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1. Introduction

Digital signal processors (DSPs) have the capability
to execute sequences of instructions with
precision, accuracy, and repeatability. However,
there are times when controlled amounts of
variability are required or desirable when
performing calculations. Variability may be inserted
by using random numbers. When sequences of
random numbers are used as signals, they are
described as noise sources. Applications for noise
sources include:

1. Equalization of channels for modems [1].

2. Dithering of speech and video signals with
deterministic noise prior to quantization in
order to increase the perceived quality of the
receive signal [2].

3. Replacing gaps in speech signals where
silence has been removed for transmission or
storage efficiencies, allowing more natural
sound when reconstructed with background
noise at the same level as the original speech

[3].
4. Improving performance of certain signal-

processing algorithms by adding low-level
noise to the signal being analyzed [2].

Digital Signal Processor

5. Applications requiring random numbers such
as random tree search, random codebook
search, and Monte-Carlo analysis.

There are two basic-methods of generating random
number sequences. The first is to measure some
truly random quantity such as the time between
counts of a Geiger Counter, the voltage across a
large resistance, or the phase difference between
two free-running oscillators. Although these
examples of measurement will produce random
number sequences, they suffer from several
deficiencies:

1. Portability. These methods may not be
practical for all situations.

2. Repeatability between systems. It would be
difficult to guarantee that two instances of such
physically-based random number sources
produce sequences with the same
characteristics.

3. Repeatability over time. There are times when
the same random number sequence is required
to evaluate modifications made to an algorithm.

These deficiencies are eliminated if the random
sequences are generated by a deterministic
processor (the second general method of generating
random number sequences). However, a new
problem arises, namely insuring that the sequence
generated is truly random.

This application note will describe noise generation
using the DSP16 Digital Signal Processor. Following
this section, section two describes several random
number generation algorithms; section three
describes methods of processing a random number
sequence to produce different probability
distributions; and section four describes methods of
modifying the spectrum of the noise signal generated
from a random number generator. DSP16 code is
given and described for all of these techniques.
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2. Random Number Generation

The subject of obtaining random numbers by using
digital processors began in the late 1940’s with John
von Neuman'’s famous "middle of the squares"
algorithm [4]. A form of the algorithm with an example
is as follows:

1. Start with a two-digit number.
2. Square the number.

3. Return the middle two digits of the assumed,
four-digit number, and use this value as the start
for the next iteration.

Several sequences are shown below:
10—-10—+10—10...

20—+40 —+60—60...
55—+ 2—-0—0...

33—+ 8—+6—+3—-0—0...

As can be seen, these examples eventually
degenerate to a sequence of a single number — not
very random. Since John von Neuman’s algorithm,
there has been much research into random number
generation algorithms as well as tests to determine if
the resulting sequences are truly random. To date, the
definitive reference on random numbers is The Art of
Computer Programming [4].

Linear Congruential Method
The most widely used method for generating random
numbers is called the linear congruential method [4].

It is based on the recursive formula:

X[n+1] = (A X[n] + C) mod M

(Equation 1)
Where,

X[n+1] is the next random number in the sequence
X[n] is the current number in the random sequence

A is the multiplier, 0 < A < M
C is the increment, 0 < C < M
M is the modulus, M > 0

The first value X[0] is called the seed number and is a
value chosen between 0 and (M - 1). The subsequent
numbers in the sequence are derived by iterating
Equation 1.

The parameters M, C, and A must be selected with
great care. Properly selected values will generate a
sequence with good random properties; poorly
selected values will generate poor sequences. There
are well-founded theories on the selection of these
parameters; generally, the larger the value of M, the
better the random sequence. Also, since the
maximum period of the sequence is of length M, a
larger value of M results in a potentially longer period.

The range of values of X[n] is from 0 to (M - 1), which
limits the values of M, A, and C such that (A X[n] + C)
does not overflow the processor. In the case of the
DSP16, overflow occurs at 23! =1,

Several good sets of values are shown in Table 1. A
C-language program that implements Equation 1 is
shown in Appendix 1. The first 50 numbers generated
using the first set of parameters are shown in Table 2,
and numbers from the fourth set are shown in Table 3.

Table 1. Suggested Parameters for Implementing
Equation 1 With the DSP16

M A C Reference
134,456 | 8,121 | 28,411 [5]
243,000 | 4,561 | 51,349 [5]
259,200 | 7,141 54,773 [5]

1,048,576 | 2,045 1 [1]
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Table 2. First 50 Iterations of Linear Congruential Table 3. First 50 Iterations of Linear Congruential
Method With M = 134,456; A = 8,121; and Method With M = 1,048,576; A = 2,045; and
C = 28,411 C=1
Iteration Number X[n] Iteration Number X[n]
[n] | Decimal Hex [n] | Decimal Hex
0 75432 126a8 0 104242 19732
1 30147 75¢3 1 313963 4cabb
2 7822 1e8e 2 325824 4f8c0
3 87641 15659 3 464321 715¢1
4 85364 14d74 4 575166 8cbbe
5 14319 37ef 5 760775 b9bc7
6 8570 217a 6 746668 b64ac
7 11629 1b40d 7 209405 331fd
8 65168 fe90 8 414218 6520a
9 38923 980b 9 874979 d59e3
10 16038 3eab 10 461400 70258
11 119601 1d331 11 893177 daof9
12 132444 2055¢c 12 976150 ee516
13 92591 169af 13 786623 c00bf
14 81970 | 14032 14 128452 1f5c4
15 15125 3b15 15 540341 83eb5
16 100208 18770 16 846818 cebe?2
17 89867 15f0b 17 543835 84c5b
18 11150 2b8e 18 652016 9f2fo
19 88673 15a61 19 632625 9a731
20 129964 1fbac 20 823918 c926e
21 120911 1d84f 21 899255 db8b7
22 14474 388a 22 822748 c8ddc
23 57221 dfg5 23 603757 9366d
24 40216 9d18 24 509114 7c4ba
25 28923 70fb 25 950739 e81d3
26 17462 4436 26 201352 31288
27 120689 1d771 27 723049 b0869
28 93996 16f2¢ 28 143046 22ecB
29 63215 feef 29 1024943 fa3af
30 44418 ads2 30 953588 e8cf4
31 1541 605 31 784677 bf925
32 38464 9640 32 343186 53c92
33 53267 do13 33 318027 4dadb
34 64766 fcfe 34 248096 3c920
35 1225 4c9 35 894113 dadal
36 26892 690c 36 793118 clale
37 61799 f167 37 827815 cala7
38 108298 1a70a 38 480012 7530¢c
39 39773 9b5d 39 157405 266dd
40 61632 fOcO 40 1028970 fb36a
41 96651 1798b 41 800195 c35¢c3
42 111510 1b396 42 620216 976b8
43 39961 9c19 43 613337 95bd9
44 109364 1ab34 44 177270 2b476
45 91575 165b7 45 758431 b929f
46 32850 8052 46 147492 24024
47 42557 a63d 47 679829 a5f95
48 81888 13fe0 48 887106 dgo42
49 21483 53eb 49 95291 1743b
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Example 1: Linear Congruential Method Using the
DSP16

Program Segment 1 shows a DSP16 program that
implements the random number generation algorithm
given in Appendix 1. Program Segment 1 is described
below.

The parameters M, A, and C are stored in ROM, and
variables XN and XNP1 are stored in RAM. Since the
DSP16’s RAM and ROM are 16-bits wide, several of
the values are stored in two locations. As mentioned,
M should be as large as possible; therefore it is stored
in two ROM locations (MH and ML). Since the
generated random numbers range from 0 to (M - 1),
X[n] is also stored in two RAM locations (XNH and
XNL).

The first operation is to multiply X[n] by A. Since the
DSP16’s multiplier uses 16-bit operands, the
multiplication is performed in two stages in order to
implement extended precision arithmetic. A is first
multiplied by the lower half of XN (XNL). Because the
most significant bit of XNL can be a 1, XNL can be
interpreted as a negative number and the
multiplication would produce an incorrectly signed
result. To alleviate this possibility, XNL is tested. If
XNL is interpreted as negative, the value A is shifted
up sixteen bits and added before the multiplication.
The product (A XN) is stored in accumulator a0. A is
then multiplied by XNH. This partial product is shifted
up sixteen bits and then added to the lower partial
product. The increment C is then added to the
complete product, resulting in (A XN + C).

The next step is to take the modulus of this quantity.
The DSP16 does not have an intrinsic quotient/
remainder function, so the program loop "do 14" is
used to perform the modulus operation. The modulus
(in this case 134,456) is shifted to the left as much as
possible without producing an overflow (in this case
to 1,101,463,552). This value is then tested against the
argument (A Xn + C). If the shifted modulus is less
than (A Xn + C), it is subtracted from (A Xn + C),
otherwise the process continues to the following step.
The modulus is shifted once to the right and then
tested again. This step is iterated once more than the
number of shifts used to produce the shifted modulus.
After these iterations, the remainder is the modulus of
the argument. In order to perform the 31-bit
subtraction, the shifted modulus must be written to
RAM and read back into the y register.

Finally, the newly generated random number must be
normalized. In typical applications, the numbers
should range from 0 to 2'5, or —2'° to 2'°. Most of the
moduli in Table 1 are not powers of 2, and hence
converting these numbers to a useful range requires
scaling the number. This scale factor is the last item in
the ROM data-base. The resulting number returned to
the calling program ranges from —2'°+1 t0 2'°~1 and
is held in location "udev."

The last set of numbers in Table 1 has a modulus that
is a power of 2. This greatly simplifies the generation
of the random numbers, as the modulus operation
involves simply masking out the most significant bits.
In addition, scaling the number to the range +2'°
requires a simple shift. The program segment that
works with the last set of numbers in Table 1 is given
in Program Segment 2.

Although there are benefits to using a modulus that is
a power of 2, the "n" least significant bits of the
numbers generated in this manner repeat with a
period of 2". This is seen by examining the
hexadecimal representation of the random numbers in
Table 3. Note that this is not the case with the data in
Table 2.
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Program Segment 1. Linear Congruential Method

/* The following is the program segment for the first DSP example. This program */
;* segment implements the linear congruential method of random number generatiom, i.e. *5
* *
/* x(n+1) = (a*x(n) + ¢c) mod m */
/* */
/* Inputs:RAM variables xnl, xnh - seed value */
/* ROM locations a,c,m - parameters for algorithm. */
/% Outputs:RAM variables xnl, xnh - next random number */
VL RAM variable udev - normalized 16 bits random number */
/* a0 - random number */
/* al - 16 bit normalized random number */

/*declarations of ram variables*/
.Tam

xnl: int /*1low 16 bits of seed number/previously generated number */
/*xn gets overwritten with xnpl for use at the next call */
xnh:  int /*high 16 bits of number */
tmpl: int
tmph: int
udev: int /*returned uniform deviate in ram */
.endram
udevO:
pt=lcds /*set rom pointer */
ri=xnl /*point to old number */
a0=y /*just to clear a0  */
a0=a0-y y=*rit++ =kpt++ /*y=xnl, x=a */
al=y /*ail=xnl */
P=X*y y=*ri /*p=lo protd, y=xnh */
if pl goto contO /*if xnl pl, continue */
a0=x /*load x to a0 */
contO:
a0=a0+p pP=xX*y /*a=unsign mul,p=hi prods*/
testO: al=p /*ai=hi prod, a0=lo prod*/
al=al1<<16 /*al=hi prod in MSW */
*ri=al
y=*ri-- /*to get to upper bits */
a0=aO+y /*now have a*xn */
y=+ri X=+pt++ /*y=<>, x=c */
y=0x1
p=x*y
a0=a0+p /*a0 = a*x+c */
/*a0 now has sum right justified  */
ri=tmpl
y=+ri x=+pt++ /*y=<> , x=ml */
*ri++=x /*tmpl=ml */
y=+rl x=+pt++
*ri=x
y=+ri-- /*transfer to y */
yl=kri
/* a0 has the sum from which the modulus will be taken. y has the modulus shifted to */
/* the maximum magnitude. The number of shifts depends upon the modulus. The modulus */
/* 134,456 shifted 13 times results in 0x41a70000 = 1,101,463,552. This is the maximum */
/* shifted value less than 2°31-1. The do loop will calculate the modulus as follows: */
/% if a0 > y, subtract y */
/* shift y right (>>) by one */
/* repeat until y is the true modulus value */
/* The number of iterations is one plus the number of shifts in obtaining the maximum */
/% modulus. */
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do 14 {
al=a0-y /*test for magnitude */
if pl a0=al /*subtract */
contl: al=y
al=ai>>1 /*shift down */
*ri++=al /*store high half */
al=al<<16 /*get lsbs */
*ri--=al /*#store low half */
y=*rit++ /*get high half in y */
yl=+r1-- /*get low half */
}
/*a0 now has modularized value, store it into xnpih, xnpil */
al=a0 /*for use later */
ri=xnh
*rl--=a0
a0=a0<<16
*ri=a0
/*now scale the number for +/- 2°15; scale factor (1.949)x*/
/*depends on ratio of value of modulus to next power of 2%/
scli: al=al<<8 /*get to MSW */
al=al<<4
y=+rl X=xpt++ /*x=scale factor */
y=ai /*y=number */
P=X*y /*scale to 16 bite  */
a0=p
a0=a0<<4
ri=udev
*ri=a0 /*store in XRET */
udevOe: return
lcds:
int 8121 /* A:multiplier */
int 28411 /* C:increment */
int 0x0000 /* ML:low half of shifted modulus */
int Ox41a7 /* MH:high half of shifted modulus */
int 1.949 /* scale */
Program Segment 2. Linear Congruential Method
/* The following is the program segment for the second DSP16 example. This program */
/* segment implements the linear congruential method of random number generation, i.e. */
/* x(n+t1) = (a*x(n) + c) mod m */
/* This program is optimized for modulus of power of two. Assumed modulus is 2°20. */
/* */
/* Inputs:RAM variables XNL, XNH - seed value */
/* ROM locations a,c - parameters for linear congr. algo. */
/* Outputs:RAM variables XNL, XNH - next 20 bit random number */
/* RAM variable udev - normalized 16 bits random number */
/* a0 - 20 bit random number */
/* al - 16 bit normalized random number */
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/*declarations of ram variables */
.ram
xnl: int /*low 16 bits of seed number/previously generated number */
/*xn gets overwritten with xnpl for use at the mext call */
xph:  int /*high 16 bits of number */
udev: int /*returned uniform deviate in ram */
.endram
udevi:
pt=lcds /*set rom pointer */
ri=xnl /*point to old number */
a0=y /*just to clear a0  */
a0=a0-y y=xri++ x=+pt++ /*y=xnl, x=a */
al=y /*al=xnl */
P=X*y y=+ri /*p=lo protd, y=xnh */
if pl goto cont /*if xnl pl, continue */
a0=x /*load x to a0 */
cont:
a0=a0+p p=x*y /*a=unsign mul,p=hi prod+/
testl: al=p /*al=hi prod, a0 lo prod/
al=a1<<16 /*al=hi prod in MSW =*/
*¥ri=al
y=+ri-- /*to get to upper bits */
a0=a0+y /*now have a*xn */
y=*1'1 x=*pt++ /*y=<> , X=cC */
y=0x1
p=x*y
a0=al+p /*a0 = a¥x+c */
/*a0 now has sum right justified  */
y=0xf /*gen. 20 bit mask in y */
yl=Oxffff /*LSW of mask */
a0=alky /*mask = modulus */
/*a0 now has modular value, store it into xnpih, xnpil  */
al=a0 /*save for later */
*ri++=ail /*ri=xnl */
*ri++=al /*ri=xnh */
/*now ri=udev */
/*move to sign plus 15-bits of precision, and store */
/*we assume that the multiplier is 2720 */
a0=a0<<8 /*2°28 */
a0=a0<<4 /%2732 */
*ri=a0 /*store in RAM */
udevie: return
lcds:
int 2045 /* A:multiplier */
int 1 /* C:increment */
int 0 /* M:modulus is hardwired in code */
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Example 2: Built-ln Random Number Generator For
the DSP16

The DSP16 has an internal random bit generator that
can be used in another method of generating random
numbers. The random bit generator is based on a
ten-stage, pseudo-random bit sequence generator
and can be reset by writing to the pi register. The
output of the generator is observed by performing a
conditional test using the heads-or-tails condition.
These tests indicate if the output of the internal
generator is a 1 or a 0. In addition, testing the output
generates a new output from the bit generator.

This method is much simpler than using the linear
congruential algorithm; however, caution must be
used when concatenating random bits to develop
random numbers, as the theory in determining the
quality of the resulting random numbers has not been
fully developed. In addition, the linear congruential
method can be restarted in a known state, restarted in
a different state, or can use a different set of
parameters to generate a different sequence.

Program Segment 3 shows how to generate random
numbers by using the internal DSP16 random bit
generator. In this method, Accumulator 0 is first
cleared. Then, bit 1 of the upper half of Accumulator 0
is randomly set, depending on the state of the internal
random bit generator. Accumulator 0 is then shifted
left one location. This process repeats 15 more times.
Finally, the 16-bit number is stored in RAM for return
back to the calling routine.

Program Segment 3. Built-ln Generation Method

/* The following is the program segment for the third DSP example.
/* segment uses the built-in random bit generator to generate random numbers.
/*declarations of ram variables */
.ram
udev: int /*returned random number */
.endram
unifO:
a0=y /*clear a0
a0=a0-y
do 16 {
if heads aOh = aOh + 1 /*randomly set LSB
a0 = a0 << 1 /*shift
}
ri=udev
*ri=a0
endran: return

This program

*/
*/
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3. Noise Generation With Specific
Probability Density Function

One of the most important characteristics used in
describing a random number sequence is the
probability density function (PDF). The PDF
describes the probability that a sample of a given
amplitude or range of amplitudes will be generated.
Examples of different PDFs are uniform, exponential,
Poisson, and Gaussian [6].

The DSP random number generators in Examples 1
and 2 will produce numbers with a uniform PDF. A
uniform PDF is shown in Figure 1 and is described
as:

WheniSXS—:-

2
PDF(x) =
a
Otherwise,
PDF(x) = 0

(Equation 2)

1.00

050

pdf(X)

0.00 - L L
-1.00 -0.50 0.00 0.50 1.00

X

Figure 1. Uniform Probability Density Function

A Gaussian PDF of unit variance and 0 mean is
shown in Figure 2 and is described as:

When —oo < X < 400

PDF(x) = _;W e 2

(Equation 3)

030

pdf(X)

0.20 —

.00
0 -40 -30 -20 -10 00 10 20 3.0 4.0

Figure 2. Gaussian Probability Density Function

To determine the probability of a range of numbers,
the PDF is integrated over that range of numbers:

y=b
P(a<x<b)= [ pdi(y)dy
y=a
(Equation 4)

Associated with the PDF is the cumulative distribution
function (CDF). The CDF is the integral of the PDF:

y=X
CDF(x) = [ pdf(y)dy

y=-oo

(Equation 5)

The CDFs for the uniform and Gaussian PDFs are
shown in Figures 3 and 4. The CDF evaluated at X
indicates the probability that the random number will
be less than or equal to X. The CDF can be used to
determine the probability of a number occurring
within a range by evaluating the CDF at the extremes
of the range and by then taking the difference:

P(a < x < b) = CDF(b) — CDF(a)
(Equation 6)

Equations 5 and 6 are true for continuous
distributions. For discrete distributions, the
integration is replaced by summation.

Due to the finite representation of numbers in
processors, there is a bound on all types of
distributions, even those that theoretically have no
upper or lower bound. However, if the range of the
random numbers is appropriately limited, this
boundary effect can be minimized.
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Figure 3. Uniform Cumulative Distribution
Function

cdf(X)

0.00 L

Figure 4. Gaussian Cumulative Distribution
Function

Generation of Random Numbers With Different
Probability Functions

As mentioned, the DSP random number generators in
Examples 1 and 2 will generate sequences with
uniform PDFs. Uniformly distributed numbers (also
called uniform deviates) are used in simulations of
games of chance (dealing cards, rolling dice, etc.)

and random searches of tables. If these numbers were
used to construct an analog waveform, it would be
called white- or broadband-noise. White-noise is used
in simulating linear quantization noise or determining
the frequency response of a system.

There are times when specific PDFs are desired for
white-noise. The most commonly encountered is a

10

Guassian PDF, which is used to model component
variations or some types of noise sources. Many
random sequences are modeled with Gaussian PDFs
since it is so well known and understood.

A significant operation in random number generation
is transforming the uniform random numbers to ones
with a specific PDF. References [4] and [6] describe a
procedure for this operation with more detail.

Assume a uniformly distributed deviate X. A variable Y
is needed with a PDF of PDFy and a CDF of CDFy. It
turns out that the transformation from X to Y is:

Y = CDF'(X) = G(X)

(Equation 7)

where G() is the inverse of the desired cumulative
distribution function.

Example 3: Exponential Distribution
The exponential distribution is described by:

When X >0

=X

PDF(X) =Ae *

(Equation 8)

When X > 0

=X
COFX)=1-¢e A

(Equation 9)

with parameter A determining the "spread" of the

distribution. The function G(X) used to generate

exponential deviates from uniform deviates can easily
be derived from Equation 9:

When X =0

X = CDF(Y)
=
X=1-¢eA”
=
e? =1-X
_TY =In(1 = X)
Y=-AlIn(1 — X)
Y =G(XX) = -AIn(X)
(Equation 10)
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If X is uniformly distributed from 0 to 1, the function
G(X) = —AIn(1 — X) will produce a sequence that is
exponentially distributed. A simplification can be made
by observing that if X is uniformly distributed (see
Figure 1), so is (1 — X), resulting in the last form of
the equation. The value X = 0 should be avoided in
this case, since this would result in an undefined value
of y.

Example 4: Gaussian Distribution

Gaussian deviates have a PDF as described in
Equation 3. The following describes deviates of 0
mean and standard deviation of 1. The CDF is:

1 t=x (—t2)
2
e dt
ver t::f—oo

CDF(X) =
(Equation 11)

The integral is similar to the error function [6], and
can be re-written as:

Whenx >0

CDF(X) = % + erf(X)

Whenx < 0

CDF(X) = —erf(X)

(Equation 12)

erf(X) does not have a closed-form solution but is well
tabulated [6, 7]. The inverse of CDF() is:

Whenx >0

Y = CDF-' (X) = erf~! (X — %)
Whenx < 0

erf™! (=X)
(Equation 13)

Since the function does not have a closed-form
solution, neither does the inverse. However, the
inverse can be obtained from look-up tables. The
inverse of the erf function is shown in Figure 5.

4.00

3.00 —

2.00 —

INVERSE errf(X)

1.00

0.00 1
0.00 0.25 0.50

X

Figure 5. Inverse Error Function

Generation of Random Numbers With
Gaussian PDF

As seen above, the generation of Gaussian deviates
from uniform deviates is not trivial. Several algorithmic
approaches are described in Reference [1]. The
simplest is called the polar method. Since it requires a
division, square root, and logarithm function, it is not
well suited for the fixed-point DSP16. The simplest
and most straight-forward method is to pre-compute a
table of the inverse CDF and look-up the Gaussian
deviates with the random deviates as indices into the
table.

Table 4. Table Used in Program Segment 4

integer | x-value y-value

348 | 0.015622 | 0.039368
1040 | 0.046866 | 0.117493
1743 | 0.078109 | 0.196838
2456 | 0.109353 | 0.277405
3186 | 0.140597 | 0.359802
3943 | 0.171841 | 0.445251
4721 | 0.203084 | 0.533142
5543 | 0.234328 | 0.625916
6413 | 0.265572 | 0.724182
7353 | 0.296816 | 0.830383
8380 | 0.328059 | 0.946350
9537 | 0.359303 | 1.076965
10888 | 0.390547 | 1.229553
12548 | 0.421791 1.416931
14834 | 0.453034 | 1.675110
19050 | 0.484278 | 2.151184

11



Noise Generation Routines Using The DSP16

The generation of the Table 4 is done by the
C-language program in Appendix 2. The range from
0 to 0.5 is divided into NINTS segments, and the
midpoint of each segment is passed on as the
argument to C function erfinv( ), which evaluates the
inverse error function.

Function erfinv( ) calculates the inverse error function
by performing a binary search on the error function,
erf(). The domain of the error function is limited from
0 to 3.7, which includes 99.99% of all the numbers
occurring in a true Gaussian random number
sequence. The mid-point of this section is evaluated,
and compared to the desired value X passed as an
argument. If larger than X, the low end of the domain
is moved to the mid-point; otherwise the high-end is
moved to the mid-point. This iteration continues until
the high- and low-ends are separated by 0.001. At
this point, the previous mid-point is taken as the
solution and is returned. In addition, the actual
x-value that corresponds to the returned y-value is
also made available.

Function erf() is calculated by performing
trapezoidal integration over the Gaussian PDF
function. The limits of the integral are divided into 100
sections. The PDF is then evaluated at the mid-point
of each section, weighted, and summed to produce
the final result.

The C-language routines for erf( ) and erfinv() are in
Appendix 4.

Example 5: Generation of Noise With
Gaussian PDF and the DSP16

Program Segment 4 shows the DSP16 subroutine for
calculating a random number sequence with
Gaussian distribution. The distribution will have 0
mean and a standard deviation of 1. The method
used is the table look-up described in the previous
section. A table with 16 entries is used.

Function GDEVO calls a random number generator,
which can be that of either Program Segment 1 or 2.
The most significant bit of the returned uniform
deviate, UDEV, determines the sign of the Gaussian
deviate, GDEV. The next four bits are used as an
index into table U2G, and the Gaussian deviate is
returned. The sign is then appended, and the signed
Gaussian deviate is returned to the main program.

12
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Program Segment 4. Look-Up Table Method

/* This program segment uses table look-up to generate Gaussian distributed deviates. */

/*ram declarations */

.ram
oldpr: int /*0ld program return value */
sign: int /*sign of deviate */
gret: int /*Gaussian deviate */
.endram
gdevO:
/*save program return register for calling routine */
ri=oldpr
*r1++=pr /*save pr */
/*get uniform deviate */
call unifO /*calculate udev from program segment 3 */
/*manipulate returned value for index */
ri=sign
r3=udev
pt=gdevt
y=1 /*pre-load if pos */
al=y
y=*r3 /*get unif */
a0=y
y=Oxffff /*set y - */
if mi al=y /*if mi, load fs */
*ri=al
/*get the next four bits */
y=0xf
a0=a0<<1
a0=a0>>4
a0=a0>>8 /*next 4 bits */
a0=aOky
i=a0 /*load index %/
y=*rl x=#pt++i /*incr pt */
y=xrit+ x=*pt++ /*get real */
p=X*y /*y has sign */
a0=p
a0=a0<<16
*rl--=a0 /*return */
/*restore pr */
*rl--=a0 /*just for -- */
pr=#ri
return
# include "pseg3.s"
gdevt:
/* x value y value */
int 348 /* 0.015622  0.039368 */
int 1040 /* 0.046866  0.117493 */
int 1743 /% 0.078109  0.196838 */
int 2456  /* 0.109353 0.277405 */
int 3186  /+ 0.140597 0.359802 */
int 3943 /+ 0.171841 0.445251 */

13
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int
int
int
int
int
int
int
int
int
int

4721
5543
6413
7353
8380
9537
10888
12548
14834
19050

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

0O0OO0O0O0O0OO0OO00O0

.203084
.234328
.265572
.296816
.328059
.359303
.390547
.421791
.453034
.484278

N 200000

.b33142
.625916
.724182
.830383
.946350
.076965
.229553
.416931
.675110
.151184

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
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Improved Generation of Random Numbers With
Gaussian PDF

One limitation of the above example is that only 32
different Gaussian deviates would ever be produced.
This would be useful in only very limited applications.
One solution would be to increase the table size. A
second solution is as follows: In the previous
example, each segment of the inverse error function
was approximated by a constant value. An
improvement would be to model the entire inverse
function by a piece-wise linear approximation.

Example 6: Improved Generation of Noise With
Gaussian PDF Distribution and the DSP16

To determine a Gaussian deviate one would first pick
a random segment, as in the previous example, and
then pick a random point within the range of that
segment.

Table 5 is generated by the program in Appendix 3,
with the table entries being the starting points of each
segment. There is an additional entry for the ending
point of the last segment. In reality, this last point
should be positive infinity, but due to finite arithmetic
on the DSP16, the maximum positive value (0x7 f f f)
is used. The numbers are scaled in the table such that
99.99% of the theoretical range is covered.

Table 5. Table Used in Program Segment 5

integer | x-value y-value
0 | 0.000000 | 0.000000
694 | 0.031244 | 0.078430
1391 | 0.062488 | 0.157166
2099 | 0.093731 | 0.237122
2818 | 0.124975 | 0.318298
3559 | 0.156219 | 0.401917
4326 | 0.187463 | 0.488586
5126 | 0.218706 | 0.578918
5970 | 0.249950 | 0.674133
6872 | 0.281194 | 0.776062
7856 | 0.312438 | 0.887146
8942 | 0.343681 | 1.009827
10186 | 0.374925 | 1.150208
11667 | 0.406169 | 1.317444
13580 | 0.437413 | 1.533508
16483 | 0.468656 | 1.861267
32767 | 0.499900 | 3.700000

Program Segment 5 calls a function that generates a
uniform deviate, U. The sign of UDEV is stored for
later use. The next four bits are used to pick a
segment. The next eight bits are extracted and stored.
These will be used to pick a random point on the
straight line approximation. An alternative would be to
pick a second uniform deviate and use its eight most
significant bits for the random point. This would be
particularly appropriate if there is concern about the
randomness of the least significant bits of the uniform
deviates.

Next the difference between the starting value of the
chosen segment and the next segment is calculated
and multiplied by the stored eight bits. This product is
added to the starting value of the segment, and the
sign is appended. The signed Gaussian deviate is then
returned back to the calling routine.

15
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Program Segment 5. Look-Up Table Method

/* This program segment uses table look-up to generate Gaussian distributed deviates.

/% The value returned is a random interpolation between two table entries.

/*ram declarations*/
.Tam
oldpr: int
sign: int
gret: int
diff: int
.endram

/*0ld program return value
/*sign of deviate

gdevO:

*/
*/

/*Gaussian deviate, and lo value from table */
/*difference tween lo and high */

/*save program return register for calling routine */

ri=oldpr
*ri++=pr

/*get uniform deviate */

call unifO

/*calculate udev from program segment 3 */

/*manipulate returned value for index */

ri=sign
r3=udev
pt=gdevt

y=1
al=y

y=+r3
a0=y
y=Oxffff
if mi al=y
*ri++=al

/*get next few bits */
y=0xf

a0=a0<<1

a0=a0>>4

a0=a0>>8

a0=aOky

i=a0

/*get the lo-end and hi-end of the segment, and get diff

p=x*y
a0=p

p=x*y
al=a0-p
*ri++=a0l
*ri=ail

/*get second deviate */
call unif0 /*calculate udev
ri=diff

16

y=+ril x=+pt++i
y=*r1 x=*pt++

y=0x1

y=+rl x=*pt++

y=0x1

*/

/*save pr */

/*pre-load +1

/*get unif
/*set y -

/*if mi, load fs
/*store sign

/*next 4 bits
/*load index
*/

/*incr pt
/*get real
/*p=lo val
/*x=hi val
/*p=hi val
/*al=-diff

/*hold 1lo
/*hold diff

%/
%/

*/
*/

*/

*/
*/

*/

*/
*/
*/
*/
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a0=a0>>8 /*8 bits */
y=0x£ff /*mask */
a0=aOky

x=a0 /*x=8-bit ran num 4

/*scale diff by 2nd deviate, add to lo */

y=skri-- /*y=-diff */
p=X*y y=*ri-- /*p=scl_y y=lo */
a0=p
a0=a0<<8 /*scl to diff */
a0=a0-y /*a0=-1lo-scl*diff x/
al=-a0 /*change sign */
x=al
y=*rit++ /*y=sign */
p=x*y /*add sign */
a0=p
a0=a0<<16 /*scale up */
*ri--=a0
/*restore pr */
y=*rl-- /*just to dec ri */
pr=+ri
return
# include "pseg3.s"
gdevt:
/* x value y value */
int 0 /* 0.000000 0.000000 */
int 694 /* 0.031244 0.078430 */
int 1391  /* 0.062488 0.157166 */
int 2099 /* 0.093731 0.237122 */
int 2818  /# 0.124975 0.318298 */
int 3559 /# 0.156219  0.401917 */
int 4326  /* 0.187463 0.488586 */
int 5126 /+ 0.218706 0.578918 */
int 5970  /* 0.249950 0.674133 */
int 6872 /* 0.281194 0.776062 */
int 7856 /* 0.312438 0.887146 */
int 8042 /* 0.343681 1.009827 */
int 10186 /* 0.374925 1.150208 */
int 11667 /* 0.406169 1.317444 */
int 13580 /* 0.437413 1.533508 */
int 16483 /* 0.468656 1.861267 */
int 32767 /% 0.499900 3.700000 */
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4. Noise With Specific Spectral Density
Characteristics

When a random number sequence is used to
generate noise for signal processing, additional
characteristics can be described. If the sequence is
interpreted as a signal, then the signal has a sampling
rate, and hence a spectrum. The spectrum describes
the distribution of the energy of the signal over the
range of frequencies from 0 to 0.5 times the sampling
rate. The spectrum is a second important
characteristic of a random number sequence,
especially when used to generate noise. For uniform
deviates, the spectrum is flat; i.e. the energy is evenly
divided across the entire span of frequencies. In
certain situations, especially in speech or video
applications, noise with a different spectrum is often
used. For example, narrow-band noise is often used in
testing. Also, pink-noise, which is noise that has a
constantly decreasing energy spectrum, might be
used to simulate to the spectrum found in falling rain
or a waterfall.

Methods of Generation of Different Spectral
Functions

The simplest way to generate noise with a specific
spectrum is by filtering. Filter generation techniques
are quite numerous [8], and techniques have been
automated with computer aided design. However, a
brief review follows.

There are two types of digital filters: finite impulse
response (FIR) and infinite impulse response (IIR)
filters. Their names stem from the impulse response
duration of the filters.

FIR filters calculate their output based on the current
and previous inputs:

k=m
y(n) = 3 a(k) x(n — k)
k=0
(Equation 13)
lIR filters calculate their output based on the current
and previous inputs as well as on the previous

outputs:

y(n) =

K=m =n
5al) x(n - K) + 3 b y(n —
k=0 j=1

(Equation 14)
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Although either FIR or IIR filters can be used, IIR filters
are preferred since fewer terms are needed to
produce the desired spectrum.

Specific Example in Generation of Spectrally
Colored Noise on DSP16

Program Segment 6 shows a DSP16 program that
implements a simple first-order, low-pass IIR filter. The
coefficient alpha is chosen so that the spectrum of the
filtered signal will be flat up to - the sampling rate

and then decrease with 6 dB per octave.
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Program Segment 6. IIR Filter Implementation

/* This program segment implements an IIR filter to filter a random number sequence. */
/* The spectrum of the filtered sequence will be low-pass filtered, with a cutoff */
/* frequency of 0.1 times the sampling rate. This program segment assumes that */
/* the SAT field in the AUC register is enabled. */

/*ram declarations */

.ram
oldpr: int /*0ld program return value */
fret:int /*0ld filtered signal and new one */
.endram
fdev:
/*save program return register for calling routine */
ri=oldpr
*ri++=pr /*save pr */
/*get uniform deviate from program segment 3 */
call unifO
/*get old value, scale down, filter and add on new deviate */
pt=alpha
r2=udev /*for unifo */
ri=fret
y=*1-1 =xpt++
=X*y /*multiply */
ail=p y=*r2 /*y=new v */
a0=a0>>1 /*a0 from unifO */
a0=a0>>1
y=a0
al=al+y /*now filtered */
al=ali<<1 /*shift to nom. */
al=ai<<1
*ri=al /#final answer */
/*restore pr */
y=*ri-- /*just to dec ri */
pr=+#ri
return
alpha: int 1.414 /*alpha = .707, determines cornmer */
/*set to 1.414 for scaling */

# include "pseg3.s"

19
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5. Conclusion

The generation of random numbers and noise is often
used in speech and signal processing. This
application note has shown that the DSP16 can be
used to generate random numbers and noise
efficiently for real-time applications.

6. Summary of DSP16 programs

Table 6 shows a summary of the DSP16 program
segments described in this application note.

Table 6. Summary of DSP16 Programs

Program Description RAM ROM Cycles (not incl. | Page
Segment (ROM + tables) | called routines)
1 Linear Congruential #1 5 54 65 5
2 Linear Congruential #2 3 31 37
3 Built-In Random 1 7 38
Bit Generation
4 Gaussian Deviates #1 3 45 39 13
(29 + 16)
5 Gaussian Deviates #2 4 69 70 16
(52 + 17)
6 IR filter 2 20 25 19
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8. Appendices

Appendix 1. Linear Congruential Method

/* LINCON Linear Congruential Method of Random Number Generation. This program */
/* generates random numbers based on the Linear Congruential Algorithm, */
/% */
/* X(n+1) = (a*X(n) + ¢) mod m %/
/* */
/* The parameters m, a and c are passed as command line arguments used to generate */
/% Table 2: appl 134456 8121 28411 2 and Table 3: appl 1048576 2045 1 3 */
main(argc,argv)
int argc;
char *argv[];
{
long xnpi; /*x(n+1) */
long xn; /*x(n) */
long m,a,c;
int i, tnum;
float maxval, thisval;
if (argec < 4)
{
printf("Need four arguments, m(1), a(l), c(1), tnumO);
exit();
}
/* printf("%s %s %s0,argv[i], argv[2], argv[3]); */
sscanf (argv[1]," %1d",&m);
sscanf (argv([2]," %1d",&a);
sscanf (argv[3]," %1d",&c);
sscanf (argv[4]," %d",&tnum);
/* printf("m = %1d, a = %1d, c = %1d toum=YdO,m,a,c,tnum); */
/*test for overflow #*/
maxval = 1024.%1024.%1024.%2-1;
thisval = (m-1.)*a + c;
/* printf("overflow at %f, maximum value is %fO,maxval,thisval); */
if (maxval < thisval)
printf ("Error, this set will overflowO0) ;
xn = 12357; /*seed number */
printf ("0 Iteration NumberO) ;
printf (" DecimalHexO) ;
for(i=0;i<50;i++)
{
xnpl = (a * xn + ¢) % m;
printf (" %6d %1d%1x0,i,xnp1,xnpl) ;
xn = xnpi;
}
printf ("0) ;
printf (" Table %1d0,tnum);
printf (" First 50 Numbers Of Linear Congruential MethodO);
printf (" With M=%1d, A=%ld, C=%1dO,m,a,c);
}
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Appendix 2. Table Generation for Program Segment 4

/* MKTBL4 This program repeatedly calls function errfinv() to generate the contents */
/* of a Table 4. The output is useable as DSP16 assembly code. */
main(argc,argv)
int argc;
char *argv([];
{

double errfinv();

int nints; /*number of intervals*/

int i;

float xval, xvalO,xincr;
float xmax,ymax;

float yval;

float tmp;

int ival,iscl;

if (argc == 1)

{

printf("needs an integer argumentO);

exit();
}
sscanf (argv[1]," %d",&nints); /*get number of intervals */
/* printf (" nints = %d0,nints); */
xmax = .4999; /*not to .5; need to limit yvals to 3.7 */
ymax = 3.7;
iscl = 1024%32 - 1; /*scale to 2~15-1 */
xincr = xmax/nints; /*set increment */
xval0 = xincr/2; /*set starting value */
printf ("0);
printf (" gdevt:0) ;
printf (" /*#This table is for use with Program Segment 4%/0);
printf (" /*x-value y-value*/0) ;
for(i=0;i<nints; i++)
{
xval = xvalO + i*xincr; /*mid point of interval i */
tmp = errfinv(xval,é&yval);
ival = (yval/ymax)*iscl;
printf (" int %d /*%E %f*/0,ival,xval,yval);
}
printf ("0/* Table 4%/0);
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Appendix 3. Table Generation for Program Segment 5

/*
/*

This program repeatedly calls function errfinv() to generate the contents of */

Table 5. The output is useable as DSP16 assembly code.

main(argc,argv)
int argc;
char *argv[];

/*

double errfinv();

int nints; /*number of intervals */

int i;

float xval, xvalO,xincr;

float xmax,ymax;

float yval;

float tmp;

int ival,iscl;

if (axge == 1)

{
printf("needs an integer argumentO);
exit();

}

sscanf (argv[1]," %d",&nints) ; /*get number of intervals
printf (" nints = %d0,nints); */

Xmax

ymax
iscl

.4999; /*not to .5, need to limit yvals to 3.7
3.7;
1024%32-1; /*scale to 2°15-1

xincr = xmax/nints; /*set increment
xvalO = xincr; /*set starting value
printf (*0) ;

printf (" gdevt:0);

*/

*/
*/

printf (" /*This table is for use with Program Segment 5%/0);

printf (" /*x-value
xval = O0.;
yval = 0.;
ival = 0;
printf (" int %d /*hE
for(i=0;i<nints; i++)
{
xval = xvalO + i*xincr; /*mid point of interval i */
tmp = errfinv(xval,&yval);
if (yval > ymax)

yval = ymax;
ival = (yval/ymax)*iscl;
printf (" int %d /¥hE
}
printf ("0) ;
printf (" /*

y-value*/0) ;

%£f*/0,ival,xval,yval);

%£%/0,ival,xval,yval);

Table 5 */0);
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Appendix 4. C-Source Code for Error Function and Inverse

/*  errf Gaussian or Error function */
/% This function calculates the Gaussian/Error function and can be used to */
/* calculate/tabulate the cumulative distribution function (CDF) of a Gaussian */
/% random variable. The function implemented is: */
. X EE
errf(x) = fe 2 dy
v2 1T "o
/* The integral is calculated using the triangle method of integration. The increment */
/* used has been experimentally found to be correct to five significant digits. */
float errf(x)
float x;
{

double exp(),asin(),sqrt();
double fac_twopi;

double xval,xvalO;

double incr;

double sum,tmp;

int i;

/*get multiplicative factor */
fac_twopi = 4.*asin(1.);

/* printf ("twopi = %f0,fac_twopi); */
fac_twopi = 1./sqrt(fac_twopi);

/*set up counter variables */

incr = x/100; /*this works over a large range of values of x */
sum = 0. ;
xval0 = incr/2; /*the mid-point of the intervals */

for(i=0;i<100;i++)

{
xval = xvalO + incr*i; /*get next mid-point */
tmp = -1. * xval * xval / 2.; /*argument for exp */
tmp = exp(tmp);
sum = sum + tmp * incr; /*sum height times width */
/* printf("xval = %f tmp = Y%f sum = %£0,xval,tmp,sum) ; */
}
sum = sum * fac_twopi;
return(sum) ;
}
/* ERRFINV Inverse of Gaussian or Error Function */
/* This function calculates the inverse of the error function, errf(). This is */
/* performed by a binary search on the function errf(). The program stops when */
/% the passed value x is bounded by 0.001. YVAL is returned as the inverse at X. */
/* XTST is the true value of X that generates YVAL. */
double errfinv(x,y)
double x;
float *y;
{

float lo, high;
double xtst;
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float errf();
int flag;

1lo=0;
high = 10; /*arbitrarily high  */
*y=5;
flag = 1;
/* printf("loop %d, xval = %f, lo,y,hi=lf %f %£0,i,xval,
lo, y, high); */

while (flag)
{
xtet = errf(*y);
if( (high - 1lo) < .001)
break;
if (xtst > x)
high = *y;
else
lo = xy;
*y = (high + lo0)/2;
/* printf("xtst = %f, lo, y, high = %f %f %fO,
xtst, lo, *y, high); x/
}
return(xtst) ;
>
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Notes:
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