance effects.

Figure 1.

This application note has described how to build a simple and cheap programming adapter socket to support a wide variety of non-volatile memory product packages available from Atmel.

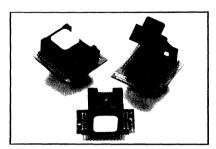
Table 2. Vendors / Part Numbers By Package Type

Package Type	Pin Count	Emulation Technology ⁽¹⁾	Socket Manufacturer	Part No.
LCC	28	AS-28-28-01-L6-LN	Textool ^(2,3)	228-4960
	32	AS-32-28-01-P6-LN	Yamaichi	IC51-0324-453
	32 (27C010)	AG-32-32-01-L6-LOW	Textool	232-5427
	44	AS-44-40-08-L6-LN	Textool	244-5292
	32 (27C010)	AG-32-32-01-P6-LOW	Textool	232-6917
PLCC	32	AS-32-28-01P-P6-LN	Yamaichi	IC51-0324-453
	44	AS-44-40-08-P6-LN	Textool	244-5292
SOIC	28	Call ET	Yamaichi ⁽⁴⁾	IC51-0282-334-1

- Notes: 1. ET can also supply finished adapter sockets built per this application note or other customer requirements.
 - 2. Made by 3M. Check with your local distributor.
 - 3. Windowed LCC packages (ie, EPROM's) require removal of the circular bumper in the Textool socket
- lid which snaps apart. Non-windowed packages (ie, E²PROM's, OTP's) do not require any socket adjustment.
- 4. See Atmel SOIC Package and Programming Socket Modification Application Note before building the SOIC adapter.

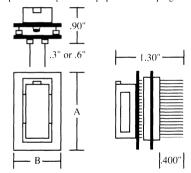
Figure 2.

LCC / PLCC / SOIC to DIP Adapter


ADAPT-A-SOCKET® LCC / PLCC / SOIC to DIP

- For programming PROMS, PLDS, EPROMS, EEPROMS, PALS†
- · Production ATE testing
- · Test points provided for each signal
- · Decoupling capacitors can be added.
- Available for LCC, PLCC and SOIC.
- · Natural for prototype processing.
- Sturdy base contact pins.
- Saves development \$\$\$.

† PAL is a registered trademark of Monolithic Memories, Inc.



Prices from \$67.00 to \$148.00

When Your Equipment is Designed for DIPs

ADAPT-A-SOCKET converts your Dual-In-Line (DIP) sockets to ceramic Leadless Chip Carrier (LCC), Plastic Leaded Chip Carrier (PLCC) and Small Outline Integrated Circuits (SOIC) sockets in just seconds. Without having to purchase expensive equipment. Just plug

Number of Top Pins	A	В	
16	1.60 Max	1.45	
20	"	"	
24	11	н	
28	н	"	
32	1.65	1.60	
32 AG*	1.70	.90	
52	2.70	1.80	

* AG-32-28-01P-6 is available for gang programmers

ADAPT-A-SOCKET into your programmer socket, burn-in board or test head and you're ready to go.

Call Factory for Cross Reference Guide

Specifications

 SOCKET (LCC, PLCC 	C, SOIC, FLAT PACK)
Body Material	Ryton
	BeCu
	30 Microinches of
	Gold over Nickel

• PHYSICAL

Lids and latches are replaceable.

 BASE (DIP, PGA, LCC 	, PLCC)
Body Material	FR4
Contact Material	BeCU
Contact Plating 30	Microinches of Gold over Nickel
EL DOWN DAY	

• ELECTRICAL

• TEMPERATURE RATING-55°C to +125°C

Test Point Specifications

Insulator Material Glass-filled i	rylon black, UL94V-0
Contact Material	Phosphor Bronze
Current Rating	1 Amp
Voltage Rating	300 VRMS
Dielectric Withstanding Voltage	500 VRMS
Insulation Resistance	>1,000 MegOHMs
Temperature Rating	-55°C to 125°C

« ADAPT-A-SOCKET is registered trademark of Emulation
Technology, inc.

Emulation Technology, Inc. • 2368B Walsh Avenue, Bldg. D • Santa Clara, CA 95051 • (408) 982-0660

TEX: 981-866

10

Atmel SOIC Package and Programming Socket Modification

Atmel's new "T Style" SOIC package design brings together Japanese SOIC reliability while still maintaining compatibility with American (JEDEC Standard) sockets. This is achieved via a simple machining of the SOIC socket lid described below.

The body width and end-to-end lead length of the Japanese SOIC packages are larger than the American standard. Thus, a Japanese SOIC package will not fit a common American programming socket. However, the American SOIC package design suffers from a smaller lead pad (footprint) which is more susceptible to soldering problems and programming yield loss due to poor electrical contact in a socket.

The Atmel SOIC design uses the Japanese style frame which provides the more desirable wider lead footprint while maintaining the American width package body mold. This combination allows the use of a widely available, high quality programing socket built for American style packages (Yamaichi No. IC51-0282-334-1; see Figure 1). That socket can be simply and inexpensively modified to fit the Atmel SOIC package at any local machine shop.

The procedure to modify the Yamaichi -334-1 socket lid is as follows: If the socket is already mounted on a board or in a programmer, the lid should be detached from the socket body. This is accomplished by using a No.55 (0.052inch) drill bit as a tool to punch out the hinge pin joining the lid to the body (see Figure 1). The lid can then be sent out for machining or used interchangeably with unmodified lids on the same socket body, allowing the user to switch between Atmel and American style SOIC packages using the same programmer. The lid machining instructions are shown in Figure 2 and simply require cutting 0.03 inches from the two inner edges of the two upstanding members on the lid. Those members press the package leads against the pins in the socket body when the fully assembled socket is closed about a package. The lid machining can be easily checked by placing an Atmel SOIC upside-down on the lid as shown in Figure 3. There should be a small amount of play in the package fit to the lid but the package should not be able to slip down into the lid recess. After machining, the lid and socket body are rejoined using the same hinge pin which was removed earlier.

UV Erasable CMOS EPROM

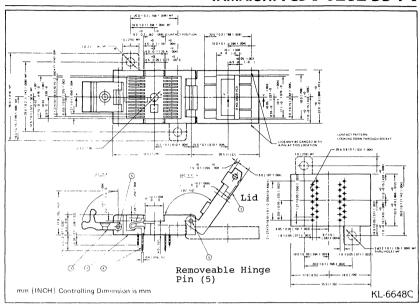
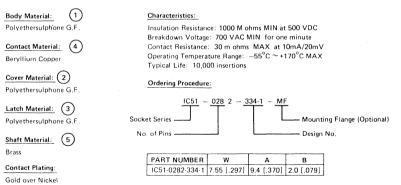
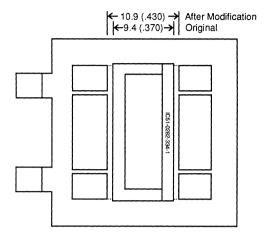
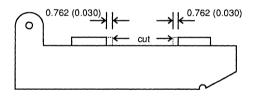

Application Note

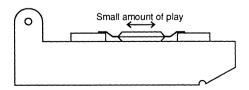
Figure 1. Unmodified Yamaichi SOIC Socket

YAMAICHI IC51-0282-334-1


Figure 1. Unmodified Yamaichi SOIC socket.

NOTE: Product sample may bear a black anodized aluminum label 3 mil thick. Adhesive is Scotch 467 or 468.


Figure 2.

Dimensions in mm (inch)

Figure 3.

10

10

EPROM Programming with V_{CC}=5V

Present day EPROMs use V_{CC} = 6-6.25V during programming. This non-5V supply level occasionally presents a system design problem with applications where a commercially available programmer cannot be used. This application note will briefly address the issues associated with using a 5V V_{CC} supply during programming.

Modern EPROM programming algorithms can be divided into two sections namely, programming and verify (or read). The programming algorithm usually proceeds by selecting the desired voltage levels and address. A programming pulse is applied followed by a verify at the elevated V_{CC} used for programming.

During programming, the MOS threshold voltage (Vt) of a previously erased Nchannel floating gate EPROM cell (Vt = 1.0-2.0V) is raised to 6.5-9.0V via the accumulation of electrons on the floating gate by hot electron injection. In normal read mode operation the address decoding circuitry in the chip selects the desired cell by pulling the gate voltage of the cell to Vcc. Since Vcc is typically 4.5-5.5V an erased cell with Vt = 1.5V would be turned on while a programmed cell with Vt = 7.5Vwould remain in an off state. If, VCC were raised above the threshold voltage for the programmed cell (i.e. $V_{CC} > 7.5V$), the cell would begin to conduct and the programmed data would no longer be valid until V_{CC} was again lowered.

The V_{CC} voltage that causes data loss on a programmed EPROM is called the programming margin. During the programming algorithm the V_{CC} level is held at 6-6.25V to make sure that each cell is guaranteed to have a programming margin at least to that level. This is verified by reading each byte twice, once during the initial programming section and again during a final read where all addresses are compared to the desired data.

The 0.5V difference between the guaranteed programming margin and the 5.5V

V_{CC} maximum supply rating provides a reliability guardband for long term data charge retention and, more importantly, for system noise immunity. Poor programming margin can lead to EPROM memory chip instability which can cause apparently slower operation due to oscillations and false reading. This in turn makes the problem directly related to the specific system noise environment and will vary from application to application.

By lowering the V_{CC} voltage to 5.0V during the programming algorithm two effects may occur. First, the part may not be able to program (i.e. programmed cell threshold=5.0V). Second, the part may not have enough programming margin to reliably work over worst case conditions over the lifetime of the part.

The first problem is rare since most manufacturers design their EPROM technology to provide a large programming margin guardband to account for statistical variations in the manufacturing process.

The second problem is also considerably reduced by the same margin guardband, but unlike the first problem which is easily detectable at the time of programming, the second problem may only occur later when the parts are in the field. The resulting field failure rate may still be acceptably small depending on the application.

The second problem may also result in a failure mode even when the nominal V_{CC} programming voltage is used. In that case standard accelerated reliability tests and statistical sampling techniques can be used to determine failure rates. But such test results only apply to parts with the same programming technique. Since those tests require great expenditure of labor, time, and units, significant reliability data for $V_{CC} = 5V$ programming is not readily available. Another way to get around the possible reliability problem is testing the parts in such a way so as to screen out any

UV Erasable CMOS EPROM

Application Note

low margin parts. This specially tested group will then have the same programming margin as parts programmed at the nominal V_{CC} even when they are programmed using $V_{CC} = 5V$.

We have discussed general EPROM operation for most currently available EPROM chips on the market today including Atmel's EPROM line. Atmel's chips specifically do not have any programming problem "of the first kind" with $V_{\rm CC}$ = 5V.

This is due to the proprietary programming circuits used in Atmel EPROMs. That same programming circuitry also makes an Atmel EPROM quite insensitive (compared to other EPROM suppliers) to the level of Vpp voltage used during programming. However, just as with other EPROM suppliers, Atmel can guarantee the same product reliability for Vcc = 5V programming as with nominal Vcc programming only if parts are specially tested.

10

Using Programmable Logic Devices

Introduction

This Application Note covers three areas:

- Where and why do I use programmable Logic Devices (PLDs)?
- How do I use PLDs?
- Software and Hardware support for Atmel PLDs.

Where Do I Use PLDs?

Any digital logic design can be done using PLDs. If you normally begin your design by:

- · Using AND and OR functions
- Thinking of 7400 series components
- Using truth tables, or
- State diagrams

you are already on the path to using PLDs.

Designing a microprocessor based system, with memory and I/O? How about all that "glue" logic you use to interface with the bus, provide chip selects, and any unusual signals required by special chips? Most of these functions are currently done with 7400 series TTL. How about using a PLD instead?

Designing a stand-alone PC board which uses a state machine to control multiple output signals? Using latches to synchronize signals? Using counters to divide down master clock frequencies? Converting parallel to serial and back again? All of these functions fit easily in modern PLD's. Most anything found in your TTL Databook can be replaced with your own, PERSONALIZED, programmable logic device.

PLD Applications

- Glue Logic
- State Machines
- Synchronization
- Decoders
- Counters
- Bus Interfaces
- Parallel to Serial
- Serial to Parallel
- Subsystems
- and Many Others

Why PLDs?

Maybe you have already heard all the wonderful reasons for using PLDs. Well, they're true! First, let's review some of the more important ones:

- Increased Integration. You can reduce the package count of your designs while simultaneously increasing the features offered by your product.
- Lower Power. CMOS and fewer packages combine to reduce power consumption.
- Improved Reliability. Lower Power plus fewer interconnections and packages translate into greatly improved system reliability.
- Lower Cost. PLDs reduce inventory costs, too.
- Easier To Use! Yes, believe it or not, once you get past the initial learning period, PLDs are easier to use than discrete logic functions.
- Easier to Change. Oops! Need to make a change? You won't need "blue wire" when you use a PLD - all changes are internal, and can be done quickly. ECNs are a snap - and system reliability is maintained!

UV Erasable Programmable Logic Device

Application Note

Let's Get Started!

Figure 1 describes the PLD design process. After having read the first part of this application note, you now have the perfect application for a PLD, right? So here you go!

How do you translate your idea into a working prototype? First, you need a computer with an editor of some kind. If you have a workstation with a schematic editor, you may input your design using familiar logic blocks. Otherwise, a line or full screen text editor, used in the non-document mode will do. An example of an ABEL™ text file is on the next page.

Next, turn the logic compiler loose on your design. First it will check for typographical errors and any inconsistencies in your specification. Most compilers then attempt to reduce your logic using standard logic reduction theory. Then, a simulator will check the test vectors you input, comparing your logic description against the predicted responses. This is an excellent way to verify your design. Check with the appropriate software manuals for more information.

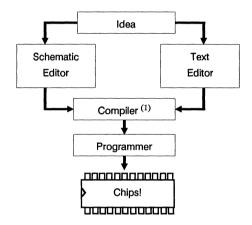
At the end of the compilation process, a "JEDEC" file is output. This file is a standard format accepted by most programming hardware. Next *download this file* to your chosen programmer.

At this point you are ready to "build" your **prototype**. Make sure the programmer has the correct information to program the device you have chosen (an Atmel PLD, of course), plug in your device, and go! Most programmers will even functionally test your prototype for you if you include test vectors in your JEDEC file.

Take your configured PLD, and plug it into your system. If you find any errors, just use your editor to make the necessary changes, and repeat the process. It's easy!

Example Design

The following design is a simple example using ABEL™ to process the logic description file and an AT22V10 as the target device. The equations are on the next page, and are a direct reproduction of the actual ABEL input file.


Each of the three allowable input formats are shown. A truth table is used to describe a simple 2 to 4 decoder, as is often

used to decode chip selects in a microprocessor system. Next, the state machine format is used to describe a divide by 4 counter. And finally, boolean equations are used to describe some random logic.

Note the test vectors used to test the device. The "c" nomenclature means that this pin has a low to high to low series of transitions for this vector. Each time this happens, the counter should increment. Also note that the counter starts in the reset condition, which is both outputs "1" for an active low output.

Now you're ready to go - Have fun!

Figure 1. PLD Design Process

Note: 1. Examples of compilers are ABEL™, CUPL™, and LOG/iC. Each of these products contains modules which allow simulation of your design. They also minimize your logic equations, which gives you flexibility in describing your design.

Software Support Versions

Atmel EPLD	Data I/O ABEL™	Logical Devices CUPL™	ISDATA LOG/iC	Atmel-ABEL™	PistoHI Pet100
AT22V10	1.3,2.0,3.0	2.0	2.3		1.XX
ATV750	3.0	2.15b	3.0	1.01	1.XX
ATV2500	3.2	3.2a		1.01	1.XX

Example Abel™ Description File

```
module X3 flag'-r3':
title 'Example using 22V10 - KHG 1/6/88';
X310 device 'P22V10';
Clk,A12,A13
                       pin
                               1,2,3;
CE0,CE1,CE2,CE3
                               20,21,22,23;
                       pin
Q1,Q2,CarOut
                       pin
                               17,18,14;
CarEn,A,B,C,D
                       pin
                               6,7,8,9,10;
Out1,Out2
                       pin
                               15,16;
X,Z,c
                    .X.,.Z.,.C.;
"Counter States
        = ^b00;
                             = ^b01;
State1
                    State2
State3
        = ^b10;
                    State4
                             = ^b11;
"The following truth table defines the 2 to 4 decoder, which decodes
" A13 and A12 into CE0, CE1, CE2, and CE3.
truth table ([A13,A12] -> [CE0,CE1,CE2,CE3])
[0,0] \rightarrow [0,1,1,1];
[0,1] \rightarrow [1,0,1,1];
[1,0] \rightarrow [1,1,0,1];
[1,1] \rightarrow [1,1,1,0];
"The following state description defines the divide by 4 counter
state diagram [Q2,Q1]
State State1: GOTO State2;
State State2:
             GOTO
                       State3;
State State3:
             GOTO
                      State4:
State State4: GOTO State1:
"The following equations are general in nature to illustrate boolean input
" format. The CarOut equation uses state 4 above to produce a carry.
Equations
CarOut =
             Q2 & Q1 & CarEn;
                                   % = AND
            A & B + C & D; "+ = OR, AND takes precedence
Out1
Out2
            A \& C + B \& D;
"The following are the appropriate test vectors
test_vectors
([Clk, CarEn, A13,A12, A, B, C, D] -> [CE0,CE1,CE2,CE3,Q2,Q1,CarOut,Out1,Out2]);
[0, 0, 0, 0, 0, 0, 0, 0] \rightarrow [0, 1, 1, 1, 1, 1, 0, 0, 0];
[c, 0, 0, 1, 1, 1, 0, 0] \rightarrow [1, 0, 1, 1, 0, 0, 0, 1, 0];
[c, 0, 1, 0, 1, 0, 1, 0] \rightarrow [1, 1, 0, 1, 0, 1, 0, 0, 1];
[c, 0, 1, 1, 0, 0, 1, 1] \rightarrow [1, 1, 1, 0, 1, 0, 0, 1, 0];
[c, 0, 0, 0, 0, 1, 0, 1] \rightarrow [0, 1, 1, 1, 1, 1, 1, 0, 0, 1];
[0, 1, 0, 1, 1, 1, 1, 1, 1] \rightarrow [1, 0, 1, 1, 1, 1, 1, 1, 1];
end X3;
```


New Programmer Support Information

		AT22V10	Fam/Pin	ATV750	Fam/Pin	ATV2500
Company	Model	Version	Code	Version	Code	Version
D-1-1/0	Model 29B LogicPak 303A-011A	V04	6528	V05	650F	
Data I/O	Model 60A	V11	6528			
	Unisite	V1.7	Menu	V2.2	Menu	2.45
Cton	Model ZL30,ZL30A	30A27	47070	30A30	47165	
Stag	Model PPZ Zm2200					
PistoHI	PET100	PP61	Menu	PP61	Menu	PP62
Logical Devices	AllPro	V1.49C	Menu	V1.48C	Menu	V1.49C
SMS	Sprint Plus	3.2H	Menu	3.2H	Menu	
SIVIS	Sprint Expert			3.2J3	Menu	3.2J3
BP Microsystems	PLD-1100	1.11	Menu	1.12	Menu	
Advin Systems	Sailor-PAL	9.72		9.71		
System General	SGUP-85	2.1		3.1		
Inlab	28A	10.03g		10.03g		

Programming Software Companies

Data I/O Corporation (ABEL™)

10525 Willows Rd. N.E. P.O. Box 97046 Redmond, WA 98073-9746 (206) 881-6444 (800) 247-5700

Logical Devices (CUPL™)

1321 N.W. 65 Place Ft. Lauderdale, FL 33309 (305) 974-0967 (800) 331-7766

ISDATA Gmbh (LOG/iC)

Haid-und-Neu- Str. 7 D-7500 Karlsruhe 1 West Germany 0721 / 69309

C/O Adams MacDonald Enterprises 800 Airport Rd. Monterey, CA 93940 (408) 373-3607 (800) 777-1202

PistoHI Electronic Tool Co.

22560 Alcalde Rd. Cupertino, CA 95014 (408) 255-2422 (800) 2PISTOHL

ACCEL Technologies, Inc.

6825 Flanders Drive San Diego, CA 92121 (800) 433-7801

Programming Hardware Companies

Data I/O Corporation

10525 Willows Rd. N.E. P.O. Box 97046 Redmond, WA 98073-9746 (206) 881-6444 (800) 247-5700

Stag Microsystems

1600 Wyatt Dr. Santa Clara, CA 95054 (408) 988-1118

PistoHI Electronic Tool Co.

22560 Alcalde Rd. Cupertino, CA 95014 (408) 255-2422

Logical Devices

1321 N.W. 65 Place Ft. Lauderdale, FL 33309 (305) 974-0967 (800) 331-7766

SMS

C/O Adams MacDonald Enterprises 800 Airport Rd. Monterey, CA 93940 (408) 373-3607

BP Microsystems

10681 Haddington #190 Houston, TX 77043 (713) 461-9430

Advin Systems, Inc.

1050-L East Duane Ave. Sunnyvale, CA 94086 (408) 984-8600

System General

510 South Park Victoria Drive Milipitas, CA 95035 (408) 263-6667

inlab

2150 I W 6th Ave Broomfiled, CO 80020 (800) 237-6759

Selecting Decoupling Capacitors For Atmel's EPLDs

Introduction

This application note provides a summary of information needed when selecting decoupling capacitors for Atmel Programmable Logic Devices. A .22µF, multi-layer ceramic or plastic dielectric capacitor is recommended for such use. Either surface-mount (SMD) or radial-leaded devices should be used. Because of their high parasitic resistance and/or inductance, tantalum, aluminum electrolytic, and axially leaded capacitors are not recommended.

When Is a Capacitor Not a Capacitor

Unfortunately, capacitors are not the perfect charge storage devices we would like them to be. Their lead wires and internal construction create parasitic resistance and inductance in series with the capacitance. These parasitics are usually referred to as ESR (equivalent series resistance) and ESL (equivalent series inductance), respectively. As will be shown, these parasitics can seriously reduce the ability of many types of capacitors to decouple supply noise in high-speed systems. Table 1 gives typical ESR and ESL values for various types of capacitors.

As shown, ESR values range from 0.01 Ohm to as high as 9 Ohms. ESL varies from 2nH for typical surface mount devices to 20nH for electrolytic capacitors. These numbers are typical values, taken from data from several manufacturers. As expected, there is some variation between manufacturers. Also, worst case specification values will be significantly higher, especially for ESR values.

How ESR And ESL Can Affect High Speed Operation

The effects of these parasitics may be best illustrated by a simple example. Consider the case of a 22V10L. In the stand-by mode, Icc current is typically only 5mA. When an input switches, Icc may temporarily go as high as 100mA. This increase in current draws charge from the local decoupling capacitor. This capacitor current will create voltage drops across the ESR and ESL parasitic elements. To see how these voltage drops can cause problems in a system, look at a typical decoupling application.

In this example the design goal of the capacitor is to keep local supply noise below .2 Volts, a reasonable expectation. This immediately sets an upper limit on ESR of 2 Ohms.

 $ESR_{max} = V_{noise} / I_{max}$ Imax = Highest Expected Capacitor Current

The upper limit on ESL is determined by how quickly the capacitor's current must change, as well as how much supply noise will be tolerated during that change. For high-speed logic devices, Icc must be able to switch from stand-by to active levels within 2 to 3 nanoseconds.

 $ESL_{max} = V_{noise} \bullet I_{max} / \Delta t$

 Δt = Time allowed for capacitor current to switch

In this example, an upper limit on ESL of 4 to 6nH is set.

Consider what can happen if these limits are exceeded. If an axially leaded multi-layer ceramic capacitor with ESR of .15 Ohm is used, the resistance drop in our

UV Erasable Programmable Logic Device

Application Note

application will not be significant (100 mA X.15 Ohm = 15 mV). However, the inductance will not allow the current to reach 100 mA in 6nsec. This can slow the logic device switching by several nanoseconds.

What Types To Use: Multi-layered Ceramic and Plastic Dielectrics

From this example, it is apparent that the parasitic elements on capacitors can easily limit their decoupling ability. Therefore, users of high-speed logic need to pick their capacitors with care. The data in Table 1 shows that the best bets are surface-mount, multi-layered ceramic (MLC) or plastic dielectrics. Of the leaded devices, only radial types are recommended.

Within the MLCs, there are different classes of dielectric. Class I has the best characteristics, but its small dielectric constant makes it impractical for decoupling values. Class II is highly recommended, as it has good temperature stability (% variation -55C to 125C) and aging characteristics (10% in 10 years). Class III, on the other hand, drops to less than 50% of its rated capacitance at 85C, and to only 25% at -55C. Class III dielectric also loses 20% of its rated value in 10 years. Therefore, Class III MLCs are only recommended for applications where temperature excursions are minimal.

Plastic dielectric capacitors in general offer performance as good as Class II MLCs. Among the dielectrics available today are polypropylene, polyester, polycarbonate, polystyrene and teflon. Capacitance variation with temperature depends on the particular material, but is generally less than +/-20% from -55C to 125C. Aging is minimal, usually less than 2% in 10 years. Unfortunately, not many manufacturers make surface mount plastic dielectric capacitors. That should change soon, as surface mount technology advances and becomes more common.

When using radial leaded cases, be sure to minimize lead lengths, as ESL increases quickly with longer leads. For example, if a capacitor has 6nH of inductance with 2 mm leads, extending leads to 5mm will increase ESL to 10nH.

What Types Not To Use: Aluminum Electrolytic, Tantalum, And Anything Axial

The design example above together with the numbers given in Table 1 show that some types are not suitable at all for decoupling high-speed devices. Specifically, the high inductance of axially leaded capacitors puts them on the "don't use" list. Also, tantalum and aluminum electrolytic devices are generally not recommended, as they have high ESR and/or ESL, even in radial and surface mount configurations.

In Any Case, know Your ESL and ESR

ESR data is often found in catalogs. However, this will normally be only low-frequency data, and ESR is frequency dependent (dropping at higher f). ESL data is not usually given in catalogs. The best thing to do is get Z versus frequency data from the manufacturer. From such a graph (with frequency up to at least 10MHz), you can extract high frequency ESR and ESL.

How Much Capacitance Do I Need

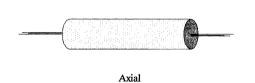
For decoupling Atmel's EPLDs a .22µF capacitor is recommended. In many cases, this will be overkill. However, determining how much less you could get by with for a particular application is dependent upon several factors. The number of PC board supply planes, the board's dielectric thickness and dielectric constant, the value (AND ESR AND ESL!) of power entry decoupling capacitors, among other things, will determine just how much is really needed. The best bet is to use a good .22µF and be safe. Besides, the more decoupling is taken care of by local capacitors, the lower the board's HF emissions will be.

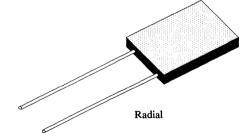
Summary

Choosing the right decoupling capacitor is an important part of high-speed circuit design. Choosing the wrong one can introduce supply noise that can slow down signal switching or even end up giving incorrect data. For decoupling Atmel EPLDs, .22uF capacitors are recommended. These should be of either multi-layer ceramic or plastic dielectric type. Surface mount devices are best, with radial leaded cases also being acceptable.

Table 1. Capacitor Types and Recommendation Ratings

Dielectric	Body	L (nH,typ)	R (ohm,typ)	Rating	Comments
	SMD	2	.02	E	Highly recommended
Ceramic II	Radial	6	.07	G	Keep leads short
	Axial	12	.07	S	Axial always = Higher L
	SMD	2	.04	G	C loss hot/cold/old
Ceramic III	Radial	6	.15+	S	
	Axial	12	.15+	X	
	SMD	2	.03	E	Hard to find
Plastics	Radial	5+	.01 +	G	Get R and L data
	Axial	12+	.01 +	X	
	SMD	13	9.0	Х	Forget it
Aluminum Electrolytic	Radial	15+	1.5+	Х	
	Axial	20	1.5	X	
	SMD	?	3.0	Х	
Tantalum	Radial	10+	1.0	X	
	Axial	15+	1.0	X	


Ratings code:


E Excellent; highly recommended

G Good; will perform well in most applications

S Satisfactory; be aware of specific vendor's device performance

X Not recommended

S.M.D.

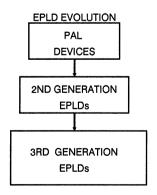
Using A Programmable Logic Device As A System Controller In an I/O Bus Based System (1)

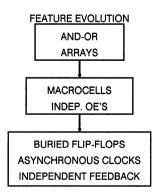
Summary

As PLDs (Programmable Logic Devices) become more complex, the amount of logic that can be placed in one device is rapidly increasing. Complete controllers and subsystems now fit into one or two PLDs. As a result, the PLD may now be connected directly to the system bus as an independent peripheral. First generation PAL® devices are difficult to use in these applications. However, recent innovations in PLD architecture enable them to be easily designed into bus-based systems.

PLD Evolution

The driving force behind PLD usage has been to integrate as much of the SSI (Small Scale Integration) logic on a packed PC board as possible. The first level of integration was made possible by the invention of the PAL device. First generation products were usually in 20-pin packages with a typical device having nine dedicated inputs and eight dedicated outputs. One


input pin was a dedicated output enable, and one pin a dedicated, common clock for up to eight flip-flops. Making one of these devices work on an I/O bus was difficult and typically was used as little more than a simple latch.


In the mid eighties, second generation devices appeared. These PLDs are generally in 24 or more pins, have independent output enable controls and "Output Macrocells." The macrocells allow the designer to configure each output independently as registered or combinatorial. However, there are still too few registers in these devices to allow the design of complex state machines. Also, these circuits lack independent feedback paths, which further reduce the usable number of registers. This also complicates the use of the output pins as true I/O structures.

UV Erasable Programmable Logic Device

Application Note

Note: 1. This article originally appeared in Northcon '86 *PAL is the registered trademark of Monolithic Memories

Recently several third generation devices (such as the Atmel ATV750) have appeared. These devices are differentiated by the following features:

Extra Registers

Up to twice the usual number. The ATV750 has 20 flip-flops.

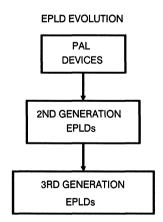
Independent Feedbacks

Feedback paths for the registers are independent of the output configuration. In addition, there are separate input paths from the I/O pads.

Asynchronous Clocks

Product terms for each flip-flop's clock allows the designer to break up the registers into different functional blocks.

Control function outputs that have no other use than to manage the other resources inside the PLD need not be brought outside the device, allowing implementation of complex state machines internally.


As PLDs have evolved, so have the applications for them. Initially, PLDs could only integrate a few SSI functions. A typical application was a special-purpose decoder or encoder. With the introduction of more flip-flops, MSI (Medium Scale Integration) functions such as state machines could be designed. Third generation devices are the first true LSI (Large Scale Integration) devices, and are capable of integrating several of the previous generation devices into one package. Now state machines can be combined with an output decoder to control peripheral functions, and still have adequate resources to interface directly to the microprocessor.

System Application

The following example is an application of the Atmel ATV750 as a peripheral resource controller. The design required a state machine, a bus interface unit and a peripheral control interface. All 10 outputs of the ATV750 are used, most in the combinatorial mode. However, the 17 required flip-flops were still available to latch the address and data buses, provide a status register, and a two-bit counter. This design would require three second generation, 24-pin PLDs, or five first generation 20-pin devices and at least two other discrete devices. In all, more than 80 per cent of the ATV750 is utilitized. The number of gates alone integrated into the ATV750 in this application is more than other 24-pin PLD's have to offer.

The System

The system described is a peripheral controller/bus interface for connecting a special-purpose, custom encryption / exponentiation chip to an 80186 microprocessor (Figure 1). The custom chip has a serial interface, and only one bi-directional pin to indicate its "busy" status. All chip functions are controlled with a set of single-purpose input pins. While simple, this interface is not directly compatible with a modern microprocessor, such as the 80186. The PLD system described not only combines the required glue logic, but also offloads the parallel-to-serial conversion from the processor. This application note will only touch on the salient features of the design, and why a third generation device is so useful.

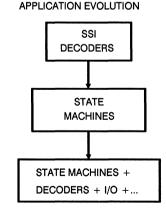
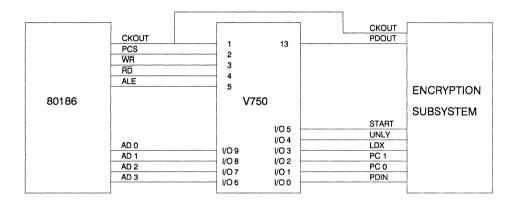



Figure 1. System Diagram

The Microprocessor Bus

The 80186 uses a multiplexed address and data bus. Several control signals, such as ALE, $\overline{\text{RD}}$ and $\overline{\text{WR}}$ tell the system when to get what type of data from the bus. The 80186 also has some internally decoded chip selects, and one is used here for convenience. The system clock is an 8Mhz signal, which is appropriate for the encryption chip and well within this PLDs timing specification. The lower four bits of the address are latched into the PLD to define the upcoming operation, which then allows the PLD to output the requested data in one read cycle of the microprocessor. These address bits are decoded to define the instruction to be executed by the PLD subsystem.

Tackling the I/O Bus

Using first and second generation PLDs, the equations for the I/O bus interface are shown in Figure 2. These equations consume 12 sum terms, 8 flip-flops, and 12 output pins. Since this requires two PLDs, another 10 input pins are required as well. When rewritten for the ATV750, only four macrocells are required, and eight sum terms and flip-flops. No extra inputs are required, as the ATV750s I/Os are true input/output pins.

The equations for the ATV750 are in Figure 3. This compaction is possible for three reasons:

- 1. The individual product terms for OE permit the pin to be used as both an input and output.
- 2. The three feedback paths allow both registers to be used while the pin status is still available to the array.
- 3. The product term for the flip-flop clock means that the sum term for one of the flip-flops can be shared between the D input and the output pin. A single ATV750 macrocell can incorporate logic which would require up to three output pins and one input pin in other PLDs.

Figure 2

- 40	==	admo for times for land for air for laid	Manteunt data
ad0		adp0 & !pcs & !rd & ai0 & !ai2	"output data
	#	!pc0 & !pcs & !rd & !ai0 & !ai2	"status "
	#	yst & !pcs & !rd & !ai0 & !ai2;	"status unly
) · · · · · · · · · · · · · · · ·	y
1.0		1.4.0.4	
ad1	==	adp1 & !pcs & !rd & ai0 & !ai2	"output data
	#	!pc1 & !pcs & !rd & !ai0 & !ai2;	" status "
		,	
10		1001 0110 0010	
ad2	=	adp2 & !pcs & !rd & ai0 & !ai2	" output data
	#	xst & !pcs & !rd & !ai0 & !ai2	" status "
	#	!pc0 & !pcs & !rd & !ai0 & !ai2	" status "
	" #		
	#	!pc1 & !pcs & !rd & !ai0 & !ai2;	" status "
ad3	==	adp3 & !pcs & !rd & ai0 & !ai2	" output data
	#	startqb & !pcs & !rd & !ai0 & !ai2;	" status "
	"	startqo & .pes & .ra & .aio & .aiz,	Status
adp0	:=	ad0 & !pcs & !wr	" load data
-	#	pdout & !ystb	" circulate y"
	 #		" circulate x"
		pdout & !xstb	
	#	pdout & !pcs0	" circulate load"
	#	pdout & !pcs1	" circulate load"
	#	adp0 & ystb & xstb & pcs0 & pcs1 & pcs	" hold data"
	#	adp0 & ystb & xstb & pcs0 & pcs1 & wr;	" hold data"
adp1	:=	ad1 & !pcs & !wr	" load data
uupi	#	adp0 & !ystb	" circulate y"
	#	adp0 & !xstb	" circulate x"
	#	adp0 & !pcs0	" circulate load"
	#	adp0 & !pcs1	" circulate load"
	#	adp1 & ystb & xstb & pcs0 & pcs1 & pcs	" hold data"
	#	adp1 & ystb & xstb & pcs0 & pcs1 & wr;	" hold data"
adp2	:=	ad2 & !pcs & !wr	" load data
uup2			
	#	adp1 & !ystb	circulate y
	#	adp1 & !xstb	" circulate x"
	#	adp1 & !pcs0	" circulate load"
	 #	adp1 & !pcs1	" circulate load"
	#	adp2 & ystb & xstb & pcs0 & pcs1 & pcs	" hold data"
	#	adp2 & ystb & xstb & pcs0 & pcs1 & wr;	" hold data"
adp3	:=	ad3 & !pcs & !wr	" load data
aup3			
	#	adp2 & !ystb	" circulate y"
	#	adp2 & !xstb	" circulate x"
	#	adp2 & !pcs0	" circulate load"
	 #		" circulate load"
		adp2 & !pcs1	
	#	adp3 & ystb & xstb & pcs0 & pcs1 & pcs	" hold data"
	#	adp3 & ystb & xstb & pcs0 & pcs1 & wr;	" hold data"
ai0	:=	ad0 & pcs	" idle state "
aio			" · 11
	#	ad0 & ale	" idle state "
	#	ai0 & !pcs & !ale;	" hold instruction"
ai1	:=	ad1 & pcs	" idle state "
air			
	#	ad1 & ale	idie state
	#	ai1 & !pcs & !ale;	" hold instruction"
ai2	:=	ad2 & pcs	" idle state "
aiz			
	#	ad2 & ale	" idle state "
	#	ai2 & !pcs & !ale;	" hold instruction"
ai3	:=	ad3 & pcs	" idle state "
ais	•	aus as pos	idio stato

Figure 3

ai0.ck	=	clk2 & !ale; ai2.ck = clk2 & !ale;	"clock instruction
ai1.ck	=	clk2 & !ale; ai3.ck = clk2 & !ale;	"clock instruction
ai0	=	ad0 & !pcs & ale	"load instruction"
	#	adp0 & !pcs & !rd & ai0 & !ai2	"output data
	#	!pc0 & !pcs & !rd & !ai0 & !ai2	"status "
	#	yst & !pcs & !rd & !ai0 & !ai2	"status unly
ai1	=	ad1 & !pcs & ale	"load instruction"
	#	adp1 & !pcs & !rd & ai0 & !ai2	"output data
	#	!pc1 & !pcs & !rd & !ai0 & !ai2;	"status "
ai2	=	ad2 & !pcs & ale	"load instruction"
	#	adp2 & !pcs & !rd & ai0 & !ai2	"output data
	#	xst & !pcs & !rd & !ai0 & !ai2	"status "
	#	!pc0 & !pcs & !rd & !ai0 & !ai2	"status "
	#	!pc1 & !pcs & !rd & !ai0 & !ai2;	"status "
ai3	=	ad3 & !pcs & ale	"load instruction"
	#	adp3 & !pcs & !rd & ai0 & !ai2	"output data
	#	startqb & !pcs & !rd & !ai0 & !ai2;	"status "
enable ad0	=	!pcs & !rd; enable ad2 = !pcs & !rd	l;
enable ad1	=	!pcs & !rd; enable ad3 = !pcs & !rd	l;
(adp equati	ons remain the same	as before, but are now buried in the macro	cell)

Figure 4

!pc0	=	!clk22 & !pcs0;	state diagram [count,cn1,cn0]	
			state s0: case (ai3 & start):ss1;	
!pc1	=	!clk22 & !pcs1;	(ai2) : s1;	
			(ai0 & !ai2) : s1;	
!pcs0	:=	ai2 & ai0 & start	endcase;	
	#	!cn0 & count & !pcs0	state s1:	GOTO s2;
	#	!cn1 & count & !pcs0	state s2:	GOTO s3;
			state s3:	GOTO s0;
!pcs1	:=	ai1 & ai2 & start	state ss1:	GOTO ss2;
	#	!cn0 & count & !pcs1	state ss2:	GOTO ss3;
	#	!cn1 & count & !pcs1;	state ss3:	GOTO s0;

• The Chip Interface

The encryption chip is loaded and unloaded serially, four bits at a time in this design. The equations for the interface logic are in Figure 4. Also in this figure is a simple state diagram for the two bit counter required for this design. This state machine is buried, and its decoded outputs are used to control the serial transfers.

Starting the Peripheral Chip

To begin execution in the peripheral chip, a bi-directional signal named "start" is asserted. This is an active low signal. The controller must assert this signal low for four clock cycles. Then the exponentiation chip will hold this line low until it has completed its operations. An external pull up resistor is required. The internal flip-flop, whose output is named "stint", contains the state of the peripheral. This is used to signal the microprocessor that the subsystem is busy when the processor reads the ATV750's status.

Multiplexing Flip-Flop Inputs and I/O Pins

One I/O pin / flip-flop combination can be used to store the state of the encryption chip and to output this to the peripheral. This is accomplished by multiplexing the sum term output between the flip-flop's D input and the output buffer. The sum term and the OE product term are active to begin the encryption chip's exponentiation cycle. After the state machine counter finishes counting, the output is put into the high impedance state. If the external chip has begun

its operation correctly, it will then hold the pin low. Now the state of the I/O pin is used as the D input to the flip-flop, but not output because the OE term is off. The multiplexed macrocell is in Figure 7. The following simple equations are all that is required to implement this logic:

enable start = !count;

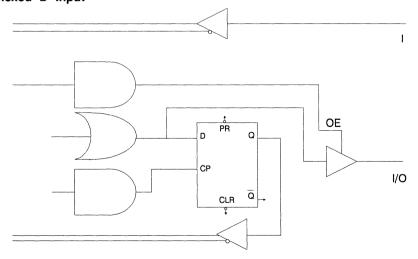
stint: =!count

#!start & count;

start.c = clk2;

Conclusion

The application of a third generation EPLD in an I/O bus based system demonstrates the usefulness of the following features:

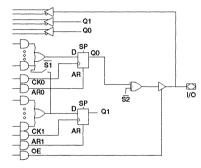

Buried Registers

Independent Feedback Paths

Asynchronous Register Clocks.

This design consists of roughly 600 gates, which fit into a ATV750 gate complexity EPLD with an 80 per cent utilization factor. Due to the usefulness of the new features and their implementation in the macrocell of the ATV750, this design, which would have required 3 second generation devices, could easily fit into one ATV750.

Mulitplexed "D" Input


Using the Buried Nodes and Feedbacks

Introduction

Conventional EPLD I/O pin logic forces you to choose either a dedicated output pin or a dedicated input pin. This renders the output register unusable. Multiple feedback paths and individual product term controlled output enables (OEs) make the

ATV750 I/O pins truly bi-directional. An ATV750 I/O pin can be configured as a dedicated input, a dedicated output, or an input and output bus interface pin. No registers are sacrificed in the process. All registers can be buried.

Registered Output

Buried Registers

To use the buried register outputs, they must have a unique name. The compilers need to know which register to associate with each signal name. Each compiler uses a different method for assigning node numbers to signal names. Table 1 shows how to assign these names for each compiler. Table 2 lists node names for each compiler. Note: Q1 need not be defined if Q0 is sharing Q1's product terms.

ABEL, Atmel-ABEL, CUPL, and Tango-PLD: If the output is combinatorial or if Q0 shares the product terms of Q1 in a registered output, the Q1 node does not

need a name. Name Q1 nodes with the proper node numbers and refer to Feedback Options on how to access Q0s and Q1s.

LOGiC: LOGiC requires you to name the Q0 nodes if you are using the pin as an input and still using Q0, or if you are using OE to make the pin an input and an output.

PistoHl: No node numbers are necessary. Q0 nodes are named by declaring

: nodename0 Q0! pinname;

Q1 nodes are named by declaring : nodename1 Q1! pinname;

Table 1. ATV750 Node Declaration

Product	Example	Node	Declaration	Comments
ABEL	anyname	node	26;	
Atmel-ABEL	anyname	node	26;	
CUPL	pinnode	25 =	anyname;	
LOGIC	anyname	=	1;	Following key word *NODE
PistoHI	anyname	Q0!	pinname;	Use Q1! for Q1 declaration
TangoPLD	anyname			In PUTPART place "anyname" as the 25th signal

UV Erasable Programmable Logic Device

Application Note

Table 2. ATV750 Node Numbers

ATV750	ABEL	Atmel-ABEL	CUPL	LO	GiC	TangoPLD
Pin Numbers	Q1	Q1	Q1	Q0	Q1	Q1
14	26	26	25	2	1	25
15	27	27	26	4	3	26
16	28	28	27	6	5	27
17	29	29	28	8	7	28
18	30	30	29	10	9	29
19	31	31	30	12	11	30
20	32	32	31	14	13	31
21	33	33	32	16	15	32
22	34	34	33	18	17	33
23	35	35	34	20	19	34

ATV750 Feedbacks

Each third party product uses a slightly different syntax for accessing the feedback paths (refer to Table 3). Whenever the Q0 register is used and the OE term is disabled or conditionally disabled, care must be taken to ensure the correct feedback path is referred to in your equations. Version 1.11

of Tango-PLD does not support the Q0 feedback. This syntax may change with each new software revision. Please check with the specific software manufacturer or Atmel EPLD Applications if you are experiencing unexpected results.

Feedback Options: Registered Output

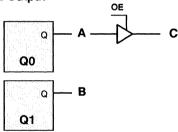


Table 3. ATV750 Feedback Paths

	Α	В	С
ABEL	pinname.Q	nodename	pinname
Atmel-ABEL	pinname.Q	nodename	pinname
CUPL	pinname	nodename	pinname.IO
LOGIC	nodename0	nodename1	pinname
PistoHI	nodename0	nodename1	pinname
TangoPLD	no support	nodename	pinname

ATV2500 Node Numbering

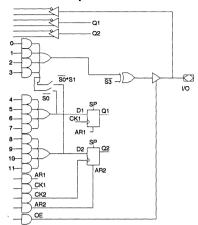
With an additional OR, the ATV2500 logic cell becomes even more versatile than the ATV750 logic cell. Under certain situations, an additional set of buried registers must be defined. The same syntax used for ATV750 (Table 3) can be used to name the ATV2500 buried registers. The node numbers are listed in Table 4.

ABEL, Atmel-ABEL, CUPL, and TangoPLD: Q1 need not be named when the output logic cell is configured as 8 or 12 term combinatorial output. Q2 need not be named when

output logic cell is configured as 12 product term combinatorial or registered output. Name Q1 and Q2 nodes with the proper node numbers and refer to Feedback Options for selecting the correct feedback paths.

PistoHl: No node numbers are necessary.

Q1 nodes are named by declaring


: nodename1 Q1! pinname;

Q2 nodes are named by declaring

: nodename2 Q2! pinname;

10

Combinatorial Output

Registered Output

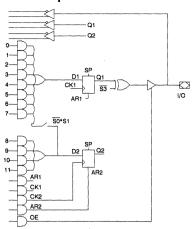


Table 4. ATV2500 Node Numbers

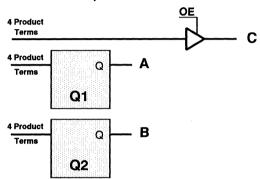
ATV2500	АВ	EL	Atmel	-ABEL	CU	PL	Tang	oPLD
Pin Numbers	Q1	Q2	Q1	Q2	Q1	Q2	Q1	Q2
4 ⁽¹⁾	217	41	217	41	65	41	41	65
5 ⁽¹⁾	218	42	218	42	66	42	42	66
6 ^(2,3)	219	43	219	43	67	43	43	67
7 ⁽³⁾	220	44	220	44	68	44	44	68
8	221	45	221	45	69	45	45	69
9	222	46	222	46	70	46	46	70
11	223	47	223	47	71	47	47	71
12	224	48	224	48	72	48	48	72
13	225	49	225	49	73	49	49	73
14	226	50	226	50	74	50	50	74
15	227	51	227	51	75	51	51	75
16	228	52	228	52	76	52	52	76
24	229	53	229	53	77	53	53	77
25	230	54	230	54	78	54	54	78
26	231	55	231	55	79	55	55	79
27	232	56	232	56	80	56	56	80
28	233	57	233	57	81	57	57	81
29	234	58	234	58	82	58	58	82
31	235	59	235	59	83	59	59	83
32	236	60	236	60	84	60	60	84
33	237	61	237	61	85	61	61	85
34	238	62	238	62	86	62	62	86
35	239	63	239	63	87	63	63	87
36	240	64	240	64	88	64	64	88

Notes: 1. Due to the memory limitations of PC/MS DOS, ABEL PC versions 3.0 to 3.2 and Atmel-ABEL 1.01 do not support the macrocells associated with pin 4 and 5.

These pins can only be used as inputs.

- 2. These same versions of ABEL and Atmel-ABEL (see above) do not support the AR terms of Q2 associated with pin 6.
- These same versions of ABEL and Atmel-ABEL (see above) do not support the Synchronous Preset of pin 6 and 7.

ATV2500 Feedbacks


Each third party product uses a slightly different syntax for accessing the feedback paths (refer to Table 5). Whenever the Q1 register is used while the OE term is disabled or conditionally disabled (e.g. during read cycles), care must be taken to ensure the correct feedback path is used. For example, a counter can lose its count if you use the pin feedbacks rather than the Q1 register feedbacks and decide to disable the OE for the read cycle.

The current version of Tango_PLD cannot support the Q1 feedback when the I/O pin is configured as an input (OE disabled) or when OE is conditionally disabled.

This syntax may change with each new software revision. Please check with the specific software manufacturer or Atmel EPLD Applications if you experience unexpected results.

Feedback Options:

Combinatorial Output

Registered Output

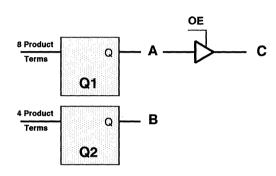


Table 5. ATV2500 Feedback Paths

		Α	В	С
ABEL	Registered	pinname.Q	nodename2	pinname
	Combinatorial	nodename1	nodename2	pinname,
CUPL	Registered	pinname	nodename2	pinname.IO
	Combinatorial	nodename1	nodename2	pinname
Tango-PLD	Registered	no support	nodename2	pinname
	Combinatorial	nodename1	nodename2	pinname

10

Interfacing the AT76C10/E to a Microcontroller

Introduction

The AT76C10/E is a programmable gain amplifier integrated with a programmable telephone line group delay equalizer on a single chip. Its serial interface enables it to be packaged in an economical and spacesaving 16-pin DIP. The AT76C10/E is especially suited for modems and data communications equipment where it can compensate for line gain variations and group delay distortions. In the E²PROM version of the chip, the AT76C10E, a particular gain or delay configuration can be stored in the device's non-volatile memory and recalled later by the user.

The programmable gain and group delay responses are controlled and configured by a serial 7-bit configuration code. The purpose of this application note is to illustrate how this serial configuration can be accomplished in a microcomputer environment, more specifically, utilizing a microcontroller (the Intel 8031AH) to interface to the AT76C10/E. Such an interface enables the gain and delay responses to be changed or updated in real-time (for the AT76C10) as well as saved into the E²PROM (for the AT76C10E).

As shown in Figure 1, the Intel 8031AH, an 8-bit latch, a transmission line receiver, and external memory form a complete and versatile system to generate control and data bits for the AT76C10/E, An RS-232C cable can connect this system to the serial port of a microcomputer (e.g. IBM PC) or TTY terminal. The serial port transmits data to the microcontroller, which, under software control, outputs them as serial bits to the AT76C10/E for controlling the gain and delay outputs as desired by the user. As will be explained below, an evaluation board implementing the system just described has been developed by Corporation following guidelines in this application note.

The Hardware

The 8031AH has four 8-bit I/O ports: P0, P1, P2, and P3. Ports P0 and P2, however, are used for external memory addressing when external memory is present (as is the case here) and are thus unavailable as general-purpose I/O ports. This leaves all of the 8 bits of port P1 and five bits of port P3 available for I/O. P1.0, P1.1, and P1.2, are used to produce respectively, via software instructions, the signals \overline{CS} , \overline{WE} , and DIN necessary to program the AT76C10/E.

The 8-bit latch acts as the low-order address latch/data buffer for the signals between the P0 I/O port of the microcontroller and the external memory. The line receiver enables the microcontroller to receive data signals from the microcomputer or TTY terminal via the RS-232C link.

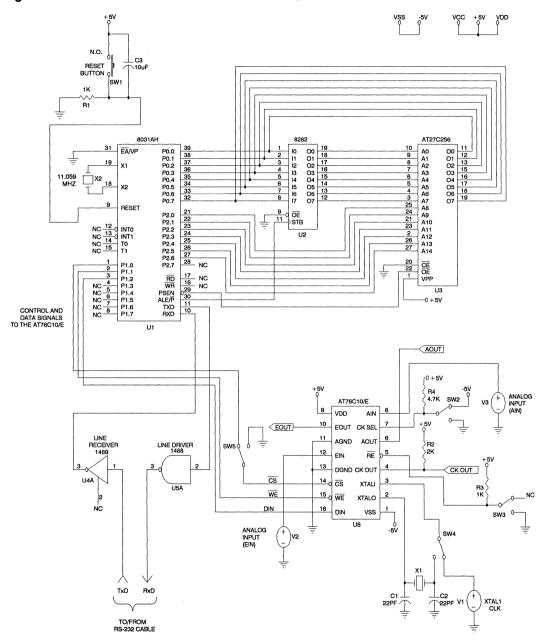
External memory consists of the AT27C256 EPROM, which houses the system software. This firmware directs the microcontroller to send out the necessary timing and data signals to configure the AT76C10/E. If additions or changes need to be made to the firmware code the AT27C256 can be easily crased via ultraviolet (UV) light and reprogrammed.

The Software

The software programs the 8031AH to generate the correct timing waveforms and to strobe desired data bit patterns into the AT76C10/E. This is achieved as illustrated by the programming flowchart in Figure 2.

First the serial port data register and timer 1 need to be initialized with proper values depending on desired transmission parameters and baud rate. A 9600-baud data transmission rate has been used in this application. As soon as the accumulator receives a character from the

CMOS Programmable Amplifier Delay


Application Note

Equalizer

Figure 1. Microcontroller Interface to the AT76C10/E

The Software (Continued)

keyboard the data is sent out bit by bit (LSB first) as data bits through the carry flag to the serial data input pin of the AT76C10/E. Appropriate delays and specific bit-manipulating instructions then control and synchronize the transitions of $\overline{\text{CS}}$ and $\overline{\text{WE}}$ with the data bits so that the writing waveforms conform to timing specifications defined in the device data sheet. Seven rising edges of $\overline{\text{WE}}$ strobe in a complete data word in a single write cycle.

The complete programming code is given in Figure 3. It directly implements the flowchart in Figure 2.

Using The AT76C10/E Evaluation Board

As previously mentioned, an evaluation board integrating the hardware and software subsystems covered in this application note is available from Atmel Corporation. This board includes a 5.25" disk (IBM-PC format) with gain/delay programming menus and is designed to enable the user to quickly and easily evaluate the functionality and performance of the AT76C10/E through a standard serial interface to an IBM PC or compatible computer. Through the board one can cycle through all the individual gain/delay steps in each of the two amplifiers and the group delay equalizer.

Figure 2. 8031 Programming Algorithm

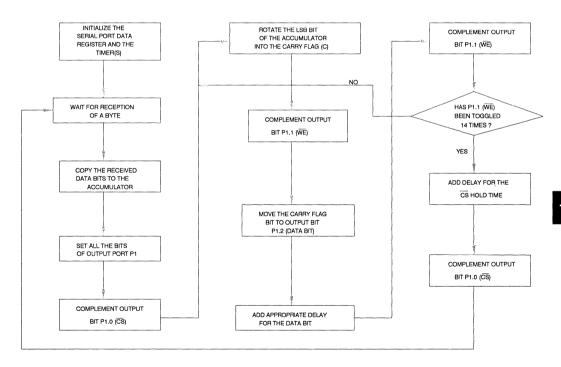


Figure 3. Program Code for AT76C10/E

******	*****	******	*****
*		for the AT76C10/E	*
*	Evaluatio	n Board	*
;* ·*	Writton by: T	a Wei (David) Lee	*
*		TMEL Corporation	*
, ;*******	*****		*****
; 8031 control prog	ram for program	iming the AT76C10/E	
; Constant Definition		orru	
ST RST	EQU EQU	OFFH OOH	
DONE	EQU	14	; 14 edges (falling and rising) for WEB
UARTMODE	EQU	01010000B	; Set UART for: start, 8 data bits, stop
TMODLOAD	EQU	00100001B 87H	; Initialization word for the TMOD register
PCON RELOAD	EQU EQU	-3	; Power Control Register ; Reload rate for 9600 baud
DATADLY	EQU	зн	; Delay for a valid data bit
CSBHDLY	EQU	4H	; Delay for CSB hold time
CSBIDLE	EQU	2	; Delay before starting another CSB cycle
WEBIDLE	EQU	1	; Delay before starting another WEB cycle
; Start of the progra START:	am: ORG	00H	
OTATI.	LJMP	BEGIN	
; Initialize the serial	port data regist	er for 8-bit UART mode:	
BEGIN:	ORG	100H	; Start of the code
	MOV MOV	P3,#ST PCON,#RST	; Set the entire P3 I/O register ; No double baud rate wanted !
	MOV	SCON,#NST	; Initialize the register
· Initializa timar 1 fr		rate of 32x9600 Hz.	,
; (T0 is used as a c	ascaded 16-bit of	ounter.)	
, ,	MOV	TMOD,#TMODLOAD	; Initialize the TMOD register
	MOV	TH1,#RELOAD TR1	; Load the reload rate
	SETB		; Turn Timer 1 ON
; Receive a charact RECEIVE:	er (byte) from th JNB	e serial port: RI,\$; Wait for a character
NEOLIVE.	CLR	RI	, wait for a orial actor
	MOV	A,SBUF	; Copy the byte to the accumulator
; Start the program	ming sequence:		
; First cycle:	MOV	R1,#RST	; Reset the WEB counter
	MOV	P1,#ST	; Set all bits of output port 1
	CPL	P1.0	; Toggle CSB low
	AJMP	CONTINUE	D. I. d
MORE: AGAIN1:	MOV NOP	R2,#WEBIDLE	; Delay to generate the proper WEB high time
AGAINT.	DJNZ	R2,AGAIN1	
CONTINUE:	RRC	Α	; Rotate the LSB bit of the accumulator
	1101/	D4 0 0	; into the carry flag
	MOV CPL	P1.2,C P1.1	; Output one data bit ; Toggle WEB
	INC	R1	; Increment the WEB counter
; Add delay for a d		۵٠	
, rad dolay lot a di	MOV	R0,#DATADLY	; Load the delay into the counter
	DJNZ	R0,\$; If not done yet, wait some more
; Continue the data			
	CPL	P1.1	; Toggle WEB
	INC CJNE	R1 R1,#DONE,MORE	; Increment the WEB counter ; Have 7 data bits been strobed in ?
. Add dolou for the		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
; Add delay for the	MOV	R0,#CSBHDLY	; Load the delay for TCH
	DJNZ	R0,\$; Delay finished ?
; End of one progra	ammina cycle:		
, one progn	CPL	P1.0	; Toggle CSB high
	MOV	R2,#CSBIDLE	; Waiting time for another cycle start
AGAIN2:	NOP DJNZ	R2,AGAIN2	
	AJMP	RECEIVE	; Wait for another byte reception
	END	START	; End of the program

Product Information	
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	3
CMOS EPROMs	4
High Speed CMOS PROMs	5
CMOS SRAMs	G
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	14

CONTENTS

Section 11

Quality and Reliability	
Continuous Improvement System	11-3
Quality and Reliability Assurance	11-7

11-2

Introduction

When one of the recipients of the 1989 Malcolm Baldridge National Quality Award accepted his award, he stated: "We realize that we are in a race without a finish line." The goal is "to improve constantly and forever the system of production and service, to improve quality and productivity, and thus constantly decrease costs."

The journey of continuous improvement involves the use of various techniques such as statistical process control (SPC), statistical design of experiments (DOE), quality functional deployment (QFD), just in time (JIT), and many others.

The mind-set to use these techniques and to support the requirements of a continuous improvement system is just as important as the tools themselves. This is the key responsibility of the executives and managers and employees of Atmel Corporation.

Our use of these techniques throughout the Corporation and not just in manufacturing is proof of Atmel's commitment to continuous improvement. For example, it is

just as important to properly enter a customer's order as it is to manufacture it. Errors in either process result in a dissatisfied customer.

Statistical Process Control (SPC)

SPC can be divided into either statistical or non-statistical techniques. Several statistical techniques involve the mathematical portrayal of data in graphical form to display whether a process is in control or out of control (see Figure 1). Although this sounds complicated, the procedures are very easy for operators to follow.

Other statistical techniques involve determining whether a process is capable of statistically meeting the specification limits or not. Usually called the capability indices of the process, these *figures of merit* for processes are becoming widely accepted.

The non-statistical techniques are steps in problem solving. These begin with methods to collect and portray data to achieve an understanding of the process.

Continuous Improvement System

Figure 1. Examples of process control charts

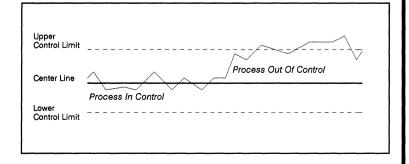
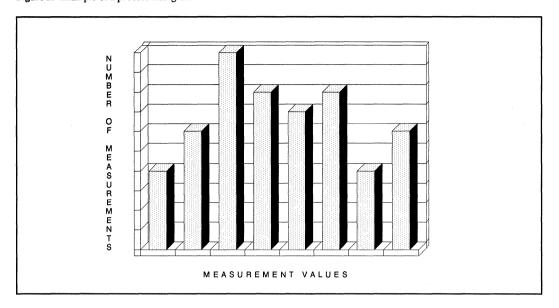



Figure 2. Example of a process histogram

Checklists, trend charts, and histograms are good examples of these techniques (see Figure 2).

The non-statistical problem solving techniques include the Pareto chart. The Pareto chart reduces the number of problems down to the *significant few* that contribute the majority of the problems.

Once those significant few are identified, the use of the Cause and Effect diagram identifies the probable causes of the problem and becomes the outline for solving it.

Statistical Design

Of Experiments (DOE)

The DOE technique has been used for many years by the agricultural and chemical industries. Only recently has it made its presence felt in the *high-tech* industries.

It is perfectly suited to this industry because it has the capability to handle large numbers of variables simultaneously and to determine statistically significant variables, interactions between variables, and the amount of variation they can cause in a process or product.

When DOE is coupled with computer-aided design and process models, it can predict these relationships and outcomes without running actual experiments. This in turn reduces the time and cost of designing new products and processes or improving existing ones.

Quality Functional Deployment (QFD)

The best controlled and capable process is only as good as the product that is designed to go through it. If the design does not meet the customer's needs to begin with, there is nothing the process can do to improve it. And that is where QFD steps in.

QFD is a procedure which involves the customer in the definition and design of a product. The customer is a key member of the company team which includes marketing, design & development, manufacturing and quality departments.

The key to this technique is looking at the inter-relationships between critical variables controlled by each member of the QFD team early in the design process. Identifying and taking action on these variables enhances the design and insures that "glitches" are eliminated.

Just-In-Time (JIT)

Continuous improvement can achieve reduced production cycle times and and inventory levels. However, without a system to plan and oversee these reductions, the existing system may not adjust to the improvements. A JIT system insures that excess production time and inventory levels are reduced.

Consortium for Continuous Improvement

Atmel is a participating member of a consortium of major semiconductor companies. Its purpose is to create guidelines and workshops for implementing a continuous improvement system.

The consortium will publish a continuous improvement document as well as accompanying workshop materials.

Malcolm Baldridge National Quality Award

One of the best guides for company commitments towards continuous improvement lies within the criteria for the Baldridge Award. The Baldridge criteria are not a set of tools or methodologies for improvement, but rather an assessment of a company's continuous improvement system.

The major criteria evaluated by the Baldridge committee are:

- Customer Satisfaction
- Corporate Leadership
- Strategic Quality Planning
- Quality Assurance of Products and Services
- Quality Results
- Human Resource Utilization
- Information Analysis

Atmel's management team is integrating the Baldridge criteria into its continuous improvement system and the Company has announced that it will apply for the Baldridge Award.

Conclusion

Atmel is committed to the process of continuous improvement. This is most clearly displayed by its corporate-wide implementation of continuous improvement, its dedication to win the Baldridge Award, and its participation in the continuous improvement consortium.

An Executive Decision

Atmel's corporate goal is to meet or exceed our customers' requirements 100% of the time.

Atmel guarantees and tests product quality at all levels and all critical paths in the manufacturing process. Quality assurance and control are the responsibility of the executive staff reporting directly to the chief executive officer. The concern with quality begins with the initial product inception, and never ends. Atmel quality is critical for the entire life of any system that our products become a part of.

Design For Quality And Reliability

The Atmel design staff emphasizes quality and reliability throughout the design cycle. Design rules are established by experiment to insure manufacturability and reliable performance over time. All devices are designed with proprietary anti-latchup structures to eliminate the necessity of using epitaxial starting materials with their inherent higher defect densities. Special electro-static discharge circuits are incorporated to protect package pins during handling and insertion.

Each product family has specific quality and reliability issues that require special design consideration. Non-volatile memories that depend on charge storage must allow for the testing of charge retention to insure long term data retention. E²PROM devices are electrically alterable, and additional circuits are incorporated to maintain data integrity during times of external signal instability (such as system power-up or failure). High performance CMOS analog designs depend on stable threshold voltage and transistor gains and must be designed to minimize manufacturing variations. Since operation frequency is a critical parameter in an EPLD device, Atmel incorporated two levels of metal interconnect into its process to allow the use of conservative transistor technology.

Eliminating inadvertent writes might be considered a system design issue, but Atmel designed write protect features into its E²PROM family. Active on board circuits sense VCC and prevent writes for 5ms after VCC has increased above 3.8 volts. Three line write control (CHIP ENABLE, WRITE ENABLE, AND OUTPUT ENABLE must all be held in their active states to initiate a write) and noise pulse filters (pulses less than 15ns in duration are ignored) on the control lines are incorporated to prevent false write commands. A software key (user activated) can require that a specific sequence of addresses and data be issued to the chip before a write is activated.

The "Bathtub" Failure Curve

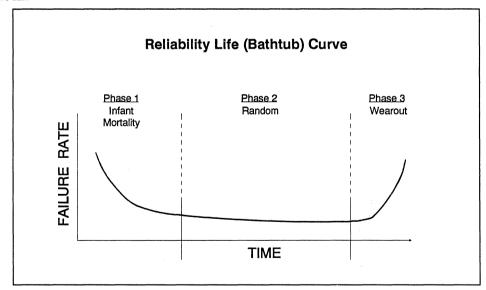
It is well known that integrated circuits exhibit a classical "bathtub" failure curve (Figure 11.1). Early relatively high failure rates (Phase 1) are due to process anomalies and are found during Atmel's outgoing production test. Devices which are shipped to customers then exhibit a long period of stable very low failure rates (Phase 2) which are random in time and occurrence. Finally, other failure modes will become predominant (such as metal electromigration, voltage threshold shifts, or moisture related corrosion) and the failure rate will again increase as the chip "wears out" (Phase 3).

Atmel production test flows have been developed to insure that Phase 1 failures are found before shipment. Special test structures are incorporated on chip which correlate to these failures. Specific temperature, voltage, and time dependant tests are performed to guarantee the quality of the outgoing products.

Quality and Reliability Assurance

Atmel guarantees non-volatile data retention for greater than 10 years. A high temperature bake has been shown to be a good stress test for data retention⁽¹⁾, and 100% of Atmel's products are tested in this way. In addition, periodic 1000 hour monitor tests routinely show retention life times in excess of 50 years.

Since E²PROM memory circuits have high transistor densities, Phase 2 failures are often dominated by write cycle induced oxide integrity faults. Atmel has incorporated internal error correction into its E²PROM product line to minimize this type of failure. Each byte (8 bits) of data is internally stored as a 12 bit word generated using a modified Hamming code, and any single bit failure is automatically corrected during the read cycle. Failure rates for chips incorporating internal error correction are improved dramatically. For example, at the point where the cumulative failure rate for a 64K bit uncorrected E²PROM has reached 0.1 (10% of the chips have exhibited failures), an AT28C64 corrected circuit would exhibit a failure rate of only 2 parts per million.


Phase 3 failure modes are dependant on the system application of the specific circuit. Long term reliability studies and failure analyses are used to identify potential failure modes and control them through processing, layout rules, packaging, and design. To illustrate, all E²PROM's exhibit a finite number of write cycles (defined as endurance) due to electrons slowly becoming trapped in the tunneling oxide. The number of write cycles that occur before this failure mode predominates is dependant on such things as the clean-liness of the process and the thickness and integrity of the oxide film. The Atmel process is based on a "thin" (less than 100 Angstroms) tunnel oxide to minimize the effects of trapping and thus increase the number of cycles.

Manufacturing For Quality and Reliability

All Atmel products are manufactured to the standards of Military Standard 883C, Class B through wafer fabrication and assembly as shown in Figure 11.2. The products then follow different test flows that correspond to the different classes of products that Atmel offers.

- (1) Commercial Grade. This product follows Test Flow (1), Figure 11.3 and is guaranteed over the temperature range of 0° C to $+70^{\circ}$ C.
- (2) Industrial Grade. This product follows Test Flow (2), Figure 11.4 and is guaranteed over the temperature range of -40°C to +85°C.
- (3) Military Grade. Three classes of military products are offered by Atmel (MIL-STD-883C, Class B standard product, Standard Military Drawing (SMD) product, and Source Control Drawing (SCD) product). The Military Section discusses test procedures for these products in detail.

Note: 1. R. E. Shiner, J. M. Caywood, B. L. Euzent, "Data Retention in EPROMs", Proceedings International Reliability Physics Symposium 18, (1980), P. 238.

The Payoff

The focus of Atmel's quality and reliability efforts is the customer and his system. The common goals of highest field reliability and lowest system life cycle cost are achieved through close working relationships using programs such as "ship to stock", "just in time", and "failure trend analysis". Under these programs incoming Atmel circuits go straight to the customers' workfloors — they do not go through an in-

coming inspection cycle. This, of course, lowers manufacturing costs and is a testimony of the trust that has been established. In addition, long term field failures are analyzed so that corrective action plans can be implemented. Atmel has developed programs such as these with many major customers.

Figure 11.2

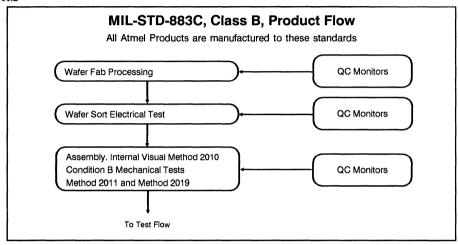


Figure 11.3

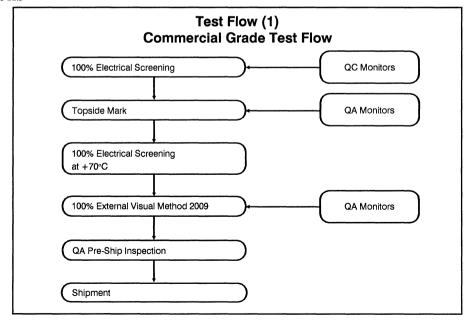
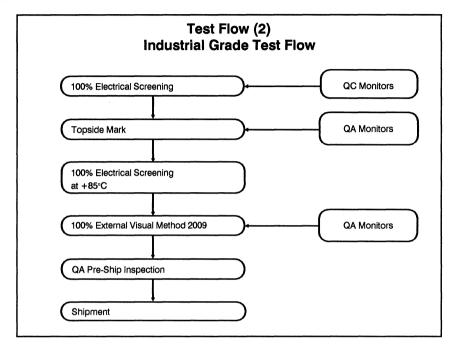



Figure 11.4

Product Information	1
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	3
CMOS EPROMs	4.95
High Speed CMOS PROMs	5
CMOS SRAMs	6
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	14

CONTENTS

Section 12

Military	
Program Overview	12-3

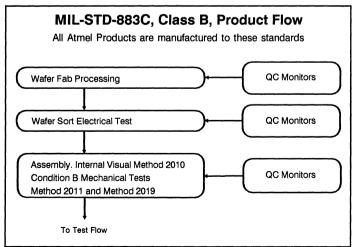
Military

Program Overview

All Atmel products are manufactured to the standards of Military Standard 883C, Class B through wafer fabrication and assembly, as shown in Figure 12.1. Military products then follow the test flow shown in Figure 12.2.

Quality Conformance Inspection Data

As shown in Table 12.1, Atmel performs Groups A, B, C, and D tests in compliance with Military Standard 883C, Class B. Groups A and B are performed on each inspection lot for MIL-STD-883C, Class B products. Groups C and D are periodic inspections as defined in MIL-M-38510. Pre-conditioning data, Group A, Group B, Group C, and Group D generic data are available for customer procurement.


Military Product Classes

Atmel offers three classes of military products:

(1) MIL-STD-883C, Class B products are fully compliant to MIL-STD-883C Paragraph 1.2.1, with no exceptions. A Certificate of Compliance (C of C) is enclosed with each shipment of MIL-STD-883C, Class B product.

- (2) Standard Military Drawing (SMD) products are fully compliant to MIL-STD-883C Paragraph 1.2.1 with optional additional tests as specified in the applicable Standard Military Drawing as approved by DESC. Table 12.2 lists currently approved Atmel SMD parts, organized by Atmel part type. Table 12.3 lists currently approved Atmel SMD parts, organized by SMD number.
- (3) Source Control Drawing (SCD) products are fully compliant to MIL-STD-883C Paragraph 1.2.1 with optional additional tests as specified by the specific customer specification. Atmel must review and accept a customer Source Control Drawing prior to order acceptance to assure compliance.

Figure 12.1

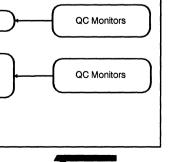


Figure 12.2

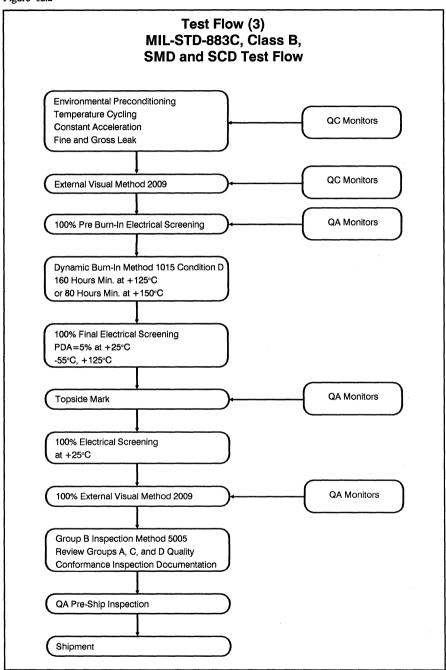


Table 12.1 Military Standard 883C, Class B Tests

Group A: Electrical Tests Performed On Each Lot								
MIL-STD-883C Method 5005 Screen Table 1 Subgroups LPTD								
Static Tests at +25°C	1	2						
Static Tests at +125°C	2	2						
Static Tests at -55°C	3	2						
Dynamic Tests at +25°C	4	2						
Function Tests at +25°C	7	2						
Function Tests at +125°C	8A	2						
Function Tests at -55°C	8B	2						
Switching Tests at +25°C	9	2						
Switching Tests at +125°C 10 2								
Switching Tests at -55°C	11	2						

Group B: Assembly Integrity Tests Performed On Each Lot							
Screen	MIL-STD-883C Test Method	Conditions	Quantity (Accept No. or LTPD)				
SUBGROUP 2 Resistance to Solvents	2015	Top and Bottom Marks	4(0)				
SUBGROUP 3 Solderability	2003	+245°C +/-5°C	10				
SUBGROUP 5 Bond Strength	2011	Condition D	15				

Group C: Die Related Tests Performed Per MIL-STD-883C Paragraph 1.2.1							
Screen	MIL-STD-883C Test Method	Conditions	LTPD				
SUBGROUP 1 Steady State Life Test	1005	Condition D	5				
End Point Electricals	Subgroups 1, 2, 3, 7-11	15					

Table 12.1 Military Standard 883C, Class B Tests (continued)

Group D: Package Related Tests

Performed Per MIL-STD-883C Paragraph 1.2.1 By Package Type, Assembly Location, and Exterior Lead Finish

Screen	MIL-STD-883C Test Method		Quantity (Accept No. or LTPD)
			Ho. O. Eli Oj
SUBGROUP 1 Physical Dimensions	2016	MIL-M-38510, Appendix C	15
SUBGROUP 2			15
Lead Integrity Seal: Fine	2004 1014	Condition B2 (Condition D for LCC) Conditon A or B	
Seal:Gross	1014	Condition C	
Godin Grood		GONIALION G	
SUBGROUP 3			15
Thermal Shock	1011	Condition B, 15 Cycles	
Temperature Cycling	["] 1010	Condition C, 100 Cycles	
Moisture Resistance	1004	10 Cycles	
End Point Electricals	5005	Subgroups 1, 7, 9 (within 42 hrs)	
Seal: Fine	1014	Condition A or B	
Seal: Gross	1014	Condition C	
Visual Examination		Per Visual of Method 1004 and 1010	
SUBGROUP 4			15
Mechanical Shock	2002	Condition B	
Vibration Variable Freq.	2007	Condition A	
Constant Acceleration	2001	Condition E, 30 KG., Y1	
Seal: Fine	1014	Condition A or B	
Seal: Gross	1014	Condition C	
Visual Examination	1010		
End Point Electricals	5005	Subgroups 1, 7, 9	
SUBGROUP 5			15
Salt Atmosphere	1009	Condition A	
Seal: Fine	1014	Condition A or B	
Seal: Gross	1014	Condition C	
Visual Examination		Per Visual of Method 1009	
SUBGROUP 6			3 (0) or 5 (1)
Internal Water Vapor	1018	5,000 PPM Maximum	3 (0) 01 3 (1)
Content		Water Content at 100°C	
SUBGROUP 7			15
Adhesion of Lead	2025	Glass Frit Seal Only	
Finish		(LTPD for Number of Leads)	
SUBGROUP 8			5 (0)
Lid Torque	2024	Glass Frit Seal Only	, ,
		·	

12

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

AT22\	V10									
Generic Nu	ımber	Standa	rd Military	Drawing Num	ber		Description			
C22V	10	Drawing Number	Device Type	Case Outline	Lead Finish		Circuit Description	TPD (ns)		
		5962-87539	01	K, L, 3	X, A, C	22-Input, 10-C	Output and-or-Logic Array	25		
		5962-87539	02	K, L, 3	X, A, C	22-Input, 10-C	Output and-or-Logic Array	30		
		5962-87539	03	K, L, 3	X, A, C	22-Input, 10-C	Output and-or-Logic Array	40		
		5962-87539	04	K, L, 3	X, A, C	22-Input, 10-C	Output and-or-Logic Array	20		
		Example:	Atmel Ord	ler Number	Atme	Cage No. 1FN41	Atmel Similar Part Number			
	5962-87539 01 KX AT22V10-25YM/883									
			962-87	539 01 LX			AT22V10-25DM/883			
		5962-87539 01 3X AT22V10-25LM/883								
			5962-87	539 02 KX		AT22V10-30YM/883				
			5962-87	539 02 LX		AT22V10-30DM/883				
			962-87	539 02 3X		AT22V10-30LM/883				
			962-87	539 03 KX		AT22V10-40YM/883				
			962-87	539 03 LX		AT22V10-40DM/883				
			962-87	539 03 3X		AT22V10-40LM/883				
			962-87	539 04 LX		AT22V10-20DM/883				
			962-87	539 04 3X			AT22V10-20LM/883			
					Case Ou	tline				
K	24CW	, 24 Lead, Win	dowed,	Ceramic FI	at Packag	e (Cerdip)				
L	24DW	3, 24 Lead 0.30	00" Wide	e, Windowe	ed, Ceram	ic Dual Inline P	ackage (Cerdip)			
3	28LW,	28 Pad, Windo	owed, C	eramic Lea	dless Chi	p Carrier (LCC)				
					Lead Fi	nish 				
Х	Allows	Hot Tin Dip or	Gold (A	U)						
Α	Hot Ti	n Dip								
С	Gold (AU)								

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

AT22	V10L									
Generic N	Number	Standa	rd Military	Drawing Numl	ber		Description			
C22V	10L	Drawing Number	Device Type	Case Outline	Lead Finish		Circuit Description	TPD (ns)		
		5962-88724	01	K, L, 3	X, A, C	22-Input, 10-Output and-or-Logic Array		25		
		5962-88724	02	K, L, 3	X, A, C	22-Input, 10-O	utput and-or-Logic Array	30		
		5962-88724 03 K, L, 3 X, A, C 22-Input, 10-Output and-or-Logic Array		utput and-or-Logic Array	40					
		5962-88724	04	K, L, 3	X, A, C	22-Input, 10-O	utput and-or-Logic Array	20		
		Example:	Atmel Ord	ler Number	Atme	Cage No. 1FN41	Atmel Similar Part Number			
			5962-88	724 01 KX			AT22V10L-25YM/883			
	i		5962-88	724 01 LX			AT22V10L-25DM/883			
		5962-88724 01 3X AT22V10L-25LM/883								
		5962-88724 02 KX AT22V10L-30YM/883								
			5962-88	AT22V10L-30DM/883						
			5962-88	724 02 3X			AT22V10L-30LM/883			
				724 03 KX		AT22V10L-40YM/883				
			5962-88	724 03 LX		AT22V10L-40DM/883				
				724 03 3X		AT22V10L-40LM/883				
				724 04 KX		AT22V10L-20YM/883				
				724 04 LX			AT22V10L-20DM/883			
			5962-88	724 04 3X			AT22V10L-20LM/883			
					Case Ou	itline				
К	24CW	, 24 Lead, Win	dowed,	Ceramic FI	at Packaç	je (Cerpack)	,			
L	24DW	3, 24 Lead 0.3	00" Wid	e, Windowe	ed, Ceram	ic Dual Inline Pa	ackage (Cerdip)			
3	28LW,	28 Pad, Wind	owed, C	eramic Lea	dless Ch	p Carrier (LCC)				
					Lead Fi	nish				
х	Allows	Hot Tin Dip or	Gold (A	VU)						
Α	Hot Ti	n Dip								
С	Gold (AU)	10.10				ALL STATES OF THE STATES OF TH			

12

Generic Number	Standa	rd Military	Drawing Num	ber		Description	
C22V10 OTP	Drawing Number	Device Type	Case Outline	Lead Finish	1	Circuit Description	TPD (ns)
	5962-88670	01	K, L, 3	X,A,C	22-Input, 10-O	output and-or-Logic Array	25
	5962-88670	02	K, L, 3	X, A, C	22-input, 10-0	Output and-or-Logic Array	30
	5962-88670	03	K, L, 3	X, A, C	22-Input, 10-O	Output and-or-Logic Array	40
	5962-88670 04 K, L, 3 X, A, C				22-Input, 10-Output and-or-Logic Array		20
	Example:	Atmel Ord	er Number	Atme	Cage No. 1FN41	Atmel Similar Part Number	
		5962-886	70 01 KX			AT22V10-25FM/883	
	!	5962-886	570 01 LX		AT22V10-25GM/883		
			670 01 3X		AT22V10-25NM/883		
	1	5962-886	670 02 KX		AT22V10-30FM/883		
		5962-886	570 02 LX		AT22V10-30GM/883		
		5962-886	570 02 3X			AT22V10-30NM/883	
	!	5962-886	570 03 KX		AT22V10-40FM/883		
		5962-886	670 03 LX		AT22V10-40GM/883		
		5962-886	670 03 3X		AT22V10-40NM/883		
	!	5962-886	670 04 KX		AT22V10-20FM/883 AT22V10-20GM/883		
		5962-886	670 04 LX				
		5962-886	670 04 3X			AT22V10-20NM/883	
				Case Ou	tline		
	24 Lead, Non-V						
				`		e Package (Cerdip)	
3 28L,	28 Pad, Non-Wi	ndowed	Ceramic I		Chip Carrier (LC	C)	
				Lead Fi	nish 		
	s Hot Tin Dip o	Gold (A	.U)		100		
	in Dip						
C Gold	(AU)						

Generic Number Standard Milita				Drawing Num	ber		Description	
C22V10I	OTP	Drawing Number	Device Type	Case Outline	Lead Finish		Circuit Description	TPD (ns)
		5962-89755	01	K, L, 3	X,A,C	22-Input, 10-Output and-or-Logic Array		25
		5962-89755	02	K, L, 3	X,A,C	22-Input, 10-Output and-or-Logic Array		30
		5962-89755	03	K, L, 3	X, A, C	22-Input, 10-O	utput and-or-Logic Array	40
		Example:	Atmel Orc	ler Number	Atme	Cage No. 1FN41	Atmel Similar Part Number	
			5962-897	755 01 KX		AT22V10L-25FM/883		
			5962-897	755 01 LX		AT22V10L-25GM/883		
		' (5962-89	755 01 3X		AT22V10L-25NM/883		
5962-89755 02 KX							AT22V10L-30FM/883	
	5962-8			755 02 LX			AT22V10L-30GM/883	
			5962-89	755 02 3X			AT22V10L-30NM/883	
		} ;	5962-897	755 03 KX			AT22V10L-40FM/883	
			5962-89	755 03 LX			AT22V10L-40GM/883	
			5962-89	755 03 3X		AT22V10L-40NM/883		
		I			Case Ou	tline		
К	24C, 2	24 Lead, Non-V	/indowe	d, Ceramic	Flat Pack	(age (Cerpack)		
L	24D3,	24 Lead, 0.300	D" Wide,	Non-Wind	owed, Cer	ramic Dual Inline	Package (Cerdip)	
3	28L, 2	8 Pad, Non-Wi	ndowed	Ceramic l	_eadless (Chip Carrier (LC	C)	
					Lead Fir	nish		
Х	Allows Hot Tin Dip or Gold (AU)							
Α	Hot Ti							
С	Gold (AU)						

12

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

ATV	750							
Generic N	umber	Standa	rd Military	Drawing Num	ber	Description		
V75	0	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description		TPD (ns)
		5962-88726	01	L, 3	X, A, C	22-Input, 10-Output and-or-Logic Array		40
		5962-88726	02	L, 3	X, A, C	22-Input, 10-Out	tput and-or-Logic Array	35
		Example:	Atmel Ord	ler Number	Atme	Cage No. 1FN41	Atmel Similar Part Number	
			5962-88	726 01 LX		ATV750-40DM/883		
			962-88	726 01 3X		ATV750-40LM/883		
			962-88	726 02 LX			ATV750-35DM/883	
			5962-88	726 02 3X			ATV750-35LM/883	
					Case Ou	tline		
L	24DW	3, 24 Lead, 0.3	00" Wid	e, Window	ed, Ceran	nic Dual Inline Pad	ckage (Cerdip)	,
3	28LW	, 28 Pad, Winde	owed, C	eramic Lea	dless Chi	p Carrier (LCC)		
					Lead Fi	nish		
Х	Allows	Hot Tin Dip or	Gold (A	U)				
Α	Hot Ti	n Dip						
С	Gold (AU)					,	

AT27	HC64L	.]						
Generic	Number	Standa	rd Military I	Orawing Num	ber	Description		
27H	C64L	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description		Access Time (ns)
		5962-85102	04	Y,Z	X, A, C	8Kx8EPROM		90
		Example:	Atmel Ord	er Number	Atme	Cage No. 1FN41	Atmel Similar Part Number	
		-		02 04 YX 102 04 ZX			AT27HC64L-90DM/883 AT27HC64L-90LM/883	
]	l			Case Ou	tline		
Υ	28DW6,	28 Lead, 0.60	0" Wide,	Windowe	d, Cerami	Dual Inline Pack	age (Cerdip)	
Z	32LW, 3	2 Pad, Windov	ved, Cer	amic Leac	lless Chip	Carrier (LCC)		
					Lead Fi	nish		
X	Allows H	ot Tin Dip or Gold (AU)						
Α	Hot Tin [Dip						
С	Gold (Al	J)	3,330-43				100	

12

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

AT27	C256F	₹						
Generic	Number	Standa	rd Military	Drawing Num	ber		Description	
27C2	256R	Drawing Number	Device Type	Case Outline	Lead Finish	Cire	cuit Description	Access Time (ns)
		5962-86063	01	X,Y	X, A, C	32Kx8EPROM		200
		5962-86063	02	X,Y	X, A, C	32Kx8EPROM		250
		5962-86063	03	X,Y	X, A, C	32Kx8EPROM		300
		5962-86063	04	X,Y	X, A, C	32Kx8EPROM		170
		5962-86063	05	X,Y	X, A, C	32Kx8EPROM		150
		Example:	Atmel Or	der Number	Atme	Cage No. 1FN41	Atmel Similar Part Number	
			5962-86	063 01 XX			AT27C256R-20DM/883	
			5962-86	063 01 YX			AT27C256R-20LM/883	
		ţ	5962-86	063 02 XX		AT27C256R-25DM/883		
			5962-86	063 02 YX		AT27C256R-25LM/883		
ş			5962-86	063 03 XX		AT27C256R-30DM/883		
			5962-86	063 03 YX		AT27C256R-30LM/883		
			5962-86	063 04 XX		AT27C256R-17DM/883		
İ			5962-86	063 04 YX			AT27C256R-17LM/883	
1			5962-86	063 05 XX			AT27C256R-15DM883	
			5962-86	063 05 YX			AT27C256R-15LM/883	
					Case Ou	tline		
Х	28DW6,	28 Lead, 0.60	0" Wide	, Windowe	d, Cerami	c Dual Inline Packa	age (Cerdip)	
Υ	32LW, 3	2 Pad, Windov	ved, Ce	ramic Lead	less Chip	Carrier (LCC)		
					Lead Fi	nish		
X	Allows H	ot Tin Dip or C	old (AL	1)				
Α	Hot Tin I	Dip						
С	Gold (Al	J)						

AT27	HC256	!						-			
Generi	c Number	Standa	rd Military	Drawing Num	ber	Description					
271	IC256	Drawing Number	Device Type	Case Outline	Lead Finish	Cit	rcuit Description	Access Time (ns			
		5962-86063	08	X,Y	X, A, C	32Kx8EPROM		70			
		Example:	Atmel Ord	ler Number	Atme	Cage No. 1FN41	Atmel Similar Part Number				
		į.	5962-860	063 08 XX			AT27HC256-70DM/883				
			5962-860	063 08 YX		AT27HC256-70LM/883					
					Case Ou	ıtline					
X	28DW6,	28 Lead, 0.60	0" Wide	Windowe	d, Cerami	c Dual Inline Pack	age (Cerdip)				
Υ	32LW, 3	2 Pad, Windov	ved, Cei	amic Lead	less Chip	Carrier (LCC)					
					Lead Fi	nish					
Х	Allows F	lot Tin Dip or C	old (AU)							
Α	Hot Tin	Dip									
С	Gold (Al	J)									

AT27HC256L

Generic	Number	Standa	rd Military	Orawing Num	ber		Description	
27H	C256L	Drawing Number	Device Type	Case Outline	Lead Finish	Cir	cuit Description	Access Time (ns)
	İ	5962-86063	06	X,Y	X,A,C	32Kx8EPROM		120
	:	5962-86063	07	X,Y	X, A, C	32Kx8EPROM		90
		Example:	Atmel Orc	ler Number	Atme	Cage No. 1FN41	Atmel Similar Part Number	1
			5962-860	63 06 XX			AT27HC256L-12DM/883	
		ŧ	5962-860	063 06 YX			AT27HC256L-12LM/883	
			5962-860	63 07 XX			AT27HC256L-90DM/883	
		į	5962-860	63 07 YX			AT27HC256L-90LM/883	
					Case Ou	itline		
×	28DW6,	28 Lead, 0.60	0" Wide,	Windowe	d, Cerami	c Dual Inline Pack	age (Cerdip)	
Υ	32LW, 3	2 Pad, Windov	ved, Cer	amic Lead	less Chip	Carrier (LCC)		
					Lead Fi	nish		
Х	Allows H	lot Tin Dip or C	old (AU)				
Α	Hot Tin	Dip						
С	Gold (Al	J)						

12

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

AT27C512	R							
Generic Number	Standa	rd Military	Orawing Num	ber		Description		
27C512R	Drawing Number	Device Type	Case Outline	Lead Finish	Cire	cuit Description	Access Time(ns)	
	5962-87648	01	X,Y	X, A, C	64Kx8EPROM		150	
	5962-87648	02	X, Y	X, A, C	64Kx8EPROM		200	
	5962-87648	03	X, Y	X, A, C	64Kx8EPROM		250	
	5962-87648	04	X,Y	×	64Kx8EPROM		120	
	Example:	Atmel Ord	ier Number	Atme	Cage No. 1FN41	Atmel Similar Part Number		
		962-876	648 01 XX			AT27C512R-15DM/883		
		5962-87648 01 YX AT27C512R-15LM/883						
	5962-87648 02 XX AT27C512R-20DN							
		5962-876	648 02 YX			AT27C512R-20LM/883		
		5962-876	648 03 XX			AT27C512R-25DM/883		
	,	962-876	648 03 YX			AT27C512R-25LM/883		
		962-876	648 04 XX			AT27C512R-12DM/883		
		962-876	648 04 YX			AT27C512R-12LM/883		
				Case Ou	tline			
X 28DW6	, 28 Lead, 0.60	0" Wide,	Windowe	d, Cerami	c Dual Inline Packa	age (Cerdip)		
Y 32LW,	W, 32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)							
			nish					
X Allows I	Hot Tin Dip or C	old (AU)					
A Hot Tin	'							
C Gold (A	U)							

AT27HC	641						
Generic Num	nber Sta	ndard Military	Drawing Num	ber		Description	
27HC64	Drawing Number	Device Type	Case Outline	Lead Finish	(Dircuit Description	Access Time (ns)
	5962-8751	5 01	J, K, 3	X, A, C	8Kx8[UV]PRO	OM	45
	5962-8751	5 02	J, K, 3	X,A,C	8Kx8[UV]PR0	MC	55
	5962-8751	5 03	J, K, 3	X, A, C	8Kx8[UV]PR0	MC	70
	5962-8751	5 04	J, K, 3	X, A, C	8Kx8[UV]PR	ОМ	90
	Example:	Atmel Or	der Number	Atme	Cage No. 1FN41	Atmel Similar Part Number	J
		5962-87	515 01 JX			AT27HC641-45DM/883	
	!	5962-87	515 01 KX			AT27HC641-45FM/883	
	!	5962-87	515 01 3X			AT27HC641-45LM/883	
	S	5962-87	515 02 JX			AT27HC641-55DM/883	
	l	5962-87	515 02 KX			AT27HC641-55FM/883	
	l	5962-87	515 02 3X			AT27HC641-55LM/883	
		5962-87	515 03 JX			AT27HC641-70DM/883	
	İ	5962-87	515 03 KX			AT27HC641-70FM/883	
	1	5962-87	515 03 3X			AT27HC641-70LM/883	
]	5962-87	515 04 JX			AT27HC641-90DM/883	
	į .	5962-87	515 04 KX			AT27HC641-90FM/883	
	ĺ	5962-87	515 04 3X			AT27HC641-90LM/883	
				Case Ou	tline		
J 24	DW6, 24 Lead, 0	600" Wide	, Windowe	d, Cerami	c Dual Inline Pac	kage (Cerdip)	
K 24	FW, 24 Lead, Wi	indowed, Ceramic Bottom-Brazed Flat Package (Flatpack)					
3 28	BLW, 28 Pad, Win	dowed, Ce	ramic Lead	less Chip	Carrier (LCC)		
				Lead Fi	nish		
X A	lows Hot Tin Dip	r Gold (Al	J)				
A H	ot Tin Dip						
C G	old (AU)						

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

T271	IC642								
Generic N	lumber	Standa	rd Military	Drawing Num	ber		Description		
27HC	642	Drawing Number	Device Type	Case Outline	Lead Finish	(Dircuit Description	Access Time (ns)	
		5962-87515	01	L	X, A, C	8Kx8[UV]PRO	ОМ	45	
		5962-87515	02	L	X,A,C	8Kx8[UV]PRO	DM	55	
		5962-87515	03	L	X, A, C	8Kx8[UV]PRC	ОМ	70	
		5962-87515	04	L	X, A, C	8Kx8[UV]PRO	ОМ	90	
		Example:	Atmel Ord	der Number	Atme	Cage No. 1FN41	Atmel Similar Part Number		
			962-87	515 01 LX			AT27HC642-45DM/883		
		į	5962-87	515 02 LX			AT27HC642-55DM/883		
		į	5962-87	515 03 LX		AT27HC642-70DM/883			
			5962-87	515 04 LX			AT27HC642-90DM/883		
					Case Ou	tline			
L	24DW3,	24 Lead, 0.30	0" Wide	, Windowe	d, Cerami	Dual Inline Pac	kage (Cerdip)		
					Lead Fir	nish			
Х	Allows H	lot Tin Dip or C	old (AL	J)					
Α	Hot Tin	Dip							
С	Gold (Al	J)							

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

AT280	64										
Generic Nu	mber	Standa	rd Military	Drawing Num	ber		Desc	ription			
28C64	4	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed (ms)	Endurance (Cycles)	
		5962-87514	13	U,X,Y	X, A, C	8Kx8E ² PROM Rdy/Busy	Byte	350	1	10K	
		5962-87514	14	U,X,Y	X, A, C	8Kx8E ² PROM Rdy/Busy	Byte	300	1	10K	
:		5962-87514	15	U,X,Y,Z	X, A, C	8Kx8E ² PROM Rdv/Busv	Byte	250	1	10K	
		5962-87514	16	U,X,Y	X,A,C	8Kx8E ² PROM Rdy/Busy	Byte	200	1	10K	
		5962-87514	17	U,X,Y	X, A, C	8Kx8E ² PROM Rdy/Busy	Byte	150	1	10K	
		Example:	Atmel Or	der Number	Atme	l Cage No. 1FN41	Atmel Sim	ilar Part Nu	mber	4	
		5	962-87	514 13 UX			AT28C64	-35KM/8	183		
		5	962-87	514 13 XX		AT28C64-35DM/883					
		5	962-87	514 13 YX		AT28C64-35LM/883					
			962-87	514 14 UX			AT28C64	-30KM/8	883		
				514 14 XX			AT28C64	•			
				514 14 YX			AT28C64				
				514 15 UX			AT28C64				
		_		514 15 XX			AT28C64	•			
				514 15 YX			AT28C64				
				514 15 ZX			AT28C64				
				514 16 UX			AT28C64				
		5	5962-87	514 16 XX			AT28C64				
			5962-87	514 16 YX			AT28C64				
				514 17 UX			AT28C64	•			
				514 17 XX			AT28C64	•			
			962-87	514 17 YX			AT28C64	I-15LM/8	83		
						d Quad Flat Packa	<u> </u>				
X						eramic Dual Inline F		erdip)			
Y				<u> </u>		Chip Carrier (LCC)					
Z	28F, 2	8 Lead, Non-W	indowe	d, Ceramic		Brazed Flat Packag	je (Flatpack	()			
	Alle	Light Tim Dim	Cal 2 //		Lead Fi	ilisti					
X	·····	Hot Tin Dip or	GOIG (A	(U)							
C	Hot Tir										
U	Gold (4U)									

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

AT28C64X										
Generic Number	Standa	rd Military	Drawing Num	ber	Description					
28C64X	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed (ms)	Enduranc (Cycles)	
	5962-87514	18	U,X,Y	X, A, C	8Kx8E ² PROM Data Polling	Byte	350	1	10K	
	5962-87514	19	U,X,Y	X, A, C	8Kx8E ² PROM Data Polling	Byte	300	1	10K	
	5962-87514	20	U,X,Y,Z	X, A, C	8Kx8E ² PROM Data Polling	Byte	250	1	10K	
	5962-87514	21	U,X,Y	X, A, C	8Kx8E ² PROM Data Polling	Byte	200	1	10K	
	5962-87514	22	U,X,Y	X, A, C	8Kx8E ² PROM Data Polling	Byte	150	1	10K	
	Example:	Atmel Or	der Number	Atme	l Cage No. 1FN41	Atmel Simi	ilar Part Nu	mber		
		5962-87	514 18 UX		AT28C64X-35KM/883					
	i		514 18 XX			AT28C64				
	1		514 18 YX			AT28C64				
	ì		514 19 UX			AT28C64				
	1		514 19 XX 514 19 YX			AT28C64 AT28C64				
	1		514 20 UX			AT28C64	•			
	1		514 20 XX			AT28C64				
		962-87	514 20 YX		AT28C64X-25LM/883					
) :	5962-87	514 20 ZX		AT28C64X-25FM/883					
	,	5962-87	514 21 UX		AT28C64X-20KM/883					
		5962-87	514 21 XX		AT28C64X-20DM/883					
		5962-87	514 21 YX			AT28C64	X-20LM/	883		
	1		514 22 UX			AT28C64				
	1		514 22 XX			AT28C64				
	!	962-87	514 22 YX			AT28C64	X-15LM/	883		
				Case Ou	utline					
					d Quad Flat Packa					
					ramic Dual Inline F		erdip)			
	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC)									
Z 28F, 2	28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish									
X Allows	Hot Tin Dip or	Gold (/	.1.1\	Leau ri	111311					
A Hot Ti		Gold (F)							
C Gold (- Commercial Control of Control o					

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

AT28PC	64											
Generic Num	ber	Standa	rd Military	Drawing Num	ber		Descr	ription	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
28PC64	1	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed (ms)	Endurance (Cycles)		
		5962-87514	06	U,X,Y	X, A, C	8Kx8E ² PROM	Byte/Page	350	2	10K		
		5962-87514	07	U,X,Y	X, A, C	8Kx8E ² PROM Data Polling	Byte/Page	300	2	10K		
		5962-87514	08	U,X,Y	X, A, C	8Kx8E ² PROM Data Polling	Byte/Page	250	2	10K		
		5962-87514	09	U,X,Y	X, A, C	8Kx8E ² PROM Data Polling	Byte/Page	200	2	10K		
	Ī	Example:	Atmel Ord	der Number	Atme	Cage No. 1FN41	Atmel Simi	ar Part Nu	mber			
			5962-87	514 06 UX		AT28PC64-35KM/883						
		Ę	5962-87	514 06 XX			AT28PC6	4-35DM	/883			
			5962-87	514 06 YX			AT28PC6	4-35LM	/883			
				514 07 UX			AT28PC6					
	5962-87514 07 XX AT28											
			5962-87	AT28PC64-30LM/883								
				514 08 UX		AT28PC64-25KM/883						
				514 08 XX		AT28PC64-25DM/883						
				514 08 YX			AT28PC6					
	ļ			514 09 UX			AT28PC6					
				514 09 XX 514 09 YX			AT28PC6		•			
	1				Case O	utline						
U (32K. 32	Lead, Non-W	/indowe	d. Ceramic		d Quad Flat Packa	ge (Cerqua	/h				
						ramic Dual Inline F	<u></u>					
						Chip Carrier (LCC)						
		Lead Finish										
X	Allows	Hot Tin Dip or	Gold (A	(U)								
A i	Hot Tin	n Dip										
C (Gold (A	(U)										

12

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

AT28HC	64L										
Generic Numl	ber	Standa	rd Military	Drawing Numb	per	Description					
28HC64l	-	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed (ms)	Endurance (Cycles)	
	[5962-87514	10	U,X,Y	X,A,C	8Kx8E ² PROM	Byte/Page	120	2	10K	
	1	5962-87514	11	U, X, Y	X, A, C	8Kx8E ² PROM Data Polling	Byte/Page	90	2	10K	
		5962-87514	12	U, X, Y	X, A, C	8Kx8E ² PROM Data Polling	Byte/Page	70	2	10K	
		Example:	Atmel Or	der Number	Atme	el Cage No. 1 FN41	Atmel Simil	ar Part Nu	mber		
		5	962-87	514 10 UX		AT28HC64L-12KM/883					
	- 1	5	962-87	514 10 XX			AT28HC6	4L-12DI	M/883		
l		5	962-87	514 10 YX			AT28HC6	4L-12LN	√ /883		
ł		5	962-87	514 11 UX			AT28HC6	4L-90KI	M/883		
	l	5	962-87	514 11 XX			AT28HC6	4L-90DI	M/883		
	1	5	962-87	514 11 YX		AT28HC64L-90LM/883					
	1	5	962-87	514 12 UX			AT28HC6	4L-70KI	M/883		
	ł	5	962-87	514 12 XX			AT28HC6	4L-70DI	M/883		
		5	962-87	514 12 YX			AT28HC6	4L-70LN	√ /883		
					Case Ou	utline					
U 3	2K, 32	Lead, Non-W	indowe/	d, Ceramic	J-Leade	d Quad Flat Packa	ge (Cerquad	i)			
X 2	8D6, 2	8 Lead, 0.600	" Wide,	Non-Windo	owed, Ce	ramic Dual Inline F	Package (Ce	erdip)			
Y 3	2L, 32	Pad, Non-Wir	ndowed	, Ceramic L	.eadless	Chip Carrier (LCC)					
					Lead Fi	nish					
X	llows F	lot Tin Dip or	Gold (A	(U)							
A H	lot Tin	Dip									
C	aold (Al	U)									

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

S962-88525 O1	AT28	C256											
Number Type Outline Finish EndWrite Indicator Mode Time (ns) St	Generic N	Number	Standa	rd Military	Drawing Numl	per		Descr	ription				
See2-88525 O2	28C2	256								Write Speed (ms)	Enduranc (Cycles)		
Sp62-88525 03			5962-88525	01	U,X,Y,Z	X, A, C		Byte/Page	350	10	10K		
S962-88525 O3			5962-88525	02	U,X,Y,Z	X,A,C	1 '	Byte/Page	300	10	10K		
S962-88525 O4			5962-88525	03	U,X,Y,Z	X, A, C	32Kx8E ² PROM	Byte/Page	250	10	10K		
S962-88525 O6			5962-88525	04	U,X,Y,Z	X, A, C	32Kx8E ² PROM	Byte/Page	200	10	10K		
\$962-88525 01 UX \$5962-88525 01 XX \$128C256-35DM/88 \$1962-88525 01 YX \$128C256-35DM/88 \$1962-88525 01 ZX \$128C256-35FM/88 \$1962-88525 02 UX \$128C256-30DM/88 \$1962-88525 02 UX \$128C256-30DM/88 \$1962-88525 02 YX \$128C256-30DM/88 \$1962-88525 02 ZX \$128C256-30DM/88 \$1962-88525 02 ZX \$128C256-30DM/88 \$1962-88525 03 UX \$128C256-25DM/88 \$1962-88525 03 XX \$128C256-25DM/88 \$1962-88525 03 XX \$128C256-25DM/88 \$1962-88525 03 ZX \$128C256-25DM/88 \$1962-88525 04 UX \$128C256-25DM/88 \$128C256-25DM/88 \$128C256-25DM/88 \$128C256-25DM/88 \$128C256-20DM/88 \$128C256-2			5962-88525	06	X,Y,Z	X, A, C	32Kx8E ² PROM	Byte/Page	150	10	10K		
5962-88525 01 XX AT28C256-35DM/88 5962-88525 01 YX AT28C256-35LM/88 5962-88525 01 ZX AT28C256-35FM/88 5962-88525 02 UX AT28C256-30UM/88 5962-88525 02 XX AT28C256-30LM/88 5962-88525 02 YX AT28C256-30LM/88 5962-88525 02 YX AT28C256-30LM/88 5962-88525 02 YX AT28C256-30LM/88 5962-88525 03 UX AT28C256-30FM/88 5962-88525 03 XX AT28C256-25LM/88 5962-88525 03 YX AT28C256-25LM/88 5962-88525 03 YX AT28C256-25LM/88 5962-88525 04 UX AT28C256-25LM/88 5962-88525 04 UX AT28C256-20LM/88 5962-88525 04 YX AT28C256-20LM/88 5962-88525 04 YX AT28C256-20LM/88 5962-88525 04 YX AT28C256-15DM/88 5962-88525 06 XX AT28C256-15LM/88 5962-88525 06 XX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)			Example:	Atmel Or	der Number	Atme	Cage No. 1FN41	Atmel Simi	lar Part Nu	mber			
\$962-88525 01 YX AT28C256-35LM/88 \$962-88525 02 UX AT28C256-30UM/88 \$962-88525 02 UX AT28C256-30DM/88 \$962-88525 02 YX AT28C256-30DM/88 \$962-88525 02 YX AT28C256-30LM/88 \$962-88525 02 YX AT28C256-30LM/88 \$962-88525 02 YX AT28C256-30LM/88 \$962-88525 03 UX AT28C256-25LM/88 \$962-88525 03 UX AT28C256-25DM/88 \$962-88525 03 UX AT28C256-25LM/88 \$962-88525 03 YX AT28C256-25LM/88 \$962-88525 03 ZX AT28C256-25LM/88 \$962-88525 04 UX AT28C256-25LM/88 \$962-88525 04 UX AT28C256-20LM/88 \$962-88525 04 YX AT28C256-20LM/88 \$962-88525 04 YX AT28C256-20LM/88 \$962-88525 04 YX AT28C256-20LM/88 \$962-88525 04 YX AT28C256-20LM/88 \$962-88525 06 YX AT28C256-15LM/88 \$962-8													
\$962-88525 01 ZX AT28C256-35FM/88 \$962-88525 02 UX AT28C256-30UM/88 \$962-88525 02 XX AT28C256-30UM/88 \$962-88525 02 YX AT28C256-30LM/88 \$962-88525 02 ZX AT28C256-30LM/88 \$962-88525 03 UX AT28C256-25UM/88 \$962-88525 03 XX AT28C256-25DM/88 \$962-88525 03 XX AT28C256-25DM/88 \$962-88525 03 XX AT28C256-25LM/88 \$962-88525 03 ZX AT28C256-25LM/88 \$962-88525 04 UX AT28C256-25DM/88 \$962-88525 04 UX AT28C256-20DM/88 \$962-88525 04 UX AT28C256-20DM/88 \$962-88525 04 XX AT28C256-20DM/88 \$962-88525 04 XX AT28C256-20DM/88 \$962-88525 04 XX AT28C256-20DM/88 \$962-88525 04 XX AT28C256-15DM/88 \$962-88525 06 XX AT28C256-15DM/88 \$962-88525 06 XX AT28C256-15DM/88 \$962-88525 06 XX AT28C256-15DM/88 \$962-88525 06 ZX AT28C256-15FM/88 \$100 DECEMBER 100 D													
5962-88525 02 UX AT28C256-30UM/88 5962-88525 02 XX AT28C256-30DM/88 5962-88525 02 YX AT28C256-30LM/88 5962-88525 02 ZX AT28C256-30FM/88 5962-88525 03 UX AT28C256-25UM/88 5962-88525 03 XX AT28C256-25LM/88 5962-88525 03 YX AT28C256-25LM/88 5962-88525 03 YX AT28C256-25LM/88 5962-88525 04 UX AT28C256-25LM/88 5962-88525 04 UX AT28C256-20UM/88 5962-88525 04 VX AT28C256-20LM/88 5962-88525 04 YX AT28C256-20LM/88 5962-88525 06 YX AT28C256-20FM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 XX AT28C256-15FM/88							AT28C256-35LM/883 AT28C256-35FM/883						
5962-88525 02 XX AT28C256-30DM/88 5962-88525 02 YX AT28C256-30LM/88 5962-88525 02 ZX AT28C256-30FM/88 5962-88525 03 UX AT28C256-25DM/88 5962-88525 03 XX AT28C256-25DM/88 5962-88525 03 YX AT28C256-25LM/88 5962-88525 03 ZX AT28C256-25FM/88 5962-88525 04 UX AT28C256-25FM/88 5962-88525 04 UX AT28C256-20DM/88 5962-88525 04 XX AT28C256-20LM/88 5962-88525 04 YX AT28C256-20LM/88 5962-88525 04 ZX AT28C256-20FM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 XX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)													
\$962-88525 02 YX AT28C256-30LM/88 \$962-88525 02 ZX AT28C256-30FM/88 \$962-88525 03 UX AT28C256-25DM/88 \$962-88525 03 XX AT28C256-25DM/88 \$962-88525 03 YX AT28C256-25LM/88 \$962-88525 03 ZX AT28C256-25FM/88 \$962-88525 04 UX AT28C256-20DM/88 \$962-88525 04 UX AT28C256-20DM/88 \$962-88525 04 XX AT28C256-20DM/88 \$5962-88525 04 YX AT28C256-20LM/88 \$5962-88525 04 ZX AT28C256-20FM/88 \$5962-88525 06 XX AT28C256-15DM/88 \$5962-88525 06 XX AT28C256-15LM/88 \$5962-88525 06 ZX AT28C256-15FM/88 \$5962-88525 06 ZX AT28C256-15FM/88 \$262-88525 06 ZX AT28C256-15FM/88 \$28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)													
5962-88525 03 UX													
5962-88525 03 XX AT28C256-25DM/88 5962-88525 03 YX AT28C256-25LM/88 5962-88525 03 ZX AT28C256-25FM/88 5962-88525 04 UX AT28C256-20UM/88 5962-88525 04 XX AT28C256-20DM/88 5962-88525 04 YX AT28C256-20LM/88 5962-88525 04 ZX AT28C256-20LM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 XX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)				5962-88	525 02 ZX			AT28C25	6-30FM/	883			
5962-88525 03 YX AT28C256-25LM/88 5962-88525 03 ZX AT28C256-25FM/88 5962-88525 04 UX AT28C256-20UM/88 5962-88525 04 XX AT28C256-20DM/88 5962-88525 04 YX AT28C256-20LM/88 5962-88525 04 ZX AT28C256-20FM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 XX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)			į	5962-88	525 03 UX			AT28C25	6-25UM,	/883			
5962-88525 03 ZX AT28C256-25FM/88 5962-88525 04 UX AT28C256-20UM/88 5962-88525 04 XX AT28C256-20DM/88 5962-88525 04 YX AT28C256-20LM/88 5962-88525 04 ZX AT28C256-20FM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 ZX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)				5962-88	525 03 XX		AT28C256-25DM/883						
5962-88525 04 UX AT28C256-20UM/88 5962-88525 04 XX AT28C256-20DM/88 5962-88525 04 YX AT28C256-20LM/88 5962-88525 04 ZX AT28C256-15DM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 YX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)				5962-88	525 03 YX		AT28C256-25LM/883						
5962-88525 04 XX AT28C256-20DM/88 5962-88525 04 YX AT28C256-20LM/88 5962-88525 04 ZX AT28C256-20FM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 YX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)			ŧ	5962-88	525 03 ZX		AT28C256-25FM/883						
5962-88525 04 YX AT28C256-20LM/88 5962-88525 04 ZX AT28C256-20FM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 YX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)		ĺ	ŧ	5962-88	525 04 UX		AT28C256-20UM/883						
5962-88525 04 ZX AT28C256-20FM/88 5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 YX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)							AT28C256-20DM/883						
5962-88525 06 XX AT28C256-15DM/88 5962-88525 06 YX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)													
5962-88525 06 YX 5962-88525 06 ZX AT28C256-15LM/88 5962-88525 06 ZX AT28C256-15FM/88 Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)													
Case Outline U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)													
U 28U, 28 Pin, Ceramic Pin Grid Array (PGA) X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)													
X 28D6, 28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip) Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)			L	~		Case Ou	utline						
Y 32L, 32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)	U									***************************************			
Z 28F, 28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack) Lead Finish X Allows Hot Tin Dip or Gold (AU)	X					Package (Ce	erdip)						
Lead Finish X Allows Hot Tin Dip or Gold (AU)													
X Allows Hot Tin Dip or Gold (AU)	Z	28F, 2	8 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)										
	v	Allows	Hot Tip Dip or	· Gold (/	VIII)	Lead FI	11180						
A Hot Tin Dip	A			aulu (A	٦٠)								
C Gold (AU)									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

Table 12.2 - ATMEL SMD Part Types, Listed by ATMEL Part Number

T280	C256E											
Generic	Number	Standa	rd Military	Drawing Num	ber	Description						
28C2	256E	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed (ms)	Endurano (Cycles)		
		5962-88525 05 X,Y,Z X,A,C 32Kx8E²PROM Data Polling Byte/F					Byte/Page	250	10	100K		
		Example:	Atmel Ord	ler Number	Atme	Cage No. 1FN41	Atmel Simi	lar Part Nu	mber			
			5962-88	525 05 XX		AT28C256E-25DM/883						
			5962-88	525 05 YX		AT28C256E-25LM/883						
		ŧ	5962-88	525 05 ZX			AT28C25	6E-25FN	<i>I</i> /883			
					Case Ou	ıtline						
Х	28D6,	28 Lead, 0.600	" Wide,	Non-Wind	owed, Ce	ramic Dual Inline F	ackage (Ce	erdip)				
Υ	32L, 32	2 Pad, Non-Wi	ndowed	Ceramic L	eadless	Chip Carrier (LCC)						
Z	28F, 28	8 Lead, Non-W	/indowe	d, Ceramic	Bottom-E	Brazed Flat Packag	je (Flatpack)				
					Lead Fi	nish						
Х	Allows	Hot Tin Dip or	lot Tin Dip or Gold (AU)									
Α	Hot Tir	ı Dip										
С	Gold (A	AU)										

AT280	256F										
Generic	Number	Standa	rd Military	Drawing Num	ber	Description					
28C2	:56F	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Function End Write Indicator	Write Mode	Access Time (ns)	Write Speed (ms)	Endurance (Cycles)	
		5962-88525 07 X,Y,Z X,A,C 32Kx8E²PROM Data Polling Byte/Page 150						3	10K		
		Example:	Atmel Ord	der Number	Atme	Cage No. 1FN41	Atmel Simi	lar Part Nu	mber		
		ţ	5962-88	525 07 XX			AT28C25	6F-15DN	M/883		
			5962-88	525 07 YX	5 07 YX AT28C256F-15LM/883						
		ŧ	5962-88	525 07 ZX			AT28C25	6F-15FN	<i>N</i> /883		
			-		Case Ou	ıtline					
Х	28D6,	28 Lead, 0.600	" Wide,	Non-Wind	owed, Ce	ramic Dual Inline F	Package (Ce	erdip)			
Υ	32L, 3	2 Pad, Non-Wi	ndowed	Ceramic L	eadless	Chip Carrier (LCC)	· · · · · · · · · · · · · · · · · · ·				
Z	28F, 2	8 Lead, Non-W	/indowe	d, Ceramic	Bottom-E	Brazed Flat Packag	je (Flatpack)			
					Lead Fi	nish					
Х	Allows Hot Tin Dip or Go			(U)							
Α	Hot Tir	n Dip									
С	Gold (AU)									

AT28H	1C256									
Generic	Number	Standard Military Drawing Number				Description				
28H0	C256	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed(ms)	Endurance (Cycles)
	i	5962-88634	03	U,X,Y,Z	X, A, C	32Kx8E ² PROM Data Polling	Byte/Page	90	10	10K
		Example:	Atmel Or	der Number	Atme	el Cage No. 1FN41	Atmel Similar Part Number			
		5962-88634 03 UX AT28HC256-90UM/883						M/883		
		5962-88634 03 XX AT28HC256-90DM/883						M/883		
		ŧ	962-88	-88634 03 YX AT28HC256-90LM/883						
		5962-88634 03 ZX AT28HC256-90FM/88					M/883			
					Case O	utline				
Х	28D6,	28 Lead, 0.600)" Wide,	Non-Wind	owed, Ce	eramic Dual Inline F	Package (Ce	erdip)		
Y	32L, 3	2 Pad, Non-Wi	ndowed	, Ceramic L	eadless	Chip Carrier (LCC)				
Z	28F, 2	8 Lead, Non-W	/indowe	d, Ceramic	Bottom-l	Brazed Flat Packag	je (Flatpack)		
					Lead F	inish				
X	Allows	Allows Hot Tin Dip or Gold (AU)								
Α	Hot Tir	Hot Tin Dip								
С	Gold (AU)								

AT28	HC256	F								
Generic	Number	Standa	rd Military	Drawing Numl	ber		Desci	ription		
28HC	256F	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description End Write Indicator	Write Speed (ms)	Endurance (Cycles)		
		5962-88634	04	U,X,Y,Z	X, A, C	32Kx8E ² PROM Data Polling	Byte/Page	90	3	10K
		Example:	Atmel Or	der Number	Atme	el Cage No. 1FN41	Atmel Similar Part Number			
		5962-88634 04 UX AT28HC256F-						:56F-90L	JM/883	
			5962-88634 04 XX				AT28HC2	56F-90	DM/883	
		5962-88634 04 YX AT28HC256F-90LM/88						.M/883		
		5962-88634 04 ZX AT28HC256F-90FM/883								
		<u> </u>	·		Case O	utline				
U	28U, 2	28 Pin, Ceramio	Pin Gr	id Array (PC	3A)					
Х	28D6,	28 Lead, 0.600	" Wide,	Non-Wind	owed, Ce	eramic Dual Inline F	Package (Ce	erdip)		
Y	32L, 3	2 Pad, Non-Wi	ndowed	, Ceramic L	eadless.	Chip Carrier (LCC)				
Z	28F, 2	8 Lead, Non-W	/indowe	d, Ceramic	Bottom-I	Brazed Flat Packag	je (Flatpack)		
					Lead F	nish				
X	Allows	Hot Tin Dip or	Gold (A	AU)						
Α	Hot Ti	n Dip	· · · · · · · · · · · · · · · · · · ·							
С	Gold (AU)								

AT28	HC256	3L								
Generic	Number	Standa	rd Military	Drawing Numl	ber	Description				
28HC	256L	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed (ms)	Enduranc (Cycles)
		5962-88634	01	U,X,Y,Z	X, A, C	32Kx8E ² PROM Data Polling	Byte/Page	120	10	10K
		Example:	Atmel Or	der Number	Atme	l Cage No. 1FN41	1 Atmel Similar Part Number			
		5962-88634 01 UX AT28HC256L-12UM/88						JM/883		
			5962-88	634 01 XX			AT28HC2	256L-12D	DM/883	
		5962-88634 01 YX AT28HC256L-12LM					.M/883			
		!	5962-88	634 01 ZX		AT28HC256L-12FM/883				
					Case O	ıtline				
U	28U, 2	28 Pin, Ceramio	Pin Gr	id Array (PC	GA)					
X	28D6	28 Lead, 0.600	O" Wide,	Non-Windo	owed, Ce	ramic Dual Inline F	Package (Ce	erdip)		
Υ	32L, 3	32 Pad, Non-Wi	ndowed	, Ceramic L	eadless	Chip Carrier (LCC)				
Z	28F, 2	28 Lead, Non-W	/indowe	d, Ceramic	Bottom-E	Brazed Flat Packag	je (Flatpack)		
					Lead Fi	nish				
Х	Allow	s Hot Tin Dip or	Gold (A	AU)						
Α	Hot T	in Dip								
С	Gold	(AU)								

12

Generic	Number	Standa	rd Military	Drawing Numl	per		Descr	ription		
28HC	256LF	Drawing Number	Device Type	Case Outline	Lead Finish	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed (ms)	Endurance (Cycles)
		5962-88634	02	U,X,Y,Z	X,A,C	32Kx8E ² PROM Data Polling	Byte/Page	120	3	10K
		Example: Atmel Order Number Atmel Cage No. 1FN41 Atmel Similar Part Number								
		5962-88634 02 UX					AT28HC2	56LF-12	UM/883	
			5962-88634 02 XX				AT28HC2	56LF-12	DM/883	
		5962-88634 02 YX					AT28HC2	56LF-12	LM/883	
			5962-88	634 02 ZX			AT28HC2	56LF-12	FM/883	
					Case O	utline				
U	28U, 2	28 Pin, Ceramio	Pin Gr	d Array (PC	3A)					
X	28D6,	28 Lead, 0.600)" Wide,	Non-Windo	owed, Ce	ramic Dual Inline F	ackage (Ce	erdip)		
Υ	32L, 3	2 Pad, Non-Wi	ndowed	, Ceramic L	eadless.	Chip Carrier (LCC)				
Z	28F, 2	28 Lead, Non-W	/indowe	d, Ceramic	Bottom-E	Brazed Flat Packag	e (Flatpack))		
					Lead Fi	nish				
X	Allows	s Hot Tin Dip or	Gold (A	(U)						
Α	Hot Ti	n Dip								
С	Gold (AU)								

Table 12.3 - ATMEL SMD Part Types, Listed by SMD Number

5962-85102			
Atmel Order Number	Atmel Similar Part Number	Circuit Description	Access Time(ns)
5962-85102 04 YX	AT27HC64L-90DM/883	8Kx8EPROM	90
5962-85102 04 ZX	AT27HC64L-90LM/883	8Kx8EPROM	90

5962-86063	7		
Atmel Order Number	Atmel Similar Part Number	Circuit Description	Access Time(ns)
5962-86063 01 XX	AT27C256-20DM/883	32Kx8EPROM	200
5962-86063 01 YX	AT27C256-20LM/883	32Kx8EPROM	200
5962-86063 02 XX	AT27C256-25DM/883	32Kx8EPROM	250
5962-86063 02 YX	AT27C256-25LM/883	32Kx8EPROM	250
5962-86063 03 XX	AT27C256-30DM/883	32Kx8EPROM	300
5962-86063 03 YX	AT27C256-30LM/883	32Kx8EPROM	300
5962-86063 04 XX	AT27C256-17DM/883	32Kx8EPROM	170
5962-86063 04 YX	AT27C256-17LM/883	32Kx8EPROM	170
5962-86063 05 XX	AT27C256-15DM/883	32Kx8EPROM	150
5962-86063 05 YX	AT27C256-15LM/883	32Kx8EPROM	150
5962-86063 06 XX	AT27HC256L-12DM/883	32Kx8EPROM	120
5962-86063 06 YX	AT27HC256L-12LM/883	32Kx8EPROM	120
5962-86063 07 XX	AT27HC256L-90DM/883	32Kx8EPROM	90
5962-86063 07 YX	AT27HC256L-90LM/883	32K×8EPROM	90
5962-86063 08 XX	AT27HC256-70DM/883	32Kx8EPROM	70
5962-86063 08 YX	AT27HC256-70LM/883	32Kx8EPROM	70

5962-87514						
Atmel Order Number	Atmel Similar Part Number	Circuit Description End Write Indicator	Write Mode	Access Time(ns)	Write Speed(ms)	Endurance (Cycles)
5962-87514 06 UX	AT28PC64-35KM/883	8Kx8E ² PROM Data Polling	Byte/Page	350	2	10K
5962-87514 06 XX	AT28PC64-35DM/883	8Kx8E ² PROM	Byte/Page	350	2	10K
5962-87514 06 YX	AT28PC64-35LM/883	8Kx8E ² PROM Data Polling	Byte/Page	350	2	10K
5962-87514 07 UX	AT28PC64-30KM/883	8Kx8E ² PROM	Byte/Page	300	2	10K
5962-87514 07 XX	AT28PC64-30DM/883	8Kx8E ² PROM Data Polling	Byte/Page	300	2	10K
5962-87514 07 YX	AT28PC64-30LM/883	8Kx8E ² PROM Data Polling	Byte/Page	300	2	10K

12

Table 12.3 - ATMEL SMD Part Types, Listed by SMD Number

5962-87514	(continued)					
Atmel Order Number	Atmel Similar Part Number	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed(ms)	Endurance (Cycles)
5962-87514 08 UX	AT28PC64-25KM/883	8Kx8E ² PROM Data Polling	Byte/Page	250	2	10K
5962-87514 08 XX	AT28PC64-25DM/883	8Kx8E ² PROM	Byte/Page	250	2	10K
5962-87514 08 YX	AT28PC64-25LM/883	Data Polling 8Kx8E ² PROM	Byte/Page	250	2	10K
5962-87514 09 UX	AT28PC64-20KM/883	Data Polling 8Kx8E ² PROM	Byte/Page	200	2	10K
5962-87514 09 XX	AT28PC64-20DM/883	Data Polling 8Kx8E ² PROM	Byte/Page	200	2	10K
5962-87514 09 YX	AT28PC64-20LM/883	Data Polling 8Kx8 E ² PROM	Byte/Page	200	2	10K
5962-87514 10 UX	AT28HC64L-12KM/883	Data Polling 8Kx8E ² PROM	Byte/Page	120	2	10K
5962-87514 10 XX	AT28HC64L-12DM/883	Data Polling 8Kx8E ² PROM	Byte/Page	120	2	10K
5962-87514 10 YX	AT28HC64L-12LM/883	Data Polling 8Kx8E ² PROM Data Polling	Byte/Page	120	2	10K
5962-87514 11 UX	AT28HC64L-90KM/883	8Kx8E ² PROM Data Polling	Byte/Page	90	2	10K
5962-87514 11 XX	AT28HC64L-90DM/883	8Kx8E ² PROM Data Polling	Byte/Page	90	2	10K
5962-87514 11 YX	AT28HC64L-90LM/883	8Kx8E ² PROM Data Polling	Byte/Page	90	2	10K
5962-87514 12 UX	AT28HC64L-70KM/883	8Kx8E ² PROM Data Polling	Byte/Page	70	2	10K
5962-87514 12 XX	AT28HC64L-70DM/883	8Kx8E ² PROM Data Polling	Byte/Page	70	2	10K
5962-87514 12 YX	AT28HC64L-70LM/883	8Kx8E ² PROM Data Polling	Byte/Page	70	2	10K
5962-87514 13 UX	AT28C64-35KM/883	8Kx8E ² PROM Rdy/Busy	Byte	350	1	10K
5962-87514 13 XX	AT28C64-35DM/883	8Kx8E ² PROM Rdy/Busy	Byte	350	1	10K
5962-87514 13 YX	AT28C64-35LM/883	8Kx8E ² PROM Rdv/Busv	Byte	350	1	10K
5962-87514 14 UX	AT28C64-30KM/883	8Kx8E ² PROM Rdy/Busy	Byte	300	1	10K
5962-87514 14 XX	AT28C64-30DM/883	8Kx8E ² PROM Rdv/Busv	Byte	300	1	10K
5962-87514 14 YX	AT28C64-30LM/883	8Kx8E ² PROM Rdy/Busy	Byte	300	1	10K

Table 12.3 - ATMEL SMD Part Types, Listed by SMD Number

5962-87514	(continued)					
Atmel Order Number	Atmel Similar Part Number	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed(ms)	Endurance (Cycles)
5962-87514 15 UX	AT28C64-25KM/883	8Kx8E ² PROM	Byte	250	1	10K
5962-87514 15 XX	AT28C64-25DM/883	Rdy/Busy 8Kx8E ² PROM Rdy/Busy	Byte	250	1	10K
5962-87514 15 YX	AT28C64-25LM/883	8Kx8E ² PROM Rdy/Busy	Byte	250	1	10K
5962-87514 15 ZX	AT28C64-25FM/883	8Kx8E ² PROM Rdy/Busy	Byte	250	1	10K
5962-87514 16 UX	AT28C64-20KM/883	8Kx8E ² PROM Rdy/Busy	Byte	200	1	10K
5962-87514 16 XX	AT28C64-20DM/883	8Kx8E ² PROM Rdy/Busy	Byte	200	1	10K
5962-87514 16 YX	AT28C64-20LM/883	8Kx8E ² PROM Rdy/Busy	Byte	200	1	10K
5962-87514 17 UX	AT28C64-15KM/883	8Kx8E ² PROM Rdy/Busy	Byte	150	1	10K
5962-87514 17 XX	AT28C64-15DM/883	8Kx8E ² PROM Rdy/Busy	Byte	150	1	10K
5962-87514 17 YX	AT28C64-15LM/883	8Kx8E ² PROM Rdy/Busy	Byte	150	1	10K
5962-87514 18 UX	AT28C64X-35KM/883	8Kx8E ² PROM Data Polling	Byte	350	1	10K
5962-87514 18 XX	AT28C64X-35DM/883	8Kx8E ² PROM Data Polling	Byte	350	1	10K
5962-87514 18 YX	AT28C64X-35LM/883	8Kx8E ² PROM Data Polling	Byte	350	1	10K
5962-87514 19 UX	AT28C64X-30KM/883	8Kx8E ² PROM Data Polling	Byte	300	1	10K
5962-87514 19 XX	AT28C64X-30DM/883	8Kx8E ² PROM Data Polling	Byte	300	1	10K
5962-87514 19 YX	AT28C64X-30LM/883	8Kx8E ² PROM Data Polling	Byte	300	1	10K
5962-87514 20 UX	AT28C64X-25KM/883	8Kx8E ² PROM Data Polling	Byte	250	1	10K
5962-87514 20 XX	AT28C64X-25DM/883	8Kx8E ² PROM Data Polling	Byte	250	1	10K
5962-87514 20 YX	AT28C64X-25LM/883	8Kx8E ² PROM Data Polling	Byte	250	1	10K
5962-87514 20 ZX	AT28C64X-25FM/883	8Kx8E ² PROM Data Polling	Byte	250	1	10K

12

Table 12.3 - ATMEL SMD Part Types, Listed by SMD Number

5962-87514	(continued)					
Atmel Order Number	Atmel Similar Part Number	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed(ms)	Endurance (Cycles)
5962-87514 21 UX	AT28C64X-20KM/883	8Kx8E ² PROM Data Polling	Byte	200	1	10K
5962-87514 21 XX	AT28C64X-20DM/883	8Kx8E ² PROM Data Polling	Byte	200	1	10K
5962-87514 21 YX	AT28C64X-20LM/883	8Kx8E ² PROM Data Polling	Byte	200	1	10K
5962-87514 22 UX	AT28C64X-15KM/883	8Kx8E ² PROM Data Polling	Byte	150	1	10K
5962-87514 22 XX	AT28C64X-15DM/883	8Kx8E ² PROM Data Polling	Byte	150	1	10K
5962-87514 22 YX	AT28C64X-15LM/883	8Kx8E ² PROM Data Polling	Byte	150	1	10K

5962-87515			
Atmel Order Number	Atmel Similar Part Number	Circuit Description	Access Time(ns)
5962-87515 01 JX	AT27HC641-45DM/883	8Kx8[UV]PROM	45
5962-87515 01 KX	AT27HC641-45FM/883	8Kx8[UV]PROM	45
5962-87515 01 LX	AT27HC642-45DM/883	8Kx8[UV]PROM	45
5962-87515 01 3X	AT27HC641-45LM/883	8Kx8[UV]PROM	45
5962-87515 02 JX	AT27HC641-55DM/883	8Kx8[UV]PROM	55
5962-87515 02 KX	AT27HC641-55FM/883	8Kx8[UV]PROM	55
5962-87515 02 LX	AT27HC642-55DM/883	8Kx8[UV]PROM	55
5962-87515 02 3X	AT27HC641-55LM/883	8Kx8[UV]PROM	55
5962-87515 03 JX	AT27HC641-70DM/883	8Kx8[UV]PROM	70
5962-87515 03 KX	AT27HC641-70FM/883	8Kx8[UV]PROM	70
5962-87515 03 LX	AT27HC642-70DM/883	8Kx8[UV]PROM	70
5962-87515 03 3X	AT27HC641-70LM/883	8Kx8[UV]PROM	70
5962-87515 04 JX	AT27HC641-90DM/883	8Kx8[UV]PROM	90
5962-87515 04 KX	AT27HC641-90FM/883	8Kx8[UV]PROM	90
5962-87515 04 LX	AT27HC642-90DM/883	8Kx8[UV]PROM	90
5962-87515 04 3X	AT27HC641-90LM/883	8Kx8[UV]PROM	90

Table 12.3 - ATMEL SMD Part Types, Listed by SMD Number

5962-87539			
Atmel Order Number	Atmel Similar Part Number	Circuit Description	Access Time(ns)
5962-87539 01 KX	AT22V10-25YM/883	22-Input, 10-Output and-or-Logic Array	25
5962-87539 01 LX	AT22V10-25DM/883	22-Input, 10-Output and-or-Logic Array	25
5962-87539 01 3X	AT22V10-25LM/883	22-Input, 10-Output and-or-Logic Array	25
5962-87539 02 KX	AT22V10-30YM/883	22-Input, 10-Output and-or-Logic Array	30
5962-87539 02 LX	AT22V10-30DM/883	22-Input, 10-Output and-or-Logic Array	30
5962-87539 02 3X	AT22V10-30LM/883	22-Input, 10-Output and-or-Logic Array	30
5962-87539 03 KX	AT22V10-40YM/883	22-Input, 10-Output and-or-Logic Array	40
5962-87539 03 LX	AT22V10-40DM/883	22-Input, 10-Output and-or-Logic Array	40
5962-87539 03 3X	AT22V10-40LM/883	22-Input, 10-Output and-or-Logic Array	40
5962-87539 04 LX	AT22V10-20DM/883	22-Input, 10-Output and-or-Logic Array	20
5962-87539 04 3X	AT22V10-20LM/883	22-Input, 10-Output and-or-Logic Array	20

5962-87648	7		
Atmel Order Number	Atmel Similar Part Number	Circuit Description	Access Time(ns)
5962-87648 01 XX	AT27C512R-15DM/883	64Kx8EPROM	150
5962-87648 01 YX	AT27C512R-15LM/883	64Kx8EPROM	150
5962-87648 02 XX	AT27C512R-20DM/883	64Kx8EPROM	200
5962-87648 02 YX	AT27C512R-20LM/883	64Kx8EPROM	200
5962-87648 03 XX	AT27C512R-25DM/883	64Kx8EPROM	250
5962-87648 03 YX	AT27C512R-25LM/883	64Kx8EPROM	250
5962-87648 04 XX	AT27C512R-12DM/883	64Kx8EPROM	120
5962-87648 04 YX	AT27C512R-12LM/883	64Kx8EPROM	120

1	5962-88525						
Ī	Atmel Order Number	Atmel Similar Part Number	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed(ms)	Endurance (Cycles)
ſ	5962-88525 01 UX	AT28C256-35UM/883	32Kx8E ² PROM Data Polling	Byte/Page	350	10	10K
	5962-88525 01 XX	AT28C256-35DM/883	32Kx8E ² PROM Data Polling	Byte/Page	350	10	10K
	5962-88525 01 YX	AT28C256-35LM/883	32Kx8E ² PROM Data Polling	Byte Page	350	10	10K
	5962-88525 01 ZX	AT28C256-35FM/883	32Kx8E ² PROM Data Polling	Byte/Page	350	10	10K

12

Table 12.3 - ATMEL SMD Part Types, Listed by SMD Number

5962-88525	(continued)					
Atmel Order Number	Atmel Similar Part Number	Circuit Description End Write Indicator	Write Mode	Access Time (ns)	Write Speed(ms)	Endurance (Cycles)
5962-88525 02 UX	AT28C256-30UM/883	32Kx8E ² PROM	Byte/Page	300	10	10K
5962-88525 02 XX	AT28C256-30DM/883	Data Polling 32Kx8E ² PROM	Byte/Page	300	10	10K
5962-88525 02 YX	AT28C256-30LM/883	Data Polling 32Kx8E ² PROM	Byte/Page	300	10	10K
5962-88525 02 ZX	AT28C256-30FM/883	Data Polling 32Kx8E ² PROM	Byte/Page	300	10	10K
5962-88525 03 UX	AT28C256-25UM/883	Data Polling 32Kx8E ² PROM	Byte/Page	250	10	10K
5962-88525 03 XX	AT28C256-25DM/883	Data Polling 32Kx8E ² PROM	Byte/Page	250	10	10K
5962-88525 03 YX	AT28C256-25LM/883	Data Polling 32Kx8E ² PROM	Byte/Page	250	10	10K
	,	Data Polling				
5962-88525 03 ZX	AT28C256-25FM/883	32Kx8E ² PROM Data Polling	Byte/Page	250	10	10K
5962-88525 04 UX	AT28C256-20UM/883	32Kx8E ² PROM Data Polling	Byte/Page	200	10	10K
5962-88525 04 XX	AT28C256-20DM/883	32Kx8E ² PROM	Byte/Page	200	10	10K
5962-88525 04 YX	AT28C256-20LM/883	32Kx8E ² PROM Data Polling	Byte/Page	200	10	10K
5962-88525 04 ZX	AT28C256-20FM/883	32Kx8E ² PROM Data Polling	Byte/Page	200	10	10K
5962-88525 05 XX	AT28C256E-25DM/883	32Kx8E ² PROM Data Polling	Byte/Page	250	10	100K
5962-88525 05 YX	AT28C256E-25LM/883	32Kx8E ² PROM	Byte/Page	250	10	100K
5962-88525 05 ZX	AT28C256E-25FM/883	Data Polling 32Kx8E ² PROM	Byte/Page	250	10	100K
5962-88525 06 XX	AT28C256-15DM/883	Data Polling 32Kx8E ² PROM	Byte/Page	150	10	10K
5962-88525 06 YX	AT28C256-15LM/883	Data Polling 32Kx8E ² PROM	Byte/Page	150	10	10K
5962-88525 06 ZX	AT28C256-15FM/883	Data Polling 32Kx8E ² PROM	Byte/Page	150	10	10K
5962-88525 07 XX	AT28C256F-15DM/883	Data Polling 32Kx8E ² PROM	Byte/Page	150	3	10K
5962-88525 07 YX	AT28C256F-15LM/883	Data Polling 32Kx8E ² PROM	Byte/Page	150	3	10K
5962-88525 07 ZX	AT28C256F-15FM/883	Data Polling 32Kx8E ² PROM Data Polling	Byte/Page	150	3	10K

Table 12.3 - ATMEL SMD Part Types, Listed by SMD Number

5962-88634						
Atmel Order Number	Atmel Similar Part Number	Circuit Description	Write Mode	Access Time(ns)	Write Speed (ms)	Endurance (Cycles)
5962-88634 01 UX	AT28HC256L-12UM/883	32Kx8E ² PROM	Byte/Page	120	10	10K
5962-88634 01 XX	AT28HC256L-12DM/883	32Kx8E ² PROM	Byte/Page	120	10	10K
5962-88634 01 YX	AT28HC256L-12LM/883	32Kx8E ² PROM	Byte/Page	120	10	10K
5962-88634 01 ZX	AT28HC256L-12FM/883	32Kx8E ² PROM	Byte/Page	120	10	10K
5962-88634 02 UX	AT28HC256LF-12UM/883		Byte/Page	120	3	10K
5962-88634 02 XX	AT28HC256LF-12DM/883	32Kx8E ² PROM	Byte/Page	120	3	10K
5962-88634 02 YX	AT28HC256LF-12LM/883	32Kx8E ² PROM	Byte/Page	120	3	10K
5962-88634 02 ZX	AT28HC256LF-12FM/883	32Kx8E ² PROM	Byte/Page	120	3	10K
5962-88634 03 UX	AT28HC256-90UM/883	32Kx8E ² PROM	Byte/Page	90	10	10K
5962-88634 03 XX	AT28HC256-90DM/883	32Kx8E ² PROM	Byte/Page	90	10	10K
5962-88634 03 YX	AT28HC256-90LM/883	32Kx8E ² PROM	Byte/Page	90	10	10K
5962-88634 03 ZX	AT28HC256-90FM/883	32Kx8E ² PROM	Byte/Page	90	10	10K
5962-88634 04 UX	AT28HC256F-90UM/883	32Kx8E ² PROM	Byte/Page	90	3	10K
5962-88634 04 XX	AT28HC256F-90DM/883	32Kx8E ² PROM	Byte/Page	90	3	10K
5962-88634 04 YX	AT28HC256F-90LM/883	32Kx8E ² PROM	Byte/Page	90	3	10K
5962-88634 04 ZX	AT28HC256F-90FM/883	32Kx8E ² PROM	Byte/Page	90	3	10K

5962-88670			
Atmel Order Number	Atmel Similar Part Number	Circuit Description	Access Time(ns)
5962-88670 01 KX	AT22V10-25FM/883	22-Input, 10-Output and-or-Logic Array	25
5962-88670 01 LX	AT22V10-25GM/883	22-Input, 10-Output and-or-Logic Array	25
5962-88670 01 3X	AT22V10-25NM/883	22-Input, 10-Output and-or-Logic Array	25
5962-88670 02 KX	AT22V10-30FM/883	22-Input, 10-Output and-or-Logic Array	30
5962-88670 02 LX	AT22V10-30GM/883	22-Input, 10-Output and-or-Logic Array	30
5962-88670 02 3X	AT22V10-30NM/883	22-Input, 10-Output and-or-Logic Array	30
5962-88670 03 KX	AT22V10-40FM/883	22-Input, 10-Output and-or-Logic Array	40
5962-88670 03 LX	AT22V10-40GM/883	22-Input, 10-Output and-or-Logic Array	40
5962-88670 03 3X	AT22V10-40NM/883	22-Input, 10-Output and-or-Logic Array	40
5962-88670 04 KX	AT22V10-20FM/883	22-Input, 10-Output and-or-Logic Array	20
5962-88670 04 LX	AT22V10-20GM/883	22-Input, 10-Output and-or-Logic Array	20
5962-88670 04 3X	AT22V10-20NM/883	22-Input, 10-Output and-or-Logic Array	20

Table 12.3 - ATMEL SMD Part Types, Listed by SMD Number

5962-88724			
Atmel Order Number	Atmel Similar Part Number	Circuit Description	Access Time(ns)
5962-88724 01 KX	AT22V10L-25YM/883	22-Input, 10-Output and-or-Logic Array	25
5962-88724 01 LX	AT22V10L-25DM/883	22-Input, 10-Output and-or-Logic Array	25
5962-88724 01 3X	AT22V10L-25LM/883	22-Input, 10-Output and-or-Logic Array	25
5962-88724 02 KX	AT22V10L-30YM/883	22-Input, 10-Output and-or-Logic Array	30
5962-88724 02 LX	AT22V10L-30DM/883	22-Input, 10-Output and-or-Logic Array	30
5962-88724 02 3X	AT22V10L-30LM/883	22-Input, 10-Output and-or-Logic Array	30
5962-88724 03 KX	AT22V10L-40YM/883	22-Input, 10-Output and-or-Logic Array	40
5962-88724 03 LX	AT22V10L-40DM/883	22-Input, 10-Output and-or-Logic Array	40
5962-88724 03 3X	AT22V10L-40LM/883	22-Input, 10-Output and-or-Logic Array	40
5962-88724 04 KX	AT22V10L-20YM/883	22-Input, 10-Output and-or-Logic Array	20
5962-88724 04 LX	AT22V10L-20DM/883	22-Input, 10-Output and-or-Logic Array	20
5962-88724 04 3X	AT22V10L-20LM/883	22-Input, 10-Output and-or-Logic Array	20

Atmel Similar Part Number	Circuit Description	Access Time (ns)
ATV750-40DM/883	22-Input, 10-Output and-or-Logic Array	40
ATV750-40LM/883	22-Input, 10-Output and-or-Logic Array	40
ATV750-35DM/883	22-Input, 10-Output and-or-Logic Array	35
ATV750-35LM/883	22-Input, 10-Output and-or-Logic Array	35
	ATV750-40DM/883 ATV750-40LM/883 ATV750-35DM/883	ATV750-40DM/883 22-Input, 10-Output and-or-Logic Array ATV750-40LM/883 22-Input, 10-Output and-or-Logic Array ATV750-35DM/883 22-Input, 10-Output and-or-Logic Array

5962-89755			
Atmel Order Number	Atmel Similar Part Number	Circuit Description	Access Time (ns)
5962-89755 01 KX	AT22V10L-25FM/883	22-Input, 10-Output and-or-Logic Array	25
5962-89755 01 LX	AT22V10L-25GM/883	22-Input, 10-Output and-or-Logic Array	25
5962-89755 01 3X	AT22V10L-25NM/883	22-Input, 10-Output and-or-Logic Array	25
5962-89755 02 KX	AT22V10L-30FM/883	22-Input, 10-Output and-or-Logic Array	30
5962-89755 02 LX	AT22V10L-30GM/883	22-Input, 10-Output and-or-Logic Array	30
5962-89755 02 3X	AT22V10L-30NM/883	22-Input, 10-Output and-or-Logic Array	30
5962-89755 03 KX	AT22V10L-40FM/883	22-Input, 10-Output and-or-Logic Array	40
5962-89755 03 LX	AT22V10L-40GM/883	22-Input, 10-Output and-or-Logic Array	40
5962-89755 03 3X	AT22V10L-40NM/883	22-Input, 10-Output and-or-Logic Array	40

Product Information	1
CMOS E ² PROMs	2 5
CMOS PEROMs (Flash)	3
CMOS EPROMs	4
High Speed CMOS PROMs	5
CMOS SRAMs	6
CMOS EPLDs	7
CMOS Gate Arrays	8
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	14

CONTENTS

Sc	ection	1	3
ЭE	:CHOH		J

Die Products	
E ² PROM Die products	13-3

13

13-2

E²PROM

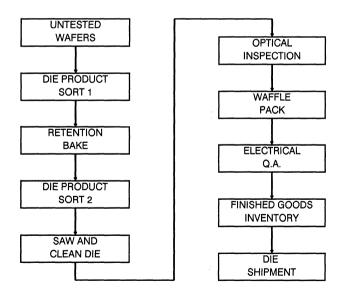
Die Products

18

Features

- High Performance CMOS Technology
- Low Power Dissipation Active and Standby
- Hardware Data Protection Features
- DATA Polling for End of Write Detection
- High Reliability

Endurance: 10⁴ Cycles Data Retention: 10 years


- Single 5V ± 10% Supply
- CMOS Compatible Inputs and Outputs
- 0°C to +70°C Operating Range
- Typical Die Thickness of 22 Mils

Description

To facilitate custom packaging, some Atmel E²PROMS are available in die form. All Atmel E²PROM die products are 100% electrically tested in wafer form and visually inspected after saw and clean. Atmel's E²PROM die products are processed with an advanced CMOS floating gate technology. As with all Atmel products, they are designed and tested to ensure high quality and manufacturability. The devices may include such features as internal error correction for extended endurance and improved data retention characteristics.

Test Flow

Atmel's die product sort testing incorporates comprehensive functional and parametric tests into wafer level tests. The typical Atmel E²PROM die test flow is outlined below.

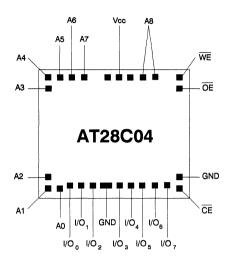
Testing

Die product sort test 1 includes checks for basic D.C. parameters such as I_{CC} and input leakage as well as for A.C. switching parameters. Data pattern testing is included to guarantee the functionality of each bit and to guard against pattern sensitivity. Several oxide stress tests are included to reduce the likelihood of infant mortality failures.

The Data retention bake is included to ensure the integrity of the core cell oxides. A pattern is written to each die at the end of die sort test 1. The wafers are then subjected to a high temperature bake. After the bake, the pattern written in die sort test 1 is verified by die sort test 2. All die are optically inspected to the specifications of Military Standard 883C method 2010.

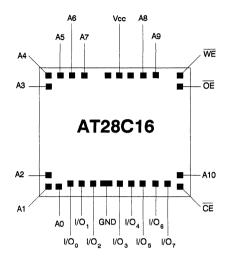
A final quality assurance test is performed on each assembly lot. A sample of the dice ready to ship is selected and electrically examined.

Die Product Offering

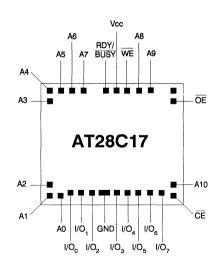

Die products are guaranteed across the commercial temperature operating range. The following E²PROM die products are currently available from Atmel:

AT28C04	AT28C16
AT28C17	AT28C64
AT28PC64	AT28C256
AT28HC16L	AT28HC64L
AT28HC256L	AT28HC291L
AT28C010	

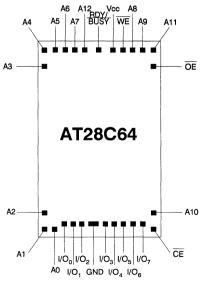
Handling and Die Information


Handling instructions for E²PROM die and other information needed for using E²PROM die are available from Atmel.

AT28C04 DIE PINOUT


DIE SIZE: 137 X 117 mils CONNECT SUBSTRATE TO GROUND

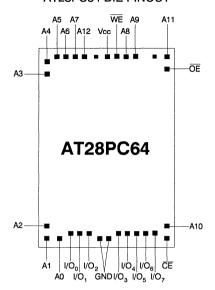
AT28C16 DIE PINOUT


DIE SIZE: 137 X 117 mils CONNECT SUBSTRATE TO GROUND

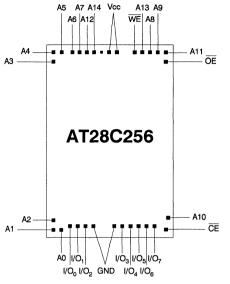
AT28C17 DIE PINOUT

DIE SIZE: 137 X 117 mils CONNECT SUBSTRATE TO GROUND

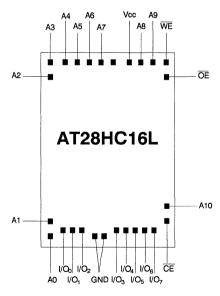
AT28C64 DIE PINOUT



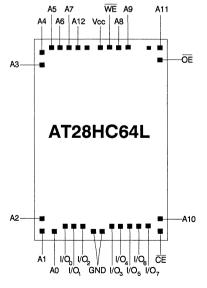
DIE SIZE: 133 X 207 mils CONNECT SUBSTRATE TO GROUND



AT28PC64 DIE PINOUT


DIE SIZE: 146 X 217 mils CONNECT SUBSTRATE TO GROUND

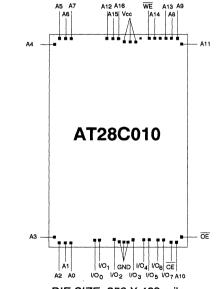
AT28C256 DIE PINOUT


DIE SIZE: 224 X 323 mils CONNECT SUBSTRATE TO GROUND

AT28HC16L DIE PINOUT

DIE SIZE: 118 X 144 mils CONNECT SUBSTRATE TO GROUND

AT28HC64L DIE PINOUT



DIE SIZE: 146 X 217 mils CONNECT SUBSTRATE TO GROUND

AT28HC291L DIE PINOUT

DIE SIZE: 224 X 323 mils CONNECT SUBSTRATE TO GROUND

AT28C010 DIE PINOUT

DIE SIZE: 356 X 429 mils CONNECT SUBSTRATE TO GROUND

Product Information	
CMOS E ² PROMs	2
CMOS PEROMs (Flash)	3
CMOS EPROMs	4
High Speed CMOS PROMs	5
CMOS SRAMs	6
CMOS EPLDs	7
CMOS Gate Arrays	3
CMOS Analog	9
Application Notes	10
Quality and Reliability	11
Military	12
Die Products	13
Package Outlines	14

CONTENTS

Section 14

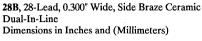
Package Outlines	
Package Outlines	14-3
Thermal Specifications	14-17

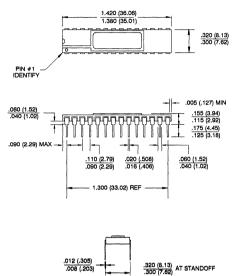
14-2

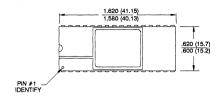
Package Outlines

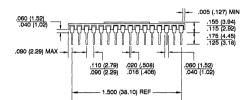
4 4

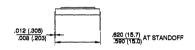
Each Atmel Data Sheet includes an Ordering Information Section which specifies the package types available. This section provides size specifications and outlines for all package types.

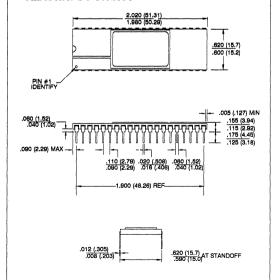

Package	Description		
28B	28 Lead, 0.300" Wide, Ceramic Side Braze Dual Inline (Side Braze)14-5		
32B	32 Lead, 0.600" Wide, Ceramic Side Braze Dual Inline (Side Braze)14-5		
40B	40 Lead, 0.600" Wide, Ceramic Side Braze Dual Inline (Side Braze)14-5		
24C	24 Lead, Non-Windowed, Ceramic Flat Package (Cerpack)14-5		
24CW	24 Lead, Windowed, Ceramic Flat Package (Cerpack)14-6		
16D3	16 Lead, 0.300" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)14-6		
24D3	24 Lead, 0.300" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)14-6		
24D6	24 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)14-6		
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)14-7		
32D6	32 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)14-7		
24DW3	24 Lead, 0.300" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)14-7		
24DW6	24 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)14-7		
28DW6	28 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)14-8		
32DW6	32 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)14-8		
40DW6	40 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)14-8		
28F	28 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)14-8		
32F	32 Lead, Non-Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)14-9		
24FW	24 Lead, Windowed, Ceramic Bottom-Brazed Flat Package (Flatpack)14-9		
28J	28 Lead, Plastic J-Leaded Chip Carrier (PLCC)14-9		
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)14-9		
44J	44 Lead, Plastic J-Leaded Chip Carrier (PLCC)14-10		
68J	68 Lead, Plastic J-Leaded Chip Carrier (PLCC)14-10		
Continued on next page			

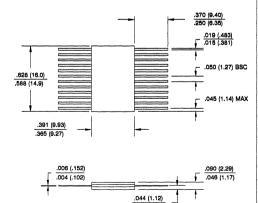


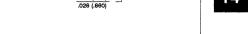

Package Description


32K	32 Lead, Non-Windowed, Ceramic J-Leaded Chip Carrier (JLCC)14-10
28KW	28 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)14-10
32KW	32 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)14-11
44KW	44 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)14-11
68KW	68 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)14-11
28L	28 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) 14-11
32L	32 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) 14-12
44L	44 Pad, Non-Windowed, Ceramic Leadless Chip Carrier (LCC) 14-12
28LW	28 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)14-12
32LW	32 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)14-12
44LW	44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC) 14-13
32M	32 Lead, Non-Windowed, Ceramic Dual Inline 32D6 Compatible Module (Module) 14-13
16P3	16 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)14-13
24P3	24 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)14-13
28P3	28 Lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 14-14
24P6	24 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
32P6	32 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)14-14
40P6	40 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)14-15
28R	28 Lead, 0.330" Wide, Plastic Gull Wing Small Outline (SOIC) 14-15
168	16 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC) 14-15
24\$	24 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC) 14-15
28\$	28 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC) 14-16
28T	28 Lead, Wide Footprint, Plastic Gull Wing Small Outline (SOIC) 14-16
28U	28 Pin, Ceramic Pin Grid Array (PGA)14-16
28X	28 Lead, 0.300" Wide, Plastic J-Leaded Small Outline (SOIC) 14-16



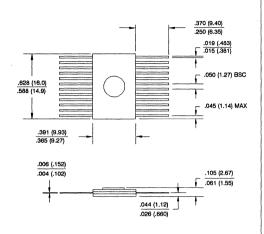

32B, 32-Lead, 0.600" Wide, Side Braze Ceramic Dual-In-Line Dimensions in Inches and (Millimeters) MIL-M-38510 CONFIG 3

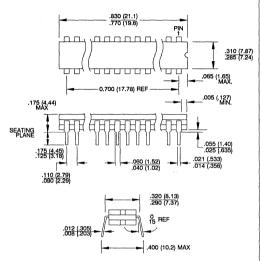




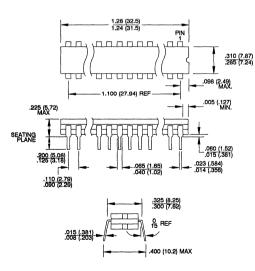
40B, 40-Lead, 0.600" Wide, Side Braze Ceramic Dual-In-Line Dimensions in Inches and (Millimeters) MIL-M-38510 D-5 CONFIG 3

24C, 24-Lead, Non-Windowed, Cerpack Dimensions in Inches and (Millimeters) MIL-M-38510 F-6 CONFIG 1 JEDEC OUTLINE MO-019 AA

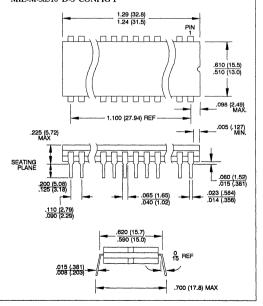




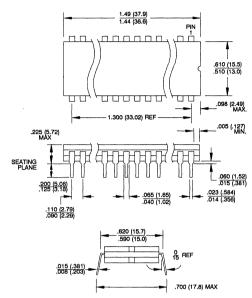
24CW, 24-Lead, Windowed, Cerpack Dimensions in Inches and (Millimeters) JEDEC OUTLINE M0-019 AA

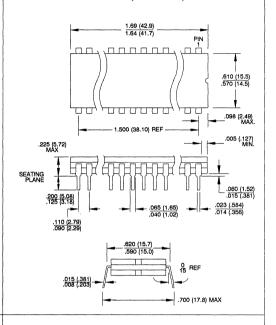


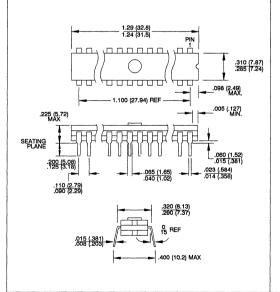
16D3, 16-Lead, 0.300" Wide, Non-Windowed, Cerdip Dimensions in Inches and (Millimeters)
MIL-M-38510 D-9 CONFIG 1

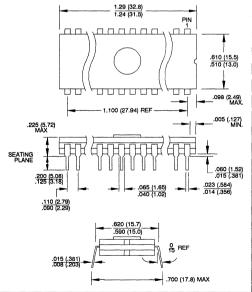


24D3, 24-Lead, 0.300" Wide, Non-Windowed Cerdip Dual-In-Line
Dimensions in Inches and (Millimeters)


Dimensions in Inches and (Millimeters) MIL-M-38510 D-9 CONFIG 1

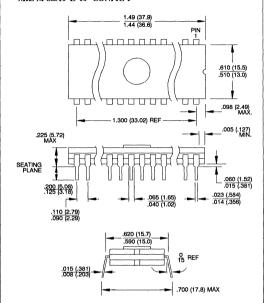

24D6, 24-Lead, 0.600" Wide, Non-Windowed, Cerdip Dimensions in Inches and (Millimeters) MIL-M-38510 D-3 CONFIG 1


28D6, 28-Lead, 0.600" Wide, Non-Windowed, Cerdip Dimensions in Inches and (Millimeters)
MIL-M-38510 D-10 CONFIG 1

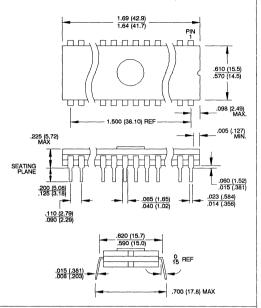

32D6, 32-Lead, 0.600" Wide, Non-Windowed, Cerdip Dimensions in Inches and (Millimeters)

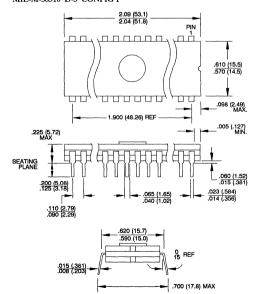
24DW3, 24-Lead, 0.300" Wide, Windowed, Cerdip Dimensions in Inches and (Millimeters) MIL-M-38510 D-9 CONFIG 1

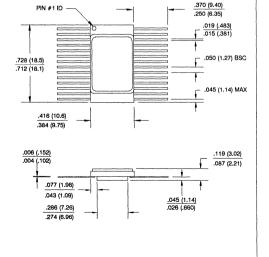
24DW6, 24-Lead, 0.600" Wide, Windowed, Cerdip Dimensions in Inches and (Millimeters)
MIL-M-38510 D-3 CONFIG 1

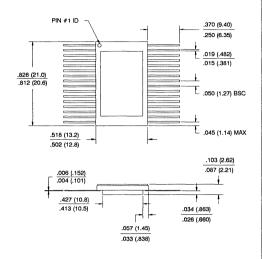


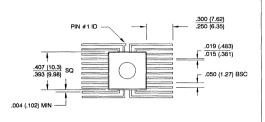
14

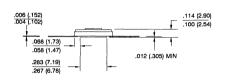



28DW6, 28-Lead, 0.600" Wide, Windowed, Cerdip Dimensions in Inches and (Millimeters) MIL-M-38510 D-10 CONFIG 1


32DW6, 32-Lead, 0.600" Wide, Windowed, Cerdip Dimensions in Inches and (Millimeters)

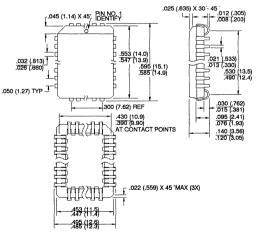

40DW6, 40-Lead, 0.600" Wide, Windowed, Cerdip Dimensions in Inches and (Millimeters)
MIL-M-38510 D-5 CONFIG 1


28F, 28-Lead, Non-Windowed, Brazed Flat Package Dimensions in Inches and (Millimeters) MIL-M-38510 F-12 CONFIG 2

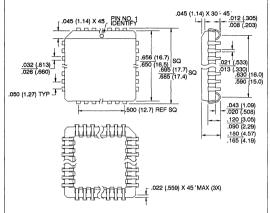


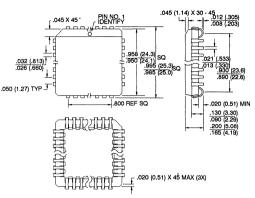
32F, 32-Lead, Non-Windowed, Brazed Flat Package Dimensions in Inches and (Millimeters)

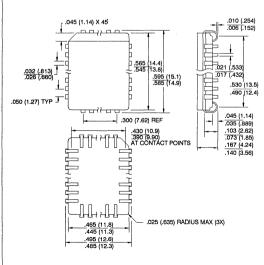
24FW, 24-Lead, Windowed, Brazed Flat Package Dimensions in Inches and (Millimeters)



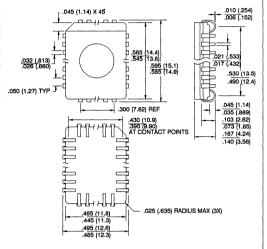
28J, 28-Lead Plastic J-Lead Chip Carrier Dimensions in Inches and (Millimeters) JEDEC OUTLINE M0-047 AB

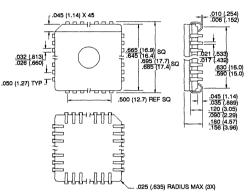

32J, 32-Lead Plastic J-Lead Chip Carrier Dimensions in Inches and (Millimeters) JEDEC OUTLINE MO-052 AE

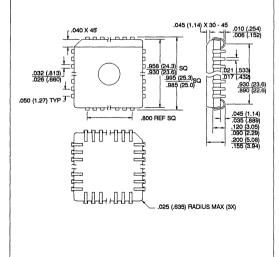



44J, 44-Lead, Plastic J-Lead Chip Carrier Dimensions in Inches and (Millimeters) JEDEC OUTLINE MO-047 AC

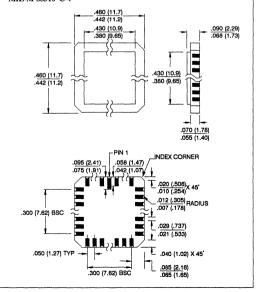
68J, 68-Lead Plastic J-Lead Chip Carrier Dimensions in Inches and (Millimeters)


32K, 32-Lead, Non-Windowed, J-Leaded Chip Carrier Dimensions in Inches and (Millimeters)


28KW, 28-Lead, Windowed, J-Leaded Chip Carrier Dimensions in Inches and (Millimeters)

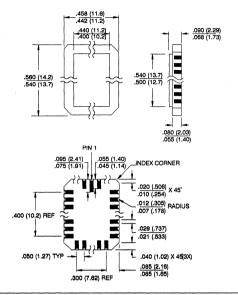

32KW, 32-Lead, Windowed, J-Leaded Chip Carrier Dimensions in Inches and (Millimeters)

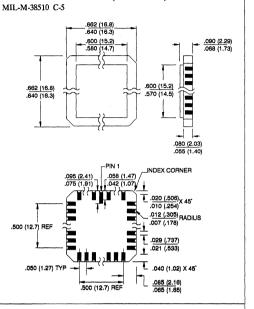
44KW, 44-Lead, Windowed, J-Leaded Chip Carrier Dimensions in Inches and (Millimeters)

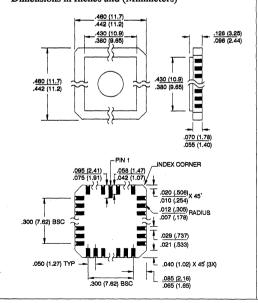


68KW, 68-Lead, Windowed, J-Leaded Chip Carrier Dimensions in Inches and (Millimeters)

28L, 28-Pad, Non-Windowed, Ceramic Leadless Chip Carrier


Dimensions in Inches and (Millimeters) MIL-M-38510 C-4

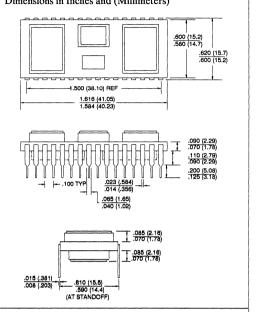



32L, 32-Pad, Non-Windowed, Ceramic Leadless Chip Carrier Dimensions in Inches and (Millimeters) MIL-M-38510 C-12

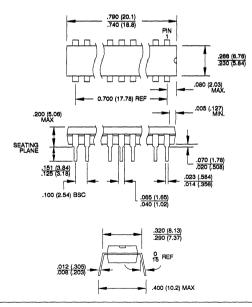
44L, 44-Pad, Non-Windowed, Ceramic Leadless Chip Carrier Dimensions in Inches and (Millimeters)

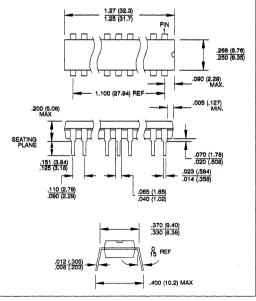
28LW, 28-Pad, Windowed, Ceramic Leadless Chip Carrier Dimensions in Inches and (Millimeters)

32LW, 32-Pad, Windowed, Ceramic Leadless Chip Carrier Dimensions in Inches and (Millimeters)

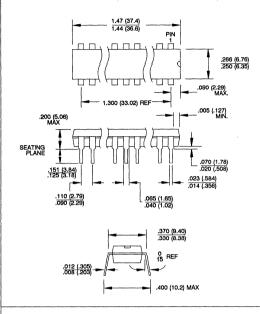


.

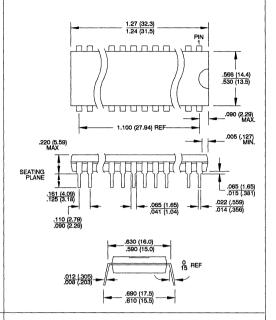

44LW, 44-Pad, Windowed, Ceramic Leadless Chip Carrier Dimensions in Inches and (Millimeters)

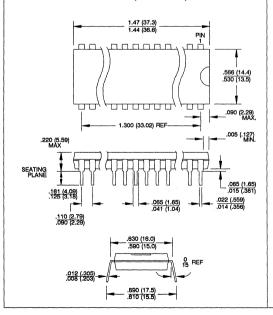

32M, 32-Lead, Non-Windowed, 32D6 Compatible, Ceramic Module Dimensions in Inches and (Millimeters)

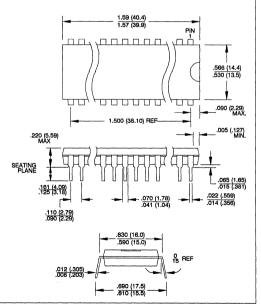
16P3, 16-Lead, 0.300" Wide, Plastic Dual-In-Line Dimensions in Inches and (Millimeters)

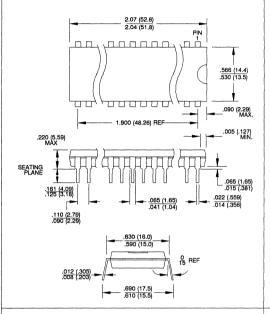


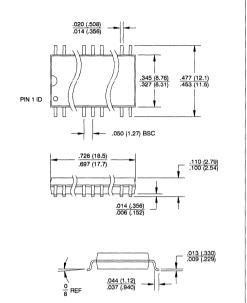
24P3, 24-Lead, 0.300" Wide, Plastic Dual-In-Line Dimensions in Inches and (Millimeters)

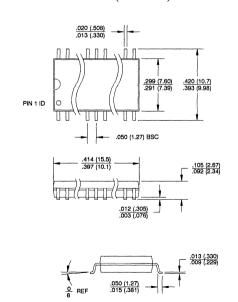


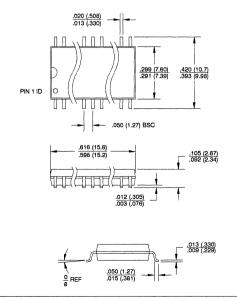

28P3, 28-Lead, 0.300" Wide, Plastic Dual-In-Line Dimensions in Inches and (Millimeters)


24P6, 24-Lead, 0.600" Wide, Plastic Dual-In-Line Dimensions in Inches and (Millimeters)

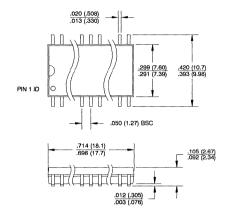

28P6, 28-Lead, 0.600" Wide, Plastic Dual-In-Line Dimensions in Inches and (Millimeters)

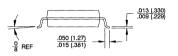

32P6, 32-Lead, 0.600" Wide, Plastic Dual-In-Line Dimensions in Inches and (Millimeters)

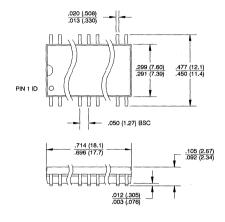

40P6, 40-Lead, 0.600" Wide, Plastic Dual-In-Line Dimensions in Inches and (Millimeters)

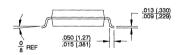

28R, 28-Lead, 0.330" Wide, Plastic Gull Wing SOIC Dimensions in Inches and (Millimeters)

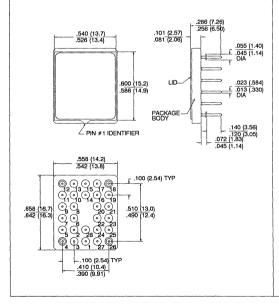
16S, 16-Lead, 0.300" Wide, Plastic Gull Wing SOIC Dimensions in Inches and (Millimeters)


24S, 24-Lead, 0.300" Wide, Plastic Gull Wing SOIC Dimensions in Inches and (Millimeters)

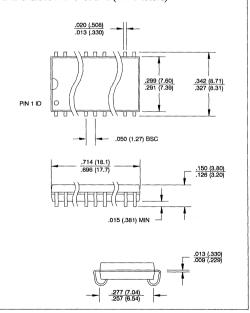



28S, 28-Lead, 0.300" Wide, Plastic Gull Wing SOIC Dimensions in Inches and (Millimeters)




28T, 28-Lead, 0.300" Wide, Wide Footprint Plastic Gull-Wing SOIC

Dimensions in Inches and (Millimeters)



28U, 28-Pin, Ceramic Pin Grid Array Dimensions in Inches and (Millimeters)

28X, 28-Lead, 28 Pin, 0.300" Wide, Plastic J-Lead SOIC Dimensions in Inches and (Millimeters)

Thermal Characteristics of Atmel Packages

The thermal performance of the semiconductor package is a very important consideration for the board designer. The reliability and functional life of the device is directly related to its junction operating temperature. As the temperature of the device increases, the stability of its junctions decline, as does its reliable life. The thermal performance is also important to the board design, because it may limit the board density, or dictate the board location of high power-dissipating devices, or require expensive cooling methods for the system. As devices have become more complex and boards have become denser, the need to account for the thermal characteristics of packages have shifted from being a minor consideration to being a necessary consideration.

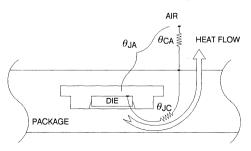
The thermal performance of a package is measured by its ability to dissipate the power required by the device into its surroundings. The electrical power drawn by the device generates heat on the top surface of the die. This heat is conducted through the package to the surface and then transferred to the surrounding air by convection. Each heat transfer step has a corresponding "resistance" to the heat flow, which is given the value θ , the thermal resistance coefficient. Subscripts are added to the coefficient to specify the two points that the heat is transferred between. Commonly used coefficients are θ_{JA} (junction to ambient air), θ_{JC} (junction to package case), and θ_{CA} (case to ambient air).

An electrical analogy can be made, as shown in the figure below, to illustrate the heat flow of a package. The heat transfer can be characterized mathematically by the following equation,

$$Tj - Ta = P \times \theta_{JA}$$

where.

P = Device operating power [watts]


Tj = Temperature of a junction on the

device [°C]

Ta = Temperature of the surrounding ambient air [°C]

Two conclusions can be made after examining this analogy. First, the lower the value of θ_{JA} , the better the heat dissipation of the package. Secondly, the value of $\theta_{\rm JA}$ is directly dependent upon both the conductive (θ_{JC}) and convective (θ_{CA}) properties of the package. θ_{1C} is a function of the package material, the adhesion between the package materials, and device size. θ_{CA} is a function of the package size and configuration, package mounting method, and air flow across the package. Lower θ_{JA} values can be achieved by specifying ceramic packages instead of plastic packages, choosing larger packages, or improving air flow across the package.

The thermal resistance values of Atmel standard packages are listed on the following page. The figures shown are maximum values for θ , typical values are lower dependent upon the device type.

Thermal Specifications

14

Thermal Resistance Coefficients

		θ JC		θJA [°C/W]	
		[°C/W]	Airflow=0 ft/min	Airflow=100 ft/min	Airflow=500 ft/min
Ceramic DIP	24D3/DW3	9	65	50	35
	24D6/DW6	10-15	45	35	20
	28D6/DW6	10-15	45	35	30
	32D6/DW6	10	45	35	30
	40D6/DW6	7	40	30	25
Plastic DIP	24P3	22	82	72	60
	24P6	39	82	72	60
	28P6	36	77	68	56
	32P6	34	72	64	53
	40P6	30	68	60	49
Leadless	28L/LW	12	68	56	48
Chip Carrier	32L/LW	10	65	55	47
	44L/LW	4	60	49	40
Plastic Leaded	28J	16	60	50	40
Chip Carrier	32J	16	60	50	40
	44J	14	50	44	35
JLCC	28K/KW	16	72	64	53
	32K/KW	16	72	64	53
	44K/KW	16	68	60	49
Cerpack	24C/CW	15	81	72	63

Area Managers

Atmel Corporation

Eastern US Office 6400 Riverside Dr. Bldg. A Dublin, OH 43017 Tel. (614) 792-6484 Fax. (614) 792-5640

North East US Office 25 Braintree Hill Park Suite 207 Braintree, MA 02184 Tel. (617) 849-0220 Fax. (617) 848-0012

Central US Office 900 E. Park Blvd. Suite 155 Plano, TX 75074 Tel. (214) 423-2525 Fax. (214) 881-7478

North West US Office 2125 O'Nel Drive San Jose, CA 95131 Tel. (408) 441-0311 Fax. (408) 436-4300

South West US Office 111 Pacifica Suite 250 Irvine, CA 92718 Tel. (714) 727-3762 Fax. (714) 727-3763

European Office Coliseum Business Centre Riverside Way Camberly, Surrey England, GU15 3AQ Tel. 44-276-686677 Fax. 44-276-686697

Domestic Representatives

Alabama

Electronic Marketing Assoc. 7501 S. Memorial Parkway Suite 202 Huntsville, AL 35802 (205) 880-8050

Arizona

Quatra Associates Inc. 4645 South Lakeshore Drive, #1 Tempe, AZ 85282 (602) 820-7050

California

Brooks Technical Group 883 North Shoreline Blvd. Mountain View, CA 94043 (415) 960-3880

Competitive Technology, Inc 200 Baker Street Suite 101 Costa Mesa, CA 92626 (714) 557-3042

21300 Victory Blvd. Woodland Hills, CA 91367 (818) 702-9010

Competitive Technology, San Diego, Inc. 9740 Scranton Road Suite 200 San Diego, CA 92121 (619) 453-5191

Colorado

Thorson Rocky Mountain 384 Inverness Drive South Suite 201 Englewood, CO 80112 (303) 799-3435

Connecticut

Lindco Associates, Inc. Cornerstone Professional Park Suite 101 Woodbury, CT 06798 (203) 266-0728

Florida

Component Design Marketing 7616 Southland Blvd. Suite 103 Orlando, FL 32809 (407) 240-3903

230 Cypress Place Oldsmar, FL 34677 (813) 789-1778

313 N.E. 7th Ave. Delray Beach, FL 33483 (407) 243-3352

Georgia

Electronic Marketing Assoc. 6695 Peachtree Industrial Blvd. Suite 101 Atlanta, GA 30360 (404) 448-1215

Illinois

Phase II Marketing 5999 S. New Wilke Rd. Suite 306 Rolling Meadows, IL 60008 (708) 806-1330

Indiana

Corrao Marsh, Inc. 6211 Stoney Creek Drive Fort Wayne, IN 46825 (219) 482-2725

3063 West U.S. 40 Greenfield, IN 46140 (317) 462-4446

lowa

Dy-tronix Inc. 23 Twixt Town Rd. N.E. Cedar Rapids, IA 52402 (319) 377-8275

Kansas

Dy-tronix Inc. 5001 College Blvd. Suite 106 Leawood, KS 66211 (913) 339-6333

1999 Amidon Suite 322 Wichita, KS 67203 (316) 838-0884

Maryland

Avtek Associates 9051 M Red Branch Road Columbia, MD 21045-2103 (301) 740-5100

Massachusetts

Professional Comp Assoc. 1049 East Street Tewksbury, MA 01876 (508) 858-0100

Michigan

Tritech Sales 32823 West 12 Mile Road Suite 110 Farmington Hills, MI 48018 (313) 553-3370

Minnesota

PSI 7732 West 78th Street Minneapolis, MN 55435 (612) 944-8545

Missouri

Dy-tronix Inc. 3407 Bridgeland Dr. Bridgeton, MO 63044 (314) 291-4777

New Jersey

Northeast Components 155 Grandview Lane Mahwah, NJ 07430 (201) 825-0233

New Mexico

Quatra Associates 9704 Admiral Dewey N.E. Albuquerque, NM 87111 (505) 821-1455

New York

Empire Technical Assoc. P.O Box 410 1551 East Genesse Street Skaneateles, NY 13152 (315) 685-3077

349 West Commercial Street Suite 2920 E. Rochester, NY 14445 (716) 381-8500

Executive Office Building 33 W. State St. Suite 211B Binghampton, NY 13901 (607) 772-0651

North Carolina

Electronic Marketing Assoc. 6512 Six Forks Road Suite 601 A Raleigh, NC 27615 (919) 847-8800

Ohio

Five Star Electronics 31005 Bainbridge Rd. Unit 7A Solon, OH 44139 (216) 349-1611

304 Forrer Boulevard Dayton, OH 45419 (513) 299-1718

Oregon

Earl and Brown Co., Inc. 9735 SW Sunshine Court Suite 500 Beaverton, OR 97005 (503) 643-5500

Pennsylvania

CMS Marketing 715 Twining Rd. Suite 121A Dresher, PA 19025 (215) 885-4424

South Carolina

Electronic Marketing Assoc. 210 West Stone Avenue Greenville, SC 29609-5499 (803) 233-4637

Texas

Bonser-Philhower Sales 689 West Renner Rd. Suite 111 Richardson, TX 75080 (214) 234-8438

8240 North Mopac Expwy. Suite 135 Austin, TX 78759 (512) 346-9186

10700 Richmond Suite 150 Houston, TX 77042 (713) 782-4144

Domestic Representatives, cont'd

Utah

Thorson Rocky Mountain 2309 South Redwood Road Suite A Salt Lake City, UT 84119 (801) 973-7969

Virginia

Avtek Associates Route 1 Box 117 Esmont, VA 22931 (804) 295-1294

Washington

Earl and Brown Co., Inc. 2447-A 152nd Ave NE Redmond, WA 98052 (206) 885-5064

Wisconsin

Phase II Marketing 11040 W. Bluemound Rd. Suite 211 Wauwatosa, WI 53226 (414) 771-9986

Canada

Clark-Hurman Associates 19 Donegani Suite 5 Pointe Claire, Quebec H9R 2V6 Canada (514) 426-0453

66 Colonnade Road Nepean, Ontario K2E 7K7 Canada (613) 727-5626

20 Regan Rd Unit #14 Brampton, Ontario L7A 1C3 Canada (416) 840-6066

International Representatives

Austria

Codico Postfach 138 A-1235 Wein Austria Tel. (43)-222-862428 Fax. (43)-222-863257

Belgium

Betea SA/NA Chaussee de Louvai Leuvensesteen Weg 31 1940 Sint-Stevens-Wolume

Belgium Tel. (32) 272-510-80 Fax. (32) 272-516-19

Acal Auriema Lozenberg 4 1940 Zaventem Belgium Tel. (02) 720-5983 Fax. (02) 725-1014

Denmark

Supply Team Handraerkerbyen 12 DK - 2670 Grere Denmark Tel. (45)-4290-2333 Fax. (45)-290-4890

England

Ambar Cascom, Ltd. Rabans Close Aylesbury, Bucks HP19 3RS England Tel. (44)-296434141 Fax. (44)-296-29670

Force Technologies Tudor House 24 High Street Twyford Berkshire RG10 9AG England Tel. (44)-734-342991 Fax. (44)-734-342780

Finland

Supply-Team OY Fonseenintie 3 00370 Helsinki Finland Tel. (358)-512-1233 Fax. (358)-512-1263

France

Scientech REA 81, Rue Pierre Semart 92320 Chatillon France Tel. (33)-4965-2750 Fax. (33)-4965-2769

Micro Puissance Avenue de la Baltique Z.A. de Courtaboeuf B.P. 79 91943 Les Ulis Cedex France Tel. (33) 6907-1211 Fax. (33) 6907-6712

Germany

Ineltek GMBH Hauptstrasse 45 D-7920 Heidenhiem West Germany Tel. (49) (7321) 20077 Fax. (49) (7321) 20079

Atlantik Elektronik GMBH Fraunhofer Str. 11A Postfach 1214 8033 Martinsried Germany Tel. (49) 89857 00 00

Fax. (49) 89857 37 02 Hong Kong

Lestina International Ltd. Room 405, Park Tower 15 Austin Road Tsimshatsuf Hong Kong Tel. (852) 7351736 Fax. (852) 7305260

Israel

Unitech, Ltd. Rechov Maskit 1 P.O. Box 2123 Herzlia 46120 Israel Tel. (97)-2525-76006 Fax. (97)-2525-76790

Italy

Lasi Electronica Viale Fulvio Testi 280 20126 Milano Italy Tel. (39) 2244-0012 Fax. (39) 22487717

Japan

MCM Japan Maison L 1-1-6 Sakurashinmachi Setagaya-Ku Tokyo 154 Japan Tel. (81)-34-87-8477 Fax. (81)-34-87-8825

Korea

Ellen & Co. 3921 Wilshire Blvd Suite 3036 Los Angeles, CA 90010 USA Tel. (213) 387-9344 Fax. (213) 387-1384

Netherlands

Acal Auriema Doornakkersureg 26 5642 MP Eindhoren Netherlands Tel. (31)-40-816565 Fax. (31)-40-811815

Norway

A.S. Kjell Bakke Ovre Raelingsvei 20 Postboks 24 2001 Lillestrom Norway Tel. (47)-683-2000 Fax. (47)-683-1455

Singapore

Desner Electronics PTE Ltd. 42 Mactaggart Rd. #04-01 Mactaggart Bldg Singapore 1336 Tel. 011-285-1566 Fax. 011-3373180

Spain

ATD Spain Plaza Ciudad de Viena 6 28040 Madrid Spain Tel. (34)-1-534-4000 Fax. (34)-1-534-7663

Sweden

Lagercrantz Elecktronik AB Kung Hans Vag 3, Box 981 19129 Sollentuna Sweden Tel. (46)-87547400 Fax. (46)-87544709

Switzerland

Anatec AG Sumpfstrasse 7 CH 6300 ZUG Switzerland Tel. (41) 424-124-41 Fax. (41) 424-131-24

Taiwan

Prospect Technology 5, Lane 55, Long-Chiang Road Taipei R.O.C. Taiwan Tel. (886)-27219533 Fax. (886)-27733756

Allreach Room 908 9F No 8 Sung Chiang Rd Taipei Taiwan R.O.C. Tel. (886)-02-562-9123 Fax. (886)-02-523-689

Domestic Distributors

Alabama

Time Electronics 4801 University Square Suite 15 Huntsville, AL 35816 (800) 824-6598

Arizona

Bell Industries 140 S. Lindon Ln. Suite 102 Tempe, AZ 85281 (602) 966-7800

Insight Electronics 1515 West University Suite 103 Tempe, AZ 85281 (602) 829-1800

Time Electronics 1301 West Geneva Drive Tempe, AZ 85282 (602) 967-2000

California

Added Value 1582 Parkway Loop Unit G Tustin, CA 92680 (714) 259-8258

31194 La Baya Drive Suite 100 Westlake Village, CA 91362 (818) 889-2861

Bell Industries 11812 San Vicente Boulevard Suite 300 Los Angeles, CA 90049 (213) 826-6778

306 East Alondra Boulevard Gardena, CA 90248 (213) 515-1800

11095 Knott Ave. Suite E Cypress, CA 90360 (714) 895-7801

4311 Anthony Court Suite 100 Rockland, CA 95677 (916) 652-0414

7827 Convey Court Suite 403 San Diego, CA 92111 (619) 268-1277

California (cont'd)

Bell Industries (cont'd) 1161 North Fairoaks Ave. Sunnyvale, CA 94089 (408) 734-8570

30101 Agoura Court Suite 118 Agoura Hills, CA 91301 (818) 706-2608

15120 Marquardt Ave. Santa Fe Springs, CA 90670 (213) 921-3611

Bradas Microtech 2175 Martin Ave. Santa Clara, CA 95050 (408) 980-2500

Insight Electronics 15635 Alton Pkwy Suite 120 Irvine, CA 92718 (714) 727-2111

28038 Dorothy Drive Suite 2 Agoura, CA 91301 (818) 707-2100

6885 Flanders Drive Suite C San Diego, CA 92121 (619) 587-9757

Jan Devices 6925 Canby Ave. Bldg. 109 Reseda, CA 91335 (818) 708-1100

Merit Electronics 2070 Ringwood Ave. San Jose, CA 95131 (408) 434-0800

Milgray/Los Angeles 912 Pancho Road Camarillo, CA 93010-8508 (805) 484-4055

Time Electronics 3002 Dow Avenue Suite 102 Tustin, CA 92680 (714) 669-0100

California (cont'd)

Time Electronics (cont'd) 370 South Crenshaw Blvd Suite E-104 Torrance, CA 90503-1727 (213) 320-0880

30343 Canwood Street Suite 210 Agoura Hills, CA 91301 (818) 707-2890

9285 Dowdy Drive San Diego, CA 92126 (619) 586-1331

9751 Independence Avenue Chatsworth, CA 91311 (818) 998-7200

1339 Moffett Park Drive Sunnyvale, CA 94089 (408) 734-9888

Western Micro Technologies, Inc. 12900 Saratoga Ave. Saratoga, CA 95070 (408) 725-1660

6837 Nancy Ridge Drive San Diego, CA 92121 (619) 453-8430

1637 North Brian St. Orange, CA 92667 (714) 637-0200

28720 Roadside Dr. Suite 175 Agoura, CA 91301 (818) 707-0377

Colorado

Added Value (AVED) 4090 Youngfield Street Wheatridge, CO 80033 (303) 422-1701

Bell Industries 12421 West 49th Avenue Wheatridge, CO 80033 (303) 424-1985

Time Electronics 7399 S. Tucson Way Suite A7 Englewood,CO 80112 (303) 799-8851

Connecticut

Cronin Electronics, Inc. 6 Capital Drive Wallingford, CT 06492 (203) 265-3134

Jaco Electronics, Inc. 384 Pratt Street Meriden, CT 06450 (203) 235-1422

Milgray/Connecticut 326 West Main St. Milford, CT 06460 (203) 878-5538

Phase I Technology 36A Padanaram Road Danbury, CT 06811 (203) 791-9042

Time Electronics 10A Centennial Drive Peabody, MA 01960 (203) 262-1319

Western Micro Technologies, Inc. 731 Main Street Suite B2 Lantridge, CA 06468 (203) 798-2366

Florida

All American Semiconductor 16251 N.W. 54th Ave. Miami, FL 33014 (305) 621-8282

5009 Hiatus Rd. Sunrise, FL 33351 (305) 572-7999

Bell Industries 600 S. Northlake Blvd. Suite 100 Altamonte Springs, FL 32701 (407) 339-0078

Milgray/Florida 1850 Lee Road Suite 104 Winter Park, FL 32789 (407) 647-5747

Time Electronics 4203 Vineland-Suite K7 Orlando, FL 32811 (407) 841-6565

Domestic Distributors, cont'd

Georgia

Bell Industries 3020 A Business Park Drive Norcross, GA 30071 (404) 662-0923

Milgray/Atlanta 3000 Northwoods Parkway Suite 270 Norcross, GA 30071 (404) 446-9777

Time Electronics 4045 Wetherburn Way Suite 6 Norcross, GA 3007 (800) 824-6598

200 Galleria Parkway Suite 1740 Atlanta, GA 30339 (404) 984-0126

Illinois

Advent Electronics 7110-16 North Lydon Street Rosemont, IL 60018 (708) 297-6200

Bell Industries 870 Cambridge Drive Elk Grove Village, IL 60007 (312) 640-1910

GBL Goold Electronics 101 Leland Court Bensenville, IL 60106 (312) 860-7171

Milgray/Chicago 3223 North Wilke Suite 2312 Arlington Heights, IL 60004 (312) 253-1212

Time Electronics 2000 Algonquin Road Schaumburg, IL 60195 (708) 303-3000

Indiana

Advent Electronics 8446 Moller Road Indianapolis, IN 46248 (317) 872-4910

Altex Electronics 12774 N. Meridian Carmel, IN 46032 (317) 848-1323

Indiana (cont'd)

Bell Industries 3433 East Washington Blvd. Fort Wayne, IN 46803 (219) 423-3422

5230 West 79th Street P.O. Box 6885 Indianapolis, IN 46204 (317) 875-8200

5827 West 73rd Street Indianapolis, IN 46268 (317) 299-5487

lowa

Advent Electronics 682 58th Ave. Ct. S.W. Cedar Rapids, IA 52404 (319) 363-0221

Kansas

Milgray/Kansas City 6400 Glenwood Suite 313 Overland Park, KS 66202 (913) 236-8800

Maryland

All American 14636 Rothgeb Drive Rockville, MD 20850 (301) 251-1205

Jaco Electronics, Inc. 10270 Old Columbia Road Columbia, MD 21046 (301) 995-6620

Milgray/Washington 9801 Broken Land Parkway Suite 103 Columbia, MD 21046 (301) 621-8169

Resco/Baltimore 4961 Mercantile Rd. Baltimore, MD 21236 (301) 529-0500

Resco/Washington 10523 Ewing Road Beltsville, MD 20705 (301) 937-9100

Time Electronics 9051 Red Branch Road Columbia, MD 21045 (301) 964-3090

Massachusetts

Bell Industries 2 Lowell Avenue Winchester, MA 01890 (617) 729-5800

100 Burtt Rd. Suite 106 Andover, MA 01810 (508) 474-8880

Cronin Electronics, Inc. 77 Fourth Avenue Needham, MA 02194 (617) 449-5000

Jaco Electronics 1053 East Street Tewksbury, MA 01876 (508) 640-0010

Milgray/New England Ballardvale Park 187 Ballardvale Street Wilmington, MA 01887 (508) 657-5900

Nu Horizons 107 Audubon Road #19 Wakefield, MA 01880 (617) 246-4442

Time Electronics 10A Centennial Drive Peabody, MA 01960 (508) 532-9900

WesternMicro Technologies, Inc. #9 Corp. Place 3 20 Blanchard Rd. Burlington, MA 01803 (617) 273-2800

Michigan

Advent Electronics 24713 Crestview Court Farmington Hills, MI 48331 (313) 477-1650

Bell Industries 814 Phoenix Drive Ann Arbor, MI 48104 (313) 971-9093

Minnesota

All American 11409 Valley View Rd. Eden Prairie, MN 55344 (612) 944-2151

Minnesota (cont'd)

Time Electronics 7667 Cahill Road Edina, MN 55435 (612) 943-2433

Missouri

Time Electronics 319 Consort Drive Manchester, MO 63011-4491 (314) 391-6444

New Hampshire

Cronin Electronics, Inc. 360 Harvey Road Manchester, NH 03103 (603) 624-0105

New Jersey

GCI Corp. 245 D. Clifton Avenue West Berlin, NJ 08091 (609) 768-6767

Jaco Electronics 555 Preakness Ave. Totowa, NJ 07512 (201) 942-4000

Milgray/Delaware Valley 3001 Greentree Executive Campus Suite C Marlton, NJ 08053 (609) 983-5010

Milgray/New Jersey 1055 Parsippany Boulevard Parsippany, NJ 07054 (201) 335-1766

Nu Horizons Electronics 39 U.S. Route 46 Pine Brook, NJ 07058 (201) 882-8300

2002C Greentree Exec. Campus Marlton, NJ 08053 (609) 596-1833

Time Electronics 4B Eves Drive Suite 500 Marlton, NI 08053 (609) 596-6700

Western Micro Technologies, Inc. 264 Passaic Ave Fairfield, NJ 07004 (201) 882-4999

Domestic Distributors, cont'd

New Mexico

Bell Industries 11728 Linn Ave. N.E. Albuquerque, NM 87123 (505) 292-2700

New York

All American 711-2 Koehler Ave. Ronkonkoma, NY 11779 (516) 981-3935

Bell Industries 52 Central Drive Farmingdale, NY 11735 (516) 752-9303

Jaco Electronics 145 Oser Avenue Hauppauge, NY 11788 (516) 273-5500

Milgray/New York 77 Schmitt Boulevard Farmingdale, NY 11735 (516) 420-9800

Milgray/Upstate New York One Corporate Place Suite 200 1170 Pittsford Victor Road Pittsford, NY 11534 (716) 381-9700

Nu Horizons 6000 New Horizons Blvd. Amityville, NY 11701 (516) 226-6000

100 Bluff Drive E. Rochester, NY 14445 (716) 248-5980

Phase I Technology 1110 Route 109 N. Lindenhurst, NY 11757 (516) 957-4900

Time Electronics 415 Oser Avenue Hauppauge, NY 11788 (516) 434-3344

Time Electronics 7010 Fly Road East Syracuse, NY 13057 (315) 432-0355

Time Electronic Sales 70 Marcus Boulevard Hauppauge, NY 11788 (516) 273-0100

North Carolina

Milgray/Raleigh 2925 Huntleigh Drive Suite 101 Raleigh, NC 27604-3374 (919) 790-8094

Time Electronics 9800 L Southern Pine Blvd Charlotte, NC 28217 (800) 824-6598

Ohio

Bell Industries EDD Dayton Division 444 Windsor Park Drive Dayton, OH 45459 (513) 435-8660

EDD Military Division 446 Windsor Park Drive Dayton, OH 45459 (513) 434-8231

Milgray/Cleveland 6155 Rockside Road Suite 206 Cleveland, OH 44131 (216) 447-1520

Time Electronics 2580 Oakstone Drive Suite A Columbus, OH 43231 (614) 794-3301

Oregon

Bell Industries 6024 Southwest Jean Rd. Lake Oswego, OR 97035 (503) 635-6500

Time Electronics 15688 SW 72nd Avenue Portland, OR 97224 (503) 684-3782

Western Micro Technologies Inc. 1800 N.W. 169th Place Suite B300 Beaverton, OR 97006 (503) 629-2082

Pennsylvania

GCI 4800 Linglestown Rd. Suite 103 Harrisburg, PA 17112 (717) 541-8900

Texas

Bell Industries 1701 North Greenville Suite 306 Richardson, TX 75081 (214) 690-0466

Insight Electronics Inc. 1778 Plano Rd. Suite 320 Richardson, TX 75081 (214) 783-0800

6034 W. Courtyard Suite 304-49 Austin, TX. 78730 (512) 467-0800

Milgray/Dallas 16610 North Dallas Parkway Suite 1300 Dallas, TX 75248 (214) 248-1603

Milgray/Houston 12919 Southwest Freeway Suite 130 Stafford, TX 77477 (713) 240-5360

Omni-Pro Electronics 4141 Billy Mitchell Dallas, TX 75244 (214) 233-0500

7719 Wood Hollow Drive Suite 210 Austin, TX 78731 (512) 794-9200

Time Electronics 1876 Firman Drive Richardson, TX 75081 (214) 644-4644

1826-F Kramer Lane Austin,TX 78758 (512) 339-3054

Utah

Added Value 1836 West Parkway Blvd. Salt Lake City, UT 84119 (801) 975-9500

Bell Industries 6912 South 185 West Suite B Midvale, UT 84047 (801) 255-9611

Milgray/Utah 4190 South Highland Drive Suite 102 Salt Lake City, UT 84124 (801) 272-4999

Time Electronics 2446 Progress Drive West Valley, UT 84119 (801) 973-8494

Washington

Bell Industries 8553 154th Ave. N.E. Redmond, WA 98052 (206) 885-9963

Insight Electronics 12002 115th Ave. N.E. Kirkland, WA 98034 (206) 820-8100

Western Micro Technologies, Inc. 14636 N.E. 95th Street Redmond, WA 98052 (206) 881-6737

Time Electronics 8601 Willows Road Redmond, WA 98052 (206) 882-1600

Wisconsin

Bell Industries W. 226 N. 900 Eastmound Ave. Waukesha, WI 53186 (414) 547-8879

Domestic Distributors, cont'd

Canada

Milgray/Toronto 150 Consumer Road Suite 502 Willowdale, Ontario M2J 1P9 Tele. (416) 756-4481 Fax. (416) 756-2598

ITT Multicomponents 300 North Rivermede Road Concord, Ontario L4K 2ZA Tele. (416) 736-1144 Fax. (416) 736-4831

Suite 506 Bell Mews 39 Robertson Road Nepean, Ontario K2H 8R2 Tele. (613) 596-6980 Fax. (613) 596-6987

5713 Chemin St. Francois St. Laurent, Quebec H4S 1W9 Tele. (514) 335-7697 Fax. (514) 335-9330

3455 Gardner Court Burnaby, B.C., V5G 4J7 Tele. (604) 291-8866 Fax: (604) 291-1227

#3 9840 47th Avenue Edmonton, Alberta T6E 5P3 Tele. (403) 436-9555 Fax. (403) 438-4983

#210, 3015-5th Ave. N.E. Calgary, Alberta T2A 6T8 Tele. (403) 273-2780 Fax. (403) 273-7458

760 Century Street Winnipeg, Manitoba R3H 0M1 Tele. (204) 786-8401 Fax. (204) 889-5357

Time Electronics 2798 Thamesgate Drive Unit #5 Mississauga, Ontario L4T4E8 Tele. (416) 672-5300 Fax. (416) 672-5304

To receive future updates to this data b	book, fill in this form and return it	t to:	
Marketing Department			
Atmel Corporation			
2125 O'Nel Drive			
San Jose, CA 95131			
			
•			
Name			
Title			
Company			
Address			· · · · · · · · · · · · · · · · · · ·
City	State	Zip Code	
Phone ()	Ext		
June 1990			

т. -

CORPORATE HEADQUARTERS

Atmel Corporation 2125 O'Nel Drive San Jose, CA 95131 Tel. 408-441-0311 Fax. 408-436-4200

Atmel Sales Offices

25 Braintree Hill Park, Suite 207 Braintree, MA 02184 Tel. 617-849-0220 Fax. 617-848-0012

6400 Riverside Drive Building A Dublin, OH 43017 Tel. 614-792-6484 Fax. 614-792-5640

900 East Park Blvd., Suite 155 Plano, TX 75074 Tel. 214-423-2525 Fax. 214-881-7478

111 Pacifica, Suite 250 Irvine, CA 92718 Tel. 714-727-3762 Fax. 714-727-3763

2125 O'Nel Drive San Jose, CA 95131 Tel. 408-436-4243 Fax. 408-436-4300

Coliseum Business Centre Riverside Way Camberley, Surrey England, Gu15 3AQ Tel. 44--71-686677 Fax. 44-71-686697

Atmel Design Centers

7240 Parkway Drive, Suite 360 Hanover, MD 21076 Tel. 301-796-2280 Fax. 301-796-0117

1150 E. Cheyenne Mt. Blvd. Colorado Springs, CO 80906 Tel. 719-576-3300 Fax. 719-540-1759

Coliseum Business Centre Riverside Way Camberley, Surrey England, Gu15 3AQ Tel. 44-71-686677 Fax. 44-71-686697