Application Note —_— AT&T

Dual-Tone Multifrequency Receiver
Using the WE ® DSP32 Digital Signal Processor

Contents Page Contributed by: J. Hartung
. S. L. Gay
INtroduction ..., 1 G. L. Smith
DTMF Requirementscccovvivverereninninisininnnnnnnn 2
The Basic'Algorithm.........ccceviiieieveireeeeeeeenes 2 Introduction
Implementationocecivivieiiinn e 3
PerfOrmMancCe.....ooveeeeeeeereeeseseenens e e 4 A common signaling method used in the
Hardware Descriptionceeeeeeeereerenereesersenes 4 telephone network is dual-tone multifrequency
SOUCE COUR uvimimrireririeerenisreesreseesesessesessesenns 6 (DTMF) signaling. In this scheme, pairs of tones
REFEIENCES .uvrvererirereereseeeeseeeseeeseseeseseesessesessesenss 14 are used to signal the digits 0 through 9,

pound (#), star (*), and the digits A, B, C, and
D. For each pair, one of the tones is selected
from a low group of four frequencies, and the
other from a high group of four frequencies.
The correct detection of a digit requires both a
valid tone pair and the correct timing intervals.

DTMF signaling is used both to set up a call
and to control features such as call forwarding
and conference calling. In some applications, it
is necessary to detect DTMF signaling in the
presence of speech, so it is important that the
speech waveform is not interpreted as a valid
signaling tone. Standard test procedures have
been published [1]* to verify the performance of
DTMF receivers for valid tones and for the
recognition of speech signals as tones.

The implementation of a DTMF receiver involves
the detection of each of the signaling tones,
validation of a correct tone pair, and timing to
determine that a digit is present for the correct
amount of time and with the correct spacing
between tones. In addition, depending on the
algorithm used to detect frequencies, it is
sometimes necessary to perform additional
tests to improve the performance of the
decoder in the presence of speech. Current
DSP technology allows several DTMF receivers
to be implemented on a single device. A DSP

* []indicates a reference listed at the conclusion of this
application note.

Dual-Tone Multifrequency Receiver

implementation is useful in applications in
which the digitized signal is available and
several channels need to be processed, such
as in a private branch exchange (PBX), or
where other functions can be included on the
same device.

This application note describes a DTMF
receiver based on the discrete Fourier
transform (DFT). Using this algorithm, 16 DTMF
receivers can be implemented on a WE DSP32
Digital Signal Processor using internal RAM (for
both data and program memory) and executing
at a 160 ns instruction cycle time. The input
data is assumed to be p-law coded, and is
received on the DSP32 serial interface.
Detected digits can be read from the DSP32
parallel port.

DTMF Requirements

Figure 1 shows the matrix of frequencies used
to encode the 16 DTMF symbols. Each symbol
is represented by the sum of the two
frequencies that intersect the digit. The row
frequencies are in a low band, below 1 kHz,
and the column frequencies are in a high band,
between 1 kHz and 2 kHz. The digits are
displayed as they would appear on a
telephone’s 4x4 matrix keypad (on standard
telephone sets, the fourth column is omitted).
DTMF receivers are required to detect
frequencies with a tolerance of +£1.5 percent as
valid tones. Tones that are offset by +3.5
percent, or greater, must not be detected. This
requirement not to detect tones is necessary to
inhibit the detector from falsely detecting
speech and other signals as valid DTMF digits.
The receiver is required to work with a worst-
case signal-to-noise ratio (SNR) of 15 dB, and
with an attenuation of 26 dB.

Another requirement is the ability to detect
DTMF signals when the two tones are received
at different levels. The high-band tone may be
received at a lower level than the low-band
tone due to the attenuation characteristics of
the telephone network. This level difference is
called twist, and the situation described is
called normal twist. Reverse twist occurs when
the low-band tone is received at a lower level
than the high-band tone. The receiver must
operate with a maximum of 8 dB normal twist
and 4 dB reverse twist.

In addition to the frequency, noise, and twist
requirements, the DTMF signal must meet
timing requirements for duration and spacing

of digit tones. Digits are required to be
transmitted at a rate of less than ten per
second. A minimum spacing of 50 ms between
tones is required, and the tones must be
present for a minimum of 40 ms. Any tone-
detection scheme used to implement a DTMF
receiver must have a significant time resolution
to verify correct digit timing.

A final requirement for the receiver is that it
operates in the presence of speech without
incorrectly identifying the speech signal as a
valid DTMF symbol. This is referred to as talk-
off performance. Although this requirement is
not stated in strict numerical terms, standard
recordings such as the Mitel DTMF test tape [2]
contain speech segments that are used to test
the receiver’s performance under these
conditions.

The remainder of this application note
describes the algorithm, implementation, and
performance of the DFT-based WE DSP32
Digital Signal Processor DTMF receiver.

120|9 Hz 1336|3 Hz 147I7 Hz 1633 Hz
697 Hz | 1 2 3 A
770Hz 1 4 5 6 B
852Hz | 7 8 9 o]
941 Hz | ~+ 0 # D

Figure 1. 4x4 Matrix Telephone Keypad

The Basic Algorithm

The general approach taken by this algorithm
for DTMF tone detection is to take the Fourier
transform of the observed signal and search
for energy at the frequencies of interest. Since
the algorithm is implemented on a DSP, a
Discrete Fourier Transform (DFT) is used. The
analysis frame must be long enough to resolve
the DTMF frequencies, but short enough to
detect the minimum length tone. A 12.75 ms

Dual-Tone Multifrequency Receiver

frame at a sampling rate of 8 kHz is a good
choice [3].

To guard against talk-off, the total energy is
calculated and compared to the sum of the
largest magnitudes in the high- and low-
frequency bands. If a valid tone pair is being
transmitted, then the two values should be
equivalent. But if there is speech present, the
total energy should be much greater.

The algorithm also exploits the rich harmonic
structure of the speech signal to assist in
guarding against talk-off. If speech has energy
at a frequency, f,, it most likely has significant
energy at twice the frequency, 2f;. Simulation
of a DTMF tone by speech is prevented by
calculating the energy at each tone and at its
second harmonic. If the second harmonic is
below a threshold proportional to the
fundamental, a pure tone is present. Otherwise,
it is assumed that a speech signal is present.

In calculating the DFT, the Goertzel algorithm
[4], a method for calculating any single
coefficient of a DFT, is chosen over a fast
Fourier transform (FFT) algorithm. There are
two reasons for this. In order to obtain the
required frequency resolution at an 8 kHz
sampling rate, a 256-point FFT would be
required. Since the algorithm for tone detection
requires knowledge of the energy at only 16
frequencies, it is more efficient to execute the
Goertzel algorithm for these 16 frequencies
than to perform the FFT for all 256 frequencies.
In addition, the Goertzel algorithm is recursive,
eliminating the need to store 256 samples for
the FFT for each DTMF detector. This saves
both real-time and data memory.

The Goertzel algorithm can be thought of as a
matched filter for each DFT coefficient. The
transfer function for the filter is:

1-wkz-!

1-2cos(ZNLK)Z‘1 +272

Hk (D)=

where Wy = exp(—j2x/N), and N is the length of
the observation window for the DFT. The flow
graph of this transfer function is shown in
Figure 2.

Initially, the state variables of the filter are set
to zero. Then, the filter is executed N times. The
output at this point, y«(N), is the k’th coefficient
of a length N DFT. Notice that the filter is
implemented as a direct form Il second-order

section. The recursive part of the filter is on the
left-hand side of the delay elements, and the
nonrecursive part is on the right. Since only
the output at time N is needed, it is only
necessary to compute the nonrecursive part of
the filter after the last iteration of the recursive
part. A further simplification in the algorithm is
made by observing that only the square of the
magnitude of the DFT coefficient is needed. The
nonrecursive calculation of the DFT coefficient
is:

Yk(N)=S(N)-W{S(N-1)

where S(N) and S(N—1) represent the value of
the state variables at times N and N—-1. It can
be shown that:

|yk(N) | 2=

| S(N) | 2—2cos(22K

N

)S(N)S(N—=1)+| S(N-1) | 2

Therefore, it is only necessary to store the
value, 2 cos (27k/N), for each coefficient to be
evaluated.

Figure 2. Flow Graph of the Transfer Function

Implementation

The flow chart for the DTMF tone detector is
shown in Figure 3.

At the beginning of each frame, the state
variables of each of the 16 Goertzel filters are
set to zero. Then, for 12.75 ms (102 samples at
a sampling frequency of 8 kHz), the recursive
part of the Goertzel algorithm is executed. At
the end of each frame, the square of the
magnitude of the coefficients at each frequency
are calculated. The following five tests are then
performed on these 16 values:

1. The Magnitude Test. In each group of four
tones (the row and column tones), the
frequency whose coefficient has the largest

Dual-Tone Multifrequency Receiver

magnitude is found. This frequency is
tentatively referred to as the detected
"tone" for that band. The detected tones’
magnitudes are compared to a threshold.
If either tone’s magnitude is smaller than
the threshold, then this test has failed.

2. The Twist Test. Twist is the ratio of the
energy in the lower-band tone to the
energy in the upper-band tone. If the
measured twist falls outside the region of
—4 dB to +8 dB, the test has failed.

3. The Frequency Offset Test. The energy of
the largest tone in each band is compared
to the energies of the other frequencies in
that band. If the difference falls below a
threshold in either band, the test fails.

4. The Tone-to-Total Energy Test. Let ¢1, c2,
and c3 be three different constants, each
greater than one. The energy of the low-
band detected tone is weighted by c¢1, the
energy of the high-band detected tone is
weighted by ¢2, and the sum of the low-
and high-band tones’ energies are
weighted by c8. If any one of these terms is
smaller than the total energy, then the test
has failed.

5. The Harmonic Ratio Test. The energy of
the detected tone is compared to the
energy of its second harmonic. If the
energy of the second harmonic is not
sufficiently smaller than the energy of the
detected tone, the test has failed.

If all of the above tests pass, the tone pair is
decoded as an integer between 0 and 15,
representing the digits 0 through 9, A through
D, * and #, respectively. This value is placed in
a memory location designated D(k) and is the
digit at frame k. If any of the tests fail, then —1,
representing "no detection,” is placed in D(k).
For a new valid digit to be declared and sent to
the parallel port, D(k) must be the same for two
successive frames. If it is valid for more than
two successive frames, the receiver is detecting
the continuation of the previously validated
digit, and a new digit is not output.

Performance

The DTMF detector described above has been
verified by using the Mitel DTMF test tape.

This section documents the results for each
test included on the tape.

Test 1 — This test determines the frequency

offset range of the receiver. Acceptable
performance requires detection of the tone
when the magnitude of the frequency offset is
less than +1.5 percent. When the magnitude of
the frequency offset is greater than +£3.5
percent, the receiver is required not to detect
the tone (see Table 1).

Table 1. Frequency Offset Range of the
Receiver

Percent Deviation at Cutoff
Frequency Digit
Deviation 1 5 9 D
Low group 2.4 2.4 2.7 2.7
-35 27 -22 =23
High group 2.3 2.1 2.0 1.8
24 20 -19 17

Test 2 — This test verifies that the receiver
operates with a normal twist of up to 8 dB and
a reverse twist of up to 4 dB (see Table 2).

Table 2. Verification of Receiver’s Twist
Operations

Attenuation at Cutoff (in dB)
Digit
Twist 1 5 9 D
Reverse 5.3 4.3 4.4 4.1

Normal 8.2 8.1 8.3 8.4

Test 3 — Dynamic range test. A receiver must
detect touch-tones with a dynamic range of 26
dB. The receiver detects touch-tones with a
dynamic range of 34 dB.

Test 4 — Guard time test. A receiver must
detect DTMF pulses as short as 40 ms. The
receiver detects pulses as short as 34 ms.

Test 5 — Signal-to-noise ratio test. A receiver
must detect touch-tones with a SNR of 15 dB.
The receiver detects all touch-tones at this
level.

Test 6 — Talk-off test. Acceptable talk-off
performance requires less than 30 false digit
detections in the talk-off section of the Mitel
tape. The receiver detected 5 false digits.

Hardware Description

The WE DSP32 Digital Signal Processor
receives its sampled data input from a time-
division multiplexed (TDM) serial bit stream

Dual-Tone Multifrequency Receiver

which contains 16 channels of 8-bit p-law
samples. A sample timing diagram is shown in
Figure 4. The rate of the input load clock (ILD)
must be 128 kHz (one clock cycle for each
channel). The input clock (ICK), which is the
rate at which the bits are input to the DSP32,
should equal 2.048 MHz. The signal SY, which
is the external synch pulse, tells the DSP32
when the first channel is being transmitted.
When the ILD corresponding to channel 16

Initialize

goes high, the SY should go low coincidentally
and go high 800 ns before the ILD
corresponding to channel 1 goes high. The
DSP32 DMA hardware handles the loading of
input data to a buffer in RAM.

The output of the DSP32 is connected to an
external microprocessor. When a digit has
been validated, it is written to the lower 8 bits
of the parallel I/0 data register (PDR). The
lower 4 bits contain the decoded digit, and the

Get 8 kHz
input sample

Compute the recursive
part of the Goertzel
filter for the 16
frequencies

n=n+l

No n = 1027

Yes

D(k) = -1
(no digit)

Does
frequency offset
pass?

Total
energy > ¢y *

detection
tones?

Harmonic ratio
> threshold?

Decode digit [D(k)]

Yes
D¢k) = D(k-2)?

Compute the non-recursive
part of the Goertzel

filter for the 16
frequencies

D(k) = -1
(no digit)

Largest

magnitude in high
and low frequency groups
> threshold?

D(k) = D(k-1)?

Output digit D(k)
start next frame

Figure 3. Flow Chart for the Dual-Tone Multifrequency Detector

Dual-Tone Multifrequency Receiver

upper 4 bits of the byte contain the channel
number. When the PDR is written, the Parallel
data full (PDF) pin goes high, which can be
used to interrupt the external microprocessor.
The microprocessor then has a maximum of 40
us to read the data before it is overwritten.

Source Code

Program 1 implements 16 DFT-based DTMF
receivers on the AT&T WE DSP32 Digital Signal

Processor operating with a 160 ns instruction
rate. Both the program and data are stored in
on-chip RAM. The state variables for the DFT
are in bank 1, and everything else is in bank 0.
During the 125 us sample period, there is time
to execute the 16 receivers and an additional
130 instructions.

[=]
TIMING sy DSPa2 PEN
LOGIC ILD
MICRO-
PROCESSOR
TDM DATA STREAM DI PDB i/
ICK PDF INT
8.192 MHz
33
sy L () L
16 0 l_t 2_|15 16 0
ILD L | \ L
ICK
0 1
ILD | J L
DI QOO XXX X XK bo X b1)

Figure 4. DSP32 TDM Data and Microprocessor Interfaces

Dual-Tone Multifrequency Receiver

Program 1. DTMF Receiver Source Code

.global _iirstvr,_iirincr,_ttdigit,inbuf,bufio

dauc=0x0
ioc=0x40 /* 8-bit input, passive clks, DMA on IBF */
rl5=12
rlée=4

begin:if (syc) goto begin /* wait for sync to go high before */
nop /* beginning DMA */
ioc=0%x2040 /* 8-bit input, passive clks, DMA on IBF */
pin=inbuf
rl7=-60
r5=102-2 /* DFT frame size - 2 */

ré=energy
rl0=_iirzero

r7=16-2 /* 16 receivers — 2 */
clrnrg:if (r7-—- >= 0) goto clrnrg /* zero the energy locations on a */
*ré6++ = a0 = *rlo0 /* frame by frame basis. */
r7=32-2
r2=_1iirco /* pointer to coefficients */
r3=_1iirstvr /* pointer to state variables */
clear:*r3++ = a0 = *rlo0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rl0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rl0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rlo0
*r3++ = a0 = *rl0
*r3++ = a0 = *rlo0
if (r7-—- >= 0) goto clear /* zero the state variables on a */
*r3++ = a0 = *rlo0 /* frame by frame basis. */

/***/

/* */
/* This section sets up the DMA for each receiver. After 16 samples */
/* (one for each receiver) have been received, they are converted to */
/* floating point representation and stored at bufio. DMA is then */
/* re—-initialized to continue receiving data. */
/* */

/***/
sample: pin-ilimit
iwait:if (le) goto iwait /* wait for input data to be gathered */
pin-ilimit
pin=inbuf
rl=inbuf
r4=bufio
ré=energy

r3=14 /* 16 receivers -2 */

ioxfr:if (r3-- >= 0) goto ioxfr
*r4++ = al = ic(*rl++rlé6) /* move data from inbuf to bufio */
rill=14 /* 16 receivers - 2 */

Dual-Tone Multifrequency Receiver

/**/

/* */
/* This section computes the LHS of the DFT for the 1st and 2nd order */
/* harmonics of each tone for each sample. It is performed 16 times, */
/* once for each receiver. The state variables for each receiver are */
/* stored in a sequential stack on top of each other. *x/
/* */

/**/
rl=bufio

r3=_iirstvr /* pointer to state variables */

r4=r3+4 /* stores updated state variables */
dft:al=*rl
/* 697hz 1st harmonic LHS */

a0 = al + (*r4—-—- = *r3++) * *r2++ /* 2nd state var. d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /* 1lst state var. d[1,2] */
/* 770hz 1lst harmonic LHS */

a0 = al 4 (*rd4-- = *r3++) * *r2++ /% d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /* df[1,2] */
/* 852hz 1st harmonic LHS */

a0 = al + (*r4-— = *r3++) * *r2++ /* d[1,1] *x/

*r4++rl5 = a0 = a0 — *r3++ /* d[1,2] */
/* 941hz 1st harmonic LHS */

a0 = al + (*rd4-— = *r3++) * *r2++ /* d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /* dl1,2] */
/* 1209hz 1st harmonic LHS */

a0 = al + (*r4——- = *r3++) * *r2++ /* d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /* 41,21 */
/* 1336hz 1st harmonic LHS */

a0 = al + (*rd4—-- = *r3++) * *r2++ /% d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /* dl[1,2] */
/* 1477hz 1st harmonic LHS */

a0 = al + (*r4—-— = *r3++) * *r2++ /% d[1,1] */

*r4++rl5 = a0 = a0 - *r3++ /* d[1,2] */
/* 1633hz 1st harmonic LHS */

a0 = al + (*r4—— = *r3++) * *r2++ /* d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /* dl[1,2] */
/* 697hz 2nd harmonic LHS */

a0 = al + (*r4—-— = *r3++) * *r2++ /* d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /% d[1,2] */
/* 770hz 2nd harmonic LHS */

a0 = al + (*r4—-— = *r3++) * *r2++ /* d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ ' /* dl1,2] */
/* 852hz 2nd harmonic LHS */

a0 = al + (*r4—-- = *r3++) * *r2++ /* d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /* d[1,2] */
/* 941hz 2nd harmonic LHS */

a0 = al + (*r4—-—- = *r3++) * *r2++ /* d[1,1] */

*r4++rl5 = a0 = a0 - *r3++ /* d[1,2] */
/* 1209hz 2nd harmonic LHS */

a0 = al + (*r4—-— = *r3++) * *r2++ /* d(1,1] */

*r4++rl5 = a0 = a0 - *r3++ /* d[1,2] */
/* 1336hz 2nd harmonic LHS */

a0 = al + (*r4—-—- = *r3++) * *r2++ /* d[1,1] */

*r4++rl5 = a0 = a0 - *r3++ /* dl1,2] */
/% 1477hz 2nd harmonic LHS */

a0 = al + (*r4—-—- = *r3++) * *r2++ /* d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /* d[1,2] */
/* 1633hz 2nd harmonic LHS */

a0 = al + (*r4—-- = *r3++) * *r2++rl7 /% d[1,1] */

*r4++rl5 = a0 = a0 — *r3++ /* d[1,2] */

if (r1l-- >= 0) goto dft /* 16 receiver counter */

*ré6++ = a2 = *r6 + al * *rl++ /* update energy */

if (r5-- >= 0) goto sample /* 205 sample frame counter */

nop

Dual-Tone Multifrequency Receiver

/**/

/* */
/* This section computes the RHS of the DFT for the 1st harmonics */
/* of each tone. The magnitude is squared and stored in consecutive */
/* locations starting at _iirstvr. */
/* */
/**/

ioc=0x%x40

rle=0

rl2=energy
rl8=_1iirstvr
r19=_ttdigit

rll=14 /* 16 receivers — 2 */
timing:r2=_iirco

r4=ril8

rl5=8

rl=6

r3=rilsg /* points to location of mag™2 of each tone */
right:a2= *r4 * *r4++ /* Sn * Sn-1 */

al=*r4-— * *r4 /* Sn—-1"2 */

a0 = al + *r4++rlb5 * *r4 /* Sn~2 + Sn-172 */

if (rl-- >= 0) goto right

*r3++ = a0 = a0 — a2 * *r2++ /* |Y|”2 * /
/**/
/* x/
/* This section finds the largest value in the low and high frequency */
/* band and stores the 2 values at _iirstvr+32. It also computes their */
/* location in the low and high frequency band and stores these 2 *x/
/* values at _iirincr. */
/* */

/**/

r8=_1iirincr

r4=r18+32 /* loc. of largest mag. in each band */

r3=rl8 /* loc. of mag~2 of each tone */

r7=0
lrgmag3:r6=1

r5=0

r1l=0

r2=0

*r4=a0=*r3++ /* writes possible large mag. temporarily *r4 */
lrgmag4:al=*r3+

nop

a2=al-a0

3*nop

if (ale) goto lrgmagl /* test which value is larger */

nop

*r4=al=al

r2=r2+1

rl=r2

goto lrgmag2

rl=rl+r5 /* contains the row & col increments */
lrgmagl:r5=r5+1
lrgmag2:if (r6-— >= 0) goto lrgmag4

nop

r8++=rl / contains the row & col increments */

if (r7-—- >= 0) goto lrgmag3

r4=r4+4

Dual-Tone Multifrequency Receiver

10

/**/

/‘k
/*
/*
/*
/*
/*
/*

*/
This section compares the lower of the high and low frequency */
band magnitudes to a threshold level. If it is lower than the */
threshold the program updates the wvalid digit stack with a -1 */
and retrieves another frame. Otherwise, it continues and checks */
the twist. */

*/

/**/

_ttrhigh:a2 =

_ttrlow:

rl=rl18+32

a0= *rl - *rl++
r10=_ttrlevl

a2 = *rl

al = *rl-— - *rlo0

if (alt) goto _ttrlow
r2=_twisthg
*rl

al = *rl++ -
r2=_twistlw

*rl0

al = —*rl + a2 * *r2
nop

if (alt) goto notone
nop

if (alt) goto notone
nop

goto frqofset

nop

al = —*rl + a2 * *r2

if (alt) goto notone
2*nop

if (alt) goto notone
nop

/*
/*

/*

o
o
o
/e
/e

/*
/*

/*

row & col
low mag.

loc. of max
high mag. -

lower value - 8e7 */

lower value - 8e7 */
low mag. * 2.5 - high
threshold check

reverse twist test */

continue */

high mag.
threshold check */

normal twist test */

mag’s */

*/

mag. */

*/

* 9.2 - low mag. */

/**‘k***'k'k**********************/

/*
/*
/*
/*
/'k
/*
/*

*
/
Do largest frequencies stand out? */
This section compares the largest magnitude (detected "tone") in */
each frequency band with the other magnitudes in that band. If the */
"tone" is not significantly larger then the other magnitudes the */
program returns to begin and samples another frame. */
*
/

/*******‘k**/

frqofset:r4=0

r10=_vldtonl

freqoff2:r3=2

freqoffl:a2 =

freqoff:

rl=rl18+32
r2=rlsg
*r2
al = *rl - *r2++
nop
a0 = *rl - a2 * *rlo0
nop
if (aeq) goto freqgoff
nop

if (age) goto freqoff
nop
goto notone

nop
if (r3-- >= 0) goto freqoffl
nop

rl10=_vldtonh

if (r4a-- >=

rl=rl+4

0) goto freqoff2

/*
/'k
/*
/*
/*
/*
/*

/*
/'k

loc.
loc.

of largest mag.
of mag™2 of each

in each band */
tone */

check if mag’s are the same */

highest mag.

- other mags.

* coeff */

if equal mag’s get next mag */

if highest mag < other mag * coeff */

tone is not wvalid */
Therefore,
and get another frame

update _ttdigit with -1 */

of samples. */

Dual-Tone Multifrequency Receiver

/**/

/* */
/* This section compares the total inband energy to the largest mag. */
/* in the low band, the largest mag. in the high band, and the sum of */
/* the two magnitudes. */
/* */

/**/

energ:rl=rl18+32

a2=*rl++ /* a2=largest mag in low band */

al=*rl /* al=largest mag in high band */
r3=_nrgcoef

a3 = a2 — *rl2 * *r3++ /* a3=low band mag-energy*lowband coef */
a2=al+az2

a3 = al — *rl2 * *r3++ /* a3=highband mag-energy*highband coef*/
a3 = a2 — *rl2++ * *r3 /* a3=sum of mags—energy*sum coef */

if (alt) goto notone

nop

if (alt) goto notone

nop

if (alt) goto notone

nop

/**/

/% */
/* Is the harmonic ratio > threshold? */
/* This computes the magnitudes squared of the "tones" second */
J* harmonics and compares it with the "tone". If the magnitudes are */
/* within a certain ratio, the program returns to begin and samples */
/* another frame. */
/* */
/**/

r3=rl18+32 /* loc. of largest mag. in each band */

ri=0

r5=0

rl0=_iirincr
r7=_hrmcoef

_2ndharm:r6=*rl0++ /* compute the location of the 2nd harm */
r4=rlsg /* coefficients and state variables */
r8=r6*2
r8=rg*2
r2=r8+32
r2=r2+rb5
r8=r2+*2
r2=r2+_iirco /* loc. of the 2nd harmonic coeff’s */
r4=r4+r8
a2= *r4 * *ra4++ /* Sn * Sn—-1 */
al=*r4-— * *r4 /* Sn—-172 *x/
a0 = al + *r4 * *r4 /* Sn~2 + Sn-172 */
a0 = a0 — a2 * *r2 /* |Y|"2 %/
2*nop
a3 = *r3++ - a0 * *r7++ /* 1st harm - 2nd harm * 2nd harm coeff */
3*nop
if (ale) goto notone
r5=16
if (rl1-- >= 0) goto _2ndharm
r9=_iirincr /* used in decode digit section */

11

Dual-Tone Multifrequency Receiver

/**/
/* */
/* Decode digits */
/* pdr’s lower byte contains the valid decoded digit in its lower 4 *x/
/* bits and the receiver number in its upper 4 bits. */
/* x/

/**/

rl=+*r9++ /* location of _iirincr */
r7=rl6*2
r2=rl*2
r2=r2*2
r3=*r9
r2=r2*2
r3=r3+*2
r2=r2+r3
r2=r2+_romtbl /* loc. of decoded digit */
rl0=+*r2 /* present digit D(k) */
r4=rl19+2
r5=%*r4 /* 2nd to last digit D(k—-2) */
r7=r7%*2
r5=r5-rl10
if (eq) goto tonel /* D(k)=D(k-2) ? *x/
r4=rl9
rS5=*r4 /* last digit decoded D(k-1) */
r7=r7%*2
r5=r5-r10
if (ne) goto tonel /* D(k)=D(k-1) ? */
r8=r7%*2
r8=r8-r10
pdr=r8
goto tonel
nop
notone:r10=-1 /* set digit to -1 and update stack */
tonel:rl=r19
r3=*ril
rl++ = rlo0 / update D(k-1)=D(k) */
rl = r3 / update D(k—-2)=D(k-1) */
r19=rl19+4
rlé=rl6+1
if (rll-- >= 0) goto timing /* process timing for next receiver */
r18=rl18+128
goto begin
r1l5=12

12

Dual-Tone Multifrequency Receiver

/**/

/* */
/* PROGRAM VARIABLES */
/* */
/* First order harmonic coefficients */
_iirco: float 1.70773781, 1.645281, 1.568687, 1.4782

float 1.1641, .99637, .7986184, .5685327
/* Second order harmonic coefficients */

float .916368, .70695, .46077885, .1851

float -.644862, —-1.0072464, -1.36221, -1.676771

_iirzero: float 0.0
_ttrlevl: float 4e7
_twisthg: float 10.5
_twistlw: float 7.
_vldtonl: float 5
_vldtonh: float 5.
_nrgcoef: float 7
_hrmcoef: float 1
_romtbl: int 1, 2, 3, 10
int 4, 5, 6, 11
int 7, 8, 9, 12
int 14, 0, 15, 13

/* */

/**/

/****'k***/

/* */
/* STATE VARIABLES */
/* */
inbuf: 15*float 0.0

ilimit: float 0.0

dummy : 100*xfloat O.

bufio: l16xfloat 0.0

_iirincr:2*int 0
energy: 1l1l6*float 0.0
_ttdigit:32*int O

.rsect ".hi_ram"
_lirstvr:512*float 0.0 /* state variables */
/% */

/**/

13

Dual-Tone Multifrequency Receiver

References

1.

14

Touch-Tone Calling—Requirements for
Central Office, AT&T Compatibility Bulletin
No. 105, August 8, 1975.

Tone Receiver Test Cassette #CM7291, Mitel
Technical Data Manual, Mitel
Semiconductor, 2321 Morena Blvd. Suite M,
San Diego, CA 92110.

Mock, Patrick, "Add DTMF Generation and
Decoding to DSP -uP Designs," EDN, March
21, 1985.

Oppenheim, A.V. and Schaeffer, R.W.,
Digital Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1975.

Dual-Tone Multifrequency Receiver

NOTES:

15

For additional information, contact
your AT&T Account Manager, or call:

O AT&T Microelectronics
Dept. 51AL230230
555 Union Boulevard
Allentown, PA 18103
1-800-372-2447

In Canada, call:
1-800-553-2448

O AT&T Microelectronics GmbH
Freischitzstrasse 92
D-8000 Munich 81
West Germany
Tel. 0 89/95 97 0
Telex 5 216 884

O AT&T Microelectronics Asia/Pacific
4 Shenton Way #20-00
Shing Kwan House
Singapore 0106
Tel. 225-5233
Telex RS 42898
FAX 225-8725

O AT&T Microelectronics Japan
7F, Fukoku Seimei Bldg.,
2-2-2, Uchisaiwai-cho,
Chiyoda-ku, Tokyo 100 Japan
Tel. (03) 502-3055
Telex J32562 ATTIJ
FAX (03) 593-3307

AT&T reserves the right to make changes
to the product(s) or circuit(s) described
herein without notice. No liability is
assumed as a result of their use or
application. No rights under any patent
accompany the sale of any such product
or circuit.

Copyright © 1988 AT&T
All Rights Reserved
Printed in USA

June 1988
AP88-08DMOS

= ATal
=== The right choice.

4
R

